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Abstract The reliability of electrical networks and systems largely depends on the 
accuracy of load forecasts used to calculate losses, imbalances, and modes of oper-
ation of power systems. The use of modern forecasting methods allows us to obtain 
more accurate results, faster calculations, flexible enough to solve a wide range of 
problems. Artificial neural networks today are one of the most common tools for 
building complex mathematical models depending on the tasks. This spread of arti-
ficial neural networks is due to the significant development of computer technology. 
Depending on the characteristics of electrical networks and their loads, the accuracy 
of different forecasting methods may vary. Additional factors also have a signifi-
cant impact on forecasting accuracy. Therefore, accurate load forecasts for different 
load levels require modern and effective methods that could take into account the 
relationship of additional factors. Among the factors that have a significant impact 
on changes in the electrical load of the power system are meteorological factors, 
namely temperature. To determine the exact relationship between load and external 
factors, the method of decomposition of graphs using the Hilbert-Huang method is 
considered. This chapter discusses the possibilities and prospects for the application 
of modern forecasting methods based on artificial neural networks, respectively, for 
forecasting electrical networks of different hierarchies with the possibility of taking 
into account temperature. 
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1 Introduction 

Many studies in Ukraine are aimed at solving current problems of energy markets 
[1–4] and electricity systems [5–9]. The transition in Ukraine to a newly liberalized 
electricity market has led to the functioning of such segments as the market of bilateral 
agreements, the market for the “day ahead”, the intraday market, and the balancing 
market [10, 11]. The emergence of new market segments has strengthened the urgency 
of improving the accuracy and stability of the results of short-term forecasting of 
both total electrical load (TEL) [12] and nodal load. In particular, the accuracy of 
forecasts determines the level of imbalances in electricity in the electricity system, 
which are created by different market participants [13, 14]. Accordingly, different 
approaches can be used for short-term forecasting tasks of both TEL and short-term 
forecasting of nodal electric load. 

One of the approaches is the idea of short-term forecasting of the Integrated 
Power System (IPS) of Ukraine at each of the three hierarchical levels independently. 
Research in this direction is given in [15, 16], modern methods of hierarchical fore-
casting are divided into two groups: “bottom-up” and “top-down”. The first approach 
combines lower-level forecasts for forecasting for each higher level, and the second 
approach uses only historical data from all levels for forecasting. Based on this, it 
can be argued that to increase the accuracy of forecasting at the upper level of the 
hierarchical system, it is necessary to increase the accuracy of forecasting at lower 
levels. 

Another approach to solving the problems of short-term forecasting of TEL is 
the solution by building a multifactor mathematical model, which takes into account 
the structure and nature of electricity consumption taking into account the factors of 
influence. Improving the methods of short-term forecasting of TEL allows to increase 
in the efficiency of market participants [13] and distribution system operators(DSO) 
[14] in organized segments of the electricity market, as well as transmission system 
operator (TSO) during the organization of the balancing electricity market of Ukraine 
[17]. 

The development of multifactor models is also effective for predicting nodal loads. 
Determining the relationship between load nodes and between additional influencing 
factors also indicates the need to consider additional factors when predicting load. 

The accuracy of forecasts of both total and nodal loads affects the cost-
effectiveness of generating equipment and, accordingly, the cost of electricity. In 
particular, the forecast of nodal loads [18, 19] is needed to optimize future and 
adjust current regimes, accept operational dispatch requests, as well as to submit 
applications for the purchase and sale of electricity to distribution system operators, 
which necessitates obtaining forecast data for electricity purchases. different market 
segments.
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2 Application of Artificial Neural Networks for Forecasting 
Electrical Load at Different Levels of Power Systems 

2.1 Forecasting of Hierarchical Levels of the Power System 

Using artificial neural networks for energy problems demonstrates advantages over 
classical statistical forecasting methods. For example, in [20], some methods of 
statistical and artificial intelligence are used to predict the electric load considered as 
well as the factors influencing the accuracy of forecasts are analyzed. The transition 
to hybrid models combines two or more models. In [21], was shown that neural 
network models are gradually becoming more accurate for load prediction compared, 
to multiple linear regression, the reference vector method, the Random Forest, and 
others. Data from the Irish energy system were used to test the effectiveness of short-
term forecasting methods for different types of workloads (residential, small, and 
medium-sized enterprises). The obtained results demonstrate the high accuracy of 
neural networks compared to other methods, especially for short-term forecasting 
with a prediction of 1–7 days, where they have a better advantage. 

To test the effectiveness of forecasting different hierarchical levels, a model was 
built for each hierarchical level of the IPS of Ukraine based on artificial neural 
networks, namely: 

• for the distribution system operator (DSO) level; 
• for the level of the regional power system of the transmission system operator 

(TSO); 
• for the IPS level of Ukraine. 

The model is evaluated based on Kyivenerho, the Central Electric Power System 
of National Power Company (NPC) Ukrenergo, and the IPS of Ukraine for the period 
2015–2016. 

The data of the total electric load are time series. These are indicators that are 
collected over a period and correspond to some samples. Within the framework of 
this publication, the hourly values of TEL in MW at each of the given hierarchical 
levels of the IPS of Ukraine were used. A recurrent artificial neural network, which 
is widely used for time series prediction problems, was chosen for modeling. 

A recurrent neural network is an improved version of a conventional artificial 
neural network (multilayer perceptron) that contains feedback to store information. 
One of the types of architecture of recurrent networks is LSTM (long-short time 
memory) [22], a network that is capable of learning on long-term dependencies. 

For this task, a single-layer recurrent neural network of the LSTM type was used, 
to which a two-layer fully connected network was added. Data for two weeks with 
hourly discreteness is submitted to the network input. The input layer has 24 neurons, 
ie for each neuron of the LSTM layer values are given every hour for the previous 
two weeks. Thus, we obtain the sequence in which the input data for a particular hour 
enters the input of a particular neuron, which in turn transmits the output data to the 
next neuron both horizontally and vertically. This neural network is implemented in
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Fig. 1 Neural network architecture 

the Python programming language. In Fig. 1 shows the general architecture of the 
proposed neural network. 

Before submitting the data to the network input, the data of the training sample 
was normalized to the form from 0 to 1 according to formula (1). Test sample data 
were normalized in the same way, but using the minimum and maximum values from 
the training sample. 

xi, j = xi, j − min(x j ) 
max(x j ) − min(x j ) 

, (1) 

where i—is the row number and, j—is the column number. 
The LSTM expects the input to match some structure of the 3D array. Therefore, 

the best option is to use the previous time steps in our time series as input data to 
predict the output data in the next step. That is, for each neuron of data of separate 
time intervals is given, and through feedback, the information from the previous steps 
is transferred to the following. Thus, the network receives data not only for a specific 
hour but also information from previous time steps. 

2.2 Retrospective Data and Results of Forecasting Different 
Hierarchical Levels of the Power System 

Prediction of each of the hierarchical levels is performed on the model of the artificial 
neural network described above, for each hierarchical level training was conducted 
separately on the corresponding data samples. Approbation of the forecasting results 
was performed on the data of DTEK Kyiv Electric Networks and the Central Electric 
Power System of NPC Ukrenergo for the period from 2015 to 2017 with hourly 
discreteness. Training samples of the same dimension for the period from January 2, 
2015, to August 22, 2016, were used to train the models. Test samples were divided 
into summer and winter. The summer sample contained data for the period from 
August 22 to September 1, and the winter—from 22 to 31 December 2016. The 
RELU function was used as the activation function of the fully connected layers. 
The RMSE function was used as an evaluation parameter. 

Table 1 shows the RMSE forecast errors (square root of the root mean square 
error) as a percentage and in absolute values for the test samples.
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Table 1 Forecast errors 

Hierarchical 
levels 

Summer period 
(MW) 

Summer period 
(%) 

Winter period 
(MW) 

Winter period 
(%) 

Distribution 
system level 

57.58 5.9 60.52 4.5 

The level of the 
regional energy 
system 

98.3 3.8 75.1 2 

IES level of 
Ukraine 

395 2.6 308.65 1.5 

RMSE graphs for summer and winter testing periods are presented in Figs. 2 and 
3 for the DSO level, the regional TSO power system and the IES level of Ukraine, 
respectively. 

The results of the calculations show that the accuracy of forecasting increases with 
each higher hierarchical level. That is due to factors that affect them. In particular, 
the lower levels are affected by several factors. The forecast for the winter period 
shows a smaller error. The graphs show that at each higher hierarchical level the error 
is more uniform without obvious bevels. 

The analysis of forecasting results showed that the forecast error is smallest in 
the winter period for all hierarchical levels, which is in the range of 1.5 … 4.5%, 
while for the summer period the error is in the range of 2.6 … 5.9%. With each 
higher level, the error decreases in both testing periods, this is since the lower levels

Fig. 2 RMSE errors for summer period for all power system levels
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Fig. 3 RMSE errors for winter period for all power system levels

are affected by more external factors, so it is more dispersion. To test the impact of 
external factors on the lower levels of the power system, a study was conducted to 
predict the total load of the DSO, taking into account air temperature. This study is 
described in Sects. 2.3 and 2.4. 

2.3 Decomposition of Schedules of Total Electric Load 
and Forecasting of Total Electric Load Taking 
into Account Temperature 

Since at the lower levels the TEL values are influenced by both internal (techno-
logical) and external (meteorological, astronomical, etc.) factors, to determine the 
degree of influence of a factor, it is advisable to decompose graphs of TEL hour 
sections and predict each component separately depending on the factor. 

In this model, the Hilbert-Huang method is used to decompose TEL schedules into 
temperature and base components [23]. This method is promising for the study of 
nonlinear and nonstationary processes. The classical algorithm of the Hilbert-Huang 
method looks like this: 

1. Search in the TEL curve of the hour section P(x) of local extrema, grouping 
separately local minima and maxima of TEL.
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2. Construction of curved curves by interpolation of curves of local minima ub(xb) 
and maxima ut(xt). Since the number of points in the curves can differ signifi-
cantly, it is necessary to interpolate (using cubic splines) and extrapolate (using 
the first-order Brown method) their functions over the entire sample size ub(x) 
and ut(x), respectively, where x varies from 1 to n-sample size. 

3. Then the first component m is found as the mean value between the functions 
ub(x) and ut(x) (2): 

mi = 
ubi + uti 

2 
. (2) 

4. The second component ck (k—iterations number) is the difference between the 
values of full load and the first component. 

5. In the following iterations, y(x) takes the value mk-1 and algorithm 1–4 continues 
until the number of local minima or maxima is less than 2. 

Thus, in [24] described method is used for pre-processing of data in one-factor 
forecasting using neural networks. 

In the developed model, this algorithm is adapted to match the decomposition 
results to the real process of the effect of temperature change on the TEL. In particular, 
the following changes were made: 

1. Only the curve of the local minima of the TEL schedule is used in the calculations, 
so for the most part the base and temperature components are positive, in addition, 
the limit of the “insensitivity zone” is determined, at temperatures below which 
the temperature component is zero. 

2. After each iteration, the selected components ck are added, and the correlation 
coefficient between the sum of the selected components Σck and the air temper-
ature is calculated, it is an additional condition for stopping the decomposition 
cycle. 

To predict the temperature component, polynomial regression is used with the 
selection of the optimal degree and model (3): 

P = 
mΣ

i=0 

ai t
i , (3) 

where u varies from 0 to the optimal degree of m; a—coefficients of the polynomial 
equation. 

These coefficients are determined in the following sequence: a system of algebraic 
Eq. (4) is formed using the matrix method. Since the matrix of input parameters (air 
temperature values) t{[1], [ti], [ti 2]… [ti m]} is often rectangular, it is necessary 
to apply the matrix transformations of Eq. (4), then the required coefficients are 
determined by Eq. (5): 

t A  = P; (4)
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t T t A  = (
t T P

)
. (5) 

To increase the universality of the method of calculating the system of Eq. (4), 
namely to avoid cases where the matrix tT t has no inverse, the resulting system of 
algebraic equations is solved using the Gaussian method. The analysis of preliminary 
calculations showed that the selection of the degree from 2 to 10 is sufficient. At the 
same time, the optimal model is selected for each degree. The criterion of minimum 
means absolute percentage error (MAPE) is accepted as a target function for selecting 
the optimal model. 

Pugachev’s method of canonical decomposition of random processes was used to 
predict the base component of TEL [25]. The method of canonical decomposition is 
a representation of the function Pb(t) in the form: 

Pb(t) = m Pb(t) +
Σ

V 

VV ϕV (t), (6) 

where mPb(t)—mathematical expectation of the base component of TEL, Vv—some 
random variables whose mathematical expectation is 0, ϕv(t)—coordinate function 
calculated by the following formula: 

ϕV (t) = 
1 

Dv 
M(Pb(t)Vv), (7) 

where Dv—variance of an array of random numbers; Pb(t)—values of the base 
component of TEL, centered on the average value (deviation of the original function 
from the average value). 

An array of random numbers must satisfy the following conditions: 

M[Vv] = 0; M[VvVm] = 0(m /= v). (8) 

Numbers were obtained using a white noise generator. 
Prediction of the base component of TEL is performed by the formula: 

Pb(t + 1) = m Pb(t) + ϕv(t)Vv. (9) 

The synthesis of the forecast graph is performed as the algebraic sum of the 
temperature and base components in each hour of the daily schedule.
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2.4 Analysis of the Results of Total Forecasting Taking 
into Account the Temperature 

The study was conducted according to Kyivenerho for the winter period from 
01/11/2015 to 31/03/2016 and the summer period from 01/06/2015 to 31/08/2015. 
Both samples are hourly and contain only working days from Tuesday to Thursday. 
Data on air temperature were obtained from open sources for the city of Kyiv with 
the discreteness of 3 h, so these data were interpolated to obtain hourly values. 

Figure 4 shows the graphs of the temperature component and the temperature 
for the 12-h cross-section of both samples, where the inverse (for winter) and direct 
(for summer) correlations are observed. Testing of the mathematical model was 
performed for several days, for the summer period—for four days, for the winter 
period—for three days. The MAPE value is used to estimate the forecast error. The 
forecasting results are given in Table 2. 

Fig. 4 Schedules of the temperature component and air temperature
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Table 2 Errors of the total forecast taking into account the temperature 

Forecast days Summer period Winter period 

1 2 3 4 1 2 3 

MAPE (%) 1.95 1.46 1.65 1.89 1.98 1.88 3.15 

3 Short-Term Nodal Load Forecasting Taking into Account 
Temperature 

Based on the results of short-term forecasting of nodal loads in the services of power 
system modes, most of the technical tasks of mode planning are solved, which are 
aimed at improving the efficiency and reliability of power systems. At this time, this 
problem is solved very simply: the node loads are determined using the coefficients 
of distribution of the total load according to the degree of their relationship with the 
node loads. However, there are works in which more advanced forecasting methods 
are used to determine the nodal loads. Thus, in [26], inversion of a neural network 
based on a multilayer perceptron is used to predict nodal loads. In [14], an algorithm 
based on an artificial neural network of the multilayer perceptron type, combined 
with a mathematical apparatus of autoregression, was considered to predict nodal 
loads. Using the autoregression method, the data is pre-processed and the parameters 
of the mathematical model (MM) are estimated. The error of forecasting results for 
working days is in the range of 2.4–6.2%. In addition, methods based on artificial 
neural networks can be used for problems of renewable energy sources and their 
forecasting [27, 28]. In some published works on short-term forecasting of total 
electrical load, the influence of meteorological factors (temperature, clouds, etc.) 
is taken into account [12]. Preliminary studies have also shown that to increase 
the accuracy and reliability of short-term forecasting results, it is necessary to take 
into account additional technological factors, in particular, the mode of operation of 
energy-intensive enterprises. 

LSTM deep learning neural network, the architecture of which is present in [18], 
was used to predict nodal loads. Such a neural network is a combined architecture 
based on a multilayer perceptron hidden layer which contains a recurrent LSTM 
memory module [22], as well as two fully connected layers, and one bypass connec-
tion that provides input to the output, which is summed to improve the neural network 
learning process. The data on the input of the neural network happens in increments 
of 24 values. The SELU (scaled exponential linear unit) function is used as an activa-
tion function of hidden layers [29]. Training is carried out using the ADAM optimizer 
(adaptive moment estimation) [30]. A period of 100 epochs was chosen for study. 
Ambient temperature data was used as a virtual node and concatenated with the input 
load vector of the nodes. 

To study the influence of air temperature on the accuracy of forecasting of nodal 
loads used to load data obtained from the automated system of control and accounting 
of electricity (ASCAE) “Vinnytsiaoblenergo” for the period from 10.01.2017 to
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06.10.2019, monthly loading of 15 universities with hourly discreteness. Air temper-
ature data were obtained from the meteorological station of Vinnytsia (according to 
the index of the International Meteorological Organization 33,562). The temperature 
data used have a discreteness of one hour. 

To determine the relationship between the load nodes, the correlation of data for 
working days and weekends was performed. 

As can be seen from the above data, when the nodal correlation of working day 
data was found, several nodes that have no connection with the nodes are nodes 4, 
11, and 13 (correlation coefficient of which is in the range of 0.2 − (−0.2)). Whereas 
for weekends only 4 nodes have no connection with other nodes. You can select 
the nodes with the highest correlation coefficients, these are 3.5, 6, 7, 8, and 12. 
(correlation is in the range from 0.7 to 1). You can also group nodes 9–10 to 14–15 
with a correlation coefficient of 0.7–0.6, and nodes 1–2 with a correlation coefficient 
of 0.5–0.4 (Tables 3 and 4). 

The correlation of data between nodes load and temperature was also investigated. 
According to the results of which (Table 5), it is seen that the relationship between 
working days and weekends with the temperature is identical. Almost all nodes have 
a negative correlation with temperature.

To determine the optimal scope of training samples for winter and summer periods, 
a comparative analysis of the average daily load and temperature graphs for all 
nodes for the entire period was conducted. After analyzing the graphs of load and 
air temperature, we can identify the following common features:

• All nodes are dependent on temperature in winter, with some having a linear 
relationship (ie the form of load graphs and similar temperatures), while others 
have a negative correlation. 

• The winter period can be conditionally allocated starting from the period 
25/09–10/10/2017 to 04–05/04/2018. During this period there is a decrease in 
temperature and an increase in the magnitude of the load on the nodes.

Table 3 Correlation between nodal of working days
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Table 4 Correlation between nodal of weekends

Table 5 Correlation of load nodes with temperature

• Then in the period from 4 to 9 April, there is a sharp decline in load and condi-
tionally begins the summer period during which the load is almost independent 
of temperature. This period ends on September 20–25, 2018. 

• In some nodes there is a significant number of load failures (in some cases it is 
characterized by the presence of holidays and in others—the emergence of prob-
able emergencies), in node 10 there is an abnormal increase in load in November 
2018, exceeding normal values by 4 times. 

Thus, for training samples, it is possible to allocate conditionally winter from 
10/01/2017 to 04/04/2018 and conditionally summer from 04/09/2018 to 09/20/2018 
periods with the allocation of the last 7 days to assess the forecast. Figures 5, 6 and 
7 show examples of load-temperature ratio charts for the selected period.

Also, to check the effectiveness of forecasting nodal loads, data analysis was 
performed to identify anomalous values and omissions (hereinafter referred to as 
data analysis). To do this, a two-stage validation algorithm was developed, which 
includes the stage of data clustering to select anomalous values and replace them, 
after which the seasonal decomposition method selects residual data, which is used 
for re-verification by the clustering method. 

Detailed analysis of the node load data revealed a significant number of anomalous 
values that need to be replaced. 

Table 6 shows the statistical load characteristics of nodes 1 and 11, before and 
after the authentication procedure.



Short-Term Load Forecasting in Electrical Networks … 99

-4

-3

-2

-1 

0 

1 

2 

3 
Nodal 3 

Temperature Load 

Fig. 5 Graphs of the ratio of load and temperature of the node 3
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Fig. 6 Graphs of the ratio of load and temperature of the node 4

The schedule of loading of the corresponding knots before and after authentication 
is shown in Fig. 8 (Table 7).

As can be seen from the above data, the verification algorithm as a whole success-
fully detected and recovered single emissions, but the quality of identification and 
recovery of group emissions is much lower. 

Tables 8 and 9 show the forecast results. The MAPE was used to assess error. The 
calculation of the error was performed on the data for the period from 01/01/2019 to 
06/10/2019, which was not used for neural network training.

Thus, it is shown that the use of the confidence method for nodal load data can 
reduce the average forecast error from 13.74 to 11.52%. The use of air temperature 
data as additional forecasting factors can further reduce forecast errors in the range
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Fig. 7 Graphs of the ratio of load and temperature of the node 8

Table 6 Statistical load characteristics of nodes 1 and 11 before and after the authentication 
procedure 

Node Node 1 Node11 

To authentication After 
authentication 

To authentication After 
authentication 

Average, kW h 2365 2393 15,684 13,058 

Standard 
deviation, kW h 

444 372 13,787 3315 

Coefficient of 
variation, relative 
unitsacting 

0.19 0.16 0.88 0.25 

The minimum 
value of kW h 

0 1284 0 4777 

25 percentile kW h 2136 2148 10,760 10,609 

Median, kW h 2387 2394 12,939 12,765 

75 percentile kW h 2638 2641 15,797 15,318 

Maximum value, 
kW h 

3814 3814 181,949 24,773

from 14.22 to 11.17%. The accuracy of the prediction also depends on the data 
samples. When using samples for the conditionally winter or summer period, in 
some cases this reduces the forecast errors, but the accuracy depends primarily on 
the sample size.
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Fig. 8 Schedule of loading of knots before authentication and after authentication 

Table 7 Samples of training and test data samples for forecasting 

Sample Additional factors Data analysis Training sample size Test sample size 

The 
whole 
period 

With temperature Unverified 
data 

10/01/2017–06/09/2019 06/09/2019–06/10/2019 

Authenticated 
data 

10/01/2017–06.09.2019 06/09/2019–06/10/2019 

Without temperature Unverified 
data 

10/01/2017–06/09/2019 06/09/2019–06/10/2019 

Authenticated 
data 

10/01/2017–06/09/2019 06/09/2019–06/10/2019 

Working 
days 

With 
temperature 

Winter 
period 

Authenticated 
data 

01/11/2017–20/03/2018 21/03/2018–29/03/2018 

With 
temperature 

Summer 
period 

Authenticated 
data 

01/05/2018–20/08/2018 21/08/2018–29/08/2018 

Weekend With 
temperature 

Winter 
period 

Authenticated 
data 

04/11/2017–18/03/2018 24/03/2018–04/04/2018 

With 
temperature 

Summer 
period 

Authenticated 
data 

05/05/2018–19/08/2018 25/08/2018–15/09/2018

4 Conclusion 

The results of complex studies are aimed at improving the accuracy of forecasting 
electrical loads through the use of artificial neural networks and taking into account 
additional factors, including air temperature. Prediction of the total load using the 
decomposition of TEL graphs (separately for each slice) using the Hilbert-Huang 
method with the proposed and made changes to solve the problem obtained tempera-
ture component that has a close correlation with air temperature, which helps to build 
more exact regression dependence for its prediction. The use of the proposed method 
allows ensuring the error of the results of short-term forecasting of TEL within 1.5 
÷ 3.15%.
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Table 8 Forecast errors for different configuration 

Data type Unverified data Authenticated data 

Type of forecast One-factor Multi-factor One-factor Multi-factor 

1 7.60 8.33 6.80 5.86 

2 24.49 23.31 23.48 24.17 

3 16.76 16.87 16.28 15.73 

4 13.92 10.52 9.78 8.34 

5 8.74 8.57 8.28 8.66 

6 10.60 10.48 10.51 10.04 

7 13.40 14.10 13.95 13.24 

8 7.18 6.93 6.68 6.83 

9 12.01 12.18 11.44 11.65 

10 20.91 20.55 20.27 19.74 

11 22.57 26.96 9.30 8.38 

12 6.87 7.01 7.01 6.62 

13 16.32 23.42 9.31 9.31 

14 17.69 16.63 11.68 11.00 

15 7.12 7.40 7.96 7.95 

Mean 13.74 14.22 11.52 11.17 

Minimal 6.87 6.93 6.68 5.86 

Maximum 24.49 26.96 23.48 24.17

The use of a recurrent neural network is effective when forecasting data with 
different dimensions and provides high accuracy of forecasting at the level of the 
IPS of Ukraine, namely within 1.5 … 2.6%. For other hierarchical levels, forecasting 
accuracy is reduced to 6%. To increase the accuracy at the regional level and the IPS 
level of Ukraine, it is advisable to take into account the results of forecasts at lower 
hierarchical levels, taking into account the listed external factors. 

The use of air temperature as an additional factor for short-term forecasting of 
nodal load can reduce the forecast error from 11.52 to 11.17%. Based on the analysis 
of load and temperature data, it was determined that the data have the opposite 
correlation. Also, depending on the type of data sample, the effect of temperature 
changes and thus changes the accuracy of forecasting results. It is established that the 
choice of the training sample and its volume for neural network training depends on 
the accuracy of forecasting results. The use of the developed method of verification 
allows the detection of significant anomalous values and omissions of data, thereby 
improving the accuracy of forecasting. Careful analysis of the results of forecasting 
node loads showed that reducing the error for nodes with sharply variable loads 
requires a more advanced method of data validation.
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Table 9 Forecast errors for diferent day types 

Data type Winter period 
(01.11.2017–04.04.2018) 

Summer period 
(01.05.2018–15.09.2018) 

Type of forecast Working days Weekend Working days Weekend 

1 10.13 8.34 8.79 11.05 

2 10.01 19.18 16.47 7.29 

3 12.36 39.12 19.62 17.1 

4 19.06 20.65 21.02 19.37 

5 6.88 5.3 7.7 10.6 

6 8.44 4.96 12.87 10.82 

7 8.46 9.68 10.24 9.77 

8 9.24 4.6 4.79 4.82 

9 11.37 6.8 5.44 4.76 

10 11.78 39.03 17.95 22.39 

11 6.61 7.12 8.42 8.78 

12 7.59 3.88 4.4 4.84 

13 5.97 11.78 18.84 13.42 

14 6.58 6.68 13.91 20.91 

15 28.3 13.46 25.86 19.98 

Mean 10.85 13.37 13.09 12.39 

Minimal 5.97 3.88 4.4 4.76 

Maximum 28.3 39.12 25.86 22.39
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