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Abstract. In this paper, we constructed a non-interactive group key
exchange protocol (GNIKE) with flexibility, i.e., the number of partici-
pants in the GNIKE is not predefined. Moreover, our GNIKE construc-
tion is only based on multilinear map and conventional cryptographic
building blocks. The security proof of our GNIKE is in the standard
model and relies on an n-exponent multilinear DDH assumption.
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1 Introduction

1.1 Scalable and Flexible Key Exchange

To communicate with Bob in an untrusted environment, Alice has to agree with
Bob on a common secret first. In such a situation, key exchange (KE) protocols
can be applied to ensure a shared secret (key) protected against adversaries.
Upon the establishment of the shared key, symmetric cryptography can be used
to protect the real data (payload) flowing between them.

If we go beyond the 2-party case, one of the major challenges faced by group
KE protocol design is to achieve scalability and flexibility simultaneously. Scal-
ability means the shared key should be established within constant rounds of
communication [18]. This property is critical for real-world KE protocol, espe-
cially in situations where expensive interactions have to be avoided as much as
possible. Taking the Internet of Things (IoT) as an example, the energy con-
sumption of the IoT end-devices rockets when sending and receiving messages,
but the power supply is usually a battery with limited capacity. Thus communi-
cation round reduction can drastically reduce the manufacture and maintenance
cost of such devices, generating greater margin for the IoT service provider.

On the other hand, flexibility means the protocol initiator Alice can choose
how many partners she wants to share the key. This property becomes essential if
the communication network is constructed in an ad-hoc way without predefined
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sizes. IoT and other mobile devices tend to form temporary communication
groups frequently, so a flexible KE can also help support such applications.

Viewing from the pure theoretical aspect, non-interactive authenticated key
exchange (NIKE) protocols can be applied to archive good scalability, as no com-
munication round is needed between different participants for key establishment
[9]. More specifically, by non-interactive it means that the initiator can first com-
pute the shared group session key offline without contacting others. Once the
key is ready to use, the initiator sends out the first message to all her peers,
which carries the encrypted application data with associated information for
sender identification and group member recognition. After the message arrived,
the receiver can then use the associated information to compute the shared group
(session) key, decrypt the application data and continue with more communica-
tion. However, it is not trivial to design flexible NIKE protocol for groups larger
than three and it has become an attractive research topic since 2010.

1.2 Group Non-interactive Key Exchange With and Without iO

Being proposed by Diffie and Hellman [8] in their celebrated work, the nature
of NIKE was studied in depth by Freire et al. [9] in the 2 party case. Var-
ious security models were also formalized in [9]. Boneh et al. [5] constructed
the first semi-static-secure GNIKE but with predefined number of users from
indistinguishability obfuscator (iO) [2]. Hofheinz et al. [15] constructed the first
adaptively secure GNIKE with and without trusted setup from universal sam-
pler, which is instantiated with iO and other components. The security proof
of their trust-setup-free scheme is in the random oracle (RO) model. Rao [29]
constructed adaptively secure NIKE among bounded number of parties based on
the existence of iO and multilinear map for the cases with and without trusted
setup. Khurana et al. [19] constructed a NIKE for unbounded parties from iO
with trusted setup and non-adaptive security. An overview of the comparable
GNIKE works can be found in Table 1. Unlike the existing and provably secure
GNIKE protocols mentioned above, our solution and its security directly depends
on multilinear map.

Indistinguishability Obfuscation and Multilinear Map. In STOC 2021, it
has been shown that iO can be constructed through a long line of bootstrapping
from well-founded assumptions (LWE, structured PRG in NC0, LPN) [17] or
from circular security assumptions [14], but most of the existing constructions
of iO are in fact based on multilinear map [12,23–25,28].

Besides iO, multilinear map is frequently used to construct other interesting
primitives, such as attribute based encryption [13] and revocable identity based
encryption [27]. Up to now, there exist a limited number of multi-linear map
proposals, such as GGH [11], CLT [7] and their variants [21]. Each proposal
depends only on the hardness of one problem. GGH needs learning-with-error
problem (LWE) and CLT needs Graded Decisional Diffie-Hellman [7]. Analysis
of these multilinear map proposals has also been made, which often exposes
weakness in the candidate but also inspires remedies [4,6,16].
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As multilinear map usually depends only on one assumption and as funda-
mental as iO [26], building a GNIKE protocol directly on multilinear map results
in lightweight design and simplified security arguments.

1.3 Our Contribution and the Outline of the Paper

Provable security has become a fundamental requirement for all newly proposed
schemes or protocols. To formally address the security issues of GNIKE proto-
cols, we propose the definition and the generic security models.

Most importantly, we construct a provably secure and scalable GNIKE pro-
tocol with limited trusted setup. This means that only the system wide public
parameters (including one public key) is required to be trusted, while the partic-
ipants can generate their own key pairs conforming with the public parameters.

Moreover, our GNIKE construction is only based on the existence of mul-
tilinear maps, besides more conventional cryptographic building blocks such as
the chameleon hash. In addition, our main security theorem is proved in stan-
dard model relying on an n-exponent multi-linear DDH (nEMDDH) assumption
without the use of random oracles.

Outline. The notations and definitions of cryptographic primitives are pre-
sented in Sect. 2. The model and definition of GNIKE can be found in Sect. 3.
The main construction, the security theorem proof and its proof are provided in
Sect. 4. The conclusion, as well as the future works, is presented in Sect. 6. The
intractability of our complexity assumption is analyzed in Appendix A.

1.4 Other Related Works

Scalable Interactive Group Key Exchange. In 2003, Katz et al. [18] pro-
posed the first scalable interactive group authenticated key exchange protocol,
as well as a scalable compiler that can transform other passively secure group
KE protocol to a group AKE, adding only one round of communication. The
authors also enclosed a survey about the then existing group AKE protocols,
focusing on the provable security and efficiency of these protocols. Abdalla et
al. [1] presented a flexible group AKE protocol, with which the members of the
main group can establish session keys for sub-groups interactively.

2 Preliminaries

Notations. We let κ ∈ N denote the security parameter, and 1κ the unary string
of length κ. Let [n] = {1, . . . , n} ⊂ N be the set of integers between 1 and n. If S

is a set, a
$← S denotes the action of sampling a uniformly random element from

S. The term X||Y denotes the operation of concatenating two binary strings X

and Y . Let F (x) $→ y denote that a probabilistic algorithm F () takes x as input
and outputs y. Other notations will be introduced when they first appear.
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Table 1. The comparison of GNIKE protocols involving n participants, w.r.t. compu-
tational complexity, where iO prog. gen. denotes to generate an obfuscated program
with the iO and prog. op. denotes to call an obfuscated program.

Work # iO prog. gen. # prog. op. # m-map

Here 0 0 n

Rao [29] 1 (n if without trusted setup) n n

Khurana [19] 1 n n

Hofheinz [15] 1 (n if without trusted setup) n 0

2.1 Chameleon Hash Functions

Chameleon hashes [20] are a class of trapdoor cryptographic hash functions that,
without knowledge of the associated trapdoor, are resistant to the inversion and
of collision attacks. On the other hand, the collisions can be efficiently found
with the trapdoor information.

Definition 1 (Chameleon Hash). A chameleon hash function CH is a tuple
of three polynomial time algorithms CH = (CH.GEN,H,CF).

– CH.GEN(1κ) $→ (p, τ). The non-deterministic key generation algorithm
CH.GEN(1κ) on input of a security parameter 1κ, outputs a chameleon hash
function key pair (p, τ), where p is the public key of chameleon hash and τ
the trapdoor key.

– Hp(m, r) $→ h. Let DCH be the space of messages, RCH the space of random-
ness and ZCH the space of hash values, all of which are parametrized by 1κ

and associated with (p, τ). The polynomial algorithm Hp(m, r), on input of
the public key p, a message m ∈ DCH and a randomness r ∈ RCH, computes
a hash value h ∈ ZCH.

– CFτ (m, r) = (m∗, r∗). The collision finding algorithm CFτ (h, r) takes as input
the trapdoor key τ , a message m ∈ DCH and a randomness r ∈ RCH and it
outputs a message m∗ ∈ DCH and a randomness r∗ ∈ RCH with Hp(m, r) =
Hp(m∗, r∗), m �= m∗ and r �= r∗.

Definition 2 (Collision resistance). CH is called (tCH, εCH)-chameleon-hash
if for all tCH-time adversaries A it holds that

Pr
[
(p, τ) $← CH.GEN(1κ); (m,m∗, r, r∗) $← A(1κ,H, p) :

m �= m∗ ∧
r �= r∗ ∧

Hp(m, r) = Hp(m∗, r∗)

]
≤ εCH(κ),

where εCH(κ) is a negligible function in the security parameter κ, messages
m,m∗ ∈ DCH and randomness r, r∗ ∈ RCH.

2.2 Multilinear Maps

In the following, we briefly recall some of the basic properties of multilinear maps
as in [3].
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Definition 3 (n-Multilinear Maps). We state that a map nMAP : G1× . . .×
Gn → GT is an nMultilinear map if it satisfies the following properties:

1. G1 . . .Gn and GT are groups of the same order.
2. if xi ∈ Zp, Xi ∈ Gi and i = 1, . . . n, then

nMAP(Xx1
1 , . . . , Xxn

n ) = nMAP(X1, . . . , Xn)
∏x

i=1 xi ,
3. if gi ∈ Gi is a generator of Gi, then gT = nMAP(g1, . . . , gn) is a generator of

GT , where i = 1, . . . n.

We assume the existence of a group description generation algorithm nMGG.Gen,
which takes as input a security parameter κ and a positive integer n ∈ N. The
output of nMGG.Gen(1κ, n) is MG = (G, nMAP), which contains a sequence
of groups G = (G1, . . . ,Gn,GT ) each of a large prime order p > 2κ and a
multilinear map nMAP over G. Note that a multilinear map is symmetric when
G1 = . . . = Gn and g1 = . . . = gn, otherwise the asymmetric case when different
Gi was considered.

2.3 The n-Exponent Multilinear Decision Diffie-Hellman
Assumption

First, let GP = (G1, g1, . . . ,Gn, gn,GT , p, nMAP) denote the description of
asymmetric multilinear group. For simplicity, we state the complexity assump-
tion needed for our proof of security using symmetric multilinear maps, i.e.
G1 = . . . = Gn, and g1 = . . . = gn. The n-Exponent multilinear deci-
sional Diffie-Hellman (nEMDDH) problem that is stated as follows: given a
tuple (g, ga, gb, R) ∈ G

3 × GT as input, where a, b ∈ Zp and output yes if
nMAP(g, . . . , g)a

nb = R and no otherwise.

Definition 4. We say that the nEMDDH problem is (t, εnEMDDH)-hard in GP if
for all adversaries running in time t, it holds that
∣∣∣Pr [

A(g, ga, gb, nMAP(g, . . . , g)a
nb) = 1

]
− Pr

[A(g, ga, gb, R) = 1
]∣∣∣ ≤ εnEMDDH,

where (g, ga, gb, R) $← G
3 × GT .

3 Group Non-interactive Key Exchange and Security
Models

3.1 Group Non-interactive Key Exchange

Following Freire, et al. [9], we first present a generic definition of group non-
interactive key exchange (GNIKE) in the public key setting. For a GNIKE proto-
col, each party of a group knows the others’ public keys, and without requiring
any interaction they can agree on a common shared key. The shared key is gen-
erated to be known only by the members of a group.
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Let KGK be the space of shared keys, {PK,SK} be key spaces of long-term
public keys and private keys respectively, IDS the identity space of the parties,
KGK the space of the shared group keys. Those spaces are associated with security
parameter κ of the considered protocol. Let GPK = {(IDt, pkIDt)}n be the set of
tuples to store the public information of all parties for GNIKE, where n is the size
of the group, t ∈ [n] and pkIDt

the public key of the party with the identity IDt ∈
IDS, and GPKi = GPK\{IDi, pkIDi}1. Each party with IDt (t ∈ [n]) has a static
key pair (pkIDt

, skIDt
) ∈ (PK,SK). A general PKI-based GNIKE protocol consists

of three polynomial time algorithms (GNIKE.Setup,GNIKE.KGen,GNIKE.SKG)
with following semantics:

– GNIKE.Setup(1κ) → pms: This algorithm takes as input a security parameter
κ and outputs a set of system parameters stored in a variable pms.

– GNIKE.KGen(pms, IDi) → (pkIDi
, skIDi

): This algorithm takes as input system
parameters pms and a party’s identity IDi, and outputs a random key pair
(pkIDi

, skIDi
) ∈ {PK,SK} for party IDi.

– GNIKE.SKG(skIDi
, IDi,GPKi) → KGPK: This algorithm take as input (skIDi

,
IDi) and the group public information GPKi = {(IDt, pkIDt

)}, then outputs a
shared key KGPK ∈ KGK. Notice that this algorithm GNIKE.SKG is allowed to
output a shared key KGPK, even though some participants IDi = IDj , where
IDi, IDj ∈ GPK.
For correctness, on input the same group description the algorithm
GNIKE.SKG must satisfy the constraint:

• GNIKE.SKG(skIDi
, IDi,GPKi) = GNIKE.SKG(skIDj

, IDj ,GPKj), where
skIDi and skIDj are secret keys of parties IDi, IDj .

3.2 Security Models for GNIKE

Freire, et al. [9] formalized a list of security models for NIKE schemes in the
2-party setting, including the honest/dishonest key registration PKI system,
denoted here as FHKP models. By generalizing these models into the n-party
case (n ≥ 3), various works have defined the static security [19,31] and the
adaptive security [15,29]. It is the main difference between those two security
definitions whether the adversary has to commit to a group S∗ to be challenged
on before issuing any other queries. Essentially, A protocol is said to be static
secure if the adversary has to commit to S∗ and adaptively secure otherwise.
We follow the adaptive definition and in our models, the adversary can actively
interact with RegisterHonestUID, RegisterCorruptUID, Corrupt, RevealHonestKey,
RevealCorruptKey and Test oracles, which we will describe below.

Group Partner Identities. We say that a party PIDi is a partner of another party
PIDj

, if they share the same shared key. Notice that PIDi
has multiple partners for

GNIKE protocol. Each party can sequentially and concurrently execute the proto-
col multiple times with its (different) partners. This is modeled by allowing each

1 If i = 1, then GPKi = GPK1 = {IDt, pkIDt}, t = {2, . . . , n}.
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principal an unlimited number of instances with which to execute the protocol.
We denote group partner identities of any instance s for GNIKE using a variable
Gpid. The group partner identities of instance s, denoted here as Gpids, stores a
set containing the identities of the players that intend to establish a shared key
for instance s, where the identities are ordered lexicographically. n = |Gpids| is
the number of the identities involved in this instance s. It means that n implies
the group-size of key exchange. The Gpid of instance s is set to {ID1, . . . , IDn}.

Adversarial Model. The adversary A is assumed to have complete control over
all communication in the public network. A in our models is a PPT Turing
Machine taking as input the security parameter κ and the public information
(e.g. generic description of the environment mentioned above). A’s interaction
with the principals is modeled by the following oracles. In GNIKE there is no
interaction among the parties, so it means that for modelling a active adversaries
against GNIKE no Send query can be considered in the models.

We assume for simplicity a polynomial-size set PP = {ID1, . . . , IDi, . . . , ID�}
of potential honest participants, where IDi represents the identity of a party, and
i ∈ [�]. In our models, A can control the number of the potential participants by
the RegisterHonestUID and RemoveUID queries. Each identity IDi is associated
with a static key pair (pkIDi , skIDi) ∈ (PK,SK). The number of the honest
parties ([�]) is bounded by polynomials in the security parameter κ. Any subset
of PP may decide at any point to establish a shared key. Notice that we do not
assume that these subsets are always the same size for the flexibility of GNIKE.
IDi is chosen uniquely from the identity space IDS in the model.

– RegisterHonestUID(IDi): This query allows A to register with an identity. A
supplies an identity IDi(i ∈ [�]) and a static public key pkIDi

is returned to A.
– RegisterCorruptUID(IDi, pkIDi

): This query allows A to register a new iden-
tity IDi (i /∈ [�]) and a static public key pkIDi

on behalf of a party IDi. In
response, if the same identity IDi (with a different public key) already exists
for RegisterCorruptUID query, a failure symbol ⊥ is returned to A. Other-
wise, IDi with the static public key pkIDi

is added, successfully. The parties
registered by this query are called corrupted or adversary controlled.

– Corrupt(IDi): This query allows A to obtain a secret key of a party with the
identity IDi that was registered as an honest user. The corresponding long-
term secret key skIDi is returned to A.

– RevealHonestKey(Gpid, s): A supplies the group partner identities Gpid (in lex-
icographic order) for protocol instance s, and RevealHonestKey Oracle returns
a shared key Ks

Gpid to A. For the query the related identities in Gpid must be
registered as honest.

– RevealCorruptKey(Gpid, s): This responds with the shared key Ks
Gpid. Notice

that at least one of the involved identities in Gpid was registered as honest.
– Test(Gpid, s): A gives Gpid and instance s as inputs to Test Oracle. Test Ora-

cle handles this query as follows: if one of the identities supplied by A was
registered as corrupt or Ks

Gpid = ∅, it then returns some failure symbol ⊥.
Otherwise it flips a fair coin b, samples a random element K0 from key space
KGK, sets K1 = Ks

Gpid to the real shared key, and returns Kb.
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Secure GNIKE Protocols. Recall that actual security goals for GNIKE proto-
cols are always specified by individual security games. Here we describe how A
interacts with the security game. We define when an adversary is said to break
GNIKE protocols. We firstly state the security game between a challenger C and
an adversary A.

Security Game. The security game is played between C and A, where the
following steps are performed:

1. At the beginning of the game, the challenger C runs algorithm GNIKE.Setup
with the security parameter κ as input. C gives the public parameters to A.

2. Now the adversary A may start issuing RegisterHonestUID,
RegisterCorruptUID, Corrupt, RevealHonestKey and RevealCorruptKey queries
The numbers of queries made by A are bounded by polynomials in security
parameter κ.

3. At some point, A may issue a Test-query during the experiment. Notice that
A can issue an arbitrary number of Test-queries bounded by polynomials in κ
for a strong model (GNIKE or mGNIKE.Heavy). In this case, to keep random
keys consistent, the C responds the same random key for the same identities
every time A queries for their shared key, in either order.

4. At the end of the game, A terminates with outputting a bit b′ as its guess for
b of Test query.

Definition 5 (Correctness). We require that for all participants IDi, IDj ∈
Gpid for instance s∗ involved in the same GNIKE and such that without a failure
symbol ⊥, the same valid shared key is established Ks∗

Gpid = Ks∗
IDi

= Ks∗
IDj

�= null.

Definition 6 (Freshness). For the security definition, we need the notion
about the freshness of Test oracle which formulates the restrictions on the adver-
sary with respect to performing these above queries. Let Gpids∗

denote the group
partner identities for instance s∗ (i.e. (Gpid, s∗)) queried to Test oracle selected
by A. Then the Test oracle is said to be fresh if none of the following conditions
holds:

1. There is a party with identity IDi ∈ Gpids∗
which is established by adversary

A via RegisterCorruptUID query, i.e. IDi was registered as dishonest.
2. A makes a corrupt query Corrupt to any identity IDi, where IDi ∈ Gpids∗

.
3. A either makes a query RevealHonestKey(Gpid, s∗) for instance s∗, or a query

RevealHonestKey(Gpid, s) to any Gpid of instance s, with Gpids = Gpids∗
.

Security of GNIKE protocols is now defined by requiring that the protocol is
a shared key secure non-interactive key-exchange protocol, thus an adversary
cannot distinguish the shared key from a random key.

Definition 7 (Non-interactive Shared Key Security). A group non-
interactive key exchange protocol Σ is called (t, ε)-shared-key-secure if for all
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adversaries A running within probabilistic polynomial time t in the security game
as above and for some negligible probability ε = ε(κ) in the security parameter
κ, it holds that:

– When A returns b′ and it holds that
• A has issued a query on Test oracle using (Gpid, s∗) without failure,
• the Test oracle for (Gpid, s∗) is fresh throughout the security experiment

then the probability that b′ equals the bit b sampled by the Test-query is bounded
by

|Pr[b = b′] − 1/2| ≤ ε

4 A Flexible GNIKE Protocol from Multilinear Maps

GNIKE protocols are often carried out in dynamic sets of the participants. One
critical feature of GNIKE protocols is to ensure flexibility, i.e., one participant
can choose the group members freely. In this section we present a flexible (and
salable by definition) construction of group non-interactive key exchange GNIKE,
which is provably secure in the standard model without assuming the existence
of random oracles or iO. The chameleon hash function is used to bind the user
identity and the corresponding initial randomness when generating long-term
user key pairs.

4.1 Protocol Description

We describe the protocol in terms of the following three parts: system setup
GNIKE.Setup, party-registration and long-term key generation GNIKE.KGen, and
group shared key computation GNIKE.SKG.

1. GNIKE.Setup(1κ, n): The proposed protocol is composed of the following
building blocks which are instantiated and initialized respectively in accor-
dance of the security parameter 1κ. Before the main protocol runs for the first
time, an upper bound n on the size of the group is set in the initialization
phase.

– generate an nMultilinear map MG = (G, g,GT , p, nMAP) $← GP.Gen(1κ, n),
a random element S

$← G, and a set of random values {ul}0≤l≤n
$← G,

where n is the upper bound on the size of the group.
– fix an identity space ID ⊂ {0, 1}∗.
– parametrize a chameleon hash function
CH = (CH.GEN,H,CF) : (G × ID) × RCH → Z

∗
p, i.e., DCH = (Z∗

p × ID)
and ZCH = Z

∗
p. RCH ⊂ {0, 1}∗ is a fixed the space of randomness. Let

CHAMKey = (p, τ) $← CH.GEN(1κ) be the pair of public key and trapdoor
key.

– select a random element Φ
$← G, denoted here as padding for achieving

flexibility.
The system parameter variable pms is (MG, {ul}0≤l≤n, S, Φ,CH, p).
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2. GNIKE.KGen(pms, IDÂi
): On input the system parameter pms, the key gen-

eration algorithm GNIKE.KGen generates the long-term key pair for a party
Âi as:

– choose aÂi

$← Z
∗
p, rÂi

$← RCH,
– compute ZÂi

:= g
aÂi and tÂi

= Hp(ZÂi
||IDÂi

, rÂi
), and

– compute YÂi
:= (u0u

(tÂi
)1

1 u
(tÂi

)2

2 . . . u
(tÂi

)n

n ) and XÂi
:= Y

aÂi

Âi
.

The long-term key pair for Âi: PKIDÂi
= (ZÂi

, rÂi
,XÂi

) and SKIDÂi
= aÂi

.
3. GNIKE.SKG(skIDÂi

, IDÂi
,GPKÂi

): On input a private key skIDÂi
and an iden-

tity IDÂi
of a party Âi along with a set of the public parameters GPKÂi

2,
algorithm GNIKE.SKG is executed by each of the parties Â1, . . ., Ân∗ as fol-
lows:

– The party Âi first checks whether for all identities Âi, Âj (i, j ∈ [n∗], i �=
j) it holds that IDÂi

�= IDÂj
. The user identity must be unique within

each group domain

– Âi computes tÂj
= Hp(ZÂj

||IDÂj
, rÂj

) and YÂj
= u0u

(tÂj
)1

1 . . . u
(tÂj

)n

n for
all j ∈ {1, . . . , i − 1, i + 1, . . . , n∗}.

– If 2 ≤ n∗ ≤ n and ∀j ∈ {1, . . . , i − 1, i + 1, . . . , n∗}, it holds that

nMAP(YÂj
, ZÂj

, g, . . . , g︸ ︷︷ ︸
n-2

) = nMAP(XÂj
, g, . . . , g︸ ︷︷ ︸

n-1

) (1)

• If n∗ = n, Âi computes the shared key as follows:

KIDÂ1,...,n∗
= nMAP(ZÂ1

, . . . , Z ˆAi−1, ZÂi+1
, . . . , ZÂ∗

n
, S)

skID
Âi ,

• Else, Âi adds (n − n∗) Φ padding to the generation function of the
shared key (i.e. nMAP)and computes the shared key as follows:

KID
Â1,...,n∗ = nMAP(ZÂ1

, . . . , ZÂi−1
, ZÂi+1

, . . . , ZÂ∗
n
, Φ, . . . , Φ
︸ ︷︷ ︸

n−n∗

, S)
skID

Âi

– Else Âi terminates the protocol execution.

Correctness. In the case when n∗ = n, for IDÂi
we have

KIDÂ1,...,n∗
= nMAP(ZÂ1

, . . . , ZÂi−1
, ZÂi+1

, . . . , ZÂ∗
n
, S)

skID
Âi

= nMAP(g, . . . , g, S)
∏n∗

i=1 aÂi

2 GPKÂi
is defined in 3.1, i.e. GPKÂi

= (IDÂ1
, pkID

Â1
. . . , IDÂi−1

, pkID
Âi−1

,

IDÂi+1
, pkID

Âi+1
, . . . , IDÂn∗ , pkID

Ân∗ ).
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For IDÂj
we have

K ′
IDÂ1,...,n∗

= nMAP(ZÂ1
, . . . , ZÂj−1

, ZÂj+1
, . . . , ZÂ∗

n
, S)

skID
Âj

= nMAP(g, . . . , g, S)
∏n∗

j=1 aÂj

By changing the name of variable it can be easily seen that KIDÂ1,...,n∗
=

K ′
IDÂ1,...,n∗

. The correctness argument for the case when 2 ≤ n∗ < n is almost

the same.

Rationale of the Construction. Given (ZÂi
, rÂi

), {ul}0≤l≤n, it is straight
forward to compute YÂi

with the chameleon hash function CH for the party IDÂi
.

If XÂi
is consistent with IDÂi

and (ZÂi
, rÂi

), i.e., XÂi
= Y

aÂi

Âi
, then it should

satisfy the nMAP-equation (1) in GNIKE.SKG. The nMAP-equation (1) not only
checks the internal consistency of a public key, but also the consistency of the
given public key with public parameters and the party identity. The random
padding Φ and S provide extra flexibility and they also help eliminate the random
oracle in the security analysis.

4.2 Security Analysis

For simplicity, we prove the security of the GNIKE scheme mentioned above
in our security GNIKE.Light model. In the GNIKE.Light model, A is allowed
to make the following queries: RegisterHonestUID, RegisterCorruptUID, and
RevealCorruptKey to oracles, as well as a single Test query, while Corrupt and
RevealHonestKey queries are forbidden. To prove our protocol’s adaptive secu-
rity as in GNIKE.Heavy, we will lose a factor of

(
n
n∗

)
, where n is the group size

bound and n∗ the actual group size. Here the loss factor is exponential in the
group size n∗. Hence, in order to make the adversarial advantage negligible, one
may need to use a larger security parameter or to limit n∗.

Theorem 1. Suppose that the nEMDDH problem is (t, εnEMDDH)-hard in GP in
the sense of Definition 4, and the CH is (t, εCH)-secure chameleon hash function
family. Then the proposed GNIKE protocol is (t′, ε)-shared-key-secure in the sense
of Definition 7 with t′ ≈ t and εGNIKE.Light

A,GNIKE ≤ εCH + εnEMDDH.

5 Proof of Theorem 1

Now, we prove Theorem 1 using the sequence-of-games approach, following [30].
The proof strategy to remove the random oracle is inspired by [10].

Let Sδ be the event that the adversary wins in game Gδ. Let Advδ := Pr[Sδ]−
1/2 denote the advantage of A in game Gδ.
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Game G0. This is the original game with adversary A as described in the
GNIKE.Light model. Thus we have that

Pr[S0] = 1/2 + εGNIKE.Light
A,GNIKE = 1/2 + Adv0.

Game G1. In this game we want to make sure that there exist no chameleon hash
collisions. Technically, we add an abort rule. More precisely, let abortCH be the
event that the challenger aborts when there exist two distinct identifiers Ĥ (e.g.
IDĤ is registered as Honest) and Â (e.g. Â is registered as Corrupt), with corre-
sponding public keys (ZĤ, YĤ, rĤ) and (ZÂ, YÂ, rÂ) such that Hp(ZĤ||IDĤ, rĤ) =
Hp(ZÂ||IDÂ, rÂ). If abortCH did not happen, the challenger continues as in G0.
Obviously the Pr[abortCH] ≤ εCH, according to the security property of underly-
ing chameleon hash function. Until the event abortCH happens, G0 = G1. Thus
we have

|Adv0 − Adv1| ≤ εCH.

Game G2. This game proceeds as the previous one, but the challenger always
replies to the Test query with a uniformly random element in GT . Thus the
advantage of the adversary in this game is

Adv2 = 0.

Let ε = |Adv1 − Adv2| and εnEMDDH be the advantage of any adversary against
the nEMDDH problem (Definition 4). We claim that ε ≤ εnEMDDH. Due to page
limit, we leave the complete simulation in Appendix B.

As described in Appendix B, B sets up all system parameters with the correct
distributions and can simulate all queries of A. So if A can distinguish the real
case G1 from the random case G2, B can solve the nEMDDH problem. Therefore
we have

AdvB = ε = |Adv1 − Adv2|

Since nEMDDH assumption holds, we also have ε = AdvB ≤ εnEMDDH and thus

|Adv1 − Adv2| ≤ εnEMDDH.

Collecting the probabilities from Game G0 to G2, we have that

εGNIKE.Light
A,GNIKE ≤ εCH + εnEMDDH.

6 Conclusion and Future Works

We constructed a provably secure, flexible and scalable GNIKE protocol. The
security is proved under the nEMDDH assumption in standard model. We leave
it for future research to design a secure GNIKE protocol with tight security in
the standard model.
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A Intractability Analysis of n-Exponent Multilinear
Diffie-Hellman Assumption

To analyze the intractability of the n-exponent multilinear Diffie-Hellman
assumption, we relate it to another problem which is claimed to be hard [10,22].
This nMDDH problem is rephrased below in our notation.

Definition 8. The n-multilinear decisional Diffie-Hellman (nMDDH) problem
is (t, εnMDDH)-hard in GP = (G,GT , p, nMAP, g) with multilinear map nMAP, if
for all adversaries running in probabilistic polynomial time t, it holds that

∣∣∣Pr [
A(g, ga, nMAP(g, . . . , g)a

n+1
) = 1

]
− Pr [A(g, ga, R) = 1]

∣∣∣ ≤ εnMDDH,

where (g, a,R) $← G × Zp × GT .

With the following lemma, the complexity of nEMDDH can be demonstrated.

Lemma 1. If the nMDDH problem is (t, εnMDDH)-hard in GP, then the
n-Exponent multilinear decisional Diffie-Hellman (nEMDDH) problem is
(te, εnEMDDH)-hard in GP, where te ≈ t, εnMDDH = εnEMDDH.

Proof. Let AnEMDDH be a nEMDDH adversary. We show how to construct another
adversary B against the nMDDH problem instance (G,GT , p, nMAP, g, ga, R),
with R = nMAP(g, g)a

n+1
or R

$← GT .
After receiving its own challenge B first chooses c

$← Zp and sets implicitly
b = a · c and then computes

R′ = Rc, gb = gac = (ga)c

B outputs whatever AnEMDDH outputs on (G,GT , p, nMAP, g, ga, gb, R′).
It is obvious that B runs in time te ≈ t, if the exponentiation is efficient in GP.
Note that since c is uniformly random in Zp, so is gb = (ga)c in G. Moreover,
if R = nMAP(g, g)a

n+1
= nMAP(g, g)a

na, then R′ = Rc = (nMAP(g, g)a
na)c =

nMAP(g, g)a
n·ac = nMAP(g, g)a

n·b. Otherwise, R′ remains uniformly random in
GT . Therefore, B has generated perfectly an nEMDDH instance for AnEMDDH and
εnMDDH = εnEMDDH.

B Cases in Game 2 in the Proof of Theorem 1

In game 2, we prove the claim by constructing a nEMDDH adversary B with
advantage ε calling A as a sub-procedure. Let (g, ga, gb, R) ∈ G

3 × GT be B’s
inputs, where a, b ∈ Zp. B’s goal is to determine if nMAP(g, . . . , g)a

nb = R. To
set up the GNIKE instance, B as a challenger runs GNIKE.Setup(1κ) to generate
the system parameters, including a chameleon key pair CHAMKey = (p, τ) and
the groups with nMultilinear map MG. It then randomly selects sÂ1

, . . . , sÂn

$←
{0, 1}∗ and rÂi

, . . . , rÂi

$← RCH.
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Let p(t) =
∏n

i=0(t − tÂi
)i = Σn

i=0pit
i = p0 + p1t + . . . + pntn be a polyno-

mial of degree n over Zp, where tÂi
:= Hp(sÂi

, rÂi
). Next, a polynomial of

degree n, q(t) = Σn
i=0qit

i = q0 + q1t + . . . + qntn is randomly selected over
Zp. Consequently, B selects random values γ1, γ2, uniformly in Z

∗
p, sets then

Φ = (ga)γ1gγ2 , ui = (ga)pigqi for 0 ≤ i ≤ n and S = gb. Since qi
$← Z

∗
p, we

have ui
$← G. Observably, u0 . . . utn

n = (ga)p(t)gq(t). B then returns the public
parameters (MG, {ui}0≤i≤n, Φ, S, p) to A to finish the set up phase. Thereafter,
B answers the queries from A in the following ways.

– RegisterHonestUID(IDÂi
): A supplies an identity IDÂi

(i ∈ [n]) to be registered
as honest. To answer this query, B selects αi, βi

$← Zp, computes ZÂi
=

(ga)αigβi . With the trapdoor key τ , B can extract rÂi,ch
, such that

Hp(ZIDÂi
||IDÂi

, rÂi,ch
) = Hp(sÂi

, rÂi
) = tÂi

.

B then computes XIDÂi
= [(ga)p(tÂi

)
g

q(tÂi
)]aαi+βi = [(ga)0gq(tÂi

)]aαi+βi =

(gq(tÂi
))aαi+βi = (ga)αiq(tÂi

)
g

βiq(tÂi
). Finally, B returns the public key pkIDÂi

= (ZÂi
, XÂi

, rÂi,ch
) to A.

– RegisterCorruptUID(IDAi
, pkIDAi

): Upon receiving a public key pkIDAi
and an

identity IDAi
from A. The public key pkIDAi

is registered as corrupt if IDAi

has not been registered before.
– RevealCorruptKey: A supplies two sets of identities IDSA and IDSH : IDSA

= {IDA1 , . . . , IDAl1
} denoted here as corrupt and IDSH = { IDH1 , . . ., IDHl2

}
as honest and l1 + l2 = n∗.

• Case 1 (n∗ = n), where n is the upper bound on the size of the group:
For this query at least one of the identities supplied by A was regis-
tered as honest (1 ≤ l2 < n), and all identities supplied by A must
be unique. B then checks the public key of any corrupt identity in
IDSA using the multilinear equations to confirm that pkIDAi

is of the

form (ZIDAi
, aIDAi

, rIDAi
), where ZIDAi

= g
aIDAi and aIDAi

=Y
aIDAi

IDAi
=

[(ga)p(tIDAi
)
g

q(tIDAi
)]aIDAi . If the check fails, B rejects this query. B then

computes the corresponding shared key KIDSA,IDSH
as follows:

∗ tIDAi
= Hp(ZIDAi

||IDIDAi
, rIDAi

), where i ∈ [l1],
∗ computes p(tIDAi

) and q(tIDAi
) using the polynomials p(t) and q(t)3,

∗ {[aIDAi
]/[Z

q(tIDAi
)

IDAi
]}p(tIDAi

)−1

= {[(ga)p(tIDAi
)
g

q(tIDAi
)]aIDAi /[(gaIDAi )q(tIDAi

)]}p(tIDAi
)−1

= (ga)aIDAi ,
∗ Z∗

IDAi
= [(ga)aIDAi ]αi (ZIDAi

)βi = (ga)aIDAi
αi (gaIDAi )βi =

(gaIDAi )(aαi+βi) = Z
(aαi+βi)
IDAi

3 Notice that p(tIDAi
) �= 0.
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∗ the shared key KIDSA,IDSH
4:

nMAP(ZIDA1
, . . . , ZIDAi−1

, Z∗
IDAi

,

ZIDAi+1
. . . , ZIDAl1

, ZIDH1
, . . . , ZIDHi−1

, ZIDHi+1
, . . . , ZIDHl2

, S)

• Case 2 (2 ≤ n∗ < n): B proceeds as the same as case 1 mentioned
above. For this case B firstly adds Φ as padding for (n − n∗) times in the
following nMAP equation, computes then the corresponding shared key
KIDSA,IDSH

as follows:
∗ the shared key KIDSA,IDSH

5 is computed as

nMAP( . . . , ZIDAi−1
, Z∗

IDAi
, ZIDAi+1

, . . . , ZIDAl1
, ZIDH1

, . . . , ZIDHi−1
,

ZIDHi+1
, . . . , ZIDHl2

, Φ, . . . , Φ︸ ︷︷ ︸
(n−n∗)

, S)

– Test: Assume R = nMAP(g, . . . , g)a
nb. A supplies n∗ identities (IDi, i ∈ [n∗])

that were registered as honest.
• Caes 1 (n∗ = n): B computes

Kb = nMAP(g, . . . , g)(Π
n∗
i=1(aαi+βi))b

= nMAP(g, . . . , g)(
∑n∗

k=0 ψkak)b

= nMAP(g, . . . , g)(a
nbΠαi)+(

∑(n∗−1)
k=0 ψkak)b

= RΠαinMAP(g, . . . , g)
∑(n∗−1)

k=0 (ψkak)b,

and returns Kb to A.
• Case 2 (2 ≤ n∗ < n): B computes

Kb = nMAP(g, . . . , g)(Π
n∗
i=1(aαi+βi))

Φ padding︷ ︸︸ ︷
(Πn

i=(n∗+1)(aγ1 + γ2)) b

= nMAP(g, . . . , g)(
∑n

k=0 ψkak)b

= nMAP(g, . . . , g)(a
nbψn)+(

∑(n−1)
k=0 ψkak)b

= RψnnMAP(g, . . . , g)
∑(n−1)

k=0 (ψkak)b,

and returns Kb to A.

4 If i = 1, the shared key is computed as nMAP((ga)
xIDA1 , . . . ,

ZIDAl1
, ZIDH1

, . . . , ZIDHi−1
, ZIDHi+1

, . . . , ZIDHl2
, S)αi .

5 If i = 1, the shared key is computed as
nMAP((ga)

xIDA1 , ZIDAi+1
, . . . , ZIDAl1

, ZIDH1
, . . . , ZIDHi−1

,

ZIDHi+1
, . . . , ZIDHl2

, Φ, . . . , Φ
︸ ︷︷ ︸

(n−n∗)Φ

, S)αi .
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• Finally, when A terminates by outputting a bit b, then B returns the same
bit to nEMDDH challenger.

In each case of the Test query, the right side of the last equality is how B can
compute Kb. According to other equalities, B can compute the real shared key
if R = nMAP(g, . . . , g)a

nb holds, with known values of R, αi, βi, γ1 and γ2. This
is exactly as in game G1. On the other hand, if R is random, B will output an
independent random value in GT . This is exactly as in game G2.
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