
Shape Your Process: Discovering
Declarative Business Processes

from Positive and Negative Traces Taking
into Account User Preferences

Federico Chesani1(B), Chiara Di Francescomarino2, Chiara Ghidini2,
Giulia Grundler1, Daniela Loreti1, Fabrizio Maria Maggi3, Paola Mello1,

Marco Montali3, and Sergio Tessaris3

1 DISI - University of Bologna, Bologna, Italy
federico.chesani@unibo.it

2 Fondazione Bruno Kessler, Trento, Italy
3 Free University of Bozen/Bolzano, Bolzano, Italy

Abstract. Process discovery techniques focus on learning a process
model starting from a given set of logged traces. The majority of the dis-
covery approaches, however, only consider one set of examples to learn
from, i.e., the log itself. Some recent works on declarative process dis-
covery, instead, advocated the usefulness of taking into account two dif-
ferent sets of traces (a.k.a. positive and negative examples), with the
goal of learning a set of constraints that is able to discriminate which
trace belongs to which set. Sometimes, however, too many possible sets
of constraints might be available, thus nullifying the discovery effort.
Therefore, some preference criteria would be helpful to guide the discov-
ery process towards a set of constraints among the many. In this work,
we present an approach for the discovery of declarative models provid-
ing the possibility, from the user viewpoint, of specifying preferences on
activities and constraint templates to be used to build the final set of
constraints. Such preferences are used to guide the discovery process, so
that the output set will include, if possible, the preferred constraints,
thus exploiting some expert knowledge about the desired outcome. The
approach is grounded in a logic-based framework that provides a sound
and formal meaning to the notion of expert preferences.

1 Introduction

Process discovery is one of the most investigated process mining techniques [43].
It deals with the automatic learning of a process model from a given set of logged
traces, each one representing the digital footprint of the execution of a case.

If we focus on the way process discovery techniques see the model-extraction
task, we can divide them into two broad categories. The first category is con-
stituted by works that tackle the problem of process discovery with one-class
supervised learning techniques (see, e.g., [1,3,4,23,44]). These works are driven
by the assumption that all available log traces are instances of the process to be
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. P. A. Almeida et al. (Eds.): EDOC 2022, LNCS 13585, pp. 217–234, 2022.
https://doi.org/10.1007/978-3-031-17604-3_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-17604-3_13&domain=pdf
https://doi.org/10.1007/978-3-031-17604-3_13

218 F. Chesani et al.

discovered and constitute the wast majority of works in the process discovery
spectrum. The second category comprises works that intend model-extraction as
a two-class supervised task, which is driven by the possibility of partitioning the
log traces into two sets according to some business or domain-related criteria.
Usually, these sets are referred to as positive and negative examples, and the
goal is to learn a model that characterizes one set w.r.t. the other. These works
are traditionally less represented (see [16,21,31]). Nonetheless, few recent works
[15,26,39] have highlighted the importance of performing model-extraction as a
two-class supervised task with different motivations: first, the actual existence
of positive and negative examples in real use cases [26,39]; second, the need to
balance accuracy and recall [39]; and third, the need to discover a particular
process variant (e.g., the process characterizing “fast” traces) against the one
that characterizes other variants, thus using the labels positive and negative to
distinguish between two classes of examples [15]. Hereafter, we refer to miners
of the first and second category as unary and binary miners, respectively.

A problem that remains unsolved in process discovery, in general, and in
binary miners, in particular, is the need to select, among all possible discov-
ered models, the ones that fit better the expectations of expert users, that is,
users who are knowledgeable about the specific domain and because of this have
specific desiderata and expectations. This is true for the traditional discovery
of procedural and declarative models, where the discovered model that accepts
all the positive examples is usually too complex (e.g., too spaghetti like), and
mechanisms are introduced to “select” specific behaviors. Examples of criteria
for this selection can be the frequency of a certain element (e.g., an activity or
a path), or the presence of certain modeling patterns (e.g., a specific declarative
pattern). The problem becomes even more compelling when we approach pro-
cess discovery as a two-class supervised task. In fact, as recently shown in [39],
perfect binary miners, able to discover models that accept all positive examples
and none of the negative examples, do not necessarily exist. In such cases, many
sub-optimal models can be returned, leading to the issue of identifying criteria
for preferring one model or the other.

In this paper,we address theproblemof inserting expert user preferences, (here-
afterexpertpreferences) inthediscoveryofdeclarativeprocessmodelsasatwo-class
supervised task.We start froma recentwork [15] that introduces theNegDisbinary
miner for theDeclaremodeling language [36] (introduced inSect. 2).Being NegDis
based on the logic-based framework ASP [12], it provides a formal framework with
a clear semantics that allows the users to “prioritize” the discovery results. In this
work, we extend NegDis by introducing the ASPrin tool [11], so as to support
the notion of expert preferences while remaining within the context of a formal,
logic-based semantics. The following contributions are provided:

(i) we introduce and motivate two types of expert preferences: the first one
on the Declare patterns to be used in the discovery task, and the second
one on the activities appearing in the output model. Moreover, we discuss
also a third type of preference coming from the combination of the first two
(Sect. 3).

Shape Your Process 219

(ii) we extend the original mechanism of NegDis (Sect. 4), by incorporating the
ASPrin tool [11] into it. This allows us to integrate within a single frame-
work both the expert preferences, as well as the original NegDis mechanism
based on model subsumption (that is treated as a preference as well). In this
way, we retain the original ability of obtaining models that vary in gener-
ality/specificity, or simplicity.

(iii) we provide some hints about the implementation (Sect. 5);
(iv) we report on exploratory experiments applying an instantiation of NegDis

to the data sets used in [24,39] (Sect. 6).

Related works (Sect. 7) and final considerations (Sect. 8) conclude this work.

2 The Modeling Language

The discovery approach we introduce in this paper is based on Declare, a
language for describing declarative process models first introduced in [36]. A
Declare model consists of a set of constraints applied to (atomic) activities.
Constraints are, in turn, based on templates. Templates are abstract parameter-
ized patterns and constraints are their concrete instantiations on real activities.
Templates have a graphical representation and their semantics can be formal-
ized using different logics, the main one being LTL for finite traces, making
them verifiable and executable. Each constraint inherits the graphical represen-
tation and semantics from its template. The major benefit of using templates
is that analysts do not have to be aware of the underlying logic-based formal-
ization to understand the models. They work with abstract representations of
templates, while the underlying formulas remain hidden. Table 1 summarizes the
main Declare constructs used in this paper. The reader can refer to [36] for a
full description of the language.

Table 1. Declare templates

Template Explanation

existence(n,A) A occurs at least n times

absence(m + 1,A) A occurs at most m times

responded existence(A,B) If A occurs, then B occurs

response(A,B) If A occurs, then B occurs after A

alternate response(A,B) Each time A occurs, then B occurs
afterwards, before A recurs

precedence(A,B) B occurs only if preceded by A

chain precedence(A,B) Each time B occurs, then A occurs
immediately before

co existence(A,B) If B occurs, then A occurs, and vice versa

not succession(A,B) A never occurs before B

not chain succession(A,B) A and B occur if and only if the latter does
not immediately follow the former

220 F. Chesani et al.

3 Why Preferences on the Discovered Models?

Users look for discovering models for a variety of reasons. A common one is
related to the need of having a description/explanation of a process. Other rea-
sons might be, for example, the need for detecting process deviations or process
drifts. Or, as in the case of NegDis, expert users might be interested in under-
standing, from a model viewpoint, what distinguishes one set of traces from
another.

Depending on the discovery technique and the target language, many alter-
native models might describe the same process. For example, both BPMN and
Declare allow us to describe the same process using different constructs or tem-
plates. However, not all the discovered models are equivalent1, and even when
they are equivalent, there could be too many models to choose from.

Since the availability of many models might, in turn, hinder the usefulness of
the discovery approach, the expert user would need a criterion for selecting few
models among the many discovered. Preferences on the discovered models repre-
sent then a way for prioritizing the discovered models based on the expert user’s
needs. In particular, we envisage three different types of preferences: preferences
over activities, preferences over templates, and a combination of both.

3.1 Preferences over Process Activities

A first type of preferences on the discovered models is strictly related to the
application domain. Indeed, depending on the expert user’s goals, models that
focus more on certain activities might be preferable.

Example 1. Let us consider a “loan scenario”, where a bank receives a request
for a loan, evaluates it, and provides an answer. Let us assume that process
instances have been classified into two sets, for example including successful and
unsuccessful applications. The bank employee will look then for a model that
helps her to understand the differences. Of course, the employee will not directly
look into the logs, which, for simplicity, we can suppose to be as follows:

L+ = { 〈loanRequest, requestEval, notifyOutcome〉 }
L− = { 〈requestEval, loanRequest〉 }

where the positive example set L+ contains only one trace (composed of three
activities), and the negative example set L− contains a single trace as well.
If the employee is an employee working in the marketing department, she could
have in mind the bank slogan “we always answer our customers”. Hence, she
would be surely interested in the notifyOutcome activity. By specifying such

1 Roughly speaking, two models are equivalent if they accept and reject the same
traces. Such a notion of equivalence hints to the possibility that given two models
M1 and M2, opting for the former or the latter will not change which traces will be
accepted or rejected.

Shape Your Process 221

preference, the discovery algorithm would return two models both involving the
preferred activity2:

M1 = {response(requestEval, notifyOutcome)}
M2 = {existence(notifyOutcome)}

��
Generally speaking, being able to specify a preference for models that refer

to specific activities allows expert users to answer the question “Is it possible
to discriminate between two sets of traces by looking at certain activities?”. The
discovery process becomes, in this way, domain-driven: many models describe the
process, but those ones that focus on certain domain aspects should be returned
before others.

3.2 Preferences over Declare Templates

Process description languages like, e.g., BPMN and Declare, are quite rich in
their expressiveness, and allow us to describe a process using different constructs
or templates. This leads to the availability of alternative models that could be
equivalent or not. Unfortunately, even when restricting our attention to equiva-
lent models only, it is easy to see that they might not convey the information in
exactly the same way to users.

Case 1: Equivalent models. Let us consider first the case where a discovery
algorithm provides as output two equivalent models. If from a “conformance
viewpoint” nothing changes, from a high-level viewpoint different models might
bear subtle meaning distinctions, as shown in the following example.

Example 2. Let us assume to have the following log, whose traces have been
classified into two sets:

L+ = { 〈a, b〉, 〈b, a〉 } L− = { 〈a〉, 〈b〉 }
Alternative models allowing us to represent the traces that belong to L+ and
exclude the ones that belong to L− are:

M1 = {existence(a), existence(b)}
M2 = {existence(a), responded existence(a, b)}
M3 = {existence(b), responded existence(b, a)}
M4 = {existence(a), co existence(a, b)}
M5 = {existence(b), co existence(a, b)}

2 Other models exist, of course, but, for the sake of clarity, we only mention two of
them.

222 F. Chesani et al.

From a logical viewpoint, models M1–M5 are equivalent. However, models
M2–M5 suggest that what distinguishes the traces in L+ from the traces in
L− is a relation between activities a and b: indeed, these models contain a
binary constraint, whose purpose is to highlight a relation between these two
activities. Model M1, instead, does not tell us anything about possible links
between activities a and b, and a user might conclude that no relation exists
between them. ��

Declare binary templates, by their nature, suggest a link between activi-
ties. Hence, a discovery algorithm that would return models with relation con-
straints would emphasize such links. The user would be left with the burden
of understanding if such links are mere coincidences or artifacts of the discov-
ery technique, or if rather some new knowledge has been discovered about the
process.

We can imagine scenarios where expert users prefer models containing the
minimum number of binary templates, so as not to incur into the risk of perceiv-
ing in-existent relations. On the other hand, we can easily think about situations
where an expert user is actively looking for relations. In both cases, preferences
on which Declare templates should be preferably included into a model would
allow the expert user to tailor the discovery process to her needs.

Notice also that Example 2 might mislead the reader to think that preferences
over templates is a matter of unary vs. binary constraints only. This is not
the case, since equivalence is a logic property that stems from the interplay
between all the constraints within each single model. Models with many binary
constraints might be proved to be equivalent, as shown in the following example.

Example 3. Let us consider the following log:

L+ = { 〈a, b〉, 〈a, b, c〉, 〈a, c, b〉 } L− = { 〈a〉, 〈a, c〉 }
Two alternative models that accept the positive traces and reject the negative
ones are:

M1 = {absence2(a), response(a, b)} M2 = {absence2(a), alternate response(a, b)}
Models M1 and M2 are equivalent due to the interplay of the constraint absence2
with the the response and the alternate response constraints: roughly speaking,
being activity a forbidden to appear more than once, the effects of the stricter
constraint alternate reponse are nullified. ��

Case 2: Non-equivalent models. Let us consider now the case where alterna-
tive non-equivalent models are discovered. This might happen because a log is
usually a partial view of all the possible execution traces. Not-yet-seen traces
are unknown w.r.t. the classification, but different models could classify them in
different manners. Different models would shape the unknown differently.

Example 4. Let us consider the following log:

L+ = { 〈a, b〉, 〈b, a〉 } L− = { 〈a〉 }

Shape Your Process 223

Alternative models that accept the traces in L+ and discard the ones in L− are:

M1 = {existence(a), existence(b)} M2 = {responded existence(a, b)}
Let us consider then the trace 〈b〉, that was not recorded in the log. Model M1

would reject it, whereas model M2 would accept it. ��
Example 4 shows how traces not appearing in the log used for the discovery

might be classified differently by the discovered models. A preference elicitation
mechanism would allow the expert user to decide how the not-yet-seen traces
would be classified, in a restricting or in a broader way. Another example is given
below.

Example 5. Let us consider the following log:

L+ = { 〈a, b〉, 〈a, b, c〉, 〈a, c, b〉 } L− = { 〈a〉, 〈a, c〉 }
Two non-equivalent models that accept the positive examples and reject the
negative ones are:

M1 = {response(a, b)} M2 = {alternate response(a, b)}
��

Both models in Example 5 suffice to classify a trace into one or the other
class. However, model M2 is stricter, since it accepts less traces and rejects more
traces than M1. A expert user might express her preference for stricter or more
general models.

3.3 Preferences over both Activities and Templates

The third type of preferences on the discovered models is a straightforward
combination of the preference types introduced in Subsects. 3.1 and 3.2. Domain-
related knowledge would drive the attention to certain activities, and preferences
over templates would allow focusing on certain relation types.

Example 6. Let us consider again the “loan scenario” and the log:

L+ = { 〈loanRequest, requestEval, notifyOutcome〉 }
L− = { 〈requestEval, loanRequest〉 }

Let us consider now the viewpoint of an employee working in the internal audit-
ing department. Given that the wrong execution order of certain activities might
be a symptom of some fraud, the employee would like to focus the attention over
templates of type response and/or precedence, and, in particular, over those con-
straints involving the requestEval activity. The discovery algorithm would exploit
such preference by looking for models with the elicited features, and would pro-
vide in output:

M = {precedence(requestEval, loanRequest)}
��

224 F. Chesani et al.

Notice that Example 6 shares the exact same log as Example 1. However,
the output is completely different: the preferences are used, indeed, to guide the
search for a model, which is of interest for the expert user.

4 Discovering Business Processes from Positive and
Negative Traces

Our approach is based on the NegDis binary miner [15], which, given two input
sets of positive and negative examples, aims at extracting a model accepting all
positive traces and rejecting all negative ones. In this work, we enrich NegDis
with the possibility to express domain-dependent preferences on the discovered
models. Therefore, we report some definitions and explanations from [15] that
are useful to understand our approach.

NegDis starts from a certain language bias: given a set of Declare templates
D and a set of activities A, we indicate with D[A] the set of all possible ground-
ings of templates in D w.r.t. A, i.e., all the constraints that can be built using
activities in A.

We respectively denote with L+ and L− the sets of positive and negative
examples in the input event log. NegDis starts by considering a, possibly empty,
initial model P , that is a set of Declare constraints known to characterize the
examples in L+. The goal of NegDis is to refine P taking into account both the
positive and the negative examples.

Definition 1. Given the initial model P , a candidate solution for the discovery
task is any set of constraints S ⊆ D[A] s.t. (i) P ⊆ S; (ii) ∀t ∈ L+ we have
t |= S; (iii) S maximizes the set {t ∈ L− | t 	|= S}.

Declare templates can be organized into a hierarchy of subsumption [19]
according to the logical implications derivable from their semantics. Consistently
with this concept, we introduce the following definition of generality relation
between models.

Definition 2. A model M ⊆ D[A] is more general than M ′ ⊆ D[A] (written as
M
 M ′) when for any t ∈ A∗, t |= M ′ ⇒ t |= M , and strictly more general
(written as M � M ′) if M is more general than M ′ and there exists t′ ∈ A∗ s.t.
t′ 	|= M ′ and t′ |= M .

NegDis integrates the subsumption rules introduced in [19], into the deductive
closure operator.

Definition 3. Given a set R of subsumption rules, a deductive closure operator
is a function clR : P(D[A]) → P(D[A]) that associates any set M ∈ D[A] with
all the constraints that can be logically derived from M by applying one or more
deduction rules in R.

Shape Your Process 225

For brevity, in the rest of the paper, we will omit the set R and we will simply
write cl(M) to indicate the deductive closure of M . The complete set of employed
deduction rules is available in the source code [42].3

Conceptually, the NegDis approach can be seen as a two-step procedure:
in the first step, a set of candidate constraints is built, and then solutions are
selected among subsets of candidates via an optimization algorithm. The set
of candidate constraints is composed of those in D[A] that accept all positive
examples and reject at least a negative one. To build this set, NegDis constructs
a compatibles set, i.e., the set of constraints that accept all traces in L+:

compatibles(D[A], L+) = {c ∈ D[A] | ∀t ∈ L+, t |= c} (1)

Then, it defines the sheriffs function to associate to any trace t in L− the con-
straints of compatibles that reject t:

sheriffs(t) = {c ∈ compatibles | t 	|= c} (2)

The sheriffs function is used to construct the set of all candidate constraints
from which a discovered model is derived, i.e., the set C =

⋃
t∈L− sheriffs(t) of

all the constraints in D[A] accepting all positive traces and rejecting at least one
negative trace. The solution space is therefore:

Z = {M ∈ P(C) | ∀t ∈ L− t 	|= M ∪ P or sheriffs(t) = ∅} (3)

Due to the fact that not all the pairs of negative and positive sets of traces can be
perfectly separated using Declare [39], there can be traces in L− for which the
sheriffs is empty, meaning that those traces cannot be excluded by any model
that guarantees the acceptance of all the positive ones.

The second step of NegDis uses an optimization strategy to identify the
solutions; in [15], two different criteria were taken into account: generality (or
conversely, specificity), and simplicity. If the user is interested in the most general
model, then NegDis employs the closure operator cl to select the models S ∈ Z
with the less restrictive behavior. If the user wants the simplest model, NegDis
looks for the solutions with minimal closure size. In case of ties, the solution
with the minimal size is preferred.

5 Adding Preferences to Process Discovery: An
Implementation Through ASPrin

5.1 Specifying the Preferences

As discussed in Sect. 3, in this work we support three different types of pref-
erences. Preferences over domain activities are simply expressed through ASP
Prolog facts of the type:

good action(X).

3 The file declare rules.txt can be found in the data directory.

226 F. Chesani et al.

where X is a placeholder for an activity name. The intended meaning is that mod-
els containing Declare constraints about the the action X should be preferred
to models that do not contain it.

Analogously, to specify a preference for a Declare template, we simply add
a sentence of the type:

good constraint(X).

where X now is a placeholder for a template name. Again, the intended meaning
is about preferring models containing the specified templates, to other models.

Finally, to express a preference that is a combination of the previous types,
we allow the user to write facts like:

good constraint action(decl(Template, Action1 [, Action2])).

where Template is a placeholder for the Declare template name, Action1 is the
placeholder for the activity name and, in case the preferred template is a binary
one, Action2 is the placeholder for the second activity. It is worthy to mention
that it is possible to express several preferences at the same time: the intended
meaning is that models satisfying more preferences are preferable to models that
satisfy less preferences.

5.2 Exploiting ASPrin for Searching Preferred Models

At a first glance, one could think that the sheriffs function in Eq. 2 includes all
that we need to generate “preferred” models. Indeed, a naive idea would be to
select exactly one constraint from each sheriffs(t) 	= ∅ for t ∈ L− according to
some preferences. However, this solution does not take into account the interplay
among constraints. In particular, some constraints might be more general than
others, or even there might be cases in which two constraints imply the validity
of a third one. This would clearly interfere with the validity of the specified
preferences.

For this reason, we cannot use any combinatorial optimizer to enforce the
preferences, but we need a system enabling some form of constraint propagation.
In [15], we use Answer Set Programming (ASP) by leveraging the underlying rule
based formalism enabling propagation, and weak constraints for optimization [12,
20]. The encoding of the optimization problem follows the Generate and Test
ASP paradigm where part of the rules select a candidate ASP model (e.g., a
subset of C) and a set of constraints filters only the relevant models (e.g., those
“rejecting” all the negative examples). Weak constraints are used to assign a
preference value to any ASP model, i.e., a violated weak constraint does not
reject the model but assigns a penalty to it. In [15], simple weak constraints were
used to implement subsumption preferences; however, specifying more complex
preferences between ASP models (like the ones presented so far) using weak
constraints would become unmanageable and error-prone.

To tackle this issue, in this work, we exploit the ASPrin tool [11], which layers
upon the clingo ASP solver [20], enabling the specification of complex prefer-
ence relations through user-defined types and their arguments. ASPrin provides

Shape Your Process 227

a general framework for optimizing qualitative and quantitative preferences in
ASP. While ASPrin comes with a library of predefined preference types (subset,
pareto, lexicographic, etc.), it is readily extensible by new customized prefer-
ence types. Preferences can be defined and aggregated by means of higher level
types, making ASPrin the perfect tool to support the preferences introduced in
Sect. 3. Moreover, ASPrin provides a simple way to implement the “generality”
and “simplicity” criteria discussed in Sect. 4.

Describing the ASPrin language and the precise encoding of the optimization
problem is outside the scope of this paper (the full code is available in [42] while
a detailed description of how we encoded the process discovery problem using
the ASPrin framework is available in [14]). However, in abstract wording, we
use two different predicates, which are explicitly represented by means of their
template and activities as predicate arguments. This enables the characteriza-
tion of the ASP models, e.g., by prioritizing those in which specific templates
and/or activities are selected or excluded. These preferences can be combined
with domain-independent preferences, e.g., on the size of the discovered models
to provide a fine-grained ordering among them.

6 Evaluating the Discovery

In Sect. 3, we introduced the preference types through simple toy-like examples.
The interested reader, however, might wonder about the usability and efficacy of
our approach when applied to real-life cases. We explored the applicability of our
approach using two real-life event logs, namely DREYERS (492 positive traces
and 208 negative ones) and CERV (55 positive traces and 102 negatives traces).4

In both cases, we were able to find ten models satisfying the given preferences
in a computation time between 1 and 3 s, using a normally-equipped laptop.

6.1 The DREYERS Log

The DREYERS log describes the Dreyer Foundation’s processes pertaining to
their support to legal and architectural projects, and it has been used in [17,39].
Each application to request the Foundation’s support goes through a pre-screen
that can lead to an initial rejection. The remaining applications undergo a review,
in which at least one of the reviewers must be a lawyer or an architect, depending
on the application type. The review phase is followed by a board meeting, where
applications to be supported are selected and eventually funded. Two sets of
log traces are available in the dataset: a positive one collecting executions that
did not fail and a negative one representing executions that were reset due to a
system failure.

Using this dataset, we played a sort of “investigation game”, and
explored the hypothesis that the type of application (architect- or lawyer-

4 For reproducibility purposes the source code is available in [42], the DREYERS event
log can be found in [17,39], while the CERV event log is a proprietary dataset.

228 F. Chesani et al.

Table 2. Traces ruled out by each constraint of model M1.

Constraints Traces # Variants #

alternateresponse(Undo payment, First payout) 2 2

chainprecedence(Fill out application, Initial Rejection) 3 2

choice(Round ends, Change phase to Abort) 195 17

notchainsuccession(Receive final report, First payout) 1 1

notchainsuccession(Change phase to Preparation, Approve application) 1 1

notchainsuccession(Change phase to Preparation, Execute Pre decision) 2 2

notchainsuccession(Set to Pre approved, Round Ends) 2 2

notsuccession(Architect Review, Approval on to the board) 1 1

Traces not ruled out by the model 3 2

Total 208 30

type) might affect the process outcome. To this end, we initially speci-
fied a preference good action(Lawyer Review), and later on a preference
good action(Architect Review). In both cases, more than one model sat-
isfying the preferences were found. However, the two sets of models are identical
(except for the architect/lawyer activity), showing that the process is indepen-
dent of the application domain. We report an example of a model obtained when
specifying the preference for models containing activity Architect Review:

M1 = {alternateresponse(Undo payment,First payout)

chainprecedence(Fill out application, Initial Rejection)

choice(Round ends,Change phase to Abort)

notchainsuccession(Receive final report,First payout)

notchainsuccession(Change phase to Preparation,Approve application)

notchainsuccession(Change phase to Preparation,Execute Pre decision)

notchainsuccession(Set to Pre approved,Round Ends)

notsuccession(Architect Review,Approval on to the board) }

Notably, as shown in Table 1, this model is able to discriminate between
positive and negative examples except for three negative traces (two variants),
that cannot be ruled out without discarding also some positive examples.

We continued our investigation by focusing on activity Initial Rejection. We
report here one of the returned models:

M2 = {absence2(Initial rejection)
choice(Round Ends,Applicant informed)

notchainsuccession(Set to Pre approved,Round Ends)

notchainsuccession(Receive final report,First payout)

notchainsuccession(Change phase to Preparation,Approve application)

notchainsuccession(Change phase to Preparation,Execute Pre decision)

notsuccession(Lawyer Review,Change phase to review)

response(Undo payment,First payout) }

Shape Your Process 229

Model M2 highlights the fact that some negative traces can be distinguishable
from the positive ones because of the repetition of Initial Rejection: some traces,
indeed, reported the execution of the activity twice, thus indicating an attention
point for the process analyst.

Finally, we did compare the effect of discovering models with or without the
two preferred activities. For this we asked NegDis to extract 10 optimal mod-
els with no preferences, 10 with the Architect Review preference and 10 with
the Initial Rejection preference, and we pairwise compared the models with no
preference and the ones with a preferred activity. When imposing no prefer-
ences, activity Architect Review shows up in only 4 of the 10 discovered models.
Imposing the usage of Initial Rejection is instead “unnecessary” (a posteriori), as
this activity is also present in all 10 models discovered without specifying any
preference.

6.2 Evaluation on the CERV Log

CERV is an event log that describes a process pertaining to the cervical cancer
screening in an Italian screening center, and it has been used in previous works
[15,24]. The screening program is composed of five phases, organized sequen-
tially: screening planning, invitation management, first level test with pap-test,
second level test with colposcopy (only if the first test is positive), and even-
tually biopsy (if the second test gives a positive response). Several subjects do
not respect the planned protocol: e.g., subjects might not show up at the first
test, even if they have chosen a time slot. Moreover, a number of subjects prefer
to consult physicians they trust more, in case of a positive response. As it com-
monly happens in socio-technical systems, a large variety of process instances
appear in the log, not all them being compliant with the protocol. Hence, the
traces have been labeled by a domain expert as belonging either to the positive
or the negative set, depending on their compliance with the adopted protocol.

We investigated the log by eliciting two preferences over the precedence and
succession templates:

good constraint(precedence).

good constraint(succession).

The first two returned models are:

M1 = {alternateresponse(send positive pap test result, take a colposcopy examination)

chainprecedence(invite, take a pap test examination)

exclusivechoice(send pap test sample, reject)

precedence(send colposcopy uncertain result, send biopsy sample) }

M2 = {alternateresponse(send positive pap test result, take a colposcopy examination)

chainprecedence(invite, take a pap test examination)

exclusivechoice(send pap test sample, reject)

succession(send colposcopy uncertain result, send biopsy sample) }

230 F. Chesani et al.

In model M1, the precedence constraint implies that if a biopsy is executed,
then the colposcopy examination has provided an uncertain result before. The
second model is identical to the first one, except for the constraint related to
our preference. Interestingly, the succession relates the same activities involved
in the precedence constraint in the first model. The difference between the two
models lies in the logical relation between precedence and succession: a trace that
violates the former will always violate the latter (but not vice versa). It is then
up to the domain expert to prefer a stricter or a more general behavior.

Finally, we did compare the effect of discovering models with or without
the two preferred templates, by extracting 10 optimal models with no template
preferences, and 10 each with the Precedence and Succession preference respec-
tively. Interestingly enough, imposing the Precedence preference results in being
extremely useful in this scenario. In fact, none of the 10 models discovered with
no preferred template did contain a Precedence pattern. Similarly with Succes-
sion, which appears in only 1 of the 10 models discovered without specifying any
preference.

7 Related Work

When processes are loosely-structured, procedural discovery could produce
spaghetti-like models [15,28]. In that case, declarative approaches are more suit-
able for the purpose since they briefly list all the required or prohibited behaviors
without explicitly specifying all possible process paths.

Over the last decade, several works focused on declarative process discov-
ery [18,19,30,38]. In [18,30], the authors propose to build the set of all possible
candidate Declare constraints considering all the activities that appear in the
log, and check them against the whole log until certain levels of recall and speci-
ficity are reached. Techniques to refine the business model excluding vacuously
satisfied constraints are the focus of the subsequent works by Schunselaar et
al. [38], whereas Di Ciccio et al. [19] propose an approach to filter out frequent
redundancies and inconsistencies. All the cited declarative approaches do not
deal with negative examples. Nonetheless, interestingly from our point of view,
in [29], the authors present an approach to specify “crisp” preferences that filter
out constraints (discovered from positive examples only) that are not in line with
some user knowledge. Differently from this approach, our approach allows the
user to use preferences to “prioritize” the discovered models without necessarily
filter out the ones that do not agree with the specified preferences.

Negative examples are instead actively employed in the declarative discov-
ery approaches [7,8,15,16,24,25,39]. The technique by Lamma et al. [24,25]
learns integrity constraints expressed as logical formulas, and translates them
into the equivalent DecSerFlow constructs [2]. Bellodi et al. [7,8] employ the same
approach and automatically convert the results into Markov Logic formulas—
statistical relational learning is used to determine the weight of each formula.
Analogously, Chesani et al. [16] propose to learn a set of SCIFF rules [5] and

Shape Your Process 231

translate them into ConDec constraints [35]. The approach that we adopt in
this work instead, is the one presented in [15], which directly learns Declare
constraints without any intermediate language. This approach is grounded on a
SAT-based solver analogously to the works in [13,32,37], where simple Linear
Temporal Logic (LTL) formulas are generated to analyze sets of positive and neg-
ative examples. Particularly relevant for our work is the contribution by Slaats
et al. [39], which proposes a binary classification procedure for process discovery
evaluated on a set of real-life logs with negative examples from industry.

Our notion of negative example is similar to the definitions of syntactical and
semantic noise of [22] since our approach is able to extract both the syntactic
information that characterizes the positive examples w.r.t. negative ones, and the
relevant semantic difference between traces that have been partially or totally
modified at a certain point in time. In this sense, our work is also closely related
to deviance mining approaches [33], i.e., techniques to extract the relevant details
characterizing those traces that deviate from the expected behavior. Whereas
some deviance mining approaches [6,40] focus on the differences between models
discovered from deviant and non-deviant traces, others [9,10,27,34,41] intend
deviance mining as a sort of sequence classification for the discovery of activity
patterns discriminating between different sets of traces.

8 Conclusions

In this paper, we address the problem of inserting expert preferences in the
discovery of declarative process models as a two-class supervised task. In par-
ticular, we extend the NegDis binary miner for the Declare modeling language
with preferences over Declare templates and activities appearing in the model
(plus a combination of the two). The computation of the preferred models, which
take into account the preferences posed by the expert user, is performed using
ASPrin, a general framework for computing optimal ASP models with prefer-
ences. The provided approach is described by means of motivating examples and
an application to the real-life event logs DREYERS and CERV shows how to
describe - in a discriminative manner - execution traces on the basis of preferred
activities and Declare patterns. Future works will include a wider evaluation,
which will also involve end-users. This will enable the assessment of the poten-
tial benefits of involving users (through their preferences) in the loop of process
discovery.

Acknowledgments.. This work has been partially supported by the European
Union’s H2020 projects HumaneAI-Net (g.a. 952026), StairwAI (g.a. 101017142), and
TAILOR (g.a. 952215).

232 F. Chesani et al.

References

1. van der Aalst, W.M.P., De Masellis, R., Di Francescomarino, C., Ghidini, C.: Learn-
ing hybrid process models from events. In: Carmona, J., Engels, G., Kumar, A.
(eds.) BPM 2017. LNCS, vol. 10445, pp. 59–76. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-65000-5 4

2. van der Aalst, W.M.P., Pesic, M.: DecSerFlow: towards a truly declarative service
flow language. In: Bravetti, M., Núñez, M., Zavattaro, G. (eds.) WS-FM 2006.
LNCS, vol. 4184, pp. 1–23. Springer, Heidelberg (2006). https://doi.org/10.1007/
11841197 1

3. van der Aalst, W.M.P., Rubin, V.A., Verbeek, H.M.W., van Dongen, B.F., Kindler,
E., Günther, C.W.: Process mining: a two-step approach to balance between under-
fitting and overfitting. Softw. Syst. Model. 9(1), 87–111 (2010)

4. van der Aalst, W.M.P., Weijters, T., Maruster, L.: Workflow mining: discovering
process models from event logs. IEEE Trans. Knowl. Data Eng. 16(9), 1128–1142
(2004)

5. Alberti, M., Chesani, F., Gavanelli, M., Lamma, E., Mello, P., Torroni, P.: Ver-
ifiable agent interaction in abductive logic programming: the SCIFF framework.
ACM Trans. Comput. Log. 9(4), 29:1–29:43 (2008)

6. Armas-Cervantes, A., Baldan, P., Dumas, M., Garćıa-Bañuelos, L.: Behavioral
comparison of process models based on canonically reduced event structures. In:
Sadiq, S., Soffer, P., Völzer, H. (eds.) BPM 2014. LNCS, vol. 8659, pp. 267–282.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10172-9 17

7. Bellodi, E., Riguzzi, F., Lamma, E.: Probabilistic logic-based process mining. In:
CILC. CEUR Workshop Proceedings, vol. 598. CEUR-WS.org (2010)

8. Bellodi, E., Riguzzi, F., Lamma, E.: Statistical relational learning for workflow
mining. Intell. Data Anal. 20(3), 515–541 (2016)

9. Bergami, G., Di Francescomarino, C., Ghidini, C., Maggi, F.M., Puura, J.: Explor-
ing business process deviance with sequential and declarative patterns. CoRR
abs/2111.12454 (2021)

10. Bose, R.P.J.C., van der Aalst, W.M.P.: Discovering signature patterns from event
logs. In: CIDM, pp. 111–118. IEEE (2013)

11. Brewka, G., Delgrande, J.P., Romero, J., Schaub, T.: asprin: customizing answer
set preferences without a headache. In: AAAI, pp. 1467–1474. AAAI Press (2015)

12. Brewka, G., Eiter, T., Truszczyński, M.: Answer set programming at a glance.
Commun. ACM 54(12), 92–103 (2011)

13. Camacho, A., McIlraith, S.A.: Learning interpretable models expressed in linear
temporal logic. In: ICAPS, pp. 621–630. AAAI Press (2019)

14. Chesani, F., et al.: Optimising business process discovery using answer set program-
ming. In: Proceedings of the 16th International Conference on Logic Programming
and Non-monotonic Reasoning (LPNMR 2022) (2022 To appear)

15. Chesani, F., et al.: Process discovery on deviant traces and other stranger things.
IEEE Trans. Knowl. Data Eng. (2021), under review

16. Chesani, F., Lamma, E., Mello, P., Montali, M., Riguzzi, F., Storari, S.: Exploiting
inductive logic programming techniques for declarative process mining. Trans. Petri
Nets Other Model. Concurr. 2, 278–295 (2009)

17. Debois, S., Slaats, T.: The analysis of a real life declarative process. In: IEEE
Symposium Series on Computational Intelligence, SSCI 2015, Cape Town, South
Africa, 7–10 December 2015, pp. 1374–1382. IEEE (2015)

https://doi.org/10.1007/978-3-319-65000-5_4
https://doi.org/10.1007/978-3-319-65000-5_4
https://doi.org/10.1007/11841197_1
https://doi.org/10.1007/11841197_1
https://doi.org/10.1007/978-3-319-10172-9_17

Shape Your Process 233

18. Di Ciccio, C., Maggi, F.M., Mendling, J.: Efficient discovery of target-branched
declare constraints. Inf. Syst. 56, 258–283 (2016)

19. Di Ciccio, C., Maggi, F.M., Montali, M., Mendling, J.: Resolving inconsistencies
and redundancies in declarative process models. Inf. Syst. 64, 425–446 (2017)

20. Gebser, M., Kaminski, R., Kauffman, B., Schaub, T.: Multi-shot asp solving with
clingo. Theor. Pract. Logic Progr. 19(1), 27–82 (2019)

21. Goedertier, S., Martens, D., Vanthienen, J., Baesens, B.: Robust process discovery
with artificial negative events. J. Mach. Learn. Res. 10, 1305–1340 (2009)

22. Günther, C.W.: Process Mining in flexible environments. Ph.D. thesis, Technische
Universiteit Eindhoven (2009)

23. Günther, C.W., van der Aalst, W.M.P.: Fuzzy mining – adaptive process simplifi-
cation based on multi-perspective metrics. In: Alonso, G., Dadam, P., Rosemann,
M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 328–343. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-75183-0 24

24. Lamma, E., Mello, P., Montali, M., Riguzzi, F., Storari, S.: Inducing declarative
logic-based models from labeled traces. In: Alonso, G., Dadam, P., Rosemann,
M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 344–359. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-75183-0 25

25. Lamma, E., Mello, P., Riguzzi, F., Storari, S.: Applying inductive logic program-
ming to process mining. In: Blockeel, H., Ramon, J., Shavlik, J., Tadepalli, P. (eds.)
ILP 2007. LNCS (LNAI), vol. 4894, pp. 132–146. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-78469-2 16

26. de León, H.P., Nardelli, L., Carmona, J., vanden Broucke, S.K.L.M.: Incorporating
negative information to process discovery of complex systems. Inf. Sci. 422, 480–
496 (2018)

27. Lo, D., Khoo, S., Liu, C.: Efficient mining of iterative patterns for software speci-
fication discovery. In: KDD, pp. 460–469. ACM (2007)

28. Maggi, F.M., Bose, R.P.J.C., van der Aalst, W.M.P.: Efficient discovery of under-
standable declarative process models from event logs. In: Ralyté, J., Franch, X.,
Brinkkemper, S., Wrycza, S. (eds.) CAiSE 2012. LNCS, vol. 7328, pp. 270–285.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31095-9 18

29. Maggi, F.M., Bose, R.P.J.C., van der Aalst, W.M.P.: A knowledge-based integrated
approach for discovering and repairing declare maps. In: Salinesi, C., Norrie, M.C.,
Pastor, Ó. (eds.) CAiSE 2013. LNCS, vol. 7908, pp. 433–448. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-38709-8 28

30. Maggi, F.M., Di Ciccio, C., Di Francescomarino, C., Kala, T.: Parallel algorithms
for the automated discovery of declarative process models. Inf. Syst. 74(Part),
136–152 (2018)

31. Maruster, L., Weijters, A.J.M.M., van der Aalst, W.M.P., van den Bosch, A.: A
rule-based approach for process discovery: dealing with noise and imbalance in
process logs. Data Min. Knowl. Discov. 13(1), 67–87 (2006)

32. Neider, D., Gavran, I.: Learning linear temporal properties. In: FMCAD, pp. 1–10.
IEEE (2018)

33. Nguyen, H., Dumas, M., La Rosa, M., Maggi, F.M., Suriadi, S.: Business process
deviance mining: review and evaluation. CoRR abs/1608.08252 (2016)

34. Partington, A., Wynn, M.T., Suriadi, S., Ouyang, C., Karnon, J.: Process mining
for clinical processes: a comparative analysis of four Australian hospitals. ACM
Trans. Manag. Inf. Syst. 5(4), 19:1–19:18 (2015)

35. Pesic, M., van der Aalst, W.M.P.: A declarative approach for flexible business
processes management. In: Eder, J., Dustdar, S. (eds.) BPM 2006. LNCS, vol. 4103,
pp. 169–180. Springer, Heidelberg (2006). https://doi.org/10.1007/11837862 18

https://doi.org/10.1007/978-3-540-75183-0_24
https://doi.org/10.1007/978-3-540-75183-0_25
https://doi.org/10.1007/978-3-540-78469-2_16
https://doi.org/10.1007/978-3-642-31095-9_18
https://doi.org/10.1007/978-3-642-38709-8_28
https://doi.org/10.1007/11837862_18

234 F. Chesani et al.

36. Pesic, M., Schonenberg, H., van der Aalst, W.M.P.: DECLARE: full support for
loosely-structured processes. In: 11th IEEE International Enterprise Distributed
Object Computing Conference (EDOC 2007), pp. 287–300. IEEE Computer Soci-
ety (2007)

37. Riener, H.: Exact synthesis of LTL properties from traces. In: FDL, pp. 1–6. IEEE
(2019)

38. Schunselaar, D.M.M., Maggi, F.M., Sidorova, N.: Patterns for a log-based strength-
ening of declarative compliance models. In: Derrick, J., Gnesi, S., Latella, D., Tre-
harne, H. (eds.) IFM 2012. LNCS, vol. 7321, pp. 327–342. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-30729-4 23

39. Slaats, T., Debois, S., Back, C.O.: Weighing the pros and cons: process discovery
with negative examples. In: Polyvyanyy, A., Wynn, M.T., Looy, A.V., Reichert, M.
(eds.) Business Process Management - 19th International Conference, BPM 2021,
vol. 12875, pp. 47–64 (2021)

40. Suriadi, S., Mans, R.S., Wynn, M.T., Partington, A., Karnon, J.: Measuring patient
flow variations: a cross-organisational process mining approach. In: Ouyang, C.,
Jung, J.-Y. (eds.) AP-BPM 2014. LNBIP, vol. 181, pp. 43–58. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-08222-6 4

41. Suriadi, S., Wynn, M.T., Ouyang, C., ter Hofstede, A.H.M., van Dijk, N.J.: Under-
standing process behaviours in a large insurance company in Australia: a case
study. In: Salinesi, C., Norrie, M.C., Pastor, Ó. (eds.) CAiSE 2013. LNCS, vol.
7908, pp. 449–464. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-38709-8 29

42. Tessaris, S., Di Francescomarino, C., Chesani, F.: Negdis: code for the experiments
(Aug 2021). https://doi.org/10.5281/zenodo.5158527

43. van der Aalst, W., et al.: Process mining manifesto. In: Daniel, F., Barkaoui, K.,
Dustdar, S. (eds.) BPM 2011. LNBIP, vol. 99, pp. 169–194. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-28108-2 19

44. Weijters, A.J.M.M., van der Aalst, W.M.P.: Rediscovering workflow models from
event-based data using little thumb. Integr. Comput. Aided Eng. 10(2), 151–162
(2003)

https://doi.org/10.1007/978-3-642-30729-4_23
https://doi.org/10.1007/978-3-319-08222-6_4
https://doi.org/10.1007/978-3-642-38709-8_29
https://doi.org/10.1007/978-3-642-38709-8_29
https://doi.org/10.5281/zenodo.5158527
https://doi.org/10.1007/978-3-642-28108-2_19

	Shape Your Process: Discovering Declarative Business Processes from Positive and Negative Traces Taking into Account User Preferences
	1 Introduction
	2 The Modeling Language
	3 Why Preferences on the Discovered Models?
	3.1 Preferences over Process Activities
	3.2 Preferences over Declare Templates
	3.3 Preferences over both Activities and Templates

	4 Discovering Business Processes from Positive and Negative Traces
	5 Adding Preferences to Process Discovery: An Implementation Through ASPrin
	5.1 Specifying the Preferences
	5.2 Exploiting ASPrin for Searching Preferred Models

	6 Evaluating the Discovery
	6.1 The DREYERS Log
	6.2 Evaluation on the CERV Log

	7 Related Work
	8 Conclusions
	References

