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Foreword

Human-computer interaction (HCI) is acquiring an ever-increasing scientific and
industrial importance, as well as having more impact on people’s everyday life, as an
ever-growing number of human activities are progressively moving from the physical to
the digital world. This process, which has been ongoing for some time now, has been
dramatically accelerated by the COVID-19 pandemic. The HCI International (HCII)
conference series, held yearly, aims to respond to the compelling need to advance the
exchange of knowledge and research and development efforts on the human aspects of
design and use of computing systems.

The 24th International Conference on Human-Computer Interaction, HCI
International 2022 (HCII 2022), was planned to be held at the Gothia Towers Hotel
and Swedish Exhibition & Congress Centre, Göteborg, Sweden, during June 26 to
July 1, 2022. Due to the COVID-19 pandemic and with everyone’s health and safety in
mind, HCII 2022 was organized and run as a virtual conference. It incorporated the 21
thematic areas and affiliated conferences listed on the following page.

A total of 5583 individuals from academia, research institutes, industry, and
governmental agencies from 88 countries submitted contributions, and 1276 papers
and 275 posters were included in the proceedings that were published just before the
start of the conference. Additionally, 296 papers and 181 posters are included in the
volumes of the proceedings published after the conference, as “Late Breaking Work”.
The contributions thoroughly cover the entire field of human-computer interaction,
addressing major advances in knowledge and effective use of computers in a variety
of application areas. These papers provide academics, researchers, engineers, scientists,
practitioners, and students with state-of-the-art information on the most recent advances
in HCI. The volumes constituting the full set of the HCII 2022 conference proceedings
are listed in the following pages.

I would like to thank the Program Board Chairs and the members of the Program
Boards of all thematic areas and affiliated conferences for their contribution and
support towards the highest scientific quality and overall success of the HCI
International 2022 conference; they have helped in so many ways, including session
organization, paper reviewing (single-blind review process, with a minimum of two
reviews per submission) and, more generally, acting as good-will ambassadors for the
HCII conference.

This conference would not have been possible without the continuous and
unwavering support and advice of Gavriel Salvendy, Founder, General Chair Emeritus,
and Scientific Advisor. For his outstanding efforts, I would like to express my
appreciation to AbbasMoallem, Communications Chair and Editor of HCI International
News.

July 2022 Constantine Stephanidis
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3D Hand Pose Recognition Over a Wide
Area Using Two Omnidirectional

Cameras with Field-of-view Division

Yuta Abe and Takashi Komuro(B)

Graduate School of Science and Engineering, Saitama University,
255 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan

y.abe.796@ms.saitama-u.ac.jp, komuro@mail.saitama-u.ac.jp

Abstract. In this paper, we propose a method for 3D hand pose recog-
nition using two omnidirectional cameras that enables users to perform
proximity gesture operations in the entire range in front of a display. In
this method, we use a technique of FOV division, which transforms an
input omnidirectional camera image into multiple perspective projection
images with virtually rotating the camera, in order to avoid distortion in
the peripheral area of a perspective projection image. We also introduce
two-stage skeleton detection, which uses the results of whole-body skele-
ton detection for determining the range of hand skeleton detection to
reduce false detections. We evaluated the detection rate with and with-
out FOV division. The detection rate with FOV division is higher than
that without FOV division, and complex poses can be detected. In addi-
tion, the effectiveness of the two-stage skeleton detection was confirmed
by comparing the results with and without the two-stage detection.

Keywords: Design methods and techniques · Gesture recognition ·
Mid-air gestures · Gesture-controlled large display · Omnidirectional
camera

1 Introduction

In the medical field such as surgical simulation and remote medical system, there
is increasing demand to manipulate three-dimensional (3D) objects displayed on
a screen. However, touch panel displays and other input devices that involve
physical contact have hygiene problems. Moreover, it is difficult to intuitively
manipulate objects in 3D space with conventional input devices such as a mouse
and a touch panel display.

In order to solve these problems, technologies that allow mid-air gesture
operations using a motion-aware device have been proposed [1,2]. However, these
methods require a user to wear a device, which is inconvenient for the user.

On the other hand, there are studies on gesture recognition using 3D sensors
such as depth camera [3,4] and LeapMotion [5,6], or from camera images using
deep learning-based pose estimation methods [7] such as OpenPose [8]. However,
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
M. Kurosu et al. (Eds.): HCII 2022, LNCS 13519, pp. 3–17, 2022.
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these methods have the limitation that the recognizable range is limited to the
detection range of the 3D sensor or the camera’s field-of-view (FOV).

In this paper, we propose a method for 3D hand pose recognition using two
omnidirectional cameras that enables users to perform proximity gesture opera-
tions in the entire range in front of a display. In this method, we use a technique
of FOV division, which transforms an input omnidirectional camera image into
multiple perspective projection images with virtually rotating the camera, in
order to avoid distortion in the peripheral area of a perspective projection image.
We also introduce two-stage skeleton detection, which uses the results of whole-
body skeleton detection for determining the range of hand skeleton detection to
reduce false detections.

2 3D Hand Pose Recognition Using FOV Division
and Two-Stage Skeleton Detection

In this section, a method for skeleton detection and 3D hand pose recognition
from omnidirectional camera images is shown. As shown in Fig. 1, two omnidi-
rectional cameras are installed on both sides of a large display, and entire range
in front of the display is within the FOV of both cameras, enabling a wide-range
3D pose recognition.

Fig. 1. System configuration

2.1 Geometric Transformation of Omnidirectional Camera Images

The omnidirectional camera image has a specific distortion as shown in Fig. 2.
In order to suppress the distortion, the omnidirectional camera images are con-
verted into perspective projection images that are similar to image seen by a
human eye or a standard camera.
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The perspective projection image is obtained by performing a geometric
transformation centered on an arbitrary coordinate in the omnidirectional image.
The geometric transformation equation is formulated by the following.

cos c = sin φ0 sin φ + cos φ0 cos φ cos(θ − θ0) (1)

φ = arcsin
(

cos c sin φ0 +
y sin c cos φ0

ρ

)
(2)

θ = θ0 + arctan
(

x sin c

ρ cos φ0 cos c − y sinφ0 sin c

)
(3)

ρ =
√

x2 + y2 (4)

c = arctan ρ (5)

The (x, y) is the coordinate on the perspective projection image correspond-
ing to the coordinate (θ, φ) in the omnidirectional image. In the perspective
projection image, the center coordinate is determined by the arbitrary coordi-
nate (θ0, φ0) in the omnidirectional image. c [rad] is the angular distance from
the center of the projection at the coordinate where the geometric transformation
is performed.

An omnidirectional camera image is shown in Fig. 2, and the image obtained
by transforming the coordinates from the center of Fig. 2 to the perspective
projection within a horizontal viewing angle of 150 [deg] is shown in Fig. 3.

Fig. 2. The image obtained from an omnidirectional camera
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Fig. 3. The image with geometric transformation to perspective projection for Fig. 2

2.2 FOV Division

While the distortion of an omnidirectional camera image is suppressed by the
geometric transformation to the perspective projection image, the perspective
projection image is stretched at the periphery. This is because omnidirectional
camera image captured with a spherical lens is transformed to planar coordi-
nates. At this time, a technique of FOV division is used, which transforms an
input omnidirectional camera image into multiple perspective projection images
with virtually rotating the camera, in order to avoid distortion in the peripheral
area of a perspective projection image. By integrating the results of skeleton
detection into each of multiple perspective projection images, skeleton detection
can be performed over a wide area with suppression of the effect of distortion.

In addition, for the omnidirectional camera images on the spherical surface,
projection from the center of the sphere to the planar coordinates is performed,
and thus it is not possible to project a point more than 90 [deg] away from the
center point of the projection. Therefore, the maximum possible projection range
is less than 180 [deg]. If the conversion to perspective projection is performed
without FOV division, it is difficult to fit the entire range in front of the display
into the FOV. By generating multiple narrow FOV through FOV division, it is
possible to keep the user within the FOV.

The FOV division is performed in such a way that there is an overlapping
area in each FOV. This can prevent false skeleton detection in the case where
the entire hand is not visible from either FOV due to the hand appearing on the
borderline between the FOV. Figure 4 shows a schematic representation of FOV
division, and also shows an example of the FOV division for Fig. 2, in which the
FOV is divided into three parts at a viewing angle of 90 [deg].

2.3 Two-Stage Skeleton Detection

Skeleton detection is performed from the generated perspective projection
images. OpenPose is used for skeleton point detection. OpenPose uses a bottom-
up pose estimation model, which can perform whole-body and hand skeleton
detection in real-time by deep learning. Using this model, 3D hand pose estima-
tion is performed from the skeleton point information.
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Fig. 4. Schematic diagram and example of FOV division by 90 [deg] for an omnidirec-
tional camera

When OpenPose is used to estimate the hand skeleton for the whole image,
especially when the size of the hand in the image is small, false detections may
occur. Thus, for hand skeleton point detection, a two-stage skeleton detection
method is used as shown in Fig. 5, in which the hand detection area is cut out
using the hand position information in the image obtained by the whole-body
skeleton detection. This method reduces the possibility of false hand skeleton
point detection and enables correct hand skeleton point detection even when
the hand is small in the image. The hand detection area is determined using
the hand, elbow, and shoulder skeleton points obtained by whole-body skeletal
detection. The distances between the skeleton points from the hand to the elbow
and from the elbow to the shoulder are calculated, and the larger distance is set
as the length of one side of the rectangle of the detection area. Using the obtained
size of the detection area, hand skeleton points are obtained by hand skeleton
detection using the area centered at the hand coordinates as input.

Hand skeleton detection is also performed at the same time. By comparing
this with the number of hand skeleton points obtained by the two-stage detection,
it is possible to deal with false detections in the case that the whole-body skeleton
detection did not work well.

2.4 3D Hand Pose Estimation Using Two Cameras

By detecting the skeleton points from the images taken by the two omnidirec-
tional cameras, the positions of the hand skeleton points are obtained and the
hand pose is recognized in 3D space.
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Fig. 5. Hand skeleton point detection by two-stage skeleton detection

For the detected skeleton point coordinates (x, y), it is necessary to convert
the detected skeleton point coordinates in other than the front FOV to the coor-
dinates (x′, y′) in the front camera, because multiple views are generated from
one camera due to the FOV division. The coordinate axes are rotated horizon-
tally and then vertically to match the axes of the front FOV. Then, geometric
transformation to (x′, y′) is performed using the equations for geometric trans-
formation to perspective projection. f [pixel] is the focal length of the camera,
and θ [rad] and φ [rad] are the horizontal and vertical rotation angles to the
coordinate axis of the front FOV.

x′ = f
x

z
= f

x cos θ − f sin θ

x sin θ cos φ − y sinφ + f cos θ cos φ
(6)

y′ = f
y

z
= f

x sin θ sinφ + y cos φ + f sin φ cos θ

x sin θ cos φ − y sin φ + f cos θ cos φ
(7)

The 3D coordinates (X, Y , Z) is calculated from the skeleton points (x′,
y′) detected by the two cameras. The parallel stereo formula is used for the
transformation. The Y coordinates used in parallel stereo are the average of the
Y coordinates obtained by the left and right cameras. b [cm] is the baseline length
between cameras, (xr, yr) are the coordinates obtained from the camera placed
on the right side from the user’s viewpoint, and (xl, yl) are the coordinates
obtained from the camera placed on the left side from the user’s viewpoint.

yave =
yr + yl

2
(8)

X =
b(xr + xl)
2(xr − xl)

(9)

Y =
byave

2(xr − xl)
(10)
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Z =
bf

2(xr − xl)
(11)

3 Performance Evaluation

The omnidirectional camera used in this experiment can output a 360 [deg]
panoramic image directly from the image. In our experiments, we used 180 [deg]
of the 360 [deg] field of view. We used RICOH THETA V, which had a resolution
of 1920 × 960 [pixels] and a maximum frame rate of 29.97 [FPS].

3.1 Procedure

In the experimental environment, the height of the omnidirectional camera was
set at 38 [cm] from the platform, and the distance between the omnidirectional
cameras was set at 90 [cm] in order to evaluate the proximity operation in the
situation where the omnidirectional cameras are set at both ends of the large
display.

As shown in Fig. 6, the video images were taken by moving the hand in a
straight line with a depth of 30 [cm] from the two cameras while performing
various gestures within a range of 90 [cm] horizontally. The gesture consists of
five patterns: three basic gestures as shown in the Fig. 7 were performed with the
hands facing the front of the display, and then each hand gesture was switched
to the other three basic hand gestures and also with the hand facing random
directions. We evaluated the hand detection rate of each pattern in the captured
videos. There was one subject, and the breakdown of the number of input images
is shown in Table 1.

Table 1. Images used for input

Input pose Number of input images

Opened hand 68

Clasped hand 42

Peace-sign gesture 41

Three basic gestures switching 86

Random gesture 140

Total 377
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Fig. 6. Schematic diagram of the experiment
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Left camera Right camera

(a) Opened hand

Left camera Right camera

(b) Clasped hand

Left camera Right camera

(c) Peace-sign gesture

Fig. 7. Examples of input images

3.2 Results

Table 2 shows the hand detection rates with and without the FOV division for
the left and right viewpoints.

The detection rate was calculated from the number of images that could be
detected, the number of input images for each pattern, and the total number of
input images. For each pattern, correct detection was defined as the number of
images in which at least 15 hand skeletons were detected and the hand pose was
not obviously different from the pose of the input image.

Figure 8 shows the detection results when the FOV division is performed and
when it is not performed.
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Table 2. Hand detection rates with and without FOV division

Left camera Right camera

FOV division w/ w/o w/ w/o

Opened hand 98.5% 30.9% 79.4% 7.4%

Clasped hand 78.6% 11.9% 73.8% 4.8%

Peace-sign gesture 90.2% 17.1% 68.3% 9.8%

Three basic gestures switching 97.7% 17.4% 51.2% 14.0%

Random gesture 80.7% 22.9% 67.9% 13.6%

Average 88.6% 21.2% 66.8% 11.1%

In most cases, detection rates were higher with FOV division than without
it. In the total results with the FOV division, the detection rate exceeded 80%
for the left camera’s viewpoint, and was close to 70% for the right camera’s
viewpoint. In terms of the detection rate for each pose, there were more false
detections in the other poses than in the opened hand pose. This is due to the fact
that in complex poses the other fingers hide the finger to be detected. Compared
to the skeleton detection in various poses with the palm of the hand facing the
front, the random poses are more often performed with the back of the hand or
the side part of the hand facing the front of the display. Since the detection rate
in random poses is lower than in the other poses, it can be assumed that the
hand is more correctly detected when the palm is facing the front of the display.
One of the reasons for the difference in the detection rate between the right and
left viewpoints is assumed to be the effect of manipulating with the right hand
only.

In the case of without FOV division, the skeleton detection failed due to the
strong projective distortion at the edges of the image. In addition, there were
many cases where the whole-body skeleton detection did not work and failed to
cut out the hand detection area.

Figure 9 shows a comparison of hand skeleton detection with and without
two-stage detection for images with FOV division. As shown in Fig. 9b, without
the two-stage detection, the detection of the hand position close to the cam-
era succeeded, but the detection at the other camera failed in many cases. As
shown in Fig. 9a, the two-stage detection enabled us to correctly perform skele-
ton detection for both cameras. In most of the cases, the two-stage detection
method was more effective in correct skeleton detection.
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Left camera Right camera

(a) Result of skeleton detection in opened hand

Left camera Right camera

(b) Result of skeleton detection in peace signs

Left camera Right camera

(c) Result of skeleton detection in clasped hand

Fig. 8. Output examples with and without FOV division
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(a) With two-stage detection (b) Without two-stage detection

Fig. 9. Effects on hand skeleton detection with and without two-stage detection

Left camera Right camera

(a) False hand skeleton detection due to hand occlusion

Left camera Right camera

(b) False detection of hand skeleton due to outliers in the hand detection area

Left camera Right camera

(c) Failure of whole-body skeleton detection

Fig. 10. Failures of hand skeleton detection in two-stage detection
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(a) Left camera(right FOV) (b) Right camera(center FOV)

(c) Output of 3D viewed from an
oblique upper viewpoint

Fig. 11. 3D hand pose estimation with opened hand

Figure 10 shows examples of false hand skeleton detection in two-stage detec-
tion. The most common case of false detection is due to occlusion.As shown
inFig. 10a, the detection failed due to cases where the fingertips were hidden
by the palm or fingers. In Fig. 10b, the hand slightly protrudes from the hand
detection area. In some cases, the detection area of the hand skeleton in the
two-stage detection was too small, which caused the false detections. As shown
in Fig. 10c, when hand could not be detected by whole-body skeleton detection,
only the hand skeleton detection was performed using the entire image as input,
and there were cases in which irrelevant parts were detected.

The coordinates of skeleton points in 3D space were estimated using their
coordinates with the FOV division. As shown in Fig. 11, the 3D hand pose esti-
mation could be performed correctly in many cases in the opened hand. However,
in some cases, the detection did not work well because one finger hid the other
finger. when either camera failed to detect, the 3D hand pose estimation also
failed.
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4 Conclusion

In this paper, we propose a 3D hand pose recognition method to enable users to
perform gesture operations in a wide area in front of a large display. By using the
omnidirectional cameras, the entire area in front of the display can be covered
within the FOV of both cameras, thus achieving 3D recognition over a wide
area. The distortion caused by the omnidirectional cameras and the problem of
skeleton detection when the size of the hand in the image is small are solved by
using FOV division and two-stage skeleton detection.

In the FOV division method, the center position of the panoramic image is
shifted and perspective projection transformation is performed multiple times,
and the center part of the viewpoint, which is less affected by distortion, is
treated as the input image, which enables us to obtain images equivalent to those
taken with a normal camera rotated, and thus to detect skeletal points with high
accuracy. In the two-stage skeleton detection, the hand detection area was set
by whole-body skeleton detection, and thereby reduced the possibility of false
detection due to surrounding objects. By using the skeleton point information
detected by each method, 3D hand pose estimation was enabled.

There are three issues to be addressed in the future.
The first is to evaluate the accuracy of skeleton detection in 3D space. By

comparing the estimated coordinates of skeleton points in 3D space with those
obtained by using 3D sensors such as LeapMotion and Kinect, it is possible to
evaluate the accuracy of the skeleton detection in this system.

The second is to construct a system that can be operated in real time. Because
the proposed method requires a lot of time for image recognition, it is difficult to
use the system in real time. This is due to the fact that the process of skeleton
detection for the hand itself is time-consuming and that the skeleton detection
is performed multiple times along with the FOV division. In order to construct a
system that enables real-time operation, it is necessary to speed up the processing
in the system. To speed up the process, we can consider methods such as using the
hand position coordinates of the previous frame to track the hand movements,
limiting the range of the hand skeleton point detection, and reducing the size of
the input image.

The third is to deal with cases where multiple persons and both hands are
in the FOV. In this experiment, we assumed that only one person using the
right hand is the target of operation. As a result of expanding the FOV by the
omnidirectional cameras, it is expected that more than one person or more than
one hand are detected in the screen at the same time. When multiple users are
the target of operation, it is difficult to distinguish the same user from the left
and right camera images. It is necessary to distinguish the same users from each
other and to estimate the skeleton of each user in 3D space from the results of
hand skeleton detection.
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Abstract. Natural human-system interaction can facilitate the accep-
tance of technological systems. The ability of emotion recognition can
hereby provide a significant contribution. Surprisingly, the field of emo-
tion recognition is dominated by static machine learning approaches that
do not account for the dynamics present in emotional processes. To
overcome this limitation, we applied nonlinear autoregressive (NARX)
models to predict emotion intensity from different physiological features
extracted from galvanic skin response (GSR), heart rate (HR) and res-
piration (RSP) signals. NARX models consider the history of both the
exogenous inputs (physiological signals) and the output (intensity). Emo-
tions of different intensities were induced with images, while the physi-
ological signals were recorded and the participants assessed their sub-
jectively felt intensity in real-time. The intensity changes were anal-
ysed for three different emotion qualities: Happiness/Joy, Disappoint-
ment/Regret, Worry/Fear. While models were obtained for each indi-
vidual, only the best set of parameters across individuals was considered
for evaluation. Overall, it was found that the NARX models performed
better than a sliding-window linear regression for all qualities. Further-
more, relevant features for the prediction of intensity and “ideal” delays
between physiological features and the felt intensity to be captured by
the model were identified. Overall, results underline the importance of
considering dynamics in emotion recognition and prediction tasks.

Keywords: Emotion recognition · Emotion dynamics · Appraisal
models · Electrophysiological signals · Emotion intensity

1 Introduction

Natural human-system interaction can facilitate the acceptance of innovative
technological systems. Hereby, also recent advancements in Affective Com-
puting can contribute by achieving more desirable and realistic Human-
Machine/Computer interactions that have the ability to recognise the user’s
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emotional state and to react accordingly [3]. Over the last decades significant
advances in emotion modelling for emotion recognition and prediction have been
made considering different types of modalities, such as facial expressions, ges-
tures, and electrophysiological signals, eventually also combined in a multimodal
approach [24]. Among those, electrophysiological signals are spontaneous, invol-
untary, and not constrained by social protocols.

Emotion theories often recognise the dynamic nature of emotions, but still,
the field of emotion recognition is dominated by linear statistics and static models
[8]. In fact, in most emotion recognition studies, an affective state is detected
within a time window by employing static machine learning approaches [21] that
can either be traditional statistical methods [4,10] or deep learning approaches
[11]. These models, however, are not able to fully capture the dynamic nature
of emotions, though they have been useful to provide information related to
emotional processes.

The emergence of the so-called appraisal models emphasised the dynamic
nature of emotions, since emotions are defined as processes and involve their dif-
ferent components and respective interactions over time [15]. However, literature
focusing on such computational models is still rare. Here we aim at contributing
with the development of dynamical, nonlinear autoregressive exogenous (NARX)
models to predict emotion intensity from different peripheral electrophysiological
signals (galvanic skin response, heart rate, and respiration). As a step towards
a multimodal approach, we present results of an individual analysis of different
physiological signals. Moreover, we introduce a method for the dynamic assess-
ment of the subjectively felt emotion, a prerequisite for dynamic studies.

This paper is structured as follows: Sect. 2 reviews the state of the art in the
field; Sect. 3 explains the architecture of the model studied; Sect. 4 reports the
setup and design of our experiment; Sect. 5 introduces how we processed the data
and estimated emotion intensity; Sect. 6 explains how we evaluated the model
and reports our results; and Sect. 7 contains conclusions and future directions.

2 Related Work

Only few studies account for the dynamics nature of emotions, at least indirectly.
For instance, even though Valenza et al. (2011) [25] applied a Quadratic Discrim-
inant Classifier to simply discriminate among 5 classes of valence and arousal,
they considered nonlinear dynamic methods for feature extraction from galvanic
skin response (GSR), heart rate (HR) and respiration (RSP). They compared
the same classifier for standard features and for nonlinear dynamic features,
concluding that dynamic features allowed the classifier to better recognise dif-
ferent levels of valence and arousal. Similarly, dynamic features have also been
used to feed deep learning approaches, as in the case of Liu et al. (2021) [12].
They extracted dynamic differential entropy from electroencephalogram (EEG)
signals that then were used to classify emotional states into positive or negative
with convolutional neural networks.
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Other approaches again considered applying deep neural networks that
account for temporal dynamics. For instance, nonlinear autoregressive networks
with exogenous inputs (NARX networks) were applied by Alazrai and Lee (2012)
[1] to detect emotions from facial expressions (analysing videos). These networks
are of “NARX-type”, in which there are two types of inputs: the present and
past values from the exogenous input, and the delayed values of the output sig-
nal. In this way, these models consider the temporal dynamics by taking into
account the history of the signals. The method performed better than baselines,
both in terms of average recognition rate and number of emotional states able
to be distinguished. In turn, Mithbavkar and Shah (2019) [14] used different
types of neural networks to detect emotions from EMG signals. They found
that even though Elman neural networks also present an architecture suitable
to study time varying dynamics (due to an undertake layer that works as mem-
ory), NARX-type networks reached the best accuracy distinguishing between
anger, joy, pleasure, and sadness. It is worth mentioning that, even though the
architecture of these deep networks also considers the time history of the sig-
nals as inputs, here we overcome issues related to a limited amount of training
samples by using a dynamical system approach inspired by the field of system
identification (as better described in Sect. 3) instead of a neural network.

While the subjective feeling is characterised by its quality, intensity and
duration, aforementioned works exclusively focused on recognizing or predicting
emotion quality. In this work, we are particularly interested in studying the
dynamics related to intensity, since it is an important characteristic to define an
emotion (e.g., “I am very happy”, “I am slightly disappointed”) and therefore
important to fully comprehend the concept of emotion.

Works like Sonnemans and Frijda (1994) [22], Verduyn et al. (2009) [26] and
Heylen et al. (2015) [6]) studied intensity profiles over time, but still lack a
connection between the subjective feeling and neurophysiological responses.

A first attempt in this direction was made by Jenke and Peer (2018) [7],
who used GSR to dynamically model emotion intensity over time. They took
advantage of Scherer’s Component Process Model to develop a grey-box model
for intensity estimation based on the Dynamic Field Theory (DFT), a mathe-
matical and conceptual framework that relies on the concept of Dynamic Neural
Fields (DNFs) [20]. Moreover, the subjectively felt intensity was measured in
real-time during the exhibition of IAPS images [9]. This study was pioneer in
the introduction of a dynamic model to predict emotion intensity from physio-
logical signals. However, just information contained in GSR was included.

We believe that the analysis of additional physiological signals is required to
gain a more comprehensive understanding of the dynamics of emotion intensity.
Thus, in this work we evaluate emotion intensity over a series of peripheral
physiological signals and model their dynamics.
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3 Models

3.1 NARX Dynamic Model

System identification is a widely used field that aims to build mathematical
models of dynamic systems by trying to capture the relationship between the
input and output as accurately as possible [13]. One of the approaches used for
modelling nonlinear systems is the nonlinear autoregressive exogenous (NARX)
model, that can be expressed as follows:

y(t) = f(y(t − 1), ..., y(t − ny), u(t), u(t − 1), ..., u(t − nu)) + e(t), (1)

where t is the discrete time-index, u(t) the input, y(t) the output, e(t) the equa-
tion error, and ny and nu the maximum lags for the system output and input,
respectively, and f can be a multiple-input single-output nonlinear function.

The output y is explained through its past values y(t−1), y(t−2), ..., y(t−ny)
– and therefore is an autoregressive model – as well as past values of the input
u(t− 1), u(t− 2), ..., u(t− nu) – which represent the exogenous variables of the
model. Moreover, the model permits the introduction of a delay. If nk represents
the input delay, the input of the system z(t) will be:

z(t) = [y(t − 1), ..., y(t − ny), u(t − nk), u(t − nk − 1), ..., u(t − nk − nu)]. (2)

In this work, NARX models are estimated through a wavelet network func-
tion that uses a combination of linear weights, an offset and a nonlinear func-
tion (containing wavelet unit functions that operate on a radial combination of
inputs) to compute its output. This is done through the following relationship:

y(t) = y0 + (z(t) − z)TPL + W (z(t)) + S(z(t)), (3)

in which z(t) is the vector of regressors with mean z, y0 the output offset (a
scalar), P a projection matrix, L a vector of weights, and W (z) and S(z) the
nonlinear functions of the wavelet network. W (z) is a sum of dilated and trans-
lated wavelets, S(z) is a sum of dilated and translated scaling functions.

Equations 1 and 2 just show linear inputs; however, the order of these mod-
els can be increased by the introduction of polynomial regressors. This is par-
ticularly relevant to predict emotions through physiological signals, since their
relationship is known to be nonlinear [18,25].

3.2 Self-assessment

To self-assess the subjective feeling, the Self-Assessment Manikin test [2], a
picture-oriented questionnaire developed to measure an emotional response
based on the scales of valence (from positive to negative), perceived arousal
(from calming to agitating), and dominance (from submissive to dominant), is
typically adopted. These dimensions, however, are considered abstract for most
subjects, since they do not correspond to the way people communicate emo-
tions. As an alternative, we investigate the Geneva Emotion Wheel (GEW) –
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that distributes emotions according to their valence and control dimensions –
and represents a more convenient way to report the subjective feeling. This
because, on one hand, it contains labels that are closer to our communication
style, and on the other hand, the bi-dimensional structure helps to locate the
discrete emotions on the instrument [16].

It should be noted that the GEW evaluates emotions in the valence-control
space even though literature is dominated by self-assessment in the valence-
arousal space [21]. Scherer (2009) [18], however, claims that, after valence, con-
trol is more important than arousal for emotion quality distinction. Valence is
directly related to how much an individual considers an event conductive or
obstructive to reaching their goals (goal conduciveness), and control is a reflex
of how well the individual can cope or adjust to the event consequences (coping
potential).

Looking at the GEW (Fig. 1), it is possible to locate 20 emotion families
with 40 emotion terms according to their valence and control. In here, and
following the idea of polar coordinates, the angle of each of these emotion families
represents the emotion quality, and the proximity to the border of the wheel the
emotion intensity.

3.3 Proposed Approach

We use physiological signals (exogenous inputs) to predict changes in emotion
intensity (single output) through NARX models, assuming that the quality is
fixed over a trial. Even though NARX models are a black-box time series mod-
elling approach, finding the best combination of parameters for each physiological
signal gives us an insight about how fast our perception of the subjectively felt
emotion follows physiological signals.

We extract distinct physiological features from galvanic skin response, heart
rate, and respiration signals (see Subsect. 5.2 for more details). Each resulting
feature time series is evaluated separately and used as exogenous input of a
NARX model with the subjectively felt emotion intensity as output. We consid-
ered linear regressors of the physiological feature u and the intensity y, polyno-
mial (quadratic) regressors of the physiological feature u, and the existence of a
delay in the physiological feature u. The amount of linear and polynomial regres-
sors for a specific physiological feature u was always the same. Mathematically,
this means that the output y(t) is predicted by:

y(t) = f(y(t − 1), ..., y(t − ny), u(t − nk), u(t − nk − 1), ..., u(t − nk − nu)

u(t − nk)2, u(t − nk − 1)2, ..., u(t − nk − nu)2) + e(t).
(4)

4 Experiment and Data Acquisition

4.1 Participants

An experiment was conducted with 9 healthy individuals (6 males and 3 females)
aged between 19 and 32 (M = 28.2, SD = 7.3). Subjects were screened with
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Fig. 1. Version of the Geneva Emotion Wheel (GEW) with 40 emotion terms arranged
in 20 emotion families [16]. These families are aligned according to two dimensions –
valence and control. With this tool, subjects provided us information about the emotion
quality (the angle) and intensity (low intensity: towards the centre of the wheel; high
intensity: towards the circumference of the wheel).

questionnaires to exclude participants with any sign of somatization, obsessive-
compulsive disorder, interpersonal sensitivity, depression, anxiety, hostility, pho-
bic anxiety, paranoid ideation, and psychoticism (Brief Symptom Checklist [5])
as well as posttraumatic stress disorders. The questionnaires were made available
in three different languages (English, Italian, German) and thus, to ensure the
validity of responses, only participants with these languages as mother tongue
were accepted1.

4.2 Experimental Design

To analyse intensity profiles for different emotion qualities, we chose quali-
ties that are representative of the quadrants of the Geneva Emotion Wheel
(GEW) [16], namely Happiness/Joy (quality of the 1st quadrant, Q1), Disap-
pointment/Regret (quality of the 2nd quadrant, Q2), and Worry/Fear (quality
of the 3rd quadrant, Q3).

1 Ethical approval was obtained from the Research Ethics Committee of the Free
University of Bozen-Bolzano.
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To stimulate these emotions, pictures of the IAPS database [9] were used.
Please note that due to the number of available pictures for each quadrant, we
could select pictures of qualities present for only three out of the four quadrants.

For each of the final chosen qualities, the experiment consisted of 8 trials (1
“practising” trial and 7 trials for analysis) resulting in a total of 24 trials. The
order of the first 3 was fixed (one for each quality), since they were meant for
the participant to get used to the experiment, while the order of the remaining
21 trials were randomized. For each trial, the quality was always fixed, while
the intensity of the stimuli changed over the trial. Each trial included a message
with the information “New Trial” (exhibited for 2 s), 3 images representing the
same quality but different intensities (exhibited in a random order for 15 s each),
a black screen (exhibited for 30 s), and a neutral image (exhibited for 30 s),
see Fig. 2. The black screen and the neutral image were important to help the
subjects to reach a neutral state before the next trial.

Fig. 2. Emotion induction protocol for each trial. It contains a message informing about
the beginning of the new trial, three images meant to induce emotions of different
intensities, a black screen and a neutral image. All the images are from the IAPS
database [9].

4.3 Experimental Setup and Procedure

First, an online pre-screening meant to assess the inclusion criteria mentioned
in Subsect. 4.1 was performed. Participants who met our inclusion criteria were
then invited to come to our laboratory and continue the experiment. Once they
arrived, they were introduced to the study and tasks. After obtaining written
consent, the biosensors to collect electrophysiological signals were placed. In par-
ticular, galvanic skin response (GSR) was recorded with a g.tec g.GSRsensor of
which two small electrodes were placed on middle finger and ring finger. The
pulse was measured with a g.tec g.SpO2 sensor placed on the index finger. The
respiration (RSP) was recorded with a belt system that works as a respiration
effort sensor. This belt was placed around the chest of the participants. Elec-
troencephalogram (EEG) was also measured, but these signals were not included
in this analysis. All these sensors were connected with a g.tec g.HIamp amplifier
and the signals were recorded with the help of a laptop with the g.tec toolbox
g.HIsys for Simulink compatible with MATLAB R2020a. The amplifier was set
to record the data at a sampling frequency of 256 Hz.

The stimuli presented were part of the IAPS database [9] and were displayed
on a monitor in front of the participants. The participants provided real-time
information about the perceived quality and intensity of the emotion with the
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help of a polar device with the GEW [16]. By adjusting a knob, subjects pro-
vided the felt quality (the angle of the GEW) and intensity (according to the
proximity to the border of the GEW). The knob determined the resistance of a
linear potentiometer, measuring intensity, and a rotary potentiometer, measur-
ing quality. They were connected to the laptop through an Arduino UNO, which
enabled their recording with Simulink.

As explained in Subsect. 4.2, the quality was fixed over a trial. Therefore,
participants were supposed to fix the felt quality at the beginning of the first
picture of the trial and, after that, just adjust the intensity according to their
subjective feeling.

5 Data Processing

5.1 Pre-processing

We used the g.tec toolbox g.HIsys to pre-process the signals as recommended
for these sensors. In particular, we applied a low-pass filter at 30 Hz and a notch
filter at 50 Hz to the signals from the g.GSRsensor and from the g.SpO2sensor.
In the case of the respiration signals, we used a notch filter at 50 Hz, but also a
band-pass filter with cut-off frequencies of 0.1 Hz and 30 Hz.

To account for the time the participants needed to adjust the quality at the
beginning of the trials, we did not include the first 2 s of each trial in the analysis.

5.2 Feature Extraction

Besides the filtered galvanic skin response (GSR), heart rate (HR), and the
respiration (RSP) rate (respiration cycles per minute), we extracted other fea-
tures that also gave information about these physiological measurements over
time. These are GSR derivative, GSR running rate2, HR derivative, HR running
rate, RSP rate derivative, RSP running rate, inspiration time, expiration time,
inhalation depth, and exhalation depth. Besides the derivatives, these features
were obtained using blocks meant for feature extraction from the g.tec tool-
box g.HIsys. Due to the quality of the RSP signal, inspiration time could not
be obtained for 5 participants (Subject002, Subject004, Subject005, Subject007
and Subject009).

After extracting these signals, we downsampled them by a factor of 100 –
with a resulting frequency of 2.56 Hz. We did this to obtain orders of our models
that still have a physiological meaning.

5.3 Intensity Prediction

We used each of the physiological features mentioned in Sect. 5.2 as exogenous
variables to predict emotion intensity with a NARX model. We used one exoge-
nous variable per model, which means that in total we aimed to achieve 13 mod-
els (one per feature) for each emotion quality. To train each of those models, we
2 The running rate is computed with respect to a reference interval that is moving

along with the evaluation window as time proceeds.



26 I. Barradas et al.

used the intensity reported by the participants in real-time as the ground-truth.
Taking the nomenclature of Subsect. 3.3, intensity is y and each of the features
u. The regressors used for y were linear, while the ones for the physiological
signals u were both linear and quadratic.

To find the best model, we trained NARX models with different parameters
related to the number of regressors of each signal and to the delay of u in
reference to y. This means that, considering Eq. 4, we examined combinations
of the values that the parameters ny, nu and nk can take. We considered the
three parameters could take values between 1 and 11. Since the data frequency
is 2.56 Hz, these values correspond to time intervals between 0.39 and 4.29 s.

We tested these models with a leave-one-out cross-validation (LOOCV) [17].
Particularly, since we had 7 available trials for each emotion, we used 6 trials as
the training set and the remaining trial as test set. This process was repeated 7
times, so all trials made once part of the test set.

We repeated this process for the 9 subjects individually.

6 Evaluation

6.1 Methods

Performance: We used the correlation coefficient R between the predicted
output and the ground-truth to measure the performance of our models, since
we wanted to assess how close the shape of our results is to the ground-truth.

The NARX models computed here are individual. Nonetheless, we aim for
an approach giving insights across subjects. To do so, for each combination of
parameters, we computed the average R for all participants as explained in more
detail in the following paragraph.

For all subjects, qualities and physiological features, we have in total 9317
models (leave-one-out cross-validation, with N = 7, of all the combinations of the
11 possible values of ny, nu and nk). For each of these models, we computed the
correlation between the predicted output and our ground-truth (the subjectively
felt intensity). For each combination of the parameters (e.g., {1, 1, 1}, {1, 1, 2},
{1, 1, 3}, ...), we obtained 7 correlations resulting from the LOOCV. For each
participant, we calculated the mean of these 7 correlations. Finally, we calculated
the mean of these values across subjects.

After computing this, we have a mean correlation for every combination
of values that ny, nu and nk can take. For each physiological feature u, we
considered the parameters with the highest R across trials and across subjects.

Additionally, we compared the correlation obtained for each one of those
“best” combinations with the results obtained with a sliding-window linear
regression. In this linear regression, we used a window length of 13 time points
(approximately 5 s) with a step of 3 time points (approximately 1 s) to capture
both fast and slow changes of different physiological signals. In each time win-
dow, we considered the mean intensity of that window as the output and the
following features as inputs: maximum, minimum, mean, and standard devi-
ation. We again adopted LOOCV. Once again, we calculated the correlation
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coefficient R between the output of the models and the ground-truth and we
used these values to compare the two methods. We performed this comparison
with a Wilcoxon signed-rank test, assessing whether the correlation obtained for
each physiological feature was higher when using NARX models than when using
a traditional sliding-window approach. Both p-values and Wilcoxon effect size r
are reported3. Results are significant when p < 0.05 and effect size is considered
moderate (r > 0.30) or large (r > 0.50) [23].

Analysis of the Physiological Delay: With NARX models, it is possible
to introduce delays in the response variable (intensity) and in the exogenous
variables (physiological signals). In our model, this delay is only considered in
the exogenous variables. This can actually complement information from the
Component Process Model [18,19], since this model takes into consideration
the sequential influence of the neurophysiological component on the subjective
feeling. For this reason and for each quality separately, we analysed the optimal
delay of each physiological feature for intensity prediction.

6.2 Results

Performance: The results for Happiness/Joy (Q1), Disappointment/Regret
(Q2) and Worry/Fear (Q3) are displayed in Tables 1, 2 and 3, showing the best
results for NARX models across subjects, as well as the corresponding parame-
ters (ny, nu, nk), the results for the sliding-window linear regression, and finally
the results of the Wilcoxon signed-rank test with p-value and Wilcoxon effect
size r.

Looking at these three tables, we verify that NARX models lead to higher
mean correlations across subjects than the sliding-window regression. This hap-
pens to every single feature for the three different qualities. When analysing the
significance of the results (considering a significance level of 5%), one can see
that: for Q1, for eight out of thirteen features a significantly higher correlation
is obtained with NARX models; for Q2, all except GSR running rate, inspira-
tion time and RSP running rate show significantly higher correlations for NARX
models than for the sliding-window linear regression; and for Q3, the result is
more mixed with several features not reaching statistical significance.

Overall, we can conclude that NARX models outperformed the sliding-
window linear regression. Differences were more significant for Q1 (Happi-
ness/Joy) and Q2 (Disappointment/Regret) than for Q3 (Worry/Fear). When
looking at the Geneva Emotion Wheel, this means that NARX models worked
better for emotions characterised by a high control.

Figure 3 also shows prediction results when using the NARX model for an
individual trial obtained for a participant using parameters that reached the
highest correlation either for this subject in particular (at the top) or across
3 For the purpose of obtaining the z -score necessary to compute r, the approximate

method is used. However, the reported p-values are always obtained with the exact
method adequate for a small sample size.
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subjects (at the bottom). The results in the image were obtained with GSR
derivative (in yellow), HR running rate (in red) and RSP running rate (in blue).
As expected, the results using subject-dependent optimal parameters are closer
to the shape of the reported intensity (ground-truth). This is specially evident for
the results obtained with the RSP running rate, in which the intensity predicted
with subject-specific optimal parameters is seen to be “prompted” and then
accompanies the shape of the ground-truth (just missing the sudden peaks),
while this does not happen to the one obtained with optimal parameters across
subjects for the same feature.

Physiological Delay: Figures 4, 5 and 6 show the optimal input delay for Q1,
Q2 and Q3, respectively. Physiological features related to GSR are represented
in yellow at the bottom, HR in red in the middle, and RSP in blue at the top
of the figures.

Regarding Happiness/Joy (Q1), it is possible to observe that filtered GSR,
GSR derivative, HR derivative, inspiration time, inhalation depth, exhalation
depth and RSP running rate take less time to influence the subjectively felt
intensity (nk ≤ 4, which corresponds to less than 1.6 s), followed by GSR running

Fig. 3. Example of intensity predictions with NARX models using GSR derivative (in
yellow), HR running rate (in red) and RSP running rate (in blue) for Subject006 in
the case of Worry/Fear (Q3). The prediction at the top is obtained with the optimal
parameters for this subject in particular (GSR derivative: ny = 2, nu = 10, nk = 5; HR
running rate: ny = 5, nu = 8, nk = 7; RSP running rate: ny = 3, nu = 8, nk = 11), while
the one at the bottom were obtained with the optimal parameters across participants
(GSR derivative: ny = 4, nu = 11, nk = 4; HR running rate: ny = 11, nu = 11, nk = 5;
RSP running rate: ny = 2, nu = 9, nk = 4). The ground-truth (in grey) corresponds to
the subjectively felt intensity reported by the participant. (Color figure online)
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Table 1. Summary of the comparison between intensity models for Happiness/Joy
(Q1): number of observations, mean (standard deviation) of the highest correlation
across subjects obtained with NARX models and the corresponding parameters, mean
(standard deviation) of the correlation obtained with sliding-window linear regression,
and results of the Wilcoxon signed-rank test (p-value and effect size) between these 2
variables for each physiological feature.

Physiological feature N NARX models Sliding-window

linear regression

Wilcoxon signed-rank test statistics

ny nu nk Correlation
across subjects

Correlation
across subjects

p-value Wilcoxon
effect size r

Filtered GSR 9 8 2 4 0.306 (0.274) 0.0996 (0.245) 0.0820 0.474

GSR running rate 9 10 7 6 0.273 (0.167) 0.140 (0.250) 0.125 0.395

GSR derivative 9 3 11 3 0.365 (0.193) 0.0955 (0.0672) 0.0313 0.629

Filtered HR 9 9 2 5 0.452 (0.188) 0.0159 (0.111) 3.91e−03 0.829

HR running rate 9 9 9 6 0.276 (0.224) 0.0360 (0.130) 0.0137 0.711

HR derivative 9 3 11 3 0.360 (0.191) 0.0329 (0.138) 1.95e−03 0.869

RSP rate 9 7 2 5 0.312 (0.225) 0.0569 (0.0678) 9.77e−03 0.750

Inspiration time 4 4 1 1 0.401 (0.137) −0.0165 (0.191) 0.125 0.668

Expiration time 9 9 4 6 0.321 (0.105) 0.0582 (0.106) 0.0156 0.704

Inhalation depth 9 2 7 1 0.241 (0.175) −0.0788 (0.170) 0.0156 0.704

Exhalation depth 9 6 4 4 0.285 (0.200) −0.0248 (0.125) 0.0625 0.549

RSP running rate 9 1 11 2 0.301 (0.287) 0.0105 (0.0149) 1.00 −0.596

RSP derivative 9 3 8 8 0.250 (0.114) −0.00145 (0.133) 1.95e−03 0.869

Table 2. Summary of the comparison between intensity models for Disappoint-
ment/Regret (Q2): number of observations, mean (standard deviation) of the highest
correlation across subjects obtained with NARX models and the corresponding param-
eters, mean (standard deviation) of the correlation obtained with sliding-window lin-
ear regression, and results of the Wilcoxon signed-rank test (p-value and effect size)
between these 2 variables for each physiological feature.

Physiological feature N NARX models Sliding-window

linear regression

Wilcoxon signed-rank test statistics

ny nu nk Correlation
across subjects

Correlation
across subjects

p-value Wilcoxon
effect size r

Filtered GSR 9 8 3 3 0.359 (0.215) 0.161 (0.197) 0.137 0.7108

GSR running rate 9 10 10 5 0.215 (0.220) 0.0970 (0.108) 0.0820 0.474

GSR derivative 9 3 11 4 0.377 (0.150) 0.0103 (0.151) 3.91e−03 0.817

Filtered HR 9 8 1 8 0.485 (0.154) −1.12e−03 (0.175) 1.95e−03 0.869

HR running rate 9 5 9 6 0.238 (0.212) 0.0927 (0.0.0976) 0.0273 0.632

HR derivative 9 2 11 4 0.377 (0.160) 0.147 (0.101) 1.95e−03 0.869

RSP rate 9 3 7 3 0.283 (0.236) −0.0337 (0.128) 0.0137 0.711

Inspiration time 4 6 2 6 0.553 (0.110) 0.0102 (0.0882) 0.250 0.447

Expiration time 9 1 3 1 0.381 (0.181) 0.0254 (0.0754) 7.81e−03 0.761

Inhalation depth 9 3 6 3 0.375 (0.144) −0.0337 (0.0913) 0.0156 0.699

Exhalation depth 9 2 9 1 0.290 (0.193) −0.0602 (0.0437) 0.0313 0.629

RSP running rate 9 2 11 2 0.216 (0.230) 0.0988 (0.222) 0.156 0.349

RSP derivative 9 7 10 5 0.341 (0.138) 0.0809 (0.0915) 1.95e−03 0.869
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Table 3. Summary of the comparison between intensity models for Worry/Fear (Q3):
number of observations, mean (standard deviation) of the highest correlation across
subjects obtained with NARX models and the corresponding parameters, mean (stan-
dard deviation) of the correlation obtained with sliding-window linear regression, and
results of the Wilcoxon signed-rank test (p-value and effect size) between these 2 vari-
ables for each physiological feature.

Physiological feature N NARX models Sliding-window

linear regression

Wilcoxon signed-rank test statistics

ny nu nk Correlation
across subjects

Correlation
across subjects

p-value Wilcoxon
effect size r

Filtered GSR 9 8 2 6 0.285 (0.243) 0.0704 (0.234) 0.102 0.434

GSR running rate 9 11 1 10 0.200 (0.118) 0.105 (0.183) 0.125 0.395

GSR derivative 9 4 11 4 0.339 (0.139) 0.0173 (0.0877) 3.91e−03 0.817

Filtered HR 9 7 2 7 0.387 (0.142) 0.0581 (0.185) 1.95e−03 0.869

HR running rate 9 11 11 5 0.122 (0.0815) 0.0899 (0.146) 0.545 −0.0395

HR derivative 9 4 11 4 0.302 (0.163) 0.0550 (0.126) 1.95e−03 0.869

RSP rate 9 7 2 7 0.247 (0.194) −0.0350 (0.126) 5.86e−03 0.790

Inspiration time 4 6 1 1 0.367 (0.163) −0.189 (0.119) 0.25 0.447

Expiration time 9 2 6 2 0.345 (0.141) 0.0172 (0.0488) 0.0625 0.548

Inhalation depth 9 3 5 5 0.292 (0.202) 0.0509 (0.182) 0.109 0.423

Exhalation depth 9 2 6 2 0.292 (0.186) 0.0636 (0.0786) 7.81e−03 0.761

RSP running rate 9 2 9 4 0.225 (0.163) 0.0267 (0.0812) 0.188 0.304

RSP derivative 9 8 5 11 0.208 (0.166) 0.0769 (0.190) 0.248 0.237

rate, filtered HR, HR running rate, RSP rate, expiration time and RSP derivative
(4 < nk ≤ 8, which corresponds to 1.6 s to 3.1 s).

When considering Disappointment/Regret (Q2), filtered GSR, GSR deriva-
tive, HR derivative, RSP rate, expiration time, inhalation depth, exhalation
depth and RSP running rate are the features taking less time to influence the
subjectively felt intensity (nk ≤ 4, which corresponds to less than 1.6 s), followed
by GSR running rate, filtered HR, HR running rate, inspiration time and RSP
derivative (4 < nk ≤ 8, which corresponds to 1.6 s to 3.1 s).

Finally, in the case of Worry/Fear (Q3), GSR running rate, GSR deriva-
tive, inspiration time and exhalation depth are the features taking less time to
influence the subjectively felt intensity (nk ≤ 4, which corresponds to less than
1.6 s), followed by filtered GSR, HR running rate, RSP rate, expiration time and
inhalation depth (4 < nk ≤ 8, which corresponds to 1.6 s to 3.1 s), and by fil-
tered HR, HR derivative, RSP running rate and RSP derivative (nk ≥ 9, which
corresponds to more than 3.5 s).

As can be observed, filtered GSR, GSR derivative, HR derivative inhala-
tion depth, exhalation depth and RSP running rate show a small delay for the
qualities characterised by a higher control (Q1 and Q2). GSR derivative, HR
derivative and exhalation depth also have a short delay in Q3, suggesting that
the delay of these physiological features with respect to the felt intensity is not
dependent on the emotion quality. On the other hand, GSR running rate, filtered
HR, HR running rate and RSP derivative presented a medium delay for both Q1
and Q2 (qualities with higher control); for Q3 just HR-related features (filtered
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HR and HR running rate) presented the same medium delay, while the remain-
ing ones (GSR running rate RSP derivative) reached extremes of high delays. It
is also noticeable that, for the qualities characterised by a negative valence (Q2
and Q3), expiration time presented a short delay. Finally, inspiration time has
a short delay for Q1 and Q3.

Overall, we observe a rather invariant cluster for HR-based features charac-
terised by medium delays across features. For GSR-based features, both filtered
GSR and GSR tend to present short to medium delays. Delays for RSP-related
features were found to vary more with the chosen quality.

Emotion appraisal models provide a mean to combine both theoretical con-
cepts and empirical findings. In particular, Scherer’s Component Process Model
(CPM) considers the appraisal of an event that is highly pertinent to the needs,
goals and values of an individual [18,19]. This model is especially relevant to
interpret our results, since it considers the effects of a multilevel appraisal on
other emotion components. This appraisal is built upon a set of sequential cri-
teria, the so-called “stimulus evaluation checks” (SECs), which are: relevance,
implications, coping potential, and normative significance. These SECs influence
all the emotion components, including the neurophysiological component and the
subjective feeling; therefore, following different SECs, physiological changes are
provoked and the individual gets aware of the changes in their affective state.
Different SECs can influence the same physiological parameter, as we will explain
in the next paragraph.

Considering the influence of the different SECs on both the neurophysiologi-
cal component and the subjective feeling, some of these processes can be related
to the delays we obtained. As mentioned, relevance is the first SEC; under this
SEC, the individual assesses the intrinsic pleasantness of the event. This check
has an effect in the inhalation (measured from the RSP signal) [18]. Since intrin-
sic pleasantness is directly related to valence, it is worth mentioning that the only
quality with positive valence that we assessed (Q1, Happiness/Joy) is exactly the
one in which there is a shorter delay between the physiological feature (inhalation
depth) and the felt intensity (nk = 1, which corresponds to 0.4 s, see Fig. 4). The
very same SEC also influences the heart rate (decelerates in case of a pleasant
event, accelerates in case of an unpleasant event) [18], so a short delay could also
be expected in HR-related features. However, HR is also affected in all posterior
SECs, so it is not surprising that the optimal delay in the felt emotion inten-
sity is larger than this. Regarding GSR-related features, the delays are expected
to be overall slightly shorter than HR-related features, since GSR stops being
affected after the second SEC. This is evidenced in our results, expect for GSR
running rate in Q3. Lastly, it is also not surprising that the results vary more
among them and across qualities for the remaining RSP-related features, since
many different outcomes of the different SECs cause changes in both RSP depth
and speed.
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Fig. 4. Ideal input delay across subjects obtained with NARX models for Happi-
ness/Joy (Q1). Physiological features related to galvanic skin response are represented
in yellow at the bottom, to heart rate in red in the middle, and to respiration in blue
at the top. (Color figure online)

Fig. 5. Ideal input delay across subjects obtained with NARX models for Disappoint-
ment/Regret (Q2). Physiological features related to galvanic skin response are repre-
sented in yellow at the bottom, to heart rate in red in the middle, and to respiration
in blue at the top. (Color figure online)
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Fig. 6. Ideal input delay across subjects obtained with NARX models for Worry/Fear
(Q3). Physiological features related to galvanic skin response are represented in yellow
at the bottom, to heart rate in red in the middle, and to respiration in blue at the top.
(Color figure online)

7 Conclusion and Future Directions

The field of Human-Computer Interaction is advancing fast to keep up with
users’ needs and expectations. Predicting users’ emotional states is considered
an important ingredient in this context. Nonetheless, the majority of research on
emotion prediction still focuses on static approaches that neglect the dynamic
nature of emotions. In this work, we applied nonlinear autoregressive exogenous
(NARX) models to predict the dynamic behaviour of emotion intensity.

Thirteen physiological features extracted from galvanic skin response (GSR),
heart rate (HR) and respiration (RSP) signals were used as exogenous inputs to
predict emotion intensity with NARX models. These models incorporate infor-
mation about the time history of the physiological signals in the form of linear
and quadratic regressors, as well as the emotion intensity with linear regressors.
In general, the introduced dynamic approach showed better performance when
compared to a sliding-window linear regression for all the emotion qualities anal-
ysed, but specially for Happiness/Joy (Q1) and Disappointment/Regret (Q2).
This shows that considering the past history of each variable already gives more
clues about the emotional process than a static approach that just considers
different features within a time window.

Overall, we observed that meaningful features are very subjective, which is
expected as an emotion process is highly dependent on the individual and their
needs, goals and values. However, there were many relevant features that were
common among participants and thus, we expect that, by increasing the number
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of participants, also a subject-independent model may be derived that achieves
sufficient performance.

This dynamical approach allowed us to identify the optimal delays for each
physiological feature, which could be interpreted in the light of the Compo-
nent Process Model (an appraisal model that considers the interactions among
different components of the emotional process, such as the psychophysiological
changes and the subjective feeling). We could observe a rather invariant cluster
for HR-based features (characterised by medium delays), while delays for other
modalities were found to vary more with the chosen quality.

In the present study, features were used individually. Nonetheless, NARX
models easily enable the combination of different physiological signals as differ-
ent exogenous inputs. Our future work will consequently be directed towards
a multimodal approach in which the most informative features and respective
delays are combined. Moreover, we will also allow for multiple, sequential acti-
vations of the same feature related to different SECs.
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Abstract. “Behavioromics” is a term that has been invented to cover
the study of multimodal interaction from various disciplines and points
of view. These disciplines and points of view, however, lack a platform for
exchange. The workshop session on “Semantic, artificial and computa-
tional interaction studies” provides such a platform. We motivate behav-
ioromics, sketch its historical background, and summarize this year’s
contributions.

Keywords: Multimodal interaction · Behavioromics · Semantics ·
Human-computer interaction

1 Motivation

Manual gestures, facial expressions, head movements, shrugs, laughter, body ori-
entation, speech, pauses, intonation: they all contribute to constituting what is
called multimodal interaction. Aiming at natural (for humans) interfaces, the
field of HCI paid attention to this social fact early on [10,55]. It is also a
vital topic in Conversation Analysis [32,65] and the Cognitive Sciences [31,61]
and begins to percolate to theoretical linguistics [28,50] and (formal) semantics
[19,66]. Simultaneously, due to the digital turn, work on multimodal communi-
cation is expanded by data analytics, that is, statistical means to describe the
form of communication [33,56,59,69] or to ground distributional semantics in
visual [6], auditory [44], or even olfactory [43] perception to eventually arrive
at multimodal distributional semantics. However, while conjoint in investigating
a common empirical domain, there is little exchange between these fields. The
session on “Semantic, artificial and computational interaction studies” aims at
bringing these branches together. Potential goals are to delineate experimental
studies, computational methods, resource building, and exploration to integrate
symbolic, statistical, laboratory, field, and corpus-based approaches – a joint
methodological endeavor that might be called behavioromics.
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Behavioromics has various and diverse precursors. We name some of them
in Sect. 2 before we provide an overview of the contributions of the 2022 session
(Sect. 3). A synthesis is given against this backdrop in Sect. 4.

2 Selected Historical Background

One of the finest considerations of gesture and multimodal interaction is prob-
ably to be found in the arts. As is well-known, paintings by Giotto di Bondone
stand out due to the expressive body language of the participants of the subject
scenes depicted in his paintings [5]. Another famous historical root attending at
co-verbal gesture is its vital use in giving speeches and is dealt with within the
ancient rhetoric instructions given by Quintillian [60].1 So, while there is a lot
of fuss about spoken and written language (and rightly so, see, e.g., [18,34]),
human everyday life and culture is deeply shaped by “whole body communica-
tion”. In fact, multimodal interaction is regarded the ecological niche of language
– a recent such claim has been made again in [35]. This view of natural language
starts to spread in theoretical linguistics, too [16], contributing to overcoming a
“written language bias” [47] and leading to the current “coming of age of sign
language and gesture studies” [31]. One can dare to say that this development
would please two of the founding figures of modern language sciences, Gott-
lob Frege and Ferdinand de Saussure: De Saussure [17] always emphasized the
primacy of spoken over written language; Frege [23] was clear that in order to
express a complete thought, circumstances accompanying speech such as finger
points and glances need to be taken into account.

Accounting for (spoken) language as an inherently multimodal phenomenon
imposes on a very basic level observational and representational challenges.
While the gestures (using the term in a broad sense) mentioned at the beginning
of this paper are uncontradictedly communication means, this is less clear with
respect to smell (but see [43] for grounding smell terms in chemical structures)
or clothing (clothing might be regarded a sociolinguistic style, developing as
part of, e.g., signaling games [11]). In any case, studying multimodal behavior
requires to represent multimodal behavior, like phonetics requires to represent
speech sounds, for which the International Phonetic Alphabet (https://www.
internationalphoneticalphabet.org) provides a standardized notation system. An
early, encompassing account in this respect is the kinesics program developed
by Ray Birdwhistell [8,9], which comes with alphabets for various articulators
like gaze, speech, and body movements. Kinesics failed to gain wide acceptance
(see [38] for a critical appreciation), but the observational and representational
duties remain. Nowadays representation systems focusing on relative temporal
relations instead of articulator alphabets like the Behavior Markup Language
[67] prevail; a recently initiated workshop series on Multimodal Semantic Repre-
sentations (MMSR, https://aclanthology.org/events/mmsr-2021/) takes up the

1 For an overview of the history of gesture studies and its precursors see the first
chapters of [41].

https://www.internationalphoneticalphabet.org
https://www.internationalphoneticalphabet.org
https://aclanthology.org/events/mmsr-2021/
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issue in question expressive verbis (and is partly also represented in the 2022
Behavioromics session, see Sect. 3).

Studies from fields as diverse as anthropology, behavioral psychology, Con-
versation Analysis (CA) and related disciplines were interested in the total of
human behavior early on and provided foundational insights [3,14,15,20,21,32,
39,40,65]. A particular impetus for a gestural turn furthermore came from more
psychologically oriented work [52,53]. Taxonomies and observational regularities
due to these and related approaches are still prolific.

Advances in formal grammar theory, however, initiated in computer science,
most notably by the development of multichart parsers [36] and multimodal
finite-state parsing [37]. Multicharts are still used in more recent constraint-based
grammar implementations [1] – An overview of formal, multimodal grammar
architectures is given in [51]. A formal grammar is the – implicitly assumed
or explicitly mentioned – algorithmic backbone for multimodal grammars as
diverse as [2,24,30,46,48], which implement an extended notion of language in
the “heart of linguistics”. These developments fit in with extended notions of
grammar as declarative systems characterizing talk in interaction [28]. Currently,
we also see new algorithmic approaches beyond “grammar proper” coming up
such as λΨ -algebra [64].

Arguably the first computational system for speech–gesture integration has
been developed in the context of human–computer interaction [10], where a
pointing gesture has been modeled in terms of pen input on a computer screen
and interpreted as a placing command. Pointing gestures also are the type of
gesture that received the earliest attention from semantics and pragmatics [62],
but also formal structure-mapping approaches for the semantics of iconicity have
been developed [29]. Within two-dimensional semantics it is discussed how ges-
tures interact with proffered and presupposed, at-issue and non-at-issue content
[19,66].

The strong interest from computer science in the entirety of body behavior is
most evident at Conversational Agents, be they embodied or not [13,58] (to name
just two sources from a vast field, which are also partly represented in the 2022
session on Behavioromics). The reason for the importance of non-verbal behavior
for physical or virtual artificial agents is obvious: in order for an interaction with
a robot to appear natural, the robot has to communicate naturally, that is, with
all sorts of gestures.2

Even a quick look at the (necessarily) partial background on work on mul-
timodal interaction shows that it has been a multi-disciplinary enterprise from
the outset, including symbolic, statistical, laboratory, field, and corpus-based
approaches. This multi-disciplinary, multimodal perspective also frames Behav-
ioromics and the contributions of the current issue.

2 An attempt of an overview of the range of communicative gestures is given in [49].
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3 Overview of Contributions

A dynamic semantics for multimodal communication , Jeremy Kuhn. In
combining descriptive and depictive information from sign language, Kuhn aims
at developing a dynamic semantic system for anaphora resolution in sign lan-
guages to capture order phenomena such as Johni entered the room. Hei began
to sing. vs. *Hei began to sing. Johni entered the room. or binding phenomena
with quantifiers (Nobody received [a prize] i and bragged about it i. vs. *Nobody
recieved [a prize] i. It i was made of gold.). The main claim he makes is that, since
anaphoric relations are expressed via the iconic use of space in sign languages, a
dynamic semantic system must be built on this insight and a pictorial discourse
referent must be introduced at a certain locus before it can be retrieved. In
other words, “one must create a picture before one can point to it”. This, so it
is argued, building on [45], is also the reason why we do not observe phenomena
of backwards anaphora as often in sign languages as in spoken languages. Fur-
thermore, Kuhn develops a theory that makes reference to the well-established
concept of a local context that describes the immediate scope in which an expres-
sion is interpreted and broadens this to capture phenomena that rely on iconic
space. This way, the author develops a formal semantic system that does justice
to the modality-specific visual-gestural properties of sign languages.

Towards Situated AMR: Creating a Corpus of Gesture AMR, Lucia
Donatelli, Kenneth Lai, Richard Brutti, James Pustejovsky. The authors present
Gesture-AMR, an extension of Abstract Meaning Representation (AMR) [4],
which covers manual gestures. To this end – and thoroughly building on previous
gesture work on annotation and multimodal meaning – gestures are represented
according to a template which basically provides four slots: (i) type of gesture, (ii)
agent of gesture, (iii) content of gesture, and (iv) addressee of gesture. The type
of gesture is filled by the classical taxonomy which distinguishes iconic, deictic,
and emblematic gestures. Agent and addressee are given by the utterance situa-
tion (the authors apply Gesture-AMR to the eggnog corpus [68]). The content
depends on the gesture type: deictic gestures contribute a location, the content
of emblems can be obtained from a lexicon, iconic gestures are described in terms
of action predicates taken from PropBank [57]. Note that gestures which exhibit
multiple meaning components (like a deictic gesture which simultaneously draws
the shape of the object pointed at) are represented as mixed types, initiating the
basic template more than once. Temporal alignment and “affiliation” [65] (see
also Sect. 2) are expressed on the level of communication acts. Here, speech and
gesture can be coupled into ensembles [41], co-referential or in some other ways
semantically coordinated communicative multi-tier pairs.

Incremental Unit Networks for Distributed, Symbolic Multimodal
Processing and Representation , Mir Tahsin Imtiaz, Casey Kennington.
Natural language processing happens incrementally. Incremental interpretation,
however, is usually not a feature of Spoken Dialogue Systems (SDS), leading
to inadequacies in their speed and responsiveness. The paper by Imtiaz and
Kennington presents a framework of an SDS which is modular, multimodal, dis-
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tributive, incremental and temporally aligned and thus meets five core require-
ments for such systems. This is achieved by extending the Incremental Unit
(IU) framework of [42]. One of the shortcomings of this framework concerns the
simultaneous processing of data originating from multimodal sensors which is
physically distributed. To address this challenge, the authors develop a frame-
work to enable cross-modal information exchange. In doing so, they go beyond
related work that only meets proper subsets of the five core requirements. A
central IU-related component of their approach is a network model of informa-
tion units interconnected by horizontal (same-level) and vertical (grounded-in)
links, with the processor having access to all units to update or revise processing
steps as needed. Units can be organized into modules, resulting in the represen-
tation of multimodal data in a multimodal network such that grounded-in links
concern dependencies of units of different modes. To enable temporal alignment
and information fusion, the authors extend the Platform for Situated Intelligence
(PSI) in such a way that its representation format is IU-compliant. Finally, to
make IUs accessible across distributed modules, they develop a query language,
thereby providing a database-driven technology to address the above challenge.
The resulting architecture is extensively evaluated and thus represents a promis-
ing example of how IU-related approaches can be combined with those based on
parallel processing (PSI) in an environment that makes all relevant multimodal
data accessible to the central processor.

The interaction space: Considering speaker-hearer location in co-
speech gesture analysis and annotation , Schuyler Laparle. It’s a truism
that manual gesture is a visuo-spatial phenomenon. Laparle shows that this tru-
ism actually gives rise to a spatial structure in dialogue she calls interaction space
(IS); the IS, it is then argued, is essential for understanding discourse manage-
ment. Thus, the IS extends or complements the non-interactive gesture space
[52], which is used for describing extent and movement of hand-and-arm ges-
tures. The IS emerges by conversational engagement, that is by turning toward
an addressee. In interview situations (the examples mainly discussed by Laparle)
there are even two possible interaction spaces for each interview partner, one
between the interview partner and its interlocutor, and one between the inter-
view partner and the audience. Interestingly, using empty spaces, dialogue agents
can also create virtual ISs, for instance, toward an imagined audience. The IS
is the “pitch” for interlocutors’ gesture-based management of discourse topics;
Laparle gives examples for present, refer, contrast, and remove.3 From
the perspective of the researcher, the IS turns out to be an essential interpretive
means for understanding and analyzing interactive actions in dialogue. Hence,

3 In a footnote, Laparle remarks that one can think of interaction spaces in terms of
conceptual or mental spaces [22]. However, there is another apparent connection,
namely thinking of interaction spaces as parts of dialogue gameboards [25]. This
construal would immediately connect interaction spaces to dialogue semantic frame-
works and management action could be modeled as effects of conversational moves,
as has been shown for some interactive pointing gestures [26].
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the IS should become part of the standard inventory for gesture annotation and
linguistic interpretation.

Interruption multimodal analysis, Liu Yang, Catherine Achard, Cather-
ine Pelachaud. Turn-taking is often initiated by interruptions, i.e., by a listener
attempting to take over the turn while his or her interlocutor is still holding it,
thus violating the ‘one person speaks at a time’ rule. Knowing how to handle
such interruptions or initiating them is an important part of our conversational
competence. Modeling this competence from a computational perspective aims
to enable Embodied Conversational Agents (ECA) to successfully perform or
manage interruptions in dialogic communication. To this end, ECAs must be
able to distinguish interruptions from both back-channel behavior and smooth
turn-takings. In order to train corresponding classifiers, one needs sufficiently
rich data on interruptions in dialogues, which are annotated using an annota-
tion scheme that captures their multimodal signals. Providing and instantiating
such a scheme (by example of the French part of the NoXi corpus [12]) is the
subject of the paper by Yang et al. Using their scheme, they identify prosodic
features, facial and body movement features (related to hand and head activity)
that signal interruptions. The annotation is done with respect to the audio and
video streams of both interlocutors. The features are accompanied by distribu-
tion analyses that provide initial insights into the respective feature dynamics
under the specific scenario of the NoXi corpus. The annotation scheme goes
beyond related work in that it considers a broader range of interruptions (e.g.,
during silence) in addition to smooth turn-taking and backchannel behavior
while distinguishing between successful and failed interruptions. In conjunction
with the opposition of cooperative and competitive interruptions, this distinction
opens the field for a detailed analysis of interruptions. Interestingly, the work
shows that interruptions are both frequent and usually successful, indicating the
importance of modeling this type of dialogic behavior in the context of ECAs.

Laughter meaning construction in development , Chiara Mazzocconi.
“Laughter”, as Mazzocconi demonstrates, is a term which covers a variety of
non-verbal vocalizations, both formal and functional. Laughs occur standalone
or overlapping with verbal utterances (speech laughter); they appear before, in
between, or following speech; they exhibit very different acoustic profiles (F0,
duration and arousal), and, most importantly, they show a range of semantic
and pragmatic functions. In particular, Mazzocconi argues that laughter is a
proper subject of linguistic analysis.4 At the core of her analyses is the finding
that laughter is propositional and exophoric: laughter has propositional content
that arises from a “laughable”. The laughable triggers laughing because it is
pleasant and/or incongruous to some of the speaker’s/laugher’s expectations or
assumptions. Based on empirical investigations, Mazzocconi comes up with an
“incongruity taxonomy” alongside congruent laughs: incongruity can be pleas-
ant (e.g., a punchline), social (violation of a social norm), or pragmatic (a clash

4 In considering “laughter as language” [27], Mazzocconi can be seen as joining in
McNeill’s famous question “So You Think Gestures are Nonverbal?” [52].
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between literal and intended meaning, e.g., irony). These sophisticated adult
uses develop ontogenetically from vocalizations which emerge in babies around
the third month of life. Mazzocconi makes the point that especially antiphonal
laughter (laughter in response to laughter by an interlocutor) is a core ingredient
of parent-child conversation. Not only is (shared) laughter deeply embedded in
social bonding interactions, it is also systematically involved in the child’s first
one-word utterances. On the view spread out by Mazzocconi, laughter is part
and parcel of natural language communication, and therefore, as she continues,
also has to be a feature of naturally interacting Spoken Dialogue Systems (SDS)
and Embodied Conversational Agents (ECA): Laughter can be used to detect
(in developmental and conversational studies) and to model (SDS and ECA)
semantic and pragmatic competencies beyond telling jokes like failure detec-
tion and socially engaged feedback learning. By example of laughter Mazzocconi
demonstrates that one cannot study or engineer language without studying or
engineering gesture, too.

In addition to the above papers, the 2022 session on Behavioromics saw two
additional presentations:

Regularities in multimodal behaviour patterns as the basis for human-
artificial agent interaction , Judith Holler. Holler focuses on regularities in
multimodal utterances, as opposed to idiosyncratic behavior. That is, Holler
aims at finding stable, channel-crossing form-meaning patterns. This includes
repeated uses within and across interlocutors (as has been attested with respect
to co-verbal manual [54]), uniformities across visual form variations as known
from gesture fields or families [24], but also specific single gestures exhibiting
coherent functions. These multimodal regularities are functionally integrated
into conversation: they take part in regulating discourses and “modulate” illo-
cutionary force. However, they immediately also raise questions about context-
dependency and compositionality, as is discussed by Holler. Such patterns are
not only of interest for multimodal interaction studies per se, they are also impor-
tant for the generation and comprehension of naturalistic behavior of artificial
conversational agents.

Multimodal Corpus Linguistics with the TV News Archive: Prospects
and Challenges, Bodo Winter, Greg Woodin. Winter and Woodin advocate
and exemplify a corpus-based approach to study multimodal utterances. They
point out the TV News Archive (https://archive.org/details/tv), a platform that
makes all American TV news as well as some international channels (e.g., Al
Jazeera, BBC) available several hours after broadcasting. The archive not only
collects the news video clips, but because all American TV is captioned, also
speech transcription is available. Hence, the data base can be searched for specific
verbal expressions, which can then be interpreted in the visual context of the
news video. As a case study, the authors look at verbal description and video clips
of people using quantificational expressions such as “tiny number” and “huge
number”. They found that gesture rates were very high and that gestures are

https://archive.org/details/tv
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semantically congruent with speech: for instance, the pincer grip (letter “G” in
the letter signing alphabet of America Sign Language, that is, thumb in parallel
to your index finger, but not touching, the rest three fingers closed like in forming
a fist) is used for small quantities (which is in line with depictive strategies
observed in direction-giving dialogues [7,63]) The authors conclude that the TV
News Archive provides naturalistic data from an ecologically valid setting.

4 Conclusion

As illustrated in Sect. 2, the study of multimodal communication has been a
multidisciplinary (though not necessarily a joint) endeavor. This year’s session on
behavioromics aims, among others, at bringing these different disciplines, which
nonetheless share large parts of their empirical domain, together. By this means,
semantics (Kuhn), computational linguistics (Donatelli et al.), natural language
processing (Imtiaz and Kennington), discourse studies (Laparle), conversational
agents (Yang et al.), cognitive sciences (Mazzocconi and Holler), corpus research
(Winter and Woodin) have the seldomly enabled but needed opportunity to get
into discussion.
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Abstract. Olfactory displays (human-computer interfaces that generate and dif-
fuse odors to a user with a purpose) have been researched to complement or
supplement other human sensory modalities, as well as using odors as effective
sensory stimuli. We developed an olfactory display with a commonly-used micro-
controller board and off-the-shelf components. A challenge in olfactory displays
is diffusing the right odor concentration to a user. We developed and applied an
electronic nose (e-nose) to determine if an intended odor is not lingering, other-
wise our olfactory display will generate an excessive amount of odor. As a proof of
concept, we developed a virtual environment that activates our olfactory display
when a virtual lemon is visible on it, diffusing a lemon odor if the odor is not
already present around the user, detected by our e-nose. Our informal prototype
tests shown that it is feasible to use an e-nose to control the odor concentration
generated by an olfactory display, thus avoiding an excess of odor that may pro-
duce a negative user experience. The Evolutionary Prototyping methodology was
very useful for developing our olfactory display system and electronic nose.

Keywords: Olfactory display · Electronic nose · Smell · Odor · Virtual
environment ·Microcontroller board

1 Introduction

Since the 1990s [1, 2], computer-based olfactory displays have been proposed and
researched in a number of domains, with the purpose of complementing and supple-
menting sensory modalities with the use of the olfactory modality. An olfactory display
is a computer system with a human-computer interface that generates, controls and dif-
fuses one or more odors towards a user with a purpose [2, 3], providing an olfactory
stimulus to its user. In the nineties, olfactory displays were initially researched as a
technology that could incorporate the sense of smell in multimodal virtual reality (VR)
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[4]. For example, [5] explored the use of smell in a virtual reality simulation to support
firefighters training, exposing them to possible smoke smells. Odors in virtual reality and
virtual environments may support training transfer and immersion [6]. Recent research
on odors in VR include support for well-being and relaxation (e.g. [7]) and for support-
ing education and training [8], among other applications. Olfactory display research has
been conducted on odor generation and delivery technologies [9], including research
about how users perceive and interact with the diffused odors generated by olfactory
interfaces. The sense of smell has been underused in human-computer interaction [2],
although recent advances in microcontroller boards (small self-contained computers
used for controlling sensors and actuators) have facilitated the prototyping of olfactory
display applications [8]. For instance, [10] used an ATMega2560 microcontroller to
control the fan speed of an olfactory display system.

A major challenge in olfactory displays is removing the odor from the environment
after its use.Many odors tend to linger, and in some applications they need to be removed
quickly [8], for example, when they are used in video games [11]. Some olfactory display
systems include amechanism for removing the diffused odor when it is no longer used or
needed, such as fans and air filters [12]. Away to overcoming this challenge is to produce
the right concentration of odor in an olfactory interface to avoid olfactory adaptation
or over-saturation [13, 14]. Other problems with lingering odors may occur, such as
masking (an odor suppresses another one) and multiplicity (an odor enhances another
one) [9]. In this paper, we describe a method to produce a controlled odor diffusion in an
olfactory display system using an electronic nose, or e-nose. An e-nose is an electronic
sensing system that detects one or more specific odors, and their concentration in the
environment [15]. An e-nose can be used to analyze one or more specific gases or
volatile organic compounds (VOCs) and their concentration in the air [16, 17]. This can
be useful to avoid an excess of odor production thatmay affect the user’s odor perception.
The e-nose analyzes the air surrounding the user and the olfactory display generates a
particular odor if that odor is not lingering around the user. There is previous research on
olfactory display systems using e-noses. [18] successfully used an e-nose for evaluating
the accuracy of odor concentration diffused by an olfactory display. [2] and [9] describe
a number of techniques for storing, generating and diffusing odors in olfactory displays.
Scented essential oils have been used in olfactory displays [19], where the odors can be
diffused towards the user with the help of a fan [20].

2 Statement of the Objective

The objective of this paper is to demonstrate the use of an e-nose for controlling the
odor diffusion of an olfactory display that is activated by a virtual environment. In our
prototype, the e-nose analyzes the air surrounding the user and the olfactory display
generates a particular odor if that odor is not lingering around the user, thus avoiding an
excess of odor production that may affect the user’s odor perception.

3 Our Olfactory Display System + Electronic Nose Prototype

We describe in this section the technical aspects of our olfactory display and our e-
nose. An Arduino Uno [21] microcontroller board was used for controlling a computer
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fan and an odor generator (an off-the-shelf Honeywell Mini Mist humidifier [22]), con-
taining an essential oil reservoir. The microcontroller board also controls a computer
fan that suctions air through a filter that we made with an activated carbon sheet. The
frame holding the air filter was 3D printed to give it robustness. Another Arduino Uno
microcontroller board obtains data from aKeyestudio SEN-CCS811 odor sensormodule
[23]. This microcontroller board and the sensor module makes up the e-nose. The SEN-
CCS811 sensor module measures the concentration of total volatile organic compounds
(TVOC) in the environment. TVOCs are human-made organic chemicals that evaporate
at room temperature, used in many household products such as aromatizers and essential
oils [24], although VOCS are also present in nature [25]. The SEN-CCS811 odor sensor
module used in our prototype can detect TVOC concentrations from 0 to 32,768 parts
per billion (PPB). We used in our olfactory display the Ellia 100% pure lemon (Citrus
Limon) essential oil, developed by Homedics [26], by placing 10 drops of the essential
oil in the humidifier’s reservoir. After a number of trials and as part of the prototyping
process, we found that this number of drops was optimal for its diffusion using the
humidifier. Lemon odors have been successfully used in olfactory displays, providing
an effective olfactory sensory stimulus [27].

Figure 1 shows the main components of our designed olfactory display system and
our e-nose. We decided to use the Arduino Uno microcontroller board because it is easy
to program and to interface with, and is powerful enough to control the PC fans, the
odor sensor module and the odor generator. We used a special electronic circuit with
transistors and a 12v external power source for controlling the fans. The microcontroller
board interfaces through a USB cable with a MacBook Pro laptop computer with 16 GB

Fig. 1. Schematic diagram of the proposed olfactory display system with the e-nose.
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of RAM, containing theM1microprocessor. This computer is used to read data from the
e-nose to activate the humidifier and fans, and to run a 3D virtual environment created
as a proof of concept for testing the olfactory display system and the electronic nose.

The Honeywell humidifier that we selected for our olfactory display is low-cost and
easy to operate, facilitating our prototype development. The Ellia lemon essential oil
that we used in our olfactory display is easily available from many department stores
and online distributors, as well as the activated carbon sheet used for the air filter.

The algorithm that runs on the laptop computer for activating the olfactory display
and the e-nose is listed as follows:

1. If the virtual lemon is visualized on the computer screen, do the following:

1a. Read the odor sensor data.
1b. If the lemon odor is detected in the environment, do the following:

1b.1 Do not activate the olfactory display.
1b.2 Activate the air filter.

2. If the lemon odor is not detected in the environment do the following:

2a. Activate the olfactory display (fan + humidifier) for some seconds.
2b. Activate the air filter.

3. Go to step 1.

We coded the algorithm in a Python program, which access the Arduino microcon-
troller board through a laptop’s USB port. In order to run the virtual environment more
efficiently, all the e-nose data acquisition and processing is done on one of the micro-
controller boards to free up computational processing power from the laptop computer.

Fig. 2. The complete olfactory display + electronic nose set up.
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We developed and improved the olfactory display and the e-nose following an adapta-
tion of the Evolutionary Prototyping methodology [28]. Figure 2 shows our prototype
containing the olfactory display and the electronic nose.

As Fig. 2 shows, A solid-state relay was used for turning the humidifier on and off
with one of the Arduino Uno microcontroller boards. The PC fan (also controlled by the
microcontroller board) placed on top the humidifier diffused the odor towards the user.

4 The 3D Virtual Environment

We developed a 3D virtual environment made in Godot [29, 30], a popular video game
engine. A Godot script from the virtual environment sends a digital signal to the Python
program. This program activates the microcontroller board that controls the humidifier
and the fan when a virtual lemon is displayed on the center of the computer screen,
generating and diffusing the lemon odor by turning on the humidifier containing the
essential oil. Figure 2 shows the virtual environment that we developed for our proof
of concept, running on the laptop computer. The lemon 3D model that is displayed on
the virtual environment was downloaded from [31]. We also created and displayed more
than 200 virtual crates in the virtual environment to give the illusion of perspective and
to show 3Dmodels other than the virtual lemon to deactivate the olfactory display when
the virtual crates were displayed. The crates were procedurally generated in Godot and
placed randomly in the virtual environment.

5 Preliminary Results

We informally tested the virtual environment, the olfactory display and the electronic
nose a number of times, navigating in the virtual environment in 3D using the computer’s
arrow keys. As expected, our olfactory displaywas activated every time the virtual lemon
appeared at the center of the computer screen, while we captured the electronic nose data

Fig. 3. Data obtained from the electronic nose.
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for 45.5 s. Figure 3 shows the data that we sampled from the SEN-CCS811 odor sensor
module once every 0.5 s. According to the sensormanufacturer, this is theminimum time
required for reading data from the odor sensor. The sensor data was obtained through
the Arduino IDE’s Serial Monitor.

As Fig. 3 shows, the valleys are the periodswhere the virtual lemonwas not displayed
on the screen, and no lemon odor was present or it was barely present in the environment,
when the sensor read very low odor concentrations from the environment. In addition,
the low PPB readings indicated that the air filter was operating effectively during those
periods. The peaks happened during the olfactory display activation, where two of them
are values greater than 30 PPB. During the peaks, the lemon odor was distinctive. We
will need to conduct further user studies to confirm this. There is a small peak at the
beginning of the readings. We believe that it happened because the sensor required an
initial self-calibration adjustment, according to the sensor module’s specifications [23].
We found in a number of trials that TVOC concentrations of the lemon odor of less than
20 PPB were barely noticeable, but we will need to confirm that in further user testing.
We then set up the program for stopping the olfactory display when the electronic nose
obtained values of 20 PPB or less. A video recording showcasing the olfactory display,
the electronic nose data and the virtual environment is shown in [32].

6 Conclusions

This paper presented an olfactory display system and an e-nose, with the objective of
diffusing the right amount of odor to a user, avoiding an excess of odor production in the
user’s environment that may affect user’s odor perception. Both the olfactory display
and the e-nose were interfaced to a laptop computer using microcontroller boards. A
3D virtual environment running on the laptop computer activated the olfactory display
system when a 3D model of a lemon was displayed on the screen. The Evolutionary
Prototyping methodology was very useful for developing our olfactory display system
and our e-nose.

Our paper demonstrated the application of easy-to-use electronic components, and
a low-cost yet capable microcontroller board for developing a rapid prototype of an
olfactory display and an e-nose. In addition, theGodot game engine facilitated the virtual
environment prototyping. We found that the SEN-CCS811 odor sensor module was
effective formeasuring the concentration of the essential oil odor in the environment. Our
informal prototype tests shown that it is technically possible to use an e-nose to measure
the odor concentration generated by an olfactory display, thus avoiding generating an
excess of odor that may produce a negative user experience. Further user studies are
needed to corroborate this.

For future work, we will adapt the virtual environment made in Godot to run on
a virtual reality headset. We are planning to send the activation data from the virtual
reality environment to the microcontroller board controlling our olfactory display using
the Message Queuing Telemetry Transport MQTT protocol [33]. In addition, we plan
to develop and test an array of two or more VOC odor sensors connected to the vir-
tual environment and the olfactory display. The array should provide more sensor data
accuracy [34], since individual e-noses performance and data results may have false or
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unreliable odor classifications, provided that an optimal classification pattern algorithm
is applied to them. The array may be needed because sensors sometimes present an
inherent problem of sensor signal drift and other technical issues. In addition, environ-
mental factors such as humidity and temperature may affect sensor’s performance [35].
These problems should be minimized by getting data from an array of sensors, where
one or more sensors will compensate for any affected odor sensor.
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Abstract. During COVID-19, people often wear masks in daily activ-
ities or communication. To solve the problem of generating faces with
expressions under masks, we propose a framework of methods, includ-
ing detecting the shape or locations of masked faces, generating the
facial expressions under masks. Further, due to synthesizing quality facial
expressions, we propose to optimize the merging of sub-results with use-
ful face information such as key points of face. Further, we propose a
framework for customization or personalization of user-preferring AI-
generation results. We showed the system capable of running real-time
and discussed the development in multiple aspects of research, interface,
and applications.

Keywords: Generation of faces with expressions · Frameworks of
methods · Interfaces · Customization

1 Introduction

During COVID-19, people often wear masks in daily activities or communication.
To improve the difficulties or increase the perception of users on people who
wears mask during the communication of activities, we propose a framework or
methods to resolve the problems by providing the AI-rendering results of faces
with expressions when users speak under mask. The benefits, applications, or
researches related to this research can be valuable in multiple aspects, including
the communication related, e.g., online meeting, meeting under wearing masks,
the algorithms or methods related to generation, recognition, or detection of
facial image or spoken voices under masks.

To solve the problem of generating faces with expressions under masks, we
propose a framework consisting of three main methods. First, we detect the
shape or locations of mask on the masked face, especially towards multiple faces,
masks, or spoken behaviors under masks. Second, we generate the facial expres-
sions under masks. Specifically, this involves the correlation between the facial
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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expression and the spoken voices of conversation for users. Further, due to the
quality of synthesizing facial expressions under masks, we also utilize additional
and critical information of face, including the detection of landmark points of
face, and models of faces or expressions, or considering the factors of multiple
users.

To further improve the quality of AI-generation results or the application
possibility, we propose a framework for customization or personalization. In cus-
tomizing AI results with user preference, first, the definition or description of
data including faces, masks, voices of conversation, or user-related factors are
flexible and can be defined by users or situations. Further, with these above
data and the results of AI-generation, the modification or novel understandings
could be applied by the annotation of users. In rebuilding the user-preferring AI
generation results, we apply self-supervised or unsupervised machine learning to
train or retrain the models. Specifically, we apply contrastive learning on the face
image or spoken voices of conversations to improve and find suitable features of
facial image or spoken voices under certain users or situations.

In the current experimental results, we implemented the proposed system
by referencing the latest methods or models. In our experiments, we found that
the generation quality could be affected by the appearance of users or masks.
Further, the suitable merging method of multiple sub-results of detected mask
shapes, generated facial expressions, or key locations of face, was critical for
the quality generation of users. With the proposed frameworks of facial expres-
sions under masks, the customization or personalization, the related applications,
interfaces, or data, resolving the appearance of masked faces might be useful or
valuable in multiple directions of research, communication, or applications.

2 Related Work

2.1 GAN-Based Rendering and the Limitations

As the current AI drawing capabilities might be limited on specific parameters or
usages, we aim to create diverse AI-generated visual contents from the unlimited
and interesting expressions, which can contribute or improve on valuable appli-
cations such as information visualization of user’s written documents, creation
tools for visual arts, novel ways of accessible communication between normal and
disabilities, and even used to increase marketing effect by meaningful generated
visual contents. Further, the effective customization or personalization on huge
and various text-image data by advanced self-supervised learning will be studied
since the current literature may be limited. We compare our proposals or model-
ing for generating flexible or diverse visual expressions from textual expressions,
with limitation of existing GAN-based generation of rendering [1,7,12,17,28,30],
and further showing applications or interfaces of human or social factors.

2.2 Customization or Personalization by Machine Learning

To customize or personalize the rendering results of face with expressions, there
are some aspects of methodologies as follows. One aspect is to provide flexible or
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Fig. 1. System: Generating the faces with possible expressions when under the masked
faces.

selective parameters for users to select and generate their preferring results. In
the system with models, the used data or records of AI-generation of users can
be utilized to rebuilt the intelligence of the system towards personalized usage
or preferring AI results. Furthermore, the algorithms or methods in machine
learning are useful in assisting training or retraining the system with accuracy
or efficiency.

2.3 Multicultural and Diverse Face Masks During COVID-19

The coronavirus pandemic has significantly changed the cultures of masks in
the world. Therefore, we survey multicultural masks and compare masks on fea-
tures, functionality, design, and entertainment, especially focusing on the varying
points between before and during COVID-19 pandemic. In our work, knowing
the design patterns of various masks can be useful in brining ideas of mask design
and fabrication. For example, in Asia, Japan people usually wear mask prevent
hay fever and influenza. In design of masks, there might be few variations of
mask in the market, but after Corona, people are seem to wear not only normal
masks but also masks of various colors or patterns. Another example, people
wear mask for healthy concerns, such as protecting themself from exhaust fumes
or sunburn, such as in Taiwan. Further, wearing mask may be concerned with
critical issues. For example, in some regions of Europe, such as Austria, it is
prohibited to cover your face to the extent that cannot be recognizable in pub-
lic institutions. Another different cultures or impression in Europe or United
States are that in some cases wearing a mask is regarded as non-cool, a sign of
weakness or ill persons. Overall, mask cultures has changed and the attention or
importance of masks from people has significantly increased, which is a motiva-
tion that we need to investigate the changes of mask cultures for designing mask
used during COVID-19.For AI rendering, applying machine learning to generate
facial or related images [3,5,6,8,10,13–15,20,23,24,27] by learning the charac-
teristics of a specific clothing brand, and then created patterns from the images
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Fig. 2. The models of masked face segmentation.

to create clothes. AutoDraw assists users in drawing by combing drawings of
artists with machine learning. These technologies of fabrication and machine
assisted rendering bring powerful tools for novel mask design.

3 Generating Facial Expressions from Masked Faces

In Fig. 1, we show the system of generating facial expressions of a user when
under the masked faces. There are multiple components of methodologies in
the system, which are mask segmentation, facial expressions detection, land-
marks detection, and generation of face with expressions. Further, to customize
or personalize the generation results, we propose to the components of collect-
ing personal data or data annotation and the methods of retraining models by
self-supervised or unsupervised learning. In retraining models, we utilize the
contrastive learning approaches to improve the estimation results or accuracy
towards the preference or interest of the users.

3.1 Masked Face Segmentation

To locate the shape or positions of the masked part of a face, we segment the
shape of a masked face. To achieve the accurate segmentation, we utilize the
method, Mask R-CNN based models, which are proved to be capable in accurate
detection in multiple experiments. Further, to locate the shape of masked faces,
we define the shape of masked faces and prepare the training dataset. Specifically,
we define which kinds of masks should be detected by using the training dataset.
In the method of Fig. 2, given an image of a face with mask, the proposed Mask
R-CNN based models detects the shape of the mask in the face.

f ′ = Definition of mask shape(f),
fmask = Mask RCNN based model(f ′).

3.2 Facial Expression Generation

We generate the expressions of a face while the user is speaking under the masked
face, In Fig. 3, we utilize the Encoder-Decoder based models to generate the facial
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Fig. 3. The models of facial expression generation.

expressions by given a sequence of spoken voices. In the modeling, we utilize the
sequence of the pairs of spoken voices and face images as the training data to
generate the facial expressions.Specifically, in the models of Fig. 3, the given
spoken voices and facial images are encoded, and thus these encoded features
are used to generate the facial expressions by decoder.

f ′
t = Decoder(Encoder(ft) ⊕ Encoder(vt)),

where the generated face f ′
t is decoded by the encoded feature of face ft and the

encoded feature of spoken voice vt.

3.3 Landmarks Detection Within Face

To accurately synthesizing the generated face with multiple sub-results, by using
the located key points of a face, we apply the method of landmark detection in
the face, and detect and get the detected landmark points.

P = Landmark points detection(f),

where P is a set of detected landmark points in the face f .

3.4 Generating Faces with Expressions for Masked Faces

With multiple sub-results, we generate the face with expression while speaking
under mask. As shown in Fig. 1, the generated face is combined by multiple
sub-results including the segmented mask, the generated facial expressions, and
the detected landmark points of face. Note that we also build and train neural
networks that generate the merged face with expressions.

4 Customizing or Personalizing Facial Expressions Under
Masked Faces

Further, to customize the rendering results with personalized facial expressions,
we propose a framework describing the three main components for customiz-
ing the personalized results. In the framework of Fig. 4, first, we consider that
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Fig. 4. The framework of customizing the generation of faces with expressions including
definition and annotation of data, interfaces, and retraining methods.

the dataset or definition of faces, masked faces, masks, or the voice of con-
versation, can be re-defined or annotated based on personal usage situation or
other purposes. Second, in the context of application, we require interfaces where
user’s input parameters are needed or provided. That is, users can have multi-
ple parameters to input to fit personal preferential results, e.g., the level of
changing of facial expressions. Third, given the data of multiple parameters, we
require the method or models that can learn the customized generation results of
facial expressions. Therefore, we utilize the machine learning of self-supervised
or unsupervised approaches to re-train the proposed neural network models.

4.1 Contrastive Learning

In retraining models by using self-supervised or unsupervised learning, we uti-
lize the approaches of contrastive learning [4,9,11,16,18,19,21], which have been
showed to be effective in multiple contexts or models or types of data. The face
images or spoken voices of conversation of users are expected to be improved. In
Fig. 5, in the contrastive learning approaches, the variability or diversity of face
images are augmented, and the features of augmented face images are encoded
by CNN models and trained by the losses of contrastive learning. Thus, the
improved features of face images are used in the existing models to generate
more customized or diverse results. Similarly, the spoken voices of conversa-
tions will be augmented under the similar process or models as in the face
images. For the computation of loss, a common loss function for computation
of contrastive loss, which is Normalized Temperature-scaled Cross Entropy Loss
(NT-Xent) [25].

li,j = −log
exp(sim(zi, zj)/τ)

∑2N
k=1 1k �=iexp(sim(zi, zk)/τ)

.
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Fig. 5. Contrastive learning on face images and spoken voices of conversations for
improving the features of face images or spoken voices.

Fig. 6. Some experimental results of real-time processing.

5 Experimental Results, Discussions, and Conclusions

We showed the implementation of the system, the used data, current experi-
mental results, and the related analysis or discussion as follows. In the reference
of implementation, For the segmentation of face masks, we used a latest model
that was Mask RCNN based models [29]. For the generation of faces, we used
some generation methods including the face generation using key points of face
[26]. For the detection of landmark points in face, we referenced the methods
[2,22]. About the data or training data used in the work, we used some dataset
of face with masks and applied the annotation by ourself or the way of the
crowdsourcing (Fig. 6).

In the current experimental results, we showed that our models can be run
in real-time to detect the mask, located the mask shapes, and replaced with
the specified rendering with accuracy and efficiency. In the detection of masked
faces, we observed that the appearance of users might be some factors affecting
the performance. E.g., some mask similar appearance in face could be recognized
as parts of a mask. Thus, we applied additional information such as locations
or relative positions of face or the key parts of face (e.g., mouth, ear, eye).
For the generation of faces, we applied the GAN-based models and observed
that the synthesis of facial expressions were not quality as expected or natural
for the user. Therefore, we applied some merging computations by using other
information related to human face or their expressions, e.g., the averages or
models of typical faces or expressions, the detected locations of the parts of
faces, and the recognized materials of the user’s faces.

From the current experimental results, we discussed some ongoing works and
future directions of research as follows. For generating quality facial expressions
under mask, the suitable merging of the sub-results from detected mask shapes,
key points of face, or generated faces or expressions, was critical and might
need optimization for merging. For the related research directions or works, as
described in customization or personalization of this work, the customization of
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AI-generated faces with expressions could be useful in making user-preference
or diverse results and applications. Therefore, the related interfaces, dataset,
algorithms of customization, or cultures of users or wearing mask, could be
directions of research.
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Abstract. Automatic recognition of human emotions is of high impor-
tance in human-computer interaction (HCI) due to its applications in
real-world tasks. Previously, several studies have been introduced to
address the problem of emotion recognition using several kinds of sen-
sors, feature extraction methods, and classification techniques. Specifi-
cally, emotion recognition has been reported using audio, vision, text, and
biosensors. Although, using acted emotion signals, significant improve-
ments have been achieved, emotion recognition still faces low perfor-
mance due to the lack of real data and limited data size. To address
this problem, in this study data augmentation is investigated based on
Generative Adversarial Networks (GANs). For classification the Vision
Transformer (ViT) is being used. ViT has originally been applied for
image classification, but in the current study is being adopted for emo-
tion recognition. The proposed methods have been evaluated using the
English IEMOCAP and the Japanese JTES speech corpora and showed
significant improvements when data augmentation has been applied.

Keywords: Speech emotion recognition · Vision Transformer ·
CycleGAN

1 Introduction

Speech emotion recognition plays an important role in HCI and its real-world
applications [1]. Speech emotion recognition can be applied in robotics, call cen-
ters, education, and health care. Due to the high importance of speech emotion
recognition and its applications, many studies have investigated and reported
methods and results in this research area [2–8]. Studies in emotion recognition
using visual modality have also been reported [9,10].

Several neural architectures have been used for speech emotion recognition
over the years with state of the art results being achieved using Bidirectional
LSTMs followed by an attention layer applied directly to raw acoustic data [11].
ResNet applied to spectrograms of acoustic data [12], Bidirectional LSTMs and
self-attention mechanisms applied to the decoder component of an automatic
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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speech recognition model (ASR) model combined with raw acoustic features [2].
Also, a GRU model applied to acoustic statistical features including MFCCs [13].
The proposed method differs from all these approaches by using a pre-trained
deep model for feature extraction.

Wav2vec [14] feature extraction in the context of speech emotion recognition
also has been reported in [15] who compared wav2vec and HuBERT pre-trained
models for speech emotion recognition (among other tasks) with and without
ASR fine-tuning. In that study, only a simple classifier consisting of average time
pooling and one linear layer was used. Moreover, they allowed the transformer
blocks of the feature extractor to be fine-tuned during speech emotion recognition
training.

The current study introduces experiments and results on speech emotion
recognition based on state-of-the-art Deep Neural Network (DNN)-based classi-
fication methods. Specifically, we address the problem of the lack of large real-
istic and labeled emotional data and the problem of unbalanced data across
emotional states [16]. The proposed method applies Generative Adversarial Net-
works (GANs) [17] and Vision Transformers (ViT) [18]. The GANs are able to
generate target synthetic data of a specific domain. GANs consist of two net-
works namely, the generator and the discriminator. The generator is trained with
random data (e.g., neutral speech) and generates samples of the target domain
(e.g., emotional speech). The discriminator receives the synthetic samples along
with real target samples, and decides whether the synthetic sample is accepted as
real or not. Both the generator and discriminator are trained together. A specific
architecture of GAN is the CycleGAN [19], which has been introduced for image-
to-image translation. The main difference between GAN and CycleGAN is that
the latter operates in two-directions with two generators and discriminators. As a
result, CycleGAN can transfer from two sources to samples of two targets using
unpaired input data. Several researchers have reported results on speech con-
version [20] by taking advantage of the GAN and CycleGAN. Regarding speech
emotion recognition, few studies introduced methods based on CycleGANs using
different classifiers and feature extraction techniques [21].

In the current study, a method based on the integration of CycleGAN and
ViT classifier is introduced. ViT is a simplified architecture of the standard
Transformers [22], originally applied to natural language processing and com-
puter vision. In contrast, in the current study ViT is being adapted to speech
emotion recognition. As far as our knowledge goes, this is the first time when
ViT is applied in a speech emotion task, or integrated with CyCleGAN.

2 Methodology

2.1 Data

For the evaluation of the proposed methods, two emotional corpora have been
used. Specifically, the English Ryerson Audio-Visual Database of Emotional
Speech and Song (RAVDESS) [23] and the Twitter-based emotional speech
(JTES) have been used.
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The RAVDESS database consists of 7356 files in total, and each file was rated
10 times on emotional validity, intensity, and genuineness. Ratings were provided
by 247 non-professional annotators. High levels of emotional validity, interrater
reliability, and test-retest intrarater reliability were reported. The audio-visual
RAVDESS database has been produced by 24 actors (12 males and 12 females).
In the current study, speech samples only are being used.

Two experiments have been conducted using RAVDESS namely, for the clas-
sification of four and for eight emotions. In the case of four emotions, angry,
happy, sad, and neutral have been considered. In the case of eight emotions,
calm, happy, sad, angry, fearful, surprise, and disgust have been considered. For
training and testing 80% and 20% of the 1440 speech samples have been used,
respectively. The features consist of RGB color melspectrogram images.

The JTES Japanese corpus uses Twitter tweets to produce speech samples.
The speech samples were produced by 50 female and 50 male non-professional
speakers. The labeling is based on the contents of the tweets, and tweets are
categorized into for emotions, namely neutral, angry, joy, and sad. From all pro-
duced speech samples, 50 phonetically and prosodically balanced sentences for
each emotion were selected. These sentences were used to produce the emotional
JTES corpus, which consists of 20,000 speech samples.

The creators of the JTES corpus have used dataset for speech recognition
and speech emotion recognition. When speech recognition experiments have been
conducted, 23.05% word error (WER) have been achieved when using speaker
adaptation. In the case of speech emotion recognition, 70% weighted accuracy
(WA) on average has been obtained. The features used were log mel-filter bank
features and the log power in 25-dimensional vector. Moreover, the delta and
delta-delta features are calculated from the 25-dimensional feature vectors, to
obtain a 75-dimensional features vectors. For classification, a feed-forward deep
neural network (DNN) [24] has been used.

2.2 Feature Extraction

In the current study, mel spectrograms extracted for raw speech samples have
been used as features. From each speech file, a color image (3-channel RGB
image), representing the mel spectrogram, has been extracted. The original size
of each image was 300× 300, but for training and testing the images have been
resized to 72× 72. Figure 1 shows two cases of the spectrograms for the emotions
angry, joy, neutral, and sad in the case of using the JTES corpus. As can be
observed, the spectrograms are clearly distinguished across the emotions. Also,
the two cases show the similarities of the same emotions.

2.3 Description of CycleGAN

CycleGAN consists of two Generators and two Discriminators. The two neural
networks and training together, and the training samples being unaligned. In
this architecture, the Generator tries to create fake samples that cannot be
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Fig. 1. Examples of mel spectrograms used as features in the case of the JTES corpus.

Fig. 2. The architecture of the CycleGAN.

distinquished from the real samples. On the other hand, the Discriminator will
decide whatether the created fake sample can be accepted or not.

Figure 2 shows the architecture of the CycleGAN applied in the current study.
The architecture shown is the case of the two-directional CycleGAN and consists
of two Generators and two Discriminators. In the case of JTES, for the Input
A 4000 normal speech samples have been used. Specifically, 4000 samples from
the LibriSpeech [25] have been used to train the generator and create synthetic
RAVDESS and JTES samples. The training data of the RAVDESS and of the
JTES have beeen used for the discriminator. The Generator A2B is trained with
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2000 speech samples from LibriSpeech. As a result, transformed GAN-samples
(Generated B) are greated, which contain emotional information. Additionally,
the Generator B2A create fake samples similar to the input. The lower part of
the Fig. 2, shows the reverse case.

2.4 Vision Transformer

Fig. 3. The architecture of Vision Transformer (ViT).

Figure 3 shows the architecture of the ViT, along with the applied decoder. ViT
is a simplified version of transformers adopted for image classification. In the
current study, applying ViT in speech emotion recognition using mel spectro-
grams features is being investigated. Because in both cases images are used as
features, it is assumed that nature of the two problems are similar.

In order to apply the ViT for speech emotion classification, the following
steps have been followed:

– Each image is split to patches
– The patches are flattened
– lower-dimensional linear embeddings from the flattened patches are produced
– Positional embeddings are added
– A standard transformer encoder is fed with the sequence as input.

Figure 4 shows examples of CycleGAN-transformed LibriSpeech neutral-
normal speech to fake JTES emotional speech. It can be observed that real and
fake feature are very similar. Also, the transformed samples differ across dif-
ferent emotions. In the classification experiments, JTES, RAVDESS emotional
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Fig. 4. Examples of CycleGAN-transformed samples.

samples have been used. Also, the two corpora have been augmented with fake
emotional dataset produced by the CycleGAN. In this stage, only one-directional
CycleGAN has been used.

3 Results

As previously mentioned, CycleGAN is able to operate in two-directions. In our
experiments, however, one-direction operation was applied. As for the ViT, a
similar architecture as in [18] with few differences was used. Specifically, the
batch size was set to 64, the transformer layers to 4, and the epochs to 400.
These parameters may be not optimal, and higher accuracies can be achieved
by hyperparameters tuning. Note that the current study does not primarily aim
at optimizing the performance of the classifier. Instead, the main goals are to
demonstrate and confirm the effectiveness of using CycleGAN in speech emotion
recognition, and to investigate whether ViT can also be used in speech emotion
recognition and not only in image classification.

Table 1 shows the results obtained when using the RAVDESS corpus. Three
experiments have been conducted to evaluate the proposed methods. In the first
experiment, both training and test data consist of real RAVDESS samples. In
the second experiment, real RAVDESS samples for testing, and for training
CycleGAN-transformed samples (2000 out of the 4000 thousands CycleGAN-
transformed) have been used, respectively. Finally, in the third experiment, the
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real RAVDESS training data have been augmented with the training CycleGAN-
transformed (remaining 2000 thousand CycleGAN-transformed samples). For
testing, the real test RAVDESS samples have been used. As shown, when using
transformed + real as training data, and real as testing data the accuracy
improves in both 4-class and 8-class experiments. Specifically, in the case of 4
classes, the accuracy improves from 74.5% to 77.0%, and in the case of 8 classes
from 61.0% to 63.5%. These results indicate that the transformed data are rich in
emotional information, and that when adding them to the real training data, the
emotion recognition accuracy improves. Table 2 shows the results obtained when
using the JTES corpus and the proposed methods. In the case of using real train-
ing and testing data, the accuracy was 63.32%. When CycleGAN-transformed
samples have been used for training, and real samples for testing, a 60.6% accu-
racy has been obtained, which is closely comparable to the previous one (real
case). Finally, when for training the real JTES samples have been augmented
with CycleGAN-converted samples, a 66.05% accuracy has been achieved, which
is the highest among the three cases.

The results obtained in both RAVDESS and JTES show that CycleGAN
effectively produces emotional samples from neutral-normal speech. The trans-
formed samples can be used to augment limited emotional corpus such as the
RAVDESS.

Table 1. Accuracy for 4-class and 8-class speech emotion recognition using RAVDESS
and the proposed method.

Conditions Classes

Training Testing 4 classes 8 classes

Real Real 74.5 61.0

Transformed Real 61.0 41.5

Transformed and real Real 77.0 63.5

Table 2. Accuracy for 4-class speech emotion recognition using JTES and the proposed
methods.

Conditions Classes

Training Testing 4 classes

Real Real 63.3

Transformed Real 60.6

Transformed and real Real 66.1
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4 Conclusions

In the current study, we conducted experiments on speech emotion recogni-
tion based on CycleGAN and ViT architectures. The aim of the study was to
investigate whether CycleGAN is able to transfer acoustic features from natural
speech to emotional speech, and how a ViT can deal with speech emotion recog-
nition. The methods evaluated on two emotional datasets, namely the English
RAVDESS and the Japanese JTES. Speech samples from the LibriSpeech normal
speech corpora has been used to create fake RAVDESS and fake JTES emotional
samples. The obtained results show that the fake emotional samples can be used
to augment emotional data and improve the accuracy. This is of high impor-
tance especially in the case of limited emotional corpus, such as RAVDESS. The
results demonstrate the effectiveness of the proposed methods in speech emotion
recognition using RAVDESS and JTES corpora. Currently several methods are
being designed and applied to achieve higher accuracy for this task. Specifically,
hyperparameters tuning, comparison with other architectures, and applying 1-
dimensional features are in progress.
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Abstract. In contrast to conventional face-to-face interviews, web-based inter-
viewsmay cause additional tension due to the lack of a sense of unity and difficulty
in sharing the rhythm of dialogue, in addition to the tension of job interviews. First,
we conducted a questionnaire survey on job interviews to find out what kind of
interview format and environment actually reduces nervousness. The question-
naire included questions about interviewmethods and emotions during interviews
for fourth-year university studentswho had experienced job interviews. The results
showed that many of the respondents felt that the explanations and interviews
before the interviews helped to alleviate their anxiety and nervousness. In addi-
tion, many respondents said that they had casual conversations with their friends
and interviewers before the interview to ease their tension. Furthermore, the pres-
ence of a familiar person at the interview or not may have helped to alleviate
the nervousness of the interviewees. Based on these results, we propose a web
interview support system using the communication support character called Inter-
Actor which is a speech-driven embodied entrainment character that automatically
generates body movements based on speech. We developed a web interview sup-
port system using the nodding patterns grouped by cluster analysis based on the
impressions. The effectiveness of the developed system was demonstrated in an
evaluation experiment using a role-play interview task.

Keywords: Web-based interview · Communication enhancement ·
Auto-generated motions

1 Introduction

Due to the spread of the new coronavirus (COVID-19), it has become difficult to hold
face-to-face job interviews, and the number of companies conducting web interviews
has increased rapidly. In contrast to conventional face-to-face interviews, web-based
interviews may cause additional tension due to the lack of a sense of unity and difficulty
in sharing the rhythm of dialogue, in addition to the tension of job interviews. In face-
to-face communication, non-verbal information such as nodding and gestures promotes
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smooth information sharing. In web interviews, supplementary nonverbal information
may also promote rhythmic synchronization and support smooth communication.

As a method to support online communication, a system that shares a virtual dia-
logue space such as the metaverse via avatars and supplements nonverbal information
can be mentioned. In a previous study, InterActor, a speech-driven embodied entrain-
ment character that automatically generates body movements based on speech, has been
developed [1]. InterActor is a Computer Generated (CG) character that has functions
of both a listener and a speaker. The listener performs embodied entrainment behav-
iors, such as nodding and other body motions, to a user’s voice. The speaker performs
rhythmical sympathetic motions to a user’s voice. InterActor responds to utterances with
an appropriate timing by means of its entire body motions and actions in the manner
of a listener and a talker. In addition, InterActor can transmit the talker’s message to a
partner by generating a body motion similar to a speaker on the basis of a time series
of speech, presenting both the speech and the entrained body motions simultaneously.
The information transmitted and received by this system is only through speech. Thus,
the InterActor generates the entrained communicative movements and actions based on
speech input and supports the sharing of mutual embodiment in communication. The
use of such a character that expresses embodied rhythms is expected to ease the tension
of examinees and promote their speech.

Various interview training systems have been developed to reduce tension in inter-
views and to improve the impression of the interviewer [2, 3]. We have shown the effect
of virtual face-to-face projection of self-images in video interviews [4]. We have also
developed an embodied video communication system, called’E-VChat’ that superim-
poses a user’s own avatar and communication support characters on the partner’s image
for enhancing remote communication using a video image [5]. This system is constructed
by the partner’s video image using interactive CG characters including user’s own avatar
and virtual audience characters. We have confirmed the effectiveness of the system by an
experiment under free conversation. Furthermore, we developed an embodied entrain-
ment audience characters system with partner’s face to relate audience characters with
the partner. This system could bring about more active interaction by virtual audience
even if the remote partner does not respond to user’s speech. In addition, we confirmed
the effectiveness of the system in which face images of partner’s face are superimposed
on audience characters under free conversation with friends. However, this system is
not always evaluated effectively in all situations including nervous situations such as a
job interview [6]. Then, as online job interviews are becoming more common, we are
investigating more effective methods of presenting the characters.

In this study, we propose a system that replaces the interviewer’s image with a CG
character for users who feel nervous about communicatingwith the frontal camera image
of the interviewer. The CG character is a voice-driven embodied entrainment character
that has been developed in our previous research. The nodding of the character is based
on the impressions of various motions, which are being studied in another research [7].
A web interview support system is developed using the nodding patterns grouped by
cluster analysis based on the impressions. In addition, the effectiveness of the developed
system was demonstrated in an evaluation experiment using a role-play interview task.
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2 Web-Based Interview Support System Using Characters Nodding
with Various Movements

2.1 Questionnaire Survey on Web-Based Interviews

We conducted a questionnaire survey of fourth-year undergraduates who have had job
interviews in order to examine a system that can ease the tension of examinees in web
interviews. In this questionnaire, we prepared questions about the interview format,
emotions during the interview, experiences eased the nervousness, and so on.

The purpose of this study is to develop an effective system to ease the tension of exam-
inees in web interviews. First, we conducted a questionnaire survey on job interviews to
find out what kind of interview format and environment actually reduces nervousness.
The questionnaire included questions about interview methods and emotions during
interviews. The subjects were 51 fourth-year university students who had experienced
job interviews. The results of the questionnaire indicated that chatting, speaking with
gestures, and moving the body before the interview helped to alleviate the tension. In
addition, we compared the four items of “Relief,” “Stress,” “Nervousness” and “impa-
tience” when there was a person who was familiar with the interview, such as the person
who explained the interview before the actual interview, and when there was no such
person. As shown in the Fig. 1, there was a significant difference at the 1% significance
level in the Wilcoxon’s signed rank test for the item of “Relief,” and it was confirmed
that people felt relieved when there was a person who was familiar with the interview.

Fig. 1. The result of the comparison in the four items of relief, stress, nervousness, and impatience
when there was a person who was familiar with the interview (A) and when there was no such
person (B).

2.2 System Prototype with Interaction Model for Auto-generated Entrained
Motion

Based on the results of the questionnaire, we developed a prototype of a system in which
the interviewer himself acts as a character agent to give explanations during the break
time before the interview, and also acts as a communication support character on the
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examinee’s screen during the actual interview. The system uses InterActor, a character
that automatically generates speaker and listener actions based on the speaker’s voice
according to the following interaction model. A prototype of the system is shown in the
Fig. 2.

Fig. 2. A prototype of the system using a video image and InterActors.

A LIStener’s Interaction Model
A listener’s interaction model of the CG character includes a nodding reaction model [1]
that estimates the nodding timing from a speech ON-OFF pattern and a body reaction
model linked to the nodding reaction model. A hierarchymodel consisting of two stages,
macro and micro (Fig. 3), predicts the timing of nodding. The macro stage estimates
whether a nodding response exists or not in a duration unit that consists of a talkspurt
episode T (i) and the following silence episode S(i) with a hangover value of 4/30 s. The
estimatorMu(i) is a moving-average (MA)model, expressed as the weighted sum of unit
speech activity R(i) in (1) and (2). WhenMu(i) exceeds the threshold value, the nodding
M(i) is also an MA model, estimated as the weighted sum of the binary speech signal
V (i) in (3). The bodymovements are related to the speech input at a timing over the body
threshold. The body threshold is set lower than that of the nodding prediction of the MA
model that is expressed as the weighted sum of the binary speech signal to nodding. The
mouth motion is realized by a switching operation synchronized with the burst-pause
of speech. In other words, when the InterActor works as a listener for generating body
movements, the relationship between nodding and other movements is dependent on the
threshold values of the nodding estimation.

Mu(i) =
∑J

j=1
a(j)R(i − j)+ u(i) (1)

R(i) = T (i)

T (i)+ S(i)
(2)

a(j): linear prediction coefficient
T (i): talkspurt duration in the i-th duration unit
S(i): silence duration in the i-th duration unit
u(i): noise

M (i) =
∑K

k=1
b(j)V (i − j)+ w(i) (3)
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b(j): linear prediction coefficient
V (i): voice
w(i): noise

The body movements of the speaker are also related to the speech input by operating
both the neck and one of the other body actions at a timing over the threshold, which
is the speaker’s interaction model estimates as its own MA model of the burst-pause of
speech to the entire body motion. Because speech and arm movements are related at a
relatively high threshold value, one of the arm actions in the preset multiple patterns is
selected for operation when the power of speech is over the threshold.

Fig. 3. Interaction Model for auto-generated motions.

2.3 Characters Nodding with Various Movements

In the results of the questionnaire inSect. 2.1,many respondentsmentioned that theywere
nervous in job interviews because they were basically meeting the interviewer for the
first time. In this study, we develop a web-based interview support system that replaces
the interviewer’s own image with a character agent. In order to support more effective
interaction, the character agent automatically generates various noddingmotions. So, we
have evaluated impressions of three nodding components: the number of nods, the angle,
and the time required for each nod [7]. In the experiment, we used the various nodding
motion output system shown in the Fig. 4 and evaluated the impressions of 19 different
noddingmotionswith the characteristics shown in Table 1.We used the 30 adjective pairs
shown in Table 2 to evaluate the impressions. In this experiment, a standard nodding
behavior (500 ms, 0.35 rad, 1 time: “standard nod”) was set and evaluated relative to the
standard nod. Thirty students (21 males and 9 females) participated in the experiment.
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Table 1. Nodding motions with the characteristics.

Nodding components Values

Number of nods [times] 1, 2, 3

Angle [rad] 0.2, 0.35, 0.5

Time required for each nod [msec] 250, 500, 1000

Fig. 4. The various nodding motion output system for the experiment.

Table 2. 30 pairs of adjectives.

light dark sober drunk
soft hard responsible irresponsible
hot cold settle restless

positive negative rational emotional
strong weak ambitious lethargic
calm excitable lovely hateful
active passive leisurely impatient
like dislike gentle severe
kind unkind bullish timid

pleasurable painful considerate selfish
reliable undependable extroverted introverted
serious humorous energetic tired
pleasant unpleasant sensitive insensitive
stable changeable agreeable attitude
chatty quiet friendly unfriendly

Hierarchical cluster analysis (Euclidean distance, Ward’s method) was performed to
categorize the 19 nodding behaviors in Table 1 using the calculated factor score means.
Table 3 shows the nodding movements classified when three clusters are extracted. The
standardized scores in each cluster are shown in Fig. 5. The impression of each nodding
motion classified in clusters A to C is characterized.
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Table 3. Motion patterns based on the analysis classified into three clusters.

Mode Values for components

Number of nods Nodding angles
[rad]

Time for each nod
[msec]

A 1 0.2 250

1 0.35 250

2 0.2 250

2 0.35 250

3 0.2 250

3 0.35 250

B 1 0.2 500

3 0.2 500

2 0.2 500

1 0.35 1000

1 0.5 1000

2 0.35 1000

2 0.5 1000

C 1 0.35 500

1 0.5 500

2 0.35 500

2 0.5 500

3 0.35 500

3 0.5 500

Fig. 5. Standardized scores of the analysis classified into three clusters.
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2.4 Web-Based Interview Support System

We have been developing a system that automatically generates nodding motions based
on voice input. However, in a web interview situation, the interviewee needs to be
quiet while the interviewer is speaking to avoid speech collisions. In such cases, the
character does not perform any actions, so we developed a system that responds based
on the interviewee’s gaze toward the character. In the experimental environment, two
monitorswere set up in front of the interviewee as the evaluation target. The frontmonitor
displayed a system with agents behaving according to the conditions of each mode in
a virtual space. The other monitor displayed the Zoom screen of the teleconferencing
system used to conduct the call. However, the interviewee does not see this Zoom screen.
Unity was used to construct the virtual space, and Tobii Pro nano was used to measure
eyemovement. An example of communication scene using web-based interview support
system is shown in Fig. 6.

Fig. 6. Example of communication scene using the web-based interview support system.

3 Evaluation Experiment

3.1 Experimental Setup

We conducted a role-play interview experiment to confirm the impressions of different
nodding motions. The interviewee underwent an online role-play interview for about 15
min,watching the agent on amonitor instead of the interviewer’s image. Fivemodeswere
used in the experiment: “calm and leisurely” and “humorous and emotional” nodding,
which were prepared according to previous studies. Mode 1 uses a non-nodding agent
as a control condition. In modes 2 and 3, the agents made “calm and leisurely” nods and
“humorous and emotional” nods based on gaze, and in modes 4 and 5, based on voice,
respectively as shown in Table 4. For each mode, the interview was paused at about 3
min for a questionnaire.
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The questionnaire of 13 items consisted of 9 items based on previous studies [7]:
Agreeable/Attitude, Like/Dislike, Friendly/Unfriendly, Active/Passive, Energetic/Tired,
Light/Dark, Reliable/Undependable, Responsible/Irresponsible and Serious/Humorous,
and 4 items related to theweb interview: interaction, relief, stress and usability. The ques-
tionnairewas examined using a seven-point bipolar rating scale based onSDmethod. The
order of evaluation was switched for each participant in the experiment for counterbal-
ance. Finally, the participants were asked to describe the experiment freely. There were
18 participants in the experiment, 9 male and 9 female students. The interviewers were
required to attend a one-hour training course provided by the university’s Job Hunting
Advisor prior to the interview, and to dress uniformly in suits during the experiment.

Table 4. Comparison mode in the experiment.

Mode Input Motion Cluster type

1 --- Not move ---

2 Gaze Move A

3 Gaze Move B

4 Voice Move A

5 Voice Move B

3.2 Experimental Results

Friedman tests were conducted to determine whether the effect of nodding movements
was based on impression ratings for each of the 7-level sensory evaluation items. Further-
more, Wilcoxon signed-rank tests were performed between modes 2 and 3 and between
modes 4 and 5, which differ in nodding behavior for multiple comparisons. In addi-
tion, to investigate differences between eye and voice input information, we also eval-
uated between modes 2 and 4, and between modes 3 and 5. The results are shown in
Figs. 7 and 8. Figure 7 shows that there was a significant difference between modes
2 and 3 using eye gaze at the 0.1% significance level for “Serious/Humorous,” 1%
for “Agreeable/Attitude,” “Like/Dislike” and “Responsible/Irresponsible” and 5% for
“Friendly/Unfriendly” and “Reliable/Undependable. For the four additional items, sig-
nificant differences were found between Modes 2 and 3 using eye gaze at the 1% level
for all items of “Interaction,” “Relief,” “Stress” and “Usability.

Next, Table 5 shows the results of the pairwise comparisons. Mode 4 (Voice A) was
rated the highest, followed by Mode 2 (Mode A), indicating that the motion character
based on voice input was highly rated, although there was no significant difference in
the 7-level evaluation. Based on these results, it is considered that the “friendly” and
“sincere” nodding behavior of Group A is connected to communication support in the
Web interview.
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Fig. 7. Questionnaire results for nine adjective-pair items based on the factor analysis.
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Fig. 8. Questionnaire results for additional four items.

Table 5. Result of the paired comparison.

Mode 1 2 3 4 5 Total
1 0 3 0 6 9
2 18 18 3 10 55
3 15 0 1 6 22
4 18 15 17 17 67
5 12 2 12 1 27

4 Conclusion

In this study, we proposed a web-based interviewing system using a humanoid 3D agent
that automatically generates various nodding motions based on speech and gaze input.
The effectiveness of the system was confirmed through evaluation experiments using
role-play interviews. The results showed that “calm and leisurely” nodding, which gives
an impression of friendliness and honesty, is effective in easing tension in interviews.

Acknowledgments. This work was supported by JSPS KAKENHI Grant Number JP19K12067,
JP20H04232, JP20H05569.
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Abstract. In recent years, emotion recognition has received increasing
attention as it plays an essential role in human-computer interaction sys-
tems. This paper proposes a four-class multimodal approach for emotion
recognition based on peripheral physiological signals that uniquely com-
bines a Continuous Wavelet Transform (CWT) for feature extraction,
an overlapping sliding window approach to generate more data samples
and a Convolutional Neural Network (CNN) model for classification.
The proposed model processes multiple signal types such as Galvanic
Skin Response (GSR), respiration patterns, and blood volume pressure.
Achieved results indicate an accuracy of 84.2%, which outperforms state-
of-the-art models on four-class classification despite of being only based
on peripheral signals.

Keywords: Emotion recognition · Convolutional neural network ·
Deep learning · Physiological signals · Wavelet transform

1 Introduction

Emotional states influence people’s perceptions, thoughts, and decisions. Thus,
recognition of different emotional states has widespread use in distance learn-
ing, medical care, intelligent systems, and human-computer interaction (HCI) as
manifested in an increasing interest in this field over recent years [1].

Emotion recognition from physiological signals has gained significant atten-
tion as these signals cannot easily be masked compared to other signals such
as facial expressions, gestures, or speech [2]. Physiological signals can be sub-
divided into Electroencephalogram (EEG) signals and peripheral physiological
signals. Peripheral physiological signals include electromyogram (EMG) signals,
electrocardiogram (ECG) signals, galvanic skin resistance (GSR) signals, etc.
We intentionally excluded EEG signals from this study given the increase in
methodological complexity in terms of data acquisition and analysis of such sig-
nals [3] that may not be compliant with many real-life applications and also since
we believe that a robust classification of human emotion should be possible also
based on peripheral physiological signals without explicitly involving EEG [2,4].
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While the most straightforward way to represent emotions is to use emotion-
labels (e.g., joy, fear), this representation has some disadvantages. The main one
is that labels are not cross-lingual as emotions do not have exact translations
in different languages [5]. Psychologists, therefore, often represent emotions or
feelings using dimensional models (generally 2 or 3-dimensional) [6]. The most
famous dimensional model is the 2D valence-arousal or pleasure-arousal model
[7] (see Fig. 1). The valence scale ranges from pleasant to unpleasant, the arousal
scale from calm to excited.

Previous studies have performed independent valence and arousal classifi-
cation, resulting in a two-class classification, i.e., distinguishing high valence
(HV)/low valence (LV) and high arousal (HA)/low arousal (LA). However, inde-
pendent classification fails to consider arousal and valence correlations and does
not allow implementation of end-to-end learning since classification results must
be mapped onto a 2D plane for emotion judgment [8].

In this work, we propose a four-class, multimodal approach to emotion recog-
nition that combines i) time-frequency domain features based on a Continuous
Wavelet Transform calculated from three physiological signals (galvanic skin
response (GSR), respiration patterns, and blood volume pressure), ii) a data
augmentation technique called overlapping sliding window to generate more data
samples, and iii) a Convolutional Neural Network (CNN) model for emotion clas-
sification. We evaluate our proposed model on a public multimodal dataset called
DEAP.

This paper is organized as follows. Section 2 discusses related work. Section 3
describes methodological details. Section 4 analyzes results and compares them
with state-of-the-art models. In Sect. 5, we conclude our work and discuss direc-
tions of future work.

2 Related Work

Emotion recognition from physiological signals has received significant atten-
tion in recent years. Among others feature extraction is considered an essen-
tial step of emotion recognition [9]. The wavelet transform is widely used for
feature extraction and allows transforming time series of EEG and physiolog-
ical signals into images. Alharbey et al. [10] used CWT for ECG arrhythmias
detection and employed standard deviation (SD) and Shannon entropy (SE) for
feature extraction, while a safe threshold has been used for classification to dis-
criminate between the different arrhythmias. Boronoyev et al. [11] used CWT
for the analysis of pulse model signals. They described a new wavelet-based
detection method for physiological pressure signal components and found that
wavelet analysis is capable of defining local characteristics of a signal and helps
investigating changes in the spectral distribution of a pulse signal. A wavelet-
transform-based feature extraction method was proposed by Long et al. [12]
to recognize emotions through ECG signals. A threshold value was set to clas-
sify two emotional states. Cheng and Liu [13] adopted the wavelet transform
to analyze surface EMG signal features. Surface EMG signals were decomposed
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by discrete wavelet transform (DWT), then the extracted wavelet features were
inputted to a back-propagation neural network to identify four emotional states.
Summarizing, several studies propose CWT as an efficient time-frequency anal-
ysis method for EEG and ECG signals. Motivated by these works we consider
the use of CWT for feature extraction from peripheral physiological signals.

Several approaches have been proposed in the literature for classifying emo-
tional states, i.e., Support Vector Machines (SVM), Fine Gaussian Support Vec-
tor Machines (FGSVM) or multimodal residual networks. Verma et al. [14] pro-
posed a multimodal approach, whereby 25 features were extracted from EEG
and peripheral signals by DWT and used SVM for the classification of thirteen
affective emotional states. Hassan et al. [4] extracted features from peripheral
signals by applying an unsupervised deep belief network (DBN) and combined
them in a feature fusion vector; they used FGSVM for classification. Ma et al.
[15] proposed a multimodal residual network for detecting emotional states. This
network can learn the correlation between EEG and other physiological signals
by sharing weights between the modality of each layer.

Recently, CNN models have been proven to be extremely successful for sig-
nal detection, image denoising, image classification, and emotion classification.
For example, a 2D CNN classifier that automatically extracts features from cor-
relation matrices was proposed by Mei et al. [16] for emotion recognition of
four classes. Lin et al. [17] transformed different frequency bands of EEG sig-
nals into six gray images and extracted hand-crafted features of other peripheral
physiological signals; these images and features were then fed into a pre-trained
deep convolutional AlexNet to classify two emotional states. Liu et al. [18] used
linear-frequency cepstral coefficients (LFCC) as features from raw EEG signals
and pre-trained a deep convolutional ResNet to classify the emotional states.
Kwon et al. [8] used wavelet transform as a pre-processing method for EEG sig-
nals; then, they designed a four-class classifier that takes two extracted features
as input of the first layer of a fully connected CNN model.

Despite the demonstrated success achieved with CNNs for signal classification
involving physiological signals, their generalization ability is known to be poor
in case of an insufficient sample size. Thus, in order to amplify the emotion
samples an overlapping sliding window mechanism similar to [19,20] is used
in this work to obtain a larger amount of data as recommended for achieving
efficient recognition with deep learning methods [21].

We finally propose a multimodal CNN model for the recognition of four
emotions in the valence-arousal space that processes physiological signals and
that combines CWT as an efficient time-domain method for feature extraction
as well as a sliding window approach for data expansion to increase the average
of the classification rate.
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3 Methods

3.1 Emotional State Classification

While classification of physiological signals into two classes (HV/HA) and
(LV/LA) is straightforward [22], increasing the number of classes allows not
only end-to-end learning, but also capturing possible correlations between the
arousal and valence dimensions. In the present study, we classify the emotional
state in the valence-arousal plane [6] into four emotional regions, which are: high
valence and high arousal (HVHA), high valence and low arousal (HVLA), low
valence and low arousal (LVLA), and low valence and high arousal (LVHA), as
illustrated in Fig. 1.

Fig. 1. Valence-arousal plane.

3.2 Dataset

The DEAP dataset [23] is widely used for studying emotion classification from
physiological signals. It contains EEG and peripheral signals that include GSR,
respiration, EMG (muscle movement), EOG (eye movements), temperature, and
blood pressure. These signals are available with a sampling rate 512 Hz

In DEAP, 32 subjects watched 40 music videos with different emotions, and
each video was approximately one-minute long. For each video, the subjects rated
arousal, valence, like/dislike, and dominance/familiarity on a scale from 1 to 9.
Thus, a median of 5 is used as the threshold to divide emotional regions into four
labels, namely, happy, sad, angry, and relaxed (see Fig. 1). For example, if the
score of a video in the valence and arousal dimension is found to be greater than
5, it is assigned to HVHA “happy”. If the valence score is found to be greater
than 5 and the arousal score smaller or equal to 5, it is assigned to HVLA
“relaxed”. If the score on valence and arousal is found to be smaller or equal to
5, it is assigned to LVLA “sad”; otherwise, it is assigned to LVHA “angry”.
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For our study we used three peripheral physiological signals from this dataset
to study emotion classification, namely GSR, respiration patterns, and blood vol-
ume pressure. We analyzed only the first 23 subjects of the DEAP dataset as two
significantly different groups could be observed after calculating the wavelet trans-
form (group one for subjects 1–23, group two for the rest of subjects). While it is
not entirely clear from where this effect comes based on the online documentation
provided on the dataset, it may be connected to the two hardware setups used to
record the dataset or different signal conditioning procedures adopted.

3.3 Sliding Window Mechanism

Training a CNN requires a large amount of training data, and a sufficient amount
of such data is often not available. The limited amount of data makes the model
prone to overfitting [24]. Thus at present, researchers usually adopt methods such
as expanding datasets, removing features as well as regularizing and terminating
the training in advance to prevent model overfitting [25].

We apply a sliding window technique with 96.67% overlap to the source
signals of the DEAP dataset for data expansion. We consider a sliding window
with a length of L = 30 s to slide with a step of 1 s from t0 = 3 s to tf = 63 s,
as illustrated in Fig. 2. We removed the baseline part of the first 3 s and only
retained the remaining 60 s experimental data. The sliding window initially
(blue rectangle with red lines) starts at t0 and ends at t0+L, segmenting the
signal S1. In the next step, the updated sliding window (rectangle with blue
dashed lines) starts at t0+1 and ends at t0+L+1, segmenting the signal S2

(see Fig. 2). This way the original signal is divided into multiple sets of one-
dimensional segments. The list of obtained segments is finally collected in Si =
[S1, S2, ....., S30], whereby the subscript i indicates the experiment/video number.
The signal is then downsampled 128 Hz; therefore, the number of samples per
segment is 3840 (128 samples/second × 30 s). The number of segments for
each subject is finally given by 1200 (40 experiments × 30 segments). For each
subject consequently 1200 emotion labels are created.

The dataset for all considered peripheral physiological signals (37–39 chan-
nels: GSR, respiration, and plethysmograph) can finally be expressed with ri =
[S37

i , S38
i , S39

i ] for each experiment/video number. The total dataset for one sub-
ject over all experiments is then collected in Rj = [r1, r2, ....., r30] with j the sub-
ject number. For 23 out of 32 subjects of the DEAP dataset, the total number of
segments is 27.600 (23 subjects × 1200 segments). The number of segments per
label and their percentage of the total number of segments is reported in Table 1.

Table 1. Number of segments (expanded sample points).

Label No of segments Percentage of total number of segments

Happy 9450 34.24%

Relaxed 5760 20.87%

Sad 5910 21.41%

Angry 6480 23.48%
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Fig. 2. Sliding window

3.4 Signal Transformation Using CWT

Wavelet transforms are useful for a multi-resolution analysis, where signals can
be analyzed at different frequencies and time scales [14]. We used MATLAB’s
function cwtfilterbank to create a CWT filter bank. The default wavelet used in
the filter bank is the analytic Morse (3,60) wavelet. The CWT was applied to
extract information from 1D peripheral physiological signals and the coefficients
were arranged to form a CWT scalogram, which defined the visual represen-
tation of the processed signal in time, scale and coefficient values. It identifies
signals having low frequency components or signals whose frequency component
changes rapidly; an example of a scalogram is shown in Fig. 3. Each colored
image was saved with a size of (227× 227× 3) pixels. The total transformed
data includes 27600 scalograms for each channel (GSR, respiration, and plethys-
mograph). Then, we concatenated the images from the three channels into a
single image, and passed them as input to the classifier, as discussed in the
following subsection.

Fig. 3. Wavelet transformed scalogram.
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Fig. 4. Convolutional neural network model

3.5 Convolutional Neural Network Model

In order to recognize the emotional state, we trained a 9-layer CNN model based
on three physiological signals. As explained in the previous subsection, the CWT
was used to transform the physiological signals into images. Then, the obtained
three images were combined into a single image (227× 227× 3), which was used
as input of the first layer of the proposed CNN. A detailed illustration of the
CNN architecture is given in Fig. 4.

The CNN contains three convolutional layers for extracting features. Each of
them is followed by a max-pooling layer to reduce the data size, and the kernel
size of the convolutional layer is (3× 3). A batch normalization layer is intro-
duced to speed up model convergence and prevent overfitting. The full connection
layer is used to obtain classification results before updating the weights. The cost
function is used to update the weights based on the classification results. The
ReLu function is selected as the activation function and Softmax as the classi-
fier. The output size was chosen to be 4 classes, which is equal to the number
of labels in the task. The network was trained using 50 epochs and a batch size
of 32 samples with a learning rate of 0.001. The data was randomly split into
test, training, and validation datasets. While 10% of the data were chosen as
test dataset (see Table 2), the remaining data were divided into 80% for training
and 20% for validation.
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Table 2. Training and test data

Label Training data Test data

(Data quantity) (Data quantity)

Happy 8505 945

Relaxed 5184 576

Sad 5319 591

Angry 5832 648

4 Results and Discussions

4.1 Performance Evaluation

This section reports on the performance of the proposed model for human emo-
tion recognition based on peripheral physiological signals. The confusion matrix
is used as the generalized metric to evaluate and present the performance of the
proposed method. The confusion matrix used gives the actual (target) class and
predicted (output) class of four basic emotions in rows and columns. Each of the
shown black cells of the confusion matrix indicate the number and the percentage
of correctly predicted emotion classes, while white cells of the confusion matrix
indicate the number of misclassified emotion classes and their percentage.

Figure 5 shows the accuracy achieved during the training phase using the
validation data. The results from the test data are shown as a confusion matrix
in Fig. 6. The ‘relaxed’ emotion is correctly classified with 88.2%, which is the
highest among the emotional states, and the lowest classification accuracy is
obtained for the ‘sad’ emotion with 79.2%. The overall classification accuracy
for all emotional states was found to be 84.24%.

Table 3. Comparison with state-of-the-art models evaluated on DEAP dataset

Model Signals Accuracy

Zhang et al. [26] EEG(8) 71.62%

Mart́ınez et al. [27] EGG(32) 72.50%

Kwon et al. [8] EEG(32), GSR 73.43%

Huang et al. [29] EEG(32), EOG, GSR, Respiration 82.92%

Proposed methed GSR, Respiration, Blood volume pressure 84.20%

Bagherzadeh et al. [28] EEG(32), EOG, EMG, GSR, Respiration,
Temperature, Blood pressure

93.60%

4.2 Comparison with Existing Models

We compared the performance of the proposed model with state-of-the-art mod-
els that performed a four-class classification on the DEAP dataset. As shown in
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Fig. 5. Confusion matrices for the CNN evaluated over validation data.

Fig. 6. Confusion matrices for the CNN evaluated over the test data.
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Table 3, the proposed model outperforms the state of the art in the field, except
for Bagherzadeh et al. [28]. They used EEG and all the peripheral physiologi-
cal signals of the DEAP dataset, while the proposed model used only parts of
the peripheral physiological signals. Thus, it can be reasonably assumed that the
obtained classification accuracy can be further improved by incorporating all sen-
sor data [8]. Zhang et al. [26] used wavelet feature extraction based on a smoothed
pseudo-winger-ville distribution and SVM for classification. Mart́ınez-Rodrigo et
al. [27] used quadratic sample entropy for extracting biological signal features
and SVM for classifying the extracted features; Kwon et al. [8] used a 2D CNN
model for feature extraction and classification by tuning the hyper-parameters
in convolution filters. Huang et al. [29] proposed an Ensemble Convolutional
Neural Network (ECNN), which could automatically recognize various signals’
correlations and employed the plurality voting strategy for affective state recog-
nition. Bagherzadeh et al. [28] extracted spectral and time features from EEG
and peripheral signals and used the majority voting method for classification.

The observed increase in accuracy over the majority of state-of-the-art imple-
mentations can be explained by two main factors: Firstly, the overlapping sliding
window mechanism that was used to increase data samples for each class resulted
in an improvement of the CNN model’s capacity to classify the emotional state.
The approach helped to overcome the available limited amount of data, which
otherwise paired with an increase in the number of classes would have led to
a reduction of the accuracy of the model. Secondly, part of the performance
enhancement can also be attributed to the feature extraction that considered a
time-frequency approach based on CWT.

5 Conclusions

This work proposed a four-class multimodal approach to emotion recognition
using peripheral physiological signals that uniquely combined a Continuous
Wavelet Transform (CWT) for feature extraction, an overlapping sliding window
approach to generate more data samples and a Convolutional Neural Network
(CNN) model for classification.

The results showed that the proposed model outperformed state-of-the-art
models in four-class classification tasks despite of being only based on periph-
eral signals. We consequently conclude that a powerful classification of human
emotion is also possible based on peripheral physiological signals. The improved
performance can be explained by i) the increased number of data samples due
to the sliding window mechanism and ii) the choice of a time-frequency app-
roach for feature extraction based on CWT, that better characterized emotional
patterns than traditional methods.

Despite of the good obtained results, further research is needed to verify
the model’s universality on different datasets. We also aim to investigate the
combination of peripheral and EEG signals.
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Abstract. Successful execution of motor commands dealing with the object vari-
abilities is realized by the somatosensory feedback during the dexterous object
manipulation. These feedback inputs are slow in general; however, responsible
for corrective mismatch process and motoric execution. Aging induced reduction
in concentration of tactile afferents and mechanoreceptors and consequently, the
reduced skin sensitivity may further impair the slow feedback process and manual
dexterity. Regardless of the fact that aging is associated with diminished tactile
functioning and affected hand dexterity, however, studies have shown no marked
differences in perceptual abilities. In the present study,we re- investigated the aging
effects on skin physiological (skin sensitivity and hydration measures) and object
manipulation task measures. Further, a novel attempt was made to support the
affected somatosensory feedback process by providing an additional online grip
force related acoustic surrogate feedback.We evaluated the object-hand kinematic
and psychophysical data of 16 young and 16 elderly participants collected during
a classical weight discrimination task, allowing object shape-weight manipula-
tion. Results showed clear aging effects on hand skin physiological measures. As
expected, aging and object shape overall influenced the precision-grip measures
and discrimination ability. Skin sensitivity measures were not found correlated
with weight discrimination task measures in the elderly group. Aging did not
affect the object weight perception. Importantly, the acoustic feedback strength-
ened the somatosensory feedback process and speed up the corrective mismatch
process by shortening the object loading phase and later the force application, but
it did not help the perceptual system to improve the object weight perception.

Keywords: Somatosensory feedback · Aging · Skin sensitivity

1 Introduction

Grasping and moving the objects in routine life seem so automatized that we even
ignore the common accidental situations like object displacement, slip and breakage.
These object-hand interactions are performed based on pre-constructed/updated motor
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commands to achieve a balanced grip-lift force scaling at the object-digit-interface.
However, the frictional changes at the object-digit-interface arising because of variable
object properties (i.e., shape, size, mass) and operational conditions can disturb such
grasp stability. In order to deal with such variabilities, our perceptual system uses the
visual and haptic sensory channels [21–24, 26]. Here, the visual cues are used for antici-
pated force parameterization in an almost automatized manner and indirectly observing
the mechanical events [22]. Importantly, the haptic cues assess the actual sensory state
by providing distinctive perceptual estimates of object properties and contact event
information, i.e., finger pressure, time, power, distribution of contact forces, frictional
properties [21]. Such somatosensory feedback is crucial for evaluating the actual and
anticipated sensory states [22]. Any mismatch leads to an update of motor command to
compensate for an anticipated destabilization. Thus, a corrective motoric execution is
expressed by the grip-lift force scaling at object-digit interface. In this way, we avoid the
object slip from the hand and later, search for the optimal grip force application during
adaptation. Since the somatosensory feedback is slow in general (~100ms) which delays
updating the pre-constructed motor plan and force accommodation while dealing with
the object variabilities [22–24, 26]. Such limitation of the somatosensory mechanism in
combination of affected tactile afferents functioning might further deteriorate the object
manipulation task performance [4]. Aging is one of the such factors, which are linked
with the reduced sensory-motor and kinesthetic process.

Aging studies have shown the sensory decline in terms of biophysical and discrimina-
tion abilities. Age related reduction in concentration of tactile afferents and mechanore-
ceptors [1, 13, 20] and consequently, the reduced skin sensitivity in terms of two-point
discrimination [33, 37] and touch-pressure threshold [10, 29] in older adults has been
well documented. Sensory deterioration because of aging may further impair the slow
feedback process and therefore may hamper the manual dexterity in elderly age group.
Studies have shown aging effects on vision acuity [14, 32], haptic acuity [30], reach to
grasp contact [6, 35] and grip force efforts [4, 8, 9]. Further, aging significantly affects
the discrimination threshold [31] and object weight-ratio [19]. Regardless of the fact
that aging is associated with diminished tactile functioning and affected hand dexterity,
however, the aging effects are unable to produce marked perceptual differences [10, 30].
Older and younger adults showed no differences while the 3-D object shape perception.
Aging showed no impact on the sensorimotor adaptation during visual-haptic conflict
[12]. Despite having the sensory decline, older adults did not differ in the perceptual
performance compared to the younger adults. Holmin and Norman (2012) suggested
that aging effects introduced in the weight perception studies are task dependent [19].
Depending on the task specificity, the probable reasons have been derived as extra pre-
caution [25], muscular reorganisation [9], insufficient tactile information [10], reliance
on sensorimotor prediction [42].

In the present study, we are aiming for two main objectives. First, we are re-
investigating the aging effects on hand skin physiological parameters and then on force
kinematic and perceptualmeasures during a standard object liftingweight discrimination
task. The task utilised in the study is a prototypic object manipulation task [22–24, 26]
which offers a unique opportunity to address the aging effects on object-hand kinematics
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and perceptual abilities (perceived heaviness and difference limen (DL)). Based on lit-
erature available, we hypothesize that aging should impact the hand skin physiological
measures and force scaling during various phases of the object manipulation task. Addi-
tionally, hand physiological measures and manipulation task measures might share the
correlation between them as the haptic sense is involved. Second, we are adopting a novel
strategy to support the slow feedback process to maintain grasp stability during variable
object properties. We are adding a sensory channel along with the somatosensory feed-
back to strengthen the mismatch resolution process by providing an online grip force
feedback through auditory sense. It has been well studied now that events implement-
ing multi-modalities followed by spatiotemporal correspondence allow for multisensory
integration and improve the sensorimotor correlations [15, 23]. Thus, we hypothesize
that online acoustic feedback should improve the somatosensory feedback loop and force
prediction to accommodate at the object-digit-interface and should improve the object
weight estimation while dealing with the object variabilities.

2 Method

2.1 Participants

Groups of young (n = 16, Mage = 24.27 years, SD = 3.32 years) and elderly (n =
16, Mage = 69 years, SD = 8.08 years) healthy, right-handed participants took part
in the study. Background questionnaire ensured that none of participants had colored
blindness, any neurological disorder and hand function limitation. Inclusion criterion
of normal hearing and normal or corrected-to-normal vision was followed. Participants
were compensated with either course credits or monetary reward (e10 / hour) for their
participation in the study. Participants’ willingness to take part in the study was obtained
in form of the written informed consent prior to the study.

2.2 Experimental Tools and Task

Semmes-Weinstein Monofilament Test. The test was used to measure the tactile sen-
sitivity in terms of touch-pressure thresholds (TPT) of the right-hand thumb and index
finger [36]. Test procedure was conducted as per recommended by Bell-Krotoski and
colleagues (1993) [5]. Participants were instructed to close the eyes and to respond
‘YES’ when a monofilament touch stimulus was perceived on thumb or index finger
pulp. Monofilament was touched 3 times on the pulp. Each time it was applied for
approximately 1.5 s, held for approximately 1.5 s and lifted over by approximately 1.5 s.

Two-Point Discrimination (2PD). A test device Distcrim-A-GonTMwas used tomea-
sure tactile sensitivity of right-hand thumb and index finger in terms of spatial acuity. The
Semmes-Weinstein monofilaments measure only the superficial sensations of touch and
pressure, which does not conclude tactile sensitivity. The 2-PD test assesses cutaneous
innervation and central somatosensory function [38, 39]. Participants were instructed to
respond by saying ‘one’ if they feel one point or ‘two’ if they feel 2 points against the
test site while keeping the eyes closed.
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Skin Hydration Test. Object handling is influenced by skin-object friction. Finger-tip
moisture/hydration optimizes hand-object interaction by minimizing the required grip
force while griping, lifting or transportation [2]. Thus, a certain level of skin hydration
is essential for successful hand-object interactions. Right-hand thumb and index finger
skin hydration levels were assessed using the eight hydration pin probes provided by
DermaLab, Cortex Technology. Participants were simply asked to press the spring-
loaded pin-probes 8 times against each thumb and index finger and the average hydration
scores were noted.

Weight Discrimination Task and Procedure. Test objects with different surface
angles (A, B and C cf. Fig. 1, left side) and a reference object (Fig. 1, left side) in
two feedback conditions (with and without acoustic feedback) were implemented each
in total 6 blocks of a standard two-alternative-forced-choice weight discrimination task.
Sequence of object and feedback conditionswas randomized to avoid the carryover effect
on the task performance.Weights for the reference object kept constant at 220 g, whereas
the test objects weights were varied on a trial-by-trial basis. Test objects weight were
controlled by an electric linear motor functioning based on a staircase algorithm with
two randomly sequenced interleaved staircases procedures [11]. The algorithm approx-
imated the 75th and 25th percentile response probabilities for the object heaviness on
two points of the psychometric function using the weighted up/down 3-step rule [27].
Participants were instructed for the task as to first briefly lift the reference object and
then the test object to a certain height using the precision grip. Middle portion of the
task objects was marked with a gripping area. Afterwards, they were asked to give their
perceived heaviness response for the test object: if the test object was heavier than the
reference one, press “ja”; otherwise, press “nein” on the response pad. Participants were
guided on the computer screen to ensure the proper execution of the task trials. Object
lift trials were kept free from any time constraint and holding period in between. Thus,
the grip force applied during object lifts and movements was genuine.

Grip force while lifting the surface objects was continuously measured using strain
gauges in a customized set up. The measured grip force values were converted into a
sound whose frequency increased/ decreased as per the grip force applied in the acous-
tic feedback condition. Such acoustic feedback was presented on external speakers to
participants.

Task Measures. Grip force data was processed using customized MATLAB scripts
(MathWorks Inc., USA) to calculate the psychophysical measures. Point of subjec-
tive equality (PSE) was measured using a maximum likelihood procedure. A logistic
psychometric function [7] was used for this:

It indicates the probability whether the test object is judged heavier than the reference
object, in the ith trail. Difference limen (DL) denotes the steepness of the psychometric
function (weight difference between the 75th and 25th percentile). Perceived heaviness
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(PH) of the test objects was calculated by a transformation rule suggested by Rinkenauer
et al. (1999) [34]: PH = refw + (refw − PSE). Here, refw denotes the reference object
weight.

Movement profile points were derived from the displacement recorded in the electric
linear motor, whereas the force profile was derived from the strain gauge signals during
the object lifting. Movement and force profiles representing the object lift trials were
superimposed to mark the points for (1) force onset time, (2) force peak amplitude, (3)
movement onset time, (4) movement onset force, (5) movement peak amplitude, and (6)
movement offset force (as shown in Fig. 1, right side). Precision grip parameters of force
peak amplitude, latency (movement onset force time – force onset time) and movement
onset force were calculated and analyzed in R.

Fig. 1. (A) Schematic depiction of the customized experimental set-up used for the weight-
discrimination-task. (B) The setup comprised with the two force-sensitive grip-lift manipulanda
for reference and test object. (C) 3 types of experimental objects (surface angle: 0º, + 10º and
-10º) with equal weight and dimensions were designed.

Fig. 2. a) Schematic presentation of the experimental objects: reference object and test objects
with their respective surface angles. b) Schematic depiction of averaged experimental grip force
and movement profiles and the measured data points. For details see the main text.
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3 Results

3 x 2 x 2 mixed factorial ANOVAs were calculated to explore the main effects of
within-subjects factors: object shape (A vs. B vs. C) and feedback (without acoustic
feedback vs. with acoustic feedback) and between-subjects factor of age (young vs. old)
on psychophysical measures and precision grip parameters for test objects. In case when
the sphericity assumption was violated, degrees of freedom and p values were adjusted
using Greenhouse-Geisser (FGG, 1> .75) and Huynh-Feldt corrections (FHF, 1< .75).
Statistical analysis was performed using R and the open-source statistical software JASP.

3.1 Psychophysical Measures

Perceived Heaviness. Perceived heaviness was significantly modulated by the within-
subjects factor object shape [FHF (1.63, 48.89)= 25.75, p< .001,ω2 = .19]. Bonferroni
corrected post hoc pairwise comparisons revealed highest perceived heaviness for test
object B (M = 240.43 g, SD = 31.04 g) compared to object A (M = 218.4 g, SD =
20.9 g, t = 5.39, p < .001) and object C (M = 212.65 g, SD = 24.82 g, t = 6.80,
p < .001). Thus, variation in object surface angle contributed in the object heaviness
responses. Importantly, grip force related acoustic feedback was not helpful to improvise
the perceived heaviness (p = .09) and we did not see the age-related differences (p =
.94).

Difference Limen (DL). DL was affected by object shape [FGG (1.24, 38.03)= 10.32,
p < .01, ω2 = .18]. Bonferroni-corrected post hoc pairwise comparisons revealed that
DL was higher for object B (M = 22.08 g, SD = 14.45 g) compared to object A (M =
11.56 g, SD = 5.77 g, t = 4.13, p < .001) and object C (M = 12.45 g, SD = 6.45 g, t
= 3.17, p < .001). Age significantly affected the discrimination sensitivity [F (1, 30) =
7.68, p= .01, ω2 = .10]. Elderly group was less sensitive (M= 16.78 g, SD= 12.82 g)
compared to the young one (M= 16.78 g, SD= 6.68 g) for object weight discrimination.
DL scores remained unaffected by the acoustic feedback (p = .7).

3.2 Precision Grip Measures

Grip-Force Peak Amplitude. Test object peak force amplitudes were affected by
object shape [FGG (1.27, 38.12)= 143.73, p< .001, ω2 = .65]. Grip-force peak ampli-
tude increased with increase of the object surface angle i.e., C< A< B; (MC = 4.64 N,
SD = 1.53 N; MA = 7.01 N, SD = 1.88 N; MB = 10.85 N, SD = 2.62 N; B-A: t =
10.38, p < .001, B-C: t = 16.79, p < .001; A-C: t = 6.41, p < .001). Grip force peak
was affected by age [F (1, 30)= 5.21, p= .03, ω2 = .06] as elderly participants applied
higher peak grip force (M = 8.09 N, SD = 3.49 N) than the young ones (M = 6.92 N,
SD= 2.96 N) while lifting the test objects. Results did not show the effect of grip force
related auditory feedback on test peak force application (p= .23). Two - way interaction
effect of feedback and age was significant on the grip force measure [F (1, 30) = 5.23,
p = .03, ω2 = .01] (Fig. 2 a).



106 J. P. Kushvah and G. Rinkenauer

Movement Onset Force (MOF). Grip force applied at the movement onset was influ-
enced by main effects of object shape [FGG (1.19, 35.60)= 141.38, p< .001,ω2 = .69],
feedback [F (1, 30) = 10.93, p < .01, ω2 = .02] and age [F (1, 30) = 4.12, p = .05, ω2

= .05]. Grip force application increased with increase of the object surface angle [B (M
= 10.13 N, SD = 2.83 N) > A (M = 5.82 N, SD = 1.32 N) > C (M = 3.90 N, SD =
.99 N); B-A: t = 11.35, p < .001; B-C: t = 16.42, p < .001; A-C: t = 5.07, p < .001].
Further, in presence of auditory feedback the force values were dropped significantly (M
= 6.44 N, SD = 3.25 N) compared to when it was absent (M = 6.8 N, SD = 3.19 N).
Elderly participants applied higher grip force (M = 7.07 N, SD = 3.41 N) compared to
the young ones (M = 6.16 N, SD = 2.96 N). Two - way interaction effect of feedback
and age was significant on MOF [F (1, 30) = 4.55, p = .01, ω2 = .01] (Fig. 2 b).

Fig. 3. Plot showing the mean comparisons associated to the interaction effects of Feedback and
Age on peak force amplitudes (a) and on movement onset force measure (b). Here, mean points
are presented with 95% confidence interval (CI) error bars.

Latency. Test object latency got affected by object shape [FGG (1.35, 40.62) = 49.21,
p < .001, ω2 = .40]. Bonferroni-corrected post-hoc pairwise comparisons showed that
latency for object B (M = 336.05 ms, SD = 128.67 ms) was greater than object A (M
= 207.27 ms, SD= 69.31 ms; t = 8.20, p< .001) and object C (M= 195.63 ms, SD=
63.72 ms; t = 8.94, p< .001). Importantly, main effect of feedback was also significant
[F (1, 30)= 54.14, p< .001,ω2 = .18]. Application of grip force synchronized auditory
feedback reduced the test object latency (M = 217.67 ms, SD = 91.49 ms) compared
to when it was absent (M = 274.96 ms, SD = 122.52 ms). Latency differences were
significant due to the age effect [F (1, 30)= 7.66, p= .01,ω2 = .10]. Elderly group took
longer time (M= 274.92 ms, SD= 115.33 ms) than the young one (M= 217.72 ms, SD
= 100.42 ms). Two - way interaction effect of object and feedback emerged significant
on latencymeasure [FHF (1.72, 51.65)= 6.11, p= .01,ω2 = .02]. Therefore, latencywas
significantly improved the latency while lifting the test object in presence of auditory
feedback and such reduction of latency increasedwith increasing the object surface angle
(Fig. 4).
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Fig. 4. Plot showing the mean comparisons associated to the interaction effects of Object and
Feedback on latency measure. Here, mean points are presented with 95% confidence interval (CI)
error bars.

3.3 Aging Effects on Hand Skin Sensitivity-Hydration Measures

Group differences explaining the aging effects on skin sensitivity and hydration were
simply calculated using Student t-tests. Both skin sensitivity measures (2PD and TPT)
and hydrationmeasures showed significant group differences. Skin sensitivity thresholds
were higher for older aged group [2PD index finger: t (30)= 5.27, p< .001; 2PD thumb:
t (30) = 5.28, p < .001; TP index finger: t (30) = 7.21, p < .001; TP Thumb [t (30)
= 10.61, p < .001]. Thus, aging showed negative impact on skin sensitivity measures.
Further, younger participants had higher skin hydration levels for both thumb and index
finger compared to the elderly ones [Index finger: t (30) = 6.77, p < .001; Thumb: t
(30) = 8.61, p < .001]. The differences in skin hydration levels could have a negative
effect on surface adhesion friction between the finger and the object surface in the older
participants.

3.4 Correlation Between Hand Physiological Parameters and Weight
Discrimination Task Measures

Correlation analysis was performed using the Pearson correlation coefficient to explore
the relative functioning of thumb and index finger in terms of skin sensitivity (2PD
and TPT) and hydration measure within the two groups. Significant positive correlation
between thumb and index finger for 2 PD [r (30)= .69, p< .01)] and hydration measure
[r (30) = .82, p < .001)] was observed among the young participants. Besides that, in
elderly group, only the skin hydration measure found correlated for thumb and index
finger [r (30) = .81, p < .001)]. Further, correlation analysis was performed to see the
relationship between hand physiological measures (skin sensitivity and hydration mea-
sure) and weight discrimination task measures. Results revealed that both skin hydration
and 2 PD measures associated to thumb in young age group were positively correlated
with the peak force amplitude and movement onset force. No such correlations were
observed in the elderly group (Table 1).
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Table 1. Pearson’s correlation analysis between skin sensitivity-hydration measures and weight-
discrimination task measures

4 Discussion

Present study was conducted to explain two main research questions. Initially, how does
aging affect the hand skin sensitivity-hydration and object discrimination taskmeasures?
Is there any relationship between skin sensitivity-hydration and object-hand-kinematics
of the manipulation task? Second, we explored effect of additional sensory channel on
the force and movement dynamics of the object manipulation. Here, we will discuss
the findings in the context of our research questions one by one. We assessed the skin
sensitivity measures of 2PD and TPT and skin hydration to ensure the functioning of
the cutaneous mechanoreceptors and moisture levels. Participants could only use their
thumb and index finger (implementing precision grip) in the main experiment task.
Thus, it was important to take measures for both index finger and thumb. Functional
variability among digits may influence the configuration and grip force application at
the object-digit-interface. Results revealed that index finger and thumb were correlated
for hydration measure but not for the TPT measure within both the groups. Further, both
the digits for 2PD were only correlated in the young age group. It shows that relative
firings of cutaneous mechanoreceptors (FA-1 and SA-1) mostly in the elderly group had
individual differences.

Results showed the clear differences in index finger and thumb related skin sen-
sitivity measures of TPT and 2PD and skin hydration between the young and elderly
groups. Further, repeated-measures ANOVAs also followed the aging effects on force
kinematics measures in terms of precision-grip parameters. Higher peak grip forces,
longer latency period and higher movement onset force were associated with the elderly
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group. Effects of tactile afferents functioning on hand dexterity within the context of
aging was explored in the correlation analysis (see Table 1). Correlation between thumb
2PD and grip force measures (peak force and MOF) in young age group supporting
the that firing in tactile afferents has possible consequences on object grasp and lift.
However, such correlation was absent in the elderly group. Also, the TPT measure did
not show any correlation with the task measures in both the groups. Such discrepancy
can be explained within the context of tactile afferents firing during different task con-
ditions [18, 40]. TPT is associated with the minimal firing of tactile afferents, involving
a small number of cutaneous innervations (FA-1 and SA-1). Whereas, the nature of
applied contact forces during object grasps and lift is different from a slight touch while
performing TPT. Applied contact forces during 2PD shares similarity to some extent as
both superficial and deeper cutaneous innervations are involved. Next, a certain level
of moisture between object-digits is always essential to resolve the frictional changes
[3]. In young age individuals, grip forces (peak force, MOF) at different task phases
were regulated as per the thumb fingertip hydration. Such correlation was absent in the
elderly group. Our results agree that aging induced skin hydration reduction changed
skin properties and increased grip force application and latency measure are associated
with overcompensation strategy [2, 3].

Haptic sense mainly contributes in the somatosensory feedback during object-hand
interaction, where these cutaneous afferents provide the object surface information
(shape, friction, material) at the beginning of the preload phase; based on which the
brain predicts required force to execute the updated motor command. It seems reason-
able that reduced/impaired functioning of tactile afferents could severely affect the hand
dexterity [4]. The weight discrimination task employed in the study was featured with
the variable object weight in combination with object shape manipulation. Within the
framework of object variabilities, it is always crucial to get the somatosensory feedback
as soon as the contact with the object. So that the restructured motor plan could be
updated. Here, we implemented the auditory surrogate sensory feedback to strengthen
the slow somatosensory feedback. We evaluated the feedback strategy for elderly group
to see the impact in context of aging. ANOVA results showed an overall impact of
object surface angle on weigh-discrimination task measures. Increase in object surface
angle found associated with higher grip force efforts and longer time duration to lift the
object. It suggests that participants made substantial force efforts during loading and
lifting phases to accommodate the object shape variability. Also, the perceived heav-
iness and difference limen increased with higher surface angle object. These findings
are in line with previous research [16, 21]. Grip force related online auditory feedback
showed significant impact on limited precision grip parameters. We hypothesized that
effective feedback process could support the delayed somatosensory feedback process
by improving the force adjustments at the object-digit interface while dealing with the
object shape-weight variabilities. Auditory feedback gained no impact on test object per-
ceived heaviness and weight discrimination. Similarly, the peak grip force application
during the loading phase showed no effect of the employed feedback strategy. Interest-
ingly, grip force related auditory feedback reduced the latency andmovement onset force
application. These findings support our hypothesis. While dealing with the object vari-
abilities, auditory feedback speeds up the delayed somatosensory feedback loop, which
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resultant into the shortening of the loading phase. Further, the accelerated feedback pro-
cess leads to corrective force parameter specification by updating the pre-constructed
motor commands. Updated force parameters guide for improved force application. We
observed this in form of the lowered movement onset force application. Previously, var-
ious feedback strategies have shown the positive impact on grip force application [17,
28, 41]. However, these studies did not implement the object variabilities in grasping
and tactile assistive paradigms. Further, object weight perception remained unaffected
in the presence of grip force related auditory feedback. This could be possibly because
of the different processing pathways of the tactile signals [18]. In our findings, the feed-
back strategy only worked for the sensorimotor control and the perception/cognition
processing remained intact.

In brief, our study investigated the significant aging effects on hand skin physiology
and object manipulation task related psychophysical and precision grip parameters. Our
study only reported with the loading-lifting phase measures. Further analysis of the
transition and unloading phasemeasuresmight providemore insights on effects of object
shape, aging and feedback strategy. The present study suggests that auditory surrogate
feedback on grip force is a promising strategy for improving fine motor control, but not
for improving the object weight perception.
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Abstract. In the current work a brief overview of some studies con-
ducted on laughter taking a multidisciplinary perspective will be pre-
sented. The integration of analyses of corpus data, theoretical and for-
mal insights, behavioural experiments, machine learning methods, and
developmental data, turned out to be fruitful to gain insight into laughter
behaviour and on how its production contributes to our conversations.
A crucial claim emerging from the studies presented is that laughter
conveys propositional meaning interacting with other modalities, in a
manner akin to other content bearing words. The implications that such
results have for the implementations of more competent, from a seman-
tic and pragmatic perspective, spoken dialogue systems will be outlined.
Especially the qualitative and quantitative analysis of developmental
data will offer the basis for the proposal of some specific applications.

Keywords: Laughter semantics · Multimodal communication ·
Pragmatic development · Communication feedback · Spoken dialogue
systems

1 Introduction

Laughter has for long been dismissed by the field of semantics, on the wave of a
markedly speech- and text- oriented analysis of meaning. By now awareness that
meaning is conveyed multimodally is granted and semantic formal accounts of
behaviour or features that used to be considered out of the remits of linguistics,
or anyway out of those of semantics, (e.g. gestures, facial expressions, prosody,
disfluencies) are flourishing (e.g. [4,5,38,48,54,96]).

Embracing the spirit of the workshop, inviting for exchange of methods and
insights across disciplines, in the current work a brief overview on some of the
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investigations conducted on laughter will be presented, showing how a quan-
titative and qualitative analysis of cross-linguistic corpus data, in triangulation
with theoretical and formal insights, behavioural, machine learning methods, and
developmental data turn out to be beneficial for the understanding of laughter
behaviour and of how it contributes to our conversations. The multidisciplinary
investigations conducted points to the need to integrate laughter in frameworks
aimed at modelling meaning in interaction, stressing the importance of a multi-
modal approach to the study of dialogue semantics, having therefore important
implications for the design of Spoken Dialogue Systems.

The paper is structured as follows: in the first part, a corollary of studies related
to the use of laughter in adult conversation supporting the idea that laughter
should be treated in a manner akin to language and on how its meaning interacts
with other modalities will be presented; in the second part, the attention will be
shifted to studies on laughter behaviour development, focussing especially on two
aspects: (1) a quantitative and qualitative analysis of caregivers’ responses to child
laughter in development, highlighting similarities with studies in language acqui-
sition; (2) the use of laughter in relation to potentially discomforting situations
(e.g. criticising/correcting the interlocutor, asking a favour, apologising). Those
will constitute further ground for a concluding discussion about the implications
and potential applications that the results presented have for the implementation
of more competent Spoken Dialogue Systems (SDS) and Embodied Conversational
Agents (ECAs), spotlighting especially on aspects related to natural language pro-
cessing. Explicitly, in what follows some elements aimed at answering (at least par-
tially) the following questions will be presented:

– Does laughter convey meaning? How does it affect dialogue?
– How does it interact with other modalities in terms of time-alignment and

function?
– How do children learn laughter meaning?
– What do adult and developmental studies of laughter can contribute to the

implementation of spoken dialogue systems?

NOTE: When reporting extracts of conversations, for laughter transcriptions we

will use the annotation guidelines used in the DUEL corpus [49]. Especially relevant will

be these two conventions: < laughter/ > to tag standalone laughter not overlapping

with speech (e.g., “that’s cool < laughter/ >”) and < laughter > < /laughter > to

tag speech-laughter (e.g., “< laughter >yeah< /laughter >”). Through out the paper,

whenever an extract of the interaction is reported, this is provided with an hyperlink

to a video-clip of the original recording.

2 Laughter as Language: Triangulating Methods
and Insights

2.1 A Multi-layered Framework for Laughter Analysis

Laughter is a universal [88,89] and ancient, both phylogenetically [23,56] and
ontogenetically [76,93], non-verbal vocalization; one which is pervasive in our
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interactions (5.8 (sd = 2.5)/10 mins [102]; speed-dating 21(sd = 9.28)/5 min [33];
DUEL French 45/10 m, DUEL Chinese 26/10 m; BNC 5/10 m [71]). It is so
deep-rooted that it is one of the behaviours for which contagious effects can
be observed, fostering bonding and affiliation [44]. Despite mostly associated
to funniness, laughter does not occur only in response to humour. Especially
studies in Conversation Analysis have shown its crucial role in managing con-
versations at several levels: dynamics (turn-taking and topic-change), lexical (sig-
nalling problems of lexical retrieval, imprecision in the lexical choice), pragmatic
(marking irony, disambiguate meaning, managing self-correction) and social (to
smooth and soften difficult situations, to show (dis)affiliation and mark group
boundaries) [40,51,80,104]. It is not surprising therefore that laughter has been
object of scholar investigation since millennia from many different disciplines
(for reviews see [55] and [14]). Nevertheless, the taxonomies available and the
theories proposed, especially for what concerns the classification of laughter uses,
resulted hard to integrate. The reasons for the difficulty can be assigned partly
to the fact that the different taxonomies were created from different perspectives
and for different aims, partly, as argued in [71], might be related to the fact that
often different levels of analysis were considered, and inconsistencies or overlap
between those could be identified even within the same framework (e.g. acous-
tic characteristics, spontaneity, triggers and functions). Therefore, in order to
comprehensively integrate insights from previous studies, and effectively char-
acterise laughter use, a framework that would clearly distinguish different levels
of analysis has been proposed [71]. Making an analogy with speech, it has been
argued that for the study of laughter it is likewise fruitful to differentiate aspects
relative to the form, the positioning, the meaning, the effects on dialogue and the
resulting social dynamics. A pivotal node to highlight is therefore that laughter
has meaning, which can be spelled out in propositional form and multimodally
interact with speech and other modalities.

The foundations of this claim come from the analysis of adult dialogic corpus
data in different languages (French, Chinese and English) and contexts [71] and
on attested examples of: successful standalone laughter uses to perform a dia-
logue act (e.g. answering a question) (as in 1 – and in 7 later in the manuscript),
elicitation of propositional clarification requests or rebuttals (as in 4 and 5),
laughter reversal meaning (i.e. ironic use of laughter1) (2), derivation of prag-
matic implicatures (1), and displacing of laughter affecting the meaning of the
uttered speech (3) (see [71] and [39] for more examples and detailed discussion).

(1) [Buying ingredients for Carbonara Pasta]
A: Do we need sour cream?
B: < laughter/ >

(2) Example Providence Corpus, Lily 030010 – Ironic use of laughter.
C (Child): Who’s this from?
M (Mum): Um... that is from the swim club.

1 This is typically marked by peculiar acoustic features, a characterisation of which is
still underexplored.

https://osf.io/bm3w7
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C: What is it?
M: It says we havta have to pay them. < laughter/ >
C: We have to pay them?
M: Yeah.
C: What .. what do you havta have to pay ?
C: What do you havta pay what do you have to pay mommy ?
M: Well we have to pay so we can go to the swim club this summer.

(3) Example from Ginzburg et al. 2020
(i) Jill is John’s, < laughter/ > long-term friend.
(ii) A: She is John’s long-term < laughter/ > friend

[71] and [39] propose that laughter has propositional content that arises from the
laughable (i.e. the entity the laughter is related to – regardless of the presence of
a humourous element), exhibiting certain similarity in behaviour with eventive
anaphors. This is constituted by a core simple meaning of type P(l) which could
be expressed as “The laughable l having property P triggers a positively valenced
shift of arousal of value d within A’s emotional state e”. The laughable therefore
is a crucial element for laughter meaning interpretation, being a constituent of
laughter content, which can be incongruous and/or pleasant. In Example 2, an
example of ironic use of laughter, is provided where both of these properties are
negated: having to pay for being allowed to access the swimming pool is not
incongruous, neither pleasant for the economy of a family.

This core meaning then, when aligned with contextual reasoning gets
enriched and nuanced as a function of the type of laughable it is related to,
the type of incongruity appraised, and the context, being able to generate the
wide variety of functions observed in adult conversations. Specifically, [71] dis-
tinguish four main classes of laughables depending on the presence (or absence)
of incongruity and on its type: Pleasant incongruity (cases in which a clash
between the laughable and certain background information is perceived as witty,
rewarding and/or somehow pleasant, ca. humour), Social incongruity (instances
involving a clash between social norms and/or comfort and the laughable, e.g.
criticism to the interlocutor, asking a favour, apologising for a mistake, etc.),
Pragmatic incongruity (when there is a clash between what is said and what
is meant, e.g. irony and scare-quoting) and cases where no incongruity can be
identified and the laughable seems to reside solely in a sense of pleasantness felt
or aimed to be shown to the interlocutor. A structured classification of laughter
pragmatic functions has been proposed in [71] in the form of a binary decision
tree. It has to be noted that despite the core meaning and phylogenetic origin
of laughter are related to pleasantness and affiliation, laughter can also have
a negative valence being produced at the expenses of others. The framework
proposed in [71] and [39] account also for such uses taking as a starting point
the same basic meaning previously stated. The cooperative or non-cooperative
goal of the laughter production pertains indeed to another level of analysis. In
the case of mocking for example, what in the literature has been often referred
to as superiority laughter, would be analysed as laughter related to a laughable
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appraised as incongruous and pleasant (someone’s misfortune in this case), pro-
duced with a hostile attitude towards the target. Due to space constraints, we
defer to [39] for a detailed description of the formal representation of laughter
meaning proposed, embedded in a framework for dialogue modelling (KoS) [37]
(formulated within the framework of Type Theory with Records (TTR) [19]),
able to capture the interplay of contextual, as well as cognitive and emotional
(i.e. mood) elements, which influence meaning and implicatures derivation.

2.2 Positioning Laughter

The distinction of different levels of analysis pertaining to the analysis of laugh-
ter, similarly to speech, and the structured annotation of its argument, proved
to be fruitful especially for what concerns insights on how meaning is coor-
dinated and aligned across modalities. Specifically, the data presented in [98]
disconfirmed the common sequential adjacency assumption (i.e. laughter always
follows what it is related to) (e.g. [102]), showing that laughter can follow, but
also overlap or precede its argument. In addition, we observed that laughter does
“interrupt” and does overlap with own and others’ speech, invalidating thus the
claim that laughter occurs exclusively during pauses and at phrase boundaries
(Laughter punctuation effect [82]). The patterns observed resemble therefore
those reported for manual gesture in relation to speech [2,86].

2.3 Characterising Different Laughter Functions: Gaze
and Accompanying Dialogue Acts

Regarding the pragmatic functions performed by laughter, the statistical analysis
reported in [70] suggests that they cannot be reliably predicted from a single
factor of the analysis, but that they are rather characterised by specific (partly
language-dependent) cluster of features. A further analysis, exploring in detail
acoustic features, showed that acoustics, taken in isolation, cannot be considered
a reliable cue of the laughter function [66, Chapter 6].

In the same attempt to characterise different laughter uses, [69] investigates
whether laughs performing different pragmatic functions would be accompanied
by different gaze patterns at the interlocutor. A multimodal corpus of dialog-
ical interactions is analysed [92] in order to conduct an event-related analysis
centered around laughter onset and offset from both participants. The results
show that laughs performing different pragmatic functions are related to different
gaze patterns, both for the laugher and her partner, corroborating with studies
reporting different gaze patterns depending on the accompanying dialogue act
[52]. Data reported in [7] come in support of this conclusion. Becker-Asano and
Ishiguro [7], evaluating the role of laughter in perception of social robots, found
that when the robot was gazing directly at the participant while laughing, that
led to the perception of the robot’s laughter as “laughing at someone” rather
than “laughing with someone”. Moreover, it has been observed that gaze is an
important cue exploited by interactants when reciprocating laughter, similarly
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to what can be observed in speech-turn taking [6,87]. Those data stress there-
fore the importance of integrating laughter and gaze for modelling of meaning
construction and coordination in interaction, especially highlighting how the
combined consideration of different modalities can help in the respective inter-
pretation and classification, and even prediction when desirable [69].

From the corpora studies reported, it emerges that laughter is able to perform
or accompany a variety of dialogue acts. This led to an investigation on how
laughter is distributed across the different dialogue acts, as annotated in the
Switchboard Dialogue Act Corpus [63]. The analysis shows how different dialogue
acts are characterised by different laughter patterns, both from the participant
performing the act and from the partner, and showed that laughs can positively
impact the performance of Transformer-based neural networks models (BERT
[26]) in a Dialogue Act Recognition task. These results highlight the importance
of laughter for meaning construction and disambiguation in interaction [63].

3 Learning to Laugh: Developmental Data
and Communicative Feedback

While on one hand we observe a quite pragmatically sophisticated use of laughter
in adulthood, on the other we know that laughter is a rather old behaviour,
emerging in babies around the third month of life [76,93]. At this early age,
the neuropsychological infrastructure that would be necessary for an adult-like
use is not yet available, suggesting therefore that it is a vocalisation the use
of which must undergo development. According to [28], laughter emerges as
an unconscious vocalisation reflex to a positive inner-state and, through the
modelling and influence of the environment [3,60], it becomes an important
and varied form of non-verbal communication, one that is crucially social in its
nature.

Several scholars have pointed out how laughter can be important from a
socio-cognitive perspective in the development of infants [73,85] and how its
occurrences could be informative from very early on about the underpinning
neuropsychological development [64,72,81], but nevertheless a structured longi-
tudinal characterisation of laughter use in the early years was still lacking. Indeed
laughter has been often excluded by fascinating and thorough studies on pre-
verbal infant vocalisations, partly because these were mostly focused on speech-
like production, partly because of its putative reflexive nature (e.g. [50,59]). Far
from being a reflex behaviour (stereotyped and unconditioned by the environ-
ment [79]), laughter is actually importantly affected by the contextual and social
circumstances, both in production and perception [1,22,101], and can be care-
fully positioned in our utterances [41]. Furthermore, it is a peculiarly valuable
means for a developing young communicative partner at several levels.

Like other vocalisations produced in the first months of life it is a means to
get practice with turn-taking [45,95] and engage in the first reciprocal commu-
nicative exchanges. What is special about laughter is that it is a vocalization
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typically involving positive affect which induces the same effect in the part-
ner [77,78], being particularly effective in initiating, engaging and maintaining
interactions with caregivers [85], and in setting off the virtuous dynamic circle of
meaning construction and social coordination as described in [34,35]. It is more-
over one of the first means available to children to attract attention, first to the
self and then to external targets [95], but especially to contribute to the conver-
sation, respond, occupy a dialogical turn and conveying meaning with the same
level of proficiency of an adult. It is moreover a signal that supports the com-
prehension of non-literal or not sincere meaning very early on, e.g. humourous
intentions [47]. It may therefore be a crucial means in helping to scaffold abilities
which form the basis for further complex mentalising processes.

In order to compensate for the lack of structured insights about laughter
development, a longitudinal observation of laughter behaviour in four typically
developing (North-American English) children in interaction with their mothers
from 12 to 36 months of age has been conducted [66,67] (Providence Corpus, [25])
using the multi-layered framework proposed in [71]. Significant changes over time
have been observed both in laughter use (in terms of frequency, laughable and
function) and in behaviour in response to the partner’s laughter both in children
and mothers, mirroring the neuro-psychological development of the child on
different levels (especially linguistic, pragmatic and attentional) and the mother’s
attunement to it [66,67].

What follows will be focused specifically on a quantitative and qualitative anal-
ysis of some caregiver responses to child laughter observed in our longitudinal
study, that might model and influence the construction of laughter meaning in
interaction. Notably, it will be highlighted how those patterns/behaviours iden-
tified mirror what has been observed and studied in relation to the first speech-
like vocalisations and speech utterances produced by children, namely: contingent
responses [8,50,59], reformulations [9], and clarification requests [20,58].

3.1 Contingent Responses

Multiple studies investigated mother responsivity to speech-like pre-verbal vocal-
isations in infants and their effect on the successive vocalisations. These stud-
ies all highlight the tendency of caregivers to reply contingently to speech-like
vocalisations (either in the same modality or in another one – e.g. gesture, body
posture, facial expressions) [8,43,50,59] and the beneficial role of these con-
tingent responses on successive language production and learning [42,65,97].
Those works though, being focused strictly on speech acquisition, systematically
excluded laughter – viewed as non-speech and deemed as a reflex.

Data from the longitudinal exploration of laughter development from 12
to 36 months of age show though that mothers give important value to its
infants’ laughter productions especially up until 24 months of age showing similar
responses to those observed for speech-like vocalisations [67]. Figure 1 presents
the reciprocal contingent responses (within 1 s from laughter offset) to the part-
ner’s laughter as observed in the Providence Corpus with 6 months interval.
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On the left, Fig. 1a illustrates the transition probabilities2 of laughter mimicry
(laughter produced in response to laughter – as in 6), while on the right, Fig. 1b
presents the contingent explicit responses occurring also in other modalities (e.g.
gaze, smile, exclamations and clarification requests).

(a) Laughter Mimicry (Antiphonal
laughter)

(b) Explicit multimodal response to
partner’s laughter

Fig. 1. Responses to each other’s laughter: children and mothers. – Transitional Prob-
abilities (TP) (taken from [67]).

We observe high transitional probabilities of mothers being contingently
responsive to child laughter (within 1 s). The urge to respond contingently to
child laughter is particularly high at the earliest time points of interest (12 and
18 months), while it decreases over time (24, 30, and 36 months) (Fig. 1a). The
transitional probabilities of contingent responses to child’s laughter is even higher
if we consider other multimodal reactions (i.e. exclamation, smile, orienting look,
clarification requests) (Fig. 1b).

While allowing the earliest equitable exchanges, a systematic contingent
response from the caregiver (either aligning with or providing a response in
other modalities) teaches the child that his/her contribution is meaningful, com-
municatively relevant and helps them shape its use [21,24,34]. The decrease
observed in contingent alignment from mothers, can be explained by the fact
that over time laughter is not anymore one of the few means the child has to
engage in interaction, by 24 months indeed the repertoire of communicative abil-
ities is much broader, including speech, and the mother might therefore have a
lower urge to reinforce laughter production specifically. In detail, it is worth not-
ing that around 36 months contingent responses constituted by pure laughter
mimicry have lower transitional probabilities compared to explicit multimodal
responses. This is in line with [59] and [32], who observed that as the child

2 Transition Probabilities are calculated as a proportion of the count of behaviour x
to occur from participant A over the total of laughter productions from partner B.
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grows older mothers diversify the type of their responses, being therefore more
variegated and less consistent, both in the form of response provided and in the
timing.

The variation in laughter alignment and contingent multimodal explicit
responses over time in mothers might therefore be one of the features of care-
givers’ adaptation to the communicative development of their children, similarly
to the well known characteristics of child directed speech [57,90,105]. The data
presented also matches results from other studies suggesting that when inter-
acting with simpler systems, e.g., virtual agents or robots, human behavioural
alignment is particularly marked [12,13]. The same seems to apply also to very
young children, partly motivated by the will to be at the same level and partly
(even unconsciously) aiming to reinforce behaviour, offer explicit feedback, con-
tingent response, and helping scaffolding a functional communication develop-
ment. The dynamic nature of mothers’ responsiveness to laughter (similar to
what has been observed in the context of play, exploration, and vocalization)
(e.g. [10]), adapting to the neuro-psychological development of the child, sup-
ports a dynamic view of interaction [21,34]. Such a view distance itself from
a perspective where interaction is only modelled in terms of a sender and a
receiver, but where children themselves play an active role in eliciting caregivers
behaviour.

The high responsivity of caregivers to laughter and the observation of similar
dynamics to those observed in relation to speech, stress the high importance of
laughter in early interactions, as well as, once again, highlighting how speech
and laughter meaning are similarly treated, constructed and negotiated in inter-
action, pointing to the fact that they should also be modelled and accounted for
their semantic import similarly.

3.2 Reformulation and Clarification Requests

Of particular interest are the cases when the contingent response to child laughter
from the mother is a verbal reformulation of the non-verbal laughter vocalization,
asking for confirmation or a clarification request (as in 4 and 5). In so doing the
mother makes explicit that laughter has a communicative value, propositional
content [68], and shows availability to negotiate jointly its meaning and reference.

Similar patterns have been for long studied also for what concerns the earli-
est speech productions: adult reformulations of child utterances or clarifications
requests constitute feedback from caregivers which allows them to correct and/or
refine their knowledge [15–17,91].

(4) Example from Providence Corpus – Lily 010611
M: There’s miss spider. She’s eating a piece of cake!
C: < laughter/ >
M: Yeah .
C: < laughter/ >
M: < laughter/ > Is that silly ? Whada [: what do] you think the spider
should do on her birthday ?

https://osf.io/dqnu4


122 C. Mazzocconi

(5) Example from Providence Corpus – Naima 02004
M: March eighteenth.
C: [non-word vocalisations]
M: Can you say that?
C: < laughter/ >
M: Can you say March eighteenth?
C: < laughter/ >
M: < laughter > Is that funny? < /laughter >
C: < laughter/ >

It is worth noting that all the clarification requests presented assume as
default the most basic meaning of laughter, i.e. expressing the appraisal of a
pleasant incongruity (ca. funniness). This is in fact the most common use of
laughter also in adult dialogue [71] and it is, until 24 months of age, the only
use observed in children [66]. Nevertheless, in (6) we observe also a propositional
reformulation in the form of a confirmation request which addresses rather the
pleasantness component of laughter meaning, alluding to the positively valenced
appraisal it can be sign of, regardless of the appraisal of an incongruity (“Isn’t
that good?”).

(6) Example from Providence Corpus – William 010605
(finishing reading a book and closing it)
M: now everybody was beautiful.
C: < laughter/ >
M: < laughter/ > isn’t that good ? here, what’s in here!

In Example (7) we then see an instance of laughter produced by Naima (18
months old) as a response to the mother’s clarification request. The mother
interprets it clearly as an affirmative answer (instantiating therefore a case in
which laughter performs effectively a complete dialogue act in its standalone use)
and makes explicit one of the most common implicatures that can be derived
when a laughter is produced accompanying an utterance patently incongruous,
i.e. the utterance contains a pleasant incongruity and it is intended not seriously
(i.e. doing/saying the “wrong” thing on purpose [47] with humorous intentions).

(7) Example from Providence Corpus – Naima 010604 – Reformulation
M: Where did you make the coffee?
C: Tea.
M: Tea? there was no tea ! did you make the coffee in the bathroom ? no!
Where did you make the coffee ? where did you make the coffee this morning?
C: < smiling > upstairs.
M: upstairs !? that’s a joke, right ?
C: < laughter/ >
M: < laughter >yeah< /laughter >, you’re making a joke ! you know that
coffee ... there’s no kitchen upstairs !

In Example (8) we can nicely observe the process of laughter meaning and
reference clarification and negotiation between mother and child, coming to a

https://osf.io/d5jby
https://osf.io/8xgvb
https://osf.io/f368n
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final agreement. We see the child laughing and the mum responding contingently
to the child laughter with a laugh, but her production sounds particularly posed
and aimed only at imitating the child, potentially mocking her. The child then,
probably felt misunderstood, rephrases her laughter making explicit its propo-
sitional content “It is a funny one!”, which triggers a sequence of clarification
requests about the laughter meaning and the laughable, finally coming to an
agreement by the end of the extract.

(8) Example Providence Corpus – Lily 020004 – Meta-linguistic laughable
M: Hello Jessica! Can you say that?
C: < laughter/ >
M: < laughter/ > [laughter from the mother, imitating/mocking the child]
C: This is a funny one!
M: < laughter/ > It’s a funny one? < laughter/ >
C: It’s a funny word!
M: It’s a funny word? “Jessica” is a funny word?
C: Yes! M: Ok!

These pieces of data are interesting from two perspectives: on one hand they
support, again, the claim that laughter has propositional content, being object of
clarification requests like other content bearing words [68,83]; on the other hand
they show that dynamics akin to those observed in relation to speech, in terms of
meaning clarification [57,91] and negotiation [11], are at play also for laughter,
reinforcing its semantic relevance, and shedding light on how its meaning and
use can be shaped and modelled through interaction.

4 Laughter to Correct

This section will be focused on two laughter uses: (i) laughter production in
relation to social incongruities and (ii) laughter production in the appraisal of
pleasant incongruities related to mistakes. The term social incongruity has been
used to refer to situations where there is a clash between social norms and/or
comfort and the laughable. In these cases laughter can come in handy to smooth
the potential discomfort (e.g. embarrassment), function as a face-saving device
(e.g. apologising, dispreferred answer), softening a potential face-threatening or
intrusive action (e.g. criticising and asking a favour) [41,51,66,80,84].

Despite mother use of laughter in terms of pragmatic functions differs from
the distribution observed in adults [66], children are exposed since the first years
to a variety of laughter uses. In (9) we have an example of a laugh produced
by the mother which is classified as social incongruity. The mother is indeed
reproaching the child for his disproportionate negative reaction, and the laugh
softens her request to stop behaving loudly and being naughty. Her laughter
proves to be very successful in helping the child regulate, and (maybe realising
he was being funnily distressed) he even joins the mother’s laughter.

In particular, in mother-child interaction it is observed a rather relevant
percentages (8%) (equally distributed in the different dyads analysed) of cases

https://osf.io/ebw6a
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where laughter resulted hard to classify being at the limit between laughter
related to a pleasant incongruity and a social one. These are most often cases
where the mother is laughing at her baby making a mistake, a clumsy movement
or mispronouncing a word (whether the mother added a successive correction
or not). The mother seems to laugh at the incongruous/imprecise behaviours
partly because she finds them funny, but at the same time she is also smoothing
the situation and reassuring the child that everything is fine and that s/he can
go on with her/his activities/strivings, and in some cases she also softens a co-
occurring correction. An example is proposed in (10). In these cases therefore
laughter can be considered as a negative feedback, or, when the mum explicitly
reformulates or corrects the child, as accompanying one.

(9) Example Providence Corpus – Alex 030103 – Social incongruity
C: [non-word vocalisations] try this. No this one !
M: alright could I use the pen ?
C: nope [ no] . Nooo! [screaming]
M: < laughter > stop it < /laughter >.
C:< laughter/ >

(10) Example Providence Corpus – William 010412 – Mislabelling
M: what’s that ?
C: [non-word vocalisations].
M: nose. Where’s your nose ?
C: eye !
M: < laughter > that’s your nose, this is your eye. < /laughter >
< laughter/ > You’re funny.

These cases stress the importance of laughter in managing interaction and
softening potential criticalities from a very early age, and its important role in
social referencing, reassuring and encouraging the child as s/he learns to cope
with the first challenges [31,94], having potentially evolutionary benefits [46].

Laughter in relation to social incongruity is crucial in our interaction and in
managing the impression of the interlocutor, in its use indeed it reassures the
interlocutor that the situation is not to be taken too seriously and at the same
time, in induce a positive disposition in the partner [77,78,84]. In the latter
part of the next section it will be proposed how taking in account such uses of
laughter might have useful applications for SDS and ECAs.

5 Implication for Spoken Dialogue Systems

The multi- and inter- disciplinary work (sketchily) overviewed stresses with little
doubt the necessity to integrate laughter, and other non-verbal social signals
[39], in any framework aimed to model meaning in interaction, not only for
what concerns aspects related to affecting computing [7,74], but also for aspects
related to natural language processing [71]. The studies overviewed have shown

https://osf.io/fhu3s
https://osf.io/jgqke
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indeed how laughter conveys meaning and how it can affect the meaning of
speech utterances and the unfolding of the dialogue.

The investigations conducted, offered empirical relevant insights for the
implementation (either in perception or production) of SDS at several levels:

– Laughter conveys meaning which needs to be integrated and treated in inter-
action with speech and other modalities.

– Laughter can co-occur with speech from the laugher herself and from the
partner, and can interrupt speech utterances.

– Its positioning in relation to the argument can be rather free, occurring most
often after, but also during or before the argument it is related to; mirroring
patterns observed in manual gestures [86].

– In order to interpret the laughter functions performed, acoustics in itself is
not sufficient, since they seem rather characterised by a language-dependent
cluster of features: positioning in relation to speech, in relation to others’
laughter, position in relation to the laughable, characteristics of the laughable,
and contingent gaze patterns from the laugher and from the partner.

– Taking in account laughter, ideally in synergy with other modalities (e.g. gaze
and facial expressions), can help in tasks of Dialogue Act Recognition and
discrimination, disambiguating illocutionary forces and social meaning.

It is here embraced a view that sees computational models useful to study
human behaviour and language development (e.g. [99]), but also a view that the
other direction can also be valuable (e.g. [18]). The patterns observed in devel-
opment can tell us a lot about the behaviour object of analysis in itself and can
help designers of SDS teach their algorithms how to have a better grasp about
what is going on in conversation, getting inspired by the most efficient conver-
sation learners ever: babies. The patterns observed in mother-child interaction
brought us to propose two possible applications for SDS.

5.1 Communicative Feedback Learning for Laughter Meaning
Adjustments

Currently there are not SDS able to process or produce efficiently laughs with
different pragmatic functions. There have been work aimed at aligning with
human laughter behaviour [29,100], as well as work in order to implement laugh-
ing avatars mainly focused on laughter as a reaction to jokes [27]. Interpreting
laughter meaning or producing it in a pragmatically appropriate way is still an
important challenge for SDS, since it requires crucially the identification of the
laughable entailing rich multidimensional contextual processing. Maraev et al.
[62] present a suggested programme to achieve an efficient integration of laugh-
ter into SDS highlighting most importantly three essential components: (i) an
incremental interface that would operate word by word to enable the speech
and laughter to be appropriately positioned and compose the online meaning of
an utterance, (ii) appraisal techniques that would infer emotion reaction from
the incrementally processed utterance, (iii) local pragmatics that would enable
online pragmatic reasoning needed for evaluating incongruity.
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The reflections raised about the importance of caregivers’ communication
feedback for child laughter use learning, showing patterns akin to those observed
in relation to language learning, can lead to the proposal of a line of application
related to the implementation of SDS able to take in account communicative
feedback from the user to adjust laughter interpretation and use. In models of
automatic language learning it has been shown that the alternation of Cross
Situational Learning and Communicative Feedback is the most effective train-
ing setting to have better performances in a simulated ideal language learner
[75]. We can imagine a similar algorithm to be applied specifically in relation to
laughter: where its production get reinforced by contingent mimicry or explicit
multimodal responses, its meaning and argument is discussed, clarified and nego-
tiated similarly to what happens with speech utterances. Positive and negative
feedback provided by the user in relation to agent’s laughter, might help the
system in the negotiation of laughter meaning and in the identification of the
laughable. Moreover, we can also imagine such a system to be useful for tun-
ing the SDS to the users’ personal or culture-influenced laughter use preference
[36,40,71]. This would necessarily need to be implemented in a framework able
to represent laughter meaning, as well as shared and private informational and
emotional states, in order to account for grounding and clarification requests, as
proposed in [61] within the KoS framework [37].

A similar idea has been implemented in a robot producing jokes, where con-
tingent laughter was considered as a positive reinforcement feedback to accom-
modate the user’s personal humour taste [103]. The application proposed here
would relate to the accommodation of laughter meaning and use, requiring a
more complex semantic representation of the dialogic interaction situated in
context [61]. It is worth mentioning that the empirical data provided by [98],
i.e. laughter alignment in relation to the laughable is rather free, would have
been beneficial in the study of [103]. The authors indeed report how the fact
that laughter might occur with a rather free misalignment in relation to the
punch line (even before the end of the joke or several seconds after its offset)
had a negative impact on the reliability of their feedback measure, causing their
robot to miss some of the laughter responses from the users given that it was
programmed to detect them only shortly after the punchline offset.

5.2 Failure Detection and Failure Management

In caregiver-child interaction, it has been observed a particular use of laughter
from mothers, who often laugh in response to mistakes produced by the child
(in terms of phonetics, phonology, semantics, pragmatics, or kinematics) [66].
Similarly also in adult conversation we can observe laughter to be produced
in the context of incongruous misunderstanding. Taking into account laughter
user’s production might therefore be a valuable piece of information to be inte-
grated in SDS, being a potential indicator to support failure detection: when
not expected indeed, laughter from the user might signal that the generated
behaviour or utterance has been appraised as incongruous by the user in rela-
tion with the contextual interaction. Some exploratory work in this direction is
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being conducted in the context of chat bot interactions, analysing the occurrence
of laughter reaction to the automatically generated messages [30].

Moreover, as observed in numerous corpus studies, laughter is not exclusively
related to humour and can be used to smooth potentially unpleasant situations,
where the incongruity resides in the clash between the ideal flow of a conversation
or social comfort and the current situation. This can occur for example in cases
where the interlocutor is criticising the partner’s proposal or action, is disagree-
ing, is offering a dispreferred answer, or is feeling embarrassed, or is somewhat
intruding the space of the interlocutor asking for a favour or apologising. When
a failure is detected, a SDS might therefore exploit laughter in order to manage
the failure or the breakdown. This would therefore expand recent investigations
on user perceptions of different artificially inserted failures of communication in
robots [53]. Analysing the user perception and cooperativeness when laughter is
inserted in comparison to when it is not, will offer moreover good experimental
data to test the possible co-option psychological explanation advanced in [66,71].

Similar considerations have been put forward by Maraev and colleagues [61]
who present in detail how SDS would benefit from the integration of specific
laughter uses at different levels, proposing a proof-theoretic architecture of a
dialogue manager based on KoS framework [37].

6 Conclusion, Limitations and Further Directions

It is important to acknowledge various limitations of the studies presented espe-
cially in terms of sample size and languages and cultures considered, as well as
the numerous questions that are still open. Nevertheless, the studies overviewed
show with little doubt the importance of taking a multimodal approach in the
modelling of dialogue meaning in interaction. Triangulating methodologies and
different approaches it has been shown that laughter has propositional content
which interacts with speech and other modalities creating meaning incremen-
tally. This helped in understanding laughter behaviour in itself, allowing to
construct, on this pivotal assumption, a structured and reliable framework of
analysis, which resulted fruitful to capture patterns in adult conversation and to
characterise trajectories in development at different level of analysis, but also in
integrating laughter import in a formal representation of meaning in dialogue.

In particular in the current manuscript reflections on the responses produced
by caregivers to child laughter were presented. The analysis of those, mirroring
behaviours observed in responses to speech like production, once more, goes in
support of the importance of laughter meaning in dialogue modelling and sheds
light on how it is constructed and negotiated in interaction similarly to other
content bearing words.

Taken all together, the data acquired constitute useful empirical material for
the implementation of SDS and ECAs more competent from a semantic and
pragmatic perspective, both for what concerns processing and production. We
outlined the most important clear implications that we envisaged, and proposed
some possible suggestions for further applications.
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Abstract. Sign language is an important means of communication for
people with speech or hearing impairments. On the other hand, it is
difficult for normal people to understand sign language. Therefore, We
need technology to support communication between people with speech
or hearing impairments and normal people, and sign language recogni-
tion (SLR) is important to facilitate communication. In this work, we
propose an approach to recognize sign language from dynamic skeletons
using graph convolutional networks (GCNs). In this method, the convo-
lution is performed by capturing the complex dynamic skeleton of sign
language as graph structures. In addition, we suggest a skeleton data
augmentation method, which uses MediaPipe and 3D motion data to
create a new skeleton dataset for SLR from small data. We use 20 signs
from Kogakuin University Japanese Sign Language Multi-Dimensional
Database (KoSign) and achieve an average accuracy of 44.6% on top1
and 90.2% on top5 for two subjects.

Keywords: Sign language · Graph Convolutional Networks · Data
augmentation

1 Introduction

Sign language is a visual language expressed by the movements of the entire body,
including hands, fingers, facial expressions, and mouth shapes. For people with
speech or hearing impairments, sign language is a useful tool for daily interaction
instead of spoken language. Sign language can reduce barriers to communication
with people who are speech or hearing impairments. On the other hand, it is not
easy for normal people to understand sign language. Therefore, we need a platform
built with algorithms to recognize various sign languages, which is called Sign Lan-
guage Recognition (SLR) [1]. It is a technique that assists communication between
people with speech and hearing impairments and normal people.

In general, human actions can be recognized from various data modali-
ties, such as RGB, depth, and skeleton [2]. Among them, skeleton data for
action recognition are easy to acquire using depth sensors, and highly accurate
human pose estimation methods have been realized, such as OpenPose [3] and
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MediaPipe [4]. In recent years, a method using Graph Convolutional Networks
(GCNs) was quoted in action recognition using skeleton data as input [5]. GCNs
is a convolutional neural network that input is graph structures represented by
a matrix. If the skeleton data is a graph structure, nodes correspond to body
joints and edges correspond to segments between body joints. This makes it pos-
sible to consider the relationships segments between body joints and to recognize
complex actions.

A main issue for SLR is how to collect training datasets. Currently, there
is no large dataset consisting of a large number of people in Japanese Sign
Language. Another main issue of our research is what methods of GCNs to use.
We use 3D motion data to make a 3D human model do sign language to cover
the small amount of training data and capture it from different view directions.
Additionally, we use the MediaPipe to collect the skeleton data from the acquired
videos. We use Spatial-Temporal Graph Convolutional Networks (ST-GCN) [5]
to recognize the actions of the sign language. In this work, I suggest a new
approach for SLR using GCNs that can recognize the complex movements of sign
language based on the human skeleton. Additionally, we present a new dataset
of human skeletons for SLR using a skeleton data augmentation method.

2 Related Works

Skeleton-based action recognition has received increasing attention in recent
years. Yan et al. quoted Spatial-Temporal Graph Convolutional Networks (ST-
GCN) [5]. As shown in Fig. 1, ST-GCN can go beyond the limitations of con-
ventional methods and automatically learns both spatial and temporal patterns
from the data, resulting in higher expressive power as well as stronger general-
ization capability. The same graph structure is used for all layers, and only the
positions of the joints are given as information in ST-GCN. The source code of
ST-GCN is open to the public on GitHub.

Fig. 1. ST-GCN combines convolutional processing for spatial graphs and temporal
graphs.

In addition, a highly accurate skeleton estimation method has been realized.
Lugaresi et al. quoted MediaPipe, which is machine learning (ML) solutions for



136 Y. Nakamura and L. Jing

live and streaming media [4]. It offers sixteen different solutions on six different
platforms. Python platform can estimate skeleton data such as the face, hands,
and body of persons in images.

Kogakuin University Japanese Sign Language Multi-Dimensional Database
(KoSign) [6] was quoted as a database of various data on Japanese Sign Language
by Nagashima. This database consists of sign language video data (MXF, MP4),
3D motion data (BVH, C3D, FBX), and depth data (XEF) taken from two
native speakers of the Japanese Sign Language. Additionally, KoSign provides
Multi-dimensional data Annotation support Tool for Sign Language Dialogue
(MAT) with its source code. MAT can be used for the word data it provides, for
drawing, and as a tool to assist in phonetic and morphological analysis.

Most of the sign language datasets provided consist of a small number of
subjects, and the number of data for a sign is small. In KoSign, the average
number of RGB videos per sign is 6. The American Sign Language Lexicon
Video Dataset (ASLLVD) is a dataset consisting of 1–6 native ASL signers and
2742 signs [7]. It is an imbalanced dataset, and the average number of RGB
videos per sign is 3.6. LSE-Sign is a dataset consisting of 2 native signers of
Spanish Sign Language and 2400 signs [8]. The average number of RGB videos
per sign of the dataset is 1. Therefore, all datasets have an average number of
RGB videos per sign of less than 10. Samples of some signs in these datasets are
insufficient. Our skeleton augmentation method allows us to increase the number
of data from a small dataset using 3d motion data.

3 System Design

Figure 2 shows the system architecture. First, we apply the skeleton data aug-
mentation method. We use KoSign’s 3D motion data and MAT to make a 3D
human model do sign language in Unity and capture it from different view direc-
tions. We use the videos for training. For the test, we use RGB videos are
acquired from two non-native signers using a single Azure Kinect DK. Next,
we use MediaPipe to collect the skeleton coordinate data from the training and
test videos. Finally, we use ST-GCN to train the training data and classify the
signs of the test data.

3.1 Collection of Training and Validation Data from CG Data

In the first step, we acquire videos of sign language for training using the skeleton
data augmentation method. An overview of the technique is shown in Fig. 3.
KoSign’s 3D motion data has a total of 3,701 signs, and we use 20 of these signs.
The 3D motion data in the BVH format of KoSign is used to acquire the videos
for training. BVH consists of skeleton data and motion data.

In this work, we use MAT to load the BVH file and make the 3d human model
to do the selected 20 signs. We set the frame rate of the videos to 30fps and use
Unity Recorder to capture it. There is no shadow on the 3D human model in
the default settings of MAT. Therefore, when the hand and face are the same
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Fig. 2. Overview of the system architecture

Fig. 3. Skeleton data augmentation method

color and they overlap, MediaPipe is unable to recognize between the hand and
face, which affects the skeleton estimation. In this way, we change the material
of the 3D human model to add a shadow. We capture nine different views from
the same sign in Unity. As shown in Fig. 4, the human model is captured at the
same distance but from nine different yaw angles and pitch angles: −30◦, 0◦,
30◦.

The training videos are segmented to generate videos with only the sign
language part and label the segmented videos. The dataset of CG is split into
training and validation. We assign a proportion of 80% of the samples for training
and 20% for validation.

3.2 Collection of Test Data

In the second step, we acquire videos of the sign language for the test. RGB
videos for the test are captured by a single Azure Kinect DK. The test dataset
consists of one front view captured from two non-native signers using the camera.
We set the frame rate of the Azure Kinect DK to 30 fps, the same as the training
videos. We collect the test data indoors. Finally, we generate videos of sign
language parts only of the test videos as well as the training videos and label
the segmented videos.
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Fig. 4. The 3D human model was captured from nine view directions. The yaw and
pitch of each view direction are represented by (p, y).

3.3 Skeleton Estimation with MediaPipe

In the third step, we estimate skeletons from all frames of segmented videos using
MediaPipe. We use MediaPipe Hands and Pose to estimate the coordinates of
training and test videos for all frames in segmented videos. MediaPipe Hands is
a high-fidelity hand and finger tracking solution that uses ML to infer 21 3D key
points of the hand from RGB videos frames. MediaPipe Pose is an ML solution
for high-fidelity body pose tracking, inferring 33 3D key points from RGB videos
frames. Therefore, Media Pipe Hands and Pose consist of a total of 75 key points
as shown in (a) and (b) of Fig. 5.

Default of MediaPipe includes the coordinates of joints that are not used for
sign language, such as hip and legs. In addition, the joints of the body, mouth,
and eyes are not connected and there are three graph structures. They need to
be made into a single graph structure for GCNs. For this reason, we adjust the
key points of MediaPipe. We add nodes at the center of the shoulder and mouth
and edges between the shoulder, mouth, and nose to create a single graph. We
select the 59 key points, of which 5 refer to the shoulders and arms, 21 refer to
each hand and 12 refer to a face. In other words, the pause was changed from
33 key points to 17 key points as shown in (c) of Fig. 5. Finally, we save the
estimated key points in CSV files.
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Fig. 5. MediaPipe’s default Hands (a) and Pose (b). Key points of MediaPipe Pose
after the adjustment (c).

3.4 Sign Language Classification Using ST-GCN

In the final step, we use the training and validation data to create an SLR model
and evaluate the model with the test dataset. Figure 6 shows an overview of the
SLR using ST-GCN. We make changes to the ST-GCN source code to be able
to train and test the dataset we have created.

Fig. 6. Overview of SLR using ST-GCN

First, we create an array of (number of samples, xyz coordinates, number of
frames, number of joints, maximum number of bodies drawn) from the dataset in
the CSV files to accommodate the ST-GCN input. In this process, we unify the
frame length of all the data. In this work, the number of fixed frames adopted is
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80. In addition, the number of bodies joints and the maximum number of bodies
drawn is always 59 and 1. Second, we serialize the data and save it in a binary
file. We use NPY files as binary files. We define a new graph layout for ST-GCN
to adapt segments between body joints of the dataset. This setting allows for 59
joints of the dataset to be supported. We set the training batch size to 8, dropout
to 0.2, optimizer to Adam, and learning rate to 0.01. In addition, we finish the
training at Epoch 500. Each joint is labeled using a partitioning strategy called
Spatial Configuration Partitioning [5] during convolution operations.

4 Experiments

4.1 Data Acquisition

The 20 signs selected from KoSign to be used as training data are shown in
Table 1. Since the sign language of the 3d human model is captured from 9
directions, 9 videos were acquired for each sign and we acquire a total of 180
samples. In the test data acquisition, there are two non-native signers, and the
height and distance are the same. We capture 5 videos for each sign. The number
of samples acquired in the test data is 200. Details of the training and test videos
environment are shown in Table 2.

Table 1. Selected signs for the experiments.

Table 2. Details of the environment for training and test video acquisition.

4.2 Skeleton Estimation

We save the x,y,z coordinates of the joint data estimated using MediaPipe, the
number of frames, and the number of joints in a CSV file. Finally, dropped
frames could not be estimated when estimating the skeleton with MediaPipe.
We dropped frames for which either Hands or Pose estimation was not possible
and removed the files with dropped all frames. As a result, the final sample size
was 173 for the training and validation data and 193 for the test data.
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5 Result

Figure 7 shows the accuracy of our approach in recognizing the 20 signs selected
from KoSign. The top k accuracy corresponds to the accuracy based on the k
most likely responses presented by the model. In this approach, we achieve an
average accuracy of 44.6% for the top 1, 79.8% for the top 3, and 90.2% for the
top 5.

Fig. 7. Sign Language Recognition in this work performance on the test dataset. We
report the accuracies on top1, top3, and top5.

As shown in the results, Our SLR model does not achieve high accuracy.
MediaPipe may not be able to correctly estimate the skeleton of the hand move-
ments overlap. In addition, when the frame rate is low, if the hand movements
are too fast, the image becomes blurred and the skeleton cannot be recognized
correctly. When these things happen, we can’t acquire the skeleton information
from the frame and the frame is dropped as a missing frame. In my research, we
remove files that have had all their frames dropped. There are 14 files in total in
the CG and Kinect datasets that were removed. This may be the reason for the
low accuracy. It is also possible that there is simply not enough data. One way
to improve these is to simply increase the frame rate of the dataset for training
and test. Additionally, using data augmentation to increase the total number of
data may solve this problem.

6 Conclusion

We presented our approach to SLR using the skeleton data augmentation method
and ST-GCN. This research uses many key points that are different from tra-
ditional studies [9]. The use of 42 key points for both hands combined has the
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potential to accommodate the complex finger movements of sign language. In
addition, the inclusion of facial skeleton data may allow for the correct recogni-
tion of signs with few differences. The skeleton data augmentation method will
help to solve the problem of imbalanced data of skeleton data.

For future work, we consider improving our data acquisition method. For
example, using a highly accurate human pose estimation method than MediaPipe
or increasing the frame rate of the videos might improve the SLR performance.
In addition, if CG can be generated from the skeleton data of MediaPipe, the
skeleton data augmentation method can be used without using Motion Capture,
which takes a long time to acquire, enabling highly accurate learning from a
small amount of skeleton data.
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Abstract. The study of gesture elicitation in Human-Computer Inter-
action (HCI) aims to improve the interaction with the computational
environment, providing improved usability and a consequent increase in
performance in executing their tasks. In environments using augmented
reality, gestures are preferable over eye gaze, as, in the former, the user
does not take the focus off the field of work. However, unnatural motions
are more difficult to memorize, and their use puts any gains from using
the technique at risk. Thus, it is necessary to elicit gestures to discover
which incorporated movement appears naturally when the user is asked
to send a specific command to the interface. This work aims to elicit
natural gestures for an augmented reality environment. During the elic-
itation process, research subjects were presented with stimuli to which
they should react by performing gestures that represent commands for
the interface in an augmented reality environment, such as, for exam-
ple, moving forward, backward and changing zoom (scale). As a result,
434 movements were found, with an average of 18 movements per per-
son, where nine actions for the right hand and nine for the left hand
were separated. In addition, the movements made by the participants
were categorized into bi-manuals, those that were worked with both
hands to carry out the interaction, uni-manual movements, which is when
the participant used only one hand, and symmetrical bi-manual, when
the participant performed a move with one hand that depended on the
other hand to complete the interaction. After these analyzes of individ-
ual movements, an average of 3 movements considered natural for each
interaction were obtained, in which the researchers chose the two most
performed by each participant; each movement resulted from an analysis
carried out considering the naturalness in which the gesture was per-
formed and also the ease that the participant had to do so. The gesture
chosen for each command was the one whose category had the highest
number of natural occurrences, the one that had the most performed
category by the participants.
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1 Introduction

Since the studies initiated by Jacob O. Wobbrock, the elicitation of gestures is a
technique that allows the collection of input preferences, in their symbolic value,
by end-users [22]. This method makes it possible to discover between the input
of manual gestures in the computational context, which acts as a popular tool
for exchanging information between users and a [19] interface.

The use of gestures proves to be beneficial in performing tasks, especially
when the stimulus for their execution is linked to the daily life of users, providing
more enriched information, especially when the task requires maintaining focus
on the activity while using the application. This is particularly important for
Augmented Reality (AR) cases, where movements are performed in an embodied
[21] manner.

Gestures have great importance in human communication, as they are con-
sidered an extension of their expressions. The movement of the hands during a
person’s speech, in most cases, presents propositional aspects to the true meaning
of the speech that the individual is performing [8]. Human gestural communica-
tion can be characterized as natural interaction with its speakers. Each gesture
performed can be considered idiosyncratic; for some authors such as [7] this hap-
pens due to the state of each person in each person is submitted to the execution
of these gestures, such as anger, love, lie, truth, among other feelings.

This work aims to elicit gestures in augmented reality environments. The
process of discovering gestures must occur naturally so that each person can
learn the proposed gestures to interact with virtual objects such as rotation,
translation, zoom. Gestures learned naturally facilitate their identification to
carry out the tasks proposed for each user. The elicitation process consisted of
experimenting with 25 participants, aged between 18 and 40 years and by male
and female gender, 15 men and ten women. The research subjects performed the
gestures that best expressed their intentions during the tests and made them
aloud. For example, the researcher asks which gesture the participant would
perform if he wanted to change the size to scale of a given 3D object immersed
in the AR environment, the participant, in turn, would perform a gesture that he
thought was appropriate for that proposed interaction, which we call elicitation.
Open, where participants had complete freedom to perform any movements that
were relevant to them.

In the following section, information about gestures in augmented reality
and accessibility environments is shown. In Sect. 3, the theoretical basis for the
construction of the work is demonstrated. Section 4 introduces related works.
This work methodology is presented in Sect. 5. Section 6 refers to data collection.
Data analysis is discussed in Sect. 7. We present the gestures elicited in section
eight. The ninth and last section is reserved for discussions and future work.
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2 Gestures and AR

The study helped identify two new parametric categories for classifying gestures.
Exclusive to AR: while [23] featured gestures in terms of Shape, Nature, Con-
nection, and Flow. In some studies, the authors observed that the size of the AR
object affected the number of hands used to manipulate the objects (e.g., for
palm-sized or smaller objects, just one hand; for larger objects, two hands) [12].

One result of an elicitation study is the production of a mapped set of inputs
called a consensus set ([1], and [2]). Most More useful than a single set of mapped
inputs is observational data that comes from elicitation studies. This includes
insights into the formation of inputs, the times surrounding input generation, and
trends in user preferences for inputs and input modalities. An example of these
extended benefits is the finding that the size of a proposed gesture is impacted
by the size of the displayed object [16]. This work extends previous studies of
gesture elicitation in AR [13] by testing additional modalities of isolated speech
and multimodal interactions of gesture and speech and allowing gesture proposals
for each referent. Furthermore, the set of interactions presented here shows the
main proposals allowing a better interpretation of trends in the formation of the
gesture [21].

3 Theoretical Foundation

3.1 History of Gestures

Among the fundamental characteristics of human language, learning through
interaction is transmitted over generations and varies according to the types of
existing human societies. For some authors found in the literature such as [14],
the origin of gestures are discussed with four proposed hypotheses, namely: phy-
logenetic ritualization, which is a process in which communication is displayed
as a sign of dominance, which may emerge due to the lack of movements body
as they are borrowed from other contexts which are where a communication
signal is created by two individuals shaping the behavior of both in repeated
instances of interaction over time, ontogenetic ritualization which refers to situ-
ations where observers acquire parts from the gestural representation of copying
the gestures that are directed to them, social learning by imitation and social
learning through negotiation that takes into account the shared understanding
of gestural meaning originated from a mutual construction in real-time for both
members.

However, speech extends beyond what can be considered an expression of
content, a social form of action where gesture plays an important role. One
of the first psychological approaches to the modern study of gestures can be
found in the work of David McNeill “Do you think gestures are nonverbal” [6].
In this work, David McNeill approaches the conceptual content aspects of the
utterance, observing through an examination the hand movements considered
as components integrated into the utterance produced.
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Thus, gestures are an indecomposable part of speech, where McNeill recog-
nized that people, when gesturing, express what he called pragmatic content;
that is, gestures are always in conjunction with speech. McNeill further con-
sidered that gestural movements conceive a kind of mental image form of the
components that people are gesturing about in their speech and conclude in
his book “Hand and mind: What gestures reveal about thought”, that gestures
reveal about thinking, involving cognitive processes in the production of utter-
ances rather than considering gestures as the final component of an utterance in
the process of social interaction [7].

3.2 Gesture Elicitation

GES emerged from the need for the importance of understanding different
devices and environments; this premeditates the increase in the user’s ability
to interact with more complex environments [11]. Some studies found in the
literature demonstrate that gestures can be elicited by experts such as [3,20],
while others demonstrate precedence for gestures created by the experiment users
themselves, such as the works of [1,10,23].

This study aims at mapping the input of technologies through an interactive
design, in which these inputs must be discovered by the users of the [21] systems.
GES aims at a better understanding of users’ behavior, as, for example, gestures
performed on the upper parts of the body are preferred; GES has also seen use
for various input domains where it can be found on multi-touch surfaces. As in
[1] and mobile devices in [15].

3.3 Concepts and Terminology

Figure 1 shows how the gesture elicitation process takes place. The experiment is
conducted by each participant individually, where sessions can last up to 20 min.
Participants are submitted to CAD modeling tasks, images, or videos, and later
their actions will be captured and analyzed by external researchers.

Some terminology about GES found in the works of [5], and [19] will be
shown below.

– Navigation: Navigation refers to the tasks of moving the participant’s view-
points. The user can perform tasks like zoom and orbit. The participants are
positioned so that their field of vision is in a panoramic way in relation to the
interactions that are submitted;

– Manipulation: This term refers to methods in which an object’s parameters
are changed, such as positioning, orientation, and scale. The categories that
were denoted in Fig. ?? were rotated, resized (scale), copied, and moved. For
this technique, the participants also positioned themselves so that their vision
was in panoramic mode;

– Primitives: In this group are concentrated forms free of manipulation, such
as cone, prism, and box. Usually, in this group, static images are shown to
the participants. The term freeform is used to refer to 2d objects that contain
lines and curves as components;
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Fig. 1. Methods for the process of eliciting gestures - available in [5]

– Models: Refers to the objects used during the execution of the experiments
with the participants. Models can be in either 2D or 3D format and serve as
a method of interaction between the interface and users;

– Agreement: Occurs when you have a situation where the gestures of two or
more participants are evaluated as being identical according to the rules,
criteria, or similarity function. For example, the researcher may consider that
the direction of the gesture and the speed are important factors for evaluation
in the process of eliciting gestures;

– Agreement Rate: It is the numerical measure that has the function of quantify-
ing the agreement between the elicited gestures of the participants. Example:
Of the 20 study participants, three subgroups of sizes 9, 7, and 5 appear for
the “Dim illuminates’ so that all participants in each subgroup They Agree.
The agreement score [22] calculates (9/20)2 + (7/20)2 + (5/20)2 = 388 and
according to [18], (9 * 8 + 7 * 6 + 5 * 4) = (20 * 19) = 353;

– Command: It is the action that activates the execution of the functionalities
in the user interface. It can also be known as a gesture command, where
the gesture is represented as an input action for interactions. For example,
the researcher asks the participant which gesture can be used to rotate a
3d object, the participant, in turn, would propose a gestural movement that
he/she found convenient to perform that task;

– Consensus Rate: A measure of agreement found in [17] that employs dissim-
ilarity and tolerance functions;

– Set of Gestures: It is the set considered with the highest number of the agree-
ment for the referents proposed to the participants. For example, in an exper-
iment with 20 people, 15 participants concluded that hand rotation, with the
fingers pointing forward, rotating clockwise, was considered an appropriate
gesture to rotate an object;
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– Dissimilarity function: Function responsible for calculating the value that is
reflected when eliciting two different gestures found in [17];

– Elicitation: It is the process of provoking participants to respond to referents
and proposing new gestures to affect these interactions. The elicitation can
be closed where the researchers already have a set of predefined gestures that
will be later consolidated with the experiment participants in the process of
eliciting these and gestures. And then, there is open elicitation where the
researchers do not have this predefined set and let the participants decide for
themselves which gesture they will perform during the elicitation experiment;

– End User: Final phase of the gesture elicitation process, it can be considered
as an interactive device, application, or system for which the elicited gestures
will compose the user interaction part;

– Function: Interface resource used to execute commands and relationship
between gestures and referents;

– Gesture: A movement of a part of the whole body used to interact with the
environment and respond to the action of referents;

– : Interface feature that can be controlled using an automated command or the
execution of an elicited gesture. Such as, for example, rotating a 3D object
in the augmented reality environment;

– Symbol: Any action that makes sense to evoke a referent in its function form,
for example, air gestures, dash-shaped gestures, voice commands, icons, but-
ton labels, menu items;

– Participant: Subject who volunteers to participate in the gesture elicitation
experiment.

4 Related Work

Multimodal interaction techniques using gestures and voice offer architects and
engineers a natural way to create computer-aided design models. The work of
[5] conducted an experiment with 41 participants to obtain gesture and speech
preferences for references and making these models. The authors presented a
compilation of gestures evaluated by experts as the most suitable for articulation,
as well as a set of terms and commands extracted from the participants’ speech.
And finally, they provide recommendations for the design of a CAD modeling
system based on gestures and voice for projects.

The work of [21] establishes a better understanding of syntax choices in
the types of multimodal interactions reproduced by users’ speech and gestures
in augmented reality environments. The paper presents a multimodal elicita-
tion study carried out with 24 participants. The canonical referents for transla-
tion, rotation, and scaling were used along with some abstract referents (create,
destroy, and select). In this study, time windows for multimodal interactions of
gestures and speech are developed using the start and stop times for gestures
and speech, as well as trigger times for gestures. Finally, trends in the most
common proposals for each modality are examined. They are showing that the
disagreement between the proposals is often caused by a variation in the posture
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or syntax of the hand. This allows you to present aliasing recommendations to
increase the percentage of natural user interactions captured by future multi-
modal interactive systems.

The study by [11] looks at how to find a set of gestures for 3D travel using a
multitouch screen and a mid-air device to improve user interaction. A user study
was carried out with 30 subjects, concluding that users prefer simple gestures to
multitouch. Furthermore, the researchers found that the legacy of the multitouch
user is carried over by mid-Air interaction. Finally, the work proposes a set of
gestures for both types of interaction.

In the work of [9], a gesture elicitation study is carried out with 25 visually
impaired users. Quantitative classification analysis is performed with them, and
an ideal set of gestures is obtained. Furthermore, typewriting is proposed using
which visually impaired users can interact with computers. In this work, an
overview of the gesture selection method is presented, and some important facts
about ideal gestures are revealed.

What differentiates our research from other works is the fact that we carried
out an open elicitation with the participants, guaranteeing their freedom during
the experiment and allowing the gestures to be elicited in the most natural way
possible.

5 Our Methodology for Gesture Elicitation in RA
Environments

5.1 Test Scenario

The Test Scenario consists of setting up an environment that simulates the inter-
face of an application, with the purpose that the user starts from a question-
naire containing the available functions to interact with the AR environment.
The functions are FORWARD, BACK, POUNDS, CLOSE, ROTATE, SCALE,
AND RECORD. The complete environment contains a smartphone application,
virtual reality glasses, and a camera to capture the gestural movements of the
participants. As shown in Fig. 2.

With the application in hand, the user will be submitted to the question-
naire where each question concerns the gesture in which the interaction with the
application will be used. All questions will be answered in the form of gestures;
that is, each answer consists of a gesture performed naturally. During this stage
of answers, the process of open elicitation was carried out, where the user has
complete freedom to make a gesture that he/she finds plausible to answer the
questions. While the user performs the gestures to answer the questions of the
questionnaire, his hand movements will be captured where later, after perform-
ing a common factor with the other participants, the assignment of each gesture
to the functions contained in the AR application. The capture of the hands is
done from the top of the participant so that it simulates their vision. Performing
this process, the gestures tend to be performed naturally, making the interac-
tion with the application easier making the participant more comfortable and
familiarized while using the application.
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Fig. 2. Application for test scenario and capture of participants’ hand movements

The target audience is people with/without knowledge about virtual and
augmented reality concepts, as long as they follow the questionnaire didactically.
It is not necessary to have extensive knowledge about this area, as the main
purpose of this scenario is the process of eliciting the gestures to be used in the
AR application. For this, the movements of several hands are captured during
the execution of the test scenario.

5.2 Questionnaire for the Gesture Elicitation Process

The applied questionnaire contains questions related to the interaction functions
of the AR environment that are present in both video interfaces and 3D models
(FORWARD, BACK, POUNDS, RECORD, and CLOSE), where the response
form is a gesture performed by the user. Each question consists of a different
scenario, where the function intended for the question and the gesture that the
user would like to perform to interact with the application are described.

Scenario 01 - Gesture Elicitation for the FORWARD function (Steps) of the
AR environment. Question 01: Which gesture would you perform to advance
to the next video? Given that: There is a forward function in the application.
When: The user performs a gesture that he/she finds coherent for the function
to advance. Then: This gesture would be captured.
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Scenario 02 - Gesture Elicitation for the BACK function (Steps) of the AR
environment. Question 02: What gesture would you perform to go back to the
previous video? Given that: There is a back function in the application When:
The user performs a gesture that he/she finds coherent for the function to return.
Then: This gesture would be captured.

Scenario 03 - Gesture Elicitation for the POUNDS function of the AR envi-
ronment. Question 03: What gesture would you perform to activate the video
pounds function? Given that: There is a function to enable video library in the
application When: The user makes a gesture that he/she thinks is coherent for
the function to activate video pounds. Then: This gesture would be captured.

Scenario 04 - Gesture Elicitation for the RECORD function of the training
carried out within the AR environment. Question 04: What gesture would you
perform so that the system could start recording your actions? Given that: There
is a function of recording training in the application When: The user performs a
gesture that he/she finds coherent for the function of recording training. Then:
This gesture would be captured.

Scenario 05 - Gesture Elicitation for the CLOSE function of the training car-
ried out in the AR environment. Question 05: What gesture would you perform
so that you could EXIT the augmented reality application? Given that: There
is a function to close training in the application When: The user performs a
gesture that he/she thinks is coherent for the function of closing training. Then:
This gesture would be captured.

Scenario 06 - Gesture Elicitation for ZOOM/SCALE function in 3D objects
in the Ar environment. Question 06: What gesture would you perform to zoom
in and out of the 3D object displayed on the interface? Given that: There is a
pause function in the application. When: The user makes a gesture that he/she
thinks is coherent for the zoom function. Then: This gesture would be captured.

6 Data Collection

The elicitation process consisted of carrying out an experiment with 25 partic-
ipants, aged between 18 and 40 years, and also by male and female gender, 15
men and ten women. During the tests, the research subjects performed the ges-
tures that best expressed their intentions and made them out loud. For example,
the researcher asks which gesture the participant would perform if he wanted to
change the size to scale of a given 3D object immersed in the AR environment,
the participant, in turn, would perform a gesture that he thought was appropriate
for that proposed interaction, which we call elicitation. Open, where participants
had complete freedom to perform any movements that were relevant to them.

Figure 3 represents a graph with the ages of the participants. Participants
were divided into groups of 18–29 years, 30–39 years, 40–49 years, and over 50
years.
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Fig. 3. Age of participants

Figure 4 represents data with participants who have already used devices that
work with virtual/augmented reality shown in blue and participants who have
never used these devices shown in red.

Fig. 4. Use of virtual/augmented reality devices (Color figure online)

As a result, a total of 434 movements were found, with an average of 18 move-
ments per person, where nine movements for the right hand and nine movements
for the left hand were separated. In addition, the movements made by the par-
ticipants were categorized into bi-manual, those that were worked with both
hands to perform the interaction, uni-manual movements, which is when the
participant used only one hand, and symmetrical bi-manual, when the partici-
pant performed a movement with one hand that depended on the other hand to
complete the interaction.
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7 Data Analysis

After completing the questionnaire and capturing the participants’ hand move-
ments, the videos were submitted on situated analysis techniques added to the
Elan program. ELAN is the acronym for EUDICO Linguistic Annotator; this
tool was created for multimodal analysis, for complex labeling of audiovisual
resources. It has a layer-based data model that supports multi-level annotations,
and multi-player time-based media [4].

With Elan, it was possible to add annotations during the execution flow
of each video. The notes contain descriptions of the movements made by each
participant, such as for the gesture of moving forward, descriptions were made of
how the participant performed the movements of his hands from the beginning
to the end when he lowered his hands to perform the next movement. See Fig. 5.

Fig. 5. Elan annotation interface

Figure 6 represents an example of how annotations are extracted from par-
ticipants’ videos. Participants were renamed Research Subject (SP), where each
SP has its respective referents, such as the forward function and, for this func-
tion, the description of the movements of each of the hands. Each hand has its
own distinctive character, where we color the movements categorized through a
common factor derived from the videos capturing the movements of the hands
of the SPs as well as the notes extracted from Elan.

The researchers organized by color each movement performed by the SPs.
And after this separation, the elected movements were those that obtained the
greatest common factor on the part of the participants. The descriptions were
separated for each hand individually, showing from the beginning of the elicita-
tion where the SP starts by raising the hand until the end when he lowers it at
rest.
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Fig. 6. Annotations extracted from videos

Figure 7a represents the most common hand movements performed among
all SPs during the execution of the gesture elicitation experiment representing
the forward referent, and Fig. 7b demonstrates the common factor of annotations
for the referent return.

For example, the gesture for the function of advancing, the researchers chose
six types of movements in common by the participants. For the advance function,
the gesture in which the SP makes the movement with the open hand from right
to left was the most common execution among the others, demonstrating a
natural movement because it emerged from a provocation made to the SP, and
he performed his movement naturally.

The same occurs for Figs. 8a, 8b, 9a and 9b.

(a) Forward gesture (b) Return Gesture

Fig. 7. .
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(a) Scale Gesture (b) Close Gesture

Fig. 8. .

(a) Pounds Gesture (b) Recording Gesture

Fig. 9. .

8 The Gestures Elicited

After analyzing the individual movements, an average of 2 movements considered
natural for each interaction were obtained, in which the researchers chose the
two most performed the participant; each movement resulted from an analysis
performed considering the naturalness in which the gesture was performed and
also the ease of use. That the participant had in doing so. The gesture chosen for
each command was the one whose category had the highest number of natural
occurrences, the one that had the most performed category by the participants.

Next, we have the demonstration of the main gestures elicited from the appli-
cation of this elicitation experiment. The images contain the name of the gesture
and its movement being performed. The choice of the two most elected move-
ments is due to the Libras referent having been elicited only two movements,
so for the sake of standardization; the researchers decided to leave only the two
most common movements for each gesture.
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In Fig. 10a the first gesture elicited for the advance function is shown, where
the participant performs the movement of moving the open hand to the right,
in Fig. 10b the second gesture for the advance function is demonstrated, where
the participant points the finger to the right. In Fig. 11a there is the first ges-
ture elicited for the return function, in which the hand movement is performed
towards the left, in Fig. 11b we find the gesture for the return function with the
participant performing the left-pointing motion. In Fig. 12a, the participant per-
forms the first gesture elicited for the scaling function, moving his hands away
in opposite directions, while in Fig. 12b, the participant performs the second
gesture elicited with pinch movements. In Fig. 13a, the participant performed
the first gesture elicited for the recording function, joining the index and thumb
fingers of the hands, and in Fig. 13b the second gesture elicited for the recording
function. In Fig. 14a for the Libra function, the participant makes a movement
with the symbol of L in the first elicited gesture, and in Fig. 14b, the partic-
ipant makes an anticlockwise movement with the little finger upwards in the
second elicited gesture. In Fig. 15a the participant performs a zig-zag movement
with his hands for the first gesture elicited for the end function and Fig. 15b the
participant lowered his hands in the second gesture elicited for the end function.

(a) forward gesture 1 (b) forward gesture 2

Fig. 10. .

(a) Return gesture 1 (b) Return gesture 2

Fig. 11. .
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(a) Scale gesture 1 (b) Gesture scale 2

Fig. 12. .

(a) Record gesture 1 (b) Record gesture 2

Fig. 13. .

(a) Pounds gesture 1 (b) Pounds gesture 2

Fig. 14. .

(a) Close gesture 1 (b) Close gesture 2

Fig. 15. .
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9 Discussion and Future Work

It is concluded that the elicited gestures occurred naturally; that is, each gesture
was generated from a stimulus caused by the methodology of the experiment
applied to the participants. The researchers’ analysis also showed more than one
gesture for each task proposed by the questionnaire while recording the videos;
that is, each task can be performed by more than one elicited natural gesture, the
open elicitation process provided more naturalness and ease during the execution
of gestures by the participants, making the interaction process as comfortable
as possible during the application of the experiment and the use of this type
of interaction in augmented reality applications. As future works, we propose
the expansion of gesture research with the PCD public (person with disabilities)
so that we can elicit other types of gestures and also prove the accessibility of
gestures currently discovered.
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dade Estadual do Ceará. In addition, developed by Lead - Research, Development and
Innovation Center Dell.
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Abstract. To consistently compare gesture recognizers under identical
conditions, a systematic procedure for comparative testing should inves-
tigate how the number of templates, the number of sampling points, the
number of fingers, and their configuration with other hand parameters
such as hand joints, palm, and fingertips impact performance. This paper
defines a systematic procedure for comparing recognizers using a series of
test definitions, i.e. an ordered list of test cases with controlled variables
common to all test cases. For each test case, its accuracy is measured
by the recognition rate and its responsiveness by the execution time.
This procedure is applied on six state-of-the-art template-based gesture
recognizers on SHREC2019, a gesture dataset that contains simple and
complex hand gestures tested and is largely used in the literature for com-
petition in a user-independent scenario, and on Jackknife-lm, another
challenging dataset. The results of the procedure identify the configura-
tions in which each recognizer is the most accurate or the fastest.

Keywords: Gestural interaction · Gesture recognizer · Hand gesture
recognition · Real-time recognition · Template matching

1 Introduction

Miniaturized sensors are today incorporated into almost any everyday object or
wearable object, such as smart watches and smart glasses, offering new sources
of input for new forms of interaction [3]. Touchless user interfaces enable end
users to view, control, and manipulate any type of digital content [18], such as an
object, an item, a scene, without physically touching the device, with fingers [7],
hands [1,34]. They are explored in a wide range of demanding contexts of use
to the point that touchless interaction becomes a requirement. A comparative
study is a research approach to evaluate a group of two or more instances of
a tool, process, or software system. It relies on a framework to compare differ-
ent systems that must be described in detail [17]. It is a test that differs from
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M. Kurosu et al. (Eds.): HCII 2022, LNCS 13519, pp. 160–179, 2022.
https://doi.org/10.1007/978-3-031-17618-0_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-17618-0_13&domain=pdf
http://orcid.org/0000-0002-0222-0029
http://orcid.org/0000-0003-0804-0106
http://orcid.org/0000-0003-4854-8502
http://orcid.org/0000-0003-3834-9358
http://orcid.org/0000-0003-3275-3333
https://doi.org/10.1007/978-3-031-17618-0_13


A Systematic Procedure for Comparing Template-Based Gesture Recognizers 161

benchmarking, which evaluates performance against standard values on a group
of metrics. While a significant body of knowledge exists for gesture recognition
using sophisticated Machine Learning (ML) techniques, this article focuses on
the family of template matching recognizers, which recognize a candidate gesture
that matches a gesture class represented by a limited set of training templates.
We consider this family of recognizers for their important properties [19]:

1. End users wish to interact by gesture in real time with their associated data
with a discrete or continuous control. This interaction requires a low response
time (e.g., 0.1 s according to Nielsen [21]) and a high accuracy (e.g., a recog-
nition rate of ≥ 90% [20,31]).

2. For designers, gesture vocabularies should be straightforward to design, to
prototype [4], to edit, and to expand, particularly for user-defined ges-
tures [32].

3. For a developer, these recognizers do not require extensive expertise in artifi-
cial intelligence as they are easy to train, modify, understand, compute, and
interpret [6]. Their incorporation into a development cycle is clear. Pattern
matching based on templates is widely used in system development [6].

The remainder of this paper is structured as follows: an introduction addresses
the topic of existing surveys and other comparative testing focusing on the Leap
Motion Controller (LMC). Section 3 presents some related works of comparative
studies. Section 4 defines and applies the systematic procedure for comparative
testing. Section 5 discusses the results. Finally, the document concludes with
future research efforts and perspectives.

2 Related Work

Much work has been done on gesture recognition and particularly during the
last decades, mainly on algorithms to effectively and efficiently recognize 2D
gestures [5,11,26,28] (see [18] for a survey), then 3D gestures in general [33]
and for LMC in particular [14], mainly inspired by Artificial Intelligence (AI),
Machine Learning (ML) [14] and computer vision [8,23].

At the same time, many comparative studies were carried out in gesture
recognition and related fields. The comparative study of Khan et al. [16] con-
cerns various vision-based hand gesture recognition systems based on three main
characteristics: segmentation, detection of features, and extraction phases. While
another comparative study evaluates the effectiveness of a proposed feature selec-
tor method by comparing it with three other methods based on four performance
measures and the prediction time; in order to demonstrate the impact of the
feature selector in the performance of data fusion in activity recognition [30]. A
comparative study between different devices to evaluate them in a game design
context [15]. Despite the presence of numerous comparative testing for gesture
recognition and related topics, there are none for hand gesture recognition using
an LMC. Ferrer et al. [13] made a comparative study of a number of features for
predicting human motion based on the minimum curvature variance. Although
there are many comparative trials for gesture recognition and related topics,
there are none for hand gesture recognition using the LMC.
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3 Evaluation

The comparative testing performed in this paper aims at filling this gap in
the literature. As such, we selected two available datasets for a number of rea-
sons, including reproducibility. We evaluated the described recognizers in a user-
independent scenario. We tested them on full hand gestures provided by the LMC
skeletal hand model (Fig. 1a) to show the efficiency of these recognizers.

Thumb

Index
Ring

Pinky

Middle

Finger Tip

Palm

(a) LMC Hand model[11]

2 (I + M)

6 (P + AF)

2 (P + I)

3 (T + I + M)

2 (T + I)

5 (AF)

1 (P)

3 (P + I + M)

(b) The hand joints selected for the testing.

Fig. 1. Overview of the LMC Hand model and joints

3.1 Experiment

Design. Our evaluation was within factors with five independent variables:

1. Recognizer: nominal variable with 6 conditions, representing the various
recognizers implemented for recognizing 3D gestures $P 3+ [22], $F [22],
Jackknife [25] and 3Cent [9]. And the two new recognizers are described
in Appendix A: $P 3 + X and PennyPincher3D.

2. Dataset: nominal variable with 2 condition, representing the datasets con-
sidered, i.e. SHREC2019 [10] and Jackknife-LM [25] described in Appendix B.

3. Joints: Nominal variable with 8 conditions, representing the hand joints
used. Since the fingers contain several joints, we decided to use the infor-
mation provided by the tips of the fingers (Fig. 1b): “1(P)” = {Palm},
“2(P+I)” = {Palm, Index}, “2(T+I)” = {Thumb, Index}, “2(I+M)” =
{Index, Middle}, “3(P+I+M)” = {Palm, Index, Middle}, “3(T+I+M)” =
{Thumb, Index, Middle}, “5(AF)” = {Thumb, Index, Middle, Ring, Pinky},
“6(P+AF)” = {Palm, Thumb, Index, Middle, Ring, Pinky}.

4. Number of Templates: numerical variable with 5 conditions, representing
the number of templates per gesture for training: T = {1, 2, 4, 8, 16}.

5. Sampling: numerical variable with 5 values representing the number of points
per gesture: N = {4, 8, 16, 32, 64}.

Apparatus. We used a hexa-core Intel Core i7 2.20 GHz CPU and a Windows
10 Home Edition operating system. The RAM was 16 GB DDR4 memory with
2400 MHz.
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3.2 Procedure and Measures

We compute the recognition rate (computed as the ratio of positive recognitions
divided by the total number of trials) for the 6 (Recognizer) × 2 (Dataset)
= 12 basic configurations following the typical method used in the literature to
evaluate gesture recognizers [2,4,5,22,28,29,32]: the user-independent scenario
evaluates the recognition on gestures produced by users who are different from
those used for training the recognizer. In this scenario, the basic configurations
are refined depending on A, the number of joints, on T , the number of templates
and depending on N , the number of resampling points to train the recognizer.
A template is randomly selected for each gesture class from all participants
and saved for testing. Then, a training set is obtained by randomly choosing T
templates for each gesture class for all remaining users. They should be different
from the templates previously selected for testing. Then, the recognizer is trained
on the resulting training set. This operation is repeated R =100 times for each
template of the T set.

4 Results and Discussion

Overall, we performed 2 (Dataset) × 8 (Joints) × 5 (Sampling) × 5
(Number of Templates) × 100 (repetitions) × 6 (Recognizer) = 240,000
recognition trials for each dataset. In the end, the number of recognized gestures
is averaged to get the recognition rate and formatted as a percentage. We use
GraphPad Prism to perform statistical computations.

4.1 SHREC2019 Dataset

Overall Recognition Rate . Figure 2 shows the average recognition rate for all
tests under all conditions, with the recognizers displayed in descending order.
The $P 3+ has the best average recognition rate (M = 85.90%, SD = 15.44%),
followed by $P 3 + X and Jackknife with, respectively (M = 84.90%, SD =
16.45%) and (M = 82.11%, SD = 14.06%), while the average value of the
recognition rate of PennyPincher3D is equal to (M = 80.02%, SD = 12.38%),
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Fig. 2. Recognition rates of all recognizers for the SHREC2019 for all conditions. Error
bars show a confidence interval of 95%.
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for the last two recognizers, the average rates do not exceed 80% with 3Cent
(M = 78.09%, SD = 18.12%) and $F (M = 77.36%, SD = 19.27%). We
calculated the four normality tests for the Recognizer variable: K sample’s
Anderson-Darling test, D’Agostino’s K2 test and Kolmogorov-Smirnov’s KS.
None of the recognition rates followed a normal distribution, while for the
Shapiro-Wilk test, the number of samples was too large to test for normal-
ity. Next, we calculated a Kruskal-Wallis test with Dunn’s multiple compar-
isons on the measures. The overall difference between the recognizers is very
significant (p<.001∗∗∗). Figure 2 shows that $P 3+ is the most accurate Recog-
nizer, and it significantly outclasses all other recognizers. $P 3+ is better than
$F with a highly significant difference (Z = 48.84, p<.001∗∗∗) and significantly
better than Jackknife (Z = 27.86, p<.001∗∗∗). Also, $P 3+ significantly outper-
forms $P 3+X (Z = 5.247, p<.001∗∗∗). However, $F is not significantly different
from 3Cent (Z = 1.928, n.s.), while this later is significantly outperformed by
PennnyPincher3D (Z = 3.055, p<.05∗).

Furthermore, the overall recognition rate per gesture class indicates that the
gestures “Caret” (/\) and “V-mark” (V) have average rates greater than or equal
to 90%. Similarly to the average recognition rates of the other classes, they vary
from one recognizer to another. While the “Cross” (X) is better recognized than
the “Square” ([]) and the “Circle” (O) by the $F , $P 3+ and $P 3 + X recogniz-
ers. The best average recognition rate for “Cross” (X) gesture class is achieved by
Jackknife (M = 93.98%); this value goes down respectively to (M = 83.35%)
for $P 3+ and to (M = 67.75%) for $F with a difference of 10.53% and 26.45%.
For Jackknife and PennyPincher3D, the “Square” ([])) and “Cross” (X) classes
have similar average recognition rates. On the contrary, the gesture class “Circle”
(O) has a very low average recognition rate for Jackknife (M = 34.43%), Pen-
nyPincher3D (M = 21.91%) and 3Cent (M = 46.50%). Detailed recognition rate
tables of each condition are reproduced in Appendix C.2. A color-coding scheme
reveals to what extent the recognition rate satisfies the rate expected by end users:
τ≥90% [20,31]. Some recognizers hold few or almost no green cells, such as Pen-
nyPincher3D, 3Cent and $F , whereas $P 3+ and $P 3 + X have frequent green
cells, indicating that many conditions tested gave high recognition rates. Since the
goal is to perform a comparative test of recognizers in the SHREC2019 dataset, we
refined the results by relaxing the aforementioned constraint: τ≥80%.

Recognition Rates by Number of Joints. Figure 3 shows the average recogni-
tion rates for each value of condition Joints (A), each recognition rate is the aver-
age of the recognition rates of all conditions (T) and (N). The values vary between
M = 75.5% for $F inA = 2(I+M) andM = 87.04% for $P 3+ inA = 3(P+I+T ).
In general, the recognition rates do not vary much from one value of (A) to another.
We see that $P 3+ has the highest average recognition rate for A = 3 : (P +I +T )
(M = 87.04%) and $F the lowest for A = 2 : (M + I) (M = 75.58%). Although,
there are some conditions A = 2(I +M) and A = 3(P +I +T ), where the average
rate of $P 3+X exceeds that of $P 3+ (e.g. A = 2(I +M) and A = 3(P +I +M)).
Similarly, for some values of (A), 3Cent has a lower recognition rates than $F
(e.g. A = 1 (P ) and A = 2 (T + I)).
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Fig. 3. Recognition rates of all recognizers for the SHREC2019 dataset [10], the plot
shows average rates by joint A = {1 (P ), ..., 6 (P + AF )}.

As a way to help understand the behavior of the recognizer with respect
to both the number of points as well as the number of joints. Figure 11 in
Appendix C.4 is an overview of recognizers ranked by recognition rate. This
ranking is presented along two axes, the number of joints (A) and the number
of sampling points (N). It shows which recognizers are better than the others
for each pair of conditions (A,N). To respect the restriction on the recognition
rate that we have defined above, all recognizers in this figure comply with two
criteria: 1) the recognizer must achieve a recognition rate > 80%. 2) The recog-
nition rate must be the highest value among the conditions of (T). Globally, the
position of the recognizers varies a lot according to the defined conditions, and
few recognizers keep a constant ranking by varying the number of joints or the
number of points (e.g., PennyPincher3D for N = 16 and N = 32). For N = 4,
we observe that some recognizers do not appear, because of the first criterion
defined, except for 3Cent, which has at least a recognition rate that respects the
criterion. We notice that for several conditions, the $P 3+ recognizer takes the
first place, except for the condition where A = 2 (P + I) and A = 2 (I + M)
where $P 3 + X is designated as the best recognizer. In contrast to $P 3+, the
PennyPincher3D often achieves the lowest recognition rate and is ranked last.

Recognition Rate for the Optimal Conditions. To evaluate the efficiency
of the recognizers, we planned to test them in a precise scenario where the
conditions are well defined. For this reason, we determine which values of the
variables Joints (A), Sampling (N), and Number of templates (T) allow an
optimal comparison of the different recognizers in the recognition rate measure.
We completed a de Borda ranking of all combinations of conditions for each
recognizer, and the result is reported in the Table 1. The de Borda ranking
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Table 1. Overall position of the recognizers for each condition and overall, according
to de Borda method across all recognizers (the higher, the better).

Condition Recognizer (#Rank, Score)

A N T Overall $P 3+ $F PP3D Jackknife $P 3 + X 3Cent

2 (T + I) 32 16 #1, 1187 #1, 200 #1, 200 #2, 196 #1, 200 #1, 200 #2, 191

3 (P + I +M) 32 16 #2, 1180 #1, 200 #3, 184 #2, 196 #1, 200 #1, 200 #1, 200

2 (P + I) 32 16 #3, 1177 #1, 200 #2, 197 #2, 196 #2, 193 #1, 200 #2, 191

3 (P + I +M) 16 16 #4, 1175 #1, 200 #3, 184 #1, 200 #1, 200 #1, 200 #2, 191

2 (I + M) 32 16 #5, 1166 #2, 186 #1, 200 #2, 196 #2, 193 #1, 200 #2, 191

1 (P) 64 16 #6, 1161 #2, 186 #2, 197 #3, 185 #2, 193 #1, 200 #1, 200

2 (T + I) 16 16 #7, 1158 #1, 200 #1, 200 #3, 185 #1, 200 #2, 182 #2, 191

5 (AF) 32 16 #8, 1157 #1, 200 #2, 197 #2, 196 #2, 193 #1,200 #3, 171

6 (P + AF) 32 16 #9, 1153 #1, 200 #3, 184 #3, 185 #2, 193 #1, 200 #2, 191

3 (P + I + T) 32 16 #10, 1148 #1, 200 #2, 197 #3, 185 #2, 193 #2, 182 #2, 191

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

selects the best combination of conditions the one with the highest overall Borda
score. This implies that the elected combination of values has a high recognition
rate with many recognizers. Furthermore, we notice that many conditions share
the same rank and score in the ranking for each recognizer. This situation is due
to a defined sensitivity value of 2% in the recognition rate. We determine the
case of a tie between the last ranked combination of conditions and the following
combination to be ranked on a specific recognizer, if the difference between their
recognition rates is less than the defined sensitivity value. According to the
Table 1, the result of the Borda ranking gives this combination of conditions
(A = 2 (T + I)/ N = 32/ T = 16) as the best.

Based on de Borda’s results, we evaluate the recognizers on the SHREC2019
dataset under the elected conditions. The left part of Fig. 10 in Appendix C.1
shows the average recognition rate for the defined conditions. According to these
results, the $P 3+ has the best average recognition rate (M = 97.00%, SD =
7.18%), followed by the $P 3 +X (M = 95.20%, SD = 8.59%) and the $F (M =
94.20%, SD = 9.55%), while PennyPincher3D is the least accurate recognizer
(M = 87.80%, SD = 13.30%), for the other two recognizers, the average rate
of Jackknife (M = 93.2%, SD = 10.34%) and 3Cent (M = 90.80%, SD =
13.16%). Like for the overall recognition rate on all conditions in the part 4.1, we
calculated the four normality tests: K sample’s Anderson-Darling test, Shapiro-
Wilk W test, D’Agostino’s K2 test and Kolmogorov-Smirnov’s KS. None of the
recognition rates followed a normal distribution. Then, we calculated a Kruskal-
Wallis test with Dunn’s multiple comparisons. The high difference between the
recognizer $P 3+ and PennyPincher3D (10%) is statistically highly significant
(Z = 5.736, p<.001∗∗∗). Same thing for $P 3 +X that is significantly better than
PennyPincher3D (Z = 4.420, p<.001∗∗∗). Moreover, $P 3+ is significantly more
accurate than 3Cent by 6.2% (Z = 3.699, p<.01∗∗). $F is superior by 6.4%
to PennyPincher3D with a high significant difference (Z = 3.788, p<.01∗∗).
However, $P 3+ is not significantly better than Jackknife (Z = 2.581, n.s.), while
this later is significantly better than PennnyPincher3D (Z = 3.156, p<.05∗).
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In the same figure, the bar chart on the right shows the number of recognized
gestures per gesture class on 100 repetitions, noting that all recognizers achieve
a perfect score for at least one gesture class. Among the gesture classes in ques-
tion, there is the “Caret” (/\) for PennyPincher3D and 3Cent recognizers, and
also the “V-mark” (V) gesture class for $P 3 + X, $F recognizers. While $P 3+
achieves an accuracy rate of ( 100100 ) for two gesture classes : the“V-mark” (V) and
the “Cross” (X). Although Jackknife achieves a flawless recognition for three
gesture classes: ‘Caret” (/\), “Cross“(X) and ‘V-mark” (V), its recognition of
the “Circle“(O) gesture class is weak ( 75

100 ). This difficulty is also encountered
by PennyPincher3D for the same gesture class ( 59

100 ) as for 3Cent. However, the
latter achieves the best accuracy rate for the “Square“([]) gesture class ( 99

100 )
which means that PennyPincher3D is well designed to recognize this gesture
class, especially when the other recognizers perform less well in recognizing it.

Overall Conditions Execution Time. In Fig. 4a the average execution times
of the different recognizers for all conditions varied between (M = 0.047 ms,
SD = 0.060 ms) for the PennyPincher3D and (M = 1.611 ms, SD = 3.328
ms) for the $P 3+. The execution times do not follow a normal distribution, we
calculated a Kruskal-Wallis test which indicates a significant difference in the
execution times of the recognizers. After that, the Dunn’s multiple comparisons,
show significant differences for all pairs of recognizers except between 3Cent and
$P 3 +X. The PennyPincher3D (M = 0.047 ms, SD = 0.060 ms) is significantly
faster than other recognizers; It is significantly better than Jackknife (M = 0.195
ms, SD = 0.2457 ms) with a difference of 148 µs (Z = 73.62, p<.001∗∗∗), and
outperforms significantly the slowest recognizer $P 3+ (Z = 147.7, p<.001∗∗∗).

Fig. 4. Average execution times by recognizer. Error bars show a confidence interval
of 95%.

Overall Execution Time by Number of Joints. The graphs in Fig. 5 show
the execution times according to the values of the variable Joints (A). The
smallest value in the graphic is the averaged execution time of PennyPincher3D
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for the condition A = 1 (P ) (M = 0.017 ms, SD = 0.020 ms), while the longest
execution time is achieved by $P 3+ for A = 6 (P + AF ) (M = 3.204 ms,
SD = 5.936 ms). The PennyPincher3D is the fastest recognizer and is ahead of
the Jackknife. According to the results, we distinguish two groups of recognizers
with regard to their execution times. The one formed by Jackknife (M = 0.195
ms, SD = 0.246 ms) and PennyPincher3D ; with a small slope, they are not
much affected by the variation in the number of articulations. The second group
consisting of 3Cent(M = 1.130 ms, SD = 0.683 ms), $F (M = 1.170 ms,
SD = 3.328 ms), $P 3 + X(M = 1.298 ms, SD = 2.731 ms) and $P 3+ in order
from fastest to slowest recognizer; All the recognizers are significantly impacted
by the variation of number of joints (p<.001∗∗∗).

Fig. 5. Average execution times by recognizer per number of joints (A).

Execution Time for the Best Condition . Figure 4b shows the execution
time of the recognizers for the best condition defined by the de Borda method.
The recognizers appear in the same order as in the Fig. 4a. PennyPincher3D
remains the fastest (M = 0.069 ms, SD = 0.005 ms) and $P 3+ the slowest
(M = 2.371 ms, SD = 0.213 ms). The Kruskal-Wallis shows significant dif-
ferences between all the recognizers except between the $P 3+ and $P 3 + X
(Z = 1.910, n.s.).

4.2 Jackknife-LM Dataset

Overall Recognition Rate . The Jackknife-LM dataset has more gesture classes
than SHREC2019, mainly complex gestures where different joints can move
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independently of the hand movement. Figure 6a sums up the averaged recog-
nition results of each of the recognizers for all tests under all conditions. The
results give an overview of the results with this dataset which are different from
the results obtained for the SHREC2019. In general, none of the recognizers
went beyond the 80%. The Jackknife recognizer (M = 73.60%, SD = 19.75%)
takes the lead and outperforms significantly other recognizers, followed by the
$P 3+ (M = 68.75%, SD = 19.73%), which is slightly better than $P 3 + X
(M = 68.15%, SD = 20.51%) by (0.60%). They are followed by 3Cent and
$F with respectfully (M = 63.66%, SD = 18.29%) and (M = 62.96%,
SD = 20.12%) which are significantly better than PennyPincher3D the least
efficient of the recognizers (M = 56.87%, SD = 19.99%).
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Fig. 6. Recognition rates and execution times of all recognizers for the Jackknife-LM
for user independent scenario. Error bars show a confidence interval of 95%.
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Three gesture classes (“FistCircles”, “Knock” and “Sideways”) are well rec-
ognized for all the recognizers (i.e. τ≥80% - Fig. 6c, bottom). An exception to
this is PennyPincher3D where the “Knock” gesture has an average recognition
rate of (M = 62, 77%). However, the “Love”, “BendIndex”, “DevilHorns” and
“SnipSnip” have the worst average recognition rates for most recognizers (i.e.
τ≤60%), except for Jackknife, where the “SnipSnip” and “BendIndex” are above
70%. These results indicate that for many recognizers, many conditions perform
very well with gestures where the fingers remain static, regardless of hand move-
ments, whereas the recognition rate drops down for many conditions with ges-
tures that include finger movements. From the table in the Appendix C.3 which
details the average recognition rates for the different conditions. The orange
cells are the predominant ones in the table for majority of the recognizers,
which express a low recognition rate for many conditions τ≤80% (e.g. Pen-
nyPincher3D, 3Cent and $F ). For PennyPincher3D, 3Cent, no single condition
achieves a 90% recognition rate. While for other recognizers, many conditions
reach rates above 90% with A = 5(AF ) and A = 6(P +AF ), which denotes the
ability to handle complex gestures under certain conditions.

Recognition Rates by Number of Joints. With respect to the average recog-
nition rates by articulation in Fig. 7, the lowest recognition rate is M = 39.78%
for $F in A = 1 (P ), whereas the top recognition rate is M = 87.78% for
$P 3 + X in A = 6 (P + AF ). The Jackknife is above other recognizers for the
conditions with a reduced number of articulations (A≤3), then it is joined by
$P 3+ and $P 3 + X at A = 5 (AF ). The average recognition rate increases as
the number of joints increases for all of the recognizers, except for some partic-
ular cases, as for 3Cent, PennyPincher3D and $P3+ whose rate drops between
A = 5 (AF ) and A = 6 (P + AF ) (e.g. a drop of 2.6% for 3Cent). However,
$P 3 + X, $P 3+, $F recognition rates under conditions with the same number
of joints vary depending on how the joints are configured (e.g., A = 2(P + I),
A = 2(T + I), A = 2(I + M)). Therefore, some joints are more relevant than
others, since they carry more information about gestures.

Overall Conditions Execution Time. Figure 6b shows the values of the aver-
age execution times for all conditions, which indicates the execution time for the
various recognizers. There is a big difference between execution time of Pen-
nyPincher3D (M = 0.079 ms, SD = 0.108 ms) and 3Cent (M = 10.585 ms,
SD = 5.911 ms). The execution time includes the pre-processing time of the ges-
ture and the recognition time. For 3Cent the excessive execution time is caused
by the resampling function based on the Cubic Spline interpolation method.
The execution times of the other recognizers are close to one another, $P 3+
(M = 2.587 ms, SD = 4.371 ms), $F (M = 2.097 ms, SD = 4.184 ms) and
$P 3 + X (M = 2.107 ms, SD = 4.371 ms) and there is no significant difference
between the latter two (Z = 1.772, n.s.). Jackknife, which has the highest recog-
nition rate, is also a fast recognizer (M = 0.351 ms, SD = 0.508 ms). Thus, it
makes it well suited to this dataset.
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Fig. 7. Recognition rates of all recognizers for the Jackknife-LM dataset [25], the plot
shows average rates by joint A = {1 (P ), ..., 6 (P + AF )}.

5 Conclusion

The objective of this comparative study on LMC-based gestures is to fill a gap
in the literature. For this reason, we evaluated in a user-independent scenario six
gesture recognizers on two LMC-Based datasets composed of simple and com-
plex gestures (i.e. SHREC2019 and Jackknife-LM). Overall, for the SHREC2019,
$P 3+ achieved the best recognition rate and is significantly better than the other
recognizers and it was confirmed under particular optimal conditions, while $F
is the worst for this dataset. We also noticed that some recognizers are more
adapted to recognize certain gestures than others. For the Jackknife-LM dataset,
the Jackknife recognizer achieves overall good recognition rates under certain
conditions, but does not satisfy the high accuracy property for many other con-
ditions. We have seen that many recognizers are impacted by the nature of the
gesture performed. Furthermore, some recognizers are slow to process long ges-
tures, which makes them less attractive. This procedure is a good contribution
to designers who wish to choose a reliable and efficient recognizer and thus guide
them to meet their needs. The limitation of this study is that it only includes one
type of gesture recognition algorithm based on the template matching technique.
A solution to be implemented in the future would be to extend the tests with
new machine learning algorithms and new gestures related to specific application
fields by including more datasets.
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A The New Recognizers Considered in the Experiment

A.1 $P3+X Recognizer

A variant of $P3+ [27], that takes into account the direction-invariance by track-
ing conflicting templates (i.e., templates of the same gesture but performed in
different directions). If a gesture matches with a conflicting template, its direc-
tion is compared with the direction of each conflicting template and the nearest
one is chosen.

A.2 PennyPincher3D Recognizer

PennyPincher3D is an adaptation of the 2D recognizer PennyPincher [24]. The
gestures are represented as a set of N − 1 vectors linking between N equidistant
points. The recognizer matches the candidate gesture with the template that
maximizes a dissimilarity score, computed as the sum of the angles between the
vectors. The computation relies on basic mathematical operations as additions
and multiplications. The gestures require just a resampling as prepossessing.
This recognizer is scale- and position- invariant as most of the $-recognizers.

B The Datasets Considered in the Experiment

B.1 SHREC2019 [10]

The SHREC2019 dataset [10] contains a sequence of 3D points and quater-
nions for each hand’s joint designating one of five gesture classes (Fig. 8): “Cross”
(X), “Circle” (O), “V-mark” (V), “Caret” (/\), and “Square” ([])). It served in
(SHREC) track, a contest on online gesture recognition to detect command ges-
tures from hands’ movements in a virtual reality context. The proposed dataset
consists of 195 3D movements performed by 13 participants with the whole hand.
The dataset contains unsegmented gestures, the training set and the testing set
were merged to create a unique dataset in which, unnecessary hand movements
were removed from the gestures.

Fig. 8. The SHREC2019 gesture classes.
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B.2 Jackknife-LM [25]

The Jackknife-LM (Jackknife-LeapMotion) dataset [25] contains 3D com-
plex gestures of the hand and saved as 3D skeleton which is provided by the
LeapMotion. We used the segmented gestures composed by 360 samples of 9 dif-
ferent gesture classes for example “Fist Circles”, “Snip Snip”, “Explode” (Fig. 9).
It was used to test a rejection approach of non-gesture sequences from a contin-
uous data stream. While segmented gestures make up the training set, authors
employ unsegmented sessions of samples in the test [25].

Fig. 9. The Jackknife-LM gesture classes [25].

C Recognition Rates

C.1 Recognition Rate for Best Condition for the SHREC2019

Fig. 10. Recognition rate (left) and the number of recognized gestures per class over 100
trials (right) of all recognizers for user independent scenario, for the optimal conditions
defined by the de Borda ranking: A = 2 (T + I), N = 32, T = 16. Error bars show a
confidence interval of 95%.
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C.2 Recognition Rates Tables for the SHREC2019
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C.3 Recognition Rates Tables for the Jackknife-LM
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C.4 The Ranking of the Recognizers Based on the Best Individual
Rates by Articulation for SHREC2019

Fig. 11. Ranking of the best individual recognition rates above 80% by number of
joints (A) and number of points (N) for the SHREC2019 dataset.
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An Elderly User-Defined Gesture Set for Audio
Natural Interaction in Square Dance
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Abstract. Mid-air gestures have long been used as a natural way to control elec-
tronic products such as smart audio. However, due to the differences between
designers and elderly users, the elderly’s use of mid-air gestures is still limited. To
make gesture-based interaction more natural for elderly users, the study aimed to
find user-defined gestures suitable for elderly users in square dancing sound. We
conducted a structured process based on participatory design. Older participants
were invited to design gestures and evaluate the quality of gesture vocabulary. We
collected the gestures and evaluated them based on older participants’ preferences.
Six gestures were obtained that were most suitable for controlling the audio tar-
get commands of square dancing. These gestures were designed by elderly users.
Most of them were one-handed, flat palm or single index finger gestures. These
gestures also had obvious directional indicators, including vertical (up/down) lines
and counterclockwise circular motion. We designed a set of gestures using these
gestures. Data analysis also showed that the best gestures scored relatively high
in ease of execution and memorability. This suggests that the older participants
placed greater value on ease of use and good memory when choosing gestures.

Keywords: Elderly ·Mid-air gesture interaction · User defined · Participatory
design · Square dance sound

1 Introduction

Data from the Bulletin of China’s Seventh National Population Census (No.5) show that
the aging population will become the long-term fundamental reality of the country, and
it will be further deepened. China has come into the age of silver economy, and the
aging interaction design has gradually become a hot topic. Square dancing is a daily
recreational, fitness and social activity for most elderly people in China. The sound
interaction design in this scene has yet to be explored. Prior research on the mid-air
gesture interaction of square dance audio equipment is also lacking.

In square dancing, sometimes the keys and remote control of traditional audio equip-
ment are not convenient or feasible. At this point, gestures, especially mid-air gestures,
enable intuitive and natural interactions. Mid-air gestures allow elderly users to interact
without obstacles during exercise. It is more inclusive than traditional interaction. Thus,
mid-air gesture interaction may create huge potential when properly designed.
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Mid-air gestures have long been used as a natural way to control electronic products
such as smart audio. However, due to the differences between designers and elderly
users, the elderly’s use of mid-air gestures is still limited. This may also lead to poor
acceptance and use confidence among the elderly.

Therefore, some studies collect user-defined gestures by involving older end-users.
These gestures are then analyzed by the system designer. Gesture elicitation study, which
is a technique that has emerged from the field of participatory design, has attracted
increasing attention and been widely used to collect end-users’ requirements and expec-
tations regarding the target system in the gesture design of various HCI applications [1].
However, this approach is plagued by problems of legacy bias [2] and disagreement [3].
It may not be able to generate the best gesture for the target task and system in practice.
Additionally, research has no further insights into the solutions.

In this research,wework through the structured design process based on participatory
design. This study is structured as follows: First, we analyzed the requirements of gesture
interaction for square dance audio equipment and defined the set of tasks. Through a
gesture elicitation study, a set of elderly user-defined gestures was established. Next,
we extracted candidate gestures and evaluated gesture vocabulary based on the elderly
participants’ experience and preferences. Finally, we established a suitable set of elderly
user-defined gestures for square dance audio equipment and analyzed the factors that
may affect the gesture preferences of elderly users.

2 Related Work

2.1 Age-Appropriate Gesture Interaction Study

The research fields of aging interaction are becoming increasingly wider, including
medical apps [4], smart homes [5], car interfaces [6], exercise games [7], shopping carts
[8], electronic products [9] and so on. The mid-air gesture interaction suitable for the
elderly has also been applied to some fields, such as smart bedrooms [10], living spaces
for the elderly [11], automotive applications [12], etc.

It is possible and significant to find mid-air gestures that are better suited to elderly
users for specific tasks. Research has shown that elderly users can accept mid-air gesture
interaction, and their response to mid-air gesture interaction is more active than touch
interaction [13]. Mid-air gesture interaction can not only overcome some barrier-free
problems arising with age, but also make the interaction process more pleasant and
improve their experience [14].

Mid-air gesture interaction is easy to learn. The rules and definitions of gestures
come from users’ daily cognition and are less restricted by product attributes, so they
are easy for users to accept and learn [15]. Easy-to-learn gestures are more likely to
motivate older people to use them positively. However, making gestures more cognitive
and inclusive requires their active participation.
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2.2 Gesture Elicitation Study

With the widespread use of mid-air gesture interaction, designers are increasingly apply-
ing gesture elicitation to help them confirm the appropriate gesture set for the application.
However, approximately half of the population of participants in previous studies came
from academic settings. Therefore, they may not represent all user groups. Additionally,
there is not much discussion about the representativeness of participants in gesture elic-
itation study. The other half were mostly adults between the ages of 18 and 60. Gesture
elicitation studies using mainly elderly participants are relatively scarce [16]. There are
even fewer studies on gesture elicitation for elderly users in square dancing.

In addition, legacy bias is a major concern of gesture elicitation studies. It refers to
“the prior experience with interfaces and technologies, that makes it hard to uncover
new gestures for an emerging medium”. Researchers suggest requiring users to propose
many gestures for each referent and recruiting users in groups to leverage their ideas
[17]. Although legacy bias is considered a factor that may not produce originality in
gesture proposals, sometimes it is considered to have positive effects in elicitation studies
[16]. Some researchers argue that, in most cases, biased gestures have the advantage of
simplicity, and they do not need to spend too much time on learning and guessing, to
obtain higher consistency scores in gesture elicitation studies [18]. Therefore, when the
user has no spare time or willingness to learn new interactive technologies and methods,
or when the user’s cognitive ability is overwhelmed, this gesture may just be the most
appropriate.

2.3 Summary

In general, prior studies have explored the theory of gesture interaction for aging and
gesture elicitation. However, the research on gesture elicitation for elderly users aiming
at interacting with audio devices in square dance needs to be expanded. To solve this
problem, this study carried out experiments, optimized the results, and finally designed
an acoustic gesture set of square dance defined by elderly users.

3 Experiment 1: Gesture Elicitation

The square dance sound has many functions, and the elderly only need to operate several
common functions when using it. Therefore, we analyzed and summarized the functions
of the square dance sound and defined the tasks that interact most often. Then, two
experiments were conducted to elicit and evaluate gestures. The first experiment aimed
to elicit one gesture from every elderly participant for each task. The second experiment
aimed to evaluate the gesture vocabulary and verify the popularity of the collectedmid-air
gestures.
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3.1 Requirement Analysis and Task Definition

To design friendly and natural gestures for the elderly in square dance, it is necessary
to determine the use environment of the equipment, end-users and target tasks. We
extensively collected common command task feedback from elderly users and studied
the function of square dance audio equipment. Through the analysis, we determined
6 tasks of the audio equipment. (Table 1 lists these 6 tasks.) There were three pairs
of homologous and basic functions of the audio equipment (pause music, play music,
last song, next song, turn up the volume, turn down the volume). By investigating the
key settings of the audio equipment, the functions of pause and play music are mostly
integrated with one key. This interaction mode may also be more consistent with the
original cognition and usage habits of elderly users. Therefore, to simplify the interaction
and reduce the cognitive load of elderly users, pause and play are integrated into a single
task, such as pause/play.

In summary, these tasks can meet the basic needs of elderly users to operate square
dance audio and cover common functions. To keep the memory burden of the elderly
users at a low level and avoid negative efficiency, the number of target tasks is finally
limited to six. These tasks lay the foundation for follow-up research.

Table 1. Target Tasks

No Task name

A Pause/Play

B Turn up the volume

C Turn down the volume

D Last song

E Next song

F Single cycle

3.2 User-Defined Gesture Naming Principle

To summarize the collected gestures more efficiently, it is necessary to name each user-
defined gesture. The naming principle is “gender number - subject number - command
group number - gesture number”.

For example, the female number isW, and the male number isM. The serial numbers
of subjects are 1, 2, 3, 4…. The six operation commands are listed as pause/play -A, turn
up the volume -B, turn down the volume -C, last song -D, next song -E, single cycle -F.
Gestures designed by the subjects are arranged as follows: 1, 2.

Example: The third female subject designed the first gesture for the “last song”
command, named W3-D-1.
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3.3 Gesture Interaction Video Preparation

We have fully considered the cognition and acceptance of the elderly. Then, we selected
a mid-air gesture interaction video of smart audio within 1 min.

3.4 Preliminary Experiments

Purpose. To make the formal experiment of gesture elicitation go smoothly, enhance
the reliability and effectiveness of the experimental results. We conducted a preliminary
experiment to solve these difficulties and improve the experimental scheme.

Method. We follow a structured process of participatory design experiments. Each
subject was tested once. Then, we recorded the difficulties and problems encountered
in the process. It is convenient for subsequent adjustment and supplementation of the
scheme.

Subjects. We recruited 5 subjects (2 males, 3 females) aged over 60 years. All of them
have participated in square dancing activities and have experience with square dancing
sound. The subjects were all in good health. Their dominant hand is right-handed. They
have clear cognition and can clearly understand the task and process of the experiment.

Procedures and Methods

1. Subjects were recruited through offline contact.
2. Briefly explained the purpose and background of the study for the elderly participants.
Then, we explained the basic requirements and operation methods of mid-air gesture
interaction.
3. A mid-air gesture interaction video was played within 1 min to help them understand.
4.Thenext experimentwas conducted after confirming that theyunderstood theoperation
process and requirements.
5. Each task was shown on PowerPoint to the participants. It includes the task name and
the audio of sound state change.
6. The elderly participants were asked to come up with 2 suitable gestures for the
corresponding tasks.
7. After all 6 tasks were completed, the experiment was ended.
8. Conducted a brief interview afterward.

Results and Problems. Through the gesture elicitation study with 5 participants and 6
tasks, we collected a total of 48 (3 × 6 × 2 + 2 × 6 × 1) gestures. The gestures with
the same shapes and trajectory were integrated into one gesture and the nonstandard
gestures were removed. Finally, we obtained a gesture set with 29 elderly user-defined
gestures.

In the preliminary experiment, we found that the task of designing two gestures
for each command seemed to exceed the cognitive load of older participants. Their
performance is not very positive. The collected gestures are not valid enough. Three of



An Elderly User-Defined Gesture Set for Audio Natural Interaction 185

them thought it was difficult to design two gestures per command. Two subjects failed
to complete the task (only one gesture was designed for each instruction). Therefore, in
the formal experiment, we changed the requirement to design one suitable gesture for
each of the six tasks.

3.5 Formal Experiment

Purpose. Tomake gesture-based interaction easier to use for the elderly, this experiment
aims to find a set of elderly user-defined gestures suitable for controlling the square dance
audio equipment.

Methods. The structured process of a participatory design experiment scheme was
followed, and each subject was tested once.

Subjects. We recruited 30 subjects (14 males, 16 females) aged over 60 years. All of
them have participated in square dancing activities and have experience with square
dancing sound. The subjects were all in good health. Their dominant hand is right-
handed. They have clear cognition and can clearly understand the task and process of
the experiment. However, none of them had any experience with mid-air gesture-based
interaction.

Procedures and Methods

1. Subjects were recruited through offline contact.
2. Briefly explained the purpose and background of the study for the elderly participants.
Then, we explained the basic requirements and operation methods of mid-air gesture
interaction.
3. A mid-air gesture interaction video was played within 1 min to help them understand.
4.Thenext experimentwas conducted after confirming that theyunderstood theoperation
process and requirements.
5. Each task was shown on PowerPoint to the participants. It includes the task name and
the audio of sound state change.
6. The elderly participants were asked to devise 1 suitable gesture for the corresponding
tasks.
7. After all 6 tasks were completed, the experiment was ended.
8. Conducted a brief interview afterward.

Experimental Instructions. The experiment lasted approximately 25 min on average.
To eliminate the influence of the order of 6 tasks, the order of all tasks was randomly set.
The experiment adopted the method of vocal thinking and asked the elderly participants
to explain their ideas of designing. There was no time limit for the whole experiment
so that all elderly participants had enough time to understand tasks and design gestures.
The whole experimental process is recorded by video. (Fig. 1 shows the experimental
setup.)
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Fig. 1. Experimental setup

Results and Discussion. Through the gesture elicitation study with 30 participants and
6 tasks, we collected a total of 180 (30 × 6 × 1) gestures. The gestures with the same
shapes and trajectory were integrated into one gesture and the nonstandard gestures were
removed. Finally, we obtained a gesture set with 48 elderly user-defined gestures.

We found that the gestures defined bymost elderly participants have a high repetition
rate and low quality of shapes and trajectories. This may be related to the traditional
behavior habits, legacy bias and cognitive ability of the elderly.

4 Experiment 2: Gesture Vocabulary Evaluation

4.1 Purpose

For further exploration, this experiment aimed to reduce legacy biases in the gesture
elicitation study and filter the most desired gestures of older participants for each task.

4.2 Preparation

First, we extracted candidate gestures from the gesture set. Due to legacy bias, the
most appropriate gesture may be another gesture suggested by multiple participants.
We invited three experts to compare and evaluate the group’s gestures. They chose four
candidate gestures for each task. Through expert selection, we obtained 24 candidate
gestures for the target task. They include gestures of different hand shapes. Such as
thumbs-up, index finger drawing circles in the air, one index finger holding against the
other palm (pause), two hands clapping and so on. Then the candidate gestures were
coded (group - serial number) for the next experiment.
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4.3 Subjects

To avoid data pollution, another 10 elderly participants (4males, 6 females) over 60 years
old were recruited for the study. All of them often take part in square dance activities
and have some experience in sound operation.

4.4 Procedures and Methods

1. Subjects were recruited through offline contact.
2. Briefly explained the purpose and background of the study for the elderly participants.
Then, we explained the basic requirements and operation methods of mid-air gesture
interaction.
3.Thenext experimentwas conducted after confirming that theyunderstood theoperation
process and requirements.
4. The elderly participants were asked to watch the demo video of the candidate gestures
on the PowerPoint, and make the same gestures 3 times by themselves.
5. The elderly participants completed a questionnaire with the help and instructions of
the experimenter and scored the quality of the gestures.
6. After all the experiments were completed, the experimenter ended the experiment and
appreciated the elderly participants.

4.5 Experimental Instructions

To eliminate the influence of other factors, the demo video was recorded on a white
background. The duration of each video was limited to 2–3 s. For each task, the elderly
participants were asked to rank the four candidate gestures from the most suitable to
the least suitable. The ranking aimed to collect the most suitable gestures selected by
elderly users. The questionnaire included aspects with a five-point Likert scale (1 =
completely disagree, 5= completely agree): ease of execution, enjoyment of execution,
good match, and memorability [19].

4.6 Experimental Results

We collected responses from all 10 older participants. The six best gestures for the task
were then selected. The selection is based on the ranking of the most desired gestures
by older users and the score of gesture quality.

The results of the questionnaire are shown in Table 2. In general, the overall quality
scores of most candidate gestures were high. The differences between different task
groups were also obvious. Task D (last song) had the highest total score. Task B (turn
up the volume) had the lowest total score. There were obvious differences in the quality
scores of the four candidate gestures among different task groups. We can intuitively
select the best gesture for each group.
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Table 2. Part of the questionnaire results

Gesture Code Ease of
execution

Enjoyment of
execution

Good match Memorability

M SD M SD M SD M SD

A-1 4.00 0.82 3.80 0.79 4.20 0.92 4.20 0.79

A-2 2.80 1.03 2.90 0.99 2.30 0.68 1.90 0.99

A-3 4.60 0.52 4.70 0.48 4.70 0.48 4.80 0.42

A-4 4.80 0.42 4.70 0.48 4.20 0.79 4.50 0.71

B-1 2.60 1.35 2.60 1.35 2.90 0.88 2.90 1.29

B-2 3.30 1.34 3.50 1.35 3.70 1.16 3.20 1.62

B-3 4.90 0.32 4.90 0.32 4.50 0.53 4.50 0.53

B-4 4.10 0.99 4.20 0.79 2.50 0.71 2.30 0.95

C-1 4.30 0.68 3.60 0.97 3.70 0.48 3.30 0.68

C-2 3.20 1.40 3.40 1.27 3.60 1.27 3.40 1.43

C-3 4.90 0.32 4.80 0.42 4.60 0.52 4.70 0.48

C-4 3.40 1.08 3.20 1.03 2.30 0.82 2.20 0.92

5 Discussion

For ease of execution, the gesture of “keep the palm horizontal and swing the forearm
vertically in the air” (A-2, M= 2.80, SD= 1.03), the gesture of “forefinger and middle
fingers together upward” (B-1, M = 2.60, SD = 1.35) and the gesture of “forefinger
and middle fingers together toward the right” (E-1, SD= 1.35). These gestures were not
easy to perform. Elderly participants tended to view arm movements as complicated.
The gesture is difficult to perform in a standard and wide range of motion, resulting in
fatigue. Regarding the index and middle finger gestures, they concluded that it was not
their usual finger. They preferred five-fingered gestures and a single index finger.

For enjoyment of execution, the elderly participants thought that the gesture of
“pulling hands relatively outward” (B-2, M = 3.50, SD = 1.35) and the gesture of
“pushing hands relatively inward” (C-2, M= 3.40, SD= 1.27) were not comfortable to
perform. They preferred a one-handed operation.

For a good match, the thumbs up gesture (B-4, M = 2.50, SD = 0.71) and thumbs
down gesture (C-4, M = 2.30, SD = 0.82) were not matched with the task of turning
up or down the volume. In older participants’ habitual cognitive experience, these two
gestures were more associated with ratings of “good” and “bad.” Interestingly, neither
gesture scored high on memorability (B-4, M = 2.30, SD = 0.95; C-4, M = 2.20, SD
= 0.92). In addition, for the “last song” and “next song” tasks, it seemed that because
of the “up” and “down” directional nouns in Chinese names, the older participants were
more likely to think that the up and down gestures matched them than the left and right
directions (D-1, M = 3.20, SD = 0.79; E-1, M = 2.50, SD = 0.53). Similarly, left and
right gestures were rated low for memorability (D-1, M = 3.10, SD = 0.99; E-1, M
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= 2.00, SD = 0.82). Thus, for older users, matching and memorability may be closely
related. Gestures with higher matching to a task may be more conducive to memory.

Formemorability, some elderly users have some common intuitive gestures. They are
easier for them to remember. For example, for the “pause/play” task, they first thought
of the gesture of “one index finger against the other palm (pause)”. The task of “single
cycle” was the gesture of “one index finger drawing circles”. These gestures all had
higher memory scores (A-3, M = 4.80, SD = 0.42; F-1, M = 4.80, SD = 0.63).

Table 3. Frequency of each gesture was chosen

Gesture Code F Gesture Code F

A-1 2 D-1 1

A-2 0 D-2 3

A-3 5 D-3 2

A-4 3 D-4 4

B-1 1 E-1 0

B-2 2 E-2 4

B-3 6 E-3 1

B-4 1 E-4 5

C-1 1 F-1 5

C-2 2 F-2 1

C-3 7 F-3 3

C-4 0 F-4 1

In addition, we analyzed the frequency of each candidate gesture being selected as
the best gesture by the elderly participants (see Table 3). For each task, the gestures most
favored by elderly users were A-3, B-3, C-3, D-4, E-4 and F-1. For task A, task B, task
C, task E and task F, the selection rate of specific gestures exceeds 50%. Compared with
other gestures in task D, D-4 had no obvious advantages.

In other words, we obtained the most desired gestures for 6 tasks (see Fig. 2). Most
of these gestures are one-handed gestures, which are flat palm or single index finger
gestures. They have relatively high scores in ease of execution and memorability. This
finding showed that elderly participants attach great importance to ease of execution and
good memorability when choosing gestures.

Moreover, these gestures have obvious directional indication features, including
vertical (up/down) lines and counterclockwise circular motion. This is the same as the
findings of Vorwerg et al. [20]. In the two pairs of homologous tasks, the opposite
direction of the same gesture is dominant.
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Fig. 2. Elderly user-defined gesture set

6 Conclusion

Mid-air gestures have long been used as a natural interactivemethod to control electronic
products such as smart audio. However, these gestures are mainly defined by designers
rather than elderly end-users. The difference between designers and elderly users leads to
the limited interaction of elderly people to control audio by mid-air gestures. Moreover,
there is a lack of research on the audio gesture interaction among the elderly in square
dancing. Therefore, it is necessary to conduct a mid-air gesture elicitation study for
square dance sound to obtain the elderly user-defined gesture set.

We conducted research through a structured design process based on participatory
design. Starting with defining target tasks, the study conducted experiments that resulted
in a set of gestures defined by older users. Experiment 1 invited elderly participants
to design gestures, and experiment 2 evaluated gesture vocabulary according to the
preferences of elderly participants. The results indicated a series of gestures best suited
to the target task. They providedmore natural interaction for older users. They can reduce
the cognitive load and learning cost of older users.

Finally, We need further research. By evaluating the usage and satisfaction of these
gestures in practical applications, we can explore more opportunities and possibilities. In
addition, our future workmay evaluate the influence of user gender, cultural background,
region, sports dance and other factors on mid-air gesture preference. By classifying the
elderly users, we can find the best gesture for different types of elderly users. It could
help older users personalize their mid-air gesture interaction systems.
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Abstract. The deficits in cognitive functions affect carrying out instru-
mental activities of daily living. Assistive products oriented to support
these activities, e.g., cooking, should predict the user’s behavior. The
user’s areas of interest (AOI) calculated from the eye gaze data measured
by a wearable eye-tracker can be used for the prediction. We developed a
new AOI estimation method suitable for cooking context based on mul-
tiple fiducial markers. The evaluation suggested that our method was
more feasible than the use of feature extraction and feature matching
for AOI estimation on objects in the kitchen, including cooking utensils
with their move and overlap, while cooking.

Keywords: Eye tracking · Gaze analysis · Technology for cognitive
well-being

1 Introduction

A traumatic brain injury (TBI) may occur when the head or brain is struck by
an external force [6]. Individuals who experience a TBI often exhibit problems
with executive functions. Executive functions are higher-level cognitive functions
related to goal-setting, planning, organizing, monitoring, and the flexible control
of cognition and behavior [23]. These functions affect carrying out instrumen-
tal activities of daily living, such as cooking [5,7,15]. For example, Hendry et
al. reported that poorer cognitive functions were significantly associated with
greater omissions and estimation errors, lack of goal achievement, and longer
completion time while cooking [13].

To compensate the cognitive deficits, Arab et al. proposed a special kitchen
for a single user equipped with hundreds of sensors and output devices includ-
ing motion sensors, contact sensors, home energy monitors, flow meters, touch
screen, speaker, and Light-Emitting Diodes (LED) [1,2]. In this kitchen, the
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user’s actions are recognized by these sensors. To support following predefined
recipes, the output device presents some clues to the user, for example, highlight-
ing the cooker. Such a cognitive assistance can support individuals who experi-
ence TBI. However, to use the assistance in real-world settings, a new assistive
product should be developed for proactively preventing such error behaviors by
using simpler system.

Eye tracking technology has been used for predicting behaviors in a variety of
activities, e.g., bicycle and car driving [20,22], store shopping [16], web browsing
[21], and construction work [12]. Their approach is based on estimating a single
area of interest (AOI) or transitions among AOIs by analyzing the fixation.
A wearable eye-tracker can collect gaze data on the wearer’s visual attention
and record a video of the surrounding environment with sound. The wearer can
freely move around the environment. The wearable one is more suitable for the
use in real-world settings than stationary ones [4]. Feature extraction and feature
matching is well-known object recognition method [8,11,24]. However, applying
it to AOI estimation while cooking has the following difficulties:

– The recognition of objects without strong textures, e.g. a plain white cutting
board, loses accuracy because feature extractors may fail to match feature
points.

– Objects which change their appearance while cooking, e.g. “baked” and
“mixed,” cannot be tracked.

– Feature extraction and feature matching are time-consuming.

We therefore developed a new AOI estimation method for a wearable eye-
tracker. In this method, “multiple” fiducial markers, to be more specific, ArUco
markers [10], are attached to each object. These markers are used to calcu-
late object polygons. Then, AOI is estimated by an eye gaze fixation point
and these polygons. In this paper, a brief overview of object detection meth-
ods with/without markers is introduced in Sect. 2. The implementation of our
method is presented in Sect. 3. Prior to applying our method to eye gaze analysis
for individuals who experience TBI, we have evaluated its performance by eye
gaze data when individuals who did not experience TBI were preparing meals.
The results and discussions are described in the latter sections.

2 Related Works

To implement AOI estimation, a given object should be found in a still image
or video sequence by object recognition. Object recognition can be classified by
the use of markers. The markerless approach is based on feature extraction and
feature matching but has above mentioned difficulties for AOI estimation while
cooking. Another approach is based on the use of fiducial markers.

To use fiducial markers, the candidates of AOIs should be predefined. It
means that each object should be associated with one or a few markers and their
data, such as boundaries of the object, should be input prior to the recognition.
However, the objects can be recognized by these preparations even if they are
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without strong textures and their appearance is changed. This approach is brute-
force, but less time-consuming than the markerless approach.

Duchowski et al. [9] and Bykowski et al. [3] proposed to use one fiducial
marker for each object. In cooking environment, cooking utensils and hands often
overlap one another in line of sight. A single marker is easily hidden. Pfeiffer et
al. [17,18] used 3D models in combination with 2D fiducial markers to handle
the overlap. However, their method cannot be applied to moving objects such
as cooking utensils.

3 AOI Estimation Method Using Multiple Fiducial
Markers

In this section, an overview of our AOI estimation method using multiple fiducial
markers is presented. The method is implemented by using Python 3.7.11 and
OpenCV 3.4.15.55.

3.1 Inputting Target Object Data

2D polygon
marker data

object name: cutting board

M1 M2

M3M4

M1 (x ,y ), ..., (x ,y )
1a 1a 1d 1d

... ...

M4 (x ,y ), ..., (x ,y )
4a 4a 4d 4d

b

d c

a

M1

Fig. 1. Target object data

This step is the preparation for AOI estimation. In cooking context, the contain-
ers and printed recipes can be AOIs. These objects are named “target objects.”
Figure 1 shows an example of a cutting board. First, at least one fiducial ArUco
marker is attached to a target object. These markers can be laminated. In this
example, four markers M1 to M4 are attached to the cutting board. Then one or
a few pictures of the object are taken. For better accuracy, all markers should be
clearly presented in these pictures. They are stored with an object name, poly-
gons to specify its boundary and subareas, markers’ data attached to the object,
and a layer to which the object belongs. The object name should be unique. Our
method uses 2D polygons. Each marker data includes its ID and location of four
vertices. Layers are used for AOI estimation with overlapped objects. In such a
case, an object on the topmost layer is selected as AOI.
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3.2 Collecting Eye Gaze Data

This step is to collect gaze data by a wearable eye-tracker as shown in Fig. 2. We
used Tobii Pro Glasses 2 in this study. It can record the video of 1920 × 1080
pixels and 25 frames per second by a scene camera. The eye gaze data (b) is also
recorded in 50 Hz. It includes time stamp, status indicator, and gaze position in
the video frame (a). The status indicator becomes 0 if gaze position is available.
If not, it becomes 1.

b) gaze data

time stamp

status indicator

gaze position

Tobii Pro Glasses 2

1080 px

1920 px

a) video frame

Fig. 2. Gaze data collected by wearable eye-tracker

3.3 Detecting Markers

a) video frame

M1
M2

M3

M4

M5 M6

M7

c) marker ID

b) detected marker list

M3 (x ,y ), ..., (x ,y )
3a 3a 3d 3d

M4 ...

M5 ...

M6 ...

M7 (x ,y ), ..., (x ,y )
7a 7a 7d 7d

d) locations of vertices

Fig. 3. Marker detection

This step is to detect markers in the video frame. The frame is processed by
OpenCV, a set of markers and their four vertices are detected. Figure 3 is an
example. In the video frame (a), markers M1 to M7 were available. However,
markers M1 and M2 were partly cut off in the frame. OpenCV could detect
markers M3 to M7 (c) and the locations of their vertices (d). These data are
stored into the detected marker list (b).
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object name marker ID layer

cutting board M4, M5, M7, M8 1

sink 3M ... ,9M ,,1M 7

frying pan M20, M21 2

... ... ...

stove M6, M12, ... 8

a) target object data

layer object name visible marker ID

1 cutting board M4, M5, M7

7 sink M3

8 stove M6

c) detected object list

b) detected marker list

M3 (x ,y ), ..., (x ,y )
3a 3a 3d 3d

M4 ...

M5 ...

M6 ...

M7 (x ,y ), ..., (x ,y )
7a 7a 7d 7d

Fig. 4. Object recognition

3.4 Recognizing Objects

This step is to recognize objects in the video frame. As shown in Fig. 4, the IDs
in the detected marker list (b) are used as a query. A set of objects associated
with the marker and its layer are extracted from the target object data (a).
These data are sorted by layer and stored into the detected object list (c) with
IDs of visible markers associated with each object.

3.5 Identifying AOI

This step is to identify AOI from the detected object list and the gaze data.
Objects in the list are evaluated from top to bottom layers one by one until AOI
hit is detected.
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c) selecting

keypoints

M4a

M5b

M7c

M4d

d) keypoints

layer object name visible marker ID

1 cutting board M4, M5, M7

7 sink M3

8 stove M6

a) detected object list

M7

b)

M7a M7b

M7d M7c

Fig. 5. Selecting keypoints of the object

Figure 5 shows an example. In this case, the topmost object in the list (a) is
the cutting board. Its bottom left marker M8 is not visible in the video frame
and other three markers, M4, M5, and M7, are visible (see, Fig. 3). Each marker
has four vertices, e.g., marker M7 has M7a, M7b, M7c, and M7d, and the cutting
board has 12 vertices. All combinations of four vertices among them are evaluated
by calculating the sum of the distance between all pairs of vertices. The four
vertices with the biggest sum are selected as keypoints (d). Figure 6 shows three
examples of combinations of four vertices. Combination (b) has the biggest sum
and four vertices represented by red points in (b) are considered as the keypoints.

Figure 7 shows the process of perspective transformation based on the key-
points. Each keypoint has the locations in the image stored in target object data
(a) and the locations in the video frame (b). Both locations were used to estimate
the homography matrix (c). This matrix (d) is used for perspective transforma-
tion (e) of 2D polygons specifying boundaries and subareas of the object stored
in target object data in Fig. 1. Then, the polygons are transformed to the video
frame as shown in (f).

Fig. 6. Examples of combinations of four vertices (Color figure online)
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If the gaze data in the video frame is within the transformed polygon, the
object is estimated as the AOI. If not, the next object in the list (a) in Fig. 5
will be evaluated. In case of that the gaze data is out of all polygons, “other” is
estimated as the AOI.

4 Evaluation

4.1 Eye Gaze Data Collection

Table 1. Eye gaze data for evaluation

ID Marker Recipe Kitchen Frames

G1 with R1 α 270

G2 without R1 α 287

G3 with R1 α 255

G4 with R1 β 263

G5 with R1 γ 222

G6 with R2 α 250

G7 with R2 β 254

G8 with R2 γ 224

Eight time series eye gaze data were used to evaluate the proposed method.
Table 1 shows some details of these data. For recording the data, Tobii pro
glasses 2 wearable eye-tracker was used. A set of fiducial markers were attached
to “containers” which may change their contents while cooking in gaze data
G1, G3, G4, G5, G6, G7, and G8. The containers were a cutting board, frying
pan, microwave oven, refrigerator, condiment shelf, sink, stove, and sub-table. In
addition to them, fiducial markers were attached to printed recipes on the wall.
No marker was used in gaze data G2 because this data was for evaluating the
performance of the markerless AOI estimation method. We prepared two types
of recipes for meal preparation. Both had one main dish with one soup and one
simple side dish. Main dishes were keema curry and potsticker in recipes R1 and
R2, respectively. Soups and side dishes in both recipes were almost same, the
difference was only in seasonings and ingredients. Each recipe was printed on two
pages. The first page showed the recipe for the main dish and the second page
showed recipes for the soup and the side dish. Three recipes were cooked in three
different kitchens. Eye gaze data G1, G2, G3, and G6 were recorded in kitchen
α, G4 and G7 were recorded in kitchen β, and G5 and G8 were recorded in
kitchen γ. Figure 8 shows apparatus of Kitchen α. Red rectangles indicate AOIs
in this experiment. Containers and printed recipes were considered as AOIs.
The evaluation was aimed to examine the AOI estimation performance of the
proposed method prior to using it for individuals who experience TBI. That is
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c) homography

matrix

estimation

e) perspective

transform

M4a (x ,y )
4a 4a

M5b (x ,y )
5b 5b

M7c (x ,y )
7c 7c

M4d (x ,y )
4d 4d

a) keypoints in image

stored in target object data

M4a (x ’,y ’)
4a 4a

M5b (x ’,y ’)
5b 5b

M7c (x ’,y ’)
7c 7c

M4d (x ’,y ’)
4d 4d

f)

b) keypoints in video frame

h ,h ,h
11 12 13

h ,h ,h
21 22 23

h ,h ,h
31 32 33

d)

d) 2D polygons

in target object data

Fig. 7. Perspective transformation

why, the eye gaze data collection was conducted by four healthy individuals, two
males and two females, who did not experience TBI. Prior to the data collection,
we explained the study and obtained informed consent from them.

g) d)

j)

a)

b)
h)

e)

f) refrigerator

c) microwave

i)

Fig. 8. Apparatus of kitchen α and the following AOIs: a) cutting board, b) frying
pan, c) microwave, d) first page of recipe, e) second page of recipe, f) refrigerator, g)
shelf, h) sink, i) stove, and j) sub table
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To evaluate the performance, 300 frames were randomly selected from each
gaze data set. However, some frames were not suitable for AOI estimation
because of blurring and/or missing gaze information. The actual number of
frames analyzed is shown in the rightmost column in Table 1. One of the authors
manually found AOI in these frames to calculate the precision, recall, and accu-
racy of AOI estimation methods.

4.2 Comparison with Markerless AOI Estimation Method

The performance of marker-based and markerless AOI estimation methods
was examined. The marker-based method is our proposed one. The markerless
method was implemented by using Oriented FAST and Rotated BRIEF (ORB)
[19]. Eye gaze data G1 was used to evaluate our method and G2 was used to
evaluate the markerless method.

b c e f g h j othera d

our method

markerless method

i

1.0
0.87

1.0

0.0

0.5

0.0

1.01.0
1.0

0.0

0.94
1.0

0.0

0.33

1.0

0.03
0.14

0.75
0.55

0.0

1.0 1.0

0.5

0.0

1.0

Fig. 9. Precision of our method and markerless method

b c e f g h j othera d i

0.02

0.95
0.83

0.0
0.090.0

1.0

0.27

0.75

0.0

0.76

1.0

0.00.5

0.92 1.0 0.97

0.75
0.55

0.0

0.56

1.0

our method

markerless method

0.5

0.0

1.0

Fig. 10. Recall of our method and markerless method

b c e f g h j othera d

0.5

0.0

1.0

i

0.05

0.91 0.91

0.0
0.15

0.0

1.0

0.42

0.86

0.0

0.84

1.0

0.00.09

0.96

0.05 0.25

0.75
0.55

0.0

0.72

1.0

our method

markerless method

Fig. 11. F-score of our method and markerless method
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Figures 9, 10, and 11 show precision, recall, and f-score of their AOI estima-
tion. There were 10 AOIs, from a to j, as shown in Fig. 8. “Other” means that
the eye gaze point was out of these AOIs. Our method achieved higher precision
for estimating b, c, e, f, g, h, i, j, and other. It also achieved higher recall for
estimating a, b, c, d, f, g, h, i, and j. As a result, its f-scores were higher than
those of the markerless method for all AOIs. The markerless method achieved
very low f-scores except for d and e. These two AOIs were printed recipes. It
suggests that our method was rather robust for estimating AOIs with changing
contents in comparison with the markerless method. The overall accuracy of our
method was 73.7%. That was also better than the accuracy of the markerless
method (22.6%).

We used a desktop PC with Intel i7-1060NG7 CPU, Intel Iris Plus Graphics
1536 MB GPU, and 15 GB RAM running on mac OS version 12.3.1. To estimate
an AOI in a frame, our method took 48±19 ms and the markerless method took
435 ± 347 ms.

4.3 Applicability to Different Kitchens and Recipes

Fig. 12. Overall accuracy for different settings

The applicability of our method to different kitchens and recipes was examined
by using eye gaze data G3 to G8. Figure 12 shows the overall accuracy for AOI
estimation in different settings. The overall accuracy of our method while fol-
lowing recipe R1 was 70.6% (G3), 76.8% (G4), and 75.2% (G5) in kitchen α, β,
and γ. For recipe R2, it was 76.0% (G6), 76.9% (G7), and 68.3% (G8).

5 Discussion

The proposed method achieved better f-score than the markerless method. It
suggested that the use of fiducial markers and predefined layers was more feasi-
ble than the use of feature extraction and feature matching for AOI estimation
on objects in the kitchen, including cooking utensils with their move and over-
lap, while cooking. The overall accuracy reached around 70% in the eye gaze
data collected while preparing meals by following two different recipes in three
kitchens. It showed that our method had some level of applicability to different
settings. To improve the accuracy, we analyzed the estimation failure when pro-
cessing eye gaze data G3 to G8. The failure occurred in 26% of 1468 frames. The
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most frequent failure occurred in detecting markers (23%). Our method failed
to detect all markers associated with an AOI object because they were partly
visible, in low light, or looked from steep side view, as well as, the AOI object
was inside but all markers were outside the frame of the scene camera. Another
failure occurred in perspective transformation (3%). The transformation of poly-
gons was not so accurate because the sum of the distance between keypoints was
too short.

Our method was approximately nine times faster than the markerless
method. AOI estimation methods based on fiducial markers are, in many cases,
faster than the markerless method. The time consuming process in these meth-
ods is usually homography matrix estimation and perspective transformation.
For example, the method proposed in [14] repeated the process by evaluating a
set of keypoints until appropriate transformation could be found. In our method,
such repetition was avoided by calculating the sum of the distance between key-
points. However, further optimization is necessary for implementing our method
because the current implementation could handle approximately 21 fps.

6 Conclusion

The AOI estimation method based on multiple fiducial ArUco markers was pro-
posed. It is simple and rather brute-force approach, but it showed better perfor-
mance in aspects of accuracy and time efficiency than the markerless method for
the eye gaze data collected while cooking. The overall accuracy reached around
70% in different settings. Our approach could work well in real context.

Our future work is to analyze the gaze point transition pattern of individuals
who experience TBI to support their meal preparation. Currently, our method
processes the frame one by one. We plan to implement a function that com-
pensates the estimation failure by using AOIs detected in a few frames before.
Additionally, further optimization is necessary for improving its time efficiency.

References

1. Arab, F., Bauchet, J., Pigot, H., Giroux, A., Giroux, S.: Design and assessment
of enabling environments for cooking activities. In: Proceedings of the 2014 ACM
International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct
Publication, UbiComp 2014 Adjunct, pp. 517–526. Association for Computing
Machinery, New York, NY, USA (2014). https://doi.org/10.1145/2638728.2641329

2. Bauchet, J., Pigot, H., Giroux, S., Lussier-Desrochers, D., Lachapelle, Y.,
Mokhtari, M.: Designing judicious interactions for cognitive assistance. In: Pro-
ceeding of the Eleventh International ACM SIGACCESS Conference on Com-
puters and accessibility - ASSETS 2009, p. 11. ACM Press, New York, USA
(2009). https://doi.org/10.1145/1639642.1639647, http://portal.acm.org/citation.
cfm?doid=1639642.1639647

3. Bykowski, A., Kupinski, S.: Feature matching and ArUco markers applica-
tion in mobile eye tracking studies. In: 2018 Signal Processing: Algorithms,
Architectures, Arrangements, and Applications (SPA), pp. 255–260. IEEE,

https://doi.org/10.1145/2638728.2641329
https://doi.org/10.1145/1639642.1639647
http://portal.acm.org/citation.cfm?doid=1639642.1639647
http://portal.acm.org/citation.cfm?doid=1639642.1639647


Using Fiducial Marker for Analyzing Wearable Eye-Tracker 203

September 2018. https://doi.org/10.23919/SPA.2018.8563387, https://ieeexplore.
ieee.org/document/8563387/

4. Carter, B.T., Luke, S.G.: Best practices in eye tracking research. Int. J. Psy-
chophysiol. 155, 49–62 (2020). https://doi.org/10.1016/j.ijpsycho.2020.05.010,
https://linkinghub.elsevier.com/retrieve/pii/S0167876020301458

5. Chevignard, M., et al.: An ecological approach to planning dysfunc-
tion: script execution. Cortex 36(5), 649–669 (2000). https://doi.org/10.
1016/S0010-9452(08)70543-4, https://linkinghub.elsevier.com/retrieve/pii/
S0010945208705434

6. Cook, A.M., Polgar, J.M.: Cook and Hussey’s Assistive Technologies: Principles
and Practice. Elsevier Health Sciences (2019)

7. Dawson, D.R., Chipman, M.: The disablement experienced by traumati-
cally brain-injured adults living in the community. Brain Injury 9(4), 339–
353 (1995). https://doi.org/10.3109/02699059509005774, http://www.tandfonline.
com/doi/full/10.3109/02699059509005774
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Abstract. With the popularity of wearable devices, human-computer interaction
(HCI) has begun to expand to mobile environments. Since emotion is an essen-
tial part of the interaction experience, capturing users’ emotional experience in
mobile HCI using wearable devices has become a promising research area. We
examined research papers in the above-mentioned fields in the past five years
(2017–2021) and finally included 29 papers in the review results. We divide these
articles by application area, analyze them in terms of several key elements of the
experimental process, and give a clear view of the data. This review unravels the
current practical applications and research methods of using wearable devices to
capture physiological signals for emotion recognition, aiming to provide readers
with guidelines for researchmethods and inspiration for future research directions.

Keywords: Mobile human-computer interaction · Physiological signals ·
Wearable devices · Emotion recognition

1 Introduction

The proliferation of wearable devices [1] and the development of mobile technologies
have enabled the spread of HCI to all areas of daily life. Accordingly, mobile HCI and
the corresponding user experience are receiving increasing attention [2].

Emotions, as an important part of the user experience, play a key role in positive
human-computer interaction.Many psychologists believe that most human behavior and
thinking are driven by emotions [3]. Several studies have also shown that emotions affect
human productivity [4, 5], physical and mental health [1, 6], which has a huge impact
on human-computer interaction.

Current emotion recognition methods are difficult to meet the requirements of real
mobile HCI.Most research stays in the laboratory testing stage, and emotion recognition
tests are rarely conducted in outdoor environments. Emotion recognition methods can
generally be divided into those based on behavioral performance (expressions, speech,
body movements, etc.) and those based on physiological signals. To date, there has been
more research on affective computing around the former than the latter [7].
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Although behavioral performance-based emotion recognition methods, such as rep-
resentative facial expression recognition, have the advantage of being intuitive. How-
ever, in some cases, expressions are not obvious or can be disguised, which reduces the
reliability and accuracy of recognition results [8]. Compared tomethods based on behav-
ioral performance, methods based on physiological signals are more advantageous in
mobile human-computer interaction. Physiological signals are influenced by the human
endocrine system and autonomic nervous system and are less influenced by the subjec-
tive human consciousness. Therefore, physiological signals are almost spontaneous and
uncontrollable, which makes them amore objective indicator of true emotional response
[8, 9].

Cameras in portable devices often capture only part of the facial expressions of users
as they move [10, 11] and complex environments lead to unstable lighting conditions,
which reduce the accuracy and feasibility of emotion recognition. In addition, behavioral
performance-based methods may have problems in terms of device portability, user
privacy, and data computation volume [9]. In contrast, wearable devices that measure
changes in physiological signals are often user-friendly and consumer-grade, becoming
better tools for measuring emotions outside the laboratory [12].

Under the themeof “Emotion recognition through physiological signal acquisition by
wearable devices”, this paper focuses on practical applications and reports the process
and results of the literature review. Specifically, this work focuses on the following
research questions:

• RQ1: What wearable devices are used in these emotion recognition methods? What
physiological signals are these methods based on?

• RQ2: What are the practical applications of this type of emotion recognition
technology in HCI? What are the characteristics of each application?

• RQ3: What are the important links in the specific process of emotion recognition
experiments? What are the similarities, differences and innovations?

These research questions address the key elements of emotion recognition in mobile
HCI: wearable devices, physiological signals, and application domains, focusing on
the testing process of emotion recognition in different application scenarios, includ-
ing experimental environments, emotion-eliciting materials, emotion classification, and
benchmarks for evaluating emotion recognition results. In this review, we visualized
the results and related information in graphical form and answered each of the research
questions in detail. The main contributions of the review are as follows:

• It provides a comprehensive review and summary of the physiological signals and
wearable devices employed for emotion recognition in mobile HCI over the past five
years, and can serve as a guide for relevant researchers in their selection and use.

• It categorizes the practical applications of emotion recognition in HCI and sorts out
the specific process methods used in testing experiments.

• It summarizes the widespread problems and foreseeable future trends when per-
forming emotion recognition in mobile HCI and provides inspiration for future
research.
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The paper is organized as follows: Sect. 2 presents the sentiment classificationmodel
and related work, and Sect. 3 describes the methodology and research methods used in
the review. The review results are presented in Sect. 4 and discussed in Sect. 5. As a
final remark, Sect. 6 concludes the paper.

2 Background

2.1 Emotion Models

Since human emotions are complex and variable, psychology has many emotion models
to quantify feelings. Currently, two main emotion theories are widely used to classify
and represent emotions, discrete emotion theory and dimensional emotion theory [13].
The first category is the basic emotion theory, which classifies emotions into discrete
categories. The best known of these is the classification model [14], which divides emo-
tions into six basic emotions: anger, fear, sadness, happiness, surprise, and disgust. These
basic emotions combine to form other, more complex, non-basic emotions. Another is
the dimensional emotion theory, where emotions are composed of different dimensions
and discrete emotional states correspond to regions in a multidimensional space. The
most classic is the circumplex model [15], which assesses emotions using two dimen-
sions: arousal and valence. Arousal measures the intensity of the emotion, from low to
high, while valence measures the pleasantness of the emotion, from negative to positive.

2.2 Related Work

In thepast, several studies have reviewedphysiological signal-basedmethods for emotion
recognition. Some surveys related to the topic of our review are shown below, and their
limitations are analyzed.

Two reviews [16, 17] have reviewed physiological signal-based emotion recognition
methods. Similarly, they both stated that the use of wearable devices to detect heart-
related physiological signals is a good way to accurately and inconspicuously measure
emotions in real life. The limitation is that their testing environments are restricted to
controlled laboratories. One difference is that one study [16] added facial expression
recognition to the physiological signal.

Close to our research questions, some reviews [18–20] reviewed studies using wear-
able devices to measure physiological signals to recognize emotion recognition. The
difference is that the wearable devices they summarize cannot all meet requirements
such as lightweight and wireless, and the tests mostly stay in controlled laboratories. It
isworth noting that they started to focus on emotion recognition in outdoor environments.

A more novel review [7] address non-invasive mobile sensing methods for emotion
recognition in smartphone devices. Although cell phones are common mobile devices,
cell phone cameras have many limitations in real mobile human-computer interaction.

On the topic of “emotion recognition around physiological signal detection by wear-
able devices,” previous reviews rarely focus on mobile HCI or practical applications.
Therefore, we hope to fill the gap in this field with this paper.
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3 Review Methodology

This study was conducted according to the systematic literature review guidelines
[21, 22]. Following these two guidelines, our literature review was divided into three
main steps: (1) information sources and search strategy, (2) study selection and quality
assessment, (3) data extraction and synthesis.

3.1 Data Sources and Search Strategy

We searched the Web of Science database in December 2021 using the keywords “emo-
tion recognition AND wearable device”. For publication time, we focused on the latest
advances and trends in the field, so we only selected research articles from the last five
years (2017 to 2021). For document types, we chose “Articles” and “Meeting” to exclude
invalid data. For language, we set it to English.

3.2 Study Selection and Quality Assessment

After the initial review, a total of 205 articles potentially relevant to the current
research question were shortlisted. Before the formal screening, 7 duplicate articles were
excluded, yielding 198 articles. Then 108 articles were excluded based on the exclusion
and inclusion criteria review, leaving 90 articles. The following are the inclusion and
exclusion criteria we specified:

• Wearable devices. Do they meet the requirements of inconspicuousness and user-
friendliness in mobile HCI? Are they consumer-grade products?

• Signal source. Does it mainly rely on capturing physiological signals to identify
emotions? Some wearable devices rely on built-in miniature cameras for local facial
expression recognition, with physiological signals as a supplement; they are excluded
from the scope of this paper.

• Experimental testing. Whether real-life experimental tests have been conducted to
test the emotion recognition method. Some articles only present a feasible framework
for emotion recognition without actual experimental testing on subjects, which are
excluded from this paper.

In addition, to ensure that each article has sufficient and appropriate information to
demonstrate the methodology of their studies, we set additional quality criteria:

• Research focus. Does the research focus on practical applications and experimental
methods?

• Application potential or value. Does the research have close to real-life use cases or
tests in mobile HCI?

• Experiment Introduction. Are the experiments or cases described in detail and clearly?
Does it include key elements such as test environment, stimulus materials, equipment,
and data processing?
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The quality criteria review excluded the remaining articles and the final 29 remaining
articles were included in this review. The detailed process is illustrated in the PRISMA
flowchart in Fig. 1.

Fig. 1. PRISMA flowchart.

3.3 Data Extraction and Data Synthesis

Each article reviewed was read in more detail to extract the following key data.

• Practical applications of the study
• The wearable device, wireless transmission method, type of device, sensors carried
• Experimental environment
• Emotional stimulus materials
• Emotion classification
• Evaluation benchmark
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First, we summarized the realistic application scenarios of emotion recognition in
the field of human-computer interaction by classifying different studies according to
the attributes of the target population, the experimental environment, and the type of
emotion for their practical applications. Then, the experimental methods are organized
in several dimensions as a guide for future research methods.

4 Results

4.1 Wearables and Physiological Signals

This section focuses on answering RQ1 using data charts and detailed information. First,
we counted the number of times each type of device was used and its corresponding
research literature, as shown in Table 1 below.

Table 1. Wearable devices and related research.

Device Number of uses Related Studies

Empatica E4 10 [9, 24, 28, 30, 31, 36, 39, 40, 45, 46]

Microsoft Band 2 5 [1, 25, 32, 39, 40]

Shimmer3 GSR + Unit 4 [4, 12, 26, 27]

Emotiv EPOC X 3 [6, 33, 44]

Shimmer3 ECG Unit 3 [24, 26, 38]

Interaxon MUSE 2 [12, 41]

TDK Silmme W20 2 [5, 34]

Emotiv Insight 1 [43]

Algoband F8 1 [8]

Analog ADI-VSM 1 [37]

Mio® alpha 1 [42]

NeuroSky 1 [32]

B-Alert x10 1 [23]

In addition, to provide a reference guide for future researchers in selecting wearable
devices and physiological signals, we analyzed which devices researchers would choose
more often when using specific signals, as shown in Fig. 2 below.
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Fig. 2. Equipment usage in each signal.

According to the position of wearing, wearable devices are mainly divided into two
types: wristband and headband. A special one, Shimme3 ECG was worn on the chest.
Compared to the headband devices, the wristband devices represented by Empatica E4
are more frequently used.

Physiological signals can be broadly classified into five categories: cardiac-related
signals, electrical skin signals, skin temperature, electroencephalographic signals, and
respiration.

Cardiac-related biosignals are used the most (up to 25 times), which include photo-
plethysmography (PPG) and electrocardiography (ECG). The PPG is more commonly
used, with 21 times. Its measurement electrodes are usually integrated into smartwatches
to make it easier for users to wear and measure while on the move. The ECG method is
used less frequently, with only four times. Measurement devices are also only provided
by Alert x10 [23] and Shimmer3 ECG units [24–26].

The EDA/GSRwas used the secondmost often, reaching 20 times. Emotional stimuli
cause an autonomous activation of the sweat glands of the skin, which in turn causes
changes in the electrical activity of the skin [27]. The measurement sensors are usually
installed on the finger (Shimmer3 GSR + Unit) or wrist (Empatica E4, Microsoft Band
2, Analog Devices ADI-VSM). Studies [4, 27, 28] have mentioned that GSR signals are
more sensitive to the arousal of emotions compared to valence.
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The skin temperature (SKT) was used the third most often, amounting to 11 times.
The SKT is measured with the Empatica E4 and Microsoft Band 2, which have the
infrared (IR) thermometer. The stimulation causes changes in sympathetically controlled
smooth muscle and further causes changes in blood vessels [28]. Its more specific phe-
nomenon is that in a relaxed state a person’s blood vessels dilate and skin temperature
rises, while in stress or anxiety the blood vessels contract and the skin becomes cold.
Thus, measuring SKT can identify the degree of relaxation or stress in a person.

The EEG signal was used 8 times, which is relatively few. EEG signals are usually
measured from the head, and the fixed acquisition position limits the measurement
of other signals. Exceptionally, the B-Alert x10 measures both EEG signals and ECG
signals. EEG can help researchers accurately detect changes in brain activity and perform
unconscious and second-by-second assessments. However, EEG wearable devices face
challenges of time-consuming setup and noise sensitivity in mobile use environments.

Respiration (RSP) was mentioned only once [26], collected by the Shimmer3 ECG
Unit. The breathing patterns (speed and depth) contain rich information about the
emotional state [29].

In addition, there are several noteworthy points about these devices:

• The Empatica E4 device has an event marker button for easy self-annotation by the
user.

• The Microsoft Band 2 was discontinued in 2016, and the companion app was discon-
tinued in 2019. This means that users can continue to use their devices (track heart
rate, record exercise, track sleep, etc.), but the features provided by the cloud ormobile
apps will no longer work.

• The Emotiv EPOC model mentioned in the studies is the Emotiv EPOC+, which has
been discontinued and replaced by the upgraded EPOC X. The main features of both
are similar.

• The SilmmeW20 can measure pulse rate while moving, but in some cases (strenuous
exercise, cold environments, poor blood flow, etc.) the signal may be lost.

• Some studies used other signal characteristics in addition to physiological sig-
nals in identifying emotions, including eye-tracking data [9] and acceleration data
representing body movement [30].

4.2 Specific Applications

This section answers RQ2, focusing on different application scenarios’ concerns and
experimental procedures. Twenty-two studies account for specific application scenarios
of emotion recognition, while the other seven articles only account for emotion recogni-
tionmethods and performancewithout practical applications. To understand the research
approaches of researchers in different fields, we divided the 22 articles by application
areas into negative emotion detection, context-aware systems, analytical assessment,
worker emotion analysis, and communication assistance. We summarized the charac-
teristics of different application scenarios (application meaning, experimental setup,
emotional stimulus material, and emotional classification), as shown in Table 2.
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Table 2. Experimental procedures for different applications.

Application References Environment Pre-experiment Stimulation Emotion
Model

Baseline

Negative
Emotion
Detection

[6] Labs Assessment Psychology
Approach

Negative
emotion

Self-report

[36] Labs Assessment Psychology
Approach

Negative
emotion

Self-report

Dynamic n/a Real Scenes Self-report

[24] Labs Adjustment Psychology
Approach,
Video Clips

Negative
emotion

Self-report

[25] Dynamic n/a Real Scenes Negative
emotion

Self-report

[26] Labs Adjustment Video Clips Negative
emotion

n/a

[1] Labs Adjustment Emotional
Pictures

Negative
emotion

n/a

[37] Static n/a Real Scenes Negative
emotion

Self-report,
Biomarkers

[38] Dynamic n/a Real Scenes Negative
emotion

n/a

[27] Labs Assessment Audio Clips Negative
emotion

Self-report

Unclassified [8] Labs n/a Video Clips Valence Emotional
labels

[12] Labs Adjustment Emotional
Pictures

Dimensional Self-report

[32] Labs Adjustment Video Clips Valence Self-report

[33] Labs n/a Games Valence Self-report

[31] Labs Adjustment Video Clips Dimensional,
Discrete

Self-report

[34] Dynamic n/a Real Scenes Dimensional,
Discrete

Manual
labeling

[28] Static n/a Audio Clips Valence Self-report

Context-aware
Systems

[40] Labs n/a Emotional
Pictures

Dimensional Self-report

Labs n/a Games n/a

[39] Labs n/a VR Dimensional Self-report

Labs n/a Emotional
Pictures

Emotional
labels

[41] Labs n/a Video Clips Dimensional,
Discrete

Manual
labeling

Dynamic n/a Real Scenes n/a

(continued)
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Table 2. (continued)

Application References Environment Pre-experiment Stimulation Emotion
Model

Baseline

[42] Labs n/a n/a Dimensional,
Discrete

Self-report

[43] Static n/a Video Clips Discrete n/a

[30] Labs Adjustment Video Clips Laughter Manual
labeling

Analysis and
Evaluation

[9] Dynamic n/a Video Clips Dimensional Manual
labeling

[23] Labs Adjustment Emotional
Pictures

Dimensional Self-report

Labs n/a VR Self-report

Dynamic n/a Real Scenes Self-report

Worker
Emotion
Detection

[5] Dynamic n/a Real Scenes Dimensional,
Discrete

n/a

[4] Labs n/a Emotional
Pictures

Dimensional Self-report

[44] Dynamic n/a Real Scenes Dimensional Biomarkers

Communication
Assistance

[45] Dynamic n/a Real Scenes Dimensional Manual
labeling

[46] Labs Measurement Video Clips Discrete Self-report

• Uncategorized. The seven studies in this category used emotion recognition meth-
ods that did not apply to specific scenarios but had potential and value for practical
application. Most of these studies were tested in a controlled experimental setting,
as no practical application scenarios were specified. Four articles set up a relaxation
period before the experiment to allow subjects to maintain a neutral mood. Emotional
stimuli relied primarily on visual and auditory stimuli, including still pictures [12],
audio clips [28], and video clips [8, 31, 32], and video games [33]. Studies outside the
laboratory setting [34] targeted five subjects and collected their physiological signals
during 10 weeks of work. All seven studies had a similar feature in terms of mood
categorization, all categorizing on the valence dimension (positive and negative). In
addition, some of them [8, 35] adding neutral.

• Negative emotion detection. Nine articles addressed negative emotion detection: six
examined psychological assessment in everyday life [6, 24–27, 36] and three focused
on negative emotion detection in specific scenarios, such as work [1], pre-surgery [37]
and driving [38]. Studies in this category used a variety of emotionally stimulating
materials. Four studies used realistic scenarios for their experiments: vehicle driv-
ing [38], pre-surgery [37], classroom lectures [36] and daily life [24, 36]. Six used
laboratory simulations, divided into psychological tests [6, 26, 36] and audiovisual
materials [1, 25–27]. These studies specifically address the emotion of stress, some of
which are also elaborated as anxiety. Anxiety can essentially be explained as chronic
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stress [6]. One study [26] classifies stress more carefully into three levels: relaxed,
mildly stressful, and moderately stressful. In particular, a study on negative emotions
in driving [38] considered both anxiety and anger.

• Context-aware system (CAS). Context-aware systems (CAS), including Cognitive
assistants [39] and personal assistants [40], provide users with information prompts
and decision support services by collecting data from users and the environment.
The addition of emotion recognition allows the CAS to understand users’ feelings
and needs better and provide more humanized services. This type of research has
affluent subdivisions: mobile scenarios [39], emotional games [40], life and health
logs [41], and music recommendations [42]. Two studies are more specific, Cai et al.
[43] studying the relationship between human personality, behavior and emotion; and
Di Lascio et al. [30] using physiological signals and body movement data to detect
laughter. The emotionally stimulating materials used in these studies were essentially
visual and or auditory.

• Analysis and Evaluation. Emotions play an essential role in user experience in con-
sumption, travel, and entertainment. Two articles use emotion recognition for targeted
assessment tests. One study [9] had subjects walk or stand in a real outdoor scenario
while watching video clips. The other [23] was more complex, with a controlled lab-
oratory and an actual pavilion. First, subjects viewed emotional pictures of the IAPS
or experienced a VR virtual exhibit in the controlled laboratory. In addition, subjects
assessed the show in an actual pavilion. Similarly, both studies used the dimensional
emotions model.

• Worker state detection. The emotional state of workers affects key production fac-
tors such as safety, efficiency, and employee turnover. Therefore, understanding the
emotional state of employees at work can help workers do their jobs better, and com-
panies improve their efficiency [4, 5, 44]. Three articles investigated the relationship
betweenmood andworking conditions [44] and betweenmood and productivity [4, 5],
respectively. Two studies [5, 44] used different work scenarios in actual workplaces to
elicit emotions. Another study in a laboratory setting [4] used photographs of work-
ers’ daily lives to evoke emotions. Similarly, all three articles categorized emotions
according to an arousal-valence dimensional model.

• Communication Assistance. Individuals with autism or developmental delays have
difficulty expressing their feelings or seeking help. Unobtrusive wearable devices
can identify emotions to address such communication impairments. The study on
children with developmental abnormalities or delays [45] conducted experiments in
real everyday life; another study on individuals with autism [46] used video clips to
elicit emotions under laboratory conditions.

4.3 Experimental Environment

Unlike the previous section, the sections from 4.3 to 4.7 are not limited to individual
application areas but focus more on the experimental process in overall mobile HCI to
answer RQ3.

We divided the different experimental settings into the controlled laboratory (22
papers) and realistic environment (13 papers). Since multiple experiments in different
environments may be conducted in a single study, the cumulative number of experiments
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exceeds the finalized 29 papers. Based on the motion state of the wearable device, the
realistic environments were further divided into static and dynamic categories. Static
means that the subjects need to follow regulations to maintain a specific state, similar to
a controlled laboratory, while dynamic represents the freedom ofmovement that the sub-
jects can perform without restrictions. There were 3 static experiments and 10 dynamic
experiments. The dynamic experiments in the natural environment are very close to the
real mobile human-computer interaction and have guiding and reference values, so we
analyzed the wearable devices applied in the naturally dynamic environment, as shown
in Fig. 3.

Fig. 3. Wearable device usage in dynamic real-world environments.

Some patterns can be found: these wearable devices in the figure all have the poten-
tial for practical application in mobile HCI. Among them, the more used ones are the
wristband wearables like Empatica E4 [9, 36, 45], Silmee W20 [5, 34], and Microsoft
Band2 [24]. Compared to EEG headbands such as the Emotiv Epoc [44] and InteraXon
MUSE [41], wristband wearables are lighter, less conspicuous, measure a wider variety
of signals, are more preferred by researchers.

4.4 Pre-experimental Sessions

Many studies will set up a pre-experimental session to measure, assess, or stabilize
subjects’ emotional baseline (often referred to as a neutral mood or relaxed state). We
counted this literature, and the results are shown in Table 3.

The obvious point is that only studies in which the testing environment was in a
controlled laboratory (12 studies) arranged some pre-experimental sessions. This was
also done for all studies where the application was a negative emotion test and the
experimental setting was a controlled laboratory.
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Table 3. Specific details of the pre-experimental session.

Application References Pre-experiment Specific operation

Negative emotion detection [6] Assessment The Hamilton Anxiety Rating
Scale (HAM-A)

[36] Assessment The Perceived Stress Scale
(PSS)

[24] Adjustment Audio for meditation

[26] Adjustment Relaxing video clips

[1] Adjustment IAPS (Non-stress videos)

[27] Assessment The Visual Analogue Scale for
Anxiety (VAS-A)

Unclassified [12] Adjustment 2 min of relaxation time

[32] Adjustment Rest time (10 s open eyes and
10 s closed eyes)

[31] Adjustment 60 s of relaxation time

Context-aware systems [30] Adjustment 60 s of relaxation time

Analysis and evaluation [23] Adjustment Watch the white screen for a
4-min break

Communication Assistance [46] Measurement Calculate the average value of
ten-second signal

Assessment procedures typically use psychological questionnaires or physiological
signal measures to assess the subjects’ emotional state to determine whether they are in
the desired neutral state. Stabilization procedures often use blank or neutral audiovisual
material to relax subjects for 10 s to 4 min to ensure that the emotional state is neutral
(relaxed) before the formal experiment.

4.5 Emotionally Stimulating Material

The previous Sect. 4.2 analyzed the stimulus materials used in different application
scenarios, while this section will sort, analyze and summarize the emotional stimulus
materials as a whole, as shown in Fig. 4.

The video clips were used 10 times andwere commonly used in all areas. Six of these
were video clips selected by the researchers themselves, and these were more flexible
and adapted to the needs of the study. The next most popular video clip was the Database
for Emotion Analysis (DEAP) [25, 41], which was used twice.

Real-life scenarios occurred 10 times, and the emotional stimuli faced by subjects in
real-life and work scenarios were more complex and could not be specifically counted.
Specific to the study of anger anxiety while driving [38], it developed an Android app
to capture photos in front of the car. These photos were then manually analyzed to
extract potential stimuli that caused changes in driver mood, including traffic density,
road complexity, and any obstacles that could cause stress.
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Fig. 4. The use of different emotionally stimulating materials.

Emotional pictures appeared 6 times, commonly using large databases of validated
emotional pictures such as the International Affective Picture System (IAPS) and the
Nencki Affective Picture System (NAPS). However, different individuals may have
biased feelings and assessments of these pictures, so Fortune et al. (2020) chose personal
photographs as emotional stimulus material in the hope that they would elicit more
realistic and easily measurable emotional responses.

The psychological method was used 3 times, all of them appearing in studies in the
category of negative emotion (stress and anxiety) detection. Of these, the Trier Social
Test (TSST) [26, 36] was used more often.

The audiomaterialwasused2 times.Onewas the canonical database the International
Affective Digitized Sounds (IADS-2) [28] and the other was a researcher-selected audio
clip [27].

Both VR and games were used 2 times, but they do not have canonical databases
and were mostly screened by the researchers themselves.

4.6 Emotion Classification

According to Table 2, we count the number of times different emotion classification
methods were used. As shown in the Fig. 5, there are broadly four types of emotion
classification: dimensional emotions, negative emotions, discrete emotions, and positive-
negative emotions. The arousal-potency dimensional model was the most widely used,
with 13 studies basing their mood classification on this. Studies in the negative emotion
detection category all focused on detecting stress, anxiety, or anger emotions.
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Fig. 5. The use of different emotion models.

The discrete emotion model is not usually used alone. Discrete emotions corre-
sponded to different regions on the two-dimensional plane of arousal-valence, and five
of the seven studies used the discrete emotion model together with the arousal-valence
dimension model. Only two used the discrete emotion model alone in the classification
of emotions.

The categorization of emotions according to valence (negative-positive) is somewhat
ambiguous in its definition of different emotions and appears only in studies that do not
specify an application scenario,whichmay indicate its difficulty in adequately describing
the user’s emotional experience in real emotion recognition applications.

There is only one study on laughter detection [30].

4.7 Baseline for Assessment

The vast majority of experiments established baselines for judging the accuracy of emo-
tion recognition results, including self-reports completed by subjects, emotion labels
that came with the emotion stimulus material, manual observation and labeling, and bio-
logical benchmarks. Table 4 shows the baseline used for all experiments to determine
the accuracy of the emotion recognition results; Fig. 6 reveals the usage of different
baselines.

Self-reports were used 20 times, mostly on scales or questionnaires that are widely
used in psychology. Of these, the Self-Assessment Manikin (SAM) was used the most
(seven times); the Likert scale was used four times; the State-Trait Anxiety Inventory
(STAI) was used twice. The Perceived Stress Scale (PSS) was used three times, all
in negative emotion detection studies. Nalepa, Kutt, Giżycka, et al. [40] used an off-
the-shelf application, the PsychoPy program. Two studies [32, 42] used questionnaires
custom-designed by the researchers.
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Table 4. The specific content of the baseline for assessment.

Application References Baseline Specific content

Negative Emotion [6] Self-report Psychological scales (SAM)

[36] Self-report Psychological scales (PSS)

Self-report Psychological scales (PSS,
EMAs)

[26] Self-report Psychological scales (VASS)

[24] Self-report Psychological scales (PSS)

[37] Self-report, Psychological scales (STAI)

Biomarkers Cortisol

[27] Self-report Psychological scales (a
Likert scale)

Unclassified [8] Emotional labels From video clips

[12] Self-report Psychological scales (SAM)

[31] Self-report Psychological scales (a
Likert scale)

[33] Self-report Psychological scales (SAM)

[32] Self-report Psychological scales
(Customized questionnaire)

[34] Manual labeling Subjects labeled themselves

[28] Self-report Psychological scales
(PANAS, STAI, SSSQ)

Context-aware Systems [40] Self-report Psychological scales
(PsychoPy program)

[39] Self-report Psychological scales (a
Likert scale)

Emotional labels From emotional pictures

[41] Manual labeling By subjects

[42] Self-report Psychological scales
(Customized questionnaire)

[30] Manual labeling By professional annotator

Analysis and Evaluation [9] Manual labeling Subjects labeled themselves

[23] Self-report Psychological scales (SAM)

Self-report Psychological scales (SAM)

Self-report Psychological scales (SAM)

[4] Self-report Psychological scales (a
Likert scale)

[44] Biomarkers Cortisol

(continued)
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Table 4. (continued)

Application References Baseline Specific content

Communication Assistance [45] Manual labeling Diary of observations by
people around subjects

[46] Self-report Psychological scales (SAM)

Fig. 6. Usage of different benchmarks.

Manual annotation was usually divided into annotation by the subjects themselves
and annotation by professional observers. Subjects’ own labeling is usually done in
between video clips [9, 41] or when emotions are strong [34]. Professional observer
labeling varies depending on the experimental setting. Daily life scenarios relied on
people around the subjects, such as in a study of emotional expression in children with
autism [45], where family members and teachers observed children’s behaviors and
activities and labeled them in the form of a diary. In laboratory scenarios, professional
observers annotated by watching back video recordings [30].

A novel approach is the detection of cortisol in saliva, a reliable biomarker proven
by research to reflect levels of stress, anger and depression [37, 44].

In addition, two studies [8, 39] used mood labels that come with the mood stimulus
material as a baseline for testing the identification results. Thesemood stimulusmaterials
were derived from widely used databases, and using their self-contained mood labels is
a more convenient method.
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5 Discussion

This section discusses our findings around the review results and research questions, as
well as analyzes their similarities and differences with findings in other review articles.
Based on the review findings, we discuss the problems and future directions in the
reviewed studies.

For the selection of physiological signals, the use of wearable devices to detect
cardiac- related physiological signals in real life is a good way to accurately and incon-
spicuously measure emotions, which is in line with the findings of other reviews [16,
17]. Slightly less than the former, the EDA/GSR signal is also widely used and proves
to be a well-suited signal source. In addition, far more studies have used multimodal
signals than single-modal signals, proving that the combination of multimodal signals
performs better in terms of recognition performance.

In the use ofwearable devices, based on the type of signal corresponding to the device
and the ease of wearing the device, wristband devices equipped with signal sensors such
as heart-related signals and EDA are more widely used, compared to headband devices
based on EEG signals.

Among the classifications of practical applications, negative emotion detection and
context-aware systems are the most widely used areas of emotion recognition technol-
ogy, butmost of the remaining studies only propose a framework for emotion recognition
without practical applications, which can reflect that the exploration of practical applica-
tions is still insufficient. This paper’s review and classification of practical applications
of emotion recognition in mobile HCI is a novel exploration that has not yet been found
in other research reviews.

In terms of experimental settings, there are even fewer studies on the application of
emotion recognition in real-life HCI. Only 10 dynamic experiments in real-life environ-
ments have been conducted, which implies that there are still a large number of issues
to be explored and studied in the process of transforming technology into applications.

Before the stimulation begins, studies that place experiments in controlled labora-
tories usually arrange procedures to keep subjects in a neutral emotional state to ensure
the accuracy of the data. Given the complexity of the experimental setting and the time-
consuming nature of the pre-experimental phase, real-life experiments usually ignore
the pre-experimental phase.

The widely used emotional stimulus materials are video clips, real-life scenes or
emotional pictures, which is consistent with the finding of another review [18]. The
stimulus materials used in studies on negative emotion detection are noteworthy: some
psychological methods are more widely used, such as the Trier Social Test (TSST) [26,
36] which is used to elicit stress or anxiety in subjects.

The dimensional model of arousal-potency is widely used by many studies, in con-
trast to the claim of another survey [7] (that many studies of mobile affective computing
aim to identify discrete emotions). The discrete emotion models in the reviewed studies
were mostly used in combination with dimensional models.

In contrast to the study by Saganowski et al. [18] that used only self-reports as a
basis for emotion assessment, ourwork incorporatesmanual annotation, biomarkers, and
emotion labels that come with the stimulus material, providing researchers with more
flexible options. Of course, self-report is still the primary source of basic facts about
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emotions for many researchers, and it includes commonly used questionnaires such
as the Likert scale, the Self-Assessment Manikin (SAM), and the State-Trait Anxiety
Inventory (STAI).

Despite the progress made, real mobile HCI applications are scarce, with only 1/3 of
the studies reviewed attempting emotion recognition applications usingwearable devices
in real environments. A variety of factors have constrained the progress of research.

First, the user experience of the device. Only a small class of devices such as the
Empatica E4 and Microsoft Band 2 have managed to measure inconspicuously, while
the rest still suffer from exposed cables [25, 26] and excessive size. EEG headgear such
as the Emotiv Epoc and InteraXon MUSE face problems with cumbersome electrode
setup processes and interference from motion artifacts, and the headgear limits suitable
scenarios.BothShimmer3GSRUnit andShimmer3ECGhave exposed cables, leading to
the inevitable interference of humanmotion in the real environment by them. Second, the
problem of equipment setup. Subjects were often asked to undergo a signal stabilization
period of 5 to 10 min after putting on the devices [26, 28]. Similarly, subjects were asked
to clean the skin on the forehead and behind the ear before wearing the EEG headband
to reduce the impedance between the skin and the electrodes [12]. These settings disrupt
the coherence and ease of use in real human-computer interaction. In addition, almost
all devices inevitably suffer from poor signal quality in mobile conditions.

There are few studies on how to identify the source of stimuli that cause mood
changes. T. Zhang et al. [9] attempted to have subjects wear head-mounted eye-tracking
devices to collect eye-movement data for video providers to analyze the relationship
between video content and users’ emotions. Dobbins & Fairclough [38] used a cam-
era to capture the view in front of the driving vehicle to provide a human analysis of
the relationship between road conditions and mood changes. In-depth exploration of
the user’s emotional experience requires clear identification of the source of emotional
stimuli in the interaction and then making adjustments, for which we hope and suggest
more research be explored in the future.

6 Conclusions

This paper is based on the systematic literature review approach, focusing on the use
of wearable devices to measure physiological signals for emotion recognition and high-
lighting practical applications of emotion recognition in mobile HCI. Closely focused
on the above-mentioned topics, we finally obtained 29 articles through a review of the
Web of Science database and a rigorous inclusion and exclusion process.

Extracting valid data from these articles and performing statistical analysis, we have
the research directions and experimentalmethods for emotion recognition inmobileHCI,
which can be used as a reference guide for future researchers. This review is mainly
for researchers who wish to translate emotion recognition technology into practical
applications. It is hoped that the results of our review will provide them with references
in equipment selection and experimental design, and bring inspiration for their research
directions.
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The limitations of this review are the number of articles used and the research
questions. Due to limited manpower and time, there is a possibility of expanding the
scope of the reviewed articles. The research questions focus on research methods and
experimental procedures, without sorting out signal processingmethods and algorithmic
models.

Emotion recognition methods are based on physiological signals only. Some studies
were not only based on physiological signals but also incorporated other data sources
such as facial expressions, speech, or eye movement signals, for which we can conduct
more extensive research in the future.
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Abstract. There is an existing shortage of skilled personnel in the healthcare
environment. The growing need for healthcare professionals due to the increasing
number of elderly people represents a sociopolitical and economic challenge.
It is expected that human-robot collaboration in healthcare will rise in the near
future because it could be a great advantage to relieve healthcare professionals
with technical systems. To promote the acceptance of such technical systems and
digital aids, it is important to involve the health care staff from the very beginning.
Therefore, the aim of this study was to examine differences in the acceptance of
and the general attitude towards robots in the healthcare sector. In focus was the
difference between people working in the health care environment and those who
don’t. An exploratory study was conducted to find out if - and if yes how - the
attitude of people towards robots in the healthcare sector differ and whether the
type of robot has an influence on the attitudes towards robots. The results show that
participants working in the healthcare sector have a less positive attitude towards
robots than those not working in the healthcare sector. Furthermore, significant
differences can be shown regarding the assessments of the different robots in the
different scenarios. The results of the study should help to understand how people
working in the healthcare sector evaluate the potential use of different robots in
healthcare.

Keywords: Human-robot collaboration · Healthcare environment · Acceptance

1 Introduction

The proportion of elderly people in the population is increasing around the world. This
results in more people needing care [1]. Consequently, there is a growing need for
healthcare professionals, which represents a sociopolitical and economic challenge. This
challenge exists because the healthcare sector already has a long history of staffing
problems, such as staff shortages and turnover rates [2]. Which in result can affect the
quality and safety of care [3]. To relieve the burden on professional healthcare workers
andmakework processesmore effective, digital and technical systems are introduced [4].
Those technical systems are not only computer systems but also robots. An interaction
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between a robot and a human being is called human-robot interaction [5]. As of now
human-machine interaction in healthcare is primarily used to help patients improve or
monitor their health. It is expected that human-machine interaction in healthcare will rise
in the near future. In in-home and inpatient care aswell as in hospitals, robotic systems are
already increasingly being used as support for control, routine, and logistical activities
[6]. By incorporating interacting robots, the healthcare sector can improve the quality
and accessibility of healthcare services, which in turn may improve the patients’ health
outcomes for example due to more close monitoring [7]. In addition, the support of
robots will increase the time for patients by the healthcare staff itself. This could also
improve the well-being of the patients. However, despite the great need for support,
human-robot interaction in the healthcare environment faces several challenges. These
range from ethical aspects (e.g. awareness of the patients intimate space [8]) and design
issues to safety, utility, acceptance, and appropriateness.

Another challenge occurred when in December 2019, the virus SARS-CoV-2, also
known as the coronavirus, was discovered in China and developed into a worldwide
pandemic [9]. According to the Robert Koch Institute [10] the course of the disease
varies. There are cases that remain completely asymptomatic as well as cases where the
infection can lead to severe pneumonia with lung failure and death. This disease resulted
in major challenges for society as a whole and especially for the staff in the healthcare
environment [11]. To protect oneself and keep the virus from spreading one of the main
measures for the public is social distancing [10]. For people working in the healthcare
environment applying physical distancing is – in many cases - not a valid option. In this
regard, the use of robots can have benefits in terms of health and safety for patients and
healthcare staff [12].

Yang et al. [13] addressed the questionofwhether robots could be effective tools in the
fight against COVID-19. Today, robots can already be used in many areas of healthcare
and serve as support. They have the potential to disinfect, distribute medicines and food,
measure vital signs, and keep someone company.With the escalation of a pandemic such
as the one caused by Sars-CoV-2, the potential role of robotics is becoming increasingly
clear. Since coronavirus viruses can persist for days on inanimate surfaces, the cleaning
of surfaces is highly relevant. To prevent the spread of diseases, so-called UV-surface
disinfection robots can be used in the hospitals [14]. These are UV-light-devices that
are completely robot-controlled and contact-free. They are used to clean contaminated
surfaces and thus effectively reduce contamination. Evaluations show that compared
to standard room disinfection, non-contact technologies reduce residual contamination
more effectively. Furthermore, such systems are able to save costs, perform rapidly
and reduce the risk of infection for cleaning staff who are directly exposed to viruses
while cleaning, which could be prevented by using these systems [13]. A robot that
is used for the disinfections of rooms and surfaces is one of the robots that does not
necessarily have to have direct contact to patients when it is used. Examples for such
robots are the “Laska” and “Yezhik UVD Robots” by Aitheon [15]. Another robot that
is already being used and tested in the healthcare environment today the robot “Moxi”
from the company Diligent Robotics [16]. “Moxi” is a one-armed robot for assistance in
hospitals. Normally, it does not have direct patient contact. It is designed to assist nurses
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by performing routine tasks that do not require direct interaction with the patient. For
example, its tasks include fetching supplies and lab results.

A robot that can socially interact also seems to be very useful and supportive espe-
cially in times of a pandemic where people have very few social contacts because of
physical distancing and isolation [17]. It is well known that quarantine and isolation have
a significant impact on themental health and the psychologicalwell-being of people [18].
This is where social robots can be useful.

A study by Aymerich-Franch and Ferrer [11] examined the implementation of social
robots in real settings during the COVID-19 pandemic. The results showed that during
the crisis an expansion of social robots occurred due to their advantages of facilitating the
social distance and palliating the effects of isolation. One example is the “Care-O-Bot”
by the Fraunhofer Institute [19]. The “Care-O-Bot” is amobile robot assistant that is used
to actively support humans, for example, it assists them with tasks such as monitoring
vital functions or reminders. In addition, the robot “Pepper” by the company Softbank
Robotics is already in use [20]. Pepper can recognize people and reacts individually
to its environment. It also recognizes moods and things like body posture and facial
expressions, which qualifies it for contact with people [21]. Within the healthcare sector
pepper is already used, to entertain elderly people needing care.

An important factor in implementing robots into the workplace is the subjective
perception of the interaction between humans and robots by the users who get in contact
with the robots, in this case the healthcare staff and patients themselves [22]. Since they
are supposed to interact directlywith the corresponding systems, the attitude, perception,
and acceptance of the interacting humans is crucial for the introduction of a successful
human-robot interaction. That’s why it is important to involve the healthcare staff as well
as potential patients from the very beginning when thinking about the implementation
of a robot within a healthcare system. In this context, people’s opinions and attitudes
differ. For example, attitudes towards robots in the different areas of everyday life, work
and care were investigated in a former studies of our research group [23, 24]. The results
show that attitudes towards robots in everyday life and work are neutral to positive,
whereas in the care sector they are neutral to negative. Following Wagner-Hartl et al.
[24] the results in the care sector are valid for two different scenarios: To let a robot take
care on oneself as well as to let a robot take care on relatives. Furthermore, the results
show significant differences regarding the assessment of the need and acceptance of a
robot that assists people in different care relevant tasks. For example, the help of a robot
was assessed significant better for tasks like transportation or the relocation of patients
than tasks like support with body care, assistance with feeding or entertainment. This is
also in line with [25] who show that elderly people indicate the help of a robot for tasks
like body washing or companionship as not useful.

Aim of the Study
The aim of this study was to examine differences in general attitude towards and the
acceptance of robots in the healthcare sector. In the focus was the difference between
people working in the healthcare environment and those who don’t. An exploratory
study was conducted to find out if - and if yes how - the attitude of people towards robots
in the healthcare environment differ and whether the type of robot has an influence
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on the acceptance of robots. Consequently, the following research questions will be
investigated:

1. To what extent do the attitudes towards robots in the healthcare environment differ
between persons, who work in the healthcare environment and among those who
don’t?

2. Does the acceptance (usefulness and satisfaction) of different types of robots
used within the care sector, differ between persons, who work in the healthcare
environment and among those who don’t?

2 Method

2.1 Participants

Overall, 115 women and 78 men (N = 193) aged between 18 and 74 years (M = 32.83,
SD= 14.52; 2 participants did not report their age) participated in the online study. 33 of
the participants work in the healthcare environment and 160 participants work in other
occupational fields. Following the results of a t-test, no significant difference regarding
age can be shown for the two different working environment groups, t(190) = 1.42,
p = .157 (participants that work in healthcare environment: M = 36.09, SD = 14.48;
participants that do not work in healthcare environment: M = 32.15, SD = 14.49). All
participants provided their informed consent at the beginning of the online study.

2.2 Study Design and Materials

An exploratory study was designed as an online survey with a within-subject design.
Overall, the participants needed 10–15 min to complete the questionnaire. The first part
of the questionnaire focused on sociodemographic data and possible personal linkages
to the work in the healthcare sector as well as general attitudes and previous knowledge
about human-robot interaction. In this context, the participants had to assess their general
attitude towards robots on a 5-point rating scale [negative (−2) – rather negative (−1) –
neutral (0) – rather positive (+1) – positive (+2)].

In the main part of the questionnaire, the participants assessed four different robots
with four different uses (scenarios). The different robots were an assistance robot (Moxi)
[16], a disinfection robot (by Aitheon) [15], a care robot (Care-O-Bot) [19] and a social
robot (Pepper) [20]. The robots were embedded in a scenario, which should help the
participants to understand their possible usage in the context of the healthcare environ-
ment. The scenarios contents were adapted from the specific manufacturer websites of
the different robots [15, 16, 19, 20]. For each scenario the activity of the robot was
described textually (see Table 1).

For a better visual imagination, two additional pictures of each type of robot were
presented together with the text to the participants. The pictures used were requested
from the specific companies and were used with their consent. One of each pictures
showed the robots in a healthcare environment while the other picture showed the robot
by itself with a neutral background.
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Table 1. Description of the four different scenarios, representing the four different robots in a
healthcare environment

Scenario 1: Assistance robot “Moxi” is an assisting robot in nursing [16]. It helps hospital
staff with tasks that are not performed directly on the patient.
These include tasks such as delivering bed linen to the
patient’s room or transport laboratory samples to the
laboratory where it is analyzed

Scenario 2: Disinfection robot Aitheons disinfection robot is used to disinfect rooms [15]. It
moves through the room fully automatically and irradiates
each surface to be disinfected with UV light. The germs are
killed by this process, which prevents the spread of bacteria,
viruses, etc. via surfaces

Scenario 3: Care robot The “Care-O-Bot” is a mobile robot which can provide
support in hospitals [19]. Its tasks include monitoring patient
monitors, providing information to doctors and triggering
alarms in case of an emergency

Scenario 4: Social robot “Pepper” is a robot that is used in many ways. In the hospital,
“Pepper” is a contact point for social contact [20]. For the
most part, he serves as a contact person for patients. He
cheers them up, entertains them and fulfils their wishes

After each scenario with one of the robots the participants rated their subjectively
perceived acceptance using the acceptance scale of Van der Laan et al. [26]. In the
acceptance scale nine items (5-point semantic differentials; ranging from −2 to + 2)
represent two subscales of acceptance: Usefulness and satisfaction.

2.3 Statistical Analysis

The software IBM SPSS Statistics was used for the statistical analysis. T-tests and
analyses of variance with repeated measures were used as statistical procedure. The
evaluation was based on a significance level of 5%.

3 Results

3.1 General Attitudes Towards Robots

The results of an independent samples t-test show significant difference in the general
attitudes towards robots between persons, who work in the healthcare environment and
those who don’t, t(191) = −3.53, p = .001 (see Fig. 1). Persons who don’t work in
healthcare (M = .86, SD = .97) have a significantly more positive general attitude
towards robots than people working in healthcare (M = .18, SD = 1.16).
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Note. 5-point scale: Negative (-2) – positive (+2); I … standard error of mean

Fig. 1. General attitudes towards robots – Differences of the two different working environment
groups

3.2 Acceptance Regarding Different Robots

Usefulness. Following the results of an analyzes of variance with repeated measures,
the different scenarios describing different types of robots (see Table 1) were assessed as
significantly different regarding their usefulness, FGG(2.12, 393.41)= 22.38, p≤ .0001,
η2part = .107 (see Fig. 2). The interaction scenario x working environment group, did
not reach the level of significance, FGG(2.12, 393.41) = 2.70, p = .065, η2part = .014.
Post-hoc analyses (Sidak) showed that Scenario 1 describing the use of the an assistance
robot like the robot “Moxi” [16] (M = .52, SD= .50; p≤ .0001), Scenario 2 (disinfection
robot [24]; M = .56, SD = .29; p ≤ .0001) and Scenario 3 representing the usage of a
care robot like the “Care-O-Bot” [19] (M = .53, SD = .54; p ≤ .0001) were assessed as
significantly more useful by the participants than Scenario 4 describing a social robot
like the well-known robot “Pepper” [20] (M = .07, SD = .82). In addition, Scenario
2 was assessed significantly more useful than Scenario 3 (p = .035). Furthermore, a
significant effect of the working environment group can be shown, F(1, 186) = 5.37,
p = .022, η2part = .028. Overall, participants working in the healthcare environment
assessed the different robots as significantly less useful than participants who don’t
work in healthcare environment.

Satisfaction. The results of an analyzes with variance with repeated measures showed
significant difference regarding the perceived satisfaction of the different robots repre-
sented in the four different scenarios,FHF(2.71, 503.46)= 6.46, p≤ .0001, η2part = .034
(see Fig. 3).A significant interaction scenario xworking environment,FHF (2.71, 503.46)
= 1.47, p = .224, η2part = .008, as well as an effect of the working environment groups,
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Note.  5-point scale: Negative (-2) to positive (+2); * … p ≤ .05; I … standard error 

of mean

Fig. 2. Perceived usefulness of different robot scenarios.

Note. 5-point scale: Negative (-2) to positive (+2); * … p ≤ .05; I … standard error 

of mean;

Fig. 3. Perceived satisfaction of different robot scenarios.
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F(1, 186) = 2.35, p = .127, η2part = .012, cannot be shown. Post-hoc analyses (Sidak)
showed that Scenario 1 (assistance robot [16]; M = −.13, SD = .48; p = .031) and
Scenario 2 (disinfection robot [15]; M = −.14, SD = .35; p = .001) were assessed as
significantly more satisfying by the participants than Scenario 4 (social robot [20];M =
−.36, SD = .71).

4 Discussion

Following the results, the first research question “(1) To what extent do the attitudes
towards robots in the healthcare environment differ between persons, who work in the
healthcare environment and among those who don’t?” can be answered as follows:
The results show significant differences regarding the general attitude towards robots
between participants working in the healthcare environment and participants who do
not work in this working environment. Persons who don’t work in healthcare showed a
significantly more positive general attitude towards robots than people working in the
healthcare environment.

Furthermore, significant differences can be shown regarding the assessments of the
different robots in the different scenarios. Therefore, research question 2 can be answered
with: the acceptance (perceived usefulness and satisfaction) of different types of robots
used within the care sector, differ between persons, who work in the healthcare envi-
ronment and among those who don’t. The results show that regarding the perceived
usefulness of the different robots described in the four scenarios, the social robot was
assessed as significantly less useful than all other robots (assisting robot, disinfection
robot and a care robot). Furthermore, the disinfection robot was assessed as significantly
more useful than the care robot.

In addition, regarding the perceived satisfaction of the participants the social robot
was also assessed as significantly less satisfying than the disinfection robot and the
assistance robot described within the different scenarios.

Differences due to the two working environment groups can only be shown for
the perceived usefulness but not for the perceived satisfaction of the different robots.
Therefore, participants who did not work in the healthcare environment assessed the
different robots presented in the four different scenarios significantly more useful than
participants who work in the healthcare environment.

Following the results, health care professionals seem to be more critical when think-
ing aboutworking togetherwith robotswithin their working environment than people not
working in this specific working field. One limitation of the study must be considered:
Due to the online questionnaire the participants did not really “work” with the robots
presented within the different scenarios but only got to imagine how it would be if the
robot would support them within the different tasks. From our point of view, it would
be important to expand the research. Health care professionals as well as patients and
potential future patients should have the possibility to experience to work and actually
interact with a robot within the healthcare environment. This would have the benefit of
measuring their feeling within this framework.
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To sum it up, the results of the study should help to understand how people working
in the healthcare sector relate to different robots in healthcare environments. The results
emphasize the importance of including this particular group in future research, as the
introduction of robots would change their personal workspace. Only if the people who
will work with the robots are also convinced that the interaction can support them in
their daily work, a good cooperation will succeed.
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Abstract. With the development of Artificial intelligence, the connected objects
are extendedwith the predictive capabilities and the character of things can change
to “things that predict”. If a connected device is able to embrace a predictive sys-
tem that not only profiles for scripted behavior but could also use the knowledge
co-created by all the other similar devices and their users that encounter similar
situations, the predictions can be generated based on that. In this case, a new
type of interplay between humans and things called “predictive relation” is cre-
ated. However, before this future takes place, it is required to find out appropriate
patterns to address challenges such as the transparency and users’ acceptance of
predictive behaviors of connected products. The research in this article takes a
vacuum robot as a reference product for the study. The research starts by col-
lecting users’ daily practice with vacuum robots through 4-day diary booklets.
And then the booklets serve as sensitizing tools to envision the possible predictive
capabilities and lead the discussion on the acceptance and transparency of general
predicting things. From the creative sessions we propose 1) design qualities for
the acceptance of the predicting things, and 2) a model of generating predictive
behavior that enhances the transparency. Eventually, we also propose the idea of
“Designers as the facilitators of the human-robot collaboration”.

Keywords: Internet of Things · Artificial intelligence · Human-robot
interaction · Transparency · Acceptance · Robot autonomy

1 Introduction

1.1 Predictive Relations & Knowledge

For some time now, things are becoming connected, such as electronic consumer prod-
ucts, being able to connect to each other directly and through the Internet, and things can
interact without human interference [1]. By implementing sensors, things can exchange
data and combine products into a decentralized system. This system of connected objects
is referred to as the Internet of Things (IoT). With the development of Artificial Intelli-
gence and Machine Learning capabilities, the connected objects are now extended with
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predictive capabilities and the character of these things is changed to “things that predict”
[2]. If a connected device is able to embrace a predictive system that not only profiles
for scripted behavior but can also use the knowledge co-created by all the other similar
devices and their users that encounter similar situations, predictions can be generated
based on that. In doing so, a new type of interplay between humans and things called
“predictive relation” is created (shown in Fig. 1). Commonly, there will be a feedback
loop when users interact with a product or service. According to experiences from the
past (t-1), the users will form a mental model (t+1) to understand and foresee in what
way the product will perform. For example, a user considers an object as a cleaning tool
based on his/her past experience with the tool and expects it to clean up the floor accord-
ingly. When intelligence is added to the object, like sensors and algorithms equipped
by the factory and schedule for performing tasks set by the users, this profile will also
influence the anticipations of the users. Moreover, as a smart object fed with the predic-
tive knowledge generated from the decentralized system, the profile will be formed by
the knowledge on predicted futures and then indirectly shape the user’s perception of
the product.

Fig. 1. An image of predictive relations and knowledge [2]

1.2 Current Issues and Related Work of AI & the Connected Objects

Acceptance. When we envision how promising a new concept or a new technology
can be to enhance our lives, we still reserve the right to decide for ourselves whether to
accept this new technology, especiallywhen itwill significantly change our existing lives.
As everyday objects are implemented with predictive capabilities and become complex
systems, one of the possibilities is that we will lose the control that we currently have on
the objects. At that time, how shall we adapt to this shift in role, or how can robots help us
accept them equippedwith this new technology? Therefore, a successful implementation
of a new technology would not be achieved without the investigation of user acceptance.

Apart from the theory such as Technology Acceptance Model (TAM) [3] focusing
on the measurable factors of a concrete and realized system like perceived ease-of-use,
the Domestication Theory [12–14] uses the metaphor of taming a wild animal into the
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home environment to investigate how a new technology is being integrated and adopted
in users daily life. Thus, the acceptance qualities of an immeasurable and unrealized
technology such as things becoming predictive, are easier to be investigated through the
Domestication Theory. The Domestication Theory provides a model which is divided
into 4 dimensions:

• Practical domestication: This dimension points out the interactions that are physical
and observable with the technology. This can refer to how the technology can be used,
such as a button on the product to push.

• Symbolic domestication: This refers to what the technology means for the users
after having it in their life, illustrating the unobserved after-effects of adopting the
technology.

• Cognitive domestication: are the mental practices associated with the use of technol-
ogy, e.g., how the users learn from and through the technology and how the technology
changes the users in return.

• Social domestication: refers to how technology is influenced not only by individuals
but also through a diversity of actors who hold agency in how the technology is applied
to the lives of users and others around them.

Transparency. When the thing is able to predict and make decisions autonomously as
a “black box”, it’s hard to explain why and how it reached certain outcomes. Sometimes
the users can immediately realize that the predictions can perfectly meet their needs,
while sometimes its predictive knowledge may achieve users’ potential demands that
they are not yet aware of.Moreover, the predictive knowledgemay take over the decision
making and the reasons for the predictive decision are sometimes missing, leaving the
user with passive use. To open up the “black box”, many have called for creating artificial
systems with explainable and transparent qualities that humans can trust [4, 5]. Many
well-known digital examples have come up with some solutions on transparency, such
as Explainable AI of Google cloud which provide a set of tools and framework to help
the customer learn and interpret predictions made by the Artificial Intelligence [18], but
cases are few when looking into the IoT products [2].

Robot Autonomy and the Level of Robot Autonomy. Robot autonomy is considered
highly relevant to the capability of the smart system to perform its own tasks and actions.
In the field of human-robot interaction (HRI), robot autonomy plays a crucial role, since
it will influence the performance of the tasks, the way and density of interaction with
humans, and the reliability of the performance in an environment. A scientific basis of
study on the autonomy of robots can help designers to understand the features and tasks
of the smart objects and identify which actions and tasks should be assigned to humans
or robots [6]. Over the years, the studies on the definition of robot autonomy have been
discussed from the perspective of psychology and engineering [7–9]. The term is applied
to characterize varied aspects of robotics, from the ability of the robot to manage itself
to the level of required human intervention. In Beer’s study [6], they proposed a more
detailed definition, which integrates current generally accepted definitions of autonomy
and indicates common characteristics of autonomy (i.e., sense, plan, act, task-specific
goal, and control): “The extent to which a robot can sense its environment, plan based
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on that environment, and act upon that environment with the intent of reaching some
task-specific goal (either given to or created by the robot) without external control.”This
definition helps deconstruct the behavior of an autonomous robot into 3 dimensions——
Sense, Plan, and Act, and indicates that the characteristics should be taken into account
when researching robot autonomy. Views on how autonomy impacts human-robot inter-
action are different. In the case of Huang’s research team, they hold the view that the
level of robot autonomy (LORA) has a negative linear relationship with the frequency
of HRI, which means that the higher LORA, the lower the frequency of HRI [10]. The
LORA also reveals that autonomy is not a binary allocation: either human or robot is
allocated to a specific goal and action, but a continuous category that splits between the
human and robot, indicating the degree of dynamic control of the tasks. Beer’s team
[6] highlights that the robot’s autonomy is in a state of fluctuation, which may switch
between levels over time according to the interaction, task, and environment.

1.3 Research Direction

With the predictive knowledge added to the interplaywe havewith the connected objects,
there is no sufficient reference to validate if the interplay meets the requirements when
the relation is linked to the future. So, before the future takes place, it is required to find
out appropriate patterns to address the challenges such as the transparency and users’
acceptance of predictive behaviors of connected products. It is urged to have an active
and valid dialogue to understand the now and the future at the same time, and this leads to
the question: ‘how to design transparent and acceptable predictive relations for the things
that predict?’ Therefore, to investigate the question, the research in this article takes a
vacuum robot as a reference product of the study, including the following contributions:

– From vacuum robots to general predicting things:

• Design qualities for the acceptance of the predicting things
• Model of generating predictive behavior that enhances the transparency

– The idea of “Designer as the facilitator of the human-robot collaboration”

2 Methods

A creative session is conducted to dive deep into the context of the user and the vacuum
robot to envision what kind of capabilities can be applied to the vacuum robot as pre-
dictive capabilities. Taking vacuum robots as the reference products, the research also
focuses on exploring the general qualities that can help the predicting robots perform
appropriately and integrate into our lives. Besides, based on the envisioned predictive
capabilities, we also discuss how the predictive knowledge is being generated in individ-
uals’ contexts and how can it be explainable and transparent to the users. In conclusion,
three research questions for the qualitative study are set up as follows:

• What predictive capabilities could be applied to the vacuum robot in the future?
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• Fromvacuumrobots to general predicting things,what qualities canhelp the predicting
robots become acceptable in our life?

• How does predictive knowledge generate in the individual context that can enhance
transparency?

The creative session consists of 2 parts. In the first part, 4 users of vacuum robots
and 2 experts from the robotic and design fields were invited and they were provided
with a 4-day diary booklet to record their daily individual practices of cleaning and their
relationship with the current vacuum robot. After that, they were asked to bring their
dairy booklets together to present and discuss their experience with vacuum robots. In
the second part, a 1-h creative session was conducted through sketching and discussion
to envision the predictive capabilities of vacuum robots and identify the design qualities
for acceptance of general predicting robots. Besides, in a holistic view, we summarize
the predictive behaviors envisioned in the creative session to a model indicating how a
predictive behavior is being generated in the individual context. All participants were
provided and asked to sign up for the consent forms before the study (Table 1).

Table 1. The structure of creative session

Activities Theories Outcomes

Part 1 Investigating the daily
practices with the
vacuum robots through
4-day diary booklets

Path of expression [11] Daily individual practices
of cleaning and their
relationship with the
current vacuum robots

Part 2 Envisioning the possible
predictive capabilities
based on the current
context of use and
identifying the design
qualities

The Domestication Theory
[12–14]

• Categories of predictive
behaviors

• Design qualities for the
acceptance of the
predicting things

• Model of generating
predictive behavior that
enhances the
transparency

2.1 Sensitizing the Expression of Participants: Path of Expression

To help the participants envision the predictive knowledge of vacuum robots in the
future, the study follows the path of expression [11]——ask about the present and the
past before asking about the future. It enables participants to connect to what their
concerns are from their past and present experiences and use that to trigger their feelings
and ideas about the future. Thus, the study starts by recording participants’ experiences
and feelings about the present and past through the dairy booklets and then discusses the
future scenarios of predictive behavior of vacuum robots. In addition, as a sensitizing
tool, the diary booklet also follows the path of expression to help the participants record
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and present their personal experiences on the booklet. It not only asks about participants’
current and past experiences but also requires them to think about the vacuum robots’
possible connections with other objects in the future (Fig. 2).

Fig. 2. An example of the diary booklet

2.2 Sensitizing the Findings: Domestication Theory

To answer the research question: what qualities can help the predicting robots perform
appropriately and become acceptable in our life, the Domestication Theory [12–14] is
applied to lead the questions during the creative session and sensitize the participants
to find out the qualities from the predictive capabilities they envisioned that help the
predictive behaviors become acceptable.

3 From the Current Vacuum Robot to the Predicting Vacuum
Robot

3.1 The Main Tasks of the Current Vacuum Robot

To summarize the daily practices of current vacuum robots, the data collected by the 4-
day diary booklets are categorized into groups ofmain tasks. The tasks are described from
the human perspective and clustered as: 1) preparing for the cleaning, 2) opportunistic
cleaning, 3) planned cleaning, 4) solving the problems when cleaning, 5) after cleaning.

• Preparing for the cleaning:Usually, before the robot is able to clean, some components,
such as an empty dust box, should be installed. Sometimes, users must preclean up
the cables scattered on the ground to prevent robots stucking and overturning.

• Opportunistic cleaning is the type of cleaning task that is temporary and unscheduled
[15]. Sometimes the users and vacuum robots may need to carry out some unexpected
cleaning tasks, such as cleaning up specific areas and rooms that are covered by
scattered nuts with spot cleaning and room cleaning mode.

• Planned cleaning: The cleaning activities that are regularly carried out, such as weekly
scheduled cleaning, cleaning in the condition of leaving home, are categorized as
planned cleaning [15].
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• Solve the problems when cleaning: The robot may encounter problems in the cleaning
route. Solving problems, such as getting rid of stucking, are common activities in the
cleaning routine.

• After cleaning: When the cleaning is complete, the robot will automatically go to the
charging base and switch to the Sleep Mode. Also, to maintain the robot and obtain
new features, users are required to replace the consumables and update the system
regularly.

3.2 Categories of Predictive Behaviors

Summarizing from the perspective of the starting point of the predictive behavior, the
scenarios envisioned by the participants can be categorized as follows: 1) Predicting
starts from sensing the environment, 2) Predicting directly starts from the knowledge
generated from the cloud users.

Predicting Starts from Sensing the Environment. In this situation, the predicting
robot first senses the surrounding environment, then matches the collected information
with the data from the cloud to trigger the predictive actions. The predictive behaviors
in this situation can start from sensing the elements of the scene: the human actions (e.g.
users’ commands and emotions), and recognizing the object (e.g. dust, etc.).

Predicting Directly Starts from the Knowledge Generated from the Cloud Users.
The other way to trigger the predictive knowledge is that the predictions directly start
from the cloud. Instead of triggering predictive behavior through the surroundings where
the robot is embedded, in this situation, predictions are executed by obtaining knowledge
directly from the cloud. For example, the predicting robot performs actions because of
weather information and news reports (Fig. 3).

Fig. 3. The categories of predictive behaviors sketched by the participants
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4 From Vacuum Robots to General Predicting Things

To identify the qualities that help the predicting robot become acceptable in our daily
life, the Domestication theory is applied in the creative session to sensitize the findings.
Based on the theory, the findings are classified into 4 dimensions.

4.1 Practical Dimension

Able to Show Context-Related Information. The ability to help the user to learn
the reason behind the predictive behavior is crucial for the things that predict [2]. The
Human-AI interaction guideline fromMicrosoft [16] indicates one of theways to express
the reasons for predictions is to show the information that is related to the user’s current
environment and activity. This also can be proved from the creative session. Without
guidance from the interviewer, the interactive dialogues with the predicting robot created
by 4 participants all include the contextually relevant information to explain the robot’s
behavior. For example, the robot provides the information that it is detected from the
user’s current behavior——smoking, and asks for permission to clean. Another situation
that came up from the participants shows that the robot points out the user will have a
party and recommends cleaning in advance.

Able to Provide Room for Negotiation on the Decision Made by the Robot. When
robots become intelligent or even able to predict, it is inevitable that they will need to
make decisions autonomously at various degrees. These decisions may not always fit
perfectlywith the user’swishes.At this point, robots need to be able to negotiate, to revise
their behavior, and even more advanced, to convince users to accept and understand their
behavior. The negotiation process can also stimulate the user to provide the robot with
more information to learn.

Able to Easily Dismiss Undesired Services. Robots are required to have the quality of
being able to easily cancel the services they provide. One of the participants addresses
the possible impact of the predicting vacuum robot: “The robot may over-speculate
my behavior.“ In his vision, the predicting robot is like a student eager to update his
knowledge pool through learning. The robot will constantly compare the data from the
cloud with the scenario being served, which may offend the user or over-provide the
service. Therefore, robots need to have the ability to easily dismiss undesired services.

4.2 Symbolic Dimension

Be a Surprise but Still Relate to the Individual’s Knowledge of What the Robot
Should Do. Take a vacuum robot as an example, unlike the current vacuum robot,
which can only perform basic cleaning tasks, participants expect more comprehensive
housekeeping from a robot that can gain more knowledge about household chores from
other users. For example, based on reports of an increase in slip and fall accidents
due to slippery floors, the vacuum robot issued a slippery floor warning. Also, one
participant drew a scenario describing the vacuum robot that keeps pets away from
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broken cups, etc. All of these indicate a shift from the robot, which now represents a
guarantee of completing basic tasks, to a symbol of providing unanticipated knowledge
or even surprises. However, no matter how intelligent and predictive a robot becomes,
the predictive behavior should still relate to the individual’s knowledge of what the robot
is supposed to do.

P6: “I know that when this technology turns out to be a reality, he will give me a lot
of surprises, and even know how to do the cleaning better than I do, but his behavior
should still be in line with my key expectations of this product, I mean, like, saving my
time on cleaning the floor.”

Able to Foster New Lifestyle. Based on the fact that users now have a need for pre-
cleaning (removing the objects that the vacuum robotwill easily get stuck) before launch-
ing the vacuum robot, one participant suggested that through learning from the cloud, the
vacuum robot is able to identify furniture and give suggestions on furniture placement
to free up more sweeping space. Another participant proposed that predicting robots can
hint and stimulate users to buy more smart devices in a proper time. The participants’
expectations for the predicting robot were no longer limited to better work, but extended
to suggestions for new lifestyles, such as embracing new home layouts and new smart
devices. They also said: “(…) Compared to the current sweeper, I think if the predictive
sweeper recommends new things to me from time to time, this will keep me fresh to him,
so that the frequency of use may increase.”

4.3 Cognitive Dimension

Able to Motivate Users to Constantly Participate in Generating Predictive Knowl-
edge for Other Users. Unlike current robots, predicting robot is not only a matter of
encouraging users to be more involved, but also a matter of motivating them to pass on
the knowledge they co-create with the robot to the cloud in order to enrich the knowl-
edge base of the robot system to serve more people and make predictive behavior more
relevant to people’s demands. A participant from a robotics company said, “(…) As a
developer of the robot, it is also an important part of our job to effectively collect user
preference and feedback to enhance our system (…)” He added: “(…) There are many
ways to motivate users to donate their data, such as enabling them to understand what
parts of the information they are about to share are desensitized. We also build a com-
munity of users to make them feel connected, and to let them realize how valuable their
data donation is to the community (…)”.

Able toMotivate Users to Provide Feedback in Order toMake the New (Predictive)
Behaviors More Suitable in Their Own Context. This expert also said, “(…) when
the robot first predicts a new behavior through the cloud database, for example, that the
robot predicts the user may need to clean the floor while smoking, the robot can ask for
the user’s opinion in a polite and questioning tone, and when this behavior is accepted
by the user several times, the robot then performs the task with more initiative (…)”
This process also allows the user to understand the underlying reasons for the predictive
behavior of the robot and to adjust the nuances of the behavior to their own situation,
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e.g., sweeping the floor in a specific area around the user when the user is smoking.
Through this process, the user changes from unfamiliar with this predictive behavior to
familiar with it, and gradually delegates the initiative to the robot.

4.4 Social Dimension

No Social Comparison. When the robot starts to predict behaviors that it learns from
networked users, the user will start to be influenced by social comparison. “(…) it’s like
when I’m browsing a certain t-shirt on an online shopping platform, and the website
gives me information that the person who viewed this t-shirt also bought this pair of
jeans. Then I will start to think….hmmmm…maybe having this pair of jeans to match
the t-shirt would be nice. So, when I learn that prediction is learned from someone else,
I will start to reflect on my own thoughts”.

If a robot is trying to prove that its predictive behavior is reasonable, it is not a good
idea to compare the individual’s situation with other users, even though the users know
that the information is anonymous.

P7: “Well, I understand that the robot will try to told me this information so as to make
me feel that his decision was reliable and reasonable, but it also made me feel defensive.
Why should I do the same just like others?”.
P8: “It’s like he has his own social circle with other robots, and I know he learns a lot
from there, but I feel offended if he’s always comparing my situation to others”.

5 Discussion

From the study, it is not hard to notice that, in the future, the process of defining prod-
ucts——what the products should do and how to do it, has shifted from the stage of the
design process to the stage where users use the product. In the predictive system, the
roles of planning the tasks and justifying the appropriate initiative are highly dependent
on the knowledge generated from similar and networked users. In this system, users are
not only engaged as the ones using the products but also as the ones participating in
the evaluation, making the predictive behavior more appropriate and suitable for more
people through the involvement of a wide variety of users.

In the following paragraph, we first reflect on the identified design qualities that
enable predicting things to become acceptable. Then, in a holistic view, we summarize
the predictive behaviors envisioned in the creative session to a model indicating how a
predictive behavior is being generated in the individual context. Besides, we also discuss
that the proposed model reveals the users’ learning and adapting process. And thus, we
argue the way to generate the predictive behavior in our proposed model can enhance
transparency. Finally, we discuss the shifting role of designers when things become
predictive and reflect on the value of the creative session.
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Table 2. The design qualities identified from the creative sessions

Dimensions Qualities

Practical -Able to show context-related information
-Able to provide room for negotiation on the decision made by the robot
-Able to easily dismiss undesired services

Symbolic -Be a surprise but still relate to the individual’s knowledge of what the robot
should do
-Able to foster new lifestyle

Cognitive -Able to motivate users to constantly participate in generating predictive
knowledge for other users
-Able to motivate users to provide feedback in order to make the new (predictive)
behaviors more suitable in their own context

Social -No social comparison

5.1 Design Qualities for the Acceptance of the Predicting Things

Our main findings from the creative session are conceptualized in Table 2, where
we summarize the qualities that enable predicting things to become acceptable in 4
dimensions.

It can be concluded that, when things become predictive, the predicting thing change
the role from a command follower to a collaborator who is expected to have the qualities
of bidirectional communication and negotiation. Therefore, in the practical dimension,
the predicting robot should provideways for users to actively arguewhether the predictive
behaviors are appropriate and easily cancel the undesired services. Besides, reasonable
and appropriate information such as context-related information provided by the pre-
dicting robots can help users understand how the prediction is being generated and thus
and thus enable the predictions more likely to become acceptable.

Different from existing robots that represent performing defined and scripted behav-
iors, the predicting robots symbolize bringing new and unanticipated knowledge to
the user. In this manner, the user can learn about other networked users’ daily prac-
tices through the predicting robot, thus changing his or her own lifestyle. However, the
knowledge of a predicting robot cannot expand without rules. The predictive knowledge
still needs to comply with ethics and be restricted to the robot’s domain of duties. For
example, a domestic predicting vacuum robot should vacuum inside the house instead
of going out to the garden to sweep the leaves. Further research is required on how to
define the scope of predictive knowledge.

The development of predictive knowledge is co-created by all the networked users
and robots. To expand this cloud-based knowledge pool, in the cognitive dimension,
the predicting robots need to be able to motivate their users to generate new knowledge
continuously and actively for the community in the cloud. Similarly, in the individ-
ual context, the predicting robots are required to have the capability to motivate users
to provide feedback in order to customize the predictive behaviors more suitable and
acceptable to the individual.
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When the users are aware that the formation of predictive knowledge is a co-creation
process with other users, inevitably, the users may attribute social properties to their
relationship with the predicting robots. For example, because of the potential social
comparison, the usersmay resist the robots’ predictive behaviorswhich performbased on
networked knowledge. Therefore, as a predicting robot the behavior should be performed
in a way that minimizes the impact of social comparisons. For instance, do not argue
that the prediction is reasonable with the results of comparing individual situations with
the cloud users.

5.2 Model of Generating Predictive Behaviors that Enhances the Transparency

The process of generating predictive behaviors is highly automatic. According to the
definition of robot autonomy [6], the process can be divided into 3 parts——Sense, Plan,
andAct.With this concept inmind, based on the predictive capabilities summarized from
the creative session, we propose a model of generating predictive behavior to reveal how
the predictive behavior is being developed in the individual context (shown in Fig. 4).

Sense. In the Sense part of the model, according to the findings in Session 3.2, there
are 2 ways to trigger the prediction: 1) starting from robots sensing the environment
and the users’ command, 2) directly starting from the knowledge generated from the
cloud users. As Fig. 4 shows, the only difference between these two processes is that
the former has one more step than the latter one, i.e. sensing the user’s environment and
command.

Plan&Act. After the predicting robot sensing the environment or the prediction directly
starts from the cloud, the predicting robot will match the collected information with the
data from the cloud to interpret and understand the scene. Based on the cloud knowledge
and the user’s past experience, the robot will determine the initial autonomy level when
this predictive behavior first takes place in the context and perform actions with the cor-
responding level of automation. The interaction between humans and robots will create
a loop of co-performance [17] where human performers and robot performers together
judge and shape the appropriate performance under individual situations. Through the
co-performance, the predictive behavior will be gradually adjusted and adapted to the
specific circumstances, and the data generated from this loop will also feed forward the
profile in the cloud.

Kuijer and Giaccardi [17] define the co-performance in the view that things have
equal roles with humans to learn and judge the tasks in the interplay. In the traditional
procedure of developing smart things, the performances of the devices are determined in
the design process. However, in the concept of ‘co-performance’, the process of defining
the performances of the things is shifted to the everyday use practice, which creates an
open space for humans and things to learn and adapt to the appropriate performances in
their daily practice. The distribution of the agency and the robot’s autonomy, however,
are the result of this dynamic learning and adapting process.

In the loop of co-performance, humans and robotswill learn and adapt to the behavior
of each other, and the labor distribution between humans and robots will be dynamically
changed throughout the interplay. For instance, the human judges whether a particular
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predictive behavior is appropriate, and through the interplay with the robot, the predic-
tive behavior becomes more in line with the personal expectations. In this process, the
distribution of activities between humans and robots is also changing, thus implicitly
affecting robots’ autonomy. Also, since the interplay reveals the learning process, the
reasoning and the generating process of the predictive behavior can be explained in this
loop, thus enhancing the transparency of predictive behaviors.

Fig. 4. Model of generating predictive behaviors

5.3 The Shifting Role of the DesignerWhen Things Become Predictive: Designers
as Facilitators of Human-Robot Collaboration

The creative session eventually led to discussions and reflections on the shifting roles
of designers and developers when designing the predicting things in the future. Some
participants thought that the designer should be the one to help the user set up a proper
expectation of the robot’s capabilities. Admittedly, robots empowered with Artificial
Intelligence have great potential, but there are still limitations to what they can accom-
plish. The designer, therefore, has the responsibility to help the user understand what the
predicting robot can do and howwell it can do. In addition,when robots are equippedwith
the abilities of self-awareness and self-determination, their role changes from the com-
mand’s followers to a collaborator on equal footing with humans. At that time, humans
are no longer in the state of outputting one-way commands to robots, but humans and
robots are in a state of bidirectional communication, or even bidirectional negotiation and
compromise. By then, the focus of designers and product developers will be extended to
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how to guide the users and the predicting robots to form a well-coordinated partnership
and how to lead this partnership to co-create reliable and meaningful knowledge. There-
fore, this article proposes the view that: when the connected things become predictive,
one of the roles of the designer is to facilitate the collaboration between humans and
robots. The designers here are the ones who help to bring in the background knowledge
and the patterns of the predictive relation and indicate the ways for humans and robots
to co-perform reliable and meaningful daily practice in their partnership.

5.4 The Creative Session as Speculative Trigger to Open up the Discussion About
the Future Where the Things Become Predictive

The creative session stimulated debate and discussion between the participants and the
researcher about the future of the everyday product, and themost fruitful ofwhichwas the
discussion about what qualities should the predicting things have. Some participants said
that this speculative discussion helped them imagine the predicting thing more clearly
and feel accessible, which no longer made them perceive it as a surrealistic thing, and
their fear of this relatively advanced technology was relieved.

P2: “I think the fear that people used to have about the development of robotic things was
probably that they would worry that these things would completely replace humans. For
example, most typically, humans are afraid that Artificial Intelligence will completely
replace their careers and jobs. But through the discussion, I would think that in the future
people and robots are more like in a closer and more cooperative relationship, and I
can still see the value of humans and their irreplaceability.”

6 Conclusion

This article presents qualitative research on the acceptance and transparencyof predicting
things by taking vacuum robots as reference products. The qualitative research was
shaped in the form of a 2-part creative session that envisioned the possible predictive
capabilities of the vacuum robots and discuss their possible impacts.

From vacuum robots to general predicting things, we identify design qualities for
acceptance based on the Domestication Theory and are divided into 4 dimensions.
Besides, from the creative session, we also propose a model of generating predictive
behaviors and argue that the loop of co-performance in the proposed model can reveal
the learning and adapting process, thus enhancing transparency. Finally, we propose the
idea of “Designers as facilitators of the human-robot collaboration” when things become
predictive. In the coming future, the designers can be the ones who help to bring in the
background knowledge and the patterns of the predictive relation and indicate the ways
for humans and robots to co-perform reliable and meaningful daily practice in their
partnership.

Further research can be conducted on evaluating the effect and impact of the proposed
design qualities and model. The design qualities and the model can be integrated into the
prototype usingmethod such as “Wizard-of-Oz” to engage the participants to experience
and test the predictive relation. Besides, regarding the idea of “Designers as facilitators of
the human-robot collaboration”, there is stillmuch room formore systematic exploration,
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such as designing a systematic pre-sales and after-sales service system for predicting
robots to facilitate collaboration.
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Abstract. With the number of the elderly population over the age of 65 reaching
190 million (13.5%), China has become the country with the largest number of
senior citizens in the world, and its percentage is entering the accelerating period.
With the addition of the features of economic society, over half of themare “empty-
nesters”, so the problem of supporting the elderly at high age has become an
important issue that needs to be further solved. However, due to the different
national conditions and traditional culture in China, the acceptance of “companion
robots for seniors” is significantly lower than that of other countries such asEurope,
America and Japan. There are many reasons for this, but the main problem lies
in the lack of integration into the user’s life, but like a “cold machine” lacking
human’s emotional temperature. This study aims to use the users’ life situation and
emotional temperature as the entry point to integrate technology with life, so as
to enhance the acceptance of companion robots among Chinese seniors. Based on
the concept of User-centered Design (UCD), the author interviewed seniors in the
field and interpreted their life patterns, situation skeleton and behavioral patterns
with empathy to gain insight into users’ emotional needs and expectations. Then,
the author designed, defined and conceived 12 different functional programs based
on users’ needs and expectations. At last, the Kano model was used to confirm the
property category and the importance of the value significance of the 12 functional
programs to the users.

Keywords: Empty-nesters · Aging · Intelligent companion robots · Demand
analysis · Product design

1 Introduction

By 2021, the number of the elderly population over the age of 65 reaches 190 million
(13.5%). China has become the country with the largest number of senior citizens in the
world, and its percentage is entering the accelerating period. [1], and more than half of
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them are empty nesters due to urbanization and economic growth [2]. For the “empty
nesters”, because their children are mostly working outside the hometown, the function
of family supporting is gradually weakening [2, 3], so the issue of “empty nesters” will
become a major issue that needs to be further addressed in an aging society. At the same
time, a new wave of “artificial intelligence”, known as the fourth industrial revolution,
is emerging, of which appeals, “artificial intelligence” and “companionship and care”,
are entering real life from science fiction, providing a solution to the current dilemma
of “empty nesters”. However, due to the different national conditions and traditional
culture in China, the acceptance of “companion robots for the elderly” is significantly
lower than that of other countries such as European countries, America and Japan. For
Chinese seniors, “robots” are cold devices without emotional temperature. There are
many reasons for this, but the main problem is that “cold intelligent products or systems
lack human’s emotional temperature”, and to have personalized emotion, user’s life
cycle must be properly cross integrated to create more personalized value and increase
acceptance [4, 5].

At presentwhendeveloping anddesigning cutting-edgeproducts, TechnologyDriven
Innovation (TDI) is usually used, which emphasizes the effectiveness of the product but
tends to ignore the real needs of users, thus making it difficult to gain the resonance
of users and leading to the failure to increase acceptance [6]. In order to truly realize
the “Vision of AI life” and increase people’s acceptance of AI, we must start from a
“social science” perspective and adopt the concept of User-centred Design (UCD). Only
through designs defined by UCD can we truly meet the needs of the elderly, achieve
two-way push between the elderly and their children, and tighten the emotional bond
between the two generations, thus increasing acceptance and creating value. With the
maturity of “intelligent companion robot” technology in recent years, it will gradually
shift to “Design Driven” to create innovation value in the future. In order to increase
the acceptance of “companion robots for the elderly” among Chinese empty nesters,
this paper investigates the following questions: (1) To conduct user research on Chinese
empty nesters and identify their Want & Need (W&Ns) based on their life situations; (2)
To make functional programs that are urgently needed from and should be provided by
the “companion robots for the elderly” effectively meet the needs of the Chinese empty
nesters and enhance their acceptance.

The “family” is the most basic structural unit of a society. With the population aging
of the society, the problem of empty nesters is expanding. The value of this study is
to construct a companion robot program that meets the life and emotional needs of the
Chinese people under the context of social development of China in the new era and the
life pattern of the Chinese people, which is conducive to Chinese people’s satisfaction
and acceptance of it, and of which result will help solve the social problems arising from
the aging society.

2 Literature Review

2.1 Characteristics of Empty Nesters in China

In terms of the characteristics of empty nesters: (1) in terms of physiology – function
degenerating and suffering from chronic diseases; (2) in terms of psychology - prone
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to psychological disparity and expecting emotional solicitude more than material care;
(3) social - mostly living along at home with reduced social life and deepened sense
of loneliness [7, 8]. Ian Hosking, an expert in product design for the elderly at the
University of Cambridge, argues that the creation of companion robots suitable for the
elderly should be guided by the needs of the elderly, rather than the position of the
children or the technological orientation to conceive of pseudo-needs that are taken for
granted [9].

2.2 User-Centered Design Thinking and Methods

Current design philosophy emphasis on user-centered design (UCD), and through “De-
sign Thinking” advocated by Brown [10], as a way of reasoning/understanding things
[11, 12], solving problems [13], and creating meaning and value activities for the design
[14]. The products are used by users, so users’ needs and expectations shall be understood
first through UCD to increase acceptance, UCD consists of four activities: identifying
users, analyzing needs, designing, and evaluating and verifying [15, 17], and when
a product can truly meet the needs and expectations of users, it can increase “intent to
use” and “acceptance” [18]. From the above, it is clear that empty nesters mentally desire
emotional care, and human-robot interaction is based on human needs and expectations
or human-human-set situations.

2.3 Contextual Inquiry in User Study

UCD emphasizes that design must consider user behavior patterns, needs, attitudes,
and possible problems from the user’s perspective. According to ISO 9241–11, the
definition of “context of use” is shaped by users, products, tasks, and the physical and
social environments of use locations. A companion robot must be integrated into the
lives of empty nesters, and the design should first understand the entire situation of life
and extract users’ emotional needs and expectations before proposing a companion robot
design that meets those needs. However, traditional user study methods have not been
able to clearly and jointly understand the relationship between user “context of use” and
“life” and reveal key problems. In practice, when in contextual inquiry, users are already
used to behavior pattern, so it is difficult for them to say “why to do” and “how to do”
clearly, and the process of obtaining relevant information is laborious.

In view of this, this study utilizes the contextual design technology proposed by
Holtzblatt and Beyer [20] to collect and analyze context information. The steps include
five stages: (1) field contextual inquiry; (2) interpreting the data; (3) organizing the data;
(4) generating ideas; and (5) generating design solutions. In terms of its connotation, in
addition to obtaining context of use information, it is emphasized that in the contextual
inquiry, the user’s context of use is used in a specific task or activity in order to master
the behavior pattern and gain insight into the hiddenmeaning and value behind the user’s
own needs and behaviors that need to be concerned by the user himself/herself as the core
of design [21–23]. In addition, key techniques are proposed for requirement analysis of
design teams and design communication of solutions, so that both individuals and design
teams can share the thinking process and results, and the time spent is reduced.
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2.4 Demand Analysis

In the past, when evaluating product or service functional programs, it was usually
assumed that the relationship between the indicator of the performance of products and
services and satisfaction was linear [24–26]. However, this is not true for all indicators,
as different levels of indicators have different effects on satisfaction [26–29]. In view of
this, Kano and Seraku [30] proposed the “Kano model”, which borrowed the concept
of two-dimensional, with “availability functional programs” as the horizontal axis and
“psychological satisfaction” as the vertical axis, to classify user needs, according to the
correlation between the performance situations of each psychological satisfaction when
functional programs are available and not available, into five categories, that are, attrac-
tive, one-dimensional, must-be, indifferent, and reverse, and the presented relationships
are shown in Fig. 1.

Fig. 1. Coorelation between physical availability and psychological satisfaction of The Kano
model

Form Attractive quality and must-be quality, by Kano, N., Seraku, N., Takahashi,
F., & Tsuji, S., 1984, The Journal of the Japanese Society for Quality Control, 14(2),
pp39-48.
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The horizontal coordinate indicates the degree of availability of a functional program,
the more to the right, the higher the degree of availability of the functional program, the
more to the left, the lower the degree of availability. The vertical coordinate indicates
the degree of customer or user satisfaction, the more upward, the more satisfied, while
the more downward, the more dissatisfied. According to the correlation of coordinates,
it is divided into five categories.

(1) Must-be (M)
It refers to the fact that users consider this product feature as a basic requirement.

When the feature is available, users take it for granted; when the feature is not
available, user satisfaction declines significantly. Obviously, investing in R&D on
such features does not significantly improve user satisfaction, but it is a threshold
for building products.

(2) One-dimensional (O)
There is a positive linear relationship between this feature and user satisfaction.

When the feature is available, the user satisfaction with the product is high; when
the feature is not available, the user satisfaction declines. This type of requirement
can improve user satisfaction to some extent, and the return-on-investment (ROI)
of this aspect is usually approximately linear.

(3) Indifference (I)
No matter provided or not, user satisfaction will not change. Because users

simply do not care whether the feature is provided or not, and it is something that
users are not sensitive to and take no count of. Therefore, such requirements should
be ignored in the product design.

(4) Attractive (A)
It refers to the element that tends to create a high level of user satisfaction with

the feature. When this feature program is available, users are not aware of it; when
this element is available, user satisfaction will increase dramatically. This type of
requirement should be prioritized in product design by focusing resources on this,
which can bring out high satisfaction benefits.

(5) Reverse (R)
This function has a negative linear relationship with user satisfaction, that is,

this function has negative effect to users that, after providing, user satisfaction will
decline; on the contrary, when this function is "insufficient", "user satisfaction"
increases by a linear scale. Therefore, to ignore this kind of demand in the product
design without providing can achieve a higher satisfaction utility.

Subsequently, the using technology of this concept has been further developed by
scholars, for example, when classifying functional programs, the results of Table 1
“Kano model two-way questionnaire” [31] can be defined through a “decision matrix”
(see Table 2) to obtain the attribute categories of individual functional programs
[25, 32].
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Table 1. Kano model two-way questionnaire

Table 2. Decision Matrix for Functional Attribute Discrimination

Functional from of the
question

Dysfunctional from of the question

Satisfied It must
be that
way

It is indifferent I can live
with it

Dissatisfied

Satisfied Q A A A O

It must be that
way

R I I I M

It is indifferent R I I I M

I can live with it R I I I M

Dissatisfied R R R R Q

Note. From How to make product development projects more successful by integrating Kano’s
model of customer satisfaction into quality function deployment, by Matzler, K., & Hinterhuber,
H. H., 1998, Technovation, 18(1), pp. 25–38
Q, questionable quality; A, attractive quality; M, must-be quality; O, one-dimensional quality; R,
reverse quality; I, indifferent quality.

3 Method

This study aims to take the user’s life situation and emotional temperature as the entry
point, integrate technology with life and enhance the acceptance of companion robots
by Chinese seniors. Based on the concept of UCD, the author interviewed seniors in the
field and interpreted their life patterns, situation skeleton and behavioral patterns with
empathy to gain insight into users’ emotional needs and expectations. Then, the author
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designed, defined and conceived users’ needs and expectations to generate different
functions and values. At last, the Kano model was used to confirm the property category
and the importance of the value significance of the functional programs to users. Based
on the contextual design approach proposed by Holtzblatt and Beyer [20], this study
integrates qualitative and quantitative techniques, and is carried out by three stages (see
Fig. 2).

Fig. 2. Research Procedures and Framework

3.1 User Study

In the front-end analysis section, the analysis of related literature is firstly carried out;
then, a survey by questionnaire is conducted, of which respondents were divided into
two parts: seniors (empty nesters over the age of 65) and family members (whose family
has empty nesters over the age of 65). The purpose of the division was to understand
the lifestyle, living habits, behavioral characteristics and opinions related to C of senior
citizens in China and to obtain a profile of the characteristics of senior citizens in China.

In the Diary Study section, 12 participants were recruited to conduct a 7-day User
Study to further understand typical lifestyle, living habits, behavioral characteristics,
and patterns of emotional bond with family members. In this study, taking into account
the diversity and representativeness of the participants, the Sampling was conducted in
the Balance means according to their characteristics based on the analysis of relevant
literature and the population profile of the questionnaire in the front-end analysis.

In the Contextual Inquiry section, field investigation was conducted to the same
12 participants in the Diary Study. Through empathy, the following three points were
mainly understood: (1) to understand users’ lifestyles and values in order to anticipate
and design products thatmeet their expectations of their living situation; (2) to understand
users’ mental models, contextual situation, operational behaviors and processes in using
products, to discover difficulties or obstacles in using them, and to analyze ways to solve
these problems and improvement measures; (3) to understand what kind of products
users need, what kind of functions they want, how the operational processes of tasks
shall be set, and what specific expectations they have about problems. To understand the
daily life of the empty nesters, the psychological, physical and social characteristics of
the empty nesters, and to obtain the “experience/story/behavior/reason” of the seniors
through the three techniques of context immersion, show me and 5 whys.
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Fig. 3. The record table used in the Diary Study

In the Contextual Interview Interpretation section was conducted by the design team
in the form of group meetings. First, the design team analyzed the valuable informa-
tion from the fragmented opinions, situational observations, or direct quotes from users
based on the collected data and respectively wrote them on Note Card. The Affinity
Diagram method was used to sort out data and generalize the structure. After that, the
design team will generalize the structure with Affinity Diagram and respectively inter-
pret needs, intentions, and behaviors to extract the common Contextual Find and obtain
the consensus of the team.

3.2 Insight

First, based on the Contextual Interview Interpretation and the consensus gradually
formed on each point, the design team presented the “insights” and list the relevant
evidence from the user research one by one, and then Identify Design Opportunities
after the design team’s confirmation. Then, the design team proposes the W&Ns design
solutions through Brainstorming in accordance with different design opportunities.

3.3 Want & Need Analysis

In order to clarify the relationship between the availability of individual functional pro-
grams and satisfaction, firstly, a set of “relative” question group [31] was used to classify
individual W&N functional programs through the Two-Dimensional concept of Kano
Model, and participants checked the question cards with their feelings when the function
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was “available” and “not available” respectively. Then, according to each participant’s
opinion about a certain function, Table 2 was used to identify each participant’s classifi-
cation of each functional program. Finally, the results of all participants’ categorization
were accumulated in a frequency-basedmanner, and the “Mode”was taken as the “W&N
functional attribute category” [31].

Therefore,when using theKanomodel concept for design evaluation, both the usabil-
ity of the product and the psychological level of the user can be taken into account, so
that the decision for the design can bemore detailed. In the Establish importance section,
firstly, the degree of “satisfaction” or “dissatisfaction” of the users when the “function is
available or not” is calculated, that is, “Satisfaction” (Si) when the “function is available”
and “Dissatisfaction” (Di) when the “function is not available” [33], the formula mode
is calculated by using the frequency of each classification result as the base data. The
equation is as follows [31].

Extent of satisfaction : Si = Ai + Oi

Ai + Oi + Ii +Mi
(1)

Extent of dissatisfaction : Di = Mi + Oi

Ai + Oi + Ii +Mi(−1)
(2)

where the closer to 1 it is, the greater the impact; the closer to 0 it is, the smaller the
impact; if it is close to −1, the impact on user dissatisfaction is particularly great when
the product features are not met.

Next, in order to make the Kano Model usable to create individual functional pro-
gram importance rankings, a more thorough understanding of the individual functional
programs that affect satisfaction can be further developed in order to facilitate focusing
on the demands of higher satisfaction utility when assessing design decision [31]. The
evaluation method proposed by Sireli and Kauffmann [24] was used in the study by
taking the absolute value of the larger value of Si and Di as the importance score (wi)
and calculating the relative importance score (Wi) using the following equation.

Satisfaction contribution weight : Wi = Max

(
Si∑m
i=1 Si

,
Di∑m
i=1 Di

)
(3)

As for the design decision, the quantitative Establish Importance can be obtained
as the basis of assessment based on the questionnaire results and calculation equation
[24, 29].

4 Results

4.1 User Research Interpreting Basic Ideas and Conclusions

Empty nesters generally have regular lifestyles. As for companion robots, people are in
a state of ignorance and resistance to an extent, but most people can accept intelligent
companion robots as an emotional hub rather than a replacement for their children’s
responsibilities. In addition, the elderly clearly feel being “out of time” in their char-
acteristics the physical, psychological, and social levels. They can basically take care
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of themselves, but they often forget about things, and they usually feel lonely mostly
at night, hoping there is someone to talk to. The most exciting things in their lives are
communications with family members, such as children’s phone calls, video calls or
returning home on holidays. However, scrupling to bring trouble to their children’s busy
life, they do not want to disturb them toomuch that they are unable to concentrate on their
work. The top three things that family members of empty nesters (parents/grandparents)
mostly concern about are: (1) health, (2) daily self-care, and (3) mood.

4.2 W&Ns Functional Attribute and Importance Rankings

A total of 22 design opportunities were identified, and the design team proposed the cor-
responding W&Ns design solutions through Brainstorming, and finally, after feasibility
and other assessments, 12 functional programs were selected (Table 3).

Table 3. 12 functional programs and contents.

No. Function Content

1 Humanization Have a name/ have a memory like human/high
intelligence/autonomous emotions/ personality

2 User emotional state recognition Recognize the user’s changes in face, voice
pitch, manner of speaking, behavior, and
movement, and take them as emotional
calculation and analysis data

3 Vivid emotional expression Present different facial expressions, intonation,
and gesture according to different emotions

4 Friendly voice interaction Intuitive voice interaction, can listen/speak
various accent through artificial voice
recognition and synthesis,

5 Lovely appearance Rounded profile, simple structure, have
self-moving capability

6 Multimedia display Can display different media, network
communication, touch and gesture control for
multimodal interaction

7 Accompanying A new member of the family that will
accompany and give support

8 Recreation Chat, talk back, do gymnastics and sing with
seniors, provide fun and ease their loneliness

(continued)



On Improving the Acceptance of Intelligent Companion Robots 267

Table 3. (continued)

No. Function Content

9 Little butler of life Serve as a family information center, record
the senior’s daily living behavior for online
access by family members, and adapts to give
personalized reminders to the senior at
appropriate times, scenarios and situations
(e.g. taking medication, having meals,
handling things, reminding dressing more for
cold weather, etc.) according to a self-set and
joint-set calendar with families

10 Emotional hub Proactively build family emotional connections
at the right time for both parties to facilitate
emotional communication

11 Health data detection and monitoring Detect and monitor vital signs, and
automatically notify family members
immediately when reasonable values are
exceeded

12 Emergency network alarm When an emergency situation is judged
through posture recognition and vital sign
detection monitoring, it will immediately alert
the police and emergency contacts through the
Internet

In the Kano classification stage for individual functional programs, the results
were obtained through calculation and classification after the Kano Model two-way
questionnaire being answered by 34 participants of empty nest senior citizens (see
Table 4).

From the “Cumulative Count” in Table 4, the results of all participants’ checks
for each function programs can be seen. The “Kano Category” is the Kano Model
classification result of for individual function programs. The values of “Si” and “Di”
are the degree of impact on “satisfaction” or “dissatisfaction” of the empty nesters when
the function is “available” or “not available” (the closer to 1, the greater the effect); if
it is close to -1, the impact on user dissatisfaction is particularly great when the product
features are not met. The “Wi (%)” value can be used to know the relative weight
percentage of each functional program on the satisfaction of the empty nesters and to
establish the importance ranking of individual functional programs.
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Table 4. Functional program categories and importance rankings

Function Accumulated Counts Kano
Categorya

Importance

A O M I Si Di wi Wi
(%)

Humanization 14 8 11 1 A 0.647 −0.559 0.647 9.4

User emotional
state
recognition

15 9 10 0 A 0.706 −0.559 0.706 10.2

Vivid emotional
expression

7 18 9 0 O 0.735 −0.794 0.794 10.7

Friendly voice
interaction

4 5 23 2 M 0.265 −0.824 0.824 10.3

Lovely
appearance

1 12 3 18 I 0.382 −0.441 0.441 5.5

Multimedia
display

6 13 10 5 M 0.559 −0.676 0.676 8.5

Accompanying 10 17 5 2 O 0.794 −0.647 0.794 8.1

Recreation 8 15 11 0 O 0.676 −0.765 0.765 9.8

Little butler of
life

18 10 5 1 A 0.824 −0.441 0.824 11.9

Emotional hub 12 12 10 0 A 0.706 −0.647 0.706 10.2

Health data
detection and
monitoring

4 7 22 1 M 0.324 −0.853 0.853 10.7

Emergency
network alarm

6 6 20 2 M 0.353 −0.765 0.765 9.6

5 Conclusions and Suggestions

This paper aims to design a design-driven intelligent senior companion robot. Firstly,
through the UCD design concept, the author takes the user’s life situation and emotional
needs as the entry point, understand the senior’s life situation throughempathy andextract
pain points, needs and expectations, find design opportunities, and then carry out design
definition and conception through design thinking to convert to different functional
programs. Finally, the Kano Model scale was administered to the empty nesters to
differentiate the attribute categories of different functional programs and to calculate
different functions, whose contribution degrees to the satisfaction of the “intelligent
senior companion robot” are obtained. In this way, we can ensure that the value provided
by the “intelligent senior companion robot” is what the Chinese empty nesters need and
expect, and it is integratedwith their life situations, so that such integration of technology
and life can enhance the acceptance of the companion robot by the Chinese seniors.
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Taking Chinese empty nester seniors as an object, this paper provides 12 functional
programs in the context of the life situation of empty nesters in China and the common
needs and expectations of their familymembers, aswell as their Kano attribute categories
and importance weighting ratios, which can be used as a reference base for academic
research, designers and developers. We believe that “Technology Is Connecting To Peo-
ple”, products are for people to use, and the design and development should be based on
the concept of UCD thinking. Finally, we believe that individuals and society should not
use “intelligent companion robots for the elderly” to avoid responsibilities or necessary
care for the elderly, but rather to enhance their self-care ability and help them get out
of their inner isolation through technology. Using “intelligent companion robots for the
elderly” as an emotional hub, it can act as a booster to build emotional connections
between individuals, and between individuals and families in the future intelligent life,
being a transmitter of emotional support.
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Abstract. We investigated how a human observer interprets the motion
of a robot while communicating with another robot. We generated a vari-
ety of motion patterns for a robot running on wheels and evaluated the
ease of human interpretability of these motions. The results showed that
although the interpretation results for motoins imitating human head
gestures were relatively accurate, motions that imitated hand gestures
tended to be interpreted less accurately.

Keywords: Robot-to-robot · Recognition of movement · Robot
motion

1 Introduction

Once robots are ubiquitous, people become involved in interaction with unknown
robots. In the absence of information about robots, interactions between robots
should be conducted in a manner that is understandable to humans. This inter-
pretability is achievable by designing the movements of robots. The motion pat-
terns of mobile robots have been studied in terms of the interpretation of robots
with human intentionality [2]. However, knowledge on the interpretation of robot
behavior when observing inter-robot communication is limited (Fig. 1). In this
study, we created several movements that robots used to communicate with other
robots and evaluated whether humans can observe and interpret the movements
as they were used.

Various manners of communicating between living and artificial entities, such
as robots, exist. Communication between robots can be achieved efficiently using
telecommunication technologies [5,15]. However, delivered signals are typically
unnoticeable to humans without using particular devices. Robots can also com-
municate through audio channels. If robots use the same verbal speech sounds
as humans, interpretation is easy for humans. When the sounds are implicit
and nonverbal, the sounds should be properly designed for interpretability [14].
Other media, such as color and vibration, have been examined [16]. Artificial
eyeballs attached to the mobile robot were tested to increase the predictability
of robot motion [12]. Motions are used for communication purposes in nature. A
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well-known example is that of honey bees dancing [1]. Motion patterns can be
applied to robot communication. The perception of robot personality has been
studied in chess-playing robot arms based on motion patterns [10]. We focused
more on the semantic aspect than on the impression of motion. The intention
predictability of robot motion was addressed by Stulp [17], but messages were
sent from robot to human rather than robot to robot, which we examined in
this research. Although there are related concepts to interpretability such as leg-
ibility, explicability, and predictability [3], we are concerned here only with the
interpretability that is associated with the recognition of ambiguous motions.

Fig. 1. Interpretation of interactions between robots

2 Method

2.1 Robot

The robot used in this study was iRobot Create2, which is a mobile cleaning
robot without a cleaning function for development and educational purposes
[11]. The robot runs on wheels. It can be connected to an external PC with a
dedicated cable called the Communications Cable for Create2, and controlled via
serial communication (Fig. 2). We considered messages that might be practical
for communication between robots and their resulting movements.

2.2 Development

This robot is controlled by sending commands through a software interface called
Create2 Open Interface. Commands are sent as binary data via serial commu-
nication. After establishing serial communication between the robot and PC, a
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command to start the motion is sent. The interface has two modes: development
and control. The user selects the desired mode at the interface.

When using Create2 Open Interface, the amount of moves in each direction
can be set in advance to simplify motion design and programming. Variables
that have movement speed are defined as parameters. A study on human per-
ception suggests that the speed of gesture motion can alter the interpretation of
the gestures [4]. However, to control the experimental condition, we use the fixed
speed throughout the development. Motion patterns are defined as the combina-
tion of base element motions such as ‘move forward’ or ‘move backward’. When
commands are issued to activate a particular movement, the parameter values
are called and converted into binary data. Binary data are sent to the robot
through the communication cable.

Small PC

Fig. 2. Experimental results

3 Experiment

3.1 Motion Patterns

We prepared the robot motion patterns for the experiment. Human hand and
head movements were used as references to communicate with others. Horizon-
tal human movements were used as the robot’s left-right rotation, and verti-
cal human movements were used as the robot’s forward-backward movements.
For example, in the case of a negative message, the robot rotates 45◦ to the
left and right, as if shaking its head. In general, gestures can be divided into
several phases, including preparation, stroke, and retraction [8]. When creat-
ing motion patterns, we considered only the stroke, which is the primary phase
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of the gestures. Head movements play different roles in communication when
used repeatedly over a course of time [6]. However, for simplicity, we considered
robot motion patterns that represented a single head movement. We created five
motion patterns that corresponded to the following messages: ‘Follow me,’ ‘Go
right,’ ‘Go away,’ ‘No,’ and ‘Dodge.’ Figs. 3 to 7 illustrate the motion patterns.
In these figures, the outer circles represent mobile robots when observed from
above. The filled circle represents the center of the robot, where the power but-
ton is located. A smaller filled circle is placed on the anterior part of the robot,
which corresponds to the obstacle sensor. The obstacle sensor was not used in
the experiment. Movements are performed from left to right in the figures. For
example, in the case of the ‘Follow me’ movement, shown in Fig. 3, first, the
robot moves backward. Subsequently, it moves forward. This pattern repeats; as
its final movement, the robot moves in the backward direction. In the case of the
‘Turn right’ movement, shown in Fig. 4, first, the robot moves to the left. Then,
it moves right. This pattern repeats; as its final movement, the robot turns right
by 90◦.

We did not implement a feedback mechanism in our system; therefore, we
could not measure the accuracy of the movements. Although small misdirection
and overshoots/undershoots might have been occurred when the actual trajec-
tories were compared with the planned motions, we believe that these marginal
gaps do not affect the interpretation of movements. In robot to human han-
dover task, it is reported that the positive impressions given by robots does not
correlate with spatial accuracy [9].

Fig. 3. ‘Follow me’ movement
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Fig. 4. ‘Turn right’ movement

3.2 Experiment Procedure

Participants were shown videos of the robots in action and were asked to eval-
uate them. The robot that sent messages and the robot that received messages
faced each other. The videos of the robot sending messages were recorded from
a human’s eyelevel (Fig. 8). The videos included all movements in their entirety.
A small PC was mounted on top of the message-sending robot to control it. Ten
male university students participated in the experiment. They watched videos
of five movements posted online in a random order. The audio of the videos
was removed to avoid the influence of motor sounds on the perception of robot
motion [13]. After viewing a video, participants were asked to select what the
message-sending robot attempted to convey to the message-receiving robot from
options in a questionnaire and to describe the reasons for their selection. Par-
ticipants were allowed to watch the videos any number of times to confirm their
interpretation. The questionnaire included ten options, including five additional
messages, and they were presented randomly. The five messages that were not
included in the videos but were in questionnaire were ‘OK,’ ‘Hello,’ ‘Good-bye,’
‘See you,’ and ‘Turn left.’ They were meant to have meanings similar to the
five movements included in the videos. The degree of agreement between the
intention of the motion design and selections made by participants was used to
evaluate whether the motion pattern was human-interpretable.

Fig. 5. ‘Go away’ movement
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Fig. 6. ‘No’ movement

Fig. 7. ‘Dodge’ movement

Fig. 8. Example of video stimuli shown to participants. The message-sending robot
was placed on the right-hand side and the message receiving robot stands still on the
left-hand side.
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4 Results

An analysis of the results showed that the correct response rates were high
for ‘Turn right’ and ‘No’ (Fig. 9), which were movements created based on the
images of movements performed by people using their heads. Many participants
responded that they selected these options because they associated them with
head movements, indicating that these movements were interpreted as intended
by designers. The percentage of correct responses was also high for ‘Follow me,’
which involved a large motion, and the reasons provided by the correct respon-
dents for their selection were often consistent with the design intention. The
unintended option selected by all participants was ‘Good-bye,’ suggesting that
‘Follow me’ and ‘Good-bye’ were conceptually similar in terms of robot move-
ment. The correct response rate was low for ‘Go away’ and ‘Dodge’, which were
designed to mimic human hand movements.

Fig. 9. Equipment used

5 Conclusion

For each message communicated between the robots through their movements,
we created motion patterns that could be interpreted by humans. We evalu-
ated the interpretability of the messages. The correct response rate was high for
‘Turn right’ and ‘No,’ which were created based on the image of human head
movements, and notably, the movements were human-interpretable. ‘Go away’
and ‘Dodge,’ which were created based on the image of human hand motions,
demonstrated low correct response rates. This may be because human head
movements can easily be converted into two-dimensional movements, whereas
hand and finger movements are three-dimensional, and ground mobile robots
cannot completely reflect this in their movements.
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Fig. 10. Message-sending robot from another robot’s perspective

In the selection of motion patterns, we considered communicative gestures
as references. Investigating non-communicative type gestures [7] would be inter-
esting using this framework. Another point that needs to be addressed is that
the motion patterns used were clearly visible to human observers, but not neces-
sarily intelligible for message-receiving robots. Figure 10 illustrates the message-
sending robots seen from the message-receiving robots’ view. The effectiveness
of the motion patterns of other robots should be considered in the future.

Acknowledgments. This work was partially supported by JSPS KAKENHI (grant
number 20K11908). The experiment was conducted by Ayato Sampei.
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Abstract. The paper concerns conversational interaction for social robots and
presents work on combining conversational AI technology and humanoid robot
agents. It contributes to designing human-robot interaction with the help of state-
of-the-art conversational modelling techniques and discusses issues related to spo-
ken dialogues, social interaction, and context-awareness. The paper explores the
use of knowledge graphs in dialogue modelling with the goal of developing inter-
active robot applicationswith natural dialogue capabilities. Thework thus supports
the design of social robot applications where robot agents have capabilities for a
more symbiotic relationship with humans.

Keywords: Conversational AI · Robot interaction

1 Introduction

Many different AI agents have appeared providing potentially useful assistance for a
variety of everyday tasks. Such agents range from talking heads on phones to situated
robots in restaurants and shopping centers, and the agent’s role varies from information
provider to autonomous robot companion. Conversational AI has produced solutions,
culminating in commercial products like IBMWatson, Alexa, Siri, Cortana, and Google
Assistant. In fact, Gartner predicts that by 2022, 70%ofwhite-collarworkerswill interact
with conversational AI on a daily basis1, making the agent’s ability to conduct interaction
on varied topics, with different users and in different situations, one of themost important
aspects of current conversational AI research.

Conversational AI research mostly focuses on text-based interaction powered by
big data and deep learning technology. Speech is also included as the conversational
agents can be used as apps on a phone or via a speaking head. However, there are
no applications that could be used on robots, for instance, there is no obvious way
to interact with a humanoid robot using Google Assistant. A notable exception is IBM
Watsonwhichwas integrated with Softbank’s Nao robots to showcaseWatson’s question
answering capability as well as the robot movements.2 The reason for the apparent
vacuum in deploying conversational agent technology in robots may be found in the

1 https://www.gartner.com/smarterwithgartner/chatbots-will-appeal-to-modern-workers/.
2 https://www.ibm.com/blogs/internet-of-things/doing-the-robot-watson-really-is-all-singing-
all-dancing/.
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fact that practically all consumers have mobile phones, whereas having your own social
robot at home is still rare and regarded as a curiosity rather than a commodity.

On the other hand, robots and robot interaction have also become hot topics. Robotics
has expanded from service automation into areas such as Assistive Robotics and Service
Robotics where robots help humans to do daily tasks, or robots and humans try to
accomplish tasks together in collaboration. With advances in technology of sensors and
motion recognition devices, multimodal dialogues with robot agents have also become
feasible: research and development has focused on situated robot agents which can sense
their environment, walk and gesture, as well as talk to the user. Moreover, in the vision
of Society 5.03, AI agents are connected and capable communicating agents, embedded
seamlessly into society, and can support AI solutions in service design and decision
making by allowing interaction between AI and human users.

As the tasks for robot agents become more complex, the agents’ communicative
competence must increase, and the area of Social Robotics especially focuses on robot
companions that can interact with humans using natural language taking various aspects
of social interaction into account. Such social robots aim to offer solutions to societal
problems such as lack of human caregivers to help elderly citizens in everyday activities
or provide information and assistance in communication between different people and
in various situations, especially in dangerous or difficult environments such as disaster
areas or hospitals with strict access rules. The global pandemic COVID-19 has also
accelerated development for agent interaction.

Dialogue interactions with robot agents are thus likely to become more common
and also more complex, since the robots should not only provide useful information but
explain their behaviour, instruct human users, and chat about many interesting topics
in natural language. The development and design of social robots also face challenges
concerning interaction technology and issues of trust, ethics, accessibility, long-term
relation, cooperation, etc. In this paper, we will not discuss the ethical challenges but
refer to previous work, e.g. 152327, and focus on the main challenge with social robots,
namely communication with human users in a natural manner.

In what follows we discuss differences between conversational agent development
and social robotics and focus on two aspects: spoken interaction and multimodality.
The paper is structured as follows. We first discuss conversational AI and the aspects
of communication which are important for human-robot interaction. We then focus on
creating situational awareness in dialogue systems and conclude with a short example
dialogue related to environmental issues.

2 Conversational Human-Robot Interaction

Conversational interfaces have been much studied (see an overview in 30), and inten-
sive research and development concerns end-to-end dialogue-systems based on big data
and deep learning techniques. End-to-end conversational agents are usually directed
towards general chatting and conversations, and their use in task-oriented dialogues
requires structured knowledge of a particular task to be induced in the learning process.

3 https://www8.cao.go.jp/cstp/english/society5_0/.

https://www8.cao.go.jp/cstp/english/society5_0/
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Moreover, rich contextual information needs to be included in the dialogue model to
address situational interaction management issues such as turn-taking, dialogue history,
and creation of mutual knowledge.

Important aspects in current conversational agent development concern integration
of spoken language in the chatbot instead of text, as well as the use of ontologies and
contextual knowledge. Speech is usually included as a front-end ASR that provides a
text transcription as the input for the conversational agent, but such a solution tends
to fall short when it comes to natural spoken interaction with disfluencies, false starts,
and overlapping speech. Research on end-to-end conversational modelling (283435)
uses a similar approach to end-to-end text processing by replacing word2vec 31 with
speech2vec 5 embeddings.

Muchwork is conducted in integrating knowledge graphs into conversational agents.
Early workswere 39 combiningNao and Pydial 37, and 24 combining knowledge graphs
for instruction giving dialogues where Nao robots explain best-practice procedures to
novice caregivers in the eldercare domain. The knowledge is structured into a goal-
oriented hierarchy modelled in JSON, which shows how the various tasks are interre-
lated and interdependent. Various dialogue engines exist, with different strengths and
weaknesses, see discussion in 32. We chose Rasa open-source conversational AI4 for
dialogue interaction, see discussion in Sect. 4.

2.1 Spoken Communication with Robot Agents

Sophisticated interaction models and robot implementations are critical when develop-
ing practical social robot applications. The models are often hand-crafted rule-based
scripts for the interaction that focus on providing useful and true information as well as
interesting and engaging conversations. Although interaction technology and robotics
communities have long worked on spoken conversations and human-robot interaction
213641, integrated approaches to implement spoken conversational dialogues on robot
platforms have only recently started to appear. For instance, recent workshops (SLI-
VAR5, ROBOT-DIAL6) aim to bring the research communities together, and tutorials
26 and papers 29 have elaborated on the pending issues such as user experience design,
adaptivity, robustness, infrastructure, and dynamics.

Active research is going on related to architectures, models, and representations for
robots’ natural language communication, and pertinent issues concern the embodied
nature of robots and interactions that can occur frequently with the same user and are
longer than two turns. Friendly-looking humanoid social robots like Nao7 and Pepper8

are widely used in research, while android robots 25 with their human-like appearance
challenge the limits of natural and comfortable interaction partner. Furhat9 provides an
expressive head and face for various engagement studies.

4 RASA Homepage, https://rasa.com/.
5 https://www.dagstuhl.de/en/program/calendar/semhp/?semnr=20021.
6 http://sap.ist.i.kyoto-u.ac.jp/ijcai2020/robotdial/.
7 https://www.softbankrobotics.com/emea/en/nao.
8 https://developer.softbankrobotics.com/pepper-qisdk.
9 https://furhatrobotics.com/.
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Considering the need for providing smooth operation and comparison of application
among various types, requirements, and domains, much work is related to standards
for software interoperability such as OMG10 and various ISO standards concerning
safety management for service robotics11, personal care robots12, human-robot collabo-
ration13, rescue robots14, ergonomics for human-system interfaces15, and the campaign
for hi-tech standards16 for new technologies. Standardisation for dialogue interaction
has resulted in ISO standard 24617–217 for dialogue act annotation 5 and work related
to annotation standards for language resources 16 is going on. MPAI (Moving Picture,
Audio and Data Coding by Artificial Intelligence) is a community18 that focuses on
standards, interoperability and data sharing for practical interests in human-machine
communication, audio, video, etc.

The most important standard for robotics is ROS (Robot Operating System)19 with
a focus on robot vision rather than speech. OpenCV20 provides standard algorithms
for Computer Vision and is used in standard mobile service robots such as Turtlebot
for recognizing objects and obstacles, while SLAM 10 (Simultaneous Localisation And
Mapping) algorithms are standards for mapping rooms and navigating around.

ROS-based robots do not usually feature spoken interaction due to ROS focusing on
vision rather than state-of-the-art speech technology. However, for social robots spoken
interaction is necessary, so they use their own platform and OS and resort to proprietary
systems such as Nuance in Nao and Pepper, or Google Cloud services for ASR and
Amazon Polly for TTS in Furhat. Such open-source speech technologies as Kaldi21 and
ESPNet22 are good candidates to be part of the ROS-based interactive robots. To this end,
a recent integration of open-source technologies is described in 12 who show how ROS,
Rasa open-source dialogue framework, and ESPNet speech recognizer can be combined
as a platform to support natural interaction with a social robot.

2.2 Multimodal Communication

Besides speech signals, visual signals are effectively used in dialogue management.
Communication presupposes awareness of the situation and engagement with the part-
ner, which are signalled by multimodal social signals. Face and body movement, facial

10 Object Management Group https://omg.org.
11 https://www.iso.org/standard/80886.html.
12 https://www.iso.org/standard/53820.html.
13 https://www.iso.org/news/2016/03/Ref2057.html.
14 https://www.iso.org/news/Ref2169.htm.
15 https://www.iso.org/standard/80773.html.
16 https://www.iso.org/sites/hitechstandards/.
17 https://www.iso.org/standard/76443.html.
18 https://mpai.community/.
19 https://www.ros.org/.
20 https://opencv.org/.
21 https://kaldi-asr.org/doc/.
22 https://github.com/espnet/espnet.
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expressions, gaze, head and hand gesturing are all important signals in human conver-
sations 11, and crucial in making human-robot interactions more natural 1. The signals
manifest the agents’ cooperation and indicate their attention to the partner’s needs.

According to 19 the main characteristics of social robot interaction are:

• Use of multimodal signals (speech, gaze, gesture, body) to communicate with the
human

• Observations of human multimodal behaviour (speech, gaze, gesture, body) to learn
human intentions and to react appropriately

• Autonomous decisions about actions
• Independent moving in a 3-dimensional world
• Receiving and sharing information via internet & IoT.

The first two items relate to the robot’s communicative capability, the next two items
concern its autonomy, and the last one captures the basis for the robot’s knowledge.

Detailed analyses of robots’ communicative capability are much studied elsewhere,
see references above and4811.This paper ventures into a newarea of dialoguemodelling,
namely studying various environmental sensors and the data they provide for interaction
(about temperature, humidity, CO2 levels, etc.). Advances in sensory device technology
have brought new input devices into smart homes, and consequently available for robots
to observe their environment and the user 917.

The user can query such information, but the data can also be included in dialogue
modelling to produce context-sensitive responses. While the smart home can measure
the state of the environment, interactions should be conducted in a particular situation,
with a particular partner. Communication with the user needs to be embodied, rather than
directed to the walls, remote controllers, or mobile phones. This calls for a social robot
powered by conversational AI, which is able to communicate about such information in
natural language.

3 Constructing Situational Awareness

3.1 Grounding

In human-robot interaction, the challenges related to situational awareness can be
addressed by supplying robots with understanding of the context (context-awareness)
and ability to build a shared context with users (grounding). Context-awareness enables
the robot agent to behave appropriately in the specific interactive situation and engage
with the partner by efficiently using its knowledge to infer the partner’s affective state,
level of understanding, willingness to continue discussion, etc. Grounding on the other
hand is linked to joint meaning creation, i.e., to the agent’s ability to understand the
meaning of the user’s utterance and link the mentioned referents to the current context.
In dialogue modelling, predictions of whether the partner refers to the same entity as the
agent are important to confirm that the partners are talking about the same thing 7. One
of the main means to cooperate in dialogues is to create such shared context in which
joint understanding of the goals can be created and the task goals successfully achieved.
In robotics, grounding is a related concept but usually associated with the robot’s vision
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studies where symbolic labels are linked to the object in the world 13. A neurocogni-
tive model to integrate the robot’s cross-modal sensory and sensorimotor modalities in
language grounding is presented in 14.

3.2 Construction of Dialogues

In earlier work, the robot’s interaction capability was modelled after the theoretical
framework of Constructive Dialogue Model 18, which defines Contact, Perception,
Understanding, and Reaction as the basic enablements for cooperative communication.
The basic capabilities include the ability to recognize the user’s face and gaze (Contact),
perceive the user’s actions (Perception), provide relevant information (Understanding),
and engage with the user (Reaction). In the implemented system, these enablements
correspond to different components that perform a particular function, i.e. Contact is
implemented via sensors, Perception via various recognizers, Understanding is based on
natural language and dialogue components, and Reaction is produced by different gen-
erators and output devices.The lower level enablements (Contact, Perception) need to be
successful in order for the higher levels to succeed: if there is no contact or perception,
there is no point to continue talking. Lower level enablements are thus prerequisites
for the higher level enablements. The signals that indicate the partner’s contact and
perception (awareness and understanding) are stored in the Context Knowledgebase as
Boolean values. They are used in the Understanding process of the message. Reaction
is produced as the most appropriate action given the current state, and it results in a new
dialogue state which represents the knowledge of the system at the time it waits for the
user’s response.

Fig. 1. Subsumption of the enablements of communication in CDM.

The communicative enablements thus form a hierarchy, like the robot’s competences
in the subsumption architecture for robot control 3. Competences are specifications of
desired behaviours for a robot in its environment, and a higher-level competence implies a
more specific class of desired behaviours. Enablements in communication are organised
analogously as a set of competences which relate to communicative actions rather than
physical acts, and control the successful communication. Figure 1 shows a layered set
of competences that form the tacit control system for the dialogue model.
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3.3 Situational Awareness

As already discussed, communication requires knowledge of what is going on around the
agent and is dependent on the level of the agent’s autonomous behaviour and the amount
of knowledge it has about the world, the situation and the partner. Situational awareness
can manifest on many levels, ranging from the dialogue context to the environment in
which the communication takes place. For instance, dialogue analysis shows how the
interlocutors accurately time their conversational turns and synchronise their behaviour
with the partner, as well as giving feedback using social signals such as gaze, gestures,
nods, and bodymovement which indicate the interlocutors’ emotion, intent, engagement
and attention to the partner’s communicative needs.

Considering the enablement of Contact, the participants first need to establish that
interaction is possible: that the partners are aware of each other’s presence and in the
proximity for interaction. Establishing contact also indicates the interlocutors’ basic
willingness to engage in the conversation, which will then manifest itself in dialogues
which are constructed together with the partners as the interaction goes on.

In human-robot interaction, this can be implemented with the help of movement
detectors, which can track the user’s movements in the rooms and in particular show if
the user is in the same room as the robot. They may also be able to tell if the distance
to the robot is short enough so that the robot can start talking to the user. Infra-red and
touch sensors on the robot itself may help the robot to sense the presence of the users
and their distance from the robot. This can be used in dialogue initiation, if the user is
close enough to start conversation.

Actual environmental conditions have an impact on the participants’ behaviour and
indirectly on their interactions with other partners. Weather conditions function not only
as a topic for conversation (“It’s very hot today”) but also affect people’s emotional
and affective state. Hot weather may not be ideal for long intensive discussions on
challenging topics, and it may be useful to communicate to the user about dangerous
weather conditions or provide reminders to drink enough to avoid dehydration.

Besides being proactive and providing information about the environmental state,
the data from the environmental sensors can be especially used for the initialisation of
dialogues. The data from the sensors is collected and a fusion component processes
them to the level of categorised information that can be used in the dialogue manager.
The system-initiated dialogues form a sensor-based interaction mode where the sensors
report the data (e.g. temperature, humidity), possibly combined with proactive recom-
mendations (drink enough water, use dehumidifier). The typical conversational agent
dialogues are user-initiated dialogues where the user asks questions, e.g., about the
environmental sensors (see the example below in Sect. 4.2).

4 Dialogue Management

4.1 Rasa Dialogue Modelling

This section briefly describes the use of the Rasa conversational AI framework23 with
spoken and multimodal information. Rasa is a popular open-source conversational AI

23 https://rasa.com/.

https://rasa.com/
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frameworkwhich is scalable and has amodular, extensible architecture, offering the pos-
sibility to combine cutting edge natural language processingmoduleswith a transformer-
based dialogue manager 38. Rasa supports state-of-the-art natural language understand-
ing, processing user messages in a pipeline of components to interpret user inputs and
using rule-based andmachine learning-based dialogue policies to determine the system’s
actions. The pipeline includes the Dual Intent and Entity Transformer (DIET) for entity
extraction and intent classification and the Transformer Embedding Dialogues (TED)
policy for system responses 2. It also allows the components to be changed from the
defaults to a customized configuration.

Dialogue context includes dialogue history, domain information and environmental
information obtained via sensors, and is needed for maintaining coherence in long-term
interactions. The meaning related to the environmental sensor information is encoded
in the appropriate labels and can be stored in Rasa’s custom slots which can affect the
dialogue. The slot information is mainly used in checking that Contact is still enabled,
but it can also play a role in the actual content of the dialogues (e.g. what kind of
topics are most likely to be discussed in which room – dialogues in the kitchen are
likely to focus on food while those in the living room focus on news, TV programs, and
physical activities). As mentioned earlier, the slots are also important in case the user
requests room temperature to be changed or if the robot will proactively provide useful
recommendations in the current context.

In this work, the contribution to context-aware dialogue modelling is realized by
including context knowledge in the form of knowledge graphs in dialogue processing,
while grounding is implementedwith the help of knowledgebase actions operating on the
history of the ongoing dialogue. The model is implemented using Rasa conversational
AI, storing recognized entities in the robot’s memory and tagging them according to the
entity’s status in the grounding process. The dialogue model dynamically updates the
memory and provides possibilities to study the internal structure of the robot’s contextual
knowledge and its construction through the interaction. Details can be found in 40.
Ongoing work consists of extending the CDM dialogue model with a context model that
includes dynamic environmental sensor information and experimenting with the context
model to better enable grounding and the shared context construction.

Early dialogue research was task-based in that the system provided information to
the user on a particular task domain. Practical conversational chatbot applications are
still designed for the task at hand, with the different “intents” and “entities” specific for
the application. However, when considering the possibility to apply or reuse chatbots
for other domains, the issue of generalisation appears. The problem is similar to the
issue in dialoguemanagement research where the domain dependency of dialogue acts is
discussed: chatbot development also faces domain dependency in the form of the intents.
One approach is to address dialogue intent design as part of the general standardisation
and interoperability issues of robots, as discussed in Sect. 2.1. Another approach is to
avoid intent classification and instead focus on knowledge-base queries which can find
the correct information in the form of entities, predicates, and relations. This recasts
the issue as knowledge modelling rather than dialogue management, with the goal of
structuring the knowledge for the purpose of providing information. In this paper we
aim to structure the domain knowledge in the form of knowledge graphs that model
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concepts and the relations between them, and thus the goal of the analysis done by
the natural language pipeline is not to detect the user’s intent and classify it correctly,
but rather to extract the entities for the knowledge base search in order to retrieve the
content required for a suitable response. Ongoing work is focussed on realising this in
appropriate knowledgebase actions.

4.2 Example Dialogue

An extract from a knowledge graph for environmental states including temperature and
humidity is shown in Fig. 2. The graph, which was produced using Arrows.app24, is
stored in a Neo4j graph database 33. It shows the connection from an environmental state
node to various environmental parameters like humidity and room temperature. These are
connected to comfortable and uncomfortable states and also to various recommendations
given the sensor measurements at a particular time.

Fig. 2. Example of a knowledge graph for environmental states.

The interaction model is expected to be used with various types of humanoid robots,
but we focus on Nao and Furhat robots. In the following example dialogue (Fig. 3), the
user asks about recommendations concerning different temperature levels (hot, cold)
as well as humidity and noise levels with linguistically varied questions, and finally
asks for recommendations for sleep disorder. The bot provides answers based on the
knowledge graph. It is interesting to note that the query “what do you recommend for
my sleep problem” is answered with the problems that cause sleep disorder rather than
recommendations. This is due to the Rasa NLU model picking out “problem” as the
object type in the knowledgebase and ignoring the verb “recommend”, whereas the
similar query “what do you recommend for my sleep disorder” is correctly understood
as a question about recommendations with the object type “recommend”.

24 Arrows app whiteboard Homepage, https://neo4j.com/labs/arrows/.

https://neo4j.com/labs/arrows/
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Bot loaded. Type a message and press enter (use '/stop' to exit):

Your input ->  what do you recommend for high temperature                                 
Found the following objects of type 'recommendation':
1: open_window

Your input ->  recommend for low temperature                                              
Found the following objects of type 'recommendation':
1: use_heater

Your input ->  what is good to do when it's very damp?                                    
Found the following objects of type 'recommendation':
1: use_dehumidifier

Your input ->  what's good thing for too cold?                                            
Found the following objects of type 'recommendation':
1: use_heater

Your input ->  very cold, what recommend?                                                 
Found the following objects of type 'recommendation':
1: use_heater

Your input ->  what will help when it's very noisy?                                       
Found the following objects of type 'recommendation':
1: close_window

Your input ->  I'm very cold, what will help?                                             
Found the following objects of type 'recommendation':
1: use_heater

Your input ->  I have sleep disorder, what will help?                                     
Found the following objects of type 'recommendation':
1: have_regular_lifestyle
2: do_exercises
3: avoid_eating_late

Your input ->  what do you recommend for my sleep problem?     
Found the following objects of type 'problem':
1: high_noise
2: high_temperature
3: low_temperature
4: sleep_disorder
5: high_humidity

Your input ->  what do you recommend for my sleep disorder? 
Found the following objects of type 'recommendation':
1: avoid_eating_late
2: have_regular_lifestyle
3: do_exercises

Your input ->  thanks

Fig. 3. Example dialogue.

5 Conclusions

This paper discusses new opportunities to use AI technology to make human-robot
interactions more natural and expressive, thus enabling robots to cross the boundaries
from tools to interactive companions 20. The paper argues that human interaction with
robots is quite unlike interactions with text-based systems or with other types of mobile
devices, and that the conversational agent should take account of the robot’s verbal and
non-verbal behaviour as well as enable a grounding process in order to create mutual
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context with the human partner. The context includes the dialogue context as well as the
physical environment in which the conversation takes place, and fromwhich information
is accessible via environmental sensors. Structured knowledge modelling thus concerns
relevant information of the context, of the application domain and the world. Besides the
grounding process, another relevant aspect is to exhibit situational awareness which is
realised via multimodal processing that indicate context sensitivity with the designated
gesturing, pointing and nodding behaviour.

Natural language interaction with humanoid robots can be enabled by conversational
AI dialogue modelling. Ongoing work focuses on the Nao humanoid robot and the Rasa
conversational AI framework and experiments with conversational dialogues concerning
everyday tasks. The contribution of the paper relates to desired functionality by integrat-
ing technology from known techniques: the techniques of conversational AI modelling
are combined with the robot’s capability of sensing the environment and interacting
with the user in a multimodal manner. It is expected that this kind of situated agent not
only enhances robots’ interaction functionality towards natural interaction with humans,
but also affects the human view of social robots. More natural conversational interaction
between humans and humanoid robots will allow autonomous robots to act as boundary-
crossing agents and will thus enable more symbiotic human-robot relations in the future
society.
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Abstract. The purpose of this study was to explore human-robot interaction in
surgical contexts using bibliometric analyses. We demonstrate the use of various
scientometric tools for a bibliometric review and discuss some trends in robotic
surgeries. Metadata was extracted from three databases: Scopus, Web of Science,
and Google Scholar through Publish or Perish software. A one-way analysis of
variance and Tukey’s post hoc test were used to observe any significant differ-
ences in database publication yields. Different trend analyses were conducted on
metadata with tools including Vicinitas and Google NGram, Co-citation network
analyseswere also carried outwithVOSviewer andCiteSpace. Finally,MAXQDA
was used for a content analysis using a subset of 27 articles. The review showed
that surgical robotics is a heavily growing field as seen with the uptake of robotic
surgeries over other conventional techniques. Findings of current trends in the field
are also presented. Finally, we discuss ideas for future work on both technical and
non-technical aspects of surgical robotics.

Keywords: Robotic-surgery · Human-robot interaction · Bibliometric analysis ·
Co-citation analysis

1 Introduction

There has been an uptake of robotic-assisted surgeries (RAS) across many surgical
procedures because surgical robotics technology addresses the ergonomic challenges of
traditional laparoscopy and open surgeries by improving the surgeon’s wrist dexterity,
three-dimensional visualization, and magnification (Schiff et al. 2016). However, one
of the main issues in ensuring the safe and effective use of the robotic technology in
surgeries is the interaction between the user (typically a surgeon) and the robotics system
(Abdelaal et al. 2020). The effective design of surgical human-robot interaction (HRI)
should address the salient challenges surgeons may face during surgical procedures
(Aaltonen et al. 2018). Some of these challenges can affect surgery outcomes, and they
include decision-making at each step of the surgery, navigation inside the patient’s body,
and object recognition (Abdelaal et al. 2020).

Surgical HRI also affects the human aspects of RAS. In RAS, the surgeon sits behind
the console in a remote position from the surgical field and mostly gazes at the console
visual displays while teleoperating the robot arms (Tiferes et al. 2019; Randell et al.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
M. Kurosu et al. (Eds.): HCII 2022, LNCS 13519, pp. 293–312, 2022.
https://doi.org/10.1007/978-3-031-17618-0_22
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2015). Consequently, the spatial separation and lack of physical connection between
the surgeon, patient, and team creates challenges for coordination and communication
within the surgical team in the operating room (Tiferes et al. 2016). Finally, the robotic
system must be designed such that the interaction maintains or enhances the patient’s
safety. Specifically, surgical robots should be designed with high degrees of compliance
between the robotic manipulators to reduce the risk of unintentional excessive force on
tissues (Ficuciello et al. 2016).

In the United States, the number of robotic surgeries increased by a factor of 8.4
from 2012 to 2018 (Liu et al. 2021), and the adoption of the da Vinci robot (a commonly
used surgical robot) increased by 18% in 2018 when compared to 2017 (Khalafallah
et al. 2021). Despite these statistics, a 2013 survey showed that 46% of general surgery
residents (most of which were senior residents) believed robot-assisted cases interfered
with their participation in the surgical procedures and could impact their overall general
surgery training (Farivar et al. 2015). However, the use of the da Vinci robot in general
surgery has increased by a factor of 3 since that survey (Intuitive Surgical Inc 2016).
Consequently, more studies have investigated HRI within surgical contexts. Hence, the
following are the aims of this study:

1. To summarize the efforts made at studying surgical HRI, including trends of such
efforts

2. To identify collaborative networks and major scholarly communities, as well as
analyze the research status in the field of surgical HRI

2 Methods

2.1 Data Collection

Metadatawas extracted fromvarious databases includingScopus,WebofScience (WoS),
andGoogle Scholar (GS) via Harzing’s Publish or Perish (PoP) software (Harzing 2006).
All searches were done on the 28th of April 2022. Table 1 shows the keywords that were
used in the database search, the publication counts per database search, and the timespan
per search. The timespan of the search was not set, and this was intentionally done to
capture the oldest and newest published articles in the research area. To further elucidate
the reader on the keywords used for the search, we define them as follows. HRI is an
interdisciplinary field of study concerned with understanding, designing, and evaluating
robotic systems for use by or with humans (Goodrich and Schultz 2008). The American
College of Surgeons define surgery as a practice of medicine performed to structurally
alter the human body by incision or destruction of tissues (AmericanCollege of Surgeons
2007). Surgery is also the diagnostic or therapeutic treatment of conditions or disease
by any instruments causing localized alteration or transportation of live human tissue.
Beyond surgery, the role of robots in healthcare has become more diverse in different
applications including physical and cognitive rehabilitation therapy (Burgar et al. 2000),
drug delivery (Mapara and Patravale 2017), and mental health care (Riek 2016).
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Table 1. Keyword search, publication yield, and timespan of search in different databases

Database Keywords used (without quotes) Publication counts Timespan

Scopus “Surgery” AND “Human-robot interaction” 254 1994–Date

Web of Science “Surgery” AND “Human-robot interaction” 308 1992–Date

Google Scholar “Surgery” AND “Human-robot interaction” 980 1989–Date

2.2 Data Analysis

After downloading themetadata fromall three databases as either comma separated value
or plain text files, they were used for different analyses to address the aims of this study.
As part of efforts to address the first aim of this study, we conducted a one-way analysis
of variance (ANOVA) and Tukey’s post hoc test on publication yields over time from
all three databases to determine if there was a significant difference among databases.
Table 2 is an emergence indicator summarizing all publication counts over 30 years
across the three databases. All statistical analyses were done with Minitab statistical
software (Minitab Inc. 2010). Given the high-stakes, time-limited, complicated, and
intense nature of surgical operating rooms, research on HRI in surgery is burgeoning.
Hence, we conducted a series of analyses with different tools to explore current trends
and engagements in the field. Vicinitas is a tool that tracks and analyzes real-time and
historical tweets of social media campaigns and brands on Twitter (Vicinitas 2022). As
an initial effort to confirm the increasing research trends, we used Vicinitas to measure
the engagement level of research onRAS based on Twitter activity within the last 10 days
from the search date. We also conducted a trend analysis to study publication trends in
the field. The metadata collected from GS via PoP was analyzed to capture the interest
of the scientific community pursuing research related to HRI in surgery. GS’s metadata
was specifically chosen because it had the highest publication count as seen in Table 1.
Using Scopus’ metadata, we also analyzed publications by location, authors, and author
affiliations. Since RAS has been adopted to address some of the challenges associated
with both laparoscopic and open surgeries, we conducted a trend analysis with Google
Ngramviewer (Google Books 2010) to compare popularity of the three types of surgeries
over time. Google Ngram viewer is an online search engine that charts the frequencies
of any set of search strings using a yearly count (up to 2019) of n-grams found in a
corpus of books for a specified time frame (Michel et al. 2011). A search was done from
1980–2019 using the keywords “robotic surgery”, “laparoscopic surgery”, and “open
surgery”.

To address the second aim of this study, we first conducted a co-citation network
analyses using two different bibliometric software. Co-citation is the frequency with
which two documents are cited together by other documents (Small 1973). If at least
one document cites two other documents in common, these two documents are said to
be co-cited. The more co-citations two documents receive, the higher their co-citation
strength, and the more likely they are semantically related (Small 1973). A co-citation
network was first created with VOSviewer, a software tool for constructing and visu-
alizing bibliometric networks (van Eck and Waltman 2019). However, a co-citation
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network created by VOSviewer does not have its clusters labelled by a unique keyword.
We circumvented this limitation by generating a co-citation network with CiteSpace, a
computer program for visualizing and analyzing trends and patterns in scientific litera-
ture (Chen 2006). From the CiteSpace co-citation network, clusters were then extracted
by keywords. To get a broader reach of articles, the keyword used for the search that
generated the co-citation analysis metadata was “robotic-assisted surgery”. The search
was done for 1994–2022 on the WOS Core Collection database, a database that allows
researchers to download the metadata of full record and cited reference of each article
found from a keyword search. We used the same metadata for the co-citation network
generated by bothVOSviewer andCiteSpace. In this paper, we used the g-index selection
criteria with a scale factor (k) of 1 for the co-citation network with CiteSpace. g-index
is an author level metric that represents the largest number such that the top g articles
received together at least g2 citations (Egghe 2006). For example, a g-index of 5 means
the top 5 publications of the author have been cited at least 25 times (52). k is directly
proportional to the size of the network. CiteSpace also supports burst detection on several
types of events including the number of citation counts of cited references over time.
In bibliometric literature, a burst refers to the frequency surge of an event. Finally, we
conducted a content analysis on select articles used in this review using MAXQDA, a
software for qualitative andmixedmethods data analysis (VERBI Software 2021). From
the content analysis, a word cloud depicting the most recurring keywords in the articles
was generated.

Table 2. Publication counts over 30 years across the three databases search

Year Count per database

Scopus Web of science Google scholar

2022 14 5 40

2021 34 29 134

2020 24 25 131

2019 30 36 93

2018 30 26 99

2017 15 27 74

2016 17 29 53

2015 8 21 60

2014 22 15 45

2013 10 28 37

2012 10 27 30

2011 6 10 22

2010 5 11 22

2009 5 4 20

2008 4 5 17

(continued)
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Table 2. (continued)

Year Count per database

Scopus Web of science Google scholar

2007 5 2 11

2006 3 2 16

2005 1 2 10

2004 3 0 9

2003 3 1 2

2002 1 1 5

2001 2 1 4

2000 0 0 4

1998 0 0 1

1997 0 0 1

1995 1 0 1

1994 1 0 0

1993 0 0 1

1992 0 1 3

1989 0 0 1

3 Results

3.1 Statistical Analyses

In this section, we assessed if there were any significant differences between means
of publication counts for the keyword search term across Scopus, WoS, and GS. We
conducted a one-way analysis of variance (ANOVA) using Minitab. We defined our null
and alternative hypothesis (see Eqs. 1 and 2 below) and hypothesized that there is a
significant difference in publication counts across the three databases.

H0 : µscopus = µWoS = µGS (Means of publication counts across all databases are equal)
(1)

H1 : at least oneµ is different from the others (2)

Our analysis showed that there was sufficient evidence to reject the null hypothesis
(p < 0.05) and conclude that at least one database had a different mean of publica-
tion count from the other two. To determine which databases’ mean publication count
was significantly different, we conducted a Tukey’s post hoc test for multiple pairwise
comparisons. The mean publication count of WoS was greater than that of Scopus (WoS
> Scopus). However, the difference was not statistically significant (p < 0.05). There
was a statistically significant difference between the mean publication count of GS and
Scopus (GS > Scopus, p < 0.05). Finally, there was also a statistically significant
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difference between the mean publication count of GS andWoS (GS > WoS, p < 0.05).
Since GS > WoS > Scopus, we can conclude that GS had the highest publication
count of all databases (p < 0.05).

3.2 Trend Analyses

Using Vicinita’s free tool for hashtag/keyword tweets analysis, a search was carried
on the keyword “robotic-assisted surgery”. Figure 1 shows both engagement and posts
timelines for the keyword.

Fig. 1. Results fromVicinitas analysis based on the Twitter feed for the keyword “robotic-assisted
surgery”

The trend analysis with GS’s metadata to visualize the publication yield over the
years are as seen in Fig. 2. Figure 3 also shows the top 10 countries with “surgical
human-robot interaction” publications (using data from Scopus). The top 3 countries
with the most publications are United States (61), China (48), and the United Kingdom
(29). Finally, using the Scopus “analyze search result” tool, Figs. 4 and 5 visualize the
top 10 leading authors and affiliations of articles published in the field respectively.

Fig. 2. Publication yield per year based on Google scholar’s metadata search
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Fig. 3. Top 10 countries with “surgical human-robot interaction” publications on a global map

Fig. 4. Leading authors (Source: Scopus)

Figure 6 is the output of the Google Ngram analysis. The output has three bigrams
and what the y-axis shows is this: of all the bigrams contained in Google Ngram viewer’s
sample of books written in English and published in the United States, what percentage
of them are “robotic surgery”, “laparoscopic surgery”, or “open surgery”?
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Fig. 5. Leading affiliations (Source: Scopus)

Fig. 6. Bigrams for robotic surgery, laparoscopic surgery, and open surgery

3.3 Co-citation Analysis

Co-citation Analysis with VOSviewer. The WoS Core Collection database search
yielded 5,815 results. These were downloaded as plain text files and were used as the
input data for the co-citation analysis with VOSviewer. From the 5,815 articles found,
there were 74,535 cited references. For the co-citation network, the inclusion criterion
was that the article must have been co-cited at least 100 times. Of all the articles found,
seven met the criterion. Figure 7 shows the network visualization of the co-citations
analysis using the seven articles that met the inclusion criterion.

Each article is represented by a node, and the node size corresponds to the number
of times the article was cited in the network (Fig. 7). The network also has three clusters
grouped by node colors: cluster 1 (red nodes), cluster 2 (green nodes), and cluster 3 (blue
node). Table 3 below shows details of the seven articles used for the co-citation network.
For each cited reference in Table 3, VOSviewer also calculates the total strength of its
co-citation links with other cited references.
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Fig. 7. Co-citation network with VOSviewer (Color figure online)

Table 3. Articles used for VOSviewer co-citation network

Cited
reference

Title Source Volume and
pages

Co-cited
frequency

Total link
strength

Cluster
number

Dindo D,
2004

Classification of
surgical
complications:
a new proposal
with evaluation
in a cohort of
6336 patients
and results of a
survey

Annals of
Surgery

240,
205–213

347 63 1

Giulianotti
PC, 2003

Robotics in
general surgery:
personal
experience in a
large
community
hospital

Archives
of Surgery

138,
777–784

121 59 2

(continued)
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Table 3. (continued)

Cited
reference

Title Source Volume and
pages

Co-cited
frequency

Total link
strength

Cluster
number

Barbash GI,
2010

New technology
and health care
costs-the case
of
robot-assisted
surgery

The New
England
Journal of
Medicine

363,
701–704

128 34 1

Lanfranco
AR, 2004

Robotic
surgery: a
current
perspective

Annals of
Surgery

239, 14–21 100 30 2

Clavien PA,
2009

The
Clavien-Dindo
classification of
surgical
complications:
five-year
experience

Annals of
Surgery

250,
187–196

114 28 3

Ahlering
TE, 2003

Successful
transfer of open
surgical skills to
a laparoscopic
environment
using a robotic
interface: initial
experience with
laparoscopic
radical
prostatectomy

The
Journal of
Urology

170,
1738–1741

101 27 2

Walker JL,
2009

Laparoscopy
compared with
laparotomy for
comprehensive
surgical staging
of uterine
cancer:
Gynecologic
Oncology
Group Study
LAP2

Journal of
Clinical
Oncology

27,
5331–5336

108 11 1
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Co-citation Analysis with CiteSpace. The co-citation network created using CiteS-
pace and clustered by keywords yielded seven clusters (Fig. 8). Each cluster name was
auto generated, representing sub-topics within the broader search term used to generate
the metadata. CiteSpace generates these keywords (or cluster names) from citing papers
by log-likelihood ratios (LLR) and mutual information (MI). Each cluster was identified
by a unique identifier (ID) from 0 to 6. Table 4 shows details of each keyword repre-
sentative of a cluster in the network. The size of the cluster represents the number of
publications within each cluster. Our analysis identified 110 citation bursts from 1994
to date. Table 5 shows the top 10 references with the strongest citation bursts.

Fig. 8. Co-citation network clustered by LLR keywords with CiteSpace
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Table 4. Co-citation network keyword-based cluster information

Cluster ID Size Mean (year) Keyword (LLR) Keyword (MI)

0 24 2002 Prostate cancer Robotic technology

1 23 2016 Lobectomy Artificial intelligence

2 17 2010 Robotic Hysterectomy

3 17 2007 Endometrial cancer da Vinci surgery

4 13 2012 Hysterectomy Utilization of minimally
invasive surgery

5 11 2016 Total knee arthroplasty Accuracy

6 11 2007 Cystectomy Treatment

Table 5. Top 10 references with the strongest citation burst

Cited 
refer-
ence

Source Cita-
tion 
burst 
strengt
h

Burs
t 
start

Burst 
end

Burst visuals (extracted from 
CiteSpace)

Wright 
JD, 
2013

Journal of the 
American Medical 
Association

23.37 2014 2017

Barbash 
GI, 
2010

The New England 
Journal of Medicine

22.49 2012 2015

Ficarra 
V, 2009

European Urology 22.35 2010 2013

Ah-
lering 
TE, 
2013

The Journal of 
Urology

22.13 2006 2008

Jayne 
D, 2017

Journal of the 
American Medical 
Association

20.51 2018 2020

Bray F, 
2018

Ca-A Cancer Jour-
nal for Clinicians

16.44 2020 2022

Paraiso 
MFR, 
2013

American Journal 
of Obstetrics and 
Gynecology

15.71 2015 2017

Swan-
son SJ, 
2014

The Journal of Tho-
racic and Cardio-
vascular Surgery

15.40 2017 2019

Hu JC, 
2009

Journal of the 
American Medical 
Association

14.44 2012 2014

Menon 
M, 
2007

European Urology 14.43 2008 2010
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3.4 Content Analysis

Twenty-seven articles were downloaded (including the seven that made up the
VOSviewer clusters) and used for a content analysis with MAXQDA. From the content
analysis, a word cloud showing the most recurring keywords in the articles was gener-
ated (Fig. 9). Irrelevant words (prepositions, conjunctions, pronouns, etc.) were removed
from the analysis. The most recurring 100 words with a minimum frequency of 3 were
used for the word cloud. Table 6 shows the top 10 recurring words (some of which are
further reviewed in the discussion section) and their frequencies.

Fig. 9. Word cloud generated from content analysis

Table 6. Top 10 most recurring words and their frequencies from content analysis

Word Frequency

1 Surgery 816

2 Robot 796

3 Human 543

4 System 534

5 Control 474

6 Interaction 380

7 Use 338

8 Data 322

9 Research 308

10 Robotics 300
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4 Discussion

Robotic-assisted surgery is a form of minimally invasive surgery that is rapidly gar-
nering popularity in different academic and research disciplines including medicine,
engineering, robotics, and design. One of the core concepts of human-centered design
is to actively involve end-users and appropriate stakeholders in the engineering design
process (Margetis et al. 2021). This is especially important in the case of surgical robotics
due to the complex and critical nature of surgeries. As surgical robots evolve from tools
to being a major part of surgical teams, the dynamics of human-human and human-
robot interactions might evolve as necessary to meet the demands of surgical procedures
(Chen and Barnes 2021). Technical and non-technical skills play a key role in seamless
surgical HRI. In this work, we analyze the scientific literature for trends in the field from
a technical and non-technical stance and attempt to summarize such efforts. Similar
bibliometric analyses have also been used to explore scientific trends in other healthcare
contexts (Chen et al. 2018; Liu et al. 2020).

In this study, we found that GS had the highest publication count among all three
databases for the same search keywords “Surgery” AND “Human-robot interaction” (p
< 0.05). One huge limitation of the one-wayANOVA conducted in this studywas that its
input data failed the Shapiro-Wilk’s normality test (Shapiro and Wilk 1965). However,
research has shown that the one-way ANOVA, in terms of Type 1 error, remains a valid
statistical procedure under slight, moderate, and robust deviations from non-normality
(Blanca et al. 2017). Furthermore, a recent study found that from 2,448,055 citations of
2,299 highly-cited publications in English-language from 252 subject categories pub-
lished in 2006, GS consistently found the largest percentage of citations across all areas
(93%–96%), ahead of Scopus (35%–77%) and WoS (27%–73%) (Martín-Martín et al.
2018).

The Vicinitas results show timelines depicting an increasing interest in the field of
RAS on Twitter. Research has shown that the most common Twitter analysis consists of
examining trends and peaks in discussion activity about a given topic over time (Kim
et al. 2013). An increasing trend might be due to an increase in tweet volume and/or an
increase in Twitter users for the given timeframe. The goal of our Twitter analysis was to
initially explore trends and confirm that research in the field is rapidly growing. Hence,
we limited the timeframe of the Twitter analysis to 10 days. Consequently, the increased
trend in our results is more likely associated with an increase in tweet volume related to
“robotic-assisted surgery” than an increase in Twitter users the 10 days period.

Publication yield in the surgical HRI was low and plateaued in the 20th century
as seen in the plot of publication yield per year based on Google scholar’s metadata
search (see Fig. 3). From the 21st century, we see a steady yield increase from 2010 and
a more drastic increase from 2016. This might suggest that there’s been an increased
adoption of RAS, and subsequently, more research is being done on surgical HRI. The
trend analysis with Google Ngram shows that the phrase “robotic surgery” started rising
in the late 20th century while both phrases “laparoscopic surgery” and “open surgery”
have been around before then. The use of robotic systems is still an emerging tech-
nology in surgical procedures. This emergence is very likely associated with the lower
popularity of robotic surgery compared with that of laparoscopic and open surgery as
seen from Google Ngram. However, as of 2019, the phrase “laparoscopic surgery” was



Surgical Human-Robot Interaction: A Bibliometric Review 307

more popular than “open surgery”. At its most basic level, a robotic-assisted surgery
is a robotic-assisted laparoscopic surgery in which surgeon-teleoperated robotic arms
perform the laparoscopic surgery. Hence, the exclusion of the phrase “robotic-assisted
laparoscopic surgery” might have affected the lower trends of the “robotic surgery”
bigram.

The co-citation networkwith VOSviewer was created with seven articles that met the
inclusion criterion of the analysis. Two of these articles were also shown by CiteSpace
to have strong citation bursts (Barbash and Glied 2010; Ahlering et al. 2003). Since
VOSviewer does not provide additional details on clusters, we attempt to figure out why.
The first cluster in the network consists of (Barbash and Glied 2010; Dindo et al. 2004;
Walker et al. 2009). These studies looked at the effect of different surgical procedures
(hernia repairs, hysterectomies, cholecystectomy, gastric bypass, etc.) and technologies
used (robotic, laparoscopic, open or laparotomy) on surgical costs and patient outcomes
including but not limited to surgical complications, 6-weeks morbidity and mortality,
and hospital length of stay. The second cluster in the network consists of articles that
focused on studying surgical robotic systems in different contexts (Ahlering et al. 2003;
Giulianotti et al. 2003; Lanfranco et al. 2004). These include: 1) the transfer of open
surgery skills to robotic systems, 2) the feasibility of successfully using robotic systems in
large community hospitals, and 3) the history, development, and applications of surgical
robotic systems. Finally, the third cluster had just one article (Clavien et al. 2009). This
study critically evaluated an existing classification of surgical complications (Dindo
et al. 2004) from the perspective of its use in the literature. The authors concluded that
the classification is valid and applicable worldwide in many fields of surgery and any
modification to the classification is unnecessary. Given that this study built off Dindo,
Demartines, and Clavien’s work in 2004, it makes sense that they are co-cited (although
in different clusters: 1 and 3).

In this study, we reported two sets of keywords from the CiteSpace co-citation
network of seven clusters (Table 4). The first set of keywords was generated by LLR. Of
these, two keywords depict different types of reproductive cancers: prostate (a common
cancer that occurs in the prostate, a small walnut-shaped gland in males that produces
seminal fluid) and endometrial (a cancer that occurs in the uterus, the hollow, pear-
shaped organ where a baby grows in a woman’s body). In the United States, the adoption
of robotic-assisted radical prostatectomy (a procedure to remove the prostate gland and
seminal vesicles after a prostate cancer diagnosis) increased from0.7% to 42%from2003
to 2010 (Chang et al. 2015). One study reviewed data of adult patients who underwent
hysterectomy (a surgical procedure to remove the uterus) for endometrial cancer in the
USbetween 2008 and 2015 and found that the incidence of robotic-assisted hysterectomy
increased from 9.5% to 56.8%. (Casarin et al. 2020). Unsurprisingly, hysterectomy was
a cluster keyword generated by both LLR and MI. Another group of LLR keywords
are types of surgical procedures: lobectomy, hysterectomy, cystectomy, and total knee
arthroplasty (TKA). Lobectomy involves the removal one of the lobes of the lungs,
cystectomy is the removal of all or part of the urinary bladder, while a TKA resurfaces
a knee damaged by arthritis. From 2011 to 2015, one study found that the number of
robotic-assisted lobectomies saw an absolute increase of 10% (Oh et al. 2017) while the
use of robotic-assisted radical cystectomy across 279 US hospitals increased from 0.6%
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to 12.8% between 2004 and 2010 (Leow et al. 2014). Robotic-assisted TKA has been
found to be significantly more accurate for component positioning when compared to
other conventional techniques (Deckey et al. 2021) and alluding to this, accuracywas one
of theMI cluster keywords. In NewYork State alone, robotic-assisted TKA increased by
500% from 2009 to 2013 (Naziri et al. 2019). Other keywords (from both LLR and MI)
include robotic, robotic technology, artificial intelligence, da Vinci surgery, utilization
of minimally invasive surgery, and treatment. These keywords all allude to the growing
popularity of the robotic technologies in surgeries.

Of the top 10 articleswith the strongest citation bursts, 3were published in the Journal
of the American Medical Association, a medical journal published by the American
Medical Association (Wright et al. 2013; Jayne et al. 2017; Hu et al. 2009) while 2 were
published in European Urology, a medical journal covering urology (Ficarra et al. 2009;
Menon et al. 2007). The top 10 articles with the strongest citation bursts showed strong
relationship with some of the CiteSpace cluster keywords. Of these articles, 4 covered
robot-assisted prostatectomies (Menon et al. 2007; Ahlering et al. 2003; Ficarra et al.
2009; Hu et al. 2009), 2 of them were on robotic-assisted hysterectomy (Paraiso et al.
2013; Wright et al. 2013), while 1 focused on lobectomy (Swanson et al. 2014). The
remaining 3 articles covered robotic-assisted resection for rectal cancer (Jayne et al.
2017), cost of RAS (Barbash and Glied 2010), and statistics of 36 types of cancers in
185 countries (Bray et al. 2018).

Finally, the results of the content analysis carried out in this study further contributes
to the literature on the different facets of surgical HRI.Words like “robot”, “control”, and
“robotics” might allude to the technical aspects of RASwhile words like “human”, “sys-
tem”, and “interaction” might point to the human aspects of RAS. Research has revealed
a range of human factors and socio-technical systems issues associated with RAS (Pen-
nathur et al. 2013; Blandford et al. 2014; Catchpole et al. 2019), and some studies have
specifically focused on non-technical skills of surgeons in RAS (Manuguerra et al. 2021;
Schreyer et al. 2022). To better design seamless and effective surgical HRIs, more col-
laboration between medical, robotics, and Human Factors research communities would
be beneficial. The development of tools and frameworks that enable rapid prototyping
and testing of research ideas in surgical robotics would also be helpful. For example,
the National Science Foundation recently funded a proposal to develop adaptive con-
trol algorithms for teleoperated robotic surgical systems that can respond to, ignore,
and/or augment human motor control inputs depending on the output of user-centric
models of behavior and task difficulty (National Science Foundation 2020). This work
(Boehm et al. 2021; Battaglia et al. 2021), as well as others, could lead to significant
improvements in the design of surgical robotic systems while considering the abilities,
limitations, and capabilities of surgeons and the environment of use.

5 Conclusion

In this work, we conducted several analyses to study bibliometric trends in the field of
surgical HRI. Our findings highlight the growing literature from this interdisciplinary
field while emphasizing the importance of both technical and non-technical aspects of
surgical robotics.
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Abstract. An efficient collaborative work between a person and technical system
requires a deeper understanding of the human nature including social, cognitive,
emotional or any other relationship that the person could have toward the technical
system. Such relationships depend also on the case or specific knowledge about
the current task they are performing together. Due to safety reasons, increased
variability of new products, flexibility, and demands for defect-resistant produc-
tion, a contemporary production lack such applications where people and robots
operate together using social signals or contextual information.

The new paradigms that connect vision of Industry 4.0 with artificial intel-
ligence, robotics, and computer networks are inevitably starting the new era of
emerging ubiquitous production cells that will be used in factories of the future.

Authors propose an addition to a safety framework using a worker intention
recognition with head pose information. As an indicator of intentions of a per-
son in everyday communication, besides the experiences that represent a priori
knowledge, humans are relying on social signals.

Keywords: Human-robot collaboration · Intention recognition · Action
recognition · Deep neural networks · LSTM

1 Introduction

Mutual understanding between a man and the system can allow a robust, a self-healing
and a self-configurable production, enabling a survival of such productions on themarket
while making a profit. The problem is focused not only on intention but also on action
recognition where the system should recognize the signs that could make the overall
interaction more natural and efficient [1].

An efficient collaborative work between a person and a technical system requires
a deeper understanding of the human nature including social, cognitive, emotional or
any other relationships that the person could have toward the technical system [2].
Such relationships depend also on the case or specific knowledge about the current
task they are performing together [3]. Due to safety reasons, increased variability of
new products, flexibility, and demands for defect-resistant production, contemporary
productions lack such applications where people and robots operate together using social
signals or contextual information [4, 5].
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Head pose is regularly used in everyday communication on many occasions; for
example, to start, control or to stop the social interaction; to focus a person’s attention,
to express emotions, to confirm or support expressions generated by some other body
parts, etc. [6, 7].

Combined with activity recognition [8, 9], an intelligent agent displays active safety
features presented as online task switching. Classification of human actions is an ongoing
research problem in computer vision [10]. Face alignment is the process of determining
the face shape, i.e., the location of characteristic facial features or landmarks (points
that delineate eyes, nose, mouth, eyebrows, chin, and face contour) given a face image
[1, 11].

Since the motion of a person’s head pose and gaze direction are closely related to
intention and attention of a person, detection of such information can be utilized to
control the robot movements.

Models developed in this work enable an effective classification of intentions that
allows the robot to robustly recognize social behaviors of the human co-worker based
on a head pose intention recognition [12, 13]. These insights are then used to plan the
robot movements during the joint operations within the shared environment [14–16].

2 System Design

The entire system is designed around belief that human action is followed by intention.
Authors aim to test the hypothesis that human intention precedes action and can be
recognized as a set of subsequent head movements. Visual head pose estimation is
alreadywell known in research and practice so it can be used for systemswhere real-time
processing must be taken into consideration, as shown in Fig. 1.

Fig. 1. Intention recognition system proposal
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Some authors therefore employ a custom-made method for autonomous detection
and adaptation of the light settings, as reported in [17]. For thisworkLSTM[18] networks
are used because of their ability to process and reason spatiotemporal signals such as
head pose (represented as Euler angles). Ground truth (GT) is acquired from InHARD
dataset which provides motion capture (MOCAP) data stored in BVH files (BioVision
Hierarchy), which are a way of storing the skeletal tree-like structures represented as
human joints along with their motion data. The Buman-Robot Collaboration (HRC)
Interface is implemented and visualized in CoppeliaSim environment.

2.1 Head Pose Estimation

Two methods for head pose data acquisition were investigated: The first one is using the
OAK-D platform and the second one is using the visage|SDK face tracking capabilities.

OAK-D is a spatial AI powerhouse, capable of simultaneously running advanced
neural networks while providing depth from two stereo cameras and color information
from a single 4K camera in the center as presented in Fig. 2.

Fig. 2. OAK-D camera

For this approach authors exploit the possibility to use a pre-trained OpenVINO
model available online and porting it to the platform. The algorithm is implemented
in python programming language using libraries available for OAK-D programming.
Proposed model implements a face detector based on SqueezeNet light (half-channels)
as a backbone with a single Single Shot Detection (SSD) for indoor/outdoor scenes shot
by a front-facing camera.

The second method of head pose data acquisition, as mentioned, is using the
visage|SDK’s face tracking and analysis features (Fig. 3).

The method is investigated since the SDK provides a convenience of quick and
effortless head tracking. Other than being lightweight, fast and accurate another reason
for using it in investigation is its proven use in various fields of industry and is more
likely to be used for HRC applications in industrial sector where real-time capabilities
are of interest and vital importance.

Both methods show head tracking capabilities with world coordinate system
translations and Euler angles as output.
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Fig. 3. Single shot head pose estimated and visualized using visage|SDK

2.2 InHARD Dataset

The InHARD dataset [19] is a large-scale RGB +Skeleton action recognition dataset
named “Industrial HumanAction RecognitionDataset”. It includes 4804 different action
samples spread over 38 videos collected from 14 industrial action classes. In comparison
with other existing action recognition datasets, which are comprised of daily activities,
Authors of propose actual industrial actions from real use-case scenarios in an industrial
environment. Along with the dataset there are usage metrics proposed for algorithm
evaluation.

As mentioned above the dataset is comprised of RGB and Skeleton data. The RGB
data is recorded from three different angles (top, left side and right side) to capture the
complete action and help improve ML algorithm performance in cases where occlusion
occurs.

For the “Skeleton” modality a “Combination Perception Neuron 32 Edition v2”
motion sensor was used to capture MOCAP data with a frequency of 120 Hz. Skeleton
data comprizes the 3D locations (Tx, Ty and Tz) of 17 major body joints along with their
rotations (Rx, Ry and Rz). Skeleton data is saved in standard BVH file format (Fig. 4).

Fig. 4. InHARD dataset examples visualized using Blender: (a) Picking in front (b) Picking left
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Authors have identified 14 different low-level classes, as presented in Table 1, and
72 high level classes where actions are a lot more accurate.

Table 1. InHARD dataset low level action classes

ID Meta action label

0 No action

1 Consult sheets

2 Turn sheets

3 Take screwdriver

4 Put down screwdriver

5 Picking in front

6 Picking left

7 Take measuring rod

8 Put down measuring rod

9 Take component

10 Put down component

11 Assemble system

12 Take subsystem

13 Put down subsystem

Each class mentioned in Table 1 is annotated as a time interval for each sequence
of data and represent human activity. The data as such cannot be used for training ML
algorithms to recognize intent. However, since the work is based on belief that for each
of the actions an intention can be measured, the existing annotations were artificially
augmented thus creating a new annotation list as described in Fig. 5.

Fig. 5. Dataset augmentation by labels time interval expansion



318 L. Orsag et al.

2.3 Human Intention Recognition

Human Action Recognition (HAR) aims to understand human behaviors which enable
the computing systems to proactively assist users based on their requirement [20]. For-
mally speaking, suppose a user is performing activities belonging to a predefined inten-
tion set A. Like HAR we define a set of intentions I in order to formulate the problem
of Human Intention recognition (HIR).

I = {ii}mi=1 (1)

where m denotes the number of activity classes. There is a sequence of sensor reading
that captures the activity information

s = {d1, d2, · · · , dt, · · · , dn} (2)

where dt denotes the sensor reading at time t. We need to build a model F to predict the
activity sequence based on sensor reading s

Î =
{
îj
}n
j=1

= F(s), îj ∈ I (3)

while the true activity sequence, or the ground truth (GT), is denoted as

I∗ =
{
i∗j

}n
j=1

, i∗j ∈ A (4)

given that n ≥ m.
We then chose a positive loss function L(F(s), I∗) to minimize the discrepancy

between Î and I∗. In this work a multi-class categorical cross-entropy loss function is
used

L(F(s), I∗
) = −

∑n

c=1
i∗c log

(
P
(
îc

))
(5)

The list of output classes is comprised of twelve actions adopted from InHARD
dataset forming an output vector I. The actions included are as mentioned in Table 1.

Every head pose can be formulated as a set of rotations expressed as Euler angles
Rk = {Rollk ,Pitchk ,Yawk} indexed in time order. A set of such poses can be used to
describe intentions and can be parsed to a neural network in fixed timeframes. In that
case one sensor reading dt appears as

dt = Rt (6)

Vector s in (1) is described as a sequence of sensor readings is defined as a sliding
windowand can be used for human activity analysis in complete sets of datawhere dn is in
fact a moment surpassing dt representing future joint movement. In HRC environments
sensors can obtain only present or past set of events. A sequence of sensor readings [21],
presented in Fig. 6, is then expressed as

s = {dt−n, · · · , dt−2, dt−1, dt} (7)
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Fig. 6. A set of sensor readings representation for neural network’s input layer

The chosen model implements a deep neural network (DNN) with hidden LSTM
layers (Fig. 7). We use rectified linear activation function (ReLu) since it overcomes
vanishing gradient problems present in RNNs [22] and allows models to learn faster
and perform better and the Softmax function (Fig. 8) is used as an output layer from the
NN since the desired output is a vector of probabilities. The probabilities of each value
are proportional to the relative scale of each value in the vector and are interpreted as
probabilities of membership of each class.

Fig. 7. LSTM layer (left) and its time unfolding (right)
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Fig. 8. Overview of the entire LSTM network model for intention recognition

The probabilities of each value are proportional to the relative scale of each value
in the vector and are interpreted as probabilities of membership of each class. The îclass
takes the shape of (8).

îclass = P(i|s) (8)

The final output is calculated as follows

ŷ = argmax
(
Î
)

(9)

Metric for model performance evaluation is accuracy but since the problem has a
multi-class output it is important to evaluate howwell themodel differentiates the classes,
so the confusion matrix was also calculated, and the training graphs are included as well
which display accuracy and loss results.

2.4 Simulation and Visualization Environment

The HRC environment was modeled and implemented in CoppeliaSimEdu software
package. CoppeliaSim is a robotic environment simulator, with integrated development
environment. It is based on distributed control architecture, meaning that each object can
be individually controlled via embedded script, a plugin, ROS node, remote API client
or a custom solution.

In this work the HRC environment is modeled as shared workspace between human
and robot partner forming a manufacturing team. The workspace consists of two tables
representing work surfaces, a robot on a mount and a space for human worker. As
presented in Fig. 9. The human worker is represented as a set of joints acquired from
InHARD dataset. The topmost joint represents the head, and the red line describes the
head pose vector. Green boxes are placed on top of work surfaces to represent the
intention activated safety zones.
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Fig. 9. HRC environment modelled in CoppeliaSim software package (Color figure online)

3 Results

In this section authors present the training and simulation results. After training inten-
tion recognition network (and in similar way action recognition), accuracy and confu-
sion matrices were generated. The overall results were also evaluated through visual
inspection in CoppeliaSim environment.

3.1 Intention Recognition

Two networks were trained: (1) a network with three hidden layers, and (2) a network
with 5 hidden layers. The networks were trained in 100 epochs with batch sizes of 32.

Neural network with 5 hidden layers scored 75.344% accuracy on validation data
while the network with 3 layers scored ~ 65% as presented in Figs. 10 and 11. The
confusion matrix was also calculated and is presented in Fig. 12.

Fig. 10. Neural network training results with 3 hidden layers: (a) Accuracy plot for training and
validation, (b) Training and validation loss plot
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Fig. 11. Neural network training results with 5 hidden layers: (a) Accuracy plot for training and
validation, (b) Training and validation loss plot

Fig. 12. Confusion matrix for intention recognition network

3.2 Human Action Recognition

The neural network for action recognition was trained in a similar manner as intention
recognition but with human worker joint positions and only 4 labels were used for the
Proof of Concept (PoC). The network scored ~ 93% accuracy on validation data. It was
trained in 500 epochs with batch sizes of 64 and the results are presented in Fig. 13.
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Fig. 13. Neural network for action recognition training results with 5 hidden layers: (a) Accuracy
plot for training and validation, (b) Training and validation loss plot

The confusion matrix was also calculated and is presented in Fig. 14.

Fig. 14. Confusion matrix for action recognition network

3.3 Overall System Results

Finally, in this section, overall system results are discussed. As mentioned at the begin-
ning of this section the overall results are visually inspected in CoppeliaSim environ-
ment. The basis for evaluation was to examine the ability of the system to detect certain
intentions before subsequent member actions occur. Inspection was done by examining
graphs implemented in environment.

Fig. 15. Action events visualized in CoppeliaSim graph
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The graph in in Fig. 15 represents an event plot of actions occurring in time. During
inspection itwas determined that recognized actions occurwell before theworker reaches
the position where the robotic manipulator might operate. On average the action event
occurs 1–1.5 s before the worker is in position to be injured.

As well as actions, intentions were analyzed in the same manner. The results are
presented in Figs. 16, 17 and 18.

Fig. 16. Action and intention events in CoppeliaSim graph

Fig. 17. Action and intention events where intentions display noisy behavior

Fig. 18. Action and intention events where intentions are detected at the same time as action
events

While there are instances where intentions occur at the same time as actions, there
are also a lot of events where intentions are detected before actions. On average intention
events occur 0.5 s before actions. Using that information as fused, overall safety system
response is a lot quicker.

4 Conclusions and Discussion

The main goal of this work is to show how combining predictions from activity recogni-
tion and intention algorithms can give good results regarding the overall safety system
performance of HRC. This work presents a PoC and a step in a development of a larger
system that ensures the safety and efficiency of robotic cells teamed-up with human
co-workers.
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While investigating the training results and confusion matrices it was concluded
that data augmentation in a manner done in this work is not a reliable one. There are
a lot of actions that occur subsequently and augmentation in this way undermines the
overlapping ones. This results in bad labeling in some cases which could explain poor
performance of the intention recognition algorithm.

Online performance displays several issues that result in false positives. One of the
issues is that actions are performed in longer time intervals than we allow the system
to sample in each time step. That poses a problem since the intentions sampled (5 time
steps in this case) appear as one another. To better mitigate this issue, further research
on human actions and intentions is required.

Another problem that results display are noisy detections which can bring down
the efficiency of the manufacturing cell since the robot has to act on that information.
The problem can be solved by increasing the sampling window or by filtering output
predictions frequency. Since it is not clear if the noisy data is true positive or false positive
a filter that takes intention duration into account should be implemented.

While performance reveals several issues, the results display promise for this method
and for future work. Performance of these algorithms can be increased by tunning algo-
rithm hyperparameters or other methods of spatiotemporal information classification
can be applied. As opposed to [23] where authors explore safety of a human worker
based on detected poses, this system reacts before the pose occurs and becomes haz-
ardous. The HRC context should be better investigated to fully grasp the requirements
for collaborative robotic cells and workspaces.

Further work will include new information acquisition and data collection. The
requirements for context recognition from visual inputs will be investigated to effi-
ciently explore other modalities and human gestures present during assembly operations
in factories of the future. In this way a robust computational mechanism can be designed
and implemented.
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Abstract. The COVID-19 pandemic has shown that the use of the technology
in medicine is no longer a luxury, but a necessity. The use of the robotics in the
treatment of diseases and physical therapies is limited in Latin America due to
the high acquisition and maintenance costs. This document proposes the design,
development, and evaluation of a robotic system for the guided monitoring of
patients, through remote control using a mobile application. Within the methodol-
ogy, four phases were proposed: planning, design, development, and evaluation.
The 3D design is done using the Tinkercad software, which facilitates the con-
struction of the pieces using 3D printing technology. The ESP32 board is the main
element that receives the signals from the sensors and controls the actions of the
actuators through the orders received from Firebase. For the development of the
application, App inventor is used, building a friendly and easy-to-use interface. To
validate this proposal, experimental tests were carried out with two patients in a
medical center. In addition, a parameter compliance questionnaire was applied to
the robot, obtaining a score of 92.6%, and the mobile application obtained 72.5%
in the usability test. All this confirms an efficient care proposal, with a reduced
investment.

Keywords: Hospital care · COVID-19 ·Mobile manipulator · ESP32 · Firebase

1 Introduction

The rapid progress of technology has allowed robots to perform human-like tasks [1].
This contributes to the development of new alternatives in the treatment and care of
people [2]. The clinical use of robotic systems that interact with patients has increased
during the last decade, despite little research on their efficacy and effectiveness [3].
In developed countries, robots have been placed in emergency rooms, surgery rooms,
special care, and physiotherapy rooms, as specialized care tools in various medical and
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clinical procedures [4]. More specifically, the term “Health care robotics” emerged,
focusing on patient care in hospitals around the world [5]. Countries like the USA,
China, and Japan are those that build the largest number of mobile robots, humanoid
robots, and animals. Research has shown that these types of proposals increase patients’
enthusiasm, concentration, and attention. Novel social behaviors such as joint attention
and other benefits that are still being studied are also being appreciated [6]. In the USA,
for example, a robot was implemented that helps with physical and cognitive therapy for
people who have had a stroke [7]. These systems can complement the work of medical
personnel, reducing the workload, which is beneficial in emergency situations, as can
be seen in [8].

TheCOVID-19pandemic has posed anunprecedented challenge to theworld’s health
systems. Its rapid progress has highlighted the need to implement new technological tools
that reduce the spread of infections [9]. Surface cleaning and personal disinfection have
been biosafety measures that have offered good results [10]. In China, robots are used
that carry out this work using ultraviolet light, preventing the spread of the virus and
protecting health personnel [11]. Something similar has been used in the US, where
robotic systems are used to kill viruses and bacteria using UV-C light [12]. Meanwhile,
in England, robots are being developed that use vaporized hydrogen peroxide (VHP) for
the deep disinfection of trains [13]. The review by Singh et al. [14] shows how the robots,
in addition to executing the disinfection activities of the hospitals, can be in charge of
the exercise routines of the patients.

AsWang andWangmention [15], applications with automata could be a good option
for the care of patients with COVID-19. In this way, a contact barrier is established
between infected patients and their surroundings, which reduces the probability of con-
tagion [16, 17]. In Norway, an assistance robot is presented that is equipped with cam-
eras and can be operated remotely [18]. In India [19] a robot is presented to distribute
medicines to infected patients, restricting contact with other humans. In the same coun-
try [20] a nursing robot that controls the patient and their medication consumption is
described, to provide greater social distancing to health personnel. In Bangladesh, a
robotic system that performs cyclic tasks is proposed, which is designed and calibrated
for the drug intake of COVID-19 patients [21]. While in Europe it can see a robot for
assistance in oncological surgery in the context of this pandemic [22].

In Latin America, the International Network of Informatics Nursing (RIEI in Span-
ish) has been created, which emphasizes the implementation of projects and programs
that relate medicine to technology. Thus, computer systems will reach hospital spaces
to achieve a higher level of patient surveillance and may be used to detect different
diseases and pathologies. However, the integration of robotics in medical centers is still
very limited, due to the high costs, lack of resources, and socio-economic problems in
this particular region. The public sector does not have full availability of these devices,
which are generally more used in the private and industrial spheres. To this can be added
that health professionals do not have adequate training in information technology and
training programs are non-existent.

Based on the above, it can be deduced that the knowledge and limited use of robotic
systems in patient care is a problem in the region. Some technologies could enhance the
benefits that robots already provide, such as the Internet of Things (IoT). In assistance
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robotics, it allow remote connections fromanywhere in theworld in real-time [23],which
would improve the previously mentioned research. In this context, this work presents
the development of a mobile manipulator for hospital care using a real-time database
in Firebase. The robot includes a camera to remotely view the patient and proximity,
temperature, and humidity sensors to obtain data from the environment. This entire
system is managed from a mobile application.

This document is made up of four sections, including the introduction in Sect. 1.
The materials and methods used are described in the Sect. 2 and the results and their
discussion in Sect. 3. The conclusions and future work are shown in Sect. 4.

2 Methods and Materials

For the development of the system, the XP methodology was selected, its use aims
to produce higher quality software. XP is a specific framework for the execution of
engineering practices and software development. Figure 1 shows a diagram of the stages
that make up this framework.

Design

DevelopingEvaluation 

Planning

Fig. 1. Development methodology XP.

2.1 Planning

In the planning stage, all the resources and the necessary budget were defined according
to the technical feasibility study. After a review of different models, it is analyzed which
one has greater mobility, grip, and practicality. For the design of the robot, a mobile
manipulator is chosen. It contains a unicycle-like configuration for the mobile part and
an anthropomorphic arm for the upper part. Then the sketch of the mobile application
is made, considering the form of design and the requirements set out in Table 1.
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Table 1. Summary of the requirements considered in the planning.

Robot specific requirements Application specific requirements

User validation

Acquire images of the room View “live” image of the room

Room temperature measurement View the room temperature in the mobile application

Room humidity measurement View the amount of humidity in the room in the mobile
application

Control the robot movements Operate the robot manually

2.2 Design

Electronic Design
Figure 2 presents the defined electronic circuit, where the elements are arranged. This
stage is the basis for the organization of the design according to the established specifica-
tions and the needs of the population. The choice of materials and electronic components
is essential for the considerations taken in themechanical design of the structure. A prox-
imity sensor (HC-SR04) is incorporated for collision avoidance and a temperature and
humidity sensor (DHT11) to obtain room conditions. The main element of the system is
the ESP32 development board, a low-cost element that has a Bluetooth and WiFi con-
nection. It receives the signals from the sensors, performs the processing, and generates
actions in the robot’s actuators, based on the established design. The robot actuators are
DCmotors for locomotion and servo motors for the degrees of freedom of the manipula-
tor. In addition, an ESP32Cam is included for image acquisition through the integrated
camera.

Fig. 2. Electronic circuit diagram.
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3D Design
The 3D design of the robot is presented in Fig. 3, made using the Tinkercad software.
The metallic, plastic, and prefabricated parts for the robot, are modeled.

• The metal parts include the base of the chassis, star head screws, hex head screws,
and the spacer shafts of the bearing wheels.

• The plastic parts include the upper part of the chassis, the robotic arm, and the gripper
(point of interest), which is printed in 3D according to the design.

• The prefabricated parts are the roller wheels and the track-type wheels.

Fig. 3. 3D design of the mobile manipulator robot

As previously indicated there are two main parts to this system. As for the moving
part, themotors givemovement to the wheels that are at the bottom of the base plate. This
allows movements to be made in all directions, due to the presence of caterpillar-type
wheels. The chassis house the general circuit, the horn to give alerts to patients, and the
base of the robotic arm. Proximity sensors and the camera prevent collisions with nearby
objects.

In a complementary way, the arm integrates motors and other electronic components
that allow it to carry out control actions. The distribution of cables, sensors, and actuators
is done to avoid obstructions in the movements. Screws were used in the base and the
joints, taking care of the aesthetics and presentation of the robot. In the first joint, a
hole was drilled to form a socket where a motor is embedded and thus its operation is
not hindered. For the second joint, the same criterion is followed, where there is also a
greater presence of wiring. A small servo motor is placed at the point of interest to hold
light objects.
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Mobile App Design
Figure 4 presents the flowchart of the application to be implemented for the manage-
ment of the robot. Firebase has been selected, as the Google platform that manages the
development of the application connected to a database in real-time. For the presentation
to the user, the main screen of the application is designed, with its respective authenti-
cation system and hierarchy levels. On the user registration screen, the user can register
as an administrator of the mobile application or as a user. After that, it is done at the
beginning of the session, where the user can choose the actions to take with the robot.
Here the reading of temperature, humidity, and obtaining live images are contemplated,
and control buttons are used to move the arm and a joystick is used to control the mobile.

Fig. 4. Mobile App Flowchart.

2.3 Development

Prototype Construction
Using a 3D printer, the construction of the pieces is made with PLA material. It starts at
the base until it ends with the claw, which is the point of interest. The body remains fixed
and balanced thanks to its differential mechanism. The arm is connected through a metal
shaft mounted on the main body of the robot. Figure 5 shows the mobile manipulator
robot in the construction process. During the implementation of the mobile part, it is
verified that the 10 wheels move inside the plastic tracks that are located on both sides
of the robot. On this, there is a metal base that is held to the tracks with screws. The
motors located in the lower part of the metal base are inserted inside the main bearing
wheel that is located on the track on each side.
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Fig. 5. Robot in construction.

When the metal base is already attached to the chassis, it has custom-made compart-
ments to insert the general circuit, the camera and the wiring. On top of the chassis, the
robotic arm is implanted, consisting of a plate with screws that joins the arm and the
chassis. The servomotors that are in the joints of the arm are controlled by the general
circuit, which allows the mobility of the arm according to the user’s instructions. In the
point of interest or claw, two ends form the clamp, allowing objects to be held through
the mobile application.

Mobile Application
The mobile application screens are presented in Fig. 6. As can be seen in Fig. 6c, the
hospital staff can choose the option that best suits their needs and those of the patient.
This includes assigning a username and password, locating her location, and designating
the robot for service at a specific time. Choosing the “turn on” option (Fig. 6d) shows
the motion control options using a joystick as shown in Fig. 6e.
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Fig. 6. Application screens: (a) Home. (b) Robot assignment. (c) Application options. (d) Power
button. (e) Control options.

3 Results

3.1 Evaluation

The last stage of the methodology is the evaluation, which is carried out with the exper-
imental tests of operation. The built robot shows that its design adapts to the needs of
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users. It is easy to use and intuitive for medical staff and end-users. Within the exper-
imental tests, the collection and transfer of objects of different shapes and sizes are
proposed. In Fig. 7 a whole sequence of movements is shown, from the preparation
to the displacement. In addition, through the mobile application, the user can manage
the fastening of small objects with the claw. The initial tests were carried out in the
laboratory, where the operation of the system was validated.

Fig. 7. Robot in operation: (a) Displacement. (b) Preparation. (c) Picking up the object. (d)
Translating the object.

3.2 Compliance with System Parameters

Figure 8 shows the tests carried out with the mobile manipulator robot in a basic hospital
in the city of Ambato in Ecuador. The robot was tested by two patients who agreed
voluntarily. Table 2 shows the average score for each test. The rating is made on a range
of 1 to 5, where 1 is not at all satisfactory and 5 is totally satisfactory.
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Fig. 8. Tests at the medical center

Table 2. Qualification of system parameters.

Item Parameter Qualification

1 Robot structure 5

2 Relevance 4

3 Usefulness 5

4 Benefits 5

5 Ease of use 5

6 Care provided 5

7 Response time 4

8 Mobile app 4

Mean 4,63

3.3 Usability Test

Based on the literature, the usability of the application that controls this robotic system
is evaluated using a questionnaire, as carried out by Danielsson et al. [24]. The questions
are based on the SUS test developed by Brooke [25]. The total sum of the results is
multiplied by 2.5 obtaining the global value of the SUS. Based on user responses,
Table 3 is obtained.
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Table 3. Results of SUS.

N° Question Score (N = 2) Operation

1 I think I would like to use this system frequently 4.5 3.5

2 I find this system unnecessarily complex 1.5 3.5

3 I think the system is easy to use 2.5 1.5

4 I think you would need technical support to make use of
the system

2 3

5 I find the various functions of the system quite well
integrated

4.5 3.5

6 I have found too much inconsistency in this system 1.5 3.5

7 I think most people would learn to make use of the system
quickly

3.5 2.5

8 I found the system quite uncomfortable to use 3 2

9 I have felt very safe using the system 4 3

10 I would need to learn a lot of things before I can manage
the system

2 3

Total 29 × 2.5
72.5%

The result of 72.5% in the SUS indicates that the application works correctly and
provides a friendly experience to users who had the opportunity to interact with the
robot. However, it also shows an opportunity for improvement in some issues related to
the ease of operation of the robot.

3.4 Discussion

Robotic systems have demonstrated their importance in the care of human beings. Dif-
ferent investigations have focused on the application of this technology for the cleaning
and disinfection of places of mass use [10–14]. This is because the expansion of COVID-
19 took place exponentially and the application of biosecurity measures was essential
to reduce infections. However, as has been appreciated in the available bibliography, its
application goes further. Robotics should currently be seen as a complement to health
personnel, which allows the patient to be assisted according to her needs [26].

The use of robots in hospitals makes it possible to take care of people, placing a
protective barrier between doctors and nurses. Østvik’s proposal [18] presents a fixed
robot, which incorporates cameras for remote control, but cannot move like our proto-
type. Murugan et al. [19] design a robot to help people in hospitals, but it only presents
simulation results and there is no evidence of its real application, something contrary
to our application. Something similar occurs with the work of Manikandan et al. [20],
since there is only a description of the robot’s design but its application in a medical
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center or with a user is not appreciated. Our work is aligned with the research of Oishi
et al. [21], although it only proposes a unicycle robot, it demonstrates the use of these
systems to mobilize objects that patients require. Although there are studies similar to
ours, none of these show a real application of the prototype.

4 Conclusions

The construction of this robot has complied with the feasibility study since the necessary
technological resources are found in the local market and are easily accessible. The
design is not complex, requires basic elements of 3D printing technology, low-cost
electronicmaterials, and is easy to implement. Thedevelopment of themobile application
was carried out using a database of a cloud server (Firebase). This shows how industry 4.0
is present in applications of various kinds, andmedicine is adapting to new technologies.
Computerized design and 3D printing allow ideas to become tangible proposals.

The design of this application is a contribution so that patients who need isolation
can be treated remotely. This can even be used for other illnesses or treatments that keep
the user in a situation of vulnerability and dependence on a family member or caregiver.
Mobile applications are gaining importance, due to their ease and because it has become
a daily tool for communication, work, and entertainment. The validation carried out
through the different experimental tests within a hospital demonstrates its effectiveness.
In addition, a high acceptance was obtained according to the tests carried out, to this is
added the comments received that contribute to improving this initial design.

The authors of this study propose future work to improve the design of this prototype
with the feedback received from users. It is also proposed to evaluate the robot in other
applications in the field of medical care, making adjustments to the original design.

Acknowledgments. Thanks are extended to the Universidad Tecnológica Indoamérica for
providing the necessary resources for the development and dissemination of this research.
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Abstract. We introduces the interactive design process for HRI to derive the
robot’s key interaction requirement and basic principle. We applied this process
in serving robot project in Samsung research and conducted user test on 108 users
in the restaurant environment for 4 weeks. We tried to find the awkward moments
watching video by week through video ethnography and then updating it in the
next week. Through this process, it was possible to discover unexpected awk-
ward moments and continuously upgrade meaningful human-robot-interactions.
In conclusion, we found that not-bad interaction is much more important to users
than Delightful interaction.

Keywords: HRI design method · HRI testing · Iterative design process ·
Human-robot interaction

1 Introduction

This research introduces the new HRI design methodology that can provide robust inter-
actions between users and serving robots in restaurants. More specifically, the methodol-
ogy enables an iterative user testing for serving robots and testing environments similar
to the actual restaurants (Fig. 1).

Fig. 1. Test environment
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For four weeks, 108 users have experienced the serving robots. From the survey, they
answered, we had derived key interaction requirements and basic privacy for the robot.
To design robot’s interaction, it includes setting practical tasks in accordance with given
roles and designing detailed interaction algorithm [1]. For example, serving robots need
to know which tasks to be done other than food serving, then detailed interactions and
process should be established fits for new tasks. In order to know whether the tasks and
interactions are actually satisfying the users, it is essential to evaluate through the user
test. The robot’s user test should consider not only the robot’s appearance but also all
modalities such as gaze, voice, gesture, and screen along with scenario. This experiment
rather relies on the survey or analysis on users’ reaction based on each modality than
analyses video ethnography that enables figuring awkward moments out of interactions
between users and robots. By this method, it was possible to study instant interaction
and to concentrate more on users’ behavior than on their opinion.

So howwill we efficiently) conduct the experiment in order to discover the meaning-
ful insight for the interactions? We conducted a user test with a large number of partici-
pants with Samsung Bot Public (Fig. 2), and interaction requirements were derived from
the iterative design process for HRI and its process. The gist of iterative design process
for HRI is to separate main and sub tasks of robots and to update them continuously.
We recruited 108 participants to conduct iterative design process. And finally, we could
have derived interaction requirements of serving robots.

Fig. 2. Samsung Bot Public



344 Y. J. Won et al.

2 Iterative Design Process for HRI

Through the series of user tests, we identified usability problem and users’ satisfaction
from quantitative and qualitative data. The design thinking process consists of empathiz-
ing, defining, ideating, prototyping [3, 4]. By using the design thinking to test the actual
users with the prototype, we could find the solution to improve the product. Double
Diamond method consists of four stages that are to discover, to define, to develop, and
to deliver. Delivering is the last stage in the Double Diamond method and this stage
aims to test and to evaluate concepts in the production and to launch processes [5]. Such
traditional design methodology focus on completing whole concept before release the
product.

On the contrary, Lean UX is the light and faster version of conducting a collaborative
cross-functional way. Even if there is a lack of evidence to support the product right
away, the MVP (minimum viable products) is evaluated on the market. As Jeff’s lean
UX process shows, the most important point is to gradually develop core functions by
repeating the stepswhich is consists of 1)making a hypothesis, 2) designing it, 3) creating
anMVP, 4) researching and learning. Based on lean UX, we proposed an iterative design
process for HRI to develop core functions for robot interactions.

Based on the iterative design process for HRI (Figs. 3, 4), we organized the main
task and the sub tasks of the robot including interactions and conducted 4 different tests
which are improved every week. The main task of the serving robot was to deliver food
and it was the key function. And the other features such as ordering, promotion games,
calling robots for additional order and so on were considered as sub tasks of the robot.

Fig. 3. Iterative design process for HRI

When customer first faces a serving robot in the restaurant, they have no clue about
what interaction or functions the robots provide. The robots can also be arranged not
only one specific task but also other various tasks at the same time. To observe all the
participants’ reactions throughout the user testing session,wefilmed the test process from
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3 different angles. By filming at various angles simultaneously, we wanted to capture
awkward moments through video ethnography. After that, designers and developers
gathered to find ways to solve these awkward moments (Fig. 5) through discussions
and updated them iteratively. In this way, the main tasks could be gradually updated. It
was possible to examine whether unexpected issue arises from sub-task or if it meets
the user expectations. In addition, in the last week of the test, the robot’s appearance
and hardware were updated and were re-tested to solve the overall interaction problems
found in the first three weeks.

Fig. 4. Serving robot’s task by week

3 User Test

3.1 Participants

For this experiment, an in-house survey system was used to recruit executives and
employees interested in prior products. External participants were not include due to
the security issues. Participants were selected after answering three questions.

Q1. Have you ever experienced a serving robot at a restaurant?
Q2. Do you have a positivity that there will be robots in restaurants in the near future?
Q3. Are you willing to participate in the UT?
Among the 140 survey participants, 108 participants who answered that they were

willing to participate in UT were selected. A pilot test conducted with three people a
day every week. After that, a group of six people conducted the test twice a day, twice
a week, for a total of four weeks.
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3.2 Weekly Procedure

First Week User Test
Task: Serving, which is themost important function of serving robots, is divided into two
main functions. 1) Staff serving; which is delivering food with the staff, 2) Self-serving;
which is delivering food without the staff.

Fig. 5. First week of serving robot

Based on the evidence that users tend to touch the display of the existing serving
robots a lot, it is designed for users to experience the Face touch reaction. For example,
when the serving robot is touched on the display part, robot’s facial expressions change
and also it starts to say things like “it’s ticklish!”.

Result of observation: As a result of observation, participants found that they had
questions or felt uncomfortable with the robot’s arrival location for Staff serving and
Self-serving. In the case of Staff serving, the arrival location was designed so that the
staff could naturally take out the food, but from the user’s point of view, they were often
surprised by the robot which suddenly arrived behind them andmade a sound. In the case
of Self-serving, there was a notice to the users to take the food out after arriving with the
front part of the robot, which the food was invisible. The participants became confused
about which and when to take. Finally, in the case of face touch, no one touched the face
of the serving robot. For reference, preemptive guidance was provided to participants
that they could freely touch, push, or interact with the robot. However, despite such
experience guidance, no one touched the robot’s face.

Second Week User Test
Task: In the second week, Staff serving and Self-serving, were carried out as before, and
after the first week of experiment, the wrong arrival location found as a major problem
was improved. Subtitle was also changed, “It’s hard to respond now,” was changed to
“I’ll visit you soon” on the display of the robot. In addition, each serving had a special
improvement. Staff serving’s arrival location became little farther than before, and an
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Fig. 6. Second week of serving robot

indicator played “Arrival Soon” in order to prevent users from surprising by the sudden
appearance.

In case of self-serving, people could not find food directly in week 1. To improve,
we modified the robots’ route so that people can see which food is located on the robots.

Inweek 2,we added new function that users couldmake an additional order after their
first serving had completed. This function has two different interaction; first, additional
orders by voice, second, by touching screen. However, the display part did not locate in
the center of the table rather one-sided since the robot changed to route in order to show
served food. This led to the biased users’ experience that people on the other part had
more difficulty in additional orders (Fig. 6).

The other test also conducted to analyze the reaction from robots to users on the
way to serve dishes. When encountering users, robots were designed to recognize the
distance from the users. If the distance is about 80 cm, robots stops immediately, while
it is about 1.5 m, robot would bypass them.

Result of observation: In case of additional orders, users showed higher satisfaction
with screen touch than voice order, since most restaurant has noisy environment.

The Face touch functionwas still provided in the secondweek, participants attempted
more interactions such as waving their hands or greeting aloud rather than touching the
face of the serving robot.

In addition, the participants did not seem to expect any other functions other than
serving, and for this reason, the participants did not continue to interact with the robot
after serving.

About the situation that robots and users meeting in hallway, the participant was
surprised or wondered why the robot suddenly stopped driving.

Third Week User Test
Task: Three tasks were added as below; additional serving, promotion game, and driving
tests. The additional serving is the function which robots ask users about new order or
inquiry. In test environment, we set hand sanitizers and wet tissues on serving tray of a
robot. Then users were allowed to call the wandering robot any time (Fig. 7).
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Fig. 7. Third week of serving robot

About promotion game, we deployed Korean traditional game called ‘Cham-Cham-
Cham’. The rule is to guess the robot’s head direction with user’s hand at the same time
the robot spin its head. Winning the bet, user got candy.

Next, the driving tests improved robots’ reaction ability that they could get out of
the stuck situation in narrower distance. Immediate stop distance has shortened for 80 to
50 cm, bypassing distance has shorten 1.5 m to 1.0 m. And when robot encounters the
user, TTS utterance “Hold on,” “Excuse me,” and “Move away” changed to “Go ahead,”
“I’ll wait,” and “Pass” to prevent them from feeling negative.

Observing a multi-robot situation, we analyzed users’ reaction when robots met in
hallway, which actually led rare recognition.

Result of observation: As a result, we found that the users called the robot using both
gestures and voices for additional serving. However, gestures took the first place.

In addition, when playing the promotion game, some participants had fun and inter-
acted with robots but the majority of users could not grasp the reason and goal of the
game. Users who visited the restaurant actually preferred to focus on eating or talking
with the people.

Lastly, Participants were curious about the robots’ motions under multi robot situ-
ation whether they stopped or passed by each robot. Some participants starred whether
robots would bump into each other.

Last Week User Test
Main task: In order to experience interactions that are difficult to experiment in the
existing form factor, the interaction of the serving robot was experimented using a
skeleton structure with different form factor (Fig. 8).

Existing robots form factor causes users to expect a “high level of intelligence” due
to GUI elements, gaze functions, and voice utterance functions that used “moving eye
visual motions” from facial display. And it eventually provided a disappointing user
experience as it did not reach users mental model, which was highly intelligent robot
expectation.
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Fig. 8. Last week of serving robot

Therefore, the new form factor was changed so that the display could be used only for
employees by touching it from the back. And by removing the display for users, [gazing]
was indicated by front LEDs with simple and intuitive reactions while notifying that the
user is recognized.

It was intended to change the specific voice speech to a shorter and simpler sentence
to provide only essential information and allow users to focus more on the restaurant
experience.

Previously, a serving guide was provided throughDisplay, while inWeek 4, a serving
guide was provided by applying the motion of the tray and the driving of the robot. Each
of the three serving methods, which are Staff serving, Self serving, and Additional
serving were provided differently. For Staff serving, the tray came out forward. For Self
serving the robot just moved 15 cm forward. And for additional serving, the robot moved
and the tray came out. The purpose was to minimize the latency that occurs in existing
displays and voice-provided serving guides, so that the robot can improve the serving
function for users to quickly and intuitively takeout food. In the existing form factor,
since it was a fixed tray without a motor and could not be provide any tray motions, a
new robot was used for the user test by attaching a motor to the tray.

Driving tests were also conducted with skeleton robots, but the statements that the
robot utters when it encounters the user were excluded with the new form factor.

In the fourth week, designers participated in the role of employees and experi-
mented with the cleaning function. The cleaning function was composed by follow-
ing the patrolling robot together, and when the robot reaches the place to clean, staff
touches the “Stop” button on the display. After removing the tableware from the table,
the employee touches the “Go” button again to continue patrol to the next place to clean.

Result of observation: As a result of observation, the skeleton type form factor
showed high satisfaction as the user could receive food faster.

Especially, the skeleton type makes user to feel more agile and smooth even at the
same driving speed, which indicates that the existing form factor can be improved a lot.
However, by conducting the experience as a form factor in the development stage, not
as a finished product, it was hard for users to accept the experience as a whole serving
robot experience in real restaurants.
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In addition, by observing employees (designers) who participated in the cleaning
function, we found out that the speed and process for cleaning was much easier and
faster than before.

4 Results

4.1 Awkward Moments in Video Ethnography

During video ethnography, the most important thing was to discover awkward moments.
“Awkward moment” is defined as [the moment when customer engages in stressful
situation]. In order to discover the moment, we categorized 4 modalities; movement,
touch, speech, and gesture. Under these modalities, we added the list of the moments
during whole observation rather preselected the list in advance (Fig. 9). Referring to
Fig. 9, the user’s awkward moments were observed the most in [Movement]. And the
followings were Speech, Touch, and Gesture.

Fig. 9. Awkward moments Frequency total

In Fig. 10, the awkward moments were the most in week 3 even though we deleted
the week 3 day 1 data because of technical issue. In the first week, movement’s awkward
moments (A) were observed in Staff serving and Self/additional serving, and the biggest
reason was that Staff serving’s POI (Point of Interest) was too close to customers, and no
food or tray were seen in Self-serving’s POI. In the second week, the POI location was
updated to resolve the awkward moment, and the count actually decreased significantly.

However, the largest awkward moment (B) was observed in the on-the-go situation,
as the stop distance was too close to the user.

In addition, in the third week, awkward moment was observed, especially in Speech
andGesture (C, D). Overall, after calling the robots and re-ordering food, users’ attempts
to interact with robots increased.

In the last week, there was an increase in awkward moment (E) in Movement type,
where people reached out their hand to the trays before the robots arrived because they
could see trays and food better than before.
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Type Category  Awkward moments details Frequency Total 
Movement First en-

gagement
Surprised, awkward posture after robot 
arrival

3 45

Taking out 
food from 
robot tray

Hand reach difficulty 1
Wait and take it out 4
Don’t know what to pull out, hesitating 6
Waiting for or commanding the robot to 
leave

1

Take out food and crash hand 1

On-the-go 
(2-4 weeks)

surprised that it almost clash 16
keep stopping and hesitating 5
Keep testing the Stuck (some users 
block it)

4

Passing or avoiding uncomfortable pas-
sages between the robot and the hallway

4

Touch - Find the Cancel button, touch the screen 6 11
Touch the face at the end 5

Speech - Speaks at a point where it is not recog-
nized (before Mic open, during return)

14 25

Hesitating or not speaking 2
Unrecognizable words, asking questions 6
voice volume is too small 3

Gesture - beckon from a distance 2 10
Beckoning from the back, side of the 
robot

4

Beckoning in an impossible situation (to 
another table, returning)

4

Fig. 10. Awkward moments Frequency total

Fig. 11. Awkward moments Frequency per week
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4.2 Key Interaction Requirements

In conclusion, the summary of the interaction requirements of the serving robot is as
below;

First, it should be physically comfortable.
Second, you should be able to act naturally without any cognitive effort.
Third, you should always express how you recognize and focus on customers.
In conclusion, we found that not-bad interaction is much more important to users

than Delightful interaction.

No Category Interaction requirements
1 Serving robot 

should be physi-
cally comfortable

a. Serving robot should inform the user before reaching the table
b. Serving robot should drive in a food-specific driving way. 
(When robot starts or stops to move, acceleration and decelera-
tion are important.)
c. When the tray moves in or out, serving robot should inform 
through sound.
d. It is recommended to serve heavy or hot food by staff than the 
serving robot, and light or cold food by robot.

2 Serving robot 
should provide 
guides naturally

a. When the robot is delivering information, robot should not use 
to much modalities at once in order to make the delay less.
b. Serving Guide interaction: The serving robot should notify in 
advance. 
c. Motion-based interaction: The robot posture and motion 
should naturally inform the intention.
d. Robot should be able to cancel what the robot is doing at any 
time.
e. The function of calling robot for ordering creates a lot of ex-
pectation for users

3 Serving robot 
should always 

a. After the robot receives the order, it is essential to check with 
the user whether it is correct of not.

express how they 
recognize and 
focus on custom-
ers 

b. Sensing and listening interaction: It is necessary to inform 
customers that they are recognizing and listening.
c. Don’t use too much light indicator. User cannot recognize it.
d. Gaze interaction is not helpful. (Display Gaze or Led gaze) 
User just watch their food, not serving robot gaze.

Fig. 12. Key interaction requirements

5 Limitation

In the last week, we had main difficulty that the test could not reflect reality since we
conducted it with a skeleton form factor while the other three weeks were done with
the complete form factor. Considering this difference, we informed the participants to
ignore the appearance and in week 4. Even though with this information, it would have
been hard to ignore robots’ bare appearances in users’ perspective. Therefore, we could
not do comparative analysis about the users’ favorability.
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6 Conclusion

Through this four-week iterative process, a total of 91 awkward moments (Fig. 11)
were found, and 70 interactions were updated. Three categories and 13 key interaction
requirements were listed (Fig. 12). Through this research, we found that our HRI design
process can identify users behavior and also give meaningful insights for the robot
designers.
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Abstract. While EEG signals provide insight into brain activity, com-
putational methods from software engineering and artificial intelligence
can contribute to the development of a wide range of solutions. This
research explores the difficulty of monitoring brain activity at the time
of a panic attack on a common basis, provided the lack of methodologies
to identify correlating factors in brain activity before and after a panic
attack to reference the event and provide the healthcare specialist with
data-driven tools based on the brain activity. The methodology presented
is a transversal proposal of Lean UX as a bridge for the health specialist
involvement per the designed stages of software solutions based on a case
study to monitor brain activity at the time of a panic attack, leading to
common ground solutions to identify its triggers. Additionally, control
variables were identified to improve the data quality, and a visualization
tool was used to display the results and obtain information on the types
of users while improving the UX and UI.

Keywords: Methodology design · Lean UX · Panic attacks · BCI

1 Introduction

The software industry has become a framework of development beyond optimiza-
tion and data sources, thus powering the design of solutions within a wide spectre
of applications across each area of knowledge, reason why a holistic approach
provided by software methodologies is key to the deployment of human-based
technologies that can range from the use of biometrics such as the ones included
in mobile devices to authenticate the user and which can be used for security
purposes like bank transactions [29], or even applied for medical purposes to
select the most fitted individual for a clinical trial based on monitored biomark-
ers [8], to the design of interfaces that allow the interconnection between the user
with a data source given a digital and physical medium as applied on virtual and
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augmented reality [24]; furthermore in a changing world methodologies become
adaptable according to the needs to cover either for the industry or the user
per se, hence leaving behind traditional models like the waterfall development
model and instead taking the basis of agile methodologies like design thinking
to prioritize the user experience without diminishing the quality of the solutions
and paving the way to the development of viable products as is appointed by
the Lean UX methodology [12].

Although a methodological approach is the basis for any software project, no
blueprint is completed without the proper technology, and in the case of human-
computer interaction the user experience (UX) and user interface (UI) principles
can be meet more specifically via the implementation of brain-computer inter-
faces (BCI) tackling problems oriented to information technologies, robotics,
artificial intelligence, cognitive sciences and even psychology, [18] given the range
of modern applications for electroencephalography and the wavelengths pro-
vided by the EEG signals with portable devices that are more accessible to both
researchers and the general public to acquire and make use of [22]. In the area
of psychology, mental health disorders are one of the main concerns about the
overall health of individual mood disorders such as anxiety disorders are esti-
mated to be present in 284 million people around the world with a percentage
of 4.7 being women [27], additionally during the pandemic due to COVID-19
data has shown an increase in anxiety disorders in children and adolescents [28]
highlighting the importance of data-driven tools to provide solutions.

The methodological design in this article encompasses the working principles
of the Lean UX methodology as a basis to shape each minimum viable product
within its stages into an accessible software that can provide relevant information
of the BCI applied to the analysis and treatment of panic attacks, therefore
granting a guideline for case studies and prototypes whilst making the monitoring
of the panic attacks more feasible in a common basis with an EEG device.

2 Literary Review

Software engineering is an elemental part of computer sciences as it shapes solu-
tions into well-documented instances and schemes that bring up prototypes to
a working environment and monitor the interactions of diverse types of users
to make a more accurate assessment of the continuous improvements within
the development cycle, likewise, the implementation of software methodologies
allows to monitor, optimize, and regulate the process taking place which is why
regardless of the application area the methodologies are fitted to satisfy the
established need and requirements set.

2.1 Lean UX Methodology

Nowadays Lean and agile methodologies take the leading role for the design,
development and implementation of software, however, the merge between tra-
ditional iterative models and design focus present in the Lean UX methodology
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offers a reliable medium to obtain quality products in a timely and cost-wise
manner [3] by generating minimum viable products as a target per iteration
based on an initial proposal that morphs into it enriched by feedback; its appli-
cations extend outside the software industry as empirical studies to reference
user behavior and experiences [20] covering the pillars of user interface (UI) and
user experience (UX) while facilitating the escalation of software with the knowl-
edge harvested for the work team, in addition to research applications to cover
costs and time assets along with the growth of the sector and pressing demands
[21].

The core of the Lean UX methodology is composed by its stages as a whole
that partakes in the collaborative setting for the team members to act upon [10];
the corresponding purpose for each of its stages is: the approach to the problem
that establish a common ground for the strategy to follow, the proposed course
of action that approach the problem and helps to contextualize the steps to take,
the design of minimum viable products with a potential to be escalated, the exe-
cution which can be seen as an experimental design, case study or trial according
to the iteration taking place and the degree of advance, and the feedback which
propels the advances towards the targeted goal while transitioning to another
iteration cycle if required.

2.2 Brain Computer Interfaces (BCI)

Since the invention of perforated cards and later on ENIAC as one of the first
computers, the humanity has come a long way from desktop computers to mobile
devices and quantum technologies further increasing its performance, needless to
say, not only the area of computer sciences have benefited from the technological
advances as the increase in logical and operational capability propitiated a suit-
able environment for scientific and technological advances; the brain, for exam-
ple, has always been an object of study and research to understand the human
behavior and related affections, insights obtained from decades of research have
also become part of revolutionary applications like brain-computer interfaces
(BCI) that allow to read and interpret the intent from an individual by its brain
activity. BCI records brain activity with the possibility to use invasive and non-
invasive methods whose objective is to provide real-time interaction between the
individual and the computational device, thus generating feedback within the
reliant system [13] and establishing a clear connection between the software and
the hardware elements.

Within the field of software engineering, the branch of human-computer inter-
action takes the lead in the UX and UI approach of the BCI as a framework for
the development of solutions incurring in the use of the technology while priori-
tizing the experience of the user and the quality of the interactions held although,
aside from the user-centered scheme the logical input provided as feed for data
analysis involved is of the utmost importance due to the precision required for
the BCI to function optimally, deriving in techniques to read, analyze and pro-
cess brain signals [15]. The learning curve paired with the increasing demand
to update models, devices, and practices with a high acceptance rate and a
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low margin of error makes it necessary to evaluate the current advances and
challenges of the BCI to avoid incurring bias and explore the field of solutions
and opportunity areas [25]; particularly with technologies available to the pub-
lic that generate widespread applications as is the case of EEG signals and its
classification [14,23].

2.3 Mood Disorders: Anxiety Cluster

The human brain can sustain affections denominated mental disorders that can be
temporary or permanent, and cause a disruption in the state of mind of an indi-
vidual affecting its behavior and mental capability; they are classified in several
clusters and its diagnosis can differ according to the age group that the individ-
ual belongs to since some differential diagnosis make a segmentation not only by
how many weeks the symptoms have been present but also by age group given the
inherent complexity in early stages and the particular characteristics of the disor-
der, which coupled with the objective to guarantee the veracity of the psychomet-
ric evaluations and studies to have a better quality of life [1]. One of the guidelines
for the diagnosis of mental disorders with the most reliable is the Diagnostic and
Statistical Manual of Mental Disorders, 4th Edition (DSM-IV) [4], where is worth
noting the emotional disorders: depression and anxiety; particularly anxiety disor-
ders that can derive in panic attacks, anxiety disorders are mainly classified in five
types: generalized anxiety disorder, compulsive obsessive disorder, panic disorder,
post-traumatic stress disorder, and social phobia disorder.

A problem that arises at the moment of making a preliminary analysis or
differential diagnosis is the initial conception of the constructs of anxiety, stress,
and fear, where anxiety can be defined as a disorder (remnant) or a mood (tempo-
rary); however, it frequently tends to be associated with stress in the individual
generating confusions with the conceptualization itself, so that is connected to
fear. Consequently, Table 1 shows a comparison between anxiety and stress, and
anxiety and fear [2,16] to help with the differentiation.

Table 1. Constructs Characterization

Characteristics Constructs

Anxiety Stress Fear

Likability 1. Emotional responses

2. Insomnia, difficulty to focus, fatigue, tension and irritability

3. Accelerated heartbeat rate and breathing on response to the perceived stimuli

4. Physical activity, good eating habits and personal care help to manage stress
and anxiety

Differences 1. Triggered by an
internal stimuli

1. Triggered by an
external stimuli

1. Triggered by danger in the
surrounding environment

2. It an prevail even
without stimuli

2. The stimuli can be
temporary

2. The fear mobilizes the body
responses, while the anxiety sup-
press them
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3 Related Work

Views on anxiety are portrayed in a multidisciplinary context, although the lit-
erature is brimming with the psychiatric and psychological context the range
of applications differ in the leading speciality of the research; biomarkers are
used within the neuroscience field to provide context, evaluate the success rate
of treatments and explore mood-related behavior whereas artificial intelligence
techniques contribute to the knowledge representation and the software engi-
neering enables the transference of technologies. To elaborate on the related
works Table 2 shows the technologies applied to the constructs of anxiety, post-
traumatic stress disorder (PTSD) and fear, in conjunction with the cognitive
and emotional processes.

Table 2. Panic attacks: related methodologies and applications

Reference Technology Construct Description Approach

Kerson, C et al. [19] Biofeedback Trauma Somatic biofeedback
for trauma and related
comorbidities

Neuropsychology
applications

Chen, C et al. [7] EEG signal Anxiety Evaluation of
neurofeedback for
anxiety relief

Neuropsychiatry
applications

Wang, Z et al. [31] fMRI PTSD Connectivity of
amygdala subregions
associated with PTSD

Neuroimaging
applications

Balan, O et al. [5] Machine learning,
deep learning

Fear acrophobia Research of techniques
to automatize fear level
detection

Artificial intelligence
and virtual reality

Valdes-Sosa et al. [30] EEG, MRI Cognition Neuroimages and
cognitive dataset

Neuroimaging
applications

Beaurenaut, M et al. [6] STAI
questionnaire

Anxiety Threat of scream
paradigm to study
physiological and
subjective anxiety

Statistic correlation

Petrescu, L et al. [26] Virtual reality Anxiety Biosignals
measurement in a
virtual environment to
detect anxiety

HCI and virtual reality

Francese, R et al. [11] Virtual reality Emotions User centered
methodology for an
emotion detection
system

User experience

Although the literature review analysis is shown above highlight the techno-
logical and methodological applications for anxiety and trauma, the fear response
along with the cognitive and emotional process were approached to demonstrate
the influence of internal and external stimuli while conducting behavior ori-
ented research whereas trauma was introduced due to the association with the
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development of PTSD. The current methodological proposal prioritizes the lean
approach for the development of software products to integrate the user feed-
back and the algorithm techniques from artificial intelligence whilst providing
a guideline for health specialist based on the insights provided by the methods
and iterative products.

4 Methodological Proposal

Considering the Lean UX background along with the hybrid approach of BCI
and panic attacks contextualization, the development of the methodology was
centered towards an iterative process tailored to user segmentation and require-
ments fulfillment for testing, prior data recollection for the elaboration of a
case study and feedback; shown below Fig. 1 introduces the core stages of the
methodology in a linear sequence: segmentation, design, treatment, launching,
and evolution, with a breakdown based design in which the segmentation and
evaluation stages are linked and all the stages are composed by two correlated
subsections.

Fig. 1. Methodology design breakdown. Inspired on lean UX [12].

4.1 Segmentation

The segmentation is the opening stage of the methodology and the basis to
identify the population, target users, subsequent requirements and needs to be
meet within given iterations; to accomplish the projected objectives and allow a
margin of time for review and approval of the minimal viable products (MVP)
it is divided in sampling and approach:
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Sampling. Initial identification of the sample population based on statistical
and demographic indicators for further classification. The main objective is to
outline a working scheme of the type of users, providing a structure for the
assignation of resources and roles to be taken by the multidisciplinary team.

Approach. Type of research and techniques proposed to apply at the target
population given the indicators and roles identified in the sampling, with the
objective of defining the requirements to cover within each of the following stages
and iterations.

4.2 Design

The design stage is the blueprint of the methodology and the MVP’s to be
delivered at the last stage, it includes the representation of the requirements in
layouts and schemes of the main tasks and processes to track down the advances
and workflow towards an early deployment of a prototype; it is composed by the
layout and prototyping stages:

Layout. Integrates software engineering diagrams and schemes to represent the
role of the types of users, the multidisciplinary team and the system/software
product as a whole. The objective of the layout is to identify the workflow of
the processes, optimize when possible and link the requirements to the processes
taking place, hence providing a framework of reference.

Prototyping. Initial development of the software solution to deploy in later
stages by taking into account use cases and the progress made towards the
requirements, consistently adjusting the working level of the prototype. The
objective of prototyping is to shape the MVP advances and obtain further insight
from the multidisciplinary team.

4.3 Treatment

The treatment stage involves an exploratory analysis of the data collected from
the prototype elaborated in the design stage so that a data model can be obtained
and applied for further testing and data recollection prior to launching and while
operating. The purpose of the treatment stage lies within the cleaning process
in between sub-stages to monitor the margin of error; its sub-stages are analysis
and modeling:

Analysis. Processes and techniques oriented towards data that explore a given
dataset to identify its structure, composition, and tendencies, its objective is
to provide insights into the data obtained from the prototype, monitor the
advances, and identify opportunity areas.
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Modelling. Transformation of the dataset obtained in the previous stage to
match the requirements with the data and insights obtained from the analysis,
which objective is to shape the software solution and continuously improve the
core model while assigning instances and functions accordingly.

4.4 Launching

The launching stage is the deployment of the software solution that allows to
evaluate the hypothesis formulated at the beginning of the process, thus cor-
roborating the objectives of the proposed research space; the software solution
must be tested by the users and new data of the interaction is to be collected
and stored, its stages are as follows:

Testing. Initial trial of the BCI based software solution to run performance and
field tests to monitor both, the human and computational aspects; its objective
is to offer a space for observation and analysis to identify adjustment errors that
might occur, to suggest changes, optimize areas, or approve the software release.

Recollection. Data gathering with a primary focus on the main user and the
connected device that conforms the BCI; objective observation of the behavior
to measure the level of interaction with the user, UX, and UI as the pillars of
the Lean UX methodology focus.

4.5 Evaluation

The evaluation stage is the culmination of the methodology linear data flow
through the five checkpoints, and the beginning of its iterative process as it
encompasses the MVP elaborated through each stage and the optimal solution
provided as a result of it, hence the sub-stages for the definition of a case study
and the incorporation of feedback:

Scenery. Representative data obtained from the testing and recollection pro-
cesses paired with the statistical and demographic indicator endorsed for the
sample population of target users; its objective is to contextualize and create a
base for the model of user behavior.

Feedback. Input provided by the users and team members of the disciplinary
team regarding the software development, covering an evaluation of the require-
ments and the suggestions for further iterations; the objective of the feedback is
to enable timely changes that can be reflected in the user interaction and assets.
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5 MVP Design Guidelines

Introduced by proof of the objectives formulated per stage under the Lean UX
premises, an internal iteration was run for the multidisciplinary team members
involved in the initial stages of the methodological design: the developer, the
health specialist, and the data analyst; MVP were obtained through the process
along with corresponding feedback to sustain the knowledge basis of the proposal
and the products themselves as a preamble for algorithmic implementation and
active case studies of patients with panic attacks. The sub-sections below show
the analytical design advances and describe the inquiry for the corresponding
stages of the methodology, the MVP target obtained, the accomplishment level,
and punctual notes for its improvement and additional filter in between feedback
as a whole for further application in psychological interventions at the munic-
ipality of Aguascalientes, Mexico on the System for the Integral Development
of the Family (Sistema para el Desarrollo Integral de la Familia DIF). It is a
governmental entity in Mexico aimed at providing social support to the popu-
lation in the areas of health, rehabilitation, psychological support and medical
care [9,17].

5.1 Segmentation

To validate the sample population and target, the roles from the multidisci-
plinary team for the software development were defined and assigned accordingly
towards the input and output of the data related task to perform, hence after
a guided background review on the research topic with a psychologist the sam-
ple population was identified and profiled as target user by the developer and
data analyst based on the association of the most relevant indicators: age, health
condition and associated symptoms; thus the sample population was defined as
an age group between 15 to 40 years with anxiety disorder and panic attacks
related symptoms, to be approached in a quantitative study process.

5.2 Design

To cover the interactions between the core components involved in the software
development a layout of an architectonic classes diagram was elaborated; shown
below Fig. 2 represent the interaction between the two main processes of the
system in an abstraction level of components with assigned classes to analyze
and process the signals respectively, and the user input and output from the
health specialist.

The data flow begins in the class of the patient as it integrates the key
indicators of age and health condition given the sample population criteria, and
the nexus between the processes of the attributed EEG Signals that are to be
converted, structured, treated, and subset for the use of the health specialist.
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Fig. 2. Classes diagram of the system.

5.3 Treatment

The segmentation of the system functions were outlined in a context diagram
shown in Fig. 3 with the main software components to develop and the type
of user to exemplify the relationship between each type of user through the
components, with the main actor being the patient from whom the EEG Signals
come from, and the health specialist as the final user that receives access to the
data obtained from the signals once they have been properly processed, filtered
and analyzed; therefore offering as result insightful data that can be stored for
later access.

Fig. 3. Context diagram of the system.
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5.4 Launching

Complementary to the Context Diagram above in the Fig. 3, the Containers
Diagram shown below in the Fig. 4 display the relationship between the software
components on a technical level assessing the abstraction in between the data
treatment process where data entry from the EEG readings obtained is accessed
by the defined classes for the analysis and processing, so that the output gener-
ates a dataset accessible for the final user.

Fig. 4. Containers diagram of the system.

5.5 Evaluation

Based on the user interactions in the system and the abstraction levels identified
in the previous sections, the prototype of the system was reviewed, therefore
stating the basis of the first exploratory scenery from the methodology; Fig. 5
shows the Python scripts for the analysis and processing components, along with
the sampling of the EEG signals dataset under testing and its performance.

Fig. 5. System evaluation.
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6 Conclusions and Future Work

The holistic design and analysis of the proposed methodology and its stages
allowed to contrast the formulated hypothesis with the development objectives,
the user requirements, and the early MVP designs providing a guideline for
upcoming iterations and feedback sessions; subsequently the surrounding pro-
cesses oriented towards the MVP underlined the importance of their production
capacity as well as scalability factoring the exponential growth for the software
development scheme while applying the Lean UX approach. Complementary to
this the prototyping and feedback sub-stages require a set of standard designs
to document the degree of advancement in the case of the prototype, and a met-
ric association for the feedback provided to quantify the user satisfaction and
include it within the metrics correspondent to the intervention by the health
specialist on anxiety and panic attacks.

To conclude, the data obtained from the designed processes that undergo test-
ing granted the pathway for algorithms applied for data analysis and processing
as to obtain further inquires and the level of equipment required to monitor the
activity by making it feasible to calibrate an EEG device, process and analyze
the signal without significant obstruction by noise; therefore for future works
data-based algorithms are to be applied to the key processes incorporating the
artificial intelligence as a bridge between the neuroscience application and the
guidelines provided by the proposed methodology, enhancing the models within.
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5. Bălan, O., Moise, G., Moldoveanu, A., Leordeanu, M., Moldoveanu, F.: An inves-
tigation of various machine and deep learning techniques applied in automatic fear
level detection and acrophobia virtual therapy. Sensors 20(2), 496 (2020)

6. Beaurenaut, M., Tokarski, E., Dezecache, G., Grèzes, J.: The ‘threat of scream’
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Abstract. Stroke is amajor cause of disability resulting inmultiple system impair-
ments. Limited extended care resulted in prioritizing high level repetitions of task-
specific activities to improve function. One such modality is BCI to drive motor
rehabilitation. While several systematic reviews and meta-analyses highlight the
benefits of utilizing BCIs to enhance motor recovery, it is still unclear how these
interventions facilitate rehabilitation of motor function in individuals post-stroke.
This systematic review analyzed outcome measures and type of feedback dur-
ing BCI interventions to inform future protocol development. Included articles
were held to rigorous criteria, and potential studies were assessed for method-
ological quality using the PEDro Scale. Only articles that scored six or greater
were included for analysis, and nine randomized controlled trials were included.
In brief, the randomized controlled trials demonstrated that BCI enhanced the
motor function of the upper extremity as measured by the FMA UE, however
no other consistent outcome measures of function or self-efficacy were reported.
EEG and ERD of the affected sensorimotor cortices were significantly enhanced
in the BCI groups (p< 0.05). For those studies thatmeasured retention of function,
long-lasting improvements were noted, and BCI coupled to FES elicited signifi-
cant, clinically relevantmotor recovery. Somatosensory/motor andvisual feedback
were the most common across reviewed studies. While each of the studies had a
wide variety of methods, all the evidence suggested that subjects improved. These
findings suggest that the most important concept in protocol development may
have been the incorporation of principles of motor learning.
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1 Literature Review

1.1 Stroke

Stroke is defined as “a neurological deficit attributed to an acute focal injury of the central
nervous system (CNS) by a vascular cause,” [1] with the annual incidence in the US of
roughly 795,000 individuals [2, 3]. Stroke is a major cause of disability and can result in
multiple system impairments, leading to functional deficits in gait and activities of daily
living (ADLs). Limited extended care accessibility resulted in a search for therapeutic
interventions, prioritizing high level repetitions of task-specific activities to improve
function in individuals post-stroke [1–6].

1.2 Brain Computer Interface

One such modality is brain-computer interface (BCI) that utilizes brain signals to drive
rehabilitation ofmotor function [7–13]. Themost common type ofBCI formotor rehabil-
itation is based on acquiring themotor imagery-related brain signals and translating them
into the device control command. The specific type of brain signal acquired during this
process is somatosensory-rhythm (SMR), recorded in the vicinity of the sensorimotor
cortex, giving name to its based BCI system (SMR-BCI).

SMR-BCI may facilitate an individual’s return to function and improve quality of
life [7–13]. The outcomes of the SMR-BCI intervention might be influenced by several
internal and external factors, with the closed loop feedback being the major one [7–13].
The integration of specific feedback components has been shown to be an innovative
rehabilitation strategy, with potential to reinstitute central motor programs specific to
hand function [7–13].

1.3 Feedback Provided During BCI Interventions

The following types of feedback integrated in the SMR-BCIs can be considered: visual,
auditory, proprioceptive, haptic, virtual reality, magnetic stimulation, and functional
electrical stimulation (FES) [14–23]. Each of these feedback types can influence in dif-
ferent ways the SMR-BCI and affect the outcomes [14–23]. A combination of several
feedback modalities can significantly maximize the rehabilitation outcomes [14–23].
Only one systematic review to this day partially considered the effect of feedback on
BCI performance, [21] concluding that FES may be a better choice for functional recov-
ery than other kinds of neural feedback [21]. The authors did not aim to specifically
answer this question and the information about the use of optimal feedback in the BCI
intervention is still missing, thus, impeding the development of the BCI intervention
protocols to maximize rehabilitation outcomes.

With the emerging BCI technology, clinicians and scientists can develop protocols
based upon theories of experience-dependent neural plasticity principles including speci-
ficity of tasks, repetition of functional movements, and incorporation of salient activities
[12, 24]. Several systematic reviews and meta-analysis highlight the benefits of utilizing
BCIs to enhance motor recovery specifically for upper extremity post-stroke [13–22].
However, it is still unclear how these interventions facilitate the rehabilitation of motor
function in individuals post-stroke.
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1.4 Measurable Outcomes as a Result of BCI Interventions

In 2017, Monge Pereira et al. analyzed the methodological qualities and impact of
SMR-BCI intervention on motor rehabilitation of upper limb function [14]. Their results
suggested that BCI interventionsmay promotemotor recovery in individuals post stroke,
but randomized controlled trials with well-established criteria for homogeneous subject
selection were recommended [14]. Moreover, the use of advanced neurophysiologic
assessments, consisting of functional outcome measures aligned with neuroimaging,
was recommended to determine how BCI interventions cause change [14].

Functional outcome measures objectively measure how functional tasks are com-
pleted. Examples include activities of daily living, mobility related tasks, and may
include seeking to understand an individuals’ perceived self-efficacy during these func-
tional tasks. To understand the functional outcome measures utilized by researchers,
nine systematic reviews and meta-analyses from 2018 to 2022 were critically analyzed
[14–22]. All of these reviews sought to understand the impact of BCI interventions on
the motor rehabilitation of individuals post stroke.

Across all systematic reviews and meta-analyses, the primary functional outcome
measure utilized was the Fugl-Meyer Motor Assessment of the Upper Extremity (FMA-
UE) [15, 17–19, 21, 22]. The FMA-UE assesses a wide range of impairments including
reflexes, volitional movement (with or without synergy), coordination, sensation, and
passive range of movement [25]. While detailed in nature, this examination is exclusive
to the objective measurement of impairments, via body structures and function, and does
not elaborate on performance of ADLs, mobility, or self-efficacy. Numerous additional
functional outcome measures were noted: the manual function test, the Jebsen hand
function test, the action research arm test, the box and block test, grip strength, pinch
strength, tone via the modified ashworth scale, the wolf motor function test, the motor
activity log, and the nine-hole peg test [17, 19, 21, 22]. The emphasis of all of this
data collection did not elaborate on functional limitations, community reintegration, or
self-efficacy [17, 19, 21, 22].

2 Study Aims

This systematic review (PROSPERO ID: CRD42022298972) had two aims: 1) to under-
stand and categorize recommended outcome measures based on impairment, functional
limitations, and self-efficacy for comprehensive assessment of subject outcomes; and 2)
to analyze and recommend the type of feedback for BCI intervention that maximizes
upper extremity motor rehabilitation in individuals post-stroke.

3 Methods

3.1 Search Strategy

Researchers utilized an extensive electronic search of the literature in both the PubMed
and CINAHL databases. Each database was searched using various combinations of a
variety of search terms, as viewed in Table 1. MeSH terms were utilized when available
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to ensure that searches were efficient, comprehensive, and provided researchers with the
highest quality of evidence. The last search of the literature was performed on May 20,
2022.

Table 1. Search terms.

brain computer interface (BCI)*, human machine interface, motor imagery based BCI system,
human computer interface, sensorimotor rhythm (SMR) BCI

feedback, auditory feedback, visual feedback, sensory feedback, virtual reality feedback,
immersive feedback, magnetic stimulation feedback, proprioceptive feedback, haptic feedback

functional electrical stimulation (FES), virtual reality*, motor rehabilitation

stroke*, upper extremity*
* MeSH term

3.2 Selection Criteria

When selecting articles for inclusion, researchers were held to the following criteria: 1)
published recently (2010–2022); 2) available in English; 3) randomized controlled trials
(RCTs), 4) subjects aged 18 years and older; 5) subjects sustaining their first stroke;
6) primary focus of BCI interventions was on upper extremity motor rehabilitation;
7) research protocols documented feedback provided, and 8) motor rehabilitation was
tracked via evidence based outcome measures.

3.3 Methodological Quality Assessment

All potential studies were screened and assessed for methodological quality using the
PhysiotherapyEvidenceDatabase (PEDro) Scale [26]. This tool has becomemore promi-
nent within research over the recent years and numerous studies have assessed its cred-
ibility and implications with regards to article quality assessment [27–29]. According
to Moseley et al., the Cochrane risk of bias and PEDro scales were similar in construct
when examining bias of randomized controlled trials [29]. In addition, Cashin et al.
suggested that the PEDro score had “fair” to “excellent” inter-rater reliability [27]. The
tool consists of 11 criteria, in which criteria 1 is strictly used to assess the external valid-
ity and is not taken into consideration when calculating total scoring. The remaining
criteria evaluate the internal validity of the article in question, with a maximum score
of 10/10. Studies assessed with the PEDro scale result in the following scores: 0–3/10
“poor” quality, 4–5/10 “fair” quality, 6–8/10 “good” quality, and 9–10/10 “excellent”
quality. Case reports, case studies, narrative reviews, and expert opinion do not meet
PEDro rating criteria and were excluded from this systematic review.

Prior to scoring the included articles, researchers practiced on articles already scored
with the PEDro to ensure they could reliably, consistently, and accurately interpret and
apply the PEDro scoring criteria. Researchers worked in pairs to analyze articles via the
PEDro scale. In the case of any discrepancy, researchers worked to come to a mutually
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agreeable decision on eachPEDro scored item for each article. In some cases, articles had
been previously scored and the resultswere available via PEDro online [26].Only articles
analyzed that scored six or greater were included for further analysis to understand
the details surrounding the studies, including: subject demographics, feedback type,
outcome measures, and overall researcher recommendations.

4 Results

Based on the search of relevant literature and eligibility of articles established via the
PEDro scale, a total of nine randomized controlled trials met the rigorous inclusion
criteria and were analyzed. The Preferred Reporting Items for Systematic Review and
Meta-Analyses (PRISMA) flow diagram is presented in Fig. 1. The PEDro scale results
for included RCTs are displayed in Table 2.

Ultimately, researchers sought to analyze outcome measures utilized to document
changes due to the intervention and feedback provided during intervention protocols.
Additionally, subject demographics and randomized controlled trial recommendations
were summarized.

Fig. 1. PRISMA flow diagram.

4.1 Analysis of Outcome Measures Analyzed

When documenting change as the result of an intervention, it is imperative that
researchers utilize the evidence to make informed decisions surrounding selection,
implementation, and utilization of standardized tests and measures. These outcome
measures can provide objective data regarding change via cut-off scores and minimal
detectable change (MDC) [38]. While a cut off score may suggest fall risk or functional
status change, the MDC is the amount of measurable change necessary to be considered
“an actual change” in status or function, that could not be accounted for by chance [38].
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Table 2. Assessment of internal validity of RCTs via PEDro scale.

PEDro scale
items

Biasiucci
[30]

Cantillo
Negrete
[31]

Chen
[32]

Chew
[33]

Hu
[34]

Kim
[12]

Li
[35]

Li
[36]

Ramos
[37]

1 - eligibility
criteria (not
part of overall
score)

Yes Yes Yes Yes Yes Yes Yes Yes Yes

2 - random
allocation

No Yes Yes Yes Yes Yes Yes Yes Yes

3 - allocation
was concealed

Yes Yes Yes Yes Yes Yes Yes No Yes

4 - baseline
comparability

Yes Yes Yes Yes Yes Yes Yes Yes Yes

5 - blind
subjects

Yes Yes Yes Yes No No No No Yes

6 - blind
therapists

Yes Yes No No No No No No Yes

7 - blind
assessors

Yes Yes No Yes Yes Yes Yes No No

8 - adequate
follow up

Yes Yes Yes Yes Yes Yes Yes Yes Yes

9 - intention to
treat analysis

Yes Yes Yes Yes No No No Yes No

10 - between
group
comparisons

Yes Yes Yes Yes Yes Yes Yes Yes Yes

11 - point
estimates and
variability

Yes Yes Yes Yes No No Yes No Yes

Total score/10 9/10 10/10 8/10 9/10 6/10 6/10 7/10 6/10 8/10

By consistently documenting and observing trends via standardized outcome measures,
change as the result of an intervention can be more effectively and objectively tracked
over time [39].

The consistent implementation of evidence-based outcome measures in the treat-
ment of adults with neurologic diagnosis is crucial to monitor change, quantify function,
enhance communication across an interdisciplinary team, and increase the efficiency of
patient care [40]. The International Classification of Functioning, Disability, and Health
Model (ICF) classifies outcome measures into categories [41]. These outcome mea-
sures can be categorized into categories that assess body function, body structure, and
activities/participation [41]. Typically, during a comprehensive assessment in the clinic,
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clinicians seek to utilize at measures from multiple categories to ensure a thorough
assessment of both the impact of pathology on body structure and function, as well as
functional status. Therefore, it was our intent during this systematic review to under-
stand statistically significant changes tracked via evidence-based outcome measures.
See Table 3 for details.

4.2 Analysis of Feedback Provided

According to the data summarized in Table 4, the most common feedback provided
during the BCI interventions was somatosensory/motor. Eight studies out of nine utilized
this feedback type [12, 30–33, 35–37]. This finding was expected, as it aligns with the
purpose of rehabilitation of motor UE function in patients post-stroke. However, the type
of somatosensory/motor feedback varied among the studies. Three studies used FES
[12, 30, 35], another three studies used robotic orthosis (all three had different designs)
[31, 33, 37], and two studies used exoskeleton as their somatosensory/motor feedback
modality [32, 36]. It can be concluded that with rare exceptions, all study protocols
agree with using somatosensory/motor feedback as the primary feedback modality for
motorUE rehabilitation post-stroke.However, a search for optimal somatosensory/motor
feedback devices continues and includes different models and designs of FES devices,
exoskeletons, and robotic hand orthoses.

The second most common feedback modality type was visual - more than half of
the analyzed studies utilized this as their feedback modality [12, 31, 33, 34, 36]. Visual
systemplays a crucial role in human sensation andperception.Therefore, the use of visual
feedback as a second choice in BCI intervention may stem from the appreciation of the
significance of the visual system in humans and the amount of the resources allocated
to it in the human brain. It is important to mention that when the movement is being
elicited during the somatosensory/motor feedback (e.g., FES, exoskeleton, orthosis), the
patients can receive visual feedback by simply looking at their own handsmoving. Visual
attention requires subjects to keep their attention on their hands during the task execution.
For that reason, a different type of visual feedback during BCI-based rehabilitation
sessions was provided in three studies, with the goal of engaging the patient in observing
the feedback. For example, immersive virtual reality feedback was provided by Hu et al.
[34] to avoid external distractors and allow the subjects to concentrate on the visualized
hands completely. While in other studies, such as Li et al. [36] and Cantillo Negrete
et al. [31], they utilized emotional components in their visual feedback. This was done
by providing happy/unhappy faces indicative of the success or failure, respectively, of
a patient’s intent to perform a movement. When the capacity of the person’s ability to
process information was exceeded, emotional stimuli were provided as support.

The least common feedback was auditory. Only two of the analyzed studies provided
this type of feedback following motor imagery task execution [12, 36]. Similar to visual
feedback, the type of auditory feedbackwas not described in detail byKim et al. [12] and,
therefore, cannot be critically evaluated. The auditory feedback described by Lee et al.
[36] was of a verbal nature and included emotionally charged sentences tomotivate study
participants. For example,when the patient’s intent tomovewas not identified, the “Cheer
up! Try again!” was auditorily presented. At the same time the phrase “Congratulations!
You got it!” was used when the patient’s intent to move was successfully identified.
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Here, the auditory feedback serves a purpose of emotional stimuli, performing a similar
function as earlier described visual feedbackwith emotional faces/characters. The reason
for underutilizing this feedback type might be easily interfered with by auditory signals
present in the environment, including noises, surrounding sounds, voices, commands,
and others. Nevertheless, the utility of auditory feedback cannot be underestimated, and
we will address this topic in our discussion. In summary, SMR-BCI research for motor
rehabilitation post-stroke evaluated in our systematic review study clearly demonstrates
that the current use of auditory feedback is limited and mostly reserved for emotionally
charged verbal stimuli.

Additionally, multimodal feedback, a combination of two or more types, was used in
two studies [12, 36]. However, the type of auditory and visual feedbackwas not described
in detail by Kim et al. [12] and, therefore, cannot be interpreted. This leaves only one
study among ten to utilize feedback from three modalities [36]. As described by Li
et al. [36], the combination of somatosensory/motor, visual, and auditory components
was only provided when the person had a successful intent to perform a movement.
When the intent was unsuccessful, the somatosensory/motor feedback component was
excluded, and only two feedback modalities were used - visual and auditory. The lack
of multimodal feedback can be explained by technically challenging design solutions
needed to implement it. In summary, our conducted review demonstrates that despite
the evidence of the importance of multimodal feedback, it is very rarely used. Possible
hardware and software improvements may shift this situation towards more frequent
multimodal feedback implementation.

Finally, more than half of all studies used additional intervention training to the one
already provided by BCI [12, 33–36]. In this way, Kim et al. [12] used action observation
before the MI-BCI session coupled with FES. In another study, Chew et al. [33] used
transcranial direct current stimulation (tDCS) before the MI-BCI intervention coupled
with the MIT-Manus robot. Similarly, Hu et al. [34] provided subjects with sensory
feedback on the back of both hands prior to attempting the movement prompted by the
action of the virtual hand on the screen.

Li et al. [35] used a different approach, where before treatment the subjects in the
BCI group were trained to complete MI tasks to effectively perform the MI component
of the study; in addition, the authors included five games in the rehabilitation training
course - “basic cognition tasks – move eyes, entertainment relaxation – lift a balloon,
quick reaction – balance a beam, daily behavior – drink water and compound cognition
task – navigate a maze.” Whereas Li et al. [36] used video observation for study partici-
pants, where they observed the video demonstrating actions of “grabbing the object” or
“putting the object down” while imagining performing the action of grabbing the object
or putting the object down; importantly, multi-modal feedback, such as visual auditory,
and somatosensory, was provided only when the patient’s intent to perform movement
was successful. Some of the authors refer to these components as feedback, whereas
they constitute an additional intervention but not actual feedback. Each of these added
interventions can influence the results of the study and have an additive effect on other
study components, including feedback. Their contribution to the rehabilitation success
still needs to be determined.
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4.3 Analysis of Subject Demographics

Often when reviewing published research, clinicians seek to understand if the subject
population is truly representative of the general population seen in a clinical environment.
At times, due to strict inclusion and exclusion criteria, subject populations are not always
representative of the heterogeneity of clients serviced in the clinic.

However, based on the subject recruitment analyzed across all nine studies, the
subject demographics seemed to be representative of the population of individuals seen
clinically post stroke [12, 30–37]. Each study identified adult subjects with a first-time
stroke, inclusive of individuals either post hemorrhagic or ischemic stroke. Additionally,
researchers clearly delineated in all studies that treatment and control populations were
statistically homogeneous regarding gender and affected hemisphere [12, 30–37].

However, the chronicity of stroke varied widely across the studies, ranging anywhere
from subacute (0–6 months) to chronic (>6 months) [12, 30–37]. While this is common
clinically to treat clients across a wide range of chronicity, it was difficult to note from
these studies which population was optimal for timing of interventions provided. It may
be that the chronicity of stroke is not relevant when considering the BCI-based motor
rehabilitation, but that cannot be firmly concluded from this analysis.

Additionally, while some studies clearly identified inclusion/exclusion criteria sur-
rounding existing wrist/hand functionality, others did not. It may be of importance to
note baseline hand/finger functionality beyond the FMA UE score, to better interpret if
changes in the study are due to interventions or may be due to neurologic healing from
the stroke itself.

4.4 Analysis of Randomized Controlled Trial Recommendations

In brief, the randomized controlled trials demonstrated that BCI-based motor rehabilita-
tion enhanced the motor function of the upper extremity for stroke patients as measured
by the FMA UE due to changes in measured brain function via EEG [12, 30–37].
Additionally, event-related desynchronization (ERD) of the affected sensorimotor cor-
tices (SMCs) were significantly enhanced in the BCI groups (p < 0.05) [12, 30–37].
For those studies that measured retention of function at a post-test follow up, BMI-
based motor rehabilitation promoted long-lasting improvements in motor function of
chronic stroke patients with severe paresis [12, 30–37]. Furthermore, BCI coupled to
FES elicited significant, clinically relevant, and lasting motor recovery in chronic stroke
survivors more effectively than sham FES, as evidenced by an increase in functional
connectivity betweenmotor areas in the affected hemisphere which correlatedwith func-
tional improvement [12, 30–37]. Finally, FESwithVR-based rehabilitationmay bemore
effective than cyclic FES in improving distal upper extremity gross motor performance
poststroke [12, 30–37].

5 Discussion

First, itwas notedduring this systematic review, thatwhile the subject demographicswere
rather similar and characteristic across all RCTs, and of those post-stroke individuals
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seen clinically, the wide variability in chronicity of stroke and baseline hand function
made it difficult to understand the optimal subject for this intervention.

Second, as a result of systematic review, we noted that researchers utilized a wide
variety of outcome measures [12, 30–37]. All studies utilized the Fugl-Meyer Assess-
ment (FMA UE or cFMA UE) as this evidence-based outcome measure tracked active
range of motion, passive range of motion, reflexes, and tone over time with each admin-
istration of the tool [12, 30–37]. However, while not all outcome measures captured
statistically significant change, in total, fifteen different clinically relevant standardized
outcome measures were utilized across nine studies [12, 30–37]. Across the nine ran-
domized controlled trials, the outcome measures utilized most consistently measured
impairment (body structure or body function), with little emphasis on function (activity
and participation) or self-efficacy of subjects.

While the researchers were clear in their presentation of data analysis including use
of relevant cut-off scores,MDC, and/or statistical analysis, it is difficult to ascertain from
this systematic review, outside of the FMA, which outcome measures and standardized
tests should be included in future research for a comprehensive assessment, as many
did not show clinically or statistically relevant change, and no other measures were
consistent across randomized controlled trials.

Additionally, there was great variability in follow up measurement time points [12,
30–37]. While five studies utilized outcome measures for pre and post testing only, the
other four studies included a follow-up time point after the conclusion of the interven-
tion, to further understand retention of changes as a result of intervention [12, 30–37].
However, the final measurement for follow up was anywhere from two weeks post
intervention to 12 months post intervention [12, 30–37].

Furthermore, when seeking to understand the outcome measure selection process,
most researchers and protocols selected standardized tests and measures which focused
on body structure and function, without seeking to understand functional implications
and subject self-efficacy. Only four of the nine studies evaluated subject self-efficacy via
either the Barthel (statistically significant), modified Barthel, Stroke Impact Scale, and
European Stroke Scale, while the rest overlooked this variable [12, 30–37]. Moore et al.
[40] suggested a core set of clinical outcome measures that is comprehensive across
all ICF domains of body structure, body function, and activities/participation. It would
be important for researchers moving forward with BCI protocols to ensure inclusion
of clinical outcome measures that seek to understand subject improvement across all
domains, as well as at timepoints in the future to assess retention of improvements
long-term [40, 41].

In this systematic review, we explored the type of feedback included in BCI-based
protocols for UE motor rehabilitation in patients post-stroke. The importance of includ-
ing feedback in the BCI-based rehabilitation protocols cannot be underestimated. The
evidence of improved SMR-BCI performance comes from a number of studies, including
those demonstrating changes in the brain network activity, and topology, in response to
neurofeedback [42]. A high correlation between event-related coherence and SMR-BCI
performance with classical visual feedback, auditory feedback, or functional electrical
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stimulation feedback has been demonstrated [43]. Moreover, improved SMR-BCI per-
formance associated with provided feedback also resulted in elevated motor cortical
excitability and an optimized state of functional brain networks [23].

As a result of our review, we found that current studies are united in their intent
to utilize at least one form of feedback. They preferentially use somatosensory/motor
feedback in their SMR-BCI-based motor rehabilitation studies. We speculated that the
main reason for the unanimous choice of this particular feedback type stemmed from the
nature of rehabilitation itself, which attempts to improve motor and sensory function.
However, there is evidence from several research studies to support the use of additional
feedback. For example, the effect of proprioceptive feedback seems more prominent
than visual feedback. For the subjects’ attention to stay focused, using their own hands
as stimuli may not always be significant enough, as a portion of attention is already
allocated for task execution (e.g., imagining closing and opening a hand). Moreover, the
external distractors, including patients’ surroundings, may also deter their attention from
their hands and decrease MI-BCI performance [23]. For example, researchers described
how Darvishi et al. [44] examined the effect of proprioceptive feedback by using two
mechanical hand orthoses manipulated by the motor imagery task performed by the
user [23]. Proprioceptive feedback improved motor imagery-related operant learning,
evident in SMR beta-band modulation. Vukelic and Gharabaghi [45] demonstrated sim-
ilar findings. When proprioceptive feedback was used, an advanced degree of functional
coupling of theta and beta-bandmodulationwas demonstrated thanwith visual feedback.

Whereas the somatosensory/motor feedback type seems to be an obvious choice
to include in BCI-based motor rehabilitation protocols, there is still some discrepancy
about using other feedback types, such as visual and auditory. The latter, especially,
remains underutilized. At the same time, scientific evidence points towards reevaluating
the underutilization of auditory feedback for improvedSMR-BCI performance.Auditory
feedback may improve SMR-BCI performance either combined with visual feedback or
independently [23]. For example, when SMR-BCI were presented with initial auditory
feedback, their average classification accuracy, and average peak classification accuracy
consistently improved [46]. The exact technology of auditory feedback (mono, stereo, or
3-D auditory) does not play a major role [46]. Therefore, an exploration into integrating
the auditory feedback into the SMR-based BCI protocols for motor function rehabil-
itation is warranted. Additionally, the inclusion of emotional feedback in BCI-based
rehabilitation protocols can be considered, especially in patients with difficulties pro-
cessing information and resource allocation. In conclusion, the use of the visual system
as a second feedback route for BCI-based motor rehabilitation proves to be legitimate
from the cognitive neuroscience perspective. Moreover, the use of immersive visual
feedback can be especially recommended.

6 Recommendations

Based upon our analysis, while each of the studies included in this systematic review
had a wide variety of methods, with varying intervention modalities, outcome measures,
and timepoints for follow up, all the researchers suggested that the subjects improved in
their outcomes. These findings, across allmethodologies, suggest that themost important
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concept in protocol development may have been the incorporation of the principles of
motor learning [42]. As previously described by Clark et al. in 2019, “Some of the most
common principles that appear to have a significant impact on the alteration of neuronal
wiring include the following: specificity of the task, repetition of functional movements,
and the incorporation of salient activities for each individual” [24]. Similarly, each of
the authored articles analyzed in this systematic review incorporated principles of motor
learning resulting in improved outcomes in subjects, irrespective of dosage or type of
modality. Researchers should consider the principles of motor learning as paramount to
their theoretical construct during protocol design and intervention implementation.

Second, while researchers consistently utilized and demonstrated statistically signif-
icant change via the FMAUE, this outcome measure only provides part of the picture of
rehabilitation in individuals post stroke. Researchers should seek to consistently include
measures of function and self-efficacy, at both pre/post timepoints, as well as timepoints
into the future, to determine if these changes as a result of the BCI interventions are
retained and maintained over time.

The inclusion of somatosensory/motor feedback in the BCI-based protocols for
motor rehabilitation seems paramount. There is also a need to consider the inclusion
of multimodal feedback, including underutilized auditory feedback. Emotional feed-
back may be warranted, especially in cognitively compromised patient populations. An
immersive environment can be used as a tool to improve SMR-based BCI performance
for patients post-stroke. The effect of additional interventions, such as tDCS and others,
to accompany BCI-based rehabilitation protocols requires further exploration.

Finally, while a variety of sensory feedback options are implemented in existing
protocols, the most consistent type of feedback provided was FES during the BCI inter-
vention. It is not clear from the literature that providing feedback before or after the
intervention has immediate or lasting effects on individuals post stroke, but there may
be opportunity for multimodal approaches to feedback provided during BCI basedmotor
rehabilitation of individuals post stroke.
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Abstract. Dreams are often forgotten despite their impact on our emo-
tions and memory. In our pursuit of developing an objective dream-
content recording methodology (reaDream), we focused on the motor
imagery (MI)-related dream component, which is reported to be present
in dreams along with other sensory, perceptual, and cognitive phenom-
ena. It has been shown that brain activation during dreamed actions cor-
responds to the brain activation for the same actions in a wakeful state.
This allows one to decode electrocorticographic (ECoG) brain activity
during sleep using a machine learning (ML) model trained on wakeful
data. ECoG data is very specific to each individual and not general-
ized between subjects; deep ML models are prone to overfit on small
amounts of data. We propose to generalize ECoG data by combining
recordings from several subjects. For that, we developed a Convolutional
Neural Network (CNN)-based classifier that discriminates between hand
and tongue movements in different subjects. We tested a hypothesis on
whether a MI classifier can be trained on motor execution (ME) data.
We demonstrate that ME types are easier to distinguish compared to
MI. We showed that power features are more informative than temporal
features. Finally, we demonstrated how our trained models could be used
to predict MI during Rapid Eye Movement (REM) sleep.

Keywords: Dream research · ECoG · Motor imagery · CNN

1 Introduction

People spend about one-third of their lives sleeping, and the absolute majority
see dreams, which are often forgotten [21]. Even when remembered, there is a
significant probability that the memory of the dream was altered [3], with one
of the reasons for that being the active dream forgetting [24]. Currently, dream
research resorts to dream reports collected right after awakening. However, the
reporting process can have multiple interferences, including poor cognitive per-
formance of the subjects due to sleep inertia [22]. In addition, dream reports can
be biased by laboratory setting and socio-cognitive factors [15,44,54]. Our pro-
posed dream recording methodology reaDream [9] would allow recording dreams
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
M. Kurosu et al. (Eds.): HCII 2022, LNCS 13519, pp. 391–414, 2022.
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directly from the sleeping brain, thus removing barriers and allowing for more
accurate and objective dream reports (brain data-based dream reports). More-
over, dream recording methodologies, such as reaDream [9], have great poten-
tial to add to the neuroscience of consciousness, possibly pinpointing the role
of dreaming. Accurate brain data-based dream reports can be used more con-
fidently for improving people’s mental health by psychotherapists and other
mental health professionals [5,6,38] or be a source of leisure and creativity.

During dreaming, brain activation is observed in humans, which overlaps
with brain areas responsible for sensory and perceptual phenomena happen-
ing in dreams [4,12,46,51]. Still, brain activity patterns are not yet researched
enough to be accurately decoded into dream contents, which are shown to be
complex and multi-sensory [5,15,32,47]. Moreover, as dream phenomena can-
not be observed by people other than the dreamer, besides rare exceptions
such as certain disorders [49] and lucid dreaming [12,26], it is difficult to ver-
ify whether brain activity patterns during dream experiences are the same
as in corresponding wakeful experiences. Nevertheless, brain activation during
dreamed movements was shown to correspond to motor imagery (MI) in a wake-
ful state [12,14,39,48]. Because of that, we focus on the MI-related dream com-
ponent.

There are plenty of studies on decoding MI, as it is often used in brain-
computer interfaces (BCIs) for fully or partially paralyzed patients [35]. Many
of them are based on unilateral or bilateral hand movements, while many other
types of movement can happen in dreams, such as running and flying. A multi-
class model and high-resolution data are needed to classify various movements
accurately. Electrocorticography (ECoG) has the potential to record complex
brain activity associated with dreams because of its high temporal and spatial
resolution [19,23]. Deep machine learning (ML) methods facilitate easier feature
extraction and can achieve high accuracy in classifying brain data [31,37,40,45,
50], but can overfit when the training data set is too small [41]. This makes
using ECoG data in deep ML models difficult, as such data is relatively rare
and not generalized between subjects. ECoG recording requires craniotomy for
electrodes/grid implantation, which introduces health risks [29]; therefore, ECoG
data is recorded only from patients with a certain severity of a condition (e.g.,
medically intractable epilepsy). In these cases, ECoG electrodes are placed only
over the areas of interest, which differs from patient to patient.

To overcome the challenges described above, we propose a method that com-
bines data from several subjects by introducing electrode location information
into the data. Moreover, we utilize the main advantage of Convolutional Neu-
ral Network (CNN) models, which can detect patterns in data by observing
differences between neighboring data values [10,20]. CNN models were already
successfully used with brain activity data in studies [7,33].

Dreaming mostly happens in rapid eye movement (REM) sleep [5,32], during
which muscle atonia (paralysis) takes place on the level of the brainstem [51,52].
When muscle atonia is disrupted, subjects act out of their dreams, including
kicking and punching [1,49]. Because of that, MI during dreaming may be more
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similar to motor execution (ME) in a wakeful state rather than MI in a wakeful
state. [39] in their paper show that applying transcranial direct cortical stimula-
tion (tDCS) over the sensorimotor cortex lowers the amount of dream movement
in REM sleep, and [43] in their functional magnetic resonance imaging (fMRI)
study show that the sensorimotor cortex was activated during ME but not MI.
On the other hand, ME is affected by the weight applied to muscles and other
constraints [17,53], which are mostly absent during motionless dreaming. When
comparing awake brain activity during MI and ME, the latter was shown to have
higher activation levels but, other than that, be quite similar to MI [2,36]. This
activation is more clearly detectable in spectral than in temporal space [31]; nev-
ertheless, in the current work, we train classifiers on both feature spaces (spectral
and temporal) to confirm these findings. Certain differences remain, e.g., during
MI, a motor suppression happens [8,18,42] on the cortical level [11,55], which
further differentiates MI during REM sleep and wakefulness. Both MI and ME
data were used to train classifiers for REM sleep data to compare their results, as
ME data has a higher potential to be accurately differentiated due to its higher
activation. Moreover, it is easier to verify that ME data was correctly collected
as movements are directly observable, which is not the case with MI.

This work was the first step toward the reaDream project: developing a sys-
tem for decoding and visualizing human dreams directly from recorded brain
cortical activity. The decoding process would be done in real-time, as certain
decisions can be made based on predictions, and the brain can be stimulated,
for example, to wake the user from a nightmare [9]. For this reason, we also sim-
ulated real-time dream decoding by giving the model data fragments cropped
using the rolling window method.

2 Materials and Methods

2.1 Motor Data

MI and ME data were obtained from the open library of human electrocortico-
graphic data and analyses [34]. All data samples were taken from the experiment
described by [36] and consist of 7 subjects (see Table 1 and Fig. 1), two data files
each: one with a recording made during ME tasks, and another - during MI tasks.
Data is labeled by cues that were shown to subjects on a monitor as a written
word. The movements were either simple and repetitive flexion and extension
of all hand fingers or opening a mouth with protrusion and retraction of the
tongue. A number of channels per subject is either 48 or 64, with one subject
having 46 channels, as two channels were removed due to contamination.

Cues lasted 3 s, with rest intervals (blank screen) in between for 3 or more
seconds. Each MI or ME task has 30 repetitions in each recording. Recordings
have slightly different lengths (from 376.6 to 390.9 s), the difference coming solely
from the varying length of resting intervals.

Data were sampled at 1000 Hz and filtered by a bandpass filter from 0.15
200 Hz but contained powerline noise at 60, 120, 180 Hz. Data were scaled so
that 1 amplifier unit equals 0.0298 µV. Epileptiform electrical activity was not
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Table 1. Summary of recordings in motor data. For two patients, some electrodes were
dropped due to their bad positions on the standardized brain.

Subject Hemisphere Channels Dropped

BP Left 46

FP Left 64 4

HH Right 48

JC Left 48

JM Left 64 8

RH Right 64

RR Right 64

removed from this data, nor were recordings with unsuccessful motor imagery.
Electrode coordinates are in Talairach space, and a triangular surface model of
the Talairach brain is provided in the library [34].

2.2 REM Sleep Data

REM sleep stage data was obtained from MNI Open iEEG Atlas (described
in [13]). As the Atlas contains readings from different types of electrodes, record-
ings were downloaded only for subjects with subdural grids or strips placed over
either frontal or parietal cortices. Finally, 6 subjects were chosen (see Table 2
and Fig. 2). The REM sleep stage was detected by electrooculogram and chin
electromyogram or with simultaneous video recording.

Table 2. Summary of selected recordings in REM sleep data.

Subject Hemisphere Channels

94 Right 10

99 Right 12

100 Right 17

103 Left 32

106 Right 7

110 Right 10

Data consists of 60 s recordings which were filtered by a bandpass filter from
0.5 80 Hz and downsampled 200 Hz, and a notch filter was applied to remove the
powerline noise. No epileptic activity was in the data. Electrodes coordinates
were provided in MNI space, so they were transformed to Talairach space using
Lancaster transform matrix [28]:
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Fig. 1. ECoG grid locations on Talairach brain in motor data. Grids initially placed
on the left hemisphere are mirrored on the right hemisphere.

Fig. 2. Electrode locations on Talairach brain in REM sleep data. The precentral gyrus
(primary motor cortex) is tinted in orange and green. The orange part is commonly
activated during hand movements, and the green part is during tongue movements [16].
(Color figure online)
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MTT =

⎡
⎢⎢⎣

0.9357 0.0029 −0.0072 −1.0423
−0.0065 0.9395 −0.0726 −1.3940
0.0103 0.0752 0.8967 3.6475

0 0 0 1

⎤
⎥⎥⎦ (1)

2.3 Data Pre-processing

Data was re-referenced using the mean CAR filter [30]:

s′
h = sh − 1

H

H∑
i=1

si · sh (2)

Here, sh is the signal for each channel h, and H is the number of total
channels.

Brain activation change from motor tasks compared to rest was calculated
as in [36]. That is, data was fragmented by task cues, and the first 500 ms were
removed from each fragment. For each resulting fragment, power spectral den-
sity (PSD) was calculated using the Welch method with 250 ms Hann window
and 100 ms overlap. From calculated PSD, 8–32 and 76–100 Hz averaged broad-
bands were calculated, and the signed r-squared cross-correlation was calculated
between PSDs of task and rest fragments (with rest fragments happening right
after task fragments) by the formula [36]:

R =
(PSDtask − PSDrest)3

|PSDtask − PSDrest| · s2PSDtask∪PSDrest

· Ntask · Nrest

(Ntask + Nrest)2
(3)

Here, s2 is sample variance, and Ntask and Nrest are numbers of task and
rest fragments, respectively. Note that there was exactly one rest fragment after
each task fragment, so Ntask = Nrest, and the second fraction can be simplified
to 1

4 .
Two-sample T-test was calculated between PSDs of task and rest fragments

to assess the significance of activation change. The activation map was inter-
polated using spherical Gaussian kernels with a size of about 5 mm (50 points)
only in those channels with significant activation or deactivation.

2.4 Overlap Metric

The overlap metric to assess overlap between two activation maps was calculated
as in [36]. That is, a sum of Hadamard product (element-wise multiplication)
between two map activation values was calculated as a test metric. The dis-
tribution of test metrics for 106 random permutations of activation values was
generated. P-value was calculated as the probability that a test metric achieved
after permutation is larger than without permutation. P-values less than 0.05
were chosen to indicate the significance of the non-permuted test metric. Z-score
(from distribution’s mean) of the test metric was the overlap strength value.
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To assess the overlap between labels predicted by different models, a similar
method was used. First, predicted labels from each of the models were collected
into a M × N matrix (M is the number of models and N is the number of
samples). The number of samples with the same label predicted by all models
was calculated. Then, predicted labels were permuted for each model separately
to repeat the agreeing label counting and get the random distribution. Two
p-values were calculated from each side of the distribution.

2.5 Pre-training Feature Extraction

Data was first fragmented by task cues, and the first 500 ms were removed from
each fragment. Resulting 2500 ms fragments were additionally split into 200 ms
fragments with a 100 ms overlap. The REM sleep data was first up-sampled to
1000 Hz to have the same sample rate as the motor data. Because the REM data
is unlabeled, it was split into fragments using a 200 ms window with a 100 ms
overlap instead; this method was also used to generate an additional data set
from motor data.

After that, fragments were either left in temporal space (for time-only mod-
els) or transformed into spectral space (for power-only models). 8–80 Hz bands
were extracted:

– For time-only data representation, it was filtered using a Butterworth band-
pass filter to get 8–80 Hz, then a notch filter to remove the 60 Hz band.

– For power-only data representation, power spectral density was obtained from
the data using the Welch method, and only values for 8–59 Hz and 61–80 Hz
bands were left.

Additional models using the 8–100 Hz frequency range were trained to assess
the importance of 80–100 Hz for better classification of movement types in motor
data. Same as for 8–80 Hz data, 60 Hz band was removed. They were not used
to make predictions on REM sleep data, as its highest frequency left 80 Hz.

2.6 Spatial Transformation

Several steps were done to add a signal location to the training data:

1. Electrode coordinates (x, y, and z) from all subjects were joined into one
group. Electrodes placed on the left hemisphere were mirrored on the right
hemisphere.

2. One dimension of coordinates was removed with Principal Component Anal-
ysis (PCA), leaving each electrode with two new coordinates, a and b.

3. The resulting coordinates were divided by δ and rounded to whole numbers.
The distances between smallest and largest a and b were taken as A and
B, respectively. The δ parameter value was chosen by measuring the error
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between non-rounded and rounded coordinates to keep the error, A, and B
as low as possible, as the resulting spatial dimensions of data samples will be
A × B.

4. A × B matrix was initiated with zeros. Each channel data was placed into a
matrix cell by its a and b coordinates while leaving many cells with zeros.

5. Gaussian blur was applied on the resulting matrix along the A and B dimen-
sions. This filled empty cells with values calculated from neighboring cells.
The size of the Gaussian kernel was chosen according to the grid size, so its
radius would be about 5 mm.

To check whether spatial dimensions provide useful information, for addi-
tional training sets, the electrode locations were permuted, resulting in the same
data shape while rendering the spatial information meaningless.

The δ parameter was chosen by calculating A × B grid size and distance
error ratios for each δ between 1 and 10, while ensuring that simplified electrode
positions do not overlap in the same subject. The biggest possible δ for motor
data was 6.21, producing a grid of size 21×18, reducing unique electrode locations
by about 46%, and achieving a mean distance error of 39.3% (SD = 14.4%) from
the minimum distance between two electrodes in any ECoG grid. A smaller
δ = 5.12 was chosen to lower this error to 31% (SD = 12.1%). The resulting grid
size was 25 × 21.

The result of the spatial transformation on motor data electrodes is visualized
in Fig. 3.

2.7 CNN Model Architecture

The main model architecture which was used in this work consists of 4 layers:
two CNN and two linear layers. In the case of this model, CNN layers extract
either temporal or spectral activation patterns regardless of their location and
condense the data. In contrast, linear layers pay attention to where patterns were
found. All layers were initialized with normal He initialization [20]. For model
regularization, Batch Regularization (with learnable parameters) and Dropout
(with 30% probability) techniques were used [41]. A simplified scheme of the
used model architecture is provided in Fig. 4.

Leaky ReLU is a variation of a ReLU activation function that is popular to
use with CNNs [20]:

f(x) =
{

x, if x > 0
ax, if x ≤ 0 (4)

Here, a is a fixed value which controls the slope of the negative part of the
ReLU function. In the case of Leaky ReLU, it is 0.01.

Adam optimizer with default parameters [25] was used with a learning rate
5 · 10−4 and weight decay 5 · 10−6. As a loss function, Cross Entropy was used:

LCE = −
M∑

m=1

wmyo,m ln(po,m) (5)
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Fig. 3. Motor data electrode locations for each subject after spatial transformation.

Here, M is the number of classes; y and p are the binary indicator and the
predicted probability that observation o is of class m, respectively; wm is the
weight for class m. LCE is the loss calculated for one data sample, while the final
loss value for all data is the average of all individual loss values.

Models which receive and transform temporal data are called time-only mod-
els, and models which work with spectral data are called power-only models.

2.8 Model Evaluation

During the training process, train and test loss values were saved for every 5
epochs. The training speed was calculated as the difference between the first train
loss value and the last 5 train loss values, divided by the number of train epochs.
The test loss values were used to decide whether the model was overfitting.

After models were trained, class predictions on the test data were obtained,
and multi-class confusion matrices were calculated. For each class m, the correct
predictions are called True Positives (TP), and incorrect predictions are called
False Negatives (FN). Samples of different classes which were predicted as class
m are called False Positives (FP). Lastly, all samples which were not of class
m and were not predicted as class m are called True Negatives (TN). Baseline
metrics were obtained by labeling each sample with the most abundant class
(the “rest” class, two times more abundant than “tongue” or “hand” classes).
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Fig. 4. The model architecture.

The accuracy, precision, recall, and F1 score metrics were calculated as fol-
lows:

FAccuracy =
TP + TN

N
(6)

FPrecision =
TP

TP + FP
(7)

FRecall =
TP

TP + FN
(8)

FF1 = 2
FPrecision · FRecall

FPrecision + FRecall
(9)

Here, N is the total number of samples.

2.9 Data and Software Availability

Both data sets are openly available:

– Motor data was taken from: https://exhibits.stanford.edu/data/catalog/
zk881ps0522,

– REM sleep data was taken from: https://mni-open-ieegatlas.research.mcgill.
ca.

All codes were written in Python and are available here: https://github.com/
Tallivm/readream-motor.

2.10 Ethics Statement

The ethics statement was included with the motor data: All patients partici-
pated in a purely voluntary manner, after providing informed written consent,

https://exhibits.stanford.edu/data/catalog/zk881ps0522
https://exhibits.stanford.edu/data/catalog/zk881ps0522
https://mni-open-ieegatlas.research.mcgill.ca
https://mni-open-ieegatlas.research.mcgill.ca
https://github.com/Tallivm/readream-motor
https://github.com/Tallivm/readream-motor
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under experimental protocols approved by the Institutional Review Board of the
University of Washington (#12193). Portions of these data originally appeared
in the manuscript “Cortical activity during motor execution, motor imagery,
and imagery-based online feedback,” published in Miller et al. (2010). Portions
of these patient data were anonymized according to the IRB protocol, in accor-
dance with HIPAA mandate. It was made available through the library described
in “A Library of Human Electrocorticographic Data and Analyses” by Miller
(2016), freely available at https://searchworks.stanford.edu/view/zk881ps0522.

3 Results and Discussion

MI Samples are Less Generalized in Temporal Space than ME. MI
models overfit after about 20 epochs, and their test losses were higher than test
losses of ME models (see Fig. 7). However, train losses steadily decrease, which
means that models can find and use differences between train samples. This
indicates that the model architecture may be too deep, although it consists of
only 4 layers. Previously, 2-layered models were trained to classify the same data,
but their learning speed dropped down significantly after about 10 epochs, which
was the reason to try deeper models. Stronger regularization techniques and a
bigger data set must be used to prevent model overfitting. For each subject, the
ME model performed better than MI, with one exception (see Table 3). For the
HH subject, the MI model performed better than ME, but the HH model trained
on ME data had the worst performance among the ME models. The reason is
that the HH model showed the biggest overfit on ME data.

There is No Consensus Between Models on Which Frequencies are
More Informative. For 5 out of 7 subjects, low-frequency activation maps
significantly overlap between tasks in both MI and ME, so it was expected that
these models would concentrate on higher (63–80 Hz) frequencies. To evaluate
this, the weights of the first CNN layers were visualized for each model (see
Fig. 5). In the case of MI, only 2 models show large weights in high frequencies,
while others paid the most attention to 26–34 Hz. On the other hand, in ME
models, 5 out of 7 models show large weights in higher frequencies (63–80 Hz),
while 2 models remained on low frequencies. Models tend to choose either low
or high frequencies, but the reason for this is unclear, as there is no obvious
correlation with any other observation.

High-Frequency Patterns are More Informative. BP, HH, JC, and JM
subjects show no significant overlap in 76–100 Hz MI, and only they scored the
“tongue” class better than the baseline. Additionally, HH, FP, and JM are the
only subjects with overlaps in 76–100 Hz ME activity, and they are among the
worst ME models if ranked by accuracy. To further investigate the impact of
frequencies, it can be noted that ME models for FP and JM subjects were the
only ones who had low CNN weights on high frequencies, and they performed

https://searchworks.stanford.edu/view/zk881ps0522
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Table 3. Power-only MI and ME model metrics. Spectral data (8–80 Hz) was used for
both training (100 epochs) and testing.

Subject MI

Accuracy F1 for “rest” F1 for “hand” F1 for “tongue”

BP 0.49 0.59 0.39 0.44

FP 0.44 0.56 0.34 0.33

HH 0.56 0.69 0.51 0.54

JC 0.49 0.55 0.38 0.53

JM 0.57 0.70 0.45 0.43

RH 0.49 0.60 0.34 0.36

RR 0.47 0.58 0.42 0.31

Mean 0.50 0.61 0.40 0.42

Baseline 0.50 0.67 0.40 0.40

Subject ME

Accuracy F1 for “rest” F1 for “hand” F1 for “tongue”

BP 0.71 0.69 0.69 0.76

FP 0.50 0.62 0.41 0.39

HH 0.45 0.55 0.43 0.34

JC 0.74 0.76 0.70 0.75

JM 0.65 0.76 0.53 0.58

RH 0.55 0.67 0.34 0.50

RR 0.74 0.70 0.69 0.84

Mean 0.62 0.68 0.54 0.59

Baseline 0.50 0.67 0.40 0.40

relatively lower than other ME models. The significant overlap in high-frequency
activation maps may be why FP and JM models chose to concentrate on the low
frequencies.

Models are Robust in Their Assessment of Frequency Range Impor-
tance. Weights of 8–100 Hz models were almost identical to 8–80 Hz models,
with 80–100 Hz weights being highly similar to neighboring 72–80 Hz weights.
Power-only 8–100 Hz models show slightly better average metrics than 8–80 Hz
for ME, which means that 80–100 Hz frequencies are also informative. Still, the
increase is only about 2% at most. MI models’ performance after adding 80–
100 Hz frequencies showed both increase and decrease in different scores, which
can be explained by the overall lower performance (higher overfit) of MI models.

ME and MI Data are Substantially Different. On average, the activation
overlap was higher between MI and ME than between hand and tongue (see
Table 5), and was significant almost for each activation map type. Nevertheless,
as it was shown above, MI and ME models were different in both weights and
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(a) (b)

Fig. 5. Averaged absolute weights of single-subject power-only models (first CNN lay-
ers). Weights are normalized per subject, and the color intensity corresponds to the
weight value (white is 0, dark red is the maximum weight). Although models were ini-
tiated with the same weights, they differentiated after 100 epochs. (a) models trained
on MI, (b) models trained on ME. (Color figure online)

performance. Cross-predictions between MI and ME models were made to ensure
that they are not interchangeable. Results are included in Table 6. The average
performance in both ME on MI and MI on ME was lower than the baseline.
When comparing them, ME models used on MI data show better F1 scores for
“rest”, while MI models used on ME data show better scores for “hand” and
“tongue.” This was expected, as the brain activation during ME was found to
be stronger than MI, which means MI models are more sensitive to power values
than ME models, which over-predicted the “rest” class in MI data.

Tongue Movements are Easier to Identify than Hand Movements. The
overlap between brain activation maps from hand and tongue MI and ME tasks
was calculated for each subject in motor data (see Table 4). For all subjects

Table 4. Overlap between brain activation map after either hand or tongue movement
(MI or ME), in either low or high frequencies. Overlap is significant (p-value < 0.05),
otherwise denoted by ø.

Subject MI, 8–32 Hz ME, 8–32 Hz MI, 76–100 Hz ME, 76–100 Hz

BP ø ø ø ø

FP 2.59 4.22 2.76 1.74

HH 3.50 4.99 ø 2.05

JC 1.96 2.63 ø ø

JM 3.72 4.78 ø 3.55

RH ø ø 1.60 ø

RR 4.23 2.82 4.23 ø
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Table 5. Overlap between MI and ME brain activation maps for each task and fre-
quency range, Overlap is significant (p-value < 0.05), otherwise denoted by ø. H: hand,
T: tongue.

Subject H, 8–32 Hz T, 8–32 Hz H, 76–100 Hz T, 76–100 Hz

BP ø ø ø ø

FP 5.43 4.36 4.26 5.42

HH 3.90 4.60 ø 3.86

JC 5.50 2.80 4.46 3.24

JM 5.85 3.82 4.08 2.23

RH 1.94 3.15 ø 3.21

RR 3.31 5.71 ø ø

Table 6. Metrics for each model type averaged between subjects.

Accuracy F1 for “rest” F1 for “hand” F1 for “tongue”

Power-only MI 0.50 0.61 0.40 0.42

Power-only permuted MI 0.46 0.61 0.30 0.32

Time-only MI 0.41 0.54 0.26 0.29

Power-only ME 0.62 0.68 0.54 0.59

Power-only windowed ME 0.59 0.66 0.52 0.50

Power-only MI on ME 0.44 0.55 0.34 0.33

Power-only ME on MI 0.48 0.63 0.28 0.26

except the BP subject, the overlap is significant for at least one task. Although
the overlap numbers are consistent with the ones in [36] (as we reproduced the
same study results), large overlaps mean that it can be difficult for the model
to discriminate between hand and tongue movements.

On average, the “tongue” class received higher F1 scores than the “hand”
class in both MI and ME (see Table 3). This can be explained by the fact that
each subject’s ECoG grid covered the approximate “tongue” activation area.
In contrast, only three subjects’ (BP, JC, and RH) grids covered the approx-
imate “hand” area. Nevertheless, these models still show higher F1 scores on
“tongue” rather than “hand” data. In all cases where the “hand” class received
a higher score than “tongue,” both scores were close to the baseline, negating
this difference’s significance.

Hand and Tongue Movements are Less Similar to Each Other than
to the “Rest” State. It was initially thought that models would be able to
differentiate between any movement and “rest” better than between movement
types by simply detecting a decrease in low-frequency power and an increase
in high-frequency power. Nevertheless, both MI and ME models had bigger F1
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Fig. 6. The confusion matrix for the RR model trained on ME data (numbers are
normalized by true labels). There is no mixing between the “hand” and “tongue” class
(zeros), and all incorrect predictions for movement samples were labeled as “rest,” not
another movement type.

scores (compared to the baseline) for “tongue” than for “rest.” Confusion matri-
ces were calculated to understand better how models predicted the “rest” class.
5 out of 7 MI models predicted almost the same or bigger ratio of “hand” sam-
ples as “rest” compared with the correct class, and 4 out of 7 MI models did
the same with “tongue” samples. In comparison, only 2 MI models had similar
ratios of “hand” and “tongue” predictions with either “hand” (the BP model)
or “tongue” (the FP model) samples. This was opposed to the initial expecta-
tion that movements would be more mixed between each other than with the
“rest” class. We included a confusion matrix for the best ME model (see Fig. 6).
The second and third best ME models (BP and JC) had a similar tendency to
mistake the movement with rest rather than another movement type.

Correct Spatial Information Helps Models to Learn (and Overfit).
When a model was trained on data with permuted locations, it stopped learning
after about 20 epochs. In comparison, a model trained on non-permuted data
overfitted after about 20 epochs, and the training loss continued to decrease (see
Fig. 7). Although the data were permuted in exactly the same way each epoch,
the incorrect spatial location prevented any learning. This suggests that CNN
layers find and extract specific patterns that help discriminate between sample
types, although these patterns are not common to all data samples.

The “Rest” Class Patterns are Not Affected by the Spatial Permuta-
tion. Although the overall performance of models trained on permuted MI data
is much worse, the F1 score for the “rest” class was similar to the non-permuted
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(a) (b)

(c) (d)

Fig. 7. Comparison of losses between various BP models trained on 8–80 Hz data. For
other subjects, the loss curves of respective models are very similar to this example.
The scale of y axis is different for each plot. (a) a power-only model trained on MI
data. (b) a power-only model trained on permuted MI data. (c) a power-only model
trained on ME data. (d) a time-only model trained on MI data.

models. This means that spatial information is not helpful for the “rest” class,
while it is important for “tongue” and “hand” classes. This was expected as
movement activity is localized in the motor cortex, while the pauses between
motor tasks should not induce any localized activity.

Activation Patterns are Easier to Classify in Spectral Space Rather
than Temporal. When comparing loss changes for time-only and power-
only models, both were able to train and overfit, achieving similar losses after
100 epochs. On the other hand, time-only models showed substantially worse per-
formance in all metrics, scoring much lower than the baseline. This means that
the overfit was stronger in time-only models, which was expected, as time-only
models had a bigger number of learnable parameters (200 values in a time-only
sample compared to 72 values in the power-only sample).

Combining Subjects with Similar Activation Maps Does Not Always
Help the Model. To estimate whether combining subjects’ data would result
in better model scores, for each pair of subjects, electrodes covering the same
grid cells were chosen (see Table 7), and activation overlap between them only



CNN to Detect Motor Imagery in ECoG Recorded During Dreaming 407

Table 7. Number of electrodes covering the same grid cells for both subjects. The
diagonal shows the total number of electrodes for individual subjects.

BP FP HH JC JM RH RR

BP 46 9 5 2 8 15 3

FP 9 60 4 5 19 6 20

HH 5 4 48 7 2 4 10

JC 2 5 7 48 3 13 6

JM 8 19 2 3 56 12 12

RH 15 6 4 13 12 64 6

RR 3 20 10 6 12 6 64

was calculated for each task. The results are shown in Fig. 8. The most signif-
icantly overlapping activation maps are for ME in 8–32 Hz, in both hand and
tongue tasks. It was expected that models trained on subject pairs with signifi-
cant overlap would perform better on both subjects compared to single-subject
models.

The results were mixed. Some pair models had better results for both sub-
jects; others were significantly worse; in some pairs, one subject received better
results while the other was worse. For instance, the JC-RH pair had 13 overlap-
ping electrodes and overlap in MI of hand in low frequencies. The model trained
on this pair’s MI data performed the worst among all pair models, making no
“hand” or “tongue” predictions at all. On the other hand, the FP-RR pair had
20 electrodes in common but no significant overlap in any MI task; nevertheless,
both subjects received significantly better predictions from the pair MI model
rather than respective single-subject models (the accuracy was 52% and 59%
compared to 44% and 47%, respectively). The best MI model for movement
classes (HH) boosted “tongue” predictions for 5 out of 6 and “hand” predictions
for 3 out of 6 subjects in pairs while lowering the respective scores for itself in
almost all cases. As the last example, the BP-JC model got the highest F1 scores
for both movements in all MI models when predicting JC: 61% for “hand” and
66% for “tongue.” However, BP got somewhat worse predictions from this model
than the respective single-subject model. When using pair models, on average,
two subjects (FP and RR) got better scores in all classes, two subjects (HH and
RH) got worse scores, and the rest got mixed changes.

There was a Significant Overlap Between ME but Not MI Model Pre-
dictions on REM Sleep Subjects. Three model types were used to classify
REM sleep data samples: MI, ME, and windowed ME. As all models have differ-
ent parameters and scores, high variability in assigned labels was expected. For
each model type, all assigned labels were compared for each REM sleep sample.
Not a single sample received “tongue” or “hand” labels from all models, although
some samples were predicted as “rest” by all models (133 by MI models, 407
by ME models, and 206 by windowed ME models). The biggest consensus with
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Fig. 8. Overlap metrics for each task and frequency range. Top-right corners of tables
are for hand tasks, and the bottom-left corners are for tongue tasks. Only significant
(p-value < 0.05) overlap metrics are provided. Irrelevant pairs (less than 5 electrodes
in common) are colored in light blue, otherwise white or brown. Brown color intensity
corresponds to the overlap metric value. (Color figure online)

movement predictions was in ME models (5 out of 7 models predicted 42 samples
as “tongue”).

The significance of each consensus was calculated using the permutation
method. All ME and some windowed ME models show a significant consensus
in predicting the “rest” class, but none of the MI models. For two MI mod-
els, p-values show significantly smaller classification label overlap than random.
This means that the difference between MI models is too large to combine their
predictions in the search for the “most popular” classification labels. On the
other hand, ME models show a significant agreement, but only on the “rest”
class, while “tongue” and “hand” are rarely predicted. The windowed ME mod-
els were similar in predictions to the ME models, although with less consensus.
Moreover, ME and windowed ME models predicted about 19% more “tongue”
and 48% less “hand” than MI models. In REM sleep data, all subjects had at
least one EGoG electrode positioned over or very close to the classical “tongue”
area (see Fig. 2), but only one subject had an electrode positioned over the clas-
sical “hand” area. This makes any “hand” class predictions in the REM data
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doubtful. Moreover, as it was mentioned before, the “hand” class is harder to
find in the data. This increases the reliability of ME model predictions.

3.1 Limitations

In this work, we proposed a method to introduce spatial information into the
EcoG brain activity data. All electrodes in the data were combined with preserv-
ing the electrodes’ positions on the brain to find the simplified spatial grid. When
ECoG grid data taken from different subjects and covering different brain areas
are used, the spatial grid increases in size to cover the whole brain area of inter-
est. This means that some grid cells are unfilled for each subject. Currently, they
are filled with zeros; however, CNNs cannot determine whether these zeros are
unknown values and discriminate them from a zero power. Techniques to impute
unknown values must be developed to improve this generalization method.

All subjects, whose motor data was used in this study, had medically refrac-
tory epilepsy, which could affect the functional areas of their brain, including
motor function. The seizure-related activity was not removed from the motor
data set. This increases the chance that a substantial part of the variability
between models trained on individual subjects comes from the differences in
brain activation for these subjects, which can be bigger in patients than in
healthy subjects. From another perspective, fragments with seizures add noise
to the data, but seizures happen randomly, while motor activity is present in all
respective fragments. Thus, the impact of seizures, if present, can be assumed
as minimal.

A problem specific to REM dream decoding is the abundance of saccadic eye
movements during REM sleep. Ocular activity may introduce additional noise
into the data, especially if electrodes are placed near the eyes, and confuse the
models trained on data with less ocular activity [27]. Removing possible ocular
activity artifacts is an important step that was out of scope for this work, but
should be addressed in future work.

4 Conclusion

We trained CNN models to classify motor imagery or motor execution activity
in awake subjects using various ECoG data transformations and applied them
to REM sleep data to identify motor imagery-related activity during dream-
ing. We demonstrated that motor imagery and motor execution-related ECoG
activity in awake subjects can be used to identify motor imagery-related ECoG
activity during sleep. CNN models trained on motor imagery and motor exe-
cution achieved substantially different parameters and scores. Motor execution
data had more generalized features allowing CNNs to train better than on motor
imagery data. This finding suggests that motor execution-related ECoG activity
(rather than motor imagery-related ECoG activity) in awake subjects can be a
better source for creating CNN models to classify motor imagery-related ECoG
activity during REM sleep. ME models show bigger consensus than MI models
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with predictions on the REM sleep data. Combining data from several subjects
increased the accuracy of several but not all models trained on subject pairs.
Four-layered neural networks with two CNN layers easily overfit on motor data;
thus, better feature extraction or stronger regularization of models is needed to
achieve better results.
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Abstract. Using Machine Learning and Deep Learning to predict cog-
nitive tasks from electroencephalography (EEG) signals is a rapidly
advancing field in Brain-Computer Interfaces (BCI). In contrast to the
fields of computer vision and natural language processing, the data
amount of these trials is still rather tiny. Developing a PC-based machine
learning technique to increase the participation of non-expert end-users
could help solve this data collection issue. We created a novel algorithm
for machine learning called Time Majority Voting (TMV). In our experi-
ment, TMV performed better than cutting-edge algorithms. It can oper-
ate efficiently on personal computers for classification tasks involving the
BCI. These interpretable data also assisted end-users and researchers in
comprehending EEG tests better.

Keywords: Brain-machine interface · Machine learning · Ensemble
methods · Voting · Time series · Interpretable AI

1 Introduction

Researchers from Computer Science, Neuroscience, and Medical fields have
applied EEG-based Brain-Computer Interaction (BCI) techniques in many dif-
ferent ways [2,15,19,22,24,26,34], such as diagnosis of abnormal states, eval-
uating the effect of the treatments, seizure detection, motor imagery tasks [4–
6,17,23,27], and developing BCI-based games [14]. Previous studies have demon-
strated the great potential of machine learning, deep learning, and transfer learn-
ing algorithms [1,3,7,8,12,16,18,20,21,25,28,29,37–42] in such clinical and non-
clinical data analysis.

However, the data size of such experiments is still relatively small compared
to the areas of computer vision or natural language processing. Thus, some deep
learning or big data approaches still struggling with the limitation of small dataset
size. Also, EEG signals have noise issues, partly because of the contact of sensors
and skin for several current non-invasive consumer-grade devices. The outlier issue
is also a concern for the EEG data because of the difficulties subjects have in con-
centrating on the experimental tasks during the entire session. Current machine
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learning and deep learning algorithms are more for clinical experiments and less
for the possible experiment for non-expert user to conduct at home.

Our research questions are: Can we develop a PC-based machine learning
algorithm for non-expert end-users to do EEG classification at home? Can we
achieve reasonably high accuracy while keeping the run time in an acceptable
range? Can we make the machine learning classification results explainable to
the end-users? To answer these questions, we proposed a new machine learning
classification algorithm, Time Majority Voting (TMV). We found TMV out-
performed other state-of-the-art classifiers. Also, its run time on a PC is still
acceptable compared to the deep learning algorithms. The classification results
are adequately interpretable to the end-users.

The paper is organized as follows: section two discusses several most fre-
quently used classification algorithms for BCI research, then present our new
algorithm. Section three presents our experiment conducted to test the new
algorithm. Section four elaborates our result followed by sedition five, which dis-
cusses the limitation and future work. Lastly, section six concludes the study
and summarized our answers to the research questions.

2 Algorithms

All of the code was run on a 2018 Macbook Pro with a 2.2GHz 6-core Intel
Core i7 processor and with 16 GB of memory. The Python version is 3.8. The
scikit-learn [31] version is 0.24.1. The PyTorch [30] version is 1.10. The code
discussed in this paper is available online (https://github.com/GuangyaoDou/
Time_Majority_Voting).

2.1 Existing Algorithms

u We reviewed and implemented several machine learning algorithms commonly
used in the field [9–11,13]. For examples, Linear Classifiers, Nearest Neighbors,
Decision Trees, and Ensemble Methods.

Linear Classifiers: The Shrinkage Linear Discriminant Analysis (Shrinkage
LDA) performed adequately on EEG datasets with simple tasks. The Support
Vector Machine (SVM), effective in high dimensional spaces, performed rea-
sonably well based on the previous research. These algorithms are simple to
implement and are computationally efficient.

Nearest Neighbor: Such a classifier implements the K-Nearest Neighbor
(KNN). KNN performs voting to determine an unseen dataset to one of the
k nearest neighbors. The KNN performed pretty well compared to most other
classifiers on the EEG dataset.

Decision Tree: The Decision Trees classifier is easy to understand, implement,
and interpret. The decision tree creates a model that predicts the outcome of
a data point based on decision rules. The computational cost is low and can
handle both numerical and categorical data. However, it might overfit as trees
are too complex.

https://github.com/GuangyaoDou/Time_Majority_Voting
https://github.com/GuangyaoDou/Time_Majority_Voting
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Ensemble Methods: We used Random Forest and boosting. These are Ensem-
ble Machine Learning algorithms that combine the predictions of several weaker
learners and form more robust and more accurate predictions. These have been
widely used in EEG-based experiments, and research [24,33,35].

Deep Learning: We implemented CNN with ReLu, and RNN, especially
LSTM, mainly using toolsets from the PyTorch platform. [15,34,37]. These DLs
performed very well on EEG datasets. However, we excluded these algorithms
in this paper due to their high runtime.

2.2 Our New Algorithms

This paper proposed a new voting approach based on the top two individual
classifiers. Ensemble methods, especially boosting, bagging, and voting, have
demonstrated excellent performance in previous research. [15,24,34,36,37] In
EEG-based BCI classification research, the following voting methods have been
investigated in several experiments [24,33]: majority voting, weighted voting,
and time continuity voting. Here we considered the advantages of both majority
voting and time continuity voting and developed our new Time Majority Voting
(TMV) algorithm.

Fig. 1. Our new algorithm: time majority voting
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Time Majority Voting (TMV)
Figure 1 demonstrated the concept of the new algorithm. More details are in
the Experiment section and the Result section. There are two phases in the new
algorithm. First, we investigated the state-of-the-art machine learning algorithms
[15,24,34,37] and found the top two performers on average. In our experiments
during phase 1, We tested Random Forest (RF), RBF and linear SVM, kNN,
Decision Tree, and several boosting algorithms. We found Random Forest per-
formed the best, and RBF SVM performed the second on average. Next, we
entered phase two. For each subject, we picked the majority task predicted by
the best performing classifier, the Random Forest classifier, for each time interval
of each task from each session.

The next step is voting. We used the Random Forest and the RBF SVM
to conduct the voting process. The best algorithm is the Random Forest, and
the second algorithm is RBF SVM. The voting details are shown in the six
examples at the bottom of Fig. 1. If both the Random Forest and the RBF SVM
algorithms agree with the results, as shown in the first two rows, the results
reflect both algorithms’ results. For example, as the second row shows, if both
the classifiers predicted the task 2, then the Time Majority Voting will yield
task 2 as the result. If the two algorithms do not agree on the prediction results,
the results will be labeled as the majority of tasks already determined by the
Random Forest classifier, as shown in the last two rows. No matter what the two
algorithms predict out of the five tasks, even if they predicted it as two different
tasks other than the majority task, as the last row shows, Task 2 and Task 3,
the TMV result is still set to be Task one. This concept is based on the temporal
dependence time-series features in the previous research [25,36].

3 Experiments

Several EEG experiments focus on the high-level cognitive tasks that college
students frequently conduct, as mentioned in Table 1. In this experiment, we used
the dataset from the Think-Count-Recall (TCR) paper [33]. Scalp-EEG signals
were recorded from seventeen subjects. Each one was tested in six sessions. Each
session is five minutes long, with five tasks, each task is one minute. Tasks were
selected by the subjects together with the researchers based on frequent tasks in
study environments for students in their everyday lives. Each subject completed
six sessions over several weeks. The five tasks are Think(T), Count(C), Recall(R),
Breathe(B), and Draw(D).

3.1 Data Preprocess

Data Cleaning: As mentioned in [33,35], for each task during each session,
the first 30% of the data, which is the first 18 s of each task and during the
transition phase, will be removed. Thus, each one-minute task only had 42 s
left. This has been proved reasonable during the data cleaning phase. Some
electrodes may have temporarily lost contact with the subjects’ scalp during
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Table 1. Tasks (T) in Experiments (E)

(E) T 1 2 3 4 5

[32] Math Close-eye relax Read Open-eye relax None

[36] Python passive Math passive Python active Math active None

[35] Read Write copy Write answer Type copy Type answer

[33] Think Count Recall Breathe Draw

the EEG recording. The result was that multiple sequential spectral snapshots
from one or more electrodes had the same value. In this paper, we decide to
remove such anomaly when detected for a consecutive 1.4 s. Such a cleaning
action caused a different level of loss of the data for each subject.

Subjects: We had a total of seventeen subjects. After the data cleaning actions,
subjects who lost more than 65% of the total data will be excluded from the
subsequent analysis. In the end, there were twelve subjects left to continue the
analysis. Moreover, for the six sessions of each subject, if a session lost more than
65% of the data, then that session will also be excluded for further analysis.

Time-wise Cross-Validation: We adopted time-wise cross-validation. We
divided each task into seven subsets, meaning each subset had six seconds, evenly
and continuously. Then, we created a total of seven folds. Each fold contained
six seconds of data for each task for each session. We checked any folds that
lost more than 65% of the original data in each fold and discarded these folds
for future analysis. Next, we used one fold for testing and the remaining non-
discarded folds for training, and we cross-validated them.

4 Results

4.1 Existing Algorithms

We reported the average accuracy for all subjects and the runtime of each clas-
sifier for each subject we trained and tested during phase 1 in Table 2. As we

Table 2. State-of-the-art algorithms with accuracy and run-time

Algorithms Average accuracy Average code run-time (s)

Random Forest Phase 1 0.55 42.0

RBF SVM 0.53 30.5

Nearest Neighbors 0.48 1.9
Decision Tree 0.44 0.9

Linear SVM 0.42 23.2

Shrinkage LDA 0.42 0.2

Adaboost Classifier 0.39 47.8

RUSBoost 0.39 28.2

GradientBoost 0.31 24.0
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Fig. 2. Accuracy for different algorithms

can see, Random Forest had the highest accuracy of 0.55 in our experiment, and
the SVM with RBF kernel performed adequately on the TCR dataset with an
average accuracy of 0.53. Though Nearest Neighbors did not perform as well as
the Random Forest and the RBF SVM, it was one of the fastest algorithms on
personal computers. Other ensemble methods such as Adaboost, RusBoost, and
GradientBoosting performed relatively lower than these top three algorithms.

The individual difference may impact the accuracy of each subject. But we
can still recognize a general pattern from Fig. 2. We ordered all twelve subjects by
prediction accuracy using Random Forest. Most of the algorithms demonstrated
consistent patterns for the different algorithms. Random Forest and RBF SVM
are above most of the other algorithms. We kept the threshold of maintaining
the subject to 35% of the remaining data, as we believed that when a subject
has little data left, the high accuracy from that subject contributes little to our
research.

4.2 Identify Noisy Sessions

Figure 3 shows what the Random Forest and the RBF SVM in phase 1 predicted
during the 42 s of subject 3’s task 1 for all six sessions. As we can see, both the
Random Forest and the RBF SVM mainly produced results with relatively high
accuracy in sessions one, four, and six. On the other hand, session two and three
had much noise, and session five predicted task 3 for the majority of the time.
To minimize the impact of noisy datasets, we calculated the accuracy compared
to the ground truth based on the output of Random Forest for each session for
each task in phase 1.
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Fig. 3. Subject 3’s task 1’s RF and SVM in phase 1

We excluded any sessions that yielded an accuracy of less than 50%. In the
case of Fig. 3, we excluded sessions two, three, and five for further machine
learning analysis. We reported to subject three and started discussing what may
have happened in these sessions. With the exclusion of noisy sessions, the new
accuracy for the Random Forest in phase 2 is referred to as “Random Forests
Phase 2” later in the paper. We also performed Time Majority Voting on this
cleaner dataset.

4.3 Time Majority Voting

As shown in Table 3, the Time Majority Voting (TMV) has achieved a higher
accuracy for subject three, all the six sessions. A value of −1 means that we
excluded that session for that task, as we discussed in the previous section.
The Random Forest classifier also reached a higher accuracy after cleaning the
noisy sessions. As Fig. 4 and Fig. 5 shows, the pattern is consistent across all the
subjects. Figure 5 also shows a clear pattern that not only the Random Forest
but also the RBF SVM also increased accuracy in phase 2 across all subjects.
Table 4 shows the TMV achieved an 80% average accuracy with an average 74.3 s
run time. The runtime consists of 39.1 s of running the Random Forest and 29.5 s
of running the RBF SVM. The time for the actual voting is, on average, 5.7 s.
The training process is the most time-consuming part of this analysis.
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Table 3. TCR, accuracy of top 1 (RF) phase 2, and TMV(T) (subject 3, by Ses-
sion(S)/Task(T))

S/T t1 RF t1 T t2 RF t2 T t3 RF t3 T t4 RF t4 T t5 RF t5

s1 0.686 0.745 0.669 0.683 –1 –1 0.569 0.781 0.798 0.898
s2 –1 –1 –1 –1 –1 –1 0.693 0.838 0.633 0.707
s3 –1 –1 –1 –1 –1 –1 0.731 0.824 0.938 0.969
s4 0.543 0.59 0.743 0.869 0.74 0.788 0.521 0.671 –1 –1
s5 –1 –1 0.645 0.738 0.588 0.8 0.593 0.743 0.662 0.829
s6 0.762 0.871 –1 –1 0.507 0.714 0.812 0.917 0.681 0.845
Average 0.663 0.736 0.686 0.763 0.612 0.767 0.653 0.796 0.742 0.85

Fig. 4. TMV and RF Phase 2

Table 4. TMV and Random Forest with accuracy and run-time

Algorithms Average accuracy Average code run-time (s)

Time Majority Voting 0.80 39.1 + 29.5 + 5.7 = 74.3
Random Forest Phase 2 0.7 39.1
RBF SVM Phase 2 0.66 29.5
Random Forest Phase 1 0.55 39.1
RBF SVM Phase 1 0.53 29.5

Figure 6 shows what the Time Majority Voting (TMV) predicted during the
42 s of subject 3’s task 1 for all six sessions. As you can see, sessions 2, 3, and 5
have values of −1, which means that they have been excluded. Sessions 1, 4, and
6 have less noise than sessions 2, 3, and 6, and the accuracy is relatively high.
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Fig. 5. TMV, RF Phase 2, RBF SVM Phase 2, RF Phase 1, and RBF SVM Phase 1

Fig. 6. Subject 3’s task 1’s TMV
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5 Discussion

5.1 Accuracy and Data Remain

The innovation of this method is mainly about temporal dependency. As [15,
24,34,36,37] mentioned, EEG data has a significant temporal dependency. The
signal of the same task takes about 12 to 18 s to switch to the next task. Using
majority voting can catch this type of time continuity effect. If both classifiers
recognize the same pattern, it is more likely to assure the results. If both of
the classifiers recognize the same pattern that is different from the majority
result, it is possible that the participants were doing other tasks during the data
collection. If only one classifier detects some unusual behaviors, we label it as the
majority task of the session. Thus we highlight the noise and keep the remaining
data to reflect more on the time continuity nature of the EEG signals.

5.2 Runtime and Training Data

As Fig. 7 shows, the run time directly correlated to the training data size. After
the data pre-processing, we cleaned up the noise with a plateau longer than
a threshold, as mentioned in [24,32,34]. We first identified more noisy sessions
during the Time Majority Voting process based on the top two classifiers. During
this step, more sessions were excluded for further analysis. The training process
was the most time-consuming step during the coding running process. Thus the
runtime changed together with the size of the training data.

Fig. 7. Data remained for training and run-time



Time Majority Voting 425

5.3 Interpretability

Figure 3 and 6 shows two examples of the feedback results we present to the
end-users. In this Fig. 3, the six sessions of subject three, task one is listed as
six horizontal charts. The first chart represents session one. Both the Random
Forest and the RBF SVM identified the majority task as task one. And for the
results of the different predictions, both of the classifiers agreed at some time
spots, but not all of them. Our Time Majority Voting algorithm favorite the
majority voting results.

We started with the sessions with good prediction results when demonstrat-
ing these figures to each subject. For example, in this Fig. 3, sessions one, four,
and six show pretty consistent patterns. The majority of task prediction results
were the designed task one. That implies that the subject may spend more time
on task one as planned during these sessions. Session two and three had a lot of
different prediction results from both classifiers. Thus we suspected some unex-
pected reason might cause this situation. We referred back to the experiment
notes and reached out to subject one. After discussing with the end-user, we
figured out that he had many issues with the sensor signals and was adjusting
the EEG headset most of the time during the sessions 2 and 3. Thus we had
more information to exclude these sessions from further data analysis. Session
five is another situation. The data implied that the subject was doing task three,
but the experiment notes were missing for that session, and the subject did not
remember the details about that session. Thus, we left a question mark for that
session, excluded the session for now, and came up with an improvement plan to
keep better experiment notes. This type of machine learning result is explainable
to the end-user.

Such interpretability could contribute to a better understanding of the results
and better design for future experiments.

6 Conclusion

This paper investigated the state-of-the-art machine learning algorithms that can
run on mainstream personal computers for EEG-based BCI. We then proposed
a new algorithm, Time Majority Voting (TMV). The results demonstrated that
TMV outperformed other existing classifiers. The run time for TMV is still
within the acceptable range on a PC. The interpretability of TMV can contribute
to a better understanding of the machine learning analysis and an improved
design for future experiments.
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Abstract. Improving the interface and training provided to users during
data collection could present an important step to solving the reliability
issue of Brain-Computer Interfaces (BCIs). We incorporate design prin-
cipals from human-computer interaction (HCI) and educational research
to create an interface for future researchers. Our interface is based on
being Attuned to the user (A) by providing Biased user feedback (B) and
Classification algorithm descriptions (C). This interface can serve as a
framework for providing users with feedback according to the experience
level and emotional state of the user. Additionally, the interface pro-
vides example descriptions of common classification algorithms to better
inform users of how their data is being utilized.

Keywords: Human-computer interaction · User feedback design ·
Brain-computer interfaces · Education

1 Introduction

1.1 Problem Statement

A brain-computer interface (BCI) is a computer system that communicates with
a user in an interactive method that translates brain signals into instructions
for an application to execute [12]. The common method for receiving these brain
signals is the use of electroencephalography (EEG). An online BCI system begins
by taking an EEG signal from the user and records the signal being measured
[12]. After this, the EEG signals are processed using a variety of filters which
extract the important features from the EEG signal [12]. The next step includes
classification methods that interpret the EEG features and translate them into
the command for the application [12]. Finally, users are informed whether or not
the EEG signals were successfully translated into the command for the computer
[12]. Machine Learning and Deep Learning algorithms have been implemented
in many EEG-based BCI experiments and research [2,6,13,23,27].

Current brain-computer interfaces are not reliable enough to be used consis-
tently outside of laboratory environments [7,14,22,24]. Most BCI research that
aims to solve this reliability issue focuses on improving the classification step of
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translating the EEG signals effectively into commands for the computer. This
has primarily been done through implementing new machine learning techniques.

While this research presents an important step in the right direction for BCI
classification algorithms, there has been a lack of research attention devoted
to improving the user interface for engaging with BCI systems. Improving the
interface and training provided to users could present an important step to
solving the reliability issues of BCIs [14].

1.2 Literature Review

The ability to interact with BCIs is not one that comes immediately to the user.
The user needs to learn how to operate the BCI while the system simultaneously
learns to classify the user’s EEG signals [17]. Lotte et al. describe this ability
as one that needs to be taught to a user and practiced often [14]. Specifically,
the user needs to be able to provide the EEG with consistent and clear brain
activity patterns. Without the ability to successfully interpret the user’s brain
activity, even effective classification algorithms are rendered useless [14]. Current
teaching approaches often provide users with uni-modal feedback which fails to
adhere to well-known pedagogical design principles [14].

Mladenovic emphasizes the need for a standardization of protocol designs
among researchers for how best to train users of BCIs [18]. One attempt to
outline effective BCI feedback was created by Kübler et al. [10]. They provide a
framework which emphasizes effectiveness, efficiency, and satisfaction [10]. Other
frameworks have prioritized motivational factors such as: user’s curiosity, rele-
vance to user’s values, confidence, and intrinsic and extrinsic rewards [14]. Lotte
et al. argue that by focusing on these factors, BCI performance can improve
for novice users [14]. Schumacher et al. have explored the potential for provid-
ing users of BCIs with explanatory feedback during training [28] and found no
deteriorating performance as a result of incorporating multiple forms of feed-
back. The effective use of feedback has also been studied extensively within
educational research. For example, Narciss et al. outline the value of providing
learners with details regarding not only the errors they made, but also the flaws
in the strategies they used [20].

In addition to these frameworks, Roc et al. provide a review of the feedback,
environment, and methods for mental task-based BCI user training [25]. Simi-
larly, Lotte et al. highlight more practical suggestions for the content and type of
feedback specific to BCIs [15]. Lotte et al. propose that BCI instructions include
both the goals of the training as well as explanations for classifier output [15].
Additionally, Lotte et al. opt for providing the user with detailed information
regarding the beneficial or detrimental qualities of their EEG patterns [15].

In terms of the relationship between user characteristics and feedback, a
recent study has found that a user’s level of tension affects mean BCI perfor-
mance [21]. Mladenovic et al. found that a user experiencing low initial workload
or low anxiety provides the best results when given feedback with a negative bias
as opposed to no bias [19]. Research has further suggested providing positive
feedback for inexperienced users and more honest feedback for experienced users
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[14,15]. This positive feedback can be accomplished through either making the
user believe they did better than they actually did, or only providing feedback
when the user successfully completed the task [14].

Both interactive visual and tactile forms of user feedback have been explored
for BCI training. Lotte et al. advocate for a game-like process for the user
to engage with during training and testing for BCIs [15]. Further, researchers
have discussed the interplay between EEG-based BCIs and video games [3,9].
Research by Ron-Angevin & AntonioDı́az-Estrella even suggests the use of
virtual-reality for increasing user motivation during BCI user training [26]. Addi-
tionally, research conducted by Cincotti et al. 2007 explores the potential for
vibrotactile user feedback during BCI training [5].

1.3 Purpose of Study

Through our research we hope to bridge the gap between advanced classification
methods for BCIs and the feedback that users receive while providing EEG data
for these applications. We hope to utilize design principles from human-computer
interaction research as well as educational research to improve training protocols
for users, increase the effectiveness of communication utilizing BCIs, and improve
user motivation during training and testing.

This research has the potential to impact a multitude of user groups who
could rely on BCIs [1]. For example, BCIs can serve as a pivotal piece of tech-
nology for assessing neurological disorders, providing stroke rehabilitation [16],
acting as a communication device for locked-in patients [29], and as a way to
detect human drowsiness [8].

1.4 Research Questions

The main research questions that motivate this paper are:

1. What is the most effective interface for providing user training and feedback
for BCIs?

2. How can one incorporate pedagogical methods into beneficial feedback for
users of BCIs?

2 Experiment

2.1 Experiment Design

Many popular BCI datasets, such as BCI IV Competition 2a dataset, are col-
lected without providing feedback to the users [4]. Although we cannot alter this,
we would suggest that to improve EEG data collection, this should have been
done. Thus, we will create an interface to provide example feedback for different
situations the users might encounter during data collection.

This feedback will be based on the design principles we outline in Table 1.
Within our user interface, in order to abide by principle 1, we plan to base feed-
back on user experience level. For inexperienced users, we will provide feedback
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Table 1. Design principles to guide research.

Design principles Source Implementation

(1) Positive feedback for
inexperienced user and
more honest feedback
for experienced users

Lotte and Jeunet (2015),
Lotte et al. (2013)

Ask the user for their
level of experience -
provide differing
feedback accordingly

(2) Low-anxiety users
provide the best result
when given feedback
with negative bias

Mladenovic et al. (2021) Ask the users for their
anxiety levels and
provide biased feedback
accordingly

(3) Learners benefit
from actively thinking
about the strategies
they are implementing

Narciss et al. (2004) Inform users about the
classification methods
being used for them to
better understand the
strategies they need to
employ during training

with a positive bias whereas feedback for more experienced users will be more
honest. To implement design principle 2 from Table 1, we will ask users about
their levels of anxiety during training in order to boost confidence for high-
anxiety users and provide feedback with a negative bias for low-anxiety users.
For design principle 3 from Table 1, we provide classification algorithm descrip-
tions so that users can better understand how their data is being processed and
thus come up with improved strategies for providing clear EEG signals. We hope
that including these descriptions will make users feel that they are truly a part
of the training process and not isolated from the data they provide.

Finally, in order to test the effectiveness of our interface, we had 21 partici-
pants answer survey questions as they interacted with our interface and read our
classification algorithm descriptions. Users reported their answers via selecting
options from a 4-point or 5-point scale via a Google Form.

The questions that made up our survey are:

1. What is your past experience with computer science?
2. What is your past experience with machine learning?
3. What is your past experience with brain-computer interfaces?
4. Are you motivated to learn about machine learning/brain-computer inter-

faces?
5. Do you get stressed out by computer issues?
6. What is your current understanding of Linear Discriminant Analysis?
7. Here is our description of Linear Discriminant Analysis... After reading this

description how would rate your new understanding of Linear Discriminant
Analysis?

8. What is your current understanding of Support Vector Machine?
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9. Here is our description of Support Vector Machine... After reading this
description how would you rate your new understanding of Support Vec-
tor Machine?

10. What is your current understanding of Random Forest (classification
method)?

11. Here is our description of Random Forest... After reading this description
how would you rate your new understanding of Random Forest (classification
method)?

12. How would you rate the clarity of our classification algorithm descriptions?
13. If you were providing data for a brain-computer interface, would you find

our feedback helpful?
14. How would you rate the ease of use of our interface?
15. How motivated are you to continue learning about brain-computer inter-

facesmachine learning?
16. Imagine you are providing data for a study involving brain-computer inter-

faces... After reading the descriptions above and receiving the tailored feed-
back, would you be more motivated to try your best on the tasks asked of
you during the study?

Fig. 1. Interface design flow chart
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3 Result

We created an interface that we hope will improve the data that users provide
during BCI EEG data collection. Our interface is based on being Attuned to
the user (A) by providing Biased user feedback (B) and Classification algorithm
descriptions (C). Our interface has two main capabilities: (1) Classification Algo-
rithm Descriptions and (2) User Feedback Examples. The code for our interface
is publicly available1.

If a user wants to better understand the classification algorithm that is being
used on their data, they can select this option and choose which classification
algorithm they are interested in (as shown in Fig. 1). They will then be given a
short description of the algorithm they have chosen. To motivate our choice of
LDA, SVM, and Random Forest we note that a prominent BCI researcher, Yann
LeCun, began his research by focusing on Linear classifiers, K-nearest neighbors
and SVMs [11]. Thus, we believe it is important for users of BCIs to begin by
understanding the most basic algorithms and can then move onto more advanced
and complex algorithms.

The second capability of our interface is to gauge a user’s level of anxiety and
experience during data collection. In accordance with the design principals noted
in Table 1, we provide appropriate feedback tailored to the user. Further, Table 2
shows the feedback we recommend giving to users of brain-computer interfaces
during training based on their anxiety, experience level, and the strength of their
EEG signal. For experienced users feeling no anxiety during data collection, we
will provide more honest feedback depending on the quality of their EEG signal.
For inexperienced users with some anxiety, we will provide positive feedback
only. For inexperienced users with no anxiety or experienced users with some
anxiety, we will provide more honest feedback with slight positive bias. A flow
chart for how one might engage with our interface is provided in Fig. 1.

After conducting a survey with 21 participants, we found that respon-
dents with less experience with computer science, machine learning, and brain-
computer interfaces improved more in their understanding of the classification
algorithms than those with higher experience levels (as shown in Fig. 2). We
measured survey respondents understanding of the 3 classification algorithms
through their responses to questions 6–11. Respondents first selected their under-
standing on a 5-point scale, then read our classification algorithm description,
then rated their new understanding on the same 5-point scale.

Figure 2 displays the improvement in user understanding on the y-axis. Thus,
all survey respondents improved in their understanding of the classification algo-
rithms, but the magnitude of improvement varied according to the participant’s
experience level with computer science, machine learning, and BCIs. We found
that users with less experience had similar improvement levels regardless of clas-
sification algorithm type, while users with more experience appeared to have
higher increases in understanding for LDA and SVM. Thus, we feel that it is of
the utmost importance to provide users who have less experience with ML and

1 https://github.swarthmore.edu/slevy1/ABCUserFramework.

https://github.swarthmore.edu/slevy1/ABCUserFramework


It’s Easy as ABC Framework for User Feedback 435

Table 2. Feedback provided to users.

Anxiety level Experience level Bias framework Feedback given

Feeling anxious Experience with
BCIs

Honest feedback,
positive bias

Strong signal: Your signal
looked great. Keep doing
what you’re doing. Weak
signal: Your signal wasn’t
quite right. Good try and
keep going

Feeling anxious No experience with
BCIs

Positive feedback
only (positive bias)

Strong signal: Your signal
looked great, fantastic job!
Keep doing what you’re
doing. Weak signal: Good
try. We think you will
improve with practice

No anxiety Experience with
BCIs

Honest feedback,
negative bias

Strong signal: Good job,
your signal is strong but can
always be improved. Keep
focusing on the task at hand.
Weak signal: Your signal
wasn’t clear. Try changing up
your strategy

No anxiety No experience with
BCIs

Honest feedback,
positive bias

Strong signal: Your signal
looked great. Keep doing
what you’re doing. Weak
signal: Your signal wasn’t
quite right. Good try and
keep going

Fig. 2. Improved algorithm understanding
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BCIs with classification algorithm descriptions. According to the design princi-
ples we outline in Table 1 and our survey results, we believe that an improved
classification algorithm understanding could result in increased user motivation
during BCI data collection.

We then utilized question 5 as a proxy for a user’s anxiety level during BCI
data collection. Survey respondents ranked the amount of stress they often feel
while using technology on a 5-point scale. We found that respondents with higher
anxiety levels found our user feedback more helpful relative to those with lower
anxiety surrounding new technology as per Fig. 3. Thus, users with very high
anxiety would likely benefit from the more positive feedback we utilize in our
interface. Further, these results suggest that users with low or very low anxiety
levels would respond well to more negatively biased feedback.

Moreover, users with all levels of experience with computer science, machine
learning, and BCIs exhibit a clear increase in motivation after interacting with
our interface as per Fig. 4. We measured the survey respondents’ motivation to
continue learning about machine learning and BCIs as a proxy for their moti-
vation to provide clear EEG signals during BCI training and testing. We based
the user’s motivation before and after using our interface from questions 4 and
15 in our survey. Thus, users with higher experience levels with CS, ML, and
BCIs showed a larger improvement in motivation, on average than respondents
with lower experience.

Fig. 3. User feedback helpfulness
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Additionally, in question 16, users were asked if they were more motivated to
try their best on a BCI data-related task after reading our descriptions. Survey
respondents reported an average score of 2.857 (median 3) on a 4 point scale
where 1 represented motivation would not change and 4 represented that they
were much more motivated. Thus, we believe that users of our interface would
have a higher motivation to provide clear EEG signals than users who did not
receive biased user feedback and classification algorithm descriptions.

Overall, we did find a statistically significant increase in motivation among
all survey respondents after using our interface. When conducting a paired t-test
between the motivation of each participant before and after reading our classi-
fication algorithm descriptions and using our interface, we found a statistically
significant improvement in motivation (p = 0.008, t = 2.65, df = 20).

We recognize that our measure of user motivation before and after using our
interface is not a perfect proxy as our survey respondents did not actually use
a BCI or provide EEG data. However, we believe our results serve as prelimi-
nary evidence of the importance of providing BCI users with feedback based on
human-computer interaction as well as educational design principles.

Further, we asked users how easy they found interacting with our interface
in question 14. When reporting the ease of use of our interface, the average
reported score was 4 (mean 3.905) on a 5 point scale where 1 represented very
difficult to use and 5 represented very easy to use. Thus, we believe that the
overall framework of our interface can serve as a guide for future researchers.

Fig. 4. Motivation before and after utilizing interface
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4 Discussion

4.1 Limitations

As our research was conducted during a one-semester undergraduate course, our
work was subject to time and complexity limitations. We note that the classifica-
tion algorithm descriptions provided within our interface give a simplified version
of the methods of these algorithms. We implemented the most basic classifica-
tion algorithms descriptions as a means of demonstrating our interface’s algo-
rithm descriptions, but we recognize that future work should implement more
advanced classification strategies and more detailed descriptions. Further, we rec-
ognize that future researchers may want to further customize these descriptions
to their particular work. These descriptions are meant as a sample framework
for future research.

Additionally, we provide very brief user feedback that represents the tone
and bias that should be implemented for users. We based this biased feedback on
the pedagogical and human-computer interaction principles outlined in Table 1.
Thus, future researchers should implement more descriptive feedback tailored to
their work.

Our research was limited by a lack of time and funding to be able to collect
EEG data for a BCI application. Thus, with additional time and resources, we
would gather EEG data for users that received feedback based on our inter-
face as compared to no feedback or standardized feedback and measure whether
the clarity of the EEG signal or the accuracy of the classification algorithms
improved.

4.2 Future Work

In the long term, we would collect data with both users using and not using our
interface. We would compare the quality of the data collected as well as user
ratings of their experience during the collection process.

As we did not have survey respondents interact with a real brain-computer
interface, our survey will primarily be used as a proof of concept for whether user
feedback and classification algorithm descriptions can have a positive impact on
user’s motivation and feelings of anxiety.

Our preliminary results support the findings of Lotte et al. that suggest that
BCI instructions include both the goals of the training as well as explanations for
classifier output. By providing users with classification algorithm descriptions, we
believe they will be better-equipped to provide clear EEG signals to the BCI [15].
Our results further suggest that Mladenovic et al. are correct in distinguishing
between users with low and high levels of anxiety, and more specifically providing
users with low anxiety feedback with a negative bias [19]. Additionally, Lotte et
al. (2015) reviewed a series of studies noting that only providing positive feedback
can be beneficial for inexperienced users. By attuning the user’s feedback to their
level of anxiety and experience, we believe that users will experience higher
motivation and enjoyment of the BCI data collection process.
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Questions we would like to pose to future researchers include:

1. Does accuracy of classification algorithms improve depending on whether
users are provided with biased feedback during data collection?

2. Does accuracy of classification algorithms improve depending on whether
users are provided with classification algorithm descriptions before data col-
lection?

3. Does attuning user feedback to the user’s emotional state and experience level
result in clearer EEG signals and improve user motivation when compared to
the same feedback being provided to all users?

5 Conclusion

We created an interface that is Attuned to the user (A) by providing Biased
user feedback (B) and Classification algorithm descriptions (C). We created an
interface where users can better understand classification algorithms that aid in
their understanding of how their BCI data will be utilized. Further, this inter-
face provides a framework for how to give biased feedback based on the user’s
experience and anxiety level. This framework is based on well known pedagogical
and human-computer interaction principles that suggest that a user’s motivation
increases as they better understand the goals of the task at hand. Our interface
provides an important step in the direction of improving human computer inter-
action within the field of machine learning and brain-computer interfaces.
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Abstract. This paper compares the performance of machine learning
algorithms trained and tested on single-subject EEG data compared to
nine-person cross-subject EEG data from the BCI IV 2a dataset. To com-
pare the performance of single-subject and cross-subject EEG models,
we implement eight machine learning algorithms and test them on EEG
motor imagery data. Single-subject models had higher average accura-
cies compared to cross-subject trained models for 7 out of 8 machine
learning models.

Keywords: Motor imagery · Single-subject · Cross-subject

1 Introduction

1.1 Problem Statement

A problem in creating accurate EEG motor imagery models is a lack of large
datasets [12]. Compared to the computer-vision field, which has many large
benchmark datasets like ImageNet [5], the brain-computer interface field does
not. Besides a lack of the quantity of EEG data, EEG signals vary significantly
from person to person. One study was able to successfully identify individuals
based on their EEG signals with 100% accuracy using many machine learning
models [11]. Another study used neural networks and EEG signals for system
authentication instead of a password, and the researchers achieved 97–98% accu-
racy [23]. This research proves individual EEG signals are unique, making it
challenging to train EEG classification models using EEG data from multiple
individuals. These two problems with EEG datasets pose the question should
researchers train models on fewer data from just one subject or train models on
more data from multiple subjects?

1.2 Research Question

This paper attempts to answer the research question, are single-subject models
or nine-person cross-subject models better for classifying motor imagery data
from the BCI IV 2a dataset?
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1.3 Literature Review

This paper uses the BCI Competition IV 2a dataset because the dataset is widely
used within the brain-computer interface domain [21]. The highest classification
accuracy achieved upon the BCI Competition IV 2a dataset is 92.3% using a fea-
ture extraction method of LDA-after-PCA with a classification of a voting-based
extreme learning machine [6]. Previous research on classification algorithms has
shown that there is no single algorithm suitable for all applications and datasets
[24]. This research has motivated us to include a variety of classification algo-
rithms in our experiment.

We determined to implement LDA and SVM algorithms because “both LDA
and SVM were, and still are, the most popular types of EEG based-BCIs”
[16]. Furthermore, SVM often outperformed other algorithms in many studies.
We chose to test Random Forest because “shrinkage linear discriminant analy-
sis(LDA with shrinkage) and random forests also appear particularly useful for
small training sample settings” [16]. The BCI Competiton IV 2a dataset is rela-
tively small with only nine test subjects, so algorithms that run on small train-
ing samples seem beneficial. Furthermore, since the literature recommends LDA
generally and with shrinkage for small sample sizes, we implemented three LDA
algorithms. We use one LDA algorithm without shrinkage as a baseline and two
with different shrinkage methods, Ledoit-Wolf Shrinkage and Oracle Approxi-
mating Shrinkage(OAS). Since the random forest is an ensemble learning method
and neither LDA nor SVM are, we decided to include an additional ensemble
learning algorithm, AdaBoost. AdaBoost has been shown to outperform other
classifiers, including SVM, in EEG datasets comprised of driver fatigue data [10].
We included a CNN algorithm because we wanted to include a deep learning algo-
rithm in our experiment. These different algorithms were selected to provide a
broad scope to our experiment of subject-specific vs. cross-subject model perfor-
mance. This will allow further researchers to determine which algorithms may
perform well when trained on a subject-specific versus cross-subject basis.The
challenge of highly individualized EEG data has been met with research on
cross-subject classification architectures. [4] found success with a multi-branch
2d convolutional neural network that achieved a 84.1% accuracy when tested
on the eegmmidb dataset (103-subjects). This model was shown to be com-
petitive with three state-of-the-art CNN classifiers: EEGNet, ShallowConvNet,
and DeepConvNet. However, the cross-subject model proposed was up to four
times more computationally expensive than other state-of-the-art algorithms. A
cross-subject workload classifier based on a hierarchical Bayes model was imple-
mented on an 8-subject dataset and was found to have comparable accuracy to
benchmark subject-specific classifiers [22]. While our research has yielded many
attempts to implement cross-subject architectures, we have not found research
that compares a variety of algorithms and compares performance based on cross-
subject versus single-subject training.
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2 Method

2.1 Data

The BCI IV 2a dataset consists of EEG data collected from 9 subjects [15].
The data consists of cue-based BCI response data, covering four distinct motor
imagery tasks. The subjects were asked to imagine the movement of their left
hand, right hand, both feet, and tongue. The data was collected for two sessions
on differing days for each subject. Each session consisted of 6 runs separated
by short breaks, and each run consisted of 48 trials (12 for each specific task).
Before each run, researchers recorded subjects for five minutes in order to esti-
mate Electrooculography (EOG) influence. EOG signals are electrical signals
generated by the eyes. The purpose of estimating EOG signals is to help remove
eye movement artifacts from the EEG data. The pre-run five minute record-
ing consisted of two minutes with eyes open (looking at a fixation cross on the
screen), one minute with eyes closed, and one minute with eye movements (1).
The EEG data was collected using twenty-two AG/AgCl Electrodes (2). The
EEG signals were sampled 250 Hz and bandpass-filtered between 0.5 Hz and
100 Hz (Figs. 1 and 2).

Fig. 1. Per subject timing scheme of each session [15]

Fig. 2. Left: Electrode montage corresponding to the international 10–20 system.
Right: Electrode montage of the three monopolar EOG channels [15].

After data collection, a visual inspection of all data sets was carried out by
an EEG expert, and trials containing artifacts were marked accordingly. The
BCI IV 2a data set contains GDF files, General Data Format files for biomedical
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EEG Data

Seperate Data by Subject

Train and each model on each of the 9 subject data sets

Calculate the average accuracy of each model type

Train and test each model on entire dataset

Fig. 3. Experiment flow chart

signals, training and testing file for each of the nine subjects, 18 files total.
The files we are using were preprocessed using the open-source BioSig toolbox
in MATLAB. Each GDF file was converted to a MAT file, containing binary
MATLAB formatted data. The MAT files are then read into our code.

2.2 Experiment

To compare the performance of single-subject and cross-subject EEG models,
we implemented eight machine learning algorithms and tested each of them
on single-subject subsets of data and all of the cross-subject data (Fig. 3). We
defined single-subject models as models trained and tested on data from one sub-
ject in the dataset and cross-subject models as trained and tested on data from
all nine subjects. The algorithms implemented include LDA without Shrinkage
[1], LDA with Ledoit-Wolf Shrinkage [14], LDA with OAS [3], SVM [2], Random
Forest with 10 estimators [9], Random Forest with 50 estimators, AdaBoost [7],
and CNN [13]. We used the scikit-learn library [20] to implement all of our algo-
rithms except for the CNN. Our CNN model used the Pytorch library [19]. We
preprocessed the data using spatial filters [8].

3 Results

Single-subject models achieved higher average accuracies versus cross-subject
models for 7 out of 8 machine learning models. The average decrease in accuracy
performance amongst the models tested was 11.33% (Table 1, Table 2, Fig. 4).
SVM achieved the highest accuracy amongst single-subject models and cross-
subject models.
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Fig. 4. Comparing single-subject (blue) and cross-subject (red) trained models (Color
figure online)

Table 1. Average accuracy single subject models

Algorithm Accuracy(%)

LDA without shrinkage 24.1

CNN 25.3

AdaBoost 46.4

Random forest 50 estimators 46.9

Random forest 10 estimators 59.5

LDA with ledoit wolf 66.7

LDA with OAS 70.2

SVM 72.5

Table 2. Accuracy all subject models

Algorithm Accuracy(%)

LDA without shrinkage 24.0

CNN 25.3

AdaBoost 33.9

Random forest 50 estimators 36.2

LDA with OAS 45.1

LDA with ledoit wolf 45.5

Random forest 10 estimators 55.5

SVM 55.5
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4 Discussion

4.1 Algorithms

LDA and SVM both employ hyperplanes that separate data points represent-
ing different classes. The key distinction between the two algorithms is the
means of determining the hyperplane. The LDA models hyperplane is deter-
mined by a projection that minimizes the intraclass variance and maximizes the
distance between the classes. This method of determining a hyperplane is poten-
tially advantageous for BCI applications as it requires a very low computational
requirement [16]. The SVM model’s hyperplane is determined by the projection
that maximizes the distance from the nearest training points (i.e. margins). In
maximizing the margins as opposed to the distance between classes, SVM models
tend to be far more generalizable.

Random Forest and AdaBoost are both ensemble learning algorithms that
work in slightly different manners. At a high level, Random Forest is implemented
by creating many decision trees that take into account features of the data
at hand and makes use of a bagging technique. AdaBoost is implemented by
creating many decision stumps and making use of boosting techniques. These
stumps are decision trees, with only one node and two leaves. Models using these
two methods tend to be less prone to overfitting and high variance.

CNN is a deep learning architecture that is modeled after the function of
neurons within the human brain. CNN commonly consists of multiple layers
including an input, output, multiple convolutional, pooling, fully connected, and
normalization layers. CNN is a supervised deep learning algorithm that has been
proven to be very successful in several domains including image classification
and BCI [16]. We suspect that the relative inaccuracy of the CNN compared to
the other algorithms tested is due to the dataset size. Research shows that the
accuracy of CNN is positively correlated with the size of the training set [17].
The BCI IV 2a dataset is relatively small and we suspect that the CNN will
perform better with the introduction of a larger training set.

One of the main issues within the field of BCI data classification is curse-of-
dimensionality. This curse arises in high dimensional data, as the data needed
to accurately describe distinct classes grows exponentially. Our SVM model has
performed better relative to Adaboost, Random Forest, and the multiple LDA
implementations due to the SVM’s resilience to the curse-of-dimensionality issue.
This resilience allows SVM to achieve greater accuracy with high dimensional
feature vectors and a small training set. Moving forward, we plan to implement
our algorithms on another dataset to see if our results hold. Furthermore, we
plan to test the performance of other algorithms, such as a hybrid SVM-LDA
classification algorithm and a kernel-modified SVM on this data set.

4.2 Single Subject versus Cross Subject Models

The substantial accuracy increase from training on a per-subject basis can be
attributed to the variability of subjects’ EEG data in response to the same
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stimuli. Signals from the brain are unique in response to the same stimuli, varying
from person to person. As a result of this quality of EEG data, the vast majority
of EEG classification methods are subject-dependent [18]. The discrepancy of
EEG data collected for the same tasks amongst different subjects most likely
caused the cross-subject trained models to perform worse. We concluded that
single-subject models perform better at classifying motor imagery data from the
BCI IV 2a dataset versus nine-person cross-subject models.

4.3 Further Research

We suggest further research comparing single-subject and cross-subject models
with larger datasets containing more subjects. Further research could determine
how large of a dataset is needed for cross-subject models to outperform single-
subject models. We also recommend research into methods to standardize EEG
data from different subjects.

5 Conclusion

SVM performed the best for EEG motor imagery classification data out of our
subset of selected algorithms. However, almost all cross-subject models exhibited
a substantial loss in accuracy relative to the single-subject trained models.

A Appendix

Accuracy for each single-subject model. Bold indicates the highest performing
accuracy for a subject. The algorithm order is consistent with previous tables in
the paper (Table 3, 4, 5, 6, 7, 8, 9, 10 and 11).

Table 3. Subject 1 model accuracies

Algorithm Accuracy(%)

LDA without shrinkage 24.9

CNN 25.3

AdaBoost 62.6

Random forest 50 estimators 79.6

Random forest 10 estimators 80.0

LDA with ledoit wolf 83.6

LDA with OAS 83.6

SVM 85.1
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Table 4. Subject 2 model accuracies

Algorithm Accuracy(%)

LDA without shrinkage 24.3

CNN 24.4

AdaBoost 44.2

Random forest 50 estimators 10.8

Random forest 10 estimators 5.6

LDA with ledoit wolf 54.8

LDA with OAS 57.2

SVM 57.2

Table 5. Subject 3 model accuracies

Algorithm Accuracy(%)

LDA without shrinkage 23.8

CNN 24.9

AdaBoost 53.5

Random forest 50 estimators 73.7

Random forest 10 estimators 76.1

LDA with ledoit wolf 76.2

LDA with OAS 79.9

SVM 81.0

Table 6. Subject 4 model accuracies

Algorithm Accuracy(%)

LDA without shrinkage 20.2

CNN 25.9

AdaBoost 36.7

Random forest 50 estimators 46.3

Random forest 10 estimators 49.5

LDA with ledoit wolf 58.8

LDA with OAS 58.3

SVM 62.7
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Table 7. Subject 5 model accuracies

Algorithm Accuracy(%)

LDA without shrinkage 25.4

CNN 23.6

AdaBoost 51.8

Random forest 50 estimators 3.1

Random forest 10 estimators 8.6

LDA with ledoit wolf 43.3

LDA with OAS 60.1

SVM 64.9

Table 8. Subject 6 model accuracies

Algorithm Accuracy(%)

LDA without shrinkage 22.8

CNN 24.7

AdaBoost 28.8

Random forest 50 estimators 27.9

Random forest 10 estimators 30.3

LDA with ledoit wolf 47.4

LDA with OAS 51.1

SVM 51.2

Table 9. Subject 7 model accuracies

Algorithm Accuracy(%)

LDA without shrinkage 26.4

CNN 25.6

AdaBoost 42.2

Random forest 50 estimators 53.6

Random forest 10 estimators 53.3

LDA with ledoit wolf 92.1

LDA with OAS 92.1

SVM 86.3
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Table 10. Subject 8 model accuracies

Algorithm Accuracy(%)

LDA without shrinkage 21.0

CNN 24.3

AdaBoost 50.1

Random forest 50 estimators 50.5

Random forest 10 estimators 51.4

LDA with ledoit wolf 85.2

LDA with OAS 87.0

SVM 87.1

Table 11. Subject 9 model accuracies

Algorithm Accuracy(%)

LDA without shrinkage 28.0

CNN 24.6

AdaBoost 37.5

Random forest 50 estimators 70.0

Random forest 10 estimators 73.2

LDA with ledoit wolf 68.9

LDA with OAS 0.75

SVM 85.6
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Abstract. Nowadays, applications for monitoring physical activity and
health are becoming popular, especially for human-computer interac-
tion (HCI) by users with some physical disabilities. Electroencephalog-
raphy (EEG) data analysis of some HCI-related activities can be use-
ful to support everyday life of such people. Recently several approaches
based on artificial intelligence methods, like neural networks (NN), for
example, fully connected NN (FCN), convolutional NN (CNN), recur-
rent NN (RNN), were successfully used for EEG data analysis. Some
new attention-based NN (wA) architectures are very promising in vari-
ous applications. This work is dedicated to the investigation of various
hybrid combinations, like FCN-CNN, CNN-RNN, CNN-wA, RNN-wA,
CNN-RNN-wA, etc. with regard to EEG data analysis. These hybrid
models were trained on the grasp-and-lift (GAL) dataset where users
use their arm to manipulate a smartphone.

Keywords: Hybrid deep neural network · Convolutional neural
network · Recurrent neural network · Long short-term memory ·
Grasp-and-lift · Brain-computer interface

1 Introduction

Different approaches of artificial intelligence, for example deep learning (DL)
methods based on deep neural networks (DNN), have been used successfully to
process different data starting from the very first attempts [9,14–16,24,36] to
the recent advances [21,29–31]. Especially, these activities have become very
intensive for the processing of data in medical applications, for example, in
healthcare and elderly care [6,8]. For example, they have been studied and used
for the analysis of temporal sequences such as electroencephalography (EEG)
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signals obtained from the brain-computer interface (BCI) for various purposes
[18,20,28]. This work is devoted to examining EEG data collected by the BCI
in order to classify certain bodily actions (here hand movements) using different
DNNs.

The structure of this article is as follows: Sect. 2 Background and Related
Work gives a brief overview of some similar attempts to study the EEG of
DNN, Sect. 3 Methodology presents the dataset, hand actions with EEG recorded,
DNN types and metrics used, the Sect. 4 Experiment describes the results on
different DNNs, the Sect. 5 Discussion contains a summary of all results with the
comparative analysis of the applied hybrid DNNs, and the Sect. 6 Conclusions
gives an overview of the potential directions for further studies.

2 Background and Related Work

The different types of DNNs have been used in EEG-research in medical, educa-
tional, operational, and other applications. For example, EEGNet DNN, a com-
pact convolutional neural network (CNN), has been developed for EEG-based
BCIs [20]. This EEG-related model uses EEG feature selection concepts by deep
and separable convolutions and gives relatively high performance compared to
other similar approaches. 3D-CNN has been proposed for the classification of
EEG signals by mixture of multidimensional features that improves the accu-
racy of the classification of tasks activated by the sensorimotor area in the brain
[35]. Some combinations of CNNs and recurrent neural networks (RNNs) have
been proposed also [23]. Other CNN-linked studies focus on sleep stage clas-
sification, stress detection, driver fatigue detection, motor image classification,
and emotion detection and classification [13]. Prediction of single-trial EEG hand
movement force and velocity from CNN models has also been demonstrated [33].

Recently, some hybridization approaches combining CNNs with various
recurrent neural networks (RNNs), including long-term memory (LSTM) blocks,
have been proposed for a similar classification problem: identify hand gestures
from EEG data using RNN has recently been proposed. Different RNN archi-
tectures were compared for performance, where some measures like dropout
improved RNN performance [4]. In another work, electrocorticography (EcoG)
was used for the detection and prediction of hand movement [34]. The multi-
modal model with CNN and with short-term memory (LSTM) elements was
applied. To estimate hand kinematic parameters from non-invasive EEG time
series DL models were used [26]. In particular, several DNNs including compo-
nents from CNN and LSTM models have been proposed to obtain information
about the expected movement of the hand from EEG signals.

In relation to these results, the aim of this work is to analyze the perspectives
of combining the components of various NNs, for example, fully connected NN
(FCN), CNNs, RNNs, with hidden states (HSs), and with attention (wA) NN
architectures that proved to be efficient in various applications.
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3 Methodology

In this section some experimental aspects are described, namely: the dataset
with recorded brain activities corresponding to 6 basic types of physical action,
some types of hybridized FCN, CNN, RNN, HS, and wA models, metrics. They
are used to investigate the different types of DNNs applied to time sequences of
EEG signals measured with the BCI setup. The main objective was to solve the
classification problem: to determine the physical actions (here, the movements of
the hand) by analyzing the related brain activity, measured by the corresponding
EEG time sequences.

3.1 Dataset

The widely used “grasp-and-lift” (GAL) dataset contains information about
brain activity of 12 persons [2,25]: more than 3900 trials (monitored and mea-
sured by the sampling rate 500 Hz) in 32 channels of the recorded EEG signals.
The persons tried to perform 6 types physical activities, namely: HandStart -
the person moves a hand to an object (for example, some small size gadget like a
smartphone), FirstDigitTouch - the person touches the object by a finger (for
example, press a button), BothStartLoadPhase - the person takes (“grasps”)
the object by fingers, LiftOff - the person raises (“lifts”) the object by fin-
gers, Replace - the person returns the object by fingers back, BothReleased -
the person releases fingers. The data pre-processing was used to cut regions of
interests (ROIs) that correspond to the actual HCI physical actions of users.The
current problem is that some signals overlap and their classification become more
complex because they were not presented separately (Fig. 1).

The classes which intersect with other classes were not included in the
research. It is another complex task how to correctly classify such overlapping
classes. That is why the following 4 classes were selected for the further investi-
gations: HandStart (Class 0), BothStartLoadPhase (Class 3), LiftOff (Class
4), BothReleased (Class 5) (Fig. 1).

3.2 Models

Several neural networks (NN) were used as elementary blocks of the proposed
hybrid combinations, for example, fully connected NN (FCN), convolutional NN
(CNN), recurrent NN (RNN), with hidden states (HSs), and with attention
(wA) NN architectures. Various hybrid combinations, like FCN-CNN, CNN-
RNN, CNN-wA, RNN-wA, CNN-RNN-wA, etc. were considered:

– the baseline models like: AlexNet, LeNet, VGG16, custom simple CNN, sim-
ple RNN (Fig. 2a), GRU, LSTM,

– their convolutional and recurrent (CR-NN) hybrids like: CNN-RNN (Fig. 3a),
CNN-GRU, CNN-LSTM, and their more complicated hybrids like: CNN-
RNN-CNN (Fig. 3d), CNN-GRU-CNN, CNN-LSTM-CNN,
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Fig. 1. Example of overlapping EEG data for some hand movement classes
(FirstDigitTouch and BothStartLoadPhase). Class 0 - HandStart, Class 1 -
FirstDigitTouch, Class 2 - BothStartLoadPhase, Class 3 - LiftOff , Class 4 -
Replace, Class 5 - BothReleased.

– their combinations with attention (wA) and hidden state (HS) hybrids
like: RNN-wA (Fig. 2c), GRU-wA, LSTM-HS, RNN-HS (Fig. 2b), GRU-HS,
LSTM-HS, and their more complicated hybrids like: CNN-RNN-wA (Fig. 3c),
CNN-GRU-wA, CNN-LSTM-wA, CNN-RNN-HS (Fig. 3b), CNN-GRU-HS,
CNN-LSTM-HS.

The models with the hidden states (HS) were used where RNN returns the
full sequence of hidden states for each input instead of the last state. It gives
additional information to the next states. In the next modification additional
weights are applied on the hidden states in order to implement the attention
mechanism [5]. Recently the dependence between various DNN architectures and
their performance in the classification problem for 6 GAL-types of movements
was studied for the following types of CNNs described in our previous work
[12] for: FCN [27], Lenet-like CNN [22], Alexnet-like CNN [19], VGG-13 CNN
[32], “vanilla” DNN [12]. Also some combinations of the following RNNs were
researched: “vanilla” LSTM (from Tensorflow-Keras framework [7]) as represen-
tation of the classic LSTM architecture [14], and hybrid CNN-LSTM network
with 2D convolution operations across all 32 EEG channels for sample of EEG
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Fig. 2. Some examples of the simple RNN-based models used: simple RNN (a), simple
RNN with the hidden states and the flatten layer (b), simple RNN with the hidden
states, the attention layer, and the flatten layer (c).

time sequence with LSTM block added [17]. In our previous works, the main
idea was to perform convolution operations on an EEG temporal sequence of
each EEG channel, assuming that 32 EEG channels are independent. Later, the
32-lead EEG workflows were merged into FCN layers before the classification
layer. The other idea was to use 1D convolution operations on the 32 EEG chan-
nels for each time step and 2D convolution operations on the 32 EEG channels
for an example EEG time sequence in CNN and hybrid CNNs [12,17]. As far
as some new attention-based NN (wA) architectures are very promising in vari-
ous applications, this work is dedicated to the investigation of additional hybrid
combinations, like FCN-CNN, CNN-RNN, CNN-wA, RNN-wA, CNN-RNN-wA,
etc. with regard to EEG data analysis of 4 classes.
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Fig. 3. Some examples of the CNN-RNN-based hybrid models used: CNN-RNN (GRU,
LSTM) (a), CNN-RNN hybrid with the hidden states and the flatten layer (b), CNN-
RNN hybrid with the hidden states, the attention layer, and the flatten layer (c),
CNN-RNN-CNN hybrid with the hidden states, the attention layer, and the flatten
layer (d).
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3.3 Metrics

Several standard metrics were used like accuracy and loss that were calculated
during each run as the minimal value and maximal value of loss and accuracy,
respectively. The area under curve (AUC) was measured for receiver operating
characteristic (ROC) with their micro and macro versions, and their mean and
standard deviation values. In fact, for a given threshold, accuracy measures the
percentage of correctly classified objects, regardless of the class they belong to.
AUC is threshold-invariant and can measure the quality of the models used here
independently of the chosen classification threshold. As far as accuracy depends
on the threshold chosen, AUC accounts for all possible thresholds. Because of
this, it can sometimes provide a broader view of classifier performance. To deter-
mine the basic statistical properties of the metrics obtained (accuracy, loss, AUC)
stratified k-fold cross-validation was applied (k = 5) where the folds were created
by preserving the percentage of samples for each class.

3.4 Workflow

The before mentioned types of DNNs (Figs. 2 and 3) were used for analysis of
time sequences of EEG signals (measured by BCI setup) at training, validation
and testing stages. The best trained models were saved after each training iter-
ation as checkpoints for the testing stage. Finally, the models with the maximal
validation accuracy were used here for demonstration of the results obtained.
The number of signal samples (N) in the input EEG time sequence (TS) was
equal to 350 (in contrast to our previous attempts [12,17] where TSs of different
sizes in the range from 100 up to 2000 were used). Since the average duration of
each stage is 0.3 s, it was decided to use as input data a series of 350 consecutive
measurements. 150 measurements before the first label, 150 measurements with
labels and 50 measurements after the labeled data. At each epoch, the generators
take data from each category from a randomly generated sequence. To diversify
the data, it was decided to choose a starting point for the sequence to be used for
training, validation and testing in a certain range randomly in the range of 10
measurements. The only present label was set as a ground truth (GT). The train-
ing, validation, and testing stages were performed for the GAL-dataset that was
divided in proportion of 82.4% (3244 examples)/8.8% (346 examples)/8.8% (346
examples) for training/validation/testing sets, respectively. Finally, it allowed us
to obtain trained models, calculate metrics (including AUC, and its micro and
macro versions), and plot metrics versus the model types (see below).
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4 Experiment

4.1 Exploratory Data Analysis (EDA)

The GAL-dataset [2,25] was used and pre-processed in a standard way (see
details in our previous works [12,17]) with taking into account the correspon-
dent time position of physical actions (actually hand movements here) and their
duration [3]. In Fig. 1 one example of the time sequences is shown that was
obtained after EDA and such pre-processing was performed for all 32 EEG chan-
nels. Here the most characteristic parts of EEG signals are shown for the better
understanding the details of EEG brain activity. Various combinations of EEG
data channels can be used for their processing on the basis of DNNs like simple
RNN, GRU, LSTM, and their combinations.

4.2 DNN Training/Validation/Testing Stages

For all settings, the AUC values were measured for each of the hand movements
and then their average micro and macro values were also calculated. A macro-
average AUC calculates the AUC metric for each class independently and then
the average (all classes are treated equally) is computed. A micro-average AUC
collects all classes to obtain the average metric. These metrics are very important
for multi-class classification problems like here, since the micro-average AUC
“takes imbalance into account”, i.e. the resulting value is based on the proportion
of each class, i.e. the performance of the large class has more influence on the
result than the performance of the small class. But the macro-average CSA
“does not take into account the imbalance”, that is the obtained performance is
a simple average across classes, and each class is given equal weight regardless
of class proportions.

Baseline Simple RNN, GRU, LSTM. Then 5-fold cross-validation was per-
formed for the simplest (“baseline”) RNN, GRU, LSTM (in Tensorflow Keras
implementation) models during the single epoch [1]. Then, the mean AUC values
were calculated for the different validation subsets and some results for simple
RNNs are reported here in Fig. 4.

Table 1. AUC-values, parameters, and training time for the baseline models (RNN,
GRU, LSTM) used.

Model AUCmacro Parameters Training time, s

SimpleRNN Dense 0.758 761,604 3,284

GRU Dense 0.796 1,299,904 1,175

LSTM Dense 0.793 1,565,904 1,275
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CNN-Based hybrids of RNN, GRU, LSTM. The CNN-based hybridization
gives the statistically significant impact on increase of the AUC-macro metric
Fig. 5.

Fig. 4. The mean AUC-macro values (averaged after 5-fold cross-validation) for the
baseline models (RNN, GRU, LSTM) used (details in Table 1).

Table 2. AUC-values, parameters, and training time for the CNN-based hybrid models
(CNN-RNN, CNN-GRU, CNN-LSTM) used.

Model AUCmacro Parameters Training time, s

CNN SimpleRNN Dense 0.794 1,359,416 1,666

CNN GRU Dense 0.799 3,823,226 899

CNN LSTM Dense 0.807 5,038,616 906
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Fig. 5. The mean AUC-macro values (averaged after 5-fold cross-validation) for the
CNN-based hybrid models (CNN-RNN, CNN-GRU, CNN-LSTM) used (details in
Table 2).

CNN-HS-Based hybrids of RNN, GRU, LSTM. But the further CNN-
HS-based hybridization gives the much more significant impact on increase of
the AUC-macro metric Fig. 6.

Fig. 6. The mean AUC-macro values (averaged after 5-fold cross-validation) for the
CNN-HS-wA-based hybrid models (CNN-RNN-HS, CNN-GRU-HS, CNN-LSTM-HS)
used (details in Table 3).
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Table 3. AUC-values, parameters, and training time for the CNN-HS-based hybrid
models (CNN-RNN-HS, CNN-GRU-HS, CNN-LSTM-HS) used.

Model AUCmacro Parameters Training time, s

CNN SimpleRNN Hidden Dense 0.814 11,649,416 1,803

CNN GRU Hidden Dense 0.873 14,103,266 922

CNN LSTM Hidden Dense 0.859 15,328,616 955

The similar tendency was observed for other combinations of CNN, RNN, HS,
wA components. The best hybrid models with the highest values of AUCmacro
are shown in Fig. 7.

5 Discussion

The results obtained demonstrate the various levels of performance for the differ-
ent considered DNN architectures, where GRU-wA, CNN-GRU-HS, CNN-GRU-
wA, CNN-RNN-wA give the highest AUCs (Fig. 7 and Table 4). The considered
attention-based DNNs give the highest AUCs > 0.85, and, actually, they are
very close to the values published by others and mentioned above. The higher
values of attention-based (wA) models can be explained by the better account
of the complex relationships in EEG brain activity which is correlated in time
and have causal relationship.

Fig. 7. The hybridized models with the best metrics observed (details in Table 4).

Use of hidden states gives more parameters for analysis and more information
about the EEG data than a single output state. Additional attention on the
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Table 4. AUC-values (Fig. 6), parameters (Fig. 7), and training time for the models
considered (Fig. 2 and 3).

Model AUCmacro Parameters Training time, s

CNN LSTM CNN Dense 0.854 62,568,724 1,885

CNN GRU CNN Dense 0.846 62,429,774 1,783

CNN RNN CNN Dense 0.768 62,148,724 4,835

CNN LSTM Hidden Attention Dense 0.845 15,329,051 946

CNN GRU Hidden Attention Dense 0.867 15,329,051 985

CNN SimpleRNN Hidden Attention Dense 0.865 11,649,851 1,766

CNN LSTM Hidden Dense 0.859 15,328,616 955

CNN GRU Hidden Dense 0.873 14,103,266 922

CNN SimpleRNN Hidden Dense 0.814 11,649,416 1,803

CNN LSTM Dense 0.807 5,038,616 906

CNN GRU Dense 0.799 3,823,226 899

CNN SimpleRNN Dense 0.794 1,359,416 1,666

LSTM Hidden Attention Dense 0.859 172,576,954 2,914

GRU Hidden Attention Dense 0.879 172,310,954 4,073

SimpleRNN Hidden Attention Dense 0.854 171,772,654 4,594

LSTM Hidden Dense 0.792 172,575,904 3,999

GRU Hidden Dense 0.772 172,309,904 3,650

SimpleRNN Hidden Dense 0.728 171,772,654 4,907

LSTM Dense 0.793 1,565,904 1,275

GRU Dense 0.796 1,299,904 1,175

SimpleRNN Dense 0.758 761,604 3,284

LeNet 0.800 25,815,476 895

AlexNet 0.851 320,446,212 4,496

hidden states gives more information from additional weights. As a result, more
information is given to the dense layers. The single output state may lost the
information in the Simple RNN architecture. LSTM and GRU have more ability
to accumulate the information in the last state, so they show better results in the
models without hidden states. Although the best accuracy was achieved without
the use of convolutional layers, convolutional layers helped to significantly reduce
the number of parameters (Fig. 8, Table 4). Therefore, models with convolutional
layers may be more attractive if resources are limited. Although the convolutional
layers helped to significantly reduce the number of parameters in the models, the
learning time changed in a similar way, but to a lesser extent. This is because it
takes a lot of time to run generators that use a less optimized and slower CPU
for this. GPUs are used differently on different models depending on the number
of calculations and the ability to use optimized operations. So the GPU is more
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Fig. 8. The number of parameters in the models used (details in Table 4).

efficient on convolutional layers and can take full advantage of the amount of
resources on the GPU only when the GPU is loaded more. It is assumed that the
lower level of convergence and performance of other DNNs can be interpreted
by the worse susceptibility to the distinctive patterns in EEG sequences (that
are characteristic for specific physical actions) in comparison to other networks
(even after one epoch). This is particularly important considering other work
where other combinations of CNN and LSTM blocks were highly effective in
detecting and predicting hand movements by analyzing EEG brain activity [26,
34]. Therefore, a more detailed investigation of the specific contributions of FCN,
CNN, RNN, HS, wA and other blocks should be investigated.

6 Conclusions

The experimental results suggest that hybrid DNNs based on FCN, CNN, RNN,
wA, HS components can be used to classify reliably some hand movements
(where AUCs > 0.87 after an epoch) through small and simple combinations
of the FCN, CNN, RNN, wA, HS. These results demonstrate the possibility to
classify HCI physical actions like GAL hand movements reliably by various com-
binations of NN components (with AUCs > 0.87 after an epochs). The reliable
small-scale models are crucial for porting these hybrid models to Edge Comput-
ing devices with low computing resources [10,11]. These results should be verified
for larger datasets and with more attention to the contribution of FCN, CNN,
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RNN, wA, HS components. Therefore, the next step of this work should be ded-
icated to the real-time acquisition of the EEG activity measured by the mobile
BCI configuration in order to obtain more data and increase the robustness of
the measures obtained. In general, such studies can potentially hold promise for
classification of GAL-like hand movements and other physical movements. The
proposed methods can be used in the development of new EEG devices and
applications for various purposes. For example, in health and elderly care apps,
assistive devices (like exoskeletons) can provide instant feedback, e.g. supporting
that physical actions initiated only by the brain, which cannot be continued due
to certain physical disabilities.
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Abstract. The study of electroencephalography (EEG) signals is an
important stepping stone to providing neuroscience explanations for var-
ious phenomena. In this paper we focus on the interpretation of EEG
signals in regards to motor imagery. Specifically, we want to analyze the
differences between typical machine algorithms and deep learning algo-
rithms in performing EEG interpretations. Additionally, there have been
no unique studies comparing the performance of convolutional neural
networks and deep belief networks directly when used on motor imagery
data. Therefore, attempting to replicate results in deep learning experi-
ments between the two might give insight into why this research inquiry
has been left unanswered.

Keywords: Convolutional neural network · Deep belief network ·
Support vector machine · Linear discriminant analysis · Machine
learning · Motor imagery · Electroencephalography (EEG) · EEG
signal classification

1 Introduction

1.1 Literature Review

In the context of feature extraction and classification of EEG signals, deep learning
has proven to be an effective tool. Convolutional neural networks (CNNs) provide
some of the best classification times and accuracy [6]. CNNs theoretically work so
well with EEG signals due to the fact that convolution layers are able to extract
EEG effective features quickly across multiple scales [14]. The EEG signals in Tang
et al. provided a useful real world application, that being a brain-to-wheelchair
online BCI system. It was found that the classification success of EEG signals
within such BCI systems highly depends on the experimental setup and to where
the CNN is getting its data from. Offline systems like the one we propose may fare
better than the online systems like Tang et al. because our data is not subject to
noise within the experiment and can be preprocessed. The conditional empirical
mode decomposition algorithm presented in Tang et al. is not necessary for our
study. However, it is mentioned that the effectiveness of intrinsic modal component
(IMF) selection for classification is highly dependent on researcher experience with
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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EEG classification algorithms. Another study, Abbas et al. used Common Spa-
tial Pattern (CSP) and Fast Fourier Transform Energy Maps (FFTEM) for fea-
ture computation and selection whereas a Convolutional Neural Network (CNN)
is proposed as a classifier with the novel features. The proposed model has yielded
mean kappa value of 0.61 and achieved the best-reported results with lower com-
putational complexity when compared with state-of-the-art methods. As a result,
choosing an effective algorithm that correctly selects IMFs is imperative to our
study’s success.

Deep belief networks have gained large popularity in classifying EEG sig-
nals due to their training procedure, which yields great success in deep neural
network optimization. [10] describes this optimization as a combination of fea-
ture extraction and classification into one pipeline, and explains that it is more
computationally efficient than other existing classification methods. They note
that using frequency domain input for the DBN algorithm improves performance
specifically with motor imagery classification, and that their results were in fact
statistically significant. Additionally, it is stated that fine tuning the parameters
of the DBN structure is imperative for robust results. It is explained that the best
way to proceed with tuning is by conducting experiments and proper pretraining
techniques prior to the benchmark tasks. The use of DBNs in BCI research is
still relatively new, and the application of deep learning in classification with
motor imagery EEG data can be a pivotal stepping stone for better BCI devel-
opments. Application of DBN in EEG-based BCI is still not common. The main
difficulty is the enormously high feature dimensionality spanning EEG channel,
frequency, and time. An et al. study used a deep belief network model for two-
class motor imagery classification, and DBN was found to be more successful
than conventional SVM [4].

1.2 Background

Motor imagery tasks, a subsection of tasks related to brain-computer interfaces,
are those in which a subject imagines doing physical movements without actually
performing them [6]. These thoughts can then be measured and classified using
EEG data, coupled with neural network classification, with the eventual goal
of successfully classifying such thoughts in the use of brain-computer interfaces
(see Fig. 1). In other words, the eventual goal of such brain-computer interfaces
is to provide control over a computer to a person without the requirement of
physical movement [11]. This can provide ease and convenience to the user,
using all kinds of software, and can be especially beneficial to those for whom
physical movement can be a challenge. As an important and emerging field, it
is necessary to investigate and compare algorithms that can serve as useful or
useless for future research. Many algorithms that focus on EEG classification for
motor imagery tasks involve the use of neural networks [6]. The effectiveness of
many such algorithms has been compared and studied in literature reviews [6,9].
Problem Statement: However, as recently as 2019, no comparisons have been
made between DBNs (Deep Belief Networks) and CNNs (Convolutional Neural
Networks) in their application to motor imagery tasks [6]. In order to form a
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Fig. 1. Process of motor imagery classification [13]

more complete view of the performance of various algorithms in motor imagery
classification tasks, in order to provide recommendations for algorithm selection
for future work in the field, and in order to offer replication recommendations for
newer researchers, further research must be done in order to compare relevant
algorithms to one another, which will aid in providing a baseline comparison of
the algorithms. Purpose of Study: As such, the purpose of this experiment
was to focus on the interpretation of EEG signals related to motor imagery.
Specifically, we offer a replication of motor imagery studies mentioned in [6,7,9].
We analyze the differences between typical machine algorithms and deep learning
algorithms performing EEG interpretations, including the feasibility of doing
so given the published studies. Specifically, result replication under the same
conditions were attempted in order to form a proper comparison. Research
Question: Thus, this paper answers the question posed by previous researchers
on which type of machine learning algorithm is most feasible for accurate, and/or
efficient classification of motor imagery data.

2 Dataset

We have chosen a dataset that was presented in the 2008 article “BCI Compe-
tition 2008 - Graz data set A”. We specifically chose the dataset based on the
credibility of the BCI competition in their respective research practices, and the
number of cited references the dataset has had [6,7,9]. This data collection con-
tains EEG data from nine people. The cue-based BCI paradigm included four
separate motor imagining tasks: imagination of left hand (class 1), right hand
(class 2), both feet (class 3), and tongue movement (class 4). Each subject had
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Fig. 2. Left: The worldwide 10–20 system is shown via an electrode montage. Right:
The three monopolar EOG channels’ electrode montage. [5]

two sessions filmed on different days. Six runs are separated by short rests in
each session. A single run has 48 trials (12 for each of the four classes), for a
total of 288 trials each session. A recording of around 5 min was made at the
start of each session to assess EOG effect. The recording was split into three
sections: two minutes with eyes open (looking at a fixation cross on the screen),
one minute with eyes closed, and one minute with eye movements. The partic-
ipants were seated in a plush recliner in front of a computer screen. A fixation
cross displayed on the dark screen at the start of each trial (t = 0 s). A brief
auditory warning tone was also delivered. A signal in the shape of an arrow
pointing left, right, down, or up (corresponding to one of the four classes: left
hand, right hand, foot, or tongue) emerged after two seconds (t = 2 s) and lasted
on the screen for 1.25 s. The individuals were then encouraged to complete the
necessary motor imagery task. There were no responses provided. At t = 6 s, the
individuals were instructed to complete the motor imagery task until the fixation
cross vanished from the screen. The screen went black for a little moment after
that. The EEG was recorded using twenty-two Ag/AgCl electrodes with 3.5 cm
inter-electrode intervals (see monatage in Fig. 2). All signals were monopolarly
recorded, with the left mastoid acting as the reference and the right mastoid serv-
ing as the ground. The data was captured 250 Hz and bandpass filtered between
0.5 100 Hz. The amplifier’s sensitivity was set at 100 V. To reduce line noise, an
50 Hz notch filter was activated.

3 Experiment Design

Depending on the outcomes of the algorithm, the machine learning algo-
rithms are classified into various categories i.e. supervised learning, unsupervised
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learning, semi-supervised learning, and reinforcement learning algorithms. Clas-
sification is a supervised learning method, which means both the input and the
desired output data are provided. Classification is a process of identifying the
particular each instance belongs to a class, which is indicated by the value of
a special goal attribute or simply the class attribute. The goal attribute can
take on categorical values, each of them corresponding to a class. Each exam-
ple consists of two parts, namely a set of predictor attribute values and a goal
attribute value. The former are used to predict the value of the latter. The pre-
dictor attributes should be relevant for predicting the class of an instance. In the
classification task the set of examples being mined is divided into two mutually
exclusive and exhaustive sets, called the training set and the test set. The classi-
fication process is divided into two phases: training, when a classification model
is built from the training set, and testing, when the model is evaluated on the
test set. In the training phase the algorithm has access to the values of both pre-
dictor attributes and the goal attribute for all examples of the training set, and
it uses that information to build a classification model. This model represents
classification knowledge - essentially, a relationship between predictor attribute
values and classes - that allows the prediction of the class of an example given
its predictor attribute values. For testing, the test set the class values of the
examples is not shown. In the testing phase, only after a prediction is made is
the algorithm allowed to see the actual class of the just classified example. One
of the major goals of a classification algorithm is to maximize the predictive
accuracy obtained by the classification model when classifying examples in the
test set unseen during training.

3.1 Algorithm Comparison

Typical Machine Learning Algorithms (LDA, SVM) - Linear Discriminant Anal-
ysis is a method used for classification and reducing dimensionality. When pre-
sented with different categories of data, LDA maximizes the distance between
the categories’ data points and minimizes the scatter of the data points with-
ing the category. It then projects the data points onto linear axes (usually two)
which presents the category data as nicely separated and easy to differentiate
between. LDA can also be used in preprocessing data to reduce the number of
features. In BCI, LDA is used to reduce the dimensionality and contrast between
the extracted features of cerebral activity. A support vector machine (SVM) is
another commonly used machine learning algorithm that aids in classification
problems. A support vector machine focuses on linearly separable data. For
example, in R2, an SVM would aim to create a line separating two groups of
data, with one side of the line corresponding to a certain classification and the
other side representing another classification. A good SVM will maximize the
distance between points on either side of the linear boundary formed, thus find-
ing the best “middle” separator of the data. More complicated SVMs can also
be used on higher dimensional and/or multi-classification problems.

CNNs - Convolutional neural networks are a subcategory of deep learning
and neural networks that involve the use of convolutional “layers”. The given
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set of features, often derived from 2D images, is fed through the convolutional
neural network. As images, or other data, are fed through the CNN’s layers,
the important features in determining the class label are weighted more heavily,
causing the most attention to be paid to them in future classification. The most
unique aspect of CNNs is the “dropout” layers they include, which involve each
layer only focusing on a subset of the input features (pixels, etc.). This allows
the CNN to accurately label future inputs without overfitting to the training
data, allowing it to perform well on unseen data. CNNs also use pooling layers,
which group pieces of feature information together to come up with a relationship
between them (see Fig. 3). This, like the dropout layer, allows CNNs to come
up with meaningful relationships between the input data points (pixels, etc.)
without overfitting too much to individual pieces of data. Thus, CNNs are able
to focus on the most important parts of the input data and apply that knowledge
to future inputs.

Fig. 3. Depiction of CNN layers [12]

DBNs - Deep belief networks are another subcategory of deep learning and
neural networks. DBNs are a generative model which produce the possible out-
puts for a given feature. DBNs can also be used for both supervised and unsu-
pervised learning. What makes DBNs unique is their method of training, which
involves first running through restricted boltzman machine layers (see Fig. 4)
and training to find important features for classification, as in typical neu-
ral networks, and then using “error back-propagation algorithms to fine-tune
the parameters of the DBN” after the training is completed (science direct).
This allows the DBN to accurately predict labels (or generate them) for future,
unknown, inputs.
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Fig. 4. Depiction of DBN layers [8]

3.2 Experiment Design

Our first experiments will be an attempt at replicating the results found in [7].
This will include using the same code and packages found within the github page
associated with Hersche’s paper, in order to classify the 2008 BCI competition
motor imagery data (as Hersche did). Then, our neural network experiments are
designed to replicate the efficiency and effectiveness already proven with CNN
and DBN architectures in classification studies, however this time with the EEG
results of human motor imagery tasks. In other words, these architectures will
form the basis of two algorithms that will be trained and tested on our dataset
under a supervised learning approach. Typically, classification algorithms work
along the basis of a linear regression algorithm that slowly alters the input
parameters of a prediction model (or formula) in order to achieve desirably
classified outputs. In terms of our research, classification in this context refers
to our models being able to take the results of our chosen motor imagery EEG
data and make predictions for future EEG readings (new inputs) based on the
sample. As noted in [6], neural networks have gained large popularity in these
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sorts of classification tasks due to the fact they are also trained in a similar way,
with inputs, weights, and desired results. Through our experiments, we want to
demonstrate which of the CNN or DBN architectures is more accurate and faster
in their predictions. To maintain our experimental validity, both architectures
are going to be analyzed prior to their choosing, to make sure that they both
can support similar numbers of classification inputs. A direct comparison of this
kind can then be very informative as to which algorithm architecture may be
more useful for future EEG classification research.

Firstly, we will test different CNNs and DBNs to find architectures that
both can handle up to nine input features (the number of samples present in
our current dataset). We will do sample runs with smaller input values to ensure
the networks are functioning properly. Then, we will begin test trials where we
train the two networks on our dataset. Lastly we will measure the accuracy of
the networks’ predictions, and also the runtime of the predictions of the course
of the entire experiment. Measuring the accuracy of the models is the most
important aspect of our classification experiment, as it lets us know which model
is better at making predictions. The prediction accuracy is the focus for driving
new methods of interpreting EEG data, which by specialized person alone is
often a slow and meticulous process. This is why the speed of the predictions is
important as well, as if the CNN and DBN architectures are accurate but give
no relative prediction speed gains, their creation and use is not necessary.

4 Baselines

For testing base level classification examples, we used the support vector machine
(SVM), linear discriminant analysis (LDA), and HD models designed by [7]. Both
the SVM and LDA models consist of 64 layers. The HD model is a more complex
model and involves performing arithmetic on large input hyper vectors. The data
is projected to a high dimensional Hamming Space, and the model is trained on
this data.

Our CNN model was done in addition to the code by (Hersche 2018). Specif-
ically, we added a program to similarly extract features from the IV-2a data and
run a CNN on the data (Fig. 5). Our CNN model aimed to use tensorflow to
create a simple CNN using our prior knowledge and implementation tutorials of
CNNs for Tensorflow [1]. Ultimately, we were unsuccessful in training and test-
ing CNN on this data. Our problems stemmed from implementing the algorithm,
including formatting the data appropriately for inputting into the CNN, along
with computational limitations given our personal computers’ memory and time
restrictions.
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Fig. 5. CNN model layers code added to Hersche et al. program.

For the DBN model, two different implementations were attempted [2] and
[3]. There were complications with running the code from [2] due to OS errors.
The download path, success, and compatibility were all checked on our windows
machine, meaning that the code may not be suitable with all environments. The
code from [3] also was problematic, as it was built to import image classification
files and not EEG signals. Even after alteration to the dataset input information
the code could not work. Since this implementation used numerous python files
for implementation, it was infeasible for changes to be made at that large a scale
while maintaining the implementation’s key components. Evidently, no viable
results for either of these implementations were producible with the IV-2A motor
imagery dataset.

Fig. 6. Average accuracy results for run 1 of (hersche2018) replication of SVM, LDA,
HD respectively.
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Fig. 7. Average accuracy results for run 2 of (hersche2018) replication of SVM, LDA,
HD respectively.

Table 1. Accuracies of LDA, SVM, and HD model in (hersche2018).

SVM LDA HD

Prediction Accuracy 61.48 62.83 73.5

5 Results

5.1 Typical Algorithm Performance

Figures 6 and 7 represent our reproduction of the results from (Hersche 2018)
on two separate runs. Using the authors’ provided instructions and code, we
recreated the results with the given results. Table 1 provides the results for the
same run provided by the original authors themselves. Notably, our results from
our replication runs of SVM and LDA classification on the dataset prove to be
the exact same (to four decimal places) as the average accuracies reported by
the authors for these algorithms. As for the HD model, created by the authors of
the Hersche 2018 paper, we achieved similar results to those reported in Table 1.
However, there was more variance here than with the previous 2 models. The
models differed by approximately 1.6% in terms of accuracy on the shown run,
with a variation maximum of 5.55

5.2 CNN/DBN Performance

Our CNN implementation is shown for reference in (Fig. 5). This implementa-
tion attempt, along with our attempt to implement a deep belief network, was
unsuccessful in producing meaningful results. Implementation, along with mem-
ory issues, were problematic for us, which meant that we had no meaningful
results for our attempts to run a CNN or DBN (see Fig. 8).
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Fig. 8. Erroneous accuracy results for our CNN implementation.

Table 2. Time spent on implementation of algorithms.

SVM LDA HD CNN DBN

Time in implementation (hours) 2 2 2 25 25

6 Discussion

Our research is important because it demonstrates the ease of independent
researchers in replicating standard machine learning models on motor imagery
data, but the expected difficulties encountered in implementing viable neural
network implementations. With this in mind, independent researcher such as
ourselves can expect to face multiple forms of adversity with replicating the com-
plex neural network applications to motor imagery data, such as machine con-
straints, research understanding time constraints, and complexities associated
with using mixing numerous environment resources into one cohesive implemen-
tation. There are multiple tutorials for implementing standard machine learn-
ing algorithms on a multitude of different types of datasets and dataset files.
These include datasets for motor imagery, emotion recognition, mental workload,
seizure detection, sleep stage scoring, and event related potential tasks (Craik
et al. 2019). However, with motor imagery specifically there are relatively few
research examples for DBNs, alluding that this method of classification might
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be outdated. The reason being that DBNs are clusters of restricted boltzman
machines, which tend to be better optimized for image classification (Larochelle
et al. 2012). Nevertheless, it could still be useful, as (An et al. 2014) found their
DBN to be more successful than conventional SVM. Meanwhile, CNNs have been
found to be useful for motor classification [14], but still also require lots of time,
skill, and experience for novel application to motor imagery studies (see Table 2
for time spent on each algorithm) For these reasons, CNNs comparison to DBNs
for motor imagery classification is sparse, as identified in (Craik et al. 2019).
Future research should take these factors in account when attempting neural
network implementations for motor imagery EEG classification.

7 Conclusion

This research project allowed us to replicate and verify the more simple algo-
rithms’ (LDA and SVM) performance on motor imagery data. We were able to
verify the results provided for these standard machine learning models, along
with Hersche et al.’s unique HD model. On this admittedly small dataset, it
can be concluded that SVMs perform better than LDAs in terms of accuracy.
However a binarized model, like the HD model created by Hersche et al., is able
to perform the best.

In terms of our CNN and DBN model, our conclusion is that more work must
be done relating to these two algorithms (and perhaps deep learning algorithms
in general) when it comes to classifying EEG data. Specifically, future researchers
should have experience implementing these algorithms from scratch onto new
kinds of data, and be prepared for some of the issues we faced in memory and
implementation. Future research into deep learning and EEG data classification
should focus on these areas. Providing novel implementations of these commonly
used algorithms will provide a starting base for further investigation of the use
of deep learning algorithms on EEG classification tasks.
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cost robotic guide based on a motor imagery brain-computer interface for arm
assisted rehabilitation. Int. J. Environ. Res. Public Health 17(3), 699 (2020)

14. Tang, X., Li, W., Li, X., Ma, W., Dang, X.: Motor imagery EEG recognition
based on conditional optimization empirical mode decomposition and multi-scale
convolutional neural network. Expert Syst. Appl. 149, 113285 (2020)

http://arxiv.org/abs/1812.05705
https://doi.org/10.3390/app9204396
https://doi.org/10.3390/app9204396


High-Powered Ocular Artifact Detection
with C-LSTM-E

Ian McDiarmid-Sterling(B) and Luca Cerbin

Swarthmore College, Swarthmore, PA 19081, USA
{imcdiar1,lcerbin1}@swarthmore.edu

https://www.swarthmore.edu/computer-science

Abstract. Electroencephalography (EEG) is a technique for examining
brain waves through recording devices placed on the scalp. During EEG
signal collection, unwanted ocular artifacts (OAs) are frequently intro-
duced and must be removed before the EEG signal can be effectively
used. Many deep learning approaches to identifying and correcting OAs
attempt to balance prediction accuracy and power consumption, but
we introduce a novel high-power ensemble of a Convolutional Neural
Network (CNN) and a Long-Short Term Memory network (LSTM), C-
LSTM-E. We compare the overall accuracy of C-LSTM-E to previously
introduced methods for OA identification and correction, and discover
that for certain prevalancies of OAs, C-LSTM-E outperforms previously
introduced models. While C-LSTM-E is slightly less accurate than the
state-of-the-art OA correction model, it does not require a channel selec-
tion algorithm and is robust to changes in OA prevalance. C-LSTM-E is
the first CNN and LSTM ensemble method for OA identification.

Keywords: Long Short-Term Memory network · Convolutional Neural
Network · Electroencephalography (EEG) · Ocular artifact ·
High-powered computation · Brain-Computer Interface · Machine
learning ensemble · Deep learning

1 Introduction

Electroencephalography recording devices measure electrical impulses between
brain cells through a set of electrodes on the scalp. However, because EEG
recording devices are sensitive, they also detect electrical impulses generated
by muscle movement. These contaminating signals must be identified before
the EEG signal can be effectively processed. While many different types of
facial muscle movement may contaminate an EEG signal, OAs are frequently
the most disruptive signals, caused by high-amplitude patterns (blinks) or low-
frequency patterns (eye movement) [1,2]. While statistical and signal analysis
methods are effective at OA identification and correction, they are outperformed
by deep learning techniques in a variety of situations [3–5]. Specifically, CNNs
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and LSTMs are more effective than statistical methods for some types of OA pro-
cessing [6–11]. Typically these deep learning techniques perform OA correction
instead of identification, forcing researchers to use a corrected signal without pro-
viding control over how the signal is generated [2,12–15]. These strategies assume
similar incidence and characteristics of OAs across subjects and tasks in a “one
size fits all” approach that may be insufficient for any individual research [13].
Additionally, many of these strategies only use a single EEG channel or a sub-
set of EEG channels, further limiting applications for certain kinds of research.
Guided by the high accuracy of LSTMs when performing OA identification in
low-power contexts [6], we investigated if we could develop a high-power strategy
including an LSTM to perform OA identification more accurately than current
state-of-the-art techniques.

2 Literature Review

2.1 CNN

Fig. 1. Typical CNN architecture [16]

Convolutional Neural Networks (CNN) are commonly used to solve classifica-
tion and regression problems relating to computer vision [11,17,18] and brain-
computer interfaces [19–21]. Significant work has demonstrated the application
of CNN’s to a wide array of OA processing problems [6–8]. Typically a CNN
consists of several types of layers: convolutional layers, pooling layers, and fully
connected layers (Fig. 1). CNN’s are trained by optimizing a specified loss func-
tion.

The operation of a CNN occurs in several stages. First, a two dimensional
convolutional filter takes a raw signal and converts it to a feature map. Next, a
pooling layer reduces the data size while preserving the most important features.
This allows the CNN to run a single dimensional convolutional filter to further
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generate features. After this second convolutional filter, a flatten layer modifies
the output into a single large vector which is then fed straight into dense layers.
The final output from the last dense layer is then compared to the label using
mean squared error, categorical cross entropy or annother loss function.

2.2 LSTM

Long Short-Term Memory networks (LSTMs) are proven to work well for a
variety of EEG classifications [22,23], and especially for OA detection in low-
powered contexts [6]. Since EEG data is a time-series, an LSTMs ability to
maintain long-term dependencies across data results in extremely accurate OA
identification.

LSTMs are recurrent neural networks (RNNs) designed to handle time-series
data. RNNs are neural networks that pass some amount of temporal state
through each step of the network [24]. However, classical RNNs suffer from van-
ishing/exploding gradients. These problems occur when long-term dependency
data disappears or explodes as continual iterations throughout the network result
in compounding computations on ever growing/shrinking values. LSTMs cor-
rect these issues by maintaining long-term dependencies through an additional
parameter that is passed through each LSTM layer.

The structure of an LSTM layer is significantly more complex than that of
a CNN (Fig. 2). The first sigmoid to x gate (the forget gate) uses the informa-
tion from the previous cell to determine what parts of the cell state should be
forgotten. The results from the second sigmoid are multiplied by the result of
the cell state after being passed through the tanh function. This operation then
updates the cell state for that LSTM layer. Finally, the previous output is passed
through a sigmoid function, multiplied by the updated cell state passed through
the tanh function, and outputted to the next layer.

Fig. 2. LSTM cell architecture [25]
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2.3 Power Reduction

Previous work has attempted to identify OA’s while minimizing power consump-
tion, allowing models to be implemented with field-programmable gate arrays
(FPGAs) [8]. While this effectively establishes a strategy for identifying OAs,
it requires special hardware and sacrifices overall accuracy for power reduction.
As previously published, the electrical energy efficiency of computation almost
doubles every year and a half [26]. As a result, the gap between the power con-
sumption of general computation systems like PCs and specialized hardware like
FPGA shrinks. As computing power increases, the need for specialized hardware
is reduced. As systems become more efficient, industry focus shifts from power
reduction to creating more accurate models. The developmental cost of creat-
ing models to run on specific hardware outweighs the power savings of these
strategies, particularly as mobile computing power increases and the Internet of
Things grows.

3 Dataset

We trained our model on a semi-simulated EEG artifact dataset, generating
ground truth labels without relying on a labeling expert [27]. The dataset consists
of 50 30 s recordings taken from 27 subjects, with 19 electrodes placed on each
subject according to the 10–20 international system [28]. Signals were gathered
200 Hz, then band pass filtered at 0.5–40 Hz and notch filtered 50 Hz. The semi-
simulated contaminated signal was generated according to:

DirtyEEG(i, j) = PureEEG(i, j) + (aj)Veog + (bj)Heog

where Veog is the upper minus lower EOG electrode signals, Heog is the left
minus right EOG electrode recordings, and aj , bj are contamination coefficients
as proposed by Klados and Bamidis [27].

By using a semi-simulated dataset we avoided introducing the variance tra-
ditionally generated by human data labelers. Since human data labeling is not
uniform or objective, training models on human labeled data reduces the gen-
erality of the model as it performs similarly to the specific labeler, not the
ground-truth.

While the semi-simulated data allows for a more generalizable model, it does
not include frequency information about the prevalence of artifacts.

4 Methods

4.1 Rationale

While CNNs have been shown to be effective at identifying OAs, they encode
spatial dependence that is not desirable. In the feature extraction stage of a
CNN, the CNN kernel sweeps over the input data, encoding information about
the order of the channels which is learned by the model. While this is not harmful
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so long as the order of the channels remains consistent throughout training and
testing, it is not relevant information for the OA identification problem. Guided
by this, we introduce an LSTM to leverage the temporal dependency of OAs in
the EEG signal. By combining a CNN and an LSTM, we capture the temporal
forecast of the LSTM and leverage the CNNs ability to create features. Our
selection of a nonlinear combination function allows C-LSTM-E to outperform
both the LSTM and the CNN individually.

Fig. 3. C-LSTM-E model architecture

4.2 Model Architecture

C-LSTM-E, is an ensemble of a CNN and an LSTM (Fig. 3). Input to C-LSTM-
E is a (20, 19) matrix that corresponds to a 20 point window of the larger data
sequence, across all 19 channels.

The CNN contains a 2-dimensional convolutional layer of output shape
(18, 17, 20), which corresponds to an image height of 18, a width of 17, and 20
channels. This is followed by a max pooling layer that halves the image dimen-
sions to (9, 8, 20). A second 2-dimensional convolutional layer takes the result
from the max pooling and outputs a (7, 6, 38) image. This final feature output
gets flattened into a vector of size 1596. The model then includes three dense
layers: the first with 38 neurons, the second with 16 neurons, and the final layer
outputing the regression prediction (Fig. 8).

The LSTM trains on a tensor of shape (10, 20, 19) containing input windows
that maintain the temporal flow of the data. The model contains an LSTM layer
with 128 units, followed by a 64 neuron dense layer, a 32 neuron dense layer,
and a final 19 neuron dense layer for predictions across each channel (Fig. 9).
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During training, the CNN and LSTM optimize a prediction threshold to cast
their continuous output to binary class labels. This threshold is a function of the
percentage of artifacts throughout the dataset and is used as a labeling cutoff.

4.3 Data Processing

To accurately evaluate the performance of C-LSTM-E, we trained the model
on 64% of the data, validated on 16% of the data and tested on 20% of the
data. We used a standard cross validation structure where 20% of dataset was
used for testing and 80% was split into training and validation [29]. The models
were trained using the two way mean of residuals calculated by subtracting the
clean EEG signal from the dirty EEG signal for each window as labels. We per-
formed min-max normalization across the entire set of windows and normalized
all residual means to the unit interval [30].

To generate class labels from the normalized residual means on the unit
interval, we set an arbitrary frequency threshold of OAs, n, and marked the
top n% of residuals as artifacts. This allowed us to investigate how C-LSTM-E
performed given various contamination percentages.

4.4 Model Training

As demonstrated by other OA identification techniques, we trained C-LSTM-E
on all 19 channels of EEG data, broken into windows of 20 data points [6–8].
We trained C-LSTM-E for 30 epochs using the Adam standard optimizer [31].

5 Results

Fig. 4. OA prevalence vs C-LSTM-E accuracy
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5.1 Variable Prevalence of OAs

We varied the assumed percentage of artifacts throughout the dataset from 0%
(trivial) to 20% to evaluate the performance of C-LSTM-E. While C-LSTM-
E performed better when the frequency of OAs was smaller, C-LSTM-E still
achieved above 90% accuracy when OAs accounted for 20% of the data (Fig. 4).
Therefore C-LSTM-E proved it can classify any EEG recording containing OAs
with ≥90% accuracy provided the data remained within our probable upper
bound of 20%.

5.2 Fixed Prevalence of OAs

To comparatively assess the performance of C-LSTM-E, we evaluated the perfor-
mance of the model when artifacts made up 5–10% of the overall dataset, which
we believed most accurately simulates many real world experimental conditions.
Given these initial conditions, we compared C-LSTM-E to other state-of-the-art
models.

We compared C-LSTM-E to OA identification models trained on different
datasets because it was the first OA identification model trained using the semi-
simulated dataset [32,33]. To benchmark the performance of C-LSTM-E, we
compared the final test accuracy when OAs account for 5–10% of the dataset to
LSTM-1 [6], CNN-1 [8], CNN-2 [7] and UNET [10] (Table 1).

These models were the state-of-the art OA identification strategies and varia-
tions at the time of writing. While we directly compared C-LSTM-E to LSTM-1
and CNN-2, these models explicitly prioritized power efficiency over OA iden-
tification accuracy. We also compared the performance of C-LSTM-E to the
state-of-the art OA correction strategy, CNN-3 [11]. C-LSTM-E had an accu-
racy that ranges from 93.62–96.95% depending on the prevalence of artifacts
in the dataset, while the next most accurate models, CNN-2 and LSTM-1, had
accuracies of 93.50% and 93.1%, respectively (Table 1).

Table 1. OA identification accuracy

Strategy Accuracy

LSTM-1 93.10%

CNN-1 73.48%

CNN-2 93.50%

UNET 70.00%

C-LSTM-E 93.62–96.85%
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5.3 Real-Time Processing

C-LSTM-E required fixed segment size inputs to train both the LSTM and
CNN. Real-time predictions should be independent of fixed size segments and C-
LSTM-E should be able to process an arbitrarily large artifact size. We removed
this dependence on fixed segment size by implementing the following three step
procedure.

Given an EEG recording of any length, we generated a window of the fixed
segment size starting at every possible point in the recording and then evaluated
each window with C-LSTM-E. We flagged each window labeled by C-LSTM-E
as an artifact (Figure 5, artifact windows shown as red rectangles). Since many
windows containing part of the OA are labeled by C-LSTM-E as artifacts, this
generated many overlapping artifact windows.

Fig. 5. Initial OA labeled windows (Color figure online)

We then generated a histogram of how many times each point in the EEG
recording was included in a window that was labeled as an artifact (Fig. 6).
We then found the mean of the OA (Fig. 7, magenta) and used the standard
deviation to optimize a bounding box of the OA (Fig. 7, red).
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Fig. 6. Histogram of positive OA starting points

Fig. 7. Mean and confidence interval for OA (Color figure online)

To create an artifact interval we made the assumption each point was inde-
pendent of one another and then utilized the Central Limit Theorem. Since the
points are part of a time-series and therefore dependent, we present this as an
approximate artifact interval. We used the properties of the Normal Distribution
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to approximate 95% of the artifact with an interval equal to mean ± 2 ∗ std. A
higher accuracy interval can be used e.g. 99.7%, however, we believed 95% allowed
for some inevitable error while still being accurate. We were able to remove the
dependence on segment size by reconstructing the total size of the artifact through
this artifact interval process.

6 Discussion

6.1 Analysis

It is difficult to directly compare C-LSTM-E to other models because they do
not publish what percentage of their dataset consists of OAs. Assuming OAs
account for 5–10% of a standard EEG recording, C-LSTM-E is more accurate
than LSTM-1, CNN-1, CNN-2, and UNET (Table 1). All of these models use mul-
tichannel EEG signals similar to C-LSTM-E but the majority focus on power effi-
cient computations. While this was historically important, with recent advances
in processing power and cloud computing, power constraints are now secondary
to performance benchmarks, highlighting the importance of high power mod-
els [34]. C-LSTM-E demonstrates the significant accuracy improvements of a
high-powered model over its low-powered counterparts.

C-LSTM-E is most comparable to LSTM-1 because it utilizes an LSTM to
solve a binary-classification problem. While C-LSTM-E is more power intensive,
in situations where the inclusion of OAs may result in faulty models, the increase
in accuracy provided by C-LSTM-E may be crucial to experimental success.

CNN-1/CNN-2 solve slightly different problems involving more classification
classes which makes it difficult to directly compare them to C-LSTM-E. C-
LSTM-E outperforms both models but CNN-1 and CNN-2 solve harder classifi-
cation tasks and so the final accuracies of the models are not directly comparable.
In the future, we plan to generalize C-LSTM-E to perform on similar types of
classification instead of labeling artifacts in a binary fashion. Unfortunately, the
datasets for CNN-1 and CNN-2 are not public to the best of our knowledge, so
training C-LSTM-E on these datasets is not possible.

CNN-3 outperforms C-LSTM-E in its binary classification before regression
with an accuracy of 99.67%. However, CNN-3 varies in several ways from C-
LSTM-E, which we believe makes C-LSTM-E a more generalizable model. CNN-
3 requires a subset of EEG channels, which must be selected and which greatly
simplifies the problem space. By using all available input channels, C-LSTM-E
avoids the need for a time intensive and error prone channel selection process
[6]. CNN-3 generates its own synthetic data that is not publicly available so a
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direct comparison between C-LSTM-E and CNN-3 is impossible. We believe the
semi-simulated dataset used by C-LSTM-E is more similar to real-life EEG data
than their synthetic data. The use of a semi-simulated dataset over a simulated
one and how C-LSTM-E has proven performance across different OA frequencies
makes C-LSTM-E a more generalizable model.

Unlike other models, C-LSTM-E is demonstrated to be effective across a
wide range of possible OA frequencies. This means that the effectiveness of the
model is not a result of any specific OA distribution, establishing that C-LSTM-
E is generalizable to a wide range of research problems where OAs occur with
differing frequencies.

6.2 Next Steps

We plan to evaluate C-LSTM-E on a human-labeled dataset to compare the
performance to the semi-simulated dataset. This will also provide us with infor-
mation about possible difficulties generalizing models trained using the semi-
simulated dataset to datasets labeled by hand.

To more accurately compare C-LSTM-E to previously published high and low
power models we plan to request the source code for a variety of models and train
them on the semi-simulated dataset. This will enable a direct comparsion on the
same dataset, allowing us to generate more meaningful performance results.

We also plan to evaluate how well C-LSTM-E performs on mobile hard-
ware. By creating a generalized framework to utilize mobile phone computing or
cloudlets to perform OA identification on new samples, we plan to offer C-LSTM-
E as a portable, highly accurate, solution to the OA identification problem.

7 Conclusion

We present C-LSTM-E, a high-powered ensemble of a CNN and LSTM for OA
identification. We then show that our model is more accurate than other state-
of-the-art strategies for OA identification using a full set of channels on a semi-
simulated dataset. Since using a full set of channels is crucial to applicable mod-
els as it avoids the need for lengthy and error-prone pre-processing and channel
selection steps, we highlight how C-LSTM-E offers advantages over higher accu-
racy models that do not use a full set of channels. We also analyze the robustness
of C-LSTM-E by varying the OA frequency in the dataset, and show that it per-
forms with ≥ 90% accuracy for all frequencies in the range [0,0.2]. This suggests
C-LSTM-E will perform similarly well across different datasets with different
frequencies of OAs. We show how C-LSTM-E can be used to estimate total OAs
through a reconstructive pipeline. Since C-LSTM-E identifies OAs, it allows for
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experimental flexibility in their treatment. We also argue the increase in accu-
racy offered by high-power approaches to OA identification outweigh increased
power consumption as mobile systems become increasingly power efficient. We
believe high-powered OA identification algorithms are a necessary next step in
the future of Brain-Computer Interface research and C-LSTM-E is a powerful
addition to the high-powered ecosystem.

A Appendix

Fig. 8. CNN model architecture



494 I. McDiarmid-Sterling and L. Cerbin

Fig. 9. LSTM model architecture
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Abstract. Trade-offs between accuracy and runtime are a common phe-
nomenon in the field of computer science, but particularly pose a chal-
lenge for online Brain-computer interface (BCI) applications, such as
control interfaces for paralysis patients. However, research evaluating the
testing runtime of various classifiers is extremely limited. In this study, we
assess trade-offs between accuracy and runtime (total and testing) of the
classifiers benchmarked in Kastrati et al.’s introduction of EEGEyeNet,
as well as sLDA, logistic regression, variants of SVM, and a shallow CNN.
For simple BCI tasks requiring binary classification, we find that both
simple and ensemble ML algorithms, especially tree-based models, can
achieve accuracies comparable to DL networks’ while achieving remark-
ably faster total and testing runtimes. Namely, DecisionTree, Random-
Forest, and GradientBoost were particularly impressive, and we consider
these highly efficient classifiers to be promising machine learning alter-
natives to slower deep learning classifiers such as CNN in binary motor
imagery classification.

Keywords: Machine learning · Deep learning · Runtime · Trade-off

1 Introduction

1.1 Problem Statement

Brain-computer interfaces (BCI) represent an interdisciplinary area of expand-
ing research that relies on neurological, behavioral, and engineering expertise
to develop new technologies with an even broader-spanning range of appli-
cations [13,20,29,30,32,37], including attention and reaction time evaluation,
sleep behavior, neurological disease assessment and diagnosis, communication
and motor ability support, advertisement reception in marketing, virtual reality
user and video gaming interfaces, and more. Development in this area is rapidly
increasing, particularly in enhancing classifier accuracy [19,28,33,36].

Algorithms must not only be accurate, but also efficient with quick runtimes
to remain useful for online BCI usages, such as control interfaces for paralysis
patients. Trade-offs between accuracy and runtime are a common phenomenon
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in the field of computer science, but particularly pose a challenge for online BCI
applications, such as control interfaces for paralysis patients. Because of the real-
time use cases of online BCI, rapid interpretation of novel user input is critical
for BCI devices to seamlessly substitute for normal motor function in impaired
users. From machine learning and deep learning perspectives [3,13,31,40], this
means that there is a need in the field of BCI to evaluate the testing runtimes
of classifiers as well as their accuracies.

1.2 Literature Review

Despite its practical importance, trade-offs between accuracy and testing run-
time lacks formal investigation. Trade-offs between accuracy and training run-
time [24], cost [2], and energy [5,27] are more common.

Eye tracking (ET) is commonly complemented with electroencephalography
(EEG) as a non-invasive, flexible, and low-cost method of pairing brain activity
with a measurable neurological behavior to develop assessments and technology.
The recent assembly of the EEGEyeNet dataset [23] has helped to address the
lack of an annotated, synchronized EEG-ET dataset sufficiently large enough
for training accurate and generalizable machine learning and, especially, deep
learning classifiers. Particularly, they found that their deep learning models per-
formed significantly better than their traditional statistical models, with the
average accuracies of their deep learning models ranging from 97.9% to 98.8%,
while those of traditional models ranged from 87.7% to 92.0%.

Indeed, one of the main reasons deep learning networks have gained much
popularity is their ability to discover intricate patterns and feature represen-
tations from given data to achieve high accuracy. This has inspired a growing
interest among neuro-engineering researchers to apply deep learning to the devel-
opment of BCI systems because it largely alleviates the need for manual feature
extraction as seen in conventional BCI, which requires domain-specific exper-
tise in the signal [39]. However, deep learning algorithms are highly resource-
expensive, taking much more time and computational effort than traditional
machine learning algorithms. Additionally, deep learning models require signifi-
cantly greater numbers of examples in their training datasets, which is especially
a challenge in the BCI domain, due to the relatively complex nature of data col-
lection in BCI. The EEGEyeNet dataset goes a significant way to address the
latter, but the cost of training deep learning models remains a limitation. Thus, it
is valuable to include machine learning models in the assessment of various mod-
els’ performance on the EEGEyeNet dataset and analyze their performance in
comparison to that of deep learning algorithms. This paper particularly focuses
on accuracy and runtime (especially testing runtime) as performance metrics in
the context of their oft-inverse correlation among many popular algorithms.

The traditional models that Kastrati et al. used included KNN, GaussianNB,
LinearSVC, RBF SVM, Linear Regression, Random Forest, AdaBoost, and
more [29,34]. However, algorithms such as shrinkage linear discriminant analysis
(sLDA) and logistic regression were not mentioned, despite findings indicating
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that the former is especially useful in the BCI domain [29] and the latter is
extremely popular in binary classification tasks.

In addition to the fact that deep learning algorithms make it possible to
achieve the already high accuracy of machine learning, it can be noted that
people are working on an “inverse problem.” Based on fast EEG and MEG
(magnetoencephalography) data, one can try to reconstruct the actual activation
of neurons in the brain, which is currently shown, for example, by the fMRI
method, but with a shallow temporal resolution.

Another problem with BCI based on EEG or MEG is that the activity results
in different areas of the brain for the same components differ among users.
Researchers have to learn the neural network for each user and task, which
complicates the work with the system and makes it more expensive. However,
changes are possible here with “learning transfer,” when the neural network
uses data from different users/in different tasks and is further trained online; as
a result, the calibration step can be skipped [41].

1.3 Purpose

In our study, we assess the performances of the sLDA and logistic regression
machine learning algorithms. Additionally, in a further step of gradation, we
analyze the performance of a shallow convolutional neural network (CNN) clas-
sifier, as CNNs have been reported to produce strong accuracy scores while
remaining relatively conservative in resource usage, and finally, a CNN classi-
fier with transfer learning [13]. We seek to evaluate the accuracy and runtime
performance of Kastrati et al.’s machine learning benchmark models and their
expensive deep learning approaches, as well as explore how various machine
learning and low-level deep learning algorithms may compare in performance
and resource efficiency, with the hopes of highlighting the efficiency of machine
learning approaches that produce higher quality outcomes at reduced computa-
tional and time cost.

1.4 Research Questions

Two primary questions guide our experiments: 1) How do accuracy-runtime
trade-offs compare across machine learning and deep learning models when
applied to EEGEyeNet? and 2) What classifiers demonstrate strong performance
with minimal accuracy-testing runtime trade-offs when applied to EEGEyeNet?

2 Dataset Description

The EEGEyeNet dataset includes data collected from 356 healthy adults (190
female, 166 male, ages 18–80). They were asked to perform three tasks of increas-
ing difficulty that evaluated for saccades, fixations, and blinks by simultaneously
recording EEG and ET data. 47 h of high temporal resolution recordings of such
events were captured using a 128-channel EEG Geodesic Hydrocel system and
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a video-based ET EyeLink 1000 Plus, both with sampling rates 500 Hz. The
dataset thus consists of the start and end position of saccades, the average posi-
tions of fixations, and the start and end times of each event. Preprocessing was
achieved using the openly available toolbox from Pedroni et al. in both min-
imal and maximal fashion, the former of which includes ocular artifacts and
the latter of which isolates specifically neurophysiological information from the
data. To date, the EEGEyeNet dataset has the greatest number of hours of any
synchronized EEG-ET dataset. For more information, see [23].

We chose to work with the Left-Right task only for our experiment as Kastrati
et al. confirmed it to be the easiest task across all three datasets. We also chose to
work with minimally preprocessed EEG data as it produces better performance
than maximally preprocessed data [23]. The minimally preprocessed LR task
dataset size is 62.6 MB.

3 Methods

In this study, we compare the performances of supervised classifiers that are
tasked with binary classification in which the models must label each sample
“left” or “right.”

We use one of the sub-datasets generated for left-right tasks, on the basis
of its relatively small size. This allows us to perform several benchmark trials
for multiple classifiers in a timely manner, as well as standardize the dataset
we are using as a control. The number of trials we run per classifier is five, the
performance scores of which are averaged before compared across classifiers. We
also measure runtime, which we define as the total training and testing time. We
compare the performances of supervised classifiers tasked with binary classifica-
tion. We analyze both total runtime (training + testing) and testing runtime,
emphasizing the latter because online BCI usage lies beyond the training phase.
Our hardware and environment specifications are in Table 1.

Table 1. Hardware specifications.

CPU Intel(R) Core(TM) i5-8600

# of Cores 6

# of Threads 6

RAM 64 GB

GPU Nvidia GeForce RTX 2080 Ti

OS Ubuntu 20.04

TF version TensorFlow 2.6.0

The classifiers include sLDA, logistic regression, and SVM. We select sLDA
because it is a simple, fast machine learning classifier. sLDA does have hyper-
parameters, making it a highly streamlined classifier to use, and it has been
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used online successfully using standard computers (Lotte 2018). Furthermore, it
has been reported to consistently achieve high performance scores for BCI, as
well as require much less data [28]. Logistic regression is a classification model
that is well-known to perform well in two-class classification tasks, and has been
among the best-performing machine learning classifiers previously used in motor
imagery tasks [8,21]). SVM-RBF is a classifier that is among the most popular in
motor imagery BCI for its better generalization properties as well as its immu-
nity to the curse of dimensionality [1]. A convolutional neural network (CNN) is
a powerful deep learning classifier that has been a popular tool in BCI research,
thanks to its ability to take advantage of hierarchical patterns in data and its
subsequent success in computer vision tasks, including in motor imagery [37]).

4 Results

In Table 2, we provide both the mean accuracies and runtimes of our two machine
learning algorithms along with the ones used by Kastrati et al. [23]. We ran each
machine learning algorithm five times and recreated the results similar to those
in [23].

Table 2. Accuracy and total runtimes of various ML models, ensemble methods,
and CNN. Accuracies and runtimes were averaged across five trials.

Model Accuracy Total runtime (s)

GaussianNB [22] 87.70% 0.1

SVM [11] 89.40% 17.5

KNN [14] 90.73% 1.8

sLDA [26] 91.68% 0.4

Logit regression [12] 91.89% 3.0

LinearSVC 91.99% 7.8

tSVM 93.63% 17.53

bSVM 94.52% 37.26

SVM [11] 94.52% 18.8

CNN [25] 94.57% 161.6

DecisionTree [35] 96.16% 2.4

AdaBoost 96.27% 54.6

RandomForest [18] 96.49% 8.3

GradientBoost [15] 97.40% 107.1

Both LDA and Logistic Regression had higher accuracies than GaussianNB,
RBF SVC, KNN, scoring 91.7% and 91.9%, respectively. DecisionTree appears
to have the smallest accuracy-total runtime trade-off (96.16%, 2.443 s), while
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sLDA (91.68%, 0.411 s) and GaussianNB (87.70%, 0.055 s) demonstrate exceed-
ingly quick total runtime but sacrifice accuracy. RandomForest (96.49%, 8.256 s)
also performs well to achieve the second-highest accuracy, but more than triples
DecisionTree’s total runtime for its marginal edge in accuracy.

We happened to also include an untuned, RBF SVM. Interestingly, this base-
line RBF SVM (henceforth, bSVM) achieved higher accuracies using default
hyperparameters than Kastrati et al.’s tuned RBF SVM (simply referred to as
SVM). bSVM produced a higher accuracy of 94.5% than SVM’s 89.4% in the
original study. However, it took over twice as long to run, taking 20.7 s compared
to 9.64 s. This shows that differences in runtimes can still be noticeable despite
the high performance.

All three models we introduced (sLDA, Logistic Regression, and bSVM) did
not get higher scores than tree-based models, which exceeded 96%. LDA per-
formed the LR task the fastest among the three machine learning models we
introduced, finishing in 0.477 s.

Table 3. RBF SVM scores and runtimes from hyperparameter tuning. Scores and run-
times were averaged across fifteen trials. Other parameters were set to default values.

Parameters Performance

gamma tol max iter random state Score (%) Runtime (s)

0.01 1e−5 1200 ‘none’ 89.4 29.2

‘scale’ 1e−3 −1 0 94.5 66.2

‘scale’ 1e−5 1200 ‘none’ 93.6 30.4

0.01 1e−3 1200 ‘none’ 89.4 19.1

0.01 1e−5 −1 ‘none’ – –

0.01 1e−5 1200 0 89.4 19.3

‘scale’ 1e−5 1200 0 93.6 13.6

We sought to understand better the performance differences between bSVM
and the SVM provided by Kastrati et al. These differences could come down to
subset choice and/or the algorithm itself. While bSVM uses default hyperpa-
rameter values aside from random state = 0, Kastrati et al. used gamma = 0.01,
tol = 1e−5, max iter = 1200, and the default random state = ‘none’. We con-
ducted further benchmark tests with varying combinations of hyperparameters
and found that gamma was indicative of accuracy: gamma = 0.01 would result
in accuracies around 89%, while gamma = ‘scale’ (default) would yield around
94%. We also found that random state = 0 coincided with faster runtimes. With
these observations, we designed a version of Kastrati et al.’s RBF SVM with
gamma = ‘scale’ instead of 0.01 and random state = 0 (henceforth, tSVM) that
inherited both high accuracy and speed (Table 3). Note that the combination of
tol = 1e−5 and max iter = −1 resulted in extremely long runtimes due to the low
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tolerance and unlimited iterations, which rules this combination of parameters
out of consideration as an efficient classifier.

It became apparent that hyperparameter optimization would be a poor allo-
cation of time. Even if we did find some ideal set of hyperparameters, those
values would only apply to the specific dataset and potentially provide little to
no generalization value.

While the relatively lengthy total runtime (161.6 s in our study) is one of the
greatest downsides of CNN, the testing time is what will be of greatest impor-
tance to online BCI usage. We found that CNN’s testing time of 0.8807 s, while
still in the lower half in testing time performance compared to the other algo-
rithms’, was considerably more attractive than its total runtime performance
suggested it might be Table 2. However, the classifiers that continued to out-
perform CNN did so by a great margin - in the case of DecisionTree, its testing
time was superior by over thousandfold.

Table 4 demonstrates that testing runtime can widely vary also, but the dis-
tribution of classifiers is distinct from that of total runtime. Noteworthy are
the performances of ensemble and tree-based machine learning methods, which
achieve the highest accuracies and are among the fastest in testing: Gradient-
Boost (97.38%, 0.0073 s) and DecisionTree (96.16%, 0.0021 s) are outstanding,
and RandomForest (96.46%, 0.0591 s) also displays high performance (Fig. 1).
Algorithms with the best combination of accuracy and testing runtime are in
the left upper corner of the graph.

Table 4. Accuracy (%) and testing runtimes (s) of various ML models, ensemble
methods, and CNN. Accuracies and runtimes were averaged across five trials. The
training and testing sets were split at an 85:15 ratio, resulting in a test set of 4820
samples.

Model Accuracy Testing runtime (s)

GaussianNB [22] 87.70% 0.0092

SVM [11] 89.40% 2.7444

KNN [14] 90.73% 1.8723

sLDA [26] 91.68% 0.0019

Logit regression [12] 91.89% 0.0014

bSVM 93.63% 1.8809

LinearSVC 91.98% 0.0014

tSVM 93.63% 2.7427

bSVM 94.52% 5.5802

CNN [25] 94.63% 0.8807

DecisionTree [35] 96.16% 0.0021

AdaBoost 96.27% 0.1549

RandomForest [18] 96.46% 0.0591

GradientBoost [15] 97.38% 0.0073
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Fig. 1. Accuracy (%) and testing runtimes (s) of various ML models, ensemble meth-
ods, and CNN. Accuracies and runtimes were averaged across five trials.

We were further interested if the runtimes would change proportionally to
the dataset size in a direct (as opposed to inverse) manner. Thus, we evaluated
the total runtimes and testing runtimes using 50% of the original training and
testing sets. The results are displayed in Table 5 and Table 6. Note when viewing
increases in runtime speed due to reducing the dataset that the converse is true:
doubling the size of the dataset leads the classifier’s runtime speed to decrease
to the observed extent.

As can be observed from Table 5 and Table 6, both the total and testing
runtime speeds increased proportionally to the reduction of the dataset’s size
for most of the algorithms. Notably, while most other classifiers’ runtime speeds
were about 100% faster, KNN’s and bSVM’s testing runtime speeds increased
dramatically, exhibiting increases of 343% and 341%, respectively.

5 Discussion

5.1 Trade-offs of Baseline ML Algorithms

As can be observed in Table 2, there commonly exists a trade-off between accu-
racy and total runtime. This is particularly evident across groups of classifiers:
simple machine learning models demonstrate the fastest total runtimes at the
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expense of accuracy, ensemble methods balance both, and DL networks exhibit
the highest accuracy at the expense of efficient total runtime. Classifiers that
appear to have the best accuracy-total runtime trade-offs on binary classifica-
tion for the LR task include LDA and DecisionTree.

Table 5. Accuracy and total runtimes of various ML models, ensemble methods,
and CNN using 50% of the dataset. Accuracies and runtimes were averaged across five
trials.

Model Accuracy Total runtime (s) % Increase in speed

GaussianNB [22] 85.85% 0.02 137%

SVM [11] 87.24% 8.5891 104%

KNN [14] 88.45% 0.44 308%

sLDA [26] 88.54% 0.21 92%

LinearSVC 89.26% 3.22 142%

tSVM 91.41% 7.63 130%

bSVM 91.41% 9.14 308%

CNN [25] 91.50% 76.21 112%

DecisionTree [35] 94.94% 1.16 111%

AdaBoost 95.17% 25.99 110%

RandomForest [18] 95.74% 3.88 113%

GradientBoost [15] 96.10% 49.58 116%

5.2 Trade-offs of a Tuned SVM

Tuning the hyperparameters of Kastrati et al.’s RBF SVC allowed us to uncover
a set of hyperparameters that achieve both higher accuracy and faster runtimes,
the former of which also exceeds those of all other simple machine learning
models tested (apart from DecisionTree). However, when comparing Kastrati et
al.’s RBF SVC and our improved classifier tSVM, it is unclear how much of this
enhanced performance can be attributed to the model’s new hyperparameters
rather than the smaller size of our dataset. During testing, we also noted a great
deal of instability in the runtimes from test session to test session.

5.3 Trade-offs of DL Algorithms

CNN was only able to reach the accuracy of 94.1%, almost similar to the accuracy
of bSVM, although it took approximately 50 times more time to train. It could
have been that the LR dataset was too small to train the CNN network resulting
in underfitting. CNN displayed a classic accuracy-runtime trade-off curve with
diminishing returns along the number of epochs: more epochs meant higher
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Table 6. Accuracy (%) and testing runtimes (s) of various ML models, ensemble
methods, and CNN using 50% of the dataset. Accuracies and runtimes were averaged
across five trials. The training and testing sets were split at an 85:15 ratio of 50% of
the total dataset, resulting in a test set of 2410 samples.

Model Accuracy Testing runtime (s) % Increase in speed

GaussianNB [22] 85.85% 0.0037 147%

SVM [11] 87.24% 1.2848 114%

KNN [14] 88.45% 0.4228 343%

sLDA [26] 88.54% 0.0090 −79%

LinearSVC 89.26% 0.0009 64%

CNN [25] 91.26% 0.5099 73%

tSVM 91.41% 1.1300 143%

bSVM 91.41% 1.2639 341%

DecisionTree [35] 94.92% 0.0011 93%

AdaBoost 95.17% 0.0682 127%

RandomForest [18] 95.73% 0.0377 57%

GradientBoost [15] 96.09% 0.0035 108%

accuracy, but also slower total runtime, with smaller increases to accuracy as
epochs increase. However, in the context of online BCI usage, a classifier would
not be expected to be constantly retraining. Rather, it would be constantly fed
novel data to classify (e.g., as a paralysis patient equipped with a BCI device
looks left and right), which is more akin to testing. CNN’s test-time of 2.6199 s
is still unimpressive compared to DecisionTree’s 0.0021 s and GradientBoost’s
0.0069 s (Table 4). Especially considering the use cases of online BCI to substitute
and/or complement neuronal communication for motor function, the classifier
used must be exceedingly quick. For example, it takes 0.009 s for a signal to travel
from the brain to the hand [1]. Thus, a successful application of BCI to stand in
for this rapid process should perform at a similar time scale. Although CNN’s
high accuracy of 98.75% means CNN may remain in the picture for the time
being, DecisionTree and GradientBoost aren’t far behind (96.16% and 97.36%
respectively) and these results indicate that they may be more useful classifiers
than CNN to apply to this problem context.

5.4 Testing Runtime and Tree-Based Models

Testing runtime is important to online BCI usage because after training, the
classifier will face novel inputs in regular usage (e.g., in commercial products).
Despite their longer total runtimes (evidently due to longer training runtimes),
ensembles are more comparable to simple ML models in testing runtime. Our
results suggest that tree-based classifiers, ensembles and simple tree methods
alike, are highly accurate and quick, and may be a promising area of future
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research to develop efficient classifiers. Particularly, evaluating whether their
level of performance withstands more complex tasks may be interesting.

5.5 Time Complexity of ML Algorithms

A crucial concept that stands at the center of our discussion of total and testing
runtimes is the concept of computational complexity, often discussed in terms of
Big O. Table 7 shows the various computational complexities of the algorithms
used in this paper. Note that Table 7 lacks entries for CNN and sLDA due to
the lack of academic documentation online on their computational complexities.

Table 7. Time complexity of ML algorithms in Big O notation. n is the number of
examples, k is the number of features, c is the number of classes, d is the tree depth,
msupport vectors is the number of support vectors, and M is the number of iterations or
base estimators

Model Training time complexity Testing time complexity

GaussianNB [4,16] O(kn) O(cn)

KNN [14] O(1) O(kn)

Logit Regression [7] O(kn) O(k)

LinearSVC O(n) ?

SVM [10] O(kn2) to O(kn3) O(kmsupport vectors)

DecisionTree [38] O(kn log2 n) O(log n)

Worst case: O(dkn) Worst case: O(d)

AdaBoost [17] O(Mdkn logn) O(Mk)

RandomForest [6] O(Mkn log n) O(Mk)

GradientBoost [9] O(Mdn logn) O(Md)

While our study uses a benchmarking approach to assess the empirical run-
times of the classifiers, a more complete and rigorous evaluation necessitates
consideration of the scalability of classifiers’ runtime performance. That is, while
certain classifiers may outperform others and achieve high accuracy and quick
total and/or testing runtimes with a given dataset, their performance may be
overtaken by other classifiers when either more complex or more simple data
is inputted. In the endeavor to identify classifiers that will perform highly in a
given use case, it is important to consider the data that will be supplied.

Here, we can corroborate the results of our empirical total and testing run-
time observations. KNN’s total runtime and testing runtime is virtually identical
(Table 5, Table 6) and this is evidently because training time is constant, mean-
ing that the total runtime is theoretically equal to the testing time. Furthermore,
the drastic increase in testing runtime speed compared to other algorithms’ can
be explained by the fact that KNN’s testing time correlates heavily with the
number of examples, whereas other algorithms’ testing runtimes are associated



508 A. Tuvshinjargal and E. Kim

with other factors such as the number of features of the data or the number
of base estimators. GradientBoost’s outstanding testing time compared to other
boosting methods like AdaBoost may have to do with the fact that Gradient-
Boost’s testing time complexity correlates with the depth of its trees rather than
the number of features.

Referring to the time complexities of classifiers can be a useful method of
identifying classifiers that may be promising or less promising for future use
cases. For example, AdaBoost’s testing time complexity is associated with the
number of features of the input data - this could suggest that AdaBoost may
be a poorer candidate classifier in the future as input data complexity increases,
unless methods of dimensionality reduction are considered as well.

5.6 Limitations and Future Directions

Crucially, this dataset is preprocessed and Hilbert-transformed, which 1)
deprives DL methods of information to learn on and results in lower accuracies
and 2) means that these runtimes do not represent the entire signal interpretation
process in online BCI usage, which begins with raw input data. A more holistic
approach we propose for the future might compare preprocessing runtime + ML
testing runtime vs. DL testing runtime using raw data. Another aspect to con-
sider for online BCI is that the input data is a stream of examples rather than
a dataset, so Big O considerations have to do with the complexity/resolution
of the input data (e.g., number of electrodes) rather than the size of datasets.
Thus, measuring how test (and preprocessing) runtime scales alongside raw data
complexity may be an important consideration for future analyses. Contextual-
izing testing runtimes in neurophysiology would also better-inform future work
on what constitutes “good” runtime.

In the future, GridSearchCV can be used to attempt more complex hyperpa-
rameter configurations and uncover the best hyperparameters. A larger dataset
can be used to test whether the performance optimizations continue to apply
beyond small datasets. Finally, a novel implementation of adaptive transfer learn-
ing methods upon CNN represents an opportunity to develop a classifier that is
exceedingly accurate, faster, and need not rely on a large, labeled dataset.

6 Conclusion

For simple BCI tasks such as LR, traditional machine learning algorithms can
achieve an accuracy as high as DL networks. When it comes to trade-offs, not
only can machine learning models produce accuracies as high as simple DL mod-
els can, but also they take a significantly shorter time to train. Namely, Deci-
sionTree, RandomForest, and GradientBoost were particularly impressive and we
consider these far more efficient than CNN in binary motor imagery classification
by virtue of their relatively small accuracy-runtime trade-offs. Hyperparameter
tuning for machine learning models can further cut down a considerable amount
of runtime as well as significantly improve their performance.
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Abstract. In this paper, we explored the implementation of
transformer-based classifiers in electroencephalogram (EEG) classifica-
tion tasks. We used a segmented portion of a newly-developed rich
EEG dataset, EEGEyeNet, and replicated the benchmark deep learn-
ing method results that the dataset developers performed. We then com-
bined the transformer-based self-attention mechanism and Convolutional
Neural Network (CNN), and proposed a deep learning model that demon-
strates both higher classification performance and greater interpretabil-
ity of results.

Keywords: Brain-computer interface (BCI) · EEG · Deep learning ·
CNN · Transformer · Attention mechanism · Multi-head self-attention

1 Introduction

1.1 Problem Statement

The choice of brain-computer interface (BCI) models has long been an exten-
sive topic. The rapid development in the fields of deep learning has produced a
wide variety of new tools for researchers to work on [6,20,28,31]. The current
state-of-the-art research [7,15,24,26,36,37,40] report high performances in elec-
troencephalography (EEG) classification. However, as a new type of architecture
that has proven to be highly effective on a wide range of tasks, including text
processing and image classification as the two best representatives, [2,3,8,12,38]
transformers-based models have not been fully explored in the field of EEG
classification. Compared to traditional deep learning models, transformer-based
models have the addition of a multi-head self-attention mechanism to utilize the
most relevant information in the input sequence flexibly with parallel computing
capacities, which is one of the primary reasons behind its success [4,17,19].

1.2 Purpose of Study

We are particularly interested in how the following two instances from the two
fields might work together: CNN with an additional transformers-based self-
attention layer, and large EEG datasets such as the EEGEyeNet dataset. We
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aim to bring these two together in an attempt to study both of them simulta-
neously: namely, we would like to know which aspects of them work well with
the other field, and which do not. This information will allow us to then aug-
ment them to better work with each other, and either produce results that
surpass the current state-of-the-art procedures or produce a list of aspects that
should be avoided in choosing future datasets and classifiers to work together
with. We assessed that the self-attention mechanism (Fig. 1) [41] could prove
useful for Electroencephalography (EEG) data, which usually contains multiple
cross-spatial relationships within the data entries themselves. Additionally, the
absence of transformer-based models in EEG leaves the possibility of improving
upon the current state-of-the-art results [6,20,31]. In our research, we attempt to
combine CNN [1,16] and self-attention modules [5,17,18,32,33], experimenting
on a rich novel EEG dataset-EEGEyeNet [11].

1.3 Research Questions

We will first start by directly applying the CNN model with a self-attention layer
to the EEGEyeNet dataset. Then we will compare the results with the current
state-of-the-art models on EEGEyeNet. We aim at discussing several questions
targeted at the underlying features, such as: how does the self-attention mecha-
nism work in BCI, and how does it improve upon the CNN model? Additionally,
how much does self-attention improve the base CNN model, and what specific
parts does it improve? What theoretical differences, if any, can be found between
self-attention and the CNN model? In particular, we also plan to answer the ques-
tion “how can we integrate and tune a self-attention module with a traditional
CNN network in EEG classification, so that the model inherits the advantages
of both self-attention and CNN?”

2 Dataset

The EEGEyeNet dataset by Kastrati et al. consists of correspondence of high-
density EEG data and eye movement data from 356 healthy individuals between
the age of 18 and 80 (Fig. 2). The high-density EEG data were recorded at a sam-
pling rate 500 Hz, with midline central recording reference, using a 128-channel
EEG Geodesic Hydrocel system. The raw data is then preprocessed to reduce
environmental factor noise using an open toolbox from Pedroni et al. [23]. Two
different standards, minimally and maximally, are used, the difference between
which is mainly illustrated by how many artifacts are removed. Annotations in
the form of the event start and end time, saccade position, and fixation position
are provided for each of the featured paradigms. Three paradigms are present in
the dataset, each designed to cover a different range of information: pro and anti-
saccade, large grid, and visual paradigm search. The initially proposed bench-
mark, utilizing exclusively the minimally preprocessed version of the dataset, is
divided into three tasks in increasing order of difficulty: left-right direction of
eye movement, angle and amplitude of saccade, and absolute position of gaze.
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Fig. 1. Attention module in the transformer architecture from [38]

The first task is performed on the saccade paradigm while the latter two are
performed on the large grid paradigm.

For our research, we replicated the deep learning benchmark models provided
by Kastrati et al. and used the minimally processed left-right classification data.
We segmented a random portion of the raw data, amounting to a size of 2000
data entries, to serve as training sets for deep learning models (Fig. 3).

3 Method

3.1 Rationale

CNN is a long-standing neural network algorithm [1,16] that has proven to be
a good base for multiple state-of-the-art models in EEG classification research
[6,11,11,20,31]. Additionally, CNN has been shown to be compatible with self-
attention modules. Li et al. successfully implemented a self-attention-augmented
CNN that is capable of processing imagery-related tasks [18]. Another approach
that attracted our interests was developed in Cordonnier et al.’s paper [5], which
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Fig. 2. Gaze data and EEG signal data from [11]

Fig. 3. Comparison between the segmented data and the original data

replaced the convolutional layer with a multi-head self-attention layer. What
Cordonnier et al.’s paper shows us is that the convolution layer of a standard
CNN model can be modified and experimented on, while having a safe fallback
to the baseline CNN results such that the model will be performing sufficiently
well already. However, one drawback of CNN models is the uninterpretability of
the feature maps. Humans are unable to directly extract useful information from
the feature maps that the CNN models produce. The solution to the uninter-
pretability problem came out in 2014, when Bahdanau et al. [2] came up with the
self-attention mechanism. The self-attention mechanism allows the input data
entries to interact with each other and find out who which part of the data they
should pay more attention to. The outputs are the aggregates of these matrix
interactions and attention scores on an attention map. The residual attention
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map provides intuitions on what part of the data is most highly emphasized
and linked with the rest of the data. With self-attention mechanisms (Fig. 4),
humans could therefore directly observe the attention maps and highlight certain
features within the data.

Fig. 4. Attention module structure from [41]

Apart from using CNN in EEG, which is the main innovation and a big
collaboration between two novel but under-appreciated fields of study, we also
introduce additional innovation here by testing different self-attention modules
with or without the convolution layer [4,17,19]. We think that this can tell us
what sort of additional information exists in an EEG dataset to be captured
beyond the reach of traditional CNN models, and what mechanisms are best
suited for capturing them. The interpretability feature is well-captured in the
self-attention feature map. This has the potential to not only select the best
combination from the models we put to test, but also point out the direction
we should optimize the algorithms for EEG in for the greatest improvement in
accuracy.

3.2 Implementation

We start with a simple CNN model taken from the original dataset paper [11]
and modified it with a series of different layers. The base structure of the
model includes two layers of padding, a main pipeline of convolution-batch
normalization-pooling, and an activation function layer before pooling takes
place. For the attention layer, we choose a gold standard self-attention layer
which is also used in the tried-and-successful transformers models [38]. We also
attempt to fit several other-purpose attention layers such as ones utilized for
image and text classification. For our own baseline that we will use for com-
parison and further tuning, we simply add the transformer self-attention layer
immediately after the convolution layer, as indicated by the orange box in Fig. 3,
which is a tried and proven method for integrating the two layers [5]. We then
test the results on a segmented dataset of size 2,000 randomly sampled from the
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full EEGEyeNet dataset, roughly 1/15 of the original size, a choice made due to
computation power limitations. The segmented dataset was manually inspected
to assure a not overly skewed representation of the original full dataset.

We named our base model CNtention (Fig. 3), a combination of CNN and
self-attention. The CNN part of the model used a simple 1-dimensional convo-
lution layer with corresponding 1-dimensional batch normalization and ReLU
activation, as well as a MaxPooling layer. Two additional padding modules were
also included such that the tensor shapes stay constant when passing through the
model. For self-attention, we augmented the model with a 4-head self-attention
layer, which was first introduced by Vaswani et al. [38], which was placed directly
after the convolution layer due to both input dimension requirements and prior
success in [3] using this layout. We also replicated the benchmark deep learning
models on the segmented dataset to serve as the control group. For evaluation
purposes, we primarily focused on the accuracy of classification as the main
performance indicator, but we also included other measures such as precision,
recall, and F-score for more in-depth analyses.

Fig. 5. Proposed CNtention model structure

3.3 Innovation

Apart from using self-attention in EEG, which is the main innovation of our
study and a big collaboration between two novel but under-appreciated fields
of research, we also tested different variations of the CNtention model on the
segmented dataset.
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Our primary innovation in varying the base model was testing the impact of
the number of self-attention layers on the classification performance. Liu et al.
introduced a transformer architecture with two attention layers that aggregate
global temporal features with time-series data, extracting high-level temporal
features of the EEG signals in the time domain [19]. This brings the possibility
that additional self-attention layers in the model, while not able to be clearly
defined as in Liu et al.’s paper, could capture additional alternative information
to further improve performance. We mimicked their structure and included an
extra self-attention layer into CNtention (Fig. 6). We further included a third
attention layer into the model and compared the performance of the three vari-
ations (Fig. 7).

We venture further from the base CNtention model by varying the layout and
individual layers. We tried varying the attention layer performance by changing
the number of heads in the attention layer, which is speculated to form a bell
curve related to the dataset shape [22,32]. We also tried a few more conventional
methods, namely trying different methods for the pooling and activation function
layers, such as switching to average pooling and LP pooling as alternative pooling
layers and Sigmoid and SoftMax as alternative activation functions.

Fig. 6. Proposed 2-layer CNtention model structure
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Fig. 7. Proposed 3-layer CNtention model structure

3.4 Connection

We connect our approach to Transformers, a highly rated model collection that
excels at NLP and image classification tasks [2,3,8,12,38]. The most notable
innovation of Transformers compared to prior methods in the respective fields is
the addition of self-attention, which allows for pattern-fitting and filtering across
large spatial gaps in the input data. We think that EEG data, which is a type of
time-series data [10,21,25], share the same characteristics in terms of patterns
with NLP and image classification, and that we could potentially simulate the
success of transformers by implementing the same self-attention modules but
for EEG baseline models [4,13,17,30,35]. To incorporate the ideals, we use a
self-attention layer that is also found in transformers models [38].

We also connect our approach to several successful applications and evalua-
tions of attention layers on EEG data in the BCI domain [8,9,19,32]. Notably
none of the approaches make use of a 1-dimensional convolution layer, which
we speculate to be due to the dataset they use not performing exceptionally
well with it. In our case, the 1-dimensional convolution layer on itself already
is gold standard and produces a higher accuracy and f1 score then the better
results from among those papers, therefore it is a challenge both in connecting
for the first time 1-dimensional convolution and attention, and also in connecting
high-performing traditional methods with self-attention.
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4 Results

In the control group, we successfully replicated the results shown for the original
full EEGEyeNet Dataset for the traditional deep learning models on the seg-
mented dataset. As shown in the table below, our accuracy results mimic that
of the original paper. We then ran our default CNtention model (1 self-attention
layer, 4-headed, ReLU activated, MaxPooled) on the segmented dataset obtained
a higher performance result compared to the benchmark models with a 99.68%
prediction accuracy (Fig. 8). The accuracy results for the benchmark models on
the full dataset can be found in Table 4 in the original paper.

Fig. 8. Deep learning models classification performance comparison

Then we ran the CNtention models with different numbers of self-attention
layers and observed a slight decrease of classification accuracy as we included
more self-attention layers (Fig. 9).

Fig. 9. Number of self-attention layers vs CNtention performance

We then ran the CNtention models with different numbers of self-attention
heads and observed almost no difference in the performance as number of heads
vary (Fig. 10).

Results from running the CNtention models with 3 different pooling and 3
different activation layers suggest divergent influence on the classification accu-
racy. However, with the different pooling layers (Fig. 11) and activation functions
(Fig. 12) we used, all of them demonstrated at least as good performances as the
plain CNN model.
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Fig. 10. Number of attention heads vs CNtention performance

Fig. 11. Different pooling methods vs CNtention performance

5 Discussion and Future Work

CNN and attention related deep learning approach has demonstrated great
potential in computer vision, medical imaging and brain-computer interfaces
[6,27,31,42,43].

5.1 Comparison with Benchmarks

In our research, we created a model combining CNN with self-attention mecha-
nism and applied it to EEG classification tasks. We also replicated the bench-
mark presented by the EEGEyeNet dataset developers on traditional deep learn-
ing models, on the segmented minimally processed dataset. We observe in general
an extremely high classification accuracy here for all models. We originally spec-
ulated this to be a case of overfitting, but after we varied the parameters and
tested more models, we come to the conclusion that it is because of the excellent
quality of the original dataset rather than a certain flaw: the high base quality
of the dataset allows even the simplest models to achieve passable results, and
almost any neural network model performs very well without further optimiza-
tion due to the input being well-formed. However, CNtention still demonstrates
extremely strong performances, boasting a full one percent more accuracy com-
pared to the fine-tuned plain CNN model, which translates to roughly 4 more
correctly classified examples out of 300 to test, and has additional advantages,
namely an increase in the interpretability of the results [9,14,29,39]. For tradi-
tional CNN models, humans are unable to extract usable information directly
out of the feature maps. With self-attention mechanisms, however, we could
therefore observe the attention maps produced and highlight certain features
within the data. Researchers in fields other than brain-computer interface, such
as pedestrian detection [44], speech enhancement [22], and music theme classifi-
cation [34], have taken advantage of the interpretability of the attention feature
map and improved performance of the traditional CNN model.
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Fig. 12. Different activation methods vs CNtention performance

5.2 Robustness Check

The results from CNtention variants with different numbers of self-attention
layers demonstrate the negative relationship between the number of layers and
classification accuracy. This might be due to the randomness of our results caused
by the lack of 5-fold replication, as well as the lack of fine-tuning for the self-
attention layer. But it could also be that we do not have strong support for ratio-
nalizing the information gained by those additional layers as relevant, therefore
they might act as noise and negatively impact the information extraction. In
addition, we found out that the number of heads, the use of different activation
functions, and pooling layers have minimum effect on the classification accuracy.
We speculate the result to be primarily because of the baseline CNtention model
being so powerful that only 1 single example within the test set was misclassified,
leaving little wiggle room.

In the current EEG classification research field, transformers-based mod-
els are largely absent from the state-of-the-art research, as Craik et al. identi-
fied (Fig. 13). Our results have shown the promising future of the combination
of transformer-based self-attention layers and other traditional architectures,
demonstrated by its ability to raise already high classification accuracies signif-
icantly and interpretability of results.

5.3 Future Work

For our future work, we plan to run our default CNtention model and its variants
on the entire EEGEyeNet dataset (over 30,000 data entries) and potentially other
similar BCI-related datasets for more robust and generalizable results. Future
work in this field might also include applying transformer-based multi-headed
self-attention modules to other existing traditional deep learning architectures,
such as EEGNet-based CNNs, DBNs, and MLPs in order to test the versatility
of such self-attention modules.
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Fig. 13. Deep learning architectures across 90 studies in EEG classification from [6]

6 Conclusion

In our research, we tested a novel architecture called CNtention, a CNN model
combined with an additional transformer-based self-attention module on a seg-
mented section of the EEGEyeNet dataset. We achieved high classification
results that outperformed the state-of-the-art deep learning models. We rea-
soned that a CNN model with a self-attention module would work well in EEG
classification tasks and has the advantage of capturing additional features in
the data. We aim to further validate our conclusions after solving the potential
over-optimizing issue and applying our model to other EEG-related datasets.
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Abstract. Neurotechnology promises cognitive enhancement as a way
for humanity to extend its information-processing capability with-
out invasive brain surgeries and pharmacological side effects. Notable
advancements in this field have achieved high-bandwidth wireless com-
munication interfaces between human brains and computers. Human-
centered design proposes that human-technology experiences should
focus on human needs. This paper explains how design thinking has been
applied as a methodology to design the user experience of an attention-
based neurotechnology solution that leverages artificial intelligence (AI)
to enhance the flow performance and cognitive well-being of knowledge
workers (KWs). Using the d.school design thinking process, we started
with a mindset that favored empathy, creative confidence, and ambigu-
ity to discover and define the problems confronting KWs. After diverg-
ing with deep empathy and converging on user personas and problem
definition, the design thinking process branched into an iterative pro-
totyping cycle that transformed our initial ideas into a human-centered
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ware evaluators conducted a series of cognitive walkthroughs and heuris-
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1 Introduction

A growing body of literature on neurotechnology recognizes the importance of
bio-sensing and biofeedback [17,40,44]. In this paper, the term ‘neurotechnology’
refers to the methods and instruments that enable a direct connection with the
nervous system [34]. Recent studies by computational neuroscientists have shown
how neurotechnologies use bio-sensing electrodes to record signals from the brain
and transform them into biofeedback displays of useful control commands and
stimuli [24,31]. This exploratory research focused on human knowledge workers
(KWs) and attention-based neurotechnology-as-a-service shown in Fig. 1.

Fig. 1. FCA bio-senses, contextualizes, and nudges KWs into flow

In this work, we design a human-aware and context-aware neurotechnology
artificial intelligence (AI) known as the Flow Choice Architecture (FCA)
that “nudges” [46,51] KWs to increase the healthy time that they spend in
the flow state [10,11,13]. Our design thinking story outlines the development
of FCA’s human-AI experience to strengthen the cognitive abilities of KWs by
deepening their levels of cognitive work rather than automating their jobs.

KWs are essential to maintain our standard of living and quality of life.
Their well-being is paramount to economic development and human advance-
ment. Since the pandemic caused by the coronavirus disease, KWs have expe-
rienced an accelerated shift towards remote working [3] in virtual and hybrid
work environments [49] that are augmented by AI [54]. To remain competitive,
KWs need to create more value in less time while improving their performance
and maintaining their well-being.

In Sect. 2, “Background,” we review the literature on cognitive enhancement,
neurofeedback, and healthy flow performance. This section analyzes how neuro-
feedback can be adopted to help KWs effortlessly focus their attention on the
task stimulus during knowledge work.
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In Sect. 3, “Design Thinking,” we describe the phases of the design thinking
process used in this paper. We empathize by conducting remote, semi-structured
interviews with 12 KWs to generate qualitative results, quotes, and insights
about their personal experiences, expectations, and preferences related to knowl-
edge work. We validate the interview results by conducting an online survey
with 468 participants. We articulate the results from a need-finding synthesis,
which were consistent problem statements evidenced by supporting user per-
sonas. These data-driven design assets guided the future steps of the design
thinking process. We explore the qualitative dataset to discover commonly used
vocabulary and consolidate an intuitive information architecture. We adopt rapid
prototyping techniques to build a functional FCA for testing and evaluation.

In Sect. 4, “Evaluation,” we conduct cognitive walkthroughs and heuristic
evaluations of the prototype with six evaluators who are subject matter experts
in knowledge work and software engineering. The evaluation results generated
improvements for future development.

In Sect. 5, “Results,” we present the findings from the cognitive walkthroughs
and heuristic evaluations. The evaluation results highlight how FCA succeeded
on the tasks and identify areas for improvement.

In Sect. 6, “Discussion,” we explain the implications of the findings and dis-
cuss recommendations for improving the learnability and usability of FCA.

In Sect. 7, “Conclusion,” we conclude with the research outcomes. We discuss
the next steps to advance the FCA neurotechnology prototype to become a
beneficial tool for the cognitive enhancement of KWs.

2 Theoretical Background

FCA is a bio-sensing and contextual bio-feedback nudging system that enhances
KW flow performance and cognitive well-being. FCA contributes to bridging the
gap of growing global demand for more creative and productive human output in
knowledge-based industries by helping KWs perform their cognitive work with
fewer distractions and attentional load. The references synthesized in this section
identify relevant findings from scholarly sources on cognitive enhancement, neu-
rofeedback, and healthy flow performance.

2.1 Cognitive Enhancement

Cognitive enhancement aims to reach one’s personal best without necessarily
outperforming others [9]. Bostrom and Sandberg [7] define cognitive enhance-
ment as “the amplification or extension of core capacities of the mind through
improvement or augmentation of internal or external information processing
systems.” Contemporary cognitive enhancement methods involve an array of
nootropics, brain implants, brain training games, neurofeedback, and transcra-
nial electric stimulation devices for modifying brain function [19,21].

Despite the many positive effects of cognitive enhancement, there are likely
negative aspects to be considered. Given that cognitive enhancements are likely
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to be used for extended periods across the lifespan, the long-term effectiveness
and safety are crucial concerns to be determined.

In the knowledge economy, the value of human capital far outweighs more
traditional, tangible forms, such as plants and equipment [35]. For this pri-
mary reason, we regarded the cognitive performance and well-being of KWs as
quintessential elements of organizational success. We value the KW’s happiness
before, during, and after knowledge work in terms of its immediate and long-
term impacts on the KW. By doing so, we designed FCA to guide KWs towards
the flow state and enhance cognitive well-being through well-timed nudges and
psychological flexibility routines that cultivate mindfulness and commitment.

2.2 Healthy Flow Performance

Csikszentmihalyi [10] defined flow as a state of concentration so focused that
it amounts to absolute absorption in an activity. Concentration is a trainable
cognitive state that may aid in the activation and maintenance of flow during
goal-directed behaviors [48]. We hypothesize that concentration during knowl-
edge work tends to activate flow. To this end, we designed FCA to train KWs
to regulate their concentration and benefit from the positive effects experienced
during and after flow.

On the contrary, fatigue is the debilitating cognitive state associated with
feeling exhausted, sleepy, and tired, which diminishes the ability to function
efficiently on a task [18]. Although work may be completed under conditions
of high cognitive fatigue, the quality of performance and the quality of work
outcomes tend to decrease [29]. Basic research found that an increase in cog-
nitive fatigue correlated with increased reaction times, misses and false alarms,
and time-on-task in an attention-dependent task [6]. Matthews and Desmond
[32] observed the detrimental impact of cognitive fatigue on performance during
highly demanding cognitive tasks. This observation makes the management of
task demand an essential aspect for FCA to perform successfully and effectively.

Despite the rich literature on the topic of flow, these studies have been pri-
marily qualitative inductive analyses [47]. Ambiguities exist in its definitions and
inconsistencies are evident in how flow is operationalized [1]. In this research,
we operationalized flow with the nine components defined by Csikszentmihalyi
[10], which include challenge-skill balance, action-awareness merging, clear goals,
unambiguous feedback, concentration on the task at hand, sense of control, loss
of self-consciousness, time-transformation, and an autotelic experience.

Flow occurs when individuals, acting solo or in teams, operate with optimal
concentration, which yields a heightened sense of satisfaction, intrinsic motiva-
tion, and peak performance [10,12,37]. In this work, we claim that healthy flow
performance is not the excessive attainment of the flow state, which may lead
to exhaustion and burnout, but sufficient flow to accomplish one’s work while
maintaining cognitive and emotional well-being.
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2.3 Neurofeedback

Within the neurofeedback domain, training protocols provide audio-visual sig-
nals based on site-specific electroencephalography (EEG) frequency bands or
combinations thereof [31]. EEG data make up a reliable bio-signal stream that
may reify cognitive performance into measurable neural activity. FCA tests this
hypothesis with its neurofeedback AI technology for flow augmentation by build-
ing upon other neurofeedback interventions grounded in the training of respon-
dent and operant behaviors [17]. The main distinction between FCA and other
neurofeedback tools is the use of intuitive and comprehensible nudges that reduce
cognitive workload rather than signals that require monitoring and decoding [40].

There are varied results from experiments that correlate EEG to human per-
formance. In a study by Katahira et al. [24], participants performed arithmetic
tasks of varying difficulty levels to induce three conditions: flow, boredom, and
overload. The researchers analyzed the variance of EEG data between the three
conditions. Results from the study demonstrated that theta power in the brain’s
frontal areas was higher in the flow and overload conditions compared to the
boredom condition. According to Katahira et al. [24], high theta power reflects
the subjective states of maximum cognitive control and absorption in the task.
The flow condition exhibited decreased alpha activity compared to the overload
condition, which suggested a relatively low cognitive load on working memory
during flow. This study concluded that the flow state was indicated by high
frontal theta power and moderate alpha power [24].

Researchers have explored artificial neural networks and deep learning tech-
niques to classify operator states using EEG signals. Wilson et al. [56] per-
formed two-class cognitive workload classification based on artificial neural net-
works, and achieved 86% classification accuracy. Tripathi et al. [53] used a deep
neural network and a convolutional neural network (CNN) to classify valence
and arousal measures using EEG signals from the DEAP dataset [27]. Their
neural networks provided 58% and 56% classification accuracy for valence and
arousal, respectively, and their CNN model provided 67% and 58% for valence
and arousal, respectively. Zheng et al. [57] used a deep neural network archi-
tecture to process EEG and eye movement features. The fusion of multimodal
bio-signals with deep neural networks significantly enhanced the model’s per-
formance compared with a single modality, and the best mean accuracy of 85%
was achieved for four emotional states [57]. Eskridge and Weekes [20] used the
SEED-IV EEG dataset [57] to run dimensionality reduction on the power spec-
tral density features from five EEG frequency bands using linear discriminant
analysis followed by an artificial neural network to gain average overall classifi-
cation accuracy of 99%.

This paper discusses the use of EEG bio-signals in the form of EEG power
indices as reliable indicators for effort, concentration, relaxation, absorption,
fatigue, arousal, and valence during knowledge work tasks. We computed seven
EEG power indices for use in the analysis from evidence-based correlates in the
literature of computational neuroscience [2,4–6,8,14–16,22,23,25,26,30,36,41,
43,45,50,52].
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3 Design Thinking the Human-AI Experience

In this work, knowledge workers (KWs) are human workers who perform com-
plex deep work [38] that requires considerable amounts of concentration and
creativity. We adopted the d.school design thinking process model [42] in Fig. 2
to actively engage the participation of KWs in the design and evaluation of FCA.
The Institutional Review Board (IRB) at Florida Tech approved our research
with human subjects.

Fig. 2. The five stages of the d.school design thinking process model

3.1 Stage 1 - Empathize

In the “Empathize” stage, we formulated an understanding of potential FCA
users, i.e., KWs seeking flow experiences. We conducted remote, semi-structured,
one-on-one interviews with KWs and subsequently applied the interview results
to develop a cross-sectional survey with KWs to generate quantitative data and
validate insights from the interviews.

We conducted the interviews with a sample of 12 KWs (6 females, age M =
29.5 years [SD = 7.91]) who represented KWs from diverse domains in engineer-
ing, creative writing, project management, supply chain management, research,
and philosophy. The interview study was generative in nature and centered on
building a deep empathy with KWs as the starting point for the design thinking
method of the innovation process.

The problem under investigation was: how might we describe the flow per-
formance of KWs according to their tasks, workspaces, tools, and heuristics? We
hypothesized that KWs explore and exploit their factors of production to maxi-
mize performance even though stressors may negatively impact their well-being.
To test our claim, we pursued the following research questions. In which domains
do KWs work? What types of tasks do KWs perform? Where do KWs perform
their work? Which heuristics and tools do KWs use? What is flow at work for
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KWs? What is effective work time for KWs? How does KW productivity impact
well-being?

The interview questions were derived from the research questions and
grouped into the following ten sections: activity tracking, favorite activities,
knowledge work, productivity, work tracking scenario, task definition & exe-
cution, flow at work, distraction, traction, and changing work states. After the
interviews, we applied quantitative content analysis and qualitative thematic
analysis to synthesize the results. The process generated a conceptual frame-
work for classifying KWs based on distinct personal traits and work preferences.
User personas relevant to productivity multiplier tools help humanize FCA.

The KWs worked in three main work domains, i.e., sciences, business, and
arts. The types of knowledge work tasks that the KWs performed included writ-
ing, research, coding, design, documentation, reading, finding, visualization, col-
laboration, and managing subordinates. The types of tasks varied across work
domains. The foremost task features that KWs considered included urgency,
duration, challenge, importance, sensitivity, and priority.

KWs worked in the office, lab, cubicle, and living room. Participants reported
the shift to working from home due to the COVID-19 pandemic. KWs described
their efforts to create a distraction-free environment by turning off or stowing
phones, wearing headphones, listening to music, and closing or locking doors.
They take breaks to relax, relieve stress, refocus, eat, drink, and deflate.

KWs reported that flow was a zone, work mode, or head-space that occurs
naturally and is goal-oriented, structure-driven, and distraction-free. The KWs
supported the need for clear task goals and complete task absorption to achieve
flow. Most of them experience a loss of self-consciousness and a faster passage
of time during flow. KWs reported a positive feeling of satisfaction after flow.

KWs identified detrimental impacts of productivity on their well-being, e.g.,
procrastination, sleep issues, and developing hyper-focus and tunnel vision. Sev-
eral KWs admitted to missing lunches, not drinking water, ignoring eating, and
eating too quickly. Others complained about poor posture, being stationary at
the desk, and lack of exercise. On the other hand, KWs identified some posi-
tive impacts of productivity on their well-being. KWs reported feeling in a better
mood, confident, happy, and more energetic. Some KWs used the positive energy
as an opportunity to perform activities outside of work.

A key finding was that KWs considered flow at work in terms of being in
a zone and head-space when they are focused on making progress, completing
tasks, and achieving results without interruptions and distractions. This find-
ing has significant implications for the design of FCA to increase attention on
the task at hand and mitigate external distractions. One of the most important
findings to emerge from this study was that KWs balance the positive and nega-
tive impacts of productivity with their well-being to seek growth and happiness,
which suggests a role for FCA in promoting healthy flow and work-life balance.

We conducted the cross-sectional survey with 468 KWs from MTurk to gen-
erate quantitative data, validate earlier insights, and understand what makes
flow enjoyable for individual KSs. We used the survey results to identify user
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preferences and qualify excerpts for the user personas. The survey was random-
ized and cross-sectional in design to build inclusion across KWs from the three
main work domains, i.e., sciences, business, and arts.

The survey yielded significant effects of specific situations on the KW’s enjoy-
ment of a task. Success on the initial attempt had an extremely positive effect
on the KW’s enjoyment of the task. The same positive effect occurred during
situations of consistent and unexpected success over time. Contrary to expecta-
tions, KWs tended to embrace failure since consistent failure over time also has
a significantly positive effect on the KW’s enjoyment. The use of incentives for
success also had a significantly positive effect on the KW’s enjoyment.

In terms of how frequently KWs experienced the state of flow during knowl-
edge work, consistent failure over time had a significantly negative effect on the
KW’s enjoyment. During flow, KWs felt that failure on the initial attempt had
a significantly negative effect on the KW’s enjoyment. Similarly, random failure
over time had a significantly negative effect on the KW’s enjoyment.

3.2 Stage 2 - Define

In the “Define” stage, we synthesized the research from the interviews and survey
to discover where KWs were experiencing work-related problems that interfered
with their performance and well-being. Our need-finding synthesis generated
the user persona in Fig. 3 and a set of user Point-Of-View (POV) problem state-
ments, which guided the remaining stages of the design thinking process.

Fig. 3. The software engineer user persona - kevin small
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The following actionable Point-Of-View (POV) statements formulated con-
textualized problems confronting KWs and identified their needs and insights.

1. Before knowledge work, KWs need a way to prepare for work because they
tend to procrastinate and lose focus without precise tasks or goals.

2. During knowledge work, KWs need a way to stay engaged with work because
they tend to become distracted and stressed over lost productive time.

3. After knowledge work, KWs need a way to account for and reflect on work
accomplishments because there are key work patterns to learn.

4. During boring knowledge work, KWs need a way to stimulate and challenge
themselves because they tend to lose motivation and underperform.

5. During overwhelming knowledge work, KWs need a way to relax and calm
down because they tend to become anxious and underperform.

6. During enjoyable knowledge work, KWs need encouragement and reinforce-
ment because they tend to perform better and achieve more healthy flow.

3.3 Stage 3 - Ideate

In the “Ideate” stage, we generated creative ideas from the macro-scale to the
micro-scale. We used AI to mine the qualitative datasets from the interviews and
surveys to discover useful vocabulary, labels, and interactions that were recog-
nizable and appealing to KWs. We abstracted the user scenarios into a generic
task list where the interactions and user interface (UI) modeled a “minimalist”
version of a task management system. We ideated the FCA through the lens of
safe, explainable, and responsible AI.

The design philosophy of FCA’s user experience exploited wearable tech-
nology that is non-invasive, lightweight, and easy to use. Once we obtained a
comfortable hardware setup, the FCA operator needed a simple and effective
neurofeedback UI. Our approach to FCA’s UI design leveraged research about
the operator’s biases, behaviors, and preferences. Three “flow principles” were
incorporated as fundamental tenets of FCA’s design philosophy.

1. Dynamic Flow - In flow, time stands still. The dynamic visualization
of deep flow was represented as minimal motion, whereas shallow flow was
moderate motion, and distraction was significant motion.

2. Cumulative Flow - More flow yields better work. FCA rewarded the
operator with flow points based on the flow state of each epoch. The cumu-
lative visualization of flow applied a heuristic that humans employ, i.e., more
is better.

3. Deep Flow - Never interrupt deep flow. FCA used a recommender sys-
tem that delivered nudges based on specific learned criteria or when the sys-
tem “explored” and tried something novel to learn new knowledge. However,
a rule was that FCA would never interrupt “deep flow.”

We leveraged the qualitative datasets from the interviews and surveys to
construct the information architecture with abstracted keywords, i.e., profile,
workspace, device, project, task, and work session, which formed the basis of
the functional user requirements for the prototypes.
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3.4 Stage 4 - Prototype

In the “Prototype” stage, we incrementally built out FCA by diverging and
converging on multiple ideas. We developed four prototypes with different capa-
bilities to answer questions and clarify risky assumptions.

Prototype 1 tested facial expressions as operator state indicators. One of the
riskiest components of our research plan was discovering how to classify human
bio-signals to provide reliable operator state indicators. This question became a
core focus of Prototype 1, which focused on extracting steady streams of facial
landmarks and action units to train models that predict the operator’s state.
Prototype 1 provided insights into which states the predictive model computed
from the camera feed overlay of facial landmarks.

Fig. 4. Prototype 1 classifying facial expression bio-signals

Figure 4 shows the near real-time classification of facial expression bio-
signals from an operator performing an experiment watching emotionally-
charged videos. This initial prototype demonstrated that it was feasible to clas-
sify operator states given the facial expression bio-signal time series vector. After
proving that it was possible to classify operator states with a measure of reli-
ability using facial bio-signals, we advanced to the most challenging aspect of
our research plan. We needed to discover how to simultaneously classify multiple
bio-signals to provide reliable indicators of operator state.

Prototype 2 tested the integration of multimodal bio-signals from wearables
devices. We selected two different wearable devices based on their capabilities.
Muse headbands are affordable, commercially available off-the-shelf EEG devices
developed by InteraXon Inc. Muse headbands aimed to enhance meditation prac-
tice by combining instruction and tracking with EEG sensor biofeedback during
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mindfulness exercises [28]. The Empatica E4 is a wrist-worn photoplethysmog-
raphy (PPG) bio-sensor device that Empatica Inc developed. The E4 calculated
heart rate, inter-beat-interval (IBI), and skin temperature [33].

Prototype 2 demonstrated that it was feasible to classify operator states from
multimodal bio-signals. However, Prototype 2 was too slow to reach a consensus
due to the various bio-signals with different timescales (Fig. 5).

Fig. 5. Prototype 2 showing an operator performing a mirroring experiment

Prototype 3 in Fig. 6 tested EEG bio-signals as operator state indicators.
Prototype 3 proved that it was feasible to compute operator states from EEG
bio-signals. This finding supported our decision to focus on neurofeedback.

Fig. 6. Prototype 3 showing computed EEG indices & task interval markers



538 T. R. Weekes and T. C. Eskridge

3.5 Stage 5 - Test

In the “Test” stage, we evaluated the effectiveness of the prototypes. We con-
ducted cognitive walkthroughs and heuristic evaluations with KWs to inform the
design of the human-AI experience. We developed Prototype 4 in Fig. 7 to evalu-
ate FCA as a gamified neurotechnology in cognitive walkthroughs and heuristic
evaluations.

Fig. 7. Prototype 4 showing features of the FCA UI

The cognitive walkthrough was a detailed, step-by-step evaluation of FCA on
a set of tasks. The purpose of the walkthrough was to empathize with KWs to
uncover design errors in the FCA UI that would interfere with their learning by
exploration and cause confusion during interactions. Examples of such errors are
poorly worded labels, misguiding layout flows, and inadequate feedback about
the consequences of an action.

The heuristic evaluations applied Jakob Nielsen’s usability heuristics [39].
The heuristic evaluations identified usability issues in the FCA UI for remedi-
ation. Responses from the evaluators were comments on the violations of the
usability guidelines supplemented by severity ratings.

4 Evaluation

4.1 Methodology

The remote, one-on-one cognitive walkthroughs were conducted by 3 KW evalu-
ators (2 females, age M = 26.3 years [SD = 4.61]). The evaluators simulated the
personas and evaluated the FCA prototype from the perspective of the potential
users. KWs started FCA and configured it to plan and complete tasks in a work
session. After interpreting FCA’s UI and responding to nudges, the KWs com-
pleted and reviewed the work session, then shut down FCA. The KWs evaluated
FCA by describing how the UI fulfilled each task.

The reseacher administered the cognitive walkthroughs. In the preparatory
phase, the evaluator became familiar with the assigned user persona. The user
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personas from the “Define” phase allowed the evaluators to judge what needs,
knowledge, preferences, and limitations the users may have relative to the tasks.
During the walkthrough briefing, the researcher discussed the tasks to be ana-
lyzed. The evaluator interacted with FCA on the following tasks by describing
how the UI performed on each task.

1. Startup FCA
2. Calibrate FCA
3. Plan a new work session
4. Start a work session
5. Complete a task
6. Interpret the signals during a task
7. Respond to the nudges during a task
8. Complete a work session
9. Review a completed work session

10. Shut down FCA

In the analysis phase of the cognitive walkthrough, the evaluators examined
each action in the solution path and attempted to tell a credible story that
explained why the expected users would choose that action. Credible stories
were based on assumptions about the background knowledge of users and the
problem-solving process that enables the user to guess the correct action.

If there was a major problem with the UI, the researcher noted the problem
and proceeded to the next task as though the correct action had been performed.
The state of the UI at the beginning of each action was always assumed to be
the correct state and never the state after an incorrect action was performed.

The remote, one-on-one heuristic evaluations were conducted by 3 evaluators
(3 males, age M = 39.0 years [SD = 17.32]). The evaluators simulated the Kevin
Small persona over ten tasks. The KWs started FCA and configured it to plan
and complete a work session. After interpreting FCA’s UI and responding to
nudges, they completed and reviewed the work session and then shut down FCA.
The KWs evaluated FCA by describing how the UI fulfilled each task.

The preparatory phase of the remote heuristic evaluations involved a series of
questions about FCA’s compliance with Jakob Nielsen’s ten usability heuristics.
During the evaluation briefing, the researcher discussed the ten tasks above to
be analyzed.

During the heuristic evaluations, the evaluators reviewed, interacted with,
and evaluated FCA on the given tasks by describing how the UI performed
on each task and then performing the correct action sequence to complete each
task. In the analysis phase, the evaluators examined each task with each usability
heuristic. If there were violations of the design guidelines, the evaluator made a
descriptive comment and associated it with the task and the heuristic.

The researcher reviewed the comments with the evaluators where clarity was
necessary. If there was a problem with the UI, the researcher noted the problem
and proceeded to the next task, as if the correct action had been performed.
The UI state at the beginning of each action was always assumed to be the
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correct state. The evaluators’ comments were tabulated and severity ratings
were assigned to each comment. In addition to the heuristic, each comment was
categorized by the type of design error.

5 Results

The cognitive walkthroughs generated the following key findings and recom-
mendations. We recommended button groups to replace the slider bars in the
user profile, which negatively affected the configuration of FCA. We proposed to
clarify what the UI does by changing the label “Manage Tasks” to “Plan Work-
session.” There should be a feedback screen that presents a meaningful summary
of the work accomplished in the work session.

Figure 8 shows the tabulated results from the heuristic evaluations. There
were 82 design issues covering the ten usability heuristics over the ten tasks. The
totals indicated which tasks and heuristics contained a majority of the issues.

Fig. 8. Summary of design issues from the heuristic evaluations
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6 Discussion

The relevance of flow among KWs strongly supported our findings. KWs con-
sidered flow at work in terms of being in a zone and head-space when they are
focused on making progress, completing tasks, and achieving results without
interruptions and distractions. The need for flow has significant implications for
understanding how to design FCA in a way that increases their focused attention
and mitigates distractions.

The cognitive walkthrough rationalized the design problems so that the FCA
prototype would promote the discoverability and learnability of its users while
providing adequate feedback on their tasks early in the implementation. Overall
the cognitive walkthroughs demonstrated that FCA fits the KW’s mental model.
The concepts of user accounts, profiles, workspaces, devices, and tasks were all
very familiar to the evaluators. The streamlined user flows to complete the UI
interaction tasks guided the KWs from initial use onward.

The top-3 tasks that contained the majority of the design issues were tasks 3,
2, and 9, i.e., “Plan a new work session,” “configure FCA,” and “Review a com-
pleted work session.” The top-3 heuristics that exhibited the highest frequencies
were “Visibility of system status,” “Match between system and the real world,”
and “Consistency and standards.” The severity of the design issues factored into
the prioritization of the fixes.

In addition to uncovering design issues that degrade the learnability and
usability of FCA, this design thinking process reinforced the need for FCA to
help KWs balance positive and negative impacts of productivity with their well-
being. This finding underpins the primary goal of FCA to promote healthy flow
performance and work-life balance.

7 Conclusion

This paper discussed the design thinking of a human-centered AI system that
seeks to enhance the flow performance and well-being of individual KWs. We
effectively applied the d.school design thinking process model to iteratively inte-
grate lessons learned across the entire AI design and development life cycle.

The design thinking process reinforced that system design should start with
the correct user to find the right problem. The application of design thinking to
the human-AI experience of FCA involved a high level of sensemaking to decide
which questions about the KW required clarity [55]. We leveraged samples of
KWs and Amazon MTurk’s pool of KWs to generate sufficient qualitative and
quantitative data to ensure that FCA was developed to fit their needs.

Each prototyping cycle solved specific problems. Prototype 1 visualized out-
puts from the predictive model as time series and heatmaps. Prototype 2 tested
the feasibility of classifying multimodal bio-signals and confirmed the decision to
pursue a neurofeedback-based solution. Prototype 3 extended the neurofeedback
approach and determined the efficacy of the computed EEG indices. Prototype
4 evaluated FCA in cognitive walkthroughs and heuristic evaluations.
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In the context of FCA, an organization may mandate that individual KWs
use FCA. The organization may wish to fire specific KWs if they do not achieve a
high flow state for more than five hours a day. FCA proposes to protect against
this type of misuse and abuse by treating bio-signal data as personal health
information, defined as protected information under the Health Insurance Porta-
bility and Accountability Act (HIPAA). FCA digitalizes and scales the role of
a personal workplace coach who helps KWs work healthier, happier, and more
productively of their own volition.

The most challenging aspect of this research plan was developing a multi-
modal Prototype 2. This prototype required the simultaneous classification of
multiple bio-signals to provide reliable indicators of the KW state. The proto-
type was too slow to reach a consensus due to various bio-signals with different
timescales and inexplicable classifications. Another significant challenge was the
downtime to train, test, and tune the AI models that punctuated the rapid
exploratory iterations of the prototypes.

Future research includes experiments to streamline protocols, collect self-
reports, and compute EEG indices. Other UI-focused advancements will center
on a wider variety of flow-inducing conditions. We will continue to collect data
from KWs performing measurable knowledge work tasks in randomized con-
trolled trials and longitudinal playtests. These data will help to improve the
human-AI experience of FCA for the benefit of KWs.

References

1. Abuhamdeh, S.: Investigating the “flow” experience: key conceptual and opera-
tional issues. Front. Psychol. 11, 158 (2020)

2. Alves, N.T., Fukusima, S.S., Aznar-Casanova, J.A.: Models of brain asymmetry in
emotional processing. Psychol. Neurosci. 1, 63–66 (2008)

3. Amankwah-Amoah, J., Khan, Z., Wood, G., Knight, G.: COVID-19 and digital-
ization: the great acceleration. J. Bus. Res. 136, 602–611 (2021)

4. Barwick, F., Arnett, P., Slobounov, S.: EEG correlates of fatigue during adminis-
tration of a neuropsychological test battery. Clin. Neurophysiol. 123(2), 278–284
(2012)

5. Berka, C., et al.: EEG correlates of task engagement and mental workload in vigi-
lance, learning, and memory tasks. Aviat. Space Environ. Med. 78(5), B231–B244
(2007)

6. Boksem, M.A., Meijman, T.F., Lorist, M.M.: Effects of mental fatigue on attention:
an ERP study. Cogn. Brain Res. 25(1), 107–116 (2005)

7. Bostrom, N., Sandberg, A.: Cognitive enhancement: methods, ethics, regulatory
challenges. Sci. Eng. Ethics 15(3), 311–341 (2009)

8. Cheng, S.Y., Hsu, H.T.: Mental fatigue measurement using EEG. IntechOpen
(2011)

9. Colzato, L.S., Hommel, B., Beste, C.: The downsides of cognitive enhancement.
Neuroscientist 27(4), 322–330 (2021)

10. Csikszentmihalyi, M.: Flow: the psychology of optimal performance (1990)
11. Csikszentmihalyi, M.: Happiness and creativity. Futurist 31(5), S8 (1997)



Design Thinking the Human-AI Experience of Neurotechnology 543

12. Csikszentmihalyi, M.: Play and intrinsic rewards. In: Csikszentmihalyi, M. (ed.)
Flow and the Foundations of Positive Psychology, pp. 135–153. Springer, Dordrecht
(2014). https://doi.org/10.1007/978-94-017-9088-8 10

13. Csikszentmihalyi, M.: Toward a psychology of optimal experience. In: Csikszent-
mihalyi, M. (ed.) Flow and the Foundations of Positive Psychology, pp. 209–226.
Springer, Dordrecht (2014). https://doi.org/10.1007/978-94-017-9088-8 14

14. Dasari, D., Shou, G., Ding, L.: ICA-derived EEG correlates to mental fatigue,
effort, and workload in a realistically simulated air traffic control task. Front. Neu-
rosci. 11, 297 (2017)

15. De Gennaro, L., et al.: Neurophysiological correlates of sleepiness: a combined TMS
and EEG study. Neuroimage 36(4), 1277–1287 (2007)

16. DeLosAngeles, D., et al.: Electroencephalographic correlates of states of concen-
trative meditation. Int. J. Psychophysiol. 110, 27–39 (2016)

17. Demos, J.N.: Getting Started with EEG Neurofeedback. Norton & Company (2019)
18. Dittner, A.J., Wessely, S.C., Brown, R.G.: The assessment of fatigue: a practical

guide for clinicians and researchers. J. Psychosom. Res. 56(2), 157–170 (2004)
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50. Teplan, M., Krakovská, A., Špajdel, M.: Spectral EEG features of a short psycho-
physiological relaxation. Measur. Sci. Rev. 14(4), 237–242 (2014)

51. Thaler, R.H., Sunstein, C.R.: Nudge: Improving Decisions About Health, Wealth,
and Happiness. Penguin (2009)

https://doi.org/10.1007/978-94-017-9088-8_16
https://doi.org/10.1007/978-3-642-21643-5
https://www.gartner.com/en/documents/4001104/redesigning-work-for-the-hybrid-world
https://www.gartner.com/en/documents/4001104/redesigning-work-for-the-hybrid-world


Design Thinking the Human-AI Experience of Neurotechnology 545

52. Tomarken, A.J., Davidson, R.J., Henriques, J.B.: Resting frontal brain asymmetry
predicts affective responses to films. J. Pers. Soc. Psychol. 59(4), 791 (1990)

53. Tripathi, S., Acharya, S., Sharma, R.D., Mittal, S., Bhattacharya, S.: Using deep
and convolutional neural networks for accurate emotion classification on DEAP
dataset. In: Twenty-Ninth IAAI Conference (2017)

54. Vaishya, R., Javaid, M., Khan, I.H., Haleem, A.: Artificial intelligence (AI) appli-
cations for COVID-19 pandemic. Diabetes Metab. Syndr. Clin. Res. Rev. 14(4),
337–339 (2020)

55. Verganti, R., Vendraminelli, L., Iansiti, M.: Innovation and design in the age of
artificial intelligence. J. Prod. Innov. Manag. 37(3), 212–227 (2020)

56. Wilson, G.F., Russell, C.A.: Real-time assessment of mental workload using psy-
chophysiological measures and artificial neural networks. Hum. Factors 45(4), 635–
644 (2003)

57. Zheng, W.L., Liu, W., Lu, Y., Lu, B.L., Cichocki, A.: EmotionMeter: a multimodal
framework for recognizing human emotions. IEEE Trans. Cybern. 49(3), 1110–1122
(2018)



Optimizing ML Algorithms Under CSP
and Riemannian Covariance in MI-BCIs

Yang Windhorse and Nader Almadbooh(B)

Swarthmore College, Swarthmore, PA 19081, USA
{ylhamo1,nalmadb1}@swarthmore.edu

Abstract. Motor imagery brain-computer interface (MI-BCI) systems
face a multitude of challenges, one of which is optimizing multiclass clas-
sification of electroencephalography (EEG) signals. Hersche et al. (2018)
extracted features from the 4-class BCI competition IV-2a data using
Common Spatial Patterns (CSP) and Riemannian Covariance methods
which resulted in improved performance speed and accuracy when fed to
Support Vector Machines (SVM). We propose testing a variety of classi-
fiers for both feature extraction methods to see their relative performance
compared to SVM and to observe the impact of the two different fea-
ture extraction methods aforementioned on the different classifiers. SVM
performed best, and ensemble algorithms had poor performance- espe-
cially AdaBoost. CSP feature extraction resulted in improved accuracy
for most algorithms, but consumed more time, whereas the Rieman-
nian feature extraction was twice-faster runtime for all algorithms, as
expected. These results provide better understanding of feature extrac-
tion using CSP or Riemannian Covariance for MI-BCI data.

Keywords: Evaluation methods and techniques · CSP · Riemannian ·
SVM · LDA · Random Forest · AdaBoost · GaussianNB · KNN ·
Bagging

1 Introduction

1.1 Literature Review

A brain-computer interface (BCI) is a system where the human brain and some
external device, like a computer, communicate and try to control things. The
system tries to recognize and act on human intentions from neural activity that’s
often recorded through noninvasive electroencephalogram (EEG) electrodes [6–9,
13,14,18,20,21,25–27,30]. Motor-Imagery (MI) is an application of BCI systems
where humans think of a motion without actually performing it. By looking
into different brain signals and matching EEG signal patterns to motions, MI-
BCI systems improve and researchers get closer to improving communication
capabilities of people with severe motor disabilities [28].
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MI-BCIs face a multitude of challenges. Among these challenges are the low
signal-to-noise ratio in the recorded EEG signals, the limited amount of data
available for training, the nonstationarity of EEG sensors between multiple peo-
ple or the different trial sessions of the same person, and the relatively low accu-
racy of most BCIs. To mitigate these issues, researchers tried to improve the
features extracted from the data like Hersche et al., and others capitalized on
the use of adaptive classifiers and ensemble classification algorithms. The former
tends to adapt better to the randomness of the data and reflects more accuracy
in the model as the weighting of features in the algorithms is more dynamic
especially in online operation. The latter also yields good accuracy especially
when the training data is limited.

Feature extraction is the process of identifying the most discriminating
characteristics in signals. Training machine learning (ML) directly on raw
signals/data typically produces poor results due to information redundancy
[2,15,17], so feature extraction is pretty much a prerequisite on training any
data. There are many feature extraction algorithms, some of which include CSP
and Riemannian Covariance methods. CSP is widely used, especially in BCI
competitions, due to its efficiency in BCI design [16].

Hersche et al. (2018) state that large amounts of labeled EEG signal data is
lacking but needed due to high variance in EEG signal. There is no error-proof
way to recognize patterns. Hersche et al. (2018) overcome the difficult obstacle
of training complex classifiers with large amounts of parameters by designing
feature extractors that can be combined with simpler classifiers. They use com-
mon spatial patterns (CSP) algorithm and Riemannian Covariance methods to
extract the most discriminative features on the BCI competition IV-2a data [4].

The CSP method was first introduced by Koles [11] to extract abnormal
components from EEG, and have since been improved upon to create features for
classification of EEG [23] and be more robust against artifacts [12]. CSP learns
spatial filters that maximize discriminability of two classes [16]. In other words,
CSP finds “spatial filters that maximize the ratio of average variances between
two different classes” [29]. We see an example of CSP successfully discriminating
neuromodulatory changes in Fig. 4 [29].

Drawbacks of CSP include sensitivity to noise and overfitting with small
training sets [24]. As CSP is “highly dependent on the considered operational
frequency bands”, raw data is first split into frequency bands and then spatially
filtered [7]. Spatial filters are used to extract sources, which Riemannian Covari-
ance approaches can improve. In a nutshell, Riemannian geometry is similar
to Euclidean geometry, but the former is more suited for Symmetric Positive
Definite (SPD) matrices which model Covariance matrices [33].

Since source extraction requires estimation and manipulation of Covariance
matrices [33], Hersche and et al. (2018) focus on an additional feature extrac-
tor on top of CSP: Riemannian Covariance method. Riemannian Covariance can
improve CSP or remove the need for it, reduce calibration time, and optimize dis-
tance based EEG classification [33]. Hersche and et al. (2018) enhance CSP and
Riemannian Covariance methods to multiscale spectral and temporal features.
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Fig. 1. Effect of CSP filter on patterns. On the left are Channel 19 and 23: two EEG
channels referring to the mental tasks of imagining movement of left hand and right
hand. There’s seemingly little difference between the signals, until CSP filtering is
applied (CSP 1 and 2 on the right side). Figure and caption sourced from [29].

Their main goal was to improve the performance of MI-BCIs while maintain-
ing relatively good accuracy. This was accomplished by feeding the extracted
features into an SVM classifier.

Although CSP and Riemannian methods are used heavily in classification of
imagined movement [5,24], they have not been robustly compared against many
ML algorithms, which is our research focus.

Fig. 2. Riemannian and Euclidean distance to their respective mean for two class-
related mean covariance matrices- case of right hand versus left hand. Euclidean dis-
tance and it’s mean does not tell us information about class membership unlike Rie-
mannian distance and it’s mean. Figure and caption sourced from [3].
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1.2 Problem Statement

Hersche and et al. (2018) devised improved methods to better extract features
from BCI data using CSP and Riemannian Covariance. The major goal was
to increase performance of MI-BCI while maintaining relatively good accuracy.
They used the support of SVM in order to test the speed and accuracy of their
aforementioned work and found that their Riemannian method was superior
in both. However, while their work does optimize MI-BCIs, it would be inter-
esting to know which classifiers work best with their extracted features, and
whether models other than SVM, especially ensemble algorithms (Random For-
est, AdaBoost, Bagging), can provide better accuracy within the same range of
speed when analyzing their motor-imagery EEG signals. Our interest in ensem-
ble methods stem from the methods’ goal of combining predictions from multiple
models to ideally create a single superior model. It would also be of value to see
which feature extraction method, CSP or Riemannian Covariance, improve the
accuracy of what machine learning models and if ensemble classifiers can out-
perform other classifiers given the the improvement in feature extraction, and
despite the limited number of subjects and trials but with.

1.3 Research Questions

Which classifiers work better for the analysis of MI-BCIs? Which classifiers’
performance is improved by the proposed CSP and Riemannian feature extrac-
tion methods? Can ensemble classifiers give results that are comparable to LDA
and SVM which are still the most heavily used for MI-BCIs, especially with
aforementioned feature extraction adjustments?

2 Methods

2.1 Dataset Source

Dataset 2a, titled “Four class motor imagery (001-2014),” from BCI Competi-
tion IV was collected by researchers in Institute for Knowledge Discovery and
Institute for Human-Computer Interfaces in Graz University of Technology [4].
This dataset is open access and available online.

Hersche and et al. (2018) build off this dataset by running CSP and Rieman-
nian covariance methods. The researchers come from ETH Zurich, University of
Bologna, and University of California Berkeley. Their paper, published in the
26th European Signal Processing Conference, links their GitHub code, https://
github.com/MultiScale-BCI/IV-2a, which we utilize.

2.2 Dataset Description

The overarching goal of BCI Competition IV was to “validate signal processing
and classification methods for BCIs,” and datasets in the second class address
“classification of EEG signals affected by eye movement artifacts” [1]. Dataset

https://github.com/MultiScale-BCI/IV-2a
https://github.com/MultiScale-BCI/IV-2a
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Fig. 3. The different stages of processing the data.

2a consists of EEG data from nine participants who carried out four different
motor-imagery tasks like imagining moving their left hand, right hand, and feet
and tongue [4]. In one session, each participant had 72 trials per class, totaling
288 trials. There were two sessions in total: one for training and the other for
testing. Signals were recorded using 22 EEG electrodes/channels. There were
also three Electrooculography (EOG) channels that gave information about the
eye movement, from which an expert determined if a trial had artifacts, leading
to 9.41% of the trials being removed [7].

Hersche and et al. (2018) calculate the average covariance matrix of the EEG
signals, and find a spatial filter that maximizes the Rayleigh quotient by solv-
ing the generalized eigenvalue decomposition (GEVD) problem. A set of spatial
filters is built, and feature fl is set as the logarithm of the spatial filtered and
normalized variances. EEG signals are divided into multiscale temporal and spec-
tral components before CSP is applied. The robustness of this feature extraction
is increased through the temporal windows and the spectral bands inducing
redundant information [7]. For the Riemannian covariance method, the geomet-
ric mean is used to find a point that minimizes the sum of all squared Riemannian
distances [7]. The covariance matrix is vectorized for SVM, and a matrix kernel
where the Riemannian distance is factored is built [7].

2.3 Experiment Design

This paper compares the performance of seven different classifiers on the BCI
Competition IV 2a dataset: LDA, SVM, KNN, AdaBoost, BaggingClassifier,
GaussianNB and RandomForest [4]. Thus, the algorithms span multiple types of
classifiers: ensemble, naive-bayes, discriminant analysis, and nearest neighbors
[13,15,19,22,34]. The dataset and feature extraction methods were not altered
nor was the format of the data. Apart from linear SVM, all other algorithms
were added to the original code provided for the paper [7].
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Figure 1 shows that each algorithm was run twice, once with the features
extracted using CSP, and the other with the features extracted from the Rie-
mannian Covariance method. The scoring and comparison of each algorithm
depended on 3 parameters: the success rate (accuracy), training time, and eval-
uation time (scoring). All of these parameters were provided as averages across
the 9 subjects of the trial. The calibration of each algorithm is the default pro-
vided by the sklearn library.

3 Results

As shown in Fig. 3, SVM and LDA are still relatively superior to other algo-
rithms achieving a success rate of 75% and 60% respectively with the Riemannian
extracted features, and 74% and 69% respectively with the CSP extracted fea-
tures. The ensemble algorithms had a poorer performance, especially AdaBoost,
which is the least accurate and the slowest of all seven for both CSP and Rie-
mannian methods. However, RandomForest and GaussianNB were very sim-
ilar in performance to LDA for both methods. RandomForest, GaussianNB,
KNN, LDA, and Bagging all achieved better performance with CSP compared to
Riemannian covariance. RandomForest’s performance, particularly, was boosted
with CSP, reaching a success rate of 70%, which is close to SVM’s success rate
of 74%. Figure 3 is ordered in increasing differences of success rate between CSP
and Riemannian Covariance with RandomForest experiencing the greatest dif-
ference. Finally, as seen in Fig. 2, Riemannian results were, as expected, about
two times faster than CSP for all algorithms. CSP feature extraction generally
provided more accurate results for all models except SVM, but consumed more
time.

4 Conclusion

CSP and Riemannian Covariance methods were reported to improve feature
extraction for MI-BCI data. Upon applying a battery of ML classifiers to the
extracted features for training and testing, multiple patterns were noticed. CSP
extracted features generally resulted in better performance for all algorithms
except SVM and AdaBoost, which performed almost the same regardless. SVM
and LDA performed best, with ensemble models, except AdaBooster, accom-
plishing results that are similar to LDA. All algorithms applied with CSP took
approximately twice the time compared to when they were applied with Rie-
mannian Covariance. These findings can provide a guide for MI-BCI researchers
who plan to use CSP and the Riemannian Covariance with ML (Fig. 4).
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Fig. 4. Summary of results: Average success rate, difference, training and evaluation
time for Riemannian and CSP features tested with different classifiers. The greatest
difference is highlighted.

5 Discussion

Hersche et al. (2018) used novel feature extraction methods to revolutionize the
performance of machine learning algorithms by improving their inputs. Our work
is an extension of their efforts attempting to create a guide as to how different ML
algorithms are affected by the improved feature extraction methods, and which
of those algorithms respond to them with more accuracy and speed (Fig. 5).

Fig. 5. Average success rate (%) ordered in increasing difference of CSP and Rieman-
nian Covariance.
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Previous work in the field indicated that KNN and ensemble methods had
promising performances that could compete with LDA and SVM [10]. We expand
these results by implementing a variety of algorithms. We conclude that Hersche
et al.’s (2018) improved CSP algorithm boosted the accuracy of most of our
algorithms, especially RandomForest, LDA, and KNN.

References Feature Extractor Classifier Mean Accuracy

H. Yang et al. [31] CSP CNN 69%

A. Barachant et al. [3] Riemannian Covariance LDA 70%

M. Hersche et al. [7] CSP SVM 73.70%

Riemannian Covariance SVM 74.77%

P. Yang et al. [32] CSP MLP 68%

Riemannian Covariance MLP 76%

Our proposal CSP LDA 69%

CSP RandomForest 70%

Fig. 6. Mean accuracy comparisons to other published results. All studies
used BCI competition IV dataset. This figure is adjusted from [32] to include our best
results.

Figure 6 shows that our best results are with the CSP feature extractor, and
meet eye-to-eye with other results. For instance, our LDA and RandomForest
performs about the same as CNN with CSP, MLP with CSP, and LDA with
Riemannian Covariance. We didn’t get to run CNN due to our limited timeframe,
so it’s helpful to see studies that ran CNN on the same dataset. Our LDA with
Riemannian Covariance performed more poorly than Barachant et al. (2011)-
we got an average success rate of 60% compared to Barachant et al.’s (2011)
70%, which is achieved through Tangent Space Linear Discriminant Analysis
(TSLDA). Barachant et al. (2011) writes that “the improvements brought upon
by TSLDA are mainly due to a better handling of critical cases, resulting in a
7% improvement classification for both left hand and foot classes.”

P. Yang et al.’s (2020) result had the greatest mean accuracy with Rieman-
nian Covariance. From our study, we thought that CSP, compared to Rieman-
nian Covariance, generally had a tradeoff of longer execution time for greater
accuracy. However, we do not see shorter execution time, or computation power,
with P. Yang et al.’s (2020) model. They state that their model required more
time, up to three times as SVM, and memory than SVM [32]. In this sense, SVM
is most well-rounded in terms of execution time and mean accuracy, but MLP
with Riemannian Covariance has the greatest accuracy in classifying MI-BCI
EEG signals.

Our work provides value in a multitude of ways. First, it allows researchers
who are familiar with the common ML models to use Hersche et al.’s (2018)
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work more robustly in order to delve into MI-BCI research and development
without the need for a rigid background in data science and signal processing.
It provides them with a concrete direction as to what algorithms have better
chances of success when employing CSP or the Riemannian Covariance and
allows them to go beyond the use of SVM. Second, if the purpose of CSP and
the Riemannian Covariance is to increase the efficiency of MI-BCIs such that
they can reach a level of speed and accuracy to work both online and offline,
then understanding which types of machine learning algorithms works faster and
performs better with them can indeed serve said purpose. Our work provides a
glimpse into what algorithms are promising to work with, develop further, or
calibrate better to improve MI-BCI learning using the aforementioned latest
methods of feature extraction in the field. Third, CSP and the Riemannian
Covariance are concepts adapted by Hersche et al. (2018) for MI-BCI feature
extraction, but these concepts can be generalized for other types of data.

Thus, our work’s usefulness can be extendable to signal processing ventures of
the same nature as EEG signals that may attempt to use CSP and the Rieman-
nian Covariance on Machine Learning data. Our future work will focus on imple-
menting deep learning models in addition to already-implemented ML models.
Increasing the total number of tested algorithms will allow us to observe more
patterns and relationships between their performances.
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