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Abstract.  The degradation of electrocatalysts as a consequence of their dissolution in 
the operating conditions of fuel cells and electrolyzers remains one of the main challenges 
in electrochemical energy conversion. In order to investigate and predict the kinetics of 
dissolution of electrocatalysts in real conditions, the electrochemical on-line inductively 
coupled mass spectrometry (ICP-MS) technique was developed. This approach is 
employed in electrocatalysis research as a tool for enabling the detection of dissolved 
elements in the electrolyte going down to the parts-per-trillion (ppt) range and providing 
at the same time multielement analysis and a wide linear dynamic range of quantification. 
In this way, on-line ICP-MS has been successfully applied for fundamental studies of 
noble metal dissolution, and the previous works related to the particular case of platinum 
are revised in the present chapter.
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1 � On-Line Inductively Coupled Plasma Mass Spectrometry 
in Electrochemistry

The degradation of electrocatalysts as a consequence of their dissolution in the operat-
ing conditions of fuel cells and electrolyzers remains one of the main challenges in 
electrochemical energy conversion. In order to investigate and predict the kinetics of 
dissolution of electrocatalysts in real conditions, the electrochemical on-line induc-
tively coupled mass spectrometry (ICP-MS) technique was developed [1]. This 
approach is employed in electrocatalysis research as a tool for enabling the detection of 
dissolved elements in the electrolyte going down to the parts-per-trillion (ppt) range 
and providing at the same time multielement analysis and a wide linear dynamic range 
of quantification. In this way, on-line ICP-MS has been successfully applied for funda-
mental studies of noble metal dissolution [2, 3] and for the investigation of several 
electrocatalytic reactions such as oxygen and hydrogen evolution reactions (OER and 
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HER) [4, 5], hydrogen oxidation reaction (HOR) [6], and oxygen reduction reaction 
(ORR) [7]. Among the different ways for connecting the ICP-MS to an electrochemical 
cell, the scanning flow cell coupled to the ICP-MS (SFC-ICP-MS), in which the outlet 
of a V-shaped SFC is directly hyphenated to the sample introduction system of ICP-MS, 
stands out for its ability to screen stability and high-throughput activity of gradient 
composition libraries [8].

2 � On-Line ICP-MS in Platinum Stability Studies

Fuel cell cars use polymer electrolyte membrane fuel cells (PEMFCs) with Pt nanopar-
ticles for ORR at the cathode, primarily because of their better long-term stability in 
comparison to other electrocatalysts. However, even pure Pt catalysts degrade under 
real-life conditions, and this degradation is mainly linked to electro-oxidation and dis-
solution processes. Polycrystalline platinum dissolution was studied in both acidic and 
alkaline media by SFC-ICP-MS, and it was observed that the oxidation and subsequent 
reduction of the surface lead to transient dissolution, which is higher by a factor of two 
in base [9]. In addition, the results suggested that varying the pH does not modify the 
mechanism of the OER on Pt, since its dissolution rate is the same in acidic and alkaline 
solutions. More recently, investigations with Pt single-crystal electrodes have been car-
ried out, which offer the possibility of a more detailed understanding of these processes 
at the atomic level [10]. These studies have shown clear trends in the onset potential for 
dissolution and the amounts of dissolved Pt that can be correlated to the differences in 
the surface structure energies and coordination of the different well-defined surfaces. In 
this way, Pt(111) resulted to have a more positive onset potential for dissolution, and 
the generalized observed trend in dissolution rates and dissolved amounts was 
Pt(110) > Pt(100) > Pt(111).

The dissolution results for Pt single-crystal electrodes from on-line ICP-MS can be 
combined with in situ surface X-ray diffraction (SXRD) measurements, and by follow-
ing this approach, it was proposed that the differences in the onset potential for anodic 
dissolution on Pt(100) and Pt(111) have their origin in the different atomic structures of 
the initial oxide [11]. On Pt(111), the extracted Pt atom lies directly above its original 
site, and therefore the reversibility observed at low coverage is explained in terms of its 
facile return to that site. However, on Pt(100), the extracted Pt atom moves laterally 
away from its initial site and provokes the immediate extraction of a second atom, lead-
ing to the formation of a stripe structure. According to Density Functional Theory 
(DFT) studies, this mechanism would produce unstable surface atoms at strip ends that 
could dissolve both during the oxidation itself and during the subsequent oxide reduc-
tion, making the process irreversible from its onset. More recently, potentiostatic hold 
experiments for Pt(100) and Pt(111) have been carried out. This program allows sepa-
rating the anodic and cathodic dissolution peaks and studying oxidation and dissolution 
kinetics versus time. The fundamental knowledge obtained from model bulk electrodes 
will contribute to delve into the understanding of restructuring and dissolution pro-
cesses of Pt, which ultimately will provide guidelines for minimizing Pt catalyst degra-
dation, both in half-cell aqueous electrolyte and fuel cell environment.
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