
Card-Minimal Protocols for Three-Input
Functions with Standard Playing Cards

Rikuo Haga1(B) , Yuichi Hayashi1,4 , Daiki Miyahara2,4 ,
and Takaaki Mizuki3,4

1 Nara Institute of Science and Technology, 8916-5 Takayama,
Ikoma, Nara 630-0192, Japan

haga.rikuo.hm5@is.naist.jp
2 The University of Electro-Communications, 1-5-1 Chofugaoka,

Chofu, Tokyo 182-8585, Japan
3 Tohoku University, Aramak-Aza-Aoba, Aoba, Sendai 980-8576, Japan
4 National Institute of Advanced Industrial Science and Technology (AIST),

2-3-26 Aomi, Koto-ku, Tokyo 135-0064, Japan

Abstract. A protocol realizing a secure computation using a deck of
physical cards is called a card-based cryptographic protocol. Since Niemi
and Renvall first proposed a few protocols using a commercially avail-
able deck of playing cards in 1999, several protocols for the two-input
AND and XOR functions have been proposed. By combining these exist-
ing protocols, one can construct a protocol for any Boolean function
using a standard deck of playing cards. However, the minimal numbers
of cards needed for Boolean functions having more than two inputs have
not been revealed so much. Recently, Koyama et al. developed a card-
minimal three-input AND protocol. In this study, by extending Koyama’s
AND protocol, we construct a card-minimal protocol for the three-input
majority function. Furthermore, carrying the idea behind these protocols
further, we provide a generic card-minimal three-input protocol, which
covers many important three-input Boolean functions.

Keywords: Card-based cryptography · Secure computation ·
Standard deck of playing cards

1 Introduction

Card-based cryptographic protocols realize a secure computation using a deck of
physical cards (refer to [5,25,37] for surveys). Many researches on card-based
cryptography typically use a two-colored deck of cards whose fronts are red ♥
or black ♣ and whose backs are indistinguishable ? . The Boolean values are
encoded as follows:

♣ ♥ = 0, ♥ ♣ = 1. (1)

When two face-down cards ? ? represent a bit x ∈ {0, 1} according to Eq. (1),
we call them a commitment to x and denote it as follows:

? ?
︸︷︷︸

x

.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
L. Batina and J. Daemen (Eds.): AFRICACRYPT 2022, LNCS 13503, pp. 448–468, 2022.
https://doi.org/10.1007/978-3-031-17433-9_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-17433-9_19&domain=pdf
http://orcid.org/0000-0003-1561-1632
http://orcid.org/0000-0002-1160-8156
http://orcid.org/0000-0002-5818-8937
http://orcid.org/0000-0002-8698-1043
https://doi.org/10.1007/978-3-031-17433-9_19

Card-Minimal Three-Input Protocols with Standard Playing Cards 449

Given commitments as input, a committed-format protocol produces a com-
mitment to the output value of some predetermined function. For example, the
(two-input) AND protocol designed in [26] produces a commitment to a ∧ b via
a series of actions, given two commitments to a, b ∈ {0, 1} and two helping cards
as input:

? ?
︸︷︷︸

a

? ?
︸︷︷︸

b

♣ ♥ → · · · → ♣ ♥ ? ?
︸︷︷︸

a∧b

? ? or ♥ ♣ ? ? ? ?
︸︷︷︸

a∧b

.

1.1 Card-Based Protocols with a Standard Deck of Cards

The protocols using a two-colored deck of cards cannot be implemented with a
single standard deck of commercially available playing cards. The reason is that
such playing cards contain numbers (such as A, 2, 3, 4, . . . , J,Q,K) in addition to
suits (♣,♥,♠,♦), i.e., all the cards are distinct. Therefore, we need to prepare
either multiple decks of playing cards or a tailor-made deck of cards to implement
the protocols.

Fortunately, Niemi and Renvall [30] solved this problem by constructing a few
protocols using a single standard deck of commercially available playing cards.
They regarded a deck of playing cards as a total order on natural numbers from
1 to 52 because there are 52 combinations of numbers and suits in playing cards
(excluding the joker); we denote these cards by 1 2 3 · · · 52 . In their protocols,
a bit x ∈ {0, 1} is encoded using i and j satisfying 1 ≤ i < j ≤ 52, as follows:

i j = 0, j i = 1. (2)

That is, if the number on the left card is smaller, it represents 0, and if the
number on the left card is larger, it represents 1. Thus, similar to the two-
colored-deck case (as defined in Eq. (1)), using two cards i and j (of different
numbers), we can create a commitment to x ∈ {0, 1}, denoted by

? ?
︸︷︷︸

[x]{i,j}

,

where the set {i, j} is called the base of the commitment. (We sometimes omit
the description of the base.) For example,

? ?
︸︷︷︸

[x]{1,4}

is a commitment to x of base {1, 4}; if x = 0, the order of the sequence is 1 4 ,
and if x = 1, it is 4 1 .

1.2 Existing Protocols

Including the Niemi–Renvall protocols mentioned above, there are several exist-
ing protocols (working on a standard deck) in the literature, as shown in Table 1.
In this subsection, we briefly review these protocols one by one.

450 R. Haga et al.

Table 1. Existing protocols for Boolean functions using standard playing cards

Protocol # of cards # of shuffles Finite? Authors

2-AND 5 7.5 (exp.) Niemi & Renvall [30]

8 4 � Mizuki [22]

4 6 (exp.) Koch et al. [6]

2-XOR 4 7 (exp.) Niemi & Renvall [30]

4 1 � Mizuki [22]

3-AND 6 8.5 (exp.) Koyama et al. [12]

Throughout the paper, ‘2-AND,’ ‘2-XOR,’ and ‘3-AND’ mean the two-input
AND, two-input XOR, and three-input AND functions, respectively; we also use
similar notations for other functions. In addition, when simply writing ‘AND
protocol’ or ‘XOR protocol,’ it means a two-input protocol, i.e., a 2-AND pro-
tocol or 2-XOR protocol.

Two-Input AND and XOR. As mentioned in Sect. 1.1, Niemi and Ren-
vall [30] proposed the first protocols working on a standard deck. Specifically,
they constructed a protocol for the two-input AND function (namely, 2-AND)
using five cards:

? ?
︸︷︷︸

[a]{1,2}

? ?
︸︷︷︸

[b]{3,4}

5 → · · · → ? ?
︸︷︷︸

[a∧b]{1,4}

.

Therefore, aside from the two input commitments to a, b ∈ {0, 1}, this AND
protocol uses one helping card, namely 5 . The protocol (with the slight mod-
ification by Koch et al. [6]) uses 7.5 shuffles in expectation; thus, it is a Las
Vegas protocol (and it is not a finite-runtime protocol). See the first protocol
listed in Table 1. We call this the Niemi–Renvall AND protocol, whose detailed
explanation will be shown in Sect. 2.4.

Niemi and Renvall [30] also constructed a 2-XOR protocol with four cards:

? ?
︸︷︷︸

[a]{1,2}

? ?
︸︷︷︸

[b]{3,4}

→ · · · → ? ?
︸︷︷︸

[a⊕b]{1,2}

.

Because the two input commitments need four cards as long as we follow the
encoding rule in Eq. (2), this XOR protocol, which does not use any helping
card, is card-minimal1. As shown in Table 1, the protocol uses seven shuffles in
expectation.

1 This paper (and the literature) assume the encoding (2), i.e., a two-card-per-
bit encoding, when discussing the card-minimality of protocols; thus, an n-input
(Boolean function) protocol always needs 2n cards for input commitments, and such
a protocol using only 2n cards is card-minimal.

Card-Minimal Three-Input Protocols with Standard Playing Cards 451

In 2016, Mizuki [22] proposed AND and XOR protocols with eight and four
cards, respectively:

? ?
︸︷︷︸

[a]{1,2}

? ?
︸︷︷︸

[b]{3,4}

5 6 7 8 → · · · → ? ?
︸︷︷︸

[a∧b]{5,6}

or ? ?
︸︷︷︸

[a∧b]{7,8}

and
? ?
︸︷︷︸

[a]{1,2}

? ?
︸︷︷︸

[b]{3,4}

→ · · · → ? ?
︸︷︷︸

[a⊕b]{3,4}

.

The AND and XOR protocols use four and one shuffles, respectively, and both
the protocols are finite-runtime; see Table 1. While the XOR protocol is card-
minimal, the AND protocol needs four helping cards.

As seen thus far, there had been card-minimal XOR protocols, whereas no
card-minimal AND protocol had been found until 2019: Koch et al. [6] con-
structed a card-minimal AND protocol in 2019:

? ?
︸︷︷︸

[a]{1,2}

? ?
︸︷︷︸

[b]{3,4}

→ · · · → ? ?
︸︷︷︸

a∧b

.

As seen in Table 1, this is a Las Vegas protocol, which uses six shuffles in expec-
tation.

Three-Input AND. If we execute the above-mentioned card-minimal 2-AND
protocol designed by Koch et al. [6] twice, we can securely compute 3-AND
without any helping card, although it needs 12 shuffles in expectation.

In 2021, Koyama et al. [12] improved upon this by nicely making use of the
Niemi–Renvall AND protocol. That is, they proposed a card-minimal 3-AND
protocol with 8.5 shuffles (in expectation):

? ?
︸︷︷︸

[a]{1,2}

? ?
︸︷︷︸

[b]{3,4}

? ?
︸︷︷︸

[c]{5,6}

→ · · · → ? ?
︸︷︷︸

[a∧b∧c]{1,4}

.

Hereinafter, we call this protocol Koyama’s AND protocol.
Thus, there have already been card-minimal protocols for 3-AND. In addi-

tion, one can easily construct a card-minimal 3-XOR protocol by executing one
of the existing 2-XOR protocols twice. However, aside from 2-AND and 2-XOR,
there are many other three-input Boolean functions, and it is open to determine
whether all the three-input Boolean functions can be securely computed without
any helping card.

For example, the three-input majority function maj : {0, 1}3 → {0, 1} defined
as

maj(a, b, c) =

{

0 if a + b + c ≤ 1,

1 if a + b + c ≥ 2

452 R. Haga et al.

can be securely computed by combining the existing protocols (including the
“copy” protocols, which will be mentioned in Sect. 1.4), because it suffices to
apply AND, OR, and copy protocols by following a circuit such as

maj(a, b, c) = (a ∧ b) ∨ (b ∧ c) ∨ (c ∧ a).

Note that a 2-OR protocol is obtained immediately by a 2-AND protocol with
De Morgan’s laws, or we will directly display a 2-OR protocol in Sect. 3.1. When
following the circuit for 3-majority above, we need to duplicate some input com-
mitments, and hence, we need some helping cards, implying that such a construc-
tion is not card-minimal. Thus, designing card-minimal protocols for three-input
Boolean functions (including 3-majority) is considered to be non-trivial.

1.3 Contribution

In this study, we focus on designing card-minimal protocols for three-input
Boolean functions by extending the idea behind Koyama’s AND protocol [12]
further. Specifically, the contribution of this paper is twofold:

– For the three-input majority function, we construct a protocol using six cards,
i.e., we design a card-minimal 3-majority protocol:

? ?
︸︷︷︸

[a]{1,2}

? ?
︸︷︷︸

[b]{3,4}

? ?
︸︷︷︸

[c]{5,6}

→ · · · → ? ?
︸︷︷︸

[maj(a,b,c)]{1,4}

.

As will be explained, our protocol is based on Koyama’s AND protocol [12],
and uses the same number of shuffles, namely 8.5 shuffles (in expectation).
Note that the 3-majority is one of the most important three-input Boolean
functions in terms of practical use.

– We generalize the idea behind Koyama’s AND protocol so that we obtain a
generic card-minimal three-input protocol, which accommodates many three-
input Boolean functions (namely, 140 functions), including important func-
tions such as 3-OR, 3-XOR, 3-NAND, 3-NOR, 3-XNOR, and the 3-minority.

1.4 Related Work

Aside from the existing AND and XOR protocols introduced in Sect. 1.2, there
are “copy” protocols working on a standard deck [13,22,30]. A copy protocol
duplicates a commitment without revealing any information about the value
of the commitment. Using such a copy protocol as well as 2-AND, 2-XOR, and
NOT protocols2, we can construct a protocol for any Boolean function. However,
determining whether there exist card-minimal protocols for multi-input functions
remains an open problem (except the n-AND and n-XOR functions).

2 A NOT protocol can be simply constructed: swapping two cards comprising a com-
mitment produces a commitment to the negation.

Card-Minimal Three-Input Protocols with Standard Playing Cards 453

There are also attractive applications using a standard deck of cards: zero-
knowledge proof protocols for Sudoku [34] and millionaire protocols [18]. More-
over, under another computation model which accepts “private operations” such
as revealing a card behind player’s back, card-minimal AND, XOR, and copy
protocols were constructed [16].

As mentioned at the beginning of this section, many card-based protocols
work on a two-color deck of cards; under several kinds of settings of decks
(including the standard-deck and two-color-deck settings), the research area
on card-based cryptography has grown rapidly recently from both theoretical
and practical aspects. Examples are: constructing zero-knowledge proof pro-
tocols [15,32,33,35], investigating computation models [3,9,23,39] and shuf-
fles [8,21,36], designing private-operation-model protocols [1,17,28,29,31], seek-
ing practical and/or efficient protocols [2,7,14,20,40], and making use of other
physical objects [4,11,19,27,38].

1.5 Outline

In Sect. 2, we introduce operations used in card-based cryptography and describe
the existing protocol [30] and technique [12]. In Sect. 3, we show how to construct
a three-input majority protocol by extending the ideas behind the Niemi–Renvall
AND protocol and Koyama’s AND protocol. In Sect. 4, we construct a generic
protocol which covers many three-input Boolean functions by generalizing the
ideas further. Section 5 summarizes our study.

2 Preliminaries

In this section, we introduce the description of operations formalized in the
computational model of card-based cryptography [24]. We also introduce the two
practical shuffles called the “random cut” and “random bisection cut.” Finally,
we describe the Niemi–Renvall AND protocol [30] and the useful technique [12]
called the “swap operation by commitment value.”

2.1 Operations

We here introduce three operations, namely rearrangement, turn, and shuffle. We
assume that we have a sequence of n face-down cards for some natural number
n (≥ 2).

Rearrangement. This applies some permutation π ∈ Sn to the sequence, where
Sn denotes the symmetric group of degree n. This is written as (perm, π), and
the sequence changes as follows:

1

?
2

? · · ·
n

?
(perm,π)−−−−−→

π−1(1)

?
π−1(2)

? · · ·
π−1(n)

? .

454 R. Haga et al.

Turn. This reveals the t-th card from the left in the sequence to check its number.
This is written as (turn, {t}), and the sequence changes as follows (for example):

1

?
2

? · · ·
t

? · · ·
n

?
(turn,{t})−−−−−−→

1

?
2

? · · ·
t

7 · · ·
n

? .

Shuffle. This applies a permutation π drawn from a permutation set Π ⊆ Sn

according to a probability distribution F on Π. This is written as (shuf,Π, F),
and the sequence changes as follows:

1

?
2

? · · ·
n

?
(shuf,Π, F)−−−−−−−→

π−1(1)

?
π−1(2)

? · · ·
π−1(n)

? for π ← F .

Note that no one learns which permutation in Π was applied. If F is uniform,
then we simply write it as (shuf,Π).

2.2 Random Cut

A random cut, denoted by 〈 · 〉, is an operation that shuffles a sequence by cycli-
cally shifting it. Applying a random cut to a sequence of n cards results in one
of n possibilities, each occurring with a probability of 1/n:

〈 1

?
2

? · · ·
n−1
?

n

?
〉

→

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

1

?
2

? · · ·
n−1
?

n

? (1/n),
2

?
3

? · · ·
n

?
1

? (1/n),
...

n−1
?

n

? · · ·
n−3
?

n−2
? (1/n),

n

?
1

? · · ·
n−2
?

n−1
? (1/n).

Thus, this operation can be written as (shuf, 〈(1 2 · · · n)〉), where 〈(i1 i2 · · · i�)〉
denotes the cyclic group generated by a (cyclic) permutation (i1 i2 · · · i�).

2.3 Random Bisection Cut (RBC)

A random bisection cut (RBC) [26], denoted by [· | ·], is a shuffling operation,
which bisects a sequence of cards and then randomly swaps the two halves. Thus,
when an RBC is applied to a sequence of 2n cards, the sequence becomes either
the original one, or the one in which the first n cards are swapped with the last
n cards, as follows:

[1

? · · ·
n

?
∣

∣

∣

n+1

? · · ·
2n

?
]

→

⎧

⎪
⎨

⎪
⎩

1

? · · ·
n

?
∣

∣

∣

n+1

? · · ·
2n

? (1/2),
n+1

? · · ·
2n

?
∣

∣

∣

1

? · · ·
n

? (1/2).

This operation can be written as (shuf, {id, (1 n+1)(2 n+2) · · · (n 2n)}), where
id denotes the identity permutation.

Card-Minimal Three-Input Protocols with Standard Playing Cards 455

2.4 The Niemi–Renvall AND Protocol

The Niemi–Renvall AND protocol [30] takes as input two commitments to a, b ∈
{0, 1} as well as an additional card and outputs a commitment to a ∧ b. This
protocol proceeds as follows.

1. Place the two input commitments and the additional card 5 as follows, and
turn over the face-up card:

5 ? ?
︸︷︷︸

[a]{1,2}

? ?
︸︷︷︸

[b]{3,4}

→ ? ? ?
︸︷︷︸

[a]{1,2}

? ?
︸︷︷︸

[b]{3,4}

.

2. Swap the third and fourth cards:

1

?
2

?
3

?
4

?
5

? →
1

?
2

?
4

?
3

?
5

? .

The initial and swapped sequences for each input are described in the third
and fourth columns of Table 2. Observe that the order of 1 , 4 , and 5 in the
swapped sequence is 5 → 4 → 1 if and only if a ∧ b = 1. Therefore, we try
to remove the two cards 2 and 3 in the next steps.

3. Apply a random cut to the sequence:
〈

? ? ? ? ?
〉

→ ? ? ? ? ?.

4. Turn over the first card. Remove the revealed card if it is either 2 or 3 ;
otherwise, turn the card face down. Return to Step 3 unless both 2 and 3
are already removed.

5. Now, the sequence is one of the three possibilities as described in the fifth
column of Table 2. Apply a random cut to the sequence again and then turn
over the first card. We can obtain a commitment to a ∧ b (as output), as
follows:3

〈

? ? ?
〉

→ ? ? ?
(turn,{1})−−−−−−→

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

1 ? ?
︸︷︷︸

[a∧b]{4,5}

(1/3),

4 ? ?
︸︷︷︸

[a∧b]{1,5}

(1/3),

5 ? ?
︸︷︷︸

[a∧b]{1,4}

(1/3).

If the first card is 4 , then we obtain a commitment to the negation of a ∧ b;
we can obtain a commitment to a ∧ b by swapping the two cards comprising
the commitment.

The correctness of this protocol is clear from Table 2. In addition, no information
about the input and output is leaked when a card is turned over because we
always apply a random cut before turning over a card.
3 This step was proposed by Koch et al. [6], reducing the number of shuffles.

456 R. Haga et al.

Table 2. The sequence of five cards for each input during the Niemi–Renvall protocol

Input (a, b) a ∧ b Initial After swap 2 and 3 removed

(0, 0) 0 5 1 2 3 4 5 1 3 2 4 1 4 5 or 4 5 1 or 5 1 4

(0, 1) 0 5 1 2 4 3 5 1 4 2 3 1 4 5 or 4 5 1 or 5 1 4

(1, 0) 0 5 2 1 3 4 5 2 3 1 4 1 4 5 or 4 5 1 or 5 1 4

(1, 1) 1 5 2 1 4 3 5 2 4 1 3 1 5 4 or 4 1 5 or 5 4 1

2.5 Swapping by Commitment Value

Koyama et al. [12] proposed a sub-protocol called the swapping by commitment
value based on the idea of behind the two-input XOR protocol [22] proposed
by Mizuki. This led to the construction of the 3-AND protocol [12]. Given two
target cards ? ? and a commitment to c ∈ {0, 1} of base {i, j}, the swapping
by commitment value is to swap the two cards ? ? if and only if c = 1, without
leaking any information about the value of c as follows:

1

?
2

? ? ?
︸︷︷︸

[c]{i,j}

→
⎧

⎨

⎩

1

?
2

? if c = 0,
2

?
1

? if c = 1.

The procedure is shown below.

1. Place the two target cards and the commitment to c as follows:

? ? ? ?
︸︷︷︸

[c]{i,j}

.

2. Swap the second and third cards, i.e., apply (perm, (2 3)).
3. Apply (shuf, {id, (1 3)(2 4)}), i.e., apply an RBC as follows:

[

? ?
∣

∣

∣ ? ?
]

→ ? ? ? ?.

4. Apply (perm, (2 3)) again. Then, the sequence becomes one of the following
two possibilities depending on the value of c:

c = 0 →

⎧

⎪
⎨

⎪
⎩

1

?
2

? i j (1/2),
2

?
1

? j i (1/2).

c = 1 →

⎧

⎪
⎨

⎪
⎩

1

?
2

? j i (1/2),
2

?
1

? i j (1/2).

Observe that the order of the first and second cards are desirable if the order
of i and j is i j .

Card-Minimal Three-Input Protocols with Standard Playing Cards 457

5. Turn over the third and fourth cards to reveal the order of i and j .
(a) If i j appears, then output the first and second cards.
(b) If j i appears, then swap the first and second cards and output them.

Thus, the above sub-protocol achieves the desired functionality without leaking
any information about c.

3 Three-Input Majority Protocol

In this section, we construct a card-minimal protocol for the three-input majority
function maj(a, b, c) working on a standard deck. The idea behind our proposed
protocol is based on the Niemi–Renvall AND protocol [30] and Koyama’s AND
protocol [12].

To construct a 3-majority protocol, we utilize the following equation:

maj(a, b, c) =

{

a ∧ b if c = 0,

a ∨ b if c = 1.
(3)

To compute maj(a, b, c), observe that, if c = 0, it suffices to compute a ∧ b using
the Niemi–Renvall AND protocol introduced in Sect. 2.4; otherwise, we want to
compute a ∨ b. Therefore, we first construct an OR protocol by modifying the
Niemi–Renvall protocol and then construct a 3-majority protocol.

3.1 Two-Input or Protocol

We construct a two-input OR protocol by changing the rearrangement positions
in the Niemi–Renvall AND protocol. The protocol takes as input two commit-
ments to a, b as well as an additional card and outputs a commitment to a ∨ b,
as follows.

1. Place the two input commitments and the additional card 5 and turn it over
as follows:

5 ? ?
︸︷︷︸

[a]{1,2}

? ?
︸︷︷︸

[b]{3,4}

→ ? ? ?
︸︷︷︸

a

? ?
︸︷︷︸

b

.

2. Rearrange the sequence as follows, i.e., apply (perm, (2 3 5 4)):

1

?
2

?
3

?
4

?
5

? →
1

?
4

?
2

?
5

?
3

? .

The input and rearranged sequences for each input are described in the third
and fourth columns of Table 3. Observe that the order of 1 , 4 , and 5 in the
rearranged sequence is 5 → 4 → 1 if and only if a ∨ b = 1.

3. Apply Steps 3, 4, and 5 of the Niemi–Renvall AND protocol shown in Sect. 2.4
to obtain a commitment to a ∨ b.

458 R. Haga et al.

Table 3. The sequence of five cards for each input during the 2-OR protocol

Input(a, b) a ∨ b Initial Rearranged (Step 2) Removing 2 and 3

(0, 0) 0 5 1 2 3 4 5 3 1 4 2 1 4 5 or 4 5 1 or 5 1 4

(0, 1) 1 5 1 2 4 3 5 4 1 3 2 1 5 4 or 4 1 5 or 5 4 1

(1, 0) 1 5 2 1 3 4 5 3 2 4 1 1 5 4 or 4 1 5 or 5 4 1

(1, 1) 1 5 2 1 4 3 5 4 2 3 1 1 5 4 or 4 1 5 or 5 4 1

3.2 Idea

Remember that in Step 2 of the Niemi–Renvall AND protocol and our OR proto-
col, we rearrange the sequence of cards, i.e., the AND protocol uses (perm, (3 4))
and the OR protocol uses (perm, (2 3 5 4)).

Observe that if we apply (perm, (3 4)), namely

1

?
2

?
3

?
4

?
5

? →
1

?
2

?
4

?
3

?
5

?,

and apply (perm, (2 3)(4 5)), namely

1

?
2

?
3

?
4

?
5

? →
1

?
3

?
2

?
5

?
4

?,

the resulting sequence becomes the same as the one after executing Step 2 of
our OR protocol. In other words, ((2 3)(4 5))(3 4) = (2 3 5 4).

Therefore, after applying (perm, (3 4)), if we do nothing, it results in the AND
protocol. If we apply (perm, (2 3)(4 5)) after applying (perm, (3 4)), it results
in the OR protocol. Therefore, it suffices to perform the swap operation by
commitment value [12] introduced in Sect. 2.5 to apply (perm, (2 3)(4 5)) if and
only if c = 1 (see Eq. (3) again).

3.3 Description of Protocol

We are ready to describe the procedure for our 3-majority protocol. The pro-
tocol takes three commitments to a, b, c as input and outputs a commitment to
maj(a, b, c).

1. Place three input commitments as follows:

? ?
︸︷︷︸

[a]{1,2}

? ?
︸︷︷︸

[b]{3,4}

? ?
︸︷︷︸

[c]{5,6}

.

2. Swap the second and the third cards:

1

?
2

?
3

?
4

?
5

?
6

? →
1

?
3

?
2

?
4

?
5

?
6

? .

Card-Minimal Three-Input Protocols with Standard Playing Cards 459

Table 4. The sequence of six cards for each input in our 3-majority protocol, where
the sequences in the fourth column are in a case when the order of the revealed fifth
and sixth cards are 5 6 in Step 3d.

Input(a, b, c) maj(a, b, c) Initial After Swap (Step 3d) Removing 2 3 6

(0, 0, 0) 0 1 2 3 4 5 6 1 3 2 4 5 6 1 4 5

(0, 0, 1) 0 1 2 3 4 6 5 3 1 4 2 5 6 1 4 5

(0, 1, 0) 0 1 2 4 3 5 6 1 4 2 3 5 6 1 4 5

(0, 1, 1) 1 1 2 4 3 6 5 4 1 3 2 5 6 4 1 5

(1, 0, 0) 0 2 1 3 4 5 6 2 3 1 4 5 6 1 4 5

(1, 0, 1) 1 2 1 3 4 6 5 3 2 4 1 5 6 4 1 5

(1, 1, 0) 1 2 1 4 3 5 6 2 4 1 3 5 6 4 1 5

(1, 1, 1) 1 2 1 4 3 6 5 4 2 3 1 5 6 4 1 5

3. Apply the swap operation by the commitment to c [12] to apply
(perm, (1 2)(3 4)) if and only if c = 1 as follows:
(a) Rearrange the sequence as follows:

1

?
2

?
3

?
4

?
5

?
6

? →
1

?
3

?
5

?
2

?
4

?
6

? .

(b) Apply (shuf, {id, (1 4)(2 5)(3 6)}), i.e., apply an RBC as follows:
[

? ? ?
∣

∣

∣ ? ? ?
]

→ ? ? ? ? ? ?.

(c) Rearrange the sequence as follows:

1

?
2

?
3

?
4

?
5

?
6

? →
1

?
4

?
2

?
5

?
3

?
6

? .

(d) Turn over the fifth and sixth cards. If their order is 5 6 , do nothing; if
it is 6 5 , swap the first and second cards as well as the third and fourth
cards. The sequence for each input is described in Table 4 where the order
of the revealed two cards 5 6 does not matter.

4. Execute Steps 3, 4, and 5 of the Niemi–Renvall AND protocol to obtain a
commitment to maj(a, b, c), where we use the first through fourth cards as
input, and the 5 turned over in Step 3d as an additional card (i.e., place the
5 in the first from the left).

3.4 Correctness and Security

The correctness of this protocol is clear from Table 4 because when the input
(a, b, c) satisfies maj(a, b, c) = 0, the resulting sequence after Step 3 is 1 4 5

460 R. Haga et al.

Fig. 1. The KWH-tree of three-input majority protocol

Card-Minimal Three-Input Protocols with Standard Playing Cards 461

(where 2 , 3 , and 6 are removed); otherwise, the sequence is 4 1 5 . As for
the security, we execute the swap operation by commitment value [12] in Step 3
and then the part of the Niemi–Renvall AND protocol (and Steps 1 and 2 just
place and swap the sequence, respectively), no information about the input and
output is leaked.

More formally, we use the KWH-tree [10] to prove the security (and cor-
rectness) of this protocol; we depict the KWH-tree of our three-input majority
protocol in Fig. 1. In the diagram, states of a sequence of cards are expressed as
nodes, and operations on the sequence of cards are expressed as edges. Because
the sum of the probability distributions of the nodes is equal to the probability
distribution of the input, the protocol is guaranteed to be secure.

4 Generic Protocol for Three-Input Functions

In this section, we generalize our 3-majority protocol described in Sect. 3 so as
to obtain a generic card-minimal protocol for three-input Boolean functions.

After we describe the idea behind the generalization in Sect. 4.1, we gener-
alize the Niemi–Renvall AND protocol and the swap operation by commitment
value [12] in Sects 4.2 and 4.3, respectively.

Before going into the subsections, we define a notation; hereinafter, πijk�

denotes a permutation in S4 such that

πijkl =
(

1 2 3 4
i j k �

)

for four distinct integers i, j, k, � ∈ {1, 2, 3, 4}. For example, π1234 = id and
π1324 = (2 3).

4.1 Idea

Our idea is that, as maj(a, b, c) is represented with the two elementary functions
of a and b depending on the value of c (as in Eq. (3)), every three-input Boolean
function f : {0, 1}3 → {0, 1} can be also written as follows:

f(a, b, c) =

{

g(a, b) if c = 1,

h(a, b) if c = 0,
(4)

where there exist two functions g, h : {0, 1}2 → {0, 1}.
Remember that in our 3-majority protocol proposed in Sect. 3, we first apply

the permutation π1324 (to compute 2-AND) and then, if c = 1, apply the permu-
tation π2143 by the swap operation (to compute 2-OR); π1324 leads to 2-AND,
and π2143π1324 leads to 2-OR. If we replace these two permutations with other
ones, then we will obtain (possibly) another three-input protocol.

Bearing this in mind, we first investigate what two-input function (as a can-
didate for g or h in Eq. (4)) will be computed for every permutation πijk� ∈ S4

(in Sect. 4.2). Then, we enumerate all possible swap operations (in Sect. 4.3).

462 R. Haga et al.

Table 5. Output NRπ of the generalized Niemi–Renvall protocol with π

Permutation π NRπ(a, b)

π1234, π1243, π2134, π2143 0

π1324 a ∧ b

π1423 a ∧ b̄

π1342, π1432 a

π2314 ā ∧ b

π3124, π3214 b

N/A a ⊕ b

π3142 a ∨ b

π2413 a ∨ b

N/A a ⊕ b

π4123, π4213 b̄

π4132 a ∨ b̄

π2341, π2431 ā

π3241 ā ∨ b

π4231 a ∧ b

π3412, π3421, π4312, π4321 1

4.2 Generalizing the Niemi–Renvall and Protocol

In this subsection, we generalize the Niemi–Renvall AND protocol by considering
all permutations for Step 2 of the protocol.

Assume that we apply a permutation π ∈ S4 (instead of the original permu-
tation) in Step 2 of the Niemi–Renvall AND protocol. Then, at the end of the
protocol, we should obtain a commitment to a certain two-input function; we
denote this function by NRπ : {0, 1}2 → {0, 1}.

We examined all 4! possibilities for π and write NRπ(a, b) in Table 5. This
table tells us that aside from 2-XOR and 2-XNOR, all two-input functions can
be obtained.

4.3 Generalizing Swap Operation by Commitment Value

In this subsection, consider all possible swapping operations.
Assume that we have four cards along with a commitment to c ∈ {0, 1} of

base {5, 6}:
? ? ? ? ? ?

︸︷︷︸

[c]{5,6}

.

We want to apply a permutation in S4 to the first four cards if and only if
c = 1. What are the possible permutations? We can consider two kind of swap
operations.

Card-Minimal Three-Input Protocols with Standard Playing Cards 463

(i j)-swap. Remember that the swap operation introduced in Sect. 2.5 swaps two
cards (or does not) depending on the value of c. As a natural extension, let us
consider a swap operation such that the i-th and j-th cards (among the leftmost
four cards) for 1 ≤ i < j ≤ 4 are swapped or not; we call this the (i j)-swap,
which can be achieved as follows.

1. Apply the permutation corresponding to (i j) according to Table 6.
2. Apply (shuf, {id, (3 5)(4 6)}) , i.e., apply an RBC as follows:

? ?
[

? ?
∣

∣

∣ ? ?
]

→ ? ? ? ? ? ?.

3. Apply the inverse of the permutation applied in Step 1.
4. Turn over the fifth and sixth cards (namely, apply (turn, {5, 6})). If the

order of the revealed cards are 6 5 , swap the i-th and j-th cards (namely,
(perm, (i j))); otherwise, do nothing.

(i j)(k �)-swap. Remember that our 3-majority protocol uses (perm, (2 3)(4 5))
in the swap operation, and note that the permutations (2 3) and (4 5) are
disjoint. Therefore, we can consider a swap operation such that the i-th and j-th
cards as well as the k-th and �-th cards are swapped or not for 1 ≤ i < j ≤ 4
and {k, �} = {1, 2, 3, 4} − {i, j}; we call this the (i j)(k �)-swap, which can be
achieved as follows.

1. Apply the permutation corresponding to (i j)(k �) according to Table 7.
2. Apply (shuf, {id, (1 4)(2 5)(3 6)}), i.e., apply an RBC as follows:

[

? ? ?
∣

∣

∣ ? ? ?
]

→ ? ? ? ? ? ?.

3. Apply the inverse of the permutation applied in Step 1.
4. Turn over the fifth and sixth cards (namely, apply (turn, {5, 6})). If the order

of the revealed cards are 6 5 , swap the i-th and j-th cards as well as k-th
and �-th cards (namely, (perm, (i j)(k �))); otherwise, do nothing.

4.4 Description of Protocol

We are now ready to describe our generic protocol for three-input Boolean func-
tion.

Our protocol owns two permutations π, σ ∈ S4 as parameter, where either
σ = (i j) for 1 ≤ i < j ≤ 4, or σ = (i j)(k �) for 1 ≤ i < j ≤ 4 and
{k, �} = {1, 2, 3, 4} − {i, j}; it proceeds as follows.

1. Place three input commitments as:

? ?
︸︷︷︸

[a]{1,2}

? ?
︸︷︷︸

[b]{3,4}

? ?
︸︷︷︸

[c]{5,6}

.

2. Apply (perm, π).
3. Apply σ-swap.
4. Apply Steps 3, 4, and 5 of the Niemi–Renvall AND protocol.

464 R. Haga et al.

Table 6. Actions for Steps 1 and 3 of the (i j)-swap

(i j) Action for Step 1 Action for Step 3 (Inverse of Step 1)

(1 2) (perm, (1 3)(2 5 4)) (perm, (1 3)(2 4 5))

(1 3) (perm, (1 3 5 4 2)) (perm, (1 2 4 5 3))

(1 4) (perm, (1 3 2)(4 5)) (perm, (1 2 3)(4 5))

(2 3) (perm, (2 3 5 4)) (perm, (2 4 5 3))

(2 4) (perm, (2 3)(4 5)) (perm, (2 3)(4 5))

(3 4) (perm, (4 5)) (perm, (4 5))

Table 7. Actions for Steps 1 and 3 of the (i j)(k �)-swap

(i j)(k �) Action for Step 1 Action for Step 3 (Inverse of Step 1)

(1 2)(3 4) (perm, (2 4 5 3)) (perm, (2 3 5 4))

(1 3)(2 4) (perm, (3 4 5)) (perm, (3 5 4))

(1 4)(2 3) (perm, (3 5)) (perm, (3 5))

4.5 Covered Functions

In this subsection, we comprehensively reveal what three-input functions our
generic protocol computes.

Executing our generic protocol with parameter π, σ ∈ S4 is equivalent to
executing a protocol for the three-input Boolean function f such that

f(a, b, c) =

{

NRσπ(a, b) if c = 1,

NRπ(a, b) if c = 0.

For example, if we take π, σ as in the first and second columns of Table 8,
we have NRπ and NRσπ as in the fourth and fifth columns, and hence, the
corresponding three-input Boolean functions are shown in the sixth column.
This table tells us that major three-input Boolean functions are covered by our
generic protocol.

From the user’s perspective, given a three-input function f , we want to find
two permutations π, σ ∈ S4 which lead to f . Table 9 helps us: We first find g, h
such that

f(a, b, c) =

{

g(a, b) if c = 1,

h(a, b) if c = 0;

then, using Table 9, find the corresponding parameter π, σ.
Although not all three-input Boolean functions have a corresponding param-

eter π, σ, our generic protocol covers 140 three-input Boolean functions among
the 256 ones.

Card-Minimal Three-Input Protocols with Standard Playing Cards 465

Table 8. Covered main functions

π σ σπ NRπ NRσπ f(a, b, c)

π1234 (2 3) π1324 AND 0 3-AND [12]

π3412 (2 3) π3142 1 OR 3-OR

π3412 (1 4)(2 3) π2143 NAND OR 3-XOR

π4321 (2 3) π4231 NAND 1 3-NAND

π2413 (2 3) π2143 0 NOR 3-NOR

π2413 (1 3)(2 4) π1324 AND NOR 3-XNOR

π1324 (1 2)(3 4) π3142 OR AND 3-majority

π2413 (1 2)(3 4) π4231 NOR NAND 3-minority

Table 9. Parameter π, σ leading to g, h

h

g
0 a ∧ b a ∧ b a a ∧ b b a ⊕ b a ∨ b a ∨ b a ⊕ b b a ∨ b a a ∨ b a ∧ b 1

0 π1234 π1234 π1243 π1234 π2134 π1234 N/A π2143 π2143 N/A π2143 π2134 π2143 π1243 π1234 π2143

(3 4) (2 3) (2 3) (2 4) (2 3) (1 3) (1 4) (2 3) (1 3) (1 4) (2 4) (1 4) (1 4) (1 4)(2 3)

a ∧ b π1324 N/A π1324 π1324 π1324 π1324 N/A π1324 π1324 N/A N/A N/A N/A N/A π1324 π1324

(2 3) (2 4) (3 4) (1 3) (1 2) (1 2)(3 4) (1 3)(2 4) (1 4)(2 3) (1 4)

a ∧ b π1423 π1423 N/A π1423 π1423 N/A N/A N/A π1423 N/A π1423 π1423 N/A π1423 N/A π1423

(2 3) (2 4) (3 4) (1 3)(2 4) (1 3) (1 2) (1 2)(3 4) (1 4)(2 3) (1 4)

a π1342 π1342 π1432 π1432 N/A π1342 N/A π1342 N/A N/A π1342 π1432 π1432 N/A N/A π1432

(2 4) (3 4) (3 4) (2 3) (1 2)(3 4) (1 2) (1 3)(2 4) (1 2) (1 4)(2 3) (1 3)

a ∧ b π2314 π2314 π2314 N/A N/A π2314 N/A N/A π2314 N/A N/A π2314 π2314 π2314 N/A π2314

(2 3) (1 3) (1 3)(2 4) (1 2) (2 4) (1 4)(2 3) (3 4) (1 2)(3 4) (1 4)

b π3124 π3124 N/A π3124 π3214 π3124 N/A π3124 N/A N/A π3214 N/A π3214 π3214 N/A π3124

(1 3) (1 2) (1 2)(3 4) (1 2) (2 3) (3 4) (1 4)(2 3) (1 2)(3 4) (3 4) (2 4)

a ⊕ b N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

a ∨ b π3142 π3142 N/A π3142 N/A π3142 N/A N/A π3142 N/A N/A π3142 N/A π3142 π3142 π3142

(1 4) (1 2)(3 4) (1 2) (3 4) (1 4)(2 3) (1 3) (2 4) (1 3)(2 4) (2 3)

a ∨ b π2413 π2413 π2413 N/A π2413 N/A N/A π2413 N/A N/A π2413 N/A π2413 N/A π2413 π2413

(2 3) (1 3)(2 4) (1 3) (1 4) (1 4)(2 3) (1 2) (3 4) (1 2)(3 4) (1 4)

a ⊕ b N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

b π4123 N/A π4123 π4213 N/A π4123 N/A N/A π4213 N/A π4123 π4123 π4123 N/A π4213 π4123

(1 3) (1 2) (1 3)(2 4) (1 4) (1 2) (2 3) (3 4) (1 3)(2 4) (3 4) (2 4)

a ∨ b π4132 N/A π4132 π4132 π4132 N/A N/A π4132 N/A N/A π4132 N/A N/A π4132 π4132 π4132

(1 4) (1 2)(3 4) (1 2) (1 4)(2 3) (1 3) (3 4) (1 3)(2 4) (2 4) (2 3)

a π2341 N/A N/A π2341 π2341 π2341 N/A N/A π2431 N/A π2341 N/A π2341 π2341 π2431 π2431

(2 4) (1 4) (3 4) (1 2)(3 4) (3 4) (1 3)(2 4) (2 3) (1 2) (1 2) (1 3)

a ∨ b π3241 N/A π3241 N/A π3241 π3241 N/A π3241 N/A N/A N/A π3241 π3241 N/A π3241 π3241

(1 4) (1 4)(2 3) (1 2)(3 4) (3 4) (2 4) (1 3)(2 4) (1 2) (1 3) (2 3)

a ∧ b π4231 π4231 N/A N/A N/A N/A N/A π4231 π4231 N/A π4231 π4231 π4231 π4231 N/A π4231

(1 4) (1 4)(2 3) (1 3)(2 4) (1 2)(3 4) (3 4) (2 4) (1 2) (1 3) (2 3)

1 π3412 π4321 π3421 π3412 π4312 π3421 N/A π3412 π3412 N/A π4312 π4312 π4321 π3421 π4321 π3412

(1 4)(2 3) (1 4) (1 4) (1 3) (1 4) (2 4) (2 3) (1 4) (2 4) (2 3) (1 3) (2 3) (2 3) (3 4)

5 Conclusion

In this study, we showed how to construct a card-minimal 3-majority protocol
by extending the Niemi–Renvall AND protocol [30] and Koyama’s AND pro-

466 R. Haga et al.

tocol [12]. Furthermore, we constructed a generic card-minimal protocol that
covers many three-input Boolean functions as shown in Table 9.

Although the proposed protocol accommodates many major functions as seen
in Table 8, not all the three-input Boolean functions can be computed by it. It is
open to determine whether there exists a six-card protocol for every three-input
Boolean function. While 3-XOR and 3-XNOR can be computed without any
helping card by using the existing protocols, we conjecture that some functions,
say

f(a, b, c) =

{

a ∧ b if c = 1,

a ⊕ b if c = 0,

would need helping cards.

Acknowledgements. We thank the anonymous referees, whose comments have
helped us improve the presentation of the paper. We also thank Hiroto Koyama for
his cooperation in preparing a Japanese draft version of Sect. 3 at an earlier stage
of this work. This work was supported in part by JSPS KAKENHI Grant Numbers
JP21K11881 and JP19H01104.

References

1. Abe, Y., et al.: Efficient card-based majority voting protocols. New Gener. Comput.
40, 173–198 (2022). https://doi.org/10.1007/s00354-022-00161-7

2. Abe, Y., Hayashi, Y., Mizuki, T., Sone, H.: Five-card AND computations in com-
mitted format using only uniform cyclic shuffles. New Gener. Comput. 39(1), 97–
114 (2021). https://doi.org/10.1007/s00354-020-00110-2

3. Dvořák, P., Koucký, M.: Barrington plays cards: the complexity of card-based pro-
tocols. In: Bläser, M., Monmege, B. (eds.) Theoretical Aspects of Computer Sci-
ence. LIPIcs, vol. 187, pp. 26:1–26:17. Schloss Dagstuhl, Dagstuhl (2021). https://
doi.org/10.4230/LIPIcs.STACS.2021.26

4. Isuzugawa, R., Miyahara, D., Mizuki, T.: Zero-knowledge proof protocol
for cryptarithmetic using dihedral cards. In: Kostitsyna, I., Orponen, P. (eds.)
UCNC 2021. LNCS, vol. 12984, pp. 51–67. Springer, Cham (2021). https://doi.
org/10.1007/978-3-030-87993-8 4

5. Koch, A.: Cryptographic protocols from physical assumptions. Ph.D. thesis, Karl-
sruhe Institute of Technology (2019). https://doi.org/10.5445/IR/1000097756

6. Koch, A., Schrempp, M., Kirsten, M.: Card-based cryptography meets formal ver-
ification. In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019. LNCS, vol.
11921, pp. 488–517. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
34578-5 18

7. Koch, A., Schrempp, M., Kirsten, M.: Card-based cryptography meets formal ver-
ification. New Gener. Comput. 39(1), 115–158 (2021). https://doi.org/10.1007/
s00354-020-00120-0

8. Koch, A., Walzer, S.: Foundations for actively secure card-based cryptography. In:
Farach-Colton, M., Prencipe, G., Uehara, R. (eds.) Fun with Algorithms. LIPIcs,
vol. 157, pp. 17:1–17:23. Schloss Dagstuhl, Dagstuhl (2020). https://doi.org/10.
4230/LIPIcs.FUN.2021.17

https://doi.org/10.1007/s00354-022-00161-7
https://doi.org/10.1007/s00354-020-00110-2
https://doi.org/10.4230/LIPIcs.STACS.2021.26
https://doi.org/10.4230/LIPIcs.STACS.2021.26
https://doi.org/10.1007/978-3-030-87993-8_4
https://doi.org/10.1007/978-3-030-87993-8_4
https://doi.org/10.5445/IR/1000097756
https://doi.org/10.1007/978-3-030-34578-5_18
https://doi.org/10.1007/978-3-030-34578-5_18
https://doi.org/10.1007/s00354-020-00120-0
https://doi.org/10.1007/s00354-020-00120-0
https://doi.org/10.4230/LIPIcs.FUN.2021.17
https://doi.org/10.4230/LIPIcs.FUN.2021.17

Card-Minimal Three-Input Protocols with Standard Playing Cards 467

9. Koch, A., Walzer, S.: Private function evaluation with cards. New Gener. Comput.
1–33 (2022, in press). https://doi.org/10.1007/s00354-021-00149-9

10. Koch, A., Walzer, S., Härtel, K.: Card-based cryptographic protocols using a min-
imal number of cards. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS,
vol. 9452, pp. 783–807. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-48797-6 32

11. Komano, Y., Mizuki, T.: Coin-based secure computations. Int. J. Inf. Secur. 1–14
(2022, in press). https://doi.org/10.1007/s10207-022-00585-8

12. Koyama, H., Miyahara, D., Mizuki, T., Sone, H.: A secure three-input AND proto-
col with a standard deck of minimal cards. In: Santhanam, R., Musatov, D. (eds.)
CSR 2021. LNCS, vol. 12730, pp. 242–256. Springer, Cham (2021). https://doi.
org/10.1007/978-3-030-79416-3 14

13. Koyama, H., Toyoda, K., Miyahara, D., Mizuki, T.: New card-based copy protocols
using only random cuts. In: ASIA Public-Key Cryptography Workshop, pp. 13–22.
ACM, New York (2021). https://doi.org/10.1145/3457338.3458297

14. Kuzuma, T., Toyoda, K., Miyahara, D., Mizuki, T.: Card-based single-shuffle pro-
tocols for secure multiple-input AND and XOR computations. In: ASIA Public-
Key Cryptography, pp. 1–8. ACM, New York (2022, to appear). https://doi.org/
10.1145/3494105.3526236

15. Lafourcade, P., Miyahara, D., Mizuki, T., Robert, L., Sasaki, T., Sone, H.: How to
construct physical zero-knowledge proofs for puzzles with a “single loop” condition.
Theor. Comput. Sci. 888, 41–55 (2021). https://doi.org/10.1016/j.tcs.2021.07.019

16. Manabe, Y., Ono, H.: Card-based cryptographic protocols with a standard deck of
cards using private operations. In: Cerone, A., Ölveczky, P.C. (eds.) ICTAC 2021.
LNCS, vol. 12819, pp. 256–274. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-85315-0 15

17. Manabe, Y., Ono, H.: Card-based cryptographic protocols with malicious players
using private operations. New Gener. Comput. 40, 67–93 (2022). https://doi.org/
10.1007/s00354-021-00148-w

18. Miyahara, D., Hayashi, Y., Mizuki, T., Sone, H.: Practical card-based implemen-
tations of Yao’s millionaire protocol. Theor. Comput. Sci. 803, 207–221 (2020).
https://doi.org/10.1016/j.tcs.2019.11.005

19. Miyahara, D., Komano, Y., Mizuki, T., Sone, H.: Cooking cryptographers: secure
multiparty computation based on balls and bags. In: Computer Security Foun-
dations Symposium, pp. 1–16. IEEE, New York (2021). https://doi.org/10.1109/
CSF51468.2021.00034

20. Miyahara, D., Ueda, I., Hayashi, Y., Mizuki, T., Sone, H.: Evaluating card-based
protocols in terms of execution time. Int. J. Inf. Secur. 20(5), 729–740 (2020).
https://doi.org/10.1007/s10207-020-00525-4

21. Miyamoto, K., Shinagawa, K.: Graph automorphism shuffles from pile-scramble
shuffles. New Gener. Comput. 40, 199–223 (2022). https://doi.org/10.1007/
s00354-022-00164-4

22. Mizuki, T.: Efficient and secure multiparty computations using a standard deck of
playing cards. In: Foresti, S., Persiano, G. (eds.) CANS 2016. LNCS, vol. 10052, pp.
484–499. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48965-0 29

23. Mizuki, T., Komano, Y.: Information leakage due to operative errors in card-based
protocols. Inf. Comput. 1–15 (2022, in press). https://doi.org/10.1016/j.ic.2022.
104910

24. Mizuki, T., Shizuya, H.: A formalization of card-based cryptographic protocols via
abstract machine. Int. J. Inf. Secur. 13(1), 15–23 (2013). https://doi.org/10.1007/
s10207-013-0219-4

https://doi.org/10.1007/s00354-021-00149-9
https://doi.org/10.1007/978-3-662-48797-6_32
https://doi.org/10.1007/978-3-662-48797-6_32
https://doi.org/10.1007/s10207-022-00585-8
https://doi.org/10.1007/978-3-030-79416-3_14
https://doi.org/10.1007/978-3-030-79416-3_14
https://doi.org/10.1145/3457338.3458297
https://doi.org/10.1145/3494105.3526236
https://doi.org/10.1145/3494105.3526236
https://doi.org/10.1016/j.tcs.2021.07.019
https://doi.org/10.1007/978-3-030-85315-0_15
https://doi.org/10.1007/978-3-030-85315-0_15
https://doi.org/10.1007/s00354-021-00148-w
https://doi.org/10.1007/s00354-021-00148-w
https://doi.org/10.1016/j.tcs.2019.11.005
https://doi.org/10.1109/CSF51468.2021.00034
https://doi.org/10.1109/CSF51468.2021.00034
https://doi.org/10.1007/s10207-020-00525-4
https://doi.org/10.1007/s00354-022-00164-4
https://doi.org/10.1007/s00354-022-00164-4
https://doi.org/10.1007/978-3-319-48965-0_29
https://doi.org/10.1016/j.ic.2022.104910
https://doi.org/10.1016/j.ic.2022.104910
https://doi.org/10.1007/s10207-013-0219-4
https://doi.org/10.1007/s10207-013-0219-4

468 R. Haga et al.

25. Mizuki, T., Shizuya, H.: Computational model of card-based cryptographic proto-
cols and its applications. IEICE Trans. Fundam. E100.A(1), 3–11 (2017). https://
doi.org/10.1587/transfun.E100.A.3

26. Mizuki, T., Sone, H.: Six-card secure AND and four-card secure XOR. In: Deng, X.,
Hopcroft, J.E., Xue, J. (eds.) FAW 2009. LNCS, vol. 5598, pp. 358–369. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-02270-8 36

27. Murata, S., Miyahara, D., Mizuki, T., Sone, H.: Efficient generation of a card-based
uniformly distributed random derangement. In: Uehara, R., Hong, S.-H., Nandy,
S.C. (eds.) WALCOM 2021. LNCS, vol. 12635, pp. 78–89. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-68211-8 7

28. Nakai, T.,Misawa,Y., Tokushige,Y., Iwamoto,M.,Ohta,K.: Secure computation for
threshold functions with physical cards: power of private permutations. New Gener.
Comput. 1–19 (2022, in press). https://doi.org/10.1007/s00354-022-00153-7

29. Nakai, T., Misawa, Y., Tokushige, Y., Iwamoto, M., Ohta, K.: How to solve million-
aires’ problem with two kinds of cards. New Gener. Comput. 39(1), 73–96 (2021).
https://doi.org/10.1007/s00354-020-00118-8

30. Niemi, V., Renvall, A.: Solitaire zero-knowledge. Fundam. Inf. 38(1,2), 181–188
(1999). https://doi.org/10.3233/FI-1999-381214

31. Ono, H., Manabe, Y.: Card-based cryptographic logical computations using private
operations. New Gener. Comput. 39(1), 19–40 (2020). https://doi.org/10.1007/
s00354-020-00113-z

32. Robert, L., Miyahara, D., Lafourcade, P., Mizuki, T.: Card-based ZKP for connec-
tivity: applications to Nurikabe, Hitori, and Heyawake. New Gener. Comput. 40,
149–171 (2022). https://doi.org/10.1007/s00354-022-00155-5

33. Robert, L., Miyahara, D., Lafourcade, P., Libralesso, L., Mizuki, T.: Physical zero-
knowledge proof and NP-completeness proof of Suguru puzzle. Inf. Comput. 1–14
(2021, in press). https://doi.org/10.1016/j.ic.2021.104858

34. Ruangwises, S.: Two standard decks of playing cards are sufficient for a ZKP
for Sudoku. New Gener. Comput. 1–17 (2022, in press). https://doi.org/10.1007/
s00354-021-00146-y

35. Ruangwises, S., Itoh, T.: Physical zero-knowledge proof for ripple effect. Theor.
Comput. Sci. 895, 115–123 (2021). https://doi.org/10.1016/j.tcs.2021.09.034

36. Saito, T., Miyahara, D., Abe, Y., Mizuki, T., Shizuya, H.: How to implement a non-
uniform or non-closed shuffle. In: Mart́ın-Vide, C., Vega-Rodŕıguez, M.A., Yang,
M.-S. (eds.) TPNC 2020. LNCS, vol. 12494, pp. 107–118. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-63000-3 9

37. Shinagawa, K.: On the construction of easy to perform card-based protocols. Ph.D.
thesis, Tokyo Institute of Technology (2020)

38. Shinagawa, K.: Card-based cryptography with dihedral symmetry. New Gener.
Comput. 39(1), 41–71 (2021). https://doi.org/10.1007/s00354-020-00117-9

39. Takashima, K., Miyahara, D., Mizuki, T., Sone, H.: Actively revealing card attack
on card-based protocols. Nat. Comput. 1–13 (2021, in press). https://doi.org/10.
1007/s11047-020-09838-8

40. Toyoda, K., Miyahara, D., Mizuki, T.: Another use of the five-card trick: card-
minimal secure three-input majority function evaluation. In: Adhikari, A., Küsters,
R., Preneel, B. (eds.) INDOCRYPT 2021. LNCS, vol. 13143, pp. 536–555. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-92518-5 24

https://doi.org/10.1587/transfun.E100.A.3
https://doi.org/10.1587/transfun.E100.A.3
https://doi.org/10.1007/978-3-642-02270-8_36
https://doi.org/10.1007/978-3-030-68211-8_7
https://doi.org/10.1007/s00354-022-00153-7
https://doi.org/10.1007/s00354-020-00118-8
https://doi.org/10.3233/FI-1999-381214
https://doi.org/10.1007/s00354-020-00113-z
https://doi.org/10.1007/s00354-020-00113-z
https://doi.org/10.1007/s00354-022-00155-5
https://doi.org/10.1016/j.ic.2021.104858
https://doi.org/10.1007/s00354-021-00146-y
https://doi.org/10.1007/s00354-021-00146-y
https://doi.org/10.1016/j.tcs.2021.09.034
https://doi.org/10.1007/978-3-030-63000-3_9
https://doi.org/10.1007/s00354-020-00117-9
https://doi.org/10.1007/s11047-020-09838-8
https://doi.org/10.1007/s11047-020-09838-8
https://doi.org/10.1007/978-3-030-92518-5_24

	Card-Minimal Protocols for Three-Input Functions with Standard Playing Cards
	1 Introduction
	1.1 Card-Based Protocols with a Standard Deck of Cards
	1.2 Existing Protocols
	1.3 Contribution
	1.4 Related Work
	1.5 Outline

	2 Preliminaries
	2.1 Operations
	2.2 Random Cut
	2.3 Random Bisection Cut (RBC)
	2.4 The Niemi–Renvall AND Protocol
	2.5 Swapping by Commitment Value

	3 Three-Input Majority Protocol
	3.1 Two-Input or Protocol
	3.2 Idea
	3.3 Description of Protocol
	3.4 Correctness and Security

	4 Generic Protocol for Three-Input Functions
	4.1 Idea
	4.2 Generalizing the Niemi–Renvall and Protocol
	4.3 Generalizing Swap Operation by Commitment Value
	4.4 Description of Protocol
	4.5 Covered Functions

	5 Conclusion
	References

