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Abstract. Internet of drones (IoD) provides coordinated access, between drones
and users, over the Internet to controlled airspace. With advanced drone, mobile
and Artificial Intelligence (AI) technologies, today’s drones are equipped with
sophisticated onboard AI software that enhances drone services and our way of
life (e.g., package delivery, traffic surveillance). As IoD grows, there is a need
to effectively manage large-scaled drones with multiple regulation and resource
constraints, particularly energy usage. This paper presents preliminary work on
generic architecture and operations to lay foundations for intelligent drone man-
agement systems. By also introducing amethod to pre-determine estimated energy
consumption of deep neural net image analysis deployed in drones, the paper illus-
trates this work on managing the search rescue drone autonomy to decide on its
actions based on energy consumption. The proposed approach can be extended to
manage a network of drones and additional resource constraints including response
time, safety or environmental compliance and financial budget.
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1 Introduction

Internet of Things (IoT) is a key enabler to services that improve quality of our life.
Evolving from IoT, Internet of drones (IoD) [1, 2] provides an infrastructure for coor-
dinated access, between drones and users, over the Internet to controlled airspace. With
advanced mobile and AI (Artificial Intelligence) technologies, modern drones are more
affordable and equipped with sophisticated onboard smart software to enhance drone
capabilities (e.g., image recognition with deep neural net learning (DNN), navigation).
The applications of IoD are ample from traffic surveillance to data collection, to package
delivery to disaster mitigation and rescue [1, 3]. There is an increasing need to effec-
tively manage large-scaled drones with multiple resource (e.g., time, airspace, cost) and
regulation (e.g., environmental, safety) constraints, particularly energy usage. Without
good planning and energy management, the drone can exhaust its battery before it gets
to the destination or finish the mission.

Recent research in IoD deals with energy-efficient solutions e.g., optimizing trans-
mission power or flight time [4–6], harvesting energy or managing charging stations [3]
to increase the drone’s operating time. Little work has been done on energy management
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of the drones or energy modeling of the software, such as DNN, deployed in drones [3,
4, 7]. This paper presents preliminary work on generic architecture and operations for
intelligent drone management systems. The “intelligence” is contributed by its adap-
tiveness to dynamically changing conditions and constraints. The paper also proposes a
method to estimate energy consumption of DNN image analysis deployed in drones and
illustrates its use in managing the rescue drones to recommend appropriate actions based
on the remained energy. Unlike previous energy modeling [7], ours gives a method for
deriving energy measurements from the DNN configurations.

The rest of the paper is organized as follows. Sections 2 and 3 are our main contri-
butions of the proposed framework and drone energy models, respectively. The paper
illustrates and experiments on rescue drones in Sect. 4 and concludes in Sect. 5.

2 The Proposed Framework for Intelligent Drone Management

Consider a system of modern drones of various sizes, functions (e.g., capture image or
video, fly) and capabilities. For example, some are equipped with intelligent software
on board (e.g., to detect certain objects from an image captured by the drone, navigate,
or decide whether to fly back to the base or continue the excursion). Some may be able
to fly at high speed but for a short duration, whereas some may have a long battery life
but can only fly at medium to low speed. Our objective is to develop a framework for
building an intelligent system (e.g., adaptive to changing and uncertain situations) to
assist management of drones on a particular mission (e.g., drug delivery in rural area,
surveillance, or rescue search). In this paper, we focus on managing the drone autonomy
on its actions based on limited resource (i.e., energy). To convey the idea clearly, we
pick a case scenario of using drones to help find victims from a disaster (e.g., flood or
wildfires). Although we have not done this, we conjecture that the proposed approach
can be extended to manage a team of drones and additional resource constraints (e.g.,
time, safety or environmental compliance and budget).
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Fig. 1. An overall architecture of drone management framework.
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We will refer to the drone management system employing the proposed architec-
ture as RESCUER. Figure 1 shows an overview of RESCUER’s proposed architec-
ture that consists of three basic components: Inference Module, Knowledge Module
and Task Module (e.g., Recommender). The architecture is data/event driven where
the data are transmitted from external environments including sensors (e.g., tempera-
ture, weather/wind condition), human operators/users, and drone devices (e.g., image
or video), as shown to the left of Fig. 1. The data interact with RESCUER via its User
Interface to a reasoning module during problem solving. Each component is described
below.

InferenceModule: Includes an inference engine that provides basic reasoning mecha-
nisms (e.g., forwardorback-ward inferences) andaworkingmodule tomaintainproblem-
solving states of reasoning tasks. In each reasoning cycle, recent each event/data triggers
applicable reasoning operations from various tasks and select the most appropriate one
for execution, which in turn would produce new events initiating a new reasoning cycle.
Control mechanisms to select rules to act can use priorities, or meta-control rules [8].

Knowledge Module: Represents information about drones including type specifications
and models, functions and requirements (e.g., transmission), capabilities, and battery
life. These are used by the task module to assist drones to take appropriate actions. Note
that some of the knowledge can be generic (e.g., physics of drone flying) and some are
specific to task applications.

Task Module: Represents several computing tasks required or influence the recommen-
dation to the drone. For example, by “recognize object”, the drone analyzes the image
captured (using deep learning technology to recognize a target that it is searching). If the
result is positive, then it will send the image to RESCUER to send a team to rescue the
victim. This helps the drone to save transmission energy from transmitting all images
captured. The “energy consumption” quantifies energy usage so far, while the “energy
on board” calculates remaining energy that the drone has. Together with the “remain-
ing distance” to travel, the recommender can recommend the drone to 1) fly back (if
not enough energy, or environmental condition is not safe), or 2) continue the search
(if enough energy and more area to search, 3) transmit the image that detects a target
victim, and 4) alarm and increase speed when in danger.

Note that the proposed framework is general in that although the framework is applied
to drone rescuers, it is also applicable to other IoT application domains.

3 Energy Estimation of Drone’s Activities

This section describes a method to estimate energy consumption of different activities
of the drone. Drone actions (e.g., analyze image, transmit image, go back, continue
search, alarm) are driven by its awareness of remaining energy and the mission. The
total consumption of the drone is the summation of the consumptions of all activities.
Table 1 summarizes all but one of basic drone functions have estimated energy usage
based on published work [4, 9].
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Table 1. Energy consumption of some basic functions of drones.

Drone functions Energy consumption Variable descriptions

Hovering [4] ((mg)3/2πr2pnpρ)1/2t m: mass of the drone, g:
gravitational acceleration, rp:
radius of the propellers, np:
number of the propellers, and
ρ: air density

Transition [4] (Flying)
∑n−1

i =1

(
pfull/vfull

)
di,i+1 pfull: hardware power of the

drone at full speed, vfull: full
speed, n: #locations, di,i+1
distance from location i to i
+ 1

Transmission [10] (ηp + ps)(s/(b log(1 + (pG/N0b)) η: coeff. of transmission
power, p: transmission power,
ps power of the drone when
no transmission, s: data size
to transmit, b: bandwidth, G:
channel power gain between
the drone and the gateway,
N0: power spectral density

3.1 Hovering Energy

The hovering energy (Ehov) is the energy the drone consumes while remaining stationary
in the air [11]. It depends on hovering power phov and transmission time t, shown in (1).

Ehov = phovt (1)

phov = ((mg)3/2πr2pnpρ)1/2 (2)

The hovering power can be obtained by using (2) where m is the mass of the drone,
g is the gravitational acceleration, rp is the radius of the propellers, np is number of the
propellers, and ρ is the air density [4, 11].

3.2 Transition Energy

The transition (or flying; Efly) energy is the energy the drone consumes during moving
from one location to another. This can be obtained from hardware power of the drone
pfull when moving at the full speed vfull and distance di,i+1 between the location i and
location i + 1 [4]. Given n locations, the transition energy can be found using (3).

Efly =
∑n−1

i=1

(
pfull/vfull

)
di,i+1 (3)
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3.3 Transmission Energy

Transmission energy (Etrans) of the drone depends on transmission power p and trans-
mission time t [10]. The latter can be obtained by dividing the total number of bits to be
transmitted s by the transmission rate r. This gives,

Etrans = pt = p(s/r) (4)

The transmission rate r can be obtained from (5) where b is bandwidth, p is trans-
mission power, h is channel power gain between the drone and the IoD gateway and N0
is power spectral density of the Gaussian noise [6, 9, 10, 12].

r = b log(1 + (pG/N0b)) (5)

3.4 Software Energy

While estimating software energy can be easily done via electrical power measure-
ment, when designing a system with limited resource, the ability to pre-estimate energy
consumption without having to run them can be very useful.

Energy consumption of software is from computation (Ecomp) and data movement
(Edata). Ecomp is αnMACs, for a constant α and nMACs number of MAC (multiply-and-
accumulate) operations [7, 13]. For example, to compute p= ∑n

i = 0 wixi, each iteration i
takesoneMACoperation.Withn iterations, it takesnMACs.On theother hand, oneMAC
requires three data reads (forwi, xi andpi–1) and onewrite (i.e., newpartial result pi). Sup-
pose data moves between two memory levels: cache and DRAM with a cache hit rate h.
Data are first looked up in the cache and if they are not found (cache miss), they will be
fetched fromDRAMand store in cache. As a result, we can obtain datamovement energy
to be: Edata = �v∈V (βcacheav + βDRAM (1− h)av)pwhere βm is a hardware energy cost
per data access inmmemory and V is a set of data (e.g., input, output, weight), av is the

Fig. 2. Computation and associated data in CONV layer (left) and FC layer (right).
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numberofdataaccesses fordataof typev, andp, precisionofdata inbits (e.g., 8, 16).Thus,
total energyEsoftware is shown in (6).More details are in [14].

Esoftware = α nMACs + �v∈V (βcacheav + βDRAM (1 − h)av)p (6)

We propose amethod to estimate energy consumption for image analysis that applies
a popular trained DNN (Deep Neural Net) model, specifically the Convolutional Neural
Net (CNN) architecture, to detect a human (victim) object in the captured image. The
proposed energy model is different from our previous model [14]. However, both are
based on the same logic. As shown at the top of Fig. 2, the flow of computation in CNN
passes throughmultiple convolution (CONV) layers to extract features, Pooling (POOL)
to reduce the dimensions and fully connected (FC) layers for classification. The basic
computation of CONV and FC layers are shown at the bottom left and right of Fig. 2,
respectively. Due to space limitation, we will omit POOL layer and the derivation of
the number of MACs and data accesses for modeling energy in the CONV layer whose
details can be found in [4]. Below are energy models with dimensions of input, filter and
output which are specified in Fig. 2 (e.g., n1, n2, k, f, etc. in CONV).

CONV Layer Energy. First, we find nMACs. As shown in Fig. 2 (bottom left), each
CONV layer takes data input of size n1 × n1 × m and convolves them with each of the
f filters of size n2 × n2 × m to give a final output of size k × k × f . The convolution
process starts with a pointwise multiplication of an input plane with the filter plane of
the same dimension (i.e., n2 × n2 × m). This step takes n22 MACs. Then the results of
each plane are summed for each of m channels. Thus, a total number of MACs required
for convolving just one cell in this step is n22m (as denoted by A in Fig. 2). Since there
are k2 cells for each filter and f filters, and thus it takes a total of (n22m)(k2f ) MACs (as
denoted by B andC as a final count in Fig. 2). However, since each convoluted cell is fed
to an activation function whose computation requires naMACs MACs.With this additional
computation, the CONV layer requires a total of (n22m + naMACs)(k

2f ) MACs. Hence,
we obtain:

nMACs = (n22m + naMACs)(k
2f ) (7)

Next estimate data movement energy. As shown in Fig. 2 (bottom left), each input
data is accessed at least once for each filter requiring n12mMACs.As the filter slides over
the input, some of the input data are re-accessed. The number of input data re-accessed
is

∑t
i=2 cii where ci is the number of data that are reused i times and there is at most

t reuses. Thus, the number of “input” data accesses is (n12m + ∑t
i=2 cii)·f for f filters

(**). Similarly, each weight and each bias is accessed once for each output value. Since
for one cell and one filter, there are n22m weights and 1 bias, thus, a total “weight” and
“bias” accesses become n22m(fk2) (**) and (fk2) (**), respectively, for k2 cells and f
filters. Finally, for each of “output” value of n22m being accessed 2n22m times (for read
and write). Since there are k2f output values, thus number of “output” data accesses is
(2n22m)(k2f ) (**). Summing all (**)’s, a total number of data access is derived in (8).

aCONV = (n21m +
∑t

i=2
cii + 3n22mk

2 + k2)f (8)
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By substituting (7) and (8) in (6), a total energy consumption of a CONV layer can
be obtained as shown below:

ECONV = α(n22m + naMACs)k
2f + p[βcacheaCONV + (1 − h)βbDRAM aCONV ] (9)

FC Layer Energy. Each FC layer takes m neurons from previous layer. As shown
Fig. 2, for each of n neurons in the FC layer, we compute m weighted sums (argument
of an activation function f ). Thus, the total number of MACs in the FC layer is shown in
(10) where naMACs is the number of MACs used in the activation function (e.g., Sigmoid
takes one MAC (for a division) with extra computation γ for exponential function).

nMACs = n(m + naMACs) (10)

For data movement energy, we consider m input neurons, mn weights, n biases and n
output neurons in FC layer (or output layer). As shown in computation of Ai’s in Fig. 2,
each input xi is read n times while each weight and each bias are each read once. Thus,
a total number of data accesses for input, weight and bias would be mn, mn, and n,
respectively. Each output Ai includes read/write accesses of m products, yielding 2 m
data accesses. Since there are n output neurons, a total of number of data accesses for
output would be 2 mn. As a result, Total number of data accesses is obtained below.

aFC = 4mn + n (11)

By substituting (10) and (11) in (6), we obtain total energy of the FC layer as shown
in (12).

EFC = αn(m + naMACs) + p(βcache(4mn + n) + βDRAM (1 − h)(4mn + n)) (12)

4 Search and Rescue Drones: Experiments and Results

Consider a scenario of the IoD on a rescue mission, we set up simulations based on the
RESCUER management system developed from the framework architecture described
in Sect. 2. The IoD has 10 drones, each ofwhich takes 10 images. Comparing two drones,
one is a typical drone where all images captured will be transmitted whereas the other
is a RESCUER (or smart) drone that analyzes the image and transmits on if victims are
detected.

Table 2 shows that the typical drone consumes more transmission energy and has
higher total energy consumption. Consequently, it covers less distance and less number
of locations. The smart drone, on the other hand, performs better. The ability to select
what images to send allows the drone to save energy and spends them on searching. In
this particular instance, the transmission energy is reduced by about 70% and the drone
can visit 65% more locations. Figure 3 shows average energy breakdowns of 10 smart
drones that detect victims (thus, image transmission) randomly with probability of 0.3.
On the average, energy consumption is highest by software (or DNN) and lowest by
flying. Image analysis task takes more energy on the average than transmission.
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Table 2. Typical vs. RESCUER drones.

Typical RESCUER

Total Energy (J) 1922.94 1129.97

Transmission Energy (J) 1173.10 349.4

Software (DNN) Energy (J) 0 484.36

Hovering Energy (J) 651.48 194.04

Flying Energy (J) 98.36 102.17

Fig. 3. Average energy breakdown by activities.

In addition, we experiment how varying hop distances will impact energy consump-
tion. As shown in Fig. 4, for 100 m, the drones consume highest energy that gradually
decreases for longer hop length. Since the drone is assumed to take pictures, analyze,
and possibly transmit the pictures at every location, shorter hop distance means it has
to perform these tasks more frequently and marks more locations. As a result, the total
energy spent on these tasks is more than on traveling. Reversely, for 500 m, the drone
covers more distance and consumes less energy. They however visit, on average, about

Fig. 4. Effects of varying hop distances.
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280 less locations than that of 100 m setting. The randomly varied hop distance con-
sumes about the same energy as those of the 300 m hop distance. This may be because
average of the varied distance is close to 300 m.

Fig. 5. Image analysis & energy

Fig. 6. Image analysis & distance

Figures 5–8 investigates relationships among relevant factors that may impact the
mission including the number of images analyzed, distance, bandwidth, transmission rate
and energy consumption. Number of analyzed pictures directly affect software energy
and transmission energy, since it is the number of times the drone runs a DNN for victim
detection and decides whether to transmit the image or not. On the other hand, bandwidth
is a network resource which is not always plentiful. It can directly influence the drone’s
transmission and hovering energy.

As shown in Fig. 5, suppose the drone analyzes 5 images at every location, the total
energy is about 230 kJ compared to analyzing 20 images with 250 kJ of energy. The
more the images are analyzed, the more energy is consumed as expected. One may argue
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at the difference of 20 kJ may not be much, however, the distance covered can reduce
significantly.

Fig. 7. Bandwidth & transmission.

Fig. 8. Bandwidth & energy.

As shown in Fig. 6, the drone can travel about 113, 66, 35 and 18 km, with 5, 10,
20 and 40 analyzed images, respectively. The number of image processing impacts the
distance traveled because energy is spent more on software (and transmission), less are
spent on the travel. Figure 7 shows that high bandwidth gives high transmission rate.
This in turn reduces time to transmit, thus, transmission energy, hovering energy, and
the total energy consumption as shown in Fig. 8.

5 Conclusion

This paper presents a generic framework for building intelligent drone management
systems. We also present a method for estimating energy consumption of drone func-
tions, particularly the DNN deployed for object recognition in IoD and uses it in our
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illustration on RESCUER, an intelligent drone management. By focusing on the drone
autonomy, RESCUER recommends appropriate actions to drones based on the remain-
ing energy. Although we use simple scenarios and the experiments are preliminary, the
results conform with the variable effects as anticipated. Our future research includes
extending the framework to manage a network of drones, incorporating security and
privacy aspects, and accounting for additional resource constraints e.g., response time,
safety or environmental compliance and financial budget.
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