
A Random Oracle for All of Us

Marc Fischlin, Felix Rohrbach(B), and Tobias Schmalz

Cryptoplexity, Technische Universität Darmstadt, Darmstadt, Germany
{marc.fischlin,felix.rohrbach,tobias.schmalz}@cryptoplexity.de

https://www.cryptoplexity.de

Abstract. We introduce the notion of a universal random oracle. Anal-
ogously to a classical random oracle it idealizes hash functions as random
functions. However, as opposed to a classical random oracle which is cre-
ated freshly and independently for each adversary, the universal random
oracle should provide security of a cryptographic protocol against all
adversaries simultaneously. This should even hold if the adversary now
depends on the random function. This reflects better the idea that the
strong hash functions like SHA-2 and SHA-3 are fixed before the adver-
sary decides upon the attack strategy.

Besides formalizing the notion of the universal random oracle model
we show that the model is asymptotically equivalent to Unruh’s
auxiliary-input random oracle model (Crypto 2007). In Unruh’s model
the adversary receives some inefficiently computed information about the
random oracle as extra input. Noteworthy, while security in the univer-
sal random oracle model implies security in the auxiliary-input random
oracle model tightly, the converse implication introduces an inevitable
security loss. This implies that the universal random oracle model pro-
vides stronger guarantees in terms of concrete security. Validating the
model we finally show, via a direct proof with concrete security, that a
universal random oracle is one-way.

1 Introduction

The random oracle methodology [2,11] has turned out to be a useful tool to
design cryptographic protocols with practical efficiency, while allowing security
proofs if one assumes that the hash function behaves ideally. That is, in the
security proof one assumes that the involved hash function acts optimally like a
random function. The underlying assumption is that, if one later uses a strong
hash function like SHA-2 or SHA-3 in practice, then any attack against the
protocol must be due to unexpected weakness in the hash function. While the
soundness of this approach has been disputed, e.g., [1,7,14,17], we have not yet
experienced practical schemes showing such weaknesses (i.e., without incorpo-
rating an obvious structural shortcoming in this regard).

1.1 The Universal Random Oracle Model

Security in the random oracle model considers executions where the random
oracle is chosen when the attack starts, independently of the adversary and its
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
L. Batina and J. Daemen (Eds.): AFRICACRYPT 2022, LNCS 13503, pp. 469–489, 2022.
https://doi.org/10.1007/978-3-031-17433-9_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-17433-9_20&domain=pdf
https://doi.org/10.1007/978-3-031-17433-9_20

470 M. Fischlin et al.

strategy. If one goes back to the original idea of later plugging in SHA-2 or SHA-
3, however, the order compared to practical settings is in fact reversed: These
hash functions have been designed first and are already available, such that the
adversary may actually take advantage of this a-priori knowledge in the attack.
In contrast, common security games first fix the adversary and then initialize
the random oracle.

At first it seems as if the idea of making the adversary depend on the random
oracle would refute the idea of eliminating the presence of any structural weak-
ness of the hash function. But recall that we still consider the random oracle to
be a random function, only that the adversary may now depend on this random
function. In a sense, the adversary still cannot exploit functional properties of
the hash functions, but it may take into account that the actual hash function
in the protocol is fixed before the protocol is attacked, or even designed. We call
this a universal random oracle, because the same random oracle should work
against all adversaries.

On a technical level the difference between the two approaches, the classi-
cal random oracle model and the universal one, becomes apparent through the
usage of the Borel-Cantelli lemma, as done for example in the famous work by
Impagliazzo and Rudich [16]. The Borel-Cantelli lemma allows to reverse the
order of quantifiers in the sense that if for any adversary the probability of an
attack for a random oracle is negligible, then there exists an oracle which works
against all adversaries. In fact, a random oracle will work almost surely against
all adversaries.

Hence, while one could use in principle the Borel-Cantelli lemma to switch
from the random oracle model to the universal one, the lemma comes with two
disadvantages. First, the final step in the argument, namely that a random func-
tion works against all adversaries, only works against the countable class of uni-
form adversaries (unless one makes further restrictions on the security reduction
itself [3,4]), and thus excludes non-uniform adversaries. The second disadvantage
is that the asymptotic statement of the Borel-Cantelli lemma infringes with the
notion of concrete security. But the latter is important for schemes aiming at
practicality. Hence, using the Borell-Cantelli lemma in principle indeed allows
to go from classical random oracles to universal ones, but comes at a price.

1.2 Defining Universal Random Oracles

Defining the universal random oracle model (UROM) is more challenging than
one would envision. A straightforward approach would be to demand that for a
random oracle O no adversary A can win the corresponding security experiment
Game (with more than negligible probability ε in the security parameter λ):

PO
[
∀A ∃ε ∈ negl ∀λ : PGame

[
GameAO,O(λ)

]
≤ ε(λ)

]
= 1.

However, as we argue this definition appears to be too liberal: We provide an
experiment which was secure in this version of the UROM, although the exper-
iment is both intuitively insecure and also provably breakable in the ordinary

A Random Oracle for All of Us 471

random oracle model. This would violate our intuition that the UROM provides
stronger security guarantees than the ordinary ROM.

The above mismatch also motivates our actual definition of the UROM. As
in the random oracle model we aim for security for a given security parameter,
such that the quantification over λ appears outside of the probability over the
random oracle:

∀s ∈ poly ∃ε ∈ negl ∀λ :

PO
[
∀A ∈ SIZE (s(λ)) : PGame

[
GameA,O(λ)

]
≤ ε(λ)

]
≥ 1 − ε(λ).

To let the adversary A depend on the random oracle we quantify over all
adversaries in the probability for O, and only use a size bound s(λ) on the
outside. We give more details about this choice within. Another justification for
the correctness of our approach is by relating this model to existing definitions,
especially to the auxiliary-input random oracle model.

1.3 Relationship to Auxiliary-Input Random Oracles

Unruh [19] defined the auxiliary-input random oracle model (AI-ROM) as an
extension of the classical random oracle model. In this model the adversary A
receives as input some information about the previously sampled random oracle
O, provided by some unbounded algorithm zO with oracle access to the random
oracle. This can, for example, be a collision found in exponential time such that
random oracles are not collision-resistant in this model.

Unruh’s main technical result, called lazy sampling with auxiliary input [19,
Theorem 2], is to relate the statistical distance of outputs for adversaries receiv-
ing auxiliary input zO for random oracle O, to the one when instead having
access to a fresh random oracle (but which is consistent on some fixed values
with the original oracle). He shows that the statistical distance between the two
settings is of order O

(√
ST/P

)
where S is the bit size of auxiliary information,

T is the number or random oracle queries of the adversary, and P is the number
of coordinates to be fixed. The bound was subsequently improved to O (ST/P)
by Coretti et al. [9], matching a lower bound of Dodis et al. [10].

Here we show that the two models, AI-ROM and UROM, are equivalent. That
is, if a game is secure in one model, then it is also secure in the other model.
Remarkably, there is a security degradation when going from AI-ROM to UROM:
If a game is ε-secure in the AI-ROM, then it is “only”

√
ε-secure in the UROM. We

also show that this quadratic loss is inevitable in general. The other direction
holds tightly, i.e., ε-security in the UROM implies ε-security in the AI-ROM. In
this sense, the UROM gives stronger security guarantees for concrete bounds.

Another interesting aspect of UROM is that the separation of the game’s
randomness from the randomness of choosing the random oracle allows for more
freedom in setting the security bounds. The above equivalence of UROM and
AI-ROM holds for negligible bounds for both the game’s and the random oracle’s

472 M. Fischlin et al.

randomness, but the UROM model also allows for notions where the game should
have a negligible success probability for any adversary, with all but exponentially-
small probability in the selection of the random oracle.

1.4 Relationship to Global Random Oracles

Canetti et al. [8], and later Camenisch et al. [5], considered the notion of global
random oracles in the Universal Composability (UC) framework [6]. The starting
point of the global random oracle model is the observation that, even if multiple
components of a cryptographic protocols are proven UC secure in the (standard)
random oracle model, their composition is not necessarily secure if the random
oracle is replaced by the same hash function in all components. The global
random oracle model now says that a single, global random oracle functionality
is available to all parties. A security proof in the model allows for one random
oracle to be used in all components, and therefore also to be replaced with the
same hash function everywhere.

The global random oracle model and the UROM are close in spirit in light of
the idea that the same hash function may be used at several places, but are tech-
nically somewhat orthogonal. The global random oracle model is investigating
cross-effects of hash function deployments between different protocol executions
(but a fresh random oracle instance is chosen when considering an attack on the
composed setting). In contrast, the UROM is concerned with dependencies of
the adversary with respect to the universally available random oracle within an
abstract security game. This abstract security game may be compound of several
protocols but is not cast in a simulation-based setting like the UC framework.

1.5 Proving Security in the UROM

We finally give an example of how to show security in the UROM, by showing
that one-wayness exists in the UROM. Of course, we can immediately transfer
any security result from the AI-ROM via the equivalence, however, this example
lets us use the above mentioned flexibility in choosing our security bounds to
show that one-wayness exists for all but exponentially few (universal) random
oracles.

The proof of one-wayness follows the compression technique of Gennaro and
Trevisan [12]. Similar approaches have also been given for the AI-ROM [9,10];
our goal here is to exercise security arguments in the UROM model. The line
of reasoning is as follows. If there was a successful adversary against the one-
wayness of the UROM, then we can compress the random oracle with the help
of the adversary. The important point here is that the adversary may depend on
the random oracle for this compression, making the approach employable in the
UROM. If the adversary is too successful then we can actually compress beyond
information-theoretic lower bounds. Of course, we state the latter fact in terms
of concrete security in the UROM.

A Random Oracle for All of Us 473

2 Preliminaries

In this section we present the basic notions of negligible functions, security
games, and the (classical) random oracle model, and one-wayness. The notions
of the UROM and AI-ROM are given in the subsequent sections.

2.1 Negligible Functions

We use the standard of notion of negligible function and state some very basic
but useful properties afterwards:

Definition 1 (Negligible Functions). A function ε : N → R is called negli-
gible if for any polynomial p : N → R

+ there exists Λ ∈ N such that

∀λ ≥ Λ : ε(λ) ≤ 1
p(λ)

.

We denote the set of all negligible functions by negl and the set of all functions
which are not negligible by non-negl.

Note that we allow negligible functions ε to be negative at some inputs. When
quantifying over all negligible functions we can restrict ourselves to non-negative
functions by considering the pointwise maximum max{0, ε(λ)}. If and only if ε
is negligible so is this maximum. Analogously, we can always presume ε(λ) ≤ 1
when quantifying over all negligible functions. This follows by considering the
pointwise minimum min{1, ε(λ)}.

When considering definitions we sometimes bound success probabilities for a
sequence of events Eλ (e.g., an adversary winning a security game for parameter
λ), by negligible functions:

∃ε ∈ negl ∀λ ∈ N : P [Eλ] ≤ ε(λ).

Note that we can quantify over all λ since we can change the negligible function
ε at finitely many points. When negating this statement, e.g., when describing
that there exists a successful adversary, we get

∀ε ∈ negl ∃λ ∈ N : P [Eλ] > ε(λ). (1)

This means that for any (negligible) bound we find a security parameter where
the probability of the event, e.g., the adversary winning, exceeds this bound.
When showing our relationship of the UROM to the AI-ROM we use that the
above holds if and only if

∀ε ∈ negl ∃λ ∈ N : P [Eλ] > ε2(λ). (2)

To see this note that we may only consider non-negative functions ε bounded
from above by 1. But then the function δ(λ) :=

√
ε(λ) is well defined and it

holds that δ(λ) ≥ ε(λ) for all security parameters. Furthermore, δ is negligible
if and only if ε is.

474 M. Fischlin et al.

Hence, when quantifying over all negligible functions we can always switch
between ε and δ and get the desired bound. More precisely, assume that state-
ment (1) holds. Take some arbitrary negligible function ε. Our goal is to show
that there exists some λ such that P [Eλ] > ε2(λ). But this follows straightfor-
wardly from the first statement since ε(λ) ≥ ε2(λ). For the converse note that,
if statement (2) holds, then for any given negligible function ε we can consider
the function δ(λ) =

√
ε(λ) in the second statement. By assumption there exists

some λ where the probability exceeds δ2(λ) = ε(λ). This shows that the first
statement holds in this case as well for any negligible function.

2.2 Security Games

We consider abstract security games involving the adversary A and an oracle O.
We denote by GameA,O(λ) the binary outcome of executing the security game.
We often emphasize the dependency of algorithms and functions by using sub-
scripts, e.g., we write AO to denote the fact that the adversary may depend
on oracle O, or εA,O(λ) to indicate that the function ε depends on both the
adversary and the oracle. We use the terms security game and experiment inter-
changeably.

Further, by AO, we denote that the adversary A has oracle-access to O. We
view A as a (family of) circuit(s) that have a special oracle gate, which allows
A to query the oracle. We capture adversaries with an upper bound s(λ) of the
size for non-uniform adversaries resp. run time for uniform adversaries via a set
SIZE (s(λ)). The set of efficient adversaries is given by SIZE (poly).

We write PGame

[
GameAO

O,O(λ)
]

for the probability that adversary A with
access to random oracle O wins in the security game Game. Here, the probability
is over all random choices in the game, including the randomness of the adversary.
The random oracle, however, is fixed at this point and the adversary may depend
on O. The oracle is usually chosen “outside” of the game.

2.3 The Random Oracle Model

A random oracle O is an oracle that gives access to a truly random function. We
assume that for every security parameter λ, oracle O maps inputs from {0, 1}∗

or from {0, 1}≤d(λ) to outputs from {0, 1}λ, where {0, 1}≤d(λ) denotes the set of
strings of bit length at most d(λ). For so-called length-preserving random oracles
the domain for every security parameter λ is simply {0, 1}λ, i.e., inputs are of
length d(λ) = λ exactly. In the classical random oracle model we pick the oracle
O as part of the game. In this case we usually write PGame,O

[
GameAO,O(λ)

]

for the probability of A winning the corresponding game. Note that here now A
usually does not depend on O beyond the oracle access.

With the above notation we can phrase the (classical) random oracle model
as follows.

A Random Oracle for All of Us 475

Definition 2 (ROM). An experiment Game is secure in the ROM iff

∀A ∈ SIZE (poly) ∃ε ∈ negl ∀λ ∈ N : PO,Game

[
GameAO,O(λ)

]
≤ ε(λ).

2.4 One-Wayness in the Random Oracle Model

To define that a random oracle O immediately gives a one-way function we
simply state the security game GameAO,O

OW (λ) as follows. Run AO(1λ,O(x))
for x ←$ {0, 1}λ to obtain a value x∗. Let the game output 1 if and only if
O(x) = O(x∗). If we assume length-preserving random oracles, as in Sect. 5, we
necessarily have x∗ ∈ {0, 1}λ then:

GameA,O
OW (λ)

1: x ←$ {0, 1}λ

2: x∗ ←$ AO(1λ,O(x))
3: return 1 if O(x∗) = O(x) else 0

Note that if we later switch to the UROM, then the one-wayness security game
does not change, only the oracle setting.

3 The Universal Random Oracle Model UROM

A straightforward formalization of the universal ROM may now be to demand
that, with probability 1, a random oracle O is good for all adversaries A. That
is, for each adversary the success probability is negligible for the given random
oracle:

PO

[∀AO ∈ SIZE (poly(λ))
∃εA,O ∈ negl ∀λ ∈ N

: PGame

[
GameAO,O(λ)

]
≤ εA,O(λ)

]
= 1.

The issue with this approach is that it identifies a case which is both intuitively
insecure and also provably insecure in the (plain) random oracle, to be secure in
this version of the UROM, as we discuss in Appendix A.

We next present the, in our view, right definition of the UROM. The essence
from the above failed definitional attempt is that we have to pull out the quan-
tification of the security parameter from the outer probability, and therefore
all preceding quantifiers. But moving out the quantification over all adversaries
would infringe with our idea to make the adversary depend on the random oracle.
To re-install this idea we set a bound on the adversarial success probability and
run time resp. size, and define “good” random oracles for all adversaries within
such bounds:

Definition 3 (UROM). A security game Game is secure in the UROM if

∀s ∈ poly ∃εs ∈ negl ∀λ ∈ N :

PO
[
∀AO ∈ SIZE (s(λ)) : PGame

[
GameAO,O(λ)

]
≤ εs(λ)

]
≥ 1 − εs(λ). (3)

476 M. Fischlin et al.

Note that with the “outer” negligible error function εs we account for “bad”
random oracles, for which the security game may be easy to win, e.g., breaking
one-wayness for the all-zero oracle O. Since we may consider finite domains and
ranges for O for the fixed-size adversaries (for given security parameter λ), such
bad random oracles may have a non-zero probability. The negligible function
expresses that such oracles are very sparse. As the weakness of the random oracle
may depend on the adversarial size, e.g., many hardcoded preimages in the one-
wayness experiment may affect the security, we make the negligible function also
depend on the size s. The “inner” probability then captures that no adversary
(of the given size) can win the security game with high probability, but here the
probability is only over all the random choices of the game and adversary.

Both the inner and outer negligible error terms are based on the same func-
tion. We could have chosen different negligible functions εs (for the inner game
probability) and δs for the outer oracle probability, and quantify over the exis-
tence of such negligible functions (∃εs, δs ∈ negl). But the pointwise maximum,
γs(λ) := max{εs(λ), δs(λ)}, would also be negligible and satisfy the bounds:

– For γs(λ) = δs(λ) ≥ εs(λ) we have

1 − δs(λ) ≤ PO
[
∀AO ∈ SIZE (s(λ)) : PGame

[
GameAO,O(λ)

]
≤ εs(λ)

]

≤ PO
[
∀AO ∈ SIZE (s(λ)) : PGame

[
GameAO,O(λ)

]
≤ δs(λ)

]
.

– For γs(λ) = εs(λ) ≥ δs(λ) we have

PO
[
∀AO ∈ SIZE (s(λ)) : PGame

[
GameAO,O(λ)

]
≤ εs(λ)

]
≥ 1 − δs(λ)

≥ 1 − εs(λ).

It thus suffices to consider a single negligible function.

4 UROM vs. AI-ROM

In this section we show that UROM and AI-ROM are equivalent, although not
tightly related. We first present the AI-ROM and then show both directions of
the equivalence.

4.1 AI-ROM

The auxiliary-input random oracle model AI-ROM [19] allows a preprocessing
through an unbounded oracle algorithm z(·) which on input the security param-
eter outputs a polynomial-size string. This string is then given as auxiliary infor-
mation about the random oracle to the adversary A. Experiments in which the
adversary needs to find a collision in the (unkeyed) random oracle are for exam-
ple insecure in the AI-ROM: The function zO(1λ) exhaustively searches for a
collision x
= x′ of complexity λ and outputs this pair; adversary A simply out-
puts the collision. This is in contrast to security in the regular ROM in which no
efficient A is able to find such a collision with non-negligible probability.

A Random Oracle for All of Us 477

Definition 4 (AI-ROM). An experiment Game is secure in the AI-ROM iff

∀A, z(·) ∃ε ∈ negl ∀λ : PO,Game

[
GameAO(zO),O(λ)

]
≤ ε(λ).

We will now show the equivalence of the two notions. Section 4.2 will show
that AI-ROM implies UROM, and Sect. 4.3 will show the reverse implication.

4.2 AI-ROM Implies UROM

Theorem 1 (AI-ROM⇒UROM). If Game is secure in the AI-ROM then it is
also secure in the UROM.

Proof. Assume an experiment Game is insecure in the UROM, i.e., negating the
security requirement we have

∃s ∈ poly ∀ε ∈ negl ∃λ ∈ N :

PO
[
∀AO ∈ SIZE (s(λ)) : PGame

[
GameAO,O(λ)

]
≤ ε(λ)

]
< 1 − ε(λ).

We will show that the experiment is also insecure in the AI-ROM, by constructing
an adversary pair (AAI, z) against the auxiliary-input setting. First, to get a
better intuition we switch to the complementary event of the outer probability
for our successful attack again the UROM:

∃s ∈ poly ∀ε ∈ negl ∃λ ∈ N :

PO
[
∃AO ∈ SIZE (s(λ)) : PGame

[
GameAO,O(λ)

]
> ε(λ)

]
≥ ε(λ).

This formula now states the fraction of “bad” random oracles O for which there
exists a successful adversary, exceeding the bound ε(λ) for some parameter λ,
cannot be upper bounded by any negligible function ε(λ). We can capture this
set Ω = Ωs,ε,λ of bad random oracles as

Ω :=
{

O
∣∣∣ ∃AO ∈ SIZE (s(λ)) : PGame

[
GameAO,O(λ)

]
> ε(λ)

}

Note that all parameters s, ε, λ are fixed via the quantifiers when defining this
set. This is especially true for the security parameter λ, so the condition is not a
statement over all security parameters. To emphasize this we can also write the
definition of Ω implicitly as

∃s ∈ poly ∀ε ∈ negl ∃λ ∈ N ∀O ∈ Ω ∃AO ∈ SIZE (s(λ)) :

PGame

[
GameAO,O(λ)

]
> ε(λ).

Note that for the fixed values s, ε, λ we have PO [O ∈ Ω] ≥ ε(λ) and therefore

PO,Game

[
GameAO,O(λ)

]
≥ PGame

[
GameAO,O(λ) | O ∈ Ω

]
· PO [O ∈ Ω] > ε2(λ).

478 M. Fischlin et al.

Next we define an inefficient function z
(·)
s that, given any oracle O and secu-

rity parameter λ, outputs (a circuit description of) the adversary AO of size at
most s(λ) with the highest success probability against the game. This adversary
will win the game with probability more than ε(λ) for any oracle in Ω accord-
ing to the definition. Further, we define AAI, which is the universal circuit that
will interpret the circuit returned by zs. Note that the universal circuit AAI has
polynomial size, since the size of AO is bounded by the (fixed) polynomial s(λ)
and the execution of a circuit can be done efficiently. Therefore we can conclude
that there exists a pair (AAI, zs), where AAI is polynomially bounded. This pair
is successful in the given game for any bad oracle from the set Ω:

∃(AAI, z
(·)
s) ∀ε ∈ negl ∃λ ∈ N ∀O ∈ Ω : PGame

[
GameAO

AI
(zO

s),O(λ)
]

> ε(λ).

It remains to show that a similar bound also holds when we go back to picking
O at random from all random oracles instead of the set Ω. To this end we use
our assumption that the probability of an oracle being in Ω is at least ε(λ):

∃(AAI, z
(·)
s) ∀ε ∈ negl ∃λ ∈ N : PO,Game

[
GameAO

AI
(zO

s),O(λ)
]

> ε2(λ).

According to the discussion about negligible functions we can rewrite this as

∃(AAI, z
(·)
s) ∀ε ∈ negl ∃λ ∈ N : PO,Game

[
GameAO

AI
(zO

s),O(λ)
]

> ε(λ).

But this means that the protocol cannot be secure in the AI-ROM. �

In terms of exact security, the derived adversary AAI has roughly the same

running time as A. But its success probability drops from ε(λ) (for A) to ε2(λ).
In general this is inevitable, though. For any k = ω(λ) consider the game
GameA,O(λ) which returns 1 if the leading k bits of O(0λ) are all 0 and if,
in addition, k random coin flips also land all on 0. Then the probability that
any pair (AAI, z) wins in the AI-ROM setting is at most 2−2k. But in the UROM
setting we can set ε(λ) to be 2−k, because for all “good” oracles O with the
leading k bits of O(0λ) being different from 0 no adversary can win the game.

4.3 UROM Implies AI-ROM

Theorem 2 (UROM⇒AI-ROM, tightly). If Game is secure in the UROM
then it is also secure in the AI-ROM.

For the proof we use the so-called splitting lemma [18] which allows to relate
the probability of events over a product space X×Y to the ones when the X-part
is fixed:

Lemma 1 (Splitting Lemma [18]). Let D = DX × DY be some product
distributions over X × Y . Let Z ⊆ X × Y be such that PD [(x, y) ∈ Z] > ε. For
any α < ε call x ∈ X to be α-good if

Py ←$ DY
[(x, y) ∈ Z] > ε − α.

Then we have Px ←$ DX
[x is α-good] ≥ α.

A Random Oracle for All of Us 479

Proof (of Theorem 2). Assume that we have a successful attacker in the AI-ROM:

∃(AAI, z
(·)) ∀ε ∈ negl ∃λ ∈ N : PO,Game

[
GameAO

AI
(zO),O(λ)

]
> ε(λ).

We show that we can build a successful adversary A in the UROM model. We first
apply the splitting lemma (Lemma 1) for fixed AAI, z, ε, λ. We will only consider
such choices which exceed the bound ε(λ). We define the distribution DX as the
choice of a random oracle O, and DY as the randomness in the game (for both
the game and the adversary), as well as Z as the events in which (AAI, z) wins
the game for the random oracle. This happens with probability at least ε(λ) by
assumption. If we now choose α to be 1

2ε then we get that PO [O is α-good] ≥ 1
2ε.

Therefore,

∃(AAI, z) ∀ε ∈ negl ∃λ ∈ N : PO
[
PGame

[
GameAO

AI
(z),O(λ)

]
> 1

2ε
]

≥ 1
2ε

As 1
2ε is negligible iff ε is, and since we quantify over all negligible functions, we

get

∃(AAI, z) ∀ε ∈ negl ∃λ ∈ N : PO
[
PGame

[
GameAO

AI
(zO),O(λ)

]
> ε(λ)

]
≥ ε(λ).

Since AAI is polynomially bounded, and z(·) only returns a polynomial-size string,
we can view AAI as a circuit of polynomial size s(λ). But then we can interpret
the AI-ROM adversary pair as consisting of an oracle-dependent component,
namely the polynomial-size string zO, and a general part AAI. If we hardcode
the string zO we can write this as a single oracle-dependent adversary AO of
polynomial size s(λ). Moving this oracle-dependent algorithm inside the outer
probability we obtain:

∃s(λ) ∈ poly ∀ε ∈ negl ∃λ ∈ N :

PO
[
∃AO ∈ SIZE (s(λ)) : PGame

[
GameAO

O,O(λ)
]

> ε(λ)
]

≥ ε(λ).

This shows that the have a successful adversary against the UROM. �

Remarkably, the reduction here is tight. If we have an adversary AAI and z

against the AI-ROM, then we get a successful adversary A against UROM with
the same running time (as AI-ROM) and, except for a factor 1

2 , the same success
probability. This shows that the AI-ROM and UROM model are qualitatively
equivalent. Yet, quantitatively, a security bound in the AI-ROM may be signifi-
cantly looser than in the UROM (see the discussion after Theorem). This means
that a direct proof in the UROM may yield tighter bounds.

4.4 Advantages of UROM

While AI-ROM and UROM are equivalent as shown in the last two sections, we
argue that UROM has some advantages over AI-ROM, as it provides more flexi-
bility in choosing security bounds. By having separate bounds for the selection

480 M. Fischlin et al.

of the random oracle and the success probability of an adversary in the secu-
rity game, we can for example demand that a game might only be won with
negligible probability, for all but an exponential fraction of random oracles. Or,
conversely, we could show that a game is secure for every second random oracle,
if we can be reasonably sure that we can use one of the good oracles, while in
the AI-ROM, a proof might not be possible at all.

For the former, we will give an example in the next section, showing that
UROM is a one-way function for nearly all oracles.

5 Universal Random Oracles are One-Way Functions

In this chapter, we will show that random oracles exist in the UROM (more
specifically, that the oracle itself is a one-way function). This result serves as an
example how to prove security in the UROM, and how to show that a game is
secure for all but an exponential fraction of random oracles. Our proof will use
the compression technique introduced by Gennaro and Trevisan [12], although
our notation is closer to the argument by Haitner et al. [15].

We note that similar results exist for the AI-ROM [9,10], which shows that
in the AI-ROM, a one-way function exists which no adversary can invert with
probability higher than AT

2λ + T
2λ , where A denotes the size of the non-uniform

advice the adversary gets about the oracle, and T denotes the number of queries
to the oracle. Obviously, their result could be translated to a security bound in
the UROM due to the equivalence of the two notions, but the goal here is to
present a proof that directly works in the UROM.

The idea of the proof is that, if we have a successful adversary against the
random oracle O, then we can use this (specific) adversary to compress the oracle
O into a smaller description, contradicting lower bounds for the description
size of random oracles. The reason that this works in the UROM is that the
compression can of course depend on the random oracle, such that the adversary,
too, can depend on O.

For simplicity reasons, we will assume for this chapter that the random oracle
O is always length-preserving (i.e., d(λ) = λ). Note that the existence of length-
preserving one-way functions is equivalent to the existence of general one-way
functions [13], so this assumption does not influence the result.

We state the result in terms of exact security, using the general UROM app-
roach where we have different probabilities for the inner and outer probability
(for the game hardness resp. for the random oracle):

Theorem 3. Let S be the maximum size of an adversary. Then, a random oracle
model is a one-way function UROM with security bounds 1

P and 2−λ for the inner
and outer probability, under the condition that P · S ≤ 2λ/4 and λ > 55:

PO

[
∃AO ∈ SIZE (S) : Px←{0,1}λ

[
AO

O(1λ,O(x)) ∈ O−1(O(x))
]

>
1
P

]
< 2−λ

The asymptotic version follows as an easy corollary:

A Random Oracle for All of Us 481

Corollary 1. UROM is a one-way function in the UROM model: For every poly-
nomial s(λ) bounding the size of an adversary, there exists a negligible function
εs(λ) such that for all security parameters λ,

PO
[
∃AO ∈ SIZE (s(λ)) : Px←{0,1}λ

[
AO

O(1λ, O(x)) ∈ O−1(O(x))
]

> εs(λ)
]

< 2−λ

Our compression argument will work as follows: Assuming that the random
oracle O in the UROM is not a one-way function, we will show that we can
describe the oracle O with less bits than should be required for a truly random
function. For this we assume that A is deterministic; if it is not, then we can
make it deterministic by hard-coding the best randomness. We also assume that
A needs to output a preimage of size λ and thus only makes queries of this size;
any other queries do not help to find a preimage of λ bits and could be easily
answered randomly by A itself. Both of these assumptions only increase the size
of A at most by a small, constant factor which does not affect our proof.

We give an encoder algorithm which encodes the entire UROM-oracle O using
the successful adversary A, as well as a decoder algorithm which reconstructs O
without access to the oracle itself, using the shorter output of the encoder only.
The code for both algorithms is given in Fig. 1. The encoder starts by defining
the set I of all images y on which AO is able to find some preimage x. Note that,
as AO is deterministic, for given O, we can indeed specify if AO is successful
on some input y or not. Further, the encoder creates two initially empty sets:
Y , which will contain all the y’s for which we reply on AO to recover one of y’s
preimages (and which we therefore do not have to save explicitly); and Z, which
will contain all full pairs (x, y) with O(x) = y. Therefore, Y denotes the set for
which values we actually compress (by not saving the corresponding x-values).

As long as the set I of invertible images still contains values, the encoder
takes the lexicographically smallest value y out of I and adds it to Y . We simply
write min I for this element (line 4). Now, the encoder emulates a run of AO
with y as input and checks for all queries. There are two types of queries we need
to take care of: The first one are hitting queries, i.e., queries to O which return y
(line 8). In this case, however, A has already given us the preimage, therefore, we
abort the simulation at this point. The second type of queries we have to handle
are queries that return values y which are still in I (line 10). To make sure we
have no circular dependencies between these values, we remove these values from
the set I. After the execution of AO finishes and found a preimage x, we add
all further preimages x′
= x of y that AO did not return to Z and continue
(line 14). Finally, after the set I has become empty, we add all preimages of
y /∈ Y (as pairs with the image) to Z (line 16). The encoder eventually returns
the sets Y,Z, plus a description of AO.

The decoder, on input Y , Z and AO, starts by initializing O with all the
preimage-image-pairs in Z (line 1). Now, similar to the encoder, the decoder
goes through all values in Y in lexicographical order and emulates a run of AO
using the partial definition of O. Note that at this point, we already have a
partial description of O that consists of all value-image-pairs we got via Z as
well as all preimages we reconstructed in previous steps. Therefore, for each

482 M. Fischlin et al.

Fig. 1. Encoder and Decoder for UROM-oracle O.

query x, the adversary AO makes to the oracle, we first check if O(x)
= ⊥, i.e.,
if O is already defined on that value (line 6). If this is the case, we just return
the value saved in O. However, if this is not the case, we know that the call to
O is a hitting query. The reason is that the encoder would have recognized this
case and made sure that the value would have been saved in Z (by potentially
removing it from I, see line 11) – except for the case where that query is a hitting
query. Therefore, in this case, we can already abort the simulation with result x
(line 9). If none of the queries is a hitting query and we therefore do not abort,
then we eventually obtain x from the adversary (line 10), since the encoder has
only put y into Y because the adversary is successful for y. Finally the decoder
sets O(x) to y.

Note that the lexicographic order here is rather arbitrary – the important
part is that the encoder always knows exactly which partial information the
decoder will have when it will try to decode a specific y, so any fixed order on
the images is fine.

The decoder will always return the original oracle O when given the informa-
tion the encoder returns. However, we still need to argue that the information
returned by encoder is actually smaller than a straightforward description of O.

Lemma 2. Let AO be a deterministic adversary against the one-wayness of O
of size S ≤ s(λ). Further, let AO be successful on a fraction of 1

P of all input
challenges x ∈ {0, 1}λ. With probability 1−2−λ−1 the encoder algorithm describes
O using at most

A Random Oracle for All of Us 483

2 log
(
2λ

a

)
+ (2λ − a)λ + S

bits, where a is defined as a = 2λ

n2·PS .

Proof. First note that with probability 1 − 2−λ, oracle O will have no y such
that y has more than λ2 preimages. To show this we start with the probability
that a specific y has more than λ2 preimages. For this, we model each of the 2n

inputs x as a random variable Xi such that Xi = 1 iff this x maps to y. Then
the number of preimages is the sum of all Xi, denoted by X. Now, we can use
the Chernoff bound for a binomial distribution B(n, p) to bound the probability
of y having too many preimages:

P [X ≥ (1 + δ)np] ≤
[

eδ

(1 + δ)(1+δ)

]np

.

Using n = 2λ, p = 2−λ and δ = λ2, we get

PO
[|O−1(y)| > λ2

] ≤ eλ2

(1 + λ2)1+λ2 ≤ 2−λ2

for λ ≥ 3. Therefore, the probability that each value y ∈ {0, 1}λ has at most λ2

preimages is

PO
[∀y, |O−1(y)| ≤ λ2

] ≥ 1 − 2λ(2−λ2
) ≥ 1 − 2−λ−1.

Now that we can assume that the number of preimages of all y is bounded
by λ2, we know that I, the set of all y on which A is successful, has at least size
2λ

λ2·P , where 1
P is the success probability of AO. Furthermore, AO makes at most

S queries on any input. Hence, for each y the encoder adds to Y , it removes at
most S values from I. Therefore, Y has at least size 2λ

λ2·PS .
We will now encode Y by giving the positions of the values in Y in {0, 1}λ.

For this we need log
(
2λ

|Y |
)

bits, since we have at most
(
2λ

|Y |
)

such sets of size |Y |.
Similarly, we can encode the corresponding preimages x in {0, 1}λ which the
encoder found for each y ∈ Y with the same amount of bits. Denote this set as X.
Note that these positions of the x’s in X enables a shorter presentation of the set
Z of pairs (x′, y′) with y′ /∈ Y , which the encoder also outputs. Instead of storing
the pairs we only need to go through the values x′ ∈ {0, 1}λ in lexicographic
order, skipping over the values in X, and only store the corresponding values
y′ in this order. This allows us to recover the pairs in Z with the help of the
positions in X, but now we only to store (2λ − |Y |)λ extra bits to represent Z,
plus the log

(
2λ

|Y |
)

bits to encode X. Finally, we need S bits for the description
of AO.

Now, the above size corresponds to the size if the adversary has a success
probability of exactly 1

P and makes exactly S queries for each input. However,
for any sensible parameters, this should yield an upper bound on the size of the

484 M. Fischlin et al.

description for any adversary that makes less queries and is successful on a larger
fraction of images (if this is not the case, we can of course always adjust our en-
and decoder to initialize I with exactly a P -fraction of all ys and always remove
exactly S items from I for every y we add to Y). �

Proof (for Theorem 3). To prove Theorem 3, we have to show that for parameters
S,P and λ,

PO

[
∃AO ∈ SIZE (S) : Px←{0,1}λ

[
AO

O(1λ,O(x)) ∈ O−1(O(x))
]

>
1
P

]
< 2−λ.

Lemma 2 tells us two things: First, that at most a 2−λ−1 fraction of the
oracles O has more than λ2 preimages for some y. Further, we know that for
those oracles with at most λ2 preimages for each value, if AO is successful, we
can encode the oracle using at most

2 log
(
2λ

a

)
+ (2λ − a)λ + S

bits with a = 2λ

λ2·P ·S . Now, however, this means that the number of oracles that
can be encoded in this way is at most

(
2λ

a

)2

· 2(2λ−a)λ · 2S .

Therefore, using P, S ≤ 2λ/4 and λ2PS ≥ 2 one can encode only a fraction of
(
2λ

a

)2
2(2

λ−a)λ2S

2λ2λ <
(e2λ

a)2a 2S

2aλ
=

e2a2λa2S

a2a
=

e2a2S(λ2PS)2a

(2λ)a

= 2S

(
e2λ4P 2S2

2λ

) 2λ

λ2P S

< 2S

(
e2λ4P 2S2

2λ

)2
λ
2

< 2
λ
4

(
e2λ42

λ
2

2λ

)2λ/2

<

(
8λ422

−λ/4
2

λ
2

2λ

)2
λ
2

<

(
8λ42

λ
2 +1

2λ

)2
λ
2

< 2−λ−1 for λ ≥ 55.

of all 2λ2λ

oracles.
In summary, AO can invert either those oracles O that have some y with

more than λ2 preimages (which happens with probability at most 2−λ−1), or
those that can be encoded as above (which is a fraction of 2−λ−1). Note that
both bounds are independent of the choice of S and P . Therefore,the probability
that a random oracle O is invertible with more than probability 1

P is bounded
by 2−λ:

PO

[
∃AO ∈ SIZE (s(λ)) : Px←{0,1}λ

[
AO

O(1λ,O(x)) ∈ O−1(O(x))
]

>
1
P

]

< 2−λ−1 + 2−λ−1 = 2−λ.

This proves the theorem. �

A Random Oracle for All of Us 485

6 Conclusion

In our paper we have presented an alternative approach to define security for ide-
alized hash functions. Whereas the classical random oracle model assumes that
the idealized hash function is specific for each adversary, the UROM model allows
arbitrary dependencies of the adversary on the random oracle. This appears to
be a natural and necessary generalization of the ROM when instantiating the
random oracle with known hash functions like SHA-2 or SHA-3. Our UROM has
been defined in light of this idea.

Once we had carved out our model, we could evaluate it. We thus related our
definition to Unruh’s auxiliary-input random oracle model. There, the depen-
dency of the adversary on the random oracle is defined by an unbounded pre-
processing stage, giving a polynomial-sized advice to the adversary. We then
proved our security notion equivalent to AI-ROM which further solidifies the
validity of our UROM definition and, vice versa, also means that the AI-ROM
provides strong security guarantees. Remarkably, the security bounds are not
tightly related.

One of the differences between the UROM and the AI-ROM, and potentially
one of the advantages of the UROM, is that our model allows for more flexibility
concerning the sources of insecurities. Specifically, in our model one can sepa-
rately fine-tune the probabilities for the random oracle and the random choices
of the adversary. For instance, one could go so far and simply ask for a non-zero
probability for a good random oracle, still stipulating a negligible success prob-
ability for the adversary. One could then argue, or hope, that SHA-2 or SHA-3
is indeed one of these good random oracles to provide strong security against all
adversaries.

An interesting aspect may be to transfer the UROM or the AI-ROM to the
UC setting and the global random oracle model. As mentioned before, the global
random oracle model and the idea of having an adversarial dependency on the
random oracle (as in UROM and AI-ROM) are incomparable. In principle, how-
ever, it should be possible to consider a universal random oracle in the global
UC setting as well. Given the subtleties in the simpler game-based setting for
defining the UROM, we expect this to be far from trivial, though.

Acknowledgments. We thank the anonymous reviewers for valuable comments.
Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Founda-
tion) − SFB 1119 − 236615297 and by the German Federal Ministry of Education and
Research and the Hessian Ministry of Higher Education, Research, Science and the Arts
within their joint support of the National Research Center for Applied Cybersecurity
ATHENE.

A Defining Universal Random Oracles

In this section we present an alternative definition for UROM and argue why it is
inappropriate, motivating also our definition of UROM (Definition 3 on page 7).

486 M. Fischlin et al.

The Naive Approach. We start with the straightforward adoption of the idea
to make the adversary depend on the random oracle by splitting the success
probabilities for the experiment Game and the random oracle O, stating that
the random oracle should work for all adversaries:

A security game Game is secure in the naive UROM if

PO

[∀AO ∈ SIZE (poly(λ))
∃εA,O ∈ negl ∀λ

: PGame

[
GameAO

O,O(λ)
]

≤ εA,O(λ)
]
= 1.

We next argue that that there is a game which is trivially insecure when
considered in the plain random oracle model, but provably secure according
to naive UROM. This is counterintuitive because we expect universal random
oracles to provide stronger security guarantees compared to the classical ROM.
Let O be length-preserving and the domain size of the random oracle be d(λ) = λ.
The game is defined as:

GameAO
O,O(=)1 : ⇐⇒ O(0λ) ≡ 0 mod λ2,

where we interpret the λ-bits output of (0λ) as an integer between 0 and 2λ − 1.
We ignore here for simplicity that this integer reduced modλ2 is only statisti-
cally close to a random number between 0 and λ2−1, and from now on calculate
with a probability of 1

λ2 that the experiment Game returns 1 and the adversary
wins.

First note that this experiment Game is insecure in the standard random
oracle mode (Definition 2 on page 7), because the trivial adversary who does
nothing wins with non-negligible probability has a success probability of at least
1
λ2 , where the probability is over the choice of O only. We next show that it
is secure in the naive UROM, though. To this end we first negate the security
statement of the naive UROM and consider the complementary probability. That
is, we have to show:

PO

[∃AO ∈ SIZE (poly(λ))
∀εA,O ∈ negl ∃λ

: PGame

[
GameAO

O,O(λ)
]

> εA,O(λ)
]
= 0.

We first note that the experiment is independent of the adversary, such that we
can simplify the statement to:

PO
[
∀εO ∈ negl ∃λ : PGame

[
GameO(λ)

]
> εO(λ)

]
= 0.

Next observe that the experiment is deterministic, once O is chosen randomly
“on the outside”. This means that we can restrict ourselves to negligible functions
εO which only take on values 0 and 1, and also drop the probability over Game
and instead use the output of the game directly:

PO
[
∀εO ∈ negl, εO : N → {0, 1} ∃λ : GameO(λ) > εO(λ)

]
= 0.

It suffices now to show that, with probability 0 over the choice of O, experiment
Game outputs 1 for infinitely many security parameters λ. If the game only

A Random Oracle for All of Us 487

outputs 1 finitely often for a fixed oracle O, say, up to a bound Λ ∈ N, then
we can consider the binary-valued negligible function εΛ

O(λ) = 1 if λ ≤ Λ, and
0 elsewhere. For this function the game’s output would not exceed the bound
εΛ
O(λ) for any λ. In other words, it suffices to show that the (deterministic)

experiment Game outputs 1 for infinitely many security parameters:

PO
[
for infinitely many λ ∈ N : GameO(λ) = 1

]
= 0.

We next apply the Borel-Cantelli lemma to show that this is indeed the case.
Let Eλ describe the event that the game is won for security parameter λ. Then
PO [Eλ] = 1

λ2 over the choice of the random oracle O. Therefore, since the
hyperharmonic series converges,

∞∑
λ=1

P [Eλ] < ∞.

The Borel-Cantelli lemma now tells us that the probability that infinitely many
Eλ happen is 0. Therefore, the game is indeed secure in the naive UROM.

Towards the Sophisticated UROM. Let us recap what goes wrong with the naive
approach above. Borel-Cantelli tells us that for a random oracle O the proba-
bilities of Game outputting 1 become small such that the adversary will only be
successful on finitely many security parameters (with probability 1). This yields
a fundamental, yet from a cryptographic perspective somewhat counterintuitive
property of adversaries: An adversary might be only successful on finitely many
security parameters (except with probability 0), even though the adversary has a
polynomial success probability for each individual security parameter!

The difference to the ordinary random oracle model is that, there, we rather
state security in reverse order, i.e., for a given security parameter λ the proba-
bility of an adversary breaking the game for random oracle O is negligible. We
would like to resurrect this behavior while preserving the idea of having a univer-
sal random oracle. The approach is basically to move out the quantification over
all security parameters (∀λ) out of the probability for oracle O. This, however,
means that the preceding quantification over the adversary and the negligible
function (∀A∃ε∀λ) needs to be moved outside of PO [·] as well. But this infringes
with our idea of the universal random oracle model where the adversary may
depend on O. To re-install this property we only move out a bound s(λ) on the
adversary’s size, and still quantify over all adversaries of this maximal size s(λ).
This yields our definition of the universal random oracle model (Definition 3):

∀s ∈ poly ∃εs ∈ negl ∀λ ∈ N :

PO
[
∀AO ∈ SIZE (s(λ)) : PGame

[
GameAO

O,O(λ)
]

≤ εs(λ)
]

≥ 1 − εs(λ). (4)

The outer negligible function εs(λ) now becomes necessary since for fixed λ we
only consider oracle O of restricted input and output size, determined by the
size bound of the adversary and the fixed game.

488 M. Fischlin et al.

Besides the equivalence to the auxiliary-input random oracle model and the
immediate implication that security in this version of the UROM implies security
for ordinary random oracles, we can also discuss directly why our counter exam-
ple for the naive approach is also labeled as insecure. Recall that GameO(λ)
outputs 1 if O(0λ) ≡ 0 mod λ2. Then for any given parameter λ we have
PO

[
GameO(λ) = 0

]
≤ 1 − 1

λ2 . It follows that there is no negligible bound εs(λ)
such that this probability at least 1 − εs(λ).

References

1. Bellare, M., Boldyreva, A., Palacio, A.: An uninstantiable random-oracle-model
scheme for a hybrid-encryption problem. In: Cachin, C., Camenisch, J.L. (eds.)
EUROCRYPT 2004. LNCS, vol. 3027, pp. 171–188. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-24676-3_11

2. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing
efficient protocols. In: Denning, D.E., Pyle, R., Ganesan, R., Sandhu, R.S., Ashby,
V. (eds.) ACM CCS 1993, pp. 62–73. ACM Press (1993). https://doi.org/10.1145/
168588.168596

3. Buldas, A., Laur, S., Niitsoo, M.: Oracle separation in the non-uniform model.
In: Pieprzyk, J., Zhang, F. (eds.) ProvSec 2009. LNCS, vol. 5848, pp. 230–244.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04642-1_19

4. Buldas, A., Niitsoo, M.: Black-box separations and their adaptability to the non-
uniform model. In: Boyd, C., Simpson, L. (eds.) ACISP 2013. LNCS, vol. 7959, pp.
152–167. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39059-
3_11

5. Camenisch, J., Drijvers, M., Gagliardoni, T., Lehmann, A., Neven, G.: The won-
derful world of global random oracles. In: Nielsen, J.B., Rijmen, V. (eds.) EURO-
CRYPT 2018. LNCS, vol. 10820, pp. 280–312. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-78381-9_11

6. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: 42nd FOCS, pp. 136–145. IEEE Computer Society Press (2001).
https://doi.org/10.1109/SFCS.2001.959888

7. Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited.
J. ACM 51(4), 557–594 (2004). https://doi.org/10.1145/1008731.1008734

8. Canetti, R., Jain, A., Scafuro, A.: Practical UC security with a global random
oracle. In: Ahn, G.J., Yung, M., Li, N. (eds.) ACM CCS 2014, pp. 597–608. ACM
Press (2014). https://doi.org/10.1145/2660267.2660374

9. Coretti, S., Dodis, Y., Guo, S., Steinberger, J.: Random oracles and non-uniformity.
In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10820, pp.
227–258. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78381-9_9

10. Dodis, Y., Guo, S., Katz, J.: Fixing cracks in the concrete: random oracles with
auxiliary input, revisited. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017.
LNCS, vol. 10211, pp. 473–495. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-56614-6_16

11. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp.
186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7_12

https://doi.org/10.1007/978-3-540-24676-3_11
https://doi.org/10.1145/168588.168596
https://doi.org/10.1145/168588.168596
https://doi.org/10.1007/978-3-642-04642-1_19
https://doi.org/10.1007/978-3-642-39059-3_11
https://doi.org/10.1007/978-3-642-39059-3_11
https://doi.org/10.1007/978-3-319-78381-9_11
https://doi.org/10.1007/978-3-319-78381-9_11
https://doi.org/10.1109/SFCS.2001.959888
https://doi.org/10.1145/1008731.1008734
https://doi.org/10.1145/2660267.2660374
https://doi.org/10.1007/978-3-319-78381-9_9
https://doi.org/10.1007/978-3-319-56614-6_16
https://doi.org/10.1007/978-3-319-56614-6_16
https://doi.org/10.1007/3-540-47721-7_12

A Random Oracle for All of Us 489

12. Gennaro, R., Trevisan, L.: Lower bounds on the efficiency of generic cryptographic
constructions. In: 41st FOCS, pp. 305–313. IEEE Computer Society Press (2000).
https://doi.org/10.1109/SFCS.2000.892119

13. Goldreich, O.: Foundations of Cryptography: Basic Tools, vol. 1. Cambridge Uni-
versity Press, Cambridge (2001)

14. Goldwasser, S., Kalai, Y.T.: On the (in)security of the Fiat-Shamir paradigm. In:
44th FOCS, pp. 102–115. IEEE Computer Society Press (2003). https://doi.org/
10.1109/SFCS.2003.1238185

15. Haitner, I., Hoch, J.J., Reingold, O., Segev, G.: Finding collisions in interactive
protocols - tight lower bounds on the round and communication complexities of sta-
tistically hiding commitments. SIAM J. Comput. 44(1), 193–242 (2015). https://
doi.org/10.1137/130938438

16. Impagliazzo, R., Rudich, S.: Limits on the provable consequences of one-way per-
mutations. In: 21st ACM STOC, pp. 44–61. ACM Press (1989). https://doi.org/
10.1145/73007.73012

17. Nielsen, J.B.: Separating random oracle proofs from complexity theoretic proofs:
the non-committing encryption case. In: Yung, M. (ed.) CRYPTO 2002. LNCS,
vol. 2442, pp. 111–126. Springer, Heidelberg (2002). https://doi.org/10.1007/3-
540-45708-9_8

18. Pointcheval, D., Stern, J.: Security arguments for digital signatures and blind signa-
tures. J. Cryptol. 13(3), 361–396 (2000). https://doi.org/10.1007/s001450010003

19. Unruh, D.: Random oracles and auxiliary input. In: Menezes, A. (ed.) CRYPTO
2007. LNCS, vol. 4622, pp. 205–223. Springer, Heidelberg (2007). https://doi.org/
10.1007/978-3-540-74143-5_12

https://doi.org/10.1109/SFCS.2000.892119
https://doi.org/10.1109/SFCS.2003.1238185
https://doi.org/10.1109/SFCS.2003.1238185
https://doi.org/10.1137/130938438
https://doi.org/10.1137/130938438
https://doi.org/10.1145/73007.73012
https://doi.org/10.1145/73007.73012
https://doi.org/10.1007/3-540-45708-9_8
https://doi.org/10.1007/3-540-45708-9_8
https://doi.org/10.1007/s001450010003
https://doi.org/10.1007/978-3-540-74143-5_12
https://doi.org/10.1007/978-3-540-74143-5_12

	A Random Oracle for All of Us
	1 Introduction
	1.1 The Universal Random Oracle Model
	1.2 Defining Universal Random Oracles
	1.3 Relationship to Auxiliary-Input Random Oracles
	1.4 Relationship to Global Random Oracles
	1.5 Proving Security in the UROM

	2 Preliminaries
	2.1 Negligible Functions
	2.2 Security Games
	2.3 The Random Oracle Model
	2.4 One-Wayness in the Random Oracle Model

	3 The Universal Random Oracle Model UROM
	4 UROM vs. AI-ROM
	4.1 AI-ROM
	4.2 AI-ROM Implies UROM
	4.3 UROM Implies AI-ROM
	4.4 Advantages of UROM

	5 Universal Random Oracles are One-Way Functions
	6 Conclusion
	A Defining Universal Random Oracles
	References

