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Abstract. Machine learning is gaining more popularity in the FDM process in
the way of performance enhancement. The multi-functionality of multi-material
printing and its rising employment makes the Machine-Learning (ML) tool more
attractive as the diversity of process parameters involves many fabrication com-
binations. This paper describes the implementation of ML techniques in the pro-
duction of multi-material objects to achieve a high mechanical outcome. A nozzle
temperature of PLA and ABS extruders was chosen as an input feature for ML,
whereas UTS was the target. 125 samples with additional 6 pieces for deviation
cases printed for 25 temperature combinations. The decision Tree model exhib-
ited improper prediction values. Although the next Random Forest model had a
fairly good R2-0.78, the 3D graph of UTS had a coarse curve. The highest R2-0.81
belonged to the 5th degree PolynomialRegressionmodel.According to thismodel,
to acquire the highest UTS value-41.171MPa, extruding temperatures should be
216 C, and 246 C for PLA and ABS respectively.
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1 Introduction

The drawbacks of AdditiveManufacturing (AM) over conventional like the low strength
of structure or dimensional inaccuracy do not hinder it to surpass conventional machin-
ing. The complex geometry formation in a short amount of time with little waste [1] is
still unattainable for an older opponent. The rapid progress of Fused Deposition Mod-
eling (FDM) technologies gave impulse to penetration in different fields, from indus-
trial to medicine and daily usage [2]. For the last decades, manipulations with process
parameters, in the way to achieve the ideal final product quality were the main fields
of researcher’s interest [3]. Although optimizing process parameters for single-material
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printing was widely investigated, the development of multi-material (MM) component
fabrication forced us to look for it from a new angle. Multi-material printing technology-
enhanced functionality of printed objects by combining and merging specific properties
of dissimilar filaments. Now, the printedmodel could be soft, hard, aesthetic, and colorful
together. Despite the growing popularity ofMMfabrication, the critical problem of adhe-
sion is still open. The low level of mechanical strength caused by poor bonding between
filaments could lead to the break or detachment of pieces [4]. Therefore, researchers
trying to address this drawback and deeply analyze the behavior of MM products. It
was proved that the key parameter for obtaining a high bonding degree is temperature.
Adequate extrusion temperature and high-temperature value of platform give suitable
bonding [5], while the heat treatment can improve tensile strength [6]. Machine learn-
ing (ML) is a perspective and powerful tool for observation, analysis, and optimization
of multi-material 3D printing technology. The Heat Kernel Signature method [7] was
applied to detect possible manufacturing defects of the CAD model. A double-Layered
Extreme Learning Machine [8] was utilized for calculation and choosing the optimal
orientation angle for eliminating support structure, whereas the convolutional neural
network (CNN) technique was suitable for predicting final product mass and fabrication
time [9]. The support vector machine (SVM) method with the aid of a camera can assess
the quality of the model continuously and stop the process. Hence, it saves time and
material [10]. Overall, ML is employed in numerous directions of AM, such as quality
optimization, cloud 3D platform, and even cybersecurity. The review paper of G. D. Goh
et al. [11] emphasized the unlimited potential of machine learning methods.

Although there are several methods of ML implemented in FDM technology, there
are only a few studies carried out for multi-material technology. In this paper Decision
Trees, RandomForest, and Polynomial RegressionML techniques are proposed to derive
optimal process parameters (temperature) to acquire the high bonding degree between
PLA and ABS materials.

2 Experimental Set-Up and Tensile Test

The scope of this research was to evaluate and measure the effect of different printing
nozzle temperatures for each filament. Nozzle temperatures for PLA vary between 204–
220C, while for ABS 240–256C. For each filament temperature step was 4C, which
gave 25 total combinations. The standard ASTM D638, type 4 was chosen for the
tensile test. To ensure effective influence observation of filament bonding at different
nozzle temperatures special sample layer pattern was constructed (Fig. 1). Filament
order alternates for getting several intersection layers.

3 Results

3.1 Tensile Test Results

The numbers of the main sample were 125. Figure 2 illustrated the Ultimate tensile
strength (UTS) for each temperature combination of PLA and ABS in 3D view (average
values of 5 printing cases indicated). Table 1 shows the results of tensile tests. Six
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Fig. 1. Repetitive layer pattern

additional tests were conducted to replace tests that had a significant deviation from the
average value. Replacedtest samples indicated with italic. The effect of the extra test,
which replaced the failure sample, could be seen in the last column.

3.2 Machine Learning Programming

Three different ML algorithms were implemented on the gathered data (Table 2). To
access the performance of each model Root-Mean-Square-Error (RMSE) and R2 are
measured. The general train and test data ratio in the model was 0.75–0.25.

Decision Tree Model. Initial observation and analysis of Fig. 2 showed nonlinearity
of curve and classification algorithm decided to implement primarily. A decision tree
algorithm was used to find the dependence between nozzle temperatures and UTS. This
model has a tree structure decision-making algorithm and is listed in supervisedmachine
learning algorithm types. The tunable parameter for this model is the depth of the tree.
Figure 3 shows the structure of the depth concept. This parameter defines the split
amount before prediction. The more split points have model, the easier to classify the
target feature.

Figure 4 illustrates line graphs of RMSE and R2 values that are affected by depth
number. The values of RMSE start to decrease and R2 increases with the rise of tree
depth. At the optimal value of split points-3, RMSE and R2 have approximately 0.6 and
0.8 for train data. However, when the model is implemented on test data, it exhibits poor
results. The R2value of test data is around 0.5, which is very low and unsatisfactory. So
it was decided to implement another machine learning technique.

Random Forest Model. The second ML method was Random forest (RF). The RF
method is a modified version of DT. The RF is capable of solving both classification and
regression problems, which is suitable for our dataset case. The Random Forest consists
of many Decision Trees. The single DT has high variance, but if the number of them is
increased and the result is combined variance significantly falls. As each tree is trained
by its own dataset portion, the final result does not depend on one single output. For
classification, the final output takes the major value, while in regression it is equal to the
average of all tree outputs. Figure 5 illustrates the algorithm of the RF model.

In this model number of estimators could be adjusted. The effect of this parameter
on RMSE and R2 could be observed in Fig. 6. The optimal parameter of estimators is
100, which shows a better result of RMSE on test data (0.71), compared to the Decision
tree model. Moreover, the R2 value for train data is very good (around 0.93), whereas
for test data it is considered fairly good, 0.78. After tuning the RF model, the UTS of
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Table 1. Tensile test results based on various printing head temperature combination

Filament
temp

Main tests Extra
test

Avg
UTS(Mpa)

Std.
Deviation

PLA ABS T1 T2 T3 T4 T5 T6 No
Extra

with
Extra

204 240 37,676 35,245 37,708 37,829 37,639 37,796 37,730 1106 0080

244 38,486 38,338 38,542 38,361 38,384 38,422 0087

248 39,093 38,838 38,917 38,926 38,875 38,930 0098

252 39,481 39,509 39,380 39,431 39,347 39,430 0068

256 38,708 36,546 38,718 38,796 38,671 38,676 38,714 0975 0050

208 240 36,412 36,634 37,051 34,759 37,181 37,148 36,885 0972 0343

244 38,130 38,417 38,310 38,282 38,370 38,302 0110

248 37,597 37,444 37,644 37,403 37,519 37,521 0101

252 37,208 37,218 37,366 37,319 37,259 37,274 0067

256 35,231 36,218 36,120 36,009 36,023 36,278 36,130 0394 0118

212 240 39,708 39,870 39,954 39,727 39,671 39,786 0120

244 40,810 41,023 40,912 41,042 40,926 40,943 0094

248 41,361 41,509 41,250 41,398 41,486 41,401 0104

252 41,148 41,162 41,333 41,273 41,282 41,240 0081

256 39,620 39,472 40,250 39,231 39,347 39,301 39,394 0399 0154

216 240 39,051 38,792 38,995 39,074 38,648 38,912 0185

244 39,569 39,685 39,657 39,782 39,509 39,641 0106

248 38,463 38,356 38,551 38,514 38,435 38,464 0075

252 37,949 38,074 38,153 38,005 37,931 38,022 0092

256 37,366 37,301 37,093 37,741 37,190 37,338 0248

220 240 39,250 39,269 39,495 39,375 39,589 39,396 0146

244 39,032 38,898 39,009 38,824 38,750 38,903 0120

248 38,495 39,556 39,481 39,611 39,306 39,435 39,478 0459 0118

252 38,065 38,144 38,426 37,907 38,000 38,108 0198

256 36,750 36,991 37,093 37,227 37,065 37,025 0176

the following numbers PLA: 214–220 (step = 1 °C) and ABS: 240–256 (step = 1 °C)
were predicted by the model. The fine step allows getting a more precise value of UTS
at different temperatures. The 3D view of UTS results depending on nozzle temperature
shown in Fig. 7 (a) for experimental data. The 3D view of dependence became more
accurate after RF implementation in Fig. 7 (b). However, there still exist sharp corners
and falls.
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Fig. 2. Ultimate tensile strength at different PLA|ABS Nozzle temperatures.

Fig. 3. Depth of decision tree

Fig. 4. Effect of decision tree model tree depth: a) on RMSE; b) on R2.

Polynomial Regression Model. The third model was Polynomial regression (PR). The
formula of PR is presented in Eq. 1, where the y is the predicted value, while b is the
coefficient for the nth degree of the polynomial. The PR regression builds dependence
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Fig. 5. Random forest algorithm

Fig. 6. Effect of random forest model estimator number: a) on RMSE; b) on R2

Fig. 7. 3D view of UTS according to a) experimental results b) RF model prediction results

between y and the independent variable.

y = b0 + b1x + b2x
2 + b3x

3 + . . . bnx
n (1)
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The control parameter was a degree of PR. It could be observed from Fig. 8 that the
appropriate parameter for this model was 5th degree. From this point, the RMSE value
started to rise, while R2 started to fall for the test data. For the test data, the value of R2

at this degree is 0.81, which is considered as a good correlation, while RMSE is equal
to 0.59. In Fig. 9 (b) could be seen the smoother curve of 3D tensile results, obtained by
the 5th degree PR model after uploading of fine testing data range of temperature (1 °C)
for ABS and PLA.

Fig. 8. Effect of PR model degree number: a) on RMSE; b) on R2

Fig. 9. 3D view of UTS according to a) experimental results b) PR model prediction results

Comparison ofModels. Three differentmachine learning algorithmswere implemented
in this chapter. Comparative Table 2 indicates the superiority of the Polynomial regres-
sion model over Decision Tree and Random Forest models, both in RMSE and R2 values
for train and most importantly for test data.

4 Conclusion

The effect of different nozzle temperatures on the UTS value of PLA × ABS was
experimentally investigated in this paper. Experimental results of tensile tests indicated
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Table 2. Comparative analysis of Machine Learning algorithms

Model type RMSE R2

Train data Test data Train data Test data

Decision tree 0.6 1.1 0.8 0.5

Random forest 0.33 0.71 0.93 0.78

Polynomial regression 0.2 0.59 0.99 0.81

a non-linear relationship between nozzle temperatures and UTS. The machine learning
approach was implemented to determine optimal process parameters for multi-material
printing. Overall results are the following:

• The DT showed the worst result of R2 and RMSE for test data, around 0.5 and 1.1
respectively.

• Although, the good value of R2-0.78 and RMSE-0.71 for the RF model at an optimal
number of the estimator, this method had a rough transition of the curve in small
temperature steps in 3D view.

• The 5th-degree PR had the highest correlation value of test data R2-0.81 and the lowest
RMSE-0.59.

• The highest UTS of 41.171 MPa corresponds to PLA-216C and ABS-246C temper-
ature values based on the PR model.
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