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Abstract Over the last decade, there has been a growing in the dependence of 
electricity production by solar power plants (SPPs) in Ukraine. Therefore, there 
is a need to optimize the structure of the energy balance of the state, based on 
the requirements of energy security and ensure the share of renewable energy at 
25%. However, with the development of renewable energy sources (RESs) there is 
a problem of ensuring the appropriate maneuverability of the power system. This is 
due to the fact that the structure of generating capacity of the United Power System of 
Ukraine in terms of effective regulation of frequency and power in the power system 
is suboptimal. Among the reasons for this, the main ones are unregulated and variable 
operation of a SPP, which is exacerbated by the lack of tools and approaches for the 
power generation modes forecasting. That is why the issue of accurate forecasting of 
the possible electricity generation volume has become acute. However, solar energy 
forecasting is a rather difficult task, as it largely depends on climatic conditions that 
change over time. This study presents an analysis and application of the seasonal 
autoregressive integrated moving average (SARIMA) method to develop a model 
that can support and provide forecasting the amount of power produced by SPP. Data 
for the development of the model were obtained from the time series of electricity 
generation on the example of the SPP in the village of Velyka Dymerka, Kyiv region. 
The data consisted of more than 26 thousand samples collected from July 1, 2020, to 
December 31, 2020, which characterize the operating conditions of solar panels with 
a capacity of 9 MW. This led to the choice of the SARIMA model. The coefficient 
of determination (R2) for the obtained model was 92%. This indicates the ability of 
the final model to accurately represent and give forecast based on data set of the SPP 
power generation.

A. Bosak (B) · D. Matushkin · L. Kulakovskyi · V. Bronytskyi 
National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, Kyiv, 
Ukraine 
e-mail: allabosak@gmail.com 

L. Davydenko 
Lutsk National Technical University, Lutsk, Ukraine 

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 
O. Kyrylenko et al. (eds.), Power Systems Research and Operation, Studies in Systems, 
Decision and Control 220, https://doi.org/10.1007/978-3-031-17554-1_8 

159

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-17554-1_8\&domain=pdf
http://orcid.org/0000-0003-0545-9980
http://orcid.org/0000-0003-4431-7862
http://orcid.org/0000-0002-0176-2045
http://orcid.org/0000-0003-1273-6894
http://orcid.org/0000-0002-3092-3418
mailto:allabosak@gmail.com
https://doi.org/10.1007/978-3-031-17554-1_8


160 A. Bosak et al.

Keywords Solar power plant · Solar radiation · Day-ahead electricity market ·
Model accuracy · SARIMA · Time series 

1 Introduction 

Energy instability has led to the depletion of natural fuel and energy resources and the 
devastating effects of climate change. Thus, the priority of sustainable development 
of society is to ensure climate neutrality. 

According to the Paris Agreement on Climate Change [1], the European Union had 
set a goal of reducing greenhouse gas emissions by 40% by 2030. In [2] established 
a new aim of reducing greenhouse gas emissions by at least 55% by 2030. 

According to [3], more than 75% of all greenhouse gas emissions come from 
energy production and use. The decarbonisation of the energy system is an important 
step in meeting climate neutrality. Achieving these goals on the path to climate 
(carbon) neutrality “requires an energy transition to clean energy and a much larger 
share of RESs in the integrated energy system” [4]. According to [5],  the share of  
renewable sources in the EU energy complex should be 32% by 2030, and according 
to the European Commission, this share should increase to 40% [6]. 

However, the decarbonisation of the economy requires coordinated planning and 
operation of the energy system, taking into account the links between different energy 
sources and consumption sectors [7]. This process involves the electrification of final 
consumption sectors and, as a consequence, increasing demand for electricity [7]. 
Solar and wind energy, as well as the production of renewable energy at sea are 
considered as sources of increased electricity needs [7]. At the same time, the inten-
sive construction of solar and wind power plants, which have an unstable generation, 
causes a number of problems of both management and operation of the energy system 
[8]. For instance, the intermittent nature of generation causes uncertainty in energy 
supply and can lead to an imbalance of supply and demand [9, 10]. Therefore, in the 
context of the growing share of renewable energy, the issues of efficiency of integra-
tion of RESs into the electricity grid, monitoring of renewable energy generation, the 
coordination of operating modes of RESs and power systems to cover electricity load, 
etc. are becoming increasingly acute. Providing the planning of renewable energy 
generation and its control within the system of monitoring the modes of operation 
of RESs will increase the efficiency of the energy system and its economy and reli-
ability. Creating a system for forecasting the generation of electricity from RESs is 
an important means of optimizing the modes of operation of energy infrastructure, 
management and ensuring the optimal functioning of the energy system.
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2 Integration of Renewable Energy Sources 
into the Electricity System of Ukraine: Current Status, 
Tasks and Challenges 

Ukraine has acceded to the Energy Community Treaty [11] and other European initia-
tives [12], in particular in the fields of energy production, transportation, supply and 
final consumption. By becoming a member of the Energy Community, Ukraine has 
committed itself to the implementation of basic acts of EU energy legislation on 
energy efficiency and the transition to clean energy [13–15]. Energy Strategy of 
Ukraine until 2035 [16] contains a number of tasks to meet Ukraine’s commitments 
under the Energy Community Treaty, aimed at reforming the energy sector, opti-
mizing and innovatively developing energy infrastructure, and ensuring sustainable 
development. 

Among these tasks are the following [16]: 

• further development of RES and growth of the share of renewable energy to the 
level of 12% of Total primary energy supply (TPES) and not less than 25%—by 
2035; 

• development of distributed generation and Smart Grid implementation; 
• creation of a full-fledged electricity market in accordance with EU energy legis-

lation, which provides for the introduction of a new model of electricity market 
operation. Launch of all market segments: the market of bilateral agreements; 
day-ahead market; intraday market; balancing market; ancillary services market. 

Stimulating the construction of solar and wind power plants and the introduction 
of “green tariffs” contributes to the rapid development of renewable energy. As of 
August 1, 2021, the installed capacity of the renewable energy sector of Ukraine 
reached 8,877 MW (ed. including domestic SPPs) (Fig. 1) [17].

The reduction in the price of solar panels per unit, the cost of maintenance per 
installation compared to other renewable energy sources, as well as the expected 
service life of more than 20 years contributed to the growing share of PV-generation 
in the structure of RESs. The installed capacity of the industrial solar energy sector 
at the end of 2021 amounted to 6,351 MW [17]. At the same time, in 2021 the 
capacity of solar installations of private households increased by 156 MW. Thus, the 
cumulative installed capacity of domestic SPPs has increased to 933 MW (Fig. 2).

In 2021, the annual production of “green” electricity by all RESs power plants 
in Ukraine reached 10,023 million kWh, of which 230.5 million kWh accounted for 
wind farms in Ukraine (ed. which is 1,230 million kWh more than in 2020), and 
6,053.9 million kWh were generated by national SSPs, including domestic SSPs 
(Fig. 3).

According to the Law of Ukraine №2019-VIII “On the Electricity Market” adopted 
in April 2017, in July 2019 a new wholesale electricity market was launched in 
Ukraine [13]. Thus, the country has moved from a pre-existing centralized single-
buyer market model to a competitive liberalized model based on five distinct market
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Fig. 1 Annual increase in the capacity of renewable energy sources in Ukraine

Fig. 2 Dynamics of growth of installed capacity of renewable energy facilities, MW (Source SAEE 
Ukraine, 2021)

segments: the market of bilateral agreements; day-ahead market; intraday market; 
balancing market; ancillary services market. 

The use of RESs contributes to reducing the needs of the UES of Ukraine in 
the amount of balancing and regulatory capacity. The production of electricity by 
SPPs is quite flexible, which allows them to be adjusted to adapt to changing energy 
demand. At the same time, the growing share of solar energy sources, in particular 
solar installations of private households, causes a number of problems in terms of 
energy efficiency. The main reasons for the negative impact of solar generation on 
the electricity grid are interruptions and unpredictability due to dependence on solar
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Fig. 3 Diagram of “green” electricity production in the renewable energy sector, by types, as of 
the end of 2021 in million kWh (source: The State Enterprise “Guaranteed Buyer”)

radiation and weather conditions, as well as dispatching of generated energy [18, 19], 
and as a consequence of voltage fluctuations, low power quality and low stability 
[20]. To ensure the stable operation of the electricity system, it is necessary to plan 
the generation and demand of electricity, and forecasting the volume of renewable 
energy generation is an important step in this process. An energy production fore-
cast, that provides information on how much energy a particular power plant will 
produce, can be useful for optimizing the marketing of renewable energy and, there-
fore, deploying system integration. Timely and accurate forecasts of solar electricity 
generation are necessary both for energy market participants engaged in the purchase 
or sale of energy, and for energy system operators who maintain the stability of the 
energy system [21]. The application of forecasting the volumes of photovoltaic gener-
ation at different time scales is the basis for achieving the balance of the grid [22], 
ensuring safe operation, efficient management and stability of the power system [9, 
18]. As noted in [23], “reliable forecasting is key to several Smart Grid applications, 
such as optimal scheduling, demand response, grid regulation and intelligent energy 
management”. The solar generation forecasting is an important part of the process 
of planning a sustainable power supply and covering the electrical load of power 
systems according to demand. The projected value of electricity generation volumes 
at the level of the SPP is necessary for coordination with the electricity network 
operator of the generation plan [8]. The solar generation forecast for the day ahead 
is an important point for placing proposals of the owner of the SPP on day-ahead 
market, as well as for optimizing electricity rates in day-ahead market and intraday 
market [8]. For small SPPs, solving the problem of generation forecasting is the 
cornerstone of sustainable development. As the contribution of green energy to the 
grid is constantly growing, the problem of building reliable models for forecasting 
energy production from such sources is becoming increasingly important. Accurate 
prediction of solar generation increases the reliability and cost-effectiveness of SPPs 
using.
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3 Analysis of Factors Influencing Solar Generation 

Solar photovoltaic energy is a function of solar radiation [25]. However, other envi-
ronmental factors (temperature and relative humidity, wind speed, rainfall, length of 
daylight, cloudiness and amount of solar radiation) have a significant impact on the 
production of electricity by solar power plants. Changes in temperature and solar 
radiation can reduce solar energy generation by more than 20% [24]. In addition, 
different weather variables have different nature and significance of the impact on PV 
generation [19]. Moreover, the correlation of each variable with the amount of gener-
ated energy is different for different days [19]. The influence of various factors on the 
efficiency of solar panels and electricity generation of a SPP is considered in many 
studies. In particular, in [26, 27] the effect of changes in humidity on the performance 
of the solar panel was studied. In [28], the authors investigated the interdependence 
of dust accumulation, humidity and air velocity and their combined effect on photo-
voltaic performance. In [29] the influence of weather factors was studied, as well as 
fluctuations in radiation, which is strongly influenced by the shadow of the cloud. 
For this purpose, the spatial characteristics of clouds and the concentration of solid 
particles in the atmosphere moving in the wind direction were taken into account. 

Factors influencing the efficiency of hourly forecast of the SSP generation include 
forecast horizon, local weather conditions, geographical location, data availability 
(e.g. volume, location, methods of obtaining and reliability of information), data 
quality (e.g. time consistency, accuracy, breakdown and correction of the territory 
coverage), etc. 

Investigations of the dynamics of weather parameters (such as temperature, solar 
radiation, humidity, atmospheric pressure, wind direction and speed) and the SSP 
generation (Fig. 4) were performed to identify the relationship between them. The 
data set contained samples of measurements of the amount of electricity generation 
and weather parameters, which were recorded from July 1, 2020 to December 31, 
2020. The measurements were performed for SSP in the village of Velyka Dymerka, 
Kyiv region.

Mainly the amount of generation is affected by solar radiation,W/m2. The voltage 
of the solar cell depends on the light flux incident on it, namely: with increasing light, 
the voltage increases to a certain limit. In turn, the intensity of solar radiation depends 
on the air temperature, which directly affects the amount of heating panels. Most 
panels are designed to operate in temperatures from−40 to + 80 °C, and the lower the 
temperature, the higher the level of conversion. For instance, considering the 270 W 
panel, in hot summer at+ 35 °C it‘s power will be approximately 257 W, and in winter 
at −20 °C may be 298 W. This is due to the fact that as the temperature increases, 
the flow of electrons inside the cell increases, which causes an increase in current 
and voltage drop. The voltage drop is more than the increase in current. Therefore, 
the total power (P = UI) decreases, which reduces the efficiency of the panel. To 
numerically characterize the decrease in electricity generation with increasing solar 
panel temperature, manufacturers specify the value of the temperature coefficient. 
The temperature coefficient is a parameter that indicates how much the efficiency of
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Fig. 4 Dynamics of changes in the active power of the Dymer solar power plant and influencing 
weather factors

the solar panel decreases with increasing air temperature by each degree. The value 
of this coefficient is obtained by the manufacturer experimentally and specified in the 
specifications. In summer, the own temperature of the panel can rise to 60−70 °C. 
On average, when the temperature rises by 20 °C, the power loss is about 10%. 

Humidity has a great influence on the efficiency of solar panels. The generation of 
electricity from solar panels can be reduced to 15–30% depending on how high the 
humidity level is, as high humidity can form a layer of water on their surface. In this 
case, the probability of cloud formation, fog and scattering radiation also increases. 

The next parameter that affects the amount of electricity generation is wind speed. 
By increasing the wind speed, more heat can be removed from the surface of the 
photocells. Also, higher air velocity reduces the relative humidity, which in turn 
leads to improved efficiency. Conversely, the wind raises dust and disperses it into 
the environment, which can lead to shading and poor performance of photovoltaic 
cells [30]. 

It is also necessary to note the possibility of the influence of wind direction. 
Depending on the angle and side of the wind blows the panels, the effect of wind 
speed on the efficiency of the panels may increase or decrease. The direction of the 
wind can also affect the shading of the panels from the deposition of dust or snow. If 
the wind blows in the direction of the panel, the snow will settle better on the surface 
than if it blows opposite to the slope of the panel. 

It is a known that before bad weather (precipitation) the atmospheric pressure 
drops, and before clear (dry) weather—the pressure increases [10]. Short-term precip-
itation has small effect on efficiency. However, significant rainfall is usually character
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in cloudy weather when radiation and, accordingly, generation in this situation are 
reduced. Atmospheric pressure by itself is not a factor that directly affects the level 
of electricity generation. But it has an indirect effect on the main factors. In general, 
depending on the increase or decrease of atmospheric pressure, the influence of 
temperature, wind and humidity on energy production can increase or decrease. 

The study of the degree of influence of weather parameters on SSP generation 
was performed using correlation analysis. The cross-correlation coefficient was used 
to estimate the degree of relationship between the parameters [31]: 

rxy  =
Σn 

i=1 (xi − x)(yi − y) 
(n − 1)sx sy 

=
Σn 

i=1 (xi − x)(yi − y)
/Σn 

i=1 (xi − x)2
Σn 

i=1 (yi − y)2 
, (1) 

where x , y—the average values for the sample x and y, sx and sy—unbiased 
(adjusted) estimate of the standard deviation for x and y. 

Graphs of correlations between weather factors and the active power of the solar 
power plant are shown in Fig. 5.

Three parameters have positive correlations with the active power generation. 
Such parameters are solar radiation, air temperature and wind speed. And relatively 
humidity has negative correlation. It should be noted that the wind direction correlates 
directly with atmospheric pressure. This means that the value change of one parameter 
almost completely depending on the value of another. In other words, these factors in 
the model will be duplicated. And this will increase the complexity of the model, may 
increase the error of the model and increase the possibility of retraining. Therefore, 
the “wind speed” parameter is excluded from the model. 

4 Methodological Bases of Solar Generation Forecasting 

4.1 Solar Photovoltaic Generation Forecasting Methods: 
A Review 

Many solutions have been proposed to solve the problem of solar generation fore-
casting. According to the length of the forecast period, there are methods of short-
term, medium-term and long-term forecasting of solar generation. In terms of fore-
casting strategies, there are three groups of methods [21, 23, 32–34]: physical; 
statistical and hybrid. 

Physical methods for estimating the generated power include the construction 
of a physical model of the photovoltaic module, or PV performance model, taking 
into account the models of radiation and temperature of photovoltaic modules in 
combination with weather forecast data. The main advantage of these methods is
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Fig. 5 Correlation of weather factors and solar generation

independence from historical data [23, 32]. However, the efficiency of the predic-
tive model of PV performance significantly depends on the efficiency of numerical 
weather forecasting [32], and the process of physical modeling is complex [21]. 

Statistical methods are based on the use of large sets of historical data on weather 
factors and the generation of solar electricity to identify certain patterns and rela-
tionships in these data sets. They do not require internal information about the state 
of the system to build a model [33]. Statistical methodologies are better and easier 
to implement [23], they can have higher forecasting accuracy [32] than physical 
models. Statistical approaches are widely used for short-term forecasting of solar 
electricity generation [23]. 

Hybrid models involve a combination of physical and statistical modeling 
strategies.
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Existing approaches to solar energy forecasting based on statistical methods 
belong to two groups [20, 21]: (1) methods based on a structural approach and 
(2) methods based on a time approach. The first group includes methods that apply 
the principle of “indirect forecasting”, which is based on historical data on weather 
factors that affect the performance of the photovoltaic battery. These are the so-called 
multivariate forecasting methods. The forecast of an endogenous variable is based 
on exogenous variables (one or more) that have a significant impact on the endoge-
nous variable. The second group includes methods based on the principles of “direct 
forecasting”, which directly predicts the power of PV based on historical data from 
the generation of solar energy. These are the so-called one-dimensional forecasting 
methods. The forecast of an endogenous variable is based on previous values of the 
same variable (i.e. time series). 

It should be noted that forecasting energy production is a dynamic process. Fore-
casting for the next 48 h requires constant updating of information on weather factors, 
pre-production of energy to ensure proper calibration of the system. However, the 
control of solar power plant energy production depends not only on the uncontrolled 
energy resource, but also on the management strategies of the power plant. The 
implementation of management strategies depends on technical constraints, price 
volatility, user demand and etc. It should be noted that all the necessary informa-
tion is not always available, which makes forecasting renewable energy difficult 
to control. In addition, to forecast production taking into account weather condi-
tions, it should be performed a weather forecast, the error of which affects the final 
result. One-dimensional methods are simpler and cheaper. For their implementation 
it is enough to have only the value of the time series of solar energy and do not 
need to perform additional measurements of weather factors that require mainte-
nance of weather stations or other measuring instruments (except solar meters) [35]. 
Also, according to the authors [23, 35], one-dimensional methods of solar energy 
forecasting work better and are more efficient, especially in conditions of dynamic 
control, which requires short-term forecasting of solar energy generation [35]. 

4.2 Application of Time Series for Solar Generation Forecast 

Time series forecasting methodology has wide practical application in the energy 
field [21]. There are many examples in the literature of the use of time series models 
for predicting solar generation [18, 21, 24, 25, 35]. 

The approach to time series forecasting is based on the following assumption: 
some knowledge can be obtained from a series that describes the initial process, and 
based on this knowledge to build a process model to predict future process behavior. 
The primary objective of time series analysis is to develop mathematical models that 
provide plausible descriptions from sample data. 

The time series forecasting is solved using classical methods, such as autoregres-
sion and moving average methods [18, 36–38], and methods of machine learning 
and artificial intelligence [10, 24, 38].
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Among the classical methods of time series forecasting, the moving average 
autoregression model (ARMA) is widely used [36, 37]. The moving average model 
uses current and previous white noise values for forecasting. ARMA contains two 
parts, autoregressive (AR) and moving average (MA). White noise is created from 
forecast errors or residuals when observations become available. The ARMA model 
requires a lot of preliminary data. The main requirement for the application of the 
ARMA model is the requirement of stationary time series. 

However, the time series of solar electricity generation have seasonal and non-
seasonal variations and are non-stationary [24, 25]. One of the most commonly used 
methods for predicting nonstationary time series is the Box-Jenkins model—ARIMA 
(integrated model of autoregression-moving average). In the ARIMA model, the 
predicted value is defined as a linear combination of past values (simulated by AR 
autoregression) and noise (simulated by the moving average (MA)), and the number 
of differences to convert the time series into a stationary simulated integrated (I) 
part [35]. The advantage of the ARIMA model is its simplicity. To apply the ARIMA 
model to non-stationary time series, the conversion of time series data into a stationary 
series is performed by taking the difference of some order from the original values 
of the time series. This approach was used in [24, 36] to predict the generation of 
solar energy. 

In [39] the method of forecasting for several months ahead (one, two and three 
months) the average monthly time series of global solar generation and forecasting 
based on solar radiation data is presented. ARMA and ARIMA models are used to 
predict the nearest values of the global time series of solar radiation. Both models 
are applicable to stationary and non-stationary time series of solar radiation data. 

To identify and take into account trends and seasonality that occur in the time 
series of solar generation, use the seasonal extension of the ARIMA model—the 
seasonal model of autoregressive integrated moving average (SARIMA). SARIMA 
models have received considerable attention for the formation of time series forecasts 
for RES due to their good ability to identify seasonality [21]. 

The SARIMA model is used to predict the production of energy from solar power 
plants, both small [18] and large installed capacity [38]. 

4.3 Methodology of Construction of Seasonal Model 
of Moving Average Autoregression 

Time series models are data-driven models, ie, learn or obtain useful information from 
a set of historical data to predict the outcome [20]. The purpose of the forecasting 
process is to determine the amount of solar energy generation one step ahead based 
on a sample of historical data. Assume that there is a function that can be applied to 
both past and future data [35]: 

p̂(t) = f (p(t − 1), p(t − 2), . . .), (2)
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where p(t) is the actual power generated by the solar power plant at the time t, p̂(t) 
is a forecast of energy produced by a solar power plant at a time t, p(t − 1) indicates 
the power output for the previous time (t − 1). 

Time series consist of four components: seasonal, trend, cyclical and random. 
Seasonal components are the result of systematic and calendar effects and are defined 
as repetitive or predictable fluctuations over a period of time that include natural 
conditions such as weather fluctuations. Due to components such as trend and season-
ality, real time series are usually non-stationary. Non-stationary time series data cause 
errors and unsatisfactory forecasting results. Because seasonal components can affect 
some off-season characteristics of a time series and some trends in it, seasonal adjust-
ments are applied to the process. Seasonal adjustment is the evaluation and then the 
removal of seasonal components. 

The SARIMA model is the introduction of seasonal terms into the ARIMA model, 
which are denoted as SARIMA (p, d, q) (P, D, Q) s, where p, d, and q represent 
the parameters of the non-seasonal part of the model. P, D and Q represent the 
parameters of the seasonal part of the model, and s is the seasonal period. Values 
(p, d, q) (P, D, Q) s are used to parameterize the model. The parameters p and 
P characterize the autoregressive part of the model (respectively non-seasonal and 
seasonal components) and allow us to take into account in the model the effect of past 
values in our model. Parameters d and D characterize the integral part of the model 
and take into account the amount of differentiation (i.e. the number of moments of the 
past time that must be subtracted from the current value) to apply to the time series. 
Parameters q and Q characterize the part of the moving average model and allow to 
establish the error of the model as a linear combination of error values observed in 
previous moments in the past. 

The following formula is used to build the model: 

⎧ 
⎪⎨ 

⎪⎩ 

φ(B)∇d Xt = ⊝(B)εt ; 
E(εt ) = 0, Var  (εt ) = σ 2 , E(εt εx ) = 0, s = 24; 
E(X, εt ) = 0, ∀s < t, 

(3) 

where ∇d = (1− B)d ,B is the delay operator, ∇d Xt is time series after the difference 
of the final order, εt is the sequence of white noise, ⊝(B) is a stable and reversible 
polynomial of the moving smoothing coefficient of the ARMA (p, q) model, φ(B) 
is the polynomial of the autoregression coefficient of the stationary and reversible 
ARMA (p, q) model. 

Preliminary observations are described by a polynomial: 

Xt = εt + ψ1εt−1 + ψ2εt−2 + ... = ϕ(B)εt , (4) 

where ψ1, ψ2 are determined by the equation: 

φB(1 − B)d ψ(B) = θ(B). (5)
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If φ∗(B) defined as a generalized autocorrelation function, we have 

φ∗(B) = ψ(B)(1 − b)d = 1 − φ1 B − φ2 B − ... . (6) 

Values ψ1, ψ2 satisfy the equation: 

⎧ 
⎪⎪⎪⎨ 

⎪⎪⎪⎩ 

ψ1 = φ1 − θ1; 
ψ2 = φ1ψ1 + φ2 − θ2; 
. . . ,  
ψ j = φ1ψ j−1 . . .  + φp+d ψ j−p+d − θ j . 

(7) 

In this formula: 

ψ j =
{
0, j < 1; 
1, j = 0, 

where j is the autoregression coefficient, θ j is the moving average coefficient. 
Then the forecast value of SSP generation can be written as follows: 

Xi+1 = (εi+1 + ψi εi+l−1 + . . .  + ψl−1εt+1) + (ψi εt + ψl+1εi−1 + . . .). (8) 

Therefore, the SARIMA model is expressed by the formula: 

∇d∇D 
s xt =

⊝(B)⊝s(B) 
φ(B)φs(B) 

εt , (9) 

where 

φs(B) = 1 − ϕ1 B
s −  · · ·  −  ϕpB

ps , ⊝(B) = 1 − θ1B −  · · ·  −  θqBq

⊝s(B) = 1 − θ1 Bs −  · · ·  −  θpBQS 

Choosing the optimal model is one of the problems that arise during forecasting. 
The choice of the optimal structure of the model is performed on the basis of analysis 
of the values of the information criterion Akaike (AIC), Schwartz Bayes test (VIC), 
the residual sum of squares (RSS) [24]. The choice is based on determining the quality 
of the statistical model on the data set to determine which set of model parameters 
provides the best performance. 

The constructed model should be tested for adaptability. This step is to check the 
compliance of the remnants of the model with white noise. If the residuals of the 
model are a sequence of white noise, then the construction of the model fully reflects 
the information contained in the data. In this case, the seasonal model is adaptive. 
Otherwise, the model must be optimized and these model parameters reconfigured.
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The forecasting process involves finding an estimate of p(t) that optimizes the 
performance criterion (or forecast error). The effectiveness of the forecast model 
is measured by various indicators associated with forecast error. The following key 
indicators are used to assess the performance of the model [21, 35]: Mean Absolute 
Error (MAE), Root Mean Square Error (RMSE) and R-squared. These criteria are 
useful for comparing the predictive power of models of different structures. 

5 Results of Modeling and Verification of Forecast 
Accuracy 

5.1 SARIMA Models for Short-Term PV Generation 
Forecasting 

Seasonality can be determined by regularly located peaks of the curve or flatness with 
the same value during this period. The change in the value of the time series may also 
be associated with a change in the component of the time series trend. In some cases, 
the trend (or irregular components) may dominate over the seasonal components, 
and then it is impossible to detect the small seasonality that is represented in the time 
series (Fig. 6). 

The model will be presented in the form of SARIMA (p, d, q) × (P, D, Q) s, where  
(p, d, q) are non-seasonal parameters, respectively, autoregressive part of the model, 
integral part of the model and part of the moving average model; (P, D, Q) are the 
same in terms of part of the model, but apply to the seasonal component of the time

Fig. 6 Annual solar power plant generation with seasonal time series decomposition 
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Table 1 Seasonal ARIMA 
parameter combinations 

ARIMA (p, d, q) combinations 
considered 

Seasonal parameters (P, D, Q, 
S) considered 

(0, 0, 0) (0, 0, 0, 24)  

(0, 0, 1) (0, 0, 1, 24)  

(0, 1, 0) (0, 1, 0, 24)  

(0, 1, 1) (0, 1, 1, 24)  

(1, 0, 0) (1, 0, 0, 24)  

……. ………. 

series; s is the periodicity of the time series (s = 4 for quarterly periods, s = 12 for 
annual periods, s = 24 for daily periods). 

The forecast was made for two days ahead. 
The study used the “grid search” method to iteratively investigate different combi-

nations of parameters. A new seasonal ARIMA model with SARIMA function was 
selected for each combination of parameters. After researching the full range of 
parameters, the optimal set of parameters was the one that gave the best performance 
for the criteria of interest. Table 1 shows the different combinations of parameters 
that needed to be evaluated: it was now possible to use the triplets of parameters 
defined above to automate the learning process and evaluate ARIMA models on 
different combinations. 

When evaluating and comparing statistical models with different parameters, each 
of them can be ranked against each other based on how it corresponds to the data or its 
ability to accurately predict future data points. The choice of a more efficient model 
was based on the assessment of the quality of the model on the data set according to 
the information criterion Akaike (AIC) [24]. The AIC (Akaike Information Criterion) 
value was used, which is convenient to rotate with ARIMA models installed using the 
statsmodels Python 3.8 module. The AIC measures how well the model matches the 
data, taking into account the overall complexity of the model. A model that matched 
the data very well using a large number of functions was assigned a higher AIC score 
than a model that had fewer functions to achieve the same match. Therefore, there 
was interest in finding the model that gives the lowest AIC value (Table 2).

The modeling results are shown in Figs. 7 and 8. The best model with parameters 
SARIMA  (1, 0, 1)  × (2, 1, 0, 24) is presented in Fig. 8.

After selecting the model with the best parameters, the residual graphs were 
checked to verify the correctness of the model. The best forecasting method has a 
minimum of information that will remain in the residuals, if any. 

At this stage, residual diagnostics, standard residue, histogram plus estimated 
density, normal Q−Q and correlogram were checked for model analysis (Fig. 9).

The coincidence of the residual points with the normal on the graph “Normal 
Q−Q” indicates the absence of systematic deviation. In addition, the Correlogram 
shows that there is no autocorrelation in the residues, so they are actually white noise. 
Therefore, these residues are uncorrelated and have a zero average. This suggests 
that the model is adaptive and the model’s relevance to historical data is sufficient.
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Table 2 Seasonal ARIMA 
parameter combinations with 
AIC 

ARIMA (p, d, q) 
combinations 
considered 

Seasonal parameters (P, 
D, Q, S) 
considered 

AIC 

(0, 0, 0) (2, 1, 0, 24) 13,105.512 

(2, 0, 0) (1, 1, 0, 24) 12,954.057 

(0, 0, 0) (0, 1, 0, 24) 13,388.464 

(1, 0, 1) (2, 1, 0, 24) 12,826.840 

(0, 0, 0) (2, 1, 0, 24) 13,104.847 

……. ………. 

Bold represents the best ARIMA model according to the AIC 
criterion

Fig. 7 Model with SARIMA parameters: (1, 1, 2) × (2, 1, 2, 24)

5.2 Verification of the SARIMA Model Forecast Accuracy 

The following equations were used to evaluate the effectiveness of each model: 

MAE  = 
1 

N 

N∑

i=1

|
|ŷi − yi

|
|; (10) 

RM  SE  =
[
|
|
| 1 

N 

N∑

i=1

(
yi − ŷi

)2; (11)
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Fig. 8 Model with SARIMA parameters (1, 0, 1) × (2, 1, 0, 24)

Fig. 9 Residual graphs of the SARIMA model (1, 0, 1) × (2, 1, 0, 24)



176 A. Bosak et al.

Table 3 Comparison of errors criteria for the results obtained for each of the test from the solar 
radiation forecast 

Model MAE, W RMSE, W R2, abs. un  

SARIMA  (1, 1, 2)  × (2, 1, 2, 24) 315.12 1245 0.87 

SARIMA  (1, 0, 1)  × (2, 1, 0, 24) 258.57 1259 0.92 

R2 = 1 −
(

N∑

i=1

(
yi − ŷi

)2 
/
(
yi − yi

)2
)

, (12) 

where N is the sample size; yi is the actual value; ŷi is the predicted value; y is the 
sample mean. 

The results of the comparison of the best selected SARIMA models based on the 
values of MAE, RMSE and R2 are shown in Table 3. 

The results show that the SARIMA (1, 0, 1) × (2, 1, 0, 24) model performed 
better than SARIMA (1, 1, 2) × (2, 1, 2, 24) in data prediction, with the value of R2 

of 0.92, the value of MAE of 258.57 W and the value of RMSE of 1259 W. Lower 
the value of MAE and the value of R2 closer to 1, indicate a correlation between 
observed and predicted dataset. 

6 Conclusions 

This chapter proposes a time series approach for forecasting the generation of solar 
power plants. The dynamic series of solar energy generation is characterized by rigid 
seasonality, so the optimal solution is to use an autoregressive model with a seasonal 
component—SARIMA. This model allows us to take into account trends and identify 
seasonal fluctuations in day-ahead generation, which perfectly meets the needs of 
the electricity day-ahead market. 

The use of the proposed model SARIMA (1, 0, 1) × (2, 1, 0, 24) reduces the 
average forecast error for the day ahead to 2.58% from 3.15% and has a correlation 
coefficient R2 of 0.92. The developed mathematical models are implemented in the 
form of a computer program.
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