
Peter Y. A. Ryan
Cristian Toma (Eds.)

LN
CS

 1
31

95 Innovative Security Solutions
for Information Technology
and Communications
14th International Conference, SecITC 2021
Virtual Event, November 25–26, 2021
Revised Selected Papers

Lecture Notes in Computer Science 13195

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0003-0848-0873

More information about this series at https://link.springer.com/bookseries/558

https://springerlink.bibliotecabuap.elogim.com/bookseries/558

Peter Y. A. Ryan · Cristian Toma (Eds.)

Innovative Security Solutions
for Information Technology
and Communications
14th International Conference, SecITC 2021
Virtual Event, November 25–26, 2021
Revised Selected Papers

Editors
Peter Y. A. Ryan
University of Luxembourg
Esch-sur-Alzette, Luxembourg

Cristian Toma
Bucharest University of Economic Studies
Bucharest, Romania

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-031-17509-1 ISBN 978-3-031-17510-7 (eBook)
https://doi.org/10.1007/978-3-031-17510-7

© Springer Nature Switzerland AG 2022
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-1677-9034
https://orcid.org/0000-0001-9316-7739
https://doi.org/10.1007/978-3-031-17510-7

Preface

This volumecontains the papers presented at SECITC2021, the InternationalConference
on Information Technology and Communications Security held on November 25–26,
2021 in virtual mode.

There were 40 submissions and the committee decided to accept 22 papers. Each
submission was reviewed by at least 2, and on the average 2.8, program committee
members.

Over the years, SECITC has become a competitive publication platform with an
acceptance rate between 33% and 55%, and in 2021 the acceptance rate was 55%. The
Program Committee for 2021 had more than 45 experts from at least 15 countries.
Since 2015 the conference proceedings have been published in Springer’s Lecture Notes
in Computer Science, and papers published in SECITC are indexed in most relevant
science databases. The conference is unique in that it serves as an exchange forum
between researchers and students entering the field as well as industry players. We
expect the conferencewill be enhanced over timewithmore interaction between research
organizations and students from across the world.

June 2022 Peter Y. A. Ryan
Cristian Toma

Organization

Program Committee

Elena Andreeva KU Leuven, Belgium
Ludovic Apvrille Telecom ParisTech, France
Claudio Ardagna Universita’ degli Studi di Milano, Italy
Gildas Avoine INSA Rennes, France, and UCL, Belgium
Josep Balasch Katholieke Universiteit Leuven, Belgium
Manuel Barbosa HASLab - INESC TEC and FCUP, Portugal
Lasse Berntzen University of South-Eastern Norway, Norway
Ion Bica Military Technical Academy, Romania
Catalin Boja Bucharest Academy of Economic Studies,

Romania
Guillaume Bouffard Cybersecurity Agency of France (ANSSI), France
Mihai Doinea Bucharest University of Economic Studies,

Romania
Pooya Farshim University of York, UK
Eric Freyssinet LORIA, France
Benedikt Gierlichs Katholieke Universiteit Leuven, Belgium
Dieter Gollmann Hamburg University of Technology, Germany
Johann Groszschaedl University of Luxembourg, Luxembourg
Rémi Géraud Ecole normale supérieure, France
Shoichi Hirose University of Fukui, Japan
Xinyi Huang Fujian Normal University, China
Mehmet Sabir Kiraz De Montfort University, UK
Miroslaw Kutylowski Wroclaw University of Science and Technology,

Poland
Jean-Francois Lalande CentraleSupélec, France
Diana Maimut Advanced Technologies Institute, Ecole normale

supérieure, France and University of
Bucharest, Romania

Sjouke Mauw University of Luxembourg, Luxembourg
Stig Mjolsnes Norwegian University of Science and Technology,

Norway
David Naccache ENS, France
Vincent Nicomette LAAS/CNRS, France
Svetla Nikova KU Leuven, Dept. ESAT/COSIC and iMinds,

Belgium
Ruxandra F. Olimid Norwegian University of Science and Technology,

Norway and University of Bucharest, Romania

viii Organization

Marius Popa Bucharest University of Economic Studies,
Romania

Joachim Posegga University of Passau, Germany
Peter Roenne Université de Lorraine, LORIA, CNRS, France
Peter Y. A. Ryan (Chair) University of Luxembourg, Luxembourg
Emil Simion University Politehnica of Bucharest, Romania
Daniel Smith-Tone NIST, USA
Riccardo Spolaor University of Oxford, UK
Pantelimon Stanica Naval Postgraduate School, USA
Rainer Steinwandt University of Alabama in Huntsville, USA
Ferucio Laurentiu Tiplea Alexandru Ioan Cuza University of Iasi, Romania
Cristian Toma (Chair) Bucharest University of Economic Studies,

Romania
Qianhong Wu Beihang University, China
Sule Yildirim-Yayilgan Norwegian University of Science and Technology,

Norway
Alin Zamfiroiu Bucharest University of Economic Studies,

Romania
Lei Zhang East China Normal University, China

Contents

KRAKEN: A Knowledge-Based Recommender System for Analysts,
to Kick Exploration up a Notch . 1

Romain Brisse, Simon Boche, Frédéric Majorczyk,
and Jean-Francois Lalande

ADAM: Automatic Detection of Android Malware . 18
Somanath Tripathy, Narendra Singh, and Divyanshu N. Singh

Attack on the Common Prime Version of Murru and Saettone’s RSA
Cryptosystem . 32

Xiaona Zhang, Yang Liu, and Yu Chen

Identification of Data Breaches from Public Forums . 46
Md. Akhtaruzzaman Adnan, Atika Younus, Md. Harun Al Kawser,
Natasha Adhikary, Ahsan Habib, and Rakib Ul Haque

A Forensic Framework for Webmail Threat Detection Using Log Analysis 57
Abdul Saboor Malik, Muhammad Khuram Shahzad, and Mehdi Hussain

An Evaluation of the Multi-platform Efficiency of Lightweight
Cryptographic Permutations . 70

Luan Cardoso dos Santos and Johann Großschädl

Optimized Implementation of SHA-512 for 16-Bit MSP430
Microcontrollers . 86

Christian Franck and Johann Großschädl

Limitations of the Use of Neural Networks in Black Box Cryptanalysis 100
Emanuele Bellini, Anna Hambitzer, Matteo Protopapa, and Matteo Rossi

Improved Polynomial Multiplication Algorithms over Characteristic
Three Fields and Applications to NTRU Prime . 125

Esra Yeniaras and Murat Cenk

An Optimization of Bleichenbacher’s Oracle Padding Attack 145
Evgnosia-Alexandra Kelesidis

UC Analysis of the Randomized McEliece Cryptosystem 156
Daniel Zentai

x Contents

Using Five Cards to Encode Each Integer in Z/6Z . 165
Suthee Ruangwises

Conditional Differential Cryptanalysis on Bagua . 178
Xiaojuan Lu, Bohan Li, Shichang Wang, and Dongdai Lin

Perfect Anonymous Authentication and Secure Communication
in Internet-of-Things . 190

Li Duan, Yong Li, and Lijun Liao

Flexible Group Non-interactive Key Exchange in the Standard Model 210
Li Duan, Yong Li, and Lijun Liao

A Multifunctional Modular Implementation of Grover’s Algorithm 228
Mihai-Zicu Mina and Emil Simion

Lightweight Swarm Authentication . 248
George Teşeleanu

New Configurations of Grain Ciphers: Security Against Slide Attacks 260
Diana Maimuţ and George Teşeleanu

Improved Security Solutions for DDoS Mitigation in 5G Multi-access
Edge Computing . 286

Marian Guşatu and Ruxandra F. Olimid

Long-Term Secure Asymmetric Group Key Agreement . 296
Kashi Neupane

Building Deobfuscated Applications from Polymorphic Binaries 308
Vlad Constantin Crăciun and Andrei-Cătălin Mogage

Viruses, Exploits, Malware and Security Issues on IoT Devices 324
Cristian Toma, Cătălin Boja, Marius Popa, Mihai Doinea,
and Cristian Ciurea

Author Index . 335

KRAKEN: A Knowledge-Based
Recommender System for Analysts,
to Kick Exploration up a Notch

Romain Brisse1,2(B) , Simon Boche1, Frédéric Majorczyk2,3,
and Jean-Francois Lalande2

1 Malizen, Rennes, France
romain.brisse@centralesupelec.fr

2 CentraleSupélec, Inria, Univ. Rennes 1, CNRS, IRISA, Rennes, France
3 Direction Générale de l’Armement-Mâıtrise de l’Information, Bruz, France

Abstract. During a computer security investigation, a security ana-
lyst has to explore the logs available to understand what happened
in the compromised system. For such tasks, visual analysis tools have
been developed to help with log exploration. They provide visualisa-
tions of aggregated logs, and help navigate data efficiently. However, even
using visualisation tools, the task can still be difficult and tiresome. The
amount and the numerous dimensions of the logs to analyse, the poten-
tial stealthiness and complexity of the attack may end with the analyst
missing some parts of an attack. We offer to help the analyst finding the
logs where her expertise is needed rapidly and efficiently. We design a
recommender system called KRAKEN that links knowledge coming from
advanced attack descriptions into a visual analysis tool to suggest explo-
ration paths. KRAKEN confronts real world adversary knowledge with
the investigated logs to dynamically provide relevant parts of the dataset
to explore. To evaluate KRAKEN we conducted a user study with seven
security analysts. Using our system, they investigated a dataset from
the DARPA containing different Advanced Persistent Threat attacks.
The results and comments of the security analysts show the usability
and usefulness of the recommender system.

Keywords: Attacks and defences · Intrusion detection and prevention
system · Digital forensics

1 Introduction

IT systems are the target of an ever-growing number of attacks. Their complexity
ranges from simple attacks like brute-force or DDoS, to complex APT. To defend

We thank the participants to our evaluation, and all the members of Malizen for their
help and support. This work was supported by a CIFRE-Defense grant from Agence
Innovation Defense (AID).

c© Springer Nature Switzerland AG 2022
P. Y. A. Ryan and C. Toma (Eds.): SecITC 2021, LNCS 13195, pp. 1–17, 2022.
https://doi.org/10.1007/978-3-031-17510-7_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-17510-7_1&domain=pdf
http://orcid.org/0000-0002-7132-1966
http://orcid.org/0000-0003-4984-2199
https://doi.org/10.1007/978-3-031-17510-7_1

2 R. Brisse et al.

those systems, IT organizations implement CSOC (Computer Security Operation
Center) [37] where security analysts try to understand what happens in the
monitored systems and to react accordingly. Among popular inputs there are
security alerts raised from IDS (Intrusion Detection Systems) [11,26,28]. Their
goal is to detect suspicious activities that are symptoms of an intrusion. Then, a
security analyst is in charge of investigating if alerts are related to a real attack.

To complement IDSs, visualisation tools [3,8,12,13,31,32] have been devel-
oped to identify attacks in the data. Among those tools, some have focused on
log visualisation [15,16]. Because of the complexity of monitored systems, the
quantity of events logged and their complexity, the necessary time to investigate
is too long [9]. Visualisation systems also require extensive field knowledge to be
used efficiently [4]; as a consequence, users have to learn their usage.

Recommender systems have been proposed as a complementary approach to
visualisation tools to address these issues. They are mostly designed to help the
user choose a better representation of the data [14,22,33–35]. These approaches
are not specific to security investigations and require advanced knowledge and
practice in terms of visualisation. Visualisation recommendation [23] has also
been studied for security purposes. In [23], the authors focus on designing a
visualisation tool that can better guide analysts during their work. However,
these solutions have their shortcomings such as the lack of reliable data to make
recommendations, the heterogeneity and quantity of data to explore. They also
suffer from specific issues, such as the cold start problem [25], where the recom-
mender system has not gathered enough data to make relevant decisions yet.

In this paper we present a recommender system that helps the analyst in her
visual investigation by suggesting exploration options, either to test a hypoth-
esis on the incident, or to analyse another part of the logs that has not been
explored yet. The proposed recommender system does not require any input
from past usage of the visual tools it is based on. It uses a knowledge base of
adversary tactics and techniques extracted from real-world observations: the
MITRE ATT&CK matrix1. Finally, we present an evaluation of our recom-
mender system based on a campaign of investigations conducted with seven
security experts.

The rest of the paper is organised as follows. Related work is discussed in
Sect. 2. Context about visualisation and investigations in security is explained in
Sect. 3. Section 5 details the dataset used for the evaluation, the user interviews
and then discusses results. Finally, in Sect. 6, we conclude the article and discuss
future work.

2 Related Work

To help analysts during security investigations, many visualisation tools have
been proposed by the research community to analyse various event data such
as network logs [8,32], DNS logs [29], system logs [15,16] or file system meta-
data [3]. These methods allow a faster and easier investigation giving the analyst
1 https://attack.mitre.org/.

https://attack.mitre.org/
https://attack.mitre.org/

KRAKEN 3

the possibility to query and visualise large amount of complex data. They how-
ever require significant expertise in both security and visualisation techniques.
Recommender systems are starting to be used used to tackle that issue.

Historically, recommender systems [18,27] have been used by commercial
websites to present a user with a set of relevant options such as new books to
read or new TV shows to watch. Recommender systems can base their recom-
mendations on similarities between user profiles, item metadata, or even domain
knowledge [1,5]. However, some kind data, such as user profiles of item values
often cannot be used in the security field because it cannot be allowed to be
retained due to its sensitivity. The recommender system has to rank the differ-
ent options extracted from the data, generally by computing a score for each
option and by presenting a subset of the options to the end user: recommenda-
tion candidates. Their goal is to help users make better and faster decisions by
presenting them with relevant options.

Outside cybersecurity, previous work combines recommendations with visu-
alisation [10,14,33–35]. When a recommender system is used with a visualisation
system, the recommendations are mainly used to offer to the analyst the more
useful representations. This can be seen as an extension of work about automatic
representation [21,22]. The recommendations can be computed using statistical
and perceptual measures [34,35] or using machine learning [14]. As a consequence
multiple visualisation options are offered to a user, which has to decide which
one is the best suitable to her needs. We believe that the required level of exper-
tise is too high to be usable in real use cases. Therefore, this paper introduces a
recommender system that helps to make the best use of a security visualisation
tool instead of recommending the best possible representations of security data.

Only few works are related to the visualisation of security data enhanced
by a recommender system [23,36]. Li et al. focus on security risk analysis and
offer defensive measures recommendations [20]. Zhong et al. [36] present a recom-
mender system aiming to help tier 1 analysts in CSOC with data triage, based on
the experience of senior analysts. These two contributions need reliable data and
have to face the cold start problem. The closest work to ours is NAVSEC [23],
a recommender system integrated with a 3D visualisation tool [24] for network
data. During the investigation, NAVSEC will regularly offer to the security ana-
lyst a set of interactions with the 3D visualisation tool so as to discover a possi-
ble intrusion. The best interactions are selected by a nearest-neighbor approach
based on a database of previous investigations conducted by an expert security
analyst. NAVSEC is a collaborative recommender system; it does not consider
the user’s need or query in the recommendations and does not benefit from the
accumulated knowledge on attacks. The nearest-neighbor approach also relies
on data from past investigations, which makes this recommender system suffer
from the cold start problem [25] as well.

3 Visualising and Investigating

In this section we discuss the nature of logs and summarise the principles of
an investigation. Then, we briefly describe ZeroKit, a visualisation tool that

4 R. Brisse et al.

an analyst can use to explore logs. ZeroKit is the technological base of our
recommender system presented in Sect. 4.

3.1 Log Investigation

Log files contain a list of events generated by a monitoring tool such as an
ids or any program that records events, such as a smtp or a web server.
Each event is composed of multiple different fields. A field has a data type
and a value. To efficiently describe log data, we use data types as defined by
Elastic Common Schema (ECS)2. Typically, in security investigations we use
from a dozen up to 50 data types, such as ip or action.

Investigating consists in finding potential threats, risky behaviours, or secu-
rity flaws by analysing the provided logs. During those investigations, analysts
explore multiple log sources; some have common data types: pivot types. Pivot
types are common data types that allow the user to navigate between log files
when they study interesting values. Navigating in the data is more convenient
when a visualisation tool offers an understandable frontend. In the following
section, we present the tool used in this paper to perform the investigations.

3.2 ZeroKit

ZeroKit is a collaborative log analysis and incident response tool, aiming to put
data visualisation at an analyst’s disposal. An analyst can explore logs through
interactive and reactive data visualisation. The three main actions she can do
in ZeroKit are visualising the distribution of values of a data type, filter by
a value or filter using time. Each action operated by the analyst refreshes the
visualisation panes. Thus, a sequence of actions constitutes a path of exploration,
and the user can navigate along this path by doing new actions or going back by
undoing some. Additionally, to mark an item of interest, an analyst can flag an
item such as an ip address and add context by choosing a severity: safe, suspect
or danger. It shows the discovery of an attack artifact, or on the contrary, the
absence of findings. The decision about severities will be the starting point of
the recommendation, and is discussed later.

The following example illustrates some steps of an investigation of the VAST
2012 dataset3 using ZeroKit. It is composed of the logs from an IDS monitoring
the network of a small enterprise and the logs from the border router. Analysing
the logs from the router, the analyst observes many connections to the TCP
port 6667. That port is related to IRC, which is not a commonly used protocol
in an enterprise environment. Those connections are thus suspicious and the
analyst flags this value as suspect. She needs now to confirm that the activity
related to this destination port is linked to an attack or not. At that point of
the investigation, there are still 43 thousand events related to that destination
port and the whole process can take hours.

2 https://www.elastic.co/guid.
3 http://www.vacommunity.org/VAST+Challenge+2012.

https://www.elastic.co/guide/en/ecs/current/index.html
https://www.elastic.co/guid
http://www.vacommunity.org/VAST+Challenge+2012

KRAKEN 5

(a) Recommendation process
(b) Extract from the knowl-
edge base

Fig. 1. KRAKEN

3.3 Recommendation

Our goal is to enhance ZeroKit by offering recommendations about the next step
the analyst should take to confirm or deny her hypotheses. Offering a potentially
relevant path for exploration can save a significant amount of time to analysts
during an investigation. Using security knowledge as the base for making rec-
ommendations, KRAKEN can rapidly help the analyst confirming or denying
that she found an attack by using real expertise, without the issue of collecting
the data first. It also provides assistance in the investigation without requiring
non-security expertise such as complex visualisation processes.

4 Recommender System

We built KRAKEN as a knowledge-based recommender system [5]. As
knowledge-based recommender systems take the user’s query and domain knowl-
edge as inputs, they do not suffer from cold start. Similarly to other recommender
systems [27], KRAKEN tries to ensure three properties:

– R1: Enhance user efficiency and rapidity in their tasks.
– R2: Offering recommendations at a relevant time, without any disturbance.
– R3: Making sure to avoid overlooking important information.

4.1 Recommendation Process

Figure 1a shows the recommendation process of KRAKEN. First, when an ana-
lyst flags a value as safe, suspect or danger, KRAKEN triggers the recommen-
dation process. Recommendations use a Similarity scoring process to compute

6 R. Brisse et al.

recommendations. Recommendation are also computed using Multi-Attribute
Decision-Making (MADM) in one case, as discussed in Sect. 4.4. Both those
methods use the knowledge base as input. Finally, the three best candidates are
displayed to the analyst.

4.2 Recommendation Triggers

In general, guessing the true intent of the user in a visual tool is complex. Too
many actions are possible and depending on the context the same action can
have a different intent. In our work, we focus on the action of flagging a value
with a severity, because it is the closest action related to a security decision we
can find from an user. It allows us to make hypotheses about his opinion as an
expert. We trigger a recommendation when the user puts a flag that represents
a specific intent (R2):

1. A suspect flag means that the analyst needs more information before deciding
whether the value is linked to malicious activity or not.

2. A danger flag means that a threat artifact has been found and, as such,
ends this part of the investigation. The analyst wants to direct his attention
somewhere else.

3. A safe flag means that the threat has not been found yet, or that there is
none. The analyst wants to take a look at the situation from another angle.

4.3 Knowledge Base

ATT&CK’s goal consists in recording detailed, real and observed adversarial
techniques and to categorise them in tactics. It is used to characterise secu-
rity threats, and as a common and shared vocabulary with all cybersecurity
actors. Each specified adversarial technique includes many usable attributes, and
notably sources of logs where they can be observed. We mapped these sources
to the data types defined by ECS4. The resulting knowledge base allows us to
gather data types useful to observe attacks within logs.

To illustrate the use of the ATT&CK matrix for spawning recommendations,
we show in Fig. 1b an extract of the knowledge base that corresponds to the
use case of Sect. 3.2. That extract shows that the port data type is associated
with the “Packet Capture” source, in turn associated with the technique “non-
application layer protocol”. From there, we can select all the data sources linked
to the technique (“Network Intrusion Detection System” in the example) and all
data types linked to them: “Severity” and “Category”. The analyst was analysing
suspect traffic coming from IRC, and upon flagging the port as suspect, she is
given the recommendation containing the “Severity” and “Category” data types.
By following these recommendations the analyst finds alerts raised by the NIDS
about attempted information leaks and corporate policy violations.

4 https://www.elastic.co/guid.

https://www.elastic.co/guid

KRAKEN 7

Algorithm 1. Our recommendation algorithm
procedure Recommendation(dt0) � With dt0: flagged data type

Ds0 ← AllDataSourcesLinkedTo(dt0)
Tall ← AllTechniquesLinkedTo(Ds0)
if severity is suspect then

for all techniques in Tall do
perform MADM scoring.
Tbest ← scored technique

Tbest ← OrderByScore(Tall) � The best scored techniques
Ds0 ← Ds0 + AllDataSourcesLinkedToBestTechniques(Tbest)

Dtall ← AllDataTypesLinkedTo(Ds0)
Dtfiltered ← FilterIrrelevantDataTypes(Dtall)
for all data types in Dtfiltered do

perform Similarity scoring.
Dtbest ← scored datatype

Dtbest ← OrderByScore(Dtbest) � The scored data types
return three best candidates from Dtbest

4.4 Decision-Making

To compute the recommendations, we implemented a decision-making algorithm
that uses as input the knowledge base presented in the previous section and the
severity of the flag. In the case of a safe or danger flag, we only used a Similarity
scoring method, whereas for a suspect flag we implemented MADM, on top of
the similarity score. We did so because we needed to score techniques from the
knowledge base, and their attributes are far more complex and less comparable
than those of data types.

Algorithm 1 shows how recommendations are generated. The decision-making
process is developed in further sections hereafter. All functions that appear in
this algorithm represent queries to the knowledge base. Data types categorised as
irrelevant in function FilterIrrelevantDataTypes() are those that are not present
in the investigation, those who only have one value through the dataset and the
flagged data type itself.

MADM. Due to their complex attributes, technique objects from ATT&CK5

are difficult to rank. We choose an additive Analytical Hierarchy Process
(AHP) [2,17] to do so: the Simple Additive Weighting (SAW).

Simple Additive Weighting is a decision-making process that relies on par-
tial orders determined by our security knowledge, to compute a score. We use
the attributes associated to a technique as a list of criteria (i.e. platforms, per-
missions, network requirements, frequency, mitigation and data sources). The
process is divided into two phases: the creation of a consistent Pairwise Com-
parison Matrix (PCM) [19] and the computation of candidate scores, which is
executed each time a recommendation is needed. After verifying that it is indeed
5 https://attack.mitre.org/.

https://attack.mitre.org/

8 R. Brisse et al.

Fig. 2. A flowchart of the scoring process using similarity

consistent, this matrix is used to compute an overall weight for each criterion.
From there we can score candidate techniques. Each of these steps are described
in more detail in the appendices.

Similarity. Figure 2 shows how a data type’s attributes are scored using our
Similarity scoring process. The reference data type is the data type of the value
that was flagged by the analyst. All attributes are scored separately. A final
score is computed using a weighted sum of all previously obtained sub-scores.
For example, the prefix score is computed using the Jaccard similarity between
the prefixes set present in the candidate date type and the prefixes set present
in the reference data type. Prefixes are all the values that can precise a data
type, such a “source” or “event”. Common sources refer to the ATT&CK data
sources and are scored in the same manner as prefixes. The presence and pivot
attributes check if the data type is already present in the investigation and if it
can be used as a pivot between already available log files in the investigation. The
interestingness is a ratio of data sources where this data type can be recorded
over all possible data sources. It is essentially an inverse rarity. Once we have
all subscores, we evaluated their relative importance and determined weights,
which we apply to them to compute the final score. If the final score between
two data types approaches zero, the data types are similar, and dissimilar if the
score approaches one.

5 Evaluation

We conducted an evaluation to gather feedback on how well KRAKEN met the
requirements R1, R2 and R3. In security it is difficult to find enough experts to
get a strong statistical result. Consequently, the evaluation is mostly qualitative.

KRAKEN 9

Table 1. APTs present in the TC3 dataset

APT Attack step Flags Discovery threshold Investigation ratio

APT 1 Firefox ad 2 1 10%

Firefox extension 2 1 10%

ssh 2 2 20%

Wget 2 1 20%

APT 2 Pine 3 2 20%

Tcexec Malware 1 1 20%

5.1 Datasets

For the evaluation we use a subset of the tc3 (Transparent Computing
exercise 3) dataset6. tc3 has been released by the darpa as part of their “Trans-
parent Computing” program. The subset of tc3 that we used was captured in
identical conditions, but at a much smaller scale in order to limit the number
of threats to find during the evaluation. This subset contains 19.5 million sys-
tem call events, from one machine, targeted by the APTs. The data types that
can be found in this subset are grouped in different object types: file, memory,
network, unnamed pipes, and sinks. The subset contains two APT described in
Table 1. The two Firefox exploits aim to gain access to the machine, while SSH
is used for network discovery. Wget is used to exfiltrate data. Pine is an old
text-based email client here used to provide a backdoor into the machine and
spread a malware: tcexec.

5.2 Experimental Setup

After a short presentation of our work on recommender systems, we asked the
participants about their experience in cybersecurity. We also asked if they had
some previous experience in csoc or with a siem, in order to classify them
in three categories: low, medium and high experienced analysts. Then, we did
a rapid presentation of the subset of tc3 used for the investigation. Next, we
demonstrated the key features of ZeroKit. After their investigations, we collected
their feedback through a qualitative interview.

Qualitative Interview. The discussion was informal, yet we guided the par-
ticipants to obtain answers to specific questions, each trying to assess a different
aspect of KRAKEN. They are enumerated thereafter:

Q1. Usefulness (R1): were the recommendations useful to your investigation?
Q2. Efficiency (R2): did KRAKEN help you gain efficiency in your search?
Q3. Relevance (R2): did KRAKEN offer you relevant recommendations?
6 https://github.com/darpa-i2o/Transparent-Computing/blob/master/README-

E3.md.

https://github.com/darpa-i2o/Transparent-Computing/blob/master/README-E3.md
https://github.com/darpa-i2o/Transparent-Computing/blob/master/README-E3.md
https://github.com/darpa-i2o/Transparent-Computing/blob/master/README-E3.md
https://github.com/darpa-i2o/Transparent-Computing/blob/master/README-E3.md

10 R. Brisse et al.

Fig. 3. Answers of evaluation participants to the questionnaire

Q4. Tool future: in the future would you use KRAKEN during investigations?
Q5. Clarity (R3): did you find the recommendations clear and easy to grasp?

Quantitative Measures. During all the investigations, we collected traces of
user actions. The main variables we recorded and used to analyse the investi-
gations are: number of flags, recommendations, followed recommendations and
the proportion of threats discovered during the 25-min investigation. Each step
has a discovery threshold, and the threat coverage is computed from the number
of attack steps found by each participant. These measures help us quantify the
usefulness of the recommendations. Table 1 shows the statistical importance we
gave to each attack step in regards to the overall threat coverage.

5.3 User Feedback

Figure 3 shows the answers of the participants to the questionnaire from Sect. 5.2.
The white dot shows a positive answer, the black a negative one and the black
and white a mitigated answer.

The majority of participants affirms that KRAKEN was useful to them and
accelerated them during this investigation. They found the recommendations
useful as they helped them progress in their investigations. In terms of efficiency,
their feedback is consistent with the fact that they were all able to find parts or
all of the APTs in only 25 min. The answers given by participant seven can be
explained by his low experience as an analyst. During his investigation, he had
little idea of how to proceed so he could not make use of the tool properly.

The results show that all the participants were enthusiast about the future of
the tool. They all saw the benefits in terms of efficiency during an investigation
that this research suggests (R3). They agreed to say that this tool helped them
get better coverage of the dataset and guided them in the right direction.

The sore spot of the evaluation was the clarity of recommendations. All users
felt that they were not highlighted enough in the interface (R3). However, once
familiar with the investigation interface, they were all able to use KRAKEN
properly and even said it did not cause unwanted distractions during their work.

KRAKEN 11

Table 2. Recommendation relevance according to its associated severity

Flag severity Recommendations Distinct data types Relevant Followed

Safe 5 2 80% 60%

Suspect 13 5 100% 84.6%

Danger 8 3 50% 12.5%

5.4 Recommendation Relevance

Table 2 shows measures about recommendations aggregated by flag severity: the
total number of recommendations made during all investigations, the number of
distinct data types concerned by those recommendations, the ratios of relevant
recommendations and the ratios of recommendations followed by the analyst
over the total number.

All recommendations triggered by a suspect flag were relevant (R2). The
results for the danger and safe severity are less categorical. The recommendations
triggered by a safe flag seems to have mostly provided the participants with
relevant recommendation according to our hypotheses. On the other hand, the
recommendations triggered by a danger flag were less relevant.

Most suspect flag recommendations were followed, showing that not only we
were able to provide relevant recommendations, we were also able to convey
them to the analyst properly. Safe flag recommendations were also followed 60%
of the time, meaning that we have mostly well interpreted the analyst’s intent
for it. However, the danger flag recommendations are only followed 12.5% of the
time. We noticed that analysts would often flag as danger and then start back
from that point to find other threats, possibly linked to the one already found.

5.5 Providing Assistance to Investigations

Figure 4 is a scatter plot of the overall threat coverage in function of the propor-
tion of recommendations followed for each analyst. The analyst’s experience is
also represented by a colour.

Figure 4 shows that participant seven, who had little to no experience found
few attacks in the dataset and did not use the recommendation, as discussed
previously. However, the rightmost point shows that by selecting a majority of
recommendations, the experienced analyst achieved very satisfying results (R2).

Figure 4 also shows that, in the case of mid-level experts, the recommenda-
tions do not help the analysts discover more than 50% of the threats. While 50%
of threat coverage is a good result in 25 min, even if our prototype offers relevant
recommendations, interpreting them still requires expert skill.

12 R. Brisse et al.

Fig. 4. Overall threat coverage discovered by each analyst correlated with the propor-
tion of followed recommendations

6 Conclusion

During the last few years, new tools have been designed to help security analysts
in their investigations using visualisations recommendation. However, analysing
security incidents is still a tiresome task. Exploration recommendations using
expert knowledge can significantly help analysts.

In this paper, we presented a recommender system aiming to help the security
analyst in her investigation. KRAKEN suggests new paths to explore within log
data. It is composed of a knowledge base linking techniques, tactics, data sources
and data types, two scoring processes and several recommendation triggers.

We evaluated KRAKEN with seven cybersecurity experts, whose experience
as analysts were various. Our evaluation shows that recommendations are rele-
vant most of the time, and when followed help security analysts during incident
response. Participants to the evaluation also noted that the recommender system
did not distract them during their investigations while providing insight.

Following the feedback from the evaluation, we implemented some features
enhancing user experience such as a history of recommendations and a better
explanation of the recommendations. This lays the groundwork for a future eval-
uation on a larger scale, with non security specialists. The results of such a study
will help us reach a better understanding of all possible use cases for KRAKEN.
Since we saw that the user intent associated with a severity is more complex
than we thought, a larger pool of participants could better frame user intents.

In the near future we aim to work on some technical issues that we identified
during the development and the evaluation of KRAKEN as well as larger issues.
For example, the SAW decision-making model is known to overrate objects that
have extreme values. Later on, we would also like to hybridise [6,7] other types of

KRAKEN 13

recommender systems with KRAKEN. For example, a collaborative filtering rec-
ommender system would allow to include user actions from past investigations.
With that hybridisation, recommendations would be based on user habits, exper-
tise and commonly relevant investigation paths as well as expert knowledge, and
so could be more useful to analysts.

Appendix

MADM Scoring Method

Designing the Pairwise Comparison Matrix. While PCM are an effective
and widely used solution, they have to respect a rule of consistency, depending on
the scale used: ratio scales, geometric scales and logarithmic scale. The simplicity
of the ratio scales method presented by Saaty et al. [30] and how we use the final
score in KRAKEN make the ratio scale a good fit for our decision making process.
Two guidelines are proposed by Saaty et al. to build a PCM with a high level of
consistency:

– Using an adapted scale depending on the number of criteria (presented in
Table 3) to clearly differentiate answers.

– Keeping pairwise consistency: aij = 1/aji , is a necessary but not sufficient
condition. Although Saaty et al. specify that ”improving consistency does not
mean getting an answer closer the real life solution”, a balance is to be found
between perfect mathematical consistency and reality for the scoring to be
relevant.

Table 3. A measure of inconsistency between the PCM’s order and the scale used [30]

2 3 4 5 6 7

1–5 0 0.244 0.335 0.472 0.479 0.527

1–7 0 0.515 0.504 0.708 0.798 0.827

1–9 0 0.416 0.851 1.115 1.150 1.345

Computing Normalised Weights Using the PCM, we compute normalised
weights to obtain values bounded between 0 and 1. The weight or the ith criteria
corresponds to the sum of the ith row divided by the total sum of the matrix.
They are obtained by the following formula:

wi = (
n∑

i,j=0

PCMij)/T

with n the number of criteria and T the total sum of the PCM.

14 R. Brisse et al.

Convert Data to Numerical Values Some of our criteria are not numerical
values, like the set of platforms and the permissions required. Using our expertise,
we ranked and weighed the possible values of each attribute and computed a ratio
for each of them.

Check Consistency Rate. Before using it, the consistency of the PCM must
be checked. The process is the following, as explained in [2]:

1. Find all eigenvectors and eigenvalues for the matrix.
2. Find the maximum inconsistency by taking the maximum possible eigenvalue.
3. Calculate the consistency index:

CI = (λmax − n)/(n − 1)

where n is the matrix size.
4. Finally, compute the Consistency Rate (CR):

CR = CI/RI

with RI the Random Index for consistency, or, in other words, the average
consistency obtained when filling the PCM at random.
If CR is inferior or equal to 0.1, then the matrix is considered consistent. This
operation is only necessary once. From the moment a PCM is determined to
be consistent, it can be used in the decision-making process.

We computed different PCMs using our own security expertise and checked
their consistency. We found that trying to generally rank the criteria gave back
large inconsistencies in our matrices. So, we focused on more specific security
goals when deciding the importance of a criteria, such as detection difficulty
and accessibility. Table 4 shows one of the resulting (and consistent) matrices we
built.

Table 4. Designing a consistent PCM using our own knowledge

Plat. Perm. Net. Reqs Freq.

Platforms 1 1 0.25 0.5

Permissions 1 1 0.33 0.5

Network Requirements 4 3 1 3

Frequency 2 2 0.33 1

Compute Scores. Reaching this step, scores are computed every time a rec-
ommendation is requested, using the PCM that was previously determined to
be consistent.

KRAKEN 15

1. For each scored attribute of each candidate s, apply the following formula
(for positive scores only) within the n ∗ m matrix composed of m candidates
and n criteria:

sij = rij/r∗
j

with i = 1, ...,m, j = 1, ..., n, and r∗
j being the maximum value of r in column

j.
2. The total score is the sum of each attribute’s score, multiplied by its previously

computed weight.

Relative and Absolute Scoring. The scores use the maximum recorded value
among the candidates for each criterion, and not the maximum possible value.
This is to avoid cases where we would obtain bad scores for every candidate.

References

1. Adomavicius, G., Tuzhilin, A.: Toward the next generation of recommender sys-
tems: a survey of the state-of-the-art and possible extensions. IEEE Trans. Knowl.
Data Eng. 17(6), 734–749 (2005). https://doi.org/10.1109/TKDE.2005.99

2. Afshari, A., Mojahed, M., Yusuff, R.M.: Simple additive weighting approach to
personnel selection problem. Int. J. Innovation, Manage. Technol. 1(5), 511 (2010)

3. Beran, M., Hrdina, F., Kouřil, D., Ošleǰsek, R., Zákopčanová, K.: Exploratory
analysis of file system metadata for rapid investigation of security incidents. In:
2020 IEEE Symposium on Visualization for Cyber Security (VizSec), pp. 11–20
(2020). https://doi.org/10.1109/VizSec51108.2020.00008

4. Bertin, J., Barbut, M.: Semiology of Graphics: Diagrams, Networks, Maps. Ed. de
l’EHESS (2005)

5. Burke, R.: Knowledge-based recommender systems. In: Encyclopedia of library and
information systems, vol. 69, pp. 175–186 (2000)

6. Burke, R.: Hybrid recommender systems: survey and experiments. User
Model. User-Adap. Inter. 12(4), 331–370 (2002). https://doi.org/10.1023/A:
1021240730564

7. Burke, R.: Hybrid web recommender systems. In: Brusilovsky, P., Kobsa, A., Nejdl,
W. (eds.) The Adaptive Web. LNCS, vol. 4321, pp. 377–408. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-72079-9 12

8. Cappers, B.C., van Wijk, J.J.: Snaps: semantic network traffic analysis through
projection and selection. In: 2015 IEEE Symposium on Visualization for Cyber
Security (VizSec), pp. 1–8. IEEE (2015). https://doi.org/10.1109/VIZSEC.2015.
7312768

9. Cremilleux, D., Bidan, C., Majorczyk, F., Prigent, N.: VEGAS: visualizing, explor-
ing and grouping alerts. In: NOMS 2016–2016 IEEE/IFIP Network Operations and
Management Symposium, pp. 1097–1100. IEEE (2016). https://doi.org/10.1109/
NOMS.2016.7502968

10. Cui, Z., Badam, S.K., Yalçin, M.A., Elmqvist, N.: Datasite: proactive visual data
exploration with computation of insight-based recommendations. Inf. Vis. 18(2),
251–267 (2019). https://doi.org/10.1177/1473871618806555

11. Denning, D.E.: An intrusion-detection model. IEEE Trans. Softw. Eng. SE-13,
222–232 (1987). https://doi.org/10.1109/TSE.1987.232894

https://doi.org/10.1109/TKDE.2005.99
https://doi.org/10.1109/VizSec51108.2020.00008
https://doi.org/10.1023/A:1021240730564
https://doi.org/10.1023/A:1021240730564
https://doi.org/10.1007/978-3-540-72079-9_12
https://doi.org/10.1109/VIZSEC.2015.7312768
https://doi.org/10.1109/VIZSEC.2015.7312768
https://doi.org/10.1109/NOMS.2016.7502968
https://doi.org/10.1109/NOMS.2016.7502968
https://doi.org/10.1177/1473871618806555
https://doi.org/10.1109/TSE.1987.232894

16 R. Brisse et al.

12. Fischer, F., Keim, D.A.: NStreamAware: real-time visual analytics for data streams
to enhance situational awareness. In: Proceedings of the Eleventh Workshop on
Visualization for Cyber Security, pp. 65–72. ACM (2014). https://doi.org/10.1145/
2671491.2671495

13. Foresti, S., Agutter, J.: Visalert: From idea to product. In: Goodall, J.R., Conti,
G., Ma, KL. (eds) VizSEC 2007. Mathematics and Visualization, pp. 159–174.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78243-8 11

14. Hu, K., Bakker, M.A., Li, S., Kraska, T., Hidalgo, C.: VizML: a machine learning
approach to visualization recommendation. In: Proceedings of the 2019 Conference
on Human Factors in Computing Systems (CHI), ACM (2019). https://doi.org/
10.1145/3290605.3300358

15. Humphries, C., Prigent, N., Bidan, C., Majorczyk, F.: Elvis: extensible log visual-
ization. In: Proceedings of the Tenth Workshop on Visualization for Cyber Security,
p. 9–16. VizSec 2013, Association for Computing Machinery (2013). https://doi.
org/10.1145/2517957.2517959

16. Humphries, C., Prigent, N., Bidan, C., Majorczyk, F.: CORGI: combination, orga-
nization and reconstruction through graphical interactions. In: 2014 IEEE Sym-
posium on Visualization for Cyber Security (VizSec), pp. 57–64. IEEE (2014).
https://doi.org/10.1145/2671491.2671494

17. Ishizaka, A., Balkenborg, D., Kaplan, T.: Influence of aggregation and measure-
ment scale on ranking a compromise alternative in AHP. J. Oper. Res. Soc. 62(4),
700–710 (2011). https://doi.org/10.1057/jors.2010.23

18. Jannach, D., Zanker, M., Felfernig, A., Friedrich, G.: Recommender Systems: An
Introduction (2010)

19. Kou, G., Ergu, D., Lin, C., Chen, Y.: Pairwise comparison matrix in multiple
criteria decision making. Technol. Econ. Dev. Econ. 22(5), 738–765 (2016). https://
doi.org/10.3846/20294913.2016.1210694

20. Li, T., Convertino, G., Tayi, R.K., Kazerooni, S.: What data should i protect?:
recommender and planning support for data security analysts. In: Proceedings of
the 24th International Conference on Intelligent User Interfaces, pp. 286–297. ACM
(2019). https://doi.org/10.1145/3301275.3302294

21. Mackinlay, J.: Automating the design of graphical presentations of relational infor-
mation. ACM Trans. Graph. (Tog) 5(2), 110–141 (1986). https://doi.org/10.1145/
22949.22950

22. Mackinlay, J., Hanrahan, P., Stolte, C.: Show me: automatic presentation for visual
analysis. IEEE Trans. Visual Comput. Graph. 13(6), 1137–1144 (2007). https://
doi.org/10.1109/TVCG.2007.70594

23. Nunnally, T., Abdullah, K., Uluagac, A.S., Copeland, J.A., Beyah, R.: NAVSEC:
a recommender system for 3d network security visualizations. In: Proceedings of
the Tenth Workshop on Visualization for Cyber Security - 2013 IEEE Symposium
on Visualization for Cyber Security (VizSec). ACM Press (2013). https://doi.org/
10.1145/2517957.2517963

24. Nunnally, T., Chi, P., Abdullah, K., Uluagac, A.S., Copeland, J.A., Beyah, R.:
P3D: A parallel 3D coordinate visualization for advanced network scans. In: 2013
IEEE International Conference on Communications (ICC), pp. 2052–2057 (2013).
https://doi.org/10.1109/ICC.2013.6654828

25. Park, S.T., Chu, W.: Pairwise preference regression for cold-start recommendation.
In: Proceedings of the Third ACM Conference on Recommender Systems - RecSys
2009, p. 21. ACM (2009). https://doi.org/10.1145/1639714.1639720

26. Paxson, V., Campbell, S., Lee, J., et al.: Bro intrusion detection system. Technical
Report Lawrence Berkeley National Laboratory (2006)

https://doi.org/10.1145/2671491.2671495
https://doi.org/10.1145/2671491.2671495
https://doi.org/10.1007/978-3-540-78243-8_11
https://doi.org/10.1145/3290605.3300358
https://doi.org/10.1145/3290605.3300358
https://doi.org/10.1145/2517957.2517959
https://doi.org/10.1145/2517957.2517959
https://doi.org/10.1145/2671491.2671494
https://doi.org/10.1057/jors.2010.23
https://doi.org/10.3846/20294913.2016.1210694
https://doi.org/10.3846/20294913.2016.1210694
https://doi.org/10.1145/3301275.3302294
https://doi.org/10.1145/22949.22950
https://doi.org/10.1145/22949.22950
https://doi.org/10.1109/TVCG.2007.70594
https://doi.org/10.1109/TVCG.2007.70594
https://doi.org/10.1145/2517957.2517963
https://doi.org/10.1145/2517957.2517963
https://doi.org/10.1109/ICC.2013.6654828
https://doi.org/10.1145/1639714.1639720

KRAKEN 17

27. Ricci, F., Rokach, L., Shapira, B.: Introduction to recommender systems handbook.
In: Ricci, F., Rokach, L., Shapira, B., Kantor, P.B. (eds.) Recommender Systems
Handbook, pp. 1–35. Springer, Boston, MA (2011). https://doi.org/10.1007/978-
0-387-85820-3 1

28. Roesch, M., et al.: Snort: Lightweight intrusion detection for networks. In: Lisa,
vol. 99, pp. 229–238 (1999)

29. Romero-Gomez, R., Nadji, Y., Antonakakis, M.: Towards designing effective visu-
alizations for DNS-based network threat analysis. In: 2017 IEEE Symposium on
Visualization for Cyber Security (VizSec), pp. 1–8. IEEE (2017). https://doi.org/
10.1109/VIZSEC.2017.8062201

30. Saaty, T.L.: A scaling method for priorities in hierarchical structures. J. Math.
Psychol. 15(3), 234–281 (1977). https://doi.org/10.1016/0022-2496(77)90033-5

31. Theron, R., Magán-Carrión, R., Camacho, J., Fernndez, G.M.: Network-wide intru-
sion detection supported by multivariate analysis and interactive visualization. In:
2017 IEEE Symposium on Visualization for Cyber Security (VizSec), pp. 1–8. IEEE
(2017). https://doi.org/10.1109/VIZSEC.2017.8062198

32. Ulmer, A., Sessler, D., Kohlhammer, J.: Netcapvis: Web-based progressive visual
analytics for network packet captures. In: 2019 IEEE Symposium on Visual-
ization for Cyber Security (VizSec), pp. 1–10 (2019). https://doi.org/10.1109/
VizSec48167.2019.9161633

33. Vartak, M., Parameswaran, A., Polyzotis, N., Madden, S.R.: SEEDB: automati-
cally generating query visualizations. In: Proceedings of the VLDB Endowment,
vol. 7, pp. 1581–1584 (2014). https://doi.org/10.14778/2733004.2733035

34. Wongsuphasawat, K., Moritz, D., Anand, A., Mackinlay, J., Howe, B., Heer, J.:
Voyager: exploratory analysis via faceted browsing of visualization recommenda-
tions. IEEE Trans. Visual Comput. Graph. 22(1), 649–658 (2016). https://doi.
org/10.1109/TVCG.2015.2467191

35. Wongsuphasawat, K., et al.: Voyager 2: augmenting visual analysis with partial
view specifications. In: Proceedings of the 2017 CHI Conference on Human Fac-
tors in Computing Systems, p. 2648–2659. Association for Computing Machinery
(2017). https://doi.org/10.1145/3025453.3025768

36. Zhong, C., Lin, T., Liu, P., Yen, J., Chen, K.: A cyber security data triage operation
retrieval system. Comput. Sec. 76, 12–31 (2018). https://doi.org/10.1016/j.cose.
2018.02.011

37. Zimmerman, C.: The strategies of a world-class cybersecurity operations center.
The MITRE Corporation (2014)

https://doi.org/10.1007/978-0-387-85820-3_1
https://doi.org/10.1007/978-0-387-85820-3_1
https://doi.org/10.1109/VIZSEC.2017.8062201
https://doi.org/10.1109/VIZSEC.2017.8062201
https://doi.org/10.1016/0022-2496(77)90033-5
https://doi.org/10.1109/VIZSEC.2017.8062198
https://doi.org/10.1109/VizSec48167.2019.9161633
https://doi.org/10.1109/VizSec48167.2019.9161633
https://doi.org/10.14778/2733004.2733035
https://doi.org/10.1109/TVCG.2015.2467191
https://doi.org/10.1109/TVCG.2015.2467191
https://doi.org/10.1145/3025453.3025768
https://doi.org/10.1016/j.cose.2018.02.011
https://doi.org/10.1016/j.cose.2018.02.011

ADAM: Automatic Detection of Android
Malware

Somanath Tripathy(B) , Narendra Singh, and Divyanshu N. Singh

Department of Computer Science and Engineering,
Indian Institute of Technology Patna, Patna, India

{som,narendra 2021cs21,divyanshu.cs17}@iitp.ac.in

Abstract. The popularity of the Android operating system has been ris-
ing ever since its initial release in 2008. This is due to two major reasons.
The first is that Android is open-source, due to which a lot of mobile man-
ufacturing companies use some form of modified Android OS for their
devices. The second reason is that a wide variety of applications with
different designs and utility can be built with ease for Android devices.
With this much popularity, gaining unwanted attention of cybercriminals
is inevitable. Hence, there has been a huge rise in the number of mal-
ware being developed for Android devices. To address this problem, we
present ADAM (Automatic Detection of Android Malware), an Android
application that uses machine learning (ML) for automatic detection of
malware in Android applications. ADAM is trained with CICMalDroid
2020 Android Malware dataset and tested for both CICMalDroid 2020
and CICMalDroid 2017 dataset. The experiment analysis showed that it
achieves more than 98.5% accuracy. ADAM considers only static analy-
sis, so becomes easy to deploy in smart phone to alert the user. ADAM
is deployed over android mobile phone.

Keywords: Security · Malware detection · Android · Machine learning

1 Introduction

Nowadays the Android operating system has become the most popular platform
for smart devices. According to International Data Corporation (IDC) [1], the
market share of Android OS is 87.6%. Allowing developers to easily build appli-
cations with prominent features is the main reason behind its success. Google
Play Store is the official android application repository. It contains more than 2.8
million android applications [3]. Android app development is mainly done using
Java or Kotlin. Recently, Kotlin has been gaining a lot of popularity because
it is concise and has safer code as it helps in avoiding NullPointerException. It
is 100% interoperable with Java. Using these languages, developers can develop
highly efficient and attractive applications.

Due to the enormous success of Android, it has brought unwanted attention
of cybercriminals. They can decompile the original popular apps, inject mali-
cious code in them, and repack the apk using apksigner tool. This opens up
c© Springer Nature Switzerland AG 2022
P. Y. A. Ryan and C. Toma (Eds.): SecITC 2021, LNCS 13195, pp. 18–31, 2022.
https://doi.org/10.1007/978-3-031-17510-7_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-17510-7_2&domain=pdf
http://orcid.org/0000-0002-6964-2648
https://doi.org/10.1007/978-3-031-17510-7_2

ADAM: Automatic Detection of Android Malware 19

the possibility of several kinds of cyber-security attacks. According to a report
by Kaspersky [2], 3.6 lakh malicious files were detected on average in 2020.
Detecting fraudulent applications has become troublesome in recent years due
to increasing numbers of users and attackers.

Many static analysis based detection mechanisms [11,15] are proposed which
reverse engineers Android applications to identify malware. Also, many dynamic
analysis approaches [4,26] have been proposed. These approaches monitor the
data flow during the program execution to trace the behavior and detect android
malware. Each has its own advantages and limitations. Though dynamic analysis
based techniques are very potent in recognizing malicious venture, but monitor-
ing behaviour of apps during run-time would have significant overhead and can
not be implemented on non-flagship smartphones.

In this work, we present an effective Android malware detection technique
called ADAM (Automatic Detection of Android Malware) to identify the mali-
cious application. ADAM uses Androguard to extract features. For training pur-
poses the important features are extracted on the basis of minimum redundancy
and maximum relevance (MRMR). ADAM is modeled through a simple ANN
model with only 2-hidden layers, to make it suitable to deply as an Android App.
ADAM has been deployed in Andorid mobile, and observed that it requires only
17 MB storage. The major contributions of this work is as follows.

– Proposed a lightweight model ADAM for detecting Android malware.
– ADAM is trained with CICMalDroid 2020 Android Malware dataset and

tested for both CICMalDroid 2020 and CICMalDroid 2017 Android Malware
dataset. Performance analysis of the model is found to be more interesting. It
achieves more than 99.5% accuracy for unknown apps in CICMalDroid 2020
dataset while 98.52% for CICMalDroid 2017 dataset.

– ADAM model is deployed as an Android app in smart phone. It requires less
than 17MB of storage space.

The remaining part of this paper is organized as follows. Section 2 reviews
precisely the existing works. We propose an effective static analysis based mal-
ware detection (ADAM) in Sect. 3. The performance analysis of ADAM and
deployment results are presented in Sect. 4. Section 5 concludes the work.

2 Related Works

Researchers have proposed different types of solutions for android malware detec-
tion. Most of them are based on reinforcement learning [23], vulnerability detec-
tion [6], developer reviews [22] and machine learning [18].Static Analysis-based
approaches are more popular as it analyses the malicious behaviour of Android
apps without executing them. Enck et al. [10] proposed a static analysis-based
mechanism which used permissions to determine whether an application has
malicious intent. Tianchong et al. [11] generated a function call graph (FCG) for
each application from Android App PacKages (APKs). Using FCG, they cap-
tured the invocator-invocatee relationship at local neighborhoods, and they have

20 S. Tripathy et al.

used Semantic features such as byte code-based vertex typing, local topological
information to detect malicious applications. Honglei Hui et al. [13] al integrates
individual classifiers like Neural network (NN), Support vector machine (SVM),
and Random forest (RF), with a voting system to assign weights to each classi-
fier. Zhu et al. [27] presented an ensemble-based framework which uses rotation
matrix built by transforming features with PCA to detect malware. Mcgiff et al.
[17] presented RPackDroid a lightweight model to identify generic and trusted
file. It could able to classify ransomware using previously trained sample. Daniel
et al. [7] decompiled the .apk file and extracted features from the manifest file
and the .dex file. The authors designed an embedded vector space for extracted
features and performed classification using supervised learning. They could able
to create a model that was more accurate than a single classifier as a result of
this.

Dynamic analysis- based approaches perform analysis of an application dur-
ing run-time. Usually, observes CPU usage, battery usage, system calls invoca-
tion, memory usage, returned values, time intervals between successive system
calls, etc. to predict if the app contains malware. Burguera et al. [8] proposed a
mechanism for detecting malware by initiating and executing system calls in the
client-server architecture. Tam et al. [21] proposed a mechanism to capture infor-
mation gathered from dynamic analysis to simulate the malware behaviour. Moh.
K et al. [5] proposed DL-Droid, a deep learning algorithm that uses dynamic
analysis and state-full input generation to identify malicious Android applica-
tions. they equate the state-full input generation method’s classification accu-
racy and static analysis to the generally used stateless solution. Vitor et al. [4]
uses system calls and API functions call to analyze behavior of an application.
Haipeng et al. [9] considered inter-component communication and method call as
a feature to distinguish between benign and malicious apps without considering
system call, permissions and app resources. Zhao et al. [26] proposed a detection
mechanism using SVM-based classification. It analyses behavior of an applica-
tion during the run-time using abstract behavioral patterns, decoder binding
communication and system calls.

Various methods have been described for automatically analyzing android
apps to identify malicious intent, using machine learning and deep learning [16].
Glodek et al. [12] proposed a mechanism that used the random forest algorithm
with permissions, components, and native code as characteristics for detect-
ing malicious behaviour of Android applications. Santos et al. [20] trained ML
models using opcode sequence frequency of executable files to detect malicious
applications. Arp et al. [7] proposed mechanism to classify applications using
SVM algorithm. It uses application’s permissions, intents, and suspicious APIs.
Xiao et al. [24] uses co-occurrence matrix defined as a type of feature vector. This
matrix system is configured based on the call sequence and is then normalized
and finally transformed into a vector. This vector is used for detecting malicious
android apps. Gao et al. [11] created topological signatures of related apps using
function call graphs (FCGs) extracted from .apk files for detecting malware apps.
L. Zhao et al. [25] converted the Opcode configuration to a matrix vector, and

ADAM: Automatic Detection of Android Malware 21

converted a one-dimensional vector to a two-dimensional matrix, suitable for
later learning in deep neural networks, to detect malware.

3 ADAM: The Proposed Android Malware Detection

Monitoring behaviour of apps during run-time has significant overhead and can
not be implemented on non-flagship smartphones. In order to solve these prob-
lems, we propose an easy deployable and effective machine learning technique
called Automatic Detection of Android Malware ADAM. When a new applica-
tion is installed on user’s device, said application will be analysed by the ADAM
Android App and user will be alerted accordingly, about the probability of mali-
cious. ADAM is a lightweight tensorflowlite based ML model developed in 5
stages and deployed finally as depicted in Fig. 1. Detail of this ML-model is
discussed subsequently.

 Find all
unique

 Features
using

Androguard
tool

 (20020
feature)

Feature
reduc�on

using gene�c
algorithm

(3436
features)

 D

at
as

et

Convert Keras
model(ANN)
into
Tensorflow
lite model

Deploy
Tensorflow lite
Model in
Android app

 Train
ar�ficial
 neural
network

Fig. 1. Malware detection Android APP

3.1 Dataset

For training the model, we used CICMalDroid 2020 Android Malware dataset1,
which contains over 17,341 Android samples. These samples are of five differ-
ent categories: adware, banking malware, SMS malware, riskware, and benign.
11,598 out of 17,341 samples were considered as the rest are crashed due to
time-outs, faulty APK files, and memory allocation failures.

1 http://205.174.165.80/CICDataset/MalDroid-2020/Dataset/APKs/.

http://205.174.165.80/CICDataset/MalDroid-2020/Dataset/APKs/

22 S. Tripathy et al.

3.2 Feature-Set Extraction

Permissions and App components of an Android application are generally
directly linked with privacy and data leakage in smartphone system. There-
fore, we consider them in the analysis. Android applications contain a manifest
file called AndroidManifest.xml containing information related to the installa-
tion and later execution requirements of an application. Reverse engineering
programs like APKTool, Androguard, and dex2jar tool, can be used to extract
features from the manifest file. For each application, we ran Androguard tool
and used AnalyzeAPK (APK file) or AnalyzeDEX (on APK file) to load the
android application. We obtained three objects for each application, “a” APK
object, “d” an array of DalvikVMFormat objects, and “dx” an Analysis object.
All details about the APK, such as the package name, permissions, Android-
Manifest.xml, and assets, were contained within the APK object. Finally, using
a Python script, we read the apk file one by one and counted the number of
occurrences of the feature properties in each Android apk. Thus, extracted fea-
ture vector size of 20020. Table 1 shows the number of features in each category.

– Permissions: Android applications use permissions to ask for data and
actions which can be used to gain access to sensitive information about the
user, for example, the user’s contact information. Malicious applications con-
tain dangerous permissions, which leads to privacy leakage of android users.
For example, SEND SMS permission would allow a malicious app to send
SMS from the user’s device.

– App Component: Every application contains various types of components
like broadcast receivers, services, content providers, and activity. App com-
ponents can help in identifying malware. For example, the DroidFu family
shares the name of a particular service and uses these components to detect
malware.

• Activity: Identifying starting point of an application is required in order
to perform an in-depth study. A good way to identify the starting point
is to look for the main activity, which would be the default entry point.
It is launched whenever a user opens an app using its icon. Android apps
can have a lot of activities, each representing a different UI screen.

• Broadcast receivers: They let an app listen to intents and act on them,
making them perfect for creating event-driven applications. Malicious
apps tend to listen to a wide range of system-wide broadcast announce-
ments.

• Services: They are used for background tasks. Services work quietly,
modifying the sources of data and activities, initiating updates, and com-
municating intents. While programs are not running, they conduct certain
operations as well. Malicious apps use services to perform tasks without
the knowledge of the user.

• Content Providers: They are used to administer and maintain applica-
tion data, and they frequently communicate with SQL databases. They’re
also in charge of exchanging data outside of the app’s borders. A specific

ADAM: Automatic Detection of Android Malware 23

app’s Content Providers may be modified to enable access from other
apps, and the Content Providers revealed by other apps (Fig. 2).

Apk’s

Permissions
 (330)

Ac�vi�es
 (13669)

Receivers
 (2569)

Services
(2369)

Providers
 (307)

0 1 0 1 0…….1 0 1 1…….1 0 1 1 0…….1 0 0 1 0…….1 11 0 0…….1 0

Unique feature extrac�on from APK’s in each category
--

-- ---

-

--

--

-- ---

-

combine all selected feature (3437) for each category

Permissions
 (319)

Ac�vi�es
 (1932)

Receivers
 (514)

Services
 (364)

Providers
 (307)

Fig. 2. Multi-modal MRMR-based feature selection

3.3 MRMR-Based Feature Selection

As 5 different set of features are extracted, we used multi-modal feature extrac-
tion process to select maximum relevance and minimum redundant (MRMR
features as showed in Fig. 4.

Our MRMR-based feature selection algorithm is as depicted in Algorithm 1,
based on Genetic Algorithm (GA). And recombining them using natural genet-
ics operators. Mutations can also occur in the offspring. The first stage is to
generate and initialise the population’s individuals. As genetic algorithm is a
stochastic optimization approach, Individual genes are generally started at ran-
dom. Thereafter, each individual in the population is assigned with a fitness
value. We use f − test correlation quotient (Score(fi)) as a fitness operator to
pick the feature that has the most relevance to the target variable and the least
redundancy to the feature that was chosen in the previous iteration. (Score(fi))
can be defined as

24 S. Tripathy et al.

Score(fi) =
MaxRelevance

MinRedundancy
(1)

=
Relevance(f | target)
Redundancy(f | fprev)

(2)

The F-statistic or MaxRelevance between the feature and the target variable
is computed as the importance of a feature f at the ith iteration. The redundancy
is calculated as the average (Pearson correlation coefficient) correlation between
the variables that were chosen in the previous iteration.

Score(fi) =
F (f, target)

∑
fprev

| corr(f | fprev)
(3)

After completing the fitness score, the selection mechanism selects the indi-
viduals which would be used for computing the next generation. The Roulette
wheel, a stochastic sampling with replacement, is used as selection method to
select the individuals. This approach sets all of the participants on a roulette
wheel with regions proportionate to their fitness. The roulette wheel is then
spun, and the individuals are chosen at random. The corresponding individual
is selected for next recombination. Score(fi) is fitness score for individual i in
the population and its probability of being selected is

Prob(i) =
Score(fi)

∑N
j=1 Score(fj)

The crossover operator recombines the selected individuals to produce a new
population, after the selection operator picks half of the population. The uniform
crossover technique determines if each of the offspring’s characteristics is inher-
ited from parents. The crossover operator can produce offspring that seems to
be genetically identical to their parents. This could also result in a low-diversity
generation. By altering the value of particular characteristics in the offspring
at random, the mutation operator addresses this difficulty. The whole fitness
assignment, selection, recombination, and mutation process is repeated. At each
iteration the procedure checks the performance of the classification algorithm
using the best selected feature and it continues until the performance of the
model is stable. Top 5 features in each category with their FCQ score are sum-
marized in Table 1.

3.4 Training the Model

The proposed ANN architecture comprises with an input layer, two hidden lay-
ers, and an output (final) layer as shown in Fig. 3. Input dimension for the input
layer are set to the number of features in the input feature space and the number
of neurons in the hidden layer1 and, hidden layer2 is 6. The number of neurons
in final layer is configured to the number of desired output classes with a sigmoid
activation function. A supplementary bias unit initializes with a shape (6,) as

ADAM: Automatic Detection of Android Malware 25

Algorithm 1. Feature Selection using Genetic Algorithm

1: i ← 0
2: Initialize(populationi)
3: ComputeFitnesScore(populationi)
4: while repeat the procedure until stopping criteria met do
5: individuals ← RouletteWheel(population)
6: offSprings ← Crossover(individuals)
7: populationi+1 ← Mutation(offSprings)
8: computeFitnesScore(populationi+1)
9: i ← i + 1

10: end while
11: return fittest individual from populationi

12: function computeFitnesScore(population)
13: for each individual ∈ population do
14: maxRelevance ← relevance(f , target)
15: minRedundancy ← PearsonCorrelation(f , fprev)
16: score(fi) ← maxRelevance

minRedundancy

17: end for
18: end function

Table 1. Total number of extracted features and Selected Features

Sno Category No. of features extracted No. of features selected

1 Permissions 325 319

2 Activities 11952 1932

3 Broadcast receivers 2845 514

4 Services 3806 364

5 Content Providers 1092 307

Total 20020 3436

its input is present in both the hidden layer1 and hidden layers2. Every neuron
in a particular layer is associated with every other neuron in the next adjacent
layer (except the bias). The weight of the link joining the jth neuron in layer L
and the ith neuron in layer (L+1) is represented by Ω for each link.

The hidden layer1 receives the feature matrix X ∈ R11598×3436. This is due
to, 11598 Number of feature vectors in the given input matrix X with 3436
feature values in the provided feature space. Thus, each row corresponding to a
single feature vector with 3436 feature values.

Now input feature vector X is given to the hidden layer1 of ANN architec-
ture with the addition of bias(6,) value 0. As an output for the hidden layer1,
the weight matrix is A1 ∈ R3436×6. The hidden layer1 output is subsequently
generated using the ReLu activation function on the matrix A1. ReLU is a cost
function that outputs zero if the input is negative, which would resolve the van-
ishing gradient problem and allows the model to train faster and perform better.
The output of the hidden layer2 is represented by the weight matrix A2 ∈ R6×6.

26 S. Tripathy et al.

Table 2. Top 5 of feature that are used in our Sample in each category

Feature name Feature attribute FCQ score

Permissions com.android.vending.BILLING 776

android.permission.READ PHONE STATE 767

com.google.android.c2dm.permission.RECEIVE 722

android.permission.SYSTEM ALERT WINDOW 701

android.permission.SEND SMS 694

Activity com.google.android.gms.ads.AdActivity 11440

com.braintreepayments.api.threedsecure.ThreeDSecureWebViewActivity 10019

com.loopme.AdBrowserActivity 10012

com.google.android.gms.common.api.GoogleApiActivity 9995

com.yzurhfxi.oygjvkzq208596.BrowserActivity 9958

Services com.google.android.gms.measurement.AppMeasurementService 1079

ad.notify.NotificationService 1518

com.google.android.gms.rouse.Rouse 1475

com.parse.PushService 1450

com.google.android.gms.rouse.Rouse 1389

Receiver orp.frame.shuanet.abs.DataReciver 1984

com.google.ads.conversiontracking.InstallReceiver 1964

com.google.android.gms.measurement.AppMeasurementReceiver 1918

ad.notify.AutorunBroadcastReceiver 1873

com.stat.analytics.receiver.AnalyticsReceiver 1833

Providers com.google.firebase.provider.FirebaseInitProvider 275

com.google.android.gms.measurement.AppMeasurementContentProvider 266

com.igexin.download.DownloadProvider 253

com.duapps.ad.stats.DuAdCacheProvider 240

com.mingp.droidplugin.stub.ContentProviderStub 222

Hidden Layer1 Hidden layer2 Final layer

Bias1 Bias2

node1

node2

node3

node4

node5

node6

nodeA

nodeB

nodeC

 nodeD

nodeE

nodeF

nodeY

 A1(2561,6) A2(6,6) A3(6,1)

Input shape
(none,2561)

Predict
Probability
For new
sample

1

2

3

2561

..…
…

…
…

…
…

…
…

..

Fig. 3. Artificial neural network architecture

ADAM: Automatic Detection of Android Malware 27

After that, the matrix A2 ∈ R6×6 is fed into the neural network’s final layer.
The final layer weight matrix A3 ∈ R6×1 is obtained by applying the sigmoid
cost function to the matrix A2 at the final layer.

Back-propagation is the key to neural network training. The margin of error
from the previous epoch is used to fine-tune the weights of a neural network.
Fine-tuning weights reduce error over time and improves generalization of the
model, leading to greater performance. The sigmoid function is applied to the
output layer to predict probability of data samples.

4 Performance Analysis

Artificial Neural Network (ANN) Model is integrated with our Android app
as a TensorFlow Lite file. Applications from CICMalDroid 2020 were used for
training this model. The total dataset size was 11598 in which 9803 apps were
benign and 1795 apps were malicious. Feature size is 3436. We have used a
Sequential Neural Network with 2 hidden layers 6 nodes and relu activation
function. The output node has sigmoid activation function. We have used adam
optimatizer. The model was trained for 100 epochs with batch size 32. The data
has been spilt into two part (train and test) with ratio of 80:20 and trained
the model with 5 fold cross validation of batch size 32, and 100 epochs. Finally
evaluation is performed on the test set. We observed the model accuracy to be
99.50. Precision and recall are the most important phenomena that must be
considered to evaluate the model’s performance. It is observed that precision of
ADAM model is 1 and recall is 0.9910. F1-score for ANN model is 0.9953.

The Matthews correlation coefficient (MCC) determines the correlation
between true actual class and predicted class. MCC define from confusion matrix
groups (true positives (TP), false negatives (FN), true negatives (TN), and false
positives (FN).

MCC =
(TP × TN) − (FP × FN)

√
((TP + FN) × (TP + FP) × (TN + FN) × (TN + FP))

(4)

The MCC has a value between −1 to 1 for actual and predicted binary classifi-
cations. A coefficient of +1 denotes a perfect forecast when FP = 0 and FN =
0, a coefficient of 0 denotes a random prediction, and a coefficient of −1 signifies
total contradiction between prediction and observation when TP = 0 and TN =
0. In our methodology we achieve MCC is 0.9705 for CICAndMal2017 dataset
and 0.9902 for CICMalDroid 2020 dataset.

4.1 Discussion

We experimentally evaluated the performance of some recently proposed models.
Both the techniques proposed recently, by Arash et al. [14] and Honglei Hui et
al. [13] used CICAndMal2017 dataset. CICAndMal2017 dataset contains 1555
pieces of malware classified into four categories: adware, ransomware, scareware,

28 S. Tripathy et al.

and malware. The malign samples were from 42 different malware groups, com-
prising 416 apps, whereas the benign sample had 1139 applications and included
popular app genres including life, leisure, and social commerce.

So to compare our model with the these works, though we trained our
model with the CICMalDroid 2020 data set, we tested with the CICAndMal2017
dataset. The comparison is summarized in Table 3. The results show that our
proposed model ADAM performs better than that of others.

Table 3. Performance comparison

Author’s Dataset Loss Precision (%) Recall (%) F1-score (%) Accuracy (%)

Arash et al. [14] CIC-AndMal2017 85 88 86.47

Honglei Hui et al. [13] CIC-AndMal2017 95.24 96.35

Abir et al. [19] CIC-AndMal2017 0.20 93.36

Our Approach CIC-AndMal2020 0.040 1 99.10 99.53 99.50

Our Approach CIC-AndMal2017 0.067 98.15 99.10 98.61 98.52

4.2 Model Deployment

TensorFlow Lite is a high-quality, open-source deep learning bridge that trans-
forms a TensorFlow model into TensorFlow lite (TFLite) format. The TFLite
format model is effective and occupies less space. These characteristics make
TFLite models suitable for use on smartphone and smart devices. So, after train-
ing the Tensorflow model, the models is saved into a TFLite model. The saved
TFLite model serialises the model’s layout, weight vector, and training configu-
ration which is deployed.

The deployment process is as shown in Fig. 4. When we save the keras (Ten-
sorFlow) model, the computational procedure, activation functions, weights, and
biases are all saved as graphs. A 32-bit floating point number is used to save
activation functions, biases, and weights of the model. To optimize the TF lite
model we need to perform a quantization process. These parameters are quan-
tized by converting to integer from 32 bit floating point numbers which reduces
the size of the model and lower the latency, as well as power consumption.

We used Android PackageManager to extract features in ADAM Android
application. PackageManager can be used for retrieving several types of data
about an Android package. We use its getPackageInfo method to retrieve
permissions, services, content providers and receivers of the Android pack-
age under analysis. This information can be retrieved by passing certain
flags like GET PERMISSIONS, GET SERVICES, etc., to the PackageMan-
ager.getPackageInfo method. ADAM is deployed in Android-based smart phone.
Android App’s target SDK version is 30. Its minimum compatible SDK ver-
sion is 26. The whole app has been written in Kotlin programming language.
SQLite database is used for app database. The size of ADAM apk is 16.418 MB
(Megabyte). It has been tested on Google Pixel 3A, Samsung Galaxy S8, as
showed in the screenshot Fig. 5.

ADAM: Automatic Detection of Android Malware 29

Device CPU model
.tflite file

Tensor flow model
32 bit float number Tensor flow Model

Frozen graph
.pb file

Tensor flow Lite
8 bit float number

Hardware

Quantization
Training

EXPORT TRAIN

CONVERTING

Tensorflow Lite
Converter

Post Quantization
 training

COMPILE Deploy

Fig. 4. Deployment of ANN in smartphone

(a) benign (b) suspicious (c) malign

Fig. 5. Screenshot of deployed ADAM

5 Conclusion

This work proposed a static analysis based malware detection mechanism called
ADAM. The model used Androguard to extract feature and Genetic Algorithm
to select the important features based on maximum relevance and minimum
redundancy. ADAM is trained over CICAndMal2020 dataset and tested over
both CICAndMal2020 and CICAndMal2017 dataset. The accuracy is found to
be 99.5 and 98.5 respectively. Further, we created a user-friendly android app
and deployed over the smartphones. It requires only 16.4 MB storage space.

30 S. Tripathy et al.

References

1. The international data corporation IDC: smartphone OS market share, 2016 Q2
(2016). http://www.idc.com/prodserv/smartphone-os-market-share.jsp

2. Kaspersky: The number of new malicious files detected every day (2020). https://
www.kaspersky.com/about/press-releases/2020 the-number-of-new-malicious-
files-detected-every-day-increases-by-52-to-360000-in-2020

3. Number of android apps on google play. https://www.appbrain.com/stats/
number-of-android-apps. Accessed 30 Apr 2020

4. Afonso, V.M., de Amorim, M.F., Grégio, A.R.A., Junquera, G.B., de Geus, P.L.:
Identifying android malware using dynamically obtained features. J. Comput.
Virol. Hacking Tech. 11(1), 9–17 (2015)

5. Alzaylaee, M.K., Yerima, S.Y., Sezer, S.: DL-droid: deep learning based android
malware detection using real devices. Comput. Secur. 89, 101663 (2020)

6. Amankwah, R., Kudjo, P.K., Antwi, S.Y.: Evaluation of software vulnerability
detection methods and tools: a review. Int. J. Comput. Appl. 169(8), 22–7 (2017)

7. Arp, D., Spreitzenbarth, M., Hubner, M., Gascon, H., Rieck, K., Siemens, C.:
DREBIN: effective and explainable detection of android malware in your pocket.
In: Ndss, vol. 14, pp. 23–26 (2014)

8. Burguera, I., Zurutuza, U., Nadjm-Tehrani, S.: Crowdroid: behavior-based malware
detection system for android. In: Proceedings of the 1st ACM Workshop on Security
and Privacy in Smartphones and Mobile Devices, pp. 15–26 (2011)

9. Cai, H., Meng, N., Ryder, B., Yao, D.: DroidCat: effective android malware detec-
tion and categorization via app-level profiling. IEEE Trans. Inf. Forensics Secur.
14(6), 1455–1470 (2018)

10. Enck, W., et al.: TaintDroid: an information-flow tracking system for realtime
privacy monitoring on smartphones. ACM Trans. Comput. Syst. (TOCS) 32(2),
1–29 (2014)

11. Gao, T., Peng, W., Sisodia, D., Saha, T.K., Li, F., Al Hasan, M.: Android malware
detection via graphlet sampling. IEEE Trans. Mob. Comput. 18(12), 2754–2767
(2018)

12. Glodek, W., Harang, R.: Rapid permissions-based detection and analysis of mobile
malware using random decision forests. In: MILCOM 2013–2013 IEEE Military
Communications Conference, pp. 980–985. IEEE (2013)

13. Hui, H., Zhi, Y., Xi, N., Liu, Y.: A weighted voting framework for android app’s
vetting based on multiple machine learning models. In: Kuty�lowski, M., Zhang, J.,
Chen, C. (eds.) NSS 2020. LNCS, vol. 12570, pp. 63–78. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-65745-1 4

14. Lashkari, A.H., Kadir, A.F.A., Taheri, L., Ghorbani, A.A.: Toward developing a
systematic approach to generate benchmark android malware datasets and clas-
sification. In: 2018 International Carnahan Conference on Security Technology
(ICCST), pp. 1–7. IEEE (2018)

15. Li, D., Wang, Z., Xue, Y.: DeepDetector: android malware detection using deep
neural network. In: 2018 International Conference on Advances in Computing and
Communication Engineering (ICACCE), pp. 184–188. IEEE (2018)

16. Liu, K., Xu, S., Xu, G., Zhang, M., Sun, D., Liu, H.: A review of android malware
detection approaches based on machine learning. IEEE Access 8, 124579–124607
(2020)

17. McGiff, J., Hatcher, W.G., Nguyen, J., Yu, W., Blasch, E., Lu, C.: Towards multi-
modal learning for android malware detection. In: 2019 International Conference on
Computing, Networking and Communications (ICNC), pp. 432–436. IEEE (2019)

http://www.idc.com/prodserv/smartphone-os-market-share.jsp
https://www.kaspersky.com/about/press-releases/2020_the-number-of-new-malicious-files-detected-every-day-increases-by-52-to-360000-in-2020
https://www.kaspersky.com/about/press-releases/2020_the-number-of-new-malicious-files-detected-every-day-increases-by-52-to-360000-in-2020
https://www.kaspersky.com/about/press-releases/2020_the-number-of-new-malicious-files-detected-every-day-increases-by-52-to-360000-in-2020
https://www.appbrain.com/stats/number-of-android-apps
https://www.appbrain.com/stats/number-of-android-apps
https://doi.org/10.1007/978-3-030-65745-1_4

ADAM: Automatic Detection of Android Malware 31

18. Peiravian, N., Zhu, X.: Machine learning for android malware detection using per-
mission and API calls. In: 2013 IEEE 25th International Conference on Tools with
Artificial Intelligence, pp. 300–305. IEEE (2013)

19. Rahali, A., Lashkari, A.H., Kaur, G., Taheri, L., Gagnon, F., Massicotte, F.:
DIDroid: android malware classification and characterization using deep image
learning. In: 2020 the 10th International Conference on Communication and Net-
work Security, pp. 70–82 (2020)

20. Santos, I., Brezo, F., Ugarte-Pedrero, X., Bringas, P.G.: Opcode sequences as rep-
resentation of executables for data-mining-based unknown malware detection. Inf.
Sci. 231, 64–82 (2013)

21. Tam, K., Fattori, A., Khan, S., Cavallaro, L.: Copperdroid: automatic reconstruc-
tion of android malware behaviors. In: NDSS Symposium 2015, pp. 1–15 (2015)

22. Tan, D.J., Chua, T.W., Thing, V.L.: Securing android: a survey, taxonomy, and
challenges. ACM Comput. Surv. (CSUR) 47(4), 1–45 (2015)

23. Wu, C., Shi, J., Yang, Y., Li, W.: Enhancing machine learning based malware
detection model by reinforcement learning. In: Proceedings of the 8th International
Conference on Communication and Network Security, pp. 74–78 (2018)

24. Xiao, X., Xiao, X., Jiang, Y., Liu, X., Ye, R.: Identifying android malware with
system call co-occurrence matrices. Trans. Emerg. Telecommun. Technol. 27(5),
675–684 (2016)

25. Zhao, L., Li, D., Zheng, G., Shi, W.: Deep neural network based on android mobile
malware detection system using opcode sequences. In: 2018 IEEE 18th Interna-
tional Conference on Communication Technology (ICCT), pp. 1141–1147. IEEE
(2018)

26. Zhao, M., Ge, F., Zhang, T., Yuan, Z.: AntiMalDroid: an efficient SVM-based
malware detection framework for android. In: Liu, C., Chang, J., Yang, A. (eds.)
ICICA 2011. CCIS, vol. 243, pp. 158–166. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-27503-6 22

27. Zhu, H.J., You, Z.H., Zhu, Z.X., Shi, W.L., Chen, X., Cheng, L.: DroidDet: effective
and robust detection of android malware using static analysis along with rotation
forest model. Neurocomputing 272, 638–646 (2018)

https://doi.org/10.1007/978-3-642-27503-6_22
https://doi.org/10.1007/978-3-642-27503-6_22

Attack on the Common Prime Version
of Murru and Saettone’s RSA

Cryptosystem

Xiaona Zhang, Yang Liu, and Yu Chen(B)

National Computer Network Emergency Response Technical Team/Coordination
Center of China, Chaoyang, Beijing, China

paper2111@163.com

Abstract. In this paper, we study the security bounds of d for the
Common Prime version of Murru and Saettone’s RSA cyptosystem. We

show that this variant of RSA can be broken if d < N
3
2 − α

2 +ε, where
α = logN e, and ε is a small constant. By using Jochemsz and May’s

extended strategy, we improve this bound to δ < min{1, 7−2
√
3α+1
3

+ ε}.
Notice that if e is a full size exponent, the bound for d turns to be
d < N0.5695+ε. Compared with the bound of d in the classical Common

Prime RSA cryptosystem, that is d < N
1
4 (4+4γ−

√
13+20γ+4γ2), where

γ = logN g < 1
2
, and g = gcd(p−1

2
, q−1

2
), Murru and Saettone’s variant

should be used with more care. Our algorithms apply Coppersmith’s
method for solving trivariate polynomial equations.

Keywords: RSA · Common prime RSA · Coppersmith’s method ·
Lattices · LLL algorithm

1 Introduction

1.1 Background

The birth of public key cryptosystems solves the problem of key delivery, and
greatly promoted the development of cryptography and its applications. In 1978,
Rivest, Shamir and Adleman invented the most widely used public key cryptosys-
tem named RSA [19], whose security is based on the difficulty of factorizing large
integers. In this scheme, N = pq is the modulus, where p and q are unknown
large primes. φ(N) = (p − 1)(q − 1) is the Euler-totient function of N . The pub-
lic exponent e satisfies gcd(e, φ(N)) = 1, and d = e−1 mod φ(N) is the private
exponent. The ciphertext c is computed as c ≡ Me mod N . While decrypting,
one computes M ≡ cd mod N . In RSA cryptosystem, only N and e are public,
p, q, d, φ(N) are all secret information.

Coppersmith’s method to solve univariate modular polynomial [4] and bivari-
ate integer polynomial [3] enjoys prevalent cryptographic applications, such as

c© Springer Nature Switzerland AG 2022
P. Y. A. Ryan and C. Toma (Eds.): SecITC 2021, LNCS 13195, pp. 32–45, 2022.
https://doi.org/10.1007/978-3-031-17510-7_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-17510-7_3&domain=pdf
https://doi.org/10.1007/978-3-031-17510-7_3

Attack on the Common Prime Version 33

breaking the RSA cryptosystem as well as many of its variant schemes [1,5,10–
12,14–16,20,21,23,26], cracking the validity of the multi-prime Φ-hiding asu-
umptions [7,24], revealing the secret information of kinds of pseudorandom
generators [2,6,8], and analyzing the security of some homomorphic encryp-
tion schemes [25]. The essence of this famed algorithm is to find integer linear
combinations of polynomials which share a common root modulo a certain inte-
ger. These derived polynomials possess small coefficients and can be transformed
into ones holding true over integers. Thus one can extract the desired roots using
standard root-finding algorithms.

Common Prime RSA is a variant of RSA where primes p and q share a
large prime. In 2018, Murru and Saettone proposed a new RSA scheme [17]
based on a cubic Pell equation, where the public exponent e and the private
exponent d satisfy ed ≡ 1 mod (p2 + p + 1)(q2 + q + 1). Murru and Saettone
claimed that their new scheme can resist the classical small private attacks on
the RSA cryptosystem such as Wiener’s continued fraction attack. However,
several succeeding studies show different results. In 2021, Willy Susilo and Joseph
Tonien [22] showed a Wiener-type attack on this scheme which can recover the
secret key from the continued fraction constructed from public information. In
[27], Mence Zheng et al. proposed a lattice-based small private exponent attack
for d < N2−√

2. In the same year, Abderrahmane Nitaj et al. [18] carried out
classical attacks on this cryptosystem and showed that both Wiener’s attack
and the small inverse problem technique of Boneh and Durfee can be applied to
attack this new variant of RSA cryptosystem. In this paper, we study the security
of the Common Prime variant of Murru and Saettone’s RSA cryptosystem by
applying Coppersmith’s method.

1.2 Our Contributions

In this paper, we study the security bounds of d for the Common Prime version
of Murru and Saettone’s RSA cyptosystem [17]. We show that this variant of
RSA can be broken if d < N

3
2− α

2 +ε, where α = logN e, and ε is a small constant.
Further more, by using Jochemsz and May’s extended strategy, we improve this
bound to δ < min{1, 7−2

√
3α+1
3 + ε}. Notice that if e is a full size exponent,

that is α = 2, the bound for d turns to be d < N0.5695+ε. In [10], Jochemsz
and May discussed the unsafe bound for d in the classical Common Prime RSA
cryptosystem, which is d < N

1
4 (4+4γ−

√
13+20γ+4γ2), where γ = logN g < 1

2 . Our
work implies that Murru and Saettone’s RSA cyptosystem should be used with
much more care for choosing the private exponent.

1.3 Organization of the Paper

The rest of this paper is organized as follows. In Sect. 2, we recall some pre-
liminaries. Section 3 presents our main algorithm to attack the common prime
variant of Murru and Saettone’s RSA cyptosystem. Section 4 gives the improved
result by using Jochemsz and May’s extended strategy. In Sect. 5, we display
some experimental results. Section 6 is the conclusion.

34 X. Zhang et al.

2 Preliminaries

2.1 Murru and Saettone’s RSA Cryptosystem

Murru and Saettone’s RSA cryptosystem gives a novel definition of product
which arises from a cubic field connected to a cubic Pell equation. Let F be
a field and (t3 − r) be an irreducible polynomial in F[t]. Then each element in
the quotient field F[t]/(t3 − r) is of the form xt2 + yt + z where x, y, z ∈ F. The
product × between two elements x1t

2+y1t+z1 and x2t
2+y2t+z2 in F[t]/(t3−r)

is defined as
(x1, y2, z1) × (x2, y2, z2) = y1y2 + x1z2 + x2z1, z2y1 + z1y2 + rx1x2, z1z2 + (y2x1 + y1x2)r.

The norm of (x, y, z) ∈ F
3 is N(x, y, z) = r2x3 + ry3 + z3 − 3rxyz. Taking

into account the unitary elements, one can obtain the cubic Pell curve

C = {(x, y, x) ∈ F
3 : r2x3 + ry3 + z3 − 3rxyz = 1}.

Define A = F[t]/(t3 − r) and B = A
∗/F∗, then each element of B is in one of the

following three types, (f0 + f1t + t2)F∗, (f0 + t)F∗ and (1)F∗. Here we use the
notations (f0, f1), (f0, θ) and (θ, θ) to represent these three types respectively,
where θ /∈ F is a formal symbol. With the above notations, one can write the
multiplication � on B as follows:

– (f0, θ)� (f
′
0, θ) = (f0 + t)(f

′
0 + t) = f0f

′
0 + (f0 + f

′
0)t + t2 = (f0f

′
0, f0 + f

′
0)

– (f0, f1) � (f
′
0, θ) = (f0 + f1t + t2)(f

′
0 + t) = (f0f

′
0 + r) + (f0 + f1f

′
0)t +

(f1 + f
′
0)t

2

=

⎧
⎪⎪⎨

⎪⎪⎩

(f0f
′
0+r

f1+f
′
0

,
f0+f1f

′
0

f1+f
′
0

), if f1 + f
′
0 �= 0,

(f0f
′
0+r

f1+f
′
0

, θ), if f1 + f
′
0 = 0 and f0 + f1f

′
1 �= 0,

(θ, θ), if f1 + f
′
0 = 0 and f0 + f1f

′
0 = 0.

– (f0, f1)� (f
′
0, f

′
1) = (f0 +f1t+ t2)(f

′
0 +f

′
1t+ t2) = (f0f

′
0 +rf1 +rf

′
1)+(f0f

′
1 +

f1f
′
0 + r)t + (f0 + f1f

′
1 + f

′
0)t

2

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(
f0f

′
0+rf1+rf

′
1

f0+f1f
′
1+f

′
0

,
f0f

′
1+f1f

′
0+r

f0+f1f
′
1+f

′
0
), if f0 + f1f

′
1 + f

′
0 �= 0,

(
f0f

′
0+rf1+rf

′
1

f0f
′
1+f1f

′
0+r

, θ), if f0 + f1f
′
1 + f

′
0 = 0 and f0f

′
1 + f1f

′
1 + r �= 0,

(θ, θ), if f0 + f1f
′
1 + f

′
0 = 0 and f0f

′
1 + f1f

′
0 + r = 0.

Then (B,�) is a commutative group and (θ, θ) is the identity. When F is
chosen as Z/(p) and p is a prime number, then A is a Galois field with p3

elements and B is a cyclic group with the order of p3−1
p−1 = p2 + p + 1. Here we

use θ to denote ∞. For each (x, y) ∈ B, there is (x, y)�(p2+p+1) = (∞,∞). If we
choose two primes p and q and set N = pq and φ(N) = (p2 + p + 1)(q2 + q + 1),
we have an analogous equation of Euler’s theorem

(x, y)�φ(N) = (∞,∞) (modN).

Attack on the Common Prime Version 35

Murru and Saettone’s cryptosystem can be described as follows.

Key Generation

– Randomly choose two primes of the same bit size p and q.
– Compute the modulus N = pq.
– Randomly choose an integer e satisfying gcd(e, φ(N)) = 1, and a non-cubic

integer r in Zp, Zq and ZN .
– Compute the private key d for d is the inverse of e mod φ(N).
– Then the public encryption key is (N, e, r) and the corresponding private

decryption key is (p, q, d).

Encryption. For a pair of plaintexts (m1,m2) ∈ ZN , the encryption process is
calculated as

(c1, c2) = (m1,m2)�e mod N.

Decryption. Given a pair of ciphertexts (c1, c2) ∈ ZN , the plaintexts can be
recovered from

(m1,m2) = (c1, c2)�d mod N.

2.2 Lattice

Let b1, . . . ,bm be linear independent row vectors in R
n, a lattice L spanned by

them is

L =
{ m∑

i=1

kibi | ki ∈ Z

}

,

where {b1, . . . ,bm} is a basis of L and B = [b1
T , . . . ,bm

T]T is the correspond-
ing basis matrix. The dimension and determinant of L are respectively

dim(L) = m,det(L) =
√

det(BBT).

Reduced vectors possess much elegant properties, like short norm and the
orthogonality, thus, calculating the reduced basis of a given lattice is always a
hot topic. The reduced basis for a two-rank lattice can be easily obtained by the
Gauss algorithm. As for general lattices, the subsequently proposed reduction
definitions all have to make a choice between computational efficiency and good
reduction performances. The distinguished LLL algorithm takes a good balance,
outputting a basis reduced enough for many applications in polynomial time.

Lemma 1 ([13]). Let L be a lattice of dimension ω. In polynomial time, the
LLL algorithm outputs reduced basis vectors v1 . . .vω that satisfy

‖v1‖ ≤ · · · ≤ ‖vi‖ ≤ 2
ω(ω−1)

4(ω+1−i) det(L)
1

ω+1−i , 1 ≤ i ≤ ω.

In practice, it is widely known that the LLL−algorithm tends to output the
vectors whose norms are much smaller than theoretically predicted.

36 X. Zhang et al.

2.3 Finding Small Roots

In his seminal work [3] in 1996, Coppersmith described a method for finding small
roots of univariate modular polynomial equations in polynomial time based on
lattice basis reduction. Coppersmith showed that for a monic univariate poly-
nomial f(x) of degree d, one can find any root x0 of f(x) ≡ 0 (mod N) in
polynomial time if |x0| < N1/d. The essence of Coppersmith’s method is to find
integral linear combinations of polynomials which share a common root modulo
some integer such that the result has small coefficients. Construct a lattice by
defining a lattice basis via these polynomial’s coefficient vectors, and use lattice
basis reduction algorithms (like LLL−algorithm [13]), one may obtain a poly-
nomial with sufficiently small norm possessing the desired root over the integers
and one can then find the desired root using standard root-finding algorithms.
Howgrave-Graham [9] showed the condition to quantify the term sufficiently
small.

Lemma 2 ([9]). Let h(x1, ...xn) ∈ Z[x1, ...xn] be an integer polynomial that
consists of at most ω monomials, and N is an integer. Suppose that

1. h((x1)(0), ...(xn)(0)) ≡ 0 mod N for |(x1)(0)| ≤ X1, ..., |(xn)(0)| ≤ Xn, and
2. ‖h(x1X1, ...xnXn)‖ < N√

ω
.

Then h((x1)(0), ...(xn)(0)) = 0 holds over integers.

In Lemma 2 the norm of a polynomial f(x1, ..., xn) =
∑

ai1...in
x1

i1 ...xn
in

is the Euclidean norm of its coefficient vector ‖f(x1, ..., xn)‖2 :=
∑ |ai1...in

|2.
Combined with Lemma 1, the condition 2

ω(ω−1)
4(ω+1−i) det(L)

1
ω+1−i < N√

ω
implies

that the polynomials corresponding to the shortest i reduced basis vectors match
Howgrave-Graham’s bound. This reduces to

det(L) ≤ 2
−ω(ω−1)

4 (
1√
ω

)ω+1−iNω+1−i.

In our analyses, we use the following condition and let terms that do not depend
on N contribute to an error term ε.

det(L) ≤ Nω+1−i. (1)

3 Attack on the Common Prime Variant of Murru
and Saettone’s RSA Cryptosystem

In this section, we elaborate our algorithm for computing the security bound of
d on the common prime variant of Murru and Saettone’s RSA cryptosystem. We
describe our main result in the following theorem.

Theorem 1. Let N = pq be a RSA modulus, where p = 2ga+1 and q = 2gb+1
are of the same bit size and kept unknown. Here g is a large prime, and a, b

Attack on the Common Prime Version 37

are coprime integers. In Murru and Saettone’s variant RSA cryptosystem, the
exponents e and d are mutually inverse modulo φ(N) = (p2 + p + 1)(q2 + q + 1).
Supposing e = Nα, d = N δ, g = Nγ for some 1 < α < 3, δ > 0, 0 < γ < 1

2 ,
then a+b are of size N

1
2−γ . We get a trivariate modular polynomial f(x, y, z) =

4xy2z2 + Axyz + Bx + 1, where A = 2N + 10, B = N2 + N + 7. By solving
f(x, y, z) ≡ 0 mod e, one can find x, y, z in polynomial time if

d < N
3
2− α

2 +ε,

where ε is a small constant depending on m and N .

Proof. Let N = pq be a RSA modulus with balanced prime factors which share a
large prime such that p = 2ga + 1 and q = 2gb + 1, where g is a large prime, and
a, b are coprime integers. In Murru and Saettone’s variant RSA cryptosystem,
exponents e and d satisfy ed = 1 + K(p2 + p + 1)(q2 + q + 1), from which we can
derive the following equation.

ed = 1 + K(p2 + p + 1)(q2 + q + 1)

= 1 + K((N + 1)(p + q + 1) + N2 + (p + q)2 − 2N)

= 1 + K((N + 1)(2g(a + b) + 3) + N2 + (2g(a + b) + 2)2 − 2N).

By setting x = K, y = g, z = a + b, we have,

ed = 1 + x((N + 1)(2yz + 3) + N2 + (2yz + 2)2 − 2N)

= 1 + x(4y2z2 + (2N + 10)yz + N2 + N + 7).

Set A = 2N + 10, B = N2 + N + 7, we get

f(x, y, z) = 4xy2z2 + Axyz + Bx + 1 ≡ 0 mod e, (2)

we use the basic strategy of Jochemsz and May [10] to find the small modular
roots of it.

For 0 ≤ k ≤ m, define the set Mk := ∪{xi1yi2zi3 | xi1yi2zi3 is a

monomial of fm(x, y, z) and xi1yi2zi3

(xy2z2)k is a monomial of fm−k(x, y, z)}. Note
that xi1yi2zi3 is a monomial of fm(x, y, z) if

i1 = 0, ...,m; i2 = 0, ..., 2i1; i3 = i2,

then, xi1yi2zi3 is a monomial of fm−k(x, y, z) if

i1 = 0, ...,m − k; i2 = 0, ..., 2i1; i3 = i2.

It follows that, if xi1yi2zi3 is a monomial of fm(x, y, z) as well as xi1yi2zi3

(xy2z2)k is a
monomial of fm−k(x, y, z) if

i1 = k, ...,m; i2 = 2k, ..., 2i1; i3 = i2.

38 X. Zhang et al.

Hence, the set Mk of monomials can be constructed as Mk = {xi1yi2zi3 | i1 =
k, ...,m; i2 = 2k, ..., 2i1; i3 = i2}. Similarly, we get Mk+1 = {xi1yi2zi3 | i1 =
k + 1, ...,m; i2 = 2k + 2, ..., 2i1; i3 = i2}. Then xi1yi2zi3 ∈ Mk\Mk+1 if

i1 = k; i2 = 2k, ..., 2i1; i3 = i2, or i1 = k + 1, ...,m; i2 = 2k, 2k + 1; i3 = i2.

For 0 ≤ k ≤ m, we construct shifting polynomials gk,i1,i2,i3(x, y, z) which share
same roots modulo em as f(x, y, z) ≡ 0 mod e.

gk,i1,i2,i3(x, y, z) :=
xi1yi2zi3

(xy2z2)k
fkem−k with xi1yi2zi3 ∈ Mk\Mk+1.

That is

gk,i1,i2,i3(x, y, z) =
xi1yi2zi3

(xy2z2)k
fkem−k,

where i1 = k; i2 = 2i1; i3 = i2 for k = 0, ...,m, or i1 = k + 1, ...,m; i2 =
2k, 2k +1; i3 = i2 for k = 0, ...,m−1. We take the coefficients of g(xX, yY, zZ)
as basis to build our lattice L, where X, Y , Z are positive integers satisfying

X = Nα+δ−2, Y = Nγ , Z = N
1
2−γ .

Here the bound X for k is calculated from the following equations,

k =
ed − 1
φ(N)

=
ed − 1

(p2 + p + 1)(q2 + q + 1)
<

ed − 1
N2

< Nα+δ−2.

We sort polynomials gk,i1,i2,i3(x, y, z) and gk′ ,i1
′
,i2

′
,i3

′ (x, y, z) according to the

lexicographical order of (k, i1, i2, i3) and (k
′
, i1

′
, i2

′
, i3

′
). In this way, we can

ensure that each of our shifting polynomials introduces one and only one new
monomial, which gives a lower triangular structure for L. We present an example
for m = 3 in Table 1. Then the determinant of L can be easily calculated as the
entries on the diagonal as det(L) = 4SXSX Y SY ZSZ eSe as well as its dimension
ω. For convenience, we define

F (x) =
m∑

k=0

∑

i1=k

∑

i2=2k

∑

i3=i2

x +
m−1∑

k=0

m∑

i1=k+1

2k+1∑

i2=2k

∑

i3=i2

x,

then we have,

ω = F (1) = m2 + 2m + 1 = m2 + o(m2).

S = F (k) =
1
3
m3 +

1
2
m2 +

1
6
m =

1
3
m3 + o(m3).

SX = F (i1) =
2
3
m3 +

3
2
m2 +

5
6
m =

2
3
m3 + o(m3).

SY = F (i2) =
2
3
m3 +

3
2
m2 +

5
6
m =

2
3
m3 + o(m3).

SZ = F (i3) =
2
3
m3 +

3
2
m2 +

5
6
m =

2
3
m3 + o(m3).

Se = F (m − k) =
2
3
m3 +

3
2
m2 +

5
6
m =

2
3
m3 + o(m3).

Attack on the Common Prime Version 39

In order to combine the LLL reduction algorithm and Howgrave-Graham’s
lemma for i = 3, we need

2
ω(ω−1)

4(ω+1−3) det(L)
1

ω+1−3 <
em

√
ω

.

Put the values of S, SX , SY , SZ , Se, ω as well as X = Nα+δ−2, Y = Nγ ,
Z = N

1
2−γ , e = Nα into the above inequality, after some basic calculations, we

get

δ <
3
2

− α

2
+ ε,

where ε is a small constant depending on m and N . Since 0 < k < Nα+δ−2, we
need α + δ > 2, which calls for α + 3

2 − α
2 + ε > 2, that gives to α > 1. As for

δ, we need δ > 0, this gives to α < 3. Using three vectors in the LLL reduced
basis, we form three polynomials G1(x, y, z), G2(x, y, z), G3(x, y, z) satisfying
G1(x, y, z) = G2(x, y, z) = G3(x, y, z) = 0. Assuming the above polynomials
are algebraically independent, we apply resultant techniques or Gröbner basis
method to find the solution (x, y, z). This terminates the proof. ��

4 Extended Attack on the Common Prime Variant
of Murru and Saettone’s RSA Cryptosystem

In this section, we improve our attack result by using the extended strategy
of Jochemsz and May [10]. We describe our improved result in the following
theorem.

Theorem 2. Let N = pq be a RSA modulus, where p = 2ga+1 and q = 2gb+1
are of the same bit size and kept unknown. Here g is a large prime, and a, b
are coprime integers. In Murru and Saettone’s variant RSA cryptosystem, the
exponents e and d are mutually inverse modulo φ(N) = (p2 + p + 1)(q2 + q + 1).
Supposing e = Nα, d = N δ, g = Nγ for some 1 < α < 15

4 , δ > 0, 0 < γ < 1
2 ,

then a+b are of size N
1
2−γ . We get a trivariate modular polynomial f(x, y, z) =

4xy2z2 + Axyz + Bx + 1, where A = 2N + 10, B = N2 + N + 7. By solving
f(x, y, z) ≡ 0 mod e, one can find x, y, z in polynomial time if

δ < min{1,
7 − 2

√
3α + 1

3
+ ε},

where ε is a small negative constant depending on m and N .

Proof. According to Theorem 1, our analysis is reduced to solving Eq. 2,

f(x, y, z) = 4xy2z2 + Axyz + Bx + 1 ≡ 0 mod e.

we use the extended strategy of Jochemsz and May [10] to find the small modular
roots of it.

40 X. Zhang et al.

T
a
b
le

1
.

E
x
a
m

p
le

o
f

th
e

la
tt

ic
e

fo
rm

ed
b
y

v
ec

to
rs

g k
,i
1
,i
2
,i
3
(x

X
,y

Y
,z

Z
)

w
h
en

m
=

3
.
T

h
e

u
p
p
er

tr
ia

n
g
u
la

r
p
a
rt

o
f

th
is

m
a
tr

ix
is

a
ll

ze
ro

,
so

o
m

it
te

d
h
er

e.

1
x

x
y
z

x
2

x
2
y
z

x
3

x
3
y
z

x
y
2
z
2

x
2
y
2
z
2

x
2
y
3
z
3

x
3
y
2
z
2

x
3
y
3
z
3

x
2
y
4
z
4

x
3
y
4
z
4

x
3
y
5
z
5

x
3
y
6
z
6

g
0
,0

,0
,0

e
3

g
0
,1

,0
, 0

X
e
3

g
0
,1

,1
,1

X
Y

Z
e
3

g
0
,2

,0
, 0

X
2
e
3

g
0
,2

,1
,1

X
2
Y

Z
e
3

g
0
,3

,0
,0

X
3
e
3

g
0
,3

,1
,1

X
3
Y

Z
e
3

g
1
,1

,2
,2

e
2

B
X

e
2

A
X

Y
Z

e
2

4
X

Y
2
Z

2
e
2

g
1
,2

,2
,2

X
e
2

B
X

2
e
2

A
X

Y
Z

e
2

4
X

2
Y

2
Z

2
e
2

g
1
,2

,3
,3

X
Y

Z
e
2

B
X

2
Y

Z
e
2

A
X

2
Y

2
Z

2
e
2

4
X

2
Y

3
Z

3
e
2

g
1
,3

,2
,2

X
2
e
2

B
X

3
e
2

A
X

3
Y

Z
e
2

4
X

3
Y

2
Z

2
e
2

g
1
,3

,3
,3

X
2
Y

Z
e
2

B
X

3
Y

Z
e
2

A
X

3
Y

2
Z

2
e
2

4
X

3
Y

3
Z

3
e
2

g
2
,2

,4
,4

e
2
B

X
e

2
A

X
Y

Z
e

B
2
X

2
e

2
A

B
X

2
Y

Z
e

8
X

Y
2
Z

2
e

(A
2

+
8
B

)X
2
Y

2
Z

2
e

8
A

X
2
Y

3
Z

3
e

1
6
X

2
Y

4
Z

4
e

g
2
,3

,4
,4

X
e

2
B

X
2
e

2
A

X
2
Y

Z
e

B
2
X

3
e

2
A

B
X

3
Y

Z
e

8
X

2
Y

2
Z

2
e

(A
2

+
8
B

)X
3
Y

2
Z

2
e

8
A

X
3
Y

3
Z

3
e

1
6
X

3
Y

4
Z

4
e

g
2
,3

,5
,5

X
Y

Z
e

2
B

X
2
Y

Z
B

2
X

3
Y

Z
e

2
A

X
2
Y

2
Z

2
e

8
X

2
Y

3
Z

3
e

2
A

B
X

3
Y

2
Z

2
e

(A
2

+
8
B

)X
3
Y

3
Z

3
e

8
A

X
3
Y

4
Z

4
e

1
6
X

3
Y

5
Z

5
e

g
3
,3

,6
,6

1
3
B

X
3
A

X
Y

Z
3
B

2
X

2
6
A

B
X

2
Y

Z
B

3
X

3
3
A

B
2
X

3
Y

Z
1
2
X

Y
2
Z

2
(3

A
2

+
2
4
B

)X
2
Y

2
Z

2
2
4
A

X
2
Y

3
Z

3
(3

A
2
B

+
1
2
B

2
)X

3
Y

2
Z

2
(A

3
+

2
4
A

B
)X

3
Y

3
Z

3
4
8
X

2
Y

4
Z

4
(1

2
A

2
+

4
8
B

)X
3
Y

4
Z

4
4
8
A

X
3
Y

5
Z

5
6
4
X

3
Y

6
Z

6

Attack on the Common Prime Version 41

Let m and t = τm be positive integers, where 0 ≤ τ ≤ 1 will be optimized
later. For 0 ≤ k ≤ m, define the set

M
′
k :=

⋃

0≤j≤t

{xi1yi2+jzi3 | xi1yi2zi3 is a monomial of fm(x, y, z) and
xi1yi2zi3

(xy2z2)k

is a monomial of fm−k(x, y, z)}.

Note that xi1yi2zi3 is a monomial of fm(x, y, z) if

i1 = 0, ...,m; i2 = 0, ..., 2i1; i3 = i2,

then, xi1yi2zi3 is a monomial of fm−k(x, y, z) if

i1 = 0, ...,m − k; i2 = 0, ..., 2i1; i3 = i2.

It follows that, if xi1yi2zi3 is a monomial of fm(x, y, z) as well as xi1yi2zi3

(xy2z2)k is a
monomial of fm−k(x, y, z) if

i1 = k, ...,m; i2 = 2k, ..., 2i1; i3 = i2.

Hence, the set M
′
k of monomials can be constructed as

M
′
k = {xi1yi2zi3 | i1 = k, ...,m; i2 = 2k, ..., 2i1 + t; i3 = i2}.

Similarly, we get

M
′
k+1 = {xi1yi2zi3 | i1 = k + 1, ...,m; i2 = 2k + 2, ..., 2i1 + t; i3 = i2}.

Then xi1yi2zi3 ∈ M
′
k\M

′
k+1 if

i1 = k; i2 = 2k, ..., 2i1 + t; i3 = i2, or i1 = k + 1, ...,m; i2 = 2k, 2k + 1; i3 = i2.

For 0 ≤ k ≤ m, we construct shifting polynomials g
′
k,i1,i2,i3

(x, y, z) which share
same roots modulo em as f(x, y, z) ≡ 0 mod e.

g
′
k,i1,i2,i3(x, y, z) :=

xi1yi2zi3

(xy2z2)k
fkem−k with xi1yi2zi3 ∈ M

′
k\M

′
k+1.

That is

g
′
k,i1,i2,i3(x, y, z) =

xi1yi2zi3

(xy2z2)k
fkem−k,

where i1 = k; i2 = 2k, ..., 2i1 + t; i3 = i2 for k = 0, ...,m, or i1 = k +
1, ...,m; i2 = 2k, 2k + 1; i3 = i2 for k = 0, ...,m − 1. We take the coefficients
of g

′
(xX, yY, zZ) as basis to build our lattice L′

, where X, Y , Z are positive
integers satisfying

X = Nα+δ−2, Y = Nγ , Z = N
1
2−γ .

42 X. Zhang et al.

We sort polynomials g
′
k,i1,i2,i3

(x, y, z) and g
′

k′ ,i1
′
,i2

′
,i3

′ (x, y, z) according to the

lexicographical order of (k, i1, i2, i3) and (k
′
, i1

′
, i2

′
, i3

′
). In this way, we can

ensure that each of our shifting polynomials introduces one and only one new
monomial, which gives a lower triangular structure for L′

. Then the determi-
nant of L′

can be easily calculated as the entries on the diagonal as det(L′
) =

4S
′
XS

′
X Y S

′
Y ZS

′
Z eS

′
e as well as its dimension ω

′
. For convenience, we define

F
′
(x) =

m∑

k=0

∑

i1=k

2i1+t∑

i2=2k

∑

i3=i2

x +
m−1∑

k=0

m∑

i1=k+1

2k+1∑

i2=2k

∑

i3=i2

x,

then we have
ω

′
= F

′
(1) = (τ + 1)m2 + o(m2),

S
′
= F

′
(k) = (

τ

2
+

1
3
)m3 + o(m3),

S
′
X = F

′
(i1) = (

τ

2
+

2
3
)m3 + o(m3),

S
′
Y = F

′
(i2) = (

τ2

2
+ τ +

2
3
)m3 + o(m3),

S
′
Z = F

′
(i3) = (

τ2

2
+ τ +

2
3
)m3 + o(m3),

S
′
e = F

′
(m − k) = (

τ

2
+

2
3
)m3 + o(m3).

In order to combine the LLL reduction algorithm and Howgrave-Graham’s
lemma for i = 3, we need

2
ω

′
(ω

′ −1)

4(ω
′+1−3) det(L′

)
1

ω
′+1−3 <

em

√
ω′ .

Put the values of S
′
, S

′
X , S

′
Y , S

′
Z , S

′
e, ω

′
as well as X = Nα+δ−2, Y = Nγ ,

Z = N
1
2−γ , e = Nα into the above inequality, after some basic calculations, we

get
1
4
τ2 +

δ − 1
2

τ +
1
3
α +

2
3
δ − 1 ≤ 0 + ε,

where ε is a small negative constant depending on m and N . When τ = 1 − δ,
the left part of the above inequality reaches the optimal value. Setting τ = 1−δ,
then we have,

3δ2 − 14δ − 4α + 15 ≥ 0 + ε,

where ε is a small negative constant depending on m and N . Solving this inequal-
ity, there is,

δ ≥ 7 + 2
√

3α + 1
3

+ ε, or δ ≤ 7 − 2
√

3α + 1
3

+ ε.

Since τ ≥ 0, the bound for δ is,

δ < min{1,
7 − 2

√
3α + 1

3
+ ε}1.

Attack on the Common Prime Version 43

Since 0 < k < Nα+δ−2, we need α + δ > 2, which calls for α + 3
2 − α

2 + ε > 2,
this gives to α > 1. As for δ, we need δ > 0, which calls for 7 − 2

√
3α + 1 > 0,

this gives to α < 15
4 . Notice that for α = 2, the above bound turns to be

δ < 0.5695 + ε, which is wider than the bound δ < 0.5 + ε in Theorem 1.
Using three vectors in the LLL reduced basis, we form three polynomi-

als G1(x, y, z), G2(x, y, z), G3(x, y, z) satisfying G1(x, y, z) = G2(x, y, z) =
G3(x, y, z) = 0. Assuming the above polynomials are algebraically independent,
we apply resultant techniques or Gröbner basis method to find the solution
(x, y, z). This terminates the proof.

��
Remark 1. Notice that in Abderrahmane Nitaj et al.’s work [18], they achieve
the same bound for d when carrying out the small exponent attack on Murru
and Saettone’s RSA cryptosystem, where they reduced the analysis to solving a
bivariate modular equation. In our work, we study the case when p and q share
a large common prime, and the core part of our attack is solving a trivariate
modular equation.

5 Experimental Results

We implement the above analyses with LLL algorithm in the Magma free online
calculator distributed by the Computational Algebra Group, School of Math-
ematics and Statistics, University of Sydney. In this online Magma calculator,
calculations are restricted to 120 s, which places restrictions on the size of N and
δ. We display some experimental results in the following Table 2.

Table 2. Experimental results for Theorem 1

N(bits) e(bits) δ m ω LLL(seconds)

255 509 0.4194 9 100 5.190

512 1022 0.4517 11 144 61.370

510 1016 0.4530 11 144 60.850

400 799 0.4536 12 169 82.610

254 503 0.4547 13 196 79.110

218 433 0.4567 13 196 65.710

216 426 0.4624 13 196 64.040

6 Conclusion

In this paper, we analyze the security bounds of the private exponent for the
Common Prime version of Murru and Saettone’s RSA cryptosystem. Our anal-
yses show that if d < N

3
2− α

2 +ε, where α = logN e, and ε is a small constant, the

44 X. Zhang et al.

Common Prime version of Murru and Saettone’s RSA cryptosystem is no longer
safe. Further more, by using Jochemsz and May’s extended strategy, we improve
this bound to δ < min{1, 7−2

√
3α+1
3 + ε}. Notice that if e is a full size exponent,

that is α = 2, the bound for d turns to be d < N0.5695+ε. In [10], Jochemsz
and May discussed the unsafe bound of d in the classical Common Prime RSA
cryptosystem, which is d < N

1
4 (4+4γ−

√
13+20γ+4γ2), where γ = logN g < 1

2 . This
result implies that Murru and Saettone’s variant RSA cryptosystem needs larger
private exponents compared with classical RSA cryptosystem in the Common
Prime situation to resist the LLL reduced basis attack. We would like to express
our sincere thanks for the anonymous reviewers, who give a lot of kind and
thought-provoking suggestions to improve our paper.

References

1. Aono, Y.: A new lattice construction for partial key exposure attack for RSA. In:
Jarecki, S., Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443, pp. 34–53. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-00468-1 3

2. Bauer, A., Vergnaud, D., Zapalowicz, J.-C.: Inferring sequences produced by non-
linear pseudorandom number generators using coppersmith’s methods. In: Fischlin,
M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 609–626.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-30057-8 36

3. Coppersmith, D.: Finding a small root of a bivariate integer equation; factoring
with high bits known. In: Maurer, U. (ed.) EUROCRYPT 1996. LNCS, vol. 1070,
pp. 178–189. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68339-
9 16

4. Coppersmith, D.: Finding a small root of a univariate modular equation. In: Mau-
rer, U. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 155–165. Springer, Heidel-
berg (1996). https://doi.org/10.1007/3-540-68339-9 14

5. Coppersmith, D.: Small solutions to polynomial equations, and low exponent RSA
vulnerabilities. J. Cryptol. 10(4), 233–260 (1997)

6. Gómez-Pérez, D., Gutierrez, J., Ibeas, Á.: Attacking the pollard generator. IEEE
Trans. Inf. Theory 52(12), 5518–5523 (2006)

7. Herrmann, M.: Improved cryptanalysis of the multi-prime ϕ - hiding assumption.
In: Nitaj, A., Pointcheval, D. (eds.) AFRICACRYPT 2011. LNCS, vol. 6737, pp.
92–99. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21969-6 6

8. Herrmann, M., May, A.: Attacking power generators using unravelled linearization:
when do we output too much? In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS,
vol. 5912, pp. 487–504. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-10366-7 29

9. Howgrave-Graham, N.: Finding small roots of univariate modular equations revis-
ited. In: Darnell, M. (ed.) Cryptography and Coding 1997. LNCS, vol. 1355, pp.
131–142. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0024458

10. Jochemsz, E., May, A.: A strategy for finding roots of multivariate polynomials
with new applications in attacking RSA variants. In: Lai, X., Chen, K. (eds.)
ASIACRYPT 2006. LNCS, vol. 4284, pp. 267–282. Springer, Heidelberg (2006).
https://doi.org/10.1007/11935230 18

11. Kakvi, S.A., Kiltz, E., May, A.: Certifying RSA. In: Wang, X., Sako, K. (eds.)
ASIACRYPT 2012. LNCS, vol. 7658, pp. 404–414. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-34961-4 25

https://doi.org/10.1007/978-3-642-00468-1_3
https://doi.org/10.1007/978-3-642-30057-8_36
https://doi.org/10.1007/3-540-68339-9_16
https://doi.org/10.1007/3-540-68339-9_16
https://doi.org/10.1007/3-540-68339-9_14
https://doi.org/10.1007/978-3-642-21969-6_6
https://doi.org/10.1007/978-3-642-10366-7_29
https://doi.org/10.1007/978-3-642-10366-7_29
https://doi.org/10.1007/BFb0024458
https://doi.org/10.1007/11935230_18
https://doi.org/10.1007/978-3-642-34961-4_25

Attack on the Common Prime Version 45

12. Kiltz, E., O’Neill, A., Smith, A.: Instantiability of RSA-OAEP under chosen-
plaintext Attack. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 295–313.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14623-7 16

13. Lenstra, H., Lenstra, A.K., Lovász, L.: Factoring polynomials with rational coeffi-
cients (1982)

14. May, A.: New RSA vulnerabilities using lattice reduction methods. Ph.D. thesis,
University of Paderborn (2003)

15. May, A.: Secret exponent attacks on RSA-type schemes with moduli N = prq.
In: Bao, F., Deng, R., Zhou, J. (eds) PKC 2004. LNCS, vol. 2947, pp. 218-230.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24632-9 16

16. May, A.: Using LLL-reduction for solving RSA and factorization problems. In:
Nguyen, P.Q., Vallée, B. (eds.) The LLL Algorithm - Survey and Applications.
Information Security and Cryptography, pp. 315–348. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-02295-1 10

17. Murru, N., Saettone, F.M.: A novel RSA-like cryptosystem based on a generaliza-
tion of the Rédei rational functions. In: Kaczorowski, J., Pieprzyk, J., Pomyka�la,
J. (eds.) NuTMiC 2017. LNCS, vol. 10737, pp. 91–103. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-76620-1 6

18. Nitaj, A., Ariffin, M.R.B.K., Adenan, N.N.H., Abu, N.A.: Classical attacks on a
variant of the RSA cryptosystem. In: Longa, P., Ràfols, C. (eds.) LATINCRYPT
2021. LNCS, vol. 12912, pp. 151–167. Springer, Cham (2021). https://doi.org/10.
1007/978-3-030-88238-9 8

19. Rivest, R.L., Shamir, A., Adleman, L.M.: A method for obtaining digital signatures
and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)

20. Sarkar, S.: Reduction in lossiness of RSA trapdoor permutation. In: Bogdanov,
A., Sanadhya, S. (eds.) SPACE 2012. LNCS, vol. 7644, pp. 144–152. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-34416-9 10

21. Sarkar, S., Maitra, S.: Cryptanalysis of RSA with two decryption exponents. Inf.
Process. Lett. 110(5), 178–181 (2010)

22. Susilo, W., Tonien, J.: A wiener-type attack on an RSA-like cryptosystem con-
structed from cubic Pell equations. Theor. Comput. Sci. 885, 125–130 (2021)

23. Takayasu, A., Kunihiro, N.: How to generalize RSA cryptanalyses. In: Cheng, C.-
M., Chung, K.-M., Persiano, G., Yang, B.-Y. (eds.) PKC 2016. LNCS, vol. 9615,
pp. 67–97. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49387-
8 4

24. Tosu, K., Kunihiro, N.: Optimal bounds for multi-prime Φ-hiding assumption. In:
Susilo, W., Mu, Y., Seberry, J. (eds.) ACISP 2012. LNCS, vol. 7372, pp. 1–14.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31448-3 1

25. van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully homomorphic
encryption over the integers. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS,
vol. 6110, pp. 24–43. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-13190-5 2

26. Zheng, M., Hu, H.: Cryptanalysis of prime power RSA with two private exponents.
Sci. China Inf. Sci. 58(11), 1–8 (2015)

27. Zheng, M., Kunihiro, N., Yao, Y.: Cryptanalysis of the RSA variant based on cubic
Pell equation. Theor. Comput. Sci. 889, 135–144 (2021)

https://doi.org/10.1007/978-3-642-14623-7_16
https://doi.org/10.1007/978-3-540-24632-9_16
https://doi.org/10.1007/978-3-642-02295-1_10
https://doi.org/10.1007/978-3-319-76620-1_6
https://doi.org/10.1007/978-3-030-88238-9_8
https://doi.org/10.1007/978-3-030-88238-9_8
https://doi.org/10.1007/978-3-642-34416-9_10
https://doi.org/10.1007/978-3-662-49387-8_4
https://doi.org/10.1007/978-3-662-49387-8_4
https://doi.org/10.1007/978-3-642-31448-3_1
https://doi.org/10.1007/978-3-642-13190-5_2
https://doi.org/10.1007/978-3-642-13190-5_2

Identification of Data Breaches
from Public Forums

Md. Akhtaruzzaman Adnan1 , Atika Younus1 , Md. Harun Al Kawser1 ,
Natasha Adhikary1 , Ahsan Habib2 , and Rakib Ul Haque3(B)

1 Department of Computer Science and Engineering, University of Asia Pacific,
Dhaka 1205, Bangladesh

adnan.cse@uap-bd.edu
2 Indetechs Software Limited, House: 31, Road: 20,

Block: K, Banani, 1212 Dhaka, Bangladesh
habib@indetechs.com

3 School of Computer Science & Technology,
University of Chinese Academy of Sciences,, Shijingshan Beijing 100049, China

rakibulhaqueraj@mails.ucas.ac.cn

Abstract. Adversaries initiate their cyberattacks towards different enti-
ties such as healthcare or business institutes, and a successful attack
causes data breaches. They publish their success stories in public forums
for ranking purposes. The victim entities can be informed early about
the data breach event if these forums are analyzed properly. Though
few studies already focused on this sector, their data sets and codes
are not public. Most importantly, the sources of their data sets do not
exist today, which makes their novelty unclear and unreliable. To address
and handle the above concerns, this study reinvestigates this domain
with Machine Learning, Ensemble Learning, and Deep Learning. A web
crawler is developed for downloading the dataset from the public forum
of Nulled website. Feature extraction is done using TF-IDF and GloVe.
Performance analysis showed that SVM achieved at most 90.80% accu-
racy with linear kernel. Implementations are published with a GitHub
link.

Keywords: Data breaches · Underground forums · Public forums ·
Machine learning · Ensemble learning · Deep learning · Text
classification

1 Introduction

The internet has become a part of our daily life. The growth of the internet
is rapid, so does the privacy and security concerns as internet users do not
understand the impact of their actions on the security of their data such as at
the time of posting a video or picture, name, email address, mobile number, and

This research work is supported by University of Asia Pacific.
A. Younus, M. H. Al Kawser and N. Adhikary—All of them contributed equally.

c© Springer Nature Switzerland AG 2022
P. Y. A. Ryan and C. Toma (Eds.): SecITC 2021, LNCS 13195, pp. 46–56, 2022.
https://doi.org/10.1007/978-3-031-17510-7_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-17510-7_4&domain=pdf
http://orcid.org/0000-0003-4137-0844
http://orcid.org/0000-0003-2197-3808
http://orcid.org/0000-0002-2169-7631
http://orcid.org/0000-0001-6881-3751
http://orcid.org/0000-0001-7109-7653
http://orcid.org/0000-0002-4570-0946
https://doi.org/10.1007/978-3-031-17510-7_4

Identification of Data Breaches from Public Forums 47

so on [1]. Recently, the data breaches incidents have become more and more
frequent [2]. These leaked pieces of information are used for different kinds of
attacks (such as credit card fraud, collision attacks, and so on) by hacker groups
[3]. Some of them share their leaked information in underground forums [4].

Underground forums are a platforms where hackers communicate with each
other, and these forums contain content about technologies and security incidents
[4]. The forums’ principal activities are mostly underground commercial and
harmful operations. Nearly in every forum (such as underground or surface),
people often discuss the most recent data breaches and share information that
has already been disclosed. As a result, most data breaches firstly appear in
underground forums.

Most of the previous research focuses on protection [5–8], identifying and
evaluating data breaches during transmissions [9–13], personal information pro-
tection awareness, and the risks of the data breach [14–18]. In other words, they
mostly focused on cybercrime, hacking, social network analysis in the under-
ground forum but lack in identification and analysis of data breaches. It is
important to investigate data breaches from the threads of underground forums
as they serve as a type of threat intelligence source for data breaches. Network
security experts can identify and analyze the present network data leakage sce-
nario by focusing on these threads. Automated detection of these threads can
give sufferers an estimate of losses. There is only one paper that directly focused
on the identification and analysis of data breaches from underground forums [4].
Though it focuses directly on our intended area, its data set is not consistent.
Some of the websites they used to collect datasets do not even exist now (Hidden
Answers, Breach Forums, Brotherhood) and their dataset is not public. There-
fore, the novelty and performance they claimed are not authentic and also not
reliable. Therefore this field requires further study.

To address the concerns mentioned above, we focused on detecting the
threads of data breaches. Data sets are collected from underground forums.
These data sets are preprocessed and fed to machine learning (ML), ensemble
learning (EL), and deep learning (DL) for investigations. Analysis shows that
the proposed system outperformed previous works.

Rest of the paper is articulated as follows. Section 2 and 3 describe related
work and preliminaries. System model and model construction are discussed in
Sect. 4. Experimental Setup and Performance Evaluation are shown in Sect. 5.
Finally, this article is concluded in Sect. 6.

2 Related Work

This section discusses past studies based on data breach analysis, underground
forum analysis, and text classification using Latent Dirichlet allocation.

Previous studies focused on detecting and assessing data breaches during
data transmission [9–13]. Personal information protection awareness and the
hazards of data breaches, on the other hand, have been discussed in several

48 M. A. Adnan et al.

publications [14–17]. A method called REAPER that shows how to use unique
data points inside a credential dump to determine its distribution was introduced
by Butler et al. [18]. In an underground supply chain, Li et al. discovered data
breach services [19]. Many researchers explore that hackers on the underground
forum communicate with each other and they trade various hacked products and
services. Some methods are developed by Overdorf et al. to identify the threads
which are the triggers of the forums [20].

As the discussion of the topic of threads, Zhang et al. developed a method
iDetector for recognizing cybercrime-related threads [21]. This research was used
to distinguish threads that are related to cybercrime. In the course of cybercrim-
inal market research, Portnoff et al. established mechanisms for the automatic
breakdown of cybercriminal markets [22]. The tool was intended to disclose the
product and its demand in the thread.

Blei et al. [23] proposed the Latent Dirichlet Allocation (LDA), which plays
a critical role in feature selection for text classification. In multi-labeled corpora,
Ramage et al. used Labeled LDA to create a supervised topic model on credit
attribution [24]. The effectiveness of LDA and conventional models in feature
selection was evaluated by Tasci and Gungor [25]. For text classification, many
researchers coupled LDA with supervised classification algorithms and got good
results [26–28].

2.1 Novelty of this Paper

Except for Fang et al. [4], none of the previous research focuses on the area of
our interest. The dataset used by Fang is not consistent. The websites they used
for data collection are not accessible now and their dataset is not public. There-
fore, the novelty and performance they claimed are not authentic and also not
reliable. Therefore this field requires further study. To solve the above concerns,
this study detects the threads of data breaches. Data sets are collected from
underground forums. These data sets are preprocessed and fed to ML, EL and
DL for investigations. Analysis shows that the proposed system outperformed
previous works.

3 Preliminaries

All the related technologies are discussed in this section.

3.1 Global Vectors for Word Representation

Global Vectors for Word Representation (GloVe) [29] is an acronym for global
vectors for word representation. It’s a Stanford-developed unsupervised learning
technique for creating word embeddings from a corpus’s global word-word co-
occurrence matrix. In vector space, the resultant embeddings reveal intriguing
linear substructures of the word.

Identification of Data Breaches from Public Forums 49

3.2 TF-IDF Vectorizer

The term frequency-inverse document frequency (TF-IDF) [30] statistic analyzes
the relevance of a word to a document in a collection of documents. This is
accomplished by multiplying two metrics: the number of times a word appears
in a document and the word’s inverse document frequency over a collection of
documents. It has a variety of applications, including automatic text analysis and
scoring words in machine learning techniques for Natural Language Processing
(NLP).

4 System Model and Model Construction

This section discusses system overview and model construction. System overview
is shown in Fig. 1. Figure 1 shows that adversaries attack various sorts of orga-
nizations, companies, industries and cause data breaches. They publish their
cyber crime achievements in some public forums of webs (surface, dark, or
deep). Pieces of information like the organizations’ name, location, and web-
sites’ link are mostly available in those threads. Researchers can extract and
identify threads related to the data breach. This is the first part of the system,
which is the main focus of this study and highlighted with green color in Fig. 1.
The second part is the identification of the victim entities. This part is for future
work. The goal of this study is to identify data breach related posts from the
public forum.

Healthcare

Organization

initiate cyber
attacks

Adversary

Public Forum

post cyber crime
achievements

Researcher

analysing threads

Data Breaches Thread Identification
 - analysing website

 - preparing web crawler
 - downloding dataset

 - dataset pre-processing
 - preparing feature-set

 - analysis with SL

Victim Identification from Threads
 - preparing feature-set

 - analysis with UL.

C
overed

notify victims

Fig. 1. Ecosystem of the system

50 M. A. Adnan et al.

This study explores all public forums utilized by the previous studies and
analysis showed that Nulled is the ideal website. A scraper is developed for
downloading the dataset from the public forum of Nulled website. All datasets
are labeled manually as 0 and 1, whether they are talking about any data breach
or not. After labeling, the dataset is ready for feature preparation and ML, EL,
and DL classification, which is shown in Fig. 2.

Machine Learning Ensemble Learning Deep Learning

-Naive Bayes
-SVM

-Decision Tree

-Random Forest
-Bagging

-Ada Boost

-Bi-Directional
LSTM (RNN)

TF-IDF GloVe

Fig. 2. Overview of methods

In order to convert the texts into vectors, this study utilized Term Frequency-
Inverse Document Frequency (TF-IDF) for ML and EL. Three machine learning
methods are used Naive Bayes, Support Vector Machine (SVM), and Decision
Tree. Again, Three ensemble learning methods are utilized Random Forest, Bag-
ging, and Ada Boost. On the other hand, GloVe is utilized for deep learning.
Recurrent Neural Network (RNN) with Bidirectional LSTM is well known for
text processing among DL methods. Layers of RNN are illustrated in Fig. 3.

The model is consists of five layers, which are one-dimensional. The sequence
of layers is Input Layer, Embedding Layer, Bidirectional (LSTM) layers, Global
Max Pooling layer and Dense layer.

– Input Layer: This layer accepts sentence.
– Embedding Layer: This layer mapped the input vectors into a lower-

dimensional vector, where the maximum size of the vocabulary is considered
400,000.

– Bidirectional LSTM Layer: This layer is used to extract Higher-
dimensional features from the embedding layer. This layer includes coun-
terfeiting the initial recurrent layer in the network. Two layers are set up
side-by-side. So, The input order is set intact to the first layer and an inverted
representation of the input order is set to the second layer. The input, output,
and forgets gates are the three multiplicative units, which provide constant
analogs of write, read and reset operations, respectively for the cells. LSTM
is formally represented as:

Identification of Data Breaches from Public Forums 51

Fig. 3. Layers of RNN

ht = H(Wxhxt + Whhht−1 + bh) (1)

yt = Whyht + b0 (2)

Let, x = (x1, ..., xT), h = (h1, ..., hT) and y = (y1, ..., yT) are input, hidden
vector and outpur vector sequence, respectively for a RNN by iterating the
above equation from t = 1 to T . Weight metrices are represented as Wxh.
The bias vectors are denoted as bh and hidden layer function is indicated as
H.

– GlobalMaxPooling Layer: This layer is used to lessen the input vector’s
spatial volume after convolution. In between two convolution layers, it is used.
The application of a fully connected layer will be computationally expensive
if there is no pooling or max-pooling layer. Data features are downsampled in
this layer. So, nC is intact and (nH , nW) are affected. It is mathematically
represented as follows:

dim(pooling(data)) =
([nH + 2p− f

2
+ 1

]
,
[nW + 2p− f

2
+ 1

]
, nC

)
(3)

– Dense Layer: This layer is aimed to be an output layer and is also known
as the Fully-connected layer with sigmoid activation.

5 Experimental Setup and Performance Evaluation

This section discusses the dataset, experimental setup, evaluation metric, and
performance analyses.

52 M. A. Adnan et al.

5.1 Datasets

This study utilizes Nulled [31] website for data collection. Many websites men-
tioned in the previous articles do not exist today, and others hardly discuss data
breaches. A separate crawler is designed for downloading the dataset, which is
consists of 10K entries. The main focuses are the topic names and comments of
the Nulled forums.

5.2 Testbed

The experiments are executed on MacBook Pro equipped with an Intel Core i5
processor (2.5 GHz), memory (4 GB 1600 MHz DDR3). Most of the ML and DL
methods are implemented in Google’s Collaboratory platform utilizing Python
3 programming languages.

5.3 Score Evaluation Metric

This study uses four most popular metric, i.e., accuracy (4), precision (5), recall
(6), f1-score (7).

accuracy, acc =
|TP | + |TN |

|TP | + |TN | + |FP | + |FN | (4)

precision, pre =
|TP |

|TP | + |FP | (5)

recall, rec =
|TP |

|TP | + |FN | (6)

f1 − score = 2 × pre× rec

pre + rec
(7)

Here, the positive or relevant classes are represented as |TP |. These classes are
precisely labeled. The negative or irrelevant classes that are labeled correctly
are represented as |FP |. |FN | and |TN | represent the number of relevant but
mislabeled and the number mislabeled but irrelevant, respectively in the test
result.

5.4 Performance Evaluation

Performance analysis of the employed system is described in this section and
shown in Table 1. All data sets and implementations are available in https://
github.com/ahsanhabib98/data-bridge-detect. Among all the classifiers SVM
shows the best performance in terms of accuracy, precision, and f1-score, which
are 90.80%, 93.58%, and 0.89, respectively. SVM shows the best performance
in terms of accuracy, which is followed by Bagging, Bi-directional LSTM, Ada-
Boost, and Decision tree. Again, it shows the best performance in case of preci-
sion 93.58%, which is followed by Bi-Directional LSTM (85.47%) and Bagging

https://github.com/ahsanhabib98/data-bridge-detect
https://github.com/ahsanhabib98/data-bridge-detect

Identification of Data Breaches from Public Forums 53

(89.47%). In the case of the recall analysis, Bagging shows the best performance
of 86.47%, which is followed by Bi-Directional LSTM (85.47%) and Decision tree
(85.29%). Lastly, in f1-score analysis, SVM shows the best performance of 0.89,
which is followed by Bi-Directional LSTM (0.88) and Bagging (0.88). Moreover,
the employed system shows robust performance, and as there is no reliable study
to compare with.

Table 1. Performance analysis

Method Accuracy Precision Recall f1-score

Naive Bayes 86.35 84.92 82.85 0.84

SVM 90.80 93.58 84.31 0.89

Decision Tree 87.87 86.24 85.29 0.86

Random Forest Classifier 86.35 84.92 82.85 0.84

Bagging Classifier 89.84 89.47 86.47 0.88

Ada Boost Classifier 87.82 88.56 80.47 0.84

Bi-Directional LSTM 89.51 89.68 85.47 0.88

The performance of the crawler is also an important part to discuss. As the
stability of the internet connection is an issue, this study downloaded datasets
consisting of 10 thousand data instances from the Nulled website maintaining a
range of 100 data instances per attempt. Figure 4 shows the scalability analysis
of the designed crawler for each thousand data instances. The fluctuations vis-
ible in Fig. 4 are due to the latency in the internet connectivity. Moreover, the
performance of the employed system is more practical and realistic in this new
dataset.

Data Instances (Thousand K)

Ti
m

e
(S

ec
on

d)

0

1000

2000

3000

4000

1st K 2nd K 3rd K 4th K 5th K 6th K 7th K 8th K 9th K 10th K

Fig. 4. Performance of the crawler

54 M. A. Adnan et al.

6 Conclusion

This study aims to identify data breaches from public forums as adversaries often
publish the success of their cybercrimes on those platforms for ranking purposes.
This study develops a crawler for downloading the datasets from Nulled websites
and preprocessing them. Feature extraction is done based on two methods. TF-
IDF is used for ML and EL but GloVe is used for DL. Performance analysis shows
that among all these methods, support vector machine with linear kernel shows
the best performance, which is 90.80% of accuracy. As other works’ datasets
and code implementations are not public and some of their data sources do not
exist today, so the novelty of their work is not clear and also not reliable. Future
works will aim at the identification of the victims from the same dataset and let
the victims know about the data breach event in order to minimize the loss as
much as possible.

References

1. Keshta, I., Odeh, A.: Security and privacy of electronic health records: concerns
and challenges. Egypt. Inf. J. 22(2), 177–183 (2021)

2. Ong, R., Sabapathy, S.: Hong Kong’s data breach notification scheme: from the
stakeholders’ perspectives. Comput. Law Sec. Rev. 42, 105579 (2021)

3. D’Arcy, J., Adjerid, I., Angst, C.M., Glavas, A.: Too good to be true: firm social
performance and the risk of data breach. Inf. Syst. Res. 31(4), 1200–1223 (2020)

4. Fang, Y., Guo, Y., Huang, C., Liu, L.: Analyzing and identifying data breaches in
underground forums. IEEE Access 7, 48770–48777 (2019)

5. Haque, R.U., et al.: Privacy-preserving K-nearest neighbors training over
blockchain-based encrypted health data. Electronics 9(12), 2096 (2020)

6. Haque, R.U., Hasan, A.S.M.T.: Privacy-preserving multivariant regression analysis
over blockchain-based encrypted IoMT data. In: Maleh, Y., Baddi, Y., Alazab, M.,
Tawalbeh, L., Romdhani, I. (eds.) Artificial Intelligence and Blockchain for Future
Cybersecurity Applications. SBD, vol. 90, pp. 45–59. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-74575-2 3

7. Haque, R.U., Hasan, A.S.M.T., Nishat, T., Adnan, M.A.: Privacy-preserving k -
means clustering over blockchain-based encrypted IoMT data. In: Maleh, Y.,
Tawalbeh, L., Motahhir, S., Hafid, A.S. (eds.) Advances in Blockchain Technol-
ogy for Cyber Physical Systems. IT, pp. 109–123. Springer, Cham (2022). https://
doi.org/10.1007/978-3-030-93646-4 5

8. Haque, R.U., Hasan, A.S.M.T.: Overview of blockchain-based privacy preserving
machine learning for IoMT. In: Baddi, Y., Gahi, Y., Maleh, Y., Alazab, M., Tawal-
beh, L. (eds.) Big Data Intelligence for Smart Applications. SCI, vol. 994, pp.
265–278. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-87954-9 12

9. Papadimitriou, P., Garcia-Molina, H.: Data leakage detection. IEEE Trans. Knowl.
Data Eng. 23(1), 51–63 (2010)

10. Kale, S.A., Kulkarni, S.V.: Data leakage detection. Int. J. Adv. Res. Comput.
Commun. Eng. 1(9), 668–678 (2012)

11. Lu, M., Chang, P., Li, J., Fan, T., Zhu, W.: Data leakage prevention for resource
limited device, U.S. Patent 8 286 253 B1, 9 October 2012

https://doi.org/10.1007/978-3-030-74575-2_3
https://doi.org/10.1007/978-3-030-93646-4_5
https://doi.org/10.1007/978-3-030-93646-4_5
https://doi.org/10.1007/978-3-030-87954-9_12

Identification of Data Breaches from Public Forums 55

12. Brown, T.G., Mann, B.S.: System and method for data leakage prevention, U.S.
Patent 8 578 504 B2, 5 November 2013

13. Katz, G., Elovici, Y., Shapira, B.: CoBan: a context based model for data leakage
prevention. Inf. Sci. 262, 137–158 (2014)

14. Onaolapo, J., Mariconti, E., Stringhini, G.: What happens after you are PWND:
understanding the use of leaked Webmail credentials in the wild. In: Proceedings
of the Internet Measurement Conference, pp. 65–79 (2016)

15. Jaeger, D., Graupner, H., Sapegin, A., Cheng, F., Meinel, C.: Gathering and ana-
lyzing identity leaks for security awareness. In: Mjølsnes, S.F. (ed.) PASSWORDS
2014. LNCS, vol. 9393, pp. 102–115. Springer, Cham (2015). https://doi.org/10.
1007/978-3-319-24192-0 7

16. Thomas, K., et al.: Data breaches, phishing, or malware?: understanding the risks
of stolen credentials. In: Proceedings of the ACM SIGSAC Conference on Computer
and Communications Security, pp. 1421–1434 (2017)

17. Shu, X., Tian, K., Ciambrone, A., Yao, D.: Breaking the target: an analysis of
target data breach and lessons learned. (2017). https://arxiv.org/abs/1701.04940

18. Butler, B., Wardman, B., Pratt, N.: REAPER: an automated, scalable solution
for mass credential harvesting and OSINT. In: Proceedings APWG Symposium on
Electronic Crime Research (eCrime), pp. 1–10 (2016)

19. Li, W., Yin, J., Chen, H.: Targeting key data breach services in underground
supply chain. In: Proceedings of the IEEE Conference Intelligence and Security
Informatics (ISI), pp. 322–324 (2016)

20. Overdorf, R., Troncoso, C., Greenstadt, R., McCoy, D.: Under the underground:
predicting private interactions in underground forums (2018). https://arxiv.org/
abs/1805.04494

21. Zhang, Y., Fan, Y., Hou, S., Liu, J., Ye, Y., Bourlai, T.: iDetector: automate
underground forum analysis based on heterogeneous information network. In: Pro-
ceedings IEEE/ACM International Conference on Advances in Social Networks
Analysis and Mining (ASONAM), pp. 1071–1078 (2018)

22. Portnoff, R.S., et al.: Tools for automated analysis of cybercriminal markets. In:
Proceedings 26th International Conference World Wide Web Steering Committee,
pp. 657–666 (2017)

23. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet allocation. J. Mach. Learn.
Res. 3, 993–1022 (2003)

24. Ramage, D., Hall, D., Nallapati, R., Manning, C.D.: Labeled LDA: a supervised
topic model for credit attribution in multi-labeled corpora. In: Proceedings of the
Conference Empirical Methods Natural Lang. Processing, Association for Compu-
tational Linguistics, vol. 1, pp. 248–256 (2009)

25. Tasci, S., Gungor, T.: LDA-based keyword selection in text categorization. In:
Proceedings of the 24th International Symposium on Computer and Information
Sciences (ISCIS), pp. 230–235 (2009)

26. Cui, L., Meng, F., Shi, Y., Li, M., Liu, A.: A hierarchy method based on LDA and
SVM for news classification. In: Proceedings of the IEEE International Conference
Data Mining Workshop (ICDMW), pp. 60–64 (2014)

27. Wei, Y., Wang, W., Wang, B., Yang, B., Liu, Y.: A method for topic classification
of web pages using LDA-SVM model. In: Deng, Z. (ed.) CIAC 2017. LNEE, vol.
458, pp. 589–596. Springer, Singapore (2018). https://doi.org/10.1007/978-981-10-
6445-6 64

28. Quercia, D., Askham, H., Crowcroft, J.: TweetLDA: supervised topic classification
and link prediction in twitter. In: Proceedings of the 4th Annual ACM Web Science
Conference, pp. 247–250 (2012)

https://doi.org/10.1007/978-3-319-24192-0_7
https://doi.org/10.1007/978-3-319-24192-0_7
https://arxiv.org/abs/1701.04940
https://arxiv.org/abs/1805.04494
https://arxiv.org/abs/1805.04494
https://doi.org/10.1007/978-981-10-6445-6_64
https://doi.org/10.1007/978-981-10-6445-6_64

56 M. A. Adnan et al.

29. Pennington, J., Socher, R., Manning, C.D.: Glove: global vectors for word repre-
sentation. In: Proceedings of the 2014 conference on Empirical Methods in Natural
Language Processing (EMNLP), pp. 1532–1543 (2014)

30. Dey, A., Jenamani, M., Thakkar, J.J.: Lexical TF-IDF: an n-gram feature space
for cross-domain classification of sentiment reviews. In: Shankar, B.U., Ghosh, K.,
Mandal, D.P., Ray, S.S., Zhang, D., Pal, S.K. (eds.) PReMI 2017. LNCS, vol.
10597, pp. 380–386. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
69900-4 48

31. Nulled. https://www.Nulled.to/. Accessed 14 Sep 2021

https://doi.org/10.1007/978-3-319-69900-4_48
https://doi.org/10.1007/978-3-319-69900-4_48
https://www.Nulled.to/

A Forensic Framework for Webmail
Threat Detection Using Log Analysis

Abdul Saboor Malik(B), Muhammad Khuram Shahzad, and Mehdi Hussain

Department of Computing, School of Electrical Engineering and Computer Science
(SEECS), National University of Sciences and Technology (NUST),

Islamabad, Pakistan
{amalik.msis18seecs,mkhuram.shahzad,mehdi.hussain}@seecs.edu.pk

Abstract. Today, webmail is being used in a number of organizations
for all kinds of important communications as they move to cloud-based
services. Several cyber threats involving phishing, malicious insider,
unauthorized access to data and ransomware attacks are primarily car-
ried out through webmail. This poses challenges and limitations for foren-
sic investigators in the incident investigations involving emails, because
actual email evidence is store at cloud service provider. The majority of
work on email forensics and detection works on email information stored
by email clients on desktop physical disk space. In order to gather arti-
facts from webmail used in browsers, volatile memory forensics is gain-
ing popularity. However, few recent work utilizing memory forensics are
focused on detecting email spoofing attempts from outside work by tak-
ing memory dumps of emails received by user from outside. This leaves
the opportunity for malicious insiders to covertly send confidential data
through webmail and remain undetected. In this work a novel framework
is proposed, which models the malicious insider scenario and create the
activity logs using volatile memory forensics. To implement and test the
framework, a small tool was created using python. The framework is
equally applicable for both public and private browsing. Our proposed
method counters the limitation in previous schemes in terms of analyz-
ing new email messages more efficiently using browser parent process ID.
Our proposed method provides forensics investigators with a novel web-
mail tool that can be used to detect malicious email activity generated
from with in the organisation.

Keywords: Email forensics · Malicious email · Memory forensic ·
Webmail

1 Introduction

Organizations in different sectors are increasingly making use of email com-
munication in their day-to-day operations. Any small business, startup, or big

Supported by National University of Sciences and Technology (NUST), Islamabad,
Pakistan.

c© Springer Nature Switzerland AG 2022
P. Y. A. Ryan and C. Toma (Eds.): SecITC 2021, LNCS 13195, pp. 57–69, 2022.
https://doi.org/10.1007/978-3-031-17510-7_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-17510-7_5&domain=pdf
https://doi.org/10.1007/978-3-031-17510-7_5

58 A. S. Malik et al.

conglomerate working in information technology has to rely on email services for
their business operations. Email communication contains a wealth of information
which includes a simple message, audio, video, or any latest type of digital doc-
ument. Various advanced attacks are being delivered via email such as phishing,
spear-phishing, social, spam emails, ransomware, email impersonation, malicious
insider, etc.

This widely used medium of communication is also a great source for adver-
saries and hackers to launch cyberattacks, targeting organizations, infrastruc-
tures, and individuals [6]. The latest statistics show a continued rise in email-
borne threats. According to the latest FireEye reports, email phishing and URL-
based attacks increased by 17% and 26% respectively [5]. Moreover, file sharing
through cloud email services and new impersonation attempts on payroll and
supply chains have increased. Therefore, email communications are vital in com-
puter forensics for post-incident analysis.

The email system works on a client-server model and it is hierarchical. Email
forensics is a vast field that includes forensic analysis at different levels such
as protocol, server-side, network level, and client-side. On the client-side, email
client applications and webmails are used by end-users to avail service. Forensic
investigators use various types of tools, techniques, and processes to analyze the
emails after the acquisition of format-specific files found on hard disk images.
Recently, cloud-based email services such as Gmail, Yahoo, and Outlook, etc.
are being widely used as compared to email client applications [13]. In addition
to social media app communications, 293 billion emails are sent everyday. These
heavy volume are mostly linked with popular email services such as Gmail, Yahoo
Mail and Outlook which comes under top 3 widely used cloud email services with
their unique solutions [14]. All these emails services are mostly accessed using
web browsers. The cloud email services brings interesting challenges in email
forensic analysis as the email information is not stored in the computer’s hard
disk but resides at the service provider side and a few details related to email
headers and content is available at the time of analysis. To perform forensic
analysis during an investigation, analysts have to rely on browser cache data
available, which holds limited information regarding any malicious emails sent or
received. These browser cache only provides information such as the urls accessed
and not the actual content of the new email [16]. Moreover, modern browsers
such as Chrome and Firefox have private browsing features, which do not store
enough browsing information of user activity, Hence, any email sent or received
in private mode is not easily retrievable, which thwarts the forensics investigators
to perform email forensics. The browser sessions data and information are also
encrypted with HTTPS which thwarts the network level gathering of evidence
such as passwords, email addresses, and information transferred through mail
[15].

For webmails forensics, memory acquisition is the most popular and feasible
but a less explored technique to acquire digital evidence. We have proposed
a new process-based email forensics framework to capture webmail logs from
browser process memory. The memory capture is done upon opening and closing

A Forensic Framework for Webmail Threat Detection Using Log Analysis 59

the browser session. The memory dump file obtained is converted into a text
file which is parsed using special identifiers and email structure to find useful
artifacts on any new messages being sent from the subject system. For this
process implementation, automation and evaluation a python tool is created to
detect and create logs for future reference by security and forensic researchers.
Our proposed framework is successful in efficiently gathering key evidence and
shows good performance as compared to other schemes in this domain.

We have taken 3 popular email services Google, Hotmail, and Yahoo as the
email service source [12]. The browsers used are Chrome and Firefox. We have
used Windows 10 and 8 to test our framework.

Section 2 describes a brief review of related work in literature. We present the
challenges and limitations of volatile forensics with the context of a malicious
insider. Section 3 describes the detailed overview of the proposed framework. In
Sect. 4, the evaluation and results of the proposed scheme are described. Section 5
highlights the benefits of our proposed work. Section 6 describes the conclusion
of our research. Lastly, in Sect. 7 limitations in our proposed scheme and possible
future works are highlighted.

2 Literature Review

Various research has focused on email forensics and detection at different levels.
The client-side email forensics can be divided into disk-based forensics and live or
memory forensics. various tools are available and researchers have provided many
methods to analyze the locally stored email messages and clients on windows,
android devices, and other operating systems. Forensic analysis of email systems
can be done at various levels such as network, server level, and client level.
As mentioned above, due to more proliferation of webmails in our daily lives,
forensic investigators have a client system as the only lead to start in evidence
gathering. Most of the tools work on email files stored on a computer system
such as Outlook and Thunderbird in their specific message format [9,11].

Capturing data from a computer’s volatile memory is popular among
researchers to gather various artifacts such as passwords, text data, and mal-
ware analysis [4]. Utilizing memory forensics for email threats detection and
forensic has recently got attention among researchers. Various solutions are pro-
posed that incorporate memory acquisition, filtering, and extraction of useful
strings to find evidence. Researchers have proposed different frameworks and
schemes to capture and analyze the variable nature of data in memory [3]. In
[1] a framework for web-based social media and Instant Messaging (IM) applica-
tion has been proposed that works on software-based memory acquisition. In [2]
authors proposed a way of detecting email spoofing by taking a periodic dump
of Yahoo webmail, and extractions and filtering string search to detect spoof-
ing on received and replied emails obtained from memory dump text files. It
used a complete memory dump from Forensic Toolkit (FTK) image software.
The memory acquisition process takes a complete dump of the whole memory.
So if the memory is 12 GB the size of the memory dump would also be 12

60 A. S. Malik et al.

GB. This leads to inefficient use of space and makes more noise in actual data.
In [1,4,16] researchers demonstrated the extraction of email artifacts stored in
RAM for specific platforms such QQMail and defined where some fields can be
found using string search.

In [5] author proposed the RAMAS framework and built the extraction mod-
ule for round cube email. It relies on the complete windows RAM dump to gather
the evidence such as message information, author, timestamps, and recipient’s
email. In [8] author proposed bringing some improvement into memory foren-
sics scheme from [2] and proposed spoof email detection by taking all browser
running processes and used Mail Exchanger (MX) record to detect email spoof-
ing. Moreover, a large memory dump size would lead to storage issues. On the
client-side, this can cause inefficient use of storage as in the case of [2], the peri-
odic dumps can lead to in availability of storage for the end-user system. With
increasing interest in deploying memory forensics for webmail, there is also a
need of suite of tool that performs automation of various tasks in a smart and
efficient method. As the user opens the browser and gets logged into email, all
the pages and other metadata get loaded into RAM. If the user has any malicious
intent and wants to share some information, any message, file, or confidential
document, the contents of the email message are retrievable from RAM. This is
a common malicious insider scenario that can be adopted by any adversary. If
memory the capture of RAM is obtained for the session, where the user sent the
message, the evidence of the contents of any malicious emails can be obtained.
In our research, we have created a framework to generate email messages logs
from the RAM for the browsing session.

2.1 Webmail Challenge: Malicious Insider

As in recent research works, most of the work deals with threats from outside
such as email spoofing, malware, phishing, and social engineering. Threats from
the insider is another daunting challenge that hinders the detection and forensics
capabilities. There is a need to address the issue of malicious insiders exploiting
the webmail services to cause leakage of unauthorized information beyond the
boundaries of the organizations and yet remain covert and undetected [4]. There
is no audit and attribution about what information is being exchanged over the
webmail. Can it contain any file attachments? There are various possibilities of
how the user with malicious intent performs an activity and use webmail. Three
common scenarios are defined below. To address this, we present our solution
supported through a possible case scenario.

– S1: The user opens the new tab, login to webmail, writes an email consisting
of useful information and attachments, sends the email, and closes the browser
session.

– S2: The user sends a malicious email and continues to browse and close the
browser tab.

– S3: The user opens the browser, sends an email, and closes the browser.

A Forensic Framework for Webmail Threat Detection Using Log Analysis 61

2.2 Assumptions

Although it’s difficult to model how the user carries out the activity and often
the activity is not retrievable as the user changes browser tabs [6]. Often users
make sure to delete the browser or restore it to default settings as measures of
anti-forensics. We have assumed the S3 scenario commonly used by a normal user
with some malicious intent and the user can simply reset the browser resulting
in data loss at the browser level.

3 Proposed Framework

In this paper, we present a novel framework to gather emails sent using popular
webmail services (mainly Gmail, Yahoo and Outlook) and create the logs to help
the forensic investigators in email forensics involving the webmails. Implement-
ing the previous schemes proposed in [2] and [9], we have used Forensic Tool
Kit(FTK) in windows to capture memory while the user sends the new email
and analyzes the memory dump file with volatility tool. To search email content
evidence from memory and the process that holds this information, volatility tool
was used with Yara plugin [6]. Through various experiments, it is found that the
email related evidence is stored in web browser’s parent process. Utilizing the
information from the experiments, we developed a tool in python using windows
Sysinternal utilities (ProcDump and Strings). The tools keeps monitoring the
browser parent process and generates the webmail activity logs in for stages as
defined in Fig 1. Its source code is available on Github [10]. To test our tool and
framework, we have used the malicious insider case scenario S3. Our framework
is based on Windows Operating System (OS).

3.1 Start Web Browsing Activity

In this phase, the user logs into the operating system and starts the web browser
to send an email. The python tool is always running in background and detects
the browser running process and gathers the Parent Process ID, to be used
further by tool. The framework follows the S3 browsing scenario as defined above
and starts the Procdump utility in background which terminates as the user
sends email and closes the browser session or Tab, killing the parent process.
The browser used to detect are Chrome and Firefox, as they are more popular
in todays working environments.

3.2 Memory Capture

The user closes the browser tab after sending the email. This causes the termi-
nation of the browsing process in the RAM. In this phase, the memory dump of
RAM is started. Using the ProcDump tool with the command line, the tool ini-
tiates the RAM dump of the Chrome process as it terminates by the users and
creates a .dmp file [7]. The dumping process is real-time memory acquisition.

62 A. S. Malik et al.

Fig. 1. Proposed Framework: Scenario S3

The python tool is used to run the command lines dumping in the automated
way with the facility to over-write the dump files. Using the overwrite method,
the dump file size for any the session remains at a fixed value for all the sessions
and the real time dumping is less memory consumption which is found to be less
than 30 MiB.

3.3 Evidence Extraction

To gather important details from the dump file, the email evidence extraction
phase begins. This phase is completed in the following substeps:

– String file generation: The proposed tool makes use of string utility to
create a text file from a .dmp dump file. The text file contains useful data
about the latest webmail activity during the session.

A Forensic Framework for Webmail Threat Detection Using Log Analysis 63

– Parsing and Extraction: The text is the complete ASCII version of the
.dmp file which is in hexademical format. The text file has to be parsed to
find the content of the new email sent. The tool searches for unique patterns
which are defined by Gmail, YahooMail, and Outlook web application to
create new email in json or XML format as shown in Fig 3. Finding these
patterns provide valuable information about email content, email headers and
other metadata, which are unique for each of 3 webmail services as shown in
Figs. 4,5 and 6.

3.4 Logging

In this part, after the parsing of the string file, all the email evidence information
obtained for the specific session of the dump file is formatted to a log file. The log
file is periodically updated by the tool for every session with the details about
the webmail service used, time duration of the session, and all the key evidence
items extracted from the string file. The python tool also adds the hash for each
log entry to ensure the integrity of the logs file from any modification. The log
files generated can be used by the forensic examiner to look for potential email
evidence when they acquire any system for forensic investigations and will be
helpful in email forensics.

3.5 Logging Tool Workflow

To implement the proposed framework, a tool is developed in python to perform
detection and generate logs from webmails. The workflow of the tool for our
proposed scheme Fig. 2. The tool can run in the background and perform the
memory dumps according to our use case of malicious insider activity. The tools
take the memory dump as the browsing session is closed and the user sends some
email. The tool makes use of Sysinternals tools ProcDump to create the dump of
the browser parent process. Then, using the Sysinternals strings tool the text file
is extracted from the .dmp file. To gather raw email contents stored in memory,
the tool follows a two-step algorithm. In step 1, the email services being used
are identified based on the title structure of the email inbox page. Each email
service like Google, Yahoo, and Gmail have their unique mailbox title. In step 2,
the line-based message line detection is used to gather the new email footprint.
Each webmail service follows a unique message formatting structure which is
defined in the tool. These raw messages are extracted for the service identified
in the memory text file and extracted into a text file database that contains the
raw log files. The pattern matching code is provided in Fig. 3 below.

64 A. S. Malik et al.

Fig. 2. Tool workflow.

Fig. 3. Algorithm for getting email footprint of new email.

A Forensic Framework for Webmail Threat Detection Using Log Analysis 65

4 Evaluation and Results

4.1 Experimental Setup

To implement the proposed framework, we developed a detection and logging
utility tool in python. As opposed to previous methods of taking all running
processes the proposed tool follows only the single parent process. The parent
process memory dump is acquired using ProcDump and strings utility used to
generate an ASCII version of the browser process memory dump. As opposed to
previous schemes, that relied on separate processes. Our designed tool automates
the framework using Sysinternals commands and python. The tool was tested on
three popular email services Gmail, Yahoo, and Hotmail using two popular web
browsers Chrome and Firefox. A detailed Lab setup for testing and implementing
our tool is described in the Table 1 below.

Table 1. System details

Specification Description

OS Windows 10

Processor Intel(R) Core(TM) i5-3337U CPU @ 1.80GHz

RAM 4 GB, 8GB and 12GB

HARDDISK 100 GB SSD

Program Environment Python 3.6

External Tools Used windows sysinternal tools(Procdump and strings)

4.2 Results and Performance

The emails were sent from three email services to other email accounts while the
tool created logs in the text file from dump files. A series of repetitive experiments
were performed in which the user-generated email messages contained email
attachments using Firefox and Chrome browser and closed the web browser.
The tool monitors the process and generates the log file of new email messages
retrieved from memory. Figure 3-5 shows the log file output for three test cases.
The log file shows the complete email message along with some meta-data about
the new email message sent.

66 A. S. Malik et al.

Fig. 4. Email logs from Hotmail

Fig. 5. Email logs from Yahoo Mail

Fig. 6. Email logs from Gmail

4.3 Performance Evaluation and Results

Table 2 below performs our proposed scheme. The evaluation metrics are both
quantitative and qualitative. The qualitative performance analysis shows the
successful implementation of our framework accomplished through an automated
tool built and tested to generate webmail logs. The email logging tool provides an
automated way of creating periodic logs from popular webmail services using live
memory acquisition. For qualitative analysis and evaluation, the tool is tested
for its efficiency in terms of size of physical storage size, time of creation, and
computing resource consumption of dump files, their corresponding string format
file, and the email log file. It takes only 2–10 seconds to generate the parent
process dump file with around 70% CPU consumption which is momentarily
due to less memory dump size and time. The proposed methodology utilizing
parent process memory dump is evaluated to be more efficient in time, storage,
and computing resources, which makes the tool usable on today’s computers.
Table 3 shows salient features comparison of our proposed scheme with previous
memory forensics schemes.

A Forensic Framework for Webmail Threat Detection Using Log Analysis 67

Table 2. Tool performance

Webmail Service Logs creation

Time (sec)

ASCII version
of .dmp file

size (MBs)

Memory

dump

size(MB)

Memory

consumption

(MiB)

Yahoo Mail 52.871318 29 385 26

Gmail 40.953343 29 385 26

Outlook 01:12.256179 29 385 26

Table 3. Comparison from other schemes

Scheme Comparison

Salient features (Iyer 2017) S. Shukla (2020) Our proposed scheme

Proposed Tool - - A novel python based tools proposed

Single Process

Memory Dump

- Uses Multiple process dumps Uses single parent process dump

Generic Framework - Methods only focused on single email threat Provides Generic framework for memory
based detection and forensics

Malicious insider detection
and forensics

Both schemes based single threat vector i.e. email spoofing Can be used with email
spoofing and to detect any malicious insider email activity.

Used sysinternal tools - Uses different third party tool and utilities Makes use of default windows provided synsinternals tools

Periodic and
Efficient logs creations

- New email logs not provided provides efficient logs creation from tool
with minimum storage and
efficient processing results

5 Benefits of the Proposed Scheme

Our research work provides the forensics investigators with important email
evidence in the form of email logs from webmail services. Our research work has
the following benefits over various other methods proposed in the literature.

– The method can be employed by both the in-house forensic teams and exter-
nal forensic teams gather details about the actual message or documents sent
through webmail, which is unavailable as the email is stored on the cloud
service provider. It can be retrieved through legal jurisdiction such as a sub-
poena.

– Our method is much efficient to take the periodic memory dumps of processes
in terms of size and computational power. Hence overcoming the efficiency
challenges for periodic memory dumping on the client-side.

– Keeping a record of email messages sent along with the attachment, the inves-
tigators can know the malicious insider details.

– These logs can be generated on each user computer and provides useful into
of a new email with an intent to transfer any unauthorized data through
webmail few samples of such raw logs are shown in Figs. 3,4 and 5. Having
track of such activity, the security teams can have proof of any malicious data
stealing activity, which can help in attribution about any malicious insider
making attempts of data exfiltration.

– Organization security teams can integrate these logs into SIEM solutions to
monitor and keep track of internal users’ malicious email activity.

68 A. S. Malik et al.

6 Conclusion

As cloud-based webmail services become popular, it is very challenging to per-
form malicious insider detection and forensic operations since data is stored at
Cloud Service Provider (CSP) premises. In our research, a novel framework is
proposed that allows to log any malicious insider email activity trying to exfil-
trate data or messages by monitoring the browser processes and creating email
logs to aid security researchers in malicious email detection and forensic analysis
from insider. Taking a simple case of a malicious insider as defined in S3 above,
we have proposed a novel technique to create and log events.

7 Limitations and Future Work

Our solution works well for a single activity when the malicious user terminates
the session after creating a malicious email. Since data is short-lived and not
easily retrievable in browsers process memory as the user leaves the tab of open
new tab and continues browsing [6]. To explore the other two scenarios and
many others, more robust and smart detection of email activity needs to be
incorporated using network-level stream monitoring or some other mechanism,
which is open to exploring further. Interesting future work is integrating these
logs into SIEM solution for central monitoring of such type of email exfiltration
from a malicious entity in a centralized way.

References

1. Thantilage, R., Le Khac, N.: Framework for the retrieval of social media and
instant messaging evidence from volatile memory. In: 2019 18th IEEE Interna-
tional Conference On Trust, Security And Privacy In Computing And Communi-
cations/13th IEEE International Conference On Big Data Science And Engineering
(TrustCom/BigDataSE) (2019)

2. Iyer, R., Atrey, P., Varshney, G., Misra, M.: Email spoofing detection using volatile
memory forensics. In: 2017 IEEE Conference on Communications and Network
Security (CNS) (2017)

3. Chen, L., Mao, Y.: Forensic analysis of email on android volatile memory. In: 2016
IEEE Trustcom/BigDataSE/ISPA (2016)

4. Barradas, D., Brito, T., Duarte, D., Santos, N., Rodrigues, L.: Forensic analysis of
communication records of messaging applications from physical memory. Comput.
Secur. 86, 484–497 (2019)

5. Bloomberg - Are you a robot? [Internet]. Bloomberg.com (2021). https://www.bl
oomberg.com/press-releases/2019-06-25/new-fireeye-email-threat-report-reveals-
increase-in-social-engineering-attacks. Accessed 17 Dec 2021

6. SANS Internet Storm Center [Internet]. SANS Internet Storm Center (2021).
https://isc.sans.edu/forums/diary/Using+Yara+rules+with+Volatility/22950/.
Accessed 17 Dec 2021

7. Creating Process Dumps with ProcDump — Knowledge Base [Internet].
Kb.acronis.com (2021). https://kb.acronis.com/content/27931. Accessed 17 Dec
2021

https://www.bloomberg.com/press-releases/2019-06-25/new-fireeye-email-threat-report-reveals-increase-in-social-engineering-attacks
https://www.bloomberg.com/press-releases/2019-06-25/new-fireeye-email-threat-report-reveals-increase-in-social-engineering-attacks
https://www.bloomberg.com/press-releases/2019-06-25/new-fireeye-email-threat-report-reveals-increase-in-social-engineering-attacks
https://isc.sans.edu/forums/diary/Using+Yara+rules+with+Volatility/22950/
https://kb.acronis.com/content/27931

A Forensic Framework for Webmail Threat Detection Using Log Analysis 69

8. Shukla, S., Misra, M., Varshney, G.: Identification of spoofed emails by applying
email forensics and memory forensics. In: 2020 the 10th International Conference
on Communication and Network Security (2020)

9. Devendran, V., Shahriar, H., Clincy, V.: A comparative study of email forensic
tools. J. Inf. Secur. 06(02), 111–117 (2015)

10. Malik, A.: Webmaill-logging-tool/webmail-logging-tool.py at main · abdolsabor/
webmaill-logging-tool [Internet]. GitHub (2021). https://github.com/abdolsabor/
webmaill-logging-tool/blob/main/webmail-logging-tool.py. Accessed 17 Dec 2021

11. Tariq, B.M.: Techniques and tools for forensic investigation of e-mail. Int. J. Netw.
Secur. Appl. 3(6), 227–241 (2011)

12. 52 Gmail Statistics That Show How Big It Actually Is In 2021 [Internet]. TechJury
(2021). https://techjury.net/blog/gmail-statistics/#gref. Accessed 24 Nov 2021

13. Xu, L., Wang, L.: Research on extracting system logged-in password forensically
from windows memory image file. In: 2013 Ninth International Conference on Com-
putational Intelligence and Security (2013)

14. Preimesberger, C.: Cloud-based email services: everything you need to know
— ZDNet [Internet]. ZDNet (2021). https://www.zdnet.com/article/cloud-based-
email-services-everything-you-need-to-know/. Accessed 24 Nov 2021

15. Hussain, M., Wahab, A., Batool, I., Arif, M.: Secure Password Transmission for
Web Applications over Internet using Cryptography and Image Steganography
(2021)

16. Hassan, N.A.: Web browser and e-mail forensics. In: Digital Forensics Basics, pp.
247–289. Apress, Berkeley, CA (2019). https://doi.org/10.1007/978-1-4842-3838-
7 8

https://github.com/abdolsabor/webmaill-logging-tool/blob/main/webmail-logging-tool.py
https://github.com/abdolsabor/webmaill-logging-tool/blob/main/webmail-logging-tool.py
https://techjury.net/blog/gmail-statistics/#gref
https://www.zdnet.com/article/cloud-based-email-services-everything-you-need-to-know/
https://www.zdnet.com/article/cloud-based-email-services-everything-you-need-to-know/
https://doi.org/10.1007/978-1-4842-3838-7_8
https://doi.org/10.1007/978-1-4842-3838-7_8

An Evaluation of the Multi-platform
Efficiency of Lightweight Cryptographic

Permutations

Luan Cardoso dos Santos and Johann Großschädl(B)

SnT and DCS, University of Luxembourg,
6, Avenue de la Fonte, L–4364 Esch-sur-Alzette, Luxembourg

{luan.cardoso,johann.groszschaedl}@uni.lu

Abstract. Permutation-based symmetric cryptography has become in-
creasingly popular over the past ten years, especially in the lightweight
domain. More than half of the 32 second-round candidates of NIST’s
lightweight cryptography standardization project are permutation-based
designs or can be instantiated with a permutation. The performance
of a permutation-based construction depends, among other aspects, on
the rate (i.e. the number of bytes processed per call of the permutation
function) and the execution time of the permutation. In this paper we
analyze the execution time and code size of assembler implementations
of the permutation of Ascon, Gimli, Schwaemm, and Xoodyak on an
8-bit AVR and a 32-bit ARM Cortex-M3 microcontroller. Our aim is to
ascertain how well these four permutations perform on microcontrollers
with very different architectural and micro-architectural characteristics
such as the available register capacity or the latency of multi-bit shifts
and rotations. We also determine the impact of flash wait states on the
execution time of the permutations on Cortex-M3 development boards
with 0, 2, and 4 wait states. Our results show that the throughput (in
terms of permutation time divided by rate when the capacity is fixed to
256 bits) of the permutation of Ascon, Schwaemm, and Xoodyak is
similar on ARM Cortex-M3 and lies in the range of 41.1 to 48.6 cycles
per rate-byte. However, on an 8-bit AVR ATmega128, the permutation
of Schwaemm outperforms its counterparts of Ascon and Xoodyak by
a factor of 1.20 and 1.59, respectively.

1 Introduction

The term Internet of Things (IoT) describes the evolution of the Internet from
a computer network to a network that connects various kinds of smart devices
and enables them to communicate with each other or transmit data to central
servers. This development started roughly 15 years ago, when more and more
“everyday objects,” ranging from household appliances over business machines
to vehicles, became equipped with microcontrollers and transceivers for wireless
communication (e.g. ZigBee, Bluetooth, WiFi). These devices differ greatly in
terms of computing power, but also regarding their data transmission speeds
c© Springer Nature Switzerland AG 2022
P. Y. A. Ryan and C. Toma (Eds.): SecITC 2021, LNCS 13195, pp. 70–85, 2022.
https://doi.org/10.1007/978-3-031-17510-7_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-17510-7_6&domain=pdf
https://doi.org/10.1007/978-3-031-17510-7_6

An Evaluation of the Multi-platform Efficiency of Permutations 71

2012 2013 2014 2015 2016 2017 2018 2019 2020
0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

9,000

8 bit 16 bit 32 bit

Fig. 1. North American microcontroller market by product (8-bit, 16-bit, 32-bit) in
million units (source: Radiant Insights Inc. [27])

and run-time memory capacities. At one end of the spectrum are e.g. modern
cars, which are equipped with powerful processors, while e.g. battery-operated
miniature sensor nodes at the opposite end of the spectrum commonly feature
only a small 8-bit or 16-bit microcontroller. Already today, approximately twice
as many “smart things” are connected to the Internet than ordinary computers
like PCs or laptops, and this proportion will grow rapidly over the next couple
of years [28]. Internet-enabled smart devices can be found in basically all areas
of our life, from home automation over industrial production (“Industry 4.0”)
to transportation and logistics.

The IoT can be seen as a large ecosystem populated by highly diverse and
heterogeneous devices, which come in all shapes and sizes. Therefore, it is little
surprising that there exist dozens of different (and largely incompatible) micro-
controller platforms, operating systems, and wireless communication standards
for the IoT, many of which are optimized to serve a certain application domain
with specific requirements and constraints. This heterogeneity of IoT devices is
in stark contrast to the “monoculture” in the realm of classical computers like
PCs or laptops, where the 64-bit Intel architecture has a market share of well
over 90%. Nonetheless, 64-bit Intel processors represent only a small fraction
of the IoT altogether, which is (quantitatively) dominated by microcontrollers
with rather modest computational capabilities. Figure 1 shows a forecast of the
development of the North American microcontroller market until 2020, split up
in 8-bit, 16-bit, and 32-bit architectures [27]. The North American market was
estimated to be over 3700 million units in 2013 and is expected to reach some
8000 million units in 2020, i.e. the compound annual growth rate is more than
11.2% in the period from 2014 to 2020. 32-bit microcontrollers constitute the
fastest growing product segment over the forecast period, driven mainly by an
increased demand for higher processing capabilities and the expected reduction
in unit prices. Currently, the ARM architecture is the undisputed leader in the

72 L. Cardoso dos Santos and J. Großschädl

32-bit segment, but it faces fierce competition by ESP32 and RISC-V. There is
also a growing demand for 16-bit microcontrollers (e.g. MSP430, 68HC16) due
to the need for high level of precision in embedded processing and the develop-
ment of intelligent and real-time functions in the automotive domain [27]. The
8-bit platforms (e.g. AVR, PIC) are expected to retain their market share and
continue to be widely used for automotive and industrial applications [24].

Since there is no single dominating microcontroller platform in the IoT, it is
essential that a cryptographic algorithm delivers consistently high performance
on a wide variety of 8, 16, and 32-bit architectures. This is far from trivial to
achieve since, for example, a 32-bit ARM Cortex-M3 microcontroller has sig-
nificantly different architectural and micro-architectural characteristics than an
8-bit AVR ATmega microcontroller. The Cortex-M3 has 16 registers, of which
14 are available for general use, i.e. the general-purpose register space amounts
to 448 bits. AVR microcontrollers, on the other hand, have 32 general-purpose
registers, but each of them can only store eight bits of data, yielding a usable
register space of 256 bits. ARM and AVR also differ greatly in their ability to
execute multi-bit shifts or rotations, which are performance-critical operations
of various symmetric cryptosystems. The arithmetic/logic unit of a Cortex-M3
comes with a fast barrel shifter capable to shift or rotate a 32-bit word by an
arbitrary number of bits in a single cycle. Furthermore, a shift or rotation can
be combined with most data-processing instructions, in which case they become
practically “free” [2]. More specifically, the second operand of most arithmetic
or logical instructions can be shifted or rotated (before the actual operation is
executed) without increasing the instruction latency. However, the situation is
much different for 8 and 16-bit architectures, as most of them have only single-
bit shift and rotate instructions, which means that shifting a register by n bits
requires (at least) n clock cycles. This can make multi-bit shifts and rotations
very costly, especially when the length of the operand to be shifted or rotated
exceeds the capacity of a single register. For example, rotating a 32-bit word on
an 8-bit AVR microcontroller (stored in four registers) can, depending on the
rotation amount, require more than 20 clock cycles.

A cryptographic permutation is a bijective mapping within Z
b
2, designed to

behave as a random permutation, i.e. a permutation chosen randomly from the
set of all possible permutations that operate on b bits. The width b of a cryp-
tographic permutation is usually between 200 (for cryptosystems targeting the
lightweight domain) and 1600 [12]. Permutation-based cryptography emerged
approximately 15 years ago as a sub-area of research in the field of symmetric
cryptography and started to attract particular interest when the hash function
Keccak [11] and the stream cipher Salsa [6] became popular1. Permutations
are extremely flexible and versatile primitives, similar to block ciphers, and can

1 In October 2012, the U.S. National Institute of Standards and Technology (NIST)
selected Keccak as winner of the SHA-3 hash competition [25]. Roughly 1.5 years
later, in April 2014, Google announced that a TLS cipher suite using ChaCha20

(a variant of Salsa) for symmetric encryption will be their default option to secure
HTTPS connections on devices without AES hardware acceleration [14].

An Evaluation of the Multi-platform Efficiency of Permutations 73

be used to construct e.g. hash functions, message authentication codes, pseudo-
random bit-sequence generators, stream ciphers, and authenticated encryption
algorithms [9,12]. However, unlike a block cipher, a permutation does not have
a key schedule and needs to be efficient only in one direction since the inverse
permutation is normally never used. Past research in the area of permutation-
based cryptography can be split into two main categories; the first is about the
design (and security analysis) of permutation-based constructions and “modes
of use” built on top of them, while the second category is concerned with the
permutations themselves. Representative work in the former category includes
besides the classical sponge [9] and duplex [10] construction also various kinds
of constructions/modes that aim to boost performance through a higher bitrate
(e.g. full-state absorption [21], Beetle mode [15]) or via a parallel application
of a sponge or a permutation (e.g. KangarooTwelve [13], Farfalle [8]), as
well as modes with “built-in” countermeasures against certain physical attacks
(e.g. Isap [18]). Research in the second category deals mainly with the design
of permutations and their efficient (and side-channel resistant) implementation
in hardware and/or software. The majority of the published permutations are
either classical Addition-Rotation-XOR (ARX) designs, e.g. Salsa [6], or can
be classified as “AndRX” variants, e.g. Keccak-f [11], Norx Fl [4].

Permutation-based cryptography is well suited for resource-limited devices
(e.g. RFID tags, wireless sensor nodes, smart cards), which is evidenced by the
fact that roughly half of the 32 second-round candidates of NIST’s currently-
ongoing standardization effort for lightweight cryptography use a permutation
as underlying primitive [26]. However, despite a broad body of research in the
area of permutation-based cryptography, surprisingly little is known about the
performance of state-of-the-art permutations on small microcontrollers. There
exist, of course, a lot of benchmarking results for the second-round candidates
of NIST’s lightweight crypto project2, but these benchmarks specify only the
execution time of the full authenticated encryption (resp. hash) algorithms and
not that of the permutation alone. These timings are relatively poor indicators
for the efficiency of the underlying permutation since they also include various
“auxiliary” operations. For example, designs based on the Beetle mode, such
as the NIST candidate Schwaemm [5], include a feedback function ρ through
which data is injected into (and extracted from) the state. Furthermore, some
optimized implementations of permutations that operate on 64-bit words, like
Keccak-f [1600] and Ascon’s p [19], adopt the bit-interleaving method [11] to
speed up rotations on 32-bit ARM processors. This bit-interleaving makes the
injection/extraction of data to/from the state more costly, whereby the actual
penalty factor depends on how fast the permutation itself is. The benchmarks
for full authenticated encryption or hash algorithms do not even allow one to
reason about the relative efficiency of their permutations due to differences in
the bit-rates. Unfortunately, the lack of detailed implementation results makes
the design of new permutations a challenging task since it is not easily possible
to compare the execution time and code size with the state-of-the-art.

2 http://github.com/usnistgov/Lightweight-Cryptography-Benchmarking/ (accessed
2021-09-10).

http://github.com/usnistgov/Lightweight-Cryptography-Benchmarking/

74 L. Cardoso dos Santos and J. Großschädl

In this paper, we analyze and compare the multi-platform (resp. cross-plat-
form) efficiency of four cryptographic permutations that are part of candidates
of the current lightweight cryptography standardization project of the National
Institute of Standards and Technology (NIST) [26]. These four candidates are
Ascon [19], Gimli [7], Schwaemm [5], and Xoodyak [16], all of which come
with algorithms for Authenticated Encryption with Associated Data (AEAD)
and hashing. In addition, they have in common that the permutation width is
very similar (i.e. between 320 and 384 bits) and they all consist of only simple
arithmetic/logic operations (Schwaemm is a classical ARX construction, while
the other three can be classified as “AndRX” designs, i.e. they use the logical
AND operation or OR operation as a source of non-linearity). We evaluate the
execution time and code size of these four permutations with highly-optimized
Assembler implementations for ARM Cortex-M3 and AVR ATmega128 micro-
controllers, whereby we applied the same general optimization strategies and
invested a similar amount of optimization effort for each implementation so as
to ensure a fair evaluation. By focusing solely on the permutations, we aim to
make their relative performance more transparent and generate new insights to
their multi-platform efficiency, which are not immediately apparent when one
compares the execution times collected by other benchmarking initiatives. We
also assess how basic design decisions, e.g. shift/rotation amounts, impact the
performance of the permutations on 32-bit ARM and 8-bit AVR platforms.

2 Overview of the Permutations

In this section, we briefly review the main properties of the four permutations
we consider in this paper, which are the permutations of the NIST candidates
Ascon, Gimli, Schwaemm, and Xoodyak. Except for Gimli, they all made
it to the final round of the evaluation process [26]. Gimli was eliminated in the
second round, but we still include it in our study since its permutation is well
known and has inspired a number of other designs.

ASCON. Ascon is not only one of the 10 finalists of NIST’s standardization
project in lightweight cryptography, but was also selected for the final portfolio
of the CAESAR competition. The main AEAD instance of the Ascon suite is
Ascon-128 and offers 128-bit security according to [19]. It is based on the so-
called Monkey Duplex mode [12] with a stronger keyed initialization and keyed
finalization function, respectively, which means the underlying permutation is
carried out with an increased number of rounds. Said permutation operates on
a 320-bit state (organized in five 64-bit words) by iteratively applying a round
function p. The number of rounds is a = 12 in the initialization and finalization
phase, and b = 6 otherwise; the corresponding permutations are referred to as
pa and pb in the specification. Ascon-128 processes associated data as well as
plaintext/ciphertext with a rate of r = 64 bits, i.e. the capacity is 256 bits. The
hash function of the Ascon suite is a classical sponge construction.

An Evaluation of the Multi-platform Efficiency of Permutations 75

Ascon’s round function p is SPN-based and comprises three parts: (i) the
addition of an 8-bit round constant cr to a 64-bit state-word, (ii) a substitution
layer that operates across the five words of the state and implements an affine
equivalent of the S-box in the χ mapping of Keccak, and (iii) a permutation
layer consisting of linear functions that are similar to the Σ functions in SHA2
and performed on each state-word individually. The S-box maps five input bits
to five output bits and is applied to each column of the state, whereby the five
state-words are arranged upon each other. It is normally implemented in a bit-
sliced fashion using logical ANDs and XORs. The permutation layer performs
an operation of the form x = x ⊕ (x ≫ n1) ⊕ (x ≫ n2) on each word x of the
state with n1 ∈ {1, 7, 10, 19, 61} and n2 ∈ {6, 17, 28, 39, 41} [19].

Gimli. The second-round NIST candidate Gimli consists of the AEAD algo-
rithm Gimli-Cipher and the hash function Gimli-Hash. Both are claimed to
provide 128 bits of security against all known attacks, and Gimli-Cipher even
uses a 256-bit key to “reduce concerns about multi-target attacks and quantum
attacks” [7]. The underlying 384-bit permutation is called Gimli-24 and was
presented at CHES 2017. Gimli-Cipher is a conventional duplex construction
with a capacity of 256 bits, i.e. the rate is 128 bits. On the other hand, Gimli-

Hash is an ordinary sponge and also uses a rate of 128 bits. Unfortunately, the
permutation has weak diffusion, which makes it possible to build a full-round
distinguisher of relatively low complexity [20]. Though this distinguisher on the
permutation does not immediately threaten the security of Gimli-Cipher and
Gimli-Hash, the NIST decided to not promote Gimli to the final round.

The Gimli-24 permutation was designed to reach high performance across
a broad range of platforms, from high-end 64-bit CPUs with vector extensions
to small 8-bit microcontrollers, as well as FPGAs and ASICs. Its 384-bit state
is represented as a 3 × 4 matrix of 32-bit words. Each of the 24 rounds consists
of three operations: (i) a non-linear layer in the form of a 96-bit SP-box that is
applied to each column of the matrix, (ii) a linear mixing layer in every second
round, and (iii) a constant addition in every fourth round. The SP-box itself is
inspired by Norx and can be efficiently implemented using logical operations
(32-bit AND, OR, and XOR), left shifts by 1, 2 and 3 bits, as well as rotations
by 9 and 24 bits. On the other hand, the linear layer performs swap operations
on row 0 of the matrix: a small-swap every fourth round (starting from round
1), and a big-swap also every fourth round (starting from round 3).

SPARKLE. The Sparkle suite submitted to NIST consists of four instances
of the AEAD algorithm Schwaemm, targeting security levels of 128, 192, and
256 bits, as well as two instances of the hash function Esch with digest lengths
of 256 and 384 bits. All instances are built on top of the Sparkle permutation
family, which consists of three members that differ by the width (i.e. the state
size) and the number of steps they execute. Schwaemm is based on the highly-
efficient Beetle mode of use [15], whereas Esch can be classified as a sponge
construction. The main instance of Schwaemm uses the 384-bit variant of the

76 L. Cardoso dos Santos and J. Großschädl

Sparkle permutation, i.e. Sparkle384, with a rate of 256 bits. This variant is
also used for Esch256, the main instance of the hash function Esch. Besides
Sparkle384, there exists also a smaller and a larger version of the permutation
with a width of 256 and 512 bits, respectively (see [5] for details).

Sparkle384 is a classical ARX design, optimized for high speed on a wide
range of 8, 16, and 32-bit microcontrollers. The permutation is performed with
a big number of steps, namely 11, for initialization, finalization, and separation
between the processing of associated data and the secret message, while a slim
(i.e. 7-step) version is used to update the intermediate state. From a high-level
point of view, the permutation has an SPN structure and comprises three main
parts: (i) a non-linear layer consisting of six parallel ARX-boxes, (ii) a simple
linear diffusion layer, (iii) the addition of a step counter and round constant to
the 384-bit state. The ARX-box is called Alzette and can be seen as a small
64-bit block cipher that operates on two 32-bit words and performs additions
modulo 232, logical XORs, and rotations by 16, 17, 24, and 31 bits [5]. On the
other hand, the linear layer is, in essence, a Feistel round with a linear Feistel
function, followed by a swap of the left and right half of the state.

Xoodoo. Xoodyak is a highly versatile cryptographic scheme that is suitable
for a wide range of symmetric-key functions including hashing, pseudo-random
bit generation, authentication, encryption, and authenticated encryption. At its
heart is Xoodoo, a lightweight 384-bit permutation [17]. The Xoodyak suite
submitted to the NIST lightweight crypto project includes an AEAD algorithm
and a hash function; both are built on the Cyclist mode of operation [16]. To
perform authenticated encryption, Cyclist has to be initialized in keyed mode
with a 128-bit key and nonce, respectively, after which associated data can be
absorbed at a rate of 352 bits (i.e. 44 bytes), whereas plaintext/ciphertext gets
processed at a rate of 192 bits. On the other hand, when Cyclist is operated in
hash mode, the rate is 128 bits (i.e. 256 bits of capacity).

Xoodoo is inspired by both Keccak and Gimli in the sense that the state
has the same size and is represented in the same way as in Gimli, though the
round function is similar to Keccak [11]. Consequently, the state has the form
of a 3 × 4 matrix of 32-bit words, which can be visualized via three horizontal
128-bit planes (one above the other), each consisting of four 32-bit lanes. It is
also possible to view the 384-bit state as 128 columns of three bits lying upon
another (i.e. each bit belongs to a different plane). The Xoodoo permutation
executes 12 iterations of a round function of five steps: a column-parity mixing
layer θ, a non-linear layer χ, two plane-shifting layers (ρwest and ρeast) between
them, and a round-constant addition. Both ρ layers move bits horizontally and
perform lane-wise rotations of planes as well as rotations of lanes by 11, 1, and
8 bits to the left. On the other hand, in the parity-computation part of θ and
in the χ layer, state-bits interact only vertically, i.e. within 3-bit columns. The
θ layer mainly executes XORs and left-rotations by 5 and 14 bits. Finally, the
non-linear layer χ applies a 3-bit S-box to each column of the state, which can
be computed using logical ANDs, XORs, and bitwise complements.

An Evaluation of the Multi-platform Efficiency of Permutations 77

3 Implementation and Evaluation

To ensure a fair and consistent evaluation of the four permutations, we applied
the same implementation and optimization strategy to each permutation, and
we put a similar effort into optimizing each implementation. This section gives
an overview of our optimization strategy for ARM and AVR, and presents some
insights into the implementations and the benchmarking. In total, we evaluated
eight implementations (four for ARM and also four for AVR), half of which we
developed from scratch, namely the ARM implementation of Sparkle384 and
the AVR implementations of Ascon, Sparkle384, and Xoodoo, whereas the
remaining four are based on Assembler source code provided by the designers
(with minor modifications to ensure a fair and consistent evaluation).

Target Platforms. The two concrete microcontrollers on which we evaluate
the execution time and binary code size of the cryptographic permutations are
a 32-bit ARM Cortex-M3 [1] and an 8-bit AVR ATmega128 [22]. They possess
very different (micro-)architectural properties and features, making them good
targets for an assessment of the multi-platform efficiency of permutations.

The Cortex-M3 is described in [1] as a “low-power processor” that combines
low hardware cost with high code density and is intended for deeply embedded
applications. It features a 3-stage pipeline with branch speculation and is based
on a modified Harvard memory structure, which means data memory (SRAM)
and instruction memory (usually flash) are connected through separate buses
with the core, but the address space is unified. All Cortex-M3 microcontrollers
implement the ARMv7-M architecture profile [2] and are, therefore, capable to
execute the Thumb-2 instruction set. Thumb-2 is is a superset of the previous
16-bit Thumb instruction set, with additional 16-bit instructions alongside 32-
bit instructions, whereby instructions of different length (i.e. 16 bit, 32 bit) can
be intermixed freely. There are 16 registers in total (r0 to r15), of which up to
14 are available to the programmer and can serve as general-purpose registers
for data operations. Arithmetic/logical instructions generally have a 3-operand
format (i.e. two source registers and one destination register), though there are
some restrictions for 16-bit Thumb-2 instructions, e.g. only the lower registers
r0 to r7 can be used or the destination register and one of the source registers
must be identical. On the other hand, many 32-bit data processing instructions
support a “flexible” second operand, which means the second operand can be
a 12-bit immediate value or a register with an optional shift or rotate [2]. This
makes it possible to execute a shift or rotation as part of another instruction
in a single clock cycle; for example, add rd, rs1, rs2, ror #17 first rotates
the content of rs2 17 bits left before adding it to rs1 and assigning the sum to
register rd. Thumb-2 allows for conditional execution of up to four instructions
that immediately follow an “if-then” construct (i.e. an it instruction) and are
suffixed with appropriate condition codes (see [2] for details).

The ATmega128 [22], like other members of the AVR family of 8-bit micro-
controllers, is based on a modified Harvard architecture, which means it comes

78 L. Cardoso dos Santos and J. Großschädl

with separate memories and buses for program and data in order to maximize
performance and parallelism. However, in contrast to Cortex-M3, ATmega128
microcontrollers have also separate address spaces for program and data (the
ATmega128 only qualifies as a modified Harvard architecture in the weak sense
that it provides dedicated instructions to read and write program memory as
data, e.g. lpm and spm). In total, there are 133 instructions, which are encoded
to be either 16 or 32 bits wide; most of them are executed in only one or two
clock cycles. The ATmega128 features a 2-stage pipeline, making it possible to
execute an instruction while the next instruction is fetched from the program
memory. In addition, it comes with a large register file consisting of 32 general-
purpose registers (r0 to r31) of 8-bit width. Six registers can be used as three
16-bit pointers (X, Y, and Z) to access the data memory. The arithmetic/logical
instructions have a 2-operand format, which allows them to read two operands
from two (arbitrary) registers and write the result of the operation back to the
first register [23]. The ATmega128, like most other 8-bit microcontrollers, can
shift or rotate the content of a register by only one bit at a time; this implies
that shifting an 8-bit operand by e.g. three bits takes three clock cycles. The
cost increases accordingly for 32 or 64-bit operands. For example, the rotation
of a 32-bit operand (stored in four registers) to the left by one bit requires the
execution of five instructions (one lsl, three rol, and one adc) and takes five
clock cycles. A 1-bit right-rotation of a 32-bit operand is even more expensive
since it involves six instructions (one bst, four ror, and one bld).

Optimization Strategies. The evaluated assembly implementations for the
Cortex-M3 platform are purely speed-optimized, which means whenever there
was a trade-off to be made between execution time and code size, the decision
was always in favor of the optimization that led to the best performance. This
implies, for example, the full unrolling of the main loop of each permutation
to eliminate the loop overhead and facilitate some other optimizations. Round
constants are not kept in tables in flash or RAM, but loaded into registers on
the fly via movw and movt (to reduce the impact of wait states) or, if they are
short enough, directly encoded into an instruction as an immediate value. Such
speed-optimized implementations have been developed by the designer teams
of Ascon, Gimli, and Xoodoo; we used these assembly implementations as
starting point but made small modifications to increase the readability of the
source code (e.g. by using macros) and to ensure that they all adhere to the
specifications of the ARM Application Binary Interface (ABI). We translated
the assembly source code of Gimli from the GNU assembler (GAS) syntax to
the syntax of Keil MicroVision such that its execution time can be determined
with Keil’s cycle-accurate simulator and by execution on development boards
using the GNU toolchain for ARM. The original 32-bit ARM implementation
of Ascon provided by its designers contained “inlined” assembly code for the
permutation. We converted this implementation into a pure assembly function
(with a separate file) to ensure consistency across all permutations. Finally, the
fourth permutation, i.e. Sparkle384, was implemented by us from scratch.

An Evaluation of the Multi-platform Efficiency of Permutations 79

Our assembly implementations of the permutations for the 8-bit AVR plat-
form [23] aim for small (binary) code size instead of high speed. Therefore, we
refrained from code-size increasing optimizations like (full) loop unrolling as
otherwise the code size may grow unreasonably large. This can be exemplified
using the AVR assembler implementations of Gimli (provided by its designers)
as case study. One of these implementations is size-optimized and, thus, quite
small (less than 800 B), while the other is speed-optimized (with fully unrolled
main loop) and has a code size of over 19 kB [7]. For comparison, the code size
of the fully-unrolled ARM implementation is less than 4 kB. However, it has
to be taken into account that the flash capacity for storing program code is, in
general, more restricted on small and cheap devices that are equipped with an
8-bit microcontroller than on devices with a more powerful 32-bit ARM micro-
controller. We implemented the assembly code for Ascon, Sparkle384, and
Xoodoo from scratch since, at the time we started with our evaluation of the
permutations, no size-optimized AVR implementations were available. On the
other hand, we took over the small-size AVR version of the Gimli permutation
developed by the designer team since it aligns very well with our optimization
strategy for AVR. We put a similar effort into optimizing each implementation
of the permutations to ensure a fair and consistent evaluation.

Implementation Details. Optimizing the permutations for the 32-bit ARM
Cortex-M3 microcontroller is fairly straightforward. All four permutations have
in common that the full state can be kept in the register file, which still leaves
either two (Gimli, Sparkle384, Xoodoo) or four (Ascon) registers available
for the computations. Gimli, Sparkle384, and Xoodoo organize their state
in 32-bit words and can, therefore, take advantage of implicit shifts/rotations
folded into data processing instructions. All implementations we evaluate make
extensive use of such “free” shifts or rotations so as to minimize the execution
time. As already mentioned above, round constants are either directly encoded
into an instruction as immediate value (if they are short enough) or loaded to
registers via movw and movt. The permutation of Ascon is a special case since
it operates on 64-bit words. In order to still be able to exploit “free” shifts and
rotations of 32-bit operands, the designer team of Ascon adopted a so-called
bit-interleaving technique [11,19], which is, in essence, a special representation
of a 64-bit word as two 32-bit words, one containing all bits at even positions
and the other all bits at odd positions. In this way, Ascon can take advantage
of implicitly-performed rotations in the linear layer, though this comes at the
expense of conversions between the normal representation and bit-interleaved
representation. More concretely, data that is injected into the state has to be
converted from normal to bit-interleaved form, while an extraction of data from
the state requires a conversion in the opposite direction.

The 8-bit AVR architecture requires significantly different implementation
and optimization techniques than ARM. First and foremost, the register space
of an 8-bit AVR microcontroller is not large enough to accommodate the entire
state of any of the four permutations, which means the state has to be kept in

80 L. Cardoso dos Santos and J. Großschädl

RAM and parts of the state are loaded into registers when an operation is to be
carried out on them. Therefore, the main optimization problem for AVR is to
find a good register allocation strategy, which includes to decide when to load
state-words from RAM to registers and when to write them back to RAM so
that the overall number of memory accesses (i.e. ld, st instructions) becomes
minimal. Ascon is well suited for platforms with small register space because
each of the two main layers needs, at any time, only a part of the 320-bit state
(but never the full state) in registers. Our AVR implementation processes the
substitution layer in 16-bit slices (i.e. a 16-bit part of each state-word is loaded
and stored) and the permutation layer one state-word at a time, which means
each byte of the state gets loaded/stored twice per round. This is also the case
for Sparkle384, but requires moving the computation of the temporary values
tx and ty from the linear layer to the ARX-box layer. Our AVR implementation
of Xoodoo integrates parts of the plane-shifting layers ρwest and ρeast into the
mixing layer θ and the non-linear layer χ, respectively, to minimize the overall
number of memory accesses. Nonetheless, each byte of the 384-bit state has to
be loadd from RAM and stored to RAM on average 2.66 times per round.

Rotations of 32-bit (resp. 64-bit) words can be optimized on AVR by taking
advantage of the fact that rotating by a multiple of 8 bits is cheap (i.e. can be
executed by mov instructions) or even free (e.g. when combined with XOR).

Benchmarking. We evaluated the execution time of both the ARM and the
AVR implementation of the permutations via simulation with a cycle-accurate
instruction set simulator, namely the simulator of Keil MicroVision 5.26 and
Atmel Studio 7, respectively. Execution times obtained by simulation with the
latter are, in general, very close to the timings on a real AVR device. Unfortu-
nately, this is often not the case for simulation results for ARM since, as stated
on Keil’s website3, the simulator assumes ideal conditions for memory accesses
and “does not simulate wait states for data or code fetches.” Thus, the timings
obtained with this simulator should be seen as lower bounds of the execution
times one will observe on a real Cortex-M3 device. In order to get more precise
performance figures, we also measured the execution time of the permutations
on three development boards with a different number of flash wait states. The
first board is a STM32 VL Discovery, which is equipped with a STM32F100RB
Cortex-M3 microcontroller clocked at a nominal frequency of 24 MHz. Due to
this relatively low clock frequency, the microcontroller can access flash with no
wait states at all. Our second board is also a STM32, but a more sophisticated
one, namely the Nucleo-64. It comes with a STM32F103RB Cortex-M3 clocked
with a frequency of 72 MHz. At this clock frequency, flash accesses require two
wait states. Finally, the third board is an Arduino Due, which houses an Atmel
SAM3X8E Cortex-M3 clocked at 84 MHz. When operated using the standard
configuration, flash accesses require four wait states. However, the performance
impact of this high number of wait states is partly mitigated by a 128-bit wide
memory interface and a system of 2 × 128-bit buffers (see [3, Sect. 18]).
3 http://www2.keil.com/mdk5/simulation/ (accessed 2021-09-14).

http://www2.keil.com/mdk5/simulation/

An Evaluation of the Multi-platform Efficiency of Permutations 81

4 Experimental Results

Table 1 presents the code size and execution time of speed-optimized (i.e. with
fully-unrolled loops) ARM assembly implementations of the four permutations
Ascon, Gimli, Sparkle384, and Xoodoo. All these execution times are the
result of simulations using the cycle-accurate instruction set simulator of Keil
MicroVision 5.26 using a generic Cortex-M3 model as target device. The times
range from 387 clock cycles (Ascon) to 1041 cycles (Gimli). However, when
comparing symmetric cryptosystems, the throughput (in cycles per byte) is, in
general, more meaningful than raw execution times. For example, in the case
of block ciphers, the throughput obtained by dividing the execution time by the
block size allows one to take into account that different algorithms may have
different block sizes. Similarly, when comparing permutations, one can obtain
throughput figures by dividing the computation time by either the width of the
permutation or the rate of the associated AEAD algorithm. The AEAD rates
that are relevant for our four permutations are all different, namely eight bytes
for Ascon-128, 16 bytes for Gimli-Cipher, 24 bytes for Xoodyak, and even
32 bytes for Schwaemm256-128. However, when using the rate of the related
AEAD algorithm to determine the throughput, the resulting values take into
account the efficiency of the permutation and the efficiency of the mode of the
AEAD algorithm. Since our aim is to analyze the efficiency of the permutation
alone, we decided to calculate the throughput under the assumption that each
permutation is used to instantiate one and the same mode (namely a classical
sponge) with one and the same capacity (namely 256 bits, which corresponds
to 128 bits of security). Consequently, Ascon has a rate of eight bytes, and the
three other permutations a rate of 16 bytes.

Table 1. Code size, execution time, and throughput of speed-optimized ARMv7-M
assembly implementations of the four permutations on a Cortex-M3 microcontroller.

Permutation Code size
(bytes)

Exec. time
(clock cycles)

Throughput
(cc/rate-byte)

Ascon-128 (6 rounds) 1364 387 48.38

Gimli (24 rounds) 3950 1041 65.06

Sparkle384 (7 steps) 2810 778 48.63

Xoodoo (12 rounds) 2376 657 41.06

The last column of Table 1 gives the throughput (in cycles per byte) of the
permutations calculated in this way, i.e. by dividing the execution time by the
rate under the assumption that the permutation is used to instantiate a sponge
with a capacity of 256 bits. Xoodoo requires only 41 cycles per rate-byte and
reaches the best throughput, followed by Ascon and Sparkle384, which are
nearly identical. However, the results for Ascon do not include the conversion

82 L. Cardoso dos Santos and J. Großschädl

to and from bit-interleaved form. Gimli has the by far worst throughput of all
four permutations. In terms of code size, Ascon is the clear winner.

Table 2. Code size, execution time, and throughput of size-optimized AVR assembly
implementations of the four permutations on an ATmega128 microcontroller.

Permutation Code size
(bytes)

Exec. time
(clock cycles)

Throughput
(cc/rate-byte)

Ascon-128 (6 rounds) 836 4484 560.50

Gimli (24 rounds) 778 23699 1481.19

Sparkle384 (7 steps) 844 7460 466.25

Xoodoo (12 rounds) 756 11849 740.56

Table 2 lists the code size, execution time, and throughput (in terms of the
permutation time divided by the rate, assuming a capacity of 256 bits) of code-
size-optimized AVR assembly implementations of the four permutations on an
ATmega128 microcontroller [22]. The execution times were simulated using the
cycle-accurate instruction set simulator of Atmel Studio 7. Apparently, all the
AVR timings are significantly worse (by at least one order of magnitude) than
the execution times of the permutations on ARM. This enormous performance
penalty can be explained by different optimization goals (i.e. size versus speed)
and, more importantly, the completely different characteristics of the AVR and
ARM architecture (e.g. register space, latency of multi-bit rotations). In terms
of throughput, Sparkle384 is now the clear winner, followed by Ascon and
Xoodoo. While on ARM the three fastest permutations were throughput-wise
relatively close to each other, we see a significant difference on AVR since the
throughput of Ascon is 20% worse than the throughput of Sparkle384, and
the throughput of Xoodoo is even 59% worse. Even though we optimized the
permutations for small code size, they compare very well with speed-optimized
AVR implementations. For example, the AVR assembler implementation of the
permutation of Ascon developed by Rhys Weatherley4 has an execution time
of 4693 cycles and a code size of 1418 bytes, which means our implementation
is not only much smaller but also a bit faster. The AVR implementation of the
Xoodoo permutation provided by its designers5 needs 11009 clock cycles for 12
rounds and has a code size of 1656 bytes, making it more than twice as big as
our implementation, but also 840 clock cycles (or 7.6%) faster.

As mentioned in the last section, the simulation results obtained with Keil
MicroVision can differ from the execution time on “real” Cortex-M3 hardware
because the simulator does not take flash wait states into account. The purpose

4 ascon permute from http://github.com/rweather/lwc-finalists/blob/master/src/
individual/ASCON/internal-ascon-avr.S (accessed 2021-09-21).

5 Xoodoo Permute Nrounds from http://github.com/XKCP/XKCP/blob/master/lib/
low/Xoodoo/AVR8/Xoodoo-avr8-u1.s (accessed 2021-09-21).

http://github.com/rweather/lwc-finalists/blob/master/src/individual/ASCON/internal-ascon-avr.S
http://github.com/rweather/lwc-finalists/blob/master/src/individual/ASCON/internal-ascon-avr.S
http://github.com/XKCP/XKCP/blob/master/lib/low/Xoodoo/AVR8/Xoodoo-avr8-u1.s
http://github.com/XKCP/XKCP/blob/master/lib/low/Xoodoo/AVR8/Xoodoo-avr8-u1.s

An Evaluation of the Multi-platform Efficiency of Permutations 83

Table 3. Execution time of the four permutations as determined by simulation with
Keil MicroVision using a generic Cortex-M3 model and measurement on Cortex-M3
development boards with 0, 2, and 4 flash wait states (values in parentheses are the
performance penalties versus the VL Discovery board, which has 0 wait states).

Permutation Keil µVision
(simulation)

VL Discovery
0 wait states

Nucleo-64
2 wait states

Arduino Due
4 wait states

Ascon-128 (6 rounds) 387 389 601 (1.54) 472 (1.21)

Gimli (24 rounds) 1041 1043 1656 (1.59) 1287 (1.23)

Sparkle384 (7 steps) 778 780 1196 (1.53) 936 (1.20)

Xoodoo (12 rounds) 657 659 1014 (1.54) 795 (1.21)

of such flash wait states is to compensate the difference between the maximum
clock frequency with which the microcontroller core and the flash memory can be
operated. Modern Cortex-M3 microcontrollers can be clocked with frequencies
of over 200 MHz, which is far above the maximum frequency of conventional
flash memory (usually between 20 and 30 MHz). Thus, it makes sense to assess
the impact of flash wait states on the actual performance of the permutations
by measuring their execution time on the three Cortex-M3 development boards
mentioned in the previous section, namely an STM32 VL Discovery (which has
no flash wait states), an STM32 Nucleo-64 (two wait states), and an Arduino
Due (four wait states). However, the Atmel SAM3X8E microcontroller on the
Due board performs fetches from flash through a 128-bit wide bus and comes
with a 2 × 128-bit buffer, which mitigates to a certain extent the impact of the
wait states. Table 3 shows the (measured) execution times of the permutations
on these boards. The timings on the VL Discovery are almost the same as the
ones obtained through simulation with Keil MicroVision; this confirms that the
Keil simulator is indeed cycle-accurate. On the other hand, the execution times
on the Nucleo-64 board are significantly worse (by factors of between 1.53 and
1.59) than the results on the Discovery board and the timings reported by the
simulator. The timings on the Arduino Due are better than the timings on the
Nucleo-64, despite the two times larger number of wait states, which is because
of the afore-mentioned 128-bit wide flash access and the 2 × 128-bit buffer.

5 Conclusions

Since there is no single dominating microcontroller architecture in the IoT, the
designers of (lightweight) symmetric algorithms have to aim for multi-platform
efficiency, i.e. efficiency on a wide range of microcontrollers with highly diverse
(and divergent) characteristics. In this paper, we analyzed how well the permu-
tations of the AEAD algorithms Ascon-128, Gimli, Schwaemm256-128, and
Xoodyak achieve this goal, whereby we used a 32-bit ARM Cortex-M3 and an
8-bit AVR microcontroller as target platforms. We evaluated speed-optimized
assembler implementations for ARM, based primarily on source code from the
designer teams, and size-optimized assembler implementations for AVR, which

84 L. Cardoso dos Santos and J. Großschädl

we mainly developed from scratch. Our results indicate that the throughput (in
terms of permutation time divided by the rate when the capacity is fixed to 256
bits) of Ascon, Sparkle384 and Xoodoo is very similar on ARM and differs
by just a few cycles per rate-byte. On the other hand, on AVR, Sparkle384 is
significantly more efficient than all its competitors; for example, it outperforms
Ascon and Xoodoo by a factor of 1.20 and 1.59, respectively. A major reason
for the difference between ARM and AVR results is the cost of multi-bit shifts
and rotations on the latter platform. Many of the rotation amounts of the five
linear functions of Ascon are not particularly AVR-friendly, which makes the
linear layer relatively inefficient. The performance of Xoodoo on AVR is also
hampered by rotation amounts that are “unfriendly” to small microcontrollers
and further suffers from a relatively large number of memory accesses compared
to e.g. Ascon. On a more positive note, the results for Sparkle demonstrate
that it is possible to design a permutation for multi-platform efficiency.

References

1. Arm Limited. ARM Cortex-M3 Processor Technical Reference Manual, Revision
r2p1. http://developer.arm.com/documentation/100165/latest (2016)

2. Arm Limited. ARMv7-M Architecture Reference Manual, Issue E.e. http://
developer.arm.com/documentation/ddi0403/latest (2021)

3. Atmel Corporation. SAM3X/SAM3A Series Atmel SMART ARM-based MCU.
Data sheet. http://www.microchip.com/en-us/product/ATSAM3X8E (2015)

4. Aumasson, J.-P., Jovanovic, P., Neves, S.: NORX v3.0. Specification. http://
github.com/norx/resources/raw/master/specs/norxv30.pdf (2016)

5. Beierle, C., et al.: Lightweight AEAD and hashing using the sparkle permutation
family. IACR Trans. Symmetric Cryptol. 2020(S1), 208–261 (2020)

6. Bernstein, D.J.: The Salsa20 family of stream ciphers. In: Robshaw, M., Billet, O.
(eds.) New Stream Cipher Designs. LNCS, vol. 4986, pp. 84–97. Springer, Heidel-
berg (2008). https://doi.org/10.1007/978-3-540-68351-3 8

7. Bernstein, D.J., et al.: Gimli?: a cross-platform permutation. In: Fischer, W.,
Homma, N. (eds.) CHES 2017. LNCS, vol. 10529, pp. 299–320. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-66787-4 15

8. Bertoni, G., Daemen, J., Hoffert, S., Peeters, M., Van Assche, G., Van Keer, R.:
Farfalle: parallel permutation-based cryptography. IACR Trans. Symmetric Cryp-
tol. 2017(4), 1–38 (2017)

9. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Cryptographic sponge func-
tions. http://keccak.team/files/CSF-0.1.pdf (2011)

10. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Duplexing the sponge:
single-pass authenticated encryption and other applications. In: Miri, A., Vau-
denay, S. (eds.) SAC 2011. LNCS, vol. 7118, pp. 320–337. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-28496-0 19

11. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: The Keccak reference, ver-
sion 3.0. http://keccak.team/files/Keccak-reference-3.0.pdf (2011)

12. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Permutation-based encryp-
tion, authentication and authenticated encryption. In: Record of the 1st ECRYPT
II Workshop on New Directions in Authenticated Encryption (DIAC 2012), pp.
159–170 (2012)

http://developer.arm.com/documentation/100165/latest
http://developer.arm.com/documentation/ddi0403/latest
http://developer.arm.com/documentation/ddi0403/latest
http://www.microchip.com/en-us/product/ATSAM3X8E
http://github.com/norx/resources/raw/master/specs/norxv30.pdf
http://github.com/norx/resources/raw/master/specs/norxv30.pdf
https://doi.org/10.1007/978-3-540-68351-3_8
https://doi.org/10.1007/978-3-319-66787-4_15
http://keccak.team/files/CSF-0.1.pdf
https://doi.org/10.1007/978-3-642-28496-0_19
http://keccak.team/files/Keccak-reference-3.0.pdf

An Evaluation of the Multi-platform Efficiency of Permutations 85

13. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G., Van Keer, R., Viguier, B.:
KangarooTwelve: fast hashing based on Keccak-p. In: Preneel, B., Vercauteren,
F. (eds.) ACNS 2018. LNCS, vol. 10892, pp. 400–418. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-93387-0 21

14. Bursztein, E.: Speeding up and strengthening HTTPS connections for Chrome
on Android. Google Security Blog. https://security.googleblog.com/2014/04/
speeding-up-and-strengthening-https.html (2014)

15. Chakraborti, A., Datta, N., Nandi, M., Yasuda, K.: Beetle family of lightweight and
secure authenticated encryption ciphers. IACR Trans. Cryptographic Hardware
Embed. Syst. 2018(2), 218–241 (2018)

16. Daemen, J., Hoffert, S., Peeters, M., Van Assche, G., Van Keer, R.: Xoodyak,
a lightweight cryptographic scheme. IACR Trans. Symmetric Cryptol. 2020(S1),
60–87 (2020)

17. Daemen, J., Hoffert, S., Van Assche, G., Van Keer, R.: The design of Xoodoo and
Xoofff. IACR Trans. Symmetric Cryptol. 2018(4), 1–38 (2018)

18. Dobraunig, C., et al.: Isap v2.0. IACR Trans. Symmetric Cryptol. 2020(S1), 390–
416 (2020)

19. Dobraunig, C., Eichlseder, M., Mendel, F., Schläffer, M.: Ascon v1.2: lightweight
authenticated encryption and hashing. J. Cryptol. 34(3), 1–42 (2021). https://doi.
org/10.1007/s00145-021-09398-9

20. Flórez-Gutiérrez, A., Leurent, G., Naya-Plasencia, M., Perrin, L., Schrottenloher,
A., Sibleyras, F.: Internal symmetries and linear properties: full-permutation dis-
tinguishers and improved collisions on Gimli. J. Cryptol. 34(4), 45 (2021)

21. Mennink, B., Reyhanitabar, R., Vizár, D.: Security of full-state keyed sponge and
duplex: applications to authenticated encryption. In: Iwata, T., Cheon, J.H. (eds.)
ASIACRYPT 2015. LNCS, vol. 9453, pp. 465–489. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-48800-3 19

22. Microchip Technology Inc. 8-bit Atmel Microcontroller with 128KBytes In-
System Programmable Flash: ATmega128, ATmega128L. http://ww1.microchip.
com/downloads/en/DeviceDoc/doc2467.pdf (2011)

23. Microchip Technology Inc. AVR Instruction Set Manual. http://ww1.microchip.
com/downloads/en/DeviceDoc/AVR-Instruction-Set-Manual-DS40002198A.pdf
(2020)

24. Mordor Intelligence, Inc. 8-bit Microcontroller Market - Growth, Trends,
and Forecast (2020–2025). http://www.mordorintelligence.com/industry-reports/
8-bit-microcontroller-market-industry (2020)

25. National Institute of Standards and Technology (NIST). SHA-3 Standard:
Permutation-Based Hash and Extendable-Output Functions. FIPS Publication
202. http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf (2015)

26. National Institute of Standards and Technology (NIST). Status Report on the
Second Round of the NIST Lightweight Cryptography Standardization Pro-
cess. Internal Report 8369. http://nvlpubs.nist.gov/nistpubs/ir/2021/NIST.IR.
8369.pdf (2021)

27. Radiant Insights, Inc., Microcontroller Market Size, Share, Analysis Report 2020.
http://www.radiantinsights.com/research/microcontroller-market/ (2015)

28. Telefonaktiebolaget LM Ericsson. Ericsson Mobility Report November 2017.
http://www.ericsson.com/assets/local/mobility-report/documents/2017/
ericsson-mobility-report-november-2017.pdf (2017)

https://doi.org/10.1007/978-3-319-93387-0_21
https://security.googleblog.com/2014/04/speeding-up-and-strengthening-https.html
https://security.googleblog.com/2014/04/speeding-up-and-strengthening-https.html
https://doi.org/10.1007/s00145-021-09398-9
https://doi.org/10.1007/s00145-021-09398-9
https://doi.org/10.1007/978-3-662-48800-3_19
http://ww1.microchip.com/downloads/en/DeviceDoc/doc2467.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/doc2467.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/AVR-Instruction-Set-Manual-DS40002198A.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/AVR-Instruction-Set-Manual-DS40002198A.pdf
http://www.mordorintelligence.com/industry-reports/8-bit-microcontroller-market-industry
http://www.mordorintelligence.com/industry-reports/8-bit-microcontroller-market-industry
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf
http://nvlpubs.nist.gov/nistpubs/ir/2021/NIST.IR.8369.pdf
http://nvlpubs.nist.gov/nistpubs/ir/2021/NIST.IR.8369.pdf
http://www.radiantinsights.com/research/microcontroller-market/
http://www.ericsson.com/assets/local/mobility-report/documents/2017/ericsson-mobility-report-november-2017.pdf
http://www.ericsson.com/assets/local/mobility-report/documents/2017/ericsson-mobility-report-november-2017.pdf

Optimized Implementation of SHA-512
for 16-Bit MSP430 Microcontrollers

Christian Franck(B) and Johann Großschädl

Department of Computer Science, University of Luxembourg,
6, Avenue de la Fonte, L-4364 Esch-sur-Alzette, Luxembourg

{christian.franck,johann.groszschaedl}@uni.lu

Abstract. The enormous growth of the Internet of Things (IoT) in the
recent past has fueled a strong demand for lightweight implementations
of cryptosystems, i.e. implementations that are efficient enough to run
on resource-limited devices like sensor nodes. However, most of today’s
widely-used cryptographic algorithms, including the AES or the SHA2
family of hash functions, were already designed some 20 years ago and
did not take efficiency in restricted environments into account. In this
paper, we introduce implementation options and software optimization
techniques to reduce the execution time of SHA-512 on 16-bit MSP430
microcontrollers. These optimizations include a novel register allocation
strategy for the 512-bit hash state, a fast “on-the-fly” message schedule
with low RAM footprint, special pointer arithmetic to avoid the need to
copy state words, as well as instruction sequences for multi-bit rotation
of 64-bit operands. Thanks to the combination of all these optimization
techniques, our hand-written MSP430 Assembler code for the SHA-512
compression function reaches an execution time of roughly 40.6k cycles
on an MSP430F1611 microcontroller. Hashing a message of 1000 bytes
takes slightly below 338k clock cycles, which corresponds to a hash rate
of about 338 cycles/byte. This execution time sets a new speed record
for hashing with 256 bits of security on a 16-bit platform and improves
the time needed by the fastest C implementations by a factor of 2.3. In
addition, our implementation is extremely small in terms of code size
(roughly 2.1k bytes) and has a RAM footprint of only 390 bytes.

Keywords: IoT security · Lightweight cryptography · Cryptographic
hash function · MSP430 architecture · Software optimization

1 Introduction

A cryptographic hash function is an algorithm that maps data of arbitrary size
and form to a fixed-size bit-string, typically between 160 and 512 bits, which is
(under idealized assumptions) unique and can be seen as a “digest” or “digital
fingerprint” of the data. Such algorithms play a crucial role in IT security and
are used for a broad range of purposes, e.g. to verify the integrity of data, to
serve as digest of data for digital signature schemes, to verify passwords, or to
c© Springer Nature Switzerland AG 2022
P. Y. A. Ryan and C. Toma (Eds.): SecITC 2021, LNCS 13195, pp. 86–99, 2022.
https://doi.org/10.1007/978-3-031-17510-7_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-17510-7_7&domain=pdf
https://doi.org/10.1007/978-3-031-17510-7_7

Optimized Implementation of SHA-512 for 16-Bit MSP430 Microcontrollers 87

implement a proof-of-work for digital currencies [10]. In addition to these basic
applications, modern hash functions can also be used to construct e.g. Message
Authentication Codes (MACs), eXtensible Output Functions (XOFs), Pseudo-
Random Number Generators (PRNGs), and even stream ciphers. Amongst the
most important and widely-used hash functions are the members of the SHA2
family, which have been adopted by the NIST and many other standardization
bodies all around the world [7]. The SHA2 family consists of six hash functions
altogether, which vary with respect to the digest lengths (ranging from 224 to
512 bits) and, consequently, provide different levels of security. SHA-512 is the
“biggest” member of the family and especially important since it is part of the
popular Edwards Curve Digital Signature Algorithm (EdDSA) [5].

The SHA-512 algorithm is based on the carefully-analyzed Merkle-Damg̊ard
structure [3,6] and uses a Davies-Meyer compression function [9] that consists
of only Boolean operations (i.e. AND, OR, XOR, NOT), modular additions, as
well as shifts and rotations. All these operations are applied to a 512-bit state
arranged in the form of eight 64-bit words called working variables. Arithmetic
and logical operations on 64-bit words are extremely efficient on modern high-
end X64 processors, but can introduce a significant performance-bottleneck on
8 and 16-bit microcontrollers with a small register space and slow shift/rotate
operations. Such resource-constrained platforms can only hold a fraction of the
512-bit state in registers (but never the entire state), which necessitates a large
number of load and store operations to transfer working variables between the
register file and RAM. In addition, all small 8 and 16-bit microcontrollers can
only shift or rotate the content of a register by a single bit at a time, i.e. shifts
or rotations by n bits take (at least) n clock cycles. The cycle count increases
further when the data word to be shifted or rotated is too large to fit into one
register, which is always the case when SHA-512 is implemented on processors
with a word-size of less than 64 bits. Furthermore, most C compilers for small
microcontrollers are not good at optimizing arithmetic or logical operations on
64-bit words because operands of such a length have hardly any application on
8/16-bit platforms apart from cryptography.

The massive growth of the Internet of Things (IoT) [4] in the past 10 years
has created a strong interest in the question of how cryptographic algorithms
can be optimized for resource-restricted microcontrollers and what performance
highly-optimized implementations can achieve. An example for such platforms
is the MSP430(X) series of 16-bit ultra-low-power microcontrollers from Texas
Instruments [11]. MSP430 devices were among the first embedded platforms
to be equipped with Ferro-electric Random Access Memory (FRAM), which is
non-volatile (like Flash) but nonetheless offers high-speed read, write, and erase
accesses (similar to SRAM). In addition, MSP430 microcontrollers have several
low-power modes with fine-grain control over active components, making them
suitable for battery-operated devices like wireless sensor nodes. The MSP430 is
based on the von-Neumann memory model, which means code and data share
a unified address space, and there is a single address bus and a single data bus
that connects the microcontroller core with RAM, flash/ROM, and peripheral

88 C. Franck and J. Großschädl

modules. Twelve of the 16 registers (each 16 bits wide) are available for general
use; the remaining four serve a special purpose. The MSP430 architecture has
a minimalist instruction set consisting of only 27 core instructions that can be
divided into three categories: double-operand instructions (which overwrite one
of the operands with the result), single-operand instructions, and jumps.

In this paper, we present (to the best of our knowledge) the first optimized
assembler implementation of SHA-512 for the MSP430(X) platform, which we
developed from scratch with the goal to achieve a reasonable trade-off between
fast execution time, small code size, and low memory consumption. The main
data structure of our SHA-512 software is an efficient circular buffer based on
a special memory alignment method and advanced pointer arithmetic. We also
explain how we optimized the rotation of 64-bit words, and how we maximized
the register usage (resp. minimized the number of memory accesses) in order to
speed up the computation of the compression function. Though we describe all
our optimization techniques in the context of SHA-512, they also facilitate the
implementation of other members of the SHA2 family, and may even be useful
for applications other than cryptographic hashing. We assess the performance
of our software by comparing it with a number of optimized C implementations
of SHA-512. This comparison indicates that our implementation is at least 2.3
times faster and requires less code size and RAM than its competitors.

2 SHA-512

SHA-512 is a member of the SHA2 suite of hash functions, which was designed
by the National Security Agency (NSA) and first published in 2001. The SHA2
suite includes six hash functions in total, with digest sizes ranging from 224 to
512 bits. After standardization by the U.S. National Institute of Standards and
Technology (NIST) [7] and various other standards bodies, the SHA2 suite has
become widely used in practice and is now an integral building block of modern
security protocols like SSL/TLS and IPSec. Another reason for the widespread
deployment of the SHA2 suite is their excellent performance in software. As its
name suggests, SHA-512 produces a digest of a length of 512 bits, which makes
it the “biggest” member of the SHA2 suite. It has a block size of 1024 bits and
can hash data of a length of up to 2128 bits (i.e. 2125 bytes). SHA-512, like all
other members of the SHA2 suite, involves a padding so that the length of the
data becomes a multiple of the block size. Finding a pair of colliding messages
based on the birthday paradox requires about 2256 evaluations of SHA-512. On
the other hand, finding a preimage (i.e. a message with a given hash value) has
a time complexity of 2512. In other words, SHA-512 provides 256 bits of security
against collision attacks and 512 bits of security against preimage attacks.

SHA-512, as well as all other members of the SHA2 suite, is a Merkle-Dam-
g̊ard construction, which is a well-established way of designing a hash function
from a one-way compression function [3,6]. A hash function built according to
the Merkle-Damg̊ard approach is provably resistant against collisions when the
compression function is collision-resistant and an appropriate padding scheme is

Optimized Implementation of SHA-512 for 16-Bit MSP430 Microcontrollers 89

used. In other words, when following the Merkle-Damg̊ard method, the problem
of designing a collision-resistant hash function for messages of any length boils
down to designing a collision-resistant compression function for short blocks. In
the SHA2 suite, the compression function is based on a block cipher according
to the Davies-Meyer strategy [9], which means the message block to compress is
fed as key to the block cipher, while the previous hash value is the plaintext to
encrypt. The ciphertext generated by the block cipher is then XORed with the
plaintext to produce the next hash value. Consequently, the block cipher of the
compression function of SHA-512 has a key length of 1024 bits and a block size
of 512 bits.

2.1 Preprocessing

According to [7], the SHA-512 hash function consists of two core parts: prepro-
cessing and hash computation. The former includes the padding of the message
and the initialization of the working variables to fixed values. Thereafter, the
actual hash computation involves a message schedule and (iteratively) produces
a sequence of hash values, the last of which forms the final digest.

SHA-512 takes as input a message M of a length of l < 2128 bits, which is
processed in blocks Mi with a fixed length of 1024 bits. At first, M is padded
by appending a “1” bit followed by a certain number of “0” bits such that the
overall bit-length becomes congruent to 896 modulo 1024 (i.e. when k denotes
the number of “0” bits, the congruence relation l + k + 129 ≡ 0 mod 1024 has
to hold). Then, l is appended as unsigned 128-bit integer (most significant byte
first), which means that the last block of a padded message becomes 1024 bits
long. Note that padding is always added, even if the length l of the unpadded
message M is already a multiple of 1024. Consequently, it can happen that the
padded message becomes one block longer than the unpadded message.

SHA-512 operates on a state of a length of 512 bits that holds intermediate
results during the computation and also the final message digest. This state is
organized in eight 64-bit working variables, usually referred to by the lowercase
letters a, b, c, d, e, f , g, and h. At the beginning of the hash computation, the
working variables are initialized to 64-bit integers, which are specified in [7] in
big-endian format, i.e. the most-significant byte is placed at the lowest address
(or leftmost byte position) of the word representing a working variable. These
eight 64-bit integers were obtained by taking the first 64 bits of the fractional
portions of the square roots of the first eight prime numbers.

2.2 Hash Computation

The most speed-critical part of SHA-512 is the computation of the compression
function, which is an iterative process consisting of 80 rounds. Each round gets
as input the set of working variables, a 64-bit word wi that is derived from the
message block to be compressed via the so-called message schedule (described
below), and a 64-bit round constant ki. These round constants are nothing else
than the first 64 bits of the fractional portions of the cube roots of the first 80

90 C. Franck and J. Großschädl

Fig. 1. SHA-512 message schedule (a 1024-bit block of the message contained in sixteen
64-bit words w0, . . . , w15 is extended to 80 words w0, . . . , w79).

Fig. 2. Illustration of the SHA-512 round function showing how the working variables
a to h are updated in every round.

prime numbers. At the end of each round, the set of eight working variables is
updated. Following to the Davies-Meyer principle, the working variables at the
end of the last (i.e. 80-th) round are XORed with the working variables at the
beginning of the first round.

Message Schedule. As depicted in Fig. 1, the message schedule expands the
1024-bit message block Mi to 80 words wi with 0 ≤ i ≤ 79, each of which has
a length of 64 bits. For the first 16 rounds, the 64-bit words w0 to w15 are the
same as the words of the 1024-bit block Mi of the message to be hashed. The
remaining 64 words are computed according to the following equations.

wi = (σ1(wi−2) + wi−7 + σ0(wi−15) + wi−16) mod 264

σ0(w) = (w ≫ 1) ⊕ (w ≫ 8) ⊕ (w � 7)
σ1(w) = (w ≫ 19) ⊕ (w ≫ 61) ⊕ (w � 6)

Consequently, the word wi for 16 ≤ i ≤ 79 is derived from four preceding words
of wi, namely wi−2, wi−7, wi−15, and wi−16, whereby two of these four words
are subjected to the functions σ0(.) and σ1(.). These “small sigma” functions
consist of XOR operations, right-rotations (represented by the symbol ≫), as
well as right-shifts (represented by �).

Optimized Implementation of SHA-512 for 16-Bit MSP430 Microcontrollers 91

Round Function. As shown in Fig. 2, the SHA-512 round function processes
the eight working variables a, b, c, d, e, f , g, and h, using as additional inputs
a word wi of the message schedule and a round constant ki. In each round, two
of the eight working variables are updated through additions (modulo 264) in
combination with the following four operations.

Σ0(e) = (e ≫ 28) ⊕ (e ≫ 34) ⊕ (e ≫ 39)
Σ1(a) = (a ≫ 14) ⊕ (a ≫ 18) ⊕ (a ≫ 41)

Ch(e, f, g) = (e ∧ f) ⊕ (ē ∧ g)
Maj(a, b, c) = (a ∧ b) ⊕ (a ∧ c) ⊕ (b ∧ c)

The two Σ operations (“big sigma”) are very similar to the σ operations of the
message schedule and consist of rotations and XORs. Ch (short for “choice”) is
a conditional operation where e determines whether a bit of f or a bit of g gets
assigned to the output. On the other hand, Maj (short for “majority”) assigns
the majority of the three inputs bits a, b, c to the output, i.e. the output bit is
“1” if at least two bits are “1”. Finally, the values of the six working variables
a, b, c, e, f , g are respectively copied to the working variables b, c, d, f , g, h.

3 Implementation and Optimization for MSP430

In the following, we explain the main design choices and optimizations that we
made in order to obtain an efficient (i.e. fast) and “lightweight” (i.e. modest in
terms of RAM and flash footprint) implementation of SHA-512 for MSP430.

Storage of 64-Bit Words in Registers and RAM. Since the MSP430 has
only 16-bit registers, the 64-bit words used by the SHA-512 algorithm have to
be processed in “chunks” of 16 bits. As can be seen in Fig. 3, there are sixteen
16-bit registers in total (R0 to R15), but only twelve of them (namely R4 to R15)
are general-purpose registers and can be freely used by the programmer. Since
four 16-bit registers are necessary to store a single 64-bit word, at most three
64-bit words can be kept in registers at once, as depicted in Fig. 3. During the
computation of the message expansion and the compression function, we often
use the stack pointer R1 to access 64-bit words in memory.

Depending on the used addressing mode, memory read and write operations
(i.e. MOV instructions) can take up to seven clock cycles, which means they are
relatively expensive compared to other architectures. Hence, memory accesses
should be avoided as much as possible. For example, loading a 64-bit word from
memory into four registers using four consecutive POP.W instructions requires
eight clock cycles, and writing a 64-bit word from registers to memory with the
help of four PUSH.W instructions takes even 12 cycles. But copying 64 bits from
four registers to four other registers can be done in just four cycles. This makes
a strong case to implement the compression function in such a way that the
frequently-accessed values are kept in registers as much as possible.

92 C. Franck and J. Großschädl

Fig. 3. The MSP430 has twelve general-purpose 16-bit registers. During the computa-
tion of the compression function, we use them to store three 64-bit words, while R1 is
used as a pointer to efficiently access 64-bit words in RAM.

On-the-Fly Message Schedule. The message schedule, which expands the
16 words w0, . . . , w15 of a 1024-bit message-block to 80 words w0, . . . , w79, can
either be pre-computed or computed “on the fly.” The former approach has the
disadvantage that all 80 words need to be stored in RAM, where they consume
640 bytes in total. Since a RAM footprint of 640 bytes is not non-negligible on
an MSP430, it makes sense to compute the words w16, . . . , w79 on the fly, one
word per round. Due to the fact that only the words wt−16, wt−15, wt−7, and
wt−2 are actually required to compute the value of wt, a buffer containing the
preceding 16 words wt−16 to wt−1 is sufficient. Therefore, when following this
approach, the memory consumption is reduced from 640 to only 128 bytes. To
avoid the copying of words from wt−15 to wt−16, wt−14 to wt−15, and so on in
every round, we adopt a circular buffer, whereby in round t of the compression
function the word wt corresponds to the word wt mod 16 in the buffer. In this
way, the word wt (i.e. wt mod 16) is computed as

wt mod 16 ← [σ1(w(t+14) mod 16) + w(t+9) mod 16 +

σ0(w(t+1) mod 16) + wt mod 16] mod 264.

The approach we use to implement this circular buffer is based on a dedicated
memory alignment and pointer masking. More precisely, the buffer is aligned in
memory on a 256-byte boundary, so that it starts at a memory address of the
form a = 0x..00. As the buffer is 128 byte long, it ranges up to a + 0x7f. The
computation of wt is then carried out by using the register R1 as pointer into
this buffer. To access wt−16, wt−15, wt−7, and wt−2, the pointer is incremented
successively so that it moves in relative steps from one iteration of the message
schedule to the next. The circular behaviour of the buffer is guaranteed by the
application of a bit-mask to R1 (e.g. via AND.W #0xff7f, R1) every time it has
been incremented so that R1 always stays within the valid address range.

Optimized Implementation of SHA-512 for 16-Bit MSP430 Microcontrollers 93

Fig. 4. The 128-byte buffers are 256-byte aligned so that they range from an address
of form 0x..00 (i.e. the last two hex-digits are 0) to an address of form 0x..7f.

An alternative approach to implement a circular buffer without the need to
copy 64-bit words in every round was introduced in [2]. This approach utilizes
a “sliding window” of 16 message words wi in a double-sized buffer of 32 words
(256 bytes), so that the words only need to be copied once every 16 rounds. The
computational cost of copying these words every 16 rounds is only slightly more
than the cost of masking the pointer R1 after every increment that we perform
in our approach. So, regarding the message schedule part, the main advantage
of our approach based on pointer masking compared to [2] is a reduction of the
RAM consumption by half since we do not need a double-sized buffer.

Avoiding Word-Wise State Rotation. An ordinary implementation of the
compression function described in Subsect. 2.2 that directly follows the steps as
specified in [7] would not be very efficient since it involves a word-wise rotation
of the state, i.e. the working variables have to be copied from g to h, from f to
g, and so on in every round. Similar to the message schedule, we can minimize
the execution time through a circular buffer using the memory alignment and
pointer masking described before. This buffer for the eight working variables is
adjusted in a way that allows for fast switching between the message schedule
and the compression function. As depicted in Fig. 4, the words of the message
schedule are stored in reverse order, and the buffer for the compression function
contains every word twice. The words are rotated so that e.g. working variable
e aligns with the position of word w0, which eliminates the need to mask the
pointer R1 when switching from the message-word buffer to the buffer with the
working variables for the computation of the round function.

Optimized Rotations. The rotations of 64-bit words that are carried out as
part of the functions σ0(w), σ1(w), Σ0(e), Σ1(a) are slower on MSP430 than
on more sophisticated processors due to the lack of a fast barrel shifter capable
to shift/rotate a register by several bits at once. Instead, the MSP430 provides
instructions for shifts/rotations by only a single bit [11]. However, one can still
reduce the overall execution time by carefully optimizing each function. Special
base cases where a 64-bit word (held in four registers) is rotated by 1, 8, or 16
bits have the following costs. A simple rotation by 1 bit can be implemented to

94 C. Franck and J. Großschädl

Fig. 5. Optimized computation of the rotations for the message schedule. Shift oper-
ations (i.e. w � 7 and w � 6) are computed using a masking operation (to set the
appropriate bits to 0) followed by a rotation.

Fig. 6. Optimized computation of the rotations for the compression function.

execute in only five cycles (see Listing 1 and 2). When taking advantage of the
byte-swap instruction SWPB, a rotation by 8 bits can be done via the sequence
in Listing 3 so that it only takes 16 cycles instead of the 40 it would take when
the operand was rotated eight times by 1 bit. Finally, a rotation by a multiple
of 16 bits is basically free as one can simply “re-order” the registers, e.g. when
a 64-bit word is held in the four registers (R4, R5, R6, R7), it can be implicitly
rotated by 16 bits by accessing it in the order (R7, R4, R5, R6).

Figure 5 illustrates how we optimized the functions σ0(w) and σ1(w) of the
message schedule. Note that the shift operations are transformed to rotations
and logical ANDs (∧) with a mask to ensure that the appropriate bits are all
set to 0. These functions can, therefore, be re-written as

σ0(w) = (w ≫ 1) ⊕ ((w ⊕ ((w ∧ 0xf...f80) ≪ 1)) ≫ 8)
σ1(w) = ((((w ∧ 0xf...fc0) ≫ 3) ⊕ (w ≫ 16)) ≫ 3) ⊕ (w ≪ 3).

Figure 6 shows how we optimized the functions Σ0(w) and Σ1(w) of the com-
pression function. These functions can be re-written as

Optimized Implementation of SHA-512 for 16-Bit MSP430 Microcontrollers 95

Table 1. Execution time of the four sigma functions.

Function Rot+XOR Loads Total

σ0(w) 36 cycles 21 cycles 57 cycles

σ1(w) 55 cycles 16 cycles 71 cycles

Σ0(e) 54 cycles 26 cycles 80 cycles

Σ1(a) 44 cycles 26 cycles 70 cycles

Σ0(e) = ((((e ≫ 32) ≪ 3) ⊕ ((e ≫ 32) ≫ 8)) ≪ 1) ⊕ ((e ≫ 32) ≫ 2)
Σ1(a) = ((a ≫ 16) ≪ 2) ⊕ ((((a ≫ 16) ≫ 1) ⊕ ((a ≫ 32) ≫ 8)) ≫ 1).

Besides executing the actual rotations, the 64-bit words also have to be loaded
from memory into the registers and XORed (⊕) twice, the latter of which takes
eight cycles. The detailed costs of the rotations are summarized in Table 1.

Choice and Majority Function. The Choice (Ch) and Majority (Maj) func-
tion both take three 64-bit operands as input. Unlike for the rotations, one can
perform these operations on 16-bit chunks in such a way that there is no need
to load the entire 64-bit words from memory at once. Using this approach, we
start with three pointers to the 64-bit operands, and then progressively execute
the whole operation on 16-bit chunks (e.g. we start at the lowest 16 bits of the
words, then continue with the next higher 16 bits, and so on). But since these
functions are not really complex, there is only little space for optimization.

4 Experimental Results

To assess the performance of our software we compared it with various C imple-
mentations that are usable (and optimized) for embedded platforms such as the
MSP430. More concretely, we looked at SHA-512 implementations from

– the paper of Cheng et al. [2],
– the CycloneCRYPTO library [8],
– the Noise-C protocol [12], and
– the RELIC toolkit [1].

The version of Cheng et al. we benchmarked is a plain C implementation of an
approach that uses a double-length buffer to avoid copying of working variables
in every round. CycloneCRYPTO is a cryptographic library specifically tuned
for use in embedded systems. Noise-C is a plain C implementation of the Noise
framework for building security protocols. Finally, RELIC is a research-oriented
cryptographic meta-toolkit with emphasis on efficiency and flexibility.

These implementations have been compiled and benchmarked with version
7.21 of IAR Embedded Workbench for MSP430 using an MSP430F1611 as the
target device. The optimization level of the C compiler was set to medium, and
Common Subexpression Elimination as well as Code Motion were enabled. We
determined the stack memory consumption using a simple stack canary.

96 C. Franck and J. Großschädl

Table 2. Execution times of SHA-512 implementations on an MSP430F1611.

Implementation Type Hash 3 byte Hash 1000 byte Compr. only

Our software C & Asm 42351 cycles 337736 cycles 40582 cycles

Cheng et al. [2] Pure C 100354 cycles 792951 cycles 97597 cycles

Cyclone [8] Pure C 102026 cycles 795323 cycles 97698 cycles

Noise-C [12] Pure C 97297 cycles 758898 cycles 94468 cycles

RELIC [1] Pure C 123466 cycles 1084390 cycles 118420 cycles

Table 3. Memory requirements of SHA-512 implementations.

Implementation Type Code size RAM size

Our software C & Asm 2104 bytes 390 bytes

Cheng et al. [2] Pure C 2642 bytes 408 bytes

Cyclone [8] Pure C 2840 bytes 318 bytes

Noise-C [12] Pure C 7436 bytes 966 bytes

RELIC [1] Pure C 3624 bytes 990 bytes

Performance. The execution times of the five SHA-512 implementations are
summarized in Table 2. We measured the number of cycles needed to compute
the SHA-512 digest of a 3-byte and a 1000-byte message, respectively, as well as
the number of cycles for a single execution of the compression function. These
results show that our implementation is the fastest; concretely, it is

– 2.30 to 2.91 times faster to compute the digest of a 3-byte message,
– 2.35 to 3.21 times faster to compute the digest of a 1000-byte message, and
– 2.33 to 2.92 times faster to execute the compression function.

The fastest “pure” C implementation is the one from Noise-C, closely followed
by that of Cheng et al. and the one from CycloneCRYPTO. RELIC, which is
not particularly optimized for speed on embedded devices, is between 21% and
26% slower than the other three C implementations.

Code Size and RAM Footprint. Table 3 shows the results for the code size
and RAM consumption. Our implementation has the smallest binary code size
(only 2104 bytes), followed by the ones of Cheng et al., CycloneCRYPTO, and
RELIC. The code size of Noise-C exceeds the size of all other implementations
by a factor of more than two, which is because it unrolls eight rounds to avoid
the copying of working variables in each round. Regarding RAM footprint, the
CycloneCRYPTO library is the most efficient one since it needs only 318 bytes
of RAM. Our software follows with 390 bytes, and then Cheng et al.’s with 408
bytes. The implementations with the largest RAM footprint are the ones from
Noise-C and RELIC with respectively 966 and 990 bytes. This is mainly due to
the fact that, in these two implementations, all 80 words wi from the message
schedule are pre-computed and stored in an array in RAM.

Optimized Implementation of SHA-512 for 16-Bit MSP430 Microcontrollers 97

5 Concluding Remarks

SHA-512 is a standardized and well-established hash function whose use cases
range from signature schemes (e.g. EdDSA) to all kinds of security protocols
(e.g. IPSec). In this paper, we presented a highly-optimized assembly-language
implementation of SHA-512 for 16-bit MSP430 microcontrollers. We explained
how we handle 64-bit words, how we minimize RAM usage by performing the
message schedule on the fly, and how we avoid the copying of working variables
during the round function. Further, we discussed the efficient implementation
of circular buffers through memory alignment and pointer masking. Finally, we
tackled the the problem of performing multi-bit rotations on the MSP430, and
presented fast implementations of the functions σ0(w), σ1(w), Σ0(e), Σ1(a).

Our experiments show that our implementation compares very favorably to
the three C implementations we benchmarked, which means it is (at least) 2.3
times faster than the best C implementation. In addition, it has a smaller code
size, and is also among the most efficient implementations with respect to the
RAM footprint. Our work can be directly used to improve the speed and code
size of SHA-512-based cryptosystems (resp. security protocols) on the MSP430
platform, and we hope that the presented optimization techniques will also be
useful to increase the efficiency of other members of the SHA2 family.

A Optimized Rotation of 64-Bit Words

The MSP430 architecture provides instructions to shift or rotate a 16-bit value
by a single bit. However, unlike e.g. more powerful ARM processors, MSP430
microcontrollers are not equipped with a barrel shifter that would allow one to
shift or rotate multiple bits at once. Furthermore, when a 64-bit word is to be
shifted or rotated, the number of instructions and, consequently, the execution
time increases accordingly. Listing 1 shows a sequence of MSP430 instructions
for a 1-bit right-rotation of a 64-bit word that is held in the four registers R4 to
R7. These five instructions execute in five clock cycles.

Listing 1. 1-bit right-rotation of a 64-bit word held in R4 to R7 (5 cycles).

1 BIT.W #1, R4

2 RRC.W R7

3 RRC.W R6

4 RRC.W R5

5 RRC.W R4

Listing 2 contains a code snipped for a 1-bit left-rotation of a 64-bit word
that is held in the four registers R4 to R7. These instructions have an execution
time of five clock cycles on an MSP430 microcontroller.

Right/left-rotations by two or three bits can be simply assembled from the
instruction sequence for 1-bit rotation. However, there are “shortcuts” for some

98 C. Franck and J. Großschädl

Listing 2. 1-bit left-rotation of a 64-bit word held in R4 to R7 (5 cycles).

1 RLA.W R7

2 RLC.W R4

3 RLC.W R5

4 RLC.W R6

5 ADC.W R7

rotation distances due to special MSP430 instructions. For example, a rotation
by eight bits can be greatly accelerated with help of the byte-swap instruction
SWPB, which swaps the lower and upper byte of a 16-bit value. Listing 3 shows
how this instruction can be used to implement a right-rotation of a 64-bit word
by eight bits, whereby it is assumed that this word is held in the four registers
R4 to R7. However, unlike the 1-bit rotation, the rotation by eight bits needs an
additional register, namely R8, for storing a temporary value. The instruction
sequence of Listing 3 executes in 16 clock cycles, which is 2.5 times faster than
a naive implementation based on eight 1-bit right-rotations.

Listing 3. 8-bit right-rotation of a 64-bit word held in R4 to R7 (16 cycles).

1 MOV.B R4, R8

2 XOR.B R5, R8

3 XOR.W R8, R4

4 XOR.W R8, R5

5 MOV.B R5, R8

6 XOR.B R6, R8

7 XOR.W R8, R5

8 XOR.W R8, R6

9 MOV.B R6, R8

10 XOR.B R7, R8

11 XOR.W R8, R6

12 XOR.W R8, R7

13 SWPB R4

14 SWPB R5

15 SWPB R6

16 SWPB R7

References

1. Aranha, D.F., Gouvêa, C.P., Markmann, T., Wahby, R. S., Liao, K.: RELIC is
an efficient library for cryptography. Source code (2020). http://github.com/relic-
toolkit/relic

2. Cheng, H., Dinu, D., Großschädl, J.: Efficient implementation of the SHA-512 hash
function for 8-Bit AVR microcontrollers. In: Lanet, J.-L., Toma, C. (eds.) SECITC
2018. LNCS, vol. 11359, pp. 273–287. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-12942-2 21

http://github.com/relic-toolkit/relic
http://github.com/relic-toolkit/relic
https://doi.org/10.1007/978-3-030-12942-2_21
https://doi.org/10.1007/978-3-030-12942-2_21

Optimized Implementation of SHA-512 for 16-Bit MSP430 Microcontrollers 99

3. Damg̊ard, I.B.: A design principle for hash functions. In: Brassard, G. (ed.)
CRYPTO 1989. LNCS, vol. 435, pp. 416–427. Springer, New York (1990). https://
doi.org/10.1007/0-387-34805-0 39

4. Evans, D.: The Internet of things: how the next evolution of the Internet is chang-
ing everything. Cisco IBSG white paper (2011) http://www.cisco.com/web/about/
ac79/docs/innov/IoT IBSG 0411FINAL.pdf

5. Josefsson, S., Liusvaara, I.: Edwards-Curve Digital Signature Algorithm (EdDSA).
Internet Research Task Force, Crypto Forum Research Group, RFC 8032 (2017)

6. Merkle, R.C.: A certified digital signature. In: Brassard, G. (ed.) CRYPTO 1989.
LNCS, vol. 435, pp. 218–238. Springer, New York (1990). https://doi.org/10.1007/
0-387-34805-0 21

7. National Institute of Standards and Technology (NIST). Secure Hash Standard
(SHS). FIPS Publication 180-4 (2015) http://nvlpubs.nist.gov/nistpubs/FIPS/
NIST.FIPS.180-4.pdf

8. Oryx Embedded. CycloneCRYPTO: Embedded Crypto Library. Source code
(2021). http://oryx-embedded.com/products/CycloneCRYPTO.html

9. Davies-Meyer, B.P.: van Tilborg, H.C.A., Jajodia, S. (eds.) Encyclopedia of Cryp-
tography and Security, 2nd (edn.), pp. 312–313. Springer, Boston, MA (2011).
https://doi.org/10.1007/978-1-4419-5906-5 569

10. Stallings, W.: Cryptography and Network Security: Principles and Practice. Pear-
son, 7th (edn.) 2016

11. Texas Instruments Inc. MSP430 Family Architecture Guide and Module Library.
TI literature number SLAUE10B (1996). http://www.ti.com/sc/docs/products/
micro/msp430/userguid/ag 01.pdf

12. Weatherley, R., Fidler, E.: Noise-C library. Source code (2016). http://github.com/
rweather/noise-c

https://doi.org/10.1007/0-387-34805-0_39
https://doi.org/10.1007/0-387-34805-0_39
http://www.cisco.com/web/about/ac79/docs/innov/IoT_IBSG_0411FINAL.pdf
http://www.cisco.com/web/about/ac79/docs/innov/IoT_IBSG_0411FINAL.pdf
https://doi.org/10.1007/0-387-34805-0_21
https://doi.org/10.1007/0-387-34805-0_21
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
http://oryx-embedded.com/products/CycloneCRYPTO.html
https://doi.org/10.1007/978-1-4419-5906-5_569
http://www.ti.com/sc/docs/products/micro/msp430/userguid/ag_01.pdf
http://www.ti.com/sc/docs/products/micro/msp430/userguid/ag_01.pdf
http://github.com/rweather/noise-c
http://github.com/rweather/noise-c

Limitations of the Use of Neural
Networks in Black Box Cryptanalysis

Emanuele Bellini1 , Anna Hambitzer1, Matteo Protopapa2,
and Matteo Rossi2(B)

1 Cryptography Research Centre, Technology Innovation Institute, Abu Dhabi, UAE
{emanuele.bellini,anna.hambitzer}@tii.ae

2 Politecnico di Torino, Turin, Italy
{matteo.protopapa,matteo.rossi}@polito.it

Abstract. In this work, we first abstract a block cipher to a set of
parallel Boolean functions. Then, we establish the conditions that allow
a multilayer perceptron (MLP) neural network to correctly emulate a
Boolean function. We extend these conditions to the case of any block
cipher. The modeling of the block cipher is performed in a black box
scenario with a set of random samples, resulting in a single secret key
chosen plaintext/ciphertext attack. Based on our findings we explain the
reasons behind the success and failure of relevant related cases in the
literature. Finally, we conclude by estimating what are the resources to
fully emulate 2 rounds of AES-128, a task that has never been achieved
by means of neural networks. Despite the presence of original results and
observations, we remark the systematization of knowledge nature of this
work, whose main point is to explain the reason behind the inefficacy of
the use of neural networks for black box cryptanalysis.

Keywords: Black-box · Cryptanalysis · Neural networks · Cipher
emulation · AES

1 Introduction

The similarities between finding the cryptographic key of a symmetric cipher
and finding the unknown weights of a neural network have been known since
long time. See for example Rivest’s survey at Asiacrypt 1991 [1] and references
therein. Due to the impressive and constant progress of technology, the adoption
of neural networks is becoming increasingly popular and effective in solving more
and more complex problems. This success of neural networks has tempted many
cryptographers to exploit them for cryptanalysis. While there are several ways
of using neural networks and, more in general, machine learning in conjunction
with cryptography, we want to focus our attention on the use of neural networks
in the context of black box cryptanalysis. The black box approach attempts to
cryptanalyze a family of symmetric ciphers by only interrogating an oracle which
can compute plaintext/ciphertext pairs coming from a specific instantiation of
c© Springer Nature Switzerland AG 2022
P. Y. A. Ryan and C. Toma (Eds.): SecITC 2021, LNCS 13195, pp. 100–124, 2022.
https://doi.org/10.1007/978-3-031-17510-7_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-17510-7_8&domain=pdf
http://orcid.org/0000-0002-2349-0247
https://doi.org/10.1007/978-3-031-17510-7_8

Limitations of the Use of Neural Networks in Black Box Cryptanalysis 101

this family. No other information are allowed to the attacker, hence the name
“black box”. If a family of ciphers can be attacked in the black box scenario this
implies that these ciphers are not suitable for practical applications. The most
popular ciphers are believed to be secure under this scenario, and, moreover, are
even secure in weaker scenarios, where the knowledge of the internal structure
of the cipher is accessible by the attacker. Intuitively, being secure in a weaker
scenario gives little hope of finding a complete break in a stronger scenario
such as the black box one. In spite of this maybe simplistic intuition, we can
count numerous attempts of using neural networks to either distinguish the
output of a cipher from that of a random function, or to discern the output
of different cipher families, or to emulate, or, the hardest case, to even recover
the key of a particular cipher instance. However, to date none of these attempts
has outperformed existing conventional cryptographic attacks. In this work, we
provide insights on why using neural networks in black box cryptanalysis gives
little hope of success. We would like to stress that in this work we do not consider
cryptanalysis techniques based on the knowledge of the internal structure of the
cipher.

The remainder of this paper is structured as follows. After a brief introduction
on neural network terminology and basic notions regarding Boolean functions,
block ciphers and how the latter can be abstracted by the former (Sect. 2), we
speculate on the hardness of emulating a random Boolean function and, conse-
quently, a block cipher (Sect. 3). We analyze prior works on the subject under
the light of this abstraction (Sect. 4). We support with experimental evidence
our claims on the hardness of emulating Boolean functions (Sect. 5). Finally, in
the light of the developed theory, we estimate the resources needed to fully emu-
late 2 rounds of AES (Sect. 6), a task that has never been performed by neural
networks.

2 Preliminaries

In this section we introduce basics of neural networks for black box cryptanalysis,
Boolean functions, and how block ciphers can be defined in terms of Boolean
functions.

2.1 Neural Networks

We refer the interested reader to educative theoretical [2] and practical [3] intro-
ductions to neural networks and the field of deep learning. Here, we concentrate
on condensed explanations of concepts elementary for understanding the follow-
ing sections of this work.

The neural networks usually applied in cryptanalysis are MLP, LSTM and
CNN networks (see Table 1). MLP, LSTM and CNN refer to multilayer percep-
tron, long-short term memory and convolutional neural network, respectively. All
three network types contain artificial neurons organized in layers and “learn”
by adjusting a set of trainable parameters: the weights w with which the neurons

102 E. Bellini et al.

Fig. 1. (a) Example of a multilayer perceptron (MLP) architecture: The neurons at the
input layer receive x1, x2, x3. Each neuron is connected with weights wi to all neurons
in the following layer. The input signals cause a feed-forward activation to propagate
through the hidden layers and produce the outcomes y1, y2 in the output layer. (b)
CNN-like layers consist of neurons which are connected only to neurons within their
receptive field in the previous layer. (c) In a recurrent neural network (RNN) layers
receive an input which depends on their output at a previous time. The LSTM cell is
a well known representative of a recurrent structure.

are connected to each other and a so-called bias value b for each neuron. During
the learning phase the network is presented with a training dataset. The success
of learning is quantified by the network’s performance on previously unseen sam-
ples from the validation dataset, i.e. the goal of learning is generalization [2]. To
achieve such generalization, deep learning is concerned with the identification of
the main features which represent a concept [2]. The respective representational
features are worked out by one or multiple hidden layers. Training a neural net-
work is most commonly achieved by applying a backpropagation algorithm [4].
First, a batch of training samples is presented at the input of the neural network.
The consequent activations propagate through the neural network, resulting in
a signal in the output layer. In a supervised setting, this output signal can be
compared to the known labels of the training samples. The distance of the output
signal to the known label is quantified by a loss function. During backpropagation
the contribution of each neuron’s parameters to the total loss of the loss function
is evaluated and the network parameters are adjusted by an optimizer, aiming
at a minimal loss after each batch. Typical optimizers are the gradient descent
and its advanced variants. The step size taken during the gradient descent is
determined by the learning rate. Once all training samples have been presented
to the neural network, one epoch is over. Often, training involves several hundred
epochs and batch sizes can vary between 1 (stochastic gradient descent) to the
full size of the training data set (deterministic gradient descent).

Figure 1 illustrates the differences between MLP, LSTM and CNN. The MLP
constitutes the “quintessential example of a deep learning model” [2]. Here, each

Limitations of the Use of Neural Networks in Black Box Cryptanalysis 103

neuron in one layer is connected to all neurons in the next layer in a feed-forward
manner. The MLP can have a single or multiple hidden layers. The CNN, like
the MLP, is a feed-forward network. However, its design is motivated by the
mammalian visual cortex and each neuron is only connected to neurons in its
receptive field in the previous layer. In contrast to the feed-forward structure of
MLP and CNN, the LSTM contains so-called recurrent connections between the
neurons. The output of the neuron becomes dependent on a past state of the
network which leads to a kind of “memory” [5].

Essential to all network types is the introduction of nonlinearity in the form
of an activation function a(w, b) which determines the output of each neuron
in a single layer. It can be shown that the introduction of nonlinearity in the
activation function, as well as minimally one hidden layer leads to universality
of the neural network in its ability to model any continuous [6–8] function.
In general, the representational power [9] will rise with increasing depth (i.e.
the number of layers) and width (i.e. number of neurons in a single layer) of
the neural network. Practically, however, the problem of successfully training a
neural network with sufficient representational power can still be NP-hard [10],
resulting in unmanageable training time.

2.2 Boolean Functions and Block Ciphers

Block Ciphers. For simplicity, in this work we will focus our attention only on
block ciphers, but all our arguments can be easily extended to other symmetric
ciphers such as hash functions, stream ciphers or cryptographic permutations.

Let M (plaintext/ciphertext space) and K (key space) be the set of b-bit and
κ-bit vectors, respectively. Note that b is usually called the block size, while κ the
key size. A block cipher Ek(x) : Fb

2 × F
κ
2 �→ F

b
2 is a family of permutations over

the plaintext/ciphertext space M. Each permutation of the family is indexed by
a key k ∈ K. Modern block ciphers are built by composing several times a round
function taking as input the current state of the cipher and a round key that is
derived from the master key k by means of an algorithm called key schedule. So
the block cipher operation can be expressed as Er

k(x) = Rkr
◦ Rkr−1 ◦ · · · ◦ Rk1 ,

where (k1, . . . , kr) = KeySchedule(k). While a specific block cipher is usually
defined for a precise number of rounds r, to assess their security, it is common to
study reduced-round ciphers. Alternatively, cryptographers also consider scaled
versions of ciphers, i.e. ciphers performing similar operations but with respect
to a smaller block and key size.

Block Ciphers as Boolean Functions. Each ciphertext bit of a block cipher
can be defined by a Boolean function whose variables represents the plaintext
and key bits. More precisely, the i-th bit of the ciphertext can be expressed as:

fi(x1, . . . , xb, k1, . . . , kκ) =
∑

(v1,...,vb)∈F
b
2

c(v1,...,vb)(k1, . . . , kκ)xv1
1 · · · xvb

b , (1)

104 E. Bellini et al.

where c(v1,...,vb)(k1, . . . , kκ) =
∑

(v′
1,...,v′

κ)∈F
κ
2

a
(v1,...,vb)
(v′

1,...,v′
κ)

k
v′
1

1 · · · kv′
κ

κ . Note that once
the key k = (k1, . . . , kκ) is fixed, each fi is a Boolean function of degree at most
b with at most 2b coefficients. When uniformly sampling a Boolean function f
from the set of all Boolean functions over b variables, f will have on average 2b−1

nonzero coefficients. A secure cipher should be such that the Boolean functions
representing its output bits appear uniformly sampled. For real ciphers, b is at
least 64 bits (128, 192, or 256 are also very common), which makes it impossible
to even list all the coefficients of the Boolean function representing one output
bit. On the other hand, the Boolean function representing the output of a single
round (with respect to the input bits of the round) does not look random in
general. In particular, one output bit of the round function usually depends
on only some of the input bits. As we will explain in the upcoming sections,
we believe this property to be crucial in explaining the success and failure of
previous works.

3 On the Hardness of Emulating Boolean Functions

In this section we first recall some of the main works that are related to the
hardness of learning Boolean functions. We then provide further motivations on
why it is hard to model Boolean functions, especially in cryptographic scenarios.

3.1 Related Work

The problem of learning Boolean circuits by means of neural networks has been
extensively studied by the machine learning community. On the other hand, we
are aware of only few direct applications of such results in cryptographic scenar-
ios. For example, already in the early nineties, Kearns [11, Chapter 7] showed
that the Boolean circuits representing some trapdoor functions used in asym-
metric cryptography (such as RSA function) are hard to learn in a polynomial
time. A similar hardness result was demonstrated in the work of Goldreich et al.
[12] for the class of random functions. Indeed, in spite of these negative results,
the attempts of modeling symmetric ciphers by means of neural networks are
numerous, as we show in Sect. 4.

Many works analyze what is the largest family of Boolean functions that can
be modelled by a single neuron. For example, Steinbach and Kohutin [13] show
that, using a polynomial as transfer function, a single neuron is able to represent
a non-monotonous Boolean function. They also show how to decrease the num-
ber of inputs in the neural network by encoding the binary values of the Boolean
variables as integers. Finally, they also propose an algorithm to compute the min-
imal number of neurons. In [9], Antony studies which type of Boolean functions
a given type of single or multi neuron network (using either threshold, sigmoid,
polynomial threshold, and spiking neurons) can compute, and how extensive or
expressive the set of such computable functions is. Among these results, he shows
that any Boolean function with m variables can be modelled by a neural network

Limitations of the Use of Neural Networks in Black Box Cryptanalysis 105

with a single hidden layer of 2m neurons with threshold activation function [9,
Theorem 3.9]. Indeed, only Ω(2m/m2) neurons are sufficient.

In general, even if any function that can be run efficiently on a computer
can be modelled by a deep neural network, the learning procedure can be com-
putationally hard [14]. It is an important open problem to understand if there
exists properties of the data distributions that can facilitate the training phase.
As an example of works in this direction, Malach and Shalev-Shwartz [15] show
that the correlation between input bits and the target label affects the learn-
ability of a Boolean function. Following this line, in Appendix D we analyze the
dependence of the learning rate and certain cryptographic properties of Boolean
functions.

3.2 Block Ciphers and Permutations

Let us consider the simplest block cipher, taking 1 bit input, 1 bit key and 1 bit
output: y0 = Ek0(x0) . Once the key is fixed, the block cipher is a permutation
over the set of messages, in this case, the set 0, 1. The only possible permutations
are the identity and the bitflip. The permutations can be indexed by the value
of the key k0. Let us now consider the 2-bit block cipher, with a 2 bit input,
2 bit key and 2 bit output: (y0, y1) = E(k0,k1)(x0, x1) . Once the key is fixed,
the block cipher is a permutation over the set of messages, in this case, the set
{00, 01, 10, 11}. The number of possible permutations over a set of 4 elements is
4! = 24.

The permutations are represented by the concatenation of two Boolean func-
tions.

Notice that with 2 bits we only have 4 possible values of the key, which means
we cannot represent all possible permutations over the set {00, 01, 10, 11} with
a 2 bit key.

When we consider a 3-bit cipher the permutations are 8! = 40320, and only
23 = 8 of them can be indexed by a 3 bit key. For the three bit cipher, we
finally have permutations that are represented by nonlinear Boolean functions.
In principle, it is possible to compute the Boolean functions representing the
output bits of a full real cipher. The problem is that, with this method, one has
to know the outputs of all possible inputs, which, for example for AES-128, are
2128. For a reduced-round cipher (i.e. a cipher that does not use all the rounds it
was designed to use), it is possible that a single output bit is not influenced by
all input bits, but only by a subset of them of size m. In this case, the Boolean
function will have O(2m) coefficients.

3.3 Emulating the Behaviour of a Boolean Function

Without knowing the entire truth table or, equivalently, the entire set of coeffi-
cients, it is impossible to reconstruct the remaining missing values of a randomly
selected Boolean function.

106 E. Bellini et al.

In Appendix C, by means of a tiny example, we give an intuition of how
one can measure the accuracy of an algorithm guessing the missing values of a
randomly selected Boolean function.

Types of Accuracy. In general, we can define the following types of accuracy:

1. m′-ary (or block) accuracy : measuring how many output blocks are fully
guessed correctly in the validation phase. In other words, we consider a sample
guessed correctly if and only if all its bits match with the correct output. To
compute the accuracy, divide the counter by the total number of m-bit output
that have been guessed;

2. Relative binary or (bit per block) accuracy : measuring how many bits per
output block are guessed correctly in the validation phase. To compute the
accuracy, divide the counter by the total number of m-bit output that have
been guessed;

3. Absolute binary (or bit) accuracy : measuring how many output bits are fully
guessed correctly in the validation phase. To compute the accuracy, divide
the counter by the product of the number of bits per block (2) and the total
number of m-bit output that have been guessed.

Randomly Guessing the Output of a Set of Boolean Functions. We
now provide the probabilities of randomly guessing the output of a Boolean
function in three different scenarios, which corresponds to three different ways
of measuring the accuracy of a neural network.

Proposition 1. Consider a set of m′ Boolean functions with m variables. Sup-
pose the value of t m-bits inputs is known for each function. The probability of
randomly guessing correctly all m′ bits for each of t′ new outputs is given by
1/2t′m′

.

Proposition 2. Consider a set of m′ Boolean functions with m variables. Sup-
pose the value of t m′-bits outputs is known for each function. The probability
of randomly guessing correctly at least s bits of a new m′-bit output is given by
∑m′

k=s (m′
k)

2m′ . The probability of randomly guessing correctly at least s bits for each

m′-bit output for t′ new output is given by
∑m′

k=s (m′
k)

2m′ t′.

Proposition 3. Consider a set of m′ Boolean functions with m variables. Sup-
pose the value of t m-bits inputs is known for each function. The probability of
randomly guessing correctly at least s bits among t′ new m′-bit outputs is given

by
∑t′m′

k=s (t′m′
k)

2t′m′ .

Limitations of the Use of Neural Networks in Black Box Cryptanalysis 107

Note that in all previous propositions, the value of t and m do not appear in
the probability. This is because, for a random Boolean function, the output bits
of its truth table are uniformly distributed, and knowing part of the truth table,
does not give any information about the missing part. On the other hand, if the
guessing algorithm had some extra information about the Boolean functions, for
example it knew that the output has to form a permutation, this probabilities
could be improved. Unfortunately, we are not aware of how to incorporate the
structure of a permutation over Fm

2 into a neural network. Similarly, these prob-
abilities might be lower if the Boolean function representing one output bit only
depends on m̃ of the m input variables (as for a cipher that is not ideal, e.g. a
reduced-round cipher). In this case, 2m̃ samples might be enough to train the
network so that it can fully emulate the Boolean function. We analyze this case
in Experiment 1 of Sect. 5.

Trained Neural Networks are No Better Than Random Guessing. One
is interested in checking if a trained neural network can correctly predict new
inputs better than an algorithm guessing uniformly at random would do. In
our case, the block accuracy of the network should be higher than 1/2t′m′

, the

relative binary accuracy should be higher than
∑m′

k=s (m′
k)

2m′ t′, and the absolute

binary accuracy should be higher than
∑t′m′

k=s (t′m′
k)

2t′m′ .

Conjecture 1. Let N be a multi-layer perceptron with m binary inputs and m′

binary outputs. Suppose N has been trained with t < 2m samples, taken from
m′ parallel Boolean functions. Then we claim that the validation accuracy of
the neural network cannot be better than the accuracy of an algorithm that
uniformly guesses new outputs. More precisely,

1. the validation block accuracy measured over t′ new samples is 1/2t′m′

2. the validation relative binary accuracy measured over t′ new samples is
∑m′

k=s (m′
k)

2m′ t′

3. the validation absolute binary accuracy measured over t′ new samples is
∑t′m′

k=s (t′m′
k)

2t′m′

We give experimental evidence of the above conjecture in Sect. 5. Also, in
the remaining part of the manuscript, we will only consider the absolute binary
accuracy, and we will refer to it as simply the binary accuracy.

3.4 Noisy Bits

Because of what we explained in the previous section, training a neural network
to fully model a block cipher is exponentially hard. In particular, for an n-bit
block cipher in which each output bit depends on all n input bits, the cost of
the training is O(2n) (n = 128 for the case of AES-128). On the other hand,
for a reduced number of rounds, it is possible (especially in the early rounds),

108 E. Bellini et al.

that each output bit only depends on m < n input bits. If an adversary knew
the position of the m input bits, it could train a network with only m inputs in
time O(2m). We call noisy bits those n − m bits for which the output does not
depend on. For example, after 2 rounds of AES-128, each output bit depends on
m = 32 input bits, and has 96 noisy bits. Unfortunately, in a black box scenario,
the attacker has no knowledge about the position of the noisy input bits, so it
is forced to use a neural network with n inputs. Suppose we are interested in
modeling a single output bit. In this case, the neural network needs to understand
which are the n − m noisy bits that are not influencing the output bit. As we
show in Experiment 2, it turns out that the complexity of the training increases
exponentially with the number of noisy bits.

4 Analysis of Previous Results

In this section we analyze previous attempts of modelling symmetric ciphers in
the black box scenario by means of neural networks.

By black-box neural cryptanalysis (or direct attacks with no prior informa-
tion), we mean attacks that can be performed on any cipher, regardless of the
cipher structure, except the input/output/key size. This type of attacks can be
divided in attacks that aim at 1. distinguishing the output of the cipher from
the output of another cipher, or distinguishing the output of the cipher from
a random bit string; 2. emulating the behaviour of a cipher; 3. finding the key
of the cipher. Of course, an attacker able to perform item 3 can also perform
item 2, and being able to perform can also perform item 2 implies being able to
perform item 1.

Usually, these kind of attacks are performed in the chosen plaintext scenario,
so the attacker is given access to an oracle that can provide plaintext-ciphertext
pairs encrypted under a certain key only known by the oracle. Furthermore,
the attack is repeated for several keys, and in the case of key recovery, a new
key (different from the ones used in the training) needs to be predicted. Here we
describe in details only the previous attempts of cipher emulation, since they are
relevant to our work. In Table 1, we provide a more complete summary, while in
Appendix B we provide further discussion on the topic.

Limitations of the Use of Neural Networks in Black Box Cryptanalysis 109

Table 1. Summary of the main results regarding machine learning techniques applied
to black box cryptanalysis.

Topic Year Target cipher ML techniques Ref.

Identification of
encryption
methods

2006,
2010

DES, 3DES, Blowfish,
AES, RC5 in CBC

SVM and
regression

[16,17]

Identification of
encryption
methods

2012 DES/AES in
ECB/CBC

Linear Classifier
and SVM

[18]

Identification of
encryption
methods

2018 DES, Blowfish,
ARC4, Rijndael,
Serpent and Twofish
in ECB/CBC, RSA

C4.5, PART, FT,
Complement
Naive Bayes,
MLP and
WiSARD

[19]

Decryption and
distinguishing

2018 DES in ECB/CBC LSTM and CNN [20]

Ciphertext
prediction

2019 DES,Triple-DES 4 or 5 layer MLP [21,22]

Ciphertext
prediction

2019 3round-DES, Hitag2 1–6 Layer
MLP/Cascade
networks

[23]

Key recovery 2010,
2012

Simplified DES Levenberg-
Marquardt &
single MLP

[24,25]

key recovery &
understand
differential
cryptanalysis
relation with
MLP

2014 Simplified DES MLP [26]

Key recovery
(ASCII key)

2020 S-DES, SIMON32/64,
SPECK32/64

3 to 5 layer MLP [27]

Key schedule
inversion

2020 PRESENT 3 layer MLP [28]

The closest related work to this one is [23]. In this work the authors claim to
be able to mimic the 1-round DES with accuracy of 99.7% and 2-rounds DES
with accuracy of 60% with 217 plaintext/ciphertext pairs. In the same paper,
they also analyze the stream cipher Hitag2, being able to mimic the full cipher
with 216 input/output pairs, obtaining about 60% accuracy. In this section we
analyze this work from the Boolean functions point of view.

110 E. Bellini et al.

Analysis of Reduced-round DES. In a reduced 1-round DES not all the bits
depend on the same number of inputs. In particular, since DES has a Feistel
structure, the dependencies are different for the bits in the two words, the left
and the right one. For the 32 bits of the right word, the dependency is exactly
on 1 input bit each, so there should be no problem in learning this word. For the
other word, the only non-linearity is given by the S-Box. DES’ S-Boxes take 6
input bits, so each bit should depend on a maximum of 7 input bits (the 6 S-Box
inputs and the bit itself at the input). Therefore, we think that it is possible
to mimic the 1-round DES with neural networks, also reducing the data from
217 to at most 32 · 27 = 212 chosen inputs. In the case of 2-rounds DES we can
apply a similar reasoning from the previous paragraph. The right word at the
end of the second DES round will depend on the left word of the output of the
first round, so every bit will depend roughly on 7 input bits. For the other word,
things become harder: using a similar reasoning with the S-Boxes of DES we can
see that every bit of the left word will depend on at most 6 · 7 + 1 = 43 input
bits. In this case, we think that it is possible to mimic the right word, while a
lot of data will be required for the left one. Notice that in this case it is possible
to reach 75% accuracy with only 212 chosen inputs as follows: 1. Train a neural
network to recognize only the right word. Since the depencency is only on the
output of the first round, this can be done as described before for 1-round DES.
This will get accuracy 100% for this part. 2. For the other word, roughly 248

chosen inputs are necessary, so we assume that this is not feasible and leads to
accuracy 50%. 3. The average accuracy of the network will then become 75%.

Analysis of Hitag2. Hitag 2 is a stream cipher based on an LFSR and several
Boolean functions. In this case it is not very clear what the authors are doing.
From what we understood, they are training the neural network using the “serial”
as input and predicting one bit of output, in a fixed-key setting. This is in line
with our analysis, since the output bit depends only on 15 bits of the serial
number, and so 216 training pairs are more than enough to obtain 60% accuracy.

Other Works. In [21,22] the author claim to be able to mimic the full DES and
3DES with 211 and 212 plaintext/ciphertext pairs respectively. We think that,
following our previous discussion, these results are unlikely to be reproducible.
The same thesis is supported by the authors of [23].

5 Emulating Boolean Functions Using Neural Networks

In this section we first describe some experimental results to confirm the theo-
retical claims we made in Sect. 3 on the minimum number of samples or on the
minimum number of neurons (in a single hidden layer MLP) that are needed to
obtain accuracy 1 when emulating a Boolean function. Some of these experiments
determine the fundamental blocks we used to model 2 rounds of (a reduced ver-
sion of) AES in Sect. 6. As a side result, we briefly try to correlate the learning

Limitations of the Use of Neural Networks in Black Box Cryptanalysis 111

rate of a training with some of the main cryptographic properties of a Boolean
function in Appendix D.

5.1 Experimental Results When Varying Number of Samples
and Neurons

Experiment 1-Modeling Boolean Function Depending on a Subset of
All Variables. In this test we investigate Boolean functions which only depend
on a subset of all variables. This experiment is motivated by the fact that,
in the first rounds, before full diffusion is reached, the output bits of a block
cipher usually depend on only some of the input bits. We show that in this case,
to reach high accuracy, the needed number of samples grows exponentially in
the variables on which the Boolean function actually depends on. Let us recall
that we call noisy the bits from which the Boolean function does not depend
on. In Experiment 2 we will show that the needed number of samples grows
exponentially also with the noisy bits.

The experiment works as follows. Pick a random Boolean function of m
variables x0, . . . , xm−1 which only depends on at most mp of the possible inputs.
For example, consider m = 4,mp = 2 and the functions f0(x0, x1), f1(x0, x1),
f2(x2, x3), f3(x2, x3). Train an MLP with an input layer of m neurons, a single
hidden layer of 2m neurons and an output layer with a single neuron using t
samples.

Fig. 2. Results on Experiment 1 for Random Boolean functions of m = 7 bits and mp =
1, . . . ,m dependent variables. Figure (a) shows the block accuracy on the validation
dataset for training samples t between 1, . . . , 2m − 1. Each black line shows the mean
of ten Random Boolean functions (shown in grey) with m = 7 and the indicated mp.
Figure (b) shows the number of samples at which a validation accuracy of 100% has
been reached in (a). The number of samples shown are (13±4, 21±8, 35±11, 56±11,
88 ± 16, 113 ± 3) for the different values of mp = 1, . . . , 6. For comparison, 2mp is
shown.

The results on this experiment for m = 7 (mp = 1, . . . , 7) are shown in Fig. 2.
Indeed, for mp = 7 the absolute validation accuracy never reaches 100%, as

112 E. Bellini et al.

predicted in Conjecture 1. However, when the number of dependent variables
mp is smaller, already a fraction of the training samples is sufficient to reach
100% prediction accuracy on an unknown sample.

In particular, for mp bits, we only need the 2mp possible values to be pre-
sented at least once. So, in principle, 2mp samples would be enough to reach
full accuracy on an unknown sample. In order to estimate how many of the 2m

samples we need (on average) to have the 2mp values represented, we refer to
a modified version of the coupon collector problem. If m − mp is not too small,
the expected value for the number of needed samples can be approximated with
the classic bound 2mp ln (2mp) [29]. Using again mp = 2 we have that on average
5.55 samples are enough to have all 4 values for those bits represented. However,
as shown in figure Fig. 2b more samples are needed.

Experiment 2-Adding Noisy Bits to the Training. The purpose of this
experiment is to show that if we try to model a Boolean function depending
on m bits with a neural network taking m + s inputs of which s (the noisy
bits) are either fixed to zero or to a random value, it becomes more difficult
to obtain a good accuracy, even though for the fixed zero case, accuracy 1 is
reached eventually. The experiment works as follows. Pick 1 Boolean function of
m variables, add s bits of noise (either fixed to 0 or randomly chosen) and train
a neural network with 2m samples and 2m+s neurons.

Fig. 3. Results on Experiment 2 for m = 8 and s = 0, . . . , 13. Figure (a) shows the final
binary accuracy on the validation dataset when the noise bits are either fixed to 0 (“0
noise”) or random (“random noise”). Figure (b) shows the validation binary accuracy
during training for the final values shown in figure (a). A darker shade corresponds to
more noisy bits s.

The results of Experiment 2 are shown in Fig. 3. We conclude that training
becomes harder with increasing s, and that the random noise accentuates this
difference.

Limitations of the Use of Neural Networks in Black Box Cryptanalysis 113

Table 2. Results for Experiment 3 for one epoch (on the left the results for accuracy =
1, in the middle for accuracy ≥ 0.95) and multiple epochs (on the right, with threshold
accuracy 0.9, the last column includes 75 epochs of patience, where the training binary
accuracy does not improve).

m n=#Samples l = log2(n) l/m

4 25650 14.6 3.65

6 52652 16.7 2.78

8 194385 17.6 2.20

10 2097056 21.0 2.10

m n=#Samples l = log2(n) l/m

4 24883 14.6 3.65

6 36153 15.1 2.52

8 103932 16.7 2.09

10 952149 19.9 1.99

m n=#Samples l = log2(n) l/m Epochs

4 195 7.6 1.90 336

6 1663 10.7 1.78 151

8 9927 13.3 1.66 103

10 424209 18.7 1.87 78

Fig. 4. Training binary accuracy of the neural network from Experiment 4 with a
batch size of 100, number of samples and of epochs from Table 2 for different values of
m = 4, 6, 8, 10.

Experiment 3-Finding Minimum Number of Samples. The purpose of
this experiment is to determine the minimum number of samples for which we
reach a high accuracy in the presence of noisy bits, with just one epoch and then
with more than one epoch. The experiment works as follows. Pick a random
Boolean function of m + s variables f(x0, . . . , xm+s−1) such that m variables
bring information and s variables bring noise. Then find the minimum number
of samples (e.g. with a binary search) for which the neural network reaches an
accuracy above the chosen threshold. For the experiment, we fixed s = 3m, so
that in total we have 4m bits of input to the network (this proportion is the
same as in 2 rounds of AES-128).

The results are shown in Table 2. From those results, one could estimate that,
with just one epoch, 22.1m samples are enough to reach accuracy 1, while 22m

samples are enough to reach at least accuracy 0.95. In the case of more than
one epoch, this bound seems to lower towards 21.9m. As we explain in Sect. 6,
after 2 rounds of AES-128, each output bit is a Boolean function of 32 of the
128 input bits of the cipher. This means that, if our assumption on the growth
of the difficulty of the training is correct, then, in order to emulate 2 rounds of
AES-128, we need 267 samples to reach accuracy 1 and 264 samples to overcome
accuracy 0.95. Since this numbers are too prohibitive for our resources, we will
prove our claim to be true for a smaller version of AES (see Sect. 6).

Experiment 4-Finding the Minimum Number of Neurons. The purpose
of this experiment is to determine the minimum number of neurons in the hidden

114 E. Bellini et al.

layer which is sufficient to obtain a binary accuracy close to 1. We start picking
a random Boolean function of m + s variables f(x0, . . . , xm+s−1) such that m
variables contain information and s variables are noisy bits. As in Experiment
3, we fixed s = 3m and the number of samples and epochs according to Table 2.
MLPs with different number of neurons in the hidden layer are trained. The
relationship between the number of neurons and the accuracy is shown in Fig. 4.

Experiment 5-Finding the Optimal Shape of the Network. We tried to
train networks with increasing number of layers while keeping the same numbers
of neurons. We observed no improvements: the reached accuracy is the same of
(or even lower than) the networks with a single hidden layer. This was expected,
since a single layer neural network with m inputs and 2m neurons is a universal
approximator.

6 Emulating AES Using Neural Networks

In this section we first introduce the internal structure of AES and of a scaled
variant. We then use this variant to demonstrate how one can fully model 2
rounds of AES with a limited number of samples.

6.1 AES Specifications

In 1997 the National Institute of Standards and Technology (NIST) called for
proposals for a new block cipher standard, to be named the Advanced Encryption
Standard (AES). In October 2000, the Rijndael algorithm, a Belgian block cipher
designed by Joan Daemen and Vincent Rijmen [30], was selected as the winner.
Nowadays, AES is the most used block cipher.

The AES comes in three different versions that share the same encryption
algorithm. At a high level, it can be seen as an alternating key cipher, that
is an iterated cipher with the following structure: E(k,m) = kd ⊕ πd(kd−1 ⊕
πd−1(. . . π1(k0 ⊕ m) . . .)). The XOR operation ⊕ is usually referred to as the
AddRoundKey operation, where each πi is defined as the composition of three
operations: SubBytes, ShiftRows and MixColumns. For design reasons, πd omits
the MixColumn step. Reduced versions of the AES can be considered for experi-
mental purposes, as it was done for example in [31] or [32]. Following a similar
approach, in our experiments, we consider a reduced version of the AES where
we change the word size and, accordingly to that, the block size. In particular, we
consider 4×4 states and 3 bit words. We chose the Sbox of the SubBytes opera-
tion as the inversion over F

w
2 , and an MDS matrix for the MixColumn operation

[30].
All the operations are computed over F

w
2 were w is the word size in bits. In

particular, for 3 bit words, the modulus is the polynomial x3 + x + 1. Like the
standard AES, the AES version that we propose reaches full diffusion within 4
rounds. We denote it by AESw3s4.

Limitations of the Use of Neural Networks in Black Box Cryptanalysis 115

6.2 AES Emulation

Experiment 2 in Sect. 5 is equivalent to predicting a word of a reduced version
of AES that performs at most 2 rounds (from the third round, each output bit
depends on all the input ones). As noted in the previous section, each output
bit of 2 rounds of AES-128 depends on m = 32 bits only (1/4 of the total input
bits). In the toy AESw3s4, after 2 rounds, each output bit depends on m = 12
bits only (again 1/4 of the total input bits). According to Table 2, one needs
22m samples to be able to emulate the Boolean function defining each output bit
with accuracy of 95%. For AES-128, this means 264, which is out of reach for our
resources. For AESw3s4, only 224 samples are needed. So, we tried to emulate a
single output bit of 2 rounds of AESw3s4, using an MLP of 224 neurons fed by
224 samples in the training phase. The experiment was run on a GPU server with
8 Quadro RTX 8000 GPUs, 256 GB RAM and 2 CPUs Intel(R) Xeon(R) Gold
5122 at 3.80 GHz. The test reached a peak of approximately 80 GB of RAM and
was terminated after 40 min of data generation, 30 min of training and 15 min
of validation. We reached a validation loss of 0.018 and a validation accuracy of
99.6% after 10 epochs.

7 Conclusion

In this work we have shown that to model with high accuracy a random Boolean
function one needs to train a neural network with the entire set of all possible
inputs of the function. Since the output of any modern block cipher can be rep-
resented as a vector of random Boolean functions of n inputs, this means that
2n samples needs to be used for the training phase, which makes this approach
impractical. Nonetheless, there are examples in the literature where this app-
roach was successful, either on full or reduced round ciphers. We explain that
when this was possible, it was due to the fact that the output bits of the cipher
depend only on a small number of input bits. We exploit this observation to
model 2 rounds of (a scaled version of) AES.

Appendix A Preliminaries on Boolean Functions

We introduce here, for completeness, the relevant notions concerning Boolean
functions. For a complete overview of the topic see [33] or [34].

We denote by F2 the binary field with two elements. The set Fn
2 is the set of

all binary vectors of length n, viewed as an F2-vector space. A Boolean function
is a function f : Fn

2 �→ F2. The set of all Boolean functions from F
n
2 to F2 will

be denoted by Bn.
We assume implicitly to have ordered F

n
2 , so that F

n
2 = {x1, . . . , x2n}. A

Boolean function f can be specified by a truth table (or evaluation vector),
which gives the evaluation of f at all xi’s. Once the order on F

n
2 is chosen, i.e.

the xi’s are fixed, the truth table of f uniquely identifies f .

116 E. Bellini et al.

A Boolean function f ∈ Bn can be expressed in another way, namely as
a unique square free polynomial in F2[X] = F2[x1, . . . , xn], more precisely
f =

∑
(v1,...,vn)∈F

n
2

b(v1,...,vn)x
v1
1 · · · xvn

n . This representation is called the Alge-
braic Normal Form (ANF).

There exists a simple divide-and-conquer butterfly algorithm ([33], p. 10)
to compute the ANF from the truth-table (or vice-versa) of a Boolean function,
which requires O(n2n) bit sums, while O(2n) bits must be stored. This algorithm
is known as the fast Möbius transform.

We now define a set of properties of Boolean functions that are useful in
cryptography. In Appendix D we study the relation of this properties with the
learnability of a Boolean function. We refer to [33] for more details.

The degree of the ANF of a Boolean function f is called the algebraic degree
of f , denoted by deg f , and it is equal to the maximum of the degrees of the
monomials appearing in the ANF. The correlation immunity of a Boolean func-
tion is a measure of the degree to which its outputs are uncorrelated with some
subset of its inputs. More formally, a Boolean function is correlation-immune of
order m if every subset of at most m variables in {x1, . . . , xn} is statistically
independent of the value of f(x1, . . . , xn). The parameter of a Boolean function
quantifying its resistance to algebraic attacks is called algebraic immunity. More
precisely, this is the minimum degree of g �= 0 such that g is an annihilator of f .

The nonlinearity of a Boolean function is the distance to the linear functions,
i.e. the minimum number of outputs that need to be flipped to obtain the output
of a linear function.

Finally, a Boolean function is said to be resilient of order m if it is balanced
(the output is 1 or 0 the same number of times) and correlation immune of
order m. The resiliency order is the maximum value m such that the function
is resilient of order m.

Appendix B Neural Networks in Black Box
Cryptanalysis: Previous Results

B.1 Cipher Identification

Neural networks can be used to distinguish the output of a cipher from random
bit strings or from the output of another cipher, by training the network with
pairs of plaintext-ciphertext obtained from a single secret key (single secret-key
distinguisher) or from multiple keys (multiple secret-key distinguisher). Varia-
tions of these attacks might exist in the related key scenario, but we are not aware
of any work in this direction related to neural networks. The general architecture
of neural networks used for distinguisher attacks is shown in Fig. 5a.

A direct application of ML to distinguishing the output produced by modern
ciphers operating in a reasonably secure mode such as cipher block chaining
(CBC) was explored in [18]. The ML distinguisher had no prior information
on the cipher structure, and the authors conclude that their technique was not
successful in the task of extracting useful information from the ciphertexts when

Limitations of the Use of Neural Networks in Black Box Cryptanalysis 117

Fig. 5. (a) Generic multilayer perceptron (MLP) architecture to perform a distin-
guisher attack in known plaintext scenario. The MLP receives n-bit plaintext p1, . . . , pn
and ciphertext c1, . . . , cn as input. Each bit serves as input to one neuron, therefore
the input layer consists of 2n neurons. The output layer consists of a single neuron
with two possible outputs, depending on the outcome of the distinguishing attack.
(b) Generic multilayer perceptron architecture to perform ciphertext emulation in a
known plaintext scenario. (c) Generic multilayer perceptron architecture to map a key
recovery attack in the known plaintext scenario. Given plaintext p1, . . . , pn/ciphertext
c1, . . . , cn pairs as input, each neuron in the output layer predicts one bit of the key
k1, . . . , km.

CBC mode was used and not even distinguish them from random data. Better
results were obtained in electronic codebook (ECB) mode, as one may easily
expect, due to the lack of semantic security (non-randomization) of the mode.
The main tools used in the experiment are Linear Classifiers and Support Vector
Machine with Gaussian Kernel. To solve the problem of cipher identification,
the authors focused on the bag-of-words model for feature extraction and the
common classification framework previously used in [16,17], where the extracted
features of the input samples are mostly related to the variation in word length.
In [18], the considered features are the entropy of the ciphertext, the number of
symbols appearing in the ciphertext, 16-bit histograms with 65536 dimensions,
the varying length words proposed in [16].

Similar experiments to the one of [18] have also been presented, essentially,
with similar results. For example, in [19], the authors consider 8 different plain-
text languages, 6 block ciphers (DES, Blowfish, ARC4, Rijndael, Serpent and
Twofish) in ECB and CBC mode and a “CBC”-like variation of RSA, and
perform the identification on a higher-performance machine (40 computational
nodes, each with a 16-core Opteron 6276 CPU, a NVIDIA Tesla K20 GPU
and 32 GB of central memory) compared to [18], by means of different classical
machine learning classifiers: C4.5, PART, FT, Complement Naive Bayes, MLP
and WiSARD. The NIST test suite was applied to the ciphertexts to guaran-
tee the quality of the encryption. The authors conclude that the influence of
the idiom in which plaintexts were written is not relevant to identify different
encryption. Also, the proposed procedures obtained full identification for almost
all of the selected cryptographic algorithms in ECB mode. The most surprising

118 E. Bellini et al.

result reported by the author is the identification of algorithms in CBC mode,
which showed lower rates than the ECB case, but, according to the authors, the
lower rate is “not insignificant”, because the quality of identification in CBC
mode is still “greater than the probabilistic bid”. Moreover, the authors point
out that rates increased monotonically, and thus can be increased by intensive
computation. The most efficient classifier was Complement Naive Bayes, not
only with regard to successful identification, but also in time consumption.

Another recent work is the master thesis of Lagerhjelm [20], in 2018. In this
work, long short-term memory networks are used to (unsuccessfully) decipher
encrypted text, and convolutional neural network are used to perform classifica-
tion tasks on encrypted MNIST images. Again, with success when distinguishing
the ECB mode, and with no success in the CBC case.

B.2 Cipher Emulation

Neural networks can be used to emulate the behaviour of a cipher, by training
the network with pairs of plaintext and ciphertext generated from the same key.
The general architecture of such networks is shown in Fig. 5b. Without knowing
the secret key, one could either aim at predicting the ciphertext given a plaintext
(encryption emulation), as done, for example, by Xiao et al. in [23], or to predict
a plaintext given a ciphertext (decryption emulation), as done, for example, by
Alani in [21,22].

In 2012, Alani [21,22] implements a known-plaintext attack based on neu-
ral networks, by training a neural network to retrieve plaintext from ciphertext
without retrieving the key used in encryption, or, in other words, finding a func-
tionally equivalent decryption function. The author claims to be able to use an
average of 211 plaintext-ciphertext pairs to perform cryptanalysis of DES in an
average duration of 51 min, and an average of only 212 plaintext-ciphertext pairs
for Triple-DES in an average duration of 72 min. His results, though, could not
be reproduced by, for example, Xiao et al. [23], and no source code is provided
to reproduce the attack. The adopted network layouts were 4 or 5 layers percep-
trons, with different configurations: 128-256-256-128, 128-256-512-256, 128-512-
256-256, 128-256-512-128, 128-512-512-128, 64-128-256-512-1024 (Triple-DES),
and similar. The average size of data sets used was about 220 plaintext-ciphertext
pairs. The training algorithm was the scaled conjugate-gradient. The experiment,
implemented in MATLAB, was run on single computer with AMD Athlon X2
processor with 1.9 GHz clock frequency and 4 Gigabytes of memory.

In 2019, Xiao et al. [23] try to predict the output of a cipher treating it
as a black box using an unknown key. The prediction is performed by training
a neural network with plaintext/ciphertext pairs. The error function chosen to
correct the weights during the training was mean-squared error. Weights were
initialized randomly. The maximum numbers of training cycles (epochs) was set
to 104. Then, the measure of the strength of a cipher is given by three met-
rics: cipher match rate, training data, and time complexity. They perform their
experiment on reduced-round DES and Hitaj2 [35], a 48-bit key and 48-bit state

Limitations of the Use of Neural Networks in Black Box Cryptanalysis 119

stream cipher, developed and introduced in late 90’s by Philips Semiconduc-
tors (currently NXP), primarily used in Radio Frequency Identification (RFID)
applications, such as car immobilizers. Note that Hitaj2 has been attacked sev-
eral times with algebraic attacks using SAT solvers (e.g. [36,37]) or by exhaustive
search (e.g. [38,39]).

Xiao et al. test three different networks: a deep and thin fully connected
network (MLP with 4 layers of 128 neurons each), a shallow and fat network
(MLP with 1 layer of 1000 neurons), and a cascade network (4 layers with 128,
256, 256, 128 neurons). All three networks end with a softmax binary classi-
fier. Their experiments show that the neural network able to perform the most
powerful attack varies from cipher to cipher. While a fat and shallow shaped
fully connected network is the best to attack the round-reduced DES (up to 2
rounds), a deep-and thin shaped fully connected network works best on Hitag2.
Three common activation functions, sigmoid, tanh and relu, are tested, however,
only for the shallow-fat network. The authors conclude that the sigmoid function
allows a faster training, though all functions eventually reach the same accuracy.
Training and testing are performed on a personal laptop (no details provided),
so the network used cannot be too large. The training has been performed with
up to 230 samples.

B.3 Key Recovery Attacks

Neural networks can be used to predict the key of a cipher, by training the
network with triples of plaintext, ciphertext and key (different from the one that
needs to be found). The general architecture of such networks is shown in Fig. 5c.

In 2014, Danziger and Henriques [26] successfully mapped the input/output
behaviour of the Simplified Data Encryption Standard (S-DES) [40]1, with the
use of a single hidden layer perceptron neural network (see Fig. 5c). They also
showed that the effectiveness of the MLP network depends on the nonlinearity
of the internal s-boxes of S-DES. Indeed, the main goal of the authors was to
understand the relation between the differential cryptanalysis results and the
ones obtained with the neural network. In their experiment, given the plaintext
P and ciphertext C, the output layer of the neural network is used to predict the
key K. Thus, for the training of the weights and biases in the neural network,
training data of the form (P,C,K) is needed. After training has finished, the
neural network was expected to predict a new value of K (not appearing in the
training phase) given a new (P,C) pair as input.

Prior works on S-DES include [24,25], where Alallayah et al. propose the use
of Levenberg-Marquardt algorithm rather than the Gradient Descent to speed
up the training. Besides key recovery, they also use a single layer perceptron
network to emulate the behaviour of S-DES, modelling the network with the
plaintext as input, and the ciphertext as output. Their results is positive due to

1 Notice that S-DES uses 10 bit keys, 8 bit messages, 4 to 2 sboxes, and 2 rounds.
This parameters are very far from the real DES.

120 E. Bellini et al.

the small size of the cipher, and a thorough analysis of the techniques used is
lacking.

In 2020, So et al. [27] proposed the use of 3 to 7 layer MLPs (see Fig. 5c) to
perform a known plaintext key recovery attack on S-DES (8 bit block, 10 bit key,
2 rounds), Simon32/64 (32 bit block, 64 bit key, 32 rounds), and Speck32/64 (32
bit block, 64 bit key, 22 rounds). Besides considering random keys, So et al.
additionally restricts keys to be made of ASCII characters. In this second case,
the MLP is able to recover keys for all the non-reduced ciphers. It is important
to notice that the largest cipher analyzed by So et al. has a key space of 264

keys, which is reduced to 248 = 648 keys when only ASCII keys are considered.
The number of hidden layers adopted in this work ranges between 3,5,7, while
the number of neurons per layer ranges between 128, 256, 512. In the training
phase, So et al. use 5000 epochs and the Adam adaptive moment algorithm as
optimization algorithm for the MLP. In comparison to regular gradient descent,
Adam is a more sophisticated optimizer which adapts the learning rate and
momentum. The training and testing are run on GPU-based server with Nvidia
GeForce RTX 2080 Ti and its CPU is Intel Core i9-9900K.

B.4 Key-Schedule Inversion

As for the emulation of cipher decryption described in Subsect. B.2, one might try
to invert the behavior of the key schedule routine, as done for example by Pareek
et al. [28], in 2020. In their work, they considered the key schedule of PRESENT
and tried to retrieve the 80-bit key from the last 64-bit round key, using an
MLP network with 3 hidden layers of 32, 16, and 8 neurons. Unfortunately, the
authors concluded that, using this type of network, the accuracy of predicting
the key bits, were not significantly deviating from 0.5.

Appendix C A Tiny Example

We consider here two parallel Boolean functions f1(x1, x2) and f2(x1, x2), and
suppose we know how two inputs are mapped, i.e. f1(00) = 00, f2(01) = 11.
To evaluate the accuracy of an algorithm guessing the output of 10 and 11, one
might consider to increase a counter every time

1. the output of the full 2-bits block is guessed correctly. To compute the accu-
racy, divide the counter by the total number of 2-bit output that have been
guessed.

2. the output of the full 2-bit block is guessed correctly for at least 1 bit. To
compute the accuracy, divide the counter by the total number of 2-bit output
that have been guessed.

3. a single bit is guessed correctly (over all guessed outputs). To compute the
accuracy, divide the counter by the product of bits per block (2) and the total
number of 2-bit output that have been guessed.

Limitations of the Use of Neural Networks in Black Box Cryptanalysis 121

As an example, let us suppose that the correct missing values are mapped to
f1(10) = 01, f2(11) = 11. Let us also suppose that an algorithm A made the
following guess 10 �→ 00, 11 �→ 10. According to the first metric the accuracy of
A is 0. According to the second metric the accuracy of A is 1. According to the
third metric, the accuracy of A is 3/4.

Note that if we have to guess two 2-bit Boolean functions mapping 00 �→ 00,
01 �→ 11, 10 �→ 01, then we can correctly guess where the value 11 will be
mapped to with probability 1/4. On the other hand, if we know that the two
Boolean functions have to form a permutation over the set {00, 01, 10, 11}, then
we only have the option 11 �→ 10. In general, if there are r missing values for a
set of m′ m-bit Boolean functions, and we know they have to form a permutation
(m′ = m), we can guess correctly with probability 1/r!. If the m′ m-bit Boolean
function does not necessarily form a permutation, then we can guess correctly
with probability 1/(2rm′

), which is much lower than 1/r!. In the case of a block
cipher, we also know that not all permutations are possible, but only the ones
indexed by the n-bits keys, which are 2n.

Appendix D Emulating Boolean Functions with Different
Cryptographic Properties

In this section, we want to determine if there exist a correlation between the
learnability of a Boolean function and some of its most relevant cryptographic
properties, namely: algebraic degree, algebraic immunity, correlation immunity,
nonlinearity and resiliency order (see Appendix A or [33] for definitions).

We randomly picked ten Boolean functions, in m = 10 variables, for each
algebraic degree from 1, . . . , 9 (i.e. 90 Boolean functions in total). A neural net-
work was trained to predict the output of these functions. In Fig. 6a it is shown
how the neural network parameters affect the accuracy of the predictions (for the
case of algebraic degree property), while Fig. 6b shows the network performance
during the training. In both graphs, we take, for each value of the algebraic
degree, the average of the accuracy and the loss over the ten Boolean functions
considered.

In particular, we notice two facts. The first one is that we need the full
dataset in order to be able to predict the outcome of the Boolean functions.
The second one is the similarity of the training progress for all algebraic degrees
(with a slight irregularity in linear functions) in Fig. 6b, which points out that
the algebraic degree is not causing major differences in the learnability of the
Boolean functions.

The panels in figure Fig. 6c show the training progress for the algebraic immu-
nity, the correlation immunity, the nonlinearity and the resiliency order. While
for the algebraic immunity and nonlinearity no major differences in the train-
ing progress are visible, we notice that for correlation immunity and resiliency
order there are some differences in the training progress. The results on correla-
tion immunity are in line with the work from Malach et al. [15], but a detailed
investigation is beyond the scope of this work and is left for future research.

122 E. Bellini et al.

Fig. 6. Binary accuracy (blue) and binary crossentropy loss (red) of an MLP learning
Boolean functions of varying algebraic degree. The left hand side figure (a) shows the
final accuracy and loss values obtained on the validation dataset for different configu-
rations e = 1, . . . , 10. In detail the number of neurons in the hidden layer of the MLP
was varied (2e = 21, . . . , 210), as well as the number of samples (2e) and number of
training epochs (2e). The right hand side figure (b) shows the training progress of a
neural network with 1024 neurons, 1024 samples and 1024 epochs. Figure (c) in the
lower panel shows the training progress of a neural network with 1024 neurons, 1024
samples and 1024 epochs for various other considered properties of Boolean functions.
(Color figure online)

References

1. Rivest, R.L.: Cryptography and machine learning. In: Imai, H., Rivest, R.L., Mat-
sumoto, T. (eds.) ASIACRYPT 1991. LNCS, vol. 739, pp. 427–439. Springer, Hei-
delberg (1993). https://doi.org/10.1007/3-540-57332-1 36

2. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning, vol. 19. The MIT Press,
Cambridge (2017)

3. Géron, A.: Hands-on Machine Learning with Scikit-Learn, Keras and TensorFlow:
Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media,
Sebastopol (2019)

4. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-
propagating errors. Nature 323(6088), 533–536 (1986)

5. Hochreiter, S., Urgen Schmidhuber, J.: Long shortterm memory. Neural Comput.
9(8), 17351780 (1997)

https://doi.org/10.1007/3-540-57332-1_36

Limitations of the Use of Neural Networks in Black Box Cryptanalysis 123

6. Cybenko, G.: Approximation by superpositions of a sigmoidal function. Math.
Control Signals Syst. 2(4), 303–314 (1989)

7. Hornik, K., Stinchcombe, M., White, H.: Multilayer feedforward networks are uni-
versal approximators. Neural Netw. (1989)

8. Hornik, K.: Approximation capabilities of multilayer feedforward networks. Neural
Netw. (1991)

9. Anthony, M.: Connections between neural networks and Boolean functions.
Boolean Methods Models 20 (2005)

10. Livni, R., Shalev-Shwartz, S., Shamir, O.: On the computational efficiency of sym-
metric neural networks. Adv. Neural. Inf. Process. Syst. 27, 855–863 (2014)

11. Kearns, M.J.: The Computational Complexity of Machine Learning. MIT press,
Cambridge (1990)

12. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. In:
Providing Sound Foundations for Cryptography: On the Work of Shafi Goldwasser
and Silvio Micali, pp. 241–264. ACM (2019)

13. Steinbach, B., Kohut, R.: Neural networks-a model of Boolean functions. In:
Boolean Problems, Proceedings of the 5th International Workshop on Boolean
Problems, pp. 223–240 (2002)

14. Livni, R., Shalev-Shwartz, S., Shamir, O.: On the computational efficiency of train-
ing neural networks. arXiv preprint arXiv:1410.1141 (2014)

15. Malach, E., Shalev-Shwartz, S.: Learning Boolean circuits with neural networks.
arXiv preprint arXiv:1910.11923, 2019

16. Dileep, A.D., Sekhar, C.C.: Identification of block ciphers using support vector
machines. In: The 2006 IEEE International Joint Conference on Neural Network
Proceedings, pp. 2696–2701. IEEE (2006)

17. Swapna, S., Dileep, A.D., Sekhar, C.C., Kant, S.: Block cipher identification using
support vector classification and regression. J. Discret. Math. Sci. Cryptogr. 13(4),
305–318 (2010)

18. Chou, J.W., Lin, S.D., Cheng, C.M.: On the effectiveness of using state-of-the-art
machine learning techniques to launch cryptographic distinguishing attacks. In:
Proceedings of the 5th ACM Workshop on Security and Artificial Intelligence, pp.
105–110 (2012)

19. de Mello, F.L., Xexeo, J.A.: Identifying encryption algorithms in ECB and CBC
modes using computational intelligence. J. UCS 24(1), 25–42 (2018)

20. Lagerhjelm, L.: Extracting information from encrypted data using deep neural
networks (2018)

21. Alani, M.M.: Neuro-cryptanalysis of des. In: World Congress on Internet Security
(WorldCIS-2012), pp. 23–27. IEEE (2012)

22. Alani, M.M.: Neuro-cryptanalysis of DES and triple-DES. In: Huang, T., Zeng, Z.,
Li, C., Leung, C.S. (eds.) ICONIP 2012. LNCS, vol. 7667, pp. 637–646. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-34500-5 75

23. Xiao, Y., Hao, Q., Yao, D.D.: Neural cryptanalysis: metrics, methodology, and
applications in CPS ciphers. In: 2019 IEEE Conference on Dependable and Secure
Computing (DSC), pp. 1–8. IEEE (2019)

24. Alallayah, K.M., Alhamami, A.H., AbdElwahed, W., Amin, M.: Attack of against
simplified data encryption standard cipher system using neural networks. J. Com-
put. Sci. 6(1), 29 (2010)

25. Alallayah, K.M., Alhamami, A.H., AbdElwahed, W., Amin, M.: Applying neural
networks for simplified data encryption standard (SDES) cipher system cryptanal-
ysis. Int. Arab J. Inf. Technol. 9(2), 163–169 (2012)

http://arxiv.org/abs/1410.1141
http://arxiv.org/abs/1910.11923
https://doi.org/10.1007/978-3-642-34500-5_75

124 E. Bellini et al.

26. Danziger, M., Henriques, M.A.A.: Improved cryptanalysis combining differential
and artificial neural network schemes. In: 2014 International Telecommunications
Symposium (ITS), pp. 1–5. IEEE (2014)

27. So, J.: Deep learning-based cryptanalysis of lightweight block ciphers. Secur. Com-
mun. Netw. 2020 (2020)

28. Pareek, M., Mishra, G., Kohli, V.: Deep learning based analysis of key scheduling
algorithm of present cipher. Cryptology ePrint Archive, Report 2020/981 (2020).
http://eprint.iacr.org/2020/981

29. Flajolet, P., Gardy, D., Thimonier, L.: Birthday paradox, coupon collectors,
caching algorithms and self-organizing search (1992)

30. Daemen, J., Rijmen, V.: The Design of Rijndael: AES-the Advanced Encryption
Standard. In: Information Security and Cryptography. Springer, Heidelberg (2002).
https://doi.org/10.1007/978-3-662-60769-5.

31. Cid, C., Murphy, S., Robshaw, M.J.B.: Small scale variants of the AES. In: Gilbert,
H., Handschuh, H. (eds.) FSE 2005. LNCS, vol. 3557, pp. 145–162. Springer, Hei-
delberg (2005). https://doi.org/10.1007/11502760 10

32. Raphael Chung-Wei Phan: Mini advanced encryption standard (mini-AES): a
testbed for cryptanalysis students. Cryptologia 26(4), 283–306 (2002)

33. Carlet, C.: Boolean functions for cryptography and error correcting codes. In:
Boolean Models and Methods in Mathematics, Computer Science, and Engineer-
ing, pp. 257–397 (2010)

34. MacWilliams, F.J., Sloane, N.J.A.: The theory of error-correcting codes. I. North-
Holland Publishing Co., Amsterdam, 1977. North-Holland Mathematical Library,
vol. 16 (1977)

35. O’Neil, S., Courtois, N.T.: Reverse-engineered Philips/NXP Hitag2 Cipher (2008).
http://fse2008rump.cr.yp.to/00564f75b2f39604dc204d838da01e7a.pdf

36. Plötz, H., Nohl, K.: Breaking hitag2. HAR2009, 2011 (2009)
37. Courtois, N.T., O’Neil, S., Quisquater, J.-J.: Practical algebraic attacks on the

Hitag2 stream cipher. In: Samarati, P., Yung, M., Martinelli, F., Ardagna, C.A.
(eds.) ISC 2009. LNCS, vol. 5735, pp. 167–176. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-04474-8 14

38. Štembera, P., Novotny, M.: Breaking hitag2 with reconfigurable hardware. In: 2011
14th Euromicro Conference on Digital System Design, pp. 558–563. IEEE (2011)

39. Immler, V.: Breaking Hitag 2 revisited. In: Bogdanov, A., Sanadhya, S. (eds.)
SPACE 2012. LNCS, pp. 126–143. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-34416-9 9

40. Schaefer, E.F.: A simplified data encryption standard algorithm. Cryptologia
20(1), 77–84 (1996)

http://eprint.iacr.org/2020/981
https://doi.org/10.1007/978-3-662-60769-5.
https://doi.org/10.1007/11502760_10
http://fse2008rump.cr.yp.to/00564f75b2f39604dc204d838da01e7a.pdf
https://doi.org/10.1007/978-3-642-04474-8_14
https://doi.org/10.1007/978-3-642-34416-9_9
https://doi.org/10.1007/978-3-642-34416-9_9

Improved Polynomial Multiplication
Algorithms over Characteristic Three

Fields and Applications to NTRU Prime

Esra Yeniaras(B) and Murat Cenk

Middle East Technical University, 06800 Ankara, Turkey
{yeniaras.esra,mcenk}@metu.edu.tr

Abstract. This paper introduces a new polynomial multiplication algo-
rithm which decreases the arithmetic complexity and another modified
algorithm that speeds up the implementation run-time over the char-
acteristic three fields. We first introduce a new polynomial multiplica-
tion algorithm using a 4-way split approach and observe that its asymp-
totic arithmetic complexity is better than Bernstein’s 3-way method for
characteristic three fields. We then define an unbalanced split version
a 5-way split method which is faster than Bernstein’s 3-way method in
terms of implementation speed. We observe that, compared to the most
recent methods, for the input size 1280, the new 4-way method together
with the unbalanced 5-way split one provide a 48.6% decrease in arith-
metic complexity for polynomial multiplication over F9 and a 26.8%
decrease for polynomial multiplication over F3 respectively. Moreover,
from the implementation perspective, the unbalanced 5-way algorithm
yields faster polynomial multiplication results. For application purposes,
we pick the quantum-resistant key encapsulation protocol NTRU Prime,
proposed by Bernstein et al., since it executes a characteristic three poly-
nomial multiplication in the decapsulation stage. Implementing the pro-
posed algorithms combining with the other known methods in C, on
an Intel (R) Core (TM) i7-10510U architecture, we observe a 29.85%
speedup for sntrup653 and a 35.52% speedup for sntrup761.

Keywords: Efficient polynomial multiplication · Interpolation ·
NTRU prime · Lattice-based cryptography · Karatsuba · Key
encapsulation · Post-quantum cryptography · Characteristic three fields

1 Introduction

Although there exist many cryptographic applications requiring polynomial mul-
tiplications over characteristic three fields, there are not as many different split
variations of efficient polynomial multiplication methods in these fields as in the
fields of other characteristics. Motivated by this fact, we derive efficient poly-
nomial multiplication algorithms which are specific to the characteristic three
fields. Then, we examine their possible contributions on the efficiency of the
c© Springer Nature Switzerland AG 2022
P. Y. A. Ryan and C. Toma (Eds.): SecITC 2021, LNCS 13195, pp. 125–144, 2022.
https://doi.org/10.1007/978-3-031-17510-7_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-17510-7_9&domain=pdf
http://orcid.org/0000-0002-2973-7597
http://orcid.org/0000-0003-4941-8734
https://doi.org/10.1007/978-3-031-17510-7_9

126 E. Yeniaras and M. Cenk

post-quantum key encapsulation protocol NTRU Prime [1–3] which competes
in the NIST PQC Standardization Process [5]. NTRU Prime is admitted to
the third round of the process as an alternative nominee [4] and its decapsu-
lation stage executes a polynomial multiplication in Z3[x]/(xρ − x − 1) for a
prime integer ρ. Note that, with the necessity of renovating the TLS 1.3 pro-
tocol to quantum-resistant encryption, Google-Cloudfire CECPQ2 Experiment
integrated ntruhrss701 into TLS 1.3 Protocol in 2019. Later, Bernstein et al.
equipped NTRU Prime KEM with batch key generation feature and proposed
a faster and more secure alternative to ntruhrss701 for TLS 1.3 in 2021 [7].
Thus, faster polynomial multiplication methods over characteristic three fields
are important in the sense that they can improve the efficiency of such protocols.

In 2018, Cenk, Hasan, and Zadeh introduced a 3-way polynomial multipli-
cation method A3 [8] for the characteristic three fields using interpolation tech-
nique which is analogous to Toom-Cook’s method [11,13,14]. This algorithm
was more efficient than the other known methods of that time, such as school-
book [9], refined (improved) Karatsuba 2-way [9], Karatsuba like 3-way [10–12]
and unbalanced refined (improved) Karatsuba 2-way [9] split methods over the
characteristic three fields. Later in 2020, Yeniaras and Cenk proposed two novel
4-way split methods N1 and N2 and a 5-way split method V1 in [6] each of which
is more efficient than the A3 method. Then, in 2021, Bernstein et al. proposed
a 3-way split method for multiplying polynomials over F3 [7], which we call B1,
by using the method of including special points x and x + 1 in the evaluation
step of interpolation approach [9]. B1 is used in the decapsulation stage of the
NTRU Prime protocol to multiply polynomials over F3 for input sizes 653 and
761. Bernstein’s 3-way method B1 is more efficient than the 3-way method A3
over F3 but slower than it over F9.

In this paper, we introduce an improved 4-way method N3, for polynomial
multiplication, by combining the techniques in [7–9]. N3 is even better than the
4-way split methods N1 and N2 in terms of the arithmetic complexity. We also
implement these algorithms in C and show that N3 is faster than Bernstein’s B1
algorithm. We then define an unbalanced split version of the V1 method, which
we call U1, and show that it provides faster results than all of the state-of-the-art
methods including Bernstein’s B1 method. For instance, the new 4-way method
N3 and the unbalanced 5-way method U1 together yield a 48.6% decrease in
the arithmetic complexity for polynomial multiplication over F9 and a 26.8%
decrease for polynomial multiplication over F3 for the input size n = 1280.
Then, the proposed methods are applied to NTRU Prime decapsulation with
input sizes 653 and 761. We use the unbalanced 5-way method U1 once and
then some variants of the Karatsuba 2-way split method, A3, and schoolbook. We
name those algorithms U1-Hybrid1 and U1-Hybrid2 for the input sizes 653 and
761 respectively. We compare these algorithms to Bernstein’s 3-way approach
which suggests using the B1 algorithm once then using Karatsuba 2-way split
method down to input size 16, and using schoolbook at the final level. We name
those algorithms that are implemented according to Bernstein’s approach B1-
Hybrid1 for the input size 653 and B1-Hybrid2 for the input size 761, with

Improved Polynomial Multiplication Algorithms 127

zero-padded inputs when necessary. We obtain a 29.85% speedup for sntrup653
[3] and a 35.52% speedup for sntrup761 [3] in the implementation cycle counts.
Also, note that the implementation improvement for the multiplication step
that comes with U1-Hybrid2 in the Strealimed NTRU Prime Decapsulation is
21.08% faster than the previous improvement in [6] by Yeniaras and Cenk for
the same multiplication step that comes with the N1-Hybrid2 method which is
first introduced in [6].

Paper Organization. We introduce the preliminaries and the notation used
for the entire paper in Sect. 2. Sections 3 and 4 are preserved to introduce the
proposed 4-way method N3 and the unbalanced 5-way method U1 respectively.
In Sect. 5 we explain the hybrid use of the proposed methods and examine their
application results by comparing the implementation cycles for the decapsulation
step of the NTRU Prime Protocol [1–3,18]. We concluded the paper in Sect. 6.

Software Availability. The C implementation of the new hybrid algorithms
that are introduced in this paper are all available at https://github.com/
cryptoarith/F3Mul.

2 Notation and Preliminaries

The notations used in this paper are presented below. In the rest of this paper, it
is assumed that the polynomials to be multiplied are all from the characteristic
three fields.

Let F3 be the field with three elements. Because x2 + 1 is a polynomial
of irreducible type over F3, we have F9

∼= F3[x]/(x2 + 1). The elements of F9

can be shown as polynomials in ξ, which are of degree either 0 or 1, where
ξ ∈ F9 with ξ2 + 1 = 0. Note that, one F9 addition requires two F3 additions
and one F9 multiplication can be performed using two F3 additions and four F3

multiplications. Also, observe that multiplying an element by ξ, 1, or −1 in F9

has no cost. In the following explanation, q refers to 3 or 9.

� Schoolbook multiplication method: SB
� Refined (improved) Karatsuba 2-way split multiplication method [9]: KA2
� A 3-way multiplication method, introduced in [8]: A3
� Another multiplication method which is specific to polynomials over F9

introduced in [8]: A2
� A 3-way multiplication method, introduced in [7,9]: B1
� Unbalanced refined (improved) Karatsuba multiplication method for odd
input size polynomials [9]: UB
� Recursive schoolbook multiplication method [9] which is called as the last
term method in [6]: LT
� A 4-way multiplication method introduced in[6]: N1
� A more efficient 4-way multiplication method introduced in [6]: N2
� New 4-way multiplication method, introduced in this paper: N3
� A 5-way multiplication method introduced in [6]: V1

https://github.com/cryptoarith/F3Mul
https://github.com/cryptoarith/F3Mul

128 E. Yeniaras and M. Cenk

� Unbalanced 5-way multiplication method introduced in this paper: U1
� Assume that Λ is one of the polynomial multiplication methods listed
above, then ΛF3 and ΛF9 are abbreviations for polynomial multiplications
using the Λ method over F3 and F9 respectively.
� Mq,⊕(n): Number of additions over Fq to multiply two polynomials of
degree n − 1.
� Mq,⊗(n): Number of multiplications over Fq to multiply two polynomials
of degree n − 1.
� Mq(n): Total number of operations (additions/multiplications) over Fq to
multiply two polynomials of degree n−1, in other words, Mq(n) = Mq,⊕(n)+
Mq,⊗(n).

3 A New 4-Way Multiplication Method (N3)

This section introduces a new 4-way multiplication method, N3, for polynomi-
als having coefficients in F3[x] or F9[x]. We include the point x as an evalua-
tion point as proposed in [7]. The N3 algorithm executes seven multiplications
each of which involves quarter size polynomials of the input polynomials and
is obtained by using Lagrange interpolation [7–9] in R = F9[x] with evaluation
points {0, 1,−1, x, ξ,−ξ,∞}. Assume that, P (x) and Q(x) are two degree n − 1
polynomials, n = 4t for some t ≥ 0, y = xn/4, and R(x) = P (x)Q(x). Then, P (x)
and Q(x) can be split into following four parts: P (x) = P0 + yP1 + y2P2 + y3P3

and Q(x) = Q0 + yQ1 + y2Q2 + y3Q3 where the degrees of Pi and Qi are less
than n/4 for all i ∈ {0, 1, 2, 3}. Evaluating the polynomials at the aforementioned
interpolation points we get,

H0 = P0Q0

H1 = (P0 + P1 + P2 + P3)(Q0 + Q1 + Q2 + Q3)
H2 = (P0 − P1 + P2 − P3)(Q0 − Q1 + Q2 − Q3)

H3 = (P0 + P1x + P2x
2 + P3x

3)(Q0 + Q1x + Q2x
2 + Q3x

3)
H4 = [(P0 − P2) + ξ(P1 − P3)][(Q0 − Q2) + ξ(Q1 − Q3)]
H5 = [(P0 − P2) − ξ(P1 − P3)][(Q0 − Q2) − ξ(Q1 − Q3)]
H6 = P3Q3

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(1)

Let,
H4 = H4,0 + ξH4,1

H5 = H5,0 + ξH5,1

}

(2)

then one can observe that,

H4,0 = H5,0

H4,1 = −H5,1

}

(3)

By Eq. 2 and Eq. 3, the product H4 can be calculated from the product H5.
Thus, one product gets free of cost. We get the formula for R(x) as follows:

Improved Polynomial Multiplication Algorithms 129

R(x) =H0 + xn/4.

[

x2

(
(H1 − H2)

x2 − 1
− ξ(H4 − H5)

x2 + 1

)

− U

]

+ x2n/4.[(H1 + H2) − (H4 + H5) − H6]

+ x3n/4.[(H1 − H2) + ξ(H4 − H5)] + x4n/4.[−H0 + (H1 + H2) + (H4 + H5)]

+ x5n/4.

[(

− (H1 − H2)
x2 − 1

− ξ(H4 − H5)
x2 + 1

)

+ U

]

+ x6n/4.H6

where, U =
H0

x
+

H3/x

x4 − 1
− x

(
H4 + H5

x2 + 1
+

H1 + H2

x2 − 1

)

− H6x

The detailed cost analysis of the arithmetic operations for N3 is shown in
Table 6 (See Appendix B). Observe that, N3 has six products H0, H1, H2, H4,
H5, and H6 that are of degree n/4 − 1, but for H3 the input polynomials are
of degree n/4 + 2. To write the complexities in terms of M3(n/4), we rewrite
the multiplication of degree n/4 + 2 polynomials as one multiplication of degree
n/4 − 1 polynomials summed up with some extra terms. Then, we expand the
multiplication using the schoolbook method, compute each product of the expan-
sion separately and add them up to get the final result. The result yields,

M3(n/4 + 3) = M3(n/4) + 3n + 12
M3,⊗(n/4 + 3) = M3,⊗(n/4) + 3n/2 + 9
M3,⊕(n/4 + 3) = M3,⊕(n/4) + 3n/2 + 3

M9(n/4 + 3) = M9(n/4) + 12n + 60
M9,⊗(n/4 + 3) = M9,⊗(n/4) + 6n + 36
M9,⊕(n/4 + 3) = M9,⊕(n/4) + 6n + 24

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

(4)

Thus, the complexity of N3 is given by,

Table 1. Recursive and asymptotic complexities of N3

Recursive complexity Asymptotic complexity

M3(n) = 5M3(n/4) + M9(n/4) + 39n/2 − 36, M3(1) = 1 M3(n) = 32.33nlog4 7 − 29.33nlog4 5 − 12.66n + 10.66

M3,⊗(n) = 5M3,⊗(n/4) + M9,⊗(n/4) + 3n/2 + 9, M3,⊗(1) = 1 M3,⊗(n) = 9nlog4 7 − 6.25nlog4 5 + 2n − 3.75

M3,⊕(n) = 5M3,⊕(n/4) + M9,⊕(n/4) + 18n − 45, M3,⊕(1) = 0 M3,⊕(n) = 23.33nlog4 7 − 23.08nlog4 5 − 14.66n + 14.41

In terms of arithmetic cost, the N3 4-way method is better than the N1
and N2 4-way methods [6] for n ≥ 64. N3 is also better than Bernstein’s 3-way
method B1 [7] for n ≥ 228. Note that even though the arithmetic cost of N3 is
better than those of N1 and N2, when it comes to implementation speed, because
of some extra adding and shifting array elements in N3, the implementation
results may differ. It should also be noted that the implementation speed might
vary depending on the hardware architecture, thus, there is a good chance that
we may get better speed results for N3 than those of N1 and N2 by implementing
it in different platforms. When we implement the algorithms we recursively call
the fastest method at each input size level beginning from the small sizes to larger
input sizes. Therefore, we report the implementation run-times for small-sized
inputs in Table 3 and Table 9 that are to be used in the recursive implementation

130 E. Yeniaras and M. Cenk

of the larger sized inputs. From Table 3 and Table 9 we can observe that N3 is
faster than B1 for input sizes n ≥ 192.

4 Unbalanced Split 5-Way Polynomial Multiplication
Method (U1)

This section introduces the unbalanced split version of the 5-way polynomial
multiplication algorithm V1 [6] and we call this version U1. The main advantage
of U1 is that it can be used not only for input sizes that are multiples of 5
but also for all input sizes n ≥ 17. Let P (x) and Q(x) be two polynomials of
degree n − 1 with n ∈ Z

+ and n ≥ 17. Also let k ≡ 5 − (n (mod 5)), i.e.,
k ∈ {0, 1, 2, 3, 4}. If n is not divisible by 5, then we can split P and Q into five
smaller size polynomials so that the first four of them have (n + k)/5 elements
and the last one has (n − 4k)/5 elements. By this means, we get an unbalanced
5-way division method for any polynomial with size n ≥ 17. Let y = x(n+k)/5

and R(x) = P (x)Q(x) then P (x) and Q(x) can be split into five parts as given
in Eq. 5,

P0 = p0 + p1x + ... + p (n+k)
5 −1

x
(n+k)

5 −1

P1 = p (n+k)
5

+ p (n+k)
5 +1

x + ... + p 2(n+k)
5 −1

x
(n+k)

5 −1

P2 = p 2(n+k)
5

+ p 2(n+k)
5 +1

x + ... + p 3(n+k)
5 −1

x
(n+k)

5 −1

P3 = p 3(n+k)
5

+ p 3(n+k)
5 +1

x + ... + p 4(n+k)
5 −1

x
(n+k)

5 −1

P4 = p 4(n+k)
5

+ p 4(n+k)
5 +1

x + ... + pn−1x
(n−4k)

5 −1

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5)

Similarly, we divide Q(x) into five pieces just as we do to P (x) above and then
we get,

P (x) = P0 + yP1 + y2P2 + y3P3 + y4P4

Q(x) = Q0 + yQ1 + y2Q2 + y3Q3 + y4Q4

}

(6)

thus R(x) becomes,

R(x) = (P0 + yP1 + y2P2 + y3P3 + y4P4)(Q0 + yQ1 + y2Q2 + y3Q3 + y4Q4)

= R0 + R1y + R2y
2 + R3y

3 + R4y
4 + R5y

5 + R6y
6 + R7y

7 + R8y
8

We use the same nine interpolation points {0, 1, ξ,−ξ, ξ + 1,−ξ + 1,−ξ − 1,
ξ − 1,∞} as we do in the derivation of the V1 method in [6]:

Improved Polynomial Multiplication Algorithms 131

H0 = P0Q0

H1 = (P0 + P1 + P2 + P3 + P4)(Q0 + Q1 + Q2 + Q3 + Q4)
H2 = [(P0 + P4 − P2) + ξ(P1 − P3)][(Q0 + Q4 − Q2) + ξ(Q1 − Q3)]
H3 = [(P0 + P4 − P2) − ξ(P1 − P3)][(Q0 + Q4 − Q2) − ξ(Q1 − Q3)]
H4 = [(P0 + P1 + P3 − P4) + ξ(P1 − P2 − P3)][(Q0 + Q1 + Q3 − Q4) + ξ(Q1 − Q2 − Q3)]
H5 = [(P0 + P1 + P3 − P4) + ξ(−P1 + P2 + P3)][(Q0 + Q1 + Q3 − Q4) + ξ(−Q1 + Q2 + Q3)]
H6 = [(P0 − P1 − P3 − P4) + ξ(−P1 − P2 + P3)][(Q0 − Q1 − Q3 − Q4) + ξ(−Q1 − Q2 + Q3)]
H7 = [(P0 − P1 − P3 − P4) + ξ(P1 + P2 − P3)][(Q0 − Q1 − Q3 − Q4) + ξ(Q1 + Q2 − Q3)]
H8 = P4Q4

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(7)
then we get the R(x) coefficients as,

R0 = H0

R1 = −H0 + H1 + H2,0 − H6,0 − H8 + H2,1 − H4,1 + H6,1

R2 = H0 + H2,0 − H4,0 − H6,0 + H8 − H4,1 − H6,1

R3 = −H0 + H1 + H2,0 − H6,0 − H8 − H2,1 + H4,1 − H6,1

R4 = H0 + H4,0 + H6,0 + H8

R5 = −H0 + H1 + H2,0 − H4,0 − H8 + H2,1 + H4,1 − H6,1

R6 = H0 + H2,0 − H4,0 − H6,0 + H8 + H4,1 + H6,1

R7 = −H0 + H1 + H2,0 − H4,0 − H8 − H2,1 − H4,1 + H6,1

R8 = H8

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(8)

where,
H2 = H2,0 + ξH2,1

H3 = H3,0 + ξH3,1

H4 = H4,0 + ξH4,1

H5 = H5,0 + ξH5,1

H6 = H6,0 + ξH6,1

H7 = H7,0 + ξH7,1

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(9)

By calculating the costs of arithmetic operations from Table 7 and Table 8
(See Appendix B), the complexity of U1 can be found as below:

M9(n) = 8M9(
n + k

5
) + M9(

n − 4k

5
) +

196n

5
+

76k

5
− 72,M9(1) = 6

M3(n) = 2M3(
n + k

5
) + M3(

n − 4k

5
) + 3M9(

n + k

5
) +

72n

5
+

42k

5
− 29,M3(1) = 1

⎫
⎬

⎭
(10)

Observe that, for k = 5, the U1 algorithm yields V1, so we can think of V1 as a
special case of the U1 algorithm. According to Table 2, U1 is better than the other
algorithms in terms of the arithmetic cost. Furthermore, Table 3 and Table 9 (See
Appendix B) show that, the U1 algorithm has faster implementation run-time
than all of the aforementioned methods including Bernstein’s B1 method [7].

132 E. Yeniaras and M. Cenk

Table 2. Arithmetic complexities before and after N1, N2, N3, V1 and U1

n Previous F3 Complexity New F3 Complexity Previous F9 Complexity New F9 Complexity

M3(n) *Alg. Split M3(n) *Alg. Split M9(n) *Alg. Split M9(n) *Alg. Split

1 1 1 - 1 1 - 6 1 - 6 1 -

2 5 1 - 5 1 - 26 2 1 26 2 1

3 13 1 - 13 1 - 60 6 3 60 6 3

4 25 1 - 25 1 - 100 2 2 100 2 2

5 41 1 - 41 1 - 160 6 5 160 6 5

6 57 2 3 57 2 3 216 6 6 216 6 6

7 81 5 6 81 5 6 296 6 7 296 6 7

8 100 2 4 100 2 4 350 2 4 350 2 4

9 132 5 8 132 5 8 456 3 3 456 3 3

10 155 2 5 155 2 5 542 6 10 542 6 10

11 189 4 5–6 189 4 5–6 652 6 11 652 6 11

12 210 2 6 210 2 6 716 3 4 716 3 4

13 258 5 12 258 5 12 875 6 13 875 6 13

14 289 2 7 289 2 7 976 6 14 976 6 14

15 329 4 7-8 329 4 7–8 1076 3 5 1056 11 3

25 807 5 24 807 5 24 2594 5 24 2348 11 5

28 962 2 14 962 2 14 3107 6 28 2884 13 4-6

30 1089 2 15 1089 2 15 3286 3 10 3048 11 6

31 1139 4 15–16 1139 4 15-16 3592 4 15-16 3532 5 30

40 1733 2 20 1733 2 20 5516 6 40 4646 11 8

60 3474 2 30 3474 2 30 9941 3 20 8724 11 12

64 3725 2 32 3725 2 32 11500 2 32 10156 9 16

98 7810 2 49 7755 13 18-20 23144 2 49 18112 13 18–20

99 7919 7 33 7809 12 19–20 21436 3 33 18268 12 19–20

100 8126 2 50 7843 11 20 25072 2 50 18356 11 20

125 11446 4 62–63 11236 11 25 33298 4 62–63 25960 11 25

128 11620 2 64 11620 2 64 35390 2 64 28382 9 32

256 35753 2 128 33737 10 64 107956 2 128 77173 15 48–52

360 57327 7 120 54829 11 72 156956 3 120 121680 11 72

509 107890 4 254–255 93376 12 101–102 299852 4 254-255 203024 12 101–102

510 104972 7 170 93457 11 102 294181 3 170 203484 11 102

512 109048 2 256 94050 14 100–103 327446 2 256 202816 14 100–103

625 145100 5 624 120559 11 125 431144 5 624 258068 11 125

653 160648 4 326–327 135827 13 129-131 411822 4 326-327 292520 13 129-131

655 157250 5 654 136477 11 131 409844 5 654 292823 11 131

677 168617 4 338–339 140855 14 133-136 476832 4 338-339 301176 14 133-136

701 175656 4 350–351 145051 15 137–141 475082 4 350–351 311087 15 137–141

704 187894 2 352 145243 12 140–141 569311 6 704 311768 12 140–141

761 197651 4 380–381 168505 15 149–153 546488 4 380-381 360395 15 149–153

765 187417 7 255 169795 11 153 504131 3 255 364536 11 153

768 190016 7 256 170040 10 192 555116 3 256 363536 9 192

821 229346 4 410–411 185017 15 161–165 643692 4 410-411 395006 15 161–165

825 215932 7 275 185824 11 165 600876 3 275 396012 11 165

857 245673 4 428–429 192872 14 169–172 655785 4 428–429 409884 14 169–172

860 259450 2 430 193294 11 172 683483 2 430 410614 11 172

953 286446 4 476–477 221236 13 189–191 781534 4 476–477 468628 13 189–191

955 267375 5 954 221587 11 191 739979 5 954 469211 11 191

1000 325628 2 500 229081 11 200 932218 2 500 485366 11 200

1013 309843 4 506–507 250237 13 201–203 860247 4 506–507 530886 13 201–203

1015 302585 5 1014 251692 11 203 864854 5 1014 532952 11 203

1024 330725 2 512 254553 12 204–205 989500 2 512 539582 12 204–205

1277 443737 4 638–639 351406 14 253–256 1193327 4 638–639 743940 14 253–256

1280 479836 2 640 351133 11 256 1449745 6 1280 744661 11 256

1284 451169 7 428 353092 12 256–257 1221691 3 428 746073 12 256–257

1300 471848 2 650 357889 11 260 1185742 2 650 755786 11 260

1320 465857 7 440 363961 11 264 1314676 3 440 767478 11 264

*1:SB, 2:KA2, 3:A3, 4:UB, 5:LT, 6:A2, 7:B1, 8:N1, 9:N2, 10:N3, 11:V1,
12-15:U11-U14

Improved Polynomial Multiplication Algorithms 133

Table 3. Implementation speeds (cycles) for the multiplication algorithms - F3

Size Polynomial Multiplication Algorithms in F3

n SB KA2 A3 B1 N1 N2 N3 V1 U11 U12 U13 U14 UB LT

1 64 - - - - - - - - - - - - -

2 105 225 - - - - - - - - - - - -

3 150 - 1065 526 - - - - - - - 270 163

4 188 307 - - 820 834 - - - - - - - -

5 247 - - - - 1141 - - - - - - 502 291

6 328 549 1387 824 - - - - - - - - - -

7 359 - - - - - - - - - - - 708 453

8 499 734 - - 1456 1429 1593 - - - - - - -

9 609 - 1664 1303 - - - - - - - - 965 702

10 716 989 - - - - - 1913 - - - - - -

11 854 - - - - - - - - - - - 1115 953

12 933 1301 2005 1678 2078 2053 2292 - - - - - - -

13 1020 - - - - - - - - - - - 1470 1131

14 1233 1499 - - - - - - - - - - - -

15 1384 - 2499 2089 - - - 2644 - - - - 1745 1522

16 1564 1688 - - 2610 2070 3057 - - - - - - -

17 1694 - - - - - - - - - 3579 - 1979 1828

18 1873 2024 3045 2560 - - - - - 3609 - - - -

19 1984 - - - - - - - 3613 - - - 2380 2185

20 2192 2408 - - 3531 3506 3912 3582 - - - - - -

21 2496 - 3504 3002 - - - - - - - 4548 2743 2599

22 2691 2746 - - - - - - - - 4584 - - -

23 2802 - - - - - - - - 4672 - - 3121 3078

24 3323 3132 4163 3609 4427 4303 4837 - 4752 - - - - -

25 3536 - - - - - - 4617 - - - - 3496 3681

26 3792 3642 - - - - - - - - - 4544 - -

27 3985 - 4752 4312 - - - - - - 5669 - 3994 4162

28 4260 4156 - - 5323 5349 5902 - - 5795 - - - -

29 4739 - - - - - - - 5834 - - - 4490 4656

30 4984 4584 5513 4989 - - - 5845 - - - - - -

31 5310 - - - - - - - - - - 6825 5096 5197

32 5676 5032 - - 6333 6260 6893 - - - 6978 - - -

33 5953 - 6184 5689 - - - - - 6922 - - 5582 5682

34 6299 5610 - - - - - - 6995 - - - - -

35 6655 - - - - - - 7061 - - - - 6007 6295

36 7114 6197 7036 6535 7347 7280 7975 - - - - 8076 - -

37 7343 - - - - - - - - - 8301 - 6769 6804

38 7671 6753 - - - - - - - 8195 - - - -

39 8068 - 7892 7273 - - - - 8299 - - - 7229 7413

40 8566 7366 - - 8583 8393 9115 8294 - - - - - -

41 8707 - - - - - - - - - - 9416 7961 8050

42 9458 8070 8703 8288 - - - - - - 9454 - - -

43 10008 - - - - - - - - 9543 - - 8724 8868

44 10149 8821 - - 9630 9532 10440 - 9682 - - - - -

45 10724 - 9549 9245 - - - 9791 - - - - 9345 9458

46 11266 9679 - - - - - - - - - 10898 - -

47 11825 - - - - - - - - - 11028 - 10651 10314

48 12152 10832 10647 10070 11014 10794 12022 - - 11006 - - - -

49 12789 - - - - - - - 11256 - - - 11737 11069

50 13332 11862 - - - - - 11277 - - - - - -

53 14887 - - - - - - - - 12700 - - 12757 12932

54 15474 12688 12877 12071 - - - - 12869 - - - - -

56 16703 13628 - - 13692 13475 14899 - - - - 14096 - -

60 19156 15162 15530 14242 15530 14810 16166 14648 - - - - - -

96 47552 32518 31429 31426 31961 31441 34140 - - - - 30945 - -

192 184396 100339 89060 94226 85243 86121 92322 - - - 83856 - - -

134 E. Yeniaras and M. Cenk

Table 2 displays the arithmetic complexities for polynomial multiplication
before and after the algorithms N1, N2, N3, V1, and U1. Each algorithm is
indicated as a number; 1 refers to the schoolbook method SB [9], 2 refers to
the refined (improved) Karatsuba 2-way method KA2 [9], 3 refers to the 3-way
method A3 in [8], 4 refers to the unbalanced refined Karatsuba method UB
[9,17], 5 refers to the recursive schoolbook LT [9], 6 refers to A2 [8], 7 refers
to Bernstein’s 3-way method B1 [7], 8 refers to N1 [6], 9 refers to N2 [6], 10
refers to N3, 11 refers to V1 [6], 12 refers to U11, 13 refers to U12, 14 refers to
U13 and finally 15 refers to U14. Note that U1 corresponds to U11 for k = 4,
U12 for k = 3, U13 for k = 2 and U14 for k = 1 in Table 2. We observe from
Table 2, Table 3, and Table 9 (See Appendix B) that U1 is the most efficient of
all algorithms in both the arithmetic cost and the implementation speed per-
spectives. Furthermore, by using the new algorithms N3 and U1 combined with
the other known ones, we get a 48.6% decrease in the arithmetic complexity for
multiplying polynomials in F9[x] whereas it is 26.8% for multiplying polynomials
in F3[x] for the input size n = 1280.

5 Application of the New Algorithms to NTRU Prime
Decapsulation and the Implementation Results

Streamlined NTRU Prime Key Encapsulation Mechanism (KEM) includes a step
of multiplying polynomials in Z3[x]/(xρ−x−1) for parameters ρ = 653, 761, 857,
953, 1013, and 1277 (See Step 4 of Algorithm 1 in Appendix A) so that we can
apply the new methods to it. In [7], Bernstein et al. implemented their B1 pro-
cedure for the NTRU Prime parameters 653 and 761 with AVX2 instructions
for that step. Below, we not only implement the new methods in this paper, but
also Bernstein’s B1 approach in [7] by using a hybrid recursive call technique
[8,9,15–17] in C language without the AVX2 instructions to be able to make a
fair cycle count/run-time comparison. We run the implementations associated
with the corresponding hybrid methods 1000.000 times each and take into con-
sideration the median of the cycle counts out of these executions on an Intel (R)
Core (TM) i7-10510U machine at 1.80GHz using Ubuntu 20.04.3 LTS operating
system with Linux Kernel 5.11.0 and gcc-9.3.0 compiler.

5.1 B1-Hybrid1 Multiplication Method for n = 653

The B1-Hybrid1 algorithm is implemented using Bernstein’s 3-way approach for
the parameter n = 653. To do this, we need to use the B1 3-way method at
the first level with the zero-padded parameter 654 (since it is divisible by 3).
Then, at the lower levels, we use the Karatsuba 2-way method (KA2) for the
parameters which are divisible by 2 whereas unbalanced refined Karatsuba 2-
way method (UB) [9,17] for the odd parameters. We use the schoolbook method
SB for the parameters which are less than or equal to 16.

Improved Polynomial Multiplication Algorithms 135

654B1F3

220

KA2F3

218

KA2F3

110

KA2F3

55

UBF3

109

UBF3

54

KA2F3

27

UBF3

28

KA2F3

14

SBF3

13

SBF3

/3

/3 + 2

/2 /2

/2

/2

/2

/2

/2

/2/2

Fig. 1. B1-Hybrid1 Algorithm cycles/time is 758.027/0.000329

Figure 1 gives a flowchart scheme for B1-Hybrid1 along with the cycle count.

5.2 B1-Hybrid2 Multiplication Method for n = 761

This algorithm also applies Bernstein’s approach but this time the input param-
eter is n = 761. Since 761 is not divisible by 3, we pick the input parameter
768 (with zero-padded coefficients up to 768). Figure 2 gives a visual scheme of
B1-Hybrid2 along with the cycle count.

768B1F3

258

KA2F3

256

KA2F3

129

UBF3

65

UBF3

33

UBF3

17

SBF3

128

KA2F3

64

KA2F3

32

KA2F3

16

SBF3

/3

/3 + 2

/2 /2

/2 /2 /2 /2

/2 /2 /2

Fig. 2. B1-Hybrid2 Algorithm cycles/time is 944.139/0.000410

5.3 U1-Hybrid1 Multiplication Method for n = 653

The U1-Hybrid1 algorithm uses the unbalanced 5-way method U1 in combination
with other methods and it is designed for the input parameter n = 653. Figure 3
(See Appendix A) displays a visual scheme for the U1-Hybrid1 and indicates
the cycle count. Note that the branches represent the multiplications that are
performed in F3[x] and F9[x] respectively. Table 4 indicates that, with the usage
of U1-Hybrid1, the amount of decrease in the cycle count is 29.85% compared
to Bernstein’s reference B1-Hybrid1 method.

136 E. Yeniaras and M. Cenk

5.4 U1-Hybrid2 Multiplication Method for n = 761

As a second application of the unbalanced 5-way method U1, we implement U1-
Hybrid2 for n = 761. Table 4 indicates that by using U1-Hybrid2, the amount
of decrease in the cycle count is 35.52% compared to Bernstein’s reference B1-
Hybrid2 algorithm. See Fig. 4 in Appendix A for the flowchart scheme and the
cycle count measurement of U1-Hybrid2.

Table 4. Implementation results for polynomial multiplication over F3 in Streamlined
NTRU Prime Decapsulation

Parameter Algorithm Cycles/Time Improvement

sntrup653 B1-Hybrid1 (Bernstein’s B1 [7]) 758.027/0.000329 Ref. Value

U1-Hybrid1 (this paper) 531.692/0.000231 29.85%

sntrup761 B1-Hybrid2 (Bernstein’s B1 [7]) 944.139/0.000410 Ref. Value

U1-Hybrid2 (this paper) 608.694/0.0000265 35.52%

6 Conclusion

In this work, we introduce further improvements in the arithmetic complexities
that are presented in [6] for multiplying polynomials in characteristic three fields
with the contributions of the new 4-way method N3 and the unbalanced 5-way
method U1. It is reported that, using the new 4-way method N3 and the unbal-
anced 5-way method U1 in combination with other known methods decrease the
arithmetic complexities to multiply polynomials. We observe from Table 2 that,
compared to the state-of-the-art methods, the proposed N3 algorithm together
with the U1 method provide a 48.6% decrease in the arithmetic complexity for
polynomial multiplication in F9[x] and a 26.8% decrease for polynomial multi-
plication in F3[x] for the input size n = 1280. Results indicate that the new
4-way method N3 has better acquisition in the arithmetic complexity than the
previous 4-way methods N1, N2[6], and Bernstein’s 3-way one B1 [7]. According
to Table 2, Table 3, and Table 9, the U1 algorithm is used to obtain faster results
than the other polynomial multiplication methods over F3. Furthermore, as a
use case of the U1 method, we pick NTRU Prime Protocol and show that the
proposed hybrid algorithms U1-Hybrid1 and U1-Hybrid2 outperform Bernstein’s
B1-Hybrid1 and B1-Hybrid2 approaches used for the NTRU Prime protocol in
[7]. As Table 4 indicates U1-Hybrid1 is 29.85% faster than B1-Hybrid1 and U1-
Hybrid2 is 35.52% faster than the B1-Hybrid2. Thus, it would also be more
efficient to use U1-Hybrid1 and U1-Hybrid2 in the characteristic three polyno-
mial multiplication step of the NTRU Prime Protocol with AVX2 instructions so
that they can potentially speed up the total NTRU Prime decapsulation runtime
as well.

Improved Polynomial Multiplication Algorithms 137

Appendix

A NTRU Prime Decapsulation and the Flowcharts
of the New Hybrid Methods: U1-Hybrid1
and U1-Hybrid2

NTRU Prime Protocol is a NIST PQC Round 3 alternative candidate. It is a
quantum-resistant key encapsulation mechanism consisting of two parts. The
first part is named as Streamlined NTRU Prime whereas the second one is
named as NTRU LPRime. In this work, we apply the new methods through the
Streamlined NTRU Prime decapsulation.

Streamlined NTRU Prime Parameters. The parameters of Streamlined
NTRU Prime are given as (ρ, δ, ω) with prime ρ and δ where δ ≥ 17, 0 < ω ≤ ρ,
2ρ ≥ 3ω, δ ≥ 16ω + 1. Also, we assume that (xρ − x − 1) is irreducible in Zδ[x].
As one can observe from Algorithm 1, the protocol executes characteristic three
polynomial multiplication at step 4.

Algorithm 1. Decapsulation of Streamlined NTRU Prime - Dec(Z, νk)
Require: (Z, νk)
Ensure: HashSession(1, u, Z) or HashSession(0, ζ, Z)
1: z ← Decode(z)
2: z.3f ∈ Zδ[x]/(xρ − x − 1)
3: ε ← (Rounded(z.3f) mod 3) ∈ Z3[x]/(xρ − x − 1)
4: ε.g−1 ∈ Z3[x]/(xρ − x − 1)
5: u′ ← Lift(ε.g−1) ∈ Zδ[x]/(xρ − x − 1)
6: h.u′ ∈ Zδ[x]/(xρ − x − 1)
7: z′ ← Round(h.u′)
8: z′ ← Encode(z′)
9: Z′ ← (z′, HashConfirm(u′, h))

10: if Z′ == Z then
11: return HashSession(1, u, Z)
12: else
13: return HashSession(0, ζ, Z))

Note that, when ρ = 761, δ = 4591 and ω = 286 the cryptosystem is abbre-
viated as sntrup761 and when ρ = 653, δ = 4621 and ω = 288 the cryptosystem
is abbreviated as sntrup653. A detailed description of the protocol can be found
in [3].

138 E. Yeniaras and M. Cenk

653U12F3 131

129U11F3

26

KA2F9

13

26 13

25UBF3 12

131U14F9

23UBF9

12

11

27 9

27

23
U14F3

A3F9 /3

/2

KA2F3

SBF3

SBF3

SBF9

SBF9

SBF9

SBF9

SBF3

SBF3

Fig. 3. U1-Hybrid1 Algorithm cycle/time is 531.692/0.000231

761U14F3 153

149U11F3 30

KA2F3

15

30V 1F9 6

153U12F9

29UBF9

14

15

31 16

31

UBF3

16

29 15

14

U12F3

UBF9

UBF3

/2

/5 SBF9

SBF3

SBF9

SBF9

SBF9

SBF3

SBF3

SBF3

Fig. 4. U1-Hybrid2 Algorithm cycle/time is 608.694/0.0000265

Improved Polynomial Multiplication Algorithms 139

B Tables

Tables 5, 6, 7 and 8: Costs of Arithmetic Operations for B1, N3, and
U1 over F3 and F9

Tables 9: Implementation Results (Cycles) for Multiplication Algo-
rithms over F9

Table 5. Costs of arithmetic operations for Bernstein’s 3-way method B1 over F3 and
F9

Computations F3[x] Cost F9[x] Cost

S0 = P0 + P2, S′
0 = Q0 + Q2 2n/3 4n/3

S1 = S0 + P1, S′
1 = S′

0 + Q1 2n/3 4n/3

S2 = S0 − P1, S
′
2 = S′

0 − Q1 2n/3 4n/3

S3 = P1x + P2x
2, S′

3 = Q1x + Q2x
2 2n/3 − 2 4n/3 − 4

S4 = P0 + S3, S
′
4 = Q0 + S′

3 2n/3 − 2 4n/3 − 4

H0 = P0Q0 M3(n/3) M9(n/3)

H1 = S1S
′
1 M3(n/3) M9(n/3)

H2 = S2S
′
2 M3(n/3) M9(n/3)

H3 = S4S
′
4 M3(n/3 + 2) = M3(n/3) + 8n/3 + 4 M9(n/3 + 2) = M9(n/3) + 32n/3 + 24

H4 = P2Q2 M3(n/3) M9(n/3)

V0 = H1 + H2 (2n/3 − 1) (4n/3 − 2)

V1 = H1 − H2 (2n/3 − 1) (4n/3 − 2)

V2 = V0x + V1 (2n/3 − 2) (4n/3 − 4)

V3 = V2 + H3/x 2n/3 4n/3

V4 = V3/(x − 1) 2n/3 4n/3

V = V4/(x + 1) (2n/3 − 1) (4n/3 − 2)

T0 = V − H4x (2n/3 − 1) (4n/3 − 2)

T = T0 + H0/x (2n/3 − 2) (4n/3 − 4)

R0 = T + V1 (2n/3 − 1) (4n/3 − 2)

R1 = H0 − R0x
n/3 (n/3 − 1) (2n/3 − 2)

R2 = H0 + V0 (2n/3 − 1) (4n/3 − 2)

R3 = R2 + H4 (2n/3 − 1) (4n/3 − 2)

R4 = R1 − R3x
2n/3 n/3 2n/3

R5 = R4 + Txn (n/3 − 1) (2n/3 − 2)

R = R5 + H4x
4n/3 n/3 2n/3

TOTAL: M3(n) = 5M3(n/3) + 44n/3 − 13 M9(n) = 5M9(n/3) + 104n/3 − 10

140 E. Yeniaras and M. Cenk

Table 6. Costs of arithmetic operations for N3 over F3 and F9

Computations F3[x] Cost F9[x] Cost

S0 = P0 + P2, S′
0 = Q0 + Q2 2n/4 4n/4

S1 = P1 + P3, S′
1 = Q1 + Q3 2n/4 4n/4

S2 = S0 + S1, S
′
2 = S′

0 + S′
1 2n/4 4n/4

S3 = S0 − S1, S
′
3 = S′

0 − S′
1 2n/4 4n/4

S4 = P0 + P1x, S′
4 = Q0 + Q1x (2n/4 − 2) (4n/4 − 4)

S5 = S4 + P2x
2, S′

5 = S′
4 + Q2x

2 (2n/4 − 2) (4n/4 − 4)

S6 = S5 + P3x
3, S′

6 = S′
5 + Q′

3x
3 (2n/4 − 2) (4n/4 − 4)

S7 = P0 − P2, S
′
7 = Q0 − Q2 2n/4 4n/4

S8 = P1 − P3, S
′
8 = Q1 − Q3 2n/4 4n/4

S9 = S7 + ξS8, S′
9 = S′

7 + ξS′
8 0 4n/4

S10 = S7 − ξS8, S′
10 = S′

7 − ξS′
8 0 4n/4

H0 = P0Q0 M3(n/4) M9(n/4)

H1 = S2S
′
2 M3(n/4) M9(n/4)

H2 = S3S
′
3 M3(n/4) M9(n/4)

H3 = S6S
′
6 M3(n/4 + 3) = M3(n/4) + 3n + 12 M9(n/4 + 3) = M9(n/4) + 12n + 60

H4 = S9S
′
9 M9(n/4) M9(n/4)

H5 = S10S
′
10 0 M9(n/4)

H6 = P3Q3 M3(n/4) M9(n/4)

T0 = H0/x 0 0

T1 = H3/x 0 0

T2 = T1/(x2 − 1) (2n/4) 4n/4

T3 = T2/(x2 + 1) (2n/4 − 2) (4n/4 − 4)

T4 = H1 + H2 (2n/4 − 1) (4n/4 − 2)

T5 = (H1 + H2)x 0 0

T6 = T5/(x2 − 1) (2n/4 − 4) (4n/4 − 8)

T7 = −H5,0 0 (4n/4 − 2)

T8 = −xH5,0 0 0

T9 = T8/(x2 + 1) (2n/4 − 4) (4n/4 − 8)

T10 = (T6 + T9) (2n/4 − 2) (4n/4 − 4)

T11 = T0 + T3 (2n/4 − 2) (4n/4 − 4)

T12 = T11 − T10 (2n/4 − 2) (4n/4 − 4)

T = T12 − xH6 (2n/4 − 1) (4n/4 − 2)

V0 = H1 − H2 (2n/4 − 1) (4n/4 − 2)

V1 = (H1 − H2)x
2 0 0

V2 = V1/(x2 − 1) (2n/4 − 3) (4n/4 − 6)

V3 = −H5,1 0 (4n/4 − 2)

V4 = −x2H5,1 0 0

V5 = V4/(x2 + 1) (2n/4 − 3) (4n/4 − 6)

V6 = V2 − V5 (2n/4 − 1) (4n/4 − 2)

V7 = V6 − T (2n/4 − 1) (4n/4 − 2)

V8 = T4 − T7 (2n/4 − 1) (4n/4 − 2)

V9 = V8 − H6 (2n/4 − 1) (4n/4 − 2)

V10 = V0 + V3 (2n/4 − 1) (4n/4 − 2)

V11 = −H0 + T4 (2n/4 − 1) (4n/4 − 2)

V12 = V11 + T7 (2n/4 − 1) (4n/4 − 2)

V13 = −(V2/x2 + V5/x2) (2n/4 − 3) (4n/4 − 6)

V14 = V13 + T (2n/4 − 3) (4n/4 − 6)

R0 = H0 + xn/4V7 (n/4 − 1) (2n/4 − 2)

R1 = R0 + x2n/4V9 (n/4) 2n/4

R2 = R1 + x3n/4V10 (n/4 − 1) (2n/4 − 2)

R3 = R2 + x4n/4V12 (n/4 − 1) (2n/4 − 2)

R4 = R3 + x5n/4V14 (n/4 − 1) (2n/4 − 2)

R=R4 + x6n/4H6 (n/4) (2n/4)

TOTAL: M3(n) = 5M3(n/4) + M9(n/4) + 39n/2 − 36 M9(n) = 7M9(n/4) + 49n − 40

Improved Polynomial Multiplication Algorithms 141

Table 7. Costs of arithmetic operations for U1 over F3

Computations F3 Multiplication Cost

S1 = P1 + P3, S
′
1 = Q1 + Q3 2(n + k)/5

S2 = P0 − P4, S′
2 = Q0 − Q4 2(n − 4k)/5

S3 = P0 + P4, S
′
3 = Q0 + Q4 2(n − 4k)/5

S4 = P1 − P3, S
′
4 = Q1 − Q3 2(n + k)/5

S5 = S4 − P2, S
′
5 = S′

4 − Q2 2(n + k)/5

S6 = −P2 − S4, S
′
6 = −Q2 − S′

4 2(n + k)/5

S7 = S3 − P2, S
′
7 = S′

3 − Q2 2(n + k)/5

S8 = S1 + S2, S
′
8 = S′

1 + S′
2 2(n + k)/5

S9 = S2 − S1, S
′
8 = S′

2 − S′
1 2(n + k)/5

S10 = S1 + S3, S
′
10 = S′

1 + S′
3 2(n + k)/5

S11 = S10 + P2, S
′
11 = S′

10 + Q2 2(n + k)/5

S12 = S7 + ξS4, S′
12 = S′

7 + ξS′
4 0

S13 = S7 − ξS4, S
′
13 = S′

7 − ξS′
4 0

S14 = S8 + ξS5, S′
14 = S′

8 + ξS′
5 0

S15 = S8 − ξS5, S′
15 = S′

8 − ξS′
5 0

S16 = S9 + ξS6, S′
16 = S′

9 + ξS′
6 0

S17 = S9 − ξS6, S′
17 = S′

9 − ξS′
6 0

H0 = P0Q0 M3((n + k)/5)

H1 = S11S
′
11 M3((n + k)/5)

H2 = S12S
′
12 M9((n + k)/5)

H3 = S13S
′
13 0

H4 = S14S
′
14 M9((n + k)/5)

H5 = S15S
′
15 0

H6 = S16S
′
16 M9((n + k)/5)

H7 = S17S
′
17 0

H8 = P4Q4 M3((n − 4k)/5)

T1 = H0 + H8 (2(n − 4k)/5 − 1)

T2 = −T1 + H1 (2(n + k)/5 − 1)

T3 = H2,0 − H6,0 (2(n + k)/5 − 1)

T4 = T3 − H4,0 (2(n + k)/5 − 1)

T5 = H2,0 − H4,0 (2(n + k)/5 − 1)

T6 = H6,0 + H4,0 (2(n + k)/5 − 1)

T7 = H2,1 − H4,1 (2(n + k)/5 − 1)

T8 = T7 + H6,1 (2(n + k)/5 − 1)

T9 = H4,1 + H6,1 (2(n + k)/5 − 1)

T10 = H2,1 + H4,1 (2(n + k)/5 − 1)

T11 = T10 − H6,1 (2(n + k)/5 − 1)

T12 = T2 + T3 (2(n + k)/5 − 1)

T13 = T1 + T4 (2(n + k)/5 − 1)

T14 = T2 + T5 (2(n + k)/5 − 1)

R1 = T12 + T8 (2(n + k)/5 − 1)

R2 = T13 − T9 (2(n + k)/5 − 1)

R3 = T12 − T8 (2(n + k)/5 − 1)

R4 = T1 + T6 (2(n + k)/5 − 1)

R5 = T14 + T11 (2(n + k)/5 − 1)

R6 = T13 + T9 (2(n + k)/5 − 1)

R7 = T14 − T11 (2(n + k)/5 − 1)

R = R0 + R1x
n/5 + ... + R8x

8n/5 8((n + k)/5 − 1)

TOTAL: M3(n) = 2M3(
n+k
5

) + M3(
n−4k

5
) + 3M9(

n+k
5

) + 72n
5

+ 42k
5

− 29

142 E. Yeniaras and M. Cenk

Table 8. Costs of arithmetic operations for U1 over F9

Computations F9 Multiplication cost

S1 = P1 + P3, S
′
1 = Q1 + Q3 4(n + k)/5

S2 = P0 − P4, S′
2 = Q0 − Q4 4(n − 4k)/5

S3 = P0 + P4, S
′
3 = Q0 + Q4 4(n − 4k)/5

S4 = P1 − P3, S
′
4 = Q1 − Q3 4(n + k)/5

S5 = S4 − P2, S
′
5 = S′

4 − Q2 4(n + k)/5

S6 = −P2 − S4, S
′
6 = −Q2 − S′

4 4(n + k)/5

S7 = S3 − P2, S
′
7 = S′

3 − Q2 4(n + k)/5

S8 = S1 + S2, S
′
8 = S′

1 + S′
2 4(n + k)/5

S9 = S2 − S1, S
′
9 = S′

2 − S′
1 4(n + k)/5

H3 = S13S
′
13 M9((n + k)/5)

H4 = S14S
′
14 M9((n + k)/5)

H5 = S15S
′
15 M9((n + k)/5)

H6 = S16S
′
16 M9((n + k)/5)

H7 = S17S
′
17 M9((n + k)/5)

H8 = P4Q4 M9((n − 4k)/5)

S10 = S1 + S3, S
′
10 = S′

1 + S′
3 4(n + k)/5

S11 = S10 + P2, S
′
11 = S′

10 + Q2 4(n + k)/5

S12 = S7 + ξS4, S′
12 = S′

7 + ξS′
4 4(n + k)/5

S13 = S7 − ξS4, S
′
13 = S′

7 − ξS′
4 4(n + k)/5

S14 = S8 + ξS5, S′
14 = S′

8 + ξS′
5 4(n + k)/5

S15 = S8 − ξS5, S′
15 = S′

8 − ξS′
5 4(n + k)/5

S16 = S9 + ξS6, S′
16 = S′

9 + ξS′
6 4(n + k)/5

S17 = S9 − ξS6, S′
17 = S′

9 − ξS′
6 4(n + k)/5

H0 = P0Q0 M9((n + k)/5)

H1 = S11S
′
11 M9((n + k)/5)

H2 = S12S
′
12 M9((n + k)/5)

T1 = −H0 + H1 4(n + k)/5 − 2

T2 = H2 + H3 4(n + k)/5 − 2

T3 = H2 − H3 4(n + k)/5 − 2

T4 = H6 + H7 4(n + k)/5 − 2

T5 = H6 − H7 4(n + k)/5 − 2

T6 = H4 + H5 4(n + k)/5 − 2

T7 = H4 − H5 4(n + k)/5 − 2

T8 = T4 + T6 4(n + k)/5 − 2

T9 = T1 − T2 4(n + k)/5 − 2

T10 = T9 + T4 4(n + k)/5 − 2

T11 = T10 − H8 4(n − 4k)/5 − 2

T12 = −T7 + T5 4(n + k)/5 − 2

T13 = T3 + T12 4(n + k)/5 − 2

T14 = H0 − T2 4(n + k)/5 − 2

T15 = T14 + T8 4(n + k)/5 − 2

T16 = T15 + H8 4(n − 4k)/5 − 2

T17 = −T7 − T5 4(n + k)/5 − 2

T18 = T9 + T6 4(n + k)/5 − 2

T19 = T18 − H8 4(n − 4k)/5 − 2

T20 = T3 − T12 4(n + k)/5 − 2

T21 = H0 − T8 4(n + k)/5 − 2

R1 = T11 + ξT13 4(n + k)/5 − 2

R2 = T16 + ξT17 4(n + k)/5 − 2

R3 = T11 − ξT13 4(n + k)/5 − 2

R4 = T21 + H8 4(n − 4k)/5 − 2

R5 = T19 + ξT20 4(n + k)/5 − 2

R6 = T16 − ξT17 4(n + k)/5 − 2

R7 = T19 − ξT20 4(n + k)/5 − 2

R = R0 + R1x
n/5 + ... + R8x

8n/5 16((n + k)/5 − 1)

TOTAL: M9(n) = 8M9(
n+k
5

) + M9(
n−4k

5
) + 196n

5
+ 76k

5
− 72

Improved Polynomial Multiplication Algorithms 143

Table 9. Implementation results (cycles) for the multiplication algorithms - F9

Size Polynomial multiplication algorithms in F9

n SB KA2 A3 B1 N1 N2 N3 V1 U11 U12 U13 U14 UB LT

1 45 - - - - - - - - - - - - -

2 104 288 - - - - - - - - - - - -

3 233 1158 727 - - - - - - - 432 276

4 341 564 - - 1088 1034 - -

5 483 - - - - - - 1251 - - - - 731 552

6 634 896 1664 1325

7 805 - - - - - - - - - - - 1114 924

8 1035 1265 - - 2014 1873 2237 - - - - - - -

9 1253 - 2104 1954 - - - - - - - - 1497 1288

10 1454 1672 - - - - - 2459 - - - - - -

11 1627 - - - - - - - - - - - 1896 1842

12 1937 2074 2870 2641 3031 2835 3319

13 2182 - - - - - - - - - - - 2427 2373

14 2458 2604 - - - - - - - - - - - -

15 2816 - 3572 3480 - - - 3750 - - - - 3010 3021

16 3140 3257 - - 4261 4040 4583 - - - - - - -

17 3584 - - - - - - - - - 5661 - 3627 3821

18 3948 3978 4535 4585 - - - - - 5259 - - - -

19 4356 - - - - - - - 5335 - - - 4377 4591

20 4756 4679 - - 5523 5278 6197 5290 - - - - - -

21 5278 - 5504 5491 - - - - - - - 7068 5087 5503

22 5759 5483 - - - - - - - - 7172 - - -

23 6209 - - - - - - - - 6876 - - 6000 6270

24 6787 6172 6621 6706 6945 6612 7454 - 6870 - - - - -

25 7257 - - - - - - 7090 6779 7115

26 7824 7113 - - - - - - - - - 8843 - -

27 8256 - 7723 7864 - - - - - - 8552 - 7779 8075

28 8975 8070 - - 8413 8109 9235 - - 8609 - - - -

29 9642 - - - - - - - 8786 - - - 8609 9122

30 10412 9103 9032 9302 - - - 8820 - - - - - -

31 10904 - - - - - - - - - - 10545 9829 9943

32 11690 10119 - - 10082 9813 11046 - - - 10494 - - -

33 12298 - 10276 10559 - - - - - 10743 - - 10697 10862

34 13091 11342 - - - - - - 10921 - - - - -

35 13797 - - - - - - 10916 - - - - 12266 12679

36 14604 12282 11740 12167 12096 11682 13129 - - - - 12647 - -

37 15491 - - - - - - - - - 12790 - 13206 13203

38 16038 13059 - - - - - - - 12897 - - - -

39 17026 - 13543 14181 - - - - 13200 - - - 14510 15282

40 18082 15150 - - 14191 13708 15000 13140 - - - - - -

41 18891 - - - - - - - - - - 14997 16003 14563

42 19562 16160 15297 15520 - - - - - - 14964 - - -

43 20691 - - - - - - - - 15076 - - 17128 16523

44 21520 17450 - - 16365 1608 17333 - 15471 - - - - -

45 22418 - 17063 17684 - - - 15544 - - - - 18553 17173

46 23681 18755 - - - - - - - - - 17550 - -

47 24510 - - - - - - - - - 17519 - 19696 19284

48 25679 20148 18969 19469 18561 18051 19815 - - 17798 - - - -

49 26609 - - - - - - - 18017 - - - 21451 19762

50 27885 21910 - - - - - 18384 - - - - - -

51 28987 - 21096 21876 - - - - - - - 20667 22851 20427

52 30435 23326 - - 21321 20637 22677 - - - 20747 - - -

53 31870 - - - - - - - - 20785 - - 24611 22712

54 33197 25397 23499 24021 - - - - 20959 - - - - -

55 33563 - - - - - - 21124 - - - - 25992 22821

56 34857 26330 - - 23790 23449 25361 - - - - 23312 - -

60 40722 28478 28381 28787 26582 26154 28352 24470 - - - - - -

144 E. Yeniaras and M. Cenk

References

1. Bernstein, D.J., Chuengsatiansup, C., Lange, T., van Vredendaal, C.: NTRU prime.
NIST Post-Quantum Cryptography Standardization Process-Round-1 (2017).
https://ntruprime.cr.yp.to/nist/ntruprime-20171130.pdf

2. Bernstein, D.J., Chuengsatiansup, C., Lange, T., van Vredendaal, C.: NTRU prime.
NIST Post-Quantum Cryptography Standardization Process-Round-2 (2019).
https://ntruprime.cr.yp.to/nist/ntruprime-20190330.pdf

3. Bernstein, D.J., Chuengsatiansup, C., Lange, T., van Vredendaal, C.: NTRU prime.
NIST Post-Quantum Cryptography Standardization Process-Round-3 (2019).
https://ntruprime.cr.yp.to/nist/ntruprime-20201007.pdf

4. Alagic, G., et al.: Status report on the second round of the NIST post-quantum
cryptography standardization process (2020). https://nvlpubs.nist.gov/nistpubs/
ir/2020/NIST.IR.8309.pdf

5. NIST Post Quantum Cryptography PQC Standardization 2016–2020. https://csrc.
nist.gov/projects/post-quantum-cryptography

6. Cenk, M., Yeniaras, E.: Faster characteristic three polynomial multiplication and
its application to NTRU prime decapsulation. J. Cryptographic Eng. (to appear).
https://eprint.iacr.org/2020/1336.pdf

7. Bernstein, D.J., Brumley, B.B., Chen, M.S., Tuveri, N.: OpenSSLNTRU: faster
post-quantum TLS key exchange, IACR Cryptol. ePrint Arch. p. 826 (2021).
https://eprint.iacr.org/2021/826.pdf

8. Cenk, M., Zadeh, F.H., Hasan, M.A.: New efficient algorithms for multiplication
over fields of characteristic three. J. Signal Process. Syst. 90(3), 285–294 (2017).
https://doi.org/10.1007/s11265-017-1234-x

9. Bernstein, D.J.: Batch binary Edwards. In: Halevi, S. (ed.) CRYPTO 2009. LNCS,
vol. 5677, pp. 317–336. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-03356-8 19

10. Zhou, G., Michalik, H.: Comments on a new architecture for a parallel finite field
multiplier with low complexity based on composite field. IEEE Trans. Comput.
59(7), 1007–1008 (2010)

11. Winograd, S.: Arithmetic Complexity of Computations. Society For Industrial &
Applied Mathematics, U.S (1980)

12. Montgomery, P.L.: Five, six and seven-term Karatsuba-like formulae. IEEE Trans.
Comput. 54, 362–369 (2005)

13. Cenk, M., Koç, Ç.K., Özbudak, F.: Polynomial multiplication over finite fields using
field extensions and interpolation. In: IEEE Symposium on Computer Arithmetic,
pp. 84–91 (2009)

14. Cenk, M., Ozbudak, F.: Efficient multiplication in F3lm , m ≥ 1 and 5 ≤ l ≤ 18.
In: AFRICACRYPT, pp. 406–414 (2008)

15. Cenk, M.: Karatsuba-like formulae and their associated techniques. J. Cryptogr.
Eng. 8(3), 259–269 (2017). https://doi.org/10.1007/s13389-017-0155-8

16. Cenk, M., Hasan, M.A.: Some new results on binary polynomial multiplication. J.
Cryptogr. Eng. 5(4), 289–303 (2015). https://doi.org/10.1007/s13389-015-0101-6

17. Ilter, M.B., Cenk, M.: Efficient big integer multiplication in cryptography. Int. J.
Inf. Secur. Sci. 6(4), 70–78 (2017)

18. Bernstein, D.J., Chuengsatiansup, C., Lange, T., van Vredendaal, C.: NTRU prime:
reducing attack surface at low cost. In: Adams, C., Camenisch, J. (eds.) SAC 2017.
LNCS, vol. 10719, pp. 235–260. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-72565-9 12

https://ntruprime.cr.yp.to/nist/ntruprime-20171130.pdf
https://ntruprime.cr.yp.to/nist/ntruprime-20190330.pdf
https://ntruprime.cr.yp.to/nist/ntruprime-20201007.pdf
https://nvlpubs.nist.gov/nistpubs/ir/2020/NIST.IR.8309.pdf
https://nvlpubs.nist.gov/nistpubs/ir/2020/NIST.IR.8309.pdf
https://csrc.nist.gov/projects/post-quantum-cryptography
https://csrc.nist.gov/projects/post-quantum-cryptography
https://eprint.iacr.org/2020/1336.pdf
https://eprint.iacr.org/2021/826.pdf
https://doi.org/10.1007/s11265-017-1234-x
https://doi.org/10.1007/978-3-642-03356-8_19
https://doi.org/10.1007/978-3-642-03356-8_19
https://doi.org/10.1007/s13389-017-0155-8
https://doi.org/10.1007/s13389-015-0101-6
https://doi.org/10.1007/978-3-319-72565-9_12
https://doi.org/10.1007/978-3-319-72565-9_12

An Optimization of Bleichenbacher’s
Oracle Padding Attack

Evgnosia-Alexandra Kelesidis(B)

Advanced Technologies Institute, Bucharest, Romania

kelesidisevgnosia@gmail.com

Abstract. In the present paper we propose an improvement of Bleichen-
bacher’s Oracle Padding Attack that makes breaking more restrictive
implementations of the PKCS#1 v1.5 standard feasible both theoreti-
cally and in practice. It is proven that the current attack requires at
most a quarter of the total number of queries used by the original ver-
sion. Using the proposed algorithm, we conducted experiments on vari-
ous restrictive oracles for illustrating the theoretical improvement, and
attacked a real device that implements the PKCS #11 standard in a
reasonable amount of time. Note that the use of the original algorithm
would have led to only a partial decryption of the ciphertext in a larger
time interval.

Keywords: RSA encryption · PKCS#1 v1.5 · PKCS#11 · CCA
adversary · Oracle Padding Attack · Bleichenbacher’s attack

1 Introduction

Public key encryption [4] is one of the most trusted modern methods for achiev-
ing important cryptographic goals. An essential public key algorithm is the RSA
cryptosystem [9], which, besides being one of the oldest public key encryption
systems, it still remains a reliable method for protecting data1. RSA is contin-
uously studied both from a security and efficiency perspective, as its uses are
various and embedded in complex contexts.

During its evolution, the aforementioned algorithm took various forms,
more precisely standards. Several of them are still used today, being gradu-
ally strengthened. We indicate, e.g., the PKCS#1 v1.5 [7] standard, that is also
included in the PKCS#11 [8] standard, which offers an interface to cryptographic
devices such as tokens, HSMs, smartcards, etc. PKCS#1 v1.5 was extensively
evaluated since 1998, when Bleichenbacher found an attack [2] that can be run
on TLS servers (which implemented this standard). Countermeasures have been
added, such as requiring extra check-ups.

1 Of course, until quantum computers will become truly practical for performing quan-
tum cryptanalysis.

c© Springer Nature Switzerland AG 2022
P. Y. A. Ryan and C. Toma (Eds.): SecITC 2021, LNCS 13195, pp. 145–155, 2022.
https://doi.org/10.1007/978-3-031-17510-7_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-17510-7_10&domain=pdf
https://doi.org/10.1007/978-3-031-17510-7_10

146 E.-A. Kelesidis

Even so, there still exist contexts in which implementations of PKCS#1 v1.5
are vulnerable: for example, in 2018 was published the ROBOT attack [3], which
revealed the fact that many important domains such as Facebook and Paypal
used servers as PKCS oracles. Thus, using Bleichenbacher’s 1998 attack, many
commercial products from vendors as Cisco, IBM, Palo Alto Networks became
vulnerable. In 2014 was performed a succesful Bleichenbacher side channel [6]
against the Java Secure Socket Extension. In 2019, 9 TLS implementations were
broken using the algorithm in discussion, by employing a cache attack [10]. In
2012, an optimisation [1] of the Bleichenbacher side channel on cryptographic
hardware that could break in a reasonable amount of time the Estonian ID Card
was proposed.

To summarize the above mentions, despite existing for 20 years, Bleichen-
bacher’s attack still helps nowadays when identifying vulnerabilities in complex
implementations that include the RSA standard PKCS #1 v1.5.

Structure of the paper. The purpose of this paper is finding an optimisation of the
previously mentioned attack for the PKCS #1 v1.5 strict oracles [5]. In Sect. 2 the
PKCS #1 v1.5 standard along with its vulnerabilities is discussed by describing
Bleichenbacher’s attack [2]. In Sect. 3 the strongest existing improvement of the
attack is mentioned. Section 4 presents and analyses our proposed improvement.
Section 5 discusses our attack’s behaviour in practice. We conclude in Sect. 6.

In average, the modified algorithm needs approximately a quarter of the total
number of queries corresponding to the original attack when using a restrictive
oracle. We provide a practical situation in which the optimized attack is useful:
we succesfully conducted a chosen ciphertext attack on the strong oracle of the
SafeNet iKey 4000 cryptographic token in a reasonable amount of time.

2 Preliminaries

Notations. Throughout the paper, the notation ‖ represents string concatena-
tion. The subset {a, . . . , b} ⊆ N is denoted by [a, b]. The action x ← y indicates
the assignment of value y to variable x. Hexadecimal numbers are denoted using
the prefix 0x. The probability that an event E happens is represented by Pr(E).
The variables corresponding to the RSA cryptosystem are described in Table 1.

Table 1. Variables

n RSA-modulus

e RSA-public exponent

d RSA-private exponent

m PKCS#1-padded message

c RSA-ciphertext

An Optimization of Bleichenbacher’s Oracle Padding Attack 147

2.1 The PKCS #1 v1.5 and PKCS #11 Standards

PKCS #1 v1.5. The PKCS 1 v1.5 standard [7] uses two schemes for encrypting
and decrypting: RSAES-OEP and RSAES-PKCS1 v1.5 where the first is deemed
secure. For signatures, the schemes RSASSA-PSS and RSASSA-PKCS1-v1 5 are
used.

PKCS #11. The PKCS #11 [8] standard or the Cryptographic Token Interface
Standard provides an interface to devices that perform cryptographic operations,
such as tokens, smart cards, etc. The API is named “Criptoki” (cryptographic
token interface) and defines functions for commonly used objects like certificates,
keys, etc.

We will particularly refer to the C UnwrapKey [8] API, that offers an attacker
the capability to check if a decryption could be performed. This API is used for
key encryption. After decrypting a received ciphertext, it is checked whether
the corresponding plaintext is padded according to the PKCS #1 v1.5 standard
(and other restrictions that are implementation-dependent).

Padding checkup. A message m of length at most k−11 bytes is padded according
to PKCS #1 v1.5 [7] to reach the length of the modulus n as follows:

– The padding is positioned after the most significant bits of m.
– First we append a null byte to m obtaining 0x00||m.
– Let � be the byte length of m. We generate k − � − 3 random bytes, each dif-

ferent from 0, denoted by RP . We concatenate these bytes with the obtained
message, resulting in RP ||0x00||m.

– We add the bytes 0x00 and 0x02 at the beginning. The padded plaintext
becomes
0x00||0x02||RP ||0x00||m.

We notice that every conforming block M lies in the interval with the margins
0x00020000...00 = 2 ∗ 28(k−2), 0x0002ffff...ff = 3 ∗ 28(k−2) − 1. Let B = 28(k−2).
Therefore, we have 28B < n < 216B and 2B ≤ M ≤ 3B − 1 for any conforming
block M .

2.2 Padding Oracles

In the following sections we discuss vulnerabilities for APIs named padding ora-
cles, in particular, the C UnwrapKey API. A padding oracle can be considered
as one of the following types [1]:

– TTT oracle, which only checks if the first two bytes are 0x0002.
– FFT oracle, which returns true if the plaintext’s first two bytes are 0x00 and
0x02, followed by at least 8 nonzero bytes and after the eleventh byte exists
at least a 0x00 byte.

– FFF which returns true if the plaintext is correctly padded according to the
FFT oracle, but the original message has a specific length (fixed or between
certain bounds).

148 E.-A. Kelesidis

In PKCS #11, C UnwrapKey is an FFF oracle. Besides that, the computations
are performed at a slow pace, as they are carried out by a lightweight device. In
the case of the SafeNet iKey 4000 token, at most 20000 decryptions can occur
in an hour.

2.3 Bleichenbacher’s Attack

We use the same setup as in the original paper [2]: an attacker A has access to
an FFT oracle O that owns the RSA private key and the two prime factors p
and q and has the decryption capability: once receiving a ciphertext c encrypted
with the RSA public key, it decrypts it using the private key and checks whether
the resulted plaintext has the correct form, sending back to the challenger A the
result of the verification.
The attacker intends to decrypt the captured ciphertext c by creating another
ciphertexts that will be sent to the oracle O in order to gain information that
will be helpful in computing c. Once receiving an answer from the oracle, A
will calculate another ciphertext that depends on the previous ones and the
mentioned answer, and so on until it succeedes in finding out m, the plaintext
that corresponds to c.
Supposing A knows c ≡ me (mod n), he wants to find out m ≡ cd (mod n). He
can try different values s < n, compute c ∗ se (mod n), send the obtained value
to O and receive an answer that reveals whether the corresponding plaintext of
the new value, ms, is conforming or not. If we are in the first case, then we learn
that 2 ∗ B ≤ ms (mod n) ≤ 3 ∗ B − 1, which tightens the possible interval in
which m can be found. The process is repeated until the interval is reduced to
a single value, m.
More precisely, the algorithm is the following (we keep the original notations)
[2]:

– Blinding. A knows c, n and e. It sets c0 = c, M0 = [2B, 3B − 1], i = 1.
– Step 1a. We search the smallest integer s > n/(3B), such that the plaintext

corresponding to the ciphertext c′ ← c · se (mod n) is conforming. More
precisely, we start our search from s ← �n/(3B)	 and increment the value of
s with one, until once receiving c′, O outputs “true”. We denote with s1 the
result and create a set of intervals M1 that depends on it (see Step 2).

– Step 1b - Searching with more than one interval left. Once we have
found si−1, we created the set of intervals Mi−1 associated to it. If |Mi−1| > 1,
we start searching from s ← si−1 + 1 and we increment the value of s with
one, until on the input
c′ ← c · se (mod n), the oracle outputs “true”. We further denote with si the
output of this step.

– Step 1c - Searching with one interval left. At this point, we already
have determined a value si−1, such that c · se

i−1 (mod n) is conforming and
|Mi−1| = 1. We consider Mi−1 ← {[a, b]}. We set ri = 2(bsi−1 − 2B)/n and

An Optimization of Bleichenbacher’s Oracle Padding Attack 149

we try each si from the following interval

2B + rin

b
≤ si <

3B + rin

a
,

until the ciphertext c · se
i (mod n) corresponds to a conforming plaintext. If

none are found, we increment ri with one and we try again, such an si is
found.

– Step 2 - Updating the space of solutions. After si has been found, the
set Mi is computed as

Mi ←
⋃

(a,b,r)

{[
max

(
a, �2B + rn

si
	
)
,min

(
b,
3B − 1 + rn

si
�
)]}

for all [a, b] ∈ Mi−1 and
asi − 3B + 1

n
≤ r ≤ bsi − 2B

n
. We return to Step 1b

or Step 1c depending on the number of intervals contained in Mi. If Mi =
{[a, a]}, we jump to Step 3.

– Step 3 - Computing the solution. If Mi contains only one interval of
length 1 (i.e., Mi = {[a, a]}), then set m ← a · s−1

0 (mod n), and return m as
solution of m ≡ cd (mod n).

2.4 Performance Analysis Depending on the Oracle Type

In order to estimate the number of queries needed for finding an s value, the
following probabilities are computed:

– Pr(P), the probability that a random integer between 0 and n is conforming
(depending on the oracle);

– Pr(A) = B
n , the probability that a randomly chosen integer begins with

0x0002;
– Pr(P |A), the probability that a block that starts with 0x0002 is conforming.

The above values are computed for FFT oracles in the original paper:

– The probability that a plaintext that starts with 0x0002 has a padding block
with at least 8 nonzero bytes is
Pr(P |A) =

((
255
256

)8 (
1 − (

255
256

)k−10
))

.

– Pr(P) lays in the interval (0.18 · 2−16, 0.97 · 2−8).

For example, if n has 1024 bits and is closer to 216B, then Pr(P |A) ≈ 0.36, and
Pr(P) ≈ 0.36 · 2−16.
We compute these probabilities for the most restrictive FFF oracle, i.e. the oracle
that checks whether the original plaintext has a fixed length �.

– Pr(P |A) = 255k−3−�

256k−2−� .
– 2−16 · 255k−3−�

256k−2−� < Pr(P) < 2−8 · 255k−3−�

256k−2−� . In general, the probability is closer
to the lower bound, as n is chosen closer to 216B.

150 E.-A. Kelesidis

For example, for k = 128 and � = 48, we have Pr(P |A) ≈ 0.003 and
s ≈ 2−16 · 0.003.
Once known Pr(P), we can approximate the number of queries needed for find-
ing the first s by trying consecutive values. Because the ms values are random
and independent, the event of finding the first s (or, equivalently, the first con-
forming ms) is modeled by a geometric random variable, where each “coin toss”
has the probability of success Pr(P). In consequence, the average number of
steps needed for finding s1 is 1/Pr(P). Due to the fact that the geometric ran-
dom variable is memoryless, for finding each si, i > 1 the average number of
needed oracle queries is the same: 1/Pr(P). For the latter oracle type, we have
1/Pr(P) ≈ 20000000, so for a very restrictive oracle, the number of queries
necessary for finding an si by searching through consecutive numbers is approx-
imately 20000000. For the FFT oracle, 1/Pr(P) ≈ 364089.

The approximation for the total number of queries as computed in [2] is
3

Pr(P) + 16k
Pr(P |A) . In the FFT case, this will be approximately 1200000, and for

the FFF oracle it will be near 66000000.

3 Already Known Improvements

In paper [1] a technique that leads to avoiding the search for s by iterating
through consecutive numbers is presented. It is based upon the following idea:
if 2B ≤ m < 3B, then we can try creating a value f that helps us reduce the
interval [2B, 3B − 1] to a shorter one so as the next search for a suitable s to be
performed using step 1c. f will be a “fraction” in Zn. The following lemma [1]
describes the choice for f :

Lemma 1. Let u, t ∈ Z, gcd(u, v) = 1, u < 3t/2, t < 2n/9B. Let m be a con-
forming plaintext. If mut−1 is conforming, then t | m.

The proposed improvement consists in searching the t and u values with the
properties mentioned above. For each f = ut−1, we query the oracle with the
ciphertext cfe and if the answer is “true”, then we try another fractions and
reduce the interval to [2Bf−1

final, (3B −1)f−1
final], where ffinal is a fraction whose

numerator is the lowest common multiple of the found t values, and the denom-
inator is found by trial (we search denominators for the determined numerator
such as the interval [2Bf−1

final, (3B − 1)f−1
final] overlaps with [2B, 3B − 1]).

The authors provide comparisons only for FFT oracles. The reason why this
version doesn’t provide an impactful optimization on stricter oracles is the fol-
lowing: even if m has small divisors, the probability that a fraction multiplied
by m results in a conforming plaintext is small, depending on Pr(P). In conse-
quence, while searching for f values, even in the case when the value mf−1 is
actually in [2B, 3B − 1], there is a high probability that the oracle will return
“false”. Therefore, the step in which we search for f values will require a big
number of queries, while having a low success probability, which leads to exe-
cuting case 1b.

An Optimization of Bleichenbacher’s Oracle Padding Attack 151

4 Our Proposed Improvement

We begin by noticing that after finding s1, the set [2B, 3B − 1] is reduced to a
union of disjoint intervals, each of length at most

[
B
s1

]
. For each interval of this

sequence, we can apply step 1c, as we can prove that 3B+rin
a < 2B+(ri+1)n

b , for
any ri.

4.1 Description of the Attack

1. Blinding: A knows c, n and e. It sets c0 = c, M0 = [2B, 3B − 1], i = 1.
2. Finding: s such that ms is conforming

– If i = 1, then we set s1 =
[

n
3B

]
+ 1. We increment s1 until the oracle O

outputs True.
– If i > 1, we denote Mi−1 = [a(i−1)

1 , b
(i−1)
1] ∪ ... ∪ [a(i−1)

ki−1
, b

(i−1)
ki−1

]. For each

interval [a(i−1)
j , b

(i−1)
j], we compute the minimal

ri value, r
(i)
0,j = 2

b
(i−1)
j si−1−2B

n . We denote r
(i)
l,j = r

(i)
0,j + l and the set

∞⋃
α=1

[
2B+r

(i)
α,jn

b
(i−1)
j

,
3B+r

(i)
α,jn

a
(i−1)
j

]
by Si−1

j .

We search for si as follows: for each j = ki−1, ..., 0, we search

in
[
2B+r

(i)
0,jn

b
(i−1)
j

,
3B+r

(i)
0,jn

a
(i−1)
j

]
. If there exists j such as we find a suitable si in

the corresponding interval, we stop. Else, we increase the α index of r
(i)
α,j

by 1. We stop when we find a counter α and an index j such that the
interval that they define contains an s such as ms is conforming.

3. Updating the space of solutions: once si is found, we update Mi like in
the original attack.

4. Computing the solution: we stop when Mi contains a single interval of
length 1, which is our solution m.

4.2 Analysis of the Attack

Knowing that for finding each s we need in average 1/Pr(P) steps, we will use
another remark that apart from its constant visibility in practice, it helps us
prove the computational improvement of the proposed update.

As noticed in the previous section, when we are in the case 1c, the search for
si+1 starts from 2si − 2. In the following lemma, an upper bound of the fraction
si+1/si is offered.

Lemma 2. For every i ≥ 1, we have si+1
si

< 3.

Proof. Let’s start by proving the statement for i = 1. We have found s1 by iter-
ating through approximately 1/Pr(P) values. We begin searching for s2 starting
with 2s1 − 2. We need to prove that, in the interval (2s1 − 2, 3s1 − 2), an s such

152 E.-A. Kelesidis

that ms is conforming can be found with a high probability. The interval
(m(2s1 − 2),m(3s1 − 2)) contains s1 plaintexts, which is approximately

1
Pr(P) + n

3B . In consequence, there are enough plaintexts for us to find, with a
high probability, a conforming one throughout them.
For i = 2, the interval (m(2s2 − 2),m(3s2 − 2)) contains s2 values, which is
greater than 2s1 ≈ 2 · 1

Pr(P) .
For an arbitrary i, the interval (m(2si − 2),m(3si − 2)) contains
si > 2is1 ≈ 2i · 1

Pr(P) plaintexts. We notice that as i increases, the probability
of finding a suitable s also increases.

We will continue by offering an upper bound for the difference
3B+rin

a − 2B+rin
b .

Lemma 3. Let [a, b] ⊂ Mi−1 and si−1 the value s that was found at step number
i−1. For every r ≥ 2 bsi−1−2B

n , r < ri, where ri corresponds to the next s found,
i.e. 2B+rin

b ≤ si ≤ 3B+rin
a and msi is conforming, we have 3B+rin

a − 2B+rin
b < 4.

Proof. We know that r < ri and rin < bsi − 2B, so rn < 3Bsi. We have found
that si < 3si−1, so rn < 9Bsi−1.
We compute the difference: 3B+rn

a − 2B+rn
b = 3B

a − 2B
b + rn(1

a − 1
b) < 3

2 − 2
3 +

rn
(
1
a − 1

b

)
.

We know that b−a < B
si−1

⇒ 1
a− 1

b < 1
a− 1

a+B/si−1
= 1

a− si−1
asi−1+B = B

a(asi−1+B) <
1

2B(2si−1+1) < 1
4Bsi−1

⇒ rn
(
1
a − 1

b

)
< rn

4Bsi−1
< 9

4 < 3.
So, the difference 3B+rn

a − 2B+rn
b is upper bounded by 4.

So, we have found that the intervals from any set Si−1
j are shorter than 4. Next,

we are going to compute a lower bound on the difference
2B+(r+1)n

b − 3B+rn
a .

Lemma 4. Let [a, b] ⊂ Mi−1 and si−1 as above. For every r as in Lemma 3,
we have 2B+(r+1)n

b − 3B+rn
a > 26.

Proof. 2B+(r+1)n
b − 3B+rn

a = 2B
b − 3B

a + n
(

r+1
b − r

a

)
= 2B

b − 3B
a +

n
(
1
b − r

(
1
a − 1

b

))
We have found that rn

(
1
a − 1

b

)
< 9

4 , so the difference is bigger
than 2B

b − 3B
a + n

b − 3 > − 5
6 − 3 + n

3B > −4 + 28

3 > 26.

To sum up, we have found that the intervals from the set Si−1
j are very short

and the distance between them is greater than 26. In order to reach from 2si −2
to si+1 (which is the first suitable s greater than 2si − 2), instead of iterating
through almost 1/Pr(P) steps, we avoid gaps of length 26. In the worst case
scenario, we search inside intervals of length 4, then we skip 26 numbers. So, the
total number of intervals is at most si+1−(2si−2)

26 . As we try at most 4 values, the
maximum number of queries is si+1−(2si−2)

24 .
If the set Mi−1 has more than one interval, the total number of queries

will be around a quarter than needed for the original attack (as observed in

An Optimization of Bleichenbacher’s Oracle Padding Attack 153

practice). When iterating through
[
2B+r

(i)
α,jn

b
(i−1)
j

,
3B+r

(i)
α,jn

a
(i−1)
j

]
after α the number of

tried s values depends on the number of intervals from Mi−1. Indeed, the largest
Mi set is for i = 1, and it contains at most Bs1

n intervals with lengths upper
bounded by B

s1
. If we are in the strictest FFF case, we have around 220B

n intervals
but n is most often close to 216B. Therefore, the probability to have less than
24 intervals is high enough to not worry about interval overlaps (according to
Lemma 5). For i ≥ 2, the cardinal of Mi decreases, along with the lengths of its
elements. So, the improvement still holds, especially starting from i = 2.

5 Implementation Results

The main focus of this paper was speeding up the attack for FFF oracles. We sim-
ulate such API’s locally [5], for validating the theoretical results. We have worked
with 1024-bit RSA moduli, with the public exponent 63537, and three types of
FFF oracles: one that checks if the length of the plaintext without padding is
between 10 and 64 bytes, the second changes the length bounds to 10 and 32
bytes respectively (as in the C UnwrapKey API of the token SafeNet ikey 4000),
and a very restrictive oracle, with the fixed length of 20 bytes. We denote the
mentioned oracles as Oracle10-64, Oracle10-32, and Oracle20. In 2 is presented
the average number of queries for the modified Bleichenbacher’s attack versus
the original one for 100 RSA moduli of 1024 bits and 100 plaintexts. For the
restrictive oracles we have no results exposed in 2 regarding the original attack,
as the experiments needed more than 20000000 queries to partially decrypt the
ciphertext.

Table 2. Results

Oracle Bleichenbacher’s atttack Modified algorithm

Oracle10–64 851270 256010

Oracle10–32 2905790 720286

Oracle20 >32000000 8372181

Attacking a Real Device: We conducted a chosen ciphertext attack using the
C UnwrapKey function of the PKCS #11 standard implemented on the Safenet
ikey 4000 authentication token. The attack took around 32 h using less than
600000 oracle queries, as the device performs slow calculations (it can process
20000 decryptions in an hour). The function calls for the token were implemented
on a Windows 10 virtual machine and the attack was mounted on an Ubuntu
18.04 VM.
This was one of the situations in which the optimization of the original attack
was necessary: when the number of queries reaches 2000000, the token stops

154 E.-A. Kelesidis

receiving ciphertexts. We can see that the average number of requests needed by
the modified algorithm for the Oracle10-32 is 720286, while for the original attack
approaches 3000000. We have also ran the original attack, and after 2000000
queries (which were completed in a week) only 10 bytes of the plaintext were
recovered.

6 Conclusions and Future Work

The proposal can be further improved by studying the connection between the
found si and the intervals from Mi−1. More precisely, if there is found a connec-

tion between the interval
[
2B+r

(i)
α,jn

b
(i−1)
j

,
3B+r

(i)
α,jn

a
(i−1)
j

]
in which si was found and the

corresponding
[
a
(i−1)
j , b

(i−1)
j

]
(note that two intervals

[
2B+r

(i)
α,jn

b
(i−1)
j

,
3B+r

(i)
α,jn

a
(i−1)
j

]
and

[
2B+r

(i)
β,kn

b
(i−1)
k

,
3B+r

(i)
β,kn

a
(i−1)
k

]
can intersect), then we can state that m can be found in

a subset of Mi−1 that will be further tightened using Step 2. This will lead to
reaching in lesser steps the point in which |Mk| = 1, hence, decreasing substan-
tially the total number of queries needed by the proposed improvement.
In conclusion, the purpose of this paper was presenting an improvement of the
Bleichenbacher’s Million Queries Attack that is especially helpful in very restric-
tive settings, for FFF oracles that check the original plaintext’s length against a
fixed number or against two bounds. The performance improvement was mathe-
matically justified, being also provided a comparison with the currently existing
optimisations. The theoretical assumptions were observed accurately in practice,
as the experimental results expose exactly the factor by which the improved ver-
sion is faster than the existing one. Moreover, the algorithm was used in practice,
for conducting a chosen ciphertext attack on a real device that would have been
infeasible if the original attack was employed.

Acknowledgments. The author would like to thank Paul Cotan, Cristi Hristea,
Diana Maimut and George Teseleanu for their helpful comments.

References

1. Bardou, R., Focardi, R., Kawamoto, Y., Simionato, L., Steel, G., Tsay, J.-K.:
Efficient padding oracle attacks on cryptographic hardware. In: Safavi-Naini, R.,
Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 608–625. Springer, Hei-
delberg (2012). https://doi.org/10.1007/978-3-642-32009-5 36

2. Bleichenbacher, D.: Chosen ciphertext attacks against protocols based on the RSA
encryption standard PKCS #1. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol.
1462, pp. 1–12. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0055716

3. Böck, H., Somorovsky, J., Young, C.: Return of Bleichenbacher’s oracle threat
(ROBOT). In: 27th USENIX Security Symposium (USENIX Security 18),
pp. 817–849. USENIX Association (2018), https://www.usenix.org/conference/
usenixsecurity18/presentation/bock

https://doi.org/10.1007/978-3-642-32009-5_36
https://doi.org/10.1007/BFb0055716
https://www.usenix.org/conference/usenixsecurity18/presentation/bock
https://www.usenix.org/conference/usenixsecurity18/presentation/bock

An Optimization of Bleichenbacher’s Oracle Padding Attack 155

4. Katz, J., Lindell, Y.: Introduction to Modern Cryptography, 2nd (edn.) (2014)
5. Kelesidis, E.-A.: Optimization of Bleichenbacher’s attack (2021). https://github.

com/EvaKelesidis/Bleichenbacher-optimisation
6. Meyer, C., Somorovsky, J., Weiss, E., Schwenk, J., Schinzel, S., Tews,

E.: Revisiting SSL/TLS implementations: new Bleichenbacher side channels
and attacks. In: 23rd USENIX Security Symposium (USENIX Security 14),
pp. 733–748. USENIX Association (2014). https://www.usenix.org/conference/
usenixsecurity14/technical-sessions/presentation/meyer

7. Moriarty, K., Kaliski, B., Jonsson, J., Rusch, A.: PKCS #1: RSA Cryptography
Specifications Version 2.2. RFC 8017 (2016). https://rfc-editor.org/rfc/rfc8017.txt

8. Oasis Open: Public Key Cryptography Standard #11. https://docs.oasis-open.
org/pkcs11/pkcs11-base/v2.40/os/pkcs11-base-v2.40-os.html ()

9. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures
and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)

10. Ronen, E., Gillham, R., Genkin, D., Shamir, A., Wong, D., Yarom, Y.: The 9 lives
of bleichenbacher’s CAT: new cache attacks on TLS implementations. In: SP 2019,
pp. 435–452. IEEE (2019)

https://github.com/EvaKelesidis/Bleichenbacher-optimisation
https://github.com/EvaKelesidis/Bleichenbacher-optimisation
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/meyer
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/meyer
https://rfc-editor.org/rfc/rfc8017.txt
https://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/os/pkcs11-base-v2.40-os.html
https://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/os/pkcs11-base-v2.40-os.html

UC Analysis of the Randomized McEliece
Cryptosystem

Daniel Zentai(B)

National Cyber-Security Center, Budapest, Hungary

daniel.zentai@nki.gov.hu

Abstract. In this paper, we will examine the UC (Universal Compos-
ability) security of an improved version of the McEliece cryptosystem,
namely the Randomized McEliece cryptosystem. We will prove that even
this improved variant does not realize FPKE, the public key encryption
functionality securely.

Keywords: Cryptography · Universal composability · Coding theory

1 Introduction

Universal composability (UC) framework was developed in [2] and with a some-
what different approach in [1], and it is a general method designed for provable
security analysis of cryptographic protocols. In this paper, we will follow the
notations and basic concepts of [2]. The main idea is to define the security of
cryptographic protocols as the indistinguishability of the protocol from an ide-
alized version of it, the so-called ideal functionality. The strength of the frame-
work is that it guarantees security, even if the protocol runs concurrently with
its other instances, or different protocols, in other words, the protocol runs as a
component of a larger, more complex system.
In this work, we will concentrate on a modifcation of the McEliece cryptosys-
tem [8]. The interested reader can find many interesting variants in the literature,
such as [3–5,8,9]. It is well known that the McEliece cryptosystem is not CPA-
secure in its original form, but a CPA-secure variant, namely the Randomized
McEliece cryptosystem [10] appears in the literature. However, it was not shown,
whether this improved variant is also CCA-secure or not. And if not, then what
prevents this system from being CCA-secure. Using the UC framework, we will
prove that this improved McEliece cryptosystem is still not CCA-secure. Our
motivation was the following. However, the McEliece cryptosystem is not widely
used in practice because of its large keys, it is believed to be quantum-resistant.
Post-quantum cryptography refers to a set of cryptographic algorithms that are
thought to be secure against attacks by a quantum computer. Unfortunately,
the most popular public-key algorithms of today (e.g. RSA, DSA, and Diffie-
Hellman) do not fall into this category. The problem with the currently popular
algorithms is that their security relies on one following hard (or at least thought
c© Springer Nature Switzerland AG 2022
P. Y. A. Ryan and C. Toma (Eds.): SecITC 2021, LNCS 13195, pp. 156–164, 2022.
https://doi.org/10.1007/978-3-031-17510-7_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-17510-7_11&domain=pdf
http://orcid.org/0000-0002-3321-2013
https://doi.org/10.1007/978-3-031-17510-7_11

UC Analysis of the Randomized McEliece Cryptosystem 157

to be hard) mathematical problems: the integer factorization problem, the dis-
crete logarithm problem, or the elliptic curve discrete logarithm problem. All
of these problems can be solved on a quantum computer in polynomial time,
running Shor’s algorithms. Even though current, publicly known, experimental
quantum computers are too small to attack any real cryptographic algorithm,
cryptographers are designing new algorithms to prepare for a time when quan-
tum computing becomes a threat. The McEliece cryptosystem is one possible
candidate to replace RSA [6,7] when quantum computers become a reality.

2 The Universal Composability Framework

In this section, we give a brief introduction to the universal composability (UC)
framework introduced in [2]. In a nutshell, the main idea of the UC framework
is to analyze a cryptographic protocol by defining an idealized version of it, and
compare the real version to the ideal. If we cannot distinguish between the real
and the ideal protocol by simply looking at the outputs, then we can consider
the protocol secure. More formally, the behaviour of the real version of the pro-
tocol can be described with a collection of interactive Turing-machines (ITMs),
namely the environment Z, the adversary A, and the protocol itself π. We will
assume that all ITMs are probabilistic polynomial time (PPT) machines unless
stated otherwise. Given π, Z, A, the model for executing π is the system works
as follows. During the execution, the environment Z is activated first, and the
adversary A second. In all other activations, Z may provide information to A,
or to the instances of π. All protocol instances invoked by Z have to be the
instances of π. Once the adversary A is activated, it may deliver a message to
one of the parties. A may corrupt a party by delivering a special (corrupt)
message to that party, and that party’s response to the corruption is determined
by the protocol itself. The adversary is allowed to corrupt a party only if the
environment instructs the adversary to do so, i.e. A previously received a spe-
cial (corrupt, party ID) message from the environment. Once an instance of
protocol π is activated (due to an input given by the environment or due to
an incoming message sent by the adversary), it follows its program. During the
execution, π may also write messages to the adversary, or write outputs to the
environment. The output of the whole protocol execution is the output of the
environment, which is supposed to be a single bit in our case.

In the universal composability framework, we capture the security of proto-
cols with the general notion of emulation of one protocol via another protocol.

Definition 1. Suppose that π and φ are PPT algorithms. We say that π UC-
emulates φ if for any PPT adversary A there exists a PPT adversary S such
that for any PPT environment Z the output of the protocol execution in the case
of φ and S is indistinguishable from the case of π and A.

Security of protocols is defined via comparing the protocol execution to a
special protocol called the ideal functionality. The ideal functionality executes

158 D. Zentai

the desired functionality of some specific task. The ideal functionality is modeled
as a special ITM F. The ideal protocol IDEALF for a given ideal functionality F

proceeds as follows. Upon receiving an input v, protocol IDEALF instructs the
party to forward v to the instance of F. We often called these parties dummy
parties. F contains instructions on how to generate outputs to parties based on
their inputs. In addition, F may receive messages directly from the adversary.
Let F be an ideal functionality and π a protocol. We say that π UC-realizes (or
securely realizes) F if π UC-emulates IDEALF.

As it has been shown in [2], the original definition of UC-emulation can be
simplified as follows. Instead of quantifying over all possible adversaries A, it is
enough to require that the ideal-protocol adversary S be able to simulate, for
any environment Z, the behavior of a specific adversary, the so-called dummy
adversary, denoted by D. D only delivers messages generated by the environment
and delivers to the environment all messages generated by the parties. It is shown
in [2] that simulating the dummy adversary implies simulating all adversaries.
More formally, the dummy adversary proceeds as follows. When activated with
an incoming message m on its incoming communication tape, adversary D passes
m as output to Z. When activated with an input (m, id, c) from (Z), where m is
a message, id is an identity, and c is a code for a party, D delivers the message
m to the party whose identity is id. The code c is used in the case that no party
with identity id exists. In this case a new party with code c and identity id is
invoked as a result of this message delivery.) This in particular means that D

corrupts parties when instructed by Z, and passes all gathered information to Z.

Definition 2. We say that protocol π UC-emulates protocol φ with respect to the
dummy adversary if there exists an adversary S such that for any environment
Z, the output of the protocol execution in the case of φ and S is indistinguishable
from the case of π and D.

3 Coding Theory Background

In this section, we give a brief introduction to the basic concepts of coding the-
ory, particularly Goppa-codes.
Let Fq be the field with q elements. An [n, k]-code C is a linear subspace of
dimension k of the linear space F

n
q . Elements of F

n
q are called words and ele-

ments of C are codewords. A code is usually given in the form of a (n − k) × n
parity check matrix H. The codewords of C are words x that satisfy HxT = 0.
A syndrome s ∈ F

n−k
q is a vector s = HxT for a word x. The Hamming weight of

a word x is w(x) = |{i|xi �= 0}|. A syndrome s is said to be decodable according
to a t-error correcting code if there exists a word x ∈ F

n
q such that HxT = s

and w(x) < t. Decoding a syndrome s is retrieving such a word x. In our work
we only consider binary Goppa-codes, therefore we do not define Goppa-codes
in its most general form.

UC Analysis of the Randomized McEliece Cryptosystem 159

A binary Goppa-code is defined by a polynomial g(x) of degree t over a finite
field F2m without multiple zeros, and a set L = {L1 . . . Ln} of n distinct elements
from F2m such that g(Li) �= 0 for all i. Let Γ (g, L) denote the binary Goppa-code
defined by L and g. In this case Γ (g, L) is defined with the following formula:

Γ (g, L) = {c ∈ {0, 1}n|
n−1∑

i=0

ci
x − Li

≡ 0 mod g(x)}.

Binary Goppa-codes with a generator polinomial g of degree t can correct t
errors. The parity check matrix H of the Goppa-code Γ (g, L) can be written in
a form of H = V D where

V =

⎛

⎜⎜⎜⎜⎜⎝

1 1 1 · · · 1
L1
1 L1

2 L1
3 · · · L1

n

L2
1 L2

2 L2
3 · · · L2

n
...

...
...

. . .
...

Lt
1 Lt

2 Lt
3 · · · Lt

n

⎞

⎟⎟⎟⎟⎟⎠

and

D =

⎛

⎜⎜⎜⎜⎜⎜⎝

1
g(L1)

1
g(L2)

1
g(L3)

. . .
1

g(Ln)

⎞

⎟⎟⎟⎟⎟⎟⎠

In order to establish the security of coding theory based protocols, we have
to define some important coding theory related problems.

Syndrome Decoding Problem (SDP): Input: A binary r × n matrix H, a
word s ∈ F

r
2 and an integer w > 0.

Problem: Is there a word s ∈ F
r
2 with w(x) ≤ w such that HxT = s?

Goppa Code Distinguishing Problem (GCDP): Input: A binary r × n
matrix H.
Problem: Is H the parity check matrix of a Goppa-code or a random matrix?

It is known that SDP is NP-complete. In the rest of this work, we assume that
both SDP and GCDP are hard problems in the sense that no PPT adversary
can solve these problems with non-negligible probability.

4 The McEliece Cryptosystem

In this section, we will describe the McEliece cryptosystem. This is the first
code-based cryptosystem proposed in [8]. Any linear code is applicable in the
cryptosystem, but in this work, we only consider binary Goppa-codes, because

160 D. Zentai

the cryptosystem is believed to be secure with this type of code. It is well known,
that the McEcliece cryptosystem is not CPA-secure in its original form, but in
[10] appears an improved version called the Randomized McEliece cryptosystem,
which has proved to be CPA-secure. We will show that this improved variant is
still not CCA-secure by proving that this does not realize FPKE, the public key
encryption functionality of [2].

Definition 3. A public key encryption scheme Π = (gen, enc, dec) is said to
be secure against CPA (Chosen Plaintext Attack) if any PPT adversary F can
succeed in the following game with negligible probability. Algorithm gen is run
to generate an encryption key e and a decryption key d. F is given algorithm
enc(e, .). At some point F generates a pair of messages mo, m1 ∈ M . In
response, a bit b ← {0, 1} is chosen and F is given c = enc(e,mb). F succeeds if
it guesses b with probability that is non-negligibly more than one half.

Definition 4. A public key encryption scheme Π = (gen, enc, dec) is said to be
secure against CCA (Chosen Ciphertext Attack) if any PPT adversary F can
succeed in the following game with negligible probability. Algorithm gen is run
to generate an encryption key e and a decryption key d. F is given algorithm
enc(e, .) and access to a decryption oracle dec(d, .). At some point F generates
a pair of messages mo, m1 ∈ M . In response, a bit b ← {0, 1} is chosen and
F is given c = enc(e,mb). From this point on, F may continue querying its
decryption oracle, under the condition that it does not ask for a decryption of c.
F succeeds if it guesses b with probability that is non-negligibly more than one
half.

The McEliece cryptosystem works as follows:

The McEliece Cryptosystem

1. Key Generation: Let δ denote the decoding algorithm (e.g. Patterson
algorithm [11]) of a t-error correcting binary Goppa-code. Construct a k×n
binary generator matrix G of this code. Choose a random non-singular
k × k binary matrix Q and a random n × n binary permutation matrix P .
The private key is (Q,G,P, δ), the public key is (Ĝ = QGP, t).

2. Encryption: The message space is M = {0, 1}k. To encrypt a message m,
the sender chooses a random error vector z from {0, 1}n with w(z) = t and
compute c = mĜ + z.

3. Decryption: The ciphertext space is C = {0, 1}n. To decrypt a ciphertext
c, the receiver first computes ĉ = cP−1 = mQG + zP−1. Then he uses
the decoding algorithm δ on ĉ to obtain m̂ = mQ. Finally he computes
m = m̂Q−1.

It is easy to see that McEliece cryptosystem is not CPA-secure in its original
form. Indeed, suppose that in the CPA game, the adversary gets c = mbĜ+z for

UC Analysis of the Randomized McEliece Cryptosystem 161

some b ∈ {0, 1}. Then he can compute t0 = w(m0Ĝ + c) and t1 = w(m1Ĝ + c).
The adversary outputs 0 if t0 = t and 1 if t1 = t. In [10] appears an improvement
called the Randomized McEliece crypotsystem, which is proved to be CPA-secure
under appropriate conditions. This cryptosystem works as follows.

The Randomized McEliece Cryptosystem

1. Key Generation: Let δ denote the decoding algorithm of a t-error
correcting binary Goppa-code and let k1 and k2 be two integers for which
k = k1 + k2. Construct a k × n binary generator matrix G of this code.
Choose a random non-singular k × k binary matrix Q and a random n × n
binary permutation matrix P .
The private key is (Q,G,P, δ), the public key is (Ĝ = QGP, t).

2. Encryption: The message space is M = {0, 1}k2 . To encrypt a message
m, the sender chooses a random error vector z from {0, 1}n with w(z) = t
and another random vector r from {0, 1}k1 . Compute the ciphertext
c = (r|m)Ĝ + z.

3. Decryption: The ciphertext space is {0, 1}n. To decrypt a ciphertext c to
the plaintext m, the receiver first computes ĉ = cP−1 = (r|m)QG + zP−1.
Then he uses the decoding algorithm δ on ĉ to obtain m̂ = (r|m)Q. Finally
he computes the k2 least significant bits of r|m = m̂Q−1 to obtain m.

5 Main Result

In this section, we will show that protocol πRME defined below, does not realize
FPKE, the ideal public key encryption functionality of [2].
The idea of FPKE is to allow parties to obtain idealized ciphertexts for messages,
such that the ciphertexts bear no computational relation to the messages, but
at the same time the designated decryptor can present these ciphertexts and
retrieve the original messages. This will be implemented by having FPKE main-
tain a centralized database of encrypted messages and the corresponding cipher-
texts. FPKE is designed in a way that can be realized by protocols that involve
only local operations (key generation, encryption, decryption). All the commu-
nication is left to the protocols that call FPKE. The functionality is parameterized
by a domain M of messages to be encrypted. For simplicity of exposition, we
concentrate on the case where it is required that the encryption leaks no infor-
mation on the encrypted message, other than the fact that it is in M . The more
general case, where the encryption may leak some additional information on the
plaintext, can be captured by parameterizing FPKE with an appropriate leakage
function. Let m∗ ∈ M be a fixed message. FPKE proceeds as follows.

162 D. Zentai

Functionality FPKE

1. Upon receiving a value (KeyGen, sid) from some party D, verify that
sid = (D, sid′) for some sid′. If not, then ignore the request. Else, hand
(KeyGen, sid) to the adversary. Upon receiving (Algorithms, sid, e, d)
from the adversary, where e, d are descriptions of PPT ITMs, output
(EncryptionAlgorithm, sid, e) to D.

2. Upon receiving a value (Encrypt, sid,m, e′) from any party E, do: If
m /∈ M then output an error message to E. Else, if e′ �= e, or the decryptor
D is corrupted, then let c = e′(m). Else, let c = e′(m∗) and record (m, c).
Output (Ciphertext, sid, c) to E.

3. Upon receiving a value (Decrypt, sid, c) from D, do: If there is a recorded
entry (m, c) for some m then return (Plaintext,m) to D. Else, return
(Plaintext, d(c)). (If there is more than one m recorded for c then output
an error message.)

FPKE takes three types of input: key generation, encryption, and decryption.
Having received a key generation request from party D, FPKE first verifies that
the identity D appears in the SID sid. Next, FPKE asks the adversary to provide
descriptions of the PPT encryption algorithm e and the PPT decryption algo-
rithm d. Then FPKE outputs the description of algorithm e to participant D. While
the encryption algorithm is public and given to the environment, the decryption
algorithm does not appear in the interface between FPKE and D. Upon receiving
a request from some arbitrary party E to encrypt a message m with encryption
algorithm e′, FPKE proceeds as follows. If m is not in the domain M then FPKE

outputs an error message to E. Else, FPKE outputs a formal ciphertext c to E,
where c is computed as follows. If e′ = e and the decryptor D is uncorrupted,
then c = e(μ), where μ ∈ M is some fixed message (say, the lexicographically
first message in M). In this case, the pair (m, c) is recorded for future decryp-
tion. (Choosing c independently of m guarantees ideal secrecy for m.) If either
e′ �= e or D is corrupted then c = e′(m). In this case, no secrecy is guaranteed,
since c may depend on m in arbitrary ways. Also, there is no need to record
(m, c) since correct decryption is not guaranteed. Upon receiving a request from
party D (and only party D) to decrypt a message m, FPKE first checks if there
is a record (m, c) for some m. If so, then it returns m as the decrypted value.
This guarantees perfectly correct decryption for messages that were encrypted
via this instance of FPKE. (If there is more than a single message m recorded
with this c then unique decryption is not possible. In this case FPKE outputs an
error message.) If no (m, c) record exists for any m, this means that c was not
generated via this instance of FPKE, so no correctness guarantees are provided,
and FPKE returns the value d(c). FPKE is a standard corruption functionality, with
some additional stipulations. That is, when a party P is corrupted, FPKE records
this fact and reports to the adversary all the encryption and decryption requests

UC Analysis of the Randomized McEliece Cryptosystem 163

made by P . In addition, the adversary receives the random choices made by e
when computing the ciphertexts obtained by P . If P is the decryptor D then
the adversary gets also d together with its current state.

Theorem 1. Let Γ = Γ (g, L) be a t-error correcting binary Goppa-code. Then
protocol πRME does not realize FPKE securely.

Proof. Let D be the dummy adversary and S be an arbitrary simulator for D.
We will construct an environment Z that can tell with non-negligible probability
wether it is interacting with πRME and D or with FPKE and S.
This Z works as follows. Z sends an input (KeyGen, sid) to party D and
recieves the encryption algorithm enc(Ĝ,t). Then it chooses an arbitrary mes-
sage m = m1 . . . mk2 , sends an input (Encrypt, sid,m, enc(Ĝ,t)) to party P and
recieves (Ciphertext, sid, c) where c = c1 . . . cn = enc(Ĝ,t)(m). Let αi denote
c with flipped ith bit. More formally αi = c1 . . . ci−1(1 − ci)ci+1 . . . cn for all
i ∈ {1, . . . , n}. Now we define the support of a binary vector x ∈ {0, 1}∗ as
Supp(x) = {i|xi = 1}. In the decryption process of the real system the first step
is to right-multiply the ciphertext c with P−1 = PT , which is also a permu-
tation matrix, thus cP−1 is nothing but a rearrangement of the coordinates of
c. Since cP−1 = ((m|r)QGP + z)P−1 = (m|r)QG + zP−1 and w(z) = t, the
Hamming-distance between c and the codeword (m|r)QG is exactly t, and so is
between cP−1 and (m|r)QG. Therefore correct decoding is possible, since our
Goppa-code is t-error correcting.

Now suppose that Z sends inputs (Decrypt, sid, αi) to D for i = 1, . . . , n,
and let the output of Z be the following. If the (Decrypt, sid, αi), i = 1, . . . , n
decryption querys result in m exactly t times then Z outputs real, else Z outputs
ideal.

Now we have to analyze the success probability of Z. If i ∈ Supp(z) (which
occurs exactly t times) then the Hamming-distance between αi and m is t − 1,
so the decryption of αi results in m, since Γ can correct t − 1 errors.

It remains to show, that if w(z) ≥ t + 1, then the decryption of c results
in m with only negligible probability. Indeed, decoding of a binary Goppa code
Γ = Γ (g, L) can be done with Patterson’s Algorithm [11], which outputs an
error locator polynomial σ(x) = ΠLi∈L,zi �=0(x − Li). Since the error locator
polinomial is computed modulo g(x), we know that deg(σ(x)) ≤ t, therefore we
can reconstruct a z′ error vector from σ(x) with w(z′) ≤ t. With this fact, it is
obvious that δ(c) = m + z + z′ �= m. Now we can conclude that if i /∈ Supp(z)
then the Hamming-distance between αi and m is exactly t+1, so the decryption
of αi results in some m′ �= m, if m+ z = m′ + z′ for some z′ with w(z′) ≤ t, or it
results in an error message otherwise, with probability 1 − μ(n). Therefore this
Z can distinguish between the interaction with πRME and D, and with FENC and S

with non-negligible (actually, negligibly less than 1) probability, as desired.

164 D. Zentai

Conclusion

In this work, we have analyzed a modified version of the McEliece cryptosys-
tem, namely the Randomized McEliece cryptosystem. Our motivation was that
even the original version of the McEliece cryptosystem is interesting to analyze
nowadays because of NIST’s ongoing post-quantum cryptography standardiza-
tion process. However it is well-known that the original McEliece cryptosystem
is not CPA-secure, but an improved version, the so-called Randomized McEliece
cryptosystem exists in the literature. Although this has been proven to be CPA-
secure, it was not clear whether it is also CCA-secure or not. We managed to
prove that it is not CCA-secure by proving that it does not realize FPKE, the
public key encryption ideal functionality securely. Secure realization of FPKE is
equivalent to the CCA-security of the cryptosystem, therefore by proving our
main result above, we can conclude that the Randomized McEliece cryptosys-
tem is not CCA-secure.

References

1. Backes, M., Pfitzmann, B., Waidner, M.: A composable cryptographic library with
nested operations. In 10th ACM Conference on Computer and Communications
Security (CCS). Extended version at the eprint archive (2003). https://eprint.iacr.
org/2003/015/

2. Canetti, R.: Universally Composable Security: A New Paradigm for Cryptographic
Protocols. Cryptology ePrint Archive: Report 2000/067. (Accessed 22 Dec 2000–13
Dec 2005)

3. Courtois, N., Finiasz, M., Sendrier, N.: How to achieve a McEliece-based digital
signature scheme. Cryptology ePrint Archive, Report 2001/010 (2001). https://
doi.org/10.1007/3-540-45682-1 10, https://eprint.iacr.org/2001/010

4. Dallot, L.: Towards a concrete security proof of courtois, finiasz and sendrier signa-
ture scheme. In: Lucks, S., Sadeghi, A.-R., Wolf, C. (eds.) WEWoRC 2007. LNCS,
vol. 4945, pp. 65–66. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-
540-88353-1 6

5. Dottling, N., Dowsley, R., Muller-Quade, J., Nascimento, A.: A CCA2 secure vari-
ant of the McEliece cryptosystem. CoRR 1205.5224 (2012)

6. Goldreich, O.: Foundations of Cryptography. Cambridge Press, vol. 1 (2001)
7. Goldreich, O.: Foundations of Cryptography. Cambridge Press, vol. 2 (2004)
8. McEliece, R.J.: A public key cryptosystem based on algebraic coding theory. DSN

Prog. Rep. 42–44, 114–116 (1978)
9. McEliece, R.J.: The Theory of Information and Coding. Addison Wesley (1977)

10. Nojima, R., Imai, H., Kobara, K., Morozov, K.: Semantic security the McEliece
cryptosystem without random oracles. Des. Codes Crypt. 49, 289–305 (2008).
https://doi.org/10.1007/s10623-008-9175-9

11. Patterson, N.: Algebraic decoding of Goppa codes. IEEE Trans. Inf. Theory 21,
203–207 (1975)

https://eprint.iacr.org/2003/015/
https://eprint.iacr.org/2003/015/
https://doi.org/10.1007/3-540-45682-1_10
https://doi.org/10.1007/3-540-45682-1_10
https://eprint.iacr.org/2001/010
https://doi.org/10.1007/978-3-540-88353-1_6
https://doi.org/10.1007/978-3-540-88353-1_6
https://doi.org/10.1007/s10623-008-9175-9

Using Five Cards to Encode Each Integer
in Z/6Z

Suthee Ruangwises(B)

Department of Mathematical and Computing Science,
Tokyo Institute of Technology, Tokyo, Japan

ruangwises@gmail.com

Abstract. Research in secure multi-party computation using a deck of
playing cards, often called card-based cryptography, dates back to 1989
when Den Boer introduced the “five-card trick” to compute the logical
AND function. Since then, many protocols to compute different functions
have been developed. In this paper, we propose a new encoding scheme
that uses five cards to encode each integer in Z/6Z. Using this encoding
scheme, we develop protocols that can copy a commitment with 13 cards,
add two integers with 10 cards, and multiply two integers with 14 cards.
All of our protocols are the currently best known protocols in terms of
the required number of cards. Our encoding scheme can be generalized
to encode integers in Z/nZ for other values of n as well.

Keywords: Card-based cryptography · Secure multi-party
computation · Function · Ring of integers modulo n

1 Introduction

Secure multi-party computation, one of the most actively studied areas in cryp-
tography, involves situations where multiple parties want to compare their secret
information without revealing it. Many researchers focus on developing secure
multi-party computation protocols using physical objects such as a deck of play-
ing cards, creating a research area often called card-based cryptography. The ben-
efit of card-based protocols is that they provide simple solutions to real-world
situations using only objects found in everyday life without requiring computers.
Moreover, these intuitive protocols are easy to understand and verify the correct-
ness and security, even for non-experts in cryptography, and thus can be used for
educational purposes to teach the concept of secure multi-party computation.

1.1 Protocols of Boolean Functions

Research in card-based cryptography dates back to 1989 when Den Boer [3] pro-
posed a protocol called the five-card trick to compute the logical AND function
on two players’ bits a and b.

c© Springer Nature Switzerland AG 2022
P. Y. A. Ryan and C. Toma (Eds.): SecITC 2021, LNCS 13195, pp. 165–177, 2022.
https://doi.org/10.1007/978-3-031-17510-7_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-17510-7_12&domain=pdf
http://orcid.org/0000-0002-2820-1301
https://doi.org/10.1007/978-3-031-17510-7_12

166 S. Ruangwises

The five-card trick protocol uses three identical ♣ s and two identical ♥ s,
with all cards having indistinguishable back sides. We use a commitment ♣ ♥
to encode 0, and a commitment ♥ ♣ to encode 1. First, each player is given
one ♣ and one ♥ , and another ♣ is put face-down on a table. The first player
places his/her commitment of a face-down to the left of the ♣ on the table,
while the second player places his/her commitment of b face-down to the right
of it. Then, we swap the two cards in the commitment of b, resulting in the
following four possible sequences.

(a, b) = (0, 0) :

(a, b) = (0, 1) :

(a, b) = (1, 0) :

(a, b) = (1, 1) :

♣ ♥ ♣ ♣ ♥

♣ ♥ ♣ ♥ ♣

♥ ♣ ♣ ♣ ♥

♥ ♣ ♣ ♥ ♣

⇒

⇒

⇒

⇒

♣ ♥ ♣ ♥ ♣

♣ ♥ ♣ ♣ ♥

♥ ♣ ♣ ♥ ♣

♥ ♣ ♣ ♣ ♥

Among all cases, there are only two possible sequences in a cyclic rotation of
the deck: ♥ ♣ ♥ ♣ ♣ and ♥ ♥ ♣ ♣ ♣ , with the latter occurring if and only if
a = b = 1. We can hide the initial position of the cards by applying a random
cut to shift the sequence into a uniformly random cyclic shift, i.e. a permutation
uniformly chosen at random from {id, π, π2, π3, π4} where π = (1 2 3 4 5), before
turning all cards face-up. Hence, we can determine whether a ∧ b = 1 without
leaking any other information.

Since the introduction of the five-card trick, several other protocols to com-
pute the AND function have been developed. These subsequent protocols [1,2,5–
8,11,13,14,17,21,29] either reduced the number of required cards or improved
properties of the protocol involving output format, type of shuffles, running time,
etc.

Apart from AND protocols, protocols to compute other Boolean functions
have also been developed, such as logical XOR protocols [5,14,15,32], copy pro-
tocols [5,9,14] (duplicating a commitment), majority function protocols [19,31]
(deciding whether there are more 1s than 0s in the inputs), equality function
protocols [25,27] (deciding whether all inputs are equal), and a voting protocol
[12] (adding bits and storing the sum in binary representation).

Nishida et al. [18] proved that any n-variable Boolean function can be com-
puted with 2n + 6 cards, and any such function that is symmetric can be com-
puted with 2n + 2 cards.

1.2 Protocols of Non-boolean Functions

While almost all of the existing protocols were designed to compute Boolean
functions, a few results also focused on computing functions in Z/nZ for n >
2. Shinagawa et al. [28] used a regular n-gon card to encode each integer in

Using Five Cards to Encode Each Integer in Z/6Z 167

Z/nZ and proposed a copy protocol and an addition protocol for integers in
Z/nZ. Their encoding scheme can be straightforwardly converted to the one
using regular cards. In another result, Shinagawa and Mizuki [26] developed a
protocol to multiply two integers in Z/3Z using triangle cards. Their idea can
also be generalized to multiply integers in Z/nZ using regular cards.

Another straightforward method to compute functions on Z/nZ is to convert
each integer in Z/nZ into its binary representation and encode each digit with
two cards, resulting in the total of 2�lg n� cards, and then apply the protocol of
Nishida et al. [18] to compute these functions.

1.3 Our Contribution

In this paper, we propose a new encoding scheme that uses five cards to encode
each integer in Z/6Z. The idea behind this scheme is to use the first two cards
and the last three cards to represent its residues in modulo 2 and modulo 3,
respectively, and then use the converted scheme of Shinagawa et al. [28] to encode
each part. This simple trick significantly reduces the number of required cards
for every basic protocol, which is the main objective of developing card-based
protocols. Using this encoding scheme, we present protocols that can copy a
commitment with 13 cards, add two integers with ten cards, and multiply two
integers with 14 cards. These three protocols are the essential ones that enable
us to compute any polynomial function f : (Z/6Z)k → Z/6Z. All of these three
protocols are the currently best known ones in terms of the required number of
cards (see Table 1).

Our encoding scheme can be generalized to other rings of integers modulo n,
including Z/12Z where our protocols are the currently best known ones as well.

Table 1. The number of required cards for copy, addition, and multiplication protocols
in Z/6Z using each encoding scheme

Encoding Scheme Number of required cards

Copy Addition Multiplication

Shinagawa et al. [28] 18 12 42

Nishida et al. [18] 14 22 22

Our scheme (Sect. 5) 13 10 14

2 Preliminaries

2.1 Sequence of Cards

For 0 ≤ a < n, define En(a) to be a sequence of consecutive n cards, with
all of them being ♥ except the (a + 1)-th card from the left being ♣ , e.g.
E4(2) is ♥ ♥ ♣ ♥ . Unless stated otherwise, the cards in En(a) are arranged
horizontally as defined above. In some situations, however, we may arrange the

168 S. Ruangwises

cards vertically, with the leftmost card becoming the topmost card and the
rightmost card becoming the bottommost card.

Many existing protocols use the sequence En(a) to encode an integer a in
Z/nZ, such as millionaire protocols [10,16], a ranking protocol [30], and protocols
of zero-knowledge proof for logic puzzles [4,20,22–24].

2.2 Matrix

In an m×n matrix of cards, let Row i (0 ≤ i < m) denote the (i+1)-th topmost
row of the matrix, and Column j (0 ≤ j < n) denote the (j + 1)-th leftmost
column of the matrix.

2.3 Pile-Shifting Shuffle

In a pile-shifting shuffle on an m×n matrix, we shift the columns of the matrix
by a random cyclic shift unknown to all parties, i.e. move each Column � to
Column � + r for a uniformly random r ∈ Z/nZ (where the indices are taken
modulo n). See Fig. 1. This operation was introduced by Shinagawa et al. [28].

The pile-shifting shuffle can be implemented in real world by putting all
cards in each column into an envelope, and then applying the random cut to the
sequence of envelopes [33].

? ? ? ? ? ?

? ? ? ? ? ?

? ? ? ? ? ?

? ? ? ? ? ?

3

2

1

0

0 1 2 3 4 5

⇒
? ? ? ? ? ?

? ? ? ? ? ?

? ? ? ? ? ?

? ? ? ? ? ?

3

2

1

0

2 3 4 5 0 1

Fig. 1. An example of a pile-shifting shuffle on a 4 × 6 matrix

3 Encoding Scheme of Shinagawa et al.

Shinagawa et al. [28] proposed an encoding scheme that uses a regular n-gon
card to encode each integer in Z/nZ, which can be straightforwardly converted
to the one using regular cards. In the converted scheme, an integer a in Z/nZ is
encoded by a sequence En(a) introduced in the previous section (see Fig. 2 for
the case n = 6).

Using Five Cards to Encode Each Integer in Z/6Z 169

♣ ♥ ♥ ♥ ♥ ♥

a = 0

♥ ♥ ♥ ♣ ♥ ♥

a = 3

♥ ♣ ♥ ♥ ♥ ♥

a = 1

♥ ♥ ♥ ♥ ♣ ♥

a = 4

♥ ♥ ♣ ♥ ♥ ♥

a = 2

♥ ♥ ♥ ♥ ♥ ♣

a = 5

Fig. 2. Commitments of integers in Z/6Z in the encoding scheme of Shinagawa et al.

We focus on three basic arithmetic protocols: the copy protocol, the addition
protocol, and the multiplication protocol. These three protocols can be combined
to compute any polynomial function f : (Z/nZ)k → Z/nZ.

3.1 Copy Protocol

Given a sequence A of En(a), this protocol creates an additional copy of A
without revealing a. It was converted from a copy protocol of Shinagawa et al.
[28] which uses regular n-gon cards, and is also a generalization of a Boolean
copy protocol of Mizuki and Sone [14].

1. Reverse the n−1 rightmost cards of A, i.e. move each (i+1)-th leftmost card
of A to become the i-th rightmost card for i = 1, 2, ..., n − 1. This modified
sequence, called A′, now encodes −a (mod n).

2. Construct a 3 × n matrix M by placing the sequence A′ in Row 0 and a
sequence En(0) in Row 1 and Row 2.

3. Apply the pile-shifting shuffle to M . Note that Row 0 of M now encodes
−a+r (mod n), and Row 1 and Row 2 now encode r (mod n) for a uniformly
random r ∈ Z/nZ.

4. Turn over all cards in Row 0 of M . Locate the position of a ♣ . Suppose it is
at Column j.

5. Shift the columns of M to the left by j columns, i.e. move every Column � to
Column � − j (where the indices are taken modulo n). Turn over all face-up
cards.

6. The sequences in Row 1 and Row 2 of M now both encode r − (−a + r) ≡ a
(mod n), so we now have two copies of A as desired.

This protocol uses n extra cards (one ♣ and n − 1 ♥ s) in addition to the
ones in A and A′. Therefore, the total number of required cards is 3n.

3.2 Addition Protocol

Given sequences A and B of En(a) and En(b), respectively, this protocol com-
putes the sum a+b (mod n) without revealing a or b. It was also converted from
an addition protocol of Shinagawa et al. [28] which uses regular n-gon cards.

170 S. Ruangwises

1. Reverse the n−1 rightmost cards of A, i.e. move each (i+1)-th leftmost card
of A to become the i-th rightmost card for i = 1, 2, ..., n − 1. This modified
sequence, called A′, now encodes −a (mod n).

2. Construct a 2 × n matrix M by placing the sequence A′ in Row 0 and the
sequence B in Row 1.

3. Apply the pile-shifting shuffle to M . Note that Row 0 and Row 1 of M now
encode −a+r (mod n) and b+r (mod n), respectively, for a uniformly random
r ∈ Z/nZ.

4. Turn over all cards in Row 0 of M . Locate the position of a ♣ . Suppose it is
at Column j.

5. Shift the columns of M to the left by j columns, i.e. move every Column � to
Column � − j (where the indices are taken modulo n). Turn over all face-up
cards.

6. The sequence in Row 1 of M now encodes (b + r) − (−a + r) ≡ a + b (mod
n) as desired.

This protocol does not use any extra card other than the ones in A and B.
Therefore, the total number of required cards is 2n.

3.3 Multiplication Protocol

Given sequences A and B of En(a) and En(b), respectively, this protocol com-
putes the product a · b (mod n) without revealing a or b. It is a generalization
of the protocol of Shinagawa and Mizuki [26] to multiply two integers in Z/3Z,
and is also a generalization of the Boolean AND protocol of Mizuki and Sone
[14].

The intuition of this protocol is that we will create sequences A0, A1, ..., An−1

encoding 0, a, 2a, ..., (n−1)a (mod n), respectively, and then select the sequence
Ab as an output.

1. Let A1 = A. If n ≥ 4, we perform the following procedures for n − 3 rounds.
In each i-th round (i = 1, 2, ..., n − 3) when we already have sequences
A1, A2, ..., Ai, apply the copy protocol to create a copy of A1 and a copy
of Ai. Then, apply the addition protocol to the copy of A1 and the copy of
Ai. The resulting sequence, called Ai+1, encodes a + ia ≡ (i + 1)a (mod n).

2. We now have sequences A1, A2, ..., An−2. If n ≥ 3, apply the copy protocol
to create a copy of A1 again. Reverse the n − 1 rightmost cards of that
copy, i.e. move each (i + 1)-th leftmost card to become the i-th rightmost
card for i = 1, 2, ..., n − 1. This modified sequence, called An−1, now encodes
−a ≡ (n − 1)a (mod n).

3. Arrange n extra cards (which can be taken from the cards left from the copy
protocol in Step 2 for n ≥ 3) as a sequence En(0), called A0. We now have
sequences A0, A1, ..., An−1 as desired.

4. Construct an (n + 1) × n matrix M by the following procedures (see Fig. 3).
(a) In Row 0, place the sequence B.
(b) In each column � = 0, 1, ..., n−1, place the sequence A� arranged vertically

from Row 1 to Row n.

Using Five Cards to Encode Each Integer in Z/6Z 171

A0 A1
... An−1

? ? ... ?

...
...

...
...

? ? ... ?

? ? ... ?

? ? ... ? B

n

...

2

1

0

Row

0 1 ... n − 1
Column

Fig. 3. An (n + 1) × n matrix M constructed in Step 4

5. Apply the pile-shifting shuffle to M .
6. Turn over all cards in Row 0. Locate the position of a ♣ . Suppose it is at

Column j.
7. Select the sequence in Column j arranged vertically from Row 1 to Row n.

This is the sequence Ab encoding a · b (mod n) as desired.

In Step 1, in the i-th round we use n extra cards in the copy protocol besides
the cards in A1, A2, ..., Ai, B, and the copies of A1 and Ai, so the total number of
cards is (i+3)n+n ≤ n2+n. In Step 2, we use n extra cards in the copy protocol
besides the cards in A1, A2, ..., An−2, B, and the copy of A1, so the total number
of cards is n2 +n. Therefore, the total number of required cards for this protocol
is n2 + n. Note that the special case n = 3 works exactly like the multiplication
protocol of Shinagawa and Mizuki [26], and the special case n = 2 works exactly
like the six-card AND protocol of Mizuki and Sone [14].

In summary, using the encoding scheme of Shinagawa et al. for n = 6 requires
18, 12, and 42 cards for the copy, addition, and multiplication protocols, respec-
tively.

4 Encoding Scheme of Nishida et al.

Nishida et al. [18] developed a protocol to compute any n-variable Boolean func-
tion using 2n + 6 cards, where each bit x in the inputs and output is encoded
by E2(x). Their protocol also retains commitments of the inputs for further use.
Hence, this protocol requires 2n cards for the inputs and two cards for the out-
put, and actually uses four extra cards besides the ones in the inputs and output
for the computation: two ♣ s and two ♥ s.

We write each integer a ∈ Z/6Z in its binary representation a = (a2, a1, a0),
where a = 4a2+2a1+a0 and a0, a1, a2 ∈ {0, 1}. Each bit ai is encoded by E2(ai),

172 S. Ruangwises

so we encode a by a commitment of six cards consisting of E2(a2), E2(a1), and
E2(a0) arranged in this order from left to right (see Fig. 4).

♣ ♥ ♣ ♥ ♣ ♥

a = 0

♣ ♥ ♥ ♣ ♥ ♣

a = 3

♣ ♥ ♣ ♥ ♥ ♣

a = 1

♥ ♣ ♣ ♥ ♣ ♥

a = 4

♣ ♥ ♥ ♣ ♣ ♥

a = 2

♥ ♣ ♣ ♥ ♥ ♣

a = 5

Fig. 4. Commitments of integers in Z/6Z in the encoding scheme of Nishida et al.

4.1 Copy Protocol

To copy a commitment of a = (a2, a1, a0), we apply the protocol in Sect. 3.1 to
copy the sequences E2(a0), E2(a1), and E2(a2) separately. Since the two extra
cards used in that protocol can be reused in each computation, we use only two
extra cards (one ♣ and one ♥) besides the 12 cards encoding the inputs and
outputs, resulting in the total of 14 cards.

4.2 Addition Protocol

Suppose we have integers a = (a2, a1, a0) and b = (b2, b1, b0).
Let S = {0, 1}3 − {(1, 1, 0), (1, 1, 1)}. Consider the following function f+ :

{0, 1}6 → {0, 1}3. Define

f+(a2, a1, a0, b2, b1, b0) := (c2, c1, c0),

where (c2, c1, c0) is the binary representation of a + b (mod 6) if (a2, a1, a0),
(b2, b1, b0) ∈ S. We can define f+(a2, a1, a0, b2, b1, b0) to be any value if either
(a2, a1, a0) or (b2, b1, b0) is not in S.

We apply the protocol of Nishida et al. [18] to compute c0, c1, and c2 sepa-
rately. As explained at the beginning of Sect. 4, this protocol retains the com-
mitments of the inputs, and uses four extra cards (which can be reused in each
computation) besides the ones in the inputs and outputs. Therefore, we use only
four extra cards (two ♣ s and two ♥ s) besides the 18 cards encoding the inputs
and outputs, resulting in the total of 22 cards.

4.3 Multiplication Protocol

Similarly to the addition protocol, consider a function f× : {0, 1}6 → {0, 1}3
with

f×(a2, a1, a0, b2, b1, b0) := (c2, c1, c0),

Using Five Cards to Encode Each Integer in Z/6Z 173

where (c2, c1, c0) is the binary representation of a · b (mod 6) if (a2, a1, a0),
(b2, b1, b0) ∈ S, and with f×(a2, a1, a0, b2, b1, b0) being any value if either
(a2, a1, a0) or (b2, b1, b0) is not in S.

Like in the addition protocol, we apply the protocol of Nishida et al. [18] to
compute c0, c1, and c2 separately, which requires 22 cards in total.

In summary, using the encoding scheme of Nishida et al. requires 14, 22, and
22 cards for the copy, addition, and multiplication protocols, respectively.

5 Our Encoding Scheme

In our encoding scheme, each integer a ∈ Z/6Z is written as (a1, a2), where a1

and a2 are remainders of a when divided by 2 and 3, respectively. By Chinese
remainder theorem, the value of a is uniquely determined by (a1, a2)1. We encode
a by a commitment of five cards, the first two cards being E2(a1) and the last
three cards being E3(a2) (see Fig. 5).

♣ ♥ ♣ ♥ ♥

a = 0

♥ ♣ ♣ ♥ ♥

a = 3

♥ ♣ ♥ ♣ ♥

a = 1

♣ ♥ ♥ ♣ ♥

a = 4

♣ ♥ ♥ ♥ ♣

a = 2

♥ ♣ ♥ ♥ ♣

a = 5

Fig. 5. Commitments of integers in Z/6Z in our encoding scheme

5.1 Copy Protocol

To copy a commitment of a = (a1, a2), we apply the protocol in Sect. 3.1 to copy
the sequences E2(a1) and E3(a2) separately. Since the extra cards used in that
protocol can be reused in each computation, we use only three extra cards (one
♣ and two ♥ s) besides the ten cards encoding the inputs and outputs, resulting
in the total of 13 cards.

5.2 Addition Protocol

Given a = (a1, a2) and b = (b1, b2), we have a + b (mod 6) = (c1, c2), where
c1 = a1 + b1 (mod 2) and c2 = a2 + b2 (mod 3). The values of c1 and c2 can be
computed separately by applying the protocol in Sect. 3.2, which does not use
any extra card. Therefore, the total number of required cards is ten.

1 This can also be viewed as ring isomorphism Z/6Z ∼= (Z/2Z) × (Z/3Z).

174 S. Ruangwises

5.3 Multiplication Protocol

Like the addition protocol, we have a · b (mod 6) = (c1, c2), where c1 = a1 · b1
(mod 2) and c2 = a2 · b2 (mod 3). The values of c1 and c2 can be computed
separately by applying the protocol in Sect. 3.3, which in total uses six extra
cards (two ♣ s and four ♥ s), so the total number of required cards is 16.

Optimization. By reusing cards, we can do a little better for the multiplication
protocol. First, we compute c1 using two extra cards (one ♣ and one ♥). After
the computation, we only use two cards (one ♣ and one ♥) to encode c1, so
we now have four free cards (two ♣ s and two ♥ s) that can be used in other
computation. Since computing c2 requires six extra cards (two ♣ s and four ♥
s), we actually need only two more ♥ s besides the four free cards we have.
Therefore, in total we can use only four extra cards (one ♣ and three ♥ s),
which reduces the number of required cards by two to 14.

In summary, using our encoding scheme for n = 6 requires 13, 10, and 14
cards for the copy, addition, and multiplication protocols, respectively.

6 Encoding Integers in Other Congruent Classes

Our encoding scheme can be generalized to encode integers in Z/nZ for any
n = pb1

1 pb2
2 ...pbk

k such that k > 1, where p1, p2, ..., pk are different primes and
b1, b2, ..., bk are positive integers. For each a ∈ Z/nZ, let a = (a1, a2, ..., ak),
where each ai is the remainder of a when divided by pbi

i . By Chinese remainder
theorem, the value of a is uniquely determined by (a1, a2, ..., ak). We encode each
ai by E

p
bi
i

(ai), so we use total of
∑k

i=1 pbi
i cards for each commitment. We apply

the protocols in Sects. 3.1, 3.2, and 3.3 on each E
p
bi
i

(ai) separately to perform
the copy, addition, and multiplication, respectively.

Let m = maxk
i=1 pbi

i , our encoding scheme requires 2
∑k

i=1 pbi
i + m cards for

the copy protocol, 2
∑k

i=1 pbi
i cards for the addition protocol, and 2(

∑k
i=1 pbi

i)+
m2−m cards for the multiplication protocol (before the optimization). By using
the optimization technique in Sect. 5.3 (computing the smallest modulus first
and reusing the free cards in larger modulii), we can slightly reduce the number
of required cards for the multiplication protocol.

In comparison, the encoding scheme of Shinagawa et al. requires 3n cards
for copy, 2n cards for addition, and n2 + n cards for multiplication, while the
encoding scheme of Nishida et al. requires 4�lg n�+2 cards for copy and 6�lg n�+4
cards for addition and multiplication.

The numbers of required cards for the copy, addition, and multiplication
protocols for each applicable n up to 20 are shown in Table 2. Besides Z/6Z,
our encoding scheme is also the currently best known schemes in Z/12Z for the
protocols of all three functions. For the addition protocol, our encoding scheme
is the currently best known one for every such n.

Using Five Cards to Encode Each Integer in Z/6Z 175

Table 2. The number of required cards for copy, addition, and multiplication protocols
(after the optimization) in each Z/nZ using each encoding scheme, with the lowest
number among each type of protocol boldfaced

Z/nZ Shinagawa et al. [28] Nishida et al. [18] Our scheme (Sect.5)

Copy Add. Mult. Copy Add. Mult. Copy Add. Mult.

Z/6Z 18 12 42 14 22 22 13 10 14

Z/10Z 30 20 110 18 28 28 19 14 32

Z/12Z 36 24 156 18 28 28 18 14 23

Z/14Z 42 28 210 18 28 28 25 18 58

Z/15Z 45 30 240 18 28 28 21 16 33

Z/18Z 54 36 342 22 34 34 31 22 92

Z/20Z 60 40 420 22 34 34 23 18 34

7 Future Work

We developed an encoding scheme for integers in Z/6Z which allows us to per-
form the copy, addition, and multiplication using 13, 10, and 14 cards, respec-
tively, which are the lowest numbers among the currently known protocols. We
also generalized our encoding scheme to other rings of integers modulo n, includ-
ing Z/12Z where our protocols are the currently best known ones as well.

A challenging future work is to develop encoding schemes in Z/nZ that
requires fewer cards for other values of n, especially when n is a prime, or prove
the lower bound of the number of required cards for each n. For Z/6Z, we have
to use at least four cards to encode each integer, no matter what the encoding
scheme is (because three cards of two types can be rearranged in at most three
ways). Hence, the trivial lower bound of the number of required cards for every
protocol is eight.

Also, all results so far have been focused on using only two types of cards.
An interesting question is that if we allow more than two types of cards, can we
lower the number of required cards? (In particular, three different cards can be
rearranged in six ways, so it might be possible to encode each integer in Z/6Z
with three cards).

References

1. Abe, Y., Hayashi, Y., Mizuki, T., Sone, H.: Five-card and computations in commit-
ted format using only uniform cyclic shuffles. New Gener. Comput. 39(1), 97–114
(2021). https://doi.org/10.1007/s00354-020-00110-2

2. Abe, Y., Mizuki, T., Sone, H.: Committed-format AND protocol using only random
cuts. Nat. Comput. 20(4), 639–645 (2021). https://doi.org/10.1007/s11047-021-
09862-2

3. den Boer, B.: More efficient match-making and satisfiability: the five card trick. In:
Proceedings of the Workshop on the Theory and Application of of Cryptographic

https://doi.org/10.1007/s00354-020-00110-2
https://doi.org/10.1007/s11047-021-09862-2
https://doi.org/10.1007/s11047-021-09862-2

176 S. Ruangwises

Techniques (EUROCRYPT 1989), pp. 208–217 (1990). https://doi.org/10.1007/3-
540-46885-4 23

4. Bultel, X., et al.: Physical zero-knowledge proof for makaro. In: Proceedings of the
20th International Symposium on Stabilization, Safety, and Security of Distributed
Systems (SSS), pp. 111–125 (2018). https://doi.org/10.1007/978-3-030-03232-6 8

5. Crépeau, C., Kilian, J.: Discreet solitary games. In: Proceedings of the 13th
Annual International Cryptology Conference (CRYPTO 1993), pp. 319–330 (1994).
https://doi.org/10.1007/3-540-48329-2 27

6. Isuzugawa, R., Toyoda, K., Sasaki, Y., Miyahara, D., Mizuki, T.: A card-minimal
three-input and protocol using two shuffles. In: Proceedings of the 27th Interna-
tional Computing and Combinatorics Conference (COCOON), pp. 668–679 (2021).
https://doi.org/10.1007/978-3-030-89543-3 55

7. Koch, A.: The Landscape of Optimal Card-based Protocols. Cryptology ePrint
Archive (2018). https://eprint.iacr.org/2018/951

8. Koch, A., Walzer, S., Härtel, K.: Card-based crypto-graphic protocols using a min-
imal number of cards. In: Proceedings of the 21st International Conference on the
Theory and Application of Cryptology and Information Security (ASIACRYPT),
pp. 783–807 (2015). https://doi.org/10.1007/978-3-662-48797-6 32

9. Koyama, H., Toyoda, K., Miyahara, D., Mizuki, T.: New card-based copy protocols
using only random cuts. In: Proceedings of the 8th ACM on ASIA Public-Key
Cryptography Workshop (APKC), pp. 13–22 (2021)

10. Miyahara, D., Hayashi, Y., Mizuki, T., Sone, H.: Practical card-based implemen-
tations of Yao’s millionaire protocol. Theoret. Comput. Sci. 803, 207–221 (2020)

11. Mizuki, T.: Card-based protocols for securely computing the conjunction of mul-
tiple variables. Theoret. Comput. Sci. 622, 34–44 (2016)

12. Mizuki, T., Asiedu, I.K., Sone, H.: Voting with a logarithmic number of cards. In:
Proceedings of the 12th International Conference on Unconventional Computation
and Natural Computation (UCNC), pp. 162–173 (2013). https://doi.org/10.1007/
978-3-642-39074-6 16

13. Mizuki, T., Kumamoto, M., Sone, H.: The five-card trick can be done with four
cards. In Proceedings of the 18th International Conference on the Theory and
Application of Cryptology and Information Security (ASIACRYPT), pp. 598–606
(2012). https://doi.org/10.1007/978-3-642-34961-4 36

14. Mizuki, T., Sone, H.: Six-card secure AND and four-card secure XOR. In: Pro-
ceedings of the 3rd International Frontiers of Algorithmics Workshop (FAW), pp.
358–369 (2009). https://doi.org/10.1007/978-3-642-02270-8 36

15. Mizuki, T., Uchiike, F., Sone, H.: Securely computing XOR with 10 cards. Aus-
tralas. J. Combin. 36, 279–293 (2006)

16. Nakai, T., Misawa, Y., Tokushige, Y., Iwamoto, M., Ohta, K.: How to solve mil-
lionaires’ problem with two kinds of cards. N. Gener. Comput. 39(1), 73–96 (2021).
https://doi.org/10.1007/s00354-020-00118-8

17. Niemi, V., Renvall, A.: Secure multiparty computations without computers. The-
oret. Comput. Sci. 191, 173–183 (1998)

18. Nishida, T., Hayashi, Y., Mizuki, T., Sone, H.: Card-based protocols for any
boolean function. In: Proceedings of the 12th Annual Conference on Theory and
Applications of Models of Computation (TAMC), pp. 110–121 (2015). https://doi.
org/10.1007/978-3-319-17142-5 11

19. Nishida, T., Mizuki, T., Sone, H.: Securely computing the three-input majority
function with eight cards. In Proceedings of the 2nd International Conference
on the Theory and Practice of Natural Computing (TPNC), pp. 193–204 (2013).
https://doi.org/10.1007/978-3-642-45008-2 16

https://doi.org/10.1007/3-540-46885-4_23
https://doi.org/10.1007/3-540-46885-4_23
https://doi.org/10.1007/978-3-030-03232-6_8
https://doi.org/10.1007/3-540-48329-2_27
https://doi.org/10.1007/978-3-030-89543-3_55
https://eprint.iacr.org/2018/951
https://doi.org/10.1007/978-3-662-48797-6_32
https://doi.org/10.1007/978-3-642-39074-6_16
https://doi.org/10.1007/978-3-642-39074-6_16
https://doi.org/10.1007/978-3-642-34961-4_36
https://doi.org/10.1007/978-3-642-02270-8_36
https://doi.org/10.1007/s00354-020-00118-8
https://doi.org/10.1007/978-3-319-17142-5_11
https://doi.org/10.1007/978-3-319-17142-5_11
https://doi.org/10.1007/978-3-642-45008-2_16

Using Five Cards to Encode Each Integer in Z/6Z 177

20. Robert, L., Miyahara, D., Lafourcade, P., Mizuki, T.: Physical zero-knowledge
proof for suguru puzzle. In: Proceedings of the 22nd International Symposium
on Stabilization, Safety, and Security of Distributed Systems (SSS), pp. 235–247
(2020). https://doi.org/10.1007/978-3-030-64348-5 19

21. Ruangwises, S., Itoh, T.: AND protocols using only uniform shuffles. In: Proceed-
ings of the 14th International Computer Science Symposium in Russia (CSR), pp.
349–358 (2019). https://doi.org/10.1007/978-3-030-19955-5 30

22. Ruangwises, S., Itoh, T.: Physical zero-knowledge proof for numberlink puzzle and
k vertex-disjoint paths problem. N. Gener. Comput. 39(1), 3–17 (2020). https://
doi.org/10.1007/s00354-020-00114-y

23. Ruangwises, S., Itoh, T.: Physical zero-knowledge proof for ripple effect. Theoret.
Comput. Sci. 895, 115–123 (2021)

24. Ruangwises, S., Itoh, T.: Physical ZKP for connected spanning subgraph: appli-
cations to bridges puzzle and other problems. In: Proceedings of the 19th Inter-
national Conference on Unconventional Computation and Natural Computation
(UCNC), pp. 149–163 (2021). https://doi.org/10.1007/978-3-030-87993-8 10

25. Ruangwises, S., Itoh, T.: Securely computing the n-variable equality function with
2n cards. Theoret. Comput. Sci. 887, 99–100 (2021)

26. Shinagawa, K., Mizuki, T.: Card-based protocols using triangle cards. In: Pro-
ceedings of the 9th International Conference on Fun with Algorithms (FUN), pp.
31:1–31:13 (2018)

27. Shinagawa, K., Mizuki, T.: The six-card trick: secure computation of three-input
equality. In: Proceedings of the 21st Annual International Conference on Informa-
tion Security and Cryptology (ICISC 2018), pp. 123–131 (2019). https://doi.org/
10.1007/978-3-030-12146-4 8

28. Shinagawa, K., et al.: Card-based protocols using regular polygon cards. IEICE
Trans. Fundam. Electron. Commun. Comput. Sci. E100.A(9), 1900–1909 (2017)

29. Stiglic, A.: Computations with a deck of cards. Theoret. Comput. Sci. 259, 671–678
(2001)

30. Takashima, K., et al.: Card-based protocols for secure ranking computations. The-
oret. Comput. Sci. 845, 122–135 (2020)

31. Toyoda, K., Miyahara, D., Mizuki, T.: Another use of the five-card trick: card-
minimal secure three-input majority function evaluation. In: Proceedings of the
22nd International Conference on Cryptology in India (INDOCRYPT), pp. 536–
555 (2021). https://doi.org/10.1007/978-3-030-92518-5 24

32. Toyoda, K., Miyahara, D., Mizuki, T., Sone, H.: Six-card finite-runtime XOR pro-
tocol with only random cut. In: Proceedings of the 7th ACM Workshop on ASIA
Public-Key Cryptography (APKC), pp. 2–8 (2020)

33. Ueda, I., Miyahara, D., Nishimura, A., Hayashi, Y., Mizuki, T., Sone, H.: Secure
implementations of a random bisection cut. Int. J. Inf. Secur. 19(4), 445–452
(2019). https://doi.org/10.1007/s10207-019-00463-w

https://doi.org/10.1007/978-3-030-64348-5_19
https://doi.org/10.1007/978-3-030-19955-5_30
https://doi.org/10.1007/s00354-020-00114-y
https://doi.org/10.1007/s00354-020-00114-y
https://doi.org/10.1007/978-3-030-87993-8_10
https://doi.org/10.1007/978-3-030-12146-4_8
https://doi.org/10.1007/978-3-030-12146-4_8
https://doi.org/10.1007/978-3-030-92518-5_24
https://doi.org/10.1007/s10207-019-00463-w

Conditional Differential Cryptanalysis
on Bagua

Xiaojuan Lu1,2, Bohan Li1,2, Shichang Wang1,2, and Dongdai Lin1,2(B)

1 State Key Laboratory of Information Security,
Institute of Information Engineering, Chinese Academy of Sciences,

Beijing 100093, China
{luxiaojuan,libohan,wangshichang,ddlin}@iie.ac.cn

2 School of Cyber Security, University of Chinese Academy of Sciences,
Beijing 100049, China

Abstract. At ASIACRYPT 2010, Knellwolf et al. proposed conditional
differential cryptanalysis (CDC) on NFSR-based cryptosystems, and
applied this technique to analyze the security of the eSTREAM final-
ist Grain v1. Bagua is a hardware-oriented stream cipher supporting key
length of 128 and 256 bits proposed by Tan, Zhu and Qi at Inscrypt
2020. In this paper, we study the security of the stream cipher Bagua
against CDC since the structure of Bagua is novel. First, we analyze
the difference propagation of round-reduced Bagua by exhaustive search
over low weight input differences and propose an input difference choos-
ing strategy. Then, we apply CDC on 182-round and 204-round Bagua
with different condition imposing strategies. For the 182-round Bagua,
we can recover 8 key expressions of both the two versions with time com-
plexities 232.5 and 233 respectively. For 204-round Bagua, we can recover
26 key expressions of both the two versions with time complexities 259.5

and 260 respectively. Furthermore, all the distinguishers obtained in the
CDC are verified by practical experiments. As far as we know, this is the
first third-party cryptanalysis on the stream cipher Bagua.

Keywords: Conditional differential cryptanalysis · Key recovery
attack · Stream cipher · Bagua

1 Introduction

Stream ciphers are widely used to protect the confidentiality and privacy in the
communications, especially in resource constrained environments. They usually
take as input a secret key and public initial vector (IV) and generate pseudo-
random keystream bits used in encryption and decryption. In recent years, many

This work was supported by the National Natural Science Foundation of China (Grant
No. 61872359, 62122085 and 61936008), the National Key R&D Program of China
(Grant No. 2020YFB1805402), and the Youth Innovation Promotion Association of
Chinese Academy of Sciences.

c© Springer Nature Switzerland AG 2022
P. Y. A. Ryan and C. Toma (Eds.): SecITC 2021, LNCS 13195, pp. 178–189, 2022.
https://doi.org/10.1007/978-3-031-17510-7_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-17510-7_13&domain=pdf
https://doi.org/10.1007/978-3-031-17510-7_13

Conditional Differential Cryptanalysis on Bagua 179

well-known stream ciphers have been proposed, such as Trivium [6] and Grain
v1 [8] both in the eSTREAM portfolio 2 (hardware-oriented).

With the development of the cryptanalysis, different cryptanalytic methods
have been applied to such stream ciphers, such as fast correlation attack [17]
and cube attack [7]. Furthermore, conditional differential cryptanalysis (CDC)
on NFSR-based cryptosystems was first showed by Knellwolf et al. [11] at ASI-
ACRYPT 2010, which is inspired by the techniques [18] used to accelerate the
collision search for hash function cryptanalysis. Controlling the difference prop-
agation as many rounds as possible is the core steps of the CDC, which aims
to obtain a bias that can be observed for the output difference. In order to pre-
vent the difference propagation, some conditions at proper rounds need to be
imposed. Consequently, the attacker could attack the cryptosystem by observing
the bias when the conditions are satisfied. This may result in a distinguishing
attack or partial key recovery attack depending on whether the conditions con-
tain only IV bits, or contain both of IV and key bits. The technique, imposing
some conditions on internal state bits of the cipher to make indeterministic dif-
ferences determined in the first few rounds, is the crucial stage in the CDC.
Similar ideas were used in differential cryptanalysis [3], conditional linear crypt-
analysis [4], and differential-linear cryptanalysis [13]. More papers about the
CDC see [1,2,10,12,14,15,19].

Bagua is a hardware-oriented stream cipher proposed by Tan, Zhu and Qi
in [16], which is inspired by the stream cipher Trivium chosen as one of the
keystream generators for lightweight stream ciphers in ISO/IEC 29192-3 [9]. It
consists of 8 nonlinear feedback shift registers (NFSRs) and an Sbox, and its
structure adopts the confusion and diffusion principles. It takes as input an 128-
bit IV and 128-bit or 256-bit key and allows a parallelization degree up to 32.
Note that the throughput of Bagua as well as the hardware overheads increases
with the increasing degree of parallelization. Therefore, the degree of paralleliza-
tion should be determined by different application scenarios. The designers of
Bagua gave a general differential cryptanalysis on the cipher which only made
use of the difference characteristics to estimate the security of Bagua against
differential cryptanalysis theoretically. Although they analyzed the difference
characteristics of single-bit input difference, they did not perform the actual dif-
ferential attack on Bagua. As far as we know, there is no third-party cryptanaly-
sis of the stream cipher Bagua. In order to choose a more proper input difference,
we carefully analyze the structural characteristics and difference characteristics
of Bagua by exhaustive search over low weight input differences introduced in
Sect. 3.1. In addition, with such input difference, we trace the difference prop-
agation to more rounds by imposing some conditions on suitable rounds and
perform key recovery attacks on Bagua by applying the CDC.

1.1 Our Contributions

In this paper, we apply the CDC on round-reduced Bagua and give the first
third party cryptanalysis of Bagua. In detail, our contributions can be described
as follows.

180 X. Lu et al.

– We analyze structural characteristics and the difference propagation charac-
teristics of Bagua by exhaustive search over low weight input differences and
propose the input difference choosing strategy to be applied in the CDC.

– Applying the CDC with the proposed input difference choosing strategy and
condition imposing strategy, we can find a distinguisher at round 182 for each
version of Bagua. During the key recovery procedure, both the two versions
can recover 8 key expressions in terms of the individual distinguisher. The
time complexities are 232.5 and 233 with success probabilities 95.42% and
95.12% respectively.

– By using different condition imposing strategy, another distinguisher at round
204 for each version of Bagua can be found. During the key recovery proce-
dure, both the two versions can recover 26 key expressions in terms of the
individual distinguisher and the key bits can be recovered only when the
secret key belongs to a large subset of 2−4 of the possible keys. The time
complexities are 259.5 and 260 with success probabilities 94.16% and 97.27%
respectively.

– All the obtained distinguishers are verified by the practical experiments to
guarantee the validity of the cryptanalysis. Furthermore, our cryptanalytic
results are summarized in Table 4.

The rest of the paper is organized as follows. Section 2 gives the brief descrip-
tion of Bagua and introduces the framework of CDC. Our CDC on Bagua are
provided in Sect. 3. Then we conclude our paper in Sect. 4.

2 Preliminaries

2.1 A Brief Description of Bagua

The stream cipher Bagua [16] uses a 128-bit IV = (v0, . . . , v127) and supports
a 128-bit/256-bit key. For the version of 128-bit key, duplicate it for getting a
256-bit tuple and denote as K = (k0, . . . , k255). Bagua consists of 8 NFSRs and
an Sbox as shown in Fig. 1(a). The state of the first four NFSRs is denoted
by (u313, . . . , u1) and the latter four NFSRs by (d312, . . . , d1). The states of 8
NFSRs are updated in the following:

NFSR1 : (u313, u312, . . . , u246) ← (l1 + n1, u313, . . . , u247),
NFSR2 : (u245, u241, . . . , u173) ← (l2 + n2, u245, . . . , u174),
NFSR3 : (u172, u171, . . . , u94) ← (l3 + n3, u172, . . . , u95),
NFSR4 : (u93, u92, . . . , u1) ← (l4 + n4, u93, . . . , u2),
NFSR5 : (d312, d311, . . . , d224) ← (l5 + n5, d312, . . . , d225),
NFSR6 : (d223, d222, . . . , d137) ← (l6 + n6, d223, . . . , d138),
NFSR7 : (d136, d135, . . . , d66) ← (l7 + n7, d136, . . . , d67),
NFSR8 : (d65, d64, . . . , d1) ← (l8 + n8, d65, . . . , d2).

Conditional Differential Cryptanalysis on Bagua 181

u313 · · · u281 u246· · ·

l1

n1

u245 · · · u211 u173· · ·

l2

n2

u172 · · · u136 u94· · ·

l3

n3

u93 · · · u55 u1· · ·

l4

n4

d312 · · · d275 d224· · · d223 · · · d188 d137· · · d136 · · · d103 d66· · · d65 · · · d34 d1· · ·

l5 l6 l7 l8

n5 n6 n7 n8

n1
n2
n3
n4

n5
n6
n7
n8

Sbox

(a) Overview of Bagua Algorithm.

S1 S2

L

S3 S4

(b) Sbox of Bagua.

Fig. 1. Schematic representation of Bagua.

There are 8 linear Boolean functions in the diffusion layer:

l1 = u246 + u263 + u212 + d277,

l2 = u173 + u192 + u139 + d192,

l3 = u94 + u115 + u60 + d102,

l4 = u1 + u28 + d281 + d32,

l5 = d224 + d250 + d185 + u277,

l6 = d137 + d162 + d98 + u205,

l7 = d66 + d85 + d27 + u128,

l8 = d1 + d17 + d272 + u62.

Bagua uses an 8 × 8 invertible Sbox as the confusion layer, which is denoted
as (n1, n8, n2, n7, n3, n6, n4, n5) = Sbox(u281, u211, u136, u55, d275, d188, d103, d34).
Four different 4-bit Sboxes and a lightweight linear transformation make up the
8-bit Sbox, which is depicted in Fig. 1(b).

Table 1. Four 4-bit Sboxes of Bagua

x 0 1 2 3 4 5 6 7 8 9 A B C D E F

S1(x) B F 3 2 A C 9 1 6 7 8 0 E 5 D 4

S2(x) 1 D F 0 E 8 2 B 7 4 C A 9 3 5 6

S3(x) 7 4 A 9 1 F B 0 C 3 2 6 8 E D 5

S4(x) E 9 F 0 D 4 A B 1 2 8 3 7 6 C 5

Four 4-bit Sboxes are defined in Table 1. The input of S1 and S1 are respec-
tively denoted as (u281, u211, u136, u55) and (d275, d188, d103, d34). The output of
S3 and S4 are respectively denoted as (n1, n8, n2, n7) and (n3, n6, n4, n5) . We

182 X. Lu et al.

represent the linear transformation as L(x) = L · x, where L is the 8 × 8 matrix
listed as (1).

L =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 1 0 0 1
1 0 0 0 1 1 0 0
0 0 1 0 0 1 1 0
0 0 0 1 0 0 1 1
0 0 1 1 0 1 0 0
1 0 1 0 0 0 1 0
0 1 0 1 0 0 0 1
0 1 1 0 1 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(1)

From an algebraic perspective, the 8-bit Sbox can be viewed as a vectorial
Boolean function. The algebraic normal form (ANF) of each component has
algebraic degree 6 and the number of terms are 91, 98, 103, 99, 99, 96, 114 and
110 respectively.

We load the key and IV as follows:

NFSR1 : (u313, u312, . . . , u246) = (1, 0, . . . , 0, k0, . . . , k51),
NFSR2 : (u245, u241, . . . , u173) = (1, 0, . . . , 0, k52, . . . , k103),
NFSR3 : (u172, u171, . . . , u94) = (1, 0, . . . , 0, k104, . . . , k155),
NFSR4 : (u93, u92, . . . , u1) = (1, 0, . . . , 0, k156, . . . , k207),
NFSR5 : (d312, u311, . . . , d224) = (1, 0, . . . , 0, k208, . . . , k255),
NFSR6 : (d223, u222, . . . , d137) = (1, 0, . . . , 0, v0, . . . , v55),
NFSR7 : (d136, d135, . . . , d66) = (1, 0, . . . , 0, v56, . . . , v95),
NFSR8 : (d65, u64, . . . , d1) = (1, 0, . . . , 0, v96, . . . , v127).

After loading key and IV, Bagua clocks 960/1600 rounds without generat-
ing any keystream bits for 128-bit/256-bit key in the initialization phase.
After initialization, it enters into keystream generation process in which one
bit keystream is generated per clock, and the output function is defined as:
output = l1 · l7 + l3 · l5 + l2 + l4 + l6 + l8.

2.2 Framework of CDC

In this part, we introduce the framework of CDC. Suppose that the cipher C of
state length l takes as input a key k = (k1, . . . , ka) and IV v = (v1, . . . , vb). Then
we defined the output at round r as zr = h(sr, sr+1, . . . , sr+l−1), where h is the
output function and (sr, sr+1, . . . , sr+l−1) is the internal state of C at round r.
Note that the output bit zr can also be represented as a Boolean function of IV
variables v and key variables k, which is denoted as zr = g(k, v). Let Δin be the
input difference and denote Δzr as the difference of output (keystream) bit at
round r. Then, we have Δzr = Δg(k, v) = g(k, v) + g(k, v + Δin). The bias ε of
Δzr is defined as ε = Pr(Δzr = 0) − 1

2 .
The framework of the CDC is to impose the conditions on the internal

state bits to control the difference propagation of Δin such that the derived

Conditional Differential Cryptanalysis on Bagua 183

Boolean function Δzr can be distinguished from an random Boolean function.
The derived conditions should be analyzed carefully to ensure that the conditions
are on the initial IV/key variables. The input samples used in the CDC should
satisfy all the imposed conditions. If a bias of Δzr can be detected, then the
attackers can perform a distinguishing attack or a key recovery attack relying
on the types of conditions.

3 CDC on Bagua

In this section, we introduce an input difference choosing strategy and apply the
CDC to Bagua. We first introduce the types of conditions in CDC. As mentioned
in [11], there are three types of conditions: The equation only involving IV bits
is called Type 0 conditions. The equation involving both of IV and key bits is
called Type 1 conditions. The equation only involve key bits are called Type 2
conditions.

In a chosen IV scenario, Type 0 conditions can be satisfied just by restraining
the corresponding IV bits to be 0 or 1. Type 1 conditions are actually secret
key expressions which could be recovered by exhaustive search over all of their
possible values. For a uniformly random key, the probability of satisfying the
type 2 conditions can easily be computed since the Type 2 conditions are almost
simple equations. In general, Type 2 conditions will decrease the advantage of
distinguishing attacks or make such attacks only available in weak key setting.

3.1 Input Difference Choosing Strategy

In this part, we introduce the input difference choosing strategy used in the
CDC on Bagua. Since the complexity and the speed of difference propagation
of different input differences vary widely, it is necessary to choose an input
difference with some good properties. The strategy is proposed based on the
observation that there are 8 newly updated bits for each iteration, the differences
of Bagua diffuse very quickly and the difference expressions are very difficult to
analyze. In more detail, when we carefully analyze the structural characteristics
of Bagua, we have found that differences in updated bits are deterministic values
0 0r 1 before a deterministic “1” difference entering into Sbox. Once there is a “1”
difference entering into Sbox, the difference diffuses and confuses very fast and
propagates to the all 8 newly updated bits. Moreover, the difference expressions
of the 8 newly updated bits are very complex owing to the characteristic of the
8 × 8 invertible Sbox. In order to explain the choice of good input difference, we
first give two definitions as follows.

Definition 1. Suppose Δw
0 is the input difference with Hamming weight w, and

Δr is the difference of the internal state at round r, r > 0. Let

R1(Δw
0) = min{r | Δw

0
after r rounds−−−−−−−−−−→ Δr = (2̄, 2̄, . . . , 2̄)},

184 X. Lu et al.

where 2̄ denotes difference with probability p to be 0, 0 < p < 1 and let

R1w
max = max

Δw
0 ∈I

R1(Δw
0),

where I = {i | i : the Hamming weight of difference i is w}.

Note that the value of R1w
max is the maximum round among the input dif-

ferences with Hamming weight w, at which the differences in internal state are
first all indeterministic. By an exhaustive search over the differences in the IV of
Bagua with the Hamming weight at most 3 (w ≤ 3), we obtain the results listed
in the Table 2, where the maximum round is 270 with differences in (v8, v33),
compared to 247 obtained in [16].

Table 2. The exhaustive search result of R1w
max

Weight w Difference R1w
max

1 v31 247∗

2 v8, v33 270

3 v52, v60, v79 258
∗ In [16], authors only gave the
round 247 and we give the corre-
sponding input difference here.

Definition 2. Suppose Δw
0 is the input difference with Hamming weight w, and

Δzr is the output difference generated at round r. Let

R2(Δw
0) = max{r | Δw

0
after r rounds−−−−−−−−−−→ Δzr = 0 or 1},

and let
R2w

max = max
Δw

0 ∈I
R2(Δw

0),

where I = {i | i : the Hamming weight of difference i is w}.

Note that the value of R2w
max is the maximum round among the input differ-

ences with Hamming weight w, at which the output difference is deterministic.
By an exhaustive search over the differences in the IV of Bagua with the Ham-
ming weight at most 3 (w ≤ 3), we obtain the results listed in the Table 3, where
the maximum round is 145 with differences in (v8, v33).

From Table 2–Table 3, we can find that all of the best results are all derived
from the same input difference with differences in bit 8 and 33 of the IV. Owing
to its good differential, we choose it as the input difference. Then, we apply CDC
on the two versions of Bagua: one version supports 128-bit key and the other
supports 256-bit key, and we take the version of 128-bit key as an example to
introduce our cryptanalysis in detail.

Conditional Differential Cryptanalysis on Bagua 185

Table 3. The exhaustive search result of R2w
max

Weight w Difference R2w
max

1 v31 (or v127) 122

2 v8, v33 145

3 v52, v60, v79 131

3.2 Analysis of 182-Round Bagua

In this part, we apply the CDC to 182-round Bagua. First, we present the
imposed conditions which are used to prevent the difference propagation. Then,
we verify the differential and obtain an observable bias of the output difference
at round 182. Finally, we give the key recovery procedure.

As presented in previous part, we choose the input difference with differences
in bit 8 and 33 of the IV. By tracing the difference propagation round by round,
we observe that a deterministic “1” difference first enters into Sbox at round
84. In order to control the difference propagation of the Sbox at this round, we
impose conditions at the output of S1 and S2, which is before the P permuta-
tion of the Sbox. Denote the i-th output bit of Sbox S1 and S2 at round r as
α[r][i], 1 ≤ i ≤ 8, r ≥ 1. At round 84, we observe that Δα[84][i] = 0, 1 ≤ i ≤ 4.
For 5 ≤ i ≤ 8, Δα[r][i] is indeterministic and these four difference expressions
are not independent, that is to say the four differences can not be “0” differ-
ence at the same time. Consequently, we set Δα[84][5] = 0 and Δα[84][6] = 0
by imposing 1 Type 0 condition and 8 Type 1 conditions. Then, Δα[84][7] and
Δα[84][8] are left to be “1” difference without extra conditions.

For Δu[84][5] = 0 and Δu[84][6] = 0, the detailed conditions are I1 = {v0 =
0, v110+k8 = 0, v61+v80+k106+1 = 0, v98+v114+k12+k52 = 0, v17+v42+k3k52+
k52 + k58 = 0, v65 + v84 + k5k54 + k54 + k110 + 1 = 0, v21 + v46 + k7k56 + k7k104 +
k56k104+k56+k62 = 0, v101+v117+f1(K) = 0, v24+v49+v57+f2(K) = 0}, where
f1(K) is a Boolean function with only key variables whose algebraic normal form
(ANF) has 19 key variables and 290 terms, f2(K) is a Boolean function with
only key variables whose ANF has 29 key variables and 731 terms.

Based on the input difference and imposed conditions provided above, we now
verify the differential and detect the bias of output difference by experiment. In
order to detect a bias of output difference, enough input samples are needed in
the experiments. Furthermore, in order to verify the validity and the stability of
the bias, we perform the experiment several times each with a randomly chosen
key and corresponding pairs of input samples. For each pair of input samples,
the IV bits are set as follows: v8 and v33 are set to be the difference bits, 9 bits
in I1 are set to satisfy the conditions and other IV bits are set to random values.
Actually, we randomly choose 64 keys. For each key, we randomly generate 232

pairs of input samples, and detect the bias of the output difference round by
round. The distribution of the detected bias of the 64 randomly chosen keys at
round 182 is depicted in Fig. 2.

186 X. Lu et al.

0 10 20 30 40 50 60 70 80

0

1

2

3

4

5

6

7

8

9

·10−4

No.Key

B
ia
s

Fig. 2. Bias distribution of 182-round Bagua

As listed in Fig. 2, we observe an averaged bias 2−10.63 of output difference
at round 182 with the standard deviation 2−12.93. Note that the number of pairs
of input samples we choose are actually very large to ensure the validity of the
experiments.

Since the large enough bias can be observed, the key recovery procedure
can be performed in the following. Without loss of generality, we use the bias
2−10.63 in our attack. According to I1, there are 8 independent expressions of
key bits that needed to be guessed in the attack. For each of the 28 guesses
of the 8 secret key expressions, we first choose 223.5 pairs of input samples to
verify whether it is the right guess. Through this experiment, we can recover
8 secret key expressions. The time complexity and the data complexity of this
attack are both 223.5+1+8 = 232.5. After recovering 8 key expressions, the full key
recovery attack runs in time 2120. According to the success probability formula
given in [5], the theoretical success probability of the attack is expected to be
more than 95.42%.

3.3 Analysis of 204-Round Bagua

In this part, we analyze the difference propagation more precisely and use differ-
ent condition imposing strategy to prevent the difference propagation as many
rounds as possible which leads to a observable bias of the output difference at
round 204.

Denote the i-th output bit of Sbox S3 and S4 at round r is β[r][i], 1 ≤ i ≤
8, r ≥ 1. By tracing the difference propagation, we observe that the indetermin-
istic difference in Δβ[84][8] will enter into Sbox at round 116, while the inde-
terministic difference in Δβ[84][1], Δβ[84][7], Δβ[84][2], Δβ[84][6], Δβ[84][3],
Δβ[84][5], Δβ[84][4] will enter into Sbox at round 117, 118, 119, 120, 121, 122,
123 respectively. In order to prevent the difference propagation as many rounds
as possible, we try to impose conditions to set the indeterministic differences to
be “0” differences as many as possible. Consequently, conditions derived from
Δβ[84][8] = 0 should be imposed to prevent the difference entering into Sbox at

Conditional Differential Cryptanalysis on Bagua 187

round 116. Similarly, to prevent the difference entering into Sbox at round 117
and 118, conditions derived from Δβ[84][1] = 0 and Δβ[84][7] = 0 are supposed
to be imposed.

According to the property of Sbox, it is easy to know that there will be at
least 1 output difference if a deterministic “1” difference enter into Sbox, that
is to say the four output differences of S3 can not be “0” differences at the
same time. In fact, Δβ[84][2] is left to be “1” difference, that is there is a deter-
ministic “1” difference entering into Sbox at round 119. Next, to prevent the
difference entering into Sbox at round 120, 121 and 122, conditions derived from
Δβ[84][6] = 0, Δβ[84][3] = 0 and Δβ[84][5] = 0 should be imposed respectively.
Meanwhile Δβ[84][4] is left to be “1” difference. In total, we impose 2 Type 0 con-
ditions, 26 Type 1 conditions and 4 Type 2 conditions. The detailed conditions
are I2 = {v0 = 0, v2 = 0, v108 + k6 = 0, v109 + k7 = 0, v110 + k8 = 0, v111 + k9 =
0, v15+v40+k56 = 0, v16+v41+k57 = 0, v97+v113+k11 = 0, v59+v78+k104+1 =
0, v60 + v79 + k105 + 1 = 0, v61 + v80 + k106 + 1 = 0, v62 + v81 + k107 + 1 =
0, v98 + v114 + k12 + k52 = 0, v99 + v115 + k13 + k53 = 0, v101 + v117 + k15 + k55 =
0, v17+v42+k3k52+k52+k58 = 0, v18+v43+k4k53+k53+k59 = 0, v20+v45+k6k55+
k55+k61 = 0, v64+v83+k4k53+k53+k109+1 = 0, v65+v84+k5k54+k54+k110+1 =
0, v66+v85+k6k55+k55+k111+1 = 0, v1+k10k59k107+k14+k59+k95+k107+k121 =
0, v21 + v46 + k7k56 + k7k104 + k56k104 + k56 + k62 = 0, v22 + v47 + k8k57 +
k8k105 + k57k105 + k57 + k63 = 0, v14 + v39 + f1(K) = 0, v125 + v109 + f2(K) =
0, v24 + v49 + v57 + f3(K) = 0, f4(K) = 0, f5(K) = 0, f6(K) = 0, f7(K) = 0},
where f1(K), f2(K), f3(K), f4(K), f5(K), f6(K), f7(K) are all Boolean func-
tions with only key variables whose ANF has 20, 26, 29, 22, 19, 19, 27 key
variables with 561, 374, 731, 69, 287, 376, 792 terms respectively.

In order to verify the validity and the stability of the bias of the output
difference, we perform the experiments using 12 randomly chosen keys each
with 235 pairs of input samples. For each pair of input samples, the IV bits
are set as follows: v8 and v33 are set to be the difference bits, 26 bits in I2
are set to satisfy the conditions and other IV bits are set to random values.
From the experiments, we observe an averaged bias 2−10.25 at round 182 with
standard deviation 2−17.41. We also observe an averaged bias 2−9.36 at round
184 with standard deviation 2−16.09 and an averaged bias 2−14.42 at round 204
with standard deviation 2−18.98. Note that the number of pairs of input samples
we choose is actually large enough to ensure the validity of the experiments.

Since the large enough bias can be observed, the key recovery procedure
can be performed in the following. Without loss of generality, we use the bias
2−14.42 in our attack. According to I2, for each random key, the probability that
it satisfies the 4 Type 2 conditions is 1

16 . For the case the key satisfies the 4 type
2 conditions, there are 26 independent expressions of key bits that needed to be
guessed in the attack, which are derived from I2. Then for each of the 226 guesses
of the 26 secret key expressions, we choose 232.5 pairs of input samples to verify
whether it is the right guess. Through this experiment, we can recover 26 secret
key expressions. The time complexity and the data complexity of this attack
are both 232.5+1+26 = 259.5. After recovering 26 key expressions, the full key

188 X. Lu et al.

recovery attack runs in time 2102. According to the success probability formula
given in [5], the theoretical success probability of the attack is expected to be
more than 97.9%.

Finally, we summarize the cryptanalytic results of Bagua with two versions
in Table 4.

Table 4. The cryptanalytic results of Bagua

Key size Rounds Bias Time Data Gain Success prob.

128 182 2−10.63 232.5 232.5 8 95.42%

256 2−10.89 233 233 95.12%

128 204 2−14.42 259.5 259.5 26∗ 94.16%

256 2−14.6 260 260 97.27%
∗ The key bits can be recovered only when the key belongs to
a large subset of 2−4 of the possible keys.

4 Conclusion

In this paper, we give the first third-party cryptanalysis of the stream cipher
Bagua. We analyze the difference propagation of the internal state of Bagua and
propose several strategies targeting at improving CDC on Bagua. The strategies
are based on the structural characteristics of Bagua and have proved to be highly
efficient in practical experiments. Hopefully, improved CDC could be combined
with other techniques and may be applied to the cryptanalysis on other cryp-
tosystems, which is one of our works in the future.

Acknowledgements. We are grateful to Meicheng Liu for his useful and helpful sug-
gestions on this paper. We also thank the anonymous reviewers of this paper for their
valuable comments.

References

1. Banik, S.: Some insights into differential cryptanalysis of grain v1. In: Susilo, W.,
Mu, Y. (eds.) ACISP 2014. LNCS, vol. 8544, pp. 34–49. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-08344-5 3

2. Banik, S.: Conditional differential cryptanalysis of 105 round grain v1. Crypt.
Commun. 8(1), 113–137 (2016). https://doi.org/10.1007/s12095-015-0146-5

3. Ben-Aroya, I., Biham, E.: Differential cryptanalysis of lucifer. In: Stinson, D.R.
(ed.) CRYPTO 1993. LNCS, vol. 773, pp. 187–199. Springer, Heidelberg (1994).
https://doi.org/10.1007/3-540-48329-2 17

4. Biham, E., Perle, S.: Conditional linear cryptanalysis-cryptanalysis of DES with
less than 242 complexity. IACR Trans. Symmetric Cryptol. 215–264 (2018).
https://doi.org/10.13154/tosc.v2018.i3.215-264

https://doi.org/10.1007/978-3-319-08344-5_3
https://doi.org/10.1007/s12095-015-0146-5
https://doi.org/10.1007/3-540-48329-2_17
https://doi.org/10.13154/tosc.v2018.i3.215-264

Conditional Differential Cryptanalysis on Bagua 189

5. Blondeau, C., Leander, G., Nyberg, K.: Differential-linear cryptanalysis revisited.
J. Cryptol. 30(3), 859–888 (2017). https://doi.org/10.1007/s00145-016-9237-5

6. De Cannière, C., Preneel, B.: Trivium. In: Robshaw, M., Billet, O. (eds.) New
Stream Cipher Designs. LNCS, vol. 4986, pp. 244–266. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-68351-3 18

7. Dinur, I., Shamir, A.: Cube attacks on tweakable black box polynomials. In: Joux,
A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 278–299. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-01001-9 16

8. Hell, M., Johansson, T., Meier, W.: Grain: a stream cipher for constrained environ-
ments. Int. J. Wirel. Mob. Comput. 2(1), 86–93 (2007). https://doi.org/10.1504/
IJWMC.2007.013798

9. ISO/IEC: Information technology - Security techniques - Lightweight cryptography
- Part 3: Stream ciphers. Standard, International Organization for Standardization,
Geneva, CH (2012)

10. Knellwolf, S.: Cryptanalysis of hardware-oriented ciphers the knapsack generator,
and SHA-1. Ph.D. thesis, ETH Zurich (2012)

11. Knellwolf, S., Meier, W., Naya-Plasencia, M.: Conditional differential cryptanalysis
of NLFSR-based cryptosystems. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol.
6477, pp. 130–145. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-17373-8 8

12. Li, J.Z., Guan, J.: Advanced conditional differential attack on grain-like stream
cipher and application on grain v1. IET Inf. Secur. 13(2), 141–148 (2018). https://
doi.org/10.1049/iet-ifs.2018.5180

13. Liu, M., Lu, X., Lin, D.: Differential-linear cryptanalysis from an algebraic per-
spective. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021. LNCS, vol. 12827, pp.
247–277. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84252-9 9

14. Ma, Z., Tian, T., Qi, W.F.: Improved conditional differential attacks on grain v1.
IET Inf. Secur. 11(1), 46–53 (2017). https://doi.org/10.1049/iet-ifs.2015.0427

15. Sarkar, S.: A new distinguisher on grain v1 for 106 rounds. In: Jajodia, S., Mazum-
dar, C. (eds.) ICISS 2015. LNCS, vol. 9478, pp. 334–344. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-26961-0 20

16. Tan, L., Zhu, X., Qi, W.: Bagua: a NFSR-based stream cipher constructed following
confusion and diffusion principles. In: Wu, Y., Yung, M. (eds.) Inscrypt 2020.
LNCS, vol. 12612, pp. 453–465. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-71852-7 30

17. Todo, Y., Isobe, T., Meier, W., Aoki, K., Zhang, B.: Fast correlation attack revis-
ited. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10992, pp.
129–159. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96881-0 5

18. Wang, X., Yu, H.: How to break MD5 and other hash functions. In: Cramer, R.
(ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 19–35. Springer, Heidelberg (2005).
https://doi.org/10.1007/11426639 2

19. Watanabe, Y., Todo, Y., Morii, M.: New conditional differential cryptanalysis
for nlfsr-based stream ciphers and application to grain v1. In: 2016 11th Asia
Joint Conference on Information Security (AsiaJCIS), pp. 115–123. IEEE (2016).
https://doi.org/10.1109/AsiaJCIS.2016.26

https://doi.org/10.1007/s00145-016-9237-5
https://doi.org/10.1007/978-3-540-68351-3_18
https://doi.org/10.1007/978-3-642-01001-9_16
https://doi.org/10.1504/IJWMC.2007.013798
https://doi.org/10.1504/IJWMC.2007.013798
https://doi.org/10.1007/978-3-642-17373-8_8
https://doi.org/10.1007/978-3-642-17373-8_8
https://doi.org/10.1049/iet-ifs.2018.5180
https://doi.org/10.1049/iet-ifs.2018.5180
https://doi.org/10.1007/978-3-030-84252-9_9
https://doi.org/10.1049/iet-ifs.2015.0427
https://doi.org/10.1007/978-3-319-26961-0_20
https://doi.org/10.1007/978-3-030-71852-7_30
https://doi.org/10.1007/978-3-030-71852-7_30
https://doi.org/10.1007/978-3-319-96881-0_5
https://doi.org/10.1007/11426639_2
https://doi.org/10.1109/AsiaJCIS.2016.26

Perfect Anonymous Authentication
and Secure Communication

in Internet-of-Things

Li Duan1,2(B), Yong Li2, and Lijun Liao2

1 Paderborn University, Paderborn, Germany
liduan@mail.upb.de

2 Huawei Technologies Düsseldorf, Düsseldorf, Germany
{li.duan,yong.li1,lijun.liao}@huawei.com

Abstract. The ever-expanding Internet-of-Things (IoT) does not only
call for data security but also privacy. On the other hand, conven-
tional secure communication protocols only consider confidentiality and
integrity of data, where the anonymity of communication peers is not
guaranteed. In this paper, we present concrete threats for the anonymity
of things in IoT and provide new practical solutions with perfect
anonymity during authentication and secure communication. We also
present a formal model to evaluate the protection and prove our proto-
cols are anonymous and secure. Moreover, we implement our solutions
and show that they are efficient in the real world.

Keywords: Internet-of-Things · Perfect anonymity · Authentication ·
Secure communication · Formal model

1 Introduction

Location data is frequently collected and processed in the Internet-of-Things
(IoT). Smartphones and IoT devices can have built-in Global Positioning System
(GPS) modules to access location based services (LBS). A user can use LBS to
find tourist sight, shopping mall, restaurant, or other places of interest, but the
convenience does not come for free. By collecting the LBS queries, an adversary
can extract more private information about the user far beyond their identity
and location. Sun et al. [30] show an example that if a user is found frequently
visiting a location near a hospital by an adversary A, who may infer that this
user has health problems.

A key observation is that, to succeed in any form of attacks, an adversary
needs to find out sufficient one-to-one mappings between an identifier and its
precise locations. Therefore, efforts have been made to break the link between
(pseudo-)identifiers and precise locations. One paradigm is to hide the real loca-
tion in a set, which may include k−1 dummy locations [30,33], cached locations
[23,33] or locations of other devices [14]. These are effective ways due to their
c© Springer Nature Switzerland AG 2022
P. Y. A. Ryan and C. Toma (Eds.): SecITC 2021, LNCS 13195, pp. 190–209, 2022.
https://doi.org/10.1007/978-3-031-17510-7_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-17510-7_14&domain=pdf
https://doi.org/10.1007/978-3-031-17510-7_14

Anonymous Authentication in IoT 191

k-anonymity in locations and we call these solutions as the location hiding app-
roach.

However, IoT applications which require precise locations may become
unavailable, if the measures above are taken. For instance, Apple’s offline finding
service requires precise location data to help the owner find a lost device. If k
locations are reported, then the owner cannot determine where to go.

1.1 Case Study: Offline Finding and Privacy

Apple announced its offline finding service (OF) in 2019. A detailed analysis of
OF is made by Heinrich et al. in 2021 [13].

Intuitively, OF works as follows (See Fig. 1). If a lost device (LD) supports
Bluetooth Low Energy (BLE), it will broadcast a message pk periodically via
BLE. A nearby Apple device FD, which supports OF and BLE, picks up this
pk and then uploads H(pk), together with an encrypted version of LD’s current
location data to the OF server via authenticated key exchange (AKE) protocols
such as Transport Layer Security (TLS) [10] over the Internet. The owner O of
LD can query the OF server with a list of hash values {hi = H(pki)}. If one
of hi matches the uploaded H(pk), O retrieves the corresponding M and the
encrypted location.

The security relies firstly on the secure communication protocol between
FD and the OF server, and that between the OF server and owners. As pk is
also updated every 15–20min, it is also hard to trace LD and its ownership.
Unfortunately, as pointed out in [13], technically, the OF server can mine a
social network from the data sent and received, even without decrypting the
location data. As shown in Fig. 1, if two devices belong to two different owners
O1 and O2 and both retrieve OF information from the server, and if the two
pk’s are uploaded by the same FD, then the server can conclude O1 and O2 are
in proximity.

LD1

FD

O1

O2

LD2

OF Server
pk1

pk2 {idFD, H(pk1), X1, Enck1(LocFD)}
{idFD, H(pk2), X2, Enck2(LocFD)} X1, Enck1(LocFD)

X2, Enck2(LocFD)

TLS TLS

Fig. 1. The offline finding protocol, abstracted. A lost devices is broadcasting an ever
updating public key pk periodically. The value Xi and the encryption scheme Enc()
are defined as in ECIES [29].

To mitigate this attack, the authors in [13] also advise that either the iden-
tifiers of FD or the owners O1 and O2 should be hidden from the OF server. We
consider this suggestion and alike as the identifier hiding approach.

192 L. Duan et al.

2 Contribution and Paper Structure

Location is only one category of information that can lead to privacy breach. To
provide user/device anonymity, we follow the identifier hiding approach to obfus-
cate the information-to-id mapping, i.e., to achieve unlinkability, and present
efficient solutions in IoT. In addition, we construct anonymous protocols which
can establish a secret key between the peers for secure communication. More
specifically, we make the following contributions.

– We present three anonymous authenticated key exchange (AAKE) protocols,
with trade-offs between security, anonymity and performance. These new pro-
tocols work not only in the client-server mode, but also support peer-to-peer
and ad-hoc networks in IoT.

– We propose a formal model in the game based framework with extended
queries to simulate the privacy threat to AAKE. By proving that the new
protocols are secure and anonymous in this model, we show that our design
is sound and robust.

– We show that our protocol is highly efficient by implementing them and
evaluate their performance in important metrics.

The related work is surveyed in Sect. 3 and the cryptographic primitives are intro-
duced in Sect. 4. Our new anonymous AKE protocols are presented in Sect. 5.
The security model to analyze AAKE protocols is presented in Sect. 6, together
with theorems and proof sketches. The implementation and evaluation results of
new protocols are presented in Sect. 7. The conclusion and possible future work
are in Sect. 8

3 Related Work

Location Hiding in LBS. To mitigating tracing attacks, researchers are trying to
achieve k-anonymity by hiding or obfuscating the real location data. This can
be done by cloaking with a location anonymizer [14], executing dummy location
selections [30], or cached locations [33]. All approaches above are trying to hide
the real location itself in a large set of possible locations, but not always hide
the user identities.

Ring Signature and Application. Anonymity, or the unlinkability of user to its
signature, is concerned in cryptographic primitives such as ring signature and
group signature schemes [1,3,5,22]. Bender et al. define in [5] a hierarchy of
anonymity for ring signatures, depending on whether maliciously registered pub-
lic keys or compromised honest user keys can help an adversary link signatures
to a user. Ring signature and its variants are widely used in new applications,
such as blockchain and e-vehicle charging [24,32], for hiding the link between
transactions and real user identities. Ring signature alone might seem to be
enough to eliminate the attacks in case study 1.1, but the solution is not that
trivial, as authenticated key exchange (AKE) connections, user authentication
or even DAKE [31] leaks the participant’s identity, too. Therefore, we also have
to consider the underlying authentication and key exchange protocols.

Anonymous Authentication in IoT 193

Secure Communication Protocols with Privacy. Deniable key exchange (DAKE)
[7,9,31] allows users to deny their participation in a protocol or a conversation
after the session ends, but typical constructions [31] expose honest user identifiers
in the handshake. Since anonymity or unlinkability is often considered orthogonal
to integrity [5] and confidentiality of messages, it remains challenging to define
anonymity as a property of AKE under the same condition of security. In 2019,
Arfaoui et al. [2] defined privacy in AKE protocols. This model imposes con-
straints on the ability of an adversary which tries to link sessions to identifiers,
while there is no such constraints for an adversary which wants to distinguish a
newly established key from a purely random one. The privacy guarantee of TLS
1.3 [15] is discussed thoroughly under this model in [2], too. Similar approach
was take to analyze 3GPP AKA [12], exposing its privacy weakness. In 2020,
Schäge et al. [27] proposed a strong model for privacy preserving authenticated
key exchange, by removing most of the constraints on the privacy adversary.
However, this new modeling requires a participant to have at least two pairs
of asymmetric keys and usually leads to a much more complicated, multi-stage
protocol like IKEv2 [18]. In practice, Tor [11] is believed to have user privacy
and its effect has been measured with tools [21], but no cryptographic model or
analysis for Tor has been proposed yet.

4 Notation and Preliminaries

In this section, we introduce the necessary cryptographic building blocks of our
solution.

4.1 Notation

The term κ ∈ N denotes the security parameter and 1κ the string that consists
of κ ones. Let [n] = {1, . . . , n} ⊂ N be the set of integers between 1 and n. If S is
a set, a

$← S denotes the action of sampling an element from S uniformly at ran-
dom. If A() is an algorithm, then m

$← AO(·)() denotes that (non-deterministic)
A outputs m with the help of another algorithm O(·). Let X||Y denote the oper-
ation concatenating two binary strings X and Y . The term Pr[A : B] denotes
the probability that event A happens if action B is taken. Other notations will
be introduced when necessary.

4.2 Cryptographic Primitives

Definition 1 (Message Authentication Code, MAC). A MAC scheme MAC =
(MAC.Gen,MAC.Tag,MAC.Vfy) consists of three algorithms MAC.Gen,MAC.Tag
and MAC.Vfy described as below.

– MAC.Gen(1κ) $→ k. The (non-deterministic) key generation algorithm
MAC.Gen() takes as the input the security parameter 1κ and outputs the MAC
secret key k.

194 L. Duan et al.

– MAC.Tag(k,m) $→ mT. The (non-deterministic) message tag generating algo-
rithm MAC.Tag() takes the secret key k and a message m as the input and
outputs the authentication tag mT.

– MAC.Vfy(k,m,mT) = b. The deterministic tag verification algorithm
MAC.Vfy() takes as input the MAC secret key k, a message m and a tag
mT, and outputs a boolean value b, which is TRUE iff mT is a valid MAC tag
on m.

Definition 2 (Pseudo-random function, PRF). A pseudo-random function F =
(FKGen,PRF) are a pair of two algorithms FKGen and PRF described as below.

– FKGen(1κ) $→ k. The non-deterministic key generation algorithm FKGen()
takes the security parameter 1κ as the input and outputs the secret key k.

– PRF(k, x) = y. The evaluation algorithm PRF() takes as the input the secret
key k and a value x in the domain and outputs an image y.

Definition 3 (authenticated symmetric key encryption scheme with associated
data, AEAD). An AEAD encryption scheme Π = (KGen,ENC,DEC) consists of
three algorithms KGen, ENC and DEC described as below.

– Π.KGen(1κ) $→ k. The non-deterministic key generation algorithm KGen()
takes the security parameter 1κ as the input and outputs one encryption-
decryption key k.

– Π.ENC(k,m, ad) $→ CT. The (non-deterministic) encryption algorithm ENC()
takes the key k, a message m and associated data ad as the input and outputs
a ciphertext CT.

– Π.DEC(k,CT) = m′. The deterministic decryption algorithm DEC() takes the
key k, a ciphertext CT as input and outputs a plaintext m′.

Due to the page limitation, we refer the reader to cryptography textbooks such
as [17] for Diffie-Hellman key exchange (DH) and for detailed security definition
of all the cryptographic primitives above.

Let G be a group of a large prime order and g be a generator of G. The
Gap computation Diffie-Hellman Problem (GCDH) is defined as: given a triple
(g, ga, gb) for a, b ∈ Zq, find the element C = gab with the help of a Decision
Diffie-Hellman Oracle , i.e., the oracle ODDH answers whether a given quadruple
(g, ga, gb, gc) has gab = gc.

Definition 4. This GCDH assumption states that, for any ppt adversary, the
following probability is negligible.

AdvGDH
A := Pr

[
C = gab : C

$← AODDH()(g, ga, gb); a, b ∈ Z|G|
]

4.3 Ring Signatures

Ring signature is essential for authenticating messages and provide anonymity
in this work. Intuitively, for a unconditionally anonymous ring signature scheme,
even the signer cannot decide whether the signature belongs to her, if all the
intermediate states of signing is erased.

Anonymous Authentication in IoT 195

Definition 5 (Ring signature scheme). We refer to an ordered list of R = {pk1,
· · · , pkk} of distinct public keys as a ring. A ring signature scheme RingSIG =
(RingGen, RingSign, RingVrfy) consists of three algorithms RingGen, RingSign and
RingVrfy described as below.

– RingGen(1κ) $→ (pk, sk). The non-deterministic key generation algorithm
RingGen() takes the security parameter 1κ as the input and outputs a pub-
lic key pk and the corresponding private key sk.

– RingSign(ski, R,m) $→ σ. The (non-deterministic) message signing algorithm
RingSign() takes the private key ski, i ∈ [k], a ring R = {pk1, · · · , pkk}, and
a message m as the input. It outputs the a signature σ.

– RingVrfy(R,m, σ) = b. The deterministic signature verification algorithm
RingVrfy() takes a ring R, a message m and a signature σ as input and
outputs a boolean value b. The output b is TRUE iff σ is a valid signature on
m with respect to ring R.

A ring signature scheme has the unforgeability against adaptive chosen message
attacks (EUF-CMA) like any ordinary signature schemes in [17]. A proper choice
of ring signature, such as AOS [1], can have anonymity after signing key exposure
in Definition 4 in [5].

5 New AAKE Protocols

Here we present three new AAKE protocols. We assume the participating IoT
nodes have the power and energy for communication and the required crypto-
graphic operations.

Protocol 1: One-Pass Messaging. This can be seen as a solution to the privacy
problem in case study 1.1. One participant is an IoT node, which would like to
have anonymity when uploading information m, and the other is a server. The
core idea is to use ring signature to hide the signer’s identity and use the server’s
static DH share to derive a new key for secure communication. As shown in Fig. 2,
both the IoT node and the server have access to a public but authenticated list
of verification keys DB := {(PIDv, pkv)}n

v=1. The authentication of these public
keys can be done by a third party. After initialization, the IoT node holds a
key pair, with its public key pki ∈ DB. The server also publishes a static Diffie-
Hellman share Y .

Once the node decides to communicate with the server, it first chooses a ring
Ri of size at least three1 , including pki. Second, it chooses nonce x and compute
the public share X. An encryption key K is then derived from Y x, X,Y and a
label "ENC" via a PRF. Finally, IoT node uses K to encrypt m and send to
server a message including Ri, X, a ring signature on them, and a ciphertext of
m. To save bandwidth, the IoT node can also opt to send short identifiers of pk’s

1 If the server’s public key is not in DB, then two would suffice.

196 L. Duan et al.

in Ri (not identifier of nodes), instead of complete public keys. The remaining
details can be found in Fig. 2.

If we consider m to be the content that a finder (FD) uploads in OF excluding
its own identity, then this protocol can replace the TLS channel while providing
confidentiality and anonymity of FD simultaneously.

Fig. 2. Protocol 1: One-pass AAKE with client anonymity, followed by messaging.

Protocol 2: Two-Pass with Mutual Anonymity. Now we extend the protocol for
two communicating IoT nodes in different rings. We also assume the pk’s are all
authenticated by a third party.

Each node chooses its own ring, DH nonces and shares. The public DH-shares
are signed using the ring signature and sent to the peer. The new session key
is then derived from the common secret Y x or Xy and the messages. Now the
forward secrecy is guaranteed even when ski and skj are leaked later. Anonymity
is ensured by the ring signature and proper size of the ring. This protocol can
be used for anonymous and confidential messaging. The remaining details can
be found in Fig. 3.

Fig. 3. Protocol 2: Two-pass AAKE with mutual anonymity.

Anonymous Authentication in IoT 197

Protocol 3: AAKE with Explicit Authentication. The key difference between
Protocol 2 and Protocol 3 is whether the communicating nodes can be sure
that one of the other ring members has correctly computed the new session key
directly in the handshake. We call this feature explicit authentication. Protocol
3 uses MAC over the first two messages for this feature, while protocol 2 can only
ensure a correct peer in the next application message encrypted with K after the
handshake (Fig. 4).

Fig. 4. Protocol 3: Three-pass AAKE with mutual anonymity and explicit authentica-
tion.

The provable security and anonymity of all protocols are analyzed in Sect. 6.
For ring signature instantiation, we use AOS [1] with elliptic curves (EC) and
RST [26] with RSA keys. The performance data can be found in Sect. 7.

6 AAKE Protocols and Security Model

6.1 Security Model

The first security model for AKE (without anonymity) was introduced by Bellare
and Rogaway [4], which has been extended and enriched later on [2,6,8,19,20,
27]. In this section, we sketch a variant of the formal security model for two party
AAKE protocols. The complete description of the model and all related variable
definition can be found in Appendix A. To emulate the real-world capabilities
of an active adversary, we provide an execution environment for adversaries.

Execution Environment. Similar to [27], instead of assuming an all-mighty
attacker who controls all end-to-end traffic across all layers, we assume a strong
man-in-the-middle adversary who fully controls a large, but well-defined part
of the Internet. In real world, we can eliminate the impact of static functional

198 L. Duan et al.

identifiers like fixed IP addresses by placing honest proxies (e.g., a gateway or a
TCP/IP proxy) at the entry points of the adversarial network.

The numbers �, d ∈ N are positive integers. A set of � honest parties
{P1, . . . , P�} is fixed in the execution environment. We use an index i to identify
a party in the security experiment, and each process oracle with its own index s
owned by party i is denoted as πs

i .

Adversarial Model. An adversary A in our model is a probabilistic algorithm with
polynomial running time (PPT), which takes as input the security parameter 1κ

and the public information. A may interact with these oracles by issuing the
following queries. We give rationale of each query here and refer the reader to
Appendix A for details.

– DrawOracle(Pi, Pj): This query takes as input two party indices, binds them
to and output a new vid, if Pi and Pj are not involved in any active session.

– NewSession(vid, vid
′
): This query will initiate a new session oracle πs

vid with
the given vid, and output the handle πs

vid to A.
– Send(πs

vid,m): A uses this query to send messages m to an established session
πs
vid.

– RevealKey(πs
vid): This query simply tells A the session keys, if the session

successfully ends.
– RevealID(vid): If vid has been defined, return real(vid).
– Free(vid): This query will not output anything but ends all negotiating sessions

that are associated with party Preal(vid). It will also flag vid as inactive.
– TestKey(πs

vid): This query outputs the required session key or a random string
of the same length, the probability of each is 1

2 . A has to tell whether the
output is the real session key.

– TestID(πs
vid): This query lets the adversary guess which party is behind the

vid, when the minimal number of candidates is two.

Rationale of AAKE Model. With the adversarial model and security experiment,
we can define key security and party anonymity. The intuition is that A cannot
distinguish the session key from random, unless A explicitly corrupts a party in
advance or directly sees the session key (via Corrupt() or RevealKey()).

On the other hand, by perfect anonymity at the protocol layer, we mean
that A cannot distinguish the behavior of two parties behind the same vid even
when keys are exposed, unless A sees the binding (via RevealID()). The formal
definitions are in Appendix A.

6.2 Security and Anonymity of New AAKE

We summarize the security and anonymity of our new AAKE protocols in the
following theorems. We sketch a proof for Theorem 1 and omit others due to the
similarity and page limitation.

Anonymous Authentication in IoT 199

Theorem 1 (Security and anonymity of protocol 1). Given a trusted setup,
protocol 1 is secure2 and client-anonymous against any PPT adversary, if
the given PRF function PRF is secure pseudo-random function, RingSIG =
(RingGen, RingSign, RingVrfy) is an EUF-CMA secure ring signature scheme
with anonymity with full key exposure [5], Gap-DH problem [25] is hard w.r.t G,
and ENC is an authenticated encryption scheme with associate data (AEAD).
More specifically, the advantages εCI, εANO of A with running time t to break the
ciphertext indistinguishability and anonymity respectively are bounded by

εCI ≤ (d · �)2

|N | + (d · �)2 · (εRingSIG + εGDH + εPRF + εENC) (1)

εANO ≤ (d · �)2

|N | + εRingSIG (2)

where d is the maximal number of parties, � the maximal number of process owned
by one party, and εPRF, εRingSIG, εGDH, εENC are the advantages of any probabilistic
polynomial time (PPT) algorithms against PRF, RingSIG, the Gap-DH problem
and ENC with running time bounded by t, respectively.

Proof (sketch). This theorem can be proved with the sequence of games tech-
nique [28]. The first term on the right side of Eq. (1) comes from a game where
honest nonce-collision is considered and eliminated. The loss factor (d ·�)2 comes
from a game where the challenger guesses the target oracle correctly to bind the
Gap-DH challenge. By replacing PRF outputs with random strings, the key of
ENC becomes random and the remaining chance A has is to break ENC directly.
By summing up all terms we get Eq. (1).

To prove the anonymity (Eq. (2)), we first eliminate nonce collision, and then
reduce to the anonymity of RingSIG. ��
Note that for this protocol, the anonymity is only ensured for a client device. A
public cloud usually does not consider its identity as privacy.

Theorem 2 (Security and anonymity of protocol 2). Given a trusted list of all
keys known to each participants, protocol 2 is secure and (mutual) anonymous
against any PPT adversary. More specifically, the advantages are bounded by

εKI ≤ (d · �)2

|N | + (d · �)2 · (εRingSIG + εGDH + εPRF) (3)

εANO ≤ (d · �)2

|N | + εRingSIG (4)

where εKI is the advantage in key indistinguishability and other variables are as
defined in Theorem1.

2 The key exchange part (KE, without the ciphertext C) has one-sided forward secrecy
if the server’s Y is never corrupted. The KE plus an AEAD leads to a secure ACCE
protocol with ciphertext indistinguishability (CI) [16].

200 L. Duan et al.

Theorem 3 (Security and anonymity of protocol 3). Given a trusted list of all
keys known to each participants, protocol 2 is (t, ε) secure and (mutual) anony-
mous against any PPT adversary. More specifically, the advantages of A with
running time t are bounded by

εKI ≤ (d · �)2

|N | + (d · �)2 · (εRingSIG + εGDH + εPRF + εMAC) (5)

εANO ≤ (d · �)2

|N | + εRingSIG (6)

where εMAC is the advantage of any PPT algorithm against MAC and the other
variables are as defined in Theorem1 and 2.

Protocol 2 and Protocol 3 both have perfect forward secrecy. A hash function
H() is used in RingSIG to compress messages and we consider the probability of
collisions of H() outputs as part of εRingSIG in all theorems above. The proof of
Theorem 2 and 3 are similar and presented in Appendix B.

7 Performance Evaluation

Test Bench and Metrics. All AAKE protocols are developed in JAVA with
Bouncy Castle Cryptography library 1.693. For the (EC-)DH, we use the curve
25519. We use RSA 2048 for the RSA-based ring signature and curve25519 for
ECC-based one. The simulation of IoT clients are on with Raspberry Pi 2 Model
B (Raspbian, Oracle JDK 8, 900 MHz quad-core ARM Cortex-A7 CPU), with
100 Mb LAN access. The maximal rate of upload and download is configured
with Wonder Shaper4. For the WAN test, both parties are connected via VPN
over Internet.

Result Summary. Each protocol is also implemented in two subversion with two
different ring signatures AOS [1] and RST [26].

– AOS is elliptic curve based, so its public key and signature size are small. For
example, for 128-bit security level, one public key and signature of AOS has
a size of 256 bit. But the verification of signatures usually takes longer than
that of verifying an RSA-based signature, such as RST.

– RST is RSA-based, so a typical public key/signature size is 2048 bit at security
level 112. Therefore, RST consumes more bandwidth but with much less
computational cost due to the CRT acceleration in RSA.

As shown in Fig. 5, we also test the protocols with ring size ranging from 2
to 80. The number of executions are the Y-coordinate and the size of the ring is
the X-coordinate. It can be seen that the number of allowed execution per 10 s
is inversely proportional to the size of the ring in all settings.
3 https://www.bouncycastle.org/.
4 https://github.com/magnific0/wondershaper.

https://www.bouncycastle.org/
https://github.com/magnific0/wondershaper

Anonymous Authentication in IoT 201

Fig. 5. Performance of AAKE

In settings with limited network latency such as LAN, AAKE with RST
outperforms its AOS-based peers, as computation (signature verification) plays
a major role in the cost. AOS-based AAKE has clear advantage when the ring
size is small (≤5) or the network latency is large (WAN), since the transmission
dominates the cost then. The result shows our new protocols are efficient and
can be adapted for IoT nodes of different computation power and features of
network access.

8 Conclusion and Future Work

In this paper, we construct highly efficient AAKE protocols with provable secu-
rity and anonymity at the protocol layer. We believe meaningful future works
can include combination of information hiding and identity hiding approaches,
simplification of anonymity models in messaging and key exchange protocols,
and protocol optimization for more constrained devices.

A AAKE Protocol and Security Model

A.1 Security Model

Execution Environment. Similar to [27], instead of assuming a all-mighty
attacker who controls all end-to-end traffic across all layers, we assume a strong

202 L. Duan et al.

man-in-the-middle adversary who fully controls a large, but well-defined part
of the Internet. In real world, we can eliminate the impact of static functional
identifiers like fixed IP addresses by placing honest proxies (e.g., a gateway or a
TCP/IP proxy) at the entry points of the adversarial network. And these proxies
do not hold any cryptographic secrets.

The numbers �, d ∈ N are positive integers. A set of � honest parties
{P1, . . . , P�} is fixed in the execution environment. We use an index i to identify
a party in the security experiment. Let K = {0, 1}κ be the key space of the
session keys. We use {PK,SK} ∈ {0, 1}κ to denote key spaces for long-term
public/private keys, respectively. Furthermore, all parties maintain several state
variables as described in Table 1. We say that party Pi is uncorrupted iff τi = ∞.

Table 1. Internal states of parties

Variable Description

ski The secret key of a public key pair (pki, ski)

ci The corruption status ci ∈ {exposed, fresh} of ski

τi The index of the query (τi-th) that made by the
adversary, which causes ski to be exposed

Each party Pi can execute the protocol arbitrary times sequentially and con-
currently. This is modeled by a collection of oracles {πs

i : i ∈ [�], s ∈ [d]}. Oracle
πs

i behaves as party Pi executing the s-th protocol instance with some intended
partner Pj .

Moreover, each oracle πs
i maintains a list of independent internal state vari-

ables as in Table 2.

Table 2. Internal states of oracles

Variable Description

Φs
i The execution-state Φs

i ∈ {negotiating, accept, reject}
Pidsi Stores the identity of the intended communication partner
Ks

i The session application key(s) Ks
i

Ts
i The transcript of messages sent and received by oracle πs

i

kstsi Denotes the freshness kstsi ∈ {exposed, fresh} of the
session key

bsi Stores a bit b ∈ {0, 1} used to define security

The variables Φs
i , Pid

s
i , Ks

i , and Ts
i are used by the oracles throughout protocol

execution. The variable kstsi and bs
i are only used for modeling security. All

variables, when first defined, will be initialized with the following rules:

Anonymous Authentication in IoT 203

– The execution-state Φs
i is set to negotiating.

– The variable kstsi is set to fresh.
– The bit bs

i is chosen at random.
– All other variables are set to only contain the empty string ∅.

We assume that each oracle πs
i completes the execution with a state Φs

i ∈
{accept, reject} at some time. Furthermore, we will always assume (for sim-
plicity) that Ks

i = ∅ if an oracle is not in accept. To analyze correctness, security
and anonymity, we need definitions of the partnership between two oracles.

Definition 6 (Original Key [20]). For a pair of communicating oracle (πs
i ,

πt
j), the original key is the session key that is computed by each of the ora-

cles in a complete protocol session with an entirely passive attacker, denoted as
OriginalSessionKeyF(πs

i , π
t
j), where πs

i is the initiator and πt
j the responder.

Definition 7 (Oracle Partnering [20]). Two oracles (πs
i , πt

j) are said
to be partnered if both oracles have computed their original key and
OriginalSessionKeyF(πs

i , π
t
j) = OriginalSessionKeyF(πt

j , π
s
i).

Definition 8 (Correctness). We say that an AKE protocol Π is correct, if
for any two oracles πs

i , πt
j that are partnered with Pids

i = j and Pidt
j = i and

Φs
i = accept and Φt

j = accept it always holds that Ks
i = Kt

j.

Adversarial Model. An adversary A in our model is a probabilistic algorithm with
polynomial running time (PPT), which takes as input the security parameter 1κ

and the public information, and may interact with these oracles by issuing the
following queries.

In addition to conventional queries in an AKE model such as [6], we also adopt
the DrawOracle() query, the Free() query, and the virtual identifier (vid) proposed
in [2] with modifications to model the privacy threats to AAKE protocols. The
additional functions and lists are as in Table 3.

Table 3. Additional functions and lists in AAKE model

Term Description

Lvid Stores active vids
dvid Indicates the bit choice in the DrawOracle() and TestID()

real(vid) Returns the party index that is chosen for vid, if that vid is defined
Linst Stores all vid that have been used. Each element has the form

{(vid, dvid, Pi, Pj)}
Lact Stores party indices that bound with active vids

– DrawOracle(Pi, Pj): This query takes as input two party indices and binds
them to a vid. If Pi ∈ Lact or Pj ∈ Lact, this query aborts and outputs ⊥.

204 L. Duan et al.

A new vid will be chosen at random. The challenger will flip a random coin
dvid

$← {0, 1}. real(vid) will be set to i if dvid = 0, and real(vid) = j if dvid = 1.
The list Lact will be updated to Lact ∪ {Pi, Pj}. Finally, if not aborts happens,
vid will be recorded in Lvid and Linst, and output to A.5

– NewSession(vid, vid
′
): If vid ∈ Lvid and vid

′ ∈ Lvid, this query will initiate a
new oracle πs

i with real(vid) = Pi and Pids
i = real(vid

′
), and output the handle

πs
vid to A. Otherwise it will output ⊥.

– Send(πs
vid,m): If vid /∈ Lvid, this query will output ⊥. Otherwise, this query

sends message m to oracle πs
real(vid). The oracle will respond with the next

message m∗ (if there is any) that should be sent according to the protocol
specification and its internal states.

– RevealKey(πs
vid): If vid /∈ Lvid, this query outputs ⊥. Let i = real(vid). Then

this oracle will output Ks
i if Φs

i = accept and ⊥ otherwise.
Oracle πs

vid responds to a RevealKey-query with the contents of variable Ks
i

and kstsi = exposed. If at the point when A issues this query there exists
another oracle πt

j which is partnered to πs
i , then ksttj = exposed for πt

j .
– RevealID(vid): If vid ∈ Linst, return real(vid).
– Corrupt(Pi): Oracle πi responds with the long-term secret key ski (if any) of

party Pi.
– Free(vid): this query will not output anything but do the following. If vid ∈

Lvid, look for the parties in Linst, remove vid from Lvid and parties from Lact.
End all negotiating sessions that are associated with party Preal(vid).

– TestKey(πs
vid): This query may only be asked once throughout the security

experiment. πs
vid handles TestKey query as follows: If vid /∈ Linst, or the oracle

has state Φs
vid = reject, or Ks

vid = ∅, then it returns some failure symbol ⊥.
Otherwise it flips a fair coin b, samples a random element K0 from key space
K, sets K1 = Ks

vid (the real session key), and returns Kb.
– TestID(πs

vid): This query may only be asked once throughout the security
experiment. It will set the anonymity test bit to be dvid and it will call
Free(vid′) for all vid′ ∈ Lvid. But no output is given to A. The intuition
of TestID(πs

vid) is to let the adversary guess which party is behind the vid,
when the minimal number of candidates is two.

Security of AKE Protocols. We define AKE security via a game (experiment)
played between a challenger C and an adversary A.

Security Game. In the game, the following steps are performed:

1. Given the security parameter κ the challenger implements the collection of
oracles {πs

i : i ∈ [�], s ∈ [d]} with respect to Π. In this process, he computes
identity idi and randomly generates key pairs pki/ski for all parties i ∈
[�]. The challenger gives the adversary A all identifiers {i} and all public
information (if any) as input besides the security parameter 1κ.

2. Next the adversary may start issuing DrawOracle, NewSession, Send,
RevealKey, RevealID, Corrupt and Free queries.

5 We remove the constraints on types of a party in [2] and use new coins for each draw,
since some of the trivial attacks in [2] can be efficiently mitigated in new protocols.

Anonymous Authentication in IoT 205

3. At some point, A may issue one of TestKey() and TestID() queries on an oracle
πs

i during the experiment only once. These two queries are exclusive to each
other.

4. At the end of the game, the adversary outputs a triple (vid, s, b′) as answer
to TestKey or (vid, d′) to TestID() and terminates.

With the adversarial model and security experiment, we can now define security
and anonymity formally.

Definition 9 (AKE Security, key Indistinguishability). We say that an
adversary (t, ε)-breaks an AKE protocol, if A runs in time t, and the following
conditions hold.

– When A terminates and outputs a triple (vid, s, b′) such that
• πs

vid ‘accepts′ – with a unique oracle πt
j such that πs

vid is partnered to πt
j –

when A issues its τ0-th query, and
• A did not issue a RevealKey-query to oracle πs

vid nor to πt
j, i.e. kstsi = fresh

with real(vid) = i, and
• Pi is τi-corrupted and Pj is τj-corrupted,

then the probability that b′ equals b is bounded by

|Pr[bs
i = b′] − 1/2| ≥ ε.

If an adversary A outputs (vid, s, b′) such that b′ = b and the above conditions
are met, then we say that A answers the TestKey correctly.

We say that the AKE protocol is (t, ε)-secure, if there exists no adversary that
(t, ε)-breaks it.

Definition 10 (Perfect anonymity). We say that an adversary (t, ε)-breaks
the anonymity an AKE protocol, if it runs in time t and outputs (vid, d′) after
querying TestID(πs

vid) with

|Pr[dvid = d′] − 1/2| ≥ ε.

and no RevealID(vid) has been issued. We say that the AKE protocol is (t, ε)-
anonymous, if there exists no adversary that (t, ε)-breaks it.

Definition 11 (AKE Security with Perfect Forward Secrecy). We say
that an AKE protocol is (t, ε)-secure with perfect forward secrecy (PFS), if it is
(t, ε)-secure with respect to Definition 9 and τi, τj ≥ τ0.

Definition 12 (Anonymous AKE). We say that an AKE protocol is (t, ε)-
secure with perfect anonymity, or AAKE, if it is (t, ε)-secure with respect to
Definition 11 and anonymous as in Definition 10.

Difference from the Model in [2]. Although both the model in [2] and our model
follow the vid approach, we use more robust partnership definition (original key
based) and allow any adversary A to get all keys when challenging the anonymity.
The robust partnership provides more flexibility. Less restriction on the leak-
age of keys models a stronger adversary, leading to higher guarantee on the
anonymity. From the definition and the proofs, we conjecture that the secrecy
of keys can be orthogonal to the anonymity.

206 L. Duan et al.

B Proof of Theorems

Here we present proof of Theorem 2.

Proof. First, we prove the key indistinguishability. i.e.,

εKI ≤ (d · �)2

|N | + (d · �)2 · (εRingSIG + εGDH + εPRF) (7)

Let Advi be the advantage of A in Gamei.
Game0. This is the original game, so we have

εKI = Adv0 (8)

Game1. We add an abort rule in this game. If any collision of honest generated
randomness happens, we abort the game. The abort probability can be bounded
by the term (d·�)2

|N | , where N is the space of a randomness. Therefore we have

Adv0 ≤ Adv1 +
(d · �)2

|N | . (9)

Game2. Let πs
i be the session oracle targeted by A and πt

j its partner. We
add an abort rule here. Let the challenger first guess (i, s, j, t). If the guess is
wrong, i.e., A make test queries for other oracles, abort the game. Thus we have

Adv1 ≤ (d · �)2 · Adv2 (10)

Game3. We add another abort rule. If any signature in the first or the second
message between πs

i and πt
j is not generated by the challenger, and the verifica-

tion passes, abort the game. Note that if the abort happens, and the adversary
does not fail trivially, at least one signature has been successfully forged. Thus
we have

Adv2 ≤ Adv3 + εRingSIG. (11)

Game4. We model PRF() as a random oracle and use later sampling. The
challenger then embed a Gap-DH challenge (ga, gb) in X and Y . The challenger
also chooses a random value K∗ in the key space and program the random oracle
PRF(·,X||Y ||"MAC") with K∗. We abort the game if A ever queries the random
oracle with a Z, such that ODDH(g,X, Y, Z) = TRUE. If this happens, a CDH
solution of (X = ga, Y = gb) are found, breaking the Gap-DH assumption. Thus
we have

Adv3 ≤ Adv4 + εGDH. (12)

Game5. We replace PRF() with a real random function RF(). Since after the
previous games, the PRF key is uniform random, independent of the choice bit
b, and unknown to A, this modification leads to

Adv4 ≤ Adv5 + εPRF (13)
Adv5 = 0 (14)

Anonymous Authentication in IoT 207

By combining the inequalities (8) to (14), we have proved (7). Note that even
if the identity of the real participant of the is exposed, which is equivalent to
replacing the ring signature with a conventional but secure one, the session key
remains indistinguishable from random.

Then we prove the anonymity, i.e.,

εANO ≤ (d · �)2

|N | + εRingSIG, (15)

in another sequence of games.
Game0. This is the original game, so we have

εANO = Adv0 (16)

Game1. Here we eliminate the event of honest nonce collision and get

Adv0 ≤ Adv1 +
(d · �)2

|N | . (17)

We now show how to construct an adversary B against the anonymity of RingSIG
from A. In this game, except for the signature related keys, B simulate the
game by itself and faithfully for A. We highlight the critical operations in the
simulation.

– In initialization, B asks for d public keys from its own RingSIG challenger
(oracles).

– Each time a DrawOracle() is made, in addition to the necessary steps defined
in the query, B record the a ring {vid, Pi, Pj} in another list R.

– For Corrupt() queries, B queries its RingSIG oracles for the signing key.
– For every message that need a signature, B queries its RingSIG oracles for the

signature.
– For TestID(vid), B locates the ring {Pi, Pj} corresponding to vid in R, and

forward A’s answer and {Pi, Pj} its own challenger.

The simulation is perfect when no nonce collision happens and it is straight
forward to see that B wins only if A wins. ��

The proof of the bound of εKI in Theorem 3 is similar to the previous proof,
with additional game hops for MAC. The anonymity is also guaranteed by the
anonymity of the ring signature RingSIG. Due to page limit, we leave the proof
to the full version.

References

1. Abe, M., Ohkubo, M., Suzuki, K.: 1-out-of-n signatures from a variety of keys.
In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 415–432. Springer,
Heidelberg (2002). https://doi.org/10.1007/3-540-36178-2_26

https://doi.org/10.1007/3-540-36178-2_26

208 L. Duan et al.

2. Arfaoui, G., Bultel, X., Fouque, P.A., Nedelcu, A., Onete, C.: The privacy of the
TLS 1.3 protocol. In: Proceedings on Privacy Enhancing Technologies 2019, pp.
190–210 (2019)

3. Au, M.H., Liu, J.K., Susilo, W., Yuen, T.H.: Certificate based (linkable) ring signa-
ture. In: Dawson, E., Wong, D.S. (eds.) ISPEC 2007. LNCS, vol. 4464, pp. 79–92.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72163-5_8

4. Bellare, M., Rogaway, P.: Entity authentication and key distribution. In: Stinson,
D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 232–249. Springer, Heidelberg
(1994). https://doi.org/10.1007/3-540-48329-2_21

5. Bender, A., Katz, J., Morselli, R.: Ring signatures: stronger definitions, and con-
structions without random oracles. In: Halevi, S., Rabin, T. (eds.) TCC 2006.
LNCS, vol. 3876, pp. 60–79. Springer, Heidelberg (2006). https://doi.org/10.1007/
11681878_4

6. Blake-Wilson, S., Johnson, D., Menezes, A.: Key agreement protocols and their
security analysis. In: Darnell, M. (ed.) Cryptography and Coding 1997. LNCS, vol.
1355, pp. 30–45. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0024447

7. Boyd, C., Mao, W., Paterson, K.G.: Deniable authenticated key establishment
for internet protocols. In: Christianson, B., Crispo, B., Malcolm, J.A., Roe, M.
(eds.) Security Protocols 2003. LNCS, vol. 3364, pp. 255–271. Springer, Heidelberg
(2005). https://doi.org/10.1007/11542322_31

8. Canetti, R., Krawczyk, H.: Analysis of key-exchange protocols and their use for
building secure channels. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol.
2045, pp. 453–474. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-
44987-6_28

9. Di Raimondo, M., Gennaro, R., Krawczyk, H.: Deniable authentication and key
exchange. In: Proceedings of the 13th ACM Conference on Computer and Com-
munications Security, pp. 400–409 (2006)

10. Dierks, T., Rescorla, E.: The Transport Layer Security (TLS) protocol version 1.2.
RFC 5246 (Proposed Standard), August 2008. http://www.ietf.org/rfc/rfc5246.
txt. Updated by RFCs 5746, 5878

11. Dingledine, R., Mathewson, N., Syverson, P.: Tor: the second-generation onion
router. Technical report, Naval Research Lab, Washington DC (2004)

12. Fouque, P.A., Onete, C., Richard, B.: Achieving better privacy for the 3GPP AKA
protocol. Proc. Priv. Enhancing Technol. 2016(4), 255–275 (2016)

13. Heinrich, A., Stute, M., Kornhuber, T., Hollick, M.: Who can find my devices?
Security and privacy of apple’s crowd-sourced bluetooth location tracking system.
arXiv preprint arXiv:2103.02282 (2021)

14. Hu, H., Xu, J.: Non-exposure location anonymity. In: 2009 IEEE 25th International
Conference on Data Engineering, pp. 1120–1131 (2009)

15. Internet Engineering Task Force, Rescorla, E.: The transport layer security (TLS)
protocol version 1.3 (2018). https://tools.ietf.org/html/draft-ietf-tls-tls13-26

16. Jager, T., Kohlar, F., Schäge, S., Schwenk, J.: On the security of TLS-DHE in the
standard model. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS,
vol. 7417, pp. 273–293. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-32009-5_17

17. Katz, J., Lindell, Y.: Introduction to Modern Cryptography. CRC Press, Boca
Raton (2014)

18. Kaufman, C., Hoffman, P., Nir, Y., Eronen, P.: Internet key exchange protocol
version 2 (IKEv2). RFC 5996 (Proposed Standard), September 2010. http://www.
ietf.org/rfc/rfc5996.txt. Updated by RFC 5998

https://doi.org/10.1007/978-3-540-72163-5_8
https://doi.org/10.1007/3-540-48329-2_21
https://doi.org/10.1007/11681878_4
https://doi.org/10.1007/11681878_4
https://doi.org/10.1007/BFb0024447
https://doi.org/10.1007/11542322_31
https://doi.org/10.1007/3-540-44987-6_28
https://doi.org/10.1007/3-540-44987-6_28
http://www.ietf.org/rfc/rfc5246.txt
http://www.ietf.org/rfc/rfc5246.txt
http://arxiv.org/abs/2103.02282
https://tools.ietf.org/html/draft-ietf-tls-tls13-26
https://doi.org/10.1007/978-3-642-32009-5_17
https://doi.org/10.1007/978-3-642-32009-5_17
http://www.ietf.org/rfc/rfc5996.txt
http://www.ietf.org/rfc/rfc5996.txt

Anonymous Authentication in IoT 209

19. Krawczyk, H.: HMQV: a high-performance secure Diffie-Hellman protocol. In:
Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 546–566. Springer, Hei-
delberg (2005). https://doi.org/10.1007/11535218_33

20. Li, Y., Schäge, S.: No-match attacks and robust partnering definitions: defining
trivial attacks for security protocols is not trivial. In: Thuraisingham, B.M., Evans,
D., Malkin, T., Xu, D. (eds.) Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, CCS 2017, Dallas, TX, USA, 30 October–
03 November 2017, pp. 1343–1360. ACM (2017). https://doi.org/10.1145/3133956.
3134006

21. Mani, A., Wilson-Brown, T., Jansen, R., Johnson, A., Sherr, M.: Understanding
tor usage with privacy-preserving measurement. In: Proceedings of the Internet
Measurement Conference 2018, pp. 175–187 (2018)

22. Melchor, C.A., Cayrel, P.L., Gaborit, P., Laguillaumie, F.: A new efficient threshold
ring signature scheme based on coding theory. IEEE Trans. Inf. Theory 57(7),
4833–4842 (2011)

23. Niu, B., Li, Q., Zhu, X., Cao, G., Li, H.: Enhancing privacy through caching in
location-based services. In: 2015 IEEE Conference on Computer Communications
(INFOCOM), pp. 1017–1025 (2015)

24. Noether, S.: Ring signature confidential transactions for Monero. IACR Cryptol.
ePrint Arch. 2015, 1098 (2015)

25. Okamoto, T., Pointcheval, D.: The gap-problems: a new class of problems for the
security of cryptographic schemes. In: Kim, K. (ed.) PKC 2001. LNCS, vol. 1992,
pp. 104–118. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44586-
2_8

26. Rivest, R.L., Shamir, A., Tauman, Y.: How to leak a secret. In: Boyd, C. (ed.)
ASIACRYPT 2001. LNCS, vol. 2248, pp. 552–565. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-45682-1_32

27. Schäge, S., Schwenk, J., Lauer, S.: Privacy-preserving authenticated key exchange
and the case of IKEv2. In: Kiayias, A., Kohlweiss, M., Wallden, P., Zikas, V. (eds.)
PKC 2020. LNCS, vol. 12111, pp. 567–596. Springer, Cham (2020). https://doi.
org/10.1007/978-3-030-45388-6_20

28. Shoup, V.: Sequences of games: a tool for taming complexity in security proofs.
Cryptology ePrint Archive, Report 2004/332 (2004). http://eprint.iacr.org/

29. Shoup, V.: ISO/IEC 18033-2: 2006: Information technology-security techniques-
encryption algorithms-Part 2: Asymmetric ciphers. International Organization for
Standardization, Geneva, Switzerland 44 (2006)

30. Sun, G., et al.: Efficient location privacy algorithm for internet of things (IoT)
services and applications. J. Netw. Comput. Appl. 89, 3–13 (2017)

31. Unger, N., Goldberg, I.: Deniable key exchanges for secure messaging. In: Proceed-
ings of the 22nd ACM SIGSAC Conference on Computer and Communications
Security, pp. 1211–1223 (2015)

32. Xu, S., Chen, X., He, Y.: EVchain: an anonymous blockchain-based system for
charging-connected electric vehicles. Tsinghua Sci. Technol. 26(6), 845–856 (2021)

33. Zhu, X., Chi, H., Niu, B., Zhang, W., Li, Z., Li, H.: MobiCache: when k-anonymity
meets cache. In: 2013 IEEE Global Communications Conference (GLOBECOM),
pp. 820–825 (2013)

https://doi.org/10.1007/11535218_33
https://doi.org/10.1145/3133956.3134006
https://doi.org/10.1145/3133956.3134006
https://doi.org/10.1007/3-540-44586-2_8
https://doi.org/10.1007/3-540-44586-2_8
https://doi.org/10.1007/3-540-45682-1_32
https://doi.org/10.1007/978-3-030-45388-6_20
https://doi.org/10.1007/978-3-030-45388-6_20
http://eprint.iacr.org/

Flexible Group Non-interactive Key
Exchange in the Standard Model

Li Duan1,2, Yong Li2(B), and Lijun Liao2

1 Paderborn University, Paderborn, Germany
liduan@mail.upb.de

2 Huawei Technologies Düsseldorf, Düsseldorf, Germany
{li.duan,yong.li1,lijun.liao}@huawei.com

Abstract. In this paper, we constructed a non-interactive group key
exchange protocol (GNIKE) with flexibility, i.e., the number of partici-
pants in the GNIKE is not predefined. Moreover, our GNIKE construc-
tion is only based on multilinear map and conventional cryptographic
building blocks. The security proof of our GNIKE is in the standard
model and relies on an n-exponent multilinear DDH assumption.

Keywords: Group non-interactive key exchange · Multilinear maps ·
Chameleon hash

1 Introduction

1.1 Scalable and Flexible Key Exchange

To communicate with Bob in an untrusted environment, Alice has to agree with
Bob on a common secret first. In such a situation, key exchange (KE) protocols
can be applied to ensure a shared secret (key) protected against adversaries.
Upon the establishment of the shared key, symmetric cryptography can be used
to protect the real data (payload) flowing between them.

If we go beyond the 2-party case, one of the major challenges faced by group
KE protocol design is to achieve scalability and flexibility simultaneously. Scal-
ability means the shared key should be established within constant rounds of
communication [18]. This property is critical for real-world KE protocol, espe-
cially in situations where expensive interactions have to be avoided as much as
possible. Taking the Internet of Things (IoT) as an example, the energy con-
sumption of the IoT end-devices rockets when sending and receiving messages,
but the power supply is usually a battery with limited capacity. Thus communi-
cation round reduction can drastically reduce the manufacture and maintenance
cost of such devices, generating greater margin for the IoT service provider.

On the other hand, flexibility means the protocol initiator Alice can choose
how many partners she wants to share the key. This property becomes essential if
the communication network is constructed in an ad-hoc way without predefined

c© Springer Nature Switzerland AG 2022
P. Y. A. Ryan and C. Toma (Eds.): SecITC 2021, LNCS 13195, pp. 210–227, 2022.
https://doi.org/10.1007/978-3-031-17510-7_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-17510-7_15&domain=pdf
https://doi.org/10.1007/978-3-031-17510-7_15

Group Non-interactive Key Exchange 211

sizes. IoT and other mobile devices tend to form temporary communication
groups frequently, so a flexible KE can also help support such applications.

Viewing from the pure theoretical aspect, non-interactive authenticated key
exchange (NIKE) protocols can be applied to archive good scalability, as no com-
munication round is needed between different participants for key establishment
[9]. More specifically, by non-interactive it means that the initiator can first com-
pute the shared group session key offline without contacting others. Once the
key is ready to use, the initiator sends out the first message to all her peers,
which carries the encrypted application data with associated information for
sender identification and group member recognition. After the message arrived,
the receiver can then use the associated information to compute the shared group
(session) key, decrypt the application data and continue with more communica-
tion. However, it is not trivial to design flexible NIKE protocol for groups larger
than three and it has become an attractive research topic since 2010.

1.2 Group Non-interactive Key Exchange With and Without iO

Being proposed by Diffie and Hellman [8] in their celebrated work, the nature
of NIKE was studied in depth by Freire et al. [9] in the 2 party case. Var-
ious security models were also formalized in [9]. Boneh et al. [5] constructed
the first semi-static-secure GNIKE but with predefined number of users from
indistinguishability obfuscator (iO) [2]. Hofheinz et al. [15] constructed the first
adaptively secure GNIKE with and without trusted setup from universal sam-
pler, which is instantiated with iO and other components. The security proof
of their trust-setup-free scheme is in the random oracle (RO) model. Rao [29]
constructed adaptively secure NIKE among bounded number of parties based on
the existence of iO and multilinear map for the cases with and without trusted
setup. Khurana et al. [19] constructed a NIKE for unbounded parties from iO
with trusted setup and non-adaptive security. An overview of the comparable
GNIKE works can be found in Table 1. Unlike the existing and provably secure
GNIKE protocols mentioned above, our solution and its security directly depends
on multilinear map.

Indistinguishability Obfuscation and Multilinear Map. In STOC 2021, it
has been shown that iO can be constructed through a long line of bootstrapping
from well-founded assumptions (LWE, structured PRG in NC0, LPN) [17] or
from circular security assumptions [14], but most of the existing constructions
of iO are in fact based on multilinear map [12,23–25,28].

Besides iO, multilinear map is frequently used to construct other interesting
primitives, such as attribute based encryption [13] and revocable identity based
encryption [27]. Up to now, there exist a limited number of multi-linear map
proposals, such as GGH [11], CLT [7] and their variants [21]. Each proposal
depends only on the hardness of one problem. GGH needs learning-with-error
problem (LWE) and CLT needs Graded Decisional Diffie-Hellman [7]. Analysis
of these multilinear map proposals has also been made, which often exposes
weakness in the candidate but also inspires remedies [4,6,16].

212 L. Duan et al.

As multilinear map usually depends only on one assumption and as funda-
mental as iO [26], building a GNIKE protocol directly on multilinear map results
in lightweight design and simplified security arguments.

1.3 Our Contribution and the Outline of the Paper

Provable security has become a fundamental requirement for all newly proposed
schemes or protocols. To formally address the security issues of GNIKE proto-
cols, we propose the definition and the generic security models.

Most importantly, we construct a provably secure and scalable GNIKE pro-
tocol with limited trusted setup. This means that only the system wide public
parameters (including one public key) is required to be trusted, while the partic-
ipants can generate their own key pairs conforming with the public parameters.

Moreover, our GNIKE construction is only based on the existence of mul-
tilinear maps, besides more conventional cryptographic building blocks such as
the chameleon hash. In addition, our main security theorem is proved in stan-
dard model relying on an n-exponent multi-linear DDH (nEMDDH) assumption
without the use of random oracles.

Outline. The notations and definitions of cryptographic primitives are pre-
sented in Sect. 2. The model and definition of GNIKE can be found in Sect. 3.
The main construction, the security theorem proof and its proof are provided in
Sect. 4. The conclusion, as well as the future works, is presented in Sect. 6. The
intractability of our complexity assumption is analyzed in Appendix A.

1.4 Other Related Works

Scalable Interactive Group Key Exchange. In 2003, Katz et al. [18] pro-
posed the first scalable interactive group authenticated key exchange protocol,
as well as a scalable compiler that can transform other passively secure group
KE protocol to a group AKE, adding only one round of communication. The
authors also enclosed a survey about the then existing group AKE protocols,
focusing on the provable security and efficiency of these protocols. Abdalla et
al. [1] presented a flexible group AKE protocol, with which the members of the
main group can establish session keys for sub-groups interactively.

2 Preliminaries

Notations. We let κ ∈ N denote the security parameter, and 1κ the unary string
of length κ. Let [n] = {1, . . . , n} ⊂ N be the set of integers between 1 and n. If S

is a set, a
$← S denotes the action of sampling a uniformly random element from

S. The term X||Y denotes the operation of concatenating two binary strings X

and Y . Let F (x) $→ y denote that a probabilistic algorithm F () takes x as input
and outputs y. Other notations will be introduced when they first appear.

Group Non-interactive Key Exchange 213

Table 1. The comparison of GNIKE protocols involving n participants, w.r.t. compu-
tational complexity, where iO prog. gen. denotes to generate an obfuscated program
with the iO and prog. op. denotes to call an obfuscated program.

Work # iO prog. gen. # prog. op. # m-map

Here 0 0 n

Rao [29] 1 (n if without trusted setup) n n

Khurana [19] 1 n n

Hofheinz [15] 1 (n if without trusted setup) n 0

2.1 Chameleon Hash Functions

Chameleon hashes [20] are a class of trapdoor cryptographic hash functions that,
without knowledge of the associated trapdoor, are resistant to the inversion and
of collision attacks. On the other hand, the collisions can be efficiently found
with the trapdoor information.

Definition 1 (Chameleon Hash). A chameleon hash function CH is a tuple
of three polynomial time algorithms CH = (CH.GEN,H,CF).

– CH.GEN(1κ) $→ (p, τ). The non-deterministic key generation algorithm
CH.GEN(1κ) on input of a security parameter 1κ, outputs a chameleon hash
function key pair (p, τ), where p is the public key of chameleon hash and τ
the trapdoor key.

– Hp(m, r) $→ h. Let DCH be the space of messages, RCH the space of random-
ness and ZCH the space of hash values, all of which are parametrized by 1κ

and associated with (p, τ). The polynomial algorithm Hp(m, r), on input of
the public key p, a message m ∈ DCH and a randomness r ∈ RCH, computes
a hash value h ∈ ZCH.

– CFτ (m, r) = (m∗, r∗). The collision finding algorithm CFτ (h, r) takes as input
the trapdoor key τ , a message m ∈ DCH and a randomness r ∈ RCH and it
outputs a message m∗ ∈ DCH and a randomness r∗ ∈ RCH with Hp(m, r) =
Hp(m∗, r∗), m �= m∗ and r �= r∗.

Definition 2 (Collision resistance). CH is called (tCH, εCH)-chameleon-hash
if for all tCH-time adversaries A it holds that

Pr
[
(p, τ) $← CH.GEN(1κ); (m,m∗, r, r∗) $← A(1κ,H, p) :

m �= m∗ ∧
r �= r∗ ∧

Hp(m, r) = Hp(m∗, r∗)

]
≤ εCH(κ),

where εCH(κ) is a negligible function in the security parameter κ, messages
m,m∗ ∈ DCH and randomness r, r∗ ∈ RCH.

2.2 Multilinear Maps

In the following, we briefly recall some of the basic properties of multilinear maps
as in [3].

214 L. Duan et al.

Definition 3 (n-Multilinear Maps). We state that a map nMAP : G1× . . .×
Gn → GT is an nMultilinear map if it satisfies the following properties:

1. G1 . . .Gn and GT are groups of the same order.
2. if xi ∈ Zp, Xi ∈ Gi and i = 1, . . . n, then

nMAP(Xx1
1 , . . . , Xxn

n) = nMAP(X1, . . . , Xn)
∏x

i=1 xi ,
3. if gi ∈ Gi is a generator of Gi, then gT = nMAP(g1, . . . , gn) is a generator of

GT , where i = 1, . . . n.

We assume the existence of a group description generation algorithm nMGG.Gen,
which takes as input a security parameter κ and a positive integer n ∈ N. The
output of nMGG.Gen(1κ, n) is MG = (G, nMAP), which contains a sequence
of groups G = (G1, . . . ,Gn,GT) each of a large prime order p > 2κ and a
multilinear map nMAP over G. Note that a multilinear map is symmetric when
G1 = . . . = Gn and g1 = . . . = gn, otherwise the asymmetric case when different
Gi was considered.

2.3 The n-Exponent Multilinear Decision Diffie-Hellman
Assumption

First, let GP = (G1, g1, . . . ,Gn, gn,GT , p, nMAP) denote the description of
asymmetric multilinear group. For simplicity, we state the complexity assump-
tion needed for our proof of security using symmetric multilinear maps, i.e.
G1 = . . . = Gn, and g1 = . . . = gn. The n-Exponent multilinear deci-
sional Diffie-Hellman (nEMDDH) problem that is stated as follows: given a
tuple (g, ga, gb, R) ∈ G

3 × GT as input, where a, b ∈ Zp and output yes if
nMAP(g, . . . , g)a

nb = R and no otherwise.

Definition 4. We say that the nEMDDH problem is (t, εnEMDDH)-hard in GP if
for all adversaries running in time t, it holds that
∣∣∣Pr [

A(g, ga, gb, nMAP(g, . . . , g)a
nb) = 1

]
− Pr

[A(g, ga, gb, R) = 1
]∣∣∣ ≤ εnEMDDH,

where (g, ga, gb, R) $← G
3 × GT .

3 Group Non-interactive Key Exchange and Security
Models

3.1 Group Non-interactive Key Exchange

Following Freire, et al. [9], we first present a generic definition of group non-
interactive key exchange (GNIKE) in the public key setting. For a GNIKE proto-
col, each party of a group knows the others’ public keys, and without requiring
any interaction they can agree on a common shared key. The shared key is gen-
erated to be known only by the members of a group.

Group Non-interactive Key Exchange 215

Let KGK be the space of shared keys, {PK,SK} be key spaces of long-term
public keys and private keys respectively, IDS the identity space of the parties,
KGK the space of the shared group keys. Those spaces are associated with security
parameter κ of the considered protocol. Let GPK = {(IDt, pkIDt)}n be the set of
tuples to store the public information of all parties for GNIKE, where n is the size
of the group, t ∈ [n] and pkIDt

the public key of the party with the identity IDt ∈
IDS, and GPKi = GPK\{IDi, pkIDi}1. Each party with IDt (t ∈ [n]) has a static
key pair (pkIDt

, skIDt
) ∈ (PK,SK). A general PKI-based GNIKE protocol consists

of three polynomial time algorithms (GNIKE.Setup,GNIKE.KGen,GNIKE.SKG)
with following semantics:

– GNIKE.Setup(1κ) → pms: This algorithm takes as input a security parameter
κ and outputs a set of system parameters stored in a variable pms.

– GNIKE.KGen(pms, IDi) → (pkIDi
, skIDi

): This algorithm takes as input system
parameters pms and a party’s identity IDi, and outputs a random key pair
(pkIDi

, skIDi
) ∈ {PK,SK} for party IDi.

– GNIKE.SKG(skIDi
, IDi,GPKi) → KGPK: This algorithm take as input (skIDi

,
IDi) and the group public information GPKi = {(IDt, pkIDt

)}, then outputs a
shared key KGPK ∈ KGK. Notice that this algorithm GNIKE.SKG is allowed to
output a shared key KGPK, even though some participants IDi = IDj , where
IDi, IDj ∈ GPK.
For correctness, on input the same group description the algorithm
GNIKE.SKG must satisfy the constraint:

• GNIKE.SKG(skIDi
, IDi,GPKi) = GNIKE.SKG(skIDj

, IDj ,GPKj), where
skIDi and skIDj are secret keys of parties IDi, IDj .

3.2 Security Models for GNIKE

Freire, et al. [9] formalized a list of security models for NIKE schemes in the
2-party setting, including the honest/dishonest key registration PKI system,
denoted here as FHKP models. By generalizing these models into the n-party
case (n ≥ 3), various works have defined the static security [19,31] and the
adaptive security [15,29]. It is the main difference between those two security
definitions whether the adversary has to commit to a group S∗ to be challenged
on before issuing any other queries. Essentially, A protocol is said to be static
secure if the adversary has to commit to S∗ and adaptively secure otherwise.
We follow the adaptive definition and in our models, the adversary can actively
interact with RegisterHonestUID, RegisterCorruptUID, Corrupt, RevealHonestKey,
RevealCorruptKey and Test oracles, which we will describe below.

Group Partner Identities. We say that a party PIDi is a partner of another party
PIDj

, if they share the same shared key. Notice that PIDi
has multiple partners for

GNIKE protocol. Each party can sequentially and concurrently execute the proto-
col multiple times with its (different) partners. This is modeled by allowing each

1 If i = 1, then GPKi = GPK1 = {IDt, pkIDt}, t = {2, . . . , n}.

216 L. Duan et al.

principal an unlimited number of instances with which to execute the protocol.
We denote group partner identities of any instance s for GNIKE using a variable
Gpid. The group partner identities of instance s, denoted here as Gpids, stores a
set containing the identities of the players that intend to establish a shared key
for instance s, where the identities are ordered lexicographically. n = |Gpids| is
the number of the identities involved in this instance s. It means that n implies
the group-size of key exchange. The Gpid of instance s is set to {ID1, . . . , IDn}.

Adversarial Model. The adversary A is assumed to have complete control over
all communication in the public network. A in our models is a PPT Turing
Machine taking as input the security parameter κ and the public information
(e.g. generic description of the environment mentioned above). A’s interaction
with the principals is modeled by the following oracles. In GNIKE there is no
interaction among the parties, so it means that for modelling a active adversaries
against GNIKE no Send query can be considered in the models.

We assume for simplicity a polynomial-size set PP = {ID1, . . . , IDi, . . . , ID�}
of potential honest participants, where IDi represents the identity of a party, and
i ∈ [�]. In our models, A can control the number of the potential participants by
the RegisterHonestUID and RemoveUID queries. Each identity IDi is associated
with a static key pair (pkIDi , skIDi) ∈ (PK,SK). The number of the honest
parties ([�]) is bounded by polynomials in the security parameter κ. Any subset
of PP may decide at any point to establish a shared key. Notice that we do not
assume that these subsets are always the same size for the flexibility of GNIKE.
IDi is chosen uniquely from the identity space IDS in the model.

– RegisterHonestUID(IDi): This query allows A to register with an identity. A
supplies an identity IDi(i ∈ [�]) and a static public key pkIDi

is returned to A.
– RegisterCorruptUID(IDi, pkIDi

): This query allows A to register a new iden-
tity IDi (i /∈ [�]) and a static public key pkIDi

on behalf of a party IDi. In
response, if the same identity IDi (with a different public key) already exists
for RegisterCorruptUID query, a failure symbol ⊥ is returned to A. Other-
wise, IDi with the static public key pkIDi

is added, successfully. The parties
registered by this query are called corrupted or adversary controlled.

– Corrupt(IDi): This query allows A to obtain a secret key of a party with the
identity IDi that was registered as an honest user. The corresponding long-
term secret key skIDi is returned to A.

– RevealHonestKey(Gpid, s): A supplies the group partner identities Gpid (in lex-
icographic order) for protocol instance s, and RevealHonestKey Oracle returns
a shared key Ks

Gpid to A. For the query the related identities in Gpid must be
registered as honest.

– RevealCorruptKey(Gpid, s): This responds with the shared key Ks
Gpid. Notice

that at least one of the involved identities in Gpid was registered as honest.
– Test(Gpid, s): A gives Gpid and instance s as inputs to Test Oracle. Test Ora-

cle handles this query as follows: if one of the identities supplied by A was
registered as corrupt or Ks

Gpid = ∅, it then returns some failure symbol ⊥.
Otherwise it flips a fair coin b, samples a random element K0 from key space
KGK, sets K1 = Ks

Gpid to the real shared key, and returns Kb.

Group Non-interactive Key Exchange 217

Secure GNIKE Protocols. Recall that actual security goals for GNIKE proto-
cols are always specified by individual security games. Here we describe how A
interacts with the security game. We define when an adversary is said to break
GNIKE protocols. We firstly state the security game between a challenger C and
an adversary A.

Security Game. The security game is played between C and A, where the
following steps are performed:

1. At the beginning of the game, the challenger C runs algorithm GNIKE.Setup
with the security parameter κ as input. C gives the public parameters to A.

2. Now the adversary A may start issuing RegisterHonestUID,
RegisterCorruptUID, Corrupt, RevealHonestKey and RevealCorruptKey queries
The numbers of queries made by A are bounded by polynomials in security
parameter κ.

3. At some point, A may issue a Test-query during the experiment. Notice that
A can issue an arbitrary number of Test-queries bounded by polynomials in κ
for a strong model (GNIKE or mGNIKE.Heavy). In this case, to keep random
keys consistent, the C responds the same random key for the same identities
every time A queries for their shared key, in either order.

4. At the end of the game, A terminates with outputting a bit b′ as its guess for
b of Test query.

Definition 5 (Correctness). We require that for all participants IDi, IDj ∈
Gpid for instance s∗ involved in the same GNIKE and such that without a failure
symbol ⊥, the same valid shared key is established Ks∗

Gpid = Ks∗
IDi

= Ks∗
IDj

�= null.

Definition 6 (Freshness). For the security definition, we need the notion
about the freshness of Test oracle which formulates the restrictions on the adver-
sary with respect to performing these above queries. Let Gpids∗

denote the group
partner identities for instance s∗ (i.e. (Gpid, s∗)) queried to Test oracle selected
by A. Then the Test oracle is said to be fresh if none of the following conditions
holds:

1. There is a party with identity IDi ∈ Gpids∗
which is established by adversary

A via RegisterCorruptUID query, i.e. IDi was registered as dishonest.
2. A makes a corrupt query Corrupt to any identity IDi, where IDi ∈ Gpids∗

.
3. A either makes a query RevealHonestKey(Gpid, s∗) for instance s∗, or a query

RevealHonestKey(Gpid, s) to any Gpid of instance s, with Gpids = Gpids∗
.

Security of GNIKE protocols is now defined by requiring that the protocol is
a shared key secure non-interactive key-exchange protocol, thus an adversary
cannot distinguish the shared key from a random key.

Definition 7 (Non-interactive Shared Key Security). A group non-
interactive key exchange protocol Σ is called (t, ε)-shared-key-secure if for all

218 L. Duan et al.

adversaries A running within probabilistic polynomial time t in the security game
as above and for some negligible probability ε = ε(κ) in the security parameter
κ, it holds that:

– When A returns b′ and it holds that
• A has issued a query on Test oracle using (Gpid, s∗) without failure,
• the Test oracle for (Gpid, s∗) is fresh throughout the security experiment

then the probability that b′ equals the bit b sampled by the Test-query is bounded
by

|Pr[b = b′] − 1/2| ≤ ε

4 A Flexible GNIKE Protocol from Multilinear Maps

GNIKE protocols are often carried out in dynamic sets of the participants. One
critical feature of GNIKE protocols is to ensure flexibility, i.e., one participant
can choose the group members freely. In this section we present a flexible (and
salable by definition) construction of group non-interactive key exchange GNIKE,
which is provably secure in the standard model without assuming the existence
of random oracles or iO. The chameleon hash function is used to bind the user
identity and the corresponding initial randomness when generating long-term
user key pairs.

4.1 Protocol Description

We describe the protocol in terms of the following three parts: system setup
GNIKE.Setup, party-registration and long-term key generation GNIKE.KGen, and
group shared key computation GNIKE.SKG.

1. GNIKE.Setup(1κ, n): The proposed protocol is composed of the following
building blocks which are instantiated and initialized respectively in accor-
dance of the security parameter 1κ. Before the main protocol runs for the first
time, an upper bound n on the size of the group is set in the initialization
phase.

– generate an nMultilinear map MG = (G, g,GT , p, nMAP) $← GP.Gen(1κ, n),
a random element S

$← G, and a set of random values {ul}0≤l≤n
$← G,

where n is the upper bound on the size of the group.
– fix an identity space ID ⊂ {0, 1}∗.
– parametrize a chameleon hash function
CH = (CH.GEN,H,CF) : (G × ID) × RCH → Z

∗
p, i.e., DCH = (Z∗

p × ID)
and ZCH = Z

∗
p. RCH ⊂ {0, 1}∗ is a fixed the space of randomness. Let

CHAMKey = (p, τ) $← CH.GEN(1κ) be the pair of public key and trapdoor
key.

– select a random element Φ
$← G, denoted here as padding for achieving

flexibility.
The system parameter variable pms is (MG, {ul}0≤l≤n, S, Φ,CH, p).

Group Non-interactive Key Exchange 219

2. GNIKE.KGen(pms, IDÂi
): On input the system parameter pms, the key gen-

eration algorithm GNIKE.KGen generates the long-term key pair for a party
Âi as:

– choose aÂi

$← Z
∗
p, rÂi

$← RCH,
– compute ZÂi

:= g
aÂi and tÂi

= Hp(ZÂi
||IDÂi

, rÂi
), and

– compute YÂi
:= (u0u

(tÂi
)1

1 u
(tÂi

)2

2 . . . u
(tÂi

)n

n) and XÂi
:= Y

aÂi

Âi
.

The long-term key pair for Âi: PKIDÂi
= (ZÂi

, rÂi
,XÂi

) and SKIDÂi
= aÂi

.
3. GNIKE.SKG(skIDÂi

, IDÂi
,GPKÂi

): On input a private key skIDÂi
and an iden-

tity IDÂi
of a party Âi along with a set of the public parameters GPKÂi

2,
algorithm GNIKE.SKG is executed by each of the parties Â1, . . ., Ân∗ as fol-
lows:

– The party Âi first checks whether for all identities Âi, Âj (i, j ∈ [n∗], i �=
j) it holds that IDÂi

�= IDÂj
. The user identity must be unique within

each group domain

– Âi computes tÂj
= Hp(ZÂj

||IDÂj
, rÂj

) and YÂj
= u0u

(tÂj
)1

1 . . . u
(tÂj

)n

n for
all j ∈ {1, . . . , i − 1, i + 1, . . . , n∗}.

– If 2 ≤ n∗ ≤ n and ∀j ∈ {1, . . . , i − 1, i + 1, . . . , n∗}, it holds that

nMAP(YÂj
, ZÂj

, g, . . . , g︸ ︷︷ ︸
n-2

) = nMAP(XÂj
, g, . . . , g︸ ︷︷ ︸

n-1

) (1)

• If n∗ = n, Âi computes the shared key as follows:

KIDÂ1,...,n∗
= nMAP(ZÂ1

, . . . , Z ˆAi−1, ZÂi+1
, . . . , ZÂ∗

n
, S)

skID
Âi ,

• Else, Âi adds (n − n∗) Φ padding to the generation function of the
shared key (i.e. nMAP)and computes the shared key as follows:

KID
Â1,...,n∗ = nMAP(ZÂ1

, . . . , ZÂi−1
, ZÂi+1

, . . . , ZÂ∗
n
, Φ, . . . , Φ
︸ ︷︷ ︸

n−n∗

, S)
skID

Âi

– Else Âi terminates the protocol execution.

Correctness. In the case when n∗ = n, for IDÂi
we have

KIDÂ1,...,n∗
= nMAP(ZÂ1

, . . . , ZÂi−1
, ZÂi+1

, . . . , ZÂ∗
n
, S)

skID
Âi

= nMAP(g, . . . , g, S)
∏n∗

i=1 aÂi

2 GPKÂi
is defined in 3.1, i.e. GPKÂi

= (IDÂ1
, pkID

Â1
. . . , IDÂi−1

, pkID
Âi−1

,

IDÂi+1
, pkID

Âi+1
, . . . , IDÂn∗ , pkID

Ân∗).

220 L. Duan et al.

For IDÂj
we have

K ′
IDÂ1,...,n∗

= nMAP(ZÂ1
, . . . , ZÂj−1

, ZÂj+1
, . . . , ZÂ∗

n
, S)

skID
Âj

= nMAP(g, . . . , g, S)
∏n∗

j=1 aÂj

By changing the name of variable it can be easily seen that KIDÂ1,...,n∗
=

K ′
IDÂ1,...,n∗

. The correctness argument for the case when 2 ≤ n∗ < n is almost

the same.

Rationale of the Construction. Given (ZÂi
, rÂi

), {ul}0≤l≤n, it is straight
forward to compute YÂi

with the chameleon hash function CH for the party IDÂi
.

If XÂi
is consistent with IDÂi

and (ZÂi
, rÂi

), i.e., XÂi
= Y

aÂi

Âi
, then it should

satisfy the nMAP-equation (1) in GNIKE.SKG. The nMAP-equation (1) not only
checks the internal consistency of a public key, but also the consistency of the
given public key with public parameters and the party identity. The random
padding Φ and S provide extra flexibility and they also help eliminate the random
oracle in the security analysis.

4.2 Security Analysis

For simplicity, we prove the security of the GNIKE scheme mentioned above
in our security GNIKE.Light model. In the GNIKE.Light model, A is allowed
to make the following queries: RegisterHonestUID, RegisterCorruptUID, and
RevealCorruptKey to oracles, as well as a single Test query, while Corrupt and
RevealHonestKey queries are forbidden. To prove our protocol’s adaptive secu-
rity as in GNIKE.Heavy, we will lose a factor of

(
n
n∗

)
, where n is the group size

bound and n∗ the actual group size. Here the loss factor is exponential in the
group size n∗. Hence, in order to make the adversarial advantage negligible, one
may need to use a larger security parameter or to limit n∗.

Theorem 1. Suppose that the nEMDDH problem is (t, εnEMDDH)-hard in GP in
the sense of Definition 4, and the CH is (t, εCH)-secure chameleon hash function
family. Then the proposed GNIKE protocol is (t′, ε)-shared-key-secure in the sense
of Definition 7 with t′ ≈ t and εGNIKE.Light

A,GNIKE ≤ εCH + εnEMDDH.

5 Proof of Theorem 1

Now, we prove Theorem 1 using the sequence-of-games approach, following [30].
The proof strategy to remove the random oracle is inspired by [10].

Let Sδ be the event that the adversary wins in game Gδ. Let Advδ := Pr[Sδ]−
1/2 denote the advantage of A in game Gδ.

Group Non-interactive Key Exchange 221

Game G0. This is the original game with adversary A as described in the
GNIKE.Light model. Thus we have that

Pr[S0] = 1/2 + εGNIKE.Light
A,GNIKE = 1/2 + Adv0.

Game G1. In this game we want to make sure that there exist no chameleon hash
collisions. Technically, we add an abort rule. More precisely, let abortCH be the
event that the challenger aborts when there exist two distinct identifiers Ĥ (e.g.
IDĤ is registered as Honest) and Â (e.g. Â is registered as Corrupt), with corre-
sponding public keys (ZĤ, YĤ, rĤ) and (ZÂ, YÂ, rÂ) such that Hp(ZĤ||IDĤ, rĤ) =
Hp(ZÂ||IDÂ, rÂ). If abortCH did not happen, the challenger continues as in G0.
Obviously the Pr[abortCH] ≤ εCH, according to the security property of underly-
ing chameleon hash function. Until the event abortCH happens, G0 = G1. Thus
we have

|Adv0 − Adv1| ≤ εCH.

Game G2. This game proceeds as the previous one, but the challenger always
replies to the Test query with a uniformly random element in GT . Thus the
advantage of the adversary in this game is

Adv2 = 0.

Let ε = |Adv1 − Adv2| and εnEMDDH be the advantage of any adversary against
the nEMDDH problem (Definition 4). We claim that ε ≤ εnEMDDH. Due to page
limit, we leave the complete simulation in Appendix B.

As described in Appendix B, B sets up all system parameters with the correct
distributions and can simulate all queries of A. So if A can distinguish the real
case G1 from the random case G2, B can solve the nEMDDH problem. Therefore
we have

AdvB = ε = |Adv1 − Adv2|

Since nEMDDH assumption holds, we also have ε = AdvB ≤ εnEMDDH and thus

|Adv1 − Adv2| ≤ εnEMDDH.

Collecting the probabilities from Game G0 to G2, we have that

εGNIKE.Light
A,GNIKE ≤ εCH + εnEMDDH.

6 Conclusion and Future Works

We constructed a provably secure, flexible and scalable GNIKE protocol. The
security is proved under the nEMDDH assumption in standard model. We leave
it for future research to design a secure GNIKE protocol with tight security in
the standard model.

222 L. Duan et al.

A Intractability Analysis of n-Exponent Multilinear
Diffie-Hellman Assumption

To analyze the intractability of the n-exponent multilinear Diffie-Hellman
assumption, we relate it to another problem which is claimed to be hard [10,22].
This nMDDH problem is rephrased below in our notation.

Definition 8. The n-multilinear decisional Diffie-Hellman (nMDDH) problem
is (t, εnMDDH)-hard in GP = (G,GT , p, nMAP, g) with multilinear map nMAP, if
for all adversaries running in probabilistic polynomial time t, it holds that

∣∣∣Pr [
A(g, ga, nMAP(g, . . . , g)a

n+1
) = 1

]
− Pr [A(g, ga, R) = 1]

∣∣∣ ≤ εnMDDH,

where (g, a,R) $← G × Zp × GT .

With the following lemma, the complexity of nEMDDH can be demonstrated.

Lemma 1. If the nMDDH problem is (t, εnMDDH)-hard in GP, then the
n-Exponent multilinear decisional Diffie-Hellman (nEMDDH) problem is
(te, εnEMDDH)-hard in GP, where te ≈ t, εnMDDH = εnEMDDH.

Proof. Let AnEMDDH be a nEMDDH adversary. We show how to construct another
adversary B against the nMDDH problem instance (G,GT , p, nMAP, g, ga, R),
with R = nMAP(g, g)a

n+1
or R

$← GT .
After receiving its own challenge B first chooses c

$← Zp and sets implicitly
b = a · c and then computes

R′ = Rc, gb = gac = (ga)c

B outputs whatever AnEMDDH outputs on (G,GT , p, nMAP, g, ga, gb, R′).
It is obvious that B runs in time te ≈ t, if the exponentiation is efficient in GP.
Note that since c is uniformly random in Zp, so is gb = (ga)c in G. Moreover,
if R = nMAP(g, g)a

n+1
= nMAP(g, g)a

na, then R′ = Rc = (nMAP(g, g)a
na)c =

nMAP(g, g)a
n·ac = nMAP(g, g)a

n·b. Otherwise, R′ remains uniformly random in
GT . Therefore, B has generated perfectly an nEMDDH instance for AnEMDDH and
εnMDDH = εnEMDDH.

B Cases in Game 2 in the Proof of Theorem 1

In game 2, we prove the claim by constructing a nEMDDH adversary B with
advantage ε calling A as a sub-procedure. Let (g, ga, gb, R) ∈ G

3 × GT be B’s
inputs, where a, b ∈ Zp. B’s goal is to determine if nMAP(g, . . . , g)a

nb = R. To
set up the GNIKE instance, B as a challenger runs GNIKE.Setup(1κ) to generate
the system parameters, including a chameleon key pair CHAMKey = (p, τ) and
the groups with nMultilinear map MG. It then randomly selects sÂ1

, . . . , sÂn

$←
{0, 1}∗ and rÂi

, . . . , rÂi

$← RCH.

Group Non-interactive Key Exchange 223

Let p(t) =
∏n

i=0(t − tÂi
)i = Σn

i=0pit
i = p0 + p1t + . . . + pntn be a polyno-

mial of degree n over Zp, where tÂi
:= Hp(sÂi

, rÂi
). Next, a polynomial of

degree n, q(t) = Σn
i=0qit

i = q0 + q1t + . . . + qntn is randomly selected over
Zp. Consequently, B selects random values γ1, γ2, uniformly in Z

∗
p, sets then

Φ = (ga)γ1gγ2 , ui = (ga)pigqi for 0 ≤ i ≤ n and S = gb. Since qi
$← Z

∗
p, we

have ui
$← G. Observably, u0 . . . utn

n = (ga)p(t)gq(t). B then returns the public
parameters (MG, {ui}0≤i≤n, Φ, S, p) to A to finish the set up phase. Thereafter,
B answers the queries from A in the following ways.

– RegisterHonestUID(IDÂi
): A supplies an identity IDÂi

(i ∈ [n]) to be registered
as honest. To answer this query, B selects αi, βi

$← Zp, computes ZÂi
=

(ga)αigβi . With the trapdoor key τ , B can extract rÂi,ch
, such that

Hp(ZIDÂi
||IDÂi

, rÂi,ch
) = Hp(sÂi

, rÂi
) = tÂi

.

B then computes XIDÂi
= [(ga)p(tÂi

)
g

q(tÂi
)]aαi+βi = [(ga)0gq(tÂi

)]aαi+βi =

(gq(tÂi
))aαi+βi = (ga)αiq(tÂi

)
g

βiq(tÂi
). Finally, B returns the public key pkIDÂi

= (ZÂi
, XÂi

, rÂi,ch
) to A.

– RegisterCorruptUID(IDAi
, pkIDAi

): Upon receiving a public key pkIDAi
and an

identity IDAi
from A. The public key pkIDAi

is registered as corrupt if IDAi

has not been registered before.
– RevealCorruptKey: A supplies two sets of identities IDSA and IDSH : IDSA

= {IDA1 , . . . , IDAl1
} denoted here as corrupt and IDSH = { IDH1 , . . ., IDHl2

}
as honest and l1 + l2 = n∗.

• Case 1 (n∗ = n), where n is the upper bound on the size of the group:
For this query at least one of the identities supplied by A was regis-
tered as honest (1 ≤ l2 < n), and all identities supplied by A must
be unique. B then checks the public key of any corrupt identity in
IDSA using the multilinear equations to confirm that pkIDAi

is of the

form (ZIDAi
, aIDAi

, rIDAi
), where ZIDAi

= g
aIDAi and aIDAi

=Y
aIDAi

IDAi
=

[(ga)p(tIDAi
)
g

q(tIDAi
)]aIDAi . If the check fails, B rejects this query. B then

computes the corresponding shared key KIDSA,IDSH
as follows:

∗ tIDAi
= Hp(ZIDAi

||IDIDAi
, rIDAi

), where i ∈ [l1],
∗ computes p(tIDAi

) and q(tIDAi
) using the polynomials p(t) and q(t)3,

∗ {[aIDAi
]/[Z

q(tIDAi
)

IDAi
]}p(tIDAi

)−1

= {[(ga)p(tIDAi
)
g

q(tIDAi
)]aIDAi /[(gaIDAi)q(tIDAi

)]}p(tIDAi
)−1

= (ga)aIDAi ,
∗ Z∗

IDAi
= [(ga)aIDAi]αi (ZIDAi

)βi = (ga)aIDAi
αi (gaIDAi)βi =

(gaIDAi)(aαi+βi) = Z
(aαi+βi)
IDAi

3 Notice that p(tIDAi
) �= 0.

224 L. Duan et al.

∗ the shared key KIDSA,IDSH
4:

nMAP(ZIDA1
, . . . , ZIDAi−1

, Z∗
IDAi

,

ZIDAi+1
. . . , ZIDAl1

, ZIDH1
, . . . , ZIDHi−1

, ZIDHi+1
, . . . , ZIDHl2

, S)

• Case 2 (2 ≤ n∗ < n): B proceeds as the same as case 1 mentioned
above. For this case B firstly adds Φ as padding for (n − n∗) times in the
following nMAP equation, computes then the corresponding shared key
KIDSA,IDSH

as follows:
∗ the shared key KIDSA,IDSH

5 is computed as

nMAP(. . . , ZIDAi−1
, Z∗

IDAi
, ZIDAi+1

, . . . , ZIDAl1
, ZIDH1

, . . . , ZIDHi−1
,

ZIDHi+1
, . . . , ZIDHl2

, Φ, . . . , Φ︸ ︷︷ ︸
(n−n∗)

, S)

– Test: Assume R = nMAP(g, . . . , g)a
nb. A supplies n∗ identities (IDi, i ∈ [n∗])

that were registered as honest.
• Caes 1 (n∗ = n): B computes

Kb = nMAP(g, . . . , g)(Π
n∗
i=1(aαi+βi))b

= nMAP(g, . . . , g)(
∑n∗

k=0 ψkak)b

= nMAP(g, . . . , g)(a
nbΠαi)+(

∑(n∗−1)
k=0 ψkak)b

= RΠαinMAP(g, . . . , g)
∑(n∗−1)

k=0 (ψkak)b,

and returns Kb to A.
• Case 2 (2 ≤ n∗ < n): B computes

Kb = nMAP(g, . . . , g)(Π
n∗
i=1(aαi+βi))

Φ padding︷ ︸︸ ︷
(Πn

i=(n∗+1)(aγ1 + γ2)) b

= nMAP(g, . . . , g)(
∑n

k=0 ψkak)b

= nMAP(g, . . . , g)(a
nbψn)+(

∑(n−1)
k=0 ψkak)b

= RψnnMAP(g, . . . , g)
∑(n−1)

k=0 (ψkak)b,

and returns Kb to A.

4 If i = 1, the shared key is computed as nMAP((ga)
xIDA1 , . . . ,

ZIDAl1
, ZIDH1

, . . . , ZIDHi−1
, ZIDHi+1

, . . . , ZIDHl2
, S)αi .

5 If i = 1, the shared key is computed as
nMAP((ga)

xIDA1 , ZIDAi+1
, . . . , ZIDAl1

, ZIDH1
, . . . , ZIDHi−1

,

ZIDHi+1
, . . . , ZIDHl2

, Φ, . . . , Φ
︸ ︷︷ ︸

(n−n∗)Φ

, S)αi .

Group Non-interactive Key Exchange 225

• Finally, when A terminates by outputting a bit b, then B returns the same
bit to nEMDDH challenger.

In each case of the Test query, the right side of the last equality is how B can
compute Kb. According to other equalities, B can compute the real shared key
if R = nMAP(g, . . . , g)a

nb holds, with known values of R, αi, βi, γ1 and γ2. This
is exactly as in game G1. On the other hand, if R is random, B will output an
independent random value in GT . This is exactly as in game G2.

References

1. Abdalla, M., Chevalier, C., Manulis, M., Pointcheval, D.: Flexible group key
exchange with on-demand computation of subgroup keys. In: Bernstein, D.J.,
Lange, T. (eds.) AFRICACRYPT 2010. LNCS, vol. 6055, pp. 351–368. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-12678-9_21

2. Barak, B.: On the (Im)possibility of obfuscating programs. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (2001). https://
doi.org/10.1007/3-540-44647-8_1

3. Boneh, D., Silverberg, A.: Applications of multilinear forms to cryptography (2002)
4. Boneh, D., Wu, D.J., Zimmerman, J.: Immunizing multilinear maps against zeroiz-

ing attacks. IACR Cryptology ePrint Archive 2014/930 (2014)
5. Dai, Y., Lee, J., Mennink, B., Steinberger, J.: The security of multiple encryption

in the ideal cipher model. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014.
LNCS, vol. 8616, pp. 20–38. Springer, Heidelberg (2014). https://doi.org/10.1007/
978-3-662-44371-2_2

6. Cheon, J.H., Lee, C., Ryu, H.: Cryptanalysis of the new CLT multilinear maps.
IACR Cryptology ePrint Archive 2015/934 (2015)

7. Coron, J.-S., Lepoint, T., Tibouchi, M.: Practical multilinear maps over the inte-
gers. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp.
476–493. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-
4_26

8. Diffie, W., Hellman, M.: New directions in cryptography. IEEE Trans. Inf. Theory
22(6), 644–654 (1976)

9. Freire, E.S.V., Hofheinz, D., Kiltz, E., Paterson, K.G.: Non-interactive key
exchange. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp.
254–271. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36362-
7_17

10. Freire, E.S.V., Hofheinz, D., Paterson, K.G., Striecks, C.: Programmable hash func-
tions in the multilinear setting. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013.
LNCS, vol. 8042, pp. 513–530. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-40041-4_28

11. Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal lattices.
In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp.
1–17. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9_1

12. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. SIAM J.
Comput. 45(3), 882–929 (2016)

https://doi.org/10.1007/978-3-642-12678-9_21
https://doi.org/10.1007/3-540-44647-8_1
https://doi.org/10.1007/3-540-44647-8_1
https://doi.org/10.1007/978-3-662-44371-2_2
https://doi.org/10.1007/978-3-662-44371-2_2
https://doi.org/10.1007/978-3-642-40041-4_26
https://doi.org/10.1007/978-3-642-40041-4_26
https://doi.org/10.1007/978-3-642-36362-7_17
https://doi.org/10.1007/978-3-642-36362-7_17
https://doi.org/10.1007/978-3-642-40041-4_28
https://doi.org/10.1007/978-3-642-40041-4_28
https://doi.org/10.1007/978-3-642-38348-9_1

226 L. Duan et al.

13. Garg, S., Gentry, C., Halevi, S., Sahai, A., Waters, B.: Attribute-based encryption
for circuits from multilinear maps. In: Canetti, R., Garay, J.A. (eds.) CRYPTO
2013. LNCS, vol. 8043, pp. 479–499. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-40084-1_27

14. Gay, R., Pass, R.: Indistinguishability obfuscation from circular security. In: Pro-
ceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing,
pp. 736–749 (2021). https://doi.org/10.1145/3406325.3451070

15. Hofheinz, D., Jager, T., Khurana, D., Sahai, A., Waters, B., Zhandry, M.: How
to generate and use universal samplers. In: Cheon, J.H., Takagi, T. (eds.) ASI-
ACRYPT 2016. LNCS, vol. 10032, pp. 715–744. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53890-6_24

16. Hu, Y., Jia, H.: Cryptanalysis of GGH map. In: Fischlin, M., Coron, J.-S. (eds.)
EUROCRYPT 2016. LNCS, vol. 9665, pp. 537–565. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-49890-3_21

17. Jain, A., Lin, H., Sahai, A.: Indistinguishability obfuscation from well-founded
assumptions. In Proceedings of the 53rd Annual ACM SIGACT Symposium on
Theory of Computing, pp. 60–73 (2021)

18. Katz, J., Yung, M.: Scalable protocols for authenticated group key exchange. In:
Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 110–125. Springer, Heidelberg
(2003). https://doi.org/10.1007/978-3-540-45146-4_7

19. Khurana, D., Rao, V., Sahai, A.: Multi-party key exchange for unbounded par-
ties from indistinguishability obfuscation. In: Iwata, T., Cheon, J.H. (eds.) ASI-
ACRYPT 2015. LNCS, vol. 9452, pp. 52–75. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-662-48797-6_3

20. Krawczyk, H., Rabin, T.: Chameleon signatures. In: ISOC Network and Distributed
System Security Symposium - NDSS 2000. The Internet Society, February (2000)

21. Langlois, A., Stehlé, D., Steinfeld, R.: GGHLite: more efficient multilinear maps
from ideal lattices. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS,
vol. 8441, pp. 239–256. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-642-55220-5_14

22. Li, Y., Yang, Z.: Strongly secure one-round group authenticated key exchange in
the standard model. In: Abdalla, M., Nita-Rotaru, C., Dahab, R. (eds.) CANS
2013. LNCS, vol. 8257, pp. 122–138. Springer, Cham (2013). https://doi.org/10.
1007/978-3-319-02937-5_7

23. Lin, H.: Indistinguishability obfuscation from SXDH on 5-linear maps and locality-
5 PRGs. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10401, pp.
599–629. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63688-7_20

24. Lin, H., Tessaro, S.: Indistinguishability obfuscation from trilinear maps and block-
wise local prgs. Cryptology ePrint Archive, Report 2017/250 (2017). https://doi.
org/10.1007/978-3-319-63688-7_21, https://eprint.iacr.org/2017/250

25. Lin, H., Vaikuntanathan, V.: Indistinguishability obfuscation from ddh-like
assumptions on constant-degree graded encodings. Cryptology ePrint Archive,
Report 2016/795 (2016). https://eprint.iacr.org/2016/795

26. Paneth, O., Sahai, A.: On the equivalence of obfuscation and multilinear maps.
IACR Cryptology ePrint Archive 2015/791 (2015)

27. Park, S., Lee, K., Lee, D.H.: New constructions of revocable identity-based encryp-
tion from multilinear maps. IEEE Trans. Inf. Forensics Secur. 10(8), 1564–1577
(2015)

https://doi.org/10.1007/978-3-642-40084-1_27
https://doi.org/10.1007/978-3-642-40084-1_27
https://doi.org/10.1145/3406325.3451070
https://doi.org/10.1007/978-3-662-53890-6_24
https://doi.org/10.1007/978-3-662-49890-3_21
https://doi.org/10.1007/978-3-540-45146-4_7
https://doi.org/10.1007/978-3-662-48797-6_3
https://doi.org/10.1007/978-3-662-48797-6_3
https://doi.org/10.1007/978-3-642-55220-5_14
https://doi.org/10.1007/978-3-642-55220-5_14
https://doi.org/10.1007/978-3-319-02937-5_7
https://doi.org/10.1007/978-3-319-02937-5_7
https://doi.org/10.1007/978-3-319-63688-7_20
https://doi.org/10.1007/978-3-319-63688-7_21
https://doi.org/10.1007/978-3-319-63688-7_21
https://eprint.iacr.org/2017/250
https://eprint.iacr.org/2016/795

Group Non-interactive Key Exchange 227

28. Pass, R., Seth, K., Telang, S.: Indistinguishability obfuscation from semantically-
secure multilinear encodings. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014.
LNCS, vol. 8616, pp. 500–517. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-662-44371-2_28

29. Rao, V.: Adaptive multiparty non-interactive key exchange without setup in the
standard model. IACR Cryptology ePrint Archive 2014/910 (2014)

30. Shoup, V.: Sequences of games: a tool for taming complexity in security proofs
(2004)

31. Yamakawa, T., Yamada, S., Hanaoka, G., Kunihiro, N.: Self-bilinear map on
unknown order groups from indistinguishability obfuscation and its applications.
In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8617, pp. 90–107.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44381-1_6

https://doi.org/10.1007/978-3-662-44371-2_28
https://doi.org/10.1007/978-3-662-44371-2_28
https://doi.org/10.1007/978-3-662-44381-1_6

A Multifunctional Modular
Implementation of Grover’s Algorithm

Mihai-Zicu Mina1(B) and Emil Simion2

1 Faculty of Automatic Control and Computers, University Politehnica of Bucharest,
Bucharest, Romania

mihai zicu.mina@stud.acs.upb.ro
2 Center for Research and Training in Innovative Techniques of Applied Mathematics

in Engineering – “Traian Lalescu”, University Politehnica of Bucharest,
Bucharest, Romania

emil.simion@upb.ro

Abstract. Information security plays a major role in the dynamics of
today’s interconnected world. Despite the successful implementation and
effectiveness of modern cryptographic techniques, their inherent limita-
tions can be exploited by quantum computers. In this article we discuss
Grover’s quantum searching algorithm, given its relevance in such con-
text. We begin by providing a formal presentation of the algorithm, fol-
lowed by an implementation using IBM’s Qiskit framework, which allows
us to both simulate and run the algorithm on a real device. The program
we developed is modular and scalable, managing to properly run on any
input state. Furthermore, it has several modes of operation that highlight
its functionality. We compare the performance of the algorithm running
on simulators against its execution on a quantum processor from IBM’s
lineup, noting the discrepancies between the results due to physical fac-
tors.

Keywords: Grover’s algorithm · Quantum computation · Qiskit ·
Information security · Symmetric cipher

1 Introduction

The entire digital security infrastructure essentially relies on a combination of
the public-key cryptography model to perform key distribution and the use of
fast symmetric ciphers to perform encryption [1–4]. RSA, the public-key cryp-
tosystem devised by Rivest, Shamir and Adleman, is ubiquitous nowadays, but
its security is based only on a computational hardness assumption, the prime
factorization of integers. In other words, powerful enough computational devices
can theoretically break the system. As it turns out, quantum computers started
to receive much attention in part due to this particular aspect. Shor’s algo-
rithm [5] can solve the integer factorization problem in polynomial time, thus
being able to defeat RSA in a timely manner, a task that is infeasible even for
c© Springer Nature Switzerland AG 2022
P. Y. A. Ryan and C. Toma (Eds.): SecITC 2021, LNCS 13195, pp. 228–247, 2022.
https://doi.org/10.1007/978-3-031-17510-7_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-17510-7_16&domain=pdf
http://orcid.org/0000-0002-9793-9203
http://orcid.org/0000-0003-0561-3474
https://doi.org/10.1007/978-3-031-17510-7_16

A Multifunctional Modular Implementation of Grover’s Algorithm 229

the most powerful supercomputers we have today. For now, though, existing
quantum computers are not advanced enough to run Shor’s algorithm for those
large parameters used by RSA, yet the threat is real, inevitable and hence must
be addressed. From an information security standpoint, an upcoming “post-
quantum era” is a natural and necessary transition that is already characterized
by predictions and initiatives [6–9].

Symmetric schemes such as the block cipher AES (Advanced Encryption
Standard) suffer from being vulnerable to some degree to Grover’s algorithm [10],
another fundamental result in the quantum information field. This algorithm is
an iterative procedure that exploits quantum phenomena in order to efficiently
find an element in an unstructured database. For N = 2n elements, it achieves
this in no more than

√
N iterations, therefore exhibiting a quadratic advantage

compared to the classical case that requires N/2 iterations on average. Thus, an
immediate application of this quantum algorithm is the capability to speed up
brute-force attacks attempting to discover the key used by symmetric ciphers.
Considering the widespread deployment of AES and the fact that its security is
as good as the secrecy of the key, Grover’s algorithm becomes notable for making
256-bit keys offer only 128 bits of security [11–13].

We cover a detailed description of how Grover’s algorithm operates and then
we present our particular Qiskit program, which implements the algorithm in a
modular way and with custom features. In order to demonstrate the capabilities
of the program, we exemplify several scenarios, including simulations and exe-
cutions on a quantum processor. We analyze and compare those results, before
making conclusive remarks about the performance of the algorithm in general.

2 Discussion of Grover’s Algorithm

In 1996, Lov Grover devised an algorithmic procedure that uses the principles
of quantum computation to search for an element in an unstructured database.
The algorithm bears his name and it offers a quadratic speedup over classical
methods for the same task. One important task that it can tackle is searching for
symmetric keys in key spaces, which are basically unstructured databases. Since
AES is pretty much invulnerable to attacks other than brute-force, Grover’s
algorithm represents a highlight of quantum computation and its impact on
cryptography. Considering an n-bit AES key, the size of the key space is N = 2n.
Classically, we need N/2 iterations on average to find the desired key, but we
only need roughly

√
N = 2n/2 iterations using Grover’s algorithm, effectively

reducing the security of the key to n/2 bits in a quantum scenario. Grover’s
algorithm makes the entry we are looking for more likely to be found than any
other one from the entire search space. A specifically designed transformation
is first used to recognize or “mark” the searched element, followed by several
transformations that aim to amplify the probability of finding it. This cycle is
repeated enough times, such that we get the solution with a probability close to
1 after the operations are finished.

Before proceeding to the detailed analysis of the algorithm, let’s have a closer
look at what we are trying to achieve, from a non-quantum perspective [14]. We

230 M.-Z. Mina and E. Simion

consider a binary function that takes an n-bit string as input and outputs either
0 or 1. We are given the function as an oracle, a “black box” whose output is
always 0 except for one value, and we are asked to find the input for which the
output is non-zero.

f : {0, 1}n → {0, 1}, f(x) = 0, ∀ x �= x∗

Given this circumstance, all we can do is randomly choose a value from the set
of bit strings and query the oracle for the output. There are N = 2n elements,
making our guess correct with a probability of 1/N . For simplicity, the domain of
the function is labeled X and our first guess is element x1. When f(x1) = 1, we
got really lucky and the problem is solved with one query. Most likely, though,
we are not done so fast and we must take another guess x2. After this first query,
the probability of having chosen the right element on our second guess is

Pr(x1 = x∗) + Pr(x2 = x∗) ≡ p1 =
2
N

, x1 ∈ X, x2 ∈ X\{x1}.

Next, we query again for x2 and in case it is still not the solution, we choose x3.
After this step, the probability associated with the solution is

p2 = p1 +
1
N

=
3
N

, x3 ∈ X\{x1,x2}.

Following this line of reasoning and taking into consideration the worst case
scenario, the solution is found after we have swept through all the other values.
Generally, we notice that the probability of our guess being the solution increases
after each query. Indeed, after k queries,

pk = pk−1 +
1
N

= p1 +
k − 1

N
=

k + 1
N

, xk+1 ∈ X\{x1, . . . ,xk}.

Performing N − 1 queries indicates that the last guess we take is guaranteed to
be correct.

Grover’s algorithm works on a somewhat similar principle, but requiring a
significantly lower number of queries to the oracle in order to find the solution
with high probability. The implementation of the oracle is given by a multi-qubit
gate of the following form:

Uf : |x〉 |y〉 	→ |x〉 |y ⊕ f(x)〉 , x ∈ X, y ∈ {0, 1}.

We can set the n-qubit first register to an equally weighted superposition of all
states in the computational basis, while keeping the second register in state |0〉.
Given how the function is defined, we can split the expression at the end to
emphasize the solution.

Uf |+〉⊗n |0〉 = Uf

⎛
⎝ 1√

N

∑
x∈X

|x〉 |0〉
⎞
⎠ =

1√
N

∑
x∈X

|x〉 |f(x)〉 =
1√
N

|x∗〉 |1〉 +
1√
N

∑
x�=x∗

|x〉 |0〉

A Multifunctional Modular Implementation of Grover’s Algorithm 231

A straightforward measurement at this point will return the solution state |x∗〉
with a probability of 1/N , which does not offer any improvement over the classi-
cal approach. The trick is to find a way to manipulate the state of the quantum
register in order to have a higher probability associated with the solution state.
One first step is to use the phase kickback idea and notice that we can exclude
the target register from our discussion, as the transformation leaves it intact.

Uf |x〉 |−〉 = (−1)f(x) |x〉 |−〉 =⇒ Uf : |x〉 	→ (−1)f(x) |x〉

The oracle has been redefined to operate on the data register only. We notice
that the element we are searching for is now identified by having its state get a
phase shift.

Initialization and measurement phases aside, the algorithm consists of suc-
cessive applications of a transformation that boosts the probability amplitude of
the solution state and diminishes those of the other states in the superposition.
The iteration first queries the oracle, marking the solution with a global phase.
This makes the probability amplitude become negative, which is then “reflected”
about the mean value of all probability amplitudes, making it positive again and,
more importantly, larger. We need to define another transformation before being
able to describe how this “reflection” happens. For this, let’s first label the uni-
form superposition of the n-qubit data register,

|Ψ〉 ≡ |+〉⊗n = H⊗n |0〉⊗n
.

Using the notation from Grover’s original article, we consider the transformation
that induces a global phase of π radians on all states of the register orthogonal
to |0〉⊗n, i.e. all the other states from the superposition.

R : |x〉 	→ − |x〉 , |x〉 �= |0〉⊗n
.

The following transformations are known as Grover diffusion and Grover itera-
tion, respectively:

D ≡ H⊗nRH⊗n, G ≡ DUf .

The complete quantum circuit is depicted in Fig. 1. Each pair of gates
enclosed in dashed lines represents a Grover iteration, which is applied O(

√
N)

times. Finally, a measurement on the first n qubits will return the solution with
a probability close to 1. The last qubit is the ancillary state, such that a query to
the oracle will mark the solution by inverting the sign of the probability ampli-
tude. A simplified and more compact version of the circuit is shown in Fig. 2,
where the last qubit is omitted and the Grover iteration is represented as a single
gate.

We already saw that an application of the oracle gate will shift the phase
of the searched state. For any given superposition state of n qubits, we would
like to know how the effect of the Grover diffusion operator is a reflection about
the mean value of the probability amplitudes. Let’s consider such a state and

232 M.-Z. Mina and E. Simion

|0〉

H⊗(n+1) Uf

D

Uf

D

· · ·

Uf

D

|0〉 · · ·

... · · · ...

|0〉 · · ·

|1〉 · · · H |1〉

Fig. 1. Quantum circuit for Grover’s algorithm

|0〉

H⊗n G G

· · ·

G

|0〉 · · ·

... · · · ...

|0〉 · · ·

Fig. 2. Compact structure of the circuit

adopt the convention of writing the computational basis elements as their integer
equivalents, e.g. for n = 3, we have |101〉 ≡ |5〉.

|Φ〉 =
N−1∑

i=0

φi |i〉

It turns out we have the following relation we can use for simplicity:

D = H⊗nRH⊗n ⇐⇒ D = 2 |Ψ〉〈Ψ | − I.

Applying the transformation on the previous state yields

D |Φ〉 = 2 |Ψ〉 〈Ψ |Φ〉 − |Φ〉 .

For brevity, we note here the range i = 0, N − 1. The inner product then expands
to

〈Ψ |Φ〉 =

(
1√
N

∑

i

〈i|
) (

∑

i

φi |i〉
)

=
1√
N

∑

i

φi〈i|i〉 =
1√
N

∑

i

φi.

The multiplication of |Ψ〉 by twice the previous value results in

2〈Ψ |Φ〉 |Ψ〉 =
2
N

∑

i

φi

∑

i

|i〉 = 2μ
∑

i

|i〉 .

A Multifunctional Modular Implementation of Grover’s Algorithm 233

Finally, we arrive at

D |Φ〉 = 2μ
∑

i

|i〉 −
∑

i

φi |i〉 =
∑

i

(2μ − φi) |i〉 =
∑

i

(
μ + (μ − φi)

) |i〉 .

Therefore, the transformation will adjust each probability amplitude by an
amount equal to the difference between the mean and itself. When the prob-
ability amplitude associated with the solution is first made negative by Uf , the
mean will decrease, thus making the difference positive only in this case and
negative for all other amplitudes.

Since we do not possess any information about the structure of the database
that can help us restrict the search, we can only prepare a uniform superposition
as input to the algorithm. During the execution, the element we are looking for
will have its probability amplitude increased. Having introduced the necessary
concepts, we can now analyze the circuit.

2.1 An Inductive Approach

In the initial superposition state, the coefficient of the solution is labeled ψ0∗,
while the coefficient of all the other states is ψ0.

|Ψ0〉 =
1√
N

∑

x

|x〉 =⇒ Uf |Ψ0〉 = − 1√
N︸︷︷︸

ψ0∗

|x∗〉 +
1√
N︸︷︷︸

ψ0

∑

x�=x∗
|x〉

After applying Uf , the sign of ψ0∗ is inverted and the mean decreases from
μ0 = 1/

√
N to

μ1 =
1
N

(
(N − 1)ψ0 − ψ0∗

)
=

N − 2
N

√
N

=
(

N − 2
N

)
μ0.

The diffusion operator then reflects the coefficients about the new mean value.

ψ1 = 2μ1 − ψ0 =
1√
N

(
2N − 4

N
− 1

)
=

1√
N

(
N − 4

N

)
∼ 1√

N
= ψ0

ψ1∗ = 2μ1 − (−ψ0∗) =
1√
N

(
2N − 4

N
+ 1

)
=

1√
N

(
3N − 4

N

)
∼ 3√

N
= 3ψ0∗

After the first iteration, the probability amplitude of the solution has increased,
while the remaining ones have decreased. Asymptotically, the amplification
reaches a value of three, while the rest of the amplitudes remain unchanged.
Following the same procedure, we obtain the amplitudes after the second itera-
tion.

μ2 =
1
N

(
(N − 1)ψ1 − ψ1∗

)
=

N2 − 8N + 8
N2

√
N

=
(

N2 − 8N + 8
N2

)
μ0

ψ2 = 2μ2 − ψ1 =
1√
N

(
N2 − 12N + 16

N2

)
∼ 1√

N
= ψ0

ψ2∗ = 2μ2 − (−ψ1∗) =
1√
N

(
5N2 − 20N + 16

N2

)
∼ 5√

N
= 5ψ0∗

234 M.-Z. Mina and E. Simion

If we keep going, we will notice that

ψk∗ ∼ 2k + 1√
N

= (2k + 1)ψ0∗, k ≥ 1.

The amplitude clearly cannot increase boundlessly, as the norm of the state
vector is preserved throughout the circuit. In fact, since after each iteration
the gain corresponding to the solution surpasses how much the other states are
diminished, the mean will continuously decrease, which in turn affects the next
iteration. In this manner, when the mean becomes negative, the algorithm per-
forms worse and it is moving away from finding the solution. Thus, the execution
should stop when the mean is very close to zero, which indicates a maximum
value for the probability of getting the solution after measurement.

|μk| ≈ 0 =⇒ ψk∗ ≈ 1 =⇒ |ψk∗|2 ≡ ps ≈ 1

The limitation of this analysis is the reliance on the asymptotic behavior of
the amplitudes to calculate the required number of iterations. We know with
certainty that

ψk∗ =
1√
N

(
g(N)
Nk

)
=

1√
N

(O(Nk)
Nk

)
,

where the coefficient of the leading term in g is 2k + 1. However, we cannot
precisely write the general expression of g for each ψk and ψk∗. Therefore, the
calculated number of steps the algorithm must execute will not be particularly
accurate.

ψk∗ ∼ 2k + 1√
N

= 1 =⇒ ks ≈
√

N − 1
2

≈
√

N

2

2.2 A More Accurate Approach

Superposition |Ψ0〉 can be expressed in terms of the solution state |Ψs〉 and a
superposition of the remaining, non-solution states, |Ψr〉. Considering the nor-
malization constraint the state obeys, the probability amplitudes can be rede-
fined [14].

|Ψ0〉 =
1√
N

|Ψs〉 +

√
N − 1

N
|Ψr〉 = sin θ |Ψs〉 + cos θ |Ψr〉 , θ = arcsin

1√
N

After the first Grover iteration is applied and some trigonometric identities are
exploited,

|Ψ1〉 = G |Ψ0〉 =
(
2 |Ψ0〉〈Ψ0| − I

)(
− sin θ |Ψs〉 + cos θ |Ψr〉

)
= sin 3θ |Ψs〉 + cos 3θ |Ψr〉 .

The state after k Grover iterations then becomes

|Ψk〉 = Gk |Ψ0〉 = sin
(
(2k + 1)θ

)
|Ψs〉 + cos

(
(2k + 1)θ

)
|Ψr〉 .

A Multifunctional Modular Implementation of Grover’s Algorithm 235

In order to make sure that the measurement is very likely to return |Ψs〉 = |x∗〉,
it follows that

sin
(
(2k + 1)θ

)
≈ 1 ⇐⇒ (2k + 1)θ ≈ π

2
=⇒ k ≈ π

4θ
− 1

2
≈ π

4

√
N,

making the ideal number of Grover iterations

ks =
⌊π

4

√
N

⌋
.

The probability of outcome for the solution state is then given by

ps = sin2

(
(2ks + 1) arcsin

1√
N

)
.

This time, the value of ks is the most efficient for the algorithm, in order to
get the probability of the element closest to 1. We could properly determine it
since the amplitudes were exact. Furthermore, their asymptotically equivalent
expressions can be emphasized again.

ψk∗ = sin
(
(2k + 1)θ

)
∼ sin

(
(2k + 1) sin θ

)
= sin

(
(2k + 1)

1√
N

)
∼ 2k + 1√

N
= (2k + 1)ψ0∗

3 Qiskit Implementation: Examples and Analysis

We now discuss our Qiskit [15] implementation of Grover’s algorithm, with source
code given in Listing 1. Since the algorithm itself relies on repeated applications
of the same transformation, the program takes into account this modular feature
and it contains subcircuits, which are then attached together to build the larger
circuit.

The script requires two mandatory arguments and a third optional one.

./grover alg.py <exp type> <num qubits> [state]

These arguments can take the following values, which determine how the algo-
rithm executes.

exp type: local – simulation using built-in qasm simulator
hps – simulation using high-performance ibmq qasm simulator
real – remote execution on a quantum processor

num qubits: size of the quantum register, n > 1
state: num qubits-bit string, the searched state (randomly chosen if

omitted).

An important feature of the implementation is the capability of “automatically”
marking the specified or randomly chosen state. In other words, the oracle and
the diffusion transformation are properly constructed by corresponding functions
for each possible input state.

236 M.-Z. Mina and E. Simion

The information given by the output of the program includes the backend
that is being used, the searched state, the ideal number of iterations and an asso-
ciative array indicating the statistical results following measurements. Based on
those results, a bar plot is shown, depicting the states and their probabilities
of outcome. The theoretical and experimental values of these probabilities are
truncated to eight decimals. Furthermore, probabilities displayed on the plot
are also truncated to three decimals in order to avoid cluttering due to a large
number of decimals, in some cases. However, given that only non-zero probabil-
ities are shown, truncation can reduce some very small (yet non-zero) values to
zero. To address this issue, the number of decimals for truncation is increased
automatically until the smallest probability value is still accurately represented.

Another feature of the program can be toggled for the visual representation
of the results. By default, the function that displays the plot considers only the
observed states, i.e. those with a non-zero probability. Explicitly giving the last
argument of the function the string all will make it display all the states on the
graph, in order to get the “bigger picture” about the size of the search space.
A setting that can be changed within the script is the value of variable shots,
2000 by default, giving the number of instances the circuit is prepared and the
register measured.

Due to the complexity of the circuit that increases with the number of speci-
fied qubits, the program cannot be run on a physical chip for num qubits above
five. Even with additional circuit optimization handled internally by Qiskit, the
execution on the sixteen-qubit Melbourne backend can only be simulated by
adding its noise model. For experiments up to five qubits, the least busy five-
qubit backend is used. We also note the following aspects:

– The latest version on which the program was tested is Qiskit 0.31.0
– Qiskit’s convention associates the last qubit of a register to the topmost qubit

of the circuit, e.g. given 100 as argument to search for |100〉, Qiskit’s repre-
sentation is |q2q1q0> = |001>

– States are represented on the bar plot as their integer equivalents, e.g. |101〉
shows as |5〉.

3.1 Simulation

The most simple case when n = 2 actually indicates an impressive start. After
just one iteration, the probability of the solution state is boosted to exactly 1.
The output and plot are shown in Fig. 3. In this case, state |11〉 was specifically
chosen and out of all 2000 runs of the algorithm, it came out every time after
measurement. The plot also showcases the all option we mentioned earlier,
otherwise only the solution would have been displayed.

A Multifunctional Modular Implementation of Grover’s Algorithm 237

$./grover_alg.py local 2 11

Backend: qasm_simulator
Searched state: |11>
Iterations: 1
Probability (calc): 1.0
Shots: 2000
Results: {'11': 2000}
Probability (exp): 1.0

Showing results for all states...

|0〉 |1〉 |2〉 |3〉
0.00

0.25

0.50

0.75

1.00

P
ro
ba

bi
lit
ie
s

1.0

Results after 1 iteration(s), locally simulated

Fig. 3. Local simulation for n = 2

For n = 3, the calculated probability of finding the solution after ks = 2
iterations is about 0.945. This time, state |110〉 was randomly selected and the
result matches the expected probability up to three decimals, as we notice in
Fig. 4.

$./grover_alg.py local 3

Backend: qasm_simulator
Searched state: |110>
Iterations: 2
Probability (calc): 0.9453125
Shots: 3871
Results: {'000': 34,

'001': 22, '010': 38, '011': 32,
'100': 26, '101': 32, '110': 3661,
'111': 26}

↪→
↪→
↪→
Probability (exp): 0.94575045

Showing results...

|0〉 |1〉 |2〉 |3〉 |4〉 |5〉 |6〉 |7〉
0.00

0.25

0.50

0.75

1.00

P
ro
ba

bi
lit
ie
s

0.008 0.005 0.009 0.008 0.006 0.008

0.945

0.006

Results after 2 iteration(s), locally simulated

Fig. 4. Local simulation for n = 3

We used the high-performance simulator to run the program for n = 12
and n = 24. In the first case, the entire landscape is visible, emphasizing the
solution state |3377〉, the only one that emerges. At this point, the calculated
probability is very close to 1, the difference being less than 10−4. In the second
case, only the marked state is displayed, as plotting the entire search space
becomes increasingly demanding in terms of computational and time resources.
After over three thousand iterations required to find a state in a space with 224

238 M.-Z. Mina and E. Simion

elements, it is almost guaranteed that the algorithm will return the right answer
every time. These experiments are depicted in Fig. 5 and Fig. 6, respectively.

$./grover_alg.py hps 12

Job Status: job has successfully run

Backend: ibmq_qasm_simulator
Searched state: |110100110001>
Iterations: 50
Probability (calc): 0.99994534
Shots: 2500
Results: {'110100110001': 2500}
Probability (exp): 1.0

Showing results for all states...

|0〉 |3377〉 |4095〉
0.00

0.25

0.50

0.75

1.00

P
ro
ba

bi
lit
ie
s

1.0

Results after 50 iteration(s), executed on ibmq qasm simulator

Fig. 5. High-performance simulation for n = 12

$./grover_alg.py hps 24

Job Status: job has successfully run

Backend: ibmq_qasm_simulator
Searched state: |001100011110000011011001>
Iterations: 3216
Probability (calc): 0.99999994
Shots: 2500
Results: {'001100011110000011011001': 2500}
Probability (exp): 1.0

Showing results...

|3268825〉
0.00

0.25

0.50

0.75

1.00

P
ro
ba

bi
lit
ie
s

1.0

Results after 3216 iteration(s), executed on ibmq qasm simulator

Fig. 6. High-performance simulation for n = 24

3.2 Execution on Real Devices

Running Grover’s algorithm on a quantum computer comes with reasonable
restrictions. First of all, the size of the quantum register can be no greater
than the actual number of qubits of the processor. Then, the experiments are no
longer noise-free and the performance of the algorithm strongly depends on other
factors, such as the partial connectivity of the architecture, qubit quality and
gate errors. We performed tests for n = 2 and n = 3 with the same number of
shots as in the simulated cases and the algorithm ran on the five-qubit backend
ibmq athens in both instances. We then used n = 7, for which the circuit was
simulated with noise models.

A Multifunctional Modular Implementation of Grover’s Algorithm 239

The results in Fig. 7 are visibly different from the ideal case involving two
qubits. This time, marked state |00〉 is observed only 1942 times out of 2000, thus
having a probability of about 0.971, instead of exactly 1. Given the processor’s
intrinsic computation errors, the other states can also occur.

$./grover_alg.py real 2

Job Status: job has successfully run

Backend: ibmq_athens
Searched state: |00>
Iterations: 1
Probability (calc): 1.0
Shots: 2000
Results: {'00': 1942,

'01': 32, '10': 22, '11': 4}↪→
Probability (exp): 0.971

Showing results...

|0〉 |1〉 |2〉 |3〉
0.00

0.25

0.50

0.75

1.00

P
ro
ba

bi
lit
ie
s

0.971

0.016 0.011 0.002

Results after 1 iteration(s), executed on ibmq athens

Fig. 7. Real execution for n = 2

Going from two to three qubits shows a significant decrease in performance.
From its initial theoretical value of 0.125, the probability of the state is boosted
to merely 0.385 after the iterations are finished. As depicted in Fig. 8, the dis-
tribution is still unimodal, although we expect the solution to no longer be
distinguishable as the search space grows larger.

$./grover_alg.py real 3 001

Job Status: job has successfully run

Backend: ibmq_athens
Searched state: |001>
Iterations: 2
Probability (calc): 0.9453125
Shots: 3871
Results: {'000': 422,

'001': 1492, '010': 311, '011':
443, '100': 314, '101': 325,
'110': 277, '111': 287}

↪→
↪→
↪→
Probability (exp): 0.38543012

Showing results...

|0〉 |1〉 |2〉 |3〉 |4〉 |5〉 |6〉 |7〉
0.00

0.25

0.50

0.75

1.00

P
ro
ba

bi
lit
ie
s

0.109

0.385

0.08
0.114

0.081 0.083 0.071 0.074

Results after 2 iteration(s), executed on ibmq athens

Fig. 8. Real execution for n = 3

240 M.-Z. Mina and E. Simion

An experiment with seven qubits definitively reveals the current limits of
accurate quantum computation. The task was carried out by a simulator modeled
after the characteristics of the real sixteen-qubit backend ibmq melbourne. Out
of all 2500 measurements, solution state |1010011〉 is observed only 14 times,
yielding a probability of 0.0056 and making it hardly visible on the plot at
default scale in Fig. 9. Looking at the zoomed-in representation in Fig. 10, it is
more apparent that the element we were searching for does not stand out and its
probability was actually diminished relative to its initial value from the uniform
superposition.

$./grover_alg.py real 7 1010011

Job Status: job has successfully run

Backend: qasm_simulator(fake_melbourne)
Searched state: |1010011>
Iterations: 8
Probability (calc): 0.99561986
Shots: 2500
Results: {'0000000': 50,

.

.

.

'1010011': 14,
.
.
.

'1111111': 8}
Probability (exp): 0.0056

Showing results...

|0〉 |83〉 |127〉
0.00

0.25

0.50

0.75

1.00
P
ro
ba

bi
lit
ie
s

0.005

Results after 8 iteration(s), executed on qasm simulator(fake melbourne)

Fig. 9. Execution on a simulated real backend for n = 7

|0〉 |83〉 |127〉
0.00

P
ro
ba

bi
lit
ie
s

0.005

Results after 8 iteration(s), executed on qasm simulator(fake melbourne)

Fig. 10. Execution on a simulated real backend for n = 7 (zoomed-in)

A Multifunctional Modular Implementation of Grover’s Algorithm 241

4 Conclusion

The robustness of the existing information security framework has been chal-
lenged ever since the theoretical foundations of quantum computation were laid.
With promising advancements towards scalable and less noisy quantum compu-
tation devices, the threat to modern cryptographic schemes becomes an issue of
increasing importance for the future.

As we have explored and noted in this article, Grover’s algorithm cannot be
fully exploited yet because of the practical limitations that hinder the accuracy
of quantum computation. However, its theoretical efficiency makes it a highly
valuable tool as a searching algorithm. From a security perspective, it is even
more captivating as it significantly improves the strategy of brute-force attacks
against symmetric ciphers, which is a major implication given their central role
in encrypting information.

Acknowledgements. We acknowledge the use of IBM Quantum services for this
work. The views expressed are those of the authors, and do not reflect the official
policy or position of IBM or the IBM Quantum team.

This research did not receive any specific grant from funding agencies in the public,
commercial, or not-for-profit sectors.

242 M.-Z. Mina and E. Simion

A Qiskit Source Code

A Multifunctional Modular Implementation of Grover’s Algorithm 243

244 M.-Z. Mina and E. Simion

A Multifunctional Modular Implementation of Grover’s Algorithm 245

246 M.-Z. Mina and E. Simion

References

1. Diffie, W., Hellman, M.: New directions in cryptography. IEEE Trans. Inf. Theory
22(6), 644–654 (1976). https://doi.org/10.1109/TIT.1976.1055638

2. Merkle, R.C.: Secure communications over insecure channels. Commun. ACM
21(4), 294–299 (1978). https://doi.org/10.1145/359460.359473. ISSN 0001-0782

3. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures
and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978). https://doi.
org/10.1145/359340.359342. ISSN 0001-0782

4. Daemen, J., Rijmen, V.: The block cipher Rijndael. In: Quisquater, J.-J., Schneier,
B. (eds.) CARDIS 1998. LNCS, vol. 1820, pp. 277–284. Springer, Heidelberg (2000).
https://doi.org/10.1007/10721064 26. ISBN 978-3-540-44534-0

5. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factor-
ing. In: Proceedings 35th Annual Symposium on Foundations of Computer Science,
pp. 124–134 (1994). https://doi.org/10.1109/SFCS.1994.365700

6. Mosca, M.: Cybersecurity in an era with quantum computers: will we be
ready? IEEE Secur. Priv. 16(5), 38–41 (2018). https://doi.org/10.1109/MSP.2018.
3761723

7. Stebila, D., Mosca, M.: Post-quantum key exchange for the internet and the open
quantum safe project. In: Avanzi, R., Heys, H. (eds.) SAC 2016. LNCS, vol. 10532,
pp. 14–37. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69453-5 2.
ISBN 978-3-319-69453-5

8. Chen, L., et al.: Report on post-quantum cryptography, vol. 12. US Department
of Commerce, National Institute of Standards and Technology (2016)

9. Alagic, G., et al.: Status report on the first round of the NIST post-quantum cryp-
tography standardization process. US Department of Commerce, National Institute
of Standards and Technology (2019)

10. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Pro-
ceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Comput-
ing, STOC 1996, pp. 212–219. Association for Computing Machinery, Philadelphia
(1996). https://doi.org/10.1145/237814.237866. ISBN 0897917855

https://doi.org/10.1109/TIT.1976.1055638
https://doi.org/10.1145/359460.359473
https://doi.org/10.1145/359340.359342
https://doi.org/10.1145/359340.359342
https://doi.org/10.1007/10721064_26
https://doi.org/10.1109/SFCS.1994.365700
https://doi.org/10.1109/MSP.2018.3761723
https://doi.org/10.1109/MSP.2018.3761723
https://doi.org/10.1007/978-3-319-69453-5_2
https://doi.org/10.1145/237814.237866

A Multifunctional Modular Implementation of Grover’s Algorithm 247

11. Bernstein, D.J.: Grover vs. McEliece. In: Sendrier, N. (ed.) PQCrypto 2010. LNCS,
vol. 6061, pp. 73–80. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-12929-2 6. ISBN 978-3-642-12929-2

12. Bernstein, D.J., Lange, T.: Post-quantum cryptography. Nature 549(7671), 188–
194 (2017). https://doi.org/10.1038/nature23461. ISSN 1476-4687

13. Maimuţ, D., Simion, E.: Post-quantum cryptography and a (Qu)bit more. In:
Lanet, J.-L., Toma, C. (eds.) SECITC 2018. LNCS, vol. 11359, pp. 22–28.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12942-2 3. ISBN 978-
3-030-12942-2

14. Kaye, P., Laflamme, R., Mosca, M.: An Introduction to Quantum Computing.
Oxford University Press Inc, Oxford (2007). ISBN 0198570007

15. Sajid Anis, M.D., et al.: Qiskit: an open-source framework for quantum computing
(2021). https://doi.org/10.5281/zenodo.2573505

https://doi.org/10.1007/978-3-642-12929-2_6
https://doi.org/10.1007/978-3-642-12929-2_6
https://doi.org/10.1038/nature23461
https://doi.org/10.1007/978-3-030-12942-2_3
https://doi.org/10.5281/zenodo.2573505

Lightweight Swarm Authentication

George Teşeleanu1,2(B)

1 Advanced Technologies Institute, 10 Dinu Vintilă, Bucharest, Romania
tgeorge@dcti.ro

2 Simion Stoilow Institute of Mathematics of the Romanian Academy,

21 Calea Grivitei, Bucharest, Romania

Abstract. In this paper we describe a provably secure authentication
protocol for resource limited devices. The proposed algorithm performs
whole-network authentication using very few rounds and in a time loga-
rithmic in the number of nodes. Compared to one-to-one node authenti-
cation and previous proposals, our protocol is more efficient: it requires
less communication and computation and, in turn, lower energy con-
sumption.

1 Introduction

With the rise in popularity of the Internet of Things paradigm (IoT), low-cost
devices with limited resources are used much more frequently by the industry
and, implicitly, by us. In an IoT setting, spatially distributed nodes form a
network and are able to control or monitor physical or environmental conditions1,
perform computations or store data. Due to the nodes’ limited resources, either
computational or physical, they normally transmit the acquired data through
the network to a gateway which collects information and sends it to a processing
unit.

Usually, nodes are deployed in hostile environments and therefore there are
a number of serious security concerns that need to be addressed. Unfortunately,
the lightweight nature of nodes heavily restricts cryptographic operations and
makes any communication costly. Thus, the need for specific cryptographic solu-
tions becomes obvious. The Fiat-Shamir-like distributed authentication protocol
presented in [1] (denoted by QR-Swarm) represents such an example. Based
on the QR-Swarm construction, an unified generic zero-knowledge protocol is
described in [7] (denoted by Unif -Swarm).

Although the Unif -Swarm construction offers flexibility when choosing the
underlying security assumption, the discrete logarithm instantiation (denoted by
DL-Swarm) is one of interest. To ensure a certain security level, the QR-Swarm
protocol needs to be run several times. To reach the same security level it is
sufficient to run the DL-Swarm construction once. Therefore, it requires less
communication. Note that the security of DL-Swarm is based on the discrete
logarithm problem.
1 e.g. temperature, pressure, image, sound.

c© Springer Nature Switzerland AG 2022
P. Y. A. Ryan and C. Toma (Eds.): SecITC 2021, LNCS 13195, pp. 248–259, 2022.
https://doi.org/10.1007/978-3-031-17510-7_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-17510-7_17&domain=pdf
http://orcid.org/0000-0003-3953-2744
https://doi.org/10.1007/978-3-031-17510-7_17

Lightweight Swarm Authentication 249

In this paper we describe an authentication protocol that is an optimization
of the DL-Swarm protocol. More precisely, our protocol reduces the number of
messages transmitted during the authentication process, while requiring a lower
level of processing. This in turn ensures lower power consumption, and hence
nodes have a longer battery life. The security of our main proposal is based on
the computational Diffie-Hellman assumption, instead of the discrete logarithm
problem. Although we base our security on a weaker security notion, in practice,
the only known way to attack the computational Diffie-Hellman is to attempt
to retrieve one of the secret exponents (i.e. to solve the discrete logarithm) [2].
In the appendix we also propose a version of our protocol that is based on the
computational bilinear Diffie-Hellman assumption. Even though this version is
less efficient, we believe that the bilinear version is of theoretical interest, since
it shows that we can implement the protocol in multiple ways.

Structure of the Paper. Notations and preliminaries are presented in Sect. 2.
We describe the core of our paper, a lightweight authentication protocol for IoT
devices, in Sect. 3. We conclude in Sect. 4. A variation of our protocol is proposed
in Appendix A.

2 Preliminaries

Notations. Throughout the paper, the notation ‖ denotes string concatenation.
The subset {0, . . . , s} ∈ N is denoted by [0, s]. The action of selecting a random

element x from a sample space X is represented by x
$←− X, while x ← y indicates

the assignment of value y to variable x.

2.1 Hardness Assumptions

Definition 1 (Discrete Logarithm - dl). Let G be a cyclic group of order q,
g a generator of G and let A be a probabilistic polynomial-time algorithm (PPT
algorithm) that returns an element from Z

∗
q . We define the advantage

ADV dl

G,g(A) = Pr[A(gx) = x|x $←− Z
∗
q].

If ADV dl

G,g(A) is negligible for any PPT algorithm A, we say that the discrete
logarithm problem is hard in G.

Definition 2 (Computational Diffie-Hellman - cdh). Let G be a cyclic
group of order q, g a generator of G and let A be a probabilistic PPT algorithm
that returns an element from G. We define the advantage

ADV cdh

G,g (A) = Pr[A(gx, gy) = gxy|x, y
$←− Z

∗
q].

If ADV cdh

G,g (A) is negligible for any PPT algorithm A, we say that the com-
putational Diffie-Hellman problem is hard in G.

250 G. Teşeleanu

2.2 Zero-Knowledge Protocols

In a traditional proof of knowledge a prover, called Peggy, tries to convince a
verifier, called Victor, that she knows a piece of knowledge. To achieve that, they
engage in an interactive protocol. To make sense, the protocol must be complete
and sound. Completeness means that if Peggy is honest she can succeed to
convince an honest Victor that her claim is true, while soundness means that a
dishonest Peggy cannot convince Victor of a false statement.

Formally, let Q : {0, 1}∗ × {0, 1}∗ → {true, false} be a predicate. Given a
value z, Peggy will try to convince Victor that she knows a value x such that
Q(z, x) = true. The following definition [3,8] captures the notions of complete-
ness and soundness for a proof of knowledge protocol.

Definition 3 (Proof of Knowledge Protocol). An interactive protocol
(P, V) is a proof of knowledge protocol for predicate Q if the following properties
hold

– Completeness: V accepts the proof when P has as input a value x with
Q(z, x) = true;

– Soundness: There exists an efficient program K (called knowledge extractor)
such that for any P̄ (possibly dishonest) with non-negligible probability of mak-
ing V accept the proof, K can interact with P̄ and output (with overwhelming
probability) an x such that Q(z, x) = true.

An interesting property of proofs of knowledge is that they can be performed
without leaking any information besides the validity of Peggy’s claim. More pre-
cisely, the protocol can be implemented such that Victor can simulate it by
himself (i.e. without requiring Peggy to be part of the protocol). The aforemen-
tioned property is called zero-knowledge and it is formally defined next [4,8].

Definition 4 (Zero Knowledge Protocol). A protocol (P, V) is zero-
knowledge if for every efficient program V̄ there exists an efficient program S,
the simulator, such that the output of S is indistinguishable from a transcript of
the protocol execution between P and V̄ .

2.3 A Distributed Unified Protocol

Let us consider an n-node network consisting of N1, ...,Nn. The nodes Ni can be
seen as users and the base station T as a trusted center. To achieve the authen-
tication of the entire network, the authors of [7] propose a unified Fiat-Shamir-
like construction. The construction which we detail next is an instantiation of
Unif -Swarm using discrete logarithms.

Before deploying the nodes, we must select the network’s security parameters.
Thus, we choose a group G of order p and we select an element g of order q, where

Lightweight Swarm Authentication 251

q is a large prime such that q|p. After selecting the public parameters, each node

Ni randomly selects its private key xi
$←− Z

∗
q and computes the corresponding

public key zi ← gxi .
After the nodes are deployed, the network topology has to converge and a

spanning tree needs to be constructed. For example, we can use an algorithm
similar with the one presented in [9].

The protocol proposed in [7] can be summarized as follows:

1. First, T sends an authentication request message to all the Ni nodes directly
connected to it.

2. After receiving an authentication request message:
– Each Ni generates a private ki

$←− Z
∗
q and computes ti ← gki ;

– The Ni nodes send authentication messages to all their (existing) children;
– After the children respond, nodes Ni compute ti ← ti ·

(∏
j tj

)
and send

the result up to their parents. Note that the tj values are sent by the
nodes’ children.

Such a construction permits the network to compute the product of all the
ti values and send the result tc to the top of the tree in d steps, where d
represents the degree of the spanning tree. We refer the reader to Fig. 1 for a
toy example of this step.

3. T sends a random c = (c1, . . . , cn) ∈ [0, q−1]n as an authentication challenge
to the Ni nodes directly connected to it.

4. After receiving an authentication challenge c:
– Each Ni computes ri ← ki + cixi mod q;
– The Ni nodes then send the authentication challenge c to all their (exist-

ing) children;
– After the children respond, the nodes Ni compute ri ← ri+

(∑
j rj

)
mod

q and send the result to their parents. Note that the rj values are sent by
the nodes’ children.

The network therefore computes collectively the sum of all the ri values and
transmits the result rc to T . Again, we refer the reader to Fig. 1 for a toy
example of this step.

5. After receiving the response rc, T authenticates the whole network if and
only if grc = tc · (

∏n
i=1 zci

i) holds.

In [7], the authors investigate the relation between the DL-Swarm protocol
and the discrete logarithm assumption. Their result is summarized in Theorem 1.

Theorem 1. The DL-Swarm protocol is a proof of knowledge if and only if the
dl assumption holds. Moreover, the protocol is zero knowledge.

252 G. Teşeleanu

T tc = t4

N4 t4 = gk4t1t2t3

N2

t2 = gk2

N3

t3 = gk3

N1

t1 = gk1

T rc = r4

N4 r4 = k4 + c4x4 + r1 + r2 + r3

N2

r2 = k2 + c2x2

N3

r3 = k3 + c3x3

N1

r1 = k1 + c1x1

Fig. 1. The DL-Swarm algorithm running on a network consisting of 4 nodes: com-
putation of tc (left) and of rc (right).

3 Computational Diffie-Hellman Swarm Protocol

3.1 Description

Let us consider again an n-node network consisting of the nodes N1, ...,Nn and
a base station T . The core idea of our proposal is that the base station does a
Diffie-Hellman type key exchange with all its children and then compares the
resulting network key with its own key.

We further describe our proposed distributed protocol (further denoted by
CDH-Swarm).

1. After the network is set, T sends an authentication request message to all the
Ni nodes directly connected to it. The request message contains a challenge
c ← gk, where k

$←− Z
∗
q .

2. After receiving an authentication request message:
– Each Ni computes ti ← cxi ;
– The Ni nodes send authentication messages to all their (existing) children;
– After the children respond, Ni nodes compute ti ← ti ·

(∏
j tj

)
and send

the result up to their parents. Note that the tj values are sent by the
nodes’ children.

Such a construction permits the network to compute the product of all the
ti values and send the result tc to the top of the tree in d steps, where d
represents the degree of the spanning tree. We refer the reader to Fig. 2 for a
toy example of this step.

3. After receiving the response tc, T authenticates the whole network if and only
if tc = (

∏n
i=1 zi)

k holds.

Remark 1. The CDH-Swarm protocol either authenticates the whole network
or none of the nodes. More precisely, a single defective node suffices for authen-
tication to fail. In certain cases this is not acceptable and more information
is needed. For instance, one could wish to know which node is responsible for

Lightweight Swarm Authentication 253

T tc = t4

N4 t4 = cx4t1t2t3

N2

t2 = cx2

N3

t3 = cx3

N1

t1 = cx1

Fig. 2. The CDH-Swarm algorithm running on a network consisting of 4 nodes: com-
putation of tc.

the authentication failure. A simple back-up strategy consists in performing the
protocol with each of the nodes that still respond and thus identify where the
problem lies. Since all nodes already have the hardware and software required to
perform the protocol, the nodes can use the same keys to perform the one-to-one
protocol with the base station. Hence, this back-up solution adds no implementa-
tion overhead. Note that, as long as the network is healthy, using our distributed
algorithm instead is more efficient and consumes less bandwidth and less energy.

3.2 Security Analysis

Before stating the security proof, we first want to point out that in the case of
our protocol Peggy is given as input (gxi , gk) and she will try to convince Victor
that she knows an element v such that the predicate “Is v = gxik?” is true.

Theorem 2. The CDH-Swarm protocol is a proof of knowledge if and only if
the cdh assumption holds. Moreover, the protocol is zero knowledge.

Proof. If T receives a genuine tc, then we have

tc =
n∏

i=1

ti =
n∏

i=1

cxi =
n∏

i=1

(gk)xi =
n∏

i=1

(gxi)k =

(
n∏

i=1

zi

)k

.

Hence, T will always accept honest tc values, and thus the completeness property
is satisfied.

Let P̃ be a PPT algorithm that takes as input z1, . . . , zn and makes T accept
the proof with non-negligible probability Pr(P̃). Then we are able to construct
a PPT algorithm K (described in Algorithm 1) that interacts with P̃ and that
has a non-negligible advantage ADV cdh

〈g〉,g(K) = Pr(P̃). Therefore, given y0 ← gu

and y1 ← gv algorithm K can compute guv with non-negligible probability.

254 G. Teşeleanu

More precisely, on input y0 and y1, algorithm K first assigns as the public key
of node Ni the value y0, randomly selects the secret keys for the remaining n−1
nodes and computes their corresponding public keys. Then, he runs the protocol
with P̃ , where K plays the role of the base station. Note that the challenge K
send to P̃ is the value y1. Once the protocol is finished, K can recover the correct
value of guv only if P̃ is successful into authenticate himself. Hence, the success
probability of K is the same as the one of P̃ , and thus the soundness property
is satisfied.

Algorithm 1. Algorithm K.
Input: Two elements y0 ← gu and y1 ← gv

1 Select i
$←− [1, n] and xj

$←− Z
∗
q , where j ∈ [1, n]\{i}

2 Compute zj ← gxj and set zi ← y0

3 Send z1, . . . , zn to P̃

4 Send y1 to P̃

5 Receive tc from P̃

6 Compute w ←
∏

j �=i y
−xj

1

7 return tc · w

The last part of our proof consists in constructing a simulator S such that
its output is indistinguishable from a genuine transcript between the nodes and
the base station. Such a simulator is described in Algorithm 2.

Algorithm 2. Simulator S.
Input: The nodes’ public keys z1, . . . , zn

1 Choose k
$←− Z

∗
q

2 For each node, compute ti ← zki ·
(∏

j tj
)
, where tj are the values computed by

the current node’s children
3 return gk, t1, . . . , tn

��

Remark 2. Note if an adversary is simulating only n′ out of n nodes of the
network, then he still has to face an CDH-Swarm protocol with n′ nodes.

Small Subgroup Attack. The small subgroup attack [5,6] demonstrates that
validating ephemeral keys is a prudent and, in some cases, essential measure in

Lightweight Swarm Authentication 255

Diffie-Hellman type protocols. We further illustrate what happens in the case of
the CDH-Swarm protocol. For simplicity, we further assume that n = 1. The
exact details of the CDH-Swarm protocol with n = 1 are illustrated in Fig. 3.

T N1

k
$←− Z

∗
q

c ← gk
c−−−−−−−→

t1 ← cx1

t1←−−−−−−−

Fig. 3. The CDH-Swarm protocol.

T N1

c ← h
c−−−−−−−→

t1 ← cx1

t1←−−−−−−−

Fig. 4. The small subgroup attack.

The small subgroup attack works only if the order of G is not prime. More
precisely, if p = ms where s > 1 is small. Using this assumption, the attacker
forces t1 to be from the subgroup of order s. Therefore, he is able to obtain some
information about the node’s secret key.

Let h be an element of order m. The exact details of the attack are presented
in Fig. 4. Note that t1 now lies in the subgroup of order s, and thus the attacker
can learn using brute force the value x1 mod s. By iterating this attack for each
small prime factor of p, an attacker can learn μ bits of x1, where μ is the bit
length of the small factors of p. Hence, the small subgroup attack lowers the
security margin by μ. For more details, we refer the reader to [6].

As long as p is chosen such that log2 q−μ is large2, the small subgroup attack
does not affect future authentications of N1, since the attacker still needs to find
the remaining bits of x1 in order to impersonate N1.

3.3 Complexity Analysis

The number of operations3 necessary to authenticate the network depends on
the topology at hand. Note that each node performs in average only a few oper-
ations (a constant number). Precise complexity evaluations are given in Tables 1
and 2. The motivation of considering per node metrics is to show that our pro-
tocol reduces the number of operation, and hence minimizes the risk of one
node running out of batteries. We can clearly see that compared to DL-Swarm
CDH-Swarm reduces the overall complexity of authenticating the network.

2 e.g. when G = Zp, if prime p is chosen such that q = (p − 1)/2 is also prime, then
we only lower the security margin by 1 bit.

3 Random number generations are denoted by RNG.

256 G. Teşeleanu

Table 1. The computational complexity of authenticating the network.

Operation Number of computations

DL-Swarm [7] CDH-Swarm

Exponentiation 2n + 1 n + 2

Multiplications ≤3n ≤2n

Additions ≤2n 0

RNG 2n 1

Table 2. The computational complexity per node.

Operation Number of computations

DL-Swarm [7] CDH-Swarm

Exponentiation 1 1

Multiplications ≤n ≤n − 1

Additions ≤n 0

RNG 1 0

Let d = O(log n) be the degree of the minimum spanning tree of the network.
Then, only O(d) messages are sent. Hence, throughout the authentication process
only a logarithmic number of messages is sent.

Remark that in the case of the DL-Swarm protocol we have two rounds of
messages from the base station toward the leafs and two from the leafs toward
the base station. In our proposed protocol we reduce the protocol to one round
from the base station toward the leafs and one from the leafs toward the base
station. So, we reduce by half the number of messages transmitted through the
network. The exact bandwith requirements per node are presented in Table 3.

Table 3. The bandwidth requirements per node.

Messages Number of bits

DL-Swarm [7] CDH-Swarm

Sent ≤ (n + 2)�log q� ≤ 2�log q�
Received ≤ 3n�log q� ≤ (n + 1)�log q�

3.4 Hash Based Variant

We further describe a CDH-Swarm variant that aims at reducing the amount
of information sent by individual nodes. Note that for this protocol to work, the
base station must know the network’s topology beforehand.

According to the birthday paradox the probability of obtaining two identical
public keys is p � 1 − e−n(n−1)/2q. Since q is significantly larger than n, then we

Lightweight Swarm Authentication 257

can safely assume that p � 0. Hence, we can use a node’s public key zi as an
unique identification number. Also, the zi values can be used to induce a total
order for the nodes on a given level using the usual < operation.

Let h : {0, 1}∗ → {0, 1}� be a hash function. Using the previous remark,
instead of transmitting an element ti in Step 2, we can transmit a digest ti ←
h(zi‖ti‖ (‖jtj)), where tj1 < tj2 if and only if zj1 < zj2 . In parallel, T computes
the correct response tr by using the network’s topology and the k value. After
receiving the network’s response, the base station can check if tc = tr.

From an efficiency point of view, compared to DL-Swarm, multiplications
become hash computations and instead of transmitting 	log q
 bits, each node
transmits � bits. Note that this variant does not impact security, assuming that
h is an ideal hash function.

4 Conclusions

In this paper we described a distributed authentication protocol that enables net-
work authentication using fewer rounds per authentication than previous pro-
posed solutions. Thereby making it more suitable for resource-limited devices
such as wireless sensors and other IoT devices. To conserve energy and band-
width, our proposal gives a proof of integrity for the whole network at once,
instead of authenticating each individual node.

Future Work. In the case of failed network authentication an interesting research
direction would be to devise new batch verification algorithms for finding com-
promised nodes. Another interesting direction would be to find an equivalent
of our proposed swarm protocol, that is based on e-th root problem or other
hardness assumptions.

A Computational Bilinear Diffie-Hellman Swarm
Protocol

In this section we provide the reader with a swarm protocol based on a dif-
ferent security assumption. Namely, the computational bilinear Diffie-Hellman
assumption.

Definition 5 (Computational Bilinear Diffie-Hellman - cbdh). Let G be
a cyclic group of order q, P a generator of G and e : G×G → GT a cryptographic
bilinear map, where GT is a cyclic group of order q. We will use the convention
of writing G additively and GT multiplicatively. Let A be a probabilistic PPT
algorithm that returns an element from GT . We define the advantage

ADV cbdh

G,g,e(A) = Pr[A(xP, yP, zP) = e(P, P)xyz|x, y, z
$←− Z

∗
q].

If ADV cbdh

G,g,e(A) is negligible for any PPT algorithm A, we say that the com-
putational bilinear Diffie-Hellman problem is hard in G.

258 G. Teşeleanu

We further assume that the group G admits a computationally efficient bilin-
ear map e(·, ·) such that cbdh is hard in G. Using the same setup4 as in the case
of CDH-Swarm, we present below the full details of the bilinear version of the
swarm protocol (denoted by CBDH-Swarm):

1. Let xi, yi
$←− Z

∗
q be the private keys given to node Ni and zi ← xiP , wi ← yiP

the node’s public keys. After the network is set, T sends an authentication
request message to all the Ni nodes directly connected to it. The request
message contains a challenge c ← kP , where k

$←− Z
∗
q .

2. After receiving an authentication request message:
– Each Ni computes ti ← e(c, P)xiyi ;
– The Ni nodes send authentication messages to all their (existing) children;
– After the children respond, Ni nodes compute ti ← ti ·

(∏
j tj

)
and send

the result up to their parents. Note that the tj values are sent by the
nodes’ children.

Such a construction permits the network to compute the product of all the
ti values and send the result tc to the top of the tree in d steps, where d
represents the degree of the spanning tree.

3. After receiving the response tc, T authenticates the whole network if and only
if tc = (

∏n
i=1 e(zi, wi))

k holds.

Remark 3. Note that the hash based variant of the CDH-Swarm protocol can
also be easily adapted to the CBDH-Swarm version.

We further link the security of the CBDH-Swarm protocol to the cbdh

assumption.

Theorem 3. The CBDH-Swarm protocol is a proof of knowledge if and only
if the cbdh assumption holds. Moreover, the protocol is zero knowledge.

Proof (sketch). We will only prove that the scheme is sound, since the remaining
security requirements are proven similarly to Theorem 2. Hence, we have

tc =
n∏

i=1

ti =
n∏

i=1

e(c, P)xiyi =
n∏

i=1

e(P, P)xiyik

=
n∏

i=1

e(xiP, yiP)k =

(
n∏

i=1

e(zi, wi)

)k

.

��

4 Traditionally, in the case of cbdh, the generator is denoted by P instead of g.

Lightweight Swarm Authentication 259

References

1. Cogliani, S., et al.: Public key-based lightweight swarm authentication. In: Koç,
Ç.K. (ed.) Cyber-Physical Systems Security, pp. 255–267. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-98935-8 12

2. Crandall, R., Pomerance, C.: Prime Numbers: A Computational Perspective.
Springer (2005). https://doi.org/10.1007/0-387-28979-8

3. Feige, U., Fiat, A., Shamir, A.: Zero-knowledge proofs of identity. J. Cryptol. 1(2),
77–94 (1988)

4. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof systems. SIAM J. Comput. 18(1), 186–208 (1989)

5. Law, L., Menezes, A., Qu, M., Solinas, J., Vanstone, S.: An efficient protocol for
authenticated key agreement. Des. Codes Cryptogr. 28(2), 119–134 (2003)

6. Lim, C.H., Lee, P.J.: A key recovery attack on discrete log-based schemes using a
prime order subgroup. In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp.
249–263. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0052240

7. Maimuţ, D., Teşeleanu, G.: A generic view on the unified zero-knowledge protocol
and its applications. In: Laurent, M., Giannetsos, T. (eds.) WISTP 2019. LNCS,
vol. 12024, pp. 32–46. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
41702-4 3

8. Maurer, U.: Unifying zero-knowledge proofs of knowledge. In: Preneel, B. (ed.)
AFRICACRYPT 2009. LNCS, vol. 5580, pp. 272–286. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-02384-2 17

9. Mooij, A.J., Goga, N., Wesselink, J.W.: A distributed spanning tree algorithm for
topology-aware networks. Technische Universiteit Eindhoven, Department of Math-
ematics and Computer Science (2003)

https://doi.org/10.1007/978-3-319-98935-8_12
https://doi.org/10.1007/0-387-28979-8
https://doi.org/10.1007/BFb0052240
https://doi.org/10.1007/978-3-030-41702-4_3
https://doi.org/10.1007/978-3-030-41702-4_3
https://doi.org/10.1007/978-3-642-02384-2_17

New Configurations of Grain Ciphers:
Security Against Slide Attacks

Diana Maimuţ1 and George Teşeleanu1,2(B)

1 Advanced Technologies Institute, 10 Dinu Vintilă, Bucharest, Romania
{diana.maimut,tgeorge}@dcti.ro

2 Department of Computer Science, “Al.I.Cuza” University of Iaşi,
700506 Iaşi, Romania

george.teseleanu@info.uaic.ro

Abstract. eSTREAM brought to the attention of the cryptographic
community a number of stream ciphers including Grain v0 and its revised
version Grain v1. The latter was selected as a finalist of the competition’s
hardware-based portfolio. The Grain family includes two more instanti-
ations, namely Grain-128 and Grain-128a.

The scope of our paper is to provide an insight on how to obtain secure
configurations of the Grain family of stream ciphers. We propose differ-
ent variants for Grain and analyze their security with respect to slide
attacks. More precisely, as various attacks against initialization algo-
rithms of Grain were discussed in the literature, we study the security
impact of various parameters which may influence the LFSR’s initializa-
tion scheme.

1 Introduction

The Grain family of stream ciphers consists of four instantiations Grain v0 [12],
Grain v1 [13], Grain-128 [11] and Grain-128a [18]. Grain v1 is a finalist of the
hardware-based eSTREAM portfolio [1], a competition for choosing both hard-
ware and software secure and efficient stream ciphers.

The design of the Grain family of ciphers includes an LFSR. The loading
of the LFSR consists of an initialization vector (IV) and a certain string of
bits P whose lengths and structures depend on the cipher’s version. Following
the terminology used in [6], we consider the IV as being padded with P . Thus,
throughout this paper, we use the term padding to denote P . Note that Grain v1
and Grain-128 make use of periodic IV padding and Grain-128a uses aperiodic
IV padding.

A series of attacks against the Grain family padding techniques appeared
in the literature [5,6,8,16] during the last decade. In the light of these attacks,
our paper proposes the first security analysis1 of generic IV padding schemes for
Grain ciphers in the periodic as well as the aperiodic cases.

1 Against slide attacks.

c© Springer Nature Switzerland AG 2022
P. Y. A. Ryan and C. Toma (Eds.): SecITC 2021, LNCS 13195, pp. 260–285, 2022.
https://doi.org/10.1007/978-3-031-17510-7_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-17510-7_18&domain=pdf
http://orcid.org/0000-0002-9541-5705
http://orcid.org/0000-0003-3953-2744
https://doi.org/10.1007/978-3-031-17510-7_18

New Configurations of Grain Ciphers: Security Against Slide Attacks 261

In this context, the concerns that arise are closely related to the security
impact of various parameters of the padding, such as the position and structure of
the padding block. Moreover, we consider both compact and fragmented padding
blocks in our study. We refer to the original padding schemes of the Grain ciphers
as being compact (i.e. a single padding block is used). We denote as fragmented
padding the division of the padding block into smaller blocks of equal length2.

By examining the structure of the padding and analyzing its compact and
especially fragmented versions, we actually study the idea of extending the key’s
life. The latter could be achieved by introducing a variable padding according to
suitable constraints. Hence, the general question that arises is the following: what
is to be loaded in the LFSRs of Grain ciphers in order to obtain secure settings?.
Note that our study is preliminary, taking into account only slide attacks. We
consider other types of attacks as future work.

We stress that finding better attacks than the ones already presented in
the literature is outside the scope of our paper, as our main goal is to estab-
lish sound personalized versions of the Grain cipher. Hence, our work does not
have any immediate implication towards breaking any cipher of the Grain fam-
ily. Nevertheless, our observations become meaningful either in the lightweight
cryptography scenario or in the case of an enhanced security context (e.g. secure
government applications).

Lightweight cryptography lies at the crossroad between cryptography, com-
puter science and electrical engineering [17]. Thus, trade-offs between perfor-
mance, security and cost must be considered. Given such constraints and the
fact that embedded devices operate in hostile environments, there is an increas-
ing need for new and varied security solutions, mainly constructed in view of
the current ubiquitous computing tendency. As the Grain family lies precisely
within the lightweight primitives’ category, we believe that the study presented
in the current paper is of interest for the industry and, especially, government
organizations.

When dealing with security devices for which the transmission and process-
ing of the IV is neither so costly nor hard to handle (e.g. the corresponding
communication protocols easily allow the transmission), shrinking the padding
up to complete removal might be considered. More precisely, we suggest the use
of a longer IV in such a context in order to increase security. Moreover, many
Grain-type configurations could be obtained if our proposed padding schemes are
used. Such configurations could be considered as personalizations of the main
algorithm and, if the associated parameters are kept secret, the key’s life can be
extended.

Structure of the Paper. We introduce notations and give a quick reminder of
the Grain family technical specifications in Sect. 2. Section 3 describes generic
attacks against the Grain ciphers. In Sect. 4 we discuss the core result of our
paper: a security analysis of IV padding schemes for Grain ciphers. We conclude

2 We consider these smaller blocks as being spread among the linear feedback register’s
data.

262 D. Maimuţ and G. Teşeleanu

and underline various interesting ideas as future work in Sect. 5. We recall Grain
v1 in Appendix A, Grain-128 in Appendix B and Grain-128a in Appendix C. We
do not recall the corresponding parameters of Grain v0, even though the results
presented in the current paper still hold in that case. In Appendix D and E we
provide test values for our proposed algorithms.

2 Preliminaries

Notations. During the following, capital letters will denote padding blocks and
small letters will refer to certain bits of the padding. We use the big-endian
convention. Hexadecimal strings are marked by the prefix 0x.

MSB�(Q) stands for the most significant � bits of Q
LSB�(Q) stands for the least significant � bits of Q

MID[�1,�2](Q) stands for the bits of Q between position �1 and �2
x‖y represents the string obtained by concatenating y to x
∈R selecting an element uniformly at random
|x| the bit-length of x
bt stands for t consecutive bits of b

NULL stands for an empty variable.

2.1 Grain Family

Grain is a hardware-oriented stream cipher initially proposed by Hell, Johansson
and Meier [12] and whose main building blocks are an n bit linear feedback shift
register (LFSR), an n bit non-linear feedback shift register (NFSR) and an output
function. Because of a weakness in the output function, a key recovery attack
[7] and a distinguishing attack [14] on Grain v0 were proposed. To solve these
security issues, Grain v1 [13] was introduced. Also, Grain-128 [11] was proposed
as a variant of Grain v1. Grain-128 uses 128-bit keys instead of 80-bit keys. Grain
128a [18] was designed to address cryptanalysis results [4,9,10,15,19] against the
previous version. Grain 128a offers optional authentication. We stress that, in
this paper, we do not address the authentication feature of Grain-128a.

Let Xi = [xi, xi+1, . . . , xi+n−1] denote the state of the NFSR at time i and
let g(x) be the nonlinear feedback polynomial of the NFSR. g(Xi) represents the
corresponding update function of the NFSR. In the case of the LFSR, let Yi =
[yi, yi+1, . . . , yi+n−1] be its state, f(x) the linear feedback polynomial and f(Yi)
the corresponding update function. The filter function h(Xi, Yi) takes inputs
from both the states Xi and Yi.

We shortly describe the generic algorithms KLA, KSA and PRGA below. As
KSA is invertible, a state Si = Xi‖Yi can be rolled back one clock to Si−1. We
further refer to the transition function from Si to Si−1 as KSA−1.

New Configurations of Grain Ciphers: Security Against Slide Attacks 263

Fig. 1. Output generator and key initialization of grain ciphers

Key Loading Algorithm (KLA). The Grain family uses an n-bit key K, an m-bit
initialization vector IV with m < n and some fixed padding P ∈ {0, 1}α, where
α = n − m. The key is loaded in the NFSR, while the pair (IV, P) is loaded in
the LFSR using a one-to-one function further denoted as LoadIV (IV, P).

Key Scheduling Algorithm (KSA). After running KLA, the output3 zi is XOR-ed
to both the LFSR and NFSR update functions, i.e., during one clock the LFSR
and the NFSR bits are updated as yi+n = zi + f(Yi), xi+n = yi + zi + g(Xi).

Pseudorandom Keystream Generation Algorithm (PRGA). After performing
KSA routine for 2n clocks, zi is no longer XOR-ed to the LFSR and NFSR
update functions, but it is used as the output keystream bit. During this phase,
the LFSR and NFSR are updated as yi+n = f(Yi), xi+n = yi + g(Xi).

Figure 1 depicts an overview of KSA and PRGA. Common features are
depicted in black. In the case of Grain v1, the pseudorandom keystream gener-
ation algorithm does not include the green path. The red paths correspond to
the key scheduling algorithm.

The corresponding parameters of Grain v1 are described in Appendix A,
while Grain-128 is tackled in Appendix B and Grain-128a in Appendix C. The
appendices also include the LoadIV functions and the KSA−1 algorithms for all
versions.

Security Model. In the Chosen IV - Related Key setting (according to [6,
Sect. 2.1]), an adversary is able to query an encryption oracle (which has access
to the key K) in order to obtain valid ciphertexts. For each query i, the adver-
sary can choose the oracle’s parameters: an initialization vector IVi, a function
Fi : {0, 1}n → {0, 1}n and a message mi. The oracle encrypts mi using the
Key-IV pair (Fi(K), IVi). The adversary’s task is to distinguish the keystream
output from a random stream.

3 During one clock.

264 D. Maimuţ and G. Teşeleanu

Assumptions. Based on the results of the experiments we conducted, we fur-
ther assume that the output of KSA, KSA−1 and PRGA is independently and
uniformly distributed. More precisely, all previous algorithms were statistically
tested applying the NIST Test Suite [2]. During our experiments we used the
following setup:

1. Xi is a randomly generated n-bit state using the GMP library [3];
2. Y ′′

i is either 02α or 12α;
3. Yi = Y ′

i ‖Y ′′
i , where Y ′

i is a randomly generated (m − α)-bit state using the
GMP library.

3 Generic Grain Attacks

As already mentioned in Sect. 2, the Grain family uses an NFSR and a nonlinear
filter (which takes input from both shift registers) to introduce nonlinearity. If
after the initialization process, the LFSR is in an all zero state, only the NFSR is
actively participating to the output. As already shown in the literature, NFSRs
are vulnerable to distinguishing attacks [7,15,20].

Weak Key-IV Pair. If the LFSR reaches the all zero state after 2n clocks we say
that the pair (K, IV) is a weak Key-IV pair. An algorithm which produces weak
Key-IV pairs for Grain v1 is presented in [20]. We refer the reader to Algorithm
1 for a generalization of this algorithm to any of the Grain ciphers.

Given a state V , we define it as valid if there exists an IV ∈ {0, 1}m such
that LoadIV (IV, P) = V , where P is the fixed padding. We further use a function
ExtractIV (V) which is the inverse of LoadIV (·, P). The probability to obtain a
weak Key-IV pair by running Algorithm 1 is 1/2α.

A refined version of the attack from [20] is discussed in [5] and generalized
in Algorithm 2. The authors of [5] give precise differences between keystreams
generated using the output of Algorithm 2 for Grain v1 (see Theorem 1), Grain-
128 (see Theorem 2) and Grain-128a (see Theorem 3).

Algorithm 1. Generic Weak Key-IV Attack
Output: A Key-IV pair (K′, IV ′)

1 Set s ← 0
2 while s = 0 do
3 Choose K ∈R {0, 1}n and let V ∈ {0, 1}n be the zero LFSR state (0, ..., 0)
4 Run KSA−1(K‖V) routine for 2n clocks and produce state S′ = K′‖V ′

5 if V ′ is valid then
6 Set s ← 1 and IV ′ ← ExtractIV (V ′)
7 return (K′, IV ′)
8 end

9 end

New Configurations of Grain Ciphers: Security Against Slide Attacks 265

Theorem 1. For Grain v1, two initial states S0 and S0,Δ which differ only
in the 79th position of the LFSR, produce identical output bits in 75 specific
positions among the initial 96 key stream bits obtained during the PRGA.

Remark 1. More precisely, the 75 positions are the following ones:

k ∈ [0, 95]\{15, 33, 44, 51, 54, 57, 62, 69, 72, 73, 75, 76, 80, 82, 83, 87, 90, 91, 93 − 95}.

Theorem 2. For Grain-128, two initial states S0 and S0,Δ which differ only
in the 127th position of the LFSR, produce identical output bits in 112 specific
positions among the initial 160 key stream bits obtained during the PRGA.

Remark 2. More precisely, the 112 positions are the following ones:

k ∈ [0, 159]\{32, 34, 48, 64, 66, 67, 79 − 81, 85, 90, 92, 95, 96, 98, 99, 106, 107, 112, 114, 117, 119,

122, 124 − 126, 128, 130 − 132, 138, 139, 142 − 146, 148 − 151, 153 − 159}.

Theorem 3. For Grain-128a, two initial states S0 and S0,Δ which differ only
in the 127th position of the LFSR, produce identical output bits in 115 specific
positions among the initial 160 key stream bits obtained during the PRGA.

Remark 3. More precisely, the 115 positions are the following ones:

k ∈ [0, 159]\{33, 34, 48, 65 − 67, 80, 81, 85, 91, 92, 95, 97 − 99, 106, 107, 112, 114, 117, 119,

123 − 125, 127 − 132, 138, 139, 142 − 146, 149 − 151, 154 − 157, 159}.

We further present an algorithm that checks which keystream positions pro-
duced by the states S and SΔ are identical (introduced in Algorithm 2). Note
that if we run Algorithm 3 we obtain less positions than claimed in Theorems
1 to 3, as shown in Appendix E. This is due to the fact that Algorithm 3 is
prone to producing internal collisions and, thus, eliminate certain positions that
are identical in both keystreams. Note that Theorem 4 is a refined version of
Remarks 1, 2 and 3 in the sense that it represents an automatic tool for finding
identical keystream positions.

Modified Pseudorandom Keystream Generation Algorithm (PRGA′). To obtain
our modified PRGA we replace + (XOR) and · (AND) operations in the original
PRGA with | (OR) operations.

266 D. Maimuţ and G. Teşeleanu

Algorithm 2. Search for Key-IV pairs that produce almost similar initial
keystream
Input: An integer r ∈ {0, 2n}
Output: Key-IV pairs (K, IV) and (K′, IV ′)

1 Set s ← 0
2 while s = 0 do
3 Choose K ∈R {0, 1}n and IV ∈R {0, 1}m

4 Run KSA(K‖IV) routine for 2n clocks to obtain an initial state
S0 ∈ {0, 1}2n

5 Construct S0,Δ from S0 by flipping the bit on position r
6 Run KSA−1(S0,Δ) routine for 2n clocks and produce state S′ = K′‖V ′

7 if V ′ is valid then
8 Set s ← 1 and IV ′ ← ExtractIV (V ′)
9 return (K, IV) and (K′, IV ′)

10 end

11 end

Theorem 4. Let r be a position of Grain’s internal state, q1 the number of
desired identical positions in the keystream and q2 the maximum number of search
trials. Then, Algorithm 3 finds at most q1 identical positions in a maximum of
q2 trials.

Proof. We note that in Algorithm 3 the bit br on position r is set. If br is taken
into consideration while computing the output bit of PRGA then the output of
PRGA′ is also set due to the replacement of the original operations (+ and ·)
with | operations. The same argument is valid if a bit of Grain’s internal state
is influenced by br.

The above statements remain true for each internal state bit that becomes
set during the execution of Algorithm 3. ��

Algorithm 3. Search for identical keystream position in Grain
Input: Integers r ∈ {0, 2n} and q1, q2 > 0
Output: Keystream positions ϕ

1 Set s ← 0 and ϕ ← ∅

2 Let S ∈ {0, 1}2n be the zero state (0, . . . , 0)
3 Construct SΔ from S by flipping the bit on position r
4 while |ϕ| ≤ q1 and s < q2 do
5 Set b ← PRGA′(SΔ) and update state SΔ with the current state
6 if b = 0 then
7 Update ϕ ← ϕ ∪ {s}
8 end
9 Set s ← s + 1

10 end
11 return ϕ

New Configurations of Grain Ciphers: Security Against Slide Attacks 267

4 Proposed Ideas

4.1 Compact Padding

Attacks that exploit the periodic padding used in Grain-128 where first presented
in [8,16] and further improved in [5]. We generalize and simplify these attacks
below.

Setup. Let Y1 = [y0, . . . , yd1−1], where |Y1| = d1, let Y2 = [yd1+α, . . . , yn−1],
where |Y2| = d2 and let IV = Y1‖Y2. We define

LoadIV (IV, P) = Y1‖P‖Y2.

Let S = [s0, . . . , sn−1] be a state of the LFSR, then we define

ExtractIV (S) = s0‖ . . . ‖sd1−1‖ . . . ‖sd1+α‖ . . . ‖sn−1.

Padding. Let α = λω and |P0| = . . . = |Pω−1| = λ, then we define P =
P0‖ . . . ‖Pω−1. We say that P is a periodic padding of order λ if λ is the smallest
integer such that P0 = . . . = Pω−1.

Periodic padding of order α is further referred to as aperiodic padding.

Theorem 5. Let P be a periodic padding of order λ and let i = 1, 2 denote
an index. For each (set of) condition(s) presented in Column 2 of Table 1 there
exists an attack whose corresponding success probability is presented in Column
3 of Table 1.

Table 1. Attack parameters for Theorem 5

Conditions Success probability

1 d1 ≥ λ or d2 ≥ λ 1/2λ

2 d1 ≥ λ and d2 ≥ λ 1/2λ−1

3 di < λ 1/22λ−di

Proof.

1. The proof follows directly from Algorithms 5 and 7. Given the assumptions
in Sect. 2, the probability that the first λ keystream bits are zero is 1/2λ.

2. The proof is a direct consequence of Item 1.
3. The proof is straightforward in the light of Algorithms 8 and 9. Given the

assumptions in Sect. 2, the probability that V ′
1 = P0 is 1/2λ−d1 and the

probability that V ′
2 = Pω−1 is 1/2λ−d2 . Also, the probability that the first

λ keystream bits are zero is 1/2λ. Since the two events are independent, we
obtain the desired success probability.

��

268 D. Maimuţ and G. Teşeleanu

Algorithm 4. Pair1(σ, S)
Input: Number of clocks σ and a state S.
Output: A Key-IV pair (K′, IV ′) or ⊥

1 Run KSA−1(S) routine for σ clocks and produce state
S′ = (K′‖V ′

1‖P‖Pω−1‖V ′
2), where |V ′

1 | = d1 and |V ′
2 | = d2 − λ

2 Set IV ′ ← V ′
1‖Pω−1‖V ′

2

3 if (K′, IV ′) produces all zero keystream bits in the first λ PRGA rounds then
4 return (K′, IV ′)
5 end
6 return ⊥

Algorithm 5. Constructing Key-IV pairs that generate λ bit shifted
keystream
Output: Key-IV pairs (K′, IV ′) and (K, IV)

1 Set s ← 0
2 while s = 0 do

3 Choose K ∈R {0, 1}n, V1 ∈R {0, 1}d1−λ and V2 ∈R {0, 1}d2

4 Set IV ← V1‖P0‖V2, S ← K‖V1‖P0‖P‖V2 and output ← Pair1(λ, S)
5 if output 	= ⊥ then
6 Set s ← 1
7 return (K, IV) and output

8 end

9 end

Algorithm 6. Pair2(σ, S)
Input: Number of clocks σ and a state S.
Output: A Key-IV pair (K′, IV ′).

1 Run KSA(S) routine for σ clocks and produce state S′ = (K′‖V ′
1‖P0‖P‖V ′

2),
where |V ′

1 | = d1 − λ and |V ′
2 | = d2

2 Set IV ′ ← V ′
1‖P0‖V ′

2

3 return (K′, IV ′)

Remark 4. Let d2 = 0, λ = 1, P0 = 1. If α = 16, then the attack described in
[16] is the same as the attack we detail in Algorithm 9. The same is true for [8]
if α = 32. Also, if α = 32 then Algorithm 5 is a simplified version of the attack
presented in [5].

Remark 5. To minimize the impact of Theorem 5, one must choose a padding
value such that λ = α and either d1 < α or d2 < α. In this case, because of the
generic attacks described in Sect. 3, the success probability can not drop below
1/2α. The designers of Grain-128a have chosen d2 = 0 and P = 0xfffffffe. In
[6], the authors introduce an attack for Grain-128a, which is a special case of
the attack we detail in Algorithm 5.

New Configurations of Grain Ciphers: Security Against Slide Attacks 269

Theorem 6. Let P be an aperiodic padding, 1 ≤ γ < α/2 and d2 < α. Also,
let i = 1, 2 denote an index. If LSBγ(P) = MSBγ(P), then for each condition
presented in Column 2 of Table 2 there exists an attack whose corresponding
success probability is presented in Column 3 of Table 2.

Table 2. Attack parameters for Theorem 6

Condition Success probability

1 di ≥ α − γ 1/2α−γ

2 di < α − γ 1/22α−2γ−di

Proof.

1. The first part of proof follows from Algorithm 5 with the following changes:
(a) λ is replaced by α − γ;
(b) P0 is replaced by MSBα−γ(P);
(c) Pω−1 is replaced by LSBα−γ(P).

Therefore, the probability that the first α − γ keystream bits are zero is
1/2α−γ . Similarly, the second part follows from Algorithm 7.

2. To prove the first part, we use the above changes on Algorithm 8, except that
instead of replacing Pω−1 we replace LSBd1(P0) with MID[γ+d1−1,γ](P).
Thus, we obtain the probability 1/2α−γ . Similarly, for the second part we use
Algorithm 9. ��

Algorithm 7. Constructing Key-IV pairs that generate λ bit shifted
keystream
Output: Key-IV pairs (K′, IV ′) and (K, IV)

1 Set s ← 0
2 while s = 0 do

3 Choose K ∈R {0, 1}n, V1 ∈R {0, 1}d1 and V2 ∈R {0, 1}d2−λ

4 Set IV ← V1‖Pω−1‖V2

5 if (K, IV) produces all zero keystream bits in the first λ PRGA rounds
then

6 Set s ← 1 and S ← (K‖V1‖P‖Pω−1‖V2)
7 return (K, IV) and Pair2(λ, S)

8 end

9 end

270 D. Maimuţ and G. Teşeleanu

Algorithm 8. Constructing Key-IV pairs that generate λ bit shifted
keystream
Output: Key-IV pairs (K′′, IV ′′) and (K, IV)

1 Set s ← 0
2 while s = 0 do

3 Choose K ∈R {0, 1}n and V2 ∈R {0, 1}d2

4 Set IV ← LSBd1(P0)‖V2

5 Run KSA−1(K‖LSBd1(P0)‖P‖V2) routine for λ − d1 clocks and produce
state S′ = (K′‖V ′

1‖P‖V ′
2), where |V ′

1 | = λ and |V ′
2 | = d2 − λ + d1

6 if V ′
1 = p0 then

7 Set S ← K′‖P0‖P‖V ′
2 and output ← Pair1(d1, S)

8 if output 	= ⊥ then
9 Set s ← 1

10 return (K, IV) and output

11 end

12 end

13 end

Remark 6. To prevent the attacks presented in the proof of Theorem 6, the
padding must be chosen such that MSBγ(P) �= LSBγ(P), ∀ 1 ≤ γ < α/2. Grain
128a uses such a padding P = 0xfffffffe. Another example was suggested in
[8] to counter their proposed attacks: P = 0x00000001.

Constraints. Taking into account all the previous remarks, we may conclude
that good4 compact padding schemes are aperiodic and, in particular, satisfy
MSBγ(P) �= LSBγ(P), ∀ 1 ≤ γ < α/2. Also, another constraint is the position
of the padding, i.e. d1 < α or d2 < α must be satisfied.

Remark 7. In the compact padding case, the number of padding schemes that
verify the security restrictions represent 26% of the total 2α. The previous per-
centage and the values we mention below were determined experimentally.

For α = 16 and 0 ≤ d1, d2 < 16 we obtain 17622
 214 compact padding
schemes resistant to previous attacks. Thus, the complexity of a brute-force
attack increases with 219.

For α = 32 and 0 ≤ d1, d2 < 32 we obtain 1150153322
 230 compact
padding schemes resistant to previous attacks. Thus, the complexity of a brute-
force attack increases with 236.

4 Resistant to the aforementioned attacks.

New Configurations of Grain Ciphers: Security Against Slide Attacks 271

Algorithm 9. Constructing Key-IV pairs that generate λ bit shifted
keystream
Output: Key-IV pairs (K′′, IV ′′) and (K, IV)

1 Set s ← 0
2 while s = 0 do

3 Choose K ∈R {0, 1}n and V1 ∈R {0, 1}d1

4 Set IV ← V1‖MSBd2(Pω−1)
5 if K, IV produces all zero keystream bits in the first λ PRGA rounds then
6 Run KSA(K‖V1‖P‖MSBd2(Pω−1)) routine for λ − d2 clocks and

produce state S′ = (K′‖V ′
1‖P‖V ′

2), where |V ′
1 | = d1 − λ + d2 and

|V ′
2 | = λ

7 if V ′
2 = Pω−1 then

8 Set s ← 1 and S ← (K′‖V ′
1‖P‖Pω−1)

9 return (K, IV) and Pair2(d2, S)

10 end

11 end

12 end

4.2 Fragmented Padding

Setup. Let α = c · β, where c > 1. Also, let IV = B0‖B1‖ . . . ‖Bc and P =
P0‖P1‖ . . . ‖Pc−1, where |B0| = d1, |P0| = . . . = |Pc−1| = |B1| = . . . = |Bc−1| =
β and |Bc| = d2. In this case, we define

LoadIV (IV, P) = B0‖P0‖B1‖P1‖ . . . ‖Bc−1‖Pc−1‖Bc.

Let S = S0‖ . . . ‖S2c be a state of the LFSR, such that |S0| = d1, |S1| =
. . . = |S2c−1| = β and |S2c| = d2. Then we define

ExtractIV (S) = S0‖S2‖ . . . ‖S2c.

Theorem 7. Let i = 1, 2 denote an index. In the previously mentioned set-
ting, for each (set of) condition(s) presented in Column 2 of Table 3 there exists
an attack whose corresponding success probability is presented in Column 3 of
Table 3.

Table 3. Attack parameters for Theorem 7

Conditions Success probability

1 d1 ≥ β or d2 ≥ β 1/2β

2 d1 ≥ β and d2 ≥ β 1/2β−1

3 di < β 1/22β−di

272 D. Maimuţ and G. Teşeleanu

Proof.

1. We only prove the case i = 1 as the case i = 2 is similar in the light of Algo-
rithm 7. The proof follows directly from Algorithm 12. Given the assumptions
in Sect. 2, the probability that the first β keystream bits are zero is 1/2β .

2. The proof is a direct consequence of Item 1.
3. Again, we only prove the case i = 1. The proof is straightforward in the

light of Algorithm 16. Given the assumptions in Sect. 2, the probability that
V ′

1 = P0 is 1/2β−d1 . Also, the probability that the first β keystream bits are
zero is 1/2β . Since the two events are independent, we obtain the desired
success probability.

Algorithm 10. Update1()
Output: Variable value

1 Set value ← P0

2 for i = 1 to c − 1 do
3 Update value ← value‖Pi‖Pi

4 end
5 return value

Algorithm 11. Pair3(σ, S)
Input: Number of clocks σ and a state S.
Output: A Key-IV pair (K ′, IV ′) or ⊥

1 Run KSA−1(S) routine for σ clocks and produce state
S′ = (K ′‖V ′

1‖value‖V ′
2), where |V ′

1 | = d1 and |V ′
2 | = d2 − β

2 Set IV ′ ← V ′
1‖P‖V ′

2

3 if (K ′, IV ′) produces all zero keystream bits in the first β PRGA rounds
then

4 return (K ′, IV ′)
5 end
6 return ⊥

Algorithm 12. Constructing Key-IV pairs that generate β bit shifted
keystream
Output: Key-IV pairs (K ′, IV ′) and (K, IV)

1 Set s ← 0
2 while s = 0 do
3 Choose K ∈R {0, 1}n, V1 ∈R {0, 1}d1−β and V2 ∈R {0, 1}d2

4 Set value ← P0‖Update1(), IV ← V1‖P‖V2 , S ← K‖V1‖value‖V2 and
output ← Pair3(β, S)

5 if output �= ⊥ then
6 Set s ← 1
7 return (K, IV) and output

8 end
9 end

��

New Configurations of Grain Ciphers: Security Against Slide Attacks 273

Remark 8. Let δ < β and β > 1. To prevent the attacks presented in Theorem
7, we have to slightly modify the structure of the IV . We need at least one block
|Bi| = δ, where 1 ≤ i ≤ c− 1. We further consider that |Bi| = δ, ∀ 1 ≤ i ≤ c− 1.

Theorem 8. Let |Bi| = δ, ∀ 1 ≤ i ≤ c − 1. Also, let 1 ≤ γ ≤ β, 1 ≤ t ≤ c
and 0 ≤ j ≤ t − 1. If LSBγ(Pc−1−j) = MSBγ(Pt−1−j) ∀j then for each (set
of) condition(s) presented in Column 2 of Table 4 there exists an attack whose
corresponding success probability is presented in Column 3 of Table 4.

Table 4. Attack parameters for Theorem 8

Conditions Success probability

1 d1 ≥ β − γ + (β + δ)(c − t), δ ≥ β − γ 1/2β−γ+(β+δ)(c−t)

2 d1 ≥ β − γ + (β + δ)(c − t), δ < β − γ,
MSBβ−γ−δ(Pc−1−j) = LSBβ−γ−δ(Pt−2−j) ∀j

1/2β−γ+(β+δ)(c−t)

3 d1 < β − γ + (β + δ)(c − t), δ ≥ β − γ 1/22β−2γ+2(β+δ)(c−t)−d1

4 d1 < β − γ + (β + δ)(c − t), δ < β − γ,
MSBβ−γ−δ(Pc−1−j) = LSBβ−γ−δ(Pt−2−j) ∀j

1/22β−2γ+2(β+δ)(c−t)−d1

Proof.

1. The proof follows directly from Algorithm 19 (described in the last appendix
of our paper). Given the assumptions in Sect. 2, the probability that the first
β − γ + (β + δ)(c − t) keystream bits are zero is 1/2β−γ+(β+δ)(c−t).

The proofs for the remaining cases presented in Table 4 follow directly from
previous results. Thus, we omit them. ��
Theorem 9. Let |Bi| = δ, ∀ 1 ≤ i ≤ c − 1. Also, let 1 ≤ γ ≤ β, 1 ≤ t ≤ c and
0 ≤ j ≤ t−2. If δ ≥ β−γ then for each (set of) condition(s) presented in Column
2 of Table 5 there exists an attack whose corresponding success probability is
presented in Column 3 of Table 5.

Table 5. Attack parameters for Theorem 9

Conditions Success probability

1 d1 ≥ δ − β + γ + β(c − t + 1) + δ(c − t),
MSBγ(Pc−1−j) = LSBγ(Pt−2−j)∀j

1/2δ−β+γ+β(c−t+1)+δ(c−t)

2 d1 < δ − β + γ + β(c − t + 1) + δ(c − t),
MSBγ(Pc−1−j) = LSBγ(Pt−2−j)∀j

1/22δ−2β+2γ+2β(c−t+1)+2δ(c−t)−d1

274 D. Maimuţ and G. Teşeleanu

Proof. 1. The proof follows directly from Algorithm 20 (described in the last
appendix of our paper). Given the assumptions in Sect. 2, the probability
that the first δ − β + γ + β(c − t + 1) + δ(c − t) keystream bits are zero is
1/2δ−β+γ+β(c−t+1)+δ(c−t).

2. The proof is similar to the proof of Theorem 7, Item 3..
��

Remark 9. Taking into account the generic attacks described in Sect. 3, any
probability bigger than 1/2α is superfluous. As an example, when α = 32 we
obtain a good padding scheme for the following parameters d2 = 0, β = 16, δ =
14, P0 = 0x8000, P1 = 0x7fff.

Remark 10. Let c = 2, δ ≤ β − 2, γ < β and P0 �= P1. The best success proba-
bility of a slide attack when the following conditions are met:

γ > 1 : LSBγ(P1) �= MSBγ(P0)
LSBγ(P0) �= MSBγ(P1),

γ > 0 : LSBγ(P1) �= MSBγ(P1)
LSBγ(P0) �= MSBγ(P0),

is 1/2α−1+δ ≥ 1/2α. The number of padding schemes that verify the security
restrictions represent 2% of the total 2α. The previous percentage and the values
we mention below were determined experimentally.

For α = 16, β = 8, 1 ≤ δ ≤ 6, γ < 8 and d1 = d2 = 0 we obtain 1840
 210

fragmented padding schemes resistant to previous attacks. Thus, the complexity
of a brute-force attack increases with 214.

For α = 32, β = 16, 1 ≤ δ ≤ 14, γ < 16 and d1 = d2 = 0 we obtain
117113488
 223 fragmented padding schemes resistant to previous attacks.
Thus, the complexity of a brute-force attack increases with 228.

5 Conclusion

We analyzed the security of various periodic and aperiodic IV padding meth-
ods5 for the Grain family of stream ciphers, proposed corresponding attacks and
discussed their success probability.

Future Work. A closely related study which naturally arises is analyzing the
security of breaking the padding into aperiodic blocks. Another idea would be
to study how the proposed padding techniques interfere with the security of the
authentication feature of Grain-128a. A question that arises is if the occurrence
of slide pairs may somehow be converted into a distinguishing or key recovery
attack. Another interesting point would be to investigate what would happen
to the security of the Grain family with respect to differential, linear or cube
attacks in the various padding scenarios we outlined. One more future work idea
could be to analyze various methods of preventing the all zero state of Grain’s
LFSR.
5 Compact and fragmented.

New Configurations of Grain Ciphers: Security Against Slide Attacks 275

A Grain V1

In the case of Grain v1, n = 80 and m = 64. The padding value is P =
0xffff. The values IV and P are loaded in the LFSR using the function
LoadIV (IV, P) = IV ‖P . Given S ∈ {0, 1}80, we define ExtractIV (S) =
MSB64(S).

We denote by f1(x) the primitive feedback of the LFSR:

f1(x) = 1 + x18 + x29 + x42 + x57 + x67 + x80.

We denote by g1(x) the nonlinear feedback polynomial of the NFSR:

g1(x) = 1 + x18 + x20 + x28 + x35 + x43 + x47 + x52 + x59 + x66 + x71 + x80

+ x17x20 + x43x47 + x65x71 + x20x28x35 + x47x52x59 + x17x35x52x71

+ x20x28x43x47 + x17x20x59x65 + x17x20x28x35x43 + x47x52x59x65x71

+ x28x35x43x47x52x59.

The boolean filter function h1(x0, . . . , x4) is

h1(x0, . . . , x4) = x1 + x4 + x0x3 + x2x3 + x3x4 + x0x1x2 + x0x2x3 + x0x2x4 + x1x2x4 + x2x3x4.

The output function is

z1
i =

∑

j∈A1

xi+j +h1(yi+3, yi+25, yi+46, yi+64, xi+63), where A1 = {1, 2, 4, 10, 31, 43, 56}.

Algorithm 13. KSA−1 routine for Grain v1
Input: State Si = (x0, . . . , x79, y0, . . . , y79)
Output: The preceding state Si−1 = (x0, . . . , x79, y0, . . . , y79)

1 v = y79 and w = x79

2 for t = 79 to 1 do
3 yt = yt−1 and xt = xt−1

4 end

5 z =
∑

j∈A1

xj + h1(y3, y25, y46, y64, x63)

6 y0 = z + v + y13 + y23 + y38 + y51 + y62

7 x0 = z + w + y0 + x9 + x14 + x21 + x28 + x33 + x37 + x45 + x52 + x60 + x62 +
x63x60 + x37x33 + x15x9+
x60x52x45 + x33x28x21 + x63x45x28x9 + x60x52x37x33 + x63x60x21x15 +
x63x60x52x45x37 + x33x28x21x15x9 + x52x45x37x33x28x21

276 D. Maimuţ and G. Teşeleanu

B Grain-128

In the case of Grain-128, n = 128 and m = 96. The padding value is P =
0xffffffff. The values IV and P are loaded in the LFSR using the func-
tion LoadIV (IV, P) = IV ‖P . Given S ∈ {0, 1}128, we define ExtractIV (S) =
MSB96(S).

We denote by f128(x) the primitive feedback of the LFSR:

f128(x) = 1 + x32 + x47 + x58 + x90 + x121 + x128.

We denote by g128(x) the nonlinear feedback polynomial of the NFSR:

g128(x) = 1 + x32 + x37 + x72 + x102 + x128 + x44x60 + x61x125

+ x63x67 + x69x101 + x80x88 + x110x111 + x115x117.

The boolean filter function h128(x0, . . . , x8) is

h128(x0, . . . , x8) = x0x1 + x2x3 + x4x5 + x6x7 + x0x4x8.

The output function is

z128
i =

∑

j∈A128

xi+j + yi+93 + h128(xi+12, yi+8, yi+13, yi+20, xi+95, yi+42, yi+60, yi+79, yi+95),

where A128 = {2, 15, 36, 45, 64, 73, 89}.

Algorithm 14. KSA−1 routine for Grain-128
Input: State Si = (x0, . . . , x127, y0, . . . , y127)
Output: The preceding state Si−1 = (x0, . . . , x127, y0, . . . , y127)

1 v = y127 and w = x127

2 for t = 127 to 1 do
3 yt = yt−1 and xt = xt−1

4 end

5 z =
∑

j∈A128

xi+j + y93 + h128(x12, y8, y13, y20, x95, y42, y60, y79, y95),

6 y0 = z + v + y7 + y38 + y70 + y81 + y96

7 x0 = z + w + y0 + x26 + x56 + x91 + x96 + x84x68 + x65x61 + x48x40 + x59x27 +
x18x17 + x13x11 + x67x3

C Grain-128a

In the case of Grain-128a, n = 128 and m = 96. The padding value is
P = 0xfffffffe. The values IV and P are loaded in the LFSR using the func-
tion LoadIV (IV, P) = IV ‖P . Given S ∈ {0, 1}128, we define ExtractIV (S) =
MSB96(S).

New Configurations of Grain Ciphers: Security Against Slide Attacks 277

We denote by f128a(x) the primitive feedback of the LFSR:

f128a(x) = 1 + x32 + x47 + x58 + x90 + x121 + x128.

We denote by g128a(x) the nonlinear feedback polynomial of the NFSR:

g128a(x) = 1 + x32 + x37 + x72 + x102 + x128 + x44x60 + x61x125 + x63x67 + x69x101

+ x80x88 + x110x111 + x115x117 + x46x50x58 + x103x104x106 + x33x35x36x40.

The boolean filter function h128a(x0, . . . , x8) is

h128a(x0, . . . , x8) = x0x1 + x2x3 + x4x5 + x6x7 + x0x4x8.

The output function is

z
128a
i =

∑

j∈A128a

xi+j + yi+93 + h128a(xi+12, yi+8, yi+13, yi+20, xi+95, yi+42, yi+60, yi+79, yi+94),

where A128a = {2, 15, 36, 45, 64, 73, 89}.

Algorithm 15. KSA−1 routine for Grain-128a
Input: State Si = (x0, . . . , x127, y0, . . . , y127)
Output: The preceding state Si−1 = (x0, . . . , x127, y0, . . . , y127)

1 v = y127 and w = x127

2 for t = 127 to 1 do
3 yt = yt−1 and xt = xt−1

4 end

5 z =
∑

j∈A128a

xj + y93 + h128a(x12, y8, y13, y20, x95, y42, y60, y79, y94)

6 y0 = z + v + y7 + y38 + y70 + y81 + y96

7 x0 = z + w + y0 + x26 + x56 + x91 + x96 + x3x67 + x11x13 + x17x18 + x27x59 +
x40x48 + x61x65 + x68x84 + x88x92x93x95 + x22x24x25 + x70x78x82

D Examples

Within Tables 6, 7 8, the padding is written in blue, while the red text denotes
additional data necessary to mount the proposed attacks. Test vectors presented
in this section are expressed as hexadecimal strings. For simplicity, we omit the
0x prefix.

278 D. Maimuţ and G. Teşeleanu

Table 6. Examples of generic attacks.

Cipher Key LFSR loading

Algorithm 1 Grain v1 a8af910f2755c064d713 1c60b94e09512adbffff

Grain 128 525c3676953ecec2bc5388f1474cdc61 b78d3637b64425015fa3ef63ffffffff

Grain 128a a04f944e6ca1e1406537a0ef215689a3 aaaebb010224478f48567997fffffffe

Table 7. Examples of compact padding attacks (index i = 1).

Cipher Key LFSR Loading Keystream

Theorem 5

Condition 1

(Algorithm 5)

Grain v1 7e72b6f960cf9165b891 1007bc3594e07f7f7fa5 004e2da99a27392383696e9e7120370a

72b6f960cf9165b89145 07bc3594e07f7f7fa580 4e2da99a27392383696e9e7120370a48

Grain-128 00166499157d39c9

5a723b601eccfffb

4a9a37ef1e3dfc13

7fff7fff7fffeb05

000076755ac4cd53028caa577964929e

6499157d39c95a72

3b601eccfffb2fd1

37ef1e3dfc137fff

7fff7fffeb05d636

76755ac4cd53028caa577964929ef1c0

Grain-128a b9e20a7619a8d622

5152cfa83eb73361

ef53aafa3c6c47ca

7fff7fff7ffff5cd

0000bac1203a11b554d69fd7f9f27b7f

0a7619a8d6225152

cfa83eb7336175a5

aafa3c6c47ca7fff

7fff7ffff5cd98ba

bac1203a11b554d69fd7f9f27b7fd545

Theorem 5

Condition 3

(Algorithm 8)

Grain v1 455b5df993b367e37b60 07f7f7fe9b4a3044efd1 0095e584ea234610f7ec250a948a8267

5b5df993b367e37b604d f7f7fe9b4a3044efd139 95e584ea234610f72ec250a948a8267c

Grain-128 9302f6b9d7136599

ac1caee130c596bb

8d7fff7fff7fff10

d59595e5568beb11

00007ca563c6831b63868259f547cdff

f6b9d7136599ac1c

aee130c596bb0dc8

ff7fff7fff10d595

95e5568beb11628c

7ca563c6831b63868259f547cdff695b

Grain-128a 0f478aa147938251

5e0a94d3357764f4

cd7fff7fff7fffed

bb0e00ddcb18d1eb

000059362a172d8748185e0850be7cb8

8aa1479382515e0a

94d3357764f4b8bb

ff7fff7fffedbb0e

00ddcb18d1eb0416

59362a172d8748185e0850be7cb824a0

Theorem 6

Condition 1

Grain v1 4febc079167f99bdb1db bd4710804f9eff0ff0fa 000575b77251f3946864d1bdc2510212

bc079167f99bdb1db338 710804f9eff0ff0fa272 575b77251f3946864d1bdc251021229b

Grain-128 5a0d4b3907f65ce5

f036b3671614244b

0bbd00872ecb0732

ffff00ffff00fffe

0000006b2014ecdee8d499646ba08a9f

3907f65ce5f036b3

671614244be57112

872ecb0732ffff00

ffff00fffeaf68a2

6b2014ecdee8d499646ba08a9fd93085

Grain-128a 6472c21093cd2225

4118e1a69230e0ac

2c9c47771ed4f648

ffff00ffff00ffde

0000009e196e7e866193867ea31b1df0

1093cd22254118e1

a69230e0ac668222

771ed4f648ffff00

ffff00ffdeb9f179

9e196e7e866193867ea31b1df09f306a

Theorem 6

Condition 2

Grain v1 701aa599737c957a0b5e 07ff0ff0fdedd9bd4d1b 000f9b9045f817c551a7c56c18e4ec02

aa599737c957a0b5eb77 f0ff0fdedd9bd4d1b1bf f9b9045f817c51a7c56c18e4ec025d85

Grain-128 30bfe11f3b7080be

47396a37f889b57c

aafdffff00ffff00

ff38ff5b14da5371

0000008a735f3adf71728258dcaf47fd

1f3b7080be47396a

37f889b57cac5367

ff00ffff00ff38ff

5b14da53715a4291

8a735f3adf71728258dcaf47fd6edad1

Grain-128a c4b8607e854abc5f

7a74eba33d563ad1

950bffff00ffff00

ff7182c277b77e8f

000000681060aa4bf10c0181bd7e4d95

7e854abc5f7a74eb

a33d563ad125aaff

ff00ffff00ff7182

c277b77e8f5db61f

681060aa4bf10c0181bd7e4d957b5f2e

New Configurations of Grain Ciphers: Security Against Slide Attacks 279

Table 8. Examples of fragmented padding attacks (index i = 1).

Cipher Key LFSR Loading Keystream

Theorem 7
Condition 1
(Algorithm 12)

Grain v1 cc0d50254f72d88d3c71 3a86d173777777777b2c 04c79ebb4db7bc675644b3d0bf2a59a4

c0d50254f72d88d3c714 a86d173777777777b2cf 4c79ebb4db7bc675644b3d0bf2a59a47

Grain-128 c506d0ca5bff72e1

6ea07fd8f98d7ba3

63ba70cf067f7f7f

7f7f7f7f7f879f9b

004e2c99a48677b4c217f9e14e620d48

06d0ca5bff72e16e

a07fd8f98d7ba368

ba70cf067f7f7f7f

7f7f7f7f879f9be1

4e2c99a48677b4c217f9e14e620d4884

Grain-128a 0948bd1a0a5d275c

54744db3dc27cec8

895ba804147f7f7f

7f7f7f7f7f2f9892

003a5f1e38d9c44670b0dc017377e698

48bd1a0a5d275c54

744db3dc27cec82b

5ba804147f7f7f7f

7f7f7f7f2f9892f1

3a5f1e38d9c44670b0dc017377e698d7

Theorem 7
Condition 3
(Algorithm 16)

Grain v1 77a73157cabfa60349dc 77777777318f59ac6aff 0c61bfa06e1c22011dcefe673765acb7

7a73157cabfa60349dc3 7777777318f59ac6affd c61bfa06e1c22011dcefe673765acb7f

Grain-128 9aca3bd2cf312080

769338bec86f9da6

7f7f7f7f7f7f7f7f

b6f7e83b3793f746

004624d2271d3420104b2fd1058675fd

ca3bd2cf31208076

9338bec86f9da63f

7f7f7f7f7f7f7fb6

f7e83b3793f746ff

4624d2271d3420104b2fd1058675fd45

Grain-128a 0e9eb1a896077e93

5b21de8700f3ef44

7f7f7f7f7f7f7f7f

29b03ff3e82cda8b

007f06d63e3545f6b7c4b50d255b6663

9eb1a896077e935b

21de8700f3ef4462

7f7f7f7f7f7f7f29

b03ff3e82cda8bfc

7f06d63e3545f6b7c4b50d255b6663ea

Theorem 8
Condition 1
(Algorithm 19)

Grain-128 d3ea84c99a8b1354

71d8c320b870e109

ed52bf1b25ff0ff0

fff0ff0f4ed8f575

0001590b803ff3c9972d96481a6e8ad4

a84c99a8b135471d

8c320b870e109120

2bf1b25ff0ff0fff

0ff0f4ed8f575dac

1590b803ff3c9972d96481a6e8ad48ee

Grain-128a 9ee02802ccf920e6

868a8aa46113a406

ab24f8ab82ff0ff0

fff0ff0fd32dc4e9

00082e1cbbb25fa325518665a17f2efc

02802ccf920e6868

a8aa46113a40681d

4f8ab82ff0ff0fff

0ff0fd32dc4e9473

82e1cbbb25fa325518665a17f2efc2eb

Theorem 8
Condition 2

Grain-128 8d89931ae1e13215

77bba20640c193a1

f18ccfbf3cff0ff0

ff0ff0fde5af2b58

000e612c620ae1765ded57a835b713ac

9931ae1e1321577b

ba20640c193a13b8

ccfbf3cff0ff0ff0

ff0fde5af2b58811

e612c620ae1765ded57a835b713ace4a

Grain-128a 626262808f0ca24c

cc517bb93fb5c3cb

c4ca6f9535ff0ff0

ff0ff0fdfe92e568

0003f5a6d1b7f615dfb32e34cea7cc4a

262808f0ca24ccc5

17bb93fb5c3cb22f

a6f9535ff0ff0ff0

ff0fdfe92e568a4f

3f5a6d1b7f615dfb32e34cea7cc4a106

Theorem 8
Condition 3

Grain-128 416ddd14b4c096cb

0181ae8830ada69d

80ff0ff0fff0ff0f

d7ef096c7a8700a3

00076a8e9def620dfe704b264988da02

ddd14b4c096cb018

1ae8830ada69d3b6

f0ff0fff0ff0fd7e

f096c7a8700a318f

76a8e9def620dfe704b264988da02cc0

Grain-128a 724d58601b44396d

60e83723a65bfa7b

84ff0ff0fff0ff0f

6c25a1d79af2a85c

0008ab9f20d8a418932150d3ba97400e

d58601b44396d60e

83723a65bfa7b973

f0ff0fff0ff0f6c2

5a1d79af2a85c626

8ab9f20d8a418932150d3ba97400ebd5

Theorem 8
Condition 4

Grain 128 97516dced374a089

88ce86acaa2ff1a4

3aff0ff0ff0ff0f1

12b72427d44b92f1

000a8e820bedfb8cd9d651d8221f3b34

16dced374a08988c

e86acaa2ff1a4399

f0ff0ff0ff0f112b

72427d44b92f1bba

a8e820bedfb8cd9d651d8221f3b34846

Grain-128a a29ae6fb8b23f747

f3723e59df0d3a8e

4bff0ff0ff0ff0fc

92ace3a64691e733

000cd469723847db72f6f856e51f9d96

ae6fb8b23f747f37

23e59df0d3a8eabb

f0ff0ff0ff0fc92a

ce3a64691e733a54

cd469723847db72f6f856e51f9d96b38

Theorem 9
Condition 1
(Algorithm 20)

Grain-128 930cb0086c93293e

9722a710e28a1375

f767352c26395e8a

ffffb0ffff80fffb

0000000a44dcae9a68c7b66389e440eb

086c93293e9722a7

10e28a1375ec5696

2c26395e8affffb0

ffff80fffbb6fcf2

0a44dcae9a68c7b66389e440ebbdf198

Grain-128a 270f72277e7540cf

9a58fa4426e28aae

c7df3ee9c792f5d5

ffffd0ffff00fff1

000000fd8bbdb3d3a8c885704f43a022

277e7540cf9a58fa

4426e28aaebc06e1

e9c792f5d5ffffd0

ffff00fff13204c5

fd8bbdb3d3a8c885704f43a022557a89

Theorem 9
Condition 2

Grain-128 895bea372ffe4e76

e84113dd18afa6b9

a8147ffff80fffffe

0fff2cd80e83e74

0000004b5394f9baf0f6a6ff3d921542

372ffe4e76e84113

dd18afa6b9fb5cef

fff80fffff0fff2c

d80e83e74e3d134e

4b5394f9baf0f6a6ff3d9215422cbdbb

Grain-128a 70a2fecddbc94115

017b571df0854817

9e132ffff50ffffd

0fff5cf89b04484d

0000002839a6bec77a007d3d12b4d597

cddbc94115017b57

1df08548178142d5

fff50ffffd0fff5c

f89b04484d01fb4b

2839a6bec77a007d3d12b4d597c9041b

280 D. Maimuţ and G. Teşeleanu

E Propagation of Single Bit Differentials

Parameters. In Theorem 4, let q2 = 96 for Grain v16 and q2 = 160 for Grain-128
and Grain-128a7 (Tables 9, 10, 11, 12, 13 and 14).

Table 9. Propagation of a single bit differential in the case of Grain v1’s LFSR.

Flipped
bit
position

Number of
identical
keystream
bits

Positions of identical keystream bits

15 50 0–11, 13–17, 19–30, 33–35, 37, 38, 40–46, 48, 51,
53, 55, 58, 61–63, 71

31 59 0–5, 7–23, 25–27, 29–33, 35–41, 43–46, 49–51, 54,
56–59, 61, 62, 64, 67, 69, 74, 77, 79, 87

47 63 0, 2–21, 23, 24, 26–39, 41, 42, 45–49, 51–53,
55–57, 59, 60, 62, 65, 66, 70, 73–75, 77, 78, 80, 95

63 63 0–16, 18–27, 29–34, 36, 37, 39, 40, 42–45, 47–52,
54, 55, 58, 61–63, 65, 68, 69, 72, 73, 76, 81, 90,
91, 94

79 74 0–14, 16–32, 34–43, 45–50, 52, 53, 55, 56, 58–61,
63–68, 70, 71, 74, 77–79, 81, 84, 85, 88, 89, 92

Table 10. Propagation of a single bit differential in the case of Grain v1’s NFSR.

Flipped
bit
position

Number of
identical
keystream
bits

Positions of identical keystream bits

15 23 0–4, 6–10, 12, 15, 16, 19, 20–22, 26, 27, 28, 29, 31, 33

31 32 1–19, 22–26, 28, 31, 32, 35, 36, 42, 43, 49

47 32 0–15, 17, 18, 20–25, 28, 29, 30, 32, 33, 35, 40, 41, 42

63 25 1–6, 8–16, 19, 21–23, 26, 29–31, 33, 39

79 41 0–15, 17–22, 24–32, 35, 37–39, 42, 45–47, 49, 55

6 As in Theorem 1.
7 As in Theorem 2, respectively Theorem 3.

New Configurations of Grain Ciphers: Security Against Slide Attacks 281

Table 11. Propagation of a single bit differential in the case of Grain-128’s LFSR.

Flipped
bit
position

Number of
identical
keystream
bits

Positions of identical keystream bits

31 92 0–10, 12–17, 19–22, 24–56, 58, 60–63, 65, 67–69,
71, 72, 74–79, 81–85, 87, 88, 90, 93, 94, 97, 100,
103, 109, 116, 119, 126, 129, 135, 141, 148

55 97 0–12, 14–34, 36–41, 43–46, 48, 49, 51, 53–65,
67–80, 86, 87, 89, 91–93, 95, 96, 100–102,
105–107, 109, 111, 112, 118, 121, 127, 133, 153,
159

79 101 1–18, 20–36, 38–41, 43, 45–57, 60–65, 67–70, 72,
73, 75, 78–88, 92–94, 96–99, 101, 103, 104, 110,
111, 113, 115, 119, 120, 125, 126, 130, 131, 133,
145, 151, 157

103 86 0–7, 9, 11–23, 25–39, 41, 44–54, 58–60, 62–65, 67,
69, 70, 73, 76–81, 84–86, 91, 92, 94, 96, 97, 99,
105, 109, 110–112, 116, 117, 123, 128, 143, 144

127 108 0–31, 33, 35–47, 49–63, 65, 68–78, 82–84, 86–89,
91, 93, 94, 97, 100–105, 108–110, 115, 116, 118,
120, 121, 123, 129, 133–136, 140, 141, 147, 152

Table 12. Propagation of a single bit differential in the case of Grain-128’s NFSR.

Flipped
bit
position

Number of
identical
keystream
bits

Positions of identical keystream bits

31 52 0–15, 17, 18, 20–28, 30–36, 39–42, 45, 48–50,
54–56, 58, 62, 63, 65, 66, 71, 72

55 65 0–9, 11–18, 20–39, 41, 42, 44, 45, 47, 49–52,
55–60, 63–66, 69, 73, 74, 82, 87, 89, 95, 96

79 55 0–5, 7–14, 16–33, 35–42, 46, 48, 49, 52, 54, 55,
58, 60, 61, 63, 65, 68, 71, 74, 80

103 63 0–7, 9–13, 15–29, 31–38, 41–44, 47–50, 53–57,
59–61, 63–66, 70, 73, 79, 85, 87, 92, 98

127 87 0–31, 33–37, 39–53, 55–62, 65–68, 71–74, 77–81,
83–85, 87–90, 94, 97, 103, 109, 111, 116, 122

282 D. Maimuţ and G. Teşeleanu

Table 13. Propagation of a single bit differential in the case of Grain-128a’s LFSR.

Flipped
bit
position

Number of
identical
keystream
bits

Positions of identical keystream bits

31 83 0–10, 12–17, 19–22, 24–57, 60–63, 67–69, 71, 72,
74–79, 81–85, 87–89, 93, 94, 109, 111, 115

55 94 0–12, 14–34, 36–41, 43–46, 48–50, 53–65, 67–81,
86, 87, 91–93, 95, 96, 100–102, 105–108, 111, 112,
118, 133, 139

79 100 1–18, 20–36, 38–42, 45–57, 60–65, 67–70, 72–74,
78–89, 92–94, 96–100, 103, 104, 110, 111, 115,
119, 120, 125, 126, 130–132, 136, 157

103 93 0–8, 11–23, 25–40, 44–55, 58–60, 62–66, 69, 70,
72, 76–81, 84–87, 91, 92, 94, 96–98, 102, 109,
110–113, 116, 117, 123, 124, 128, 134, 143, 144,
149, 156

127 113 0–32, 35–47, 49–64, 68–79, 82–84, 86–90, 93, 94,
96, 100–105, 108–111, 115, 116, 118, 120–122,
126, 133–137, 140, 141, 147, 148, 152, 158

Table 14. Propagation of a single bit differential in the case of Grain-128a’s NFSR.

Flipped
bit
position

Number of
identical
keystream
bits

Positions of identical keystream bits

31 44 0–15, 17, 18, 20–28, 30–36, 41, 49, 50, 54–56, 58,
63, 65, 66

55 55 0–9, 11–18, 20–39, 41, 42, 44, 45, 47, 49–52,
55–60, 65, 74

79 48 0–5, 7–14, 16–33, 35–39, 41, 46, 49, 52, 54, 55,
58, 60, 61, 63, 68

103 43 0–7, 9–13, 15–29, 31–38, 42, 53, 55–57, 59, 61

127 67 0–31, 33–37, 39–53, 55–62, 66, 77, 79–81, 83, 85

New Configurations of Grain Ciphers: Security Against Slide Attacks 283

F Algorithms

Algorithm 16. Constructing Key-IV pairs that generate β bit shifted
keystream
Output: Key-IV pairs (K ′, IV ′) and (K, IV)

1 Set s ← 0
2 while s = 0 do
3 Choose K ∈R {0, 1}n and V2 ∈R {0, 1}d2

4 Set value ← Update1() and IV ← LSBα−β+d1(P)‖V2

5 Run KSA−1(K‖LSBd1(P0)‖value‖V2) routine for β − d1 clocks and
produce state S′ = (K ′‖V ′

1‖value‖V ′
2), where |V ′

1 | = β and
|V ′

2 | = d2 − β + d1

6 if V ′
1 = P0 then

7 Set S ← K ′‖P0‖value‖V ′
2 and output ← Pair3(d1, S)

8 if output �= ⊥ then
9 Set s ← 1

10 return (K, IV) and output

11 end
12 end
13 end

Algorithm 17. Update2(start, stop)
Input: Indexes start and stop
Output: Variable value

1 Set value ← NULL
2 for i = start to stop do
3 Choose Ci ∈R {0, 1}δ

4 Update value ← value‖Ci‖Pi

5 end
6 return value

Algorithm 18. Update3(value1, value2)
Input: Variables value1 and value2

Output: Variable value
1 for i = t to c − 1 do
2 Choose Bi ∈R {0, 1}δ

3 Update value1 ← value1‖Bi‖Pi and value2 ← value2‖Bi

4 end
5 Set value ← value1‖value2

6 return value

284 D. Maimuţ and G. Teşeleanu

Algorithm 19. Constructing Key-IV pairs that generate β−γ+(β+δ)(c−
t) bit shifted keystream

Output: Key-IV pairs (K′, IV ′) and (K, IV)

1 Set s ← 0

2 while s = 0 do

3 Choose K ∈R {0, 1}n, V1 ∈R {0, 1}d1−β+γ−(β+δ)(c−t) and V2 ∈R {0, 1}d2

4 Set value1 ← P0‖Update2(0, c − t − 2)‖Cc−t−1‖MSBβ−γ(Pc−t) and value2 ← value1

5 Update value1 ← value1‖P0

6 for i = 1 to t − 1 do

7 Choose Bi ∈R {0, 1}δ−β+γ

8 Update value1 ← value1‖Bi‖MSBβ−γ(Pc−t+i)‖Pi and

value2 ← value2‖Bi‖MSBβ−γ(Pc−t+i)

9 end

10 Set value1‖value2 ← Update3(value1, value2) and IV ← V1‖value2‖V2

11 Run KSA−1(K‖V1‖value1‖V2) routine for β − γ + (β + δ)(c − t) clocks and produce

state S′ = (K′‖V ′
1‖value1‖V ′

2), where |V ′
1 | = d1 and |V ′

2 | = d2 − β + γ − (β + δ)(c − t)

12 Set IV ′ ← V ′
1‖value1‖V ′

2
13 if (K′, IV ′)

produces all zero keystream bits in the first β − γ + (β + δ)(c − t) PRGA rounds

then

14 Set s ← 1

15 return (K, IV) and (K′, IV ′)
16 end

17 end

Algorithm 20. Constructing Key-IV pairs that generate δ −β +γ +β(c−
t + 1) + δ(c − t) bit shifted keystream

Output: Key-IV pairs (K′, IV ′) and (K, IV)

1 Set s ← 0

2 while s = 0 do

3 Choose K ∈R {0, 1}n, V1 ∈R {0, 1}d1−δ+β−γ−β(c−t+1)−δ(c−t), V2 ∈R {0, 1}d2 and

Cc−t+1 ∈R {0, 1}δ−β+γ

4 Set value1 ← P0‖Update2(1, c − t)‖Cc−t+1 and value2 ← value1
5 Update value1 ← value1‖P0
6 for i = 1 to t − 1 do

7 Choose Bi ∈R {0, 1}δ−β+γ

8 Update value1 = value1‖LSBβ−γ(Pc−t+i)‖Bi‖Pi and

value2 = value2‖LSBβ−γ(Pc−t+i)‖Bi

9 end

10 Set value1‖value2 ← Update3(value1, value2) and IV ← V1‖value2‖V2

11 Run KSA−1(K‖V1‖value1‖V2) routine for δ − β + γ + β(c − t + 1) + δ(c − t) clocks and

produce state S′ = (K′‖V ′
1‖value1‖V ′

2), where |V ′
1 | = d1 and

|V ′
2 | = d2 − δ + β − γ − β(c − t + 1) − δ(c − t)

12 Set IV ′ ← V ′
1‖value1‖V ′

2
13 if (K′, IV ′)

produces all zero keystream bits in the first δ − β + γ + β(c − t + 1) + δ(c − t) PRGA rounds

then

14 Set s ← 1

15 return (K, IV) and (K′, IV ′)
16 end

17 end

References

1. eSTREAM: the ECRYPT Stream Cipher Project. www.ecrypt.eu.org/stream/
2. NIST SP 800-22: Download Documentation and Software. https://csrc.nist.gov/

Projects/Random-Bit-Generation/Documentation-and-Software

www.ecrypt.eu.org/stream/
https://csrc.nist.gov/Projects/Random-Bit-Generation/Documentation-and-Software
https://csrc.nist.gov/Projects/Random-Bit-Generation/Documentation-and-Software

New Configurations of Grain Ciphers: Security Against Slide Attacks 285

3. The GNU Multiple Precision Arithmetic Library. https://gmplib.org/
4. Aumasson, J.P., Dinur, I., Henzen, L., Meier, W., Shamir, A.: Efficient FPGA

implementations of high-dimensional cube testers on the stream cipher grain-128
(2009). https://eprint.iacr.org/2009/218.pdf

5. Banik, S., Maitra, S., Sarkar, S.: Some results on related key-IV pairs of grain.
In: Bogdanov, A., Sanadhya, S. (eds.) SPACE 2012. LNCS, pp. 94–110. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-34416-9 7

6. Banik, S., Maitra, S., Sarkar, S., Meltem Sönmez, T.: A Chosen IV related key
attack on grain-128a. In: Boyd, C., Simpson, L. (eds.) ACISP 2013. LNCS, vol.
7959, pp. 13–26. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
39059-3 2

7. Berbain, C., Gilbert, H., Maximov, A.: Cryptanalysis of grain. In: Robshaw, M.
(ed.) FSE 2006. LNCS, vol. 4047, pp. 15–29. Springer, Heidelberg (2006). https://
doi.org/10.1007/11799313 2

8. De Cannière, C., Küçük, Ö., Preneel, B.: Analysis of grain’s initialization algo-
rithm. In: Vaudenay, S. (ed.) AFRICACRYPT 2008. LNCS, vol. 5023, pp. 276–289.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-68164-9 19

9. Dinur, I., Güneysu, T., Paar, C., Shamir, A., Zimmermann, R.: An experimentally
verified attack on full grain-128 using dedicated reconfigurable hardware. In: Lee,
D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 327–343. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-25385-0 18

10. Dinur, I., Shamir, A.: Breaking grain-128 with dynamic cube attacks. In: Joux,
A. (ed.) FSE 2011. LNCS, vol. 6733, pp. 167–187. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-21702-9 10

11. Hell, M., Johansson, T., Maximov, A., Meier, W.: A stream cipher proposal: grain-
128. In: International Symposium on Information Theory - ISIT 2006, pp. 1614–
1618. IEEE (2006)

12. Hell, M., Johansson, T., Meier, W.: Grain - a stream cipher for constrained envi-
ronments. Technical report 010 (2005). eCRYPT Stream Cipher Project Report

13. Hell, M., Johansson, T., Meier, W.: Grain: a stream cipher for constrained envi-
ronments. Int. J. Wirel. Mob. Comput. 2(1), 86–93 (2007)

14. Khazaei, S., Hassanzadeh, M., Kiaei, M.: Distinguishing attack on grain. Technical
report 071 (2005). eCRYPT Stream Cipher Project Report

15. Knellwolf, S., Meier, W., Naya-Plasencia, M.: Conditional differential cryptanalysis
of NLFSR-based cryptosystems. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol.
6477, pp. 130–145. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-17373-8 8

16. Küçük, Ö.: Slide resynchronization attack on the initialization of grain 1.0 (2006).
http://www.ecrypt.eu.org/stream

17. Maimuţ, D.: Authentication and Encryption protocols: design, attacks and algo-
rithmic improvements. Ph.D. thesis, École normale supérieure (2015)

18. Ågren, M., Hell, M., Johansson, T., Meier, W.: Grain-128a: a new version of grain-
128 with optional authentication. Int. J. Wirel. Mob. Comput. 5(1), 48–59 (2011)

19. Stankovski, P.: Greedy distinguishers and nonrandomness detectors. In: Gong, G.,
Gupta, K.C. (eds.) INDOCRYPT 2010. LNCS, vol. 6498, pp. 210–226. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-17401-8 16

20. Zhang, H., Wang, X.: Cryptanalysis of stream cipher grain family (2009). https://
eprint.iacr.org/2009/109.pdf

https://gmplib.org/
https://eprint.iacr.org/2009/218.pdf
https://doi.org/10.1007/978-3-642-34416-9_7
https://doi.org/10.1007/978-3-642-39059-3_2
https://doi.org/10.1007/978-3-642-39059-3_2
https://doi.org/10.1007/11799313_2
https://doi.org/10.1007/11799313_2
https://doi.org/10.1007/978-3-540-68164-9_19
https://doi.org/10.1007/978-3-642-25385-0_18
https://doi.org/10.1007/978-3-642-21702-9_10
https://doi.org/10.1007/978-3-642-17373-8_8
https://doi.org/10.1007/978-3-642-17373-8_8
http://www.ecrypt.eu.org/stream
https://doi.org/10.1007/978-3-642-17401-8_16
https://eprint.iacr.org/2009/109.pdf
https://eprint.iacr.org/2009/109.pdf

Improved Security Solutions for DDoS
Mitigation in 5G Multi-access Edge

Computing

Marian Guşatu(B) and Ruxandra F. Olimid

Department of Computer Science, University of Bucharest, Bucharest, Romania

marian.gusatu@unibuc.ro, ruxandra.olimid@fmi.unibuc.ro

Abstract. Multi-access Edge Computing (MEC) is a 5G-enabling solu-
tion that aims to bring cloud-computing capabilities closer to the end-
users. This paper focuses on mitigation techniques against Distributed
Denial-of-Service (DDoS) attacks in the context of 5G MEC, providing
solutions that involve the virtualized environment and the management
entities from the MEC architecture. The proposed solutions are an exten-
sion of the study carried out in [5] and aim to reduce the risk of affecting
legitimate traffic in the context of DDoS attacks. Our work supports
the idea of using a network flow collector that sends the data to an
anomaly detection system based on artificial intelligence techniques and,
as an improvement over the previous work, it contributes to redirect-
ing detected anomalies for isolation to a separate virtual machine. This
virtual machine uses deep packet inspection tools to analyze the traffic
and provides services until the final verdict. We decrease the risk of com-
promising the virtual machine that provides services to legitimate users
by isolating the suspicious traffic. The management entities of the MEC
architecture allow to re-instantiate or reconfigure the virtual machines.
Hence, if the machine inspecting the isolated traffic crashes because of an
attack, the damaged machine can be restored while the services provided
to legitimate users are not affected.

Keywords: 5G · Multi-access Edge Computing · Distributed
Denial-of-Service · Anomaly detection

1 Introduction

A continuously increasing number of users in the online environment and stricter
performance requirements (e.g., low latency) demand major changes in the new
generations of networks. These lead to the necessity of new technologies that
allow a high availability of services and security techniques that combine various
areas such as computer science, telecom, and others. An important role in capi-
talizing on the promises in the 5th generation of mobile networks (5G) is played
by the Multi-access Edge Computing (MEC), which aims to bring the cloud
closer to the end-users. MEC has applicability in various fields, including the
c© Springer Nature Switzerland AG 2022
P. Y. A. Ryan and C. Toma (Eds.): SecITC 2021, LNCS 13195, pp. 286–295, 2022.
https://doi.org/10.1007/978-3-031-17510-7_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-17510-7_19&domain=pdf
http://orcid.org/0000-0003-3969-8138
http://orcid.org/0000-0003-3563-9851
https://doi.org/10.1007/978-3-031-17510-7_19

Improved Security Solutions for DDoS Mitigation in 5G MEC 287

Internet of Things (IoT), autonomous cars, and virtual reality. The European
Telecommunications Standards Institute (ETSI) introduces this concept in 2014
under the name Mobile Edge Computing [6]. Subsequently, in 2017, the name
is changed to Multi-access Edge Computing, highlighting the acceptance of a
variety of access technologies and thus making use of additional advantages [4].

Due to its novelty and impact, all aspects of MEC, including security, are hot
topics in the research community. This paper focuses on mitigation techniques
against Distributed Denial of Service (DDoS) attacks in the context of 5G MEC.
One solution against DDoS is to detect network flow anomalies, this being the
preferred approach in loaded networks compared to a deep inspection for each
packet [5,7,8]. However, flow inspection does not completely replace deep packet
inspection, which performs a more fine-grained detection, so both techniques are
useful to mitigate attacks. This paper combines the two techniques and brings
the security solutions at the architectural level to mitigate DDoS attacks, being
an improvement of the solutions proposed in [5]. Starting from the dynamic
management approach for the virtualized environment on the MEC hosts devel-
oped in the initial study, we propose new solutions on the architecture as well as
the management of the virtualized environment to minimize the risk of affecting
legitimate users. Unlike the original solution, we thus use two separate virtual
machines: one to provide services to legitimate users and one to isolate suspicious
traffic for further deep packet inspection. We suggest separating the legitimate
traffic from the one detected by the flow collector as an anomaly to protect the
first one in case of an attack. If the virtual machine that isolates the anomalies is
affected by an attack, it can be reinstated and reconfigured by the involvement
of the MEC management entities. As an improvement over [5], the isolation of
the detected traffic on a separate virtual machine is expected to reduce the risk
of affecting legitimate MEC applications and services.

The paper is organized as follows. Section 2 introduces the necessary back-
ground, describing the MEC architecture and reviewing the existing work regard-
ing the detection of DDoS attacks based on the network flow inspection and
packet inspection, also offering a refreshing motivation for the need for each
approach. Section 3 presents the concerns that appear in 5G MEC regarding
the detection of DDoS attacks and our contributions, highlighting the improve-
ments over the work done in [5]. Section 4 presents the orchestration process at
the architectural level, illustrating the role of each MEC entity and the steps
followed for the proposed solution. Finally, Sect. 5 concludes.

2 Background

2.1 MEC Architecture

Figure 1 illustrates the MEC architecture, as introduced by the ETSI specifica-
tions [2]. Next, we will restrict our presentation to the architectural elements
necessary to understand our work. More information on the MEC architecture
can be found in [2].

288 M. Guşatu and R. F. Olimid

Fig. 1. MEC architecture [2]

The MEC architecture is split into the MEC host level and the MEC system
level. At the MEC host level, a MEC Host (MEH) implements the MEC appli-
cations that run on top of a Virtualized Infrastructure (VI) and are interacting
with the MEC Platform (MEP) that offers the necessary environment for run-
ning these applications. The MEC applications and the MEP are the ones to
offer/consume, respectively host MEC services.

The MEC management resides both at the MEC host level and the MEC
system level. At the host level, the MEC Platform Manager (MEPM) and the
Virtualization Infrastructure Manager (VIM) are in charge of the functionality
of a given MEC host, including the applications that it runs. More precisely,
the VIM prepares the virtualization infrastructure and manages the allocation
of the resources, while the MEPM manages the life cycle of the applications and
further interacts with the MEC Orchestrator (MEO) situated at the system level
management. At the system level management, the MEO maintains an overview
of the complete MEC system, including overall available resources, services, and
it is in charge of triggering the instantiation of the applications (on selected
MEC hosts) based on the existing necessities, constraints, and resources.

2.2 Network Flow Analysis and Deep Packet Inspection

MEC allows a large number of connected devices and, therefore, a high volume
of data, while maintaining low-latency. Hence, security solutions must admit
the collection, processing, and analysis of a considerable volume of data, which
requires the transition from classic packet inspection to anomaly detection meth-
ods based on network flow [8].

A network flow is defined as a collection of packets that pass through an
observation point in the network for a certain period and have in common cer-
tain features called flow keys [3]. Flow keys are features generated by using a
special feature commonly found in routers, e.g., NetFlow [1]. These keys can

Improved Security Solutions for DDoS Mitigation in 5G MEC 289

be: IP source address, IP destination address, source port, destination port,
protocol, total packet length, but can also be processed and extended to other
properties [3,7]. After the network elements select subsets of packets of interest,
a stream of reports on these packets is exported to an external flow collector.

According to [8], the ratio between packets exported as a network flow and
whole packets averages 0.1%, and the relative size in bytes averages 0.2%. There-
fore, an approach for detecting network anomalies based on flow analysis is a
suitable choice for high-speed networks [5,7,8]. There are also well-organized
DDoS attacks that could lead to considering all packets as a network flow and,
consequently, a dramatic increase in the data sent for analysis. However, the
amount of exported data from these packets is reduced compared to complete
packets. Moreover, there are aggregation techniques to combat such events [7].

On the other hand, deep packet inspection examines the content of the packet
entirely as they pass through the observation point. Detection based on network
flow analysis does not replace deep packet inspection but offers a possibility of
detection when packet analysis is not feasible (e.g., because of too much traffic
or time constraints) [8]. Therefore, even if the detection accuracy for flow anal-
ysis is lower than for packet inspection, the information in the network flow is
sufficient to identify patterns in the communication and often leads to the recog-
nition of attacks [8]. The approach chosen in this paper respects these aspects
and considers a two-phase detection initiated with a network flow analysis and
continued with a deep packet inspection if needed.

2.3 Anomaly Detection System in 5G MEC

In consequence, an efficient anomaly detection system in 5G MEC makes use of:
(1) a flow collector, (2) an anomaly detector that interprets the flow and decides
on the necessity of further deeper inspection, and (3) a deep packet inspection.
Our proposed solution comes as an improvement of the solution in [5] to minimize
the impact to the legitimate MEC applications and services available on the hosts
in case of a DDoS attack.

Fig. 2. Anomaly detection system in 5G MEC

290 M. Guşatu and R. F. Olimid

Fig. 3. Concerns and management solutions (adapted from [5] according to the pro-
posed improvements). One asterisk marks the concerns that might arise, and two aster-
isks mark the solutions.

Figure 2 illustrates the anomaly detection system. Our improvement is
detailed in Sect. 3. User Equipment (UE) are devices used by the end-users to
perform their tasks (e.g., consume MEC services), accessing the 5G network via
a base station called gNB. The flow collector is responsible for receiving and stor-
ing the network flow, from which it extracts its features in a manner suitable for
the anomaly detector that interprets it. The anomaly detector based on network
flow analysis focuses on rapid anomaly detection by examining flow features
using artificial intelligence solutions. In the event of symptoms corresponding to
an attack, a deep packet inspection will be performed.

If the flow-level detection reveals symptoms of an anomaly, the MEO shall
be informed. It will communicate with the MEPM and the VIM to act on the
traffic and the rules of the application, respectively, to isolate the detected traffic
on another virtual machine for a deep packet inspection. Subsequently, based on
the obtained results, further decisions can be made. The isolation of the detected
traffic on a separate virtual machine is our proposal to reduce the risk of affecting
legitimate MEC applications and services.

Improved Security Solutions for DDoS Mitigation in 5G MEC 291

3 Improved Solutions

3.1 Concernes and Solutions

Figure 3 illustrates the general concerns related to our problem and proposals
for solving them in the MEC architecture. It is adapted from [5], according to
the improvements we propose, which are now explained in detail.

Figure 3a shows the initial scenario, in which the users connect to a MEC
host to receive services such as internet browsing, email, video/audio streaming
services. These services are provided via virtual machines. In this scenario, there
is a configuration of three virtual machines with the following functions: VM1
provides the user services, VM2 collects the network flow, and VM3 analyzes
the anomalies by inspecting the flow and allows their detection using artificial
intelligence techniques. The initial scenario is identical to the one presented in
the original paper [5].

Figure 3b highlights the attachment of new devices to the network and the
appearance of the first concern, which implies the need to automatically
update the anomaly detection module based on the network flow inspection.
A key aspect in artificial intelligence techniques is the periodic retraining of
models using other data sets to allow continuous learning that helps detect new
anomalies [5,9]. The training process is expensive and requires resources and
a large amount of data to obtain favorable results. Therefore, the continuous
training of the model takes place on external devices. Thus, a solution is to
update the detection module in real-time, by updating the artificial intelligence
model and reconfiguring it. The image illustrates the concern with one asterisk
that highlights the old model that needs improvement.

Figure 3c marks the solution of launching an updated model on the anomaly
detection module, using the two asterisks mark. This concern, respectively solu-
tion, corresponds to the second concern in [5]. We note that we ignore certain
concerns present in the original paper because they are redundant for our study.

Figure 3d shows new suspicious devices that have been detected by the
anomaly detection module that inspects the network flow. These can be, for
example, bots controlled via a Command and Control (C&C) channel or devices
owned by the attacker. In this context, these anomalies are analyzed in detail
to conclude if they are indeed a concern and make further decisions. As already
mentioned, deep packet inspection is not feasible for all the traffic in 5G MEC
because of the considerable amount of packets circulating in the network and
the delay it would introduce. Thus appears the second concern, which is to
establish anomalies and act to mitigate attacks.

Figure 3e illustrates the proposed solution. This consists in informing the
management entities at the moment of the detection of the possible anomalies
so that another virtual machine can be prepared. This virtual machine (VM4)
aims to provide services and applications for suspicious devices while perform-
ing deep packet inspection. Thus, the traffic of suspicious devices is redirected
to this separate machine to be inspected in detail. By isolating the suspicious
traffic, we avoid an attack on VM1, which provides services to all legitimate

292 M. Guşatu and R. F. Olimid

users. The resources of VM4 (in terms of computation power, storage, etc.) are
managed dynamically by the VIM depending on the necessities (e.g., the amount
of traffic redirected, the number of quarantined devices). The need for a sepa-
rate virtual machine to provide services is due to the deep packet analysis of
packets. This inspection is not possible on VM3 because there is no complete
packet information there. Thus, this solution is an improvement of [5], which
performed the detailed inspection directly on VM1. The tools that perform deep
packet inspection conclude if it is an attack, and the MEPM is informed to make
further decisions (e.g., to restrict the devices controlled by the attacker).

3.2 Architectural Proposals

At the architectural level, we mention two possible constructions:

1. VM4 is turned on when needed (when anomalies are detected). Subsequently,
it can be reconfigured and can dynamically receive resources at the instruction
of the management entities. If the anomalies are all treated, there is no need
for quarantined services, and there is no more traffic to be inspected, then
VM4 can be stooped to free resources.

2. VM4 runs permanently, and it is dynamically updated at the instruc-
tions of the management entities through reconfiguration and reallocation
of resources.

In both cases, the allocation of the resources is performed by the hypervisor
that runs on the MEC host and executes the VIM instructions (see Fig. 3).

A second improvement consists in a separation of the deep packet inspection
and the quarantined services by running them on two virtual machines, as illus-
trated in Fig. 4. This solution provides stability to thorough traffic inspection
tools by isolating them on a separate machine. In this scenario, the flow collector
sends the flow for analysis to the anomaly detector. If the detector does not find
anomalies, the corresponding traffic is considered legitimate, and the services
are offered on VM1. Otherwise, the traffic is routed on VM4.a for a deep packet
inspection. Following the inspection performed on VM4.a, either the services
are quarantined (at least for some time) on a virtual machine VM4.b or the ser-
vices are dropped, and an alarm is raised. This process is constantly monitored
by the management entities to dynamically provide resources, respectively, to
reinstate the machines VM4.a and VM4.b in case of damage. Traffic originat-
ing from devices that pass VM4.a are not sent back to VM1 because they were
once detected as anomalies. In particular, these can be bots that have not yet
launched an attack.

4 The Orchestration Process

In this section, we explain the process (present at the MEC architectural level)
that allows starting and reconfiguration of virtual machines in case of attacks.

Improved Security Solutions for DDoS Mitigation in 5G MEC 293

Fig. 4. Solution scenario

The involvement of management entities is necessary: this allows a dynamic real-
location of resources and reinstatement of virtual machines as needed, offering
continuous availability in case of an attack. This process follows the proposed
solution in the case of anomaly detection, presented in Sect. 3.1 but can be eas-
ily extended to accommodate the splitting of VM4 in VM4.a and VM4.b as
explained in Sect. 3.2. Again, the process corresponds to a similar process pre-
sented in the original paper [5] but incorporates the proposed improvements.

Figure 5 illustrates the steps followed by the 5G MEC architectural elements
in case that the anomaly detection system indicates an attack based on the
network flow analysis. The orchestrator (MEO) is informed whenever an anomaly
is detected. The MEO interacts with the VIM to instantiate or reconfigure the

Fig. 5. Architectural diagram (adapted from [5] according to the proposed improve-
ments)

294 M. Guşatu and R. F. Olimid

virtual machine that provides quarantined services and performs the detailed
inspection (VM4) on the host in question (MEH) (step 1). The VIM checks
if the available physical resources (e.g., memory, processing) are sufficient to
instantiate or reconfigure VM4; if so, it applies the changes to the VI (step 2).
Furthermore, the VIM informs the MEO about the current status of the machine
and provides specific related information (step 3). Once the MEO knows that
the machine is turned on and running, respectively its resources are compliant,
it sends the machine information to the MEPM to start the services and the
deep packet inspection tools (step 4). The MEPM starts or uses the detailed
inspection services and tools based on the machine information provided by
the MEO (step 5). If the services and DPI already exist on this machine, it
is no longer necessary to restart them but only to use them. This holds when
the machine is reconfigured. The MEPM informs the MEO about the status
of its actions (step 6). If the status is favorable, the MEO communicates with
the MEPM to reconfigure the anomaly detector (step 7). The reconfiguration
consists in informing the anomaly detector about the fact that the redirection
of the detected traffic as an anomaly on VM4 can start because all the measures
have been taken in this regard (step 8). Finally, the MEPM sends to the MEO
the reconfiguration status (step 9).

5 Conclusions

The study of the MEC is constantly evolving, being an active field of research
given the promised benefits for 5G. This paper focuses on security solutions that
can be adopted in the 5G MEC architecture to mitigate DDoS attacks. Given
the large number of devices and the high volume of traffic in 5G, network flow
analysis is proved useful in DDoS mitigation. Starting from existing work [5]
that benefits of the virtualized environment, the orchestration, and the addition
of artificial intelligence techniques, we offer improved solutions.

More specifically, we proposed two methods to increase protection on services
provided to legitimate users. The first proposed method involves the use of a
separate virtual machine (VM4) that provides services for the traffic detected as
an anomaly, respectively to inspect this traffic in detail and make decisions. The
second method comes as an improvement over the previous one, separating the
two tasks of the VM4 on two separate virtual machines. This results in VM4.a,
which thoroughly inspects traffic, and VM4.b, which provides services for traffic
passing the deep packet inspection. Both our methods increase protection against
DDoS, increasing the protection of the legitimate services in case of attacks.

Currently, the proposed solutions are not backed up by experimentation
because of technical limitations. 5G MEC architectural experiments using the
virtual machines as in the proposed scenarios, as well as experimentation with
real 5G MEC traffic, require access to a testbed that provides MEC capabilities,
or at least public datasets containing valid 5G MEC traffic. The performance
evaluation of our proposals, also in comparison to the initial study [5], remains

Improved Security Solutions for DDoS Mitigation in 5G MEC 295

thus the subject of future work. Moreover, an overhead evaluation (e.g., in com-
putational terms because of the addition of a second virtual machine) should be
considered.

Acknowledgements. This work was partially supported by the Norwegian Research
Council through the 5G-MODaNeI project (no. 308909).

References

1. Cisco: Cisco IOS NetFlow. https://www.cisco.com/c/en/us/products/ios-nx-os-
software/ios-netflow/index.html. Accessed October 2021

2. ETSI: GS MEC 003 V2.2.1: Multi-access Edge Computing (MEC); framework and
reference architecture (2020)

3. IETF: RFC 7011 - Specification of the IP Flow Information Export (IPFIX) protocol
for the exchange of flow information

4. Kekki, S., et al.: MEC in 5G networks. ETSI White Pap. 28, 1–28 (2018)
5. Maimó, L.F., Celdrán, A.H., Pérez, M.G., Clemente, F.J.G., Pérez, G.M.: Dynamic

management of a deep learning-based anomaly detection system for 5G networks.
J. Ambient Intell. Human. Comput. 10(8), 3083–3097 (2019)

6. Patel, M., Naughton, B., Chan, C., Sprecher, N., Abeta, S., Neal, A.: Mobile-edge
computing – introductory technical white paper. White Paper, Mobile-edge Com-
puting (MEC) Industry Initiative (2014)

7. Song, S., Chen, Z.: Adaptive network flow clustering. In: 2007 IEEE International
Conference on Networking, Sensing and Control, pp. 596–601. IEEE (2007)

8. Sperotto, A., Schaffrath, G., Sadre, R., Morariu, C., Pras, A., Stiller, B.: An overview
of IP flow-based intrusion detection. IEEE Commun. Surv. Tutor. 12(3), 343–356
(2010)

9. Wu, Y., Dobriban, E., Davidson, S.: DeltaGrad: rapid retraining of machine learning
models. In: International Conference on Machine Learning, pp. 10355–10366. PMLR
(2020)

https://www.cisco.com/c/en/us/products/ios-nx-os-software/ios-netflow/index.html
https://www.cisco.com/c/en/us/products/ios-nx-os-software/ios-netflow/index.html

Long-Term Secure Asymmetric Group
Key Agreement

Kashi Neupane(B)

Department of Mathematics, University of North Georgia, Oakwood, GA, USA

kashi.neupane@ung.edu

Abstract. A group key agreement protocol allows a set of users to share
a common secret in presence of adversaries. In symmetric group key
agreement protocol, the set of users will have a secret key at the end of
protocol while in an asymmetric group key agreement protocol, the set
of users negotiate a shared encryption and decryption keys, instead of
establishing a common secret. Long-term security is a notion of resistance
against attacks even if later, after completion of the protocol some secu-
rity assumptions become invalid. In this paper, we propose a long-term
secure one-round asymmetric group key agreement protocol. Our proto-
col is based on Bilinear Diffie-Hellman assumption and real-or random
indistinguishability of the symmetric encryption scheme. For authenti-
cation purpose we use a signature scheme and timestamps.

Keywords: Long-term security · Bilinear Diffie-Hellman assumption ·
Group key agreement

1 Introduction

Group key agreement protocols enable a group of people to establish a common
secret via open networks. Once a common secret is established, members of the
group can exchange large amount of data securely as desired. The task of key
establishment is one of the most important and also most difficult parts of a
security system. Wu et al. [WMS+09] reconsidered the definition of group key
agreement and introduced the notion of asymmetric group key agreement. In
an asymmetric group key agreement protocol, only a set of shared encryption
and decryption keys are negotiated in contrast to sharing a common secret key
as in conventional group key agreement. Along with the notion of asymmet-
ric group key agreement, Wu et al. [WMS+09] proposed an asymmetric GKA
protocol which is secure under the decision Bilinear Diffie-Hellman Exponent
(BDHE) assumption without using random oracles. Zhang et al. [ZWL10] pro-
posed a security model for identity-based authenticated asymmetric group key
agreement (IB-AAGKA) protocols. Then, they proposed an IB-AAGKA proto-
col which is proven secure under the BDHE assumption. Moreover, Zhang et al.
[ZGL+18] proposed an authenticated asymmetric group key agreement based
on attribute based encryption (ABE-AAGKA), proven secure under the inverse
c© Springer Nature Switzerland AG 2022
P. Y. A. Ryan and C. Toma (Eds.): SecITC 2021, LNCS 13195, pp. 296–307, 2022.
https://doi.org/10.1007/978-3-031-17510-7_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-17510-7_20&domain=pdf
https://doi.org/10.1007/978-3-031-17510-7_20

Long-Term Secure Asymmetric Group Key Agreement 297

computational Diffie-Hellman assumption (ICDH). One of the major goals in
establishing a secure key is communication efficiency. The notion of asymmetric
group key agreement is an important contribution towards keeping the number
of rounds of a protocol minimal.

Bohli et al. [BMQR07] formally introduced a concept of long-term security
of key agreement protocols in cryptography. This concept ensures the secrecy of
data over long periods of time by building a protocol based on two independent
security assumptions. A protocol based on two independent hardness assump-
tions allows the protocol to remain secure, even if one of the hardness assump-
tions becomes invalid after the protocol is completed. Bohli et al. [BMQR07]
presented a long-term secure three-round two-party key agreement protocol
based on an assumption which is close to real-or-random indistinguishability of a
symmetric encryption scheme and decisional Diffie-Hellman assumption. Later,
Müller-Quade and Unruh [MQU07] extended the concept of long-term security in
Universally Composable framework. Furthermore, Unruh [Unr13] introduced a
variant of the Universal Composability framework, everlasting quantum-UC and
showed that secure communication and general multi-party computation can be
implemented using signature cards as trusted setup. Neupane and Steinwandt
[NS10] proposed a long-term secure three-party key establishment protocol based
on Bilinear Decisional Diffie-Hellman (BDDH) assumption. Recently, Neupane
[Neu20] proposed a long-term secure group key establishment protocol with an
additional security feature deniability.

In this research, we propose a long-term secure one-round asymmetric
group key agreement protocol. More specifically, we extend the existing one-
round unauthenticated asymmetric group key agreement protocol proposed by
[WMS+09] to an authenticated long-term secure one without any additional
round. We use the notion of long-term security introduced by Bohli et al.
[BMQR07] make use of timestamps proposed by Barbosa and Farshim [BF09].

2 Preliminaries

In this section, we briefly review mathematical and cryptographic tools we
will use in the protocol. We begin with Bilinear Diffie-Hellman Exponentiation
(BDHE) assumption as formalized by Wu et al. [WMS+09] and Zhang et al.
[ZWL10]; for more details we refer to [BF03]. Then, we discuss the standard
definitions of signature scheme and symmetric encryption. Finally, we review
the main idea of real-or-random indistinguishability as discussed by Bellare et
al. [BDJR00].

2.1 Bilinear Maps and the Bilinear Diffie Hellman Assumption

Let G1, and G2 be two multiplicative groups of prime order q, such that q > 2k

with the security parameter being k. We denote by ê : G1 × G1 −→ G2 an
admissible bilinear map, i. e., ê has all of the following properties:

Bilinear: For all a, b ∈ Z and a generator g of G1, we have ê(ga, gb) = ê(g, g)ab.

298 K. Neupane

Non-degenerate: There exist g, h ∈ G1 such that ê(g, h) �= 1.
Efficiently computable: There is a polynomial time algorithm which computes

ê(g, h) for all g, h ∈ G1.

We use a probabilistic polynomial time (ppt) algorithm G to specify the Bilinear
Diffie-Hellman Exponentiation (BDHE) problem. This BDHE parameter gener-
ator G takes the security parameter as its input, and returns q and a description
of G1, G2, and ê. We denote this by 〈q,G1, G2, ê〉 ← G(1k).

Definition 1 (n-BDHE Problem). Given g, h, and yi = gαi

in G1 for i =
1, 2 · · · n, n + 2, · · · 2n as input, compute ê(g, h)αn+1

.

Now consider the following experiment for a ppt algorithm A outputting 0 or
1: The challenger chooses αi for i = 1, 2 · · · n, n + 1, n + 2, · · · 2n and an element
Z ∈ G2 independently and uniformly at random. Additionally, the challenger
flips a random coin δ ∈ {0, 1} uniformly at random.

If δ = 0, the tuple (g, h, y1, · · · yn, yn+2, · · · y2n, Z) is handed to A, whereas for
δ = 1 the tuple (g, h, y1, · · · yn, yn+2, · · · y2n, ê(g, h)αn+1

) is handed to A. Then A
wins the game whenever the guess δ′ it outputs for δ is correct; the advantage
of A is denoted by

Advn−BDHE
A :=

∣
∣
∣
∣
Pr[δ = δ′] − 1

2

∣
∣
∣
∣
.

Definition 2 (decisional n-BDHE assumption). The decisional n-BDHE
assumption for (G1, G2, ê) holds, if the advantage Advn−BDHE

A in the above exper-
iment is negligible for all ppt algorithms A.

2.2 Digital Signature Scheme

A digital signature is a method to sign a message electronically by a user which
can be verified by anybody later. A digital signature helps to ensure authen-
tication, integrity and non-repudiation. We quickly review the definition of a
signature scheme—for more details we refer to [MOV96].

Definition 3 (Signature scheme). A signature scheme S = (K,S,V) is a
triple of polynomial-time algorithms:

– Key generation K: A probabilistic algorithm which takes an input the security
parameter 1k and returns a key pair (pk, sk)—a public verification key pk and
matching secret signing key sk;

– Signing S: A probabilistic algorithm which takes input message M ∈ {0, 1}∗

and secret signing key sk and returns a signature σ on M ;
– Verification V: A deterministic algorithm which takes input a public key pk, a

message M , and a signature σ for M and returns 1 or 0, indicating whether
σ is a valid signature for M under the public key pk.

For pairs (sk, pk) output by K, we require that with overwhelming probability
the following condition holds: Vpk(M,Ssk(M)) = 1, for all messages M .

Long-Term Secure Asymmetric Group Key Agreement 299

Definition 4 (Existentially unforgeable signature scheme under cho-
sen message attacks (UF–CMA)). A signature scheme S is said to be exis-
tentially unforgeable under chosen message attacks if for all probabilistic polyno-
mial time adversaries A the following probability is negligible (in k):

Pr[(pk, sk) ← K; (M,σ) ← ASsk(·) : Vpk(M,σ) = 1 ∧ (M,σ) �= (Mi, σi)],

where Mi denotes a message submitted by A to Ssk(·).

2.3 Symmetric Encryption Scheme and Real-or-Random
Indistinguishability

Real-or-random security measures the indistinguishability of the encryption of a
plaintext with the encryption of a randomized plaintext. We review the notion
of real-or-random indistinguishability following the one presented by Bellare et
al. [BDJR00], and we refer their paper for a more detailed discussion. We review
the definition of symmetric encryption scheme before giving the definition of
real-or random indistinguishability.

Definition 5 (Symmetric Key Encryption Scheme).
A symmetric key encryption scheme SE = (Gen,Enc,Dec) is a triple of

polynomial-time algorithms:

– Key generation Gen: A randomized algorithm which takes input the security
parameter 1k and returns a secret key K ∈ {0, 1}∗;

– Encryption Enc: A randomized algorithm which takes input secret key K and
a message M ∈ {0, 1}∗ returns a ciphertext C ∈ {0, 1}∗;

– Decryption Dec: A deterministic algorithm which takes input the key K and
a ciphertext C and returns either a message M or an error symbol ⊥.

The scheme is said to provide correct decryption if for any secret key K and any
message M , DecK(C) = M whenever ciphertext C ← EncK(M).

To formalize the security notion needed later, we use a real-or-random oracle
EK(RR(·, b)) with the following properties:

on input b ∈ {0, 1} and a plaintext M ∈ {0, 1}∗,

– returns an encryption C ← EncK(M) of M , if b = 1
– returns an encryption C ← EncK(r) of a uniformly at random chosen bitstring

r ← {0, 1}|M |, if b = 0.

For a ppt algorithm A now consider the following experiment where b ∈ {0, 1}
is fixed and unknown to A: a secret key K ← Gen(1k) is created, and A has
unrestricted access to EK(RR(·, b)). Further, A has access to a decryption oracle
DK(·) which executes DecK(·), subject to the restriction that no messages must
be queried to DK(·) that have been output by the real-or-random oracle. We
measure A’s advantage as the difference Advror−cca

A =

Advror−cca
A (k) := Pr

[

1 ← AEK(RR(·,1)),DK(·)(1k)
∣
∣K ← Gen(1k)

] −
Pr

[

1 ← AEK(RR(·,0)),DK(·)(1k)
∣
∣K ← Gen(1k)

]

300 K. Neupane

Definition 6 (Real-or-random indistinguishability). A symmetric encryp-
tion scheme SE is secure in the sense of real-or-random indistinguishability
(ROR-CCA), if for all ppt algorithms A, the advantage Advror−cca

A is negligible
(in k).

3 Security Model

The security model used for analysis of our protocol is based on the model used
by Bohli et al. [BVS07] and [NSSC12] which is an extended version of the model
porposed on Bresson et al. [BCP01,BCPQ01]. Moreover, Barbosa and Farshim
[BF09] extended the BCPQ model using timestamps to capture the notion of
timeliness. In this model, a local clock is accessible to eash user at the beginning.

Protocol Participants. The set of a polynomial size protocol participants is
denoted by U = {U1,, Un}. Each participant U ∈ U can execute a polynomial
number of protocol instances Πs

U concurrently (s ∈ N). Participant identities
are assumed to be bitstrings of identical length k and to keep notation simple,
throughout we will not distinguish between the bitstring identifying a partic-
ipant U and the algorithm U itself. To a protocol instance Πs

U , the following
seven variables are associated:

sks
U : stores the set of encryption and decryption keys of each user in a session;

accs
U : indicates if the session keys stored in sks

U have been accepted;
pids

U : stores the identities of those users in U with which a key is to be agreed,
including U ;

sids
U : stores a non-secret session identifier that can be used as public reference

to the session keys stored in sks
U ;

states
U : stores state information;

useds
U : indicates if this instance is used, i. e., involved in a protocol run.

Initialization. Before actual protocol executions take place, a trusted initializa-
tion phase without adversarial interference is allowed. In this phase, for each
U ∈ U a (verification key, signing key)-pair (pkU , sksig

U) for an existentially
unforgeable (EUF-CMA secure) signature scheme is generated, sksig

U is given to
U only, and pkU is handed to all users in U and to the adversary. In addition,
for each user U ∈ U , a secret key KU ← Gen(1k) for the underlying symmetric
encryption scheme (Gen,Enc,Dec) is generated. This generated key is given to
U and the server S. Thus, after this initialization phase, the server shares a
symmetric key KU with each user U ∈ U .

Adversarial Capabilities and Communication Network. The network is non-
private, fully asynchronous and allows arbitrary point-to-point connections
among users, and between users and the server. The adversary A is modeled
as ppt algorithm with full control over the communication network. More specif-
ically, A’s capabilities are captured by the following oracles:

Long-Term Secure Asymmetric Group Key Agreement 301

Send(U, s,M): sends the message M to instance Πs
U of user U and returns the

protocol message output by that instance after receiving M . The Send oracle
also enables A to initialize a protocol execution by sending a special message
M = {Ui1 , . . . , Uir} to an unused instance

∏s
U . After such a query,

∏s
U sets

pids
U := {Ui1 , . . . , Uir}, useds

U := true, and processes the first step of the
protocol.

Reveal(U, s): returns the set of encryption and decryption keys in sks
U if accs

U =
true and a null value otherwise.

Corrupt(U): for a user U ∈ U this query returns U ’s long term signing key sksig
U .

Tick(U) : increment the clock variable at user U ∈ U and its new value is
returned.

Barbosa and Farshim [BF09] extended security model proposed by Bresson et
al. [BCP01,BCPQ01] by introducing the concept of entity authentication based
on timestamps. Now, we review the concept of authentication using timestamps
from [BF09] and Neuapne [Neu18]. In order to achieve any short of timeliness
guarantee by capturing the notion of synchronization of clocks, we define the
following:

Definition 7 (δ-synchronization). An adversary in the timed BCPQ model
satisfies δ-synchronization if it never causes the clock variables of any two honest
parties to differ by more than δ.

Let tB(E) be the function which returns the value of the local clock at B
whenever the event E occurs. Let acc(A, i) and respectively term(B, j) denote
that the event

∏i
A accepted and the event

∏j
B terminated. Let

∏i
A and

∏j
B be

two partnered oracles where the latter has terminated.

Definition 8 (β-recent Entity Authentication (β − REA)). We say that a
key exchange protocol provides β-recent initiator-to-responder authentication if
it provides initiator-to-responder authentication, and furthermore for any honest
responder oracle

∏j
B which has terminated with partner

∏i
A, with A honest, we

have

|tB(term(B, j) − tA(acc(A, i)| ≤ β.

In addition to the mentioned oracles, A has access to a Test oracle, which can be
queried only once: the query Test(U, s) can be made with an instance Πs

U that
has accepted the set of session keys. Then a bit b ← {0, 1} is chosen uniformly
at random; for b = 0, the set of session keys stored in sks

U is returned, and for
b = 1 a uniformly at random chosen elements from the space of session keys is
returned. In order to exclude useless protocols we consider only correct group key
establishments, and our correctness definition follows Katz and Yung [KY03].

Definition 9 (correctness). A group key establishment is correct if for all
instances Πsi

i , Πsj

j which have accepted with sidsi
i = sid

sj

j and pidsi
i = pid

sj

j , the
condition that the encryption and decryption keys stored in sksi

i and sk
sj

j are
meaningful keys.

302 K. Neupane

In order to exclude trivialities, we impose key establishment protocols to be cor-
rect : a meaningful set of session keys are established in the absence of active
adversaries, along with common session identifier and matching partner iden-
tifier. Then, we rely on the following notion of partnered instances. It is to be
noted that a session is always partnered with itself.

Definition 10 (Partnering). Two instances
∏si

Ui
and

∏sj

Uj
are partnered if

sidsi

Ui
= sid

sj

Uj
, pidsi

Ui
= pid

sj

Uj
and accsi

Ui
= acc

sj

Uj
= true.

We define an instance as fresh if the adversary does not know the session
keys of an instance. Based on the notion of patterning, we formalize the notion
of freshness as follows:

Definition 11 (Freshness). An instance
∏si

Ui
is said to be fresh if the adver-

sary queried neither Corrupt(Uj) for some Uj ∈ pidsi

Ui
before a query of the form

Send(Uk, sk, ∗) with Uk ∈ pidsi

Ui
has taken place, norReveal(Uj , sj) for an instance

∏sj

Uj
that is partnered with

∏si

Ui
.

We write SuccA for the event when A queries a fresh instance and guesses cor-
rectly the bit output by the Test oracle. We define the advantage of A by

Advke
A = Advke

A(k) :=
∣
∣
∣
∣
Pr[SuccA] − 1

2

∣
∣
∣
∣
.

Definition 12 (Semantic security). A key establishment protocol is said to
be (semantically) secure, if Advke

A = Advke
A(k) is negligible for all ppt algorithms

A.

Besides semantic security which is a major security goal, we also address another
security goal which is strong entity authentication:

Definition 13 (Strong entity authentication). We say that strong entity
authentication for an instance Πsi

Ui
is provided if accsi

Ui
=true implies that for

all uncorrupted Uj ∈ pidsi

Ui
there exists with overwhelming probability an instance

Πsj

Uj
with sid

sj

Uj
= sidsi

Ui
and Ui ∈ pid

sj

Uj
.

4 The Proposed Group Key Establishment Protocol

4.1 Description of the Protocol

The proposed protocol executes in one round with the help of a trusted server
S. To describe the protocol we use the notation from Sect. 2.1 with g being a
generator of the group G1 of prime order q, as used in the n-BDHE assumption.
By Enc and Dec we denote the encryption and decryption algorithms of a sym-
metric encryption scheme that is secure in the sense of ROR-CCA, and by σ we
denote an existentially unforgeable signature scheme. We write U1, . . . , Un for
the protocol participants who want negotiate encryption and decryption keys. In
this protocol, all parties are required to broadcast their messages simultaneously
only once. Once all parties broadcast their messages, each party will be able to
compute a set of encryption and decryption keys after successful verification of
signatures and timestamps.

Long-Term Secure Asymmetric Group Key Agreement 303

Setup. Takes a security parameter k ∈ Z+ and outputs BDHE parameters
(q, G1, G2, ê). An element hi ∈ G1 is randomly chosen for each user Ui. The
server S selects ksrv ← {0, 1}k uniformly at random and for i = 1, . . . , n computes
si := EnckUi

(pid, ksrv).
Computation. Each Ui randomly chooses Xi ∈ G1, ri ∈ Z

∗
q and computes γi,j =

Xih
ri
j , Ri = g−ri , Ai = ê(Xi, g). Furthermore, each party Ui checks the local time

value ti, signs the message {ti, γi,j , Ri, Ai}i�=j to produce σi.
Broadcast. Each Ui broadcasts (pid, {ti, γi,j , Ri, Ai}i�=j) while the server broadcasts

(pid, s1, . . . , sn).
Group encryption key derivation. Upon receipt of broadcast messages from each

party, Uj accepts the messages from Ui if:
– the signature σi is successfully verified
– ti ∈ [tj − δ, tj + δ]

If all the verifications are successful, then each party Ui computes the group
encryption key (R, A, ksrv):
R =

∏n
j=1 Rj = g−∑n

j=1rj , A =
∏n

j=1 Aj = ê(
∏n

j=1 Xj , g), ksrv = DeckUi
(si) .

Decryption key derivation. Using the private input (Xi, ri) during the protocol
execution phase, player Ui can calculate its secret decryption key from the public
communication:
γi = Xih

ri
i

∏n,j �=i
j=1 γj,i =

∏n
j=1 Xjh

rj
i = (

∏n
j=1 Xj)h

∑n
j=1rj

i , ksrv = DeckUi
(si)

Encryption. For a plaintext mp ∈ G2, any user who has the group encryption key
can compute the ciphertext Encksrv(mp) = m and then compute the ciphertext
c = (c1, c2, c3), where t ← Zp, c1 = gt, c2 = Rt, c3 = mAt.

Decryption. Since each player Ui has the symmetric encryption key ksrv, and
ê(γi, g)ê(hi, R) = A, Ui can recover the plaintext mp:
m = c3

ê(γi,c1)ê(hi,c2)
; Decksrv(m) = mp.

Fig. 1. Long-term secure asymmetric group key agreement

4.2 Security Analysis

The security of the protocol in Fig. 1 can be ensured “long-term” provided that
the underlying signature scheme is existentially unforgeable and the invoked
symmetric encryption scheme is secure in the sense of ROR-CCA. More specifi-
cally, we have the following.

Proposition 1. Suppose the signature scheme used in the protocol in Fig. 1 is
secure in the sense of UF-CMA and the symmetric encryption scheme is secure
in the sense of ROR-CCA. Then the protocol in Fig. 1 is semantically secure and
fulfills strong entity authentication to all involved instances provided that at least
one of the following conditions holds:

– The n-BDHE assumption for the underlying BDHE instance generator holds.
– The server S is uncorrupted.

Proof. Let Forge be the event that A succeeds in forging a signature σi in the
protocol without having queried Corrupt(Ui). Moreover, denote by Advuf =
Advuf(k) an upper bound for the probability that a ppt adversary creates a

304 K. Neupane

successful forgery for the underlying signature scheme. During the protocol’s
initialization phase, we can assign a challenge verification key to a user U ∈ U
uniformly at random, and with probability at least 1/|U| the event Forge results
in a successful forgery for the challenge verification key. Thus

Pr[Forge] ≤ |U| · Advuf ,

and the event Forge can occur with negligible probability only.
Let qsend be a polynomial upper bound for the number of queries to the

Send oracle by A. Let Guess be the event that at the beginning the adversary
randomly guesses which instance Πsi0

i0
will be queried to the Test oracle as well

as all the other instances with which Πsi0
i0

will establish a session and session
keys. Thus

Pr[Guess] ≤ qsend
2k

,

and the event Guess can occur with negligible probability only. As each of the
events Forge and Guess occurs with negligible probability only, subsequently we
may assume they do not occur. Now, for proving security of the protocol, game
hopping turns out to be convenient. The event of A to succeed in Game i and
the advantage of A in Game i will be denoted by SuccGame i

A and AdvGame
A i,

respectively. First we discuss the situation where the BDHE assumption holds
and thereafter we discuss the case of having (only) an uncorrupted server.

Security if the BDHE Assumption Holds. We prove the security of the protocol
in this situation by using a short sequence of games.

Game 0: This game is identical to the original attack game for the adversary,
with all oracles being simulated faithfully. In particular,

AdvA = AdvGame 0
A .

Game 1: This game differs from Game 0 in the simulator’s response in com-
putation of a decryption key of user Ui. Instead of using Xi as specified in
the protocol, the simulator computes γi with a uniformly at random chosen
element Yi ∈ G1.

We have |AdvGame 1
A − AdvGame 0

A | ≤ |Pr(SuccGame 1
A) − Pr(SuccGame 0

A)|, and
the latter is negligible since we can derive an algorithm B to solve the n-
BDHE problem, i.e.,

∣
∣
∣Pr[SuccGame 1

A] − Pr[SuccGame 0
A]

∣
∣
∣ ≤ Advn−BDHE

B

Consequently, we recognize the protocol in Fig. 1 as secure, provided that the
n-BDHE assumption holds.

Long-Term Secure Asymmetric Group Key Agreement 305

Security if the Server is Uncorrupted. In other words, A must not query
Corrupt(S). For this scenario, again game hopping allows to establish the desired
result:

Game 0: As in the previous setting, this game is identical to the original attack
game for the adversary, with all oracles being simulated faithfully:

AdvA = AdvGame 0
A

Game 1: Now the simulator replaces the server’s message si directed to Πsi0
i0

with an encryption of a uniformly chosen random bitstring of the appropriate
length. To bound |AdvGame 1

A − AdvGame 0
A | we derive from the challenger

the following algorithm C to attack the ROR-CCA security of the underlying
symmetric encryption scheme: whenever the protocol requires to encrypt or
decrypt a message using the symmetric key kUi

, C queries its encryption or
decryption oracle, respectively, simulating Corrupt, Reveal, Send and Test in
the obvious way. Note that C simulates the (by assumption uncorrupted)
server S too. In particular, C knows ksrv, and there is no need for C to query
its decryption oracle with a message received from the real-or-random oracle
for computing the session key. Whenever A correctly identifies the session
key after receiving the challenge of the (simulated) Test oracle, C outputs 1,
i. e., claims that its encryption oracle operates in “real mode”, whenever A
guesses incorrectly, C outputs 0.

Writing bror and btest for the values of the real-or-random oracle’s internal
random bit and the random bit of the (simulated) test oracle, respectively,
we obtain

∣
∣
∣Advror−cca

C
∣
∣
∣ =

∣
∣
∣Pr

[

1 ← Cbror=1
]

− Pr
[

1 ← Cbror=0
]∣
∣
∣

=

∣
∣
∣
∣

1

2
· Pr

[

1 ← Abtest=1 | bror = 1
]

+
1

2
· Pr

[

0 ← Abtest=0 | bror = 1
]

− 1

2
· Pr

[

0 ← Abtest=1 | bror = 0
]

− 1

2
· Pr

[

1 ← Abtest=0 | bror = 0
]
∣
∣
∣
∣

=
1

2
·
∣
∣
∣Pr

[

1 ← Abtest=1 | bror = 1
]

+
(

1 − Pr
[

1 ← Abtest=0 | bror = 1
])

−
(

1 − Pr
[

1 ← Abtest=1 | bror = 0
])

− Pr
[

1 ← Abtest=0 | bror = 0
]∣
∣
∣

=
1

2
·
∣
∣
∣Pr

[

1 ← Abtest=1 | bror = 1
]

− Pr
[

1 ← Abtest=0 | bror = 1
]

+
(

Pr
[

1 ← Abtest=1 | bror = 0
]

− Pr
[

1 ← Abtest=0 | bror = 0
)]∣

∣
∣

≥ 1

2
·
∣
∣
∣AdvGame 1

A − AdvGame 0
A

∣
∣
∣ .

In other words, we recognize |AdvGame 1
A − AdvGame 0

A | as negligible as
required.

306 K. Neupane

Game 2: In this game, the simulator replaces the server’s messages sj ’s directed
to all the instances Πsj

Uj
which are partnered with the instance Πsi0

i0
with

encryption of uniformly chosen random bitstrings of the appropriate length.
With the same argument for each replacement at a time as above, we recognize∣
∣
∣AdvGame 2

A − AdvGame 1
A

∣
∣
∣ as negligible. By construction AdvGame 2

A = 0, and
we recognize the protocol in Fig. 1 as secure, provided that the server S is
uncorrupted.

Entity Authentication. Successful verification of the signatures and timestamps
on the messages ensures the existence of a used instance for each intended com-
munication partner and that the respective (R,A, ksrv)-values are computed as
expected. Consequently, it implies the equality of both the pidi- and the sidi-
values. �

5 Conclusion

The presented long-term secure one-round asymmetric group key agreement pro-
tocol can be seen as expensive in the sense that timestamps, a signature scheme,
two hardness assumptions, and shared keys with a server. However, the secu-
rity guarantees, the protocol with only one round provides, are quite strong. It
can also be viewed as a compiler which transforms passively secure asymmetric
key agreement protocol to an actively secure one with additional security fea-
tures without any additional round. For applications where the number of time
the participants can broadcast messages is constrained to only one round, this
protocol is an attractive option.

References

[BCP01] Bresson, E., Chevassut, O., Pointcheval, D.: Provably authenticated group
Diffie-Hellman key exchange — the dynamic case. In: Boyd, C. (ed.) ASI-
ACRYPT 2001. LNCS, vol. 2248, pp. 290–309. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-45682-1 18

[BCPQ01] Bresson, E., Chevassut, O., Pointcheval, D., Quisquater, J.J.: Provably
authenticated group Diffie-Hellman key exchange. In: Proceedings of the
8th ACM Conference on Computer and Communications Security CCS
2001, pp. 255–264. ACM (2001)

[BDJR00] Bellare, M., Desai, A., Jokipii, E., Rogaway, P.: A con-
crete security treatment of symmetric encryption (2000).
cseweb.ucsd.edu/ mihir/papers/sym-enc.html

[BF03] Boneh, D., Franklin, M.: Identity-based encryption from the Weil pairing.
SIAM J. Comput. 32(3), 586–615 (2003)

[BF09] Barbosa, M., Farshim, P.: Security analysis of standard authentication
and key agreement protocols utilising timestamps. In: Preneel, B. (ed.)
AFRICACRYPT 2009. LNCS, vol. 5580, pp. 235–253. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-02384-2 15

https://doi.org/10.1007/3-540-45682-1_18
https://cseweb.ucsd.edu//~mihir/papers/sym-enc.html
https://doi.org/10.1007/978-3-642-02384-2_15

Long-Term Secure Asymmetric Group Key Agreement 307

[BMQR07] Bohli, J.M., üller-Quade, J.M., öhrich, S.R.: Long-term and dynamical
aspects of information security: emerging trends in information and com-
munication security, chapter long-term secure key establishment, pp. 87–
95. Nova Science Publishers (2007)

[BVS07] Bohli, J.M., González Vasco, M.I., Steinwandt, R.: Secure group key estab-
lishment revisited. Int. J. Inf. Secur. 6(4), 243–254 (2007)

[KY03] Katz, J., Yung, M.: Scalable protocols for authenticated group key
exchange. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp.
110–125. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-
45146-4 7

[MOV96] Menezes, A., Van Oorschot, P., Vanstone, S.: Handbook of Applied Cryp-
tography. CRC Press, Boca Raton (1996)

[MQU07] Müller-Quade, J., Unruh, D.: Long-term security and universal compos-
ability. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 41–60.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-70936-7 3

[Neu18] Neupane, K.: One-round authenticated group key establishment using mul-
tilinear maps. In: Li, F., Takagi, T., Xu, C., Zhang, X. (eds.) FCS 2018.
CCIS, vol. 879, pp. 55–65. Springer, Singapore (2018). https://doi.org/10.
1007/978-981-13-3095-7 5

[Neu20] Neupane, K.: Long-term secure deniable group key establishment. In:
Maimut, D., Oprina, A.-G., Sauveron, D. (eds.) SecITC 2020. LNCS, vol.
12596, pp. 242–256. Springer, Cham (2021). https://doi.org/10.1007/978-
3-030-69255-1 16

[NS10] Neupane, K., Steinwandt, R .:Server-assisted long-term secure 3-party key
establishment. In: SECRYPT 2010 - Proceedings of the International Con-
ference on Security and Cryptography, Athens, Greece, 26–28 July 2010,
SECRYPT is part of ICETE - The International Joint Conference on e-
Business and Telecommunications, pp. 372–378. SciTePress (2010)

[NSSC12] Neupane, K., Steinwandt, R., Corona, A.S.: Group key establishment:
adding perfect forward secrecy at the cost of one round. In: Pieprzyk,
J., Sadeghi, A.-R., Manulis, M. (eds.) CANS 2012. LNCS, vol. 7712, pp.
158–168. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-
35404-5 13

[Unr13] Unruh, D.: Everlasting multi-party computation. In: Canetti, R., Garay,
J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 380–397. Springer, Hei-
delberg (2013). https://doi.org/10.1007/978-3-642-40084-1 22

[WMS+09] Wu, Q., Mu, Y., Susilo, W., Qin, B., Domingo-Ferrer, J.: Asymmetric
group key agreement. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol.
5479, pp. 153–170. Springer, Heidelberg (2009). https://doi.org/10.1007/
978-3-642-01001-9 9

[ZGL+18] Zhang, Q., Yong Gan, L., Liu, X.W., Luo, X., Li, Y.: An authenticated
asymmetric group key agreement based on attribute encryption. J. Netw.
Comput. Appl. 123, 1–10 (2018)

[ZWL10] Zhang, Y., Wang, K., Li, B.: A deniable group key establishment protocol
in the standard model. In: Kwak, J., Deng, R.H., Won, Y., Wang, G. (eds.)
ISPEC 2010. LNCS, vol. 6047, pp. 308–323. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-12827-1 23

https://doi.org/10.1007/978-3-540-45146-4_7
https://doi.org/10.1007/978-3-540-45146-4_7
https://doi.org/10.1007/978-3-540-70936-7_3
https://doi.org/10.1007/978-981-13-3095-7_5
https://doi.org/10.1007/978-981-13-3095-7_5
https://doi.org/10.1007/978-3-030-69255-1_16
https://doi.org/10.1007/978-3-030-69255-1_16
https://doi.org/10.1007/978-3-642-35404-5_13
https://doi.org/10.1007/978-3-642-35404-5_13
https://doi.org/10.1007/978-3-642-40084-1_22
https://doi.org/10.1007/978-3-642-01001-9_9
https://doi.org/10.1007/978-3-642-01001-9_9
https://doi.org/10.1007/978-3-642-12827-1_23

Building Deobfuscated Applications
from Polymorphic Binaries

Vlad Constantin Crăciun1,2(B) and Andrei-Cătălin Mogage1,2(B)

1 Department of Computer Science, “Alexandru Ioan Cuza”
University of IAŞI, Iaşi, Romania

{vcraciun,catalin.mogage}@info.uaic.ro
2 Bitdefender, Bucharest, Romania

{vcraciun,amogage}@bitdefender.com

Abstract. Along with the rise of the cyber threats industry, attackers
have become more fluent in developing and integrating various obfusca-
tion layers. This is mainly focused on impeding or at least slowing the
analysis and the reverse engineering process, both manually and auto-
matically, such that their threats will have more time to do damage.
Our contribution comes two-fold: we propose a semi-formal description
to reason with a certain class of obfuscators, while also presenting a con-
crete implementation proving our deobfuscation mechanisms. Our results
are based on a set of case studies of both common threats and legit-
imate software, running on Windows operating systems. We evaluate
our results comparing with PINDemonium, a tool built on top of PIN
dynamic binary instrumentation tool. Our solution CFGDump attempts
to brute-force and hash inter-procedural control flow graphs, opening the
doors to future optimisations and possible other features.

Keywords: Obfuscation · Deobfuscation · Polymorphism · Control
flow graph · Static analysis · Dynamic analysis · Reverse engineering

1 Introduction

Obfuscation [14] is one of the most common means of concealing execution
behaviour and deterring both static and dynamic analysis (we mostly use the
obfuscation term as a replacement for polymorphic packing and in particular
cases to express mechanisms of a higher complexity). The main idea is to manip-
ulate and change the aesthetics (manipulate syntax or control flow graphs, add
noise, etc.) of a program (such that it is difficult to determine its purpose by
static/dynamic analysis means), preserving the same time its behavior. Whilst
genuinely used by legitimate software to protect their intellectual property, it
has been increasingly abused by malicious actors in order to avoid detection
and analysis by security vendors. The phenomenon has grown so significantly
in the last years, that a simple search for “obfuscation in malware” will trigger
thousands of results, describing various techniques and implementations in more
than the last decade.
c© Springer Nature Switzerland AG 2022
P. Y. A. Ryan and C. Toma (Eds.): SecITC 2021, LNCS 13195, pp. 308–323, 2022.
https://doi.org/10.1007/978-3-031-17510-7_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-17510-7_21&domain=pdf
http://orcid.org/0000-0003-0893-4417
http://orcid.org/0000-0002-3533-7573
https://doi.org/10.1007/978-3-031-17510-7_21

Building Deobfuscated Applications from Polymorphic Binaries 309

Our purpose is to shed some light in the complicated world of obfuscation and
provide means of obtaining a deobfuscated candidate equivalent to the original,
unobfuscated one, which may be easily reverse-engineered or dissected with static
analysis tools.

In our vision, an ideal solution (also targeted by researchers in [5,6,26]) is
to be able to generically deobfuscate applications instead of defining sets of
heuristic rules for every obfuscator or packer (as [12,29] provides). This becomes
a difficult problem, since obfuscation spans over a large variety of types [20]:
syntactic, semantic, over control flow graph, etc.

1.1 Main Obfuscation Types

As stated in [7], obfuscation in binary applications usually comes as polymor-
phism, metamorphism or a hybrid of the two.

Polymorphism involves the obfuscation (via packing or encryption) of the
original code of the application, including a subroutine of deobfuscation inside
the application. While in [31], Xabier Ugarte-Pedrero et al. propose a taxonomy
of six granularity layers for packers, and Vijay Naidu in [21] describe seven levels
of polymorphism for polymorphic viruses, we use a simplified approach consisting
of three layers:

– entry-level polymorphism: Usually only one layer of obfuscation (pack-
ing/encryption), with a reduced complexity, and generally seen in commercial
packers or some malicious applications;

– mid-level polymorphism: At least one layer of obfuscation, using cryptogra-
phy or packing, and involving certain analysis deterring routines: dead code,
noise, API call obfuscation, Control Flow Graph obfuscation, convention call
obfuscation, application division, etc.;

– high-level polymorphism: Multiple obfuscation layers with high complexity,
multiple routines from mid-level polymorphism and involving means of reduc-
ing the amount of deobfuscated code present in memory at a time (via partial
deobfuscation, repacking or, in some cases, involving an emulator or virtual
machine). Most of the time during the execution, code remains in an obfus-
cated state.

Our entry-level polymorphism corresponds to Type I packers in [31], high-level
polymorphism corresponds to Type VI packers in [31], and mid-level polymor-
phism include all the other four levels. While the deterring routines may also be
present at entry-level, the overall obfuscation complexity is at a minimum and,
in most cases, it may be reversed using static analysis means.

Metamorphism (described in more details in [21] and in [3]), despite sharing
techniques with polymorphism, increases the complexity level by including a
repacking/reobfuscation routine, which creates a chain of different versions of
the application, having the same semantics.

Obviously, the two techniques could be and have been used together, proving
to be serious challenges for both analysts and automated tools alike. Virlock [32],

310 V. C. Crăciun and A.-C. Mogage

for instance, is a malicious application known as both a ransomware and a file-
infector and it involves routines from polymorphism and metamorphism, while
also including a lightweight DBI (Dynamic Binary Instrumentation) engine to
further conceal the instructions of the actual payload. The DBI in this case is
used to decrypt/reencrypt local functions, while causing a significant overhead.

1.2 Contribution

Our research is directed towards obfuscation involved in mid-level polymorphism
and, although we also handle the entry-level as a particular case, the main
purpose regards the former. This is due to the fact that we attempt to create a
general solution over this class of obfuscated applications, while also providing
a clear approach.

Our contribution is two-fold: first, we propose a semi-formal description for
mid-level polymorphism, in order to be able to model and reason about obfus-
cated applications in this context, and then we provide a concrete implemen-
tation which provides an insight on how we build a deobfuscated candidate of
an obfuscated application. The latter takes into consideration all the current
limitations, with a focus on correct and complete deobfuscation and program
reconstruction. To highlight the strong points of our implementation, we focus
on the following criteria:

– original Entry Point recovery (based on a CFG brute-force mechanism);
– correct identification of the number of modules and disjoint applications;
– import address table (IAT) rebuild;
– process dump and fix;
– performance, compared to PINDemonium.

Apart some novel approaches (see Sects. 2, 3) handling the above mentioned
issues, our contribution also consists of overcoming all the challenges through a
single ready-to-use framework.

1.3 Paper Structure

Section 2 formalizes the mid-level polymorphism applications, while Sect. 3 pro-
vides the concrete details and how we implement them in practice. By providing
an example of a domain of analysis information, we continue with evaluation
results and comparative tests, followed by a review of related work performed
onto particular or general cases of obfuscation in 4. We conclude in Sect. 5 where
we also include our plans for future work, involving limitations and other types
of obfuscation.

2 A Formal Description of Mid-level Deobfuscation

This section provides a more precise description of creating an abstract context
for the deobfuscation of mid-level polymorphism applications. Furthermore, we
provide an implementation for our methodology in the next section.

Building Deobfuscated Applications from Polymorphic Binaries 311

2.1 Problem Description

The main goal is to extract a deobfuscated version of an application, in order to
facilitate static analysis. To be more precise, the program goes through a chain
of transformations, during which a large number of memory cells are changed
to a deobfuscated form (becoming semantically equivalent to their initial not-
obfuscated state) and we are interested in extracting valuable information from
them.

Let Code denote the set of original (unobfuscated) pieces of a program’s
code. The process of extracting the analysis information from it is abstracted by a
function analysis : Code → AnalysisInfo, where the domain is Code, meaning the
analysis is performed on the unobfuscated code. We use AnalysisInfo to denote
the domain of analysis information extracted from a program, without imposing
any rule towards the means or purpose of doing so. For instance, AnalysisInfo
could include a set of strings, the import table, or other structured information.
However, our targets are obfuscated, the process being described by a function
obf : Code → ObfCode, where ObfCode is the set of obfuscated pieces. Note
that obf is not known a priori for malicious binaries and it must be revealed by
dynamic analysis.

Normally, the deobfuscation problem we deal with, consists of finding a func-
tion deobf : ObfCode → Code. Ideally, we would like to have deobf (obf (c)) = c,
but this is not always possible, especially for malicious binaries. However, we
are interested only in gathering correct analysis information from the deobfus-
cated code, i.e., analysis(deobf (obf (c))) � analysis(c), where � is a an equiv-
alence relation modelling the similarity traits in AnalysisInfo extracted from
programs. Since the similarity is not always achievable for malign applications,
we may refine the relation by considering a partial order“less rich than” � and,
thus, defining � as the equivalence generated by �. This relation is useful in
verifying the soundness of the similarity between the initial unobfuscated code
and our result, which may be viewed as an approximation.

2.2 Finding a Candidate for the deobf Function

Obfuscated programs have a built-in deobfuscator which performs the task and
replaces1 the obfuscated content with its original version. Therefore, in order to
obtain c′ = deobf (obf (c)), we need to execute the program, which is the result
of obf (c), until the execution reveals the value of deobf . The execution may
be abstractly modelled as a sequence M0 → M1 → M2 → . . . , where Mi is a
memory snapshot taken at the moment Ti and it involves a set of memory cells
with executable access right. Based on Mi , we extract an inter-procedural control
flow graph (ICFG), Gi = cfg(Mi). Considering the context of not knowing the
start node, we force this by brute-forcing any possible node start and building
multiple ICFGs and then joining any pair (Gi ,Gj) with Gj ⊂ Gi . The result
is, usually, a set of distinct ICFGs, and we pick Gi , the one with the largest

1 Given our context of mid-level polymorphism.

312 V. C. Crăciun and A.-C. Mogage

number of nodes, because this will provide the largest amount of data for the
final domain of analysis.

A first step towards the final solution consists in finding Mi such that Gi is
stable, i.e., it cannot be enriched anymore. The finding of Mi allows us to identify
the deobfuscated program, while the stable Gi facilitates the filtering of Mi such
that the proper flow of execution will be followed, skipping any noise added by
the obfuscator. Therefore, we consider that the stable state implies correctness,
because the program will not suffer any other transformation, indicating that
the original program’s semantics have been revealed. The stable state of Gi is
described as follows: for each j with i−Δ < j ≤ i, the control flow graphs Gj

provide similar structure (Fig. 1), where Δ is a predetermined time-frame. It is
not mandatory for Gi to actually depict the correct execution flow, as we do
not want to execute again the rebuilt applications. If Gi traverses some of the
unpacked memory ranges, we have the guarantee that the rebuilt application
would reflect these changes.

After the stabilization of Gi , we compute Mi
′ = cells(Gi), a set of memory

cells with any type of access rights that contribute to Gi (i.e. are referred directly
by executable cells) or are adjacent to cells contributing to Gi (due to the high
probability of them being referred indirectly). Naturally, Mi ⊂ Mi

′, since the
executable cells of Mi will be added to Mi

′, but there are some exceptions when
a few cells will be omitted, because they are not described by any node of Gi . This
step will be detailed in Sect. 3, while we only consider here the abstract behaviour
of collecting any subset of memory cells involving data which is referred by
code in Mi . The latter will be used to compute metadata(Mi

′), which includes
metadata information like import table and specific headers.

The final step is to compute deobf (obf (c)) := agg(Mi
′,metadata(Gi ,Mi

′)),
through which the elements are aggregated into the deobfuscated applica-
tion. So, in order to obtain c′ = deobf(obf (c)), we need to compute Mi ,
Gi := cfg(Mi), Mi

′ := cells(Gi), MD i :=metadata(Gi ,Mi
′), and agg(Mi

′,MD i).
Usually we obtain analysis(c) � analysis(c′) due to the definition of the
cfg , cells,metadata, agg functions, with a subset of programs resulting in
analysis(c) � analysis(c′).

2.3 Building cfg(Mj)

We iterate each memory cell Mj , select every virtual address which might
describe a start of a function and build an ICFG which may span across multiple
modules and memory cells.

The ICFG structure is defined as a directed graph ICFG = (N,E), where
N is the set of nodes and E ⊆ N × N is the set of directed edges. N represents
basic blocks (successive assembly instructions) ending with a branch instruction.
Any edge (ni, nj) ∈ E depicts a possible execution flow from ni to nj . Our
ICFG structure includes additional edges (np, nq) ∈ E, considering that nq is
referenced as a constant pointer by one ore more instructions in np, including
pointer tables. The reason for adding (np, nq) nodes is derived from the attempt

Building Deobfuscated Applications from Polymorphic Binaries 313

to statically map as much code as possible in a single graph structure, including
threads, handlers and callbacks.

2.4 Identification of the Stable State

Considering the obfuscated program loaded into memory and prepared for exe-
cution, the first step towards our solution is the identification of the complete
set of deobfuscated executable memory cells, Mi . As previously stated, the deob-
fuscation (and execution) is modeled as a sequence, and we compute Gj for each
set, until it stabilizes. In doing so, we allow our program to execute and create
a snapshot Mj every Δt seconds.

In order to verify the similarity property, each Gi will be described by a
fingerprint(Gi), abstractly computed as a hash from a numeric series over Gi .
The reason we do so is because it will uniquely describe the current state of
Gi , such that it will allow a quick comparison across successive ICFGs. The
fingerprint(Gi) function is described in Fig. 1, where a binary application suf-
fers a three level abstraction, before obtaining a 64 bit hash value. The three
abstraction levels include building the ICFG, building a Reduced Tree for the
ICFG structure (RTCFG - see below), and finally creating an equivalent array
obtained by a DFS (Depth First Search) traversal of the RTCFG structure.

ICFG
extraction

01010100000
01010101111
000000111011
01010100101

010101010010
010101001001

binary file

RTCFG
transformation

0,1,1,1,0,1,2,1,0,0 0x71588A0D5531B8C0

Fig. 1. CFG fingerprint

The RTCFG structure is a directed graph RTCFG = (N,F), where N is
the set of nodes (the same set of nodes from the ICFG), and F is a reduced set
of edges for E. The reducing rule states that if a target node nk was found in
edge (ni, nk), any subsequent edge (nj , nk) will not be present in F . This rule
removes all backward loop edges, as well as multiple edges to the same target
node, reshaping the ICFG graph structure to a variable child tree-like structure.

We iterate trough all modules and payloads, and create a unique set of mem-
ory cells which will describe our Mi .

314 V. C. Crăciun and A.-C. Mogage

3 Implementation and Evaluation

Based on the formal description described in the previous section, we designed,
implemented, and evaluated an application able to deobfuscate (malicious) bina-
ries built with mid-level polymorphism.

3.1 Implementation

Here we describe only how the main concepts from the general presentation are
instantiated and the main decision we have to take in our implementation.

AnalysisInfo Domain contains three main components: – an abstract approxi-
mation of the application behaviour; – API calls; – structured data (encryption
keys, pointer tables, exception records, strings).

Δt Interval. We have empirically tested various time frames and reached the
conclusion that, on average, a time frame higher than a few seconds will not
capture some important changes, while scanning multiple times per second will
not improve the precision of the results, but will only cause some overhead.
Therefore, we considered Δt equal to a second (for 5 consecutive similar snap-
shots, we consider that deobfuscated code is stable).

Rebuilding Deobfuscated/Unpacked Application. As soon as we obtain the stable
Gi , the framework proceeds to create Mi

′,the final set of cells, with any type of
access rights, which will describe the unpacked application. Using the traversal
of Gi , we uniquely select each memory cell which has at least 1 byte part of the
ICFG’s nodes. The next step is to collect every cell Ci adjacent to any cell from
the current Mi

′ recursively until either the space of adjacent cells is exhausted
or we reach an unallocated memory region.

Since all binary applications require a header, which allows the operating
system to properly load the application into memory, and also considering that
this header depends on an import table to properly refer application’s API calls,
we will implement metadata(Gi ,Mi

′) to compute them. First of all, the header
has numerous fields, each of them communicating vital information to the OS
and, therefore, we view it as a template to be filled and place it in the rebuilt
application when the EntryPoint resides in a payload, or duplicate and patch an
existing module header, if the values inside which we do not touch are correct.
From this enumeration, we already gathered all of them except the address of
the application’s Entry Point. In other words, we almost built the application,
but we need to be able to decide where it all starts. In this prospect, we select
the virtual address of the root node of Gi. The reason we do so is because an
application is loaded by the operating system and no other node would normally
refer it. Finally, our implementation of the agg function takes the tuple (Mi

′,
Header , ImportedFunctions) and aggregates its components into the deobfus-
cated application. The rebuilt application is a good candidate for static analysis
with respect to the quantity and quality of the available informations to be
analysed, compared to the obfuscated version.

Building Deobfuscated Applications from Polymorphic Binaries 315

3.2 Evaluation

To evaluate the correctness and performance of CFGDump, we have chosen
PINDemonium [6], the only tool we could find sharing similar features. PINDe-
monium is a tool used in conjunction with PIN-DBI [19] and Scylla [1] (a tool for
memory dumps), which attempts to rebuild the unpacked version of a polymor-
phic initially-packed target process by instrumenting the executing code. The
evaluation is split into measuring the ICFG data structure of the rebuilt mem-
ory dump (total nodes inside the ICFG), as well as the time performance of the
tools. All samples were tested on an Intel Core i9-10885, running at 2.4 GHz and
using 32 GB of memory, with a total of 8 cores, 16 threads. Tests execution time
was set to 15 min, any computation time exceeding this value was considered
a timeout. We have chosen 11 packers (ASPack, BeRoEXEPacker, eXpressor,
MEW, MPRESS, Neolite, NSPack, Packman, PECompact, RLPack, UPX) and
14 benign samples (a total of 154 packed binaries) from a public repository2 used
for similar experiments in [4].

Benign Samples. In this experiment we evaluate the correctness of the unpack,
comparing the rebuilt samples (both by CFGDump and PINDemonium) with the
original not-packed ones. Comparison is based on the size (number of nodes) of
the ICFG, as a measure for potential static analysis of the rebuilt binary (usually
static analysis tools will disassemble and structure the code, i.e. IDAPro3, hiew4,
qiew5). To simplify our findings, we computed four distances: absolute minimum
distance (DMIN), absolute maximum distance (DMAX), absolute average dis-
tance (DAVG), and a normalized DAVG distance (DNORM), revealing how
the initial ICFG size for the not-packed samples, relate to the ICFG size in
CFGDump and PINDemonium rebuilt binaries.

Table 1 highlights our findings, also revealing the size of the ICFG in the
initial not-packed set of binaries (ICFGOS - column). During our experiments
we have found that PINDemonium could not fully unpack 54% of the samples,
while CFGDump handled all of them. Because of the encountered differences,
we have chosen to consider as input for our distances (DMIN, DMAX, DAVG,
DNORM), only the columns where both tools provided correct results.

The lower the value in DNORM column, the shorter the distance between
the initial ICFG size and the rebuilt binaries across all packers (for a given sam-
ple). The higher values in the DNORM column, for PINDemonium for instance,
highlight one of the following two scenarios:

– because PINDemonium dumps individual modules and does not include addi-
tional payloads in the rebuilt binary, sometimes the ICFG is much lower in
size, because some pointers redirect to missing memory ranges;

2 https://github.com/chesvectain/PackingData.git.
3 https://hex-rays.com/ida-pro/.
4 http://www.hiew.ru/.
5 https://github.com/mtivadar/qiew.

https://github.com/chesvectain/PackingData.git
https://hex-rays.com/ida-pro/
http://www.hiew.ru/
https://github.com/mtivadar/qiew

316 V. C. Crăciun and A.-C. Mogage

Table 1. Correctness of unpack as a distance between the number of ICFG nodes in
the rebuilt samples, and the initial not-packed sample

Sample ICFGOSa Tool DMINb DMAXc DAVGd DNORMe

Clockres.exe 4700 CFGDump 85 273 151.6 3.22

PINDemonium 556 382 416.4 8.85

Contig.exe 4803 CFGDump 20 208 119.8 2.49

PINDemonium 54 131 80.2 1.66

Coreinfo.exe 6654 CFGDump 93 179 21 0.31

PINDemonium 731 2611 1201 18.04

Desktops.exe 4020 CFGDump 24 200 145 3.66

PINDemonium 207 208 207.2 5.15

diskext.exe 4291 CFGDump 24 175 108.3 2.52

PINDemonium 157 158 157.3 3.66

diskmon.exe 2711 CFGDump 28 33 31.2 1.15

PINDemonium 911 911 911 33.6

du.exe 4744 CFGDump 12 218 110.8 2.33

PINDemonium 538 563 545 11.48

FastHash kr.exe 7147 CFGDump 6 8 7 0.09

PINDemonium 4624 4624 4624 64.69

ftp.exe 1292 CFGDump 7 161 92.7 7.17

PINDemonium 151 121 140.1 10.84

Hash.exe 343 CFGDump 0 97 40.6 11.83

PINDemonium 61 61 61 17.78

hex2dec.exe 4178 CFGDump 18 183 107.6 2.57

PINDemonium 991 1049 1012.6 24.23

junction.exe 4051 CFGDump 9 157 91.5 2.25

PINDemonium 277 278 277.2 6.84

livekd.exe 7875 CFGDump 30 976 715.2 9.08

PINDemonium 96 269 215.1 2.73

LoadOrdC.exe 6260 CFGDump 4 144 84.3 1.34

PINDemonium 118 93 109.6 1.75
aICFGOS: Total ICFG size for the initial not-packed samples
bDMIN: absolute minimum distance between packed samples and ICFGOS
cDMAX: absolute maximum distance between packed samples and ICFGOS
dDAVG: absolute average distance between packed samples and ICFGOS
eDNORM: normalized DAVG (as a percent from ICFGOS)

Building Deobfuscated Applications from Polymorphic Binaries 317

– depending where the EntryPoint is placed, the size of the ICFG may be dif-
ferent, while PINDemonium selects the EntryPoint based on the application
header (presuming that the header was not tampered with), CFGDump uses
a heuristic selecting the largest ICFG (ignoring any header value).

While some light differences are based on the first mentioned scenario, there
are some exceptions where packers intentionally change the header values, lead-
ing PINDemonium to be misled in recovering the original EntryPoint. We deal
with the second scenario in case of FastHash kr.exe, where some packers make
this difference. Being just a random event, for FastHash kr.exe, for which PIN-
Demonium got the largest DNORM value (64.69%), CFGDump obtained the
minimum value (0.09%). To highlight some differences between CFGDump and
PINDemonium, we used a green background for DNORM values for which CFG-
Dump is at least twice lower than PINDemonium, and a red background where
CFGDump values were twice grater compared to PINDemonium. At the same
time, most of the DNORM values for CFGDump are between 0.09 and 2.57,
while for PINDemonium, the range is a bit wider (between 1.75 and 24.23 -
mostly because of wrong recovered EntryPoints).

Table 2. Comparing entropy between initial, packed and rebuilt samples

Sample EONPa AEOPb AECFGDc AEPINDd

Clockres.exe 6.62 7.71 5.01 5.95

Contig.exe 6.57 7.74 4.74 5.28

Coreinfo.exe 6.62 7.74 4.36 3.75

Desktops.exe 6.47 7.75 6.05 6.36

diskext.exe 6.49 7.78 4.93 5.96

Diskmon.exe 6.48 7.77 6.21 6.28

du.exe 6.49 7.79 4.99 6.15

FastHash kr.exe 6.63 7.78 5.9 6.65

ftp.exe 6.1 7.9 4.98 5.35

Hash.exe 6.17 7.75 4.65 4.75

hex2dec.exe 6.46 7.77 5.48 5.99

junction.exe 6.57 7.81 6.25 6.4

livekd.exe 6.59 7.78 5.98 6.64

LoadOrdC.exe 6.53 7.77 6.07 5.74
aEONP: Entropy for Original Not-Packed sample
bAEOP: Average Entropy for Original Packed samples
cAECFGD: Average Entropy for samples rebuilt by CFGDump
dAEPIND: Average Entropy for samples rebuilt by PINDemo-
nium

To assist the data in Table 1, we also highlighted in Table. 2 the Shan-
non Entropy (described in [4] Sect. 2.1 and [22] Sect. 5) for original not-packed

318 V. C. Crăciun and A.-C. Mogage

samples (EONP), original packed samples (as an average value for all packers
- AEOP), samples unpacked by CFGDump (as an average value - AECFGD),
and samples unpacked by PINDemonium (as an average value - AEPIND). The
entropy shows that samples rebuilt by CFGDump (AECFGD) have a gener-
ally lower entropy compared to samples rebuilt by PINDemonium (AEPIND).
Because a high entropy values for unpacked samples would indicate that the
binary is still packed (as shown by column AEOP, where entropy values are
larger than 7.5), a low entropy would point to a reverse scenario (EONP col-
umn, where entropy values are lower than 7). For our particular packers, a higher
entropy is achieved through PINDemonium by including some packed code orig-
inating in the unpacker memory-ranges inside the rebuilt binaries, while CFG-
Dump includes mostly the unpacked code and isolated portions of the unpacker,
as a result of chaining inside the ICFG, both the unpacker and the unpacked
code (usually with constant pointers).

Table 3. Performance evaluation

Timea interval (seconds) CFGDump percentb PINDemonium percent

≤ 30 87% 0%

31–300 13% 29.2%

>300 0% 70.8%
aTime in seconds (≥ 0)
b corresponding samples×100

11×14

The performance evaluation is presented in Table 3, where PINDemonium
performs up to 5× times (on average) lower, for samples where it provides cor-
rect results, and no results at all for more than half of the data-set. We split the
execution time in three intervals, such that some intervals will capture most of
the relevant scenarios. For instance, while 87% of the samples rebuilt by CFG-
Dump only executed up to 30 s, 70.8% of the samples rebuilt by PINDemonium,
executed for more than five minutes, and only 29.2% executed below between
30 s and five minutes. CFGDump performed better in this case, as it had an
overall average execution time (for all samples) of 22.1 s per sample, while PIN-
Demonium time reached 244.9 s per sample (11× lower than CFGDump).

Malign Samples. For this experiment we have randomly chosen 10 malicious
binaries from online available collections like VirusTotal6 (most of them being
part of ransomware families) and highlighted in Table 4 the size of the original
ICFG for packed samples (ICFGOS column), the size of the unpacked ICFG
for the rebuilt binary (ICFGUS column), as well as the time (in seconds) taken
for the unpack. We observed that PINDemonium is only able to provide partial
results for emotet and miner (2% of the data set), while CFGDump gets to

6 https://www.virustotal.com/.

https://www.virustotal.com/

Building Deobfuscated Applications from Polymorphic Binaries 319

rebuild a deobfuscated candidate for each sample, in a time-frame close to values
obtained for the benign set of samples.

Table 4. Malicious binaries

Sample ICFGOSa Tool ICFGSUb TIME (seconds)

emotet 180 CFGDump 2715 11.5

PINDemonium 319 300

corebot 3535 CFGDump 12394 6.2

PINDemonium 0 0

doppelpaymer 185 CFGDump 12507 7

PINDemonium 0 0

darkside 2705 CFGDump 8421 6

PINDemonium 0 0

troldesh 2112 CFGDump 8347 6.5

PINDemonium 0 0

gandcrab 6 CFGDump 4062 6

PINDemonium 0 0

miner 47 CFGDump 8325 8.6

PINDemonium 0 300

crylock 1 CFGDump 10008 2

PINDemonium 0 0

revil 2904 CFGDump 3514 10

PINDemonium 0 0

zeppelin 6700 CFGDump 7023 8.5

PINDemonium 0 0
aICFGOS: Total ICFG size for the initial not-packed samples
bICFGSU: Total ICFG size for unpacked samples (rebuilt)

The overall conclusion of our evaluation is that CFGDump is able to handle
both benign and malign binaries much faster compared to PINDemonium which
either executed above five minutes or triggered our 15 min timeout. Also, PIN-
Demonium might not be suitable for malicious binaries as it only managed to
partially unpack two out of ten binaries (see Table 4).

4 Related Work

A great work has been proposed by Preda Dalla in [7] which provides an
abstract interpretation orientated towards deobfuscation and detection, and
Matthieu Tofighi Shirazi in [28] which elaborates on obfuscation and deobfusca-
tion approaches in Sects. 2 and 3. A few approaches for deobfuscating commercial

320 V. C. Crăciun and A.-C. Mogage

packers (mostly entry-level polymorphism) are presented in [6,15,34]. Although
they dive into interesting strategies, such as binary instrumentation in [6] which
we have chosen to compare with. As mentioned in Introduction, several works
[8,12,27,33] tried to attack a similar class of obfuscation as our target. They
have been analyzed and, where possible, tested, but did not fulfill our domain
of analysis information, making the point of this paper. [29] provides a good
example of the effort required on doing a specialized analysis on a type of obfus-
cator(Themida [23]) and implementation of a solution which targets it. Our focus
was to avoid the necessity of creating particular tools and, although a good piece
of work, the complexity levels are high when it comes to various types of obfus-
cators and their versions. Targeting specific obfuscators/packers is a continuous
and never-ending process since some of them are continuously updated.

A similar work was described by Ryan Farley and Xinyuan Wang in [11],
where S2E framework was used as back-end. The authors attempt to find hid-
den code fragments, using selective symbolic execution, by not starting with
the obvious Entry Point of the obfuscated application, but performing different
computations assisted by symbolic execution, on a memory dump. The usage
of symbolic execution may increase the soundness of the solution, but at the
same time greatly lowers the performance. Another similarity with our solution
is provided by malwise in [24] and [30], where the authors use an emulator to
unpack obfuscated binaries and then build a string like signature describing the
control flow graph of the unpacked binary. While the resulting string describes
the control flow as we did with the fingerprint function, the emulation is not an
ideal solution for evasive malware.

Based on [10] (an analysis environment based on QEMU, capable of recording
and replaying executions), Charles Lim et al. present Mal-Xtract in [17] and
Mal-Flux in [18], a method to detect the end of unpacking routines based on
analyzing a replay of a binary in Panda Qemu environment. The authors evaluate
three benign applications on eight packers, among which two are shared by our
evaluation (UPX and Themida). Another research to detect the unpacked code
using an emulator is provided by Paul Royal et al. in [26], where authors also
propose a formal frame for their approach.

Approaches to detect polymorphic packed binaries is handled in [2,4,22].
In [22], authors propose ESCAPE and PEAL, two methodologies to distin-
guish between packed an native binaries. The authors in [22] also elaborates
on the Windows PE file format, in Sect. 2. In [2] authors review polymorphic
malware detection techniques and identify: string search algorithms, data min-
ing, malware sandboxes, machine learning and structural feature engineering as
base mechanisms, while in [4], authors integrate the three concepts of detection,
unpacking and verification into a single framework. An interesting mechanism
to get to the unpacked code was developed by Kevin Coogan et al. in [5] by
designing a formal frame and implementing a way to mix static analysis and
debuggers. The approach overall is similar to concolic execution, but instrument-
ing a debugger to execute slices of code, as a result of static analysis. Certain

Building Deobfuscated Applications from Polymorphic Binaries 321

DBI limitations are described in [9,13,16,25], which might explain the issues
encountered by PINDemonium during our evaluation.

5 Conclusions

The world of malicious threats has and will continue to rise, including more
means of attack concealing and analysis deterring. Our paper set its target to
shed a light onto these challenges and, in doing so, generalize the problem. We
have presented a more precise description for modeling the mid-level polymor-
phism applications, while also diving into a concrete implementation accompa-
nied by a set of test results. What is more, our framework has been successfully
used in practice, simplifying the effort an analyst would have to put in obtaining
the required subsets of the AnalysisInfo domain, by both manual and automatic
approaches. Our experiments with the implementation have proven that our
solution is a good candidate for unpacking the class of mid-level polymorphism.

5.1 Future Work

Our main purpose was to generalize the solution instead of providing partic-
ular results. We are aware at this point that applications including additional
obfuscation layers on top of the unpacked code, involving dead-code with ICFG
larger than the actual executed code, would evade our ICFG selection method.
However, this scenario does not fall into medium-level polymorphism, but into
high-level polymorphism, where the application code is always obfuscated during
the execution (from our experiments, we believe that involving code instrumenta-
tion and taint analysis we could also target high-level polymorphism). Although
a small fragment of them are handled by the framework, the general rule states
otherwise. We are investigating other possible strategies to include to the solu-
tion, such as binary instrumentation, in order to dynamically compute critical
key elements: branching points using a registry as destination, partial deobfus-
cation or high complexity noise. Apart from that, there are some particular
troublesome cases that need a more careful analysis. A first is given by scenarios
where application unpacks distinct programs, with disjoint memory cells and
ICFGs. We plan to adjust the framework in order to build distinct deobfuscated
candidates in such a case, all of them statically analyzable.

References

1. Scylla. github.com/NtQuery/Scylla
2. Alrzini, J.R.S., Pennington, D.: A review of polymorphic malware detection tech-

niques. Int. J. Adv. Res. Eng. Technol. 11(12), 1238–1247 (2020)
3. Bergenholtz, E., Casalicchio, E., Ilie, D., Moss, A.: Detection of metamorphic mal-

ware packers using multilayered LSTM networks. In: Meng, W., Gollmann, D.,
Jensen, C.D., Zhou, J. (eds.) ICICS 2020. LNCS, vol. 12282, pp. 36–53. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-61078-4 3

https://github.com/NtQuery/Scylla
https://doi.org/10.1007/978-3-030-61078-4_3

322 V. C. Crăciun and A.-C. Mogage

4. Choi, M.J., Bang, J., Kim, J., Kim, H., Moon, Y.S.: All-in-one framework for
detection, unpacking, and verification for malware analysis. Secur. Commun.
Netw. 2019, 5278137 (2019). https://doi.org/10.1155/2019/5278137. https://
www.hindawi.com/journals/scn/2019/5278137/. Hindawi

5. Coogan, K., Debray, S., Kaochar, T., Townsend, G.: Automatic static unpacking
of malware binaries. In: 2009 16th Working Conference on Reverse Engineering,
pp. 167–176. IEEE (2009)

6. D’Alessio, S., Mariani, S.: PinDemonium: a DBI-based generic unpacker for win-
dows executables (2016)

7. Dalla Preda, M.: Code obfuscation and malware detection by abstract interpre-
tation. PhD diss (2007). https://profs.sci.univr.it/dallapre/MilaDallaPreda PhD.
pdf

8. Yadegari, B., Johannesmeyer, B., Whitely, B., Debray, S.: A generic approach to
automatic deobfuscation of executable code. In: Proceedings of IEEE Symposium
on Security and Privacy, pp. 674–691 (2015)

9. D’Elia, D.C., Coppa, E., Nicchi, S., Palmaro, F., Cavallaro, L.: Sok: using dynamic
binary instrumentation for security (and how you may get caught red handed). In:
Proceedings of the 2019 ACM Asia Conference on Computer and Communications
Security, pp. 15–27 (2019)

10. Dolan-Gavitt, B., Hodosh, J., Hulin, P., Leek, T., Whelan, R.: Repeatable reverse
engineering with panda. In: Proceedings of the 5th Program Protection and Reverse
Engineering Workshop, pp. 1–11 (2015)

11. Farley, R., Wang, X.: CodeXt: automatic extraction of obfuscated attack code from
memory dump. In: Chow, S.S.M., Camenisch, J., Hui, L.C.K., Yiu, S.M. (eds.) ISC
2014. LNCS, vol. 8783, pp. 502–514. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-13257-0 32

12. Säıdi, H., Porras, P., Yegneswaran, V.: Experiences in malware binary deobfusca-
tion (2010)

13. Hron, M., Jermář, J.: Safemachine malware needs love, too. Virus Bul-
letin (2014). https://www.virusbulletin.com/uploads/pdf/conference slides/2014/
sponsorAVAST-VB2014.pdf

14. I. You, K.Y.: Malware obfuscation techniques: a brief survey. In: Proceedings of
the 2010 International Conference on Broadband, Wireless Computing, Commu-
nication and Applications, pp. 297–300 (2010)

15. Marion, J.Y., Reynaud, D.: Dynamic binary instrumentation for deobfuscation and
unpacking (2009)

16. Lee, Y.B., Suk, J.H., Lee, D.H.: Bypassing anti-analysis of commercial protector
methods using DBI tools. IEEE Access 9, 7655–7673 (2021)

17. Lim, C., Kotualubun, Y.S., Ramli, K., et al.: Mal-Xtract: hidden code extrac-
tion using memory analysis. In: Journal of Physics: Conference Series, vol. 801, p.
012058. IOP Publishing (2017)

18. Lim, C., Ramli, K., Kotualubun, Y.S., et al.: Mal-flux: rendering hidden code of
packed binary executable. Digit. Investig. 28, 83–95 (2019)

19. Luk, C.K., et al.: Pin: building customized program analysis tools with dynamic
instrumentation. Acm Sigplan Notices 40(6), 190–200 (2005)

20. Campion, M.: Mila Dalla Preda, R.G.: Learning metamorphic malware signatures
from samples (2021)

21. Naidu, V.J.: Identifying polymorphic malware variants using biosequence analysis
techniques. Ph.D. thesis, Auckland University of Technology (2018)

22. Naval, S., Laxmi, V., Gaur, M.S., et al.: An efficient block-discriminant identifica-
tion of packed malware. Sadhana 40(5), 1435–1456 (2015)

https://doi.org/10.1155/2019/5278137
https://www.hindawi.com/journals/scn/2019/5278137/
https://www.hindawi.com/journals/scn/2019/5278137/
https://profs.sci.univr.it/dallapre/MilaDallaPreda_PhD.pdf
https://profs.sci.univr.it/dallapre/MilaDallaPreda_PhD.pdf
https://doi.org/10.1007/978-3-319-13257-0_32
https://doi.org/10.1007/978-3-319-13257-0_32
https://www.virusbulletin.com/uploads/pdf/conference_slides/2014/sponsorAVAST-VB2014.pdf
https://www.virusbulletin.com/uploads/pdf/conference_slides/2014/sponsorAVAST-VB2014.pdf

Building Deobfuscated Applications from Polymorphic Binaries 323

23. Oreans. www.oreans.com/themida.php
24. Pasha, M.M.R., Prathima, M.Y., Thirupati, L.: Malwise Syst. Packed Polymorphic

Malware 3, 167–172 (2014)
25. Plumerault, F., David, B.: Dbi, debuggers, vm: gotta catch them all. J. Comput.

Virol. Hacking Tech. 17(2), 105–117 (2021)
26. Royal, P., Halpin, M., Dagon, D., Edmonds, R., Lee, W.: PolyUnpack: automating

the hidden-code extraction of unpack-executing malware. In: 2006 22nd Annual
Computer Security Applications Conference (ACSAC 2006), pp. 289–300. IEEE
(2006)

27. Udupa, S.K., Debray, S.K., Madou, M.: Deobfuscation: reverse engineering obfus-
cated code. In: Proceedings of the 12th IEEE Working Conference on Reverse
Engineering (WCRE 2005) (2005)

28. Shirazi, M.T.: Analysis of obfuscation transformations on binary code. Ph.D. the-
sis, Université Grenoble Alpes (2019)

29. Suk, J.H., Lee, J.Y., Jin, H., Kim, I.S., Lee, D.H.: UnThemida: commercial obfus-
cation technique analysis with a fully obfuscated program (2018)

30. Thilagavathi, A., Elumalai, M.: Proficient classification of packed and polymorphic
malware using malwise

31. Ugarte-Pedrero, X., Balzarotti, D., Santos, I., Bringas, P.G.: SoK: deep packer
inspection: a longitudinal study of the complexity of run-time packers. In: 2015
IEEE Symposium on Security and Privacy, pp. 659–673. IEEE (2015)

32. V. Craciun, A. Nacu, M.A.: It’s a file infector... it’s ransomware... it’s virlock (2015)
33. Guillot, Y., Gazet, A.: Automatic binary deobfuscation (2010)
34. Yason, M.V.: The art of unpacking (2007)

www.oreans.com/themida.php

Viruses, Exploits, Malware and Security Issues
on IoT Devices

Cristian Toma(B) , Cătălin Boja, Marius Popa, Mihai Doinea, and Cristian Ciurea

Department of Economic Informatics and Cybernetics, Bucharest University of Economic
Studies, 010552 Bucharest, Romania
cristian.toma@ie.ase.ro

Abstract. The necessity of using secure Internet-of-Things (IoT) devices in var-
ious use cases has increased over years. According with various analysis in the
first half of the year 2021, there were 1.5 billion attacks on smart devices for
stealing data, mining cryptocurrency or building botnets. Therefore, the security
of the IoT devices is mandatory for any solution in the field – e.g., from Smart
Cities to Healthcare. The main challenge for having reasonable security for IoT
devices is the fragmentation of the market landscape and protocols, as well as poor
penetration of the device attestation and embedded/integrated secure elements for
the IoT nodes. First section of this paper is an overview of the IoT certification
schemes and in the second section the authors present a proof-of-concept solution
for direct and reverse shell in an IoT gateway. The last section offers conclusions
regarding the cybersecurity for the IoT gateways and nodes.

Keywords: IoT security · Direct shell attack · Reverse shell attack ·Malware ·
Virus · Embedded Linux OS

1 Introduction – IoT Certification Schemes

The IoT Devices are on the edge of a standard IoT architecture and usually are divided
in gateways and nodes. The IoT nodes have low power constraint communication with
restrictions regarding memory, processing power and storage comparing to PCs. There-
fore, their operating system is either one from area of RTOS – Real Time Operating Sys-
tem or from area of embedded. On the IoT Gateways which collect data from nodes and
orchestrate them, they have usually Linux embedded OS. The communication between
them is based on wired or wireless connection and the nodes communicates with sensors
and actuators through various serial interfaces or low power wireless protocols [1]. This
landscape is still very fragmented in terms of hardware, firmware and software and the
security is declared as being the key differentiator factor.

There are a lot of organizations and companies which push different standards in
different use cases and versions for the IoT cybersecurity. Some of the companies offer
certification schemes with different levels of security. The report reference [4] gives a
summary of the IoT Certification Schemes.

The certification schemes are targeting different areas such as: secure elements, SoC–
System on Chip, Sensors, TPM – Trusted Platform Module, HSM – Hardware Security

© Springer Nature Switzerland AG 2022
P. Y. A. Ryan and C. Toma (Eds.): SecITC 2021, LNCS 13195, pp. 324–334, 2022.
https://doi.org/10.1007/978-3-031-17510-7_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-17510-7_22&domain=pdf
http://orcid.org/0000-0001-9316-7739
https://doi.org/10.1007/978-3-031-17510-7_22

Viruses, Exploits, Malware and Security Issues on IoT Devices 325

Table 1. Table for the IoT Certification Schemes

Acronym Description Owner URL

BSPA The Dutch Scheme for Baseline
Security Product Assessment

AIVD/NLNCSA NA

BSZ Security scheme from Germany
like CSPN and BSPA

BSI [5]

CSPN French First Level Certification ANSSI [6]

e-IoT-SCS Eurosmart IoT Security
Certification Scheme for IoT
devices

Eurosmart [7]

ETSI TS 103 645 A standard for cybersecurity in
the Internet of Things which
provide a foundation for future
IoT certification schemes

ETSI [8]

GP TEE GlobalPlatform Trusted
Execution Environment

GP [9]

GP SE GlobalPlatform Secure Element GP [10]

GSMA IoT SA Global System for Mobile
Communications

GSMA [11]

IEC 62443 The IEC 62443 family of
standards has cybersecurity
requirements for industrial
automation control. It also
applies to entities, who operate
the systems

ISA (International Society of
Automation)

[12]

IoTSCF IoT Security Compliance
Framework is a list of
requirements and a gathering
process of the evidences
(Compliance Checklist) for
guiding an organization through
the process

IoT Security Foundation (IoTSF) [13]

LINCE Designed methodology for ICT
products requiring certification
with medium or low security
criticality

CCN NA

PSA Level 1 Security model based on
questions with lab interview: for
Chip vendors, OS suppliers,
OEMs

ARM [14]

(continued)

326 C. Toma et al.

Table 1. (continued)

Acronym Description Owner URL

PSA Level 2 Lab based evaluation of the
PSA-RoT Mid assurance & mid
robustness for Chip Vendors

ARM [15]

SESIP The Security Evaluation
Standard for IoT Platforms
(SESIP) describes a standard for
assessment of the IoT platforms
security and trustworthy

GP – Global Platform [16]

SOG-IS Common Criteria (CC)
certification scheme

SOG-IS [17]

TuVIT-SQ Security Qualification for
trusted products and trusted sites

TÜV Informationstechnik GmbH
(TÜViT)

NA

UL IoT Security UL’s IoT Security Rating is a
comprehensive evaluation
process that assesses critical
security aspects of smart
products against common
attacks

UL [18]

UL 2900 UL 2900 is a series of standards
published by UL (formerly
Underwriters Laboratories) for
general software cyber security
requirements. There are several
parts – e.g. network-connectable
products (UL 2900–1), medical
and healthcare systems (UL
2900–2-1) and security and life
safety signaling systems (UL
2900–2-3)

UL [19]

Modules, entity attestation, cryptographic computations and communications segments,
but only some of them are performing assessments for software/firmware running on
top of IoT gateways. Therefore, it is possible to have logical attacks, malware and even
viruses on IoT devices without any major problem and to provide serious damages to
different use cases.

Figure 1 is showing the architecture overview for IoT solutions and contains from
left side to the right side the following items:

• Sensors and Actuators – sensors are used for collecting data - e.g. temperature sensor,
while actuators are used to take action for various events within the system – e.g. a
LED.

Viruses, Exploits, Malware and Security Issues on IoT Devices 327

– Communication between sensors and nodes/gateways:

• Wired Analog: e.g. ADC –Analog to Digital convertors – e.g. (MCP3008) – SPI.
• Wired Digital Serial Interface: I2C, I3C, SPI, UART/RS-485, GPIO.
• Wireless: ZigBee, Z-Wave, BLE, Wi-Fi, UWB (ultra-wideband technology).

• IoT Edge Devices

– IoT Nodes – used to collect data from the sensors - e.g. Development Boards with
sensors: NXP, Freescale, STMicro, Arduino, ESP8266, Nordic, Microchip or in
Production – e.g.: Fitbit to smartphone, CANBus in a connected car to smartphone,
Smart Plug ZigBee to GW connected to Amazon Alexa/Google Home Assistant
for Smart House use cases.

– IoT Gateways – used to collect data from IoT nodes or directly form sensors and to
orchestrate the interactions with nodes for communicating with the IoT Clouds –
e.g. Development Boards with/without sensors: Raspberry Pi, Arduino, Nitrogen,
NXP, Freescale, ST Microelectronics, Nordic or in Production – e.g.: Smartphone
with Android OS/Apple iOS, Amazon Alexa, Google Home Assistant, Apple TV,
in industry Eurotech, WindRiver, DELL, Honeywell, etc.

– Communication between the IoT Gateways and IoT Nodes and even with sen-
sors/actuators is wired or wireless [20] – e.g. with OMA/IPSO payload (for
Encryption/Signature: ASN.1 DER vs. CBOR/COSE) over MQTT-SN or CoAP
or Proprietary/Industrial buses over:

• Wired: Ethernet (TCP-UDP/IP), RS-485 (ModBus-RT over RS-485), etc.
• Wireless: ZigBee, Z-Wave, BLE, Wi-Fi (TCP/IP), etc.

• IoT Clouds – cloud services for collecting real time data for fast data processing – e.g.
IoT Cloud vendors with their data models and authentication schemes and the client
libraries for Connectivity: Google IoT Core Pub/Sub, Microsoft Azure IoT Hub, IBM
IoT Watson BlueMix, Amazon AWS IoT, Oracle IoT CS, etc.

– Google IoT Core Pub/Sub, Microsoft Azure IoT Hub, IBM IoT Watson BlueMix,
Amazon AWS IoT, Oracle IoT CS.

– Communication between the IoT Gateways and IoT Clouds is compliant with
IPSO/OMA or similar compliant device model and IoT Clouds Authentication
Schemes with OMA/IPSO payload (for Encryption/Signature: ASN.1 DER vs.
CBOR/COSE) for MQTT or HTTPs-REST API over:

• Wired: Ethernet (TCP/IP).
• Wireless: 3GPP GSM 5G IoT-NB, ETSI LTN, IEEE LRLP/Wi-Fi, IETF
6LPWA/LP-WAN, WiMAX, SigFox, LoRaWAN, etc.

• Enterprise/Consumers/Business Apps – are applications which are running either in
other IT Clouds or on smart tablets or devices for monitoring and modifying behavior
of the IoT edge devices. The bidirectional communications between these apps and

328 C. Toma et al.

IoTClouds aremade using the sameprotocols and bearers as communications between
IoT Gateways and Clouds, although specific web protocols maybe used such as web-
socket, WebRTC, etc.

The security challenges are present in both communications and IoT devices and
some of the certification schemes are ignoring the ability of the logical attacks, malware,
viruses to alter/impersonate/attack the IoT devices.

Fig. 1. Architecture overview for IoT solutions

In the next sections the architecture and some implementation details of a direct and
reverse shell [3] applied to an IoT Gateway are described.

2 IoT Viruses, Malware and Exploits Proof of Concept

2.1 Architecture of the Shell Code

In Fig. 2 there is the architecture for the proof-of-concept solution. The architecture
contains two development boards (not production ones) such as Raspberry Pi 3 (RPi3)
with ARM32 bits and Raspberry Pi 4 (RPi4) with ARM64 bits, both with SoC – System
on Chip Raspbian Embedded Linux OS. In this section there are presented entirely only
the reverse shell on ARM 32 bits. In the bottom of Fig. 2 there are both types of the
malware attacks where RPi4 board is the hacker development board and RPi3 is the
target board for the hacker:

• Direct Shell – In this scenario, the hacker is poisoning with a malware application
via trojan message/download the target board. The malware app is opening TCP port
4444 on the target board and is accepting socket connections FROM the hacker in
order to expose SSH access.

Viruses, Exploits, Malware and Security Issues on IoT Devices 329

• Reverse Shell – In this scenario, the hacker is poisoning with a malware application
via trojan message/download the target board. The malware app is opening whatever
TCP available port on the target board and is connecting via socket connections TO
the hacker board (to a configurable TCP port, but here there is chosen 4444), in order
to expose SSH access.

Fig. 2. Architecture for the PoC of IoT Viruses, Malware and Exploits

In terms of Linux C source code the malware app is doing something very simple.
It is connecting to a hardcoded IP address (192.168.1.101) and TCP port (4444) of the
hacker OS, please see Fig. 3.

After the socket connection the malware app is doing a copy of the file descriptor
for 0 – stdin (standard input), 1 – stdout (standard output) and 2 – stderr (standard error)
using system call “dup2” to be handled by the socket connection. The “dup” and “dup2”
system calls create a copy of a file descriptor and if the copy is created without any
error, then both file descriptors (original and copy) will be used interchangeably. Once
the malware application is running on the target machine, the hacker may use “netcat”
embedded Linux command (e.g. “nc -lvvp 4444”) in order to send SSH commands and
gain root access to the target machine.

330 C. Toma et al.

Fig. 3. Simplified C source code for Linux malware application

In order to not be so easy detected by an antivirus application, the hacker may do two
steps: first is to translate the C language program in ARM32 bits assembly and second
is to encapsulate the machine code of the ARM32 bits assembly into another C program
which acts like a trojan – doing something useful for the target board but launching the
malware dynamically for passing the antivirus scan in embedded Linux.

3 Malware Reverse Shell Code Translation to ARM 32 Bits
Assembly

In Fig. 4 and Table 2 is a sample about the translation fromC language malware program
into ARM bits assembly.

Fig. 4. Simplified C source code for Linux malware application

Viruses, Exploits, Malware and Security Issues on IoT Devices 331

In order to obtain the values from the Table 2 a Linux command on the IoT gateway
target board which is running Linux embedded OS should be performed.

– e.g. ‘grep -R “AF_INET\|PF_INET \|SOCK_STREAM = \|IPPROTO_IP =
”/usr/include/ ’.This command will display all the constants from C language headers
files which are part of the embedded Linux OS.

Table 2. Table for the parameters values of the functions in ARM registers

Function R7 R0 R1 R2

Socket 281 2 1 0

Connect 283 sockid (struct sockaddr*) &addr 16

Dup2 63 sockid 0 / 1 / 2 –

Execve 11 “/bin/sh” 0 0

Therefore the hacker will be able to translate the entire C language mal-
ware app into ARM 32 bits assembly as into the author GitHub example [2]
(direct link: https://github.com/critoma/armasmiot/blob/master/labs/workspacearmass
embly/arm32/p11_shellcode_syscalls_sock/bind_shell.s). On the embedded Linux OS
the hacker would be able to translate the machine code of the ARM assembly into an
array of chars in order to be encapsulated into a the trojan C language app, by using
several Linux commands such as (Fig. 5):

$ as reverse_shell.s -o out/reverse_shell.o
$ ld -N out/reverse_shell.o -o out/reverse_shell.elf32
$./out/reverse_shell.elf32
$ objcopy -O binary out/reverse_shell.elf32 out/reverse_shell.bin
$ hexdump -v -e '"0""x" 1/1 "%02x, " ""' out/reverse_shell.bin
0x01, 0x30, 0x8f, 0xe2, 0x13, 0xff, 0x2f, …

Fig. 5. Embedded Linux OS commands for translating the malware machine code into an array
of chars

The reverse_shell.s is thefilewhich contains the source code of theARM32assembly
and the reverese_shell.bin is the file which contains the hex values of the machine code
resulted after link-editing phase of the reverse shellmalware application. In Fig. 4 there is
an example where the reverse shell malware application’s machine code is encapsulated
into an array of chars with name “code”:

In the next sections there are presented the conclusions and way of propagation of
the trojan which is encapsulating the malware as a virus. This PoC – Proof of Concept
on the “black hat” approach should trigger an antivirus enhancement on the “white hat”
approach for IoT Gateways which run Embedded Linux OS on ARM controllers.

https://github.com/critoma/armasmiot/blob/master/labs/workspacearmassembly/arm32/p11_shellcode_syscalls_sock/bind_shell.s

332 C. Toma et al.

Fig. 6. Simplified C source code for Linux trojan which includes the malware application as
machine code for stealth propagation within embedded Linux OS running on the IoT Gateway.

4 Conclusions

4.1 Trojan Propagation as Virus

As stated, before the trojan from Fig. 6 which contains the reverse shell malware as
machine code into the chars’ array may have a propagation mechanism encapsulated
within a virus. The virus offers the ability of the replication for the trojan within the
embedded Linux OS of the IoT device according with Fig. 7.

Fig. 7. Virus propagation methods

According with Fig. 7 a virus may parasite the hosts native applications within the
embedded Linux OS in the beginning or in the end of the hosts machine code. Also,
the virus may be companion to the machine code of the hosts. In both approaches the
trojan will infect with its own malware machine code a lot of executables within the

Viruses, Exploits, Malware and Security Issues on IoT Devices 333

IoT Devices. In Fig. 8 is presented the main structure of a virus and what routines are
mandatory and what are optional:

Fig. 8. Virus mandatory and optional routines

According with Fig. 8 the virus must find new ELF executable files within the IoT
gateway file system. Also mandatory is to infect and spread the malware machine code
via infection. As optional routines is to have some processing actions (e.g. storage
encryption for ransomware) and to have a polymorphic code for anti-detection routine
against the antiviruses scans.

5 Future Work and Antivirus Development for IoT Gateways

The antivirus program should be aware about this approach and the authors did some tests
in the end of year 2021 and beginning of year 2022with various antivirus programs.Most
of the anti-viruses, commercial and open-sources ones for Raspbian Embedded Linux
OS on Raspberry Pi development board where not able to detect the malware, trojan
and the virus. The authors intend to further enhance modules of an existing opensource
antivirus such as ClamAV [21] or similar, in order to enhance the security of the IoT
gateways/devices.

References

1. Kleymenov, A., Thabet, A.: Mastering Malware Analysis: The Complete Malware Ana-
lyst’s Guide to Combating Malicious Software, APT, Cybercrime, and IoT Attacks. Packt
Publishing, Birmingham (2019), ISBN-13: 978-1789610789, ISBN-10: 1789610788

2. GitHubResources for the paper andARMAssembly published by authors. https://github.com/
critoma/armasmiot/tree/master/labs/workspacearmassembly/arm32. Accessed 11 Nov 2021

3. AzeriaLabsExploits forARM–Shellcode andReverseShellcode. https://azeria-labs.com/wri
ting-arm-shellcode/, https://azeria-labs.com/tcp-bind-shell-in-assembly-arm-32-bit/, https://
azeria-labs.com/tcp-reverse-shell-in-assembly-arm-32-bit/. Accessed 11 Nov 2021

https://github.com/critoma/armasmiot/tree/master/labs/workspacearmassembly/arm32
https://azeria-labs.com/writing-arm-shellcode/
https://azeria-labs.com/tcp-bind-shell-in-assembly-arm-32-bit/
https://azeria-labs.com/tcp-reverse-shell-in-assembly-arm-32-bit/

334 C. Toma et al.

4. Eurosmart IoT Study Report - Internet of Trust S.A.S. (IOTR) – TÜV Information-
stechnik GmbH (TÜViT), A Cartography of Security Certification Schemes/Standards for
IOT. https://www.eurosmart.com/wp-content/uploads/2020/02/2020-01-27-Eurosmart_IoT_
Study_Report-v1.2.pdf. Accessed 11 Nov 2021

5. Resources for BSZ. https://www.bsi.bund.de/EN/Topics/Certification/product_certificat
ion/Accelerated_Security_Certification/Accelerated-Security-Certification_node.html.
Accessed 11 Nov 2021

6. Resources for CSPN. https://www.ssi.gouv.fr/administration/produits-certifies/cspn/.
Accessed 11 Nov 2021

7. Resources for e-IoT-SCS. https://www.eurosmart.com/eurosmart-iot-certification-scheme/.
Accessed 11 Nov 2021

8. Resources for ETSI TS 103 645. https://www.etsi.org/deliver/etsi_ts/103600_103699/103
645/01.01.01_60/ts_103645v010101p.pdf, https://www.etsi.org/deliver/etsi_en/303600_303
699/303645/02.01.01_60/en_303645v020101p.pdf. Accessed 11 Nov 2021

9. Resources for GP TEE. https://globalplatform.org/certifications/security-certification/,
https://globalplatform.org/wp-content/uploads/2021/01/GP_TEECertificationProcess_v2.
0_PublicRelease.pdf. Accessed 11 Nov 2021

10. Resources for GP SE. https://globalplatform.org/certifications/security-certification/, https://
globalplatform.org/wp-content/uploads/2021/02/GP_SE_CertificationProcess_v2.0_Publ
icRelease.pdf. Accessed 11 Nov 2021

11. Resources for GSMA IoT SA. https://www.gsma.com/iot/iot-security-assessment/, https://
www.gsma.com/iot/wp-content/uploads/2020/05/CLP.11-v2.2-GSMA-IoT-Security-Gui
delines-Overview-Document.pdf, https://www.gsma.com/iot/wp-content/uploads/2020/05/
GSMA-IoT-Security-Assessment.zip. Accessed 11 Nov 2021

12. Resources for IoTSCF. https://www.iotsecurityfoundation.org/wp-content/uploads/2021/11/
IoTSF-IoT-Security-Assurance-Framework-Release-3.0-Nov-2021-1.pdf. Accessed 11 Nov
2021

13. Resources for IEC 62443. www.iecee.org for IECEE CB schemes. https://iq.ulprospector.
com/info/ for UL schemes. https://isasecure.org/en-US/ for ISA Secure schemes. Accessed
11 Nov 2021

14. Resources for PSA Level 1. https://www.psacertified.org/, https://www.psacertified.org/app/
uploads/2019/02/PSA_Certified_Level_1_Step-by-Step_Guide_v1.5.pdf. Accessed 11 Nov
2021

15. Resources for PSA Level 2. https://www.psacertified.org/, https://www.psacertified.org/app/
uploads/2020/07/JSADEN011-PSA_Certified_Level_2_Step-by-Step-1.1-20200403.pdf.
Accessed 11 Nov 2021

16. Resources for SESIP. https://globalplatform.org/wp-content/uploads/2020/03/GP_SESIP_
v1.0_PublicRelease.pdf. Accessed 11 Nov 2021

17. Resources for SOG-IS. https://www.sogis.eu/, https://www.commoncriteriaportal.org/cc/.
Accessed 11 Nov 2021

18. Resources for UL IoT Security Rating. https://ims.ul.com/iot-security-rating, https://
www.shopulstandards.com/ProductDetail.aspx?UniqueKey=35953, https://verify.ul.com.
Accessed 11 Nov 2021

19. Resources for UL 2900. https://www.ul.com/offerings/cybersecurity-assurance-and-com
pliance, https://www.shopulstandards.com/Catalog.aspx, https://iq.ulprospector.com/info/.
Accessed 11 Nov 2021

20. Hanes, D., Salgueiro, G., Grossetete, P., Barton, R., Henry, J.: IoT Fundamentals: Networking
Technologies, Protocols, and Use Cases for the Internet of Things, Cisco Press, Indianapolis
(2017). ISBN-10: 1-58714-456-5, ISBN-13: 978-1-58714-456-1

21. OpensourceCalmAVAntivirus for Embedded LinuxOS. https://www.clamav.net/downloads,
https://github.com/Cisco-Talos/clamav

https://www.eurosmart.com/wp-content/uploads/2020/02/2020-01-27-Eurosmart_IoT_Study_Report-v1.2.pdf
https://www.bsi.bund.de/EN/Topics/Certification/product_certification/Accelerated_Security_Certification/Accelerated-Security-Certification_node.html
https://www.ssi.gouv.fr/administration/produits-certifies/cspn/
https://www.eurosmart.com/eurosmart-iot-certification-scheme/
https://www.etsi.org/deliver/etsi_ts/103600_103699/103645/01.01.01_60/ts_103645v010101p.pdf
https://www.etsi.org/deliver/etsi_en/303600_303699/303645/02.01.01_60/en_303645v020101p.pdf
https://globalplatform.org/certifications/security-certification/
https://globalplatform.org/wp-content/uploads/2021/01/GP_TEECertificationProcess_v2.0_PublicRelease.pdf
https://globalplatform.org/certifications/security-certification/
https://globalplatform.org/wp-content/uploads/2021/02/GP_SE_CertificationProcess_v2.0_PublicRelease.pdf
https://www.gsma.com/iot/iot-security-assessment/
https://www.gsma.com/iot/wp-content/uploads/2020/05/CLP.11-v2.2-GSMA-IoT-Security-Guidelines-Overview-Document.pdf
https://www.gsma.com/iot/wp-content/uploads/2020/05/GSMA-IoT-Security-Assessment.zip
https://www.iotsecurityfoundation.org/wp-content/uploads/2021/11/IoTSF-IoT-Security-Assurance-Framework-Release-3.0-Nov-2021-1.pdf
http://www.iecee.org
https://iq.ulprospector.com/info/
https://isasecure.org/en-US/
https://www.psacertified.org/
https://www.psacertified.org/app/uploads/2019/02/PSA_Certified_Level_1_Step-by-Step_Guide_v1.5.pdf
https://www.psacertified.org/
https://www.psacertified.org/app/uploads/2020/07/JSADEN011-PSA_Certified_Level_2_Step-by-Step-1.1-20200403.pdf
https://globalplatform.org/wp-content/uploads/2020/03/GP_SESIP_v1.0_PublicRelease.pdf
https://www.sogis.eu/
https://www.commoncriteriaportal.org/cc/.
https://ims.ul.com/iot-security-rating
https://www.shopulstandards.com/ProductDetail.aspx?UniqueKey=35953
https://verify.ul.com
https://www.ul.com/offerings/cybersecurity-assurance-and-compliance
https://www.shopulstandards.com/Catalog.aspx
https://iq.ulprospector.com/info/
https://www.clamav.net/downloads
https://github.com/Cisco-Talos/clamav

Author Index

Adhikary, Natasha 46
Adnan, Md. Akhtaruzzaman 46

Bellini, Emanuele 100
Boche, Simon 1
Boja, Cătălin 324
Brisse, Romain 1

Cardoso dos Santos, Luan 70
Cenk, Murat 125
Chen, Yu 32
Ciurea, Cristian 324
Crăciun, Vlad Constantin 308

Doinea, Mihai 324
Duan, Li 190, 210

Franck, Christian 86

Großschädl, Johann 70, 86
Guşatu, Marian 286

Habib, Ahsan 46
Hambitzer, Anna 100
Haque, Rakib Ul 46
Hussain, Mehdi 57

Kawser, Md. Harun Al 46
Kelesidis, Evgnosia-Alexandra 145

Lalande, Jean-Francois 1
Li, Bohan 178
Li, Yong 190, 210
Liao, Lijun 190, 210
Lin, Dongdai 178

Liu, Yang 32
Lu, Xiaojuan 178

Maimuţ, Diana 260
Majorczyk, Frédéric 1
Malik, Abdul Saboor 57
Mina, Mihai-Zicu 228
Mogage, Andrei-Cătălin 308

Neupane, Kashi 296

Olimid, Ruxandra F. 286

Popa, Marius 324
Protopapa, Matteo 100

Rossi, Matteo 100
Ruangwises, Suthee 165

Shahzad, Muhammad Khuram 57
Simion, Emil 228
Singh, Divyanshu N. 18
Singh, Narendra 18

Teşeleanu, George 248, 260
Toma, Cristian 324
Tripathy, Somanath 18

Wang, Shichang 178

Yeniaras, Esra 125
Younus, Atika 46

Zentai, Daniel 156
Zhang, Xiaona 32

	 Preface
	 Organization
	 Contents
	KRAKEN: A Knowledge-Based Recommender System for Analysts, to Kick Exploration up a Notch
	1 Introduction
	2 Related Work
	3 Visualising and Investigating
	3.1 Log Investigation
	3.2 ZeroKit
	3.3 Recommendation

	4 Recommender System
	4.1 Recommendation Process
	4.2 Recommendation Triggers
	4.3 Knowledge Base
	4.4 Decision-Making

	5 Evaluation
	5.1 Datasets
	5.2 Experimental Setup
	5.3 User Feedback
	5.4 Recommendation Relevance
	5.5 Providing Assistance to Investigations

	6 Conclusion
	References

	ADAM: Automatic Detection of Android Malware
	1 Introduction
	2 Related Works
	3 ADAM: The Proposed Android Malware Detection
	3.1 Dataset
	3.2 Feature-Set Extraction
	3.3 MRMR-Based Feature Selection
	3.4 Training the Model

	4 Performance Analysis
	4.1 Discussion
	4.2 Model Deployment

	5 Conclusion
	References

	Attack on the Common Prime Version of Murru and Saettone's RSA Cryptosystem
	1 Introduction
	1.1 Background
	1.2 Our Contributions
	1.3 Organization of the Paper

	2 Preliminaries
	2.1 Murru and Saettone's RSA Cryptosystem
	2.2 Lattice
	2.3 Finding Small Roots

	3 Attack on the Common Prime Variant of Murru and Saettone's RSA Cryptosystem
	4 Extended Attack on the Common Prime Variant of Murru and Saettone's RSA Cryptosystem
	5 Experimental Results
	6 Conclusion
	References

	Identification of Data Breaches from Public Forums
	1 Introduction
	2 Related Work
	2.1 Novelty of this Paper

	3 Preliminaries
	3.1 Global Vectors for Word Representation
	3.2 TF-IDF Vectorizer

	4 System Model and Model Construction
	5 Experimental Setup and Performance Evaluation
	5.1 Datasets
	5.2 Testbed
	5.3 Score Evaluation Metric
	5.4 Performance Evaluation

	6 Conclusion
	References

	A Forensic Framework for Webmail Threat Detection Using Log Analysis
	1 Introduction
	2 Literature Review
	2.1 Webmail Challenge: Malicious Insider
	2.2 Assumptions

	3 Proposed Framework
	3.1 Start Web Browsing Activity
	3.2 Memory Capture
	3.3 Evidence Extraction
	3.4 Logging
	3.5 Logging Tool Workflow

	4 Evaluation and Results
	4.1 Experimental Setup
	4.2 Results and Performance
	4.3 Performance Evaluation and Results

	5 Benefits of the Proposed Scheme
	6 Conclusion
	7 Limitations and Future Work
	References

	An Evaluation of the Multi-platform Efficiency of Lightweight Cryptographic Permutations
	1 Introduction
	2 Overview of the Permutations
	3 Implementation and Evaluation
	4 Experimental Results
	5 Conclusions
	References

	Optimized Implementation of SHA-512 for 16-Bit MSP430 Microcontrollers
	1 Introduction
	2 SHA-512
	2.1 Preprocessing
	2.2 Hash Computation

	3 Implementation and Optimization for MSP430
	4 Experimental Results
	5 Concluding Remarks
	A Optimized Rotation of 64-Bit Words
	References

	Limitations of the Use of Neural Networks in Black Box Cryptanalysis
	1 Introduction
	2 Preliminaries
	2.1 Neural Networks
	2.2 Boolean Functions and Block Ciphers

	3 On the Hardness of Emulating Boolean Functions
	3.1 Related Work
	3.2 Block Ciphers and Permutations
	3.3 Emulating the Behaviour of a Boolean Function
	3.4 Noisy Bits

	4 Analysis of Previous Results
	5 Emulating Boolean Functions Using Neural Networks
	5.1 Experimental Results When Varying Number of Samples and Neurons

	6 Emulating AES Using Neural Networks
	6.1 AES Specifications
	6.2 AES Emulation

	7 Conclusion
	A Preliminaries on Boolean Functions
	B Neural Networks in Black Box Cryptanalysis: Previous Results
	B.1 Cipher Identification
	B.2 Cipher Emulation
	B.3 Key Recovery Attacks
	B.4 Key-Schedule Inversion

	C A Tiny Example
	D Emulating Boolean Functions with Different Cryptographic Properties
	References

	Improved Polynomial Multiplication Algorithms over Characteristic Three Fields and Applications to NTRU Prime
	1 Introduction
	2 Notation and Preliminaries
	3 A New 4-Way Multiplication Method (N3)
	4 Unbalanced Split 5-Way Polynomial Multiplication Method (U1)
	5 Application of the New Algorithms to NTRU Prime Decapsulation and the Implementation Results
	5.1 B1-Hybrid1 Multiplication Method for n = 653
	5.2 B1-Hybrid2 Multiplication Method for n = 761
	5.3 U1-Hybrid1 Multiplication Method for n = 653
	5.4 U1-Hybrid2 Multiplication Method for n = 761

	6 Conclusion
	A NTRU Prime Decapsulation and the Flowcharts of the New Hybrid Methods: U1-Hybrid1 and U1-Hybrid2
	B Tables
	References

	An Optimization of Bleichenbacher's Oracle Padding Attack
	1 Introduction
	2 Preliminaries
	2.1 The PKCS #1 v1.5 and PKCS #11 Standards
	2.2 Padding Oracles
	2.3 Bleichenbacher's Attack
	2.4 Performance Analysis Depending on the Oracle Type

	3 Already Known Improvements
	4 Our Proposed Improvement
	4.1 Description of the Attack
	4.2 Analysis of the Attack

	5 Implementation Results
	6 Conclusions and Future Work
	References

	UC Analysis of the Randomized McEliece Cryptosystem
	1 Introduction
	2 The Universal Composability Framework
	3 Coding Theory Background
	4 The McEliece Cryptosystem
	5 Main Result
	References

	Using Five Cards to Encode Each Integer in Z/6Z
	1 Introduction
	1.1 Protocols of Boolean Functions
	1.2 Protocols of Non-boolean Functions
	1.3 Our Contribution

	2 Preliminaries
	2.1 Sequence of Cards
	2.2 Matrix
	2.3 Pile-Shifting Shuffle

	3 Encoding Scheme of Shinagawa et al.
	3.1 Copy Protocol
	3.2 Addition Protocol
	3.3 Multiplication Protocol

	4 Encoding Scheme of Nishida et al.
	4.1 Copy Protocol
	4.2 Addition Protocol
	4.3 Multiplication Protocol

	5 Our Encoding Scheme
	5.1 Copy Protocol
	5.2 Addition Protocol
	5.3 Multiplication Protocol

	6 Encoding Integers in Other Congruent Classes
	7 Future Work
	References

	Conditional Differential Cryptanalysis on Bagua
	1 Introduction
	1.1 Our Contributions

	2 Preliminaries
	2.1 A Brief Description of Bagua
	2.2 Framework of CDC

	3 CDC on Bagua
	3.1 Input Difference Choosing Strategy
	3.2 Analysis of 182-Round Bagua
	3.3 Analysis of 204-Round Bagua

	4 Conclusion
	References

	Perfect Anonymous Authentication and Secure Communication in Internet-of-Things
	1 Introduction
	1.1 Case Study: Offline Finding and Privacy

	2 Contribution and Paper Structure
	3 Related Work
	4 Notation and Preliminaries
	4.1 Notation
	4.2 Cryptographic Primitives
	4.3 Ring Signatures

	5 New AAKE Protocols
	6 AAKE Protocols and Security Model
	6.1 Security Model
	6.2 Security and Anonymity of New AAKE

	7 Performance Evaluation
	8 Conclusion and Future Work
	A AAKE Protocol and Security Model
	A.1 Security Model

	B Proof of Theorems
	References

	Flexible Group Non-interactive Key Exchange in the Standard Model
	1 Introduction
	1.1 Scalable and Flexible Key Exchange
	1.2 Group Non-interactive Key Exchange With and Without iO
	1.3 Our Contribution and the Outline of the Paper
	1.4 Other Related Works

	2 Preliminaries
	2.1 Chameleon Hash Functions
	2.2 Multilinear Maps
	2.3 The n-Exponent Multilinear Decision Diffie-Hellman Assumption

	3 Group Non-interactive Key Exchange and Security Models
	3.1 Group Non-interactive Key Exchange
	3.2 Security Models for GNIKE

	4 A Flexible GNIKE Protocol from Multilinear Maps
	4.1 Protocol Description
	4.2 Security Analysis

	5 Proof of Theorem 1
	6 Conclusion and Future Works
	A Intractability Analysis of n-Exponent Multilinear Diffie-Hellman Assumption
	B Cases in Game 2 in the Proof of Theorem 1
	References

	A Multifunctional Modular Implementation of Grover's Algorithm
	1 Introduction
	2 Discussion of Grover's Algorithm
	2.1 An Inductive Approach
	2.2 A More Accurate Approach

	3 Qiskit Implementation: Examples and Analysis
	3.1 Simulation
	3.2 Execution on Real Devices

	4 Conclusion
	A Qiskit Source Code
	References

	Lightweight Swarm Authentication
	1 Introduction
	2 Preliminaries
	2.1 Hardness Assumptions
	2.2 Zero-Knowledge Protocols
	2.3 A Distributed Unified Protocol

	3 Computational Diffie-Hellman Swarm Protocol
	3.1 Description
	3.2 Security Analysis
	3.3 Complexity Analysis
	3.4 Hash Based Variant

	4 Conclusions
	A Computational Bilinear Diffie-Hellman Swarm Protocol
	References

	New Configurations of Grain Ciphers: Security Against Slide Attacks
	1 Introduction
	2 Preliminaries
	2.1 Grain Family

	3 Generic Grain Attacks
	4 Proposed Ideas
	4.1 Compact Padding
	4.2 Fragmented Padding

	5 Conclusion
	A Grain V1
	B Grain-128
	C Grain-128a
	D Examples
	E Propagation of Single Bit Differentials
	F Algorithms
	References

	Improved Security Solutions for DDoS Mitigation in 5G Multi-access Edge Computing
	1 Introduction
	2 Background
	2.1 MEC Architecture
	2.2 Network Flow Analysis and Deep Packet Inspection
	2.3 Anomaly Detection System in 5G MEC

	3 Improved Solutions
	3.1 Concernes and Solutions
	3.2 Architectural Proposals

	4 The Orchestration Process
	5 Conclusions
	References

	Long-Term Secure Asymmetric Group Key Agreement
	1 Introduction
	2 Preliminaries
	2.1 Bilinear Maps and the Bilinear Diffie Hellman Assumption
	2.2 Digital Signature Scheme
	2.3 Symmetric Encryption Scheme and Real-or-Random Indistinguishability

	3 Security Model
	4 The Proposed Group Key Establishment Protocol
	4.1 Description of the Protocol
	4.2 Security Analysis

	5 Conclusion
	References

	Building Deobfuscated Applications from Polymorphic Binaries
	1 Introduction
	1.1 Main Obfuscation Types
	1.2 Contribution
	1.3 Paper Structure

	2 A Formal Description of Mid-level Deobfuscation
	2.1 Problem Description
	2.2 Finding a Candidate for the deobf Function
	2.3 Building cfg(Mj)
	2.4 Identification of the Stable State

	3 Implementation and Evaluation
	3.1 Implementation
	3.2 Evaluation

	4 Related Work
	5 Conclusions
	5.1 Future Work

	References

	Viruses, Exploits, Malware and Security Issues on IoT Devices
	1 Introduction – IoT Certification Schemes
	2 IoT Viruses, Malware and Exploits Proof of Concept
	2.1 Architecture of the Shell Code

	3 Malware Reverse Shell Code Translation to ARM 32 Bits Assembly
	4 Conclusions
	4.1 Trojan Propagation as Virus

	5 Future Work and Antivirus Development for IoT Gateways
	References

	Author Index

