
Multi-agent Based IEC 61499 Function Block
Modelling for Distributed Intelligent

Automation

Guolin Lyu(B) and Robert W. Brennan

University of Calgary, 2500 University Drive NW, Calgary T2N 1N4, Canada
guolin.lyu@ucalgary.ca

Abstract. A major challenge for traditional systems is the lack of capabilities
to automatically discover alternative solutions and actively deploy correspond-
ing functions to intelligently adapt to changes in dynamic environments. In this
paper, we continue our previous research of developing a two-layer architecture for
modelling industrial cyber-physical systems and focus on the IEC 61499 function
block based low-level physical module design. We propose an architecture model
to integrate function blocks with intelligent agents to support self-management
capabilities for low-level physical modules to quickly respond to changes. In the
proposed architecture, a self-manageable service model is introduced for IEC
61499 function block modelled systems and designed as a multi-agent model
with Self-Manageable Service Execution Agent, Self-Configuration Agent, Self-
Healing Agent, Self-Optimization Agent, and Self-Protection Agent. The proposed
modelling framework is testedwith preliminary experiments onRaspberryPi using
the agent modelling tool SPADE and function block modelling tool Eclipse 4diac.

Keywords: Distributed automation · Function block · IEC 61499 ·Multi-agent
modelling · Self-Manageability

1 Introduction

A key challenge with the transition to Industry 4.0 [1], is that of designing industrial
automation systems that are responsive and adaptive to changes. This is particularly prob-
lematic in situations where low-level physical modules must interact in a timely manner
with high-level cyber modules andmanage the exchange of high-volume streaming data.
With recent advances in system hardware and software, and enabling technologies for
system computation and communication, traditional systems are being transformed into
a new form: i.e., industrial cyber-physical systems (iCPS). iCPS are envisioned as a col-
laboration of cyber, physical components and their surrounding environments, that are
empowered for intelligence by computing and communicating cores [2]. This new type
of iCPS appears to hold the most promise of achieving modern industrial automation
systems in the Industry 4.0 era, to be flexible in distribution of architectures, and to be
intelligent in adaptation to changes in dynamic environments.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
K.-Y. Kim et al. (Eds.): FAIM 2022, LNME, pp. 395–407, 2023.
https://doi.org/10.1007/978-3-031-17629-6_41

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-17629-6_41&domain=pdf
http://orcid.org/0000-0003-2049-0791
http://orcid.org/0000-0003-0468-393X
https://doi.org/10.1007/978-3-031-17629-6_41

396 G. Lyu and R. W. Brennan

Central to this work is research on integration and interaction of high-level intelli-
gent software agents and low-level real-time control units for iCPS [3]. In our previous
research, we proposed a two-layer architecture design for modelling self-manageable
iCPS for distributed intelligent automation [4]. A multi-agent computing model was
designed to implement the high-level architecture with the aim of providing system
intelligence by communicating and computing cores for cyber modules. The IEC 61499
function block (FB) model was used to implement the low-level architecture and offer
real-time adaptation by distributed and intelligent control of physical modules [4]. In
[4], only details of the high-level cyber module were explored.

In this paper we focus on the IEC 61499 FB based low-level architecture modelling
and propose a design model to integrate function blocks with intelligent agents to sup-
port self-management capabilities of the low-level physical module to realize real-time
adaptation to changes. In the proposed low-level architecture model, a self-manageable
servicemodel is introduced for IEC 61499 FBmodelled systems and designed as amulti-
agent model. The proposedmodelling framework is tested with preliminary experiments
on Raspberry Pi by using agent modelling tool SPADE and IEC 61499 FB modelling
tool Eclipse 4diac.

2 Related Work

Agent-based solutions or multi-agent modelling techniques are playing a key role in the
development of complex industrial control and automation systems, allowing a decen-
tralized way to design distributed and intelligent systems [5, 6]. This approach is being
applied in several domains of industrial applications: e.g., factory and building automa-
tion, power and energy systems [5]. Multi-agent modelling applies multiple intelligent,
autonomous, and cooperative agents in system design as these agents have capabilities
of acting independently or in collaboration with each other to respond to system requests
or changes and to achieve individual or shared goals [6].

Real-time control units or automation functions are mainly programmed under IEC
61131-3 [7] or IEC 61499 [8] and executed in the programmable logic controllers or
intelligent embedded devices. IEC 61131-3 dominates the design of traditional indus-
trial automation systems and faces many challenges, while IEC 61499 is developed
for programming next-generation industrial automation systems to support portability,
interoperability, and configurability [8, 9]. Compared to IEC 61131-3, IEC 61499 offers
key features including application-based distributed architecture design, object-oriented
function block modelling, and event-driven control application execution.

In this section, wewill focus on reviewing studies on applyingmulti-agent modelling
techniques to develop IEC 61499 FB models for self-manageable iCPS: especially aim-
ing at the low-level control architecture modelling. Recent key research includes the
European Daedalus project for developing IEC 61499 based distributed control and
simulation platforms for iCPS [10], the IEEE standard of interface practice patterns for
integration of software agents and low-level automation functions [3].

One major research trend in this area is the focus on automatic reconfiguration mod-
elling of distributed automation systems. Brennan et al. [11] proposed a three-layered
FB and agent-based model for dynamic and intelligent reconfiguration of real-time dis-
tributed control systems. A reconfigurable concurrent FB model was also proposed to

Multi-agent Based IEC 61499 Function Block Modelling 397

separate two control paths: IEC 61499 FB modeled control application execution and
multi-agent modeled configuration control operation [12]. Khalgui et al. [13] proposed
an architecture of reconfigurable multi-agent systems for IEC 61499 based distributed
control systems. Two types of agents are provided: reconfiguration agents modeled
by nested state machines for local automatic reconfiguration and coordination agents
defined by coordination matrices and communication protocols for managing reconfig-
uration behaviors. Guellouz et al. [14] proposed a new design pattern reconfiguration FB
(RFB) which is defined as event-triggered software components to control and execute
reconfiguration tasks. Compared to traditional IEC 61499 FB model, it adds reconfig-
uration events to the interface and the master-slave execution control chart to define
reconfiguration functions.

Recently, more attention has been focused on system autonomic service manage-
ment modelling. An agent-based architecture for self-manageable industrial automation
systems was proposed by Mubarak and Göhner [15], in which agents are deployed on
three levels including the control and supervision level, the self-management function-
ality level, and the automation system connection level. An automation agent and IEC
61499 FB based architecture for low-level physical modules control was proposed by
Lepuschitz et al. [16], aiming at realizing system self-reconfiguration. A self-represented
architecture to support system self-reconfiguration and autonomousmonitoringwas pro-
posed by Kaindl et al. [17], in which the lower-level control is modeled by IEC 61499
FBs and the high-level control is designed as multi-agents. A self-organizing architec-
ture was proposed by Strasser and Froschauer [18] to support automatic reconfiguration
of new devices and automatic deployment of control applications for IEC 61499 based
automation systems. Dai et al. [19] proposed a knowledge-driven autonomic service
management architecture modelling method by using service-oriented self-manageable
agents on the device level for continuously optimizing physical resource utilization. Dai
et al. [20] proposed a cloud-based decision support system design approach by applying
autonomous industrial software agents for system real-time failure detection and online
reconfiguration. The analysis technique fault trees and control algorithms aremodeled in
IEC 61499 FBs for execution in both physical controllers and cloud services. The above
reviewed studies primarily focused on service-oriented self-manageable iCPS architec-
ture modelling and some self-management capabilities, e.g., self-configuration [15, 18],
self-optimization [19], self-healing [20], were demonstrated through case studies.

In summary, industrial agent-based solutions are not uncommon to be applied in
the high-level distributed automation systems as it has the capabilities that are well
matched to the high-level core tasks, e.g., strategic decision-making on operation, plan-
ning, scheduling, and maintenance. However, very little work has been done on integra-
tion ofmulti-agentmodellingwith low-level control design due to stringent requirements
for system reliability, timeliness, safety, etc. Someother challenges come from, for exam-
ple, traditional system architecture modelling and control application design approaches
limit such integration. Recently, IEC 61499 has been integrated with its enabling tech-
nologies for design and computing (e.g., service-oriented architecture [21], autonomic
computing [22]) to realize distributed and intelligent automation for iCPS. Inspired by

398 G. Lyu and R. W. Brennan

the above research, we aim at proposing a multi-agent based IEC 61499 FB architec-
ture by integrating function blocks with intelligent agents to support self-management
capabilities for low-level physical modules to realize real-time adaptation to changes.

3 Proposed Framework

In our previous research, a two-layer architecture for modelling iCPS was developed, in
which the high-level cyber module was designed and implemented as amulti-agent com-
puting model of Monitoring Agent, Analysis Agent, Planning Agent, Execution Agent,
Self-Learning Agent, and Knowledge Agent (i.e., multi-agent MAPLE-K model) [4].
For the low-level physical module implementation, we propose utilizing the IEC 61499
FB model with embedded intelligent agents for real-time distributed control. The agent-
FB interface design can be referred to IEEE standard 2660.1 [3] and its related work
(e.g., [23]). In this section, we begin with a brief overview of the IEC 61499 reference
architecture, then describe our proposed modelling framework.

(d) System Model
Device X Device Y Device Z

Application

Communication Network

(b) Resource Model

Communication Interface

Process Interface
Scheduling Function

SIFB1 FB SIFB2

Communication Interface

Process Interface

Resource A

(c) Device Model

Resource B Resource C

Application

(a) Application Model

FB1 FB2 FB3
Event Flow

Data Flow

Fig. 1. The IEC 61499 reference architecture

3.1 IEC 61499 Function Block Model

Figure 1 provides an overview of the IEC 61499 reference architecture [8]. Generally,
a typical IEC 61499 based system is designed as: a) the control logic built by function
blocks as applications, and b) the physical devices encapsulating required resources for
implementation. A function block is an object-oriented modelling element with event-
driven execution. An application model (Fig. 1a) is defined as a network of intercon-
nected FBs linked by event/data flows and distributed over resources and devices. A

Multi-agent Based IEC 61499 Function Block Modelling 399

resource model (Fig. 1b) is defined to support the execution of one or more applica-
tion fragments. A device model (Fig. 1c) is defined to support one or more resources to
exchange data through interface services internally (i.e., the process interface to enable
interaction via input/output points in local devices) and externally (i.e., the communi-
cation interface to enable interaction via networks with resources in remote devices). A
system model (Fig. 1d) is a collection of interconnected devices interacting with each
other through communication networks.

3.2 Self-manageable Service Model

In the proposed low-level architecture modelling framework (Fig. 2), the self-
manageable service model is design as a multi-agent model embedded in IEC 61499
FBs. Two new agent types are designed (Table 1): a) the self-manageable service exe-
cution agent Agent_SMS; b) self-manageable agents including Agent_SC, Agent_SO,
Agent_SH, and Agent_SP. In general, the first type of agent is mainly responsible for
communicating with the multi-agent MAPLE-K model in the cyber module on current
states and change requests, and with the self-manageable agents on self-manageable
service action plans, and is also responsible for finally executing the action plan on IEC
61499 FB based systems. The second type of agent is primary concerned with generat-
ing self-manageable service action plans upon requests. For example (Fig. 2), the basic
process of one type of self-configuration is instigated by a single change request that
results in the old FB_S being replaced by two new FB_S1 and FB_S2 in the Appli-
cation residing in Device_Y and Device_Z. The self-manageable service is activated
as Agent_SMS detects the change request and communicates to Agent_SC to request
the self-configuration service. Agent_SC generates the action plan and sends it back to
Agent_SMS for execution on the application.

FB_S1

FB_S2

FB_C FB_A

FB_S FB_C FB_A

Intelligent

Device_X Device_Y Device_Z

Application

Communication Network

IEC 61499 Function Block Model

Self-Manageable Service Model

Change Detected
/

Service Activated

Quick Response
/

Real-time Adaption

Reconfiguration

Low-Level Physical Module
(Agent Embedded FB Model)

High-Level Cyber Module
(Multi-Agent MAPLE-K Model)

Manageability Interfaces

Agent Communication

Self-Configuration
Agent (Agent_SC)

Self-Optimization
Agent (Agent_SO)

Self-Healing Agent
(Agent_SH)

Self-Protection Agent
(Agent_SP)

Self-Manageable Service
Execution Agent (Agent_SMS)

Agent Communication

Fig. 2. The proposed low-level architecture modelling framework

400 G. Lyu and R. W. Brennan

Table 1. An overview of proposed self-manageable agents

Name Description

Self-Manageable Service Execution Agent
(Agent_SMS)

Monitoring system states and responding to
changes by deciding the adequate behaviors to
perform (i.e., activate one or more
self-manageable agents and execute
self-manageable services)

Self-Configuration Agent (Agent_SC) Configuring/reconfiguring functions, structures,
and process to adapt to dynamical changes

Self-Optimization Agent (Agent_SO) Improving and optimizing performances and
operations with respect to predefined goals

Self-Healing Agent (Agent_SH) Detecting and recovering from disturbances and
faults to maximize system availability

Self-Protection Agent (Agent_SP) Identifying and protecting against safety and
security attacks to preserve system integrity

SelfManageableServiceExecutionAgent Class. Agent_SMS plays a key role in request-
ing one or more self-manageable agents to respond to changes and executing self-
manageable services provided by self-manageable agents to adapt IEC 61499 FB based
systems. In the UML data model in Fig. 3, the Agent_SMS class implements two inter-
faces (i.e., the SelfManageableAgents interface and the IEC61499FunctionBlockSystem
interface) to realize its predefined functions. Typical attributes of the Agent_SMS
class include previousState, executedAction, currentState, plannedAction, and com-
putedAction. Typical methods are receiveCurrentState, initializeSMAgent, and exe-
cuteAgentSMS.

SelfManageableAgents Interface. The SelfManageableAgents interface in Fig. 4 pro-
vides access to communicate with self-manageable agents for self-manageable services
in the low-level physicalmodule.One typical attribute is the list of self-manageable agent
types (i.e., Agent_SC, Agent_SO, Agent_SH, and Agent_SP). Each agent is responsible
for their own tasks as shown in Table 1 [22]. Typical methods are receiveChangeRequest
to get the change request from Agent_SMS, selectSMAgents to choose which agent
to perform the self-manageable service according to currentState and changeRequest,
and sendReqDecision to ask the chosen agent to perform required tasks. For each self-
manageable agent class, typical methods are to receive the request decision from the
SelfManageableAgents interface, generate the self-manageable service action plan, and
return it to Agent_SMS for execution.

An example of sensor nodes in wireless sensor networks [4] is discussed from a point
of viewof the low-level physicalmodule to explain how the SelfManageableAgents inter-
face works for the SelfManageableServiceExecutionAgent class. In normal operations,
as per the system’s request, Agent_SO can be initiated to provide an optimized service
plan for Agent_SMS (e.g., sensor nodes request high resource consumption only when
changes detected, or become passive to save batteries when no changes happen in a

Multi-agent Based IEC 61499 Function Block Modelling 401

Self-ManageableServiceExecutionAgent
(Agent_SMS)

attributeAgentSMS:

methodAgentSMS()

 previousState: State
 executedAction: Action

 plannedAction: Action
 currentState: State

 executeAgentSMS(currentState, computedAction)
 initializeSMAgent(currentState)

 computedAction: Action

 receiveCurrentState(currentState)

State

attributeState:
methodState()

Action

attributeAction:
methodAction()

<<interface>>
Self-ManageableAgents

attributeSelfManageableAgents:

methodSelfManageableAgents()

 sendReqDecision(currentState, changeRequest)
 selectSMAgents(currentState, changeRequest)

listSelfManageableAgentsType:

 receiveChangeRequest(currentState)

1..1

1..1

1..1

1..1<<interface>>
IEC61499FunctionBlockSystem

attributeIEC61499FBSystem:

methodIEC61499FBSystem()

 create/modify/deleteIEC61499FBSystemElement()

 listIEC61499FBSystemElement:

 start/stop/updateIEC61499FBSystem()

Fig. 3. The SelfManageableServiceExecutionAgent class

<<interface>>
Self-ManageableAgents

attributeSelfManageableAgents:

methodSelfManageableAgents()

 sendReqDecision(currentState, changeRequest)
 selectSMAgents(currentState, changeRequest)

listSelfManageableAgentsType:

 receiveChangeRequest(currentState)

Self-ConfigurationAgent
(Agent_SC)

attributeAgentSC:
methodAgentSC()

 returnAgentSCResult(currentState,computedAction)
 executeAgentSC(currentState, changeRequest)
 receiveReqDecision(currentState, changeRequest)

Self-OptimizationAgent
(Agent_SO)

attributeAgentSO:
methodAgentSO()

 returnAgentSOResult(currentState,computedAction)
 executeAgentSO(currentState, changeRequest)
 receiveReqDecision(currentState, changeRequest)

Self-HealingAgent
(Agent_SH)

attributeAgentSH:
methodAgentSH()

 returnAgentSHResult(currentState,computedAction)
 executeAgentSH(currentState, changeRequest)
 receiveReqDecision(currentState, changeRequest)

Self-ProtectionAgent
(Agent_SP)

attributeAgentSP:
methodAgentSP()

 returnAgentSPResult(currentState,computedAction)
 executeAgentSP(currentState, changeRequest)
 receiveReqDecision(currentState, changeRequest)

1..1

1..1

1..1

1..1

1..1

1..1

Fig. 4. The SelfManageableAgents interface

402 G. Lyu and R. W. Brennan

period of time). For more complex situations (e.g., change of power sources in sensor
nodes), as requested from the system, Agent_SMS can initiate Agent_SH or Agent_SP.
Agent_SP gives outwarning signals in an unrecoverable situationwhere both the primary
and backup batteries are running out, and Agent_SH activates the backup battery plan in
a recoverable situationwhere only the primary batter is running out. If more sensor nodes
are required to be added to the network, Agent_SC will be activated. Agent_SC can also
be initialized by Agent_SMS in execution of service plans from Agent_SO, Agent_SH,
and Agent_SP.

Resource

attributeResource:
methodResource()
 create/modify/deleteResource()
 start/stop/killResource()

EventData

attributeEventData:
methodEventData()
 read/write/resetEDValue()
 create/modify/deleteEDConnection()

Application

attributeApplication:
methodApplication()
 create/modify/deleteApplication()
 start/stop/killApplication()

Device

attributeDevice:
methodApplication()
 add/remove/resetDevice()
 start/stop/killDevice()

FunctionBlock

attributeFunctionBlock:

methodFunctionBlock()
 create/modify/deleteFBType()

 create/modify/deleteFBGrouping()

 listFBType:
 listFBInstance:
 listFBConnection:

 create/modify/deleteFBInstance()

 listFBGrouping:

 create/modify/deleteFBConnection()

1..1 1..*

<<interface>>
IEC61499FunctionBlockSystem

attributeIEC61499FBSystem:

methodIEC61499FBSystem()

 create/modify/deleteIEC61499FBSystemElement()

 listIEC61499FBSystemElement:

 start/stop/updateIEC61499FBSystem()

1..* 1..1

1..*

1..*

1..*

1..*

1..*1..1

1..*

1..1

1..*

1..1

Fig. 5. The IEC61499FunctionBlockSystem interface

IEC61499FunctionBlockSystem Interface. The IEC61499FunctionBlockSystem inter-
face in Fig. 5 provides access to executing self-manageable services to adapt
IEC 61499 FB based systems. The typical attribute is a list of IEC 61499
FB system elements, e.g., devices, resources, applications, and function blocks.
Typical methods implemented are start/stop/updateIEC61499FBSystem and cre-
ate/modify/deleteIEC61499FBSystemElement. The classes Device, Resource, Appli-
cation, FunctionBlock with Event/Data are main entities that Agent_SMS can exe-
cute the self-manageable service action plan on. In the Device class, typical meth-
ods include add/remove/resetDevice and start/stop/killDevice. In the Resource class,

Multi-agent Based IEC 61499 Function Block Modelling 403

typical methods include create/modify/deleteResource and start/stop/killResource.
For the Application class, typical methods are create/modify/deleteApplication
and start/stop/killApplication. For the EventData class, typical methods are
read/write/resetEDValue and create/modify/deleteEDConnection. For the Fucntion-
Block class, typical attributes are FBType (e.g., basic/composite/service interface FBs),
FBInstance,FBConnection, andFBGrouping (e.g., plug and socket adapters), and typical
methods are to create, modify, and delete those attributes.

Figure 6 provides an example of how the IEC61499FunctionBlockSystem interface
works for the SelfManageableServiceExecutionAgent class: the calculator model with
only two functions (i.e., ADD and SUB) needs to be reconfigured to add two more func-
tions (i.e.,MUL andDIV). In Fig. 6a, the calculator is built using a composite FBmodel:
Agent_SMS works primarily on the FunctionBlock class to create two new FB instances
and their connections, and updates attributes andmethods in theEventData class forFB1
(red dashed circles in Fig. 6a). For the calculator designed as a basic FB (Fig. 6b), the
self-configuration process is easier: main tasks of Agent_SMS involve adding two events
and updating execution control charts and algorithms in the EventData class for Calcu-
lator 1.0 (red dashed circles in Fig. 6b). Thus, for change requests in different designs
and systems, tasks of Agent_SMS will be different: e.g., to add event/data, to create FB
connections, to modify applications, to rebalance resources, and to reset devices.

(b) Calculator in BFB

(a) Calculator in CFB

Fig. 6. An example of the calculator model built in Eclipse 4diac

3.3 Agent_Embedded Function Block Model

The agent-embedded function block (Fig. 7) is proposed as a new design pattern for IEC
61499 to build self-manageable automation and control solutions. The basic FB type is
used to create a new type called Agent_X FB including Agent_SMS FB, Agent_SC FB,
Agent_SO FB, Agent_SH FB, and Agent_SP FB. According to data models in Figs. 3, 4
and 5,Agent_SMS FB has at least two key state/action pairs in its execution control chart:
a) REQ for requesting one ormore self-manageable agents to respond to changes (imple-
menting the SelfManageableAgents interface); b) EXE for executing self-manageable

404 G. Lyu and R. W. Brennan

services provided by self-manageable agents to adapt FB based control systems (imple-
menting the IEC61499FunctionBlockSystem interface). Self-manageable agents embed-
ded in IEC 61499 FBs are either initialized to be active for expected tasks or deactivated
in a sleep state. With this new design pattern, the new agent-embedded FB types can
be introduced to build self-manageable control applications: e.g., replacing the failed
software component automatically. In practice, in order for one IEC 61499 FB based
application to be self-manageable, the Agent_SMS FB type is required with one or more
self-manageable agents for different tasks (i.e., configuration, optimization, healing,
or protection). The previous sub-sections have explained how it works, especially the
examples of the calculator and sensors nodes modelling.

Execution Control

Agent_X

ECC Agent_X

EI

DI

EO

DO

Algorithms

Algorithm Agent_X

Internal Data

Internal Data Agent_X

START INIT

REQ

EXE

ALG EVNT

1

1

REQ

EXE

INIT

1

ALG_exe EVNT_exe

ALG_req EVNT_req

Fig. 7. The agent-embedded function block model

4 Proposed Experiment

In this section, a preliminary test setup and different scenarios are provided to illustrate
the proposed modeling framework and some of the self-management features are also
demonstrated. The design tool SPADE (Smart PythonAgentDevelopment Environment)
[24] is used to develop multi-agent models. The Eclipse 4diac design tool [25] is used to
develop IEC61499FBmodels. The proposed test setup in Fig. 8 includes: a) the signaling
platform represented by Raspberry Pi [26] (#3 in Fig. 8) powered LEDs (#2 in Fig. 8) in
blue, green, red, and yellow; b) the sorting platform represented by Raspberry Pi (#3 in
Fig. 8) poweredMotors (#4 in Fig. 8); and c) the carrying platform represented by Jetson
Nano powered JetBot [28] (#1 in Fig. 8). In this case, JetBot simply represents the high-
level cyber module and is able to follow a path and communicate with other devices.
LEDs and Motors powered by Raspberry Pi represents low-level physical modules and
are controlled by agent-embedded IEC 61499 FB modeled applications.

For the test process, the signaling platform randomly selects a colored LED and
turns it on for a few seconds. The color and duration are communicated to the carrying
platform. Next, JetBot moves to the sorting platform and sends a message to the Motor,

Multi-agent Based IEC 61499 Function Block Modelling 405

specifying the rotation direction and duration. The Motor executes the command and
sends back a confirmation message to JetBot.

To test the system self-manageable capabilities, we begin with a simple single direc-
tion of rotation scenario: only a blue LED randomly flashes to request clockwise rotation
of Motor1. This is extended to multi-direction rotation: a green LED is added for the
counterclockwise rotation of Motor1. Applying the proposed modeling framework, new
IEC 61499 FBs can be added to self-configure control applications, and resources can
be re-distributed accordingly to support this change.

A more complicated scenario is to add another sorting line (i.e., Motor2) for low-
speed rotationwith high precision. The existing control systemcan be easily reconfigured
and redeployed to the new linewith the proposedmodeling framework. Self-optimization
can also be achieved in both lines due to operation data collected from the old line. One
self-healing case is the system can quickly update its IEC 61499 FBmodeled application
when detecting that the blue LED is broken and replaced with a yellow one. For self-
protection features, for example, a much heavier box blocks the line operation, and the
system will automatically stop for protection.

Fig. 8. The preliminary experiment setup

5 Conclusion and Future Work

In this paper we continued our previous research of developing a two-layer architecture
for modelling iCPS and focused on the IEC 61499 FB based low-level physical module
design. We proposed a conceptual design framework to model multi-agent embedded
IEC 61499 FB based systems for distributed intelligent automation, in which intelli-
gent agents are integrated with function blocks to support self-management capabilities
of low-level physical modules to realize real-time adaptation to changes. In the pro-
posed conceptual design, a self-manageable service model is introduced for IEC 61499
FB based systems and designed as a multi-agent model with Agent_SMS, Agent_SC,

406 G. Lyu and R. W. Brennan

Agent_SO,Agent_SH, andAgent_SP. A preliminary experiment setupwas demonstrated
for the proof-of-concept test and some scenarios for self-manageable features were also
described. The proposed modelling framework can also help both cyber and physical
modules to be more focused on their own core tasks (e.g., strategic decision support
from the high-level cyber module for system performance optimization, and streaming
data analysis in the low-level physical module for real-time adaptation to changes), thus,
achieve balanced system capabilities by distributing system intelligence from the high-
level cyber module to the low-level physical module. Continuing from this study, one
key task is to develop detailed experiments to test and evaluate the proposed conceptual
design, including programming agent-embedded IEC 61499 FB modelled applications
and deploying them into intelligent devices for testing, and developing design metrics
and running simulations for evaluation. Another key task is to find and choose best inter-
face practices for communication between the high-level cyber module and low-level
physical module.

Acknowledgement. The authors wish to thank the Natural Sciences and Engineering Research
Council of Canada (NSERC), Spartan Controls, and the Suncor Energy Foundation for their
generous support of this research through Chairs in Design Engineering (CDE) grant 486462–15.

References

1. Kagermann, H., Wahlster, W., Helbig, J.: Recommendations for implementing the strategic
initiative INDUSTRIE 4.0: Securing the future of German manufacturing industry. In: Final
Report of INDUSTRIE 4.0 Working Group, Frankfurt, Germany (Apr. 2013)

2. Cyber-Physical Systems. https://www.nsf.gov/funding/pgm_summ.jsp?pims_id=503286.
Last accessed 20 Jan 2022

3. IEEERecommended Practice for Industrial Agents: Integration of Software Agents and Low-
Level Automation Functions, IEEE Standard, 2660.1–2020, Standards Committee of IEEE
Industrial Electronics Society (Jan. 2021)

4. Lyu, G., Fazlirad, A., Brennan, R.W.: Multi-agent modeling of cyber-physical systems for
IEC 61499 based distributed automation. Proc. Manuf. 51, 1200–1206 (2020)

5. Leitao, P., Karnouskos, S., Ribeiro, L., Lee, J., Strasser, T., Colombo, A.W.: Smart agents in
industrial cyber–physical systems. Proc. IEEE 104(5), 1086–1101 (2016)

6. Mařík, V., McFarlane, D.: Industrial adoption of agent-based technologies. IEEE Intell. Syst.
20(1), 27–35 (2005)

7. Programmable Controllers—Part 3: Programming Languages. International Standard, IEC
61131–3:2013, 3rd ed., International Electrotechnical Commission, Geneva, Switzerland
(Feb. 2013)

8. Function Blocks—Part 1: Architecture, International Standard, IEC 61499–1:2012, 2nd ed.,
International Electrotechnical Commission, Geneva, Switzerland (Nov. 2012)

9. Vyatkin, V.: IEC 61499 as enabler of distributed and intelligent automation: State-of-the-art
review. IEEE Trans. Industr. Inf. 7(4), 768–781 (2011)

10. Daedalus. https://ecn.iec61499.eu/ecn-projects/view-full?id=12. Last accessed 20 Jan 2022
11. Brennan, R.W., Fletcher, M., Norrie, D.H.: An agent-based approach to reconfiguration of

real-time distributed control systems. IEEE Trans. Robot. Autom. 18(4), 444–451 (2002)
12. Brennan, R.W., Zhang, X., Xu, Y., Norrie, D.H.: A reconfigurable concurrent function block

model and its implementation in real-time Java. Integr. Comput. Aided Eng. 9(3), 263–279
(2002)

https://www.nsf.gov/funding/pgm_summ.jsp?pims_id=503286
https://ecn.iec61499.eu/ecn-projects/view-full?id=12

Multi-agent Based IEC 61499 Function Block Modelling 407

13. Khalgui, M., Mosbahi, O., Li, Z., Hanisch, H.M.: Reconfiguration of distributed embedded-
control systems. IEEE/ASME Trans. Mechatron. 16(4), 684–694 (2010)

14. Guellouz, S., Benzina, A., Khalgui, M., Frey, G., Li, Z., Vyatkin, V.: Designing efficient
reconfigurable control systems using IEC61499 and symbolic model checking. IEEE Trans.
Autom. Sci. Eng. 16(3), 1110–1124 (2018)

15. Mubarak, H., Göhner, P.: An agent-oriented approach for self-management of industrial
automation systems. In: Proceedings of 8th IEEE International Conference on Industrial
Informatics, pp. 721–726. Osaka, Japan (July 2010)

16. Lepuschitz, W., Zoitl, A., Vallée, M., Merdan, M.: Toward self-reconfiguration of manufac-
turing systems using automation agents. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev.
41(1), 52–69 (2011)

17. Kaindl, H., Vallée,M., Arnautovic, E.: Self-representation for self-configuration andmonitor-
ing in agent-based flexible automation systems. IEEE Trans. Syst. Man Cybern. Syst. 43(1),
164–175 (2013)

18. Strasser, T., Froschauer, R.: Autonomous application recovery in distributed intelligent
automation and control systems. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 42(6),
1054–1070 (2012)

19. Dai, W., Dubinin, V., Christensen, J.H., Vyatkin, V., Guan, X.: Toward self-manageable
and adaptive industrial cyber-physical systems with knowledge-driven autonomic service
management. IEEE Trans. Industr. Inf. 13(2), 725–736 (2017)

20. Dai, W., Riliskis, L., Wang, P., Vyatkin, V., Guan, X.: A cloud-based decision support sys-
tem for self-healing in distributed automation systems using fault tree analysis. IEEE Trans.
Industr. Inf. 14(3), 989–1000 (2018)

21. Jammes, F., Smit, H.: Service-oriented paradigms in industrial automation. IEEE Trans.
Industr. Inf. 1(1), 62–70 (2005)

22. An architectural blueprint for autonomic computing. White Paper Autonomic Computing,
4th ed., IBM, Armonk, NY, USA, Jun. 2006

23. Leitão, P., Karnouskos, S., Ribeiro L., Moutis, P., Barbosa, J., Strasser, T.: Common practices
for integrating industrial agents and low-level automation functions. In: Proceedings of 43rd
Annual Conference of the IEEE Industrial Electronics Society, pp. 6665–6670. Beijing, China
(Oct. 2017)

24. SPADE. https://pypi.org/project/spade/. Last accessed 20 Jan 2022
25. Eclipse 4diac. https://www.eclipse.org/4diac/. Last accessed 20 Jan 2022
26. Raspberry Pi. https://www.raspberrypi.org/. Last accessed 20 Jan 2022
27. Jetson Nano. https://developer.nvidia.com/embedded/jetson-nano-developer-kit. Last

accessed 20 Jan 2022

https://pypi.org/project/spade/
https://www.eclipse.org/4diac/
https://www.raspberrypi.org/
https://developer.nvidia.com/embedded/jetson-nano-developer-kit

	Multi-agent Based IEC 61499 Function Block Modelling for Distributed Intelligent Automation
	1 Introduction
	2 Related Work
	3 Proposed Framework
	3.1 IEC 61499 Function Block Model
	3.2 Self-manageable Service Model
	3.3 AgentEmbedded Function Block Model

	4 Proposed Experiment
	5 Conclusion and Future Work
	References

