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Abstract. Network traffic analysis is an appealing approach for the
security auditing of mobile apps. Prior research employs various tech-
niques (e.g., Man-in-the-Middle, TCPDUMP) to capture network traffic
from apps and further recognize security/privacy risks inside. However,
these techniques suffer from limitations such as traffic mixing, proxy eva-
sion, and SSL pinning. Possible solutions are to modify and customize the
Android system. However, existing studies are mainly based on Android
OS 6/7. Contemporary apps generally cannot work properly on these
archaic Android OS, which has become a stumbling block for further
traffic analysis research. To address the above problems, we propose a
new network traffic analysis framework-TraceDroid. We first leverage
the dynamic hooking technique to hook the critical functions for send-
ing network requests, and then save the request data along with code
execution traces. Besides, TraceDroid proposes an unsupervised way to
identify third-party libraries (TPLs) inside apps for facilitating the liabil-
ity analysis between apps and TPLs. Utilizing TraceDroid, we conduct
a large-scale experiment on 9,771 real-world apps to make an empiri-
cal study of the status quo of privacy leakage. Our findings show that
TPLs account for 44.45% of privacy leakage in contemporary apps, and
files transmitted from user devices contain much more detailed privacy
data than network requests. We bring to light the over-data harvest and
cross-library data harvest issues in apps. Furthermore, we unveil the rela-
tionship between TPLs and their visiting domains that previous research
has never discussed.
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1 Introduction

As the most widely used mobile platform, the Android operating system brings
great convenience to our society but also introduces lots of security problems like
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privacy leakage [12,38], advertisement fraud [8,9,16], and malware [13,34], etc.
Network traffic analysis has been demonstrated as one of the most prominent
methods to mitigate security concerns by plenty of researches. Generally, existing
traffic analysis studies [6,17,23–25,32,40] usually employ TCPDUMP or Man-in-
The-Middle (MITM) technique to capture network traffic. However, TCPDUMP
cannot handle the traffic encryption problem, thus MITM tools have become
the most used method to capture and inspect encrypted traffic. The MITM
technique runs on a proxy mechanism, which means users need to install the
custom certificate of MITM tools, trust the certificate, and configure a proxy
(MITM server) on their devices. By doing so, all traffic of the device should
go through the proxy server before reaching the target servers. With custom
certificates, the proxy server can decrypt the network traffic by acting as a
middleman in the communication path. However, this mechanism fails to handle
the traffic mixing problem–background traffic (Android OS traffic, background
service traffic), app traffic, and TPL traffic are mixed together, which prevents
the fine-grained traffic analysis. In addition, some other limitations caused by
MITM tools have not been well addressed (Sect. 2.1).

To mitigate the traffic mixing problem, prior studies [19,30,37] use a whitelist
of “User-Agent” or “Host” in the HTTP request header to identify ad-library
traffic. However, this method requires practitioners to maintain a list containing
known domains and TPLs, and the list needs to be updated frequently. Obvi-
ously, as new TPLs keep emerging, this approach may result in low accuracy
and the out-of-date lists cannot satisfy contemporary apps [39].

To distinguish the network traffic, an alternative mechanism is to modify and
customize the Android operating system. However, this way is heavy-weight that
necessitates a recompilation of the Android system every time for a code update.
What’s more, current studies in this area are mainly on Android 6/7 [6,23,24],
such archaic Android system versions are not appropriate to run contempo-
rary apps. In addition, on newer Android systems, new problems will appear
(Sect. 3.2), which are not addressed by existing works.

To this end, we propose a new framework, TraceDroid, for network traffic
analysis. The proposed TraceDroid can simultaneously address the above prob-
lems without any modification of the Android system. Specifically, we leverage
the dynamic hooking technique to add additional code in the functions which are
responsible for performing HTTP(S) requests, and then save the unencrypted
data and the corresponding code execution traces. To present a fine-grained
liability study of privacy leakage between host apps and TPLs, we propose an
unsupervised method to identify TPLs by correlating the requests and code exe-
cution traces, and use this method to distinguish the traffic between host apps
and TPLs. With the help of TraceDroid and TPL identification, we conduct
a large-scale experiment on 9771 real-world apps and make a comprehensive
analysis on the collected data to identify the status quo of privacy leakage in
modern apps. Our new findings are as follows: 1) 44.45% of privacy leakage
requests are initiated by TPLs, which indicates that TPLs have become a non-
negligible channel for privacy leakage. 2) Device ID (e.g., IMEI, IMSI, SN) is
the most appealing privacy data. 3) Over-data harvest of privacy information
widely exists in contemporary apps and TPLs. The user’s private data is sent to
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multiple back-end servers without noticing them. 4) Files transmitted from the
user device tend to contain much more detailed privacy information than that
in HTTP(S) requests,which has long been ignored by the research communities.
5) The relationship between TPLs and their visiting domains is a many-to-many
correlation, and the domains can be classified into self-owned, authorization, and
host app domains (Sect. 4.5).

Contributions. Our key contributions are summarized as follows:

– We propose a new framework for Android network traffic analysis. To our
knowledge, TraceDroid is the first work that can solve traffic mixing, proxy
evasion, traffic encryption, and SSL pinning simultaneously without any OS
modification. Besides, TraceDroid can address the new challenges of run-
ning contemporary apps on modern Android systems (Sect. 3). Furthermore,
TraceDroid is light-weight, making it easy to expand or modify. To foster fur-
ther research, we released TraceDroid to the research community at https://
github.com/TraceDroid/TraceDroid-SciSec2022.

– We design a new method to identify TPLs in apps. An unsupervised method
is proposed to identify TPLs by correlating HTTP(S) requests and the code
execution traces. Compared to prior works, our method does not require any
prior knowledge of TPLs or whitelists. We identified more than 300 TPLs
in our app corpus and released the TPLs and their visiting domains on our
Github repository.

– A large-scale analysis of privacy leakage in contemporary apps is conducted.
We perform an empirical study on 9,771 apps, to analyze the transmission
manners of leaked privacy data and the liable parties (Sect. 4.2 and 4.3), the
over-data harvest and cross-library data harvest (Sect. 4.4), and the relation-
ship between TPLs and their visiting domains (Sect. 4.5).

2 Background

2.1 MITM-based Traffic Capturing

As mentioned in Sect. 1, various MITM tools [7,10,18,20] use the proxy server
and the custom certificate to capture and inspect HTTP(S) traffic. Unfortu-
nately, we found some limitations of this method by investigating our app corpus
and concluded them as follows:

Traffic Mixing. Mobile systems and apps are running a number of daemon
processes, such as Google Framework Service and Push Service. Their traffic is
mixed with the app traffic as background noise and is captured by the MITM
server. As a result, it is non-trivial to distinguish the network traffic from the
background traffic, app traffic, and TPL traffic.

Anti-debugging. Apps can detect whether a proxy is configured
and refuse to communicate or change network behaviors. It is largely
attributed to preventing apps from being debugged. For instance, the app
“com.outfit7.mytalkingtom.qihoo” will not show any ads if a proxy is present.

https://github.com/TraceDroid/TraceDroid-SciSec2022
https://github.com/TraceDroid/TraceDroid-SciSec2022
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Proxy Evasion. Apps are allowed to establish a direct connection to the target
server even when a proxy server is configured on Android. For instance, the public
method “openConnection(Proxy proxy)” in java.net.URLConnection can use a
parameter “Proxy.NO PROXY ” to ignore the proxy server and create a direct
socket connection that bypasses the proxy server.

SSL Pinning. It is the ability to trust specific certificates preinstalled in an
app. With SSL pinning, an app can validate the server’s certificate to ensure the
uniqueness and security of communication between the app and the server. As
a result, the custom certificate generated by the MITM tools will not work.

2.2 Hook-Based Traffic Capturing

Hooking (or Instrumentation) refers to injecting additional code into a program
to collect runtime information. Once a code is injected into the target process, it
has full access to the process memory and can modify its components. Developers
can use this ability to alter the target process memory components, allowing
them to replace or modify the API functions.

To capture network traffic, we can hook the corresponding APIs and inject
additional codes into them to get the request data. Android app developers
usually use various networking libraries [1,3,11,21,22,26,27,31] to perform net-
work requests. Take Okhttp [21] as an example, it is a widely used networking
library in Android development. The developer usually creates a “httpClient”
object, builds a “request”, and uses its method “request.set()” to set the key-
value parameters like “content-type:application/json” in the request header. The
function “perform(request)” is finally called for sending out this HTTP request.
In this case, we can hook the function “perform(request)” and save its parame-
ter “request” to get the request data. We will show how to get the unencrypted
request data in Sect. 3.1.

Compared with MITM tools, hook-based traffic capturing has the following
advantages: 1) Hooking is only for the particular APIs in a certain target app
(specific app process ID in the Android operating system), so the captured traffic
does not contain traffic other than the app. 2) Hooking does not change the
logic integrity of the original program, and it is transparent to apps, so it is
not affected by anti-debugging and proxy evasion. Moreover, it does not need a
custom certificate, so the pinning cannot stop us from getting request data.

3 Approach

As shown in Fig. 1, TraceDroid proceeds in four phases–network hooking, to
instrument Android devices for traffic capturing; traffic triggering, to make apps
produce more network traffic and parse the traffic to restore network requests,
files, and call stacks; TPL identification, to identify TPLs in apps based on
the captured requests and call stacks, which can benefit our liability analysis
in Sect. 4.2; and privacy leakage analysis, to conduct a large-scale study on our
apps corpus to identify the status quo of privacy leakage in modern apps.
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Fig. 1. System overview of TraceDroid

3.1 Network Hooking

As mentioned in Sect. 2.2, we use the hook-based traffic capturing method to
overcome the limitations of MITM tools. Our idea is to hook all functions
responsible for performing HTTP(S) requests. Nevertheless, there exist dozens
of networking libraries [1,3,11,21,22,26,27,31]. It will be labor-intensive and
time-consuming to hook all these libraries because this needs to do case by case
study and instrument dozens of APIs. To this end, we turn to the underlying
APIs that are depended by the networking libraries.

We manually analyzed the networking libraries and found that they rely on
the OpenSSL library to perform SSL connections. OpenSSL (or named Bor-
ingSSL after Android 6) is the default SSL/TLS library in the Android sys-
tem [5]. It contains two parts–libssl and libcrypto. Among them, libssl is the
implementation of the SSL protocol, and the Android system uses its built-
in functions (i.e., “SSL Read” and “SSL Write”) to handle HTTPS requests.
“SSL Read” is used to read data from an established SSL session and put it into
a buffer. “SSL Write”, on the contrary, writes data to the buffer and sends it to
the remote server. Note that the functions in libcrypto will be invoked to decrypt
and encrypt the data before “SSL Read” or after “SSL Write” is invoked, so the
data read and written here is plain text (unencrypted data).

To illustrate how our network hooking method works, we take “SSL Write”
as an example. Its function prototype is “int SSL Write(SSL *ssl, const void
*buf, int num)”, the API parameter “ssl” is the specified SSL connection, “buf ”
is the buffer that this function writes data into, “num” is the data (measured in
number of bytes) will be written into “buf ”. As mentioned above, the libcrypto
will be automatically invoked to encrypt the data after this function, and finally,
the data is sent to the remote server. So we hook the function “SSL Write”, inject
additional code into it, and save “num” bytes data from the “buf ”–so we get
the unencrypted request data (that is, we get the data before it is encrypted).

Similarly, we hook two APIs –“java.net.SocketOutputStream.socketWrite0”
and “java.net.SocketInputStream.socketRead0” as they are the default HTTP
APIs in the Android system. Table 1 shows the hooking functions in TraceDroid.
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Evaluation. Theoretically, developers can customize their own TLS library
instead of using the default one provided by the Android system, and our network
hooking method will not work in this case. But considering the developing cost
and security concerns, we believe few apps do so. To evaluate the effect of our
method, we randomly investigated 80 apps, and only one app (package name:
“com.ss.android.ugc.aweme”, version 17.3) was found to have a custom TLS
library.

Table 1. Hooking functions for network capturing

Traffic hooking HTTPS libssl SSL Write

libssl SSL Read

HTTP java.net.SocketOutputStream.socketWrite0

java.net.SocketInputStream.socketRead0

Call stack hooking HTTPS ConscryptFileDescriptorSocket$SSLOutputStream

ConscryptFileDescriptorSocket$SSLInputStream

HTTP java.net.SocketOutputStream.socketWrite0

java.net.SocketInputStream.socketRead0

3.2 Traffic Triggering

Obstacles Before App Execution. To capture app traffic, we install and exe-
cute apps to produce network traffic. However, with the evolution of the Android
system, we found new obstacles before we can run apps in modern Android sys-
tems. First, apps may ask for permissions before users enter the app. Google
introduced a runtime permission authorization mechanism [2] after Android 6.0
(API 23), and dangerous permissions like “android.permission.CALL PHONE”
have to be granted during runtime. As shown in Fig. 2 a), a dialog asking for per-
missions likely appears and blocks app execution unless the permission request
is confirmed by the user. Second, many apps present various pop-up prompts
or splash screens when launched. As shown in Fig. 2 b), a prompt dialog may
present a user agreement or privacy policy that defines the responsibilities of
each party, and the prompt dialog also needs confirmation from the user. As
shown in Fig. 2 c), a splash screen is usually an introduction for apps while it
is loading, and users have to swipe left/right on these screens to complete the
procedure.

To mitigate these obstacles, we design and implement an automatic tool
obsCleaner to satisfy them. The idea is to recognize the obstacle-related Android
widgets on a screen and make certain UI operations to accomplish them. Specifi-
cally, for permission requests and pop-up prompts, we randomly tested 200 apps
and distilled a keywords list related to these obstacles(e.g., “ok”, “agree”, “con-
tinue”, and “start”). According to the keywords list, we locate the coordinate
of the obstacles on the screen and imitate human operations to generate related
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events to satisfy them. We consider this work a one-time effort because these
words are not updated frequently, and the list can be extended easily. For splash
screens, we swipe the screen for a certain times K, and we set K to 5 because
all the 200 apps can be satisfied by 5 times in our manual test. We have released
obsCleaner on our Github repository to foster future research.

Fig. 2. Obstacles before app execution Fig. 3. An example of call stacks

Triggering More Traffic. An important task in network traffic analysis is to
generate as much traffic as possible. Previous works usually use the Android UI
fuzzing tool Monkey to trigger traffic from apps. However, Monkey’s random
events are not efficient in triggering traffic. In this paper, we use the tool in
our previous work–AutoClick [4], to do this. AutoClick is a lightweight and
efficient tool to trigger network traffic. It is based on the “click first” principle,
which automatically clicks all “clickable” layout elements on an Android activity.
Our previous work demonstrated that it outperforms about 85% in generating
distinct traffic during a limited time than Monkey.

3.3 TPL Identification

TPL identification refers to detecting the presence of TPLs in apps, and it is an
important task to facilitate fine-grained traffic analysis. We manually employed
existing TPL identification tools [14,15,28,35] to 20 randomly selected apps to
see their accuracy. Unfortunately, the result shows that although they have a
good performance on known TPLs (TPLs that they have trained), they lead to
very low accuracy for the newly-emerged TPLs like “com.bytedance.*”, and this
conclusion is in line with the prior study [39]. Nevertheless, the newly-emerged
TPLs usually produce large traffic as a majority of apps integrate them, making
them an indispensable part of our research.

The lucky thing is that previous work [29] shows that network traffic
generated from the same TPL has similar network behaviors across differ-
ent apps. That is to say, their HTTP(S) requests are similar in structure.
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Algorithm 1: TPL identification
Input: G : request → call stack: a visited graph mapping HTTP(S) requests

to the corresponding call stacks
Output: libs: TPLs in apps

1 libs ← ∅;
2 Identify domains visited by all requests in G;
3 for domain ∈ domains do
4 Obtain reqs that visit domain, and reqs ∈ G〈request〉;
5 clusters ← performClustering(reqs);
6 for cluster ∈ clusters do
7 for req ∈ cluster do
8 cstack ← G(req);
9 cstack′ ← filter(cstack) by removing hooking and networking

libraries;
10 for call ∈ cstack′ do
11 lib ← truncate(call);
12 libs.append(lib);

13 libs.deduplicate() by removing redundant libs;

14 return libs;

Hence, we propose an unsupervised manner of associating network requests
with call stacks to identify TPLs. Algorithm 1 shows our TPL identifica-
tion process. First, we obtain the domains visited by more than M apps,
and M is empirically set to 10 (line 2). For each domain, we extract sig-
natures from all the corresponding requests as reqs (line 4), and a req is
〈protocol,method, URL, host, path, key list〉. A clustering analysis is performed
where the requests with the same signature are grouped together (line 5). Then,
we get the corresponding call stacks for each request to obtain the candidate TPL
(line 6). A call stack is a list of functions with a bottom-to-up code execution
trace shown in Fig. 3. We filter the stack by deleting our hooking functions in
Sect. 3.1 and networking libraries such as Okhttp3 (line 9) mentioned in Sect. 3.1
to get the candidate TPL. Next, we truncate the top three package names of the
candidate TPL and remove redundant ones to get final TPLs (line10-13).

Here we take a call stack as an example in Fig. 3. For ease of pre-
sentation, we have omitted irrelevant parts. The code execution trace con-
tains four parts: OS-layer functions, app-layer functions, networking libraries,
and hooking functions. TraceDroid first deletes the hooking functions, net-
working library–“com.android.okhttp.*”, and the OS-layer functions (e.g.,
“android.os.*”). In this way, we get the remaining package names with the
prefix of “com.uc.crashsdk.*”. We truncate the top three package names and do
de-duplication of these package names to obtain the TPL –“com.uc.crashsdk”.

Parameter Setting. We conducted a statistic showing how many apps visit
each domain. It exhibits a long-tailed distribution with 95.8% of domains visited
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by less than 10 apps, so we set M to 10 to obtain the candidate domains for
further analysis. We have manually checked 53 TPLs identified by our method,
and all of them are real TPLs (results are also released on our Github repository).

4 Evaluation and Measurement

Implementation and Experiment Setup. We implement TraceDroid with
about 6K lines of Python and JavaScript code based on UIAutomator2 and
Frida. For obstacle elimination, we use UIAutomator2 API “XPath()” to locate
the coordinates of obstacles according to the keywords list; for network hooking,
we use the Frida API “Interceptor.attach()” to hook the functions. For each app,
TraceDroid installs it, triggers it for 10 min, and collects network traffic during
runtime. After the test time, TraceDroid terminates the app and uninstalls it.
TraceDroid sends the collected data to our server, and the device is ready for
the next test app. Our experiment was conducted with two Pixel3 phones with
Android 9 for about 33 days.

4.1 Dataset Construction

We crawled 9,771 apps from multiple app stores, among which 5,503 apps are
from alternative app stores like Xiaomi [36] and 4,268 apps from Google Play.
For each app store, we download the TOP list apps of each category. As shown
in Table 2, TraceDroid collected 16.9 GB .pcap files and 6.2 GB call stack files.
By parsing these files, we get 301,381 HTTP(S) requests and their corresponding
call stacks. We restored 55,843 downloaded files and 2,914 uploaded files from
the captured traffic.

Table 2. Manifest of experimental data and result

Data Count Description

Android apps 9,771 5,503 from alternative markets and 4,268 from Google

.pcap files 16.9 GB The volume of captured traffic

Call stack 6.2 GB The volume of function call stacks

Requests 301,381 HTTPS: 174,486 (57.9%) HTTP: 126,895 (42.1%)

Files 58,757 55,843 downloaded files, 2914 uploaded files

4.2 Liability Analysis

To conduct a liability analysis of privacy leakage between host apps and TPLs,
we follow the privacy definition of the previous work [25] to categorize privacy
data into three types: 1) device information (e.g., IMEI, Serial Number); 2)
Location information (e.g., base station, GPS); 3) Network information (e.g.,
WiFi state, IP address). We collect the above information of our two Pixel3
phones for further analysis.



550 H. Cui et al.

In our experiment, TraceDroid identifies 357 TPLs using the method pro-
posed in Sect. 3.3. Based on the result, we conducted a fine-grained liability
analysis of privacy leakage, that is, to show whether privacy data is leaked
by TPLs or host apps. We denote the requests which transmit privacy data
as privacy requests, and TraceDroid uses 5-tuple–〈appPackageName, source
IP, sourcePort, destIP, destPort〉 to correlate HTTP(S) requests with call
stacks. TraceDroid searches the call stacks of privacy requests, if a TPL package
name exists in the call stack, we consider the TPL initiates the privacy request;
otherwise, it is initiated by the host app. We find that TPLs initiate 44.45% of
privacy requests. More detail, about 39% of device information, 45.8% of location
information, and 42.6% of network information leakage are transmitted by TPLs.
Our result demonstrates that TPLs have become a non-negligible channel for pri-
vacy leakage and more regulation should be given to TPLs.

4.3 Privacy Leakage Through Files

Prior works mainly focus on network request analysis. However, files are also an
essential part of network traffic, and surprisingly, no work analyzes the content
in files, which makes it long been ignored by the research community. In this
section, we make the first attempt to examine the contents of files. Benefiting
from our packet-level hooking ability, TraceDroid restored 2,914 uploaded files
(involving 329 apps). Using our liability analysis, we find that 1,793 files were
transmitted by host apps, and 1,121 files were transmitted by TPLs (involving
84 TPLs).

First, we manually analyze files sent by TPLs and find that all these files
are not human readable, and most of them do not have a suffix indicating the
file type. For further investigation, we inspect these files with a binary viewer
to analyze the encoding or encryption method and find that: 1) Files sent by
different TPLs have similarities in the file name. For example, 810 file names
end with ‘‘stm d” or “stm p”, and 154 file names end with “*.*.pvuv.log”. 2)
The first ten bytes in “stm d” and “stm p” files are the same.

Second, TraceDroid inspects all files generated by host apps and tries to
decompress them if necessary. However, due to the various encoding formats,
it is difficult to deal with them automatically, so we perform a semi-automatic
analysis on these files. We first manually analyze some files to see whether they
are human-readable and automatically analyze similar files (either with the same
file names or sent by the same host app). Surprisingly, we find that these files
tend to contain much more detailed privacy information than requests. For exam-
ple, a file contains network status (mobile operator APN name, it indicates the
operator name or WiFi name), app name, app version, distribution channel,
client time stamp, device model, OS version, Android ID, and the rest of this
file contains user operations like “user clicks the button in the Main activity at
11:00am”. More details are shown in Table 3.
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Table 3. Information transmitted through files

Process info Memory info CPU info

process id, thread id RAM total,free,available abi,processor,manufacturer, utility

Device info Battery info Disk Info

model, brand voltage, health, temperature disk total, available, block size

Root status Kernel info Network info

isRoot, su permission Linux kernel info, Dalvik version WiFi, mobile operator, SIM card

Installed app list Location info Device IDs

apps installed in the device gps, city IMEI,IMSI,SN,UUID,UDID

User action info Permission info Phone number

pvuv info permissions app applied user phone number

Fig. 4. Privacy leakage from TPLs Fig. 5. TPL numbers per app

Fig. 6. TPL number&privacy domain Fig. 7. TPL visiting Graph

To sum up, in this section, we present a fine-grained privacy leakage analy-
sis on files transmitted from user devices. Our findings are as follows: 1) Files
transmitted by TPLs have good encoding/encryption, which could prevent the
file content from being extracted. However, some TPLs may use the same encod-
ing/encryption method, if someone reverses one TPL, he may have the ability
to decode other TPL’s files. 2) Files transmitted by host apps do a poor job of
protection, and they contain much more detailed privacy data than HTTP(S)
requests, which has long been ignored by the research community.
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4.4 Privacy Data Harvest

Over-Data Harvest. Figure 4 shows the privacy data transmitted by TOP 20
TPLs. It shows that 4 TPLs only transfer one type of privacy data, 6 TPLs
transfer two types of privacy data, and 10 TPLs transfer three types of privacy
data. Our further analysis shows that 33% of apps simultaneously transmit pri-
vacy data with TPLs, which means both the host apps and TPLs collect privacy
data to deliver their service. However, users cannot control when and how often
these data be collected and how they will be used.

Another question we intend to answer is, how many TPLs are integrated into
an app, and does over-data harvest exists among TPLs? Fig. 5 shows that 78.5%
of apps integrate less than 5 TPLs, 18.5% integrate 6 to 10 TPLs, and only
about 3% of apps integrate more than 10 TPLs. Figure 6 shows the relationship
between the TPL number and the domain number receiving privacy data. We
can see that the more TPLs in an app, the more domains receive privacy data,
indicating that over-data harvest does exist among TPLs.

Our findings demonstrate that over-data harvest widely exists among host
apps and TPLs. Considering the broad integration of TPLs in apps, we point
out that app developers should pay more attention to the collection behavior of
TPLs, because if the TPLs collect privacy information in violation of regulations,
it will have a destructive impact on the reputation of apps.

Cross-Library Data Harvest. Instead of collecting privacy data from the user
device or the server, cross-library data harvest (XLDH) is a new attack model in
recent years. XLDH refers to the threat model in that a malicious TPL collects
privacy data from other TPLs in the same host app. Wang et al. [33] first point
out the threat of XLDH. In their study, a malicious TPL checks the presence of
the victim TPL in its host app, and uses the Java reflection mechanism to invoke
the API of the victim TPL, thus acquiring the privacy data from it. We call this
threat model reflection-based XLDH, and Wang et al. proposed a method to
identify the abnormal Java reflection mechanism in order to detect this threat.

In our experiment, we bring to light a new XLDH model - instrumentation-
based XLDH. In this model, a TPL uses instrumentation techniques to harvest
data from other TPLs in the same host app. Specifically, we conducted an analysis
based on the idea of “call stack chain inconsistency”, that is to say, we check how
a TPL is invoked across different apps to see whether there is any inconsistency
among them. We select the 20 most commonly used TPLs in our dataset, extract
their call stacks, compare their call stack chain across different apps, and search
for the “call stack chain inconsistency”. For example, we analyze all call stacks of a
TPL “com.uc.crashsdk” and find that a TPL named “com.networkbench.agent” is
invoked by it in the host app “com.wondertek.paper”. However, “com.uc.crashsdk”
does not invoke “com.networkbench.agent” in other apps. To figure out why this
phenomenon occurs, we manually read the developer guide for these two TPLs. We
found they belong to different vendors, and “com.uc.crashsdk” should not invoke
“com.networkbench.agent” according to their developer guide, which means that
such a phenomenon is suspicious. To find out the truth, we then decompile the
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app, manually analyze the source code, call stack, and network requests, finding
that “com.networkbench.agent” instruments “com.uc.crashsdk” to harvests pri-
vacy data from it, and finally transmits privacy data to the domain “network-
bench.com”, which is in line with the requests we observed in our dataset. Based on
the “call stack chain inconsistency” idea, we found 2 apps that have the behavior
of instrumentation-based XLDH in our app corpus, and both of them have tens of
thousands of downloads from the app store. What’s worse, instrumentation-based
XLDH can evade the detection method proposed by Wang et al. [33] as it does not
rely on the Java reflection mechanism. We believe this is a new XLDH model, and
large-scale, automatic approaches should be studied in future research to deal with
this threat.

To sum up, in this section, we present an empirical analysis of data harvest
in modern apps. Our findings are as follows: 1) Privacy over harvest exists
between host apps and TPLs. Developers should pay more attention to the
behavior of TPLs, as they may damage the app’s reputation if they violate the
regulatory regulations. 2) Cross-library data harvest is a new and covert way to
collect privacy data, and new methods should be proposed to detect this threat
automatically.

4.5 Relationship Between TPLs and Domains

In this section, we aim to give a clear relationship between TPLs and their visit-
ing domains. Libspector [40] concluded that there is no strict 1-to-1 correlation
between TPLs and domains, but what exactly is the correlation remains unclear.

We collected the visiting domains of the 53 manually checked TPLs. Figure 7
is the visiting graph of some example TPLs: the left is TPL names, the right
is their visiting domains, and the flow between left and right represents the
traffic volume. The graph shows that TPL usually visits more than one domain,
and a domain may be visited by more than one TPL, which is in line with the
conclusion of Libspector [40]. Nevertheless, why does this phenomenon occur?
What is the relationship between them? To figure things out, we read the TPL
development documents and searched domains in the app source code to study
their connections. We found that, for a particular TPL, the visiting domains
can be categorized into three types: 1) self-owned domain: owned by the TPL
provider, and the domain will be visited by the TPL across different apps; 2)
authorization domain: domains providing an authorization mechanism for those
who want to use its service. This is useful when some TPLs need to cooperate
with each or provide a public service. The authorization mechanism can be a
“key” that anyone who wants to use the service must register or apply for a
“key” to access the API provided by the domain; 3) host app domain: owned by
the host app provider. Apps use this domain to deliver their service.

Here we take an app named “com.antutu.ABenchMark” as an example. It inte-
grates a library named “com.umeng.commonsdk”. For this library, “umeng.com”
is a self-owned domain, and “qq.com” is an authorization domain. Note that
there is a request initialized by “com.umeng.commonsdk” that visits a domain
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named “autovote.antutu.net”. Figure 7 does not show the domain because the traf-
fic volume between them is too small. But indeed, “autovote.antutu.net” is the
host app domain for “com.umeng.commonsdk”. The reason for “umeng” visiting
“antutu.net” is that the TPL has a call-back API for the caller to deliver their ser-
vice, and when developers invoke it, they can use the call-back API to visit their
domains.

To sum up, in this section, we make an effort toward a clear correlation
between TPLs and domains. Based on a large number of data analyses, we con-
clude that there is a many-to-many relationship between TPLs and domain.
Further, we categorize the domains into three types and illustrate the reasons
behind the visiting phenomenon between TPLs and domains.

5 Conclusion

This paper proposed a new framework TraceDroid for network traffic captur-
ing and analysis. Compared with existing works, TraceDroid is more robust
and efficient as it addresses the limitations of traffic mixing, proxy evasion, and
SSL pinning. With the help of TraceDroid, we proposed an unsupervised way
to identify Third-party libraries (TPLs), and then conducted a large-scale and
comprehensive analysis of privacy leakage on 9,771 real-world apps. We present
new findings on the privacy leakage caused by TPLs and files, and we also
evaluated the phenomenon of over-data harvest between TPLs and host apps.
Besides, we bring to light a new and covert data harvest way that should be stud-
ied further–instrumentation-based cross-library data harvest. Finally, we make
the first attempt to give a clear relationship between TPLs and their visiting
domains. To foster future research, we released all of the source code and exper-
iment results on our Github repository.

Acknowledgment. This work is supported by the National Key Research and Devel-
opment Program of China (No.2019YFB1005205).

References

1. https://developer.android.com/reference/java/net/HttpURLConnection (2021)
2. https://developer.android.google.cn/about/versions/marshmallow/android-6.0-

changes?skip cache=false (2021)
3. Async-http (2021). https://github.com/android-async-http/android-async-http
4. AutoClick (2021). https://github.com/BlcDle/AutoClick
5. BroingSSL (2021). https://boringssl.googlesource.com/boringssl/
6. Caputo, D., Pagano, F., Bottino, G., Verderame, L., Merlo, A.: You can’t always

get what you want: towards user-controlled privacy on android. arXiv preprint
arXiv:2106.02483 (2021)

7. Charles (2021). https://www.charlesproxy.com/
8. Dong, F., et al.: Frauddroid: automated ad fraud detection for android apps. In:

Proceedings of the 2018 26th ACM Joint Meeting on European Software Engineer-
ing Conference and Symposium on the Foundations of Software Engineering, pp.
257–268 (2018)

https://developer.android.com/reference/java/net/HttpURLConnection
https://developer.android.google.cn/about/versions/marshmallow/android-6.0-changes?skip_cache=false
https://developer.android.google.cn/about/versions/marshmallow/android-6.0-changes?skip_cache=false
https://github.com/android-async-http/android-async-http
https://github.com/BlcDle/AutoClick
https://boringssl.googlesource.com/boringssl/
http://arxiv.org/abs/2106.02483
https://www.charlesproxy.com/


TraceDroid 555

9. Dong, F., Wang, H., Li, L., Guo, Y., Xu, G., Zhang, S.: How do mobile apps
violate the behavioral policy of advertisement libraries? In: Proceedings of the
19th International Workshop on Mobile Computing Systems & Applications, pp.
75–80 (2018)

10. Fiddler (2021). https://www.telerik.com/fiddler
11. HttpClient (2021). https://hc.apache.org/httpcomponents-client-5.1.x/
12. Li, L., et al.: ICCTA: detecting inter-component privacy leaks in android apps. In:

2015 IEEE/ACM 37th IEEE International Conference on Software Engineering,
vol. 1, pp. 280–291. IEEE (2015)
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