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Abstract. Due to the recent advances in digitisation of themanufacturing industry
and the generation of manufacturing data, there is increasing interest to integrate
machine learning on the shop floor to improve efficiency and quality control.
Ultrasonic welding is an emerging joining process used in various manufacturing
industries, and is an energy efficient, cost-effective method of joining similar or
dissimilar materials. However, the quality of the joint achievable is heavily depen-
dent on process input parameters. In this study, a Gaussian Process Regression
(GPR) model is developed to map the relationship between process parameters
and joint performance for ultrasonically welded aluminium joints, with a view to
improving quality control in a manufacturing setting. Initially, a 33 full factorial
design of experiments is conducted to investigate the influential parameters, then
a GPR model is trained on the experimental data. In-process sensor data is also
used to infer process performance. To assess the prediction performance of the
model, ten unseen parameter combinations are predicted and compared to their
respective experimental result. The model demonstrates a high level of accuracy
producing a Pearson’s correlation coefficient of 0.982 between the predicted and
actual results for all data. The mean relative predictive error for unseen data is
7.35%.

Keywords: Ultrasonic welding · Machine learning · Gaussian process
regression · Quality control

1 Introduction

Joining is a critical step for the assembling of components in the manufacturing sector
(e.g., there are typically 3000–4000 spot welds in an automobile body [1]) and joining of
alloys in an active area of research. Joining is typically segregated into three categories:
mechanical, thermal, and chemical. Regardless of the technique used, quality control is
paramount as the joint is regularly the weak point where structural failure initiates. The
recent trend towards the vision of the fourth industrial revolution promotes the use of
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information technology in manufacturing [2]. Therefore, developing intelligent ways of
exploiting information for process monitoring purposes is an active area of research.

Ultrasonic Welding (USW) is a prominent emerging technology, that is extensively
used in industry due to its fast process times, low energy consumption, ease of automation
and potential to become a smart manufacturing process. USW uses electrical energy to
produce high frequency (10–70kHz) lowamplitudemechanical vibrations (10–250µm),
generating a relative motion between two mating surfaces [3]. In metal ultrasonic weld-
ing, this motion results in local plastic deformation and the shearing of the surface oxide
layer, creating metal-to-metal contact and thus producing a solid-state bond [4]. Various
researchers have investigated USW in a bid to optimise the process for their respective
application while sharing insight into parameter relationships. Patel et al. [5] investi-
gated the application of USW to join AZ31 magnesium alloy and stated welding energy
is the most influential parameter. Nong et al. [6] examined the application of USW for
the joining of lithium-ion battery cells, concluding USW yields quality results under
optimal conditions.

In USW, process input parameters have a significant impact of the mechanical prop-
erties of the joint achieved [7, 8]. The complex relationship between input parameters
and joint performance is key to optimising the process and predicting the joint perfor-
mance under ideal process conditions. However, in manufacturing environments there is
no guarantee that all processes are conducted under optimal conditions. This is turn can
result in poor performing joints slipping through quality control. This study tackles the
issue by incorporating process information into themodel’s prediction. Process informa-
tion such as peak power, is real time system feedback that can account for unanticipated
variabilities during the welding process, such as the presence of surface oil which can
lead to poor joint quality [6].

USW is a convoluted process, therefore, requires a robust model to accurately predict
joint performance. Various researchers have investigated the application of ma-chine
learning approaches to model the process. Li et al. [9] developed an Artificial Neural
Network (ANN) to predict joint performance of USW composite joints. The model’s
inputs accounted for material processing parameters such as annealing temperature and
surface condition, and process parameters such as welding energy, plunging speed and
trigger force. Zhao et al. [10] created an ANN to capture the relationships between
process parameters and joint performance for metal USW joints. The study highlighted
the importance of considering multiple process parameters due to parameter interactions
and also demonstrated the ability to create a robust model of the process. However, the
above studies developed deterministic methods, which provide discrete predictions, but
it is difficult to obtain information in relation to the prediction uncertainty. Stochastic
methods such as Gaussian Process Regression (GPR) have the ability to predict the
mean performance of the joint and provide the prediction standard deviation that can be
used to define a 95% confidence window. The larger the confidence window the greater
the uncertainty in the prediction. GPR is receiving significant attention in the machine
learning domain and is being applied to various engineering problems [11]. GPR is a
non-parametric technique capable of constructing a model for a complex system with
noisy observations and uncertainties [12]. Cheng et al. [13], demonstrated the benefits
of using a GPR model to accurately predict the surface residual stress in an end milling
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application and produced a correlation coefficient of 0.9436 between predicted and
actual results. Leco et al. [14], developed a GPRmodel for in-situ prediction of a robotic
countersinking application, demonstrating a high level of accuracy in the predictions
(error within ± 0.2 mm).

In this study, a GPR model is developed to predict the Lap Shear Strength (LSS), a
measure of howmuch shear force a lap joint canwithstand before failure occurs, of USW
joints,with a view to improving quality control in amanufacturing setting. The prediction
is formulated based on process input parameters and real time process feedback coming
from integrated sensor data. The input parameters incorporated are welding energy,
vibration amplitude and clamping pressure. Peak power is the maximum power required
during thewelding process and is included in the prediction to detect and quantify process
variation. The GPRmodel developed in this study addresses the main drawback of using
deterministic methods for quality predictions, which is no quantification of prediction
uncertainty, by providing a probability distribution over possible predictions.

2 Machine Learning

This work exploits the experimental space by adjusting controllable variables to build
and train a data driven model for joint quality prediction. Figure 1 represents a schematic
of the supervised learning prediction approach implemented in this study. The data are
collected from destructive testing. In manufacturing environments, destructive testing
increases product waste, reduces efficiency, and only assess joints at predefined intervals.
The proposed model has the potential to eliminate destructive testing while increasing
quality control by predicting the performance of each welded joint.

Fig. 1. Schematic of a) training phase and b) testing phase of the supervised learning approach.

2.1 Gaussian Process Regression

This study implements GPR to model the USW process. GPR was selected due to its
ability to deal with uncertainty in a probabilistic framework. Therefore, models devel-
oped using GPR provide not only the best function for mapping input to output data, but
also allows for a probability distribution over likely functions [15]. A brief overview of
GPR is given in the following and is based on [12], where a detailed explanation of GPR
can be found.

Given that X = {(xi, yi) | i = 1, 2,.N} represents the training dataset, where xi =
(xi1,xi2,….xiD)T represents the ith iteration of the D-dimensional input vector and yi is
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the corresponding output for xi. Then the union of any finite Gaussian process (GP) can
be fully specified by the mean functionm(x) and a covariance function k(x, x’) [16]. The
GP is represented as follows:

f (x) ∼ GP(m(x), k
(
x, x′) (1)

where,

m(x) = E
[
f (x)

]
(2)

k
(
x, x′) = E

[
(f (x) − m(x))

(
f
(
x′) − m

(
x′))] (3)

where E[] is the expectation.
The objective of this work is to predict the LSS response (yN+1) when a vector (xN+1)

containing process parameters and process feedback is provided. This study implements
a zero mean function and because the kernel function is a key element of GP’s, various
kernel functions are explored [17]. The study investigated exponential (Eq. 4), squared
exponential (SE) (Eq. 5), rational quadratic (RQ) (Eq. 6), and theMatérn (Eq. 7) kernels.
The mathematical formulation of the kernels are as follows:
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where l is the correlation length parameter.
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where α is the relative weighing [18].
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where � is the standard Gamma function, Bv is the modified Bessel function, [19], and
v is a hyperparameter that controls the smoothness of the resulting function. As v → ∞
the Matérn kernel becomes the SE kernel and when v = 0.5 the Matérn kernel becomes
the Exponential kernel.

2.2 Model Selection

This study analysed various GPR models consisting of different kernels with vary-
ing hyperparameters. To accurately compare the different models a holdout validation
technique was employed. This meant three data samples were withheld from training
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to evaluate the model’s ability to generalise. The models were assessed based on their
mean absolute percentage error (MAPE) (Eq. 8) between the predicted and actual values
for the validation dataset.

MAPE = 1

n

∑ (
actual value − predicted value

predicted value
× 100

)
(8)

3 Experimental Procedure

The material used in this study is aluminium 5754, a commercial alloy typically used
in automotive vehicle bodies. A schematic of the USW configuration and specimen
dimensions is provided in Fig. 2. The welding process was performed using a Branson
Ultraweld L20 ultrasonic welder equipped with a rectangular sonotrode with dimensions
of 18 × 10 mm2 and a 20 kHz power supply. Post-welding, the joint performance was
assessed using a Tinius Olsen universal tester equipped with a 10 kN load cell at a
crosshead velocity of 1 mm/min.

Fig. 2. Schematic of (a) welding configuration and (b) welded specimens.

The welding process was conducted on the energy control mode, which terminated
the process when the joint interface absorbed the preselected energy. The parameter
levels for the design of experiments (DoE) are outlined Table 1.

A large parameter range was selected for each of the variables to provide data to
characterise the welding process over a large application field. Preliminary testing dis-
covered that USW of the test alloy requires the following: a minimum energy of 700 J to
achieve a bond; 3 kJ produces a satisfactory joint; a clamp pressure exceeding 0.45 MPa
will result in no joint due to collapse and/or surface cracks.
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Table 1. DoE parameters and levels

Parameter Levels

Welding energy (kJ) [10, 2.25, 3.5]

Vibration amplitude (µm) [45, 55, 65]

Clamping pressure (MPa) [0.2, 0.3, 0.4]

3.1 Experimental Data Analysis

Figure 3 shows the distribution of LSS for different welding energies obtained from
the DoE. Welding energy is a strong contributor to LSS, indicated by the LSS response
increasing across each graph. It is also evident that there are strong interactions between
the input parameters as the relationship between clamping pressure and LSS changes
with an increase in welding energy. Vibration amplitude is also a significant contributor
to LSS outlined by the increase in LSS as a result of increasing the vibration amplitude,
while additional input parameters remain fixed.

Fig. 3. Distribution of joint strength for different welding energies, welding energy = (a) 1.0 kJ,
(b) 2.25 kJ, (c) 3.5 kJ

4 Results

Figure 4 presents a comparison between the prediction performance of the different
kernels investigated. Each of the respective models used to formulate the predictions
in Fig. 4 have optimal hyperparameters which were identified through the grid search
analysis. Table 2 outlines the Pearson’s Correlation Coefficient (PCC) and the MAPE
for each of the model’s prediction performances across training and validation data. It
is evident from Fig. 4 and Table 2 that the Matérn kernel was found to provide the most
accurate predictions on the validation data (experiments 27–30) indicated by the closest
alignment to the experimental values for the validation dataset, and the lowest MAPE
of 5.03.
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Table 2. Evaluation of the prediction performance for each kernel trialed.

Kernel PCC Training MAPE Validation MAPE

Exponential 0.992 4.581 14.120

SE 0.991 4.306 10.802

RQ 0.989 4.622 7.465

Matérn 0.991 4.336 5.030

Fig. 4. Comparative analysis between the different kernels and the experimental result.

The corresponding l and v values for the kernel are [1, 2] and 0.75, respectively.
There are four values for l to represent the correlation length parameter for each input
into the GPR model (i.e., welding energy, vibration amplitude, clamping pressure, and
peak power). Therefore, the following results outline the GPRmodel’s predictions using
the Matérn kernel.

The optimal GPRmodel using theMatérn kernel was trained on twenty-seven exper-
iments and validated on three experiments. A further seven experiments were conducted
to evaluate the prediction performance on unseen data. TheMAPE is 7.35 for all unseen
data and 5.1 for all data. Table 3 and Fig. 5 highlight the predicted values and the pre-
diction residual with the maximum residual being 1.22 and the maximum MAPE is
14.9.

Figure 5 (a) displays a regression analysis between the actual and predicted results
for all data. The plot indicates a PCC of 0.982, indicating the strong relationship between
the predicted and actual results. The plot also highlights error bars to indicate a 95%
confidence interval in each prediction. Figure 5 (b) provides a comparative analysis
between the actual and predicted values for the entire dataset. It is evident from the
figure that the strong trend between predicted and actual values holds for all the data and
the magnitude of the prediction error is low.

The GPR predictive model developed in this study demonstrates a high level of
accuracy in predicting the performance of USW joints. It is evident from the prediction
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residuals outlined in Table 3 that the magnitude of the residuals is similar throughout
all data, indicating an accurately fit model. The GPR prediction is formulated based on
process inputs and process feedback (integrated sensor data) therefore, the model can
detect and predict unanticipated process variation. The approach can benefit manufac-
turing environments by increasing quality control by flagging anomalies in joint quality
which can be used for rejecting parts. It is also noted, that although accurate, there are
still variations in the prediction error. This is due to standard integrated sensors not being
able to detect 100% of process variation [20]. Through ongoing research, the authors
plan on addressing this issue through the inclusion of external sensing devices.

Fig. 5. Comparison between predicted and actual results. (a) regression analysis (b) comparative
analysis indicating confidence interval and prediction error.

5 Conclusion

Themain objective of this studywas to develop a robustmodel to predict the performance
of USW joints. The predictive model in based on GPR, where various kernels and
hyperparameters were investigated. The study incorporated a holdout validation method
to compare the respectivemodels. The result of the grid search analysis found theMatérn
kernel to be the most accurate. The predictions demonstrated a high level of accuracy
with a correlation coefficient of 0.982 between the predicted and actual results. The
MAPE for unseen data is 7.35.

The approach demonstrated in this study can be used in amanufacturing environment
to provide in-situ performance predictions of welded joints that are fabricated using
standard off the shelf welding equipment, thus minimising destructive testing. Such
applications may include the joining of non-structural components for the automotive
and aerospace industries. The predictions also outline a 95% confidence interval that
can be used to quantify the model’s prediction certainty. The GPR prediction can then
be used to indicate if the welded joints are within control limits, thus increasing quality
control. Through ongoing research, the authors are investigating methods of improving
the prediction performance via the inclusion of additional sensing devices that provide
further process insight in near real time.
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Appendix

Table 3. Experimental results and predicted values.

Run
number

Welding
energy (J)

Vibration
amplitude
(µm)

Clamping
pressure
(MPa)

Peak
power
(W)

Actual
LSS
(MPa)

Predicted
LSS
(MPa)

Prediction
residual
(MPa)

1 1000 45 0.2 840 3.06 3.30 0.24

2 1000 45 0.3 880 3.17 3.32 0.15

3 1000 45 0.4 1160 4.67 4.78 0.11

4 1000 55 0.2 1060 4.68 4.81 0.13

5 1000 55 0.3 1200 5.67 6.05 0.38

6 1000 55 0.4 1440 9.28 8.87 −0.41

7 1000 65 0.2 1340 8.55 8.78 0.23

8 1000 65 0.3 1640 9.73 9.75 0.02

9 1000 65 0.4 1620 9.76 9.79 0.03

10 2250 45 0.2 820 6.94 6.50 −0.44

11 2250 45 0.3 860 7.30 6.80 −0.50

12 2250 45 0.4 800 5.52 6.35 0.83

13 2250 55 0.2 980 7.76 7.95 0.19

14 2250 55 0.3 1300 8.65 8.66 0.01

15 2250 55 0.4 1400 8.04 8.43 0.39

16 2250 65 0.2 1320 10.28 10.57 0.29

17 2250 65 0.3 1600 13.18 12.40 −0.78

18 2250 65 0.4 1800 10.13 10.42 0.29

19 3500 45 0.2 860 6.36 6.86 0.50

20 3500 45 0.3 920 7.49 7.14 −0.35

21 3500 45 0.4 1160 7.16 7.48 0.32

22 3500 55 0.2 1080 9.63 10.16 0.53

23 3500 55 0.3 1180 11.71 10.88 −0.83

(continued)
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Table 3. (continued)

Run
number

Welding
energy (J)

Vibration
amplitude
(µm)

Clamping
pressure
(MPa)

Peak
power
(W)

Actual
LSS
(MPa)

Predicted
LSS
(MPa)

Prediction
residual
(MPa)

24 3500 55 0.4 1580 8.95 9.32 0.37

25 3500 65 0.2 1420 13.29 13.52 0.23

26 3500 65 0.3 1600 15.22 14.59 −0.63

27 3500 65 0.4 2560 8.66 8.64 −0.02

28 1500 60 0.35 1340 10.08 9.47 −0.61

29 3000 60 0.25 1960 8.22 8.38 0.16

30 3000 60 0.35 1560 12.67 11.87 −0.80

31 1500 50 0.3 1140 6.93 6.03 −0.90

32 1500 60 0.25 1340 8.25 9.47 1.22

33 2500 50 0.3 1020 9.69 9.03 −0.66

34 2500 60 0.25 1640 10.49 10.19 −0.30

35 2500 60 0.35 1580 9.49 10.46 0.97

36 3000 50 0.3 1060 8.77 9.40 0.63

37 4000 60 0.2 1360 12.63 12.20 −0.43
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