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Preface

The 1st Workshop on Computational Mathematics Modeling in Cancer Analysis
(CMMCA 2022) was held in conjunction with the 25th International Conference on
Medical Image Computing and Computer Assisted Intervention (MICCAI 2022) on
September 18, 2022. Due to the COVID-19 pandemic restrictions, CMMCA 2022 was
held virtually.

Cancer is a complex and heterogeneous disease that often leads to misdiagnosis
and ineffective treatment strategies. Pilot mathematical and computational approaches
have been implemented in basic cancer research over the past few decades, such as
the emerging concept of digital twins. These methods allow a deeper exploration
of cancer from the perspective of computational science, such as the mapping of
biological and computational correlations among multiple omics data at various scales
and views, in which the multimodal cancer data include, but are not limited to,
radiography, pathology, genomics, and proteomics. Motivated by rigorous mathematical
theory and biological mechanisms, the advanced computational methods for cancer data
analysis are robust and clinically practicable, which will result in strong interpretability
in combining clinical data and algorithms in an era of artificial intelligence.

CMMCA provides a platform to bring mathematicians, biomedical engineers,
computer scientists, and physicians together to discuss novel mathematical methods
of multimodal cancer data analysis. A major focus of CMMCA 2022 was to identify
new cutting-edge techniques and their applications in cancer data analysis in response to
trends and challenges in theoretical, computational, and applied aspects of mathematics
in cancer data analysis.

The workshop attracted worldwide attention, including experts in radiography,
pathology, and genomics multi-modality data, as well as learning-based imaging
processing and computational modeling for cancer analysis. All submissions
underwent rigorous double-blind peer review by at least two members (mostly three
members) of the Program Committee, composed of 26 well-known research experts
in the field. The paper selection was based on methodological innovation, technical
merit(s), relevance, the significance of results, and clarity of presentation. Finally, we
received 16 submissions, out of which 15 papers were accepted for presentation at the
workshop and inclusion in this Springer LNCS volume.

We are grateful to the Program Committee for dedicating their time to reviewing
the submitted papers and giving constructive comments and critiques, to the authors for
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submitting high-quality papers, to the presenters for excellent presentations, and to all
the CMCCA 2022 attendees from all over the world.

September 2022 Wenjian Qin
Nazar Zaki
Fa Zhang

Jia Wu
Fan Yang
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Abstract. Pathology is the gold standard for cancer diagnosis. Numer-
ous studies aim to automate the diagnosis based on digital slides, yet
its prognostic utilities lack adequate investigation. Besides the inher-
ent difficulties in predicting a patient’s prognosis, extracting informa-
tive features from gigapixel and heterogeneous whole slide images (WSI)
remains an open challenge. We present a computational pipeline that can
generate an embedded map to flexibly profile different cell populations’
local and global composition and architecture on WSIs. Our approach
allows researchers to investigate tumor cells and tumor microenviron-
ment based on these embedded maps of a reasonable size rather than
dealing with gigantic WSIs. Here, we applied this pipeline to extract the
texture patterns for tumor and immune cell types on the TCGA lung
adenocarcinoma dataset. Based on extensive survival modeling, we have
demonstrated that by pruning redundant and irrelevant features, the
final prediction model has achieved an optimal C-index of 0.70 during
testing. Our proof-of-concept study proves that the efficient local-global
embedded maps bear valuable information with clinical correlations in
lung cancer and potentially in other cancer types, warranting further
investigations.
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Keywords: Cell architecture · Whole slide image · Nuclei
classification · Lung adenocarcinoma · Survival analysis

1 Introduction

Pathologic assessments serve as the gold standard for cancer diagnosis. With
the adoption of whole slide image (WSI) scanners, tissue slides on glass can be
converted to digital format for downstream analysis. Recently, numerous arti-
ficial intelligence (AI) studies have sought to automate the tissue level diag-
nosis [4–7,15,18,22], with some even reported reaching pathologist-level perfor-
mance [11,19,22]. Compared to cancer diagnosis, there are less attentions paid
to predicting treatment response or survival [12,13,21]. Fundamentally, cancer
diagnosis is a classical detection or classification problem on the given slides. By
contrast, patient prognosis is a complex prediction problem, which can be driven
by both intrinsic (e.g., host anti-tumor immunity and performance status) and
extrinsic factors (e.g., treatment).

Pathology slide offers an avenue to quantify both tumor and host-intrinsic
properties. However, its huge size and high intratumor heterogeneity have
imposed significant challenges on distilling imaging patterns for survival pre-
diction. Existing WSI feature extraction techniques can be categorized into
two main paradigms: the patch-based approach [21] and the nuclei-based app-
roach [13]. The patch-based method first divides WSIs into regular patches,
then extracts patch level features using pre-trained convolutional neural network
(CNN) models, and finally develops prediction models using multiple-instance
learning (MIL) in combination with attention mechanisms [3,21]. One major
limitation of patch-based approach is the black-box mechanism when extracting
patch-wise features, which is lack of biological explanation. On the other hand,
the nuclei-based approach aims to characterize the diverse cell population as
well as their spatial interactions, which has a transparent interpretation. The
framework typically starts with nuclei segmentation, followed by characterizing
nuclei’s morphology features [7,14] or constructing nuclei-level graph models to
quantify intratumor heterogeneity [13]. However, graph models need to tune
many hyperparameters and are computationally expensive. Thus they mainly
apply to the predefined region-of-interest (ROI) on WSIs.

Here, we aim to advance the nuclei pipeline by proposing an informative
embedded map based on the nuclei’s types (tumor, immune, or miscellaneous)
and their geographical locations, and subsequently profiling these cells’ compo-
sition and architecture on WSIs to assess their implication of prognosis. In par-
ticular, we have implemented our pipeline on the TCGA lung adenocarcinoma
dataset and demonstrated promising performance. This general framework has
the potential to predict survival and treatment response across different cancer
types.
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2 Method

Figure 1 illustrates the proposed pipeline of slide embedding and its application
in survival prediction, which mainly contains nuclei segmentation and classifi-
cation on WSIs, embedding WSIs to smaller maps to summarize different cells’
composition and architecture, texture feature extraction from embedded maps,
and the machine learning model for survival prediction.

Fig. 1. The pipeline of encoding a whole slide image (WSI) into an embedded map
and extracting texture features for survival prediction. (a) Splitting WSI into multiple
blocks; (b) Block-wise nuclei segmentation and classification; (c) Encoding WSIs to
embedded maps based on nuclei’s locations and classification; (d) Extracting features
from embedded maps; (e) Survival prediction based on extracted features.

2.1 Nuclei Segmentation and Classification on WSIs

We adopted a transfer learning through the HoVer-Net [9] pre-trained on the
PanNuke dataset [8] for nuclei segmentation and classification. The common
way to analyze WSIs is to first detect tissue regions and then apply machine
learning models to the detected regions. However, this way has certain prac-
tical challenge, where most exiting tissue detection algorithms cannot general-
ize well on WSIs, and as such, manual hyperparameters tuning is needed to
obtain reasonable results. To address this, we proposed a block-based approach
to cope with large WSIs. For each given WSI, we first split it into smaller blocks
(Fig. 1a) and here we defined the block size to be 8k × 8k pixels. Then we applied
the HoVer-Net to these blocks separately (Fig. 1b) to segment and label cells.
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After obtaining block-wise outputs, we stitch them together for the cell classi-
fication maps on WSIs. Based on the PanNuke dataset, the cells on the lung
adenocarcinoma slides were classified into six categories, including neoplastic,
non-neo epithelial, inflammatory, connective, dead, and non-nuclei [8]. Here, we
excluded the non-nuclei category, kept the neoplastic and inflammatory, and
grouped non-neo epithelial, connective and dead into the “miscellaneous” cate-
gory. Then segmented nuclei are labeled into three categories, namely neoplastic
(tumor), inflammatory (immune), and miscellaneous (Fig. 1b).

2.2 Cellular Composition and Architecture Profiling on WSIs

For a WSI scanned at ×20 (0.50 µm/pixel), it usually surpasses ten thousand
pixels in each dimension and embodies millions of different cells. It remains chal-
lenging to extract the cellular features from gigantic WSIs and to visualize them.
Here we proposed a novel embedding approach to summarize the pivotal cellu-
lar composition and architecture on WSIs, while significantly reducing the size.
Given a cell annotated WSI, we glided through it with a window (size 64 × 64 pix-
els) to encode the abundance of three cell types (neoplastic, inflammatory, and
miscellaneous) in three separate channels separately. Then an embedded map
(Fig. 1c) with 64-fold dimensional reduction from the raw WSI was obtained.

Fig. 2. Examples of raw whole slide images and their embedded maps.

We can adjust the embedding window based on the sizes of WSIs to balance
between the preservation of local cellular architecture and the embedding effi-
ciency. For instance, when large glass slides are scanned at ×40, we can further
increase the window size to obtain reasonably sized embedded maps for down-
stream analysis. Although the embedding process compresses certain degree of
local nuclei information, it offers a holistic view of the detailed global architec-
tures of different cell population as shown in Fig. 2.
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2.3 Global Cell Architecture Profiling and Prediction Model
for Survival

Given the embedded maps with dimension comparable to natural images, the
existing feature extraction and prediction tools developed for natural images
can be directly applied to them. To quantify the intratumoral heterogeneity
from these maps, we employed the texture analysis to derive the gray-level co-
occurrence matrix (GLCM) features [10]. In details, the GLCM texture analysis
was used to extract features on the three channels (neoplastic, inflammatory, and
miscellaneous) separately (Fig. 1d). For each channel, 24 GLCM features were
obtained, including: autocorrelation, joint average, cluster prominence, clus-
ter shade, cluster tendency, contrast, correlation, difference average, difference
entropy, difference variance, joint energy, joint entropy, informational measure of
correlation (IMC) 1, informational measure of correlation (IMC) 2, inverse differ-
ence moment (IDM), maximal correlation coefficient (MCC), inverse difference
moment normalized (IDMN), inverse difference, inverse difference normalized
(IDN), inverse variance, maximum probability, sum average, sum entropy, and
sum of squares [17]. These GLCM features have been widely used in radiomics
studies to characterize tumor heterogeneity at the tissue level [20]. Totally, we
obtained 72 GLCM features to quantify the cell heterogeneity for WSIs.

We then performed survival analysis on the extracted GLCM features using
the Cox proportional hazard (CPH) model (Fig. 1e). The clinical endpoint of this
study is overall survival (OS), defined as the time from the cancer diagnosis until
death. Patients alive at the last follow-up are censored. Based on the quantitative
risk score (i.e., the CPH model predicted hazard), we stratified the patients into
low-risk and high-risk groups using an optimal cut-off derived from the quantile
classification scheme [2]. The cut-off value was measured based on the training
set, and then identically applied to testing set. We employed the Kaplan-Meier
estimator and the two-sided logrank test to evaluate the significance of patient
stratification and used Antolini’s concordance index (C-index) to measure the
goodness of fit for the model’s discrimination power [1].

3 Experiments and Results

3.1 Dataset Description

We evaluated the proposed pipeline on the TCGA lung adenocarcinoma dataset
from the TCGA data portal1. We retrieved the survival and phenotype informa-
tion from UCSC Xena2. The study concentrated on WSIs scanned at ×20 with
available overall survival (OS) data. After the data curation and quality control,
we identified 220 patients with 344 WSIs. We split patients into training and
testing cohorts using the propensity score matching (PSM) algorithm to ensure
a balanced splitting, where training and testing cohorts had similar characteris-
tics of gender, age, race, TNM stages, overall stage, and OS [16]. The splitting
1 https://portal.gdc.cancer.gov/.
2 https://tcga.xenahubs.net.

https://portal.gdc.cancer.gov/
https://tcga.xenahubs.net
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ratio was 7:3, and we obtained 153 patients with 236 slides for training and 67
patients with 108 slides for testing.

3.2 Results and Discussion

We first utilized all extracted GLCM features (n = 72) to model patients’ risk
of death by stratifying them into the high- vs. low-risk groups and denoted it
as the baseline model. As shown in Fig. 3a, we observe that the baseline model
manage to stratify patients with significant difference in OS with hazard ratio
(HR): 2.37 (1.51–3.71), p = 0.00012, C-index = 0.65 on training and HR: 2.01
(1.01–3.99), p = 0.039, C-index = 0.63 on testing.

Fig. 3. Survival analysis via all extracted GLCM features and two feature selection
manners. (a) Survival analysis with all 72 GLCM features; (b) Feature selection based
on ANOVA analysis; (c) Feature selection via rank-based recursive feature elimination.

Next, two feature selection algorithms were evaluated to investigate whether
removing redundant or less informative features while retaining those with high
prognostic value would improve patient stratification. The first approach is based
on analysis of variance (ANOVA), that measures the correlation of individual
features to the OS in the univariate analysis. We assumed those highly infor-
mative features with p-values less than 0.05 and kept 23 out of 72 features
for model development. The performance of the ANOVA selected features is
shown in Fig. 3b, which has slightly inferior performance compared to the base-
line model. A possible reason is that ANOVA measures the feature importance
by only correlating it to binary labels (alive or dead), while ignoring the event’s
duration. Besides, we have removed nearly 70% features, while some of them
might have complementary prognostic values. The second approach is a rank-
based recursive feature elimination (RFE). This technique firstly rearranges all
the features from the least to the most informative ones based on their p-values.
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Then it removes one feature at a time according to its ranking orders and refits
the CPH model. If the refitted model’s performance doesn’t drop compared to
the previous model, we will remove this feature. The RFE algorithm has achieved
the HR value of 3.26 on the testing cohort when eliminating 6 features, which
outperforms the baseline model (Fig. 3c).

Fig. 4. GLCM feature redundancy removal analysis. (a) GLCM feature correlation
matrix; (b) Survival analysis performance evolution with the recursive feature elimi-
nation.

Furthermore, GLCM features usually contain redundant information, which
might lead to its performance drop during validation. To eliminate dependen-
cies and collinearity between GLCM features, we conducted correlation analysis
on GLCM features and showcased the correlation matrix in Fig. 4a. When the
absolute value of the correlation coefficient between two features is higher than
0.9, we dropped the feature with a higher p-value. 13 out of 72 GLCM features
were retained for survival modeling.

Figure 5a presents the survival model based on 13 GLCM features with HR:
2.79, C-index = 0.65 on training and HR: 2.54, C-index = 0.68 on testing.
This suggested the benefits of removing feature redundancy on improving the
survival model performance. We further applied the RFE to refine the model,
which selected 7 out of 13 features and achieved the optimal performance on
both training and testing cohorts, as shown in Fig. 4b. The CPH model can be
defined as:

ln h(t)
h0(t) = − 0.23 ∗ ICorrelation − 0.07 ∗ NAutocorrelation − 0.02 ∗ NIDMN

+ 0.07 ∗ IAutocorrelation + 0.12 ∗ IClusterProminence

+ 0.14 ∗ NClusterProminence + 0.23 ∗ NInverseV ariance,

(1)

where N and I represent neoplastic (tumor) and inflammatory (immune) embed-
ded maps, respectively. Interestingly, all 7 selected features quantifying the het-
erogeneity derived from tumor and immune cell maps. Besides, the correlation of
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the immune map (ICorrelation) is markedly associated with improved survival,
and the tumor map’s inverse variance (NInverseV ariance) is mostly associated
with decreased survival.

Fig. 5. Survival analysis after removing feature redundancy. (a) Survival analysis on
remained features after correlation-based feature filtering; (b) Recursive feature elimi-
nation on correlation-filtered features.

There were several limitations to our study. First, the WSI nuclei segmen-
tation and classification have high computational cost. It normally took around
2 h to complete one WSI with a dimension of 64,000 × 48,000 pixels with DGX
A100 server (8 NVIDIA A100 GPUs). Second, nuclei segmentation and classifica-
tion performance are the cornerstones of the effectiveness of the embedded maps.
Most reported nuclei segmentation performances from HoVer-Net are robust and
decent, with a Dice coefficient score higher than 0.8 [7,9]. While the performance
of these nuclei classification expects further improvements. Third, the cohort of
TCGA lung adenocarcinoma adopted for the pipeline evaluation is relatively
small. The prognostic models shall be evaluated in large prospective cohorts for
more rigorous assessments. Forth, the underlying biology of these pathomics fea-
tures is yet to be determined. Analysis of available genomic and transcriptomic
pathways of high- vs. low-risk populations may provide deeper biological insight.
At last, the features we extracted from these embedded maps only scratch its
surface to profile the tumor microenvironment. GLCM features extracted from
the cell architectural maps only quantify three cell categories independently. In
the future, we will focus on the co-localization of interested cell populations to
further mine clinically relevant features from these maps.
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4 Conclusion

We present a computational pipeline that can generate an embedded map to
flexibly profile the local and global composition and architecture of different cell
populations on WSIs. Our approach allows researchers to investigate different cell
populations as well as tumor microenvironment based on these embedded maps
with a reasonable size, rather than dealing with gigantic WSIs. Thus, the existing
feature extraction and computer vision tools developed for natural images can
directly apply to these maps. As a proof-of-concept study, we implemented the
GLCM texture analysis. These extracted texture features have demonstrated
promising survival prediction performance based on the analysis of TCGA lung
adenocarcinoma dataset. These intriguing findings warrant future studies on
applying this framework to grading and treatment response in lung and other
malignancies.
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Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11071, pp.
174–182. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00934-2 20

13. Lu, C., et al.: Feature-driven local cell graph (FLocK): new computational
pathology-based descriptors for prognosis of lung cancer and HPV status of oropha-
ryngeal cancers. Med. Image Anal. 68, 101903 (2021)

14. Lu, C., Lewis, J.S., Dupont, W.D., Plummer, W.D., Janowczyk, A., Madabhushi,
A.: An oral cavity squamous cell carcinoma quantitative histomorphometric-based
image classifier of nuclear morphology can risk stratify patients for disease-specific
survival. Mod. Pathol. 30(12), 1655–1665 (2017)

15. Lu, M.Y., et al.: AI-based pathology predicts origins for cancers of unknown pri-
mary. Nature 594(7861), 106–110 (2021)

16. Rosenbaum, P.R., Rubin, D.B.: The central role of the propensity score in obser-
vational studies for causal effects. Biometrika 70(1), 41–55 (1983)

17. Van Griethuysen, J.J., et al.: Computational radiomics system to decode the radio-
graphic phenotype. Can. Res. 77(21), e104–e107 (2017)

18. Viswanathan, V.S., Toro, P., Corredor, G., Mukhopadhyay, S., Madabhushi, A.:
The state of the art for artificial intelligence in lung digital pathology. J. Pathol.
257, 413–429 (2022)

19. Wei, J.W., Tafe, L.J., Linnik, Y.A., Vaickus, L.J., Tomita, N., Hassanpour, S.:
Pathologist-level classification of histologic patterns on resected lung adenocarci-
noma slides with deep neural networks. Sci. Rep. 9(1), 1–8 (2019)

20. Wu, J., Mayer, A.T., Li, R.: Integrated imaging and molecular analysis to decipher
tumor microenvironment in the era of immunotherapy. In: Seminars in Cancer
Biology. Elsevier (2020)

21. Yao, J., Zhu, X., Jonnagaddala, J., Hawkins, N., Huang, J.: Whole slide images
based cancer survival prediction using attention guided deep multiple instance
learning networks. Med. Image Anal. 65, 101789 (2020)

22. Zhang, Z., et al.: Pathologist-level interpretable whole-slide cancer diagnosis with
deep learning. Nat. Mach. Intell. 1(5), 236–245 (2019)

https://doi.org/10.1007/978-3-030-00934-2_20


Is More Always Better? Effects of Patch
Sampling in Distinguishing Chronic

Lymphocytic Leukemia
from Transformation to Diffuse Large

B-Cell Lymphoma

Rukhmini Bandyopadhyay1 , Pingjun Chen1 , Siba El Hussein2 ,
Frank R. Rojas3 , Kingsley Ebare4, Ignacio I. Wistuba3, Luisa M. Solis Soto3,
L. Jeffrey Medeiros5, Jianjun Zhang6,7, Joseph D. Khoury8, and Jia Wu1,6(B)

1 Department of Imaging Physics, The University of Texas MD Anderson Cancer
Center, Houston, TX 77030, USA

jwu11@mdanderson.org
2 Department of Pathology, University of Rochester Medical Center,

Rochester, NY 14642, USA
3 Department of Translational Molecular Pathology,

The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
4 Department of Pathology, The University of Texas MD Anderson Cancer Center,

Houston, TX 77030, USA
5 Department of Hematopathology, The University of Texas MD Anderson Cancer

Center, Houston, TX 77030, USA
6 Department of Thoracic/Head and Neck Medical Oncology,

The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
7 Department of Genomic Medicine, The University of Texas MD Anderson Cancer

Center, Houston, TX 77030, USA
8 Department of Pathology and Microbiology, University of Nebraska Medical

Center, Omaha, NE 68198, USA

Abstract. Distinguishing chronic lymphocytic leukemia (CLL), accel-
erated phase of CLL (aCLL), and diffuse large B-cell lymphoma trans-
formation of CLL (Richter transformation; RT) has important clinical
implications that greatly influence patient management. However, dis-
tinguishing between these disease phases on histologic grounds may be
challenging in routine practice due to the presence of similar structures
and homogeneous intensity, among others. In this work, we propose a
whole slide image (WSI) level computational framework based on the
integration of deep transfer learning, patch level random sampling, and
machine learning modeling to distinguish CLL from aCLL and RT. The
motivation behind the proposed random sampling-based classification
is to address a fundamental question in WSI analysis: is it true that
more data is always better? To answer this question, we apply this
framework on a pilot cohort of 56 patients (total 95 WSIs). Interest-
ingly, we observe that the tested machine learning models demonstrate a
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robust performance with just 1% randomly sampled patches from WSIs,
on par with the model built on the entire WSI data. Among all three
tested machine learning algorithms, multi-instance learning (MIL) has
achieved the best prediction, outperforming SVM and XGBoost models.
Taken together, our pilot study shows that machine learning models can
potentially achieve a reasonable performance with a substantially lower
amount of data from WSIs. This observation will shed light on shaping
future WSI analysis, where we may reduce the computational burden
by using fewer numbers of patches rather than all the data in WSIs,
thereby improving computational efficiency. However, these results need
to be validated and cautiously interpreted, where the findings may be
fundamentally driven by the homogeneous appearance of CLL in pathol-
ogy slides. It remains unclear if this finding will hold up when testing is
performed on more heterogeneous cancer types.

Keywords: Chronic Lymphocytic Leukemia (CLL) · Accelerated
CLL · Richter Transformation (RT) · Random sampling · Patch level
analysis

1 Introduction

Chronic lymphocytic leukemia (CLL) is the most common leukemia in west-
ern countries and accounts for one-third of new leukemia cases every year [16].
CLL is usually a slowly progressive disease but it can transform into a more
clinically aggressive diffuse large B-cell lymphoma (DLBCL) in 10% of patients.
This transformation is also known as Richter transformation (RT) [1]. An inter-
mediate stage of disease progression known as accelerated phase CLL (aCLL)
has overlapping characteristics of both CLL and RT, which makes its diagnosis
challenging [5]. Accurate diagnosis/classification of CLL, aCLL and RT is clin-
ically important as this decision helps to determine the necessity of escalating
chemo-immunotherapy based on the disease progression.

In recent years, machine learning-based algorithms, especially deep learning,
have shown the potential for analyzing digital pathology slides. The applications
range from cell segmentation and subtyping to the detection of disease progres-
sion [2,10,14,23,27]. These algorithms perform disease diagnosis via either hand-
crafted pathomic features [8], or deep learning distilled features [3,21], or even
synergism of hand-crafted and deep features [13]. There are a few pilot studies
that have applied machine learning algorithms to the analysis of disease progres-
sion of CLL [4,5,12,13,18]. However, these studies hinge on pathologist anno-
tated region-of-interests (ROI). In contrast, few studies use whole slide images
(WSI) to classify CLL progression [25].

The patch-based approach is widely adopted to analyze WSIs [7,17,19], which
first splits WSIs into multiple patches, next performs inference on individual
patches, and then aggregates patch predictions for the WSI prediction via multi-
instance learning (MIL) [6,11,20,26]. For a gigapixel WSI, the number of split
patches can easily surpass 10,000, which causes enormous computational burden
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and delay the diagnosis speed. Currently, there are limited studies on the effects
of patch sampling on WSI diagnosis.

In this study, we propose a novel computational pipeline for automated clas-
sification of CLL, aCLL, and RT, and systematically investigate the effects of
patch sampling on WSI diagnosis. The main contributions are:

1. For WSI analysis, we aim to address a more central question: is it true that
more data is better? We seek to determine the minimum set of data needed
to distinguish CLL disease progression. Here, we apply patch level sampling
from WSIs at different percentages and investigate its relationship with the
model performance of classifying CLL, aCLL and RT.

2. From the application perspective, we have applied automated WSI level anal-
ysis for the classification of disease progression in terms of CLL, aCLL and
RT. By contrast, most previous studies relied on the selectively annotated
ROIs.

2 Proposed Methodology

In this section, we describe the methodology in detail and the overview of the
proposed pipeline is depicted in Fig. 1. It comprises of three modules, (a) WSI
preprocessing (b) Patch-level random sampling, and (c) WSI Classification.

Input Whole Slide Images
Tissue Segmenta�on

Preprocessing Whole Slide Images
Patch Feature Extrac�on

concat

concat

concat

Classifica�on

43

29

23

1024
1024

1024

Random Sampled
Features

average

average

average

average

average

average

Patch Level Random Sampling

CLL

RT

aCLL

ResNet50

ResNet50

ResNet50 CLL

aCLL

RT
XGBoost

CLL

aCLL

RT

CLL

aCLL

RT

SVM

Mul�-Instance
Learning (MIL)

1% Random Sampling

1% Random Sampling

1% Random Sampling

Fig. 1. Overview of the proposed pipeline: WSI patch features are extracted using
ResNet50; patch level random sampling is performed to reduce the number of patches
used for the WSI feature generation; Machine learning algorithms are trained and
evaluated for the classification of CLL, aCLL, and RT.
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2.1 WSI Preprocessing

The first step of our proposed method involves preprocessing of WSIs using
clustering-constrained-attention MIL (CLAM) [20]. For each WSI in the three
categories of CLL, aCLL and RT, an automated segmentation of the tissue region
is applied based on thresholding, and additionally the small gaps and holes are
filled by morphological closing operators. The foreground regions on the WSIs
are then stored for downstream processing. After segmentation, the patches of
size 1024×1024 are extracted from the foreground region. The patches along with
their co-ordinates are stored for further processing. After the patch extraction,
a pretrained deep CNN model ResNet50 is applied to convert each 1024 × 1024
patch into a 1024-dimensional feature vector [15]. The obtained feature vectors
are subsequently used for our proposed patch-level random sampling approach.

2.2 Patch-Level Random Sampling

Let, k be the number of patches extracted from each individual WSI of CLL,
aCLL and RT and Fk be the feature matrix of size 1024 × k obtained from
ResNet50. The number of patches k extracted from each slide for each category
(CLL, aCLL, and RT) varies from thousands to tens of thousands (resection slide
scanned at ×20 magnification). Let, n% be the sampling ratio which is used to
randomly sample patch features from Fk and results in the reduced number
of selected feature vector k × n% denoted as p. The feature matrix becomes
F1024×p after random sampling. We then perform the average pooling on the
feature vectors sampled for each slide and represent the outcome as,

Favg =
1
p

p∑

i=1

F1024×i. (1)

The averaged features obtained for each slide are then concatenated to obtain
feature matrices for each category. Let, FCLL, FaCLL and FRT be the concate-
nated averaged feature matrices for each category where FCLL has a dimension
of 1024 × C, FaCLL has a dimension of 1024 × A and FRT has a dimension of
1024 × R where C, A and R denote the total number of WSIs present in each
category. The final concatenated feature matrix is represented as,

Fall = [FCLL FaCLL FRT ], (2)

where Fall has a dimension of 1024× (C +A+R). Now, the feature matrix Fall

is fed as input to train different machine learning algorithms for classification of
CLL, aCLL, and RT.

2.3 WSI Classification

The proposed patch level random sampling approach is evaluated by classifi-
cation into three categories typical CLL, aCLL and RT using three different
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machine learning approaches, including SVM [24], XGBoost [9], and MIL [20].
For SVM and XGBoost, we train the classifiers on the random sampled and
average pooling feature matrix Fall from the whole feature set, and for MIL,
we use random sampled patch level features without average pooling as input
instances. In addition, we repeat the random sampling and machine learning
modeling multiple times to evaluate its robustness.

3 Experimental Analysis

3.1 Dataset Description

For this study, a group of 56 patients with 95 specimens are included. Among
these 95 slides, 43 slides are from 23 CLL patients, 23 slides are from 16 aCLL
patients and 29 slides are from 17 RT patients. Routine hematoxylin and eosin
(H&E) slides are scanned using Aperio AT2 scanners at an optical resolution of
×20 (0.50 µm/pixel). Scanning is performed in three batches within the same
day, using the same scanner and settings.

3.2 Results and Discussion

First, we aim to check the effects of random sampling on patient-level stratifica-
tion. Given the average pooled patch features for individual patients, we embed
the whole population to the latent feature space with t-SNE [22], as shown in
Fig. 2(a). Without loss of generality, we randomly sample 1% patches from each
patient’s WSI to embed them in the latent feature space, and we repeat this
procedure 100 times which generates a population for three disease categories.
Next, we combine the mean of the whole population with 1% sampled patches
repeated 100 times to observe their alignment. The combined t-SNE plot in
Fig. 2(b) signifies that mean of the complete feature points are well aligned with
the 1% random sampled feature population of each category.

We perform a 3-fold cross-validation to train and test three machine learning
models including CLAM, SVM and XGBoost. During the training and testing
cohort splitting, we make sure that the slides from the same patient are only
present in one cohort to prevent patient level information leakage. The 3-fold
cross-validation without random sampling for SVM and XGBoost is used as a
baseline for comparison. The first two splits contain 63 training and 32 testing
slides and the last split contains 64 training and 31 testing slides. In MIL using
CLAM, the first split contains 61 training, 9 validation and 25 testing slides. The
second split contains 71 training, 9 validation and 15 testing slides and the third
split contains 62 training, 11 validation and 22 testing slides. The performance
is reported on the testing slides for SVM, XGBoost, and CLAM.

In Fig. 3 we compare the performance of SVM, XGBoost and CLAM for five
different patch sampling. We gradually increase the random patch selection from
5 patches, 10 patches, 0.1%, 0.5%, and 1%, and then repeat for 10 times in the
3-fold cross-validation. We observe that the performance of individual models
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Fig. 2. Comparison of t-SNE plot: (a) Average t-SNE plot without random sampling;
(b) t-SNE plot with 1% random sampling repeated 100 times, combined with average
t-SNE plot.

Fig. 3. Performance comparison of CLAM, SVM, and XGBoost on different patch
sampling strategies.

improves when feeding more patches. Interestingly, when 1% patches are sam-
pled, the machine learning models start to saturate and reach the performance
of models trained with all WSI patches. Besides, the MIL approach (CLAM) has
significantly outperformed the classical SVM and XGBoost, possibly due to its
superior way of handling the patches in a weakly supervised manner.

In Fig. 4, we demonstrate the classification accuracy of SVM for CLL, aCLL
and RT using the confusion matrix for each fold of the 3-fold cross-validation.
In particular, we show the classification accuracy with 1% random sampling
(first row in Fig. 4) and without random sampling (second row in Fig. 4) which
gives the overall average accuracy of 0.57 and 0.58 respectively. Similarly, overall
average accuracy of XGBoost algorithm with 1% random sampling (first row in
Fig. 5) and without random sampling (second row in Fig. 5) are 0.58 and 0.59,
respectively. Also, the overall average accuracy of CLAM algorithm with 1%
random sampling (first row in Fig. 6) and without random sampling (second row
in Fig. 6) are 0.65 and 0.62, respectively. The observed equivalent classification
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Fig. 4. Confusion matrix for SVM: 1st and 2nd row represent the accuracies for 1%
randomly selected patches and without random selection patches which gives average
accuracy of 0.56 and 0.58 respectively; column represents the confusion matrix for the
3-fold cross-validation.

Fig. 5. Confusion matrix for XGBoost: 1st and 2nd row represent the accuracies for 1%
randomly selected patches and without random selection patches, which gives average
accuracy of 0.57 and 0.59 respectively; column represents the confusion matrix for the
3-fold cross-validation.
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Fig. 6. Confusion matrix for CLAM: 1st and 2nd row represent the accuracies for 1%
randomly selected patches and without random selection patches which gives average
accuracy of 0.65 and 0.62 respectively; column represents the confusion matrix for the
3-fold cross-validation.

performance between individual machine learning models with and without ran-
dom sampling signifies that our proposed patch level random sampled feature
selection idea can potentially reduce the computational burden for WSI level
analysis without negatively impacting the model’s performance.

Although, we achieve decent performance using patch-level random sam-
pling, our study has some limitations. In CLL disease progression, the intensity
and texture homogeneity in the H&E slides may result in similar classification
performance for models with and without random sampling. It remains to be
investigated how the proposed pipeline will perform when testing in much more
morphologically heterogeneous cancer types. Also, as the MIL has performed
best among all the three machine learning algorithms, we plan to further incor-
porate the attention mechanism in our proposed pipeline to identify the most
informative patches and thereby improve the classification performance.

4 Conclusion

A patch level random sampling-based computational classification pipeline is
proposed to reduce the computational burden by selecting fewer number of
patches rather than brute-force approach that goes over all the patches of WSIs.
We have demonstrated the power of this framework to diagnose progression and
transformation of CLL into aCLL and RT. Among the three machine learning
algorithms, MIL has the optimal performance. It performs robustly with just 1%
randomly sampled patches from the WSIs, similar to the model trained with all
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available data. Taken together, this approach paves a way for us to efficiently
handle the WSI level analysis in blood cancer and other cancer types.
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Abstract. We attempted to investigate the Radiomic feature (RF)
repeatability and its agreements across imaging modalities and head-and-
neck cancer (HNC) subtypes via image perturbations. Contrast-enhanced
computed tomography (CECT), CET1-weight, T2-weight magnetic res-
onance images of 231 nasopharyngeal carcinoma (NPC) patients, and
CECT images of 399 oropharyngeal carcinoma (OPC) patients were ret-
rospectively analyzed. Randomized translation and rotation were imple-
mented to the images for mimicking scanning position stochasticity. 1288
RFs from unfiltered, Laplacian-of-Gaussian-filtered (LoG), and wavelet-
filtered images were subsequently computed per perturbed image. The
intra-class correlation coefficient (ICC) was calculated to assess RF
repeatability. The mean absolute difference (MAD) of the ICC and the
binarized repeatability consistency between image sets were adopted to
evaluate its agreements across imaging modalities and HNC subtypes.
Bias from feature collinearity was also investigated. All the shape RFs
and the majority of RFs from unfiltered (≥83.5%) and LoG-filtered
(≥93%) images showed high repeatability (ICC ≥ 0.9) in all studied
datasets, whereas more than 50% of the wavelet-filtered RFs had low
repeatability (ICC < 0.9). RF repeatability agreements between imag-
ing modalities within the NPC cohort were outstanding (MAD < 0.05,
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consistency > 0.9) and slightly higher between the NPC and OPC cohort
(MAD = 0.06, consistency = 0.89). Minimum bias from feature collinear-
ity was observed. We urge caution when handling wavelet-filtered RFs
and advise taking initiatives to exclude underperforming RFs during fea-
ture pre-selection for robust model construction.

Keywords: Radomics · Head and neck cancer · Repeatability

1 Introduction

Radiomics involves computerized extraction and analysis of a myriad of quantita-
tive radiomic features (RFs) with high throughput from medical images, such as
computed tomographic (CT) and magnetic resonance (MR) scans, for divulging
cancer biologic and genetic traits [8]. It has offered enlightening insights into can-
cer diagnosis [4], prognostication [20], and treatment response prediction [18].
Nevertheless, the clinical applicability of these radiomic models has largely been
impeded by the lack of studies assessing the RF robustness in their models [2,9].
As highlighted in several excellent review articles, repeatability and reproducibil-
ity of RFs are crucial for reaching reliable and consistent conclusions between
studies [12,13,16]. In particular, high repeatability, referring to RFs that remain
stable when imaged multiple times if the conditions keep unchanged [14], is the
first and foremost criterion towards clinical utility. Further, identifying high or
low repeatable RFs that are generalizable across different cancer subtypes will
provide the radiomics community with direct perceptivity for selecting reliable
radiomic features and building robust predictive models for implementing pre-
cision medicine.

Efforts with an attempt to bridge this important gap in knowledge mainly
focused on test-retest patient images [6,10,21]. They have underlined the pro-
nounced impacts of scanning position variations on RFs repeatability. Notwith-
standing, there are noteworthy shortcomings in their studies. First, the impact
of segmentation variations on RFs repeatability is often inherent in a test-retest
study, where segmentations of region-of-interest are separately delineated on test
and retest images, which hinders direct interpretations of the influences on RFs
repeatability caused purely by positional discrepancies. Secondly, the prolonged
time-interval between test and retest images, in the case of 2-week apart, might
disregard the implications of intra-tumoral microbiologic changes during that
period of time, which itself might lead to dramatic disparity in RFs between
the two scans. Thirdly, the limited sample size owing to the need for recruiting
consented patients renders their conclusions less statistically convincible.

To address these limitations, we attempted to deploy our in-house developed
image perturbation framework, taking reference from a previous work by Zwa-
nenburg et al. [21], to mimic a vast amount of scanning position stochasticity
via large patient cohorts of nasopharyngeal carcinoma (NPC) and oropharyngeal
carcinoma (OPC). To our best knowledge, the RF repeatability against scanning
position variations in head and neck cancer (HNC) is yet to be explored, and
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there are no relevant publications with multiple imaging modalities. The main
objectives of this study were (i) to ascertain the repeatability of RFs against
scanning position stochasticity via image perturbations in both cohorts and (ii)
to examine their generalizability across CT and MR imaging modalities among
NPC patients. Meanwhile, we sought (iii) to assess their generalizability among
HNC subtypes via a publicly available OPC dataset.

2 Methods and Materials

Figure 1 illustrates the overall study workflow. Two HNC cohorts were enrolled
in this study: an internal NPC cohort and a publicly available OPC cohort. The
NPC cohort consists of three image modalities, which are contrast-enhanced CT
(CECT), contrast-enhanced T1 weighted (CET1-w) MR, and T2 weighted (T2-
w) MR. Only CECT images were studied for the OPC cohort. We evaluated the
RF repeatability generalizability across image modalities and cancer subtypes
by multiple comparisons.

Fig. 1. Overall study workflow.

2.1 Patient Cohorts

A total of 250 biopsy-proven (Stage I-IVB) NPC patients who received can-
cer treatment at a local hospital between 2012 and 2016 were retrospectively
screened, and 231 patients that had same-institution MR images and eligible
target contours were enrolled in the study. CECT images of 492 (Stage I-IV)
OPC patients between 2005 and 2012 were downloaded online, and 399 patients
who have eligible target contours were enrolled in this study. In the internal
NPC cohort, the primary gross-tumor-volumes of NPC were manually delin-
eated on axial CT slices co-registered with MR images by oncologists specialized
in head-and-neck cancer with accreditations. In the external OPC cohort, expert
radiation oncologists manually segmented primary disease gross volumes.
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2.2 Image Preprocessing, Perturbation, and Feature Extraction

All the calculations in image preprocessing, perturbation, and feature extraction
were performed by our in-house developed Python-based (3.7.3) pipeline using
the SimpleITK (1.2.4) [1] and PyRadiomics (2.2.0) package [7]. All the image
processing parameters were listed in Table 2. Image perturbations were applied
to each pair of the preprocessed original-resolution image and ROI mask during
isotropic resampling. Two perturbation modes, rotation (θ ∈ [−20◦, 20◦], step
size = 5, around central z-axis) and translation (μ ∈ [0.00, 0.80], step size = 0.2,
along all three dimensions), were implemented following the procedures proposed
by Zwanenburg et al. [21] to mimic variations in scanning setup positions dur-
ing image acquisition. In this study, 40 perturbation parameter sets (θ and μ)
were randomly chosen without replacement from the 1125 possible combinations.
Detailed feature extraction parameters were listed in Table 2. Feature computa-
tion was performed on the perturbed images using PyRadiomics. A total of 1288
RFs (14 shape features, 91 from the unfiltered image, and 91× 13 from filtered
images) was computed per perturbed image.

2.3 RF Repeatability and Repeatability Agreement

Feature repeatability was quantified using the lower 95% confidence interval of
one-way, random, absolute intraclass correlation coefficient (ICC). The calcu-
lation was performed by our in-house developed algorithm following the equa-
tions presented by McGraw et al. [11]. The ICC for each RF was binarized to a
threshold of 0.9 to classify high and low RF repeatability, as adopted in previous
literature [17]. The repeatability agreement between two image sets was assessed
using two metrics. The mean absolute difference (MAD) of the ICC was com-
puted between the two compared datasets for each RF category, irrespective of
the chosen ICC threshold. We also evaluated the RF repeatability consistency
between image sets. It is quantified as the ratio of the commonly-high/-low
repeatable RFs binarized by the specified ICC threshold of 0.9.

2.4 Feature Collinearity

We analyzed the bias of our results by evaluating feature collinearity through
two sub-analyses. First, we analyzed whether the inter-feature correlation affects
the skewness of RF repeatability. We followed the analysis procedure proposed
by Fiset et al. [5] and compared the feature repeatability distributions between
all the extracted features and the independent features selected by KMeans
clustering. Quantitatively, we compared the ratios of low-repeatable features
(ICC < 0.9) between all the extracted features and the independent features for
each image set. Second, how ROI volume dependency affects repeatability was
also investigated. ROI volume is one highly repeatable feature by definition and
a common prognostic factor for many disease types [3]. For each feature category
and image set, the high-repeatable portion of volume-independent features was
compared with the ratio relative to all the extracted features. The squared value
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of the Pearson correlation coefficient was used to quantify the volume correlation,
and a threshold of 0.6 was chosen to determine whether an RF correlates with
volume.

3 Results

3.1 RF Repeatability in Both NPC and OPC Cohorts

All the shape RFs and most unfiltered RFs (NPC:≥95.6%, OPC:83.5%) and
LoG-filtered RFs (NPC:≥93.0%, OPC:93.6%) was highly repeatable against the
studied positional variations, which is also visualized as the dominating blue-
shaded regions in Fig. 2. However, more than half of the wavelet RFs in all
the analyzed image sets had low repeatability, as shown in Table 3. Within the
wavelet-filtered categories, we observed that applying high-pass wavelet filters on
more dimensions or on the slice direction (from LLL to HLL/LHL to HHL/**H)
caused a significant increase in low-repeatable RFs (Table 3, from 3.3–13.2% to
31.3–41.2% to 69.7–80.0%) and visualized by the increasing fractions of green-
shaded regions in Fig. 2.

Fig. 2. Visualization of category-based feature (RF) repeatability, binarized according
to a threshold of ≥ 0.9 for the median intra-class correlation coefficient (ICC). The
green vertical lines represent low repeatability (ICC < 0.9) and the blue ones represent
high repeatability (ICC ≥ 0.9). Within each category, features are sorted based on the
ICCs of NPC CECT images and aligned at the same horizontal positions for all the
image sets. (Color figure online)
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3.2 Agreement of RF Repeatability Across Imaging Modalities
and HNC Subtypes

For all the extracted RFs, high repeatability agreements were observed between
any pair of the studied NPC image sets (MAD < 0.05, consistency > 0.9). As
shown in Fig. 3a–c, shape, unfiltered, and LoG-filtered RFs expressed the highest
repeatability agreements in terms of MAD (<0.02) and consistency (>0.92).
Wavelet-LLL/-HLL/-LHL showed the intermediate agreement with small MAD
(<0.03) but lower consistency (0.83–0.98). The remaining wavelet-filtered RFs
demonstrated the lowest repeatability agreement in terms of both MAD (0.04–
0.14) and consistency (0.70–0.98). The color agreements in Fig. 2 visualized such
repeatability agreements. Of note, 28.5% of all the extracted RFs (367/1288)
with low repeatability were commonly found across all the imaging modalities
within the NPC cohort (Table 3).

Fig. 3. Dual y-axis plots demonstrating intraclass correlation coefficient (ICC) abso-
lute difference and the accuracy of binarized repeatability across the studied datasets.
Distributions of ICC absolute difference across imaging modalities of NPC patients
(a–c) and between NPC and OPC CECT images (d) are represented as blue boxes,
and the repeatability accuracies using the threshold of 0.9 are drawn as green curves
with triangle points. (Color figure online)

RF repeatabilities were slightly lower between CECTs of the NPC and OPC
cohort (MAD = 0.06, consistency = 0.89) for all the extracted RFs than the
inter-modality repeatability agreements. Similar patterns of repeatability agree-
ments that exist across imaging modalities were also observed across HNC sub-
types, as shown in Fig. 3d. Shape, unfiltered, and LoG filtered RFs had the
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highest repeatability agreement (MAD < 0.05, consistency ≥ 0.87), followed by
wavelet-LLL/-HLL/-LHL (MAD: 0.02–0.05, consistency: 0.83–0.96). RFs from
HHL-/**H-wavelet-filtered images showed the lowest repeatability agreement in
terms of MAD (≥0.1) and consistency (0.69–0.83). Meanwhile, a significant pro-
portion of RFs within the five wavelet-filtered categories had low repeatability
(73–80% for NPC cohort and 70% for OPC cohort). Of note, 30% of all the
extracted RFs (383/1288) with low repeatability were commonly found across
the CECT images of the two HNC subtypes.

3.3 Feature Collinearity

The number and ratios of low/high-repeatable feature between the independent
and all the extracted features are listed in Table 1. Notably, the differences in
low-repeatable feature fractions are 0.06 maximum among all the four image
sets. The portion of low/high repeatable features underwent minimum changes
(maximum absolute difference = 0.06) after excluding all the volume-correlated
features, as demonstrated in Fig. 4. The proportion of RFs with high volume
correlation and high repeatability fluctuates between 0.06 and 0.1 for all the
feature categories except shape features.

Table 1. Comparison of high repeatable feature counts and ratios between all the
extracted features and independent features after clustering.

All Independent

Count Ratio Count Ratio

NPC, CECT 836 0.65 163 0.66

NPC, CET1-w MR 870 0.67 172 0.66

NPC, T2-w MR 849 0.66 182 0.70

OPC, CECT 840 0.65 156 0.59

4 Discussion

Results of our study suggested that the majority of the shape, unfiltered, and
LoG-filtered RFs demonstrated high repeatability (ICC ≥ 0.9) in all the studied
image modalities and HNC subtypes. Notwithstanding, over 50% of the wavelet-
filtered RFs exhibited weak repeatability, irrespective of image modalities and
HNC subtypes. Notably, we observed numerous interesting fashions within the
wavelet-filtered category. One example can be visually perceived in Fig. 2, where
images with high-pass filtering on more dimensions demonstrated decreased fea-
ture repeatability. Specifically, wavelet-HHH and wavelet-LLL expressed an over-
whelming disparity in RF repeatability.
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Fig. 4. Stacked bar plots containing the fractions of high-low volume correlated and
high-/low repeatable radiomics features in each feature category for the four studied
image sets.

The lower repeatability of RFs from wavelet-filtered images and their dis-
tinct patterns could partially be ascribed to the principle of the wavelet filter.
A high-pass wavelet filter collects noisy and sharp edge signals, while a low-pass
filter smooths the images. Hence, high-pass filtering could result in a more het-
erogeneous distribution of pixel values along the applied axis. Our perturbation
algorithm alters two axes directions, which might elucidate our observation that
the more dimensions the high-pass-filter applies to, the fewer repeatable RFs
remain, and that HHH-wavelet RFs had the worst performance.

Our data demonstrated high repeatability agreements in all the compared
image sets in general (MAD ≤ 0.06, consistency ≥ 0.89). The marginally drop
in the agreement between cancer subtypes, compared to the inter-modality agree-
ment, might be attributed to the discrepancies in ROI volumes. The OPC cohort
has smaller ROI volumes (Fig. 5). The higher surface-to-volume ratios caused by
smaller volumes led to larger relative variations of image intensity distributions
within ROIs, contributing to the decreased RF repeatability under the applied
perturbations. Herein, we speculate the impact of the rigid perturbations on RF
repeatability might, to a large extent, depend directly on image filters and the
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inherent image characteristics such as ROI volume, rather than on the types
of image modalities and cancer subtypes. Nevertheless, there might be other
contributing factors and are worthy of further investigation.

In light of the progressively increasing adoption of wavelet-filter within the
radiomics community in recent years [15,19], our scrutiny of category-based RF
repeatability is of paramount importance for RF pre-selection and robust model
construction. Of note, various studies reported that over 90% of the key features
in their models originated from wavelet-filtered images [15,19]. However, among
the selected wavelet RFs reported in the literature for HNC cases in MR images,
we only observed high repeatability in 17/36 RFs, while certain extremely under-
performing RFs (ICC ≤ 0.5) were noted (Table 4). Although our study inten-
tionally focused on revealing positional variation dependence of RF repeatability,
we, herein, argue that an even larger proportion of the underperforming (espe-
cially wavelet-filtered) RFs would likely be foreseen when additional factors come
into play. Thereby, we stress our pressing concerns on cautious handling of the
wavelet-filtered RFs within the radiomics community.

Our study has limitations that need to be addressed in future studies. First,
the perturbation algorithm might not fully mimic the positional variations as
in real clinical scenarios owing to technical challenges in simulating small defor-
mations of the patient’s body between positionings. Second, although minimum
bias was found from feature collinarity, which was consistent with the conclu-
sion addressed by Fiset et al. [5], there are other potential confounding factors
including image filtering settings, bin size/bin counts in image discretization,
re-segmentation range, and radiomics calculation software. Third, a number of
works were not accomplished in our research for the sake of maintaining compre-
hensiveness while minimizing complexity. This includes investigating the impli-
cation of RF repeatability to predictive model building and the agreement of
our RF repeatability results in different cancer types or in a phantom study. We
encouraged the community to carry out further investigations and will consider
an extension of this work in the future.

5 Conclusions

In conclusion, although most RFs from unfiltered and LoG-filtered images
demonstrated high repeatability, more than half of the wavelet-filtered RFs
had poor repeatability, regardless of imaging modalities and HNC subtypes.
Besides, RF repeatability agreements between imaging modalities were outstand-
ing, while slightly worse between cancer subtypes. Minimum bias was observed
from feature collinearity. Herein, we urge caution when handling wavelet-filtered
RFs and advise excluding underperforming RFs during feature pre-selection for
robust model construction.
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6 Appendix

Table 2. Image preprocessing and feature extraction parameters.

CECT CET1-w MR, T2-w
MR

N4B bias correction
maximum iterations

N/A [50, 40, 30]

Normalization reference
structure

N/A Brainstem

Normalization rescale factor N/A 25

Pixel value offset 2000 2000

Resample pixel size (mm) [1, 1, 1] [1, 1, 1]

Anti-aliasing low-pass filter Gaussian, β = 0.97 Gaussian, β = 0.97

Image/mask interpolation
algorithm

Trilinear Trilinear

CT image intensity rounding No N/A

Mask partial volume
threshold

0.5 0.5

Interpolation grid alignment Align grid origins Align grid origins

Image thresholding ±3σ ±3σ

Translation distances (pixel) [0.0, 0.2, 0.4, 0.6, 0.8] [0.0, 0.2, 0.4, 0.6, 0.8]

Rotation angles (degree) [−20, −15, −10, −5, 0, 5,
10, 15, 20]

[−20, −15, −10, −5, 0,
5, 10, 15, 20]

Image discretization bin size 10 10

Image filters Unfiltered,
Laplacian-of-Gaussian,
Wavelet

Unfiltered,
Laplacian-of-Gaussian,
Wavelet

Kernel size of
Laplacian-of-Gaussian filter
(mm)

[1, 2, 3, 4, 6] [1, 2, 3, 4, 6]

Wavelet filter starting level 0 0

Wavelet filter total level 1 1

Wavelet filter type Coilf1 Coilf1

Wavelet filter decompositions [LLL, HLL, LHL, LLH,
LHH, HLH, HHL, HHH]

[LLL, HLL, LHL, LLH,
LHH, HLH, HHL,
HHH]

Feature class Shape, firstorder, glcm,
glrlm, glszm, gldm, ngtdm

Shape, firstorder, glcm,
glrlm, glszm, gldm,
ngtdm
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Table 3. Distribution of low repeatability radiomics feature across different imaging
modalities and HNC subtypes

Tumor subtype NPC OPC

Image modality CET1-w MR T2-w MR CECT CECT

Low
repeatable
features
(ICC >
0.9)

Shape 0% 0% 0% 0%

Unfiltered 0% 4.4% 3.3% 16.5%

LoG filtered 3.5% 7.0% 4.0% 6.4%

Wavelet filtered LLL 3.3% 7.7% 7.7% 13.2%

HLL, LHL 31.3% 35.2% 33.0% 41.2%

HHL, **H 75.2% 73.0% 80.0% 69.7%

All wavelet 55.2% 55.4% 59.2% 55.5%

All 32.4% 34.1% 35.1% 34.8%

Commonly
low-
repeatable
features

28.5% N/A

29.7% 29.7%

Table 4. Repeatability of wavelet feature used as final selected features in previous
literature. Feature repeatabibilty was quantified as intra-class correlation coefficient
(ICC). Low repeatable RFs were marked by star (*).

Feature (ICC) Image modality

HLL-wavelet Category

HLL-first-order-median (0.94) CET1-w MR

HLL-glrlm-run-percentage (0.98) CET1-w MR

HLL-glcm-correlation (0.90) CET1-w MR

HLL-glcm-cluster-prominence (0.95) T2-w MR

HLL-gldm-dependence-entropy (0.98) T2-w MR

HLL-gldm-small-dependence-low-gray-level-emphasis (0.61) T2-w MR

HLL-ngtdm-complexity (0.90) T2-w MR

LHH-wavelet Category

LHH-first-order-mean (0.92) CET1-w MR

LHH-first-order-mean (0.90) T2-w MR

LHH-first-order-median (0.75) CET1-w MR

(continued)
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Table 4. (continued)

Feature (ICC) Image modality

LHH-glszm-gray-level-non-uniformity-normalized
(0.30)*

CET1-w MR

LHH-glszm-small-area-high-gray-level-emphasis (0.50)* CET1-w MR

LLH-wavelet Category

LLH-first-order-mean (0.98) CET1-w MR

LLH-first-order-median (0.93) CET1-w MR

LLH-first-order-mean (0.99) T2-w MR

LLL-wavelet Category

LLL-glcm-cluster-shade (1.00) CET1-w MR, T2-w MR

LLL-glcm-inverse-variance (1.00) T2-w MR

LLL-glrlm-short-run-low-gray-level-emphasis (0.89) T2-w MR

LLL-glrlm-long-run-high-gray-level-emphasis (0.99) T2-w MR

HHL-wavelet Category

HHL-glszm-zone-size-non-uniformity-normalized (0.67) CET1-w MR

HHL-first-order-mean (0.62) T2-w MR

HHL-glcm-sum-average (0.70) T2-w MR

HLH-wavelet Category

HLH-first-order-skewness (0.70) CET1-w MR

HLH-glcm-informational-measure-of-correlation-1 (0.66) CET1-w MR

HLH-glcm-informational-measure-of-correlation-1 (0.62) T2-w MR

HLH-glcm-informational-measure-of-correlation-2 (0.62) T2-w MR

HLH-first-order-rms (0.86) T2-w MR

HLH-glcm-autocorrelation (0.45)* T2-w MR

LLH-wavelet Category

LLH-glrlm-long-run-high-gray-level-emphasis (0.66) CET1-w MR

LLH-first-order-skewness (0.90) CET1-w MR

LLH-glcm-cluster-shade (0.89) T2-w MR

LLH-glcm-correlation (0.63) T2-w MR

LLH-ngtdm-strength (0.75) T2-w MR

LLH-glszm-size-zone-non-uniformity-normalized (0.17)* T2-w MR

LHL-wavelet Category

LHL-glszm-small-area-high-gray-level-emphasis (0.86) CET1-w MR
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Fig. 5. Category-based binary radiomics feature repeatability separated by volume
groups for (a) CECT, CET1-w MR, and T2-w MR of the NPC cohort and (b) CECT
of the NPC cohort and CECT of the OPC cohort. The top figure is the histogram of
the ROI volume for the NPC patient cohort, and the dashed black lines indicate the
four threshold values for patient grouping.
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Abstract. Whole Slide Image (WSI) classification is an important part
of pathological diagnosis. Although previous approaches (such as DSMIL
and CLAM) have achieved good results, the classification performance
is still unsatisfactory because the learned features of WSI lack discrim-
ination and the correlation among sub-characteristics of tumor images
are ignored. In this paper, we proposed a Metric Learning Constraint
Network (referred to as MLCN). Particularly, MLCN benefits from two
aspects: 1) It enhances the discriminative power of features by enlarg-
ing inter-class distance and narrowing intra-class distance in both slide-
level and patch-level. 2) It learns a more powerful feature aggregator
by proposing the bilinear gated attention mechanism to capture rela-
tions among sub-characteristics of tumor issues. Experiments on CAME-
LYON16 and TCGA Kidney datasets validate the effectiveness of our
approach, and we achieved state-of-the-art performance compared to
other popular methods. The codes will be available soon.

Keywords: Deep learning · Pathological image · Whole Slide Image
classification · Metric learning · Attention mechanism

1 Introduction

Histopathology tissue analysis plays a critical role in cancer diagnosis and
prognosis. Particularly, pathological images classification is the core task in
histopathology tissue analysis.

Traditionally, doctors classify pathological images with the naked eye. With
the development of technology, Computer Aid Diagnosis (CAD) has become pop-
ular. As the most widely used pathological image in CAD, WSI (Whole Slide
Image) is the digital scanning results of histopathology tissues [12,13]. Since a
WSI contains millions of cells, is of high resolution and occupies a great amount
of memory, it becomes impossible to directly analyse it. Generally, a WSI is
divided into many patches for subsequent process. In this context, WSI classi-
fication includes two types: strongly supervised learning and weakly supervised
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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learning. Strongly supervised learning means that each patch in WSI has its
own label, while weakly supervised learning refers to that all patches in WSI
only have a slide-level label. In practice, patch-level annotations of WSIs are
too hard to obtain because it requires a lot of labor and great professional-
ism. Thus researchers pay more attention to weakly supervised learning, which
models WSI classification as a MIL (Multi-Instance Learning) problem [23]. In
traditional machine learning-based MIL, many works, such as Citation-kNN [26],
EM-DD [27], MI-Kernels [28] and so on, are proposed. But these methods have
the possibility of high errors, need complex algorithm selection and consume
large amounts of time and space. Consequently, more researchers pay atten-
tion to deep learning-based MIL approaches [17,18,31], which usually comprise
two stages: learning representations and representations aggregation. Learning
representations encodes patches of a WSI into patch-level embeddings or scores
with CNNs, while representation aggregation summarizes the patch-level embed-
dings or scores to generate the slide-level embedding or score using MIL pooling
functions, which includes max-pooling [14], mean-pooling [15], Noisy-AND [24],
attention mechanism [1] and so on. Recently, many deep learning-based MIL
works have achieved good results, such as [1,2,4,5]. However, there still exist
two challenges which limit the performance of WSI classification.

Firstly, the learned representations lack discrimination. Creating a WSI needs
multiple processes [19]: slicing, placing, staining and scanning, and it’s easy to
introduce unrelated noises, such as wrinkles, blur and color variance of tissue
slices. Thus, pathological images are more likely to have large differences within
the same category and small differences between different categories. In response
to it, some machine learning-based works use metrics like bag distances or bag
similarities to enforce intra-class compactness and inter-class discrepancy [29].
However, there is no research to enhance feature discrimination with deep learn-
ing [29]. Since poor feature discrimination will directly affect the classification
accuracy, how to enlarge inter-class distance and minimize intra-class distance
with deep learning becomes an urgent topic for WSI classification.

Secondly, existing attention mechanisms in representations aggregation are
not powerful enough. It is known that some sub-characteristics of tumor images,
such as color, texture, shape and size, are not independent of each other in clin-
ical diagnosis. And there is specific correlation among these sub-characteristics,
which is of great importance for WSI analysis. Although attention-based aggre-
gators are proved to be the most effective in MIL pooling, existing atten-
tion mechanisms are still too trivial to capture the correlation among sub-
characteristics of tumor images, which prevents the model from learning richer
information about WSIs and undoubtedly limits the classification performance.

To address these challenges, we proposed a novel Metric Learning Constraint
Network (refered to as MLCN). MLCN uses learned attention to aggregate the
patch embeddings extracted by encoder to get slide-level features, which are
then used for label prediction. Particularly, the main innovations of MLCN lie
in improving the attention mechanism and enhancing the discrimination of fea-
tures. To improve the attention mechanism, we model the correlation among



MLCN for WSI Classification with Bilinear Gated Attention Mechanism 37

sub-characteristics of tumor images with bilinear operation, which is inspired by
[6]. Then, it is combined with the gated attention mechanism [1] to learn more
powerful attention and aggregate features more effectively. And we name the
new attention mechanism as bilinear gated attention mechanism. To enhance
the discrimination of features, we proposed center cluster loss, which is inspired
by some typical metric learning-based works [9,10,20]. Learning a center feature
for each class of WSIs, center cluster loss not only penalizes distances between
the learned slide-level features and their corresponding center features, but also
penalizes the relative distances among center features, patch-level features of key
instances and patch-level features of non-key instances. In the course of training,
the loss could enforce intra-class compactness and inter-class discrepancy in both
slide-level and patch-level. More details about MLCN will be illustrated in the
Method section. Experiment results on two public datasets show that our MLCN
outperforms other popular methods has achieved state-of-the-art performance.

2 Method

MLCN contains two key innovations: bilinear gated attention mechanism and
center cluster loss. Specially, it uses bilinear gated attention mechanism to aggre-
gate patch-level embeddings extracted by pretrained CNN model to get slide-
level embeddings, then center cluster loss is used to constrain feature space in
both patch-level and slide-level. We’ll first introduce bilinear gated attention and
illustrate center cluster loss, then illustrate our MLCN from a global perspective.

2.1 Bilinear Gated Attention Mechanism

Attention mechanism is an important MIL pooling approach. Let H =
{h1, h2, ..., hN}, where H is a bag that contains all the patch embeddings of
a WSI, and hi ∈ R1×D, i ∈ {1, 2, ..., N} is the embedding of patch i. Then
attention-based MIL pooling is given by

Z =
N∑

i=1

aihi (1)

In the state-of-the-art attention mechanism, Gated attention mechanism [1],
ai is given by

ai =
exp{wT (tanh(V hT

i )
⊙

sigm(UhT
i ))}

∑N
j=1 exp{wT (tanh(V hT

j )
⊙

sigm(UhT
j ))} (2)

where V ∈ RC×D, U ∈ RC×D, and w ∈ RC×1 are linear projection layers.
⊙

is element-wise multiplication. According to [1], the output of tanh(·) contains
both positive and negative values, which prompts proper gradient flow. And
sigmoid activation function is introduced to bring more non-linearity in [−1, 1]
since tanh(x) is nearly linear for x ∈ [−1, 1]. The gated attention learns from
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the gated mechanism in [22] and captures similarities among instances. And it
is widely used in many works [2,30].

However, the gated attention mechanism only focuses on learning relations
among instances but ignores the correlation of sub-characteristics. It is known
that there is specific correlation among these sub-characteristics of tumor images,
such as color, texture, shape and so on. The correlation is also an critical fac-
tor in pathological diagnosis. Consequently, capturing the correlation of sub-
characteristics would benefit WSI classification.

We proposed bilinear gated attention mechanism to model the correlation.
Let ti = tanh(V hi), ti ∈ R1×C and it represents the output feature of patch i
produced by linear projection V and tanh(·); si = sigm(Uhi), si ∈ R1×C and
it represents the output feature of patch i produced by linear projection U and
sigm(·). Each feature channel in ti and si denotes a sub-characteristic. Then the
pairwise interactions among sub-characteristics are given by

X =
N∑

i=1

tTi si (3)

X is a C × C matrix. The formulation models the correlation among sub-
characteristics of tumor patches by calculate cosine similarity. And it is a bilinear
operation since there are two factors and the output of the equation is linear in
either factor when the other is held constant. Then softmax operation is applied
on X to get X’. Elements of each row in X’ are limited to (0,1) and the sum of
them equals to 1, which is given by

X ′ = softmax(X, dim = 1) (4)

X’ is then used as a score matrix to fuse with the gated attention mechanism
to learn more powerful attention and help aggregate features more effectively,
which is given by

ai =
exp{wT ((tanh(V hT

i )
⊙

sigm(UhT
i ))X

′
)}

∑N
j=1 exp{wT ((tanh(V hT

j )
⊙

sigm(UhT
j )X ′))} (5)

2.2 Center Cluster Loss

There are two kinds of features in WSI classification: patch-level features and
slide-level features. Since slide-level features are aggregated with patch-level fea-
tures, the discrimination of patch-level features would affect the discriminative
power of slide-level features, while the discrimination of slide-level features is
closely related to classification performance. Thus we need to take into account
both slide-level and patch-level features when enhancing discriminative power.
Moreover, an important prior is that the label of key instances should be consis-
tent with the label of its slide. In this context, we proposed center cluster loss. It
learns a center feature xk for each class k of WSIs, k ∈ {1, 2, ...,K} and contains
two kinds of constraints: slide-level constraint and patch-level constraint.
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Slide-level constraint prompts the learned slide-level feature to move closer
to its corresponding class center. Let fs represents the slide-level feature of a
WSI, which belongs to class k. Then the constraint is given by

Ls =
1
2
||fs − xk||2 (6)

It penalizes distances between slide-level features and their corresponding center
features of class k. Relatively, the inter-class distances are enlarging in the course
of training, which enhances discriminative power of slide-level features.

Patch-level constraint penalizes the relative distances among center fea-
tures, patch-level features of key instances and patch-level features of non-key
instances. Let fp = {fp1, fp2, ..., fpN} denote the set of patch-level features of a
WSI, which belongs to class k. According to the attention score learned by bilin-
ear gated attention mechanism, we select top m instances with highest scores
and select bottom m instances with lowest scores. Among the top m instances,
we choose the instance that is most distant from the center feature of class k as
the positive instance, its features named as fpp. Among the bottom m instances,
we choose the instance that is closest to the center feature of class k as the
negative instance, its features named as fpn. And the patch-level constraint is
given by

Lp = log(1 + exp{||fpp − xk||2 − ||fpn − xk||2}) (7)

Through hard example mining and penalizing relative distances, the con-
straint prompts the patch-level features of key instances closer to center feature
xk and prompts the patch-level features of non-key instances more distant from
xk. Since the slide-level feature of a WSI is aggregated with all the patch-level
features and center feature xk is the ideal average of slide-level features, Lp

constraint increases the contribution of key instances and descreases the contri-
bution of non-key instances to the slide-level feature. What’s more, it enlarges
the distances between key instances and non-key instances, which enhances the
discrimination of patch-level features.

Finally, center cluster loss is given by

Lc = Ls + Lp (8)

Center cluster loss enhances the discriminative power of features in both slide-
level and patch-level, which strengthens the model’s ability to understand WSIs
and contributes to the performance of WSI classification.

2.3 A Global Perspective of MLCN

We integrated the two innovations into MLCN. Notice that as a loss that con-
strains features learning, center cluster loss is a part of total loss. To introduce
more priors to constrain feature space, we also apply the Instance-level Cluster-
ing, which is firstly proposed in CLAM [2], into our MLCN and we name it Li.
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Fig. 1. Metric Learning Constraint Network: First, X, the embeddings of all
patches in a WSI, which are extracted through pretrained ResNet50, are linearly pro-
jected to obtain patch-level features fp. Second, the patch-level features are aggregated
by bilinear gated attention mechanism to obtain slide-level features fs. And A is the
learned attention score. Third, classification loss, center cluster loss and instance-level
clustering loss are computed based on fs, fp and A to train the whole network. Notice
that ①,②,③,④ are corresponding operations mentioned in Sect. 2.1.

In addition, cross-entropy loss is used as a basic classification loss, and we name
it Lb. The total loss of MLCN is given by

L = Lb + λLc + γLi (9)

where λ and γ are balance factor. In a nutshell, MLCN is shown in Fig. 1, and
the details of it are illustrated in the caption. More details about Instance-level
Clustering [2] is shown in Fig. 2.

3 Experiments

3.1 Experimental Settings

WSI Processing. WSI processing contains two stages. The first stage is to
cut a WSI into patches. To avoid cutting blank areas, we apply the automated
segmentation algorithm in [2] on WSIs after they are read at a 64× downsampled
resolution. Then we crop 256×256 patches from the segmented foreground areas
and stack them according to their coordinates. The second stage is to extract
features for patches. A Resnet-50 model [8] pretrained on ImageNet [11] is used
here. And we take the output of block 3 and perform adaptive mean-spatial
pooling on it to generate a 1024-dim embedding for each patch. These patch
embeddings of a WSI serve as the input to MLCN.
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Fig. 2. Instance-level Clustering: The input is the concatenation of top m and
bottom m patch-level features selected in Sect. 2.2. A prior introduced here is that
cancer subtypes are mutually exclusive. It assumes that the labels of top-m instances
are the same as its slide-level label. We learn K fully-connected layers, which represents
K classes. Each FC layer projects the input to a 2m-length logits. Each loss is cross
entropy loss and Instance-level clustering loss is the sum of these losses.

Implementation Details. When training MLCN and validating its perfor-
mance, we use 10-fold monte carlo cross-validation. For each fold, we randomly
split the dataset into a training set (75%), a validation set (15%) and a test
set (10%). And we use the training set to train MLCN, with Adam [16] opti-
mizer, batch size set as 1, initial learning rate set as 0.0001 and weight decay
set as 0.00001. For each fold, the classification performance (AUC and ACC) on
validation set is used to filter the best model with the stopping criterion being
that the number of training epochs exceeds 50 and the validation loss has not
decreased for 20 consecutive epochs. Moreover, the λ and γ in center cluster
loss are separately set as 0.4 and 0.003 by our study. The m in hard example
mining is set as 8. C and D in Sect. 2.1 are seperately set as 256 and 512. The
experiments are performed on NVIDIA GeForce RTX 2080 Ti GPU.

3.2 Dataset

Camelyon16. Camelyon16 [3] is a public breast cancer lymph node metastasis
detection dataset, which includes two class: normal and tumor. It contains 271
images in the train set, with 160 of them normal and 111 of them tumor. It also
contains 129 images in the test set.

TCGA Kidney. TCGA Kidney dataset is made of kidney images from TCGA
projects [25], including TCGA-KICH (Kidney Chromophobe), TCGA-KIRC
(Kidney Renal Clear Cell Carcinoma), TCGA-KIRP (Kidney Renal Papillary
Cell Carcinoma). It contains 2068 images with 326 of them from TCGA KICH,
994 of them from KIRP and 748 of them from KIRC, in which only the slide-level
label is available. It is a 3-class dataset.
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3.3 Controlled Experiments

To study effects of our innovations, we conducted a controlled experiment. There
are 2 variables in this experiments: whether to use bilinear gated attention mech-
anism and whether to include center cluser loss. We did experiments to controll
with or without the two variables for a comparative study, as shown in Table 1.

Table 1. Experiment results of MLCN on four variant models.

ID BGA CCL Camelyon16 TCGA-Kidney

AUC ACC AUC ACC

M1 � � 0.884 0.840 0.979 0.914

M2 � � 0.904 0.864 0.981 0.917

M3 � � 0.913 0.870 0.98 0.920

M4 � � 0.914 0.878 0.982 0.921

In this table, BGA represents bilinear gated attention mechanism and CCL
represents center cluster loss. Then, M1 indicates the model without BGA and
CCL. Compared with M4, the attention in M1 is equation (2) and its loss is
Lb + γLi. M2 indicates the model with only BGA. Compared with M4, the
attention in M2 is equation (2). M3 indicates the model with only CCL. Com-
pared with M4, the loss in M3 is Lb + γLi. M4 indicates our MLCN with both
BGA and CCL. From the table, the comparison between M2 and M1 validates
that bilinear gated attention mechanism could help learn the correlation among
sub-characteristics of tumor images. The comparison between M3 and M1 val-
idates the efficacy of center cluster loss to enhance the discriminative power of
features. M4 outperforms the other three models on two datasets with 0.914
in AUC, 0.878 in ACC on Camelyon16 and 0.982 in AUC, 0.921 in ACC on
TCGA Kidney, which proves that the combination of BGA and CCL increased
the model’s ability to better understand WSIs.

Table 2. Experiment results for MIL aggregators

MIL aggregators Camelyon16 TCGA-Kidney

AUC ACC AUC ACC

Mean-pooling [15] 0.724 0.694 0.783 0.802

Max-pooing [14] 0.911 0.854 0.977 0.912

Standard attention mechanism [1] 0.906 0.862 0.98 0.918

Gated attention mechanism [1] 0.913 0.870 0.98 0.920

Bilinear gated attention mechanism 0.914 0.878 0.982 0.921



MLCN for WSI Classification with Bilinear Gated Attention Mechanism 43

3.4 Ablation Study for MIL Aggregators

To validate the effectiveness of bilinear gated attention mechanism, we compared
different MIL pooling approaches. In experiments, we only changed the MIL
pooling method and kept other settings the same. Experiment results are shown
in Table 2. The first two rows of the table are traditional MIL aggregators: mean-
pooling and max-pooling. The third row and fourth row are two recent attention-
based MIL pooling methods. The last row is our method. From the table, we learn
that our bilinear gated attention mechanism outperforms other four approaches
and has achieved better performance.

Table 3. Experiment results for different losses

Loss Camelyon16 TCGA-Kidney

AUC ACC AUC ACC

Lb 0.898 0.852 0.979 0.909

Lb + Li 0.904 0.864 0.981 0.917

Lb + Li + Lc 0.914 0.878 0.982 0.921

3.5 Ablation Study for Loss

To find out the effects of different components in the total loss, we performed
ablation study. We kept other settings the same but changed the loss function
in this experiment. In this table, Lb represents the basic classification loss: cross
entropy loss, Li represents Instance-level Clustering Loss, and Lc represents
Center Cluster loss, which are illustrated in Sect. 2.2. From the Table 3, we learn
that the combination of Lb and Li are better than only Lb, and the combination
of Lb, Li, Lc are better than the combination of Lb, Li.

3.6 Compare with State-of-the-Art Approahces

We compare MLCN with other SOTA deep MIL models, including MILRNN [4],
ABMIL [1], CLAM [2] and DSMIL [5]. Notice that for approaches designed for
two-class MIL problem, we calculate the final score for each class seperately to
handle multi-class problems on TCGA Kidney. From the Table 4, we learn that
MLCN outperforms other four approaches, with at least about 1.6%, at most
about 9.3% improvement. Compared with other approaches, MLCN learns the
correlation among sub-characteristics of tumor images by using bilinear gated
attention, and it enhances the discrimination of features by using center cluster
loss to constrain feature space. These innovations help boost the WSI classifica-
tion.
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Table 4. Comparison with other state-of-the-art methods

Methods Camelyon16 TCGA-Kidney

AUC ACC AUC ACC

MILRNN [4] 0.806 0.806 0.875 0.835

ABMIL [1] 0.865 0.845 0.923 0.889

CLAM [2] 0.884 0.840 0.979 0.914

DSMIL [5] 0.894 0.868 0.963 0.907

MLCN 0.914 0.878 0.982 0.921

4 Conclusion

In this paper, we proposed a metric learning constraint network with bilinear
gated attention mechanism, which not only captures the correlation among sub-
characteristics of tumor images but also enhances the discriminative power of
features in both slide-level and patch-level. Experiments on Camelyon16 dataset
and TCGA Kidney dataset validated the effectiveness of our innovations. Sur-
prisingly, our MLCN outperforms other popular methods and has achieved state-
of-the-art performance.
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Abstract. Nucleus detection in histopathology images is an instrumen-
tal step for the assessment of a tumor. Nonetheless, nucleus detection
is a laborious and expensive task if done manually by experienced clini-
cians, and is also prone to subjectivity and inconsistency. Alternatively,
the advancement in computer vision-based analysis enables the auto-
matic detection of cancerous nuclei; however, the task poses several
challenges due to the heterogeneity in the morphology and color of the
nuclei, their varying chromatin distribution, and their fuzzy boundaries.
In this work, we propose the usage of transformer-based detection, and
dub it NucDETR, to tackle this problem, given their promising results
and simple architecture on several tasks including object detection. We
inspire from the recently-proposed Detection Transformer (DETR), and
propose the introduction of a necessary data synthesis step; demon-
strating its effectiveness and benchmarking the performance of Trans-
former detectors on histopathology images. Where applicable, we also
propose remedies that mitigate some of the issues faced when adopting
such Transformer-based detection. The proposed end-to-end architec-
ture avoids much of the post-processing steps demanded by most current
detectors, and outperforms the state-of-the-art methods on two popular
datasets by 1–9% in the F-score.

Keywords: Nucleus detection · Computational histopathology ·
Transformer-based detection

1 Introduction

Early cancer detection and prognosis using imaging data has been major trend
up to now [1,7,12,14,23]. The accurate and timely analysis of a tumor envi-
ronment is critical to understand the tumor type, grading and severity, predict
the survival chance of the patient, and thus explore suitable plans of treat-
ment [21,25]. Information taken from a tumor environment is rich and heteroge-
neous, such as necrosis, angiogenesis, and host inflammatory response [25], which
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makes the analysis of said environment highly beneficial. One such imperative
assessment task is the accurate detection of nuclei in hematoxylin and eosin
(H&E) stained whole-slide images (WSIs), which provides instrumental infor-
mation such as the quantity of nuclei and their spatial arrangement, and can
be used to facilitate and improve other downstream tasks such as high-quality
segmentation of tissues [11]. Traditionally, nuclei detection is done manually, e.g.
through the usage of different protein markers on the different cells in a cancer-
ous tissue. However, such manual approaches suffer from several problems, such
as low throughput, inconsistent assessment, and observer-to-observer variability
[8] and require experienced personnel and extensive labor [25].

On the other hand, the continuous development of automatic, vision-based
computational histology opened the door for many potentially reliable solutions.
Nonetheless, automatic detection of nuclei remains challenging, and an improve-
ment in the performance is still needed [11,15,25]. This may be caused by sev-
eral problems such as poor fixation and staining or auto-focus failure during the
development of the slide [25], or may occur naturally due to the complexities
affected by the varying morphology or color of the nuclei, the diverse chromatin
patterns, and the arrangement of nuclei in cluttered groups [11,16,25].

Examples of the tools that have been proposed to tackle the task of auto-
matic detection of nuclei are numerous, and can be generally categorized into
two categories. Firstly, earlier methods employed several classical image anal-
ysis and machine learning tools such as clustering, watershed-based segmenta-
tion, over-segmentation followed by merging, background subtraction followed by
nuclear seed detection, morphological operation-based methods, support vector
machines, and random forests [2,9,19,31]. The performance of earlier methods
was suboptimal due to either requiring extensive development and discovery of
hand-crafted features to be used with learning-based methods, or relying on a
limited set of morphological structures, and failing to accommodate the versatile
setting of the task.

More recently, the majority of the proposed methods employ deep learning,
relying on its superior performance and automatic feature extraction. It was
shown in [5] that deep learning-based methods outperform methods that rely on
handcrafted features. The work in [27] employs convolutional neural networks
(CNNs) aided with prior information about cell shapes, which is either sup-
plied by an expert, or is incorporated as a trainable layer. In [4], U-net is used
to extract color and shape features and thereby segment the cells in the slide
image. This is followed by post-processing through erosion to refine the extracted
cell boundaries. The authors of [28] also employ CNNs, but additionally utilize
an unsupervised subset of the data through pseudo-labeling, thereby adopting a
semi-supervised learning paradigm. In [32], LadderNet was used as a CNN base
model, which is an extension of U-net, and shows an improvement in the perfor-
mance. In [25], the authors propose spatially-constrained CNNs, which enforce
the prediction probability of the pixels closest to the center of a nucleus. In [30],
a stacked sparse auto-encoder is used as a base model, and is followed by a soft-
max layer to classify patches into nucleus and non-nucleus patches. The main
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problem with the majority of current deep learning-based detection is requiring
complex pipelines that make predictions either relative to proposals, anchors,
or window centers, whose design strongly affects the performance of the detec-
tor. Additionally, these pipelines often demand post processing steps to merge
nearby predictions, and heuristics that assign prediction boxes to anchors, by
which the performance of the proposed solution is heavily affected [3].

To address this issue, the recently proposed Detection Transformer (DETR)
poses a suitable solution that combines the feature extraction prowess of
CNNs, with the simplified structure of Transformers. In this paper, we pro-
pose NucDETR, a detector inspired by the DETR model, which detects nuclei
in H&E WSIs, and demonstrate its superior performance to many of the current
state-of-the-art methods. We aim to surpass the current performance, while sim-
plifying the aforementioned surrogate tasks, by adopting an end-to-end pipeline
that detects all nuclei in WSIs simultaneously. We prepare NucDETR by train-
ing the base CNN backbone on a simple task that classifies patches into nuclei
and non-nuclei ones, prior to training it for detection. To achieve this, we pro-
pose a data synthesis routine that converts positive patches into their negative
counterparts, and use this hybrid data to train the backbone. The proposed
method is evaluated on two popular histology datasets and is compared against
multiple methods that showed promising results on them. Our contributions in
this paper can be summarized by the following:

– We propose the first Transformer-based nucleus detector in WSIs, NucDETR
and benchmark its performance on two popular histopathology datasets.

– We develop a backbone training routine that familiarizes the detection
pipeline with H&E stained WSIs, prior to training it for detection.

– We propose an original data augmentation method that converts positive
patches into negative counterparts, thus doubling the size of the data with-
out any labor overhead. We demonstrate the favorable effect of this step at
improving the performance of the detector. This method is agnostic to the
data type, and is generally suitable for data tackling cellular-level analysis,
making it usable by a large body of the community.

– We compare the performance of the proposed method with multiple methods
from the literature, highlight the strength and weakness points of the pro-
posed method, and suggest several improvements where applicable, as well as
future directions.

In the following, we will describe in detail the proposed methodology in
Sect. 2, where we describe the data augmentation routine, provide a brief descrip-
tion of the detection model, and discuss some practical consideration points.
In Sect. 3, we provide a description of the experimentation environment: the
datasets and the compared methods, and provide pictorial and quantitative
assessment of the results. Finally, we conclude with some closing remarks and
suggest some potential future directions.
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Fig. 1. NucDETR architecture, consisting of CNN model for feature extraction, posi-
tional encoding for ordinal information, object queries, and Transformer encoder-
decoder modules for box-class prediction.

2 Methodology

In order to develop NucDETR for nuclei detection, two components are essential.
Firstly, the base backbone which will be used to extract morphology and color
features from histology slides must be familiarized with the data of interest. This
is done by developing a classification version of the used data, where the back-
bone CNN, connected to a FFN, learns to classify each extracted patch from the
WSI as either positive (consisting of nuclei) or negative. Secondly, the Trans-
former encoder-decoder layers must be trained on the detection data for sufficient
times. The architecture in Fig. 1 summarizes the pipeline of NucDETR. As men-
tioned, the original DETR pipeline avoids much of the heuristics demanded by
most current object detectors. This was tested empirically with the nuclei as
objects-of-interest and held true to a significant degree. Nonetheless, it was also
observed that including a simple one-step near-duplicate merging improves the
performance by decreasing the false positive rate.

Algorithm 1 Synthesis of positive patches into negative counterparts
Input: positive patches
Output: synthetic negative patches

R+ve ← set of positive regions
for Ri ⊂ R+ve do

[wi × hi] ← size(Ri)
MaskNegative ← extract negative mask of size (wi × hi)
Ri = MaskNegative

end for
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Fig. 2. Pictorial description of data synthesis (a), and sampled synthesis results from
CoNSep dataset (b).

2.1 Backbone Training

To use the CNN as a feature extractor for H&E stained WSIs, it was initially
trained to classify patches as either positive or negative ones. By training to do
so, the CNN will learn to extract meaningful features that will be used later in
the detection task. However, the main difficulty of this stage is the lack of data.
As it is often the case that the vast majority of all extracted patches from a single
WSI will consist of nuclei, there will be no representation of negative patches in
the pool of training data. To solve this issue, we propose synthesizing negative
patches out of their positive counterparts, as illustrated in Fig. 2(a). This doubles
the size of the data, ensuring a balanced representation of all classes, while
causing no labor overhead to obtain more data. The method used to convert
positive patches into negative ones is summarized in Algorithm 1.

That is, let Ri be a positive region in a WSI with size wi × hi, where⋃

all i

Ri = R+ve, and R+ve is the complete set of all positive regions in a

WSI. Then, in an iterative manner each Ri is replaced by a mask of the same
size extracted from a neighboring negative region. Figure 2(b) demonstrates the
results of the proposed synthesis method. The benefit of this approach is that
the generated images are realistic and preserve the cohesion, morphology, and
texture observed in the real images, ensuring that the feature extractor does
not learn misleading/meaningless features. Ultimately, all nucleus incidents are
eliminated; thereby, all extracted patches will only belong to the negative class.
We use the binary cross-entropy loss on this hybrid data.
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2.2 Detection Model

At the heart of our pipeline lies the Detection Transformer (DETR) model, which
is the second element of the detection pipeline. One of the key components in
Transformer models is the self-attention mechanism which, in contrast to its
counterpart the recurrent networks, can attend to complete and large sequences
and learn long-term relations. In images, this translates well into combining both
small and large-scale contextual information, which can be highly beneficial,
especially with the problem of nucleus detection in histology images. For exam-
ple, for the object detection problem in images, the prediction of a bounding box
can be readily modeled by the attention mechanism by quantifying the attention
between two pixels, thereby answering how likely are they to represent the upper-
right and lower-left corners of a bounding box. Mathematically, this is done by
generating three vectors: the Query vector Q, the Key vector K and the Value
vector V [29]. Letting X denote the input image, these vectors are generated by
projecting the input image into three associated learnable weight matrices. That
is, Q = XWQ, V = XWV , K = XWK . Finally, the attention vector Z ∈ R

n×dv

models the relevance between all pixels in the image, where n is the total number
of pixels in the image, and WQ ∈ R

d×dq ,WV ∈ R
d×dv ,WK ∈ R

d×dk . Z is defined
as

Z = softmax(
QKT

√
dk

)V (1)

Similar to the DETR model, we treat the task of nuclei detection in
histopathology images as a set prediction task. That is, after extracting a set
of image features, we aim to predict a set of bounding boxes with their class
labels in a binary classification framework, making use of the Hungarian algo-
rithm [26], where the predicted box either consists of a nuclei, or belongs to the
null class Ø and must be discarded of. This confers the pipeline an automatic
filtering of bounding boxes and their classes to arrive at the best combination
that minimizes the detection error [3]. This is in contrast to other methods that
employ heuristics to achieve the same task [17]. It is worth mentioning that
transformer models do not depend heavily on prior information about the struc-
ture of the addressed problem as compared to their convolutional counterparts,
which well-facilitates pre-training on large corpus of unlabeled data [6].

The loss function is computed over the found optimal set as shown in Eq. (2).
p̂(ci) and b̂ denote the optimal bounding boxes and their associated classes as
found by the Hungarian algorithm. The loss function uses a linear combination of
the �1 loss and the generalized Intersection Over Union loss [24] since the latter
is scale-invariant. Had only the �1 loss been used, the scoring will be identical in
boxes that score the same overlap with the ground-truth nuclei despite differing
in scale and (hence) quality.

L(y, ŷ) =
N∑

i=1

− log(p̂(ci) + λiouLiou(b, b̂) + λL1‖bi − b̂i‖,∀i : ci �= Ø (2)
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We adopt the Transformer encoder-decoder module as shown in Fig. 1. Each
encoder layer in the pipeline consists of a multi-head self-attention module fol-
lowed by feed forward network (FFN), crucial to obtaining high-quality attention
performance.

Practical Considerations. Upon experimentation, it was revealed that the
false negative rate is small, but the false positive rate is usually large. This agrees
with the observations made in [3], where the performance of DETR downgrades
with small objects, i.e. the problem in hand. To that end, the following two
remedies improved the performance of NucDETR. Firstly, the classification cost,
that is the log-probability term in Eq. (2) has been increased, relying on the
logic that since boxes that are predicted as belonging to the null class Ø are
discarded of, the emphasis on this loss will lower the threshold needed to suspect
a predicted box as a false alarm. Secondly, it was observed that adding a simple
one-line merging of near duplicates (≈1 pixel away from each other) step on
the predicted boxes improves the performance of the detector. By applying both
remedies, the false-alarm rate decreased, resulting in an increased precision and
ultimately an increased F-score.

3 Experimental Evaluation

The proposed method NucDETR is evaluated visually and quantitatively on
two popular datasets; namely, Colorectal Nuclear Segmentation and Phenotypes
(CoNSep) [11], and PanNuke [10] which addresses several types of cancer. We
follow the same training/testing splitting as the one suggested by the authors in
both datasets. The performance of the proposed method is compared with six
methods from the literature that constitute the state-of-the-art.

The used base model is Resnet-101, and is followed by [2048 × 512] and
[512 × 2] fully connected layers, with Relu activation in the hidden layer, and
no activation at the output layer. The model is pretrained on the COCO dataset
[18], and achieves a test classification accuracy of ∼0.99 on the hybrid data X ′.

Table 1. Quantitative assessment of proposed and state-of-the-art methods on the
CoNSep and PanNuke datasets

Dataset Method SC-CNN

[25]

CF [15] HoVer-Net

[11]

Mask-RCNN

[13]

Micro-Net

[22]

Dist [20] Nuc-

DETR

CoNSep Precision 0.75 0.74 0.77 0.74 0.75 0.77 0.80

Recall 0.80 0.79 0.82 0.72 0.81 0.77 0.88

F1 score 0.74 0.70 0.75 0.71 0.75 0.73 0.83

PanNuke Precision 0.67 – 0.82 0.76 0.78 0.74 0.76

Recall 0.60 – 0.79 0.68 0.82 0.71 0.86

F1 score 0.63 – 0.80 0.72 0.80 0.73 0.81

Similar to [25], we define True and False Positives, and True and False
Negatives. Accordingly, we employ the F-score measure as the main point of
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Fig. 3. Visual assessment on sampled patches form the CoNSep (the three on the left)
and the PanNuke datasets. The upper row represents the original patch from the WSI.
The lower row shows the ground truth nuclei in large blue circles, and the predicted
ones using NucDETR in small red dots. (Color figure online)

quantitative comparison between the different methods. Additionally, we include
visual assessment of the proposed method to showcase the detection of cluttered,
fuzzily-bounded nuclei that also observe color variation, since such difficulties
represent the main sources of challenge faced by current detectors.

3.1 Visual Assessment

Figure 3 demonstrates the prediction of NucDETR on some patches extracted
from the CoNSep and PanNuke datasets. Starting off, the sampled patches
belonging to CoNSep show nuclei with different boundaries embedded by tis-
sues of different colors being successfully pointed out by NucDETR. In patch
number 2, cancerous nuclei are separated from benign epithelial nuclei despite
sharing similar boundary shapes. This confirms that NucDETR reliably models
both morphological and textural attributes in its feature extraction. Moreover,
the patches demonstrate highly cluttered nuclei being successfully detected. As
for the PanNuke patches, they showcase the performance of NucDETR at detect-
ing heavily cluttered nuclei. Both patches 4 and 6 consist of cluttered nuclei with
faded and fuzzy boundaries being successfully detected. Nuclei in patch number
5 are also successfully detected noting the different shape of the nuclei and the
different color of the background tissue. Interestingly, patch number 4 shows
a false alarm towards the upper right corner. However, looking at the original
image, there seems to be a part of a nuclei cut in half, which did not register in
the ground truth of the data, but is nevertheless detected by NucDETR. Overall,
the visual results of NucDETR on both datasets seem accurate.

3.2 Quantitative Assessment

We also include a quantitative comparison between the proposed and the state-
of-the-art methods in Table 1. Starting with the CoNSep dataset, the proposed
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method outperforms the second best method i.e. HoVer-Net [11] by a factor of
9% in the F-score. The precision score is also higher by a considerable factor; the
recall score is also higher, but to a lesser degree. A similar trend is observed in
PanNuke, where the F-score of the proposed method is slightly higher than the
state-of-the-art performance in HoVer-Net. Nevertheless, there is ∼9% increase
in the recall above HoVer-Net, accompanied with a drop in the precision, alluding
to the discussed issue observed with NucDETR, where a small false negative
rate is achieved albeit with a larger false positive rate. By benchmarking the
performance of NucDETR, we hope to highlight its shortcomings and strengths,
which may open the door for further improvements in the future.

All in all, the increased F-score observed in both tables is enough to con-
clude that the proposed transformer-based detector NucDETR is more robust
to color and morphology variations, the heteregenous chromatin patterns, and
is able to better model and detect fuzzy and irregular boundaries, and is more
robust to cluttered nuclei. Overall, this ensures a more accurate detection of the
nuclei in histopathology images, and consequently a more reliable performance
in downstream steps, such as tissue segmentation, patient survival prediction, or
exploration of treatment plans.

Conclusion

In this work, we proposed NucDETR, the first Transformer-based nuclei detector
in histopathology images, and benchamrked its performance on two datasets. We
developed a data augmentation routine that helped familiarize NucDETR with
histopathology data prior to training it for detection. We observed the promising
performance of the proposed model, as well as its potential shortcomings. As
for the latter, we proposed the usage of a simple merging step that increased
the precision of the model. Both quantitative and visual evaluations confirm
the validity of the proposed model, and suggest that it is highly competitive
with the state-of-the-art, clearly outperforming existing methods in the F-score.
At last, we believe that there are several subtopics to be addressed that may
have a direct positive impact on the performance of Transformer detectors at
nucleus detection. Namely, it may be beneficial to investigate other methods to
increase the size of the data used to train the backbone CNN feature extractor,
beyond the suggested method that has an upper limit in the size of the hybrid
data of 2 ∗ n. An example would be the usage of GAN-based data synthesis.
Moreover, other variants of the DETR model may perform better with smaller
training schedules such as Deformable DETR. Lastly, we beleive that pretraining
NucDETR on unlabeled data may further improve its performance. We hope that
the presented work and the suggested future directions would open the door for
further improvements in this field.
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A deep learning architecture for image representation, visual interpretability and
automated basal-cell carcinoma cancer detection. In: Mori, K., Sakuma, I., Sato,
Y., Barillot, C., Navab, N. (eds.) MICCAI 2013. LNCS, vol. 8150, pp. 403–410.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40763-5 50

6. Dai, Z., Cai, B., Lin, Y., Chen, J.: UP-DETR: unsupervised pre-training for object
detection with transformers. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 1601–1610 (2021)

7. ElKhatib, O., Werghi, N., Al-Ahmad, H.: Automatic polyp detection: a com-
parative study. In: Annual International Conference of the IEEE Engineering in
Medicine and Biology Society, pp. 2669–2672 (2019)

8. Elmore, J.G., et al.: Diagnostic concordance among pathologists interpreting breast
biopsy specimens. JAMA 313(11), 1122–1132 (2015)

9. Filipczuk, P., Kowal, M., Obuchowicz, A.: Automatic breast cancer diagnosis based
on k-means clustering and adaptive thresholding hybrid segmentation. In: Choras,
R.S. (eds) Image Processing and Communications Challenges 3. Advances in Intel-
ligent and Soft Computing, vol. 102. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-23154-4 33

10. Gamper, J., et al.: Pannuke dataset extension, insights and baselines. arXiv
preprint arXiv:2003.10778 (2020)

11. Graham, S., et al.: Hover-Net: simultaneous segmentation and classification of
nuclei in multi-tissue histology images. Med. Image Anal. 58, 101563 (2019)

12. Hassan, T., et al.: Nucleus classification in histology images using message passing
network. Med. Image Anal. 79, 102480 (2022)

13. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: Proceedings of the
IEEE International Conference on Computer Vision, pp. 2961–2969 (2017)

14. Javed, S., Mahmood, A., Dias, J., Werghi, N.: Multi-level feature fusion for nucleus
detection in histology images using correlation filters. Comput. Biol. Med. 143,
105281 (2022)

15. Javed, S., Mahmood, A., Dias, J., Werghi, N., Rajpoot, N.: Spatially constrained
context-aware hierarchical deep correlation filters for nucleus detection in histology
images. Med. Image Anal. 72, 102104 (2021)

16. Jung, H., Lodhi, B., Kang, J.: An automatic nuclei segmentation method based
on deep convolutional neural networks for histopathology images. BMC Biomed.
Eng. 1(1), 1–12 (2019)

17. Khan, S., Naseer, M., Hayat, M., Zamir, S.W., Khan, F.S., Shah, M.: Transformers
in vision: a survey. ACM Comput. Surv. (2021)

https://doi.org/10.1007/s10278-018-0160-1
https://doi.org/10.1007/s10278-018-0160-1
https://doi.org/10.1007/978-3-030-58452-8_13
https://doi.org/10.1007/978-3-642-40763-5_50
https://doi.org/10.1007/978-3-642-23154-4_33
https://doi.org/10.1007/978-3-642-23154-4_33
http://arxiv.org/abs/2003.10778


NucDETR: End-to-End Transformer for Nucleus Detection 57

18. Lin, T.Y., et al.: Microsoft COCO: Common Objects in Context. In: Fleet, D.,
Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp.
740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1 48

19. Mao, K.Z., Zhao, P., Tan, P.H.: Supervised learning-based cell image segmenta-
tion for P53 immunohistochemistry. IEEE Trans. Biomed. Eng. 53(6), 1153–1163
(2006)
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Abstract. Spinal tumors contain multiple pathological subtypes, and different
subtypes may correspond to different treatments and prognoses. Diagnosis of
spinal tumor subtypes from medical images in the early stage is of great clinical
significance. Due to the complex morphology and high heterogeneity of spinal
tumors, it can be challenging to diagnose subtypes frommedical images accurately.
In recent years, a number of researchers have applied deep learning technology to
medical image analysis. However, such research usually requires a large number
of labeled samples for training, which can be difficult to obtain. Therefore, the
use of unlabeled medical images to improve the identification performance of
models is a hot research topic. This study proposed a self-supervised learning
based pre-trained method Res-MAE using a convolutional neural network and
masked autoencoder. First, this method trains an efficient feature encoder using
a large amount of unlabeled spinal medical data with an image reconstruction
task. Then this encoder is transferred to the downstream subtype classification
in a multi-modal fusion model for fine-tuning. This multi-modal fusion model
adopts a bipartite graph and multi-branch for spinal tumor subtype classification.
The experimental results show that the accuracy of the proposed method can be
increased by up to 10.3%, and the F1 can be increased by up to 13.8% compared
with the baseline method.

Keywords: Self-supervised learning · Pre-training model · Subtype
classification

1 Introduction

Spinal tumors occur in the spine and include primary and metastatic spinal tumors.
There are dozens of subtypes of primary spinal tumors, including giant cell tumors of
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bone, myeloma, and chordoma [1]. Different tumor subtypes can cause different damage
and correspond to different treatments. Diagnosis of spinal tumor subtypes frommedical
images in the early stage is of great clinical significance. Due to the complexmorphology
and high heterogeneity of spinal tumors, it can be challenging to diagnose subtypes from
medical images accurately.With the development of deep learning technology, a number
of researchers have applied natural image technology to medical images. Although it is
difficult to obtain labeled medical images, there are a large number of unlabeled medical
images. Many studies have been conducted on how to use this unlabeled data to train
models to improve classification performance.

Using a limited number of labeled medical images and a large number of unlabeled
medical images to classify tumors can be problematic with a small sample. Currently,
the more common methods used are semi-supervised learning [2] and self-supervised
learning [3]. Semi-supervised learning means that when training the model, not only
labeled data can be used, but also unlabeled data can be used. Liu et al. [4] proposed
a relationship driven semi-supervised medical image classification framework based
on a consistency method. Unlabeled data can be used by encouraging the prediction
consistency of a given input under disturbance. Furthermore, the built-in disturbance
model is used to generate high-quality consistency targets for unlabeled data. Tseng et al.
[5] proposed a new convolutional neural network DNetUNet, which combines U-Net [6]
with different down-sampling levels and a new dense block as a feature extractor. The
generated adversarial network generates pseudo labels for a large number of unlabeled
data and adds them to the training of the model. The experimental results show that after
applying a large number of unlabeled data, the performance can be improved.

Self-supervised learning refers to the use of unlabeled data for model training, which
is usually used to build a pre-trainedmodel. Based on the visual transformer (ViT) [8], He
et al. proposed an unsupervised learning method based on masked autoencoder (MAE)
[10]. Through the image reconstruction task, some patches are randomly masked during
training, and only the features of the remaining patches are extracted. The designed
decoder can use the features extracted by the encoder to restore the image. To make the
recovery effect good enough, the encoder needs to be able to extract the key features as
much as possible [10]. This method constructs an efficient feature encoder through unsu-
pervised learning on ImageNet [11] and transfers the encoder to detection, segmentation,
classification and other tasks to achieve the best results.

For medical image analysis, the multi-modal fusion strategy can also improve the
performance of the model; for example, the fusion of axial magnetic resonance imaging
(MRI) and ultrasound for volume registration [12], fusion of axial MRI and positron
emission computed tomography (CT) for automated dementia diagnosis [13], and fusion
of different sequences of axial CT and axial MRI for tumor segmentation [14–16].
However, the methods mentioned above focus on the fusion of single planes and do not
comprehensively consider the association between different planes.

Due to the complex morphology and high heterogeneity of spinal tumors, it is chal-
lenging to accurately classify subtypes from medical images, especially in a small sam-
ple. In this study, a self-supervised learning method for medical images is proposed to
construct an efficient feature encoder and transfer the feature encoder to the downstream
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multi-modal spinal tumor subtype classification task. The effectiveness of the proposed
method was verified using a multi-modal spinal tumor subtype dataset.

2 Proposed Method

This report will introduce the pre-trained method based on self-supervised learning and
the multi-modal fusion model.

2.1 Pre-trained Method Based on Self-supervised Learning

Fig. 1. Framework of Res-MAE

It can increase the sample scale to improve the classification performance when the
sample scale of the dataset (target domain) is small. Alternatively, a pre-trained model
can be built on a dataset (source domain) with a large number of samples, after which
the pre-trained model is transferred to the target domain [7]. Recently, an increasing
number of pre-training methods have adopted visual attention models [8, 9]. The MAE
method [10] applied the image reconstruction task to get the efficient feature encoder
and transfer it to downstream tasks. However, MAE is completely based on the attention
mechanism [9], which requires a large number of samples to train a pre-trained model
and cannot adapt to a small sample of medical images. This study proposes a pre-trained
method based on a convolution neural network and MAE (Res-MAE) combined with
multi-modal fusion for spinal tumor subtype classification.

The overall framework of Res-MAE is shown in Fig. 1, which contains an input
layer mask, encoder, decoder, and loss function. The input layer is used to randomly
mask some patches in the spinal medical images during training. The encoder is used to
extract the key features using a Res-MAE. The decoder is used to reconstruct the image,
and the loss function is used to supervise the training process. The trained encoder will
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be transferred to the convolutional neural network branch in the following multi-modal
fusion model for the spinal tumor subtype classification task.

Input Layer Mask: In the input layer mask model, before the image is sent to the deep
learning model, the image is first cut into several patches with the size of h× w. Then,
a certain proportion of α is used to mask some patches, as shown in Fig. 1. The purpose
is to enable the decoder to recover the original image through the extracted features
as much as possible when the image information is partially missing. Assume that the
size of the input image is H × W . To realize fast image cutting, the image is directly
matrix transformed. Let n = H

h × W
w , which represents the number of patches. It will

get a matrix with the shape of n × h × w, which represents that the raw image is cut
into n patches with the size of h × w. Then, these patches should be expanded in one
dimension. The next step is the mask operation. Specifically, several patches should be
set as 0, and the specific number of masks is determined by the scale coefficient α to
control. Finally, after the mask operation is completed, the matrix is restored, and the
next encoding operation is performed. Generally speaking, the better the image quality
restored by the decoder, the more representative the features extracted by the encoder
are.

Encoder and Decoder: The structure of the encoder and decoder is shown in Fig. 1.
The encoder used in this part is ResNet18, which has four stages. Each stage includes
several convolution operations (Conv), standardization operations (BN), activation func-
tion operations (Relu), and maximum pool operations (Maxpool). The maximum pool
operation is used to select the feature with the largest response value as the input for
the next stage. Thus, each stage can extract features at different scales. In this study, the
feature vector output in the last stage of ResNet18 is used as the input of the decoder.
To prevent the decoder from having strong memory of specific features and causing
overfitting, the decoder structure used in this study is very simple, that is, up-sampling,
convolution, and up-sampling. The purpose of two up-sampling is to make the output
size of the decoder equal to the size of the original image. The purpose of convolution
operation is to add learnable parameters to the decoder. Finally, the decoder outputs the
reconstructed image with the same size as the original image and calculates the recon-
struction loss with the original image. The reconstruction loss function is introduced
below.

Loss Function: The reconstructed image and the original image can be compared pixel
by pixel to measure the quality of reconstruction. The closer the pixel value at the corre-
sponding position is, the better the reconstruction effect is. Based on this, this study uses
the mean square error (MSE) loss as the reconstruction loss between the reconstructed
image and the original image, as shown in Eq. 1, where n represents the number of
pixels, ŷ represents the reconstructed image, and y represents the original image. The
better the reconstruction effect, the smaller the L value. The goal of optimization is to
make L as small as possible.

L = 1

n

∑n

i=1

(
ŷi − yi

)2 (1)
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2.2 Multi-modal Fusion Model

Patients often have image data from different modalities, such as MRI and CT, and
different planes, including axial and sagittal. Different modalities may contain abundant
information on tumors, which can improve the deep model to classify tumor subtypes.
This study uses a multi-modal fusionmodel based on the pre-trainedmodel and fuses the
multi-modal image data in the input, feature, and decision-making layers, respectively.
As shown in Fig. 2, in the input layer, the image data from two different modalities
of patients are constructed into a bipartite graph structure, and the images of different
modalities connected by each edge are used as the input of the feature layer. The features
of different modalities are extracted and fused through the convolution neural network
branch and vision transformer branch. Finally, the predicted values of each patient are
fused at the decision-making level through trusted edge set filtering to get the tumor
subtype at the patient level.

Fig. 2. Multi-modal fusion model

In the training stage, as shown in Eq. 2 and Eq. 3, CALoss is used to make the
features extracted by the two branches for the same modality as similar as possible,
where Ci,j and Ai,j represent the output of the convolutional neural network branch and
vision transformer branch, respectively, and CALoss1 and CALoss2 will be obtained
respectively. SLoss can make different modal features of the same patients closer and
different patients farther, where A represents the type of center of first modality features
of patients in each batch and S represents the type of center of second modality features.
BCELoss is used to calculate the final classification loss. Finally, the loss function of the
whole deep learning model is shown in Eq. 4, where a, b and c are the weights of each
part.

CALoss =
√∑

j

(
Ci,j − Ai,j

)2

d
(2)
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SLoss =
∥∥∥AST − I

∥∥∥
2

(3)

Loss = α · (CALoss1 + CALoss2) + b · SLoss+ c · BCELoss (4)

2.3 Pre-trained Model Transfer to the Multi-modal Fusion Model

According to the pre-trained method Res-MAE proposed in Sect. 2.1, the convolution
neural network is used as the encoder to construct the pre-trainedmodel on a large number
of spinal medical image datasets, and the MSE is used as the image reconstruction loss.
After training, this encoder can extract the key features of spinal medical images. Then,
the weight of the encoder is transferred to the multi-modal fusion model for spinal tumor
subtype classification. The specific transfer method is used to save the trained encoder
weight and restore the saved pre-trainedweight to the convolution neural network branch
in the multi-modal fusion model. Then on the limited labeled spinal tumor subtype
dataset, this encoder is further trained, and the weight parameters of the model are
adjusted to improve the classification performance for the spinal tumor subtype task.

3 Experiment and Results

Table 1. Subtype information of D-Dataset

Tumor types Training set Test set

Schwannoma/neurofibroma 82 41

Myeloma 38 19

Giant cell tumor of bone 34 16

Chordoma 24 12

Langerhans 19 9

Total 197 97

Dataset: This study used the P-Dataset to construct the pre-trainedmodel, including the
image data of 962 cases from a hospital. This dataset contained a total of 63,991 images,
including metastatic and primary spinal tumors with two different scanning modalities
of CT and MRI and three different scanning planes (axial, sagittal, and coronal). In
addition, the experiment on the spinal tumor subtype classification task was conducted
using D-Dataset, which contains five common spinal tumor subtypes. All cases in D-
Dataset contained axial and sagittal MRI, and the case number of each subtype for the
training and test is shown in Table 1.
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Experimental Design: First, the self-supervised pre-trainedmodel is constructed based
on the P-Dataset, and then the obtained encoder weights are transferred to the multi-
modal fusion model. The classification experiments of spinal tumors are conducted on
the D-Dataset. We conducted comparative experiments with and without a pre-trained
model on D-Dataset. At the same time, the corresponding experiments were conducted
in different h,w, α to verify the effectiveness of the method, where h and w respectively
represent the height and width of the patches in the process of image reconstruction and
α represents the proportion of patches masked. The self-supervised pre-trained model
used a learning rate of 0.2 in the training stage and stochastic gradient descent (SGD)
as the optimizer to train 100 epochs. When the trained encoder weights are transferred
to the spinal tumor subtype classification task, the SGD is used as the optimizer to train
20 epochs.

Metrics: The common accuracy (ACC), F1, precision (Pre), and recall (Rec) of the
multi-classification model are used as the evaluation metrics.

Experimental Results Under Different Methods: Table 2 shows the experimental
results for the classification of five spinal tumor subtypes on D-Dataset with and without
the Res-MAE pre-trained method and with a different selection of h,w, α in Res-MAE.
It can be seen from Table 2 that after using Res-MAE to build the pre-trained model and
transfer the encoder to the downstream subtype task, the ACC and F1 values improved
by about 3.1%~10.3% and about 6.8%~13.8% and Pre and Rec by about 0.9%~7.9%,
and about 5.6%~15.5%. It can be seen from Table 2 that when the mask coverage is
75% and h = w = 1, the model performs best. Compared with the model without pre-
training, ACC increases from 56.7% to 67.0%, and F1 from 41.6% to 55.4%. Compared
with multi-modal fusion, in the case of α = 0.75, h = w = 1, the ACC using only axial
plane images is 58.8%, and the ACC using only sagittal plane images is 60.8%, both
lower than that of multi-modal fusion. It can be seen from the experimental results that
the performance of the model classification can be improved by building the pre-trained
model through Res-MAE and transferring it to the spinal tumor subtype classification
task.

Comparison Between Models and Doctors: To verify the effectiveness of the model,
we invited three doctors (D1, D2, and D3 with three, 12, and eight years of experience,
respectively) to identify the tumor subtypes of patients on the test set according to the
images. The results are shown in Table 3.

Without using the Res-MAE pre-trained model, the ACC of the multi-modal fusion
model was 3.1% higher than D1, 6.2% higher than D3, and lower than D2, and the F1
was 3.4% higher than D3 and lower than D1 and D2. After using the Res-MAE pre-
trained model, the multi-modal fusion model was higher than all the three doctors in
all metrics. The ACC and F1 values were up to 16.5% and 17.2% higher, Pre and Rec
up to 20.1% and 17.3% higher. These results show the effectiveness of our proposed
pre-trained based multi-modal fusion method.

To analyze the differences between the doctors andmodel in more detail, we counted
and drew the confusion matrix between the doctors and model. As shown in Fig. 3, both
the doctors and model had the highest classification accuracy in relation to schwan-
noma/neurofibroma, which may be due to this subtype having significant visual features
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Table 2. Experimental results on D-Dataset

Methods ACC(%) F1(%) Pre(%) Rec(%)

Axial & sagittal No pre-trained model 56.7 41.6 53.9 40.6

α = 0.25, h = w = 8 62.9 50.7 54.8 50.9

α = 0.50, h = w = 8 65.0 52.3 56.1 52.1

α = 0.75, h = w = 8 62.9 50.6 55.8 50.2

α = 0.85, h = w = 8 59.8 48.4 58.5 46.2

α = 0.75, h = w = 1 67.0 55.4 61.8 55.7

α = 0.75, h = w = 4 66.0 55.1 59.6 56.1

α = 0.75, h = w = 16 65.0 52.9 55.1 54.2

α = 0.75, h = w = 32 63.9 51.9 53.1 54.7

Axial α = 0.75, h = w = 1 58.8 46.9 47.2 47.9

Sagittal α = 0.75, h = w = 1 60.8 55.8 60.6 54.1

Table 3. Comparison results between the model and doctors on D-Dataset

Doctors/Model ACC F1 Pre Rec

D1 53.6 43.2 52.4 43.2

D2 66.0 51.8 59.0 50.9

D3 50.5 38.2 41.7 38.4

Multi-modal fusion model 56.7 41.6 53.9 40.6

Multi-modal fusion model with Res-MAE 67.0 55.4 61.8 55.7

and a higher prevalence. In addition, the classification accuracy of themodel onmyeloma
was higher than that of the three doctors, and the classification accuracy of giant cell
tumors of bone, chordoma, and langerhans was close to that of the doctors. The main
reason for this phenomenon may be that the number of samples of the latter three sub-
types was too small, and the model could not learn a sufficient number of distinguishing
features. However, the model is still close to doctors in the classification of these tumor
types, indicating that the model can reach a level close to doctors through the learning
of limited samples.

4 Conclusion

This study proposes a pre-trained method Res-MAE based on a convolutional neural
network and MAE, which constructs an efficient feature encoder on a large number of
unlabeled medical image data through a self-supervised learning and image reconstruc-
tion task. The encoder is transferred to the multi-modal fusion model of the downstream
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Fig. 3. Confusion matrix of the doctors and model for five subtypes

spinal tumor subtype classification task for transfer learning. The experimental results
show that the feature encoder constructed by Res-MAE can improve the performance
of downstream classification tasks to a certain extent. In addition, the proposed method
has certain advantages compared to doctors.
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Abstract. Automatic cancer diagnosis based on RNA-Seq profiles is at
the intersection of transcriptome analysis and machine learning. Meth-
ods developed for this task could be a valuable support in clinical prac-
tice and provide insights into the cancer causal mechanisms. To cor-
rectly approach this problem, the largest existing resource (The Cancer
Genome Atlas) must be complemented with healthy tissue samples from
the Genotype-Tissue Expression project. In this work, we empirically
prove that previous approaches to joining these databases suffer from
translation biases and correct them using batch z-score normalization.
Moreover, we propose CanDLE, a multinomial logistic regression model
that achieves state of the art performance in multilabel cancer/healthy
tissue type classification (94.1% balanced accuracy) and all-vs-one cancer
type detection (78.0% average maxF1).

Keywords: Cancer classification · Cancer detection · Machine
learning · Multinomial logistic regression · TCGA · GTEx

1 Introduction

Over the last decade, the fast advances in genome sequencing technologies
have proven revolutionary, promoting improvements in experimental and high
throughput techniques related to transcriptome analysis and bioinformatics [17].
This effort has led to an increase in public RNA-Seq data available to the cancer
research community [2]. Consequently, large datasets like The Cancer Genome
Atlas (TCGA) [1] have been established, serving as a valuable framework for
obtaining standardized and curated genetic expression profiles. This data abun-
dance, combined with the recent success of machine learning in medical applica-
tions, makes the automatic cancer diagnosis from transcriptomic samples more
plausible than ever before.

There have been numerous approaches to this problem [2,3,10,12,13,15]
using a wide range of techniques that go from classic machine learning algo-
rithms (e.g., K-nearest neighbors [10]) to cutting edge deep learning models
(e.g., graph convolutional neural networks [15]). However, most of these works
are trained and tested exclusively in the TCGA, which has an extremely low
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
W. Qin et al. (Eds.): CMMCA 2022, LNCS 13574, pp. 68–77, 2022.
https://doi.org/10.1007/978-3-031-17266-3_7
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number of healthy tissue samples (≈7%). Due to this limitation, almost all meth-
ods aggregate healthy samples from different tissues in a single class and solve a
multilabel classification of 34 classes (33 cancer types and 1 small healthy class).
These experimental conditions are far from what is observed in clinical practice
and, consequently, lower the applicability of the results. Moreover, given the
significant differences of gene expression profiles between tissues, a tissue classi-
fier will perform adequately in this framework without learning to discriminate
between cancer and healthy tissue.

One way to improve the practical usability of the models is to include a
comparable and paired amount of healthy samples. For this task, the Genotype-
Tissue Expression project (GTEx) is the natural choice since it has a similar scale
to the TCGA and captures RNA-Seq samples from non-diseased tissue sites [11].
Aiming to provide a common database, recent works [18,19] apply standardized
quantification and normalization to raw data and obtain joint TCGA and GTEx
cohorts. Using these resources, novel research has been published performing
cancer detection [14], or multi-task cancer type classification [7] and achieving
outstanding results.

Although these advances are clear steps in the right direction, two main
problems need to be addressed in the current state of the art: (1) there is no
empirical proof of the absence of translation biases in the joint datasets, and (2)
there is no clear evidence of an important metric improvement associated to the
use of cutting edge deep learning techniques compared to simple algorithms. Of
these, the first issue is of cornerstone importance because if the origin sources
are linearly separable, then the problem would again be in its over-simplified
form where it is enough to separate the GTEx and TCGA and then perform
tissue classification to obtain great results.

To address both problems, in this work, we first empirically prove the exis-
tence of such bias and correct it using batch z-score normalization, which is
widely adopted by the machine learning community [16]. And secondly, we pro-
pose a simple multinomial logistic regression method to perform multilabel can-
cer/healthy tissue type classification with sound performance. Our model, which
we call CanDLE (Cancer Diagnosis Logistic Engine), cannot only be used for
multilabel classification but also highly unbalanced specific cancer type detec-
tion.

Our main contributions can be summarized as follows:

1. We empirically prove that previous approaches to joining the GTEx and
TCGA databases suffer from significant biases and use a simple batch nor-
malization technique to correct them.

2. We show that a simple method such as multinomial logistic regression can
obtain state of the art performance (94.1% balanced accuracy) in multilabel
classification of cancerous and healthy tissue types.

3. We demonstrate that CanDLE can detect specific cancer types in highly
unbalanced scenarios with state of the art performance (78.0% average
max F1).
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4. We exploit the simplicity of our method to perform intuitive and direct gene
relevance interpretation in pan-cancer classification.

To ensure the reproducibility of our results, all the resources of this paper are
publicly available in https://github.com/g27182818/CanDLE.

2 Related Work

2.1 Joining the TCGA and GTEx Databases

Both the TCGA and GTEx are the gold standard databases for publicly available
RNA-Seq profiles of cancerous and healthy tissue, respectively. The TCGA has
processed more than 10, 000 samples spanning 33 cancer types, and healthy
tissue controls [1], and the GTEx project has collected samples from 54 non-
diseased tissue sites across nearly 1, 000 individuals [11]. However, differences in
alignment, quantification, and normalization protocols had prevented the use of
both databases in joint transcriptomic analyses.

Vivian et al. [18] were the first to propose a unified GTEx-TCGA dataset.
They performed standardized alignment with STAR [4] and standardized quan-
tification with RSEM [9]. They finally obtained 18, 354 samples with 60, 498
genes. Later on, Wang et al. [19] expanded this work by imposing more rigid
requirements on the input data. They also used STAR alignment and RSEM
quantification but applied a quality control stage between the two and added
a batch correction method to the quantification output. This last processing
step was meant to eliminate the non-biological effects of data sources. They also
eliminated the categories that did not have a counterpart in the other database
and ended up having 10, 366 valid samples with approximately 19, 000 genes
depending on the tissue.

2.2 Classification/Detection Methods

A handful of works have proposed classification algorithms for cancer using tran-
scriptomic data [2,3,10,12,13,15], however, only the studies by Quinn et al. [14]
and Hong et al. [7] have taken into account the necessity to add healthy sam-
ples from the GTEx project using the Wang et al. dataset. Quinn et al. fit an
anomaly detector to GTEx samples, predict any out-of-distribution TCGA sam-
ple as cancerous, and report an accuracy of >90% in 5/6 of the used tissues.
Hong et al. trained two multi-task multilayer perceptrons that classified decease
stage, tissue of origin, and neoplastic subclassification in a hierarchical fashion.
They used the first 2, 000 principal components of the data as input to their
algorithm achieving 99% accuracy in decease state classification, 97% accuracy
in tissue of origin classification, and 92% accuracy in neoplastic subclassification.

We compare our classification results with two re-implementations of the
Hong et al. model [7]. The original version trained over the first 2, 000 principal
components and a second version trained using all genes. To adequate the model
to our framework, we implemented just 2 classes (cancer/healthy) in the decease

https://github.com/g27182818/CanDLE
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state classification head and lowered the learning rate of the complete feature
model by a factor of 100 (for convergence).

We also benchmark our detection results against an adaptation of the original
Quinn et al. [14] source code. This detector was trained to detect cancer types
instead of healthy tissues in an all-vs-one fashion.

3 Correcting Bias in the Input Data

To formally test for translation biases, we trained a linear support vector classi-
fier (SVC) in both available datasets to predict the data source. The SVCs were
trained in 80% of the samples and tested in the remaining 20%. The results can
be observed in Table 1. Surprisingly, both data sources (GTEx and TCGA) can
be linearly separated in both unified datasets. This observation was expected
in the Vivian et al. dataset, as [19] demonstrated the existence of batch effects
after standardized quantification, but given that Wang et al. performed batch
correction, one would expect the data not to be biased in that case. With these
results, the metrics of both the Quinn et al. anomaly detector and the Hong et
al. multilayer perceptron lose clinical utility.

Table 1. Weighted average results of a linear support vector classifier predicting the
origin of the data (GTEx or TCGA).

Dataset Normalization Precision Recall F1 Support

Vivian et al. [18] – 1.00 1.00 1.00 3671

Wang et al. [19] – 0.99 0.99 0.99 1822

Vivian et al. [18] Batch 0.14 0.13 0.13 3671

To correct this bias, we performed a simple z-score standardization for each
“batch” or origin database. This method centers the data at the origin and
imposes a mean of 0 and a standard deviation of 1 for every gene. Considering
that the batch correction in Wang et al. did little to un-bias the data and the
fact that the Vivian et al. dataset has substantially more samples, we set the
former as our working dataframe and perform batch normalization over RSEM
log2(TPM + 0.001) values. With these changes, a trained SVC (Table 1) could
not separate the data sources linearly.

To train and test the models, we filter out 4, 892 genes with no variation over
both datasets (standard deviation of 0.0) to remove genes that express exactly
the same in all samples. The class distribution of the resulting dataset can be
seen in Table 2. Summarizing, we work with 18, 354 samples, 55, 602 genes and
make a standard 60/20/20% train/validation/test data partition.
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Table 2. Class distribution of the normalized Vivian et al. [18] dataset.

GTEx TCGA

Tissue N Tissue N Class N Class N Class N

ADI 517 MUS 396 ACC 77 LIHC 371 UCEC 181

ADR-GLA 131 NER 278 BLCA 407 LUAD 515 UCS 57

BLA 28 OVA 88 BRCA 1098 LUSC 498 UVM 79

BLO 444 PAN 171 CESC 306 MESO 87

BLO-VSL 606 PIT 107 CHOL 36 OV 427

BRA 1152 PRO 152 COAD 288 PAAD 179

BRE 292 SAL-GLA 55 DLBC 47 PCPG 182

CER 13 SKI 859 ESCA 182 PRAD 496

COL 359 SMA-INT 92 GBM 165 READ 92

ESO 666 SPL 100 HNSC 520 SARC 262

FAL-TUB 5 STO 210 KICH 66 SKCM 469

HEA 377 TES 165 KIRC 531 STAD 414

KID 157 THY 338 KIRP 289 TGCT 137

LIV 169 UTE 91 LAML 243 THCA 512

LUN 397 VAG 85 LGG 522 THYM 119

4 Method

4.1 CanDLE

The CanDLE architecture is the simplest approach to the problem using a gra-
dient based method. It is a multinomial logistic regression that given an input
x ∈ R

ng computes a probability vector p ∈ R
c given by:

p = softMax(Wx), (1)

where ng is the number of considered genes, c is the number of classes of the
problem and W ∈ R

c×ng is a learnable weight matrix. To perform multilabel
classification c is set to the 63 classes available in the Vivian et al. normalized
dataset, and to perform all-vs-one detection of an specific class, c is set to 2.

CanDLE is trained with a cross entropy loss. However, given the unbal-
anced nature of multilabel classification and all-vs-one detection, we weighted
the penalization of each class ci by a δi coefficient given by δi = B/N2

i . Where
B is a constant set to 2.5 × 105, and Ni is the number of training samples of
class ci.

4.2 Interpretability

An advantage of the simple CanDLE architecture is its interpretation ease. Con-
sider a logit li = wix associated to the class ci and computed for a sample x.
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Here, wi is the ith row of W and has one component wij per gene. Note that
the predicted class of x will be the one with the maximum logit. The compo-
nents of wi with the highest absolute value are those that influence the most
the computation of li and, therefore, the classification of x in ci. To interpret
our method, we train CanDLE 100 times with different random partitions and
perform a Wald z test [5] for each weight wij in W (α = 1 × 10−6). We discard
non significant weights and use the absolute value of the mean |w̄ij | as a relative
importance measure of how much the jth gene influences the prediction of the
class ci.

To obtain a unified list of genes for pan-cancer classification, we select the
top 1, 000 genes in each class and order by the number of times that they were
selected in any cancer class. We threshold this list at three repetitions (ensur-
ing that chosen genes are important predictors for at least three cancer types)
and perform Gene Ontology (GO) biological process enrichment analysis using
ShinyGO [6].

Implementation Details: we train our method on an NVIDIA TITAN-X
PascalGPU with a learning rate of 10−5, 100 samples per batch and use an Adam
[8] optimizer with standard parameters. CanDLE was trained for 20 epochs in
multilabel classification and one epoch in all-vs-one detection as it yielded better
results. For this same reason, genes with an original standard deviation lower
than 0.1 where excluded in the detection task.

5 Results and Discussion

5.1 Mutilabel Classification

Detailed results of cancer and healthy tissue multilabel classification are shown in
Table 3. CanDLE is capable of achieving a state of the art performance of 94.1%
(test) and 92.0% (validation) balanced accuracy outperforming both versions of
the Hong et al. [7] model by a large margin. It obtained an absolute difference
of +7.3% (test) and +5.6% (validation) in this metric when compared to the
complete feature re-implementation. These results prove that a simple method
can correctly discriminate the transcriptomic signatures of all healthy tissue and
cancer types even when the biases are removed. Additionally, we observed that,
although the Hong et al. model is more complex and flexible, the fact that it
performs multiple predictions for a single sample makes the method prone to
performing chained errors (i.e. correctly predicting cancerous and colon tissue
but erroneously give a kidney cancer subtype classification). Also note that in a
clinical setting the multiple predictions offer no benefit over a direct classification
performed by CanDLE.

As expected, adding a weighted loss function improved the results in terms
of balanced accuracy (Table 3) by +3.2% (test) and +0.8% (validation). This
behavior also implied a slight decrease in both total accuracy and mean aver-
age precision since the inclusion of weights prioritized a great performance in
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Table 3. Multilabel classification results on the normalized Vivian et al. [18] dataset.
mACC: balanced accuracy, ACC: accuracy, mAP: mean average precision, PCA: prin-
cipal component analysis, CF: complete features.

Validation Test

Model mACC ACC mAP mACC ACC mAP

Hong et al. PCA [7] 64.0 65.3 – 61.7 64.9 –

Hong et al. CF [7] 86.4 84.6 – 86.8 84.4 –

CanDLE w/o weights 91.2 96.0 95.3 90.9 95.7 96.6

CanDLE 92.0 95.6 94.2 94.1 95.6 95.0

each class over bulk correct predictions. Such observations suggest that address-
ing class unbalance using loss weights is an effective technique in the current
framework.

Fig. 1. CanDLE detection maxF1 Vs. AP summary plot for all cancer types over the
normalized Vivian et al. [18] validation set. The color and size of each point correspond
to the number of training samples available. Specific cancer identifiers are shown for all
classes with maxF1 or AP below 0.6. Brackets contain the number of training samples.

5.2 Detection

A summary plot of the all-vs-one CanDLE detection experiments can be seen in
Fig. 1. Interestingly, digestive cancers were the hardest to detect. But, not sur-
prisingly, the worst performance was observed in underrepresented cancer types
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(READ, CHOL, ESCA, UCEC, UCS, COAD, and STAD). This observation
indicates that access to a bigger number of training samples generally helps to
obtain better results. However, it is outstanding that CanDLE achieves a mean
max F1 and average AP of 78.0% and 76.1% respectively, considering that in
some cases, the number of positive samples was extremely low (e.g., 22 training
samples for CHOL). This is especially relevant in clinical practice, where highly
unbalanced detection is common.

The adaptation of the Quinn et al. [14] anomaly detector obtained a mean
max F1 of 77.7% and an average AP of 77.2%, making the performance of Can-
DLE state of the art in mean maxF1 and competitive in average AP. These
results are particularly important considering that the Quinn et al. model was
explicitly designed for detection tasks while CanDLE is a flexible and simple
architecture that can also perform multilabel classification. Moreover, CanDLE
has the advantage of providing more transparent and direct interpretability of
detection models when compared with the Quinn et al. algorithm.

Fig. 2. Biological processes gene ontology results of the top 1, 000 predictor genes
shared by at least 3 TCGA classes. Developmental and morphogenesis processes appear
to have a mayor role.

5.3 Interpretability

After performing our interpretability protocol, we obtained an ordered list of
1, 982 genes. Notably, the majority of the weights (71.3%) resulted significant
in the Wald z test highlighting the reliability of CanDLE. The genes YWHAQ,
AC073578, AC013417, and RNU6-1207P were found to be important predictors
in more than 10 cancer types. Figure 2 shows the results of GO biological process
enrichment analysis where it is clear that CanDLE recognizes developmental and
morphogenesis pathways as essential to perform pan-cancer classification.
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6 Conclusion

In this work, we empirically prove that previous approaches to joining the TCGA
and GTEx databases have significant biases and correct them with a z-score
batch standardization. Additionally, we present CanDLE, a simple multinomial
logistic regression method that can perform both cancer/healthy tissue type
multilabel classification and all-vs-one detection with state of the art perfor-
mance. Finally, we leveraged the simplicity of CanDLE to interpret gene rele-
vance in pan-cancer classification which recognized developmental and morpho-
genesis pathways as important predictors.
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Abstract. Lung adenocarcinoma has histologically distinct growth pat-
terns that have been associated with patient prognosis. Precision seg-
mentation of growth patterns in routine histology samples is challenging
due to the complexity of patterns and high intra-class variability. In this
paper, we present a novel model with a multi-stream architecture, Cross-
Stream Interactions (CroSIn), which fully considers crucial interactions
across scales to gather abundant information. The first-order attention
introduces contextual information at an early stage to guide low-level
feature encoding. The second-order attention then focuses on learning
high-level feature relations among scales to extract discriminative fea-
tures. Experimental results show interactions at both low- and high-level
feature learning stages are crucial in performance improvement. The pro-
posed method outperforms state-of-the-art networks, achieving an aver-
age Dice of 60.34% at patch level, and an average accuracy of 65.31% at
sample level, which is also verified in an independent cohort.

Keywords: Semantic segmentation · Growth patterns · Histology

1 Introduction

Lung adenocarcinoma (LUAD) growth patterns depict the spatial organization
of cancer and stromal cells. The wide spectrum of growth patterns, including
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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micropapillary, solid, papillary, acinar, lepidic, and cribriform, have been recog-
nised by the WHO [25] and several other studies [15,28]. The predominance and
composition of growth patterns have been shown to associate with patient sur-
vival [19], which highlights the significance of identifying diverse subtypes in the
clinical setting. However, it is challenging to distinguish these subtypes without
domain language, as growth patterns usually consist of a variety number of can-
cer cells with different arrangements and morphological structures, and there is
no specific shape or size that can be used to quantitatively define them.

Deep learning models have presented notable advantages in histology image
analysis, such as tumor segmentation [21,27], nuclei segmentation [8,17], and cell
subtype classification [7,12]. Unlike some of these generic applications, tumor
growth patterns segmentation present novel challenges to the field, due to their
variability and complexity. An accurate delineation of growth pattern-specific
masks at a whole-slide image (WSI) level can be achieved with a deep learn-
ing approach, such a tool can address the following: 1) empower large-scale,
automated and objective analysis to assist current pathological assessment and
mitigate inter/intra observer variability; 2) enable a closer look at growth pattern
heterogeneity, which can provide an additional insight for patient stratification
and prognosis; 3) understand cancer progression with molecular and morpholog-
ical lenses whilst these patterns evolve from one type to another.

At present, several methods have been proposed to address the growth pat-
tern segmentation problem, which can be essentially grouped into two cate-
gories: patch-wise classification [2,10,29] and pixel-wise classification [23,24],
also known as semantic segmentation. However, results obtained with existing
approaches do not appear to precisely delineate contours, such as alveolar walls
in the lepidic pattern and glands in the acinar pattern. Also, all the above meth-
ods can only segment 5 growth patterns, leaving out cribriform. Considering its
relevance to prognosis and recent classification as high-grade by the International
Association for the Study of Lung Cancer (IASLC) [19], we decided to include
cribriform as a distinct pattern, and thus develop a segmentation model capable
of identifying all 6 recognised patterns.

In this paper, we propose a novel method, Cross-Stream Interactions
(CroSIn), to segment 6 types of growth patterns in LUAD. The model fully
explores the relations among multiple scales during low- and high-level feature
encoding, thereby enriching the feature pool. The motivation behind the pro-
posed method is: 1) a growth pattern is a group behavior of cancer cells, thus
contextual information provided by multi-scale could be beneficial for the seg-
mentation; 2) interactions between streams/layers have been proven effective
in fine-grained recognition [16,31], therefore we investigate interactions across
scales via first- and second-order attentions to achieve a fine-grained segmenta-
tion of tumor patterns. The main contribution of our study can be summarized
as 3 folds,
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– We develop a growth pattern segmentation method by considering cross-scale
interactions, which can not only guide low-level feature encoding (first-order
attention) by leveraging global information, but also learn high-level feature
relations across scales (second-order attention).

– The proposed cross-scale second-order attention module captures common
features among scales and their complementary features, corresponding to
areas of high and low gradient variations, which reflects morphological char-
acteristics of growth patterns.

– We expand the validation of the proposed method from patch level to WSI
level, by correlating predicted subtype percentages with pathological estima-
tions, further demonstrating the effectiveness of the proposed method.

2 Method

The proposed method CroSIn is shown in Fig. 1(a), which encodes three streams,
coarse (top path), intermediate (middle) and fine streams (bottom), with dif-
ferent scales of information, and segmentation results are derived from the fine
stream. The model applies ResNet50 [13] as the backbone with a number of filters
reduced by 4 times (Fig. 1(a)), the down-sampling in the last block of each stream
is removed, and the convolution operation is replaced with atrous convolution
in order to retain larger receptive fields without adding more parameters. The
cross-stream first-order attention (referred to as first-order attention hereafter)
shown in Fig. 1(b) is applied to guide low-level feature encoding, while the cross-
stream second-order attention (referred to as second-order attention hereafter)
Fig. 1(c) aims to direct the relation learning among high-level features obtained
from the Pyramid Pooling Module [32]. Such two attention modules are set at
different learning stages to thoroughly utilize interactions among streams.

2.1 First-order Attention

Each stream learns different features since the input scale is varied, and it has
been shown that features derived from a smaller scale tend to focus on the
periphery [4]. In the proposed method, we assume the upper stream with a
relatively smaller scale input achieved by an average pooling strategy is able to
learn more global features than the other one as it is with a larger receptive
field. The receptive field size of the coarse stream is 156 × 156, which is passed
to the intermediate stream at its receptive field size of 102×102. The same with
the interaction between intermediate (214 × 214) and fine streams (147 × 147).
The upper streams learns more global features than the other one, which can
guide low-level feature encoding in lower streams. Thus, we apply a top-down
attention mechanism between streams to pass global information to the next
stream. The coarse stream acts on the intermediate one, which then guides the
fine stream learning.

Figure 1(b) shows the details of the first-order attention, which follows the
channel and spatial attention proposed in [30]. The difference is that the chan-
nel and spatial attention here act on the other scales instead of the same one
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Fig. 1. The architecture of the proposed method CroSIn. (a) Main framework. (b)
First-order attention, taking coarse and intermediate streams as instance. (c) Second-
order attention.

in the context of multi-scale. The coarse stream, S1, is firstly performed by
depth-wise and global average pooling in parallel followed by a convolution layer
and two dense layers, respectively. Then the corresponding attention map can
be obtained via a sigmoid function. Lastly, the Hadamard product between the
to-be-guided scale, S2, and channel attention map is computed, whose output
then multiplies the spatial attention map in element-wise to deliver the repre-
sentations. The fine stream learning, S3, can also be guided similarly, involving
contextual information from the intermediate stream, S2.

2.2 Second-order Attention

As the learning proceeds, high-level features with semantic information are form-
ing. Multiple scales of high-level features have proven to be effective in seman-
tic segmentation for medical images [3,11], while the relation among different
scales of high-level features is yet to cover. Furthermore, self-relation (or self-
attention) has shown promising performance in segmentation [9,26,33], thus, it is
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worth investigating the relations concealed in high-level features across different
scales.

A second-order attention is proposed to learn the relations across scales, aim-
ing to investigate more features that can boost segmentation performance. As
shown in the top half of Fig. 1(c), taking the fine stream, S3, as the main one,
then an attention map with another stream, S1 or S2, is obtained by computing
the dot product between them followed by a sigmoid function. Afterwards, to
activate common features that both streams have learned, an element-wise mul-
tiplication is performed on them, which is then added to the original features of
the main stream,

F3,1 = σ

(
1
C

C∑
c=1

Sc
1 ◦ Sc

3

)
◦S3 +S3, F3,2 = σ

(
1
C

C∑
c=1

Sc
2 ◦ Sc

3

)
◦S3 +S3 (1)

where C is the channel number, F3,1 and F3,2 are feature maps that have con-
sidered relations between S3 and S1, and between S3 and S2. Such features
are assumed to be reliable as they are derived from two streams consisting of
different scales of information. Moreover, the second-order attention also takes
advantage of the complementary relation among streams, the bottom half in
Fig. 1(c), to fully exploit potential discriminative features. The complementary
map that fits for fine stream, F3,r, is computed from coarse and intermediate
streams following reverse attention [6,14], i.e., subtracting the attention map
between S1 and S2 from 1. The final complementary features are obtained fol-
lowing a successive element-wise multiplication and summation with the original
outputs of fine stream.
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)]
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3 Experimental Results

Experiments were conducted on haematoxylin and eosin (H&E) WSIs of 49 tissue
sections collected from the TRACERx 100 cohort [1]. Each WSI was sparsely
annotated by the consensus of three senior pathologists. The annotated areas
were down-sampled to 10× and then divided into patches with a size of 384 ×
384. Accordingly, the experimental dataset consists of 2968 patches covering
6 patterns. An independent cohort consisting of 192 WSIs for 50 cases from
LATTICe-A cohort [18] was also used to verify the performance on WSI level.

Pixel-wise Dice coefficient (Macro-F1), F1 score and overall precision (OP),
and object-wise Dice (OD) [22] were used as metrics to evaluate the patch-level
performance, and the background was excluded. We applied 5-fold cross vali-
dation to verify the effectiveness of the proposed method. The average perfor-
mance across 5 folds was then taken as the estimation of the final performance.
Each fold was ensured to consist of all the 6 patterns and remained roughly the
same subtype distribution with the whole dataset. WSI-level performance was
assessed by Spearman correlation coefficient between predicted proportions and
pathological estimations, as well as predominant pattern accuracy.
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3.1 Ablation Study

The first- and second-order attention aim to leverage different scales of infor-
mation at different learning stages, and enable the interactions among streams
to expand the feature pool, which could be effective in segmentation of growth
patterns. In this section, we systematically verify the proposed model from 2
aspects, 1) effectiveness of multi-stream, and 2) effectiveness of attention mod-
ules.

Table 1 left part reports each subtype’s segmentation performance measured
by Dice coefficient for each method, including baseline method (Single Stream),
multi-stream with element-wise add combination (Multi-ADD), multi-stream
with only first-order attention (Multi-FO), multi-stream with only second-order
attention (Multi-SO) and the proposed CroSIn model (Multi-FO & SO). Overall,
the segmentation performance of cribriform and micropapillary is inferior to
other patterns in all methods. It is probably due to 1) limited number of training
data, and 2) their complex morphological characteristics, e.g. cribriform is an
intermediate state of solid and acinar and could appear similar to either of them.
In addition, methods with attention modules can achieve the best performance
for each subtype, implying that the attention techniques come into effect.

Together with the overall performance shown in the right part of Table 1,
multi-stream variants is much more promising than single stream, despite the
single stream potentially having an advantage over some of multi-stream meth-
ods. Thus, multi-stream can improve the segmentation performance through
gathering different types of features. Moreover, utilizing first-order attention
(Multi-FO) to combine streams at low-level feature encoding stage can yield
better overall performance than simply adding them (Multi-ADD), the F1 score
is improved by over 10%. It especially performs well for papillary and lepidic seg-
mentation, both of whose performance are increased by about 10% in terms of
Dice, boosting the overall performance. Furthermore, the second-order attention
outperforms the first-order attention for most subtype segmentation (except pap-
illary), thereby improving the overall performance by 4.64%, 2.33% and 1.04%
regarding Dice, F1 and OP. This suggests that high-level features’ interactions
across streams could be more effective than merging at low-level feature learning,
which is reasonable considering the importance of high-level features in semantic
segmentation. The proposed model adopts both first- and second-order atten-
tion, further enhancing the overall performance with notable improvements, in
particular regarding F1 which is increased by 11%. Therefore, integrating mul-
tiple streams via attention modules to enforce an interaction between them can
deliver promising performance in growth pattern segmentation. Visual compar-
ison can be found from the Appendix.

The second-order attention maps are visualized in Fig. 2. It can be seen
that the attention interacting between streams, Figs. 2 (c) and (d), captures
their common sharing features, reflecting the area with high gradient varia-
tions, occurring for lepidic (blue) and papillary (yellow). The reason is that
these areas are easily distinguishable, so they can be easily captured by dif-
ferent streams, and the multiplication operation between streams in Eq. 1 can
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Table 1. Subtype (left, Dice) and overall performance for ablation study(%).

Method Cri Mic Sol Pap Aci Lep Dice F1 OP OD

Single Stream 29.21 44.49 66.37 47.55 56.86 55.39 49.98 34.43 55.59 59.40

Multi-ADD 30.01 43.18 67.93 50.62 61.04 55.43 51.37 38.28 57.04 62.58

Multi-FO 31.50 41.17 66.47 61.01 60.74 64.39 54.21 50.53 60.93 66.32

Multi-SO 47.32 47.33 72.78 54.19 62.53 68.96 58.85 52.86 61.97 65.56

Multi-FO & SO 49.66 44.30 71.70 58.63 63.10 74.63 60.34 63.86 65.43 69.40

Fig. 2. Second-order attention heatmaps, from top to bottom is solid (dark red), pap-
illary (yellow), acinar (red) and lepidic (blue). (a) Ground truth. (b) Results from
CroSIn. (c) Attention heatmap interacting between coarse and fine streams. (d) Atten-
tion heatmap interacting between intermediate and fine streams. (e) Reverse attention
heatmap interacting between coarse and intermediate streams. (Color figure online)

subsequently highlights these areas. The difference between Figs. 2 (c) and (d)
also demonstrates the need to consider multi-scale information for growth pat-
tern dissection. The reverse attention in Fig. 2 (e) serves as the complementary
focusing on the remaining features, which could be the smooth area due to the
subtraction in Eq. 2, such as solid pattern shown in the first row.

3.2 Comparison with State-of-the-Art Methods

In this section, we compare the proposed CroSIn model with representative meth-
ods using similar strategies, including attention U-Net [20], DeepLabV3+ [5]
(multi-scale features), DANet [9] (self-attention for high-level features) and Med-
ical Transformer [26] (fully self-attention). Table 2 shows the subtype and overall
performance of different methods at patch level. It can be seen growth pattern
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segmentation is a challenging task, which is not only due to their complex het-
erogeneity but also the variability of annotations collected from different pathol-
ogists. Nevertheless, the proposed model achieves the best overall performance
regarding the 4 metrics among comparison methods, and DeepLabV3+ is in the
second place, indicating multi-stream strategy together with their interactions
are necessary in growth pattern segmentation. The attention U-Net failed in
segmenting micropapillary, which is probably due to its limited data.

Table 2. Subtype (left, Dice) and overall performance at patch level (%).

Method Cri Mic Sol Pap Aci Lep Dice F1 OP OD

Attention U-Net 18.99 0 71.26 42.69 45.18 48.06 37.70 20.02 50.40 55.36

DeepLabV3+ 41.94 41.33 73.81 51.86 60.95 68.64 56.91 62.50 62.44 68.45

DANet 23.44 26.13 42.19 34.12 49.71 52.35 37.99 10.90 47.31 44.84

MedT 23.74 12.92 65.92 48.14 41.71 47.86 40.05 36.47 50.96 54.80

CroSIn 49.66 44.30 71.70 58.63 63.10 74.63 60.34 63.86 65.43 69.40

In clinical practice, the predominant pattern and subtype percentages are
taken as the score in routine diagnostic slides. Thus, we also compare above
methods at WSI level, including Spearman correlation between predicted sub-
type percentage with its pathological estimation, and predominant pattern accu-
racy. Given a segmented WSI-level mask, the predominant pattern is the pattern
with the maximum number of pixels, and each subtype percentage is computed
by dividing the pixel number of a pattern with the total number of pixels covering
all the patterns. Higher correlations indicate better performance.

The comparison results on development dataset are shown in Table 3, the pro-
posed method is particularly capable of segmenting solid, papillary and acinar
patterns as these patterns’ percentages are strongly correlated with pathological
estimations (p < 0.01). Lepidic and cribriform patterns are moderately corre-
lated with the ground truth, but still outperforming all other methods. In regards
to micopapillary, the performance is limited and weakly correlated. Overall, this
comparison on predominant pattern accuracy and parameters further demon-
strate the advantages of the proposed method over previous work. It should be
noted that the evaluation at WSI level is also conducted across 5 folds.

The comparison on an independent cohort, Table 4, also shows advantages
of the proposed method over other algorithms regarding accuracy and subtype
prediction. The correlation of micropapillary drops drastically for all the meth-
ods, which is probably due to the data bias. Visualisation of patch-level and
WSI-level masks can be found from the Appendix.
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Table 3. Performance comparison at WSI level for the development dataset. NaN
indicates the lack of model prediction for the pattern.

Method Cri Mic Sol Pap Aci Lep Accuracy (%) Paras

Attention U-Net 0.3108 NaN 0.7798 0.3085 0.5163 0.2828 48.98 15.55 M

DeepLabV3+ 0.3320 0.2790 0.7613 0.5321 0.6490 0.4817 55.10 11.85 M

DANet 0.0994 0.2290 0.5278 0.0282 0.4959 0.1191 42.86 6.67 M

MedT 0.1659 −0.1232 0.6346 0.3685 0.5853 0.2792 42.86 1.41 M

CroSIn 0.4244 0.3026 0.7545 0.6237 0.6885 0.5639 65.31 4.10 M

Table 4. Performance comparison at WSI level for the independent cohort.

Method Cri Mic Sol Pap Aci Lep Accuracy (%)

Attention U-Net 0.4443 NaN 0.6175 –0.0012 0.1970 0.1443 42.00

DeepLabV3+ 0.2795 0.1134 0.1430 0.0916 0.1459 0.1137 32.00

DANet 0.2182 –0.0496 0.4071 0.1735 0.5169 0.4187 26.00

MedT 0.3700 –0.2606 0.1997 0.3931 0.1284 0.1186 16.00

CroSIn 0.5160 0.0535 0.7840 0.5319 0.6317 0.2450 60.00

4 Conclusion

In this paper, we have proposed a segmentation method, CroSIn, for growth
pattern segmentation in LUAD by leveraging cross-stream interactions. First-
and second-order attention modules can fully consider relations among streams
at different stages, resulting in an expanded feature pool and allowing the model
to capture discriminative features, crucial to decipher tumor growth patterns.
Experimental results at patch level verify the effectiveness of the first- and
second-order attentions in segmentation, implying that the hidden interactions
among streams cannot be ignored. At both patch and WSI levels on either
development or independent dataset, our method outperforms state-of-the-art
methods and offers several advantages. When incorporated with other pheno-
types, CroSIn will allow the spatial tracking of ecological hallmarks to better
understand lung cancer evolution.
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Appendix

(Figures 3, 4, 5 Table 5).

Fig. 3. Instances of segmentation results for ablation study, showing the effectiveness
of the first- and second-order attention modules. (a) Ground truth. (b) Single Stream.
(c) Multi-ADD. (d) Multi-FO. (e) Multi-SO. (f) Multi-FO & SO.

Fig. 4. Segmentation instances at WSI level from different comparison methods. (a)
Original WSI with acinar as predominant pattern (red). (b) attention U-Net. (c)
DeepLabV3+. (d) DANet. (e) Medical Transformer. (f) Proposed CroSIn. (Color figure
online)
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Table 5. Performance comparison at WSI level via predominant pattern and subtype
percentages (%) for results in Fig. A2, and the bold text indicates predominant pattern.
The result obtained from CroSIn is in line with ground truth in terms of predominant
pattern. DeepLabV3+ and DANet can also give the correct predominant pattern, aci-
nar, but with a slight margin to the papillary and lepidic, respectively. Both attention
U-Net and Medical Transformer (MedT) yield papillary as predominant pattern, which
are mispredicted.

Method Cri Mic Sol Pap Aci Lep

Ground truth 0 0 0 0 90.00 10.00

Attention U-Net 1.09 0 2.42 45.10 33.09 18.29

DeepLabV3+ 0.33 5.99 1.77 36.76 53.81 1.35

DANet 0.80 0.24 10.44 11.93 42.29 34.30

MedT 1.80 0 10.08 63.00 22.32 2.80

CroSIn 0.38 1.07 0.48 21.69 74.32 2.07

Fig. 5. Instances of patch-level results from different comparison methods, suggest-
ing the advantage of the proposed model. (a) Ground truth. (b) attention U-Net. (c)
DeepLabV3+. (d) DANet. (e) Medical Transformer. (f) Proposed CroSIn.
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Abstract. It is imperative to predict pulmonary nodule malignancy as CT scans
becomemore popular and cancer early detection has becomewidely recognized for
lung cancer detection in its early stages, which could significantly prolong patient
survival.Our study comparedmulti-modalitymodels for the early detection of lung
cancer, including traditional diagnostic models and deep learning based LDCTAI
models. Furthermore, a multi-model, multi-modality ensemble classifier based on
the random forest is also proposed and tested in this study. AUCs of 0.694 and
0.785 were achieved by two CT Image AI models, respectively, in the test clinical
cohort consisting of 177 patient CT scans. Based on an ensemble of Random
Forest-based multi-modality models combining CT AI models and clinical data,
the AUC performance was further improved to 0.846.

Keywords: Early lung cancer diagnosis · Low-dose CT · Artificial intelligence ·
Cancer diagnostic model ·Model ensemble

1 Introduction

Lung cancer is the second cause of cancer incidence and the leading cause of cancer
mortality worldwide. GLOBOCAN data estimated that more than 2.2 million newly
diagnosed cases and approximately 1.8 million deaths were caused by lung cancer in
2020, accounting for 11.4% and 18% of the global cancer incidence and mortality [1].
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Early detection is critical to improving the lung cancer survival rate. The 5-year survival
rate of stage IA lung cancer is 82%, but only 36% and 6%when in stage IIIA and IV [2].
Low dose computed tomography (LDCT) has been proved to reduce 20% lung cancer
mortality compared with Chest X-ray by the National Lung Screening Trial (NLST) and
has become the only recommended test for lung cancer screening [3].

However, the false-positive rate of LDCT has diminished its efficacy, as only 3.6%
of people with positive LDCT results were confirmed to be cancer in the NLST study.
Therefore, clinicians utilize decision-making tools in concurrence with LDCT to stratify
patients’ malignancy risk. Initially, predictive models that consisted of clinical charac-
teristics such as age, gender, family history of cancer, etc., were widely applied in the
clinical setting to evaluate individuals’ lung cancer risk. The Mayo Clinic Model devel-
oped in 1997 by the Mayo Clinic and the Brock Model generated from the PanCan data
set in 2013 are commonly found in the clinical setting assisting physicians to determine
the probability of lung cancer in pulmonary nodules [4, 5].

Nowadays, Artificial intelligence (AI) approaches have received attention for image
analysis in the clinical setting. The use of AI can help clinicians interpret the variations
in pathology results and reduce the risk of potential fatigue caused by classifying large
numbers of medical images [6], which can improve the diagnostic efficacy and accuracy
of lung cancer screening [7]. Therefore, AI is considered a cancer diagnosis tool with
great promise. In addition, deep learning technology is capable to improve the effective-
ness of lung cancer diagnosis by precisely distinguishing malignant and benign nodules
by interpreting specific features and complex patterns from medical images [8]. Using
AI algorism as supplementary tools for early lung cancer diagnosis has been adopted in
the clinical setting, some AI models performed equal or even more accurate than skilled
clinicians in identifying benign frommalign pulmonary nodules, which can enhance the
diagnostic accuracy and reduce the false-positive rate of LDCT [9].

In this study, we assessed both an in-house developed AI and a commercially avail-
able AI for early lung cancer diagnosis and compared their performances with sev-
eral conventional clinical models. Additionally, we found that combining those solu-
tions with a multi-modality collaborative AI ensemble might improve the accuracy of
distinguishing benign from malignant pulmonary nodules.

2 Method

2.1 Study Design and Participants

A total of 480 participants were included between November 2016 and May 2018, from
Shanghai Chest Hospital. Written informed consent was obtained from each participant.
The study was approved by the ethics committee (ethical approval number KS1961)
and registered in the Chinese Clinical Trial Registry (ChiCTR2000036938). The lung
cancer diagnosis was confirmed by histopathology according to the guidelines of the
National Comprehensive Cancer Network which consists of 123 benign and 303 malig-
nant. Lung cancer staging was performed based on the 8th IASLC TNM Staging Sys-
tem. Lung benign diseases included pneumonia, chronic obstructive pulmonary disease,
tuberculosis, and others.
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The patients were enrolled according to certain inclusion and exclusion criteria. The
inclusion criteria include: 1) contain lung window scan with slice thickness less than
2 mm; 2) without any NULL values for all necessary information. The exclusion criteria
were: 1) without lung window scan; 2) only contain slice thickness more than 2 mm; 3).
Image quality problem that does not pass the examination by human eyes; 4). Contain
Null values.

Fig. 1. Study design and patient enrollment.

Figure 1 illustrated the study cohort, which comprise 177 patients, 49 of whom had
benign lung cancer and 128 of whom had malignant lung cancer. A number of clinically
available biomarkers and models along with two LDCT AI models will be enrolled
for overall comparisons and subgroup analyses in which stage, age, sex, and density
types will be considered. As shown in Fig. 2, all enrolled patients were undergoing both
sub-group analysis and comparison studies, and a Random-forest model was trained
to ensemble different information to obtain a better performance, to fully ensure the
different modalities and different image AI models.
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Fig. 2. Workflow for Radom Forest based multi-modality collaborative AI model ensemble. The
training set and the test set were randomly divided from 49 benign and 128 malignant patients.
After sorting the feature importance, different strategies were used for characteristic selection.
Next, the random forest was selected for model training using 10-fold cross validation. Finally,
the diagnostic performances were evaluated in the test cohort.

2.2 Biomarkers and Models

Laboratory Tumor Marker Analysis. Carcinoembryonic Antigen (CEA), a glyco-
protein that is involved in cell adhesion, is one of the most frequently seen serum labora-
tory measurements for cancer diagnosis [10]. In the study, we tested the serum levels of
CEA with a commercially available electro chemiluminescent assay on a Roche Cobas
e601 analyzer (Roche Diagnostics, Germany).

Existing Clinical Models for Pulmonary Nodule Classification. We utilized three
clinical prediction models and measured their diagnosis power in our study cohort:
the Mayo clinical model, the Brock Model, and the (Veterans Affairs) VA model. The
Mayo clinical model was developed based on a cohort of 629 patients with newly dis-
covered 4–30 mm indeterminate solid pulmonary nodules (SPNs). The perdition model
has involved characteristics of age, cigarette smoking status, history of extrathoracic
cancer, nodule diameter, spiculation, and upper lobe position [4]. The Brock model
was established from 1871 persons with 7008 nodules in the PanCan data set and 1090
persons with 5021 nodules in the BCCA data set. Other than clinical characteristics of
age, sex, family history of cancer, history of emphysema, radiological characteristics
of nodule type, nodule location, and nodule count per scan were also included [5]. The
VA model was built from 375 U.S. veterans with SPNS and contained risk factors of
smoking history, age, larger nodule diameter, and time since quitting smoking [11].
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LDCT Image Artificial Intelligence. CT scan data were obtained with a 128-detector
row scanner (Brilliance, Philips, Cleveland, OH, USA) using the helical technique at the
end of inspiration during one breath-hold. The scanning parameters of routine CT were
as follows: pitch, 1.0; matrix,1024 × 1024; FOV, 300 mm; 120 kVp and 200 mA.

In this study, two deep convolutional neural network model-based artificial intel-
ligence software (Image-AI) were used to detect and classify lung nodules, including
Image AI_1 (Deepwise, Beijing, China), and Image AI_2 (Sanmed Biotech, Zhuhai,
China). Image-AI-1 has been approved by the NMPA as Level III Medical Device only
for pulmonary nodule detection but is equipped with a nodule malignancy prediction
module. The Image AI_2 was developed in-house and the performance of detecting nod-
ules and predicting malignancy has also been validated in a large-scale clinical study
[12]. To the best of our knowledge, no regulatory body has approved an AI-based nodule
malignancy prediction algorithm. All the two AI models have predictions on the malig-
nant degree of the biggest nodule found in the patient, which is also further confirmed by
clinicians. The value of this prediction ranges from 0 to 1, with a higher value indicating
a higher likelihood of malignancy.

2.3 Multi-modality Multi-model Ensemble

This study employed a Random Forest (RF) based model ensemble strategy to fully
leverage all the markers and models. As the tree-based strategy used by random forests
naturally that rank by howwell the features improve the purity of the node, it is commonly
used for feature selection. Following the features selections with the RF, we trained an
ensemble RF model using all selected features and the top two features to assess how
much the performance improved. The enrolled patients were split into 8/2 as training
and testing datasets. The training dataset was 10-fold cross-validated to enhance model
generalization, while the test dataset was compared with AUC as a performance metric.

2.4 Model Performance Evaluation

In this initial study, receiver operating characteristic (ROC) curve is used to evaluate the
performance of all the biomarkers and models in the prediction of the nodule. The area
under Curve (AUC) value is used for comparison between different models and model
ensemble strategies.
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3 Results

Fig. 3. Receiver operating characteristic of different models.

In Fig. 3, it is evident that both Image-AIs achieved significantly higher AUC scores
than the traditional clinical models and biomarkers. The Image-AI-2 is the most accurate
of the two Image-AIs, scoring 0.785, slightly better than Image-AI-1’s 0.694.

The various study subgroups are shown in Fig. 4. Image-AI-2 has the best perfor-
mance inmost of the subgroups. The performance of the testedmodels is not significantly
affected by gender. Using age as a threshold of 40 and 60, we divided the cohort into
three subgroups. For groups below 40 and 40 ~ 60, image-AI-2 has reached AUC scores
of 0.855 and 0.749. Image-AI-2 has an AUC score of 0.824 for the subgroup above
60 years old. Image-AI-2 performs slightly better than Image-AI-1 in TNM 2 cancer,
while Image-AI-1 outperforms all other models in earlier cancer stages. When subgroup
analysis of nodule subtypes, including Solid, GGN (ground glass nodule), and PSN (part-
solid nodule), was performed, Image-AI-1 provides the highest AUC score of 0.752 in
the Solid groups. On the other hand, Image-AI-2 performs better in GGN, with an AUC
of 0.872, which is significantly greater than Image-AI-1’s 0.709.
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Fig. 4. Subgroup analysis for patient age, sex, lung cancer stage, and lung nodule type. (a) Three
age cohorts: under 40, 40–60, and 60–100. (b) subgroups divided by gender. (c) The malignant
cohort of different disease stages: stage 0, stage I, and stage II. (d) subgroups with different nodule
types: solid nodule, GGN (ground glass nodule), and PSN (part-solid nodule).

Figure 5 shows the results for model ensembles with different strategies. In the
predictions model built from the mean value of the two models, the AUC is 0.799,
slightly higher than Image-AI-2, the individual predictor with the best performance.
Among the different tested machine learning models, the Random Forest model stands
out as the final ensemble model. Detailed performance comparison can be found in
supplementary Table 1. Using the Random-Forest based model ensemble for the two
Image-AI, the AUC is improved to 0.801. The features importance of the Random-forest
is described in Fig. 5(a), where Image-AI-2 is the most influential factor, followed by
nodule subtypes. The ROC curves in Fig. 5(b) shows that the ensemble model with all
features achieves the highest AUC of 0.846, while only utilizing the top two features
(Image-AI-2, and nodule subtype) would slightly lower it to 0.833.
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Fig. 5. (a) Feature importance ranking based on random forestmodel. (b)MultimodalityAImodel
ensemble experiments.

4 Discussion

In this study, by collecting lung cancer patients at early stages, we systemically compared
different models, for early diagnosis of lung cancer, and the feasibility of the model
ensemble for the different modalities of the AI models was also evaluated.

A couple of studies have stated that certain AI-based CT lung cancer diagnoses
showed high accuracies for nodule detection and malignancy prediction [13]. Our study
has demonstrated a similar result where image AI performed better than the clinical
models at the early stages of the cancer diagnosis.

However, in real-world data tests, all image AI models perform below 0.8 AUC in
the early stages. The best performingmodel is Image-AI-2, provided by Sanmed Biotech
Ltd., with an AUC score of 0.79. The image-AI-1 has only achieved an AUC of 0.69.
As we carefully control the input image quality, both image AIs can be affected by the
image quality. In the sub-group studies, the image-AI-2 and image-AI-1 each has their
advantages, which may mainly be due to the dataset bias for the training stage of the
AIs. For example, in the sub-group analysis, image-AI-1 has superior performance in
the solid type nodules, whereas obtaining deprived performance in the PSN subgroup
than the image-AI-2.

The Model ensemble would often improve the final performance of a classifier. By
combining Image AIs with clinical models, the model ensemble improved the final
score from 0.79 to 0.846. In an ensemble RF model, using multiple image AI models
could improve performance by minimizing training dataset bias, and more information,
such as clinical results, could improve performance even further. During the training
procedure, different models gather datasets with different biases, so the data might be
better predicted via the ensemble of models.

In this study, there are a few drawbacks. For a comparative evaluation of the imaging-
AImodels,weonly consideredCT scans thatwere less than 2mmthick to ensure accurate
detection of small nodules. Though the thin-thickness CT scan for lung cancer screening
is already the most popular CT scan in most hospitals globally, thick scans are still being
performed in some under-equipped hospitals. The other drawback is that all patient data
come from one study site, a multi-center study would be investigated in the future.
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5 Conclusion

Our study examines the performance of CT AI on real-world lung cancer patient data,
as well as other clinical models. While the CT AI algorithms outperformed all other
existing diagnostic models, their overall malignancy prediction AUCs were below 0.8,
which might not be adequate for clinical applications. Unless massively large input data
covering the variety and heterogeneity of lung cancer are available, it is prohibitively
costly and difficult to overcome the demography bias of individual models. This study
presents a multimodality collaborative AI ensemble that increases the accuracy of lung
nodule classifiers, which has greater potential for real-world implementation.
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Abstract. Automated and accurate classification of Whole Slide Image
(WSI) is of great significance for the early diagnosis and treatment of can-
cer, which can be realized by Multi-Instance Learning (MIL). However,
the current MIL method easily suffers from over-fitting due to the weak
supervision of slide-level labels. In addition, it is difficult to distinguish
discriminative instances in a WSI bag in the absence of pixel-level anno-
tations. To address these problems, we propose a novel Clustering-Based
Multi-Instance Learning method (CBMIL) for WSI classification. The
CBMIL constructs feature set from phenotypic clusters to augment data
for training the aggregation network. Meanwhile, a contrastive learning
task is incorporated into the CBMIL for multi-task learning, which helps
to regularize the feature aggregation process. In addition, the centroid of
each phenotypic cluster is updated by the model, and the weights of the
WSI patches are calculated by their similarity to the phenotypic centroids
to highlight the significant patches. Our method is evaluated on two pub-
lic WSI datasets (CAMELYON16 and TCGA-Lung) for binary tumor
and cancer sub-types classification and achieves better performance and
great interpretability compared with the state-of-the-art methods. The
code is available at: https://github.com/wwu98934/CBMIL.

Keywords: Whole slide image · Multiple instance learning ·
Multi-task

1 Introduction

Whole Slide Images (WSIs) which are digital visualization of tissue section are
widely used in disease diagnosis [5,22]. Recently, deep learning approaches have
been used in WSI analysis, which is a long-standing challenge due to the gigapixel
resolution and the lack of pixel-level annotations [24]. Therefore, the analysis
of WSI which is a weakly supervised learning problem usually follows a MIL
problem formulation [7,20], where each WSI is regarded as a bag containing
many instances that are patches of the WSI.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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In previous MIL approaches for WSI analysis, a WSI has been tiled into a
large number of small patches and further extracted into features by a pre-trained
Convolutional Neural Network (CNN) e.g., ResNet-18 [11]. Then, patch-level
features are aggregated, and examined by a classifier that predicts slide-level
labels. For aggregation operator, a straightforward method is named pooling,
such as mean-pooling and max-pooling [8,13,27]. However, the pooling opera-
tion is a handcrafted method that guides limited performance. To address this
problem, Ilse et al. [12] proposed an attention-based aggregation operator param-
eterized by deep neural networks, assigning the contribution to each instance for
aggregating all instance-level features to a bag-level embedding. Recently, Li
et al. [16] proposed a non-local attention aggregator that gives the contribu-
tion to each instance by the similarity between the highest-score instance and
others. Shao et al. [23] introduced the self-attention mechanism into the MIL
framework which considers the contextual and spatial information between dif-
ferent instances. Notably, WSI contains rich phenotypic information that reflects
underlying molecular processes and disease progression. Several studies have
shown phenotypic information could provide a convenient visual representation
of disease aggressiveness [21,29,31]. Yao et al. [29] proposed a MIL framework
for survival prediction that considers phenotype clusters as instances instead of
patches.

Nevertheless, there are several challenges that exist in developing robust deep
MIL models to learn rich representation. First, a positive WSI might contain few
disease-positive patches as well as a lot of redundant instances [12,16,19,23,29],
leading to the prediction failure of the models due to the weak supervision of
the bag-level labels. Second, the model can easily suffer from over-fitting with
limited number of training data (WSIs) [16,18] and labels.

To address these challenges, we propose a novel Clustering-Based Multi-
Instance Learning (CBMIL) model, which constructs discriminative set from
phenotypic clusters that highlight the significant patches of WSI. Meanwhile, a
random set is constructed to augment training data for the contrastive task in
our multi-task learning module. Hence, the main contributions of our work are
summarized as follows:

• A novel clustering-based multi-instance learning model is proposed: it con-
structs discriminative set by adaptively sampling from phenotypic clusters
based on the similarity between instance and phenotypic centroid.
• A mechanism for updating centroid of the phenotypic cluster is designed,
which is to calculate the aggregation feature of each phenotypic cluster as the
new cluster centroid in each epoch to improve the reliability of prediction.
• The contrastive learning is set as an auxiliary task of the classification task
to regularize the feature aggregation process.
• CBMIL is evaluated for WSI classification on two public WSI datasets,
namely: CAMELYON16 and TCGA-Lung. Great performances over these
datasets and interpretability demonstrate the superiority of the proposed
model compared with other state-of-the-art methods.
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Fig. 1. The pipeline of our method. With the input feature bag, first, a feature selec-
tor constructs discriminative set S and random set Sr. Then a MIL backbone encodes
the two sets to obtain high-level representations. Finally, the whole model is jointly
trained by classification loss Lcls and contrastive loss Lcts. (a) represents the con-
struction of discriminative set using the selector, and (b) depicts the framework of the
MIL backbone which is consisted of patch-level aggregator Apatch and phenotype-level
aggregator Apheno.

2 Method

Figure 1 depicts the overall architecture of our proposed MIL-based framework.
Given an input feature bag of a WSI after clustering, two separate sets (i.e.,
discriminative and random sets) are constructed by a feature selector, then, the
selector and a MIL backbone are trained to maximize the agreement of the sets
using a contrastive loss. Meanwhile, the discriminative set is involved in classifi-
cation training, establishing a multi-task learning framework with the contrastive
task. Specifically, in Fig. 1(a), where the construction of the discriminative set
is illustrated for each training epoch. With the input feature bag, the patch-
level aggregator of the previous epoch produces a sequence of centroids for each
phenotypic cluster. These centroids are used to select discriminative features
based on distance measurement. These discriminative features are aggregated to
generate the phenotype-level features to form the discriminative set.

2.1 Clustering-Based MIL Framework

As shown in Fig. 1, a clustering-based multi-instance learning framework with
multi-task learning is built for WSI classification, in which a feature selector is
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used to construct discriminative set fed into the MIL backbone to obtain the
high-level representation (see respectively Figs. 1(a) and (b)). Then, the rep-
resentation hf is used to generate bag-level prediction which will be used to
calculate the cross-entropy loss with the slide-level ground truth labels. Also, a
small neural network projector that maps hf and hr

f to the latent space where
contrastive loss is applied.

Let B = {Bi}Ci=1 denotes a bag of the clustered features of a WSI, where
C is the number of clusters, Bi = {xi,j}Ni

j=1 is the ith phenotypic cluster that
consists of patch features xi,j ∈ R

L×1 extracted by pre-trained ResNet-18 [11]
from image patches, where Ni is the number of patches of ith cluster could vary
for different clusters and L is the dimension of the patch feature.

As detailed in Fig. 1(a), a discriminative set is generated by the two following
processes: ranking and constructing. In the ranking phase, different non-local
attention scores are assigned to patches within each cluster respectively. In a
phenotypic cluster, the score of a patch is obtained based on the similarity of
the patch feature to the centroid hc of the cluster. The centroid is inferred from
the patch-level aggregator Apatch of the previous epoch during training. Given
a phenotypic cluster Bi = {xi,j}Ni

j=1, the score ri,j of the jth patch can be
formulated as:

ri,j =
exp(〈Wqhc,i,Wqxi,j〉)

∑Ni

k=1 exp(〈Wqhc,i,Wqxi,k〉)
, (1)

where 〈·, ·〉 denotes the inner product of two vectors, and Wq is a weight matrix
of fully-connected layer. In constructing phase, N patches are sampled with top
scores from all phenotypic clusters, given by:

B′
i = T (Bi;Ki, ri), Ki =

[

Ni × N
∑C

k=1 Nk

]

, (2)

where T is the top-k operation of choosing patches from Bi according to the
scores ri = {ri,j}Ni

j=1. Also, Ki denotes the number of chosen patches in the ith

cluster. Then, compose all the B′
i to get the subset of WSI Spatch = {xn}Nn=1.

Furthermore, the phenotype-level feature is aggregated by the scores within each
sampled phenotypic cluster, is given by xp

i =
∑Ki

j=1 ri,jWvxi,j , where Wv is a
weight matrix used to transform xi,j ∈ B′

i into an information vector. The
phenotype-level features are represented as Spheno = {xp

i }Ci=1. Finally, Spatch

and Spheno together form the discriminative set S = {Spatch, Spheno}. Notably,
the only difference between the construction of random set and discriminative set
is that the features in the random set are sampled randomly and do not depend
on the attention scores. As Spatch is sampled from the phenotypic cluster whose
patches are uniformly distributed in WSI and which has the same proportion
of phenotypic features as the WSI. As Apatch is updated during training, the
selector can sample the more informative patches from each phenotypic cluster,
and the model benefits from the selector as well.

Meanwhile, the network of our MIL backbone includes two feature aggrega-
tors: Apatch and Apheno, as shown in Fig. 1(b). These two aggregators encode
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the constructed WSI set to patch-level and phenotype-level features which are
concatenated to obtain the high-level representation of WSI. Given a WSI set
S = {Spatch, Spheno}, the fused representation hf is given by:

hf = Cat(Apatch(Spatch), Apheno(Spheno)), (3)

where Cat is a concatenation operator. With the two aggregators and concate-
nation operator, the MIL backbone generates a high-level representation of WSI,
providing rich information for following the multi-task learning module.

2.2 Multi-task Learning

In this sub-section, a multi-task learning module is detailed, it is designed to
improve the representational power of our model and mitigate over-fitting as
shown in Fig. 1. Inspired by recent contrastive algorithms [2–4,9,10], we propose
an auxiliary contrastive task based on our adaptive selector and MIL backbone
to update our model together with the classification task.

The contrastive algorithm learns representations by maximizing agreement
between differently augmented views of the same data example via a contrastive
loss in the latent space [2]. The two different views of a sample are generated by
a stochastic data augmentation module in previous works. Different from this,
in CBMIL, a discriminative set S and a random set Sr are generated by the
proposed feature selector from the same bag B, as shown in Fig. 1.

Then, the two sets from the same WSI bag as a positive pair will be trans-
formed into two representations hf and hr

f by our MIL backbone. Then, the
representations are mapped to vectors in latent space and NT-Xent contrastive
loss is applied to maximize their agreement. In addition, hf is also used for the
classification task, which is trained using a standard cross-entropy loss. The total
loss L for a given mini-batch WSIs is the weighted sum of both the contrastive
loss Lcts and classification loss Lcls, given by L = β · Lcts + (1 − β) · Lcls, where
β ∈ [0, 1] is a scalar for scaling.

2.3 Model Structure and Training Procedure

In the proposed MIL backbone, the aggregator could be an arbitrary MIL-based
model that satisfies the permutation-invariant MIL formulation, such as in [12,
16,19]. We use CLAM-SB [19], a solid MIL aggregator, as our Apatch to aggregate
the sampled features of WSI, and, Apheno, a simple gated attention [12] is used
to aggregate the phenotype-level features. As denoted in Eq. (2), N is a constant
number that denotes the number of selected patch features. For a few WSIs with
patches less than N , we will pad the bag with 0 vectors.

Stochasticity is important in contrastive learning, previous works [2,4,9,10]
usually use stronger data augmentation on images. But the WSI bag is a feature-
level data sample, consequently, the natural data augmentation methods are not
available. To address this problem, we apply Mixup [30] based data interpola-
tion for Spatch inspired by [26]. The Mixup operation is only used during the
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training phase. Given a mini-batch of M bags B = {Bm}Mm=1 with the same
constant shape, the augmented sample for a B is created by taking its random
interpolation with another randomly chosen sample B̃ from B, formulated as:

B+ = λ · B + (1 − λ) · B̃, (4)

where λ is a coefficient sampled from a uniform distribution λ ∼ U(α, 1.0). The
value of α is usually high such as 0.9. It means that B+ is closer to B than B̃,
and the B̃ could be thought of as a data noise being added.

In the inference step, we throw away the contrastive branch and the generated
random set, and keep only the discriminative set for predicting the WSI label.

3 Experiments and Results

In this section, the implementation of the proposed method is detailed; also,
experiments and results are reported. Our experiments are conducted on two
public datasets: CAMELYONG16 [1] and the lung cancer dataset of The Cancer
Genome Atlas (TCGA-Lung) [25].

3.1 Dataset and Evaluation Metrics

CAMELYON16 is a widely used public dataset for metastasis detection in breast
cancer, including 270 training WSIs and 129 test WSIs. TCGA-Lung consists of
two subtype projects, i.e., Lung Squamous Cell Carcinoma (TGCA-LUSC) and
Lung Adenocarcinoma (TCGA-LUAD), which contains 529 LUAD WSIs and
512 LUSC WSIs.

For all WSIs in both datasets, tissue segmentation of the WSI was performed
by applying a combination of filters [28]. Each WSI is tiled into a series of 256×
256 patches without overlap at 20× magnification, where the background patches
(tissue region <35%) are discarded. After pre-processing, CAMELYON16 yields
about 6881 patches per WSI, and TCGA-Lung yields about 11540 patches per
WSI. As in [16], the feature of each patch is embedded in a 512-dimensional
(L = 512, L is defined at the beginning of the Sect. 2.1) vector by a ResNet-
18 [11] model pre-trained by [16]. Then, we adopt K-means algorithm to cluster
patch features into C = 10 phenotypic cluster to form bag B, following [29].

Regarding CAMELYON16 dataset, the training set is done after splitting
the 270 WSIs into approximately 80% training and 20% validation and tested
on the official test set. For TCGA-Lung, we randomly split the data in the ratio
of training:validation:test = 60:15:25. For evaluation metrics, the accuracy, Area
Under Che curve (AUC) scores and F1-score are reported in Sect. 3.3 on both
datasets. The average results are obtained by 4-fold cross-validation on TCGA-
Lung dataset.



106 W. Wu et al.

Table 1. Results on CAMELYON16 and TCGA-Lung, respectively.

CAMELYON16 TCGA-Lung

Accuracy AUC F1-score Accuracy AUC F1-score

MinMax [6] 0.8504 0.8757 0.7800 0.8373 0.9088 0.8396

ABMIL [12] 0.8640 0.8939 0.7988 0.8457 0.9073 0.8419

ABMIL-Gated [12] 0.8550 0.8766 0.7833 0.8468 0.9078 0.8426

SetTransformer [15] 0.7775 0.8493 0.7415 0.6758 0.7800 0.7176

DeepAttnMISL [29] 0.8791 0.9213 0.8236 0.7992 0.8744 0.79506

CLAM-SB [19] 0.8713 0.8926 0.8107 0.8687 0.9412 0.8697

CLAM-MB [19] 0.8508 0.8938 0.7866 0.8661 0.9420 0.8660

DSMIL [16] 0.8682 0.8832 0.7952 0.8597 0.9300 0.8590

CBMIL (ours) 0.9380 0.9541 0.9184 0.8849 0.9429 0.8853

3.2 Implementation Details

The number of sampled patches N is experimentally set to 1024. In the training
step, we use Adam [14] optimizer with an initial learning rate of 0.0001, a cosine
annealing (without warm restarts) scheme for learning rate scheduling [17], and
a mini-batch size of 16. The parameter α of Mixup is set to 0.8, the temperature
parameter τ defined in NT-Xent loss [2] is set to 1.0, and the loss scaling param-
eter β is set to 0.1. The classifier and projector are two Multilayer Perceptron
(MLP) with one hidden layer, where the classifier calculates the prediction scores
and the projector maps the representations to a 128-dimensional latent space.

3.3 Experimental Results

To demonstrate the performance of our model, we first compare our proposed
model with the current state-of-the-art deep MIL models [6,12,15,16,19,29]. All
the results are provided in Table 1. In CAMELYON16, only a small portion of
regions in a positive slide contains tumor (roughly < 10% of the total tissue area
per slide) which leads to the positive bags being highly unbalanced. CBMIL
outperforms its Apatch CLAM-SB [19] (i.e., 5% and 6% higher in accuracy and
AUC) and other deep MIL-based models. In TCGA-Lung, a positive slide con-
tains a relatively larger area of tumor region (roughly >80% of the total tissue
area per slide). CBMIL also outperforms all the other methods. Overall, the
results demonstrate the superiority of our CBMIL model.

In addition, to further determine the effect of the adaptive sampling mecha-
nism and multi-task module combined with contrastive learning, we report abla-
tion study results as shown in Table 2. This table shows the experimental results
of whether our proposed model has adaptive sampling and multi-task module.
Here, the A indicates whether to sample patch features based on the attention
scores in the feature selector, and the M indicates whether to add contrastive
learning branch in the training phase to establish multi-task learning. It could
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Table 2. Effects of the adaptive sampling and multi-task module.

Method A M CAMELYON16 TCGA-Lung

Accuracy AUC F1-score Accuracy AUC F1-score

Random MIL 0.8915 0.9173 0.8409 0.8626 0.9344 0.8603

Adaptive MIL � 0.9302 0.9438 0.9032 0.8769 0.9301 0.8755

CBMIL � � 0.9380 0.9541 0.9184 0.8849 0.9429 0.8853

Fig. 2. The visualization of phenotypes and attention heatmaps: (a) is the visualization
of phenotypes of a WSI from CAMELYON16 testing set, (b) and (c) are heatmaps of
attention weights in aggregators. Note: for (b) and (c), attention weights are re-scaled
from min-max to [0, 1] and used for patch intensities. (The details and colors are better
seen by zooming on a computer screen.)

be noted that the performance of classification can be substantially improved by
the adaptive sampling mechanism, and the performance can be further improved
by adding the multi-task learning module.

In closing, we also show the interpretability of CBMIL as displayed in Fig. 2.
The yellow curve depicts the official pixel-level annotation of the tumor region
in CAMELYON16. Figure 2(a) allows the visualization of phenotypic clusters
after clustering, where each color represents a cluster, and it can be noticed that
the phenotypic cluster of the tumor region are very obvious, while other nor-
mal tissues are uniformly distributed throughout the WSI. It is remarkable in
Fig. 2(b) that the phenotypic clusters belonging to the tumor region are given
high weights. Finally, Fig. 2(c) shows a more fine-grained attention heatmap: the
boundaries of which can highly overlap with the labeled regions. These visual-
ization results demonstrate the reliable interpretability of our proposed model.

4 Conclusion

In this paper, a novel Clustering-Based Multi-Instance Learning framework
(CBMIL) is proposed for weakly supervised classification of Whole Slide Image
(WSI). Firstly, we design a feature selector that constructs discriminative set
of WSI from phenotypic clusters by sampling patches based on centroids. The
centroids are updated during training and are used to sample patches that are
highly correlated with the prediction results. In addition, with the represen-
tational power of contrastive learning, we integrate contrastive learning task
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directly into MIL, establishing a multi-task learning framework to improve the
performance of our method. Meanwhile, a Mixup operator is introduced for
feature-level data augmentation. Most importantly, the proposed method out-
performs the state-of-the-art MIL algorithms in terms of accuracy, AUC and
F1-score over two public datasets, namely: CAMELYON16 and TCGA-Lung.
Eventually, CBMIL can provide great interpretability by visualizing the atten-
tion weights in the MIL backbone.
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Abstract. Automatic 3D medical image classification,e.g., brain tumor
grading from 3D MRI images, is important in clinical practice. However,
direct tumor grading from 3D MRI images is quite challenging due to the
unknown tumor location and relatively small size of abnormal regions.
One key point to deal with this problem is to learn more representative
and distinctive features. Contrastive learning has shown its effectiveness
with representative feature learning in both natural and medical image
analysis tasks. However, for 3D medical images, where slices are con-
tinuous, simply performing contrastive learning at the volume-level may
lead to inferior performance due to the ineffective use of spatial informa-
tion and distinctive knowledge. To overcome this limitation, we present
a novel contrastive learning framework from synergistic 3D and 2D per-
spectives for 3D medical image classification within a multi-task learning
paradigm. We formulate the 3D medical image classification as a Multi-
ple Instance Learning (MIL) problem and introduce an attention-based
MIL module to integrate the 2D instance features of each slice into the
3D feature for classification. Then, we simultaneously consider volume-
based and slice-based contrastive learning as the auxiliary tasks, aim-
ing to enhance the global distinctive knowledge learning and explore the
correspondence relationship among different slice clusters. We conducted
experiments on two 3D MRI image classification datasets for brain tumor
grading. The results demonstrate that the proposed volume- and slice-
level contrastive learning scheme largely boost the main classification
task by implicit network regularization during the model optimization,
leading to a 10.5% average AUC improvement compared with the basic
model on two datasets.
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1 Introduction

Automatic medical image analysis with supervised deep learning has already
demonstrated promising results in various computer-assisted diagnosis tasks
[23,27]. Among these tasks, 3D medical image classification (e.g., brain tumor
grading) is a challenging problem due to the unknown tumor location and the
relatively small size of abnormal regions compared with the whole 3D volumes,
especially for small medical image datasets. As the key discriminative knowledge
from tumor regions is usually hidden in high-dimensional 3D input space, it is
essential to balance the relationship between 2D and 3D features to improve
the understanding ability of deep learning models. Currently, to exploit more
discriminative information and improve the generalization capability of deep
models on small datasets, a possible solution [17] is to pre-train the model on
other existing labeled datasets which have a similar data distribution to the cur-
rent medical dataset, followed by fine-tuning on the target dataset. However, for
some rare tumour types, the annotated datasets available for transfer learning
may be extremely limited, which can cause the models to be easily over-fitted.

Recently, self-supervised representation learning has demonstrated promising
results with limited data. In the pre-training stage, self-supervised learning has
shown its effectiveness with representative feature learning in many tasks, from
both computer vision and medical image analysis [2,9,28]. Generally, it enhances
the feature extraction capability of the deep models by designing proxy tasks to
mine the representational properties of the data, where the data itself can be
regarded as supervisory information. For example, the contrastive learning task
is one of the discriminative proxy tasks [7,8,10,11,13,24], which can be used
as the auxiliary task together with the main supervised task in a multi-task
learning setup to improve performance for semi-supervised learning [19,25].

In this work, we aim to enhance the 3D medical image classification task
under the scope of self-supervision, especially contrastive learning. However, for
3D medical images, most conventional contrastive learning tasks focus on only
extracting global representations or local features [1,26]. Since slices in 3D med-
ical images are continuous, simply performing contrastive learning at the 3D
volume-level may lead to inferior performance due to the ineffective use of spa-
tial information and distinctive knowledge. To address these barriers, we employ
contrastive learning from synergistic volume and slice perspectives, which is
realized by two auxiliary tasks to exploit the 3D global information and 2D
clustering knowledge for the 3D medical image classification. We regard the
3D medical image classification as a Multiple Instance Learning (MIL) prob-
lem and introduce a gated attention-based MIL module [16] to integrate the 2D
instance features of each 2D slice into the 3D feature of the 3D volume for clas-
sification. We then adopt the volume-level contrastive learning task to enhance
the global distinctive knowledge learning. While for the slice-level contrastive
learning task, we divide the slices into different clusters to explore the corre-
spondence relationship among various clusters instead of processing directly on
the slices themselves, as shown in other literature [15]. Specifically, for each 3D
medical image volume, we hypothesize that the slices inside the volume can
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Fig. 1. Overview of our multi-task learning framework for 3D medical image classifi-
cation. The given volume is first to be augmented into two views and then be fed into
encoder f and momentum encoder g. The extracted features of encoder f are used for
image classification (Lclf ) via a gated attention-based MIL mechanism and also used
for slice-based contrastive learning (Lslice). Simultaneously, they and features extracted
by momentum encoder g are performed volume-level average pooling for volume-based
contrastive learning (Lvolume).

be divided into several categories according to their pseudo labels (e.g., cate-
gories with/without tumor). To obtain the slice pseudo label, here we creatively
propose a slice label scheme, which directly reuses the classifier on the main
volume-level classification task. Then the slice-level contrastive learning can be
applied to all the categories within the 3D medical volume or across multiple
volumes. Experiments demonstrate that the proposed two auxiliary tasks boost
the main classification task by implicit network regularization during the model
optimization.

In summary, our proposed multi-task learning-driven framework contains
three key modules: volume-level contrastive learning, slice-level contrastive learn-
ing, and gated attention MIL module. Through the well-designed ablations study
on two downstream 3D brain MRI image classification tasks, i.e., meningioma
grading and glioma grading, our proposed volume-based contrastive learning
improves 8.8% of AUC on average. Further equipped with slice-based contrastive
learning, our method get a 9.5% AUC improvement on average compared with
the baseline without any auxiliary tasks.

2 Method

In this section, we introduce our multi-task learning framework for the 3D med-
ical image classification task. We first define the problem and give an overview
of the whole framework. Then we highlight three key parts of our approach:
i) gated attention-based MIL pooling for image classification; ii) volume-level
contrastive learning; and iii) slice-level contrastive learning.
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2.1 Problem Definition and Overview

We formulate a 3D medical image classification task under the multiple instance
learning scope, where each volume represents a bag, and each slice is regarded
as one instance. The overview of the proposed framework is illustrated in Fig. 1.
Formally, suppose that we have N labeled 3D MRI volumes in the training
dataset, i.e. {(xi, yi)}Ni=1. Under the contrastive learning scenario, we employ
two encoders (f and g) after different augmentation methods to extract the con-
sistent features. The encoder f and momentum encoder g have the same 3D CNN
architecture but are updated differently. The parameters of encoder f is opti-
mized along with the network training by back-propagation, while momentum
encoder g is updated as a moving average of encoder parameters following

θg = m ∗ θg + (1 − m) ∗ θf , where m ∈ [0, 1), (1)

where m is a momentum coefficient to control the update speed of momentum
encoder g. With the moving average updating, the momentum encoder slowly
updates the network parameters to avoid generating inconsistent features due to
sharp changes in the encoder.

Given a 3D volume xi and a random transformation s, the 3D volume is
firstly augmented and then fed into the encoder f and momentum encoder g
that outputs the discriminative feature maps f(s(xi)), g(s(xi)) ∈ R

C×D×H× W

respectively, where D, H, W are the depth, width, and height of the feature
maps, and C is the number of channels. Specifically, in the encoder f , we abandon
pooling operations on the z-axis to ensure that the features generated by the
encoder can be partitioned into features of each slice. Then, we apply slice-
level average pooling on feature maps f(s(xi)) and transpose them to collect
the features of each slice; thus, we get H = {hi}Ni=1, hi ∈ R

D×C , hi = {hj
i}Dj=1,

hj
i ∈ R

C . It is fed into image classification task and slice-level contrastive learning
task for further consideration. At the same time, we also do volume-level average
pooling on f(s(xi)) and g(s(xi)), and get P, Q = {pi}Ni=1, {qi}Ni=1, while pi, qi ∈
R

C , for the implementation of volume-based contrastive learning task. In the
following section, we lay out three tasks sequentially.

2.2 Gated Attention-Based MIL Pooling for Image Classification

The first key part of our framework addresses the 3D medical image classifica-
tion challenge under multiple instance learning - that is, how to integrate the
instance (slice) features into the whole bag (volume) features. We utilize the
gated attention mechanism [16] to integrate the instance features into the bag
features. Compared to the conventional average pooling, it is adaptive to the
characteristics of the task to achieve better performance. Let Z = {zi}Ni=1 be
the bag features, which is obtained through gated attention pooling:

zi =
N∑

j=1

aj
ih

j
i , (2)
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where ai is the attention weight for slice feature hi, which is calculated based on
gating mechanism [12]:

aj
i =

exp{wT (tanh(V (hj
i )

T ) � sigm(U(hj
i )

T )}
∑K

k=1 exp{wT (tanh(V (hk
i )T )} � sigm(U(hk

i )T )}
, (3)

where w ∈ R
L×1, V ∈ R

L×M , and U ∈ R
L×M are the parameters, � is an

element-wise multiplication, and sigm(·) is the sigmoid function. Then, the 3D
features are fed into fclf for the main image-level classification task. To optimize
the main image classification task, we employ Binary Cross-Entropy loss:

Lclf =
1
N

N∑

i=1

−(1 − yi) log(1 − fclf (zi)) − yi log fclf (zi). (4)

2.3 Volume-Level Contrastive Learning

To explore the network understanding of the volume-level feature discrimination
ability, we first introduce volume-level contrastive learning as one auxiliary task
with self-supervised learning. It could enhance the distinctive global knowledge
learning on the volume-level with the known volume-level annotations. Here, we
employ the recently-proposed MoCo v3 [11] to implement contrastive learning
among volumes. The InfoNCE [21] is employed here as the contrastive loss:

Lvolume = − log(
exp(p · q+/τ)

exp(p · q+/τ) +
∑

q− exp(p · q−/τ)
), (5)

where q+ and p are obtained by encoder f and momentum encoder g with
the same volume input xi; Therefore, they belong to positive pairs. The set q−

consists of q’s outputs from other volumes (not xi), namely q’s negative samples.
τ is a temperature hyperparameter for l2-normalization.

2.4 Slice-Level Contrastive Learning

Since the image label, i.e., volume-level annotation, is generated according to
the slice-level knowledge, focusing on the slice features in 3D volumes can assist
in the overall performance of the model. Contrastive learning between slices can
contribute to the model to exploit more spatial-related information. However,
for 3D medical image classification, the slice-level label is unknown, and only
the volume-level label is available. To obtain the slice pseudo labels, here we
creatively propose a slice label scheme, which directly reuses the classifier on
the main image classification task. Specifically, as shown in Fig. 1, we first feed
slice feature maps H into the classifier fpro to assign pseudo labels to each slice
according to the probability value. Here, fclf and fpro share network parameters.
With the slice pseudo labels, we can divide the slices into two clusters by the
value of generated probability. That is, the n slices with the highest probability
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values and n slices with the lowest probability values are separated. Then, we
adopt contrastive learning between the selected features Ki = {kj

i }2nj=1 with
pseudo labels in each volume through minimizing a contrastive loss function.
We also adopt the form of InfoNCE [21] for optimization as

Lslice =
N∑

i=1

2n∑

j=1

− log(

∑
k+
i

exp(kj
i · k+

i /τ)
∑

k+
i

exp(kj
i · k+

i /τ) +
∑

k−
i

exp(kj
i · k−

i /τ)
), (6)

where the set of k+
i / k−

i consists of all the features in ki which has the
same/different label as the label of kj

i .

Fig. 2. Samples of MRI images used in this paper.

3 Experiments

In this section, we provide the dataset details, data pre-processing and experi-
mental setting, and results for our evaluation protocol.

3.1 Datasets

We used two 3D brain MRI datasets to evaluate the effectiveness of our frame-
work. Figure 2 shows some comparison examples of the validation datasets.

Meningoma Dataset. The dataset was acquired at three hospitals in China. A
total number of 507 3D brain T1c MRI volumes from 371 unique patients were
collected. Specifically, a total of 356 Grade I volumes and 151 Grade II volumes
are collected, respectively. The dataset is randomly divided at the patient-level
to prevent the volumes from the same patient from appearing in both training
and testing sets in our experiments. In detail, 321, 178, and 108 volumes are
used for training, validation, and testing, respectively.
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BraTS2019. BraTS 2019 training dataset [3–6,20] included 259 cases of high-
grade gliomas (HGG) and 76 cases of low-grade gliomas (LGG), each with
four 3D MRI modalities a native precontrast (T1), a post-contrast T1-weighted
(T1Gd), a T2-weighted (T2), and a T2 Fluid Attenuated Inversion Recovery (T2-
FLAIR). The volumes in the dataset were resampled to 1 × 1 × 1 mm isotropic
resolution and skull-stripped with the image size of 240×240×155. The dataset
used in this paper only contains modality T1Gd, with two types of labels: HGG
and LGG. The training set, validation set, and test set contain 214, 54, and 67
volumes, respectively.

3.2 Data Pre-processing and Experimental Setup

To facilitate the training procedure, we conducted some pre-processing steps for
each 3D brain volume. We first resampled the brain volumes of the dataset to a
common space of 1 × 1 × 1 mm. Then, we crop the black margin of the volumes
and resize them to 32 × 128 × 128 using bilinear interpolation. We normalize all
input images to have zero mean and unit std. Additionally, to improve the gen-
eralization of the model and enhance the robustness of the network, all volumes
were augmented through random horizontal and vertical flips and adding ran-
dom noise during training. We implemented our network with PyTorch library
[22] on two NVIDIA Geforce RTX 3090 GPU. The network was trained for 50
epochs. The batch size for our experiments was 8, and Adam optimizer [18] was
used. The learning rate was set as 10−4. The parameters in our network were
initialized with the He initialization method [14].

Table 1. Ablation study on key components of our framework with the Meningoma
dataset and BraTS 2019 dataset (AUC [%]). The best results on two datasets are
highlighted in bold.

GAP LV olume LSlice Meningoma dataset BraTS 2019

– – – 84.94 ± 2.15 87.47 ± 2.08

� – – 87.65 ± 1.16 94.32 ± 2.04

– � – 91.92 ± 0.51 92.17 ± 1.87

– – � 90.51 ± 1.65 94.64 ± 1.35

� � – 90.33 ± 1.81 96.93 ± 0.65

– � � 84.85 ± 1.83 94.53 ± 1.59

� – � 86.24 ± 4.37 92.67 ± 1.73

� � � 92.63 ± 1.14 97.84 ± 0.23
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Table 2. Comparing our framework and two-stage methods (pre-training and fine-
tuning) with different components (AUC [%]). The best results on two datasets are
highlighted in bold.

Pre-training Fine-tuning Meningoma dataset BraTS 2019

N/A N/A 84.94 ± 2.15 87.47 ± 2.08

N/A Gated attention MIL 87.65 ± 1.16 94.32 ± 2.04

Volume contrastive
learning

N/A 88.14 ± 2.27 89.99 ± 3.46

Volume contrastive
learning

Gated attention MIL 87.94 ± 2.46 94.46 ± 3.45

Volume & Slice
contrastive learning

Gated attention MIL 90.83 ± 1.32 95.39 ± 2.17

N/A Our framework 92.63 ± 1.14 97.84 ± 0.23

3.3 Experimental Results

To evaluate the effectiveness of each proposed component, we first conduct the
ablation study of the proposed framework on two datasets. The comparison
results of different ablation models are listed in Table 1 with the evaluation
matrix of AUC. As we can observe from Table 1, Gate attention-based pooling
(GAP), volume-level, and slice-level contrastive learning consistently improve
the baseline model (i.e., simple 3D classification with global average pooling) by
5.5%, 7.8%, and 6.8% AUC on the average of two datasets, respectively, showing
the effectiveness of our proposed each component. With the use of GAP, volume-
level and slice-level contrastive learning further achieve 8.6% and 3.7% AUC
improvement over the baseline, respectively. As a result, our proposed multi-
task learning model equipped with the three key components achieve 10.5%
mean AUC improvement over the baseline model.

Table 2 also compares the performance of the proposed framework with two-
stage methods with different designed components. In the two-stage methods, we
first use volume-based or slice-based contrastive learning to take the model pre-
trained; subsequently in the fine-tuning stage, only the gated attention MIL is
used. It is observed that our designed components also enhance the performance
of the two-stage framework. Specifically, the use of gate attention-based MIL for
fine-tuning led to a 5.5 % AUC improvement compared to the baseline model.
Equipped with gate attention-based MIL, volume-level only as well as volume-
and slice-level synergistically improve by 5.8%, and 8.0% mean AUC, respec-
tively. Figure 3 presents ROC curves of the baseline model, two-stage method,
and our method. The experiment results in Table 2, and Fig. 3 indicate that
the multi-task learning framework improves the performance on both datasets,
where the two-stage method with the same designed components improves only
8.0% mean AUC compared to the baseline model while our method improves
10.5% AUC averaged on two datasets.
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Fig. 3. ROC curves for our method, the two-stage method and the baseline.

4 Conclusion

We have shown that the proposed multi-task learning method can jointly learn
3D features and 2D features by working on auxiliary tasks from 3D MRI images.
To this end, we have added two auxiliary tasks: volume-level contrastive learning
between the different views of the volumes and slice-level contrastive learning
between slice features with generated pseudo labels to extract more semantic
features, thus improving performance in the main task. Further, we apply gated
attention pooling to integrate slice features into 3D features in classification. The
ablation study on two datasets demonstrates that our proposed method leads
to substantial performance gains in the limited dataset size. In future work, we
will further investigate this approach for other downstream medical image tasks,
aiming to extend the framework to a wider variety of tasks.
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Abstract. Deep learning has been widely used to segment tumour
regions in stained histopathology images. However, precise annotations
are expensive and labour-consuming. To reduce the manual annota-
tion workload, we propose a light annotation-based fine-level segmen-
tation approach for histology images based on a VGG-based Fusion net-
work with Global Normalisation CAM. The experts are only required
to provide a rough segmentation annotation on the images, and then
accurate fine-level segmentation boundaries can be produced using this
method. To validate the proposed approach, three datasets with rough
and fine quality segmentation annotation are built. The fine quality
labels are used only as ground truth in evaluation. The VFGN-CAM
method includes three main components: an annotation enhancement
to boost boundary accuracy and model generalisability; a VGG Fusion
module that integrates multi-scale tumour features; and a Global Nor-
malisation CAM module that combines local and global gradient infor-
mation of tumour regions. Our VGG fusion and Global Normalisation
CAM outperform the existing methods with a Dice of 84.188%. The final
improvement for our proposed methods against the original rough labels
is around 22.8%.

Keywords: Segmentation · Tumor · Annotation improvement

1 Introduction

Cancer is the most deadly illness in the world due to it capability to generate dis-
tant metastases. Digital pathology scanners can provide whole slide image (WSI)
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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with a very high resolution (e.g. 80000 × 150000). Stained WSIs are the gold
standard for diagnosing cancer and predicting tumour reoccurrence and other
potential deterioration. However, manual tumour segmentation is expensive and
time consuming for pathologists. Therefore, the automatic segmentation method
is essential for efficient and accurate tumour classification on WSIs.

Several challenges exist in labelling tumour regions. Compared with care-
fully hand-drawn boundaries that describe exactly the tissue structures, pathol-
ogists tend to mark tumour parts with rough smooth curves in practice, which
will save substantial time for marking. The rough markings are informative but
could be misleading in model training to some extent since these boundaries
include inevitable errors. In addition, Intrinsic variance in the tumour, the vari-
ances between patients, and technical variances generated in slicing, staining,
and scanning cause inaccurate manual tumour segmentation annotation.

To relieve the dependence on segmentation annotation, many methods have
been proposed for weakly supervised segmentation (WSS) purposed including
image-level [2], scribble-based [4], point-based [10] and iterative based methods
[11]. Class activation mapping(CAM) [14] with global average pooling (GAP)
is a simple yet effective technique for weakly-supervised segmentation. Wang
et al. propose consistency regularization on predicted CAMs from various trans-
formed images to provide self-supervision [12]. Durand et al. jointly aim at align-
ing image regions for gaining spatial invariance and learning strongly localized
features [1]. Similar to CAM, adversarial erasing is an efficient way to repre-
sent objects partly according to the peak responses of classes [3,7]. Recently,
Multi-branch WSS methods are proposed to segment objects more preciously
such as complex attention modules [5], cross-image mining [8] and siamese net-
works [12]. Most of the existing methods are designed by combining a series of
modules including training classifiers, visualizing activation maps and re-training
segmentation networks.

Inspired by the efficacy of WSS methods, to reduce the dependency on accu-
rate tumour annotations and minimise pathologists’ workload of marking on
WSIs, we build two kinds of annotations including fine quality labels(F-label),
and poor quality labels(P-label). The purpose of this work is to exploit a large
amount of P-labels for training and use a few F-labels for testing.

In this work, we propose a VGG-based fusion network with global normal-
ization CAM (VFGN-CAM). Our contributions are threefold. (1) We refine the
P-labels based on k-means clustering and soft label. This annotation refinement
process ensures the annotation accuracy of tumour boundaries and enhances
the subsequent model generalizability. (2) A VGG-based fusion module (VF-
Net) is proposed based on VGG16. Multi-scale features are fused together for
patch-based tumour classification. (3) A global normalization CAM (GN-CAM)
module is presented to integrate gradient information both in the global whole
image and local patches, to acquire the position features in distinguishing the
tumour and background.
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Fig. 1. The structure of VFGN-CAM. VF-Net are trained with the data pre-processed
by annotation enhancement (AE), GN-CAM are used in test stage to acquire more
accurate result.

2 Methods

The overall framework is shown in Fig. 1. The rough annotation is first processed
in the annotation enhancement (AE) module which employs the k-means clus-
tering algorithm to improve the annotation for network training with soft labels.
Then we propose a VGG-based fusion classification network based on VGG16
to exploit multi-scale features for fine-grained patch-based classification. After
network training, the information of the last convolution layer of the network
is extracted and calculated by a GN-CAM which combines the normal CAM
result and a global normalization CAM result by specific weights. At last, the
output heat-map for each patch is embedded into the whole slide image and then
goes through a convolutional CRFs-based noise eliminator (NE) to smooth the
boundary of the generated annotation and eliminate the noise.

2.1 Annotation Enhancement

To reduce the inaccuracy of the rough annotations, we propose an annotation
enhancement (AE) module based on k-means clustering, and a soft label modifier
to refine cancer annotations, especially in tumor marginal regions. The rough
annotation Y0 marked by experts delineates non-tumour regions from tumour
regions. K-means clustering cluster together pixels with similar features together
to create label Y1 that is a refined version of the original tumour boundaries in
Y0. The intersection point set Ŷ = Y1 ∩ Y0 is considered as the refined ground
truth. In addition, to ensure a highly efficient model training and boost the
model generalizability, patch-based soft labels [13] are generated by a sliding
window with the size of (512,512) as shown in Algorithm 1.
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Algorithm 1. Generate soft label on the refined whole slide annotation Ŷ
1: repeat
2: Assuming the centre of the sliding window is (p, q), the proportion of tumour

areas fp,q is calculated on the adjusted annotation Y , where I is a binary function
to discriminate whether one region in the sliding window belongs to tumor.

fp,q =

p+256∑

i=p−256

p+256∑

j=p−256

I(tumor, i, j)

5122

3: Patches X extracted by the sliding window are stored and marked with soft
label Y

Y =

{
1 − σ, fp,q > θ

σ, others

4: until moving the sliding window across all refined annotation boundaries.

As several errors still exist in tumour boundaries and especially in isolated
tiny tumour regions, the errors will be propagated if we directly train models
according to pixel-wise refined annotations Y . In this case, we design a patch-
based classification model with GN-CAM supervised by soft labels, to reduce
the error effects around tumour boundaries.

2.2 VF Classification Network

Convolution-based design is capable of inferring accurate local features (tex-
ture, boundary and greyscale) with few features. VGG is a universal backbone
for image feature extraction, which has been widely applied to classification,
detection and segmentation tasks for medical images [6].

Fig. 2. The network structure of VF.

Convolution-based design is capable of inferring accurate local features (tex-
ture, boundary and greyscale) with few features. Inspired by the effectiveness and
lightweight of VGG [6], we apply VGG 16 as our base model for tumour classifica-
tion, increasing a series of residual connections among convolutions and design



Light Annotation Fine Segmentation 125

a multi-scale fusion module to ensure accurate classification of tiny tumours.
Figure 2 illustrates the detailed framework of our VF method. Each block con-
tains three convolution layers with residual connections to ensure the stability of
network back-propagation. One dropout layer is inserted after the second con-
volution layer to increase the network generalization. In addition, a multi-scale
feature fusion module is presented to fuse feature maps generated by all Max-
pooling layers. All feature maps are resampled to the same size as the feature
map from the final Max-pooling. These features are concatenated together and
pass through a convolution layer.

2.3 Global Normalised Class Activation Mapping

Global Normalised Class Activation Mapping (GN-CAM) is a new way of com-
bining feature maps using the gradient signal. Inspired by assigning an impor-
tance factor to each neuron by the gradient of G-CAM, this paper proposes a
global normalized CAM that extracts the guided gradient features Rl flowing
out the last convolution layer. The lth and (l +1)th layers are the last two layers
of the VF. Denote the ith feature map of the (l + 1)th layer as f l+1

i , the ith gra-
dient map of the l + 1 layer as Rl+1

i and the output map is fout . The gradient
map of l + 1 layer is calculated by

f l+1
i = relu

(
f l
i

)
= max

(
f l
i , 0

)
, (1)

Rl+1
i = ∂fout/∂f l+1

i . (2)

The guided gradient map of the l layer Rl is calculated by:

Rl
i =

(
f l
i > 0

) · (
Rl+1

i > 0
) · Rl+1

i . (3)

All guided gradient maps R from the same WSI are stored in a queue Q1.
Then we normalise each map in Q1 with the global mean and standard deviation.
These processed maps R

′
are stored in a new queue Q2. Also, assuming (w, h)

is the spatial position of a gradient map R, every pixel Rl
i,w,h, w ∈ W,h ∈ H is

normalized locally and recalculated by:

μl
i = (

W∑

w=1

H∑

h=1

Rl
i,w,h)/WH (4)

sli =

√√
√
√[

W∑

w=1

H∑

h=1

(
Rl

i,w,h − μl
i

)2

]/(WH)2 (5)

Rl
i

′′
= (Rl

i − μl
i)/sli (6)

The locally normalised maps R
′′

from the same WSI are stored in a queue
Q3. Two normalised gradient maps Ri

′
and Ri

′′
from Q2 and Q3 are added

together by order. The final segmentation results M is calculated by

Mi = (Ri

′
+ Ri

′′
)/2. (7)
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2.4 Noise Eliminator

After model training and the CAM process, the generated masks are more accu-
rate, but some noise remains. This is because the tumour regions are calculated
in the region of 512 × 512 pixels, so the predicted boundary is very sharp.
Also, the isolated tumour cells and fine details in boundaries are often not con-
sidered in human manual labelling. Thus, to resemble manual segmentation,
a post-processing step using convolutional CRFs [9] is developed to ensure the
segmentation boundary is medically relevant. The output of convolutional CRFs
has more smooth boundaries and less noise, especially inside the tumour region.

3 Experiment and Result

3.1 Data Introduction and Training Details

We train and evaluate our framework on three tumour datasets including basal
cell cancer (BCC), squamous papilloma (SP), and seborrheic keratosis cancer
(SKC) datasets. All three datasets are skin cancer data. The common challenge
of a skin cancer dataset is that the boundary of the tumour region is difficult to
identify. So the rough annotations on this kind of dataset will further influence
the performance of the segmentation network. In the training process, to reduce
the requirement for memory and accelerate the training process, we cut all the
whole slide tumour images into patches the size of (512,512). The Adam opti-
mizer is used with a learning rate of 0.0001 and a step learning scheduler with
step size = 60 and γ = 0.95. The loss function is cross entropy.

3.2 Evaluation and Results

There are five widely used measurement parameters used in this evaluation: sen-
sitivity, specificity, accuracy, IOU and dice coefficient. IOU and dice coefficient
are widely used to comprehensively evaluate the segmentation performance of
the target network. First, we discuss the performance of annotation enhancement
and our proposed VF network. Table 1 demonstrates the evaluation about the
annotation enhancement (AE) and network. All network results with annota-
tion enhancement have a better performance against the same network without
annotation enhancement. It is reasonable to believe that our proposed AE has

Table 1. Network results with or without annotation enhancement.

Sensitivity(%) Specificity(%) Accuracy(%) IOU(%) Dice(%)

VGG 70.480 97.735 93.997 61.077 75.358

VGG-AE 74.592 97.972 94.819 64.602 78.032

VF 75.267 97.869 94.915 64.522 77.766

VF-AE (ours) 80.947 97.703 95.813 68.538 81.090
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Fig. 3. Output patches of GN-CAM for three dataset: (a) basal cell cancer (BCC); (b)
squamous papilloma (SP); (c) seborrheic keratosis cancer (SKC).

a non-negligible effect in a weakly trained segmentation task, especially in the
poor quality annotation situation. Also, our proposed VF network has an average
of 3% improvement against the VGG network. Which proves the VFGN-CAM
structure is more suitable for this work.

Table 2. Results of different CAM based on annotation enhancement.

Sensitivity(%) Specificity(%) Accuracy(%) IOU(%) Dice(%)

VGG CAM 69.386 98.212 94.010 61.574 75.697

GN-CAM 79.799 97.732 95.628 67.629 80.367

VF CAM 78.890 97.790 95.597 67.569 80.316

GN-CAM 83.003 97.615 96.029 69.507 81.865

CAM aims to extract the information in the convolution layer to explain
the results of network training. In this work, information is extracted from the
last convolution layer of the trained network. We propose a global normalization
CAM in tumour segmentation task, the result of this CAM of patches is shown in
Fig. 3. We explore the differences between two kinds of CAM, the segmentation
result are shown in Table 2. Using annotation enhancement or not, our proposed
GN-CAM achieve better performance in all parameter against the normal CAM.

Table 3. Results of noise eliminator under annotation enhancement and GN-CAM.

Sensitivity(%) Specificity(%) Accuracy(%) IOU(%) Dice(%)

VGG 79.799 97.732 95.628 67.629 80.367

VGG-NE 81.961 98.106 96.187 70.837 82.626

VF 83.003 97.615 96.029 69.507 81.865

VF-NE (ours) 85.461 98.000 96.600 72.963 84.188

As shown in Table 3, average segmentation improvements on three datasets
are around 3% with the proposed noise eliminator, regardless of whether we use
VGG or VF. Table 4 shows the comparison of the P-label and the predicted
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Fig. 4. Some examples of CAM output heat map and tumor segmentation results: (a)
original image; (b) Poor quality label (P-label); (c) annotation for VGG; (d) heat map
for VGG; (e) annotation for VF; (f) heat map for VF; (g) Fine quality label (F-label).

segmentation evaluated against the F-label. All the machine learning results are
generated under the annotation enhancement and noise eliminator by GN-CAM.
The generated mask presents a great improvement against the P-label. Among
all the results, our proposed VF and GN-CAM with annotation enhancement and
noise eliminator achieve the best result. Figure 4 shows the result of CAM heat
map output and final annotations after noise eliminator. Compare to poor quality
labels (P-label), our method generates more accurate and detailed boundaries.
The proposed VF methods lead to an improvement of 22.846% in Dice coefficient
against the P-label, which proves the success of the VFGN-CAM framework.
Also, the heat map generated by GN-CAM shows a significant visual correlation
to the tumour area, meaning that the output segmentation can be used for
medical assessment tasks which have roughly annotated training sets.

Table 4. Segmentation results compared to original P-label by F-label as ground truth.

Sensitivity(%) Specificity(%) Accuracy(%) IOU(%) Dice(%)

P-label 57.601 97.898 87.972 45.048 61.342

CAM VGG 70.821 98.907 94.473 65.037 78.600

VF 80.569 98.329 96.162 71.001 82.759

GN-CAM VGG 81.961 98.106 96.187 70.837 82.626

VF 85.461 98.000 96.600 72.963 84.188

4 Conclusion

In this paper, we explore a new patch-based tumour segmentation method super-
vised by rough annotations called VFGN-CAM. More specifically, an annotation
enhancement is presented to progressively refine the annotations, which ensures
accuracy in tumour boundary shape. A VF net is used to classify the patches.
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We also propose a GN-CAM to integrate global and local gradient information
of tumour regions. Experiments on three tumour datasets show the effectiveness
and superiority of our model. In future, more weakly supervised work will be
proposed based on our P-labels and our method.
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Abstract. Cervical cancer is the most frequent cancer type among
women worldwide and radiotherapy is the major clinical treatment.
Organs in the radiation field are called Organ at Risks (OARs), which
are prone to irreversible damage during radiotherapy. Therefore, accurate
delineation of OARs is a critical step in ensuring radiotherapy dosimetry
accuracy. However, currently existing deep learning-based cervical cancer
OARs segmentation methods do not make full advantage of anatomical
information. In this paper, we develop a novel tubular structure-aware
deep convolutional network method integrating the tubular anatomical
morphological features into a model for colon, small intestine and rec-
tum in cervical cancer OARs. Firstly, a tubular filter based on variable
annular Gaussian kernel and gradient detection was used to produce
the tubular feature map. Secondary, tubular feature map concatenated
with original image was input into the nnU-Net network for anatomical
morphological information learning. Finally, we evaluated our proposed
method on the clinical collection datasets with brachytherapy. Compared
to the baseline model and state-of-the-art model, DSC and Recall were
improved and the relative volume error (RVE) was reduced for the OARs
with a tubular shape.
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1 Introduction

According to the research of the World Health Organisation (WHO), cervical
cancer is one of the top four most frequently diagnosed malignant tumors world-
wide as well as the second most common cancer in women [1]. The treatment of
cervical cancer mainly relies on radiotherapy [2], and the organs near the tumor
in the irradiation fields are susceptible to irreversible damage caused by radi-
ation, and these organs are called organs at risks (OARs). The delineation of
OARs in CT images is indispensable in the course of radiotherapy, which is time-
consuming and labor-intensive manually. Therefore, an automatic segmentation
method of cervical cancer OARs is urgently demanded.

In recent years, deep learning has been widely used in organ segmentation
and has become an important method for automatic segmentation, however,
there are few outstanding results in the segmentation of colon, small intestine,
and rectum in cervical cancer OARs. Existing cervical cancer OARs segmenta-
tion methods mostly rely on simple deep learning models without incorporating
anatomical information [3,4]. Some works use filters to extract features from
images to achieve organ segmentation, such as the work of Merveille et al. [5]
and Krissian et al. [6]. But these methods are based on the assumption that
the target is a smooth, relatively straight tubular structure with approximately
circular in cross section, which are not suitable for intestinal segmentation in CT
images. Orellana et al. [7] designed a tubular filter for the colon and achieved
satisfactory segmentation results, but their method was not fully automated and
still required some manual operations by experts. In this paper, considering the
approximate tubular anatomical features of colon, small intestine and rectum
in cervical cancer OARs, a Tubular Structure-Aware Convolutional Neural Net-
works(TSACNN) for OARs segmentation in cervical cancer is proposed. Based
on the nnU-Net network [8], a tubular filter based on variable annular Gaussian
kernel and gradient detection [7] is integrated into nnU-Net to enhance the tubu-
lar morphological features of OARs in the image. The extracted tubular feature
map is merged with the original image and input into the nnU-Net network,
and the network will output the results of multi-target segmentation of cervical
cancer OARs.

Our work has two main contributions: First, we develop the TSACNN model
for the segmentation of cervical cancer OARs, and incorporating anatomical fea-
tures into the deep learning model enhances the performance and interpretability
of the method. Before inputting the data into the nnU-Net model, a tubular filter
is used to enhance the tubular feature of the image. Then the extracted tubular
feature map is input to the nnU-Net network merged with the original image
and the network will output the result of multi-target segmentation. Secondly,
we evaluate our proposed method on a clinical cervical CT image dataset con-
sisting of 163 3D CT volumes with delineation of organs at risk, and experiments
on the datasets demonstrate the effectiveness of our method.
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2 Method

In this paper, the proposed TSACNN is based on the nnUNet network for multi-
object segmentation and a tubular filter is introduced to perform the segmenta-
tion of cervical cancer OARs. Figure 1 shows the architecture of our TSACNN
model.

Fig. 1. The architecture of the TSACNNmodel for cervical cancer OARs segmentation.

As shown in Fig. 1, the whole process includes image preprocessing, tubu-
lar filtering, and deep learning model training to obtain the final segmentation
result.

Since there are blank background areas in the original CT image, which will
interfere with the model and cause high computational cost, the data is first pre-
processed. In the data preprocessing stage, the redundant areas are removed from
the original image, and the original image is first binarized to get the preliminary
tissue region and background region. However, there are still artifacts formed by
auxiliary devices such as CT scanning bed. Secondly, the binary image is then
subjected to an open morphological operation to separate the tissue from the
non-tissue part. By calculating the vertex coordinates of the minimum bounding
box of the tissue region in the binary image and cropping it from the original
image. Finally, the blank background area in the original image can be removed.
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In order to obtain the anatomical structure information of colon, small intes-
tine, and rectum in cervical cancer OARs, the tubular feature map of the image
is obtained by the tubular filtering module. Most existing works on tubular filters
make idealized assumptions on tubular targets, such as that the cross-section of
the tube is a regular circle [6], and the gradient along the tube wall is zero [9].
However, the segmentation targets with tubular features in the cervical cancer
OARs, that is, the geometric features of the colon, small intestine and rectum,
do not meet these assumptions. The filter designed by Orellana et al. [7] for
the colon is more in line with the morphological characteristics of cervical can-
cer organs at risk, in which a tubular filter based on variable annular Gaussian
kernel and gradient detection is employed. For each voxel in the 3D CT image
of cervical cancer radiotherapy, degree of approximation to a tube is defined
to measure the probability that it conforms to a segment of tube structure, as
shown in Eq. (1), and the corresponding tube radius R and direction Dθ are
obtained as Eq. (2).

TM(v) = max
R,θ

(MR,θ
ring(v) · MR,θ

sym(v)) (1)

{R,Dθ} = argmax
R,θ

(MR,θ
ring(v) · MR,θ

sym(v)) (2)

where v represents the voxel in the image. MR,θ
ring(v) is a measure of ring sim-

ilarity around v, and MR,θ
sym is a correction to remove non-closed asymmetric

regions. The entire filtering process includes generating a set of ring-shaped vec-
tor kernels, and the uncorrected ring-like approximation MR,θ

ring is obtained by
convolving the projection of the image intensity gradient in the direction of the
kernel plane with the ring-shaped vector kernel. Then, by using a symmetric
fan-shaped convolution kernel to remove the non-closed structure, the annular
approximation corresponding to each kernel is obtained, and finally the extreme
value is taken to obtain the tubular approximation TM(v) of each voxel and
the corresponding tube radius R and direction Dθ, and the tubular feature map
corresponding to the image is obtained. The specific detailed calculation process
can be found in [7]. An example of the tubular feature map and the ground truth
labels of the cervical cancer OARs region given by experts on the cross-section
are shown in the Fig 2.

It can be seen that the tubular structure in the filtered image is more obvious,
and the contrast between most intestinal regions and surrounding tissues has
been improved. This is more conducive to extracting tubular information during
model training, thereby assisting in the segmentation of the colon, intestine and
rectum.

After filtering, since the tubular feature map can enhance the tubular struc-
ture features of cervical cancer OARs and the original CT image still contain rich
information that the tubular feature map does not have, the extracted tubular
feature map and the original image are input into the network together. Deep
learning segmentation models have been widely used in medical image segmenta-
tion, and nnU-Net [8], as a mature and stable model, has achieved good results in
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Fig. 2. An example of the tubular feature map and the ground truth labels of the
cervical cancer OARs region given by experts on the cross-section. The binary part is
the tubular feature map, and the colored part superimposed above is the ground truth
position of each OAR (red is the bladder, green is the colon, blue is the intestine, and
yellow is the colon). (a) slice example containing bladder, colon, intestine; (b) slice
example containing rectum.

many tasks. And some existing work has confirmed that multi-organ segmenta-
tion results tend to be better than single-organ segmentation [10,11], therefore,
this paper chooses nnU-Net as the basic network model. The nnU-Net network
will output the result of multi-object segmentation.

In the model testing and evaluation stage, the test set images are first pre-
processed and filtered in the same way as the training set, and the test set
images and filtering results are input into the nnU-Net model in the same way
as the training set. After the model inference, the segmentation results are com-
pared with the ground truth labels delineated by doctors to calculate relevant
indicators to evaluate the model effect.

3 Experiments

In this section, we first introduce the dataset and experimental environment,
and then evaluate the performance of our proposed TSACNN method through
comparison with existing methods and ablation experiments.

3.1 Dataset and Experimental Environment

The cervical cancer data set used in this paper comes from the data collected
during 163 internal radiation treatments of 38 cervical cancer patients provided
by Liaoning Cancer Hospital under ethical institutional review board approval.
The images taken for each treatment are a set of data which includes the original
3D CT images of the patient’s pelvis and nearby areas, as well as the labels of
the four major cervical cancer OARs containing bladder, colon, small intestine
and rectum, manually delineated by the doctor layer by layer. The images in the
dataset are all 3D CT volumes. The original image size is (512, 512, ∼100), that
is, the original size of the image section on the sagittal plane of the human body
is 512 voxels × 512 voxels, and the original size in the vertical axis direction is



136 X. Wu et al.

about 100 voxels. The voxel spacing of the images in the dataset is 0.976563 mm
× 0.976563 mm × 3 mm.

The specific data set allocation in this experiment is: a total of 163 sets
of data, each set of data includes the original image and OARs segmentation
labels, and the data is randomly allocated into 90 sets of training sets, 23 sets
of validation sets, and 50 sets of test sets. Set the nnU-Net network mode to
3d fullres in addition to the parameters automatically configured by nnU-Net.
The initial learning rate is 0.01 and the loss function combines the Dice loss and
the cross-entropy loss function. The activation function uses leaky ReLU and
the optimizer uses SGD with Nesterov momentum. For training parameters,
the number of epochs is set to 1000, and the mini-batches are set to 250. The
patch size is the maximum size that computing resources can support, and is
automatically calculated by nnU-Net.

The experiments in this paper are carried out on the ubuntu system with 8
Core CPU, 64GB memory, and Quadro RTX 8000 GPU.

3.2 Comparing to Existing Methods

In order to evaluate the effectiveness of the model, DSC, Recall and relative
volume error RVE are calculated on the segmentation results of the model and
the labels given by experts. The calculation formula is as Eq. (3)–(5).

DSC =
2TP

FP + 2TP + FN
(3)

Recall =
TP

TP + FN
(4)

RV E =
abs(|Ra| + |Rb|)

|Rb| (5)

where TP represents the number of correctly predicted positive voxels, FP rep-
resents the number of wrongly predicted voxels in the negative example and FN
represents the number of incorrectly predicted voxels in the positive example.
|Ra| and |Rb| represent the volume of the predicted result and the true label,
respectively. It is important to emphasize that RVE is a value that indicates
superior performance with lower values.

Due to the lack of public data sets with ground truth in the field of cer-
vical cancer OARs segmentation, existing works basically use data collected by
themselves or data provided by cooperative hospitals, so the results indicators of
different works are not comparable with each other. Therefore, in order to better
evaluate the method in this paper, some existing classic or state-of-the-art 3D
image segmentation models are used to conduct comparative experiments on the
dataset used in this paper. After removing the background as the method in this
paper, the images are segmented by different methods. The average values of
DSC obtained on test set are shown in Table 1 and the average values of Recall
and RVE are shown in Fig. 3.
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Table 1. The average value of DSC obtained by each method on the test set.

Methods Bladder Colon Intestine Rectum

TSACNN(ours) 0.9033 0.5751 0.5664 0.6200

nnU-Net [8] 0.9007 0.5456 0.5413 0.5946

V-Net [12] 0.6705 0.2601 0.3506 0.2913

GLIA-Net [13] 0.8068 0.2646 0.3682 0.4689

Skip DenseNet 3D [14] 0.6070 0.3538 0.3937 0.4506
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Fig. 3. The average value of Recall and RVE obtained by each method on the test set.

The bold font in the table represents the best performance of the item. It can be
seen that the TSACNN method used in this paper is better than other methods
in terms of the segmentation results of cervical cancer OARs on the dataset used
in this paper. In Table 1, the performance of our methods on this task is better
on DSC. In Fig. 3, our method generally outperforms other methods on Recall
and RVE. Although the RVE of rectum is slightly higher than the other two
methods, TSACNN has significantly higher DSC and Recall, so our method is
better overall.

3.3 Ablation Experiments

Table 2 shows the results of the ablation experiments. The segmentation results
of TSACNN are compared with the nnU-Net network model without filters and
the model that only put the tubular feature map into the nnU-Net network.
The bold font in the table represents the best performance of the item. As shown
in Table 2, the DSC and Recall of the colon, intestine and rectum are improved
after adding the tubular filter to the nnU-Net model. It shows that the tubu-
lar filter effectively improves the overall segmentation effect of the segmentation
model without adding the tubular filter, and reduces the situation of missing
segmentation. The relative volume error RVE of the segmentation of all cervical
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Table 2. The results of the ablation experiments.

Organs TSACNN nnU-Net only Tubular Feature

DSC Recall RVE DSC Recall RVE DSC Recall RVE

Bladder 0.9033 0.9300 0.1146 0.9007 0.9336 0.1265 0.8460 0.8724 0.1746

Colon 0.5751 0.5638 0.3996 0.5456 0.5243 0.4170 0.5048 0.4842 0.5040

Intestine 0.5654 0.6261 0.4211 0.5413 0.6253 0.4370 0.4788 0.5399 0.6856

Rectum 0.6200 0.6273 0.4089 0.5946 0.6014 0.5050 0.5613 0.5845 0.5648

cancer OARs in the experiment was also reduced, indicating that the segmen-
tation results were closer in volume to the labels given by experts, and the
segmentation effect was better. The experimental results using only the tubular
feature map in nnU-Net are not ideal, which may be due to the fact that there is
still abundant other information in the original CT image. It is narrow to keep
only the tubular information, but it is feasible to emphasize the characteristic
information of the tubular structure. An example of the segmentation results on
each OAR of the ablation experiment results is shown in Fig. 4.

TSCNN(ours) nnU-Net only Tubular Feature

(a)

(b)

(c)

Fig. 4. An example of the segmentation results on each OAR of the ablation experiment
results. Blue represents the region where the prediction is consistent with the ground
truth, red represents the redundancy of the prediction, and green represents the lack
of the prediction. (a)Colon; (b)Intestine; (c)Rectum.
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In Fig. 4, it can be seen that the TSACNN method is still different from the
ground truth, however the omission of the segmentation results of the TSACNN
method has been significantly alleviated compared with the other two methods,
and more complete OARs regions have been marked. Reducing the omission of
segmentation results is very important in OARs segmentation work, and our
TSACNN model shows better performance in this regard. At the same time, the
redundancy of the segmentation results is also improved when using TSACNN,
which is especially obvious when segmenting Intestine and Rectum compared to
nn-UNet.

4 Conclusion and Discussion

In this paper, considering that the colon, small intestine, and rectum have
approximately tubular anatomical characteristics in cervical cancer OARs, a
tubular filter is introduced to the nnU-Net network to improve the performance
of the segmentation network for intestinal segmentation. Compared with existing
methods on the our data set, and the method in this paper has achieved the best
results. Based on the anatomical and morphological characteristics of different
organs, this provides an idea for future organ segmentation work, more suitable
filters for different kinds of organ can be designed to assist the segmentation
method. Our proposed method is not complicated and can be flexibly embed-
ded in various deep learning models. Moreover, it can also be used for other
OARs segmentation tasks, such as liver cancer, bladder cancer, prostate cancer,
and rectal cancer, in which also involve OARs with similar tubular structure. In
future work, the idea of morphological structure-aware deep learning can also be
used in attention mechanisms or cascaded networks. Besides, the experimental
results are still affected by the problem that experts ignore regions far from the
tumor when delineating OARs during cervical cancer brachytherapy. Therefore,
there is still room for further improvement of the segmentation effect in future
work.
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Abstract. The segmentation of the histopathological whole slide images (WSIs)
of nasopharyngeal carcinoma (NPC) plays an essential role in the diagnosis, grad-
ing and even prognosis analysis. Due to the huge size of pathological images and
the fact that NPC often occurs in the middle and advanced stages, it is still chal-
lenging to generate accurate segmentation results automatically. Although many
convolutional neural network (CNN) methods had achieved good segmentation
performance in many types of images, however, the encoding of global context
is insufficient, and it is prone to misjudge the adjacent regions. Meanwhile, the
area of NPC pathological image is dense, which means that the image with a
tiny size may fall into one category. To overcome this limitation, we apply a
transformer-based framework on NPC pathological images that is designed for
extracting and encoding global context information. To validate and compare the
transformer framework with various CNN-based methods, experiments have been
conducted on the clinical dataset collection of NPC. The transformer framework
outperformed the state-of-the-art pure CNN-based methods in AUC and recall.
Especially, our framework achieved 2.5%–3.5% higher DSC in 5X images and
2.1%–3.2% higher DSC in 10X images than other methods.

Keywords: Nasopharyngeal carcinoma · Histopathological whole slide images ·
Transformer · Segmentation

1 Introduction

Nasopharyngeal carcinoma (NPC), a subgroup of head and neck cancers, can be catego-
rized into non-keratinized nasopharyngeal carcinoma or keratinized NPC [1]. Accord-
ing to GLOBOCAN 2018 data statistics [2], there were about 129,079 new cases and
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72,987 deaths in NPC. Typically, a pathological diagnosis is the gold standard of a can-
cer diagnosis. Through the pathological diagnosis of the upper respiratory tract tissue
of the patient [3], it is very beneficial to confirm the tumor grade results and follow-up
treatment plan [4]. Unfortunately, most patients were diagnosed only in the middle or
advanced stage of cancer due to the particularity of NPC [5]. In the routine clinical
diagnosis, assessing the diagnosis and its subtypes of NPC requires visual inspections
by experienced pathologists under a microscope [6], which is prone to inter-observer
and intra-observer variability. Hence, segmenting the cancer region of NPC is the basic
procedure for subsequent diagnosis and treatment by quantitatively calculation [7]. Nev-
ertheless, it is labor-intensive and time-consuming to observe the whole slide pathologic
images for pathologists, which is highly dependent on expert knowledge. Therefore,
there is a strong demand for an automatic method for quickly and accurately detecting
cancer regions of NPC.

Recently, numerous automatic methods for cancer region segmentation have been
proposed in WSIs. For instance, Feng et al. [8] modified the VGG network to segment
colorectal cancer based on Unet [9]. Sun et al. [10] proposed multi-scale embedding
networks for segmenting cancerous regions of various sizes, in which they have inte-
grated Atrous Spatial Pyramid Pooling module and encoder-decoder based semantic-
level embedding networks. Diao et al. [11] introduced a weakly supervised framework
based on a multiscale attention convolutional neural network (MSAN-CNN) to detect
the hepatocellular carcinoma cancer regions. Similarly, some classical CNN based on
deep learning has been successfully applied to segmentation tasks [12–14]. There are few
studies on the automatic processing of NPC pathological images. In our previous work
[6], we proposed a framework to diagnose the cropped patches for NPC pathological
images, in which the pixels in the patches are all the same categories, such as cancer or
lymph. However, this classification work only focuses more on the internal structure and
information in a patch, which is not suitable for the segmentation network considering
the adjacent information. Moreover, the CNN-based methods have limitations in mod-
elling explicit long-range relationships due to the characteristic of convolution operation
i.e. locality. These structures usually produce weak performance, especially in terms of
texture, shape, and size, showing different target structures in different patients, which
is crucial for diagnosing hematoxylin-eosin-stained pathological images.

To solve the problemsmentioned above, transformer network [15], a network consid-
ering the relationship between global information and sub-information, is an alternative
method for extracting context features in visual tasks [16, 17], including pathological
image classification [18] and segmentation [19]. Moreover, as shown in Fig. 1, the stain-
ing difference between the NPC and adjacent regions is minor. Because the NPC patients
are in the middle and advanced stage, many areas in the tissue samples are cancer. If the
cropped patches were fed into a network for training, the region of a patch is almost a
cancer category. Which is highly unfavourable for our subsequent segmentation tasks.
We need a large field of view to learn more abundant features. Therefore, a transformer
with a solid ability to model global contexts is an excellent choice for NPC pathological
image segmentation.
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Fig. 1. Examples of the training pair images from theWSI. (a) and (c) are images to be segmented.
(b) and (d) are corresponding masks. The orange line is the reference cropping line. If the patch
was cropped in this line, almost all areas are one category.

In this work, we adopted a transformer-based framework, the TransUNet network
[16], to extract theNPCpathological image feature and segment the cancer region. In this
method, the transformer is used for feature extraction, and the skip connection of Unet
is fused for decoding to calculate the final segmentation output. In the coding phase, the
encoder with the transformer can capture global information, including long-distance
relationships and dependencies. To raise the convergence rate of model training, we have
performed the transfer learning with pretrained on ImageNet. To our best knowledge,
we are the first to apply a transformer-based framework for NPC pathological image
segmentation. Meanwhile, we carried out experiments at two different magnifications
and achieved state-of-the-art performance compared to CNN-based methods. Moreover,
the transformer-based framework had a higher recall and less risk of missed diagnosis.

2 Method

For a given pathological image of NPC x ∈ R
H×W×C , where the H × W is the spatial

resolution, and the number of channels C is 3, our goal is to compute the image segmen-
tation mask. Unlike the CNN-based method, following the TransUNet, our framework
adopted the transformer network with self-attention mechanisms into the encoder. We
first cut the image into the target size due to the pathological image with gigapixel.
Then, we apply the transformer to encode the feature representation of the image to be
segmented. And the obtained features are decoded to obtain the final segmented output.
Finally, we joint all the segmented outputs to get the target mask.

2.1 Encoded Stage

The input x is first tokenized as a sequence by reshaping, which consists of all flattened
2D patches. The formula is xp ∈ R

N×(P2×C), where the patch size is P × P, and N =
HW/P2 is the number of patches. This effective sequence lengthN finally passed into the
transformer. Then, the xp is linearly projected into a potential D-dimensional embedding
space by full connection. In subsequent calculations, D is taken as the vector length,
where D = p2 × C. In order to contain the spatial information of different patches, the
position embeddings are added to the patch embeddings as follows:

z0 = [x1pE; x2pE; ...; xNp E] + Epos,E ∈ R
(N+1)×D (1)
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where E is the linear projection, and Epos denotes the position embedding. For each
transformer, there are two blocks, Multihead Self-Attention (MSA) and Multi-Layer
Perceptron (MLP) with L layers, which can be formulated as follows:

z′l = MSA(LN (z′l−1)) + z′l−1,

zl = MLP(LN (z′l)) + z′l,
(2)

where LN (•) means the layer normalization and zl is the encoded image representation.
Figure 2 includes the overall segmentation process. Finally, the output after multiple
transformer layers is reshaped and convoluted to encode the input x.

Fig. 2. Overview of the transformer-based method used in this study for segmentation of NPC.

Instead of using a transformer to extract features directly from the original image, we
first use multiple convolutions to obtain 1×1 patches as the inputs of patch embeddings.
Choosing this strategy can directly obtain some high-resolution feature maps, which is
beneficial for the subsequent decoding stages.

2.2 Decoded Stage

After obtaining the coding feature representation zL = R
HW/P2×D, a common solution

is to directly upsample it to the segmentation mask of the target output. However, there
is a problem that the size obtained by the decoder module is much smaller than the
target mask size, which will lead to the loss of numerous low-level information and
details. This is even more important for pathological images owning to some required
texture and structure information. Therefore, we follow the strategy of [16], and the
encoded features with different resolutions are fused to the decoder by skip connections
to compute the final target mask.

Specifically, after reshaping the encoded features, the highest-level decoded features
F0D with shape (D, H

P ,
W
P ) are obtained by performing the convolution and activation

operation (CA) consisting of a 3× 3 convolution layer and a ReLU activation function.
Meanwhile, features of different resolutions are obtained by convolution operation in
the encoded stage. Then, as shown in Fig. 2, theD0 is 2× upsampling, and concatenated
with the features of the corresponding resolution from the encoded stage to decode the
next-level F1D. After three times of this processing strategy and upsampling, the output
segmentationmask is finally calculated by a CA and a segmentation head, which consists
of 3 × 3 convolution layer and a bilinear upsampling.
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3 Experiment and Result

3.1 Dataset and Evaluation

NPC2020 Dataset [6]. The NPC dataset consists of 277 cases classified as non-
keratinizing carcinoma according to WHO histologic classification. The pathological
images were collected from 2004 to 2018 and ranged in age from 18 to 71 years at the
Department ofPathology, thePeople’sHospital ofGaozhouandShenzhenThirdPeople’s
Hospital. They were scanned at 40X magnification and annotated by two pathologists
with at least fifteen years of clinical experience. We randomly split all WSIs into 470
training slides datasets and 312 testing slides datasets. Slides belonging to the same case
will only appear in the training dataset or test dataset. In actual training, training images
and corresponding labels were cropped and resized from the WSIs in 10X magnifica-
tion with size 512 × 512 and 5X magnification with size 256 × 256. Meanwhile, our
experiment carried out a 5-fold cross-validation in the training dataset.

Evaluation Metrics. We used four standard and conventional metrics to evaluate the
performance of our framework: Dice Similarity Coefficient (DSC), Intersection over
Union (IOU), Precision (PRE) and Recall (REC). The experimental results are expressed
in this form: mean ± std.

3.2 Implementation Details

The routine data augmentations were applied in our experiments, such as rotation and
flipping. The encoder modules, consisting of ResNet-50 [20] and ViT [17], were pre-
trained on ImageNet [21]. The number of skip connections was 3. The input resolutions
were set as 256 or 512 according to the magnification. Patch size of the transformer
input was set as 16. For the training, the optimizer was SGD with 0.01 learning rate,
1e−4 weight decay and 0.9 momentum. The batch size and epoch were 32 and 150. All
models were implemented using PyTorch (version 1.9.0), and all training processes were
trained on the two NVIDIA RTX A6000 GPU in Linux (version is 4.4.0-116-generic).

In the inference stage, patches were cropped in an overlapping strategy with 25% of
the width and 30% of the height. For the pixel category of the over overlap part, we used
a one vote affirmative method to select the category, that is, if there was any positive,
the category of mask pixel was positive.



146 S. Diao et al.

Table 1. Comparison on NPC2020 datasets (mean ± std).

Model DSC IOU PRE REC

5X magnification

Unet 0.779 ± 0.005 0.663 ± 0.007 0.823 ± 0.003 0.774 ± 0.008

FPN 0.773 ± 0.008 0.655 ± 0.010 0.817 ± 0.006 0.772 ± 0.010

Linknet 0.775 ± 0.008 0.658 ± 0.009 0.826 ± 0.005 0.769 ± 0.015

PSPNet 0.769 ± 0.003 0.650 ± 0.004 0.812 ± 0.005 0.771 ± 0.004

PAN 0.773 ± 0.009 0.655 ± 0.011 0.816 ± 0.006 0.776 ± 0.012

DeeplabV3++ 0.779 ± 0.004 0.664 ± 0.005 0.823 ± 0.004 0.776 ± 0.009

Our 0.804 ± 0.005 0.684 ± 0.007 0.829 ± 0.001 0.800 ± 0.008

10X magnification

Unet 0.801 ± 0.003 0.696 ± 0.005 0.823 ± 0.009 0.822 ± 0.013

FPN 0.812 ± 0.001 0.707 ± 0.003 0.820 ± 0.009 0.840 ± 0.010

Linknet 0.807 ± 0.005 0.701 ± 0.006 0.832 ± 0.004 0.826 ± 0.011

PSPNet 0.803 ± 0.003 0.695 ± 0.003 0.820 ± 0.006 0.834 ± 0.004

PAN 0.808 ± 0.002 0.704 ± 0.004 0.833 ± 0.005 0.828 ± 0.001

DeeplabV3++ 0.811 ± 0.002 0.707 ± 0.002 0.828 ± 0.003 0.838 ± 0.007

Our 0.833 ± 0.001 0.730 ± 0.002 0.847 ± 0.005 0.856 ± 0.007

3.3 Results

Main experiments were conducted on NPC2020 dataset by comparing the transformer
network i.e. TransUNet with six previous state-of-the-art methods: 1) Unet [11]; 2) FPN
[22]; 3) Linknet [13]; 4) PSPNet [14]; 5) PAN [12]; 6) DeeplabV3++ [23].

Quantitative Analysis. Our segmentation results can be found in Table 1. In general,
the proposed framework outperformed all pure convolutional networks presented here
by a significant margin in all metrics on the NPC2020 dataset, regardless of which
magnification the results come from. Meanwhile, it can be found that the results of
experiments with 10X images had achieved a better performance than that with 5X
images, which indicated that the high magnification NPC images with more abundant
information were beneficial to transformer framework learning. Specifically, our frame-
work achieved 2.5%–3.5% higher DSC in 5X images and 2.1%–3.2% higher DSC in
10X images than the compared methods, which highlighted the robustness of our frame-
work. Moreover, the performance improvement was focused on the REC metric, which
illustrated that the transformer could effectively reduce false negatives. According to the
above quantitative results, the transformer-based framework was more suitable for NPC
pathological image segmentation of cancer regions than the pure CNN-based network.
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Fig. 3. Qualitative test results of differentmethods. Thefirst column showed one sample randomly
selected from a WSI. The remaining columns were the results of different models. (a) The results
based on 5X. (b) The results based on 10X (black means normal area and white mean tumor area
in the ground-truth and prediction results).

Qualitative Analysis. To verify the performance of the transformer-based framework,
as shown in Fig. 3, qualitative comparison results were provided in the NPC2020 dataset.
In order to better show the qualitative results, the baselinemodel Unet andDeeplabV3++
with the best overall performance were selected as the comparison models. It can be
seen that: 1) for some minor areas (e.g., in the upper left corner), our framework will not
ignore that compared with the pure CNN-based network. 2) Based on the 10X image, the
boundary region could be segmented more smoothly, especially the transformer-based
network, which showed that it has stronger power to encode global context. 3) Regard-
less of the image segmentation based on which magnification, the missed diagnosis of
the transformer-based model was lower (i.e., the white area would not be divided into
the black area). Moreover, the proposed pathological segmentation framework could
perform finer segmentation to retain complete shape information for the regions with
two holes in the upper right. This verifies again that the performance transformer-based
framework was excellent.

Discussion. The training image of the transformer-based framework considering global
context information needs the image with a larger field of view to learn more abundant
features. Experiments based on TransUNet with different sizes of images were designed
to verify this hypothesis. Based on the resolution of the original image (100%), we
conducted experiments on 50%, 25% and 12.5% proportion size images, as shown in
Fig. 4. It can be seen that the image based on 50% size still has a relatively large field of
view, so the corresponding result decline is not prominent. However, the results based
on 25% and 12.5% size images were collapsing due to the sharp reduction of their field
of view, that is, all regions were one category, so it was not easy to get global context
information. These experimental results also verified our conjecture that images with
a larger field of vision were more beneficial to the transformer-based framework and
conformed to the diagnosis process of pathologists.
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Fig. 4. Line chart of resultswith different proportions sizes images. The blue and red lines indicate
the measurement using the input magnifications with 10X and 5X, respectively.

4 Conclusion

This paper first investigated the validity of a transformer-based framework on tumor seg-
mentation of NPC pathological images.We use a TransUNet framework that encodes the
global context by transforming the pathological image features of different regions as
sequences, which can fully utilize low-level features. Comparison experiments demon-
strated that the transformer framework achieves superior performance to various CNN-
based methods in the NPC2020 testing dataset. Moreover, from the quantitative per-
spective in segmentation results, the transformer framework considers more global
information and achieves a better segmentation mask for NPC pathological images.
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Abstract. Breast cancer ranks the first noncutaneous malignancy inci-
dence and mortality in women worldwide, and seriously endangers the
health and life of women. Ultrasound plays a key role and yet provides an
economical solution for breast cancer screening. While valuable, ultra-
sound is still suffered from limited specificity, and its accuracy is highly
related to the clinicians, resulting in inconsistent diagnosis. To address
the challenge of limited specificity and inconsistent diagnosis, in this
retrospective study, we first develop a learning model based on the com-
putational ultrasound image features and identified a set of clinically
relevant features. Then, the abstract spatial interaction patterns of the
ultrasound images together with the extracted features were employed
for breast malignancy diagnosis. We evaluate the proposed algorithm
on the Breast Ultrasound Images Dataset (BUSI). The proposed algo-
rithm achieved a diagnostic accuracy of 89.32% and a significant area
under curve (AUC) of 0.9473 with the repeated cross-validation scheme.
In conclusion, our algorithm shows superior performance over the exist-
ing classical methods and can be potentially applied to breast cancer
screening.

Keywords: Computational features · Ultrasound · Breast cancer

1 Introduction

Breast cancer is the most commonly diagnosed cancer and causes the most
deaths for women diagnosed with cancers. [6] Early diagnosis plays an important
role in both treatment and prognosis for breast cancer. It has been extensively
reported that patients diagnosed with smaller primary breast tumors had a sig-
nificantly higher disease-free survival and overall survival, compared to patients
with locally advanced breast tumors. Early detection and diagnosis of breast
cancer are therefore of interest. Various imaging modalities have been applied to
breast cancer diagnosis. Among these, ultrasound (US) imaging which employs
sound waves to generate images of the internal morphology of the breast is the
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most widely used method due to its safety and painlessness. The US is able to
help diagnose breast lumps and other abnormalities in a noninvasive way.

Despite its usefulness and wide applicability, breast US has suffered from
limited specificity and interobserver variability, both of which contribute to a
high rate of false-positive and false-negative. The misdiagnoses cause either a
number of unnecessary biopsies and surgeries, or missed cases. To address the
challenge of limited specificity and interobserver variability, there has been a
growing interest in the application of machine learning technology for automatic
US breast tumor identification [4].

Different from conventional US diagnosis, the machine learning approaches
make decisions based on extracted computational features. The features extrac-
tion procedure can be performed using either deep neural networks [2] or spatial
and texture computational tools. While the deep neural network-based features
are usually illusive and lack interpretability, the spatial and texture computa-
tional tools extract features that are directly related to tumor size and shape,
image intensity histogram, and relationships between image voxels from radi-
ologic images. The mathematical definitions of these features are explicit and
easy to reproduce. Some of these features, such as tumor texture, have been
demonstrated to be useful for differentiating malignant from benign tumors in
breast cancer. In this study, we aimed to develop a learning model based on the
computational ultrasound image features and applied the model to breast tumor
identification. Clinically relevant features were used to differentiate breast tumor
malignancy.

2 Method

Radiomics researches have a rather clear pipeline [3] which we adopted. First,
we prepared the data, where the segmentation of region of interest (ROI) had
been already available. Next, we extract features from ROIs with PyRadiomics
package. Then, we selected and eliminated features and prepared them for mod-
eling. At last, we built our model and evaluated the model by common metrics.
The adopted pipeline is shown in Fig. 1.

2.1 Data Preparation

The BUSI dataset [1] was collected from 600 female patients and divided into
three categories: benign, malignant, and normal. Both ultrasound images and
segmentation masks are stored as 8-bit pngs. A sample of a malignant ultrasound
image, a benign ultrasound image, and their corresponding masks are shown in
Fig. 2.

Since the radiomics extract information from the region of interest (ROI)
instead of the entire image, an ultrasound image with more than one tumor will
result in the situation that the number of tumors ROIs is greater than that of the
ultrasound image. Through the pairing of the ultrasound images and the masks,
454 benign tumor ROIs and 211 malignant tumor ROIs were finally obtained.
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Fig. 1. Adopted pipeline of the research.

2.2 Feature Extraction

PyRadiomics [7] is an open-source Python library for radiomics feature extrac-
tion. With PyRadiomics, we extracted 1318 image-related features, which consist
of eight classes:

– First Order Statistics
– Shape-based (2D)
– Shape-based (3D)
– Gray Level Cooccurence Matrix (GLCM)
– Gray Level Run Length Matrix (GLRLM)
– Gray Level Size Zone Matrix (GLSZM)
– Neigbouring Gray Tone Difference Matrix (NGTDM)
– Gray Level Dependence Matrix (GLDM).

2.3 Feature Selection

Features with too high dimension hinder the implementation of classification
algorithms, so feature selection is required. After the following steps, the number
of features is controlled in an appropriate range.
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Fig. 2. Sample of a malignant ultrasound image, a benign ultrasound image, and their
corresponding masks.

Data Standardization. The standardization process unifies the dimensions of
the features and prevents the effect of the different magnitude order during the
selection and modeling process.

We standardized the data by the formula

x̂ =
x − μ

σ
, (1)

where x represents the original data and x̂ represents the standardized data. μ
represents the mean of the data, and σ represents the standard deviation of the
data.

Mutual Information Filtering The mutual information (MI) of a chosen
feature X and label Y is defined as

I(X;Y ) = E [I (xi; yj)] =
∑

xi∈X

∑

yj∈Y

p (xi, yj) log
p (xi, yj)

p (xi) p (yj)
, (2)
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where xi represents the chosen feature of i-th sample, and yj represents the
binary label of j-th sample.

For a chosen feature, the less mutual information it has with the label, the less
information it provides for classification. Based on this principle, we performed
feature filtering based on the MI, and the features whose MI with the label was
lower than the threshold of 0.1 was eliminated.

Recursive Feature Elimination. Recursive feature elimination (RFE)
method works with predictive models. The feature which contributes the least to
the result is determined by the model during each recursion and then eliminated.
The recursive process goes on until the number of remaining features does not
exceed the threshold we set.

In our implementation, we used random forest as the predictive model dur-
ing the RFE process, where 25 decision trees were ensembled. 30 features were
selected.

It is worth mentioning that the above steps of feature selection are not quite
clear at the initial stage. Instead, they are determined by trying applying com-
mon feature selection methods(including filters, wrappers and embedded ones)
by following the principles that through one single selection process, an appro-
priate number of features can be eliminated. Removing too many or too few
features in one process are avoided because the extreme threshold of the for-
mer extremizes the training data distribution, and the latter fails the selection
process.

2.4 Modeling and Evaluation

We chose linear regression, a simple machine learning model for the purpose of
classification, with L1 norm as the penalty, and liblinear as the solver. The max
iteration was set to 104.

For evaluation, we used common metrics, including:

– F1-score
– Accuracy
– Sensitivity
– Specificity
– Precision
– ROC curve [5] and area under curve (AUC).

Each metrics were calculated with respect to the 30% test data for 50 random
splits of the dataset.
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3 Results and Discussions

3.1 Metrics Performance

The performance of the LR model on the selected metrics is listed in Table 1,
and visualized in Fig. 3. The error bar indicates the 95% confidence interval (95%
CI).

It can be seen from the figure that the model is robust to different split of
training and test sets. Thus the metrics have a small interval of 95% CI.

The sensitivity is relatively low compared with other metrics. As the BUSI
dataset suffers from data imbalance, where the number of available benign ROIs
is nearly twice as that of malignant ones. Considering the definition of the sensi-
tivity metric, it may be improved by properly oversampling the positive samples,
i.e. malignant ROIs.

Fig. 3. Numerical metrics

Table 1. Metrics

F1-score Accuracy Sensitivity Specificity Precision AUC

0.8246 ± 0.0089 0.8932 ± 0.0053 0.797 ± 0.014 0.9389 ± 0.0063 0.8584 ± 0.014 0.9473 ± 0.004
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3.2 ROC Curve

The ROC curve of the model on a random split of the dataset is shown in Fig. 4.
The corresponding AUC is 0.9469.

The ROC curve and corresponding AUC reveal that the model has a rela-
tively high predictive value from an overall perspective, especially considering
the imbalance of the dataset in this study.

Fig. 4. The blue line is the ROC curve of our model on a random split of the dataset.
(Color figure online)

3.3 Calibration Curve

The calibration curve corresponding to the model with the ROC Curve above
is shown below in Fig. 5. As can be seen from the figure, when the predicted
value is at lower (<0.3) and higher (>0.7) values, the calibration curve of the
model is close to the perfectly calibrated curve. The deviation on the interval
around 0.5 indicates that the model has much room for improvement. Attaching
attention technologies or simply put more weight on the training samples whose
predicted value falls in the interval around 0.5 may lead to the calibration curve
approaching to the perfectly calibrated one and improve the performance of the
model.
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Fig. 5. The calibration curve of a random split.

4 Conclusion

We present a computational US image modeling algorithm to accurately identify
breast tumors. The algorithm is able to extract reproducible and interpretable
features to differentiate breast tumor malignancy. Using these clinically relevant
features, the proposed classification model achieves promising results based on
clinical US images from public BUSI dataset. We anticipate that the proposed
tumor identification and feature extraction and selection scheme can adapt to a
broader category of cancers.
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cer/Radiothérapie 24(5), 403–410 (2020)

4. Cole-Beuglet, C., Beique, R.A.: Continuous ultrasound B-scanning of palpable
breast masses. Radiology 117(1), 123–128 (1975)



158 Y. Li and W. Zhao

5. Cook, N.R.: Statistical evaluation of prognostic versus diagnostic models: beyond
the ROC curve. Clin. Chem. 54(1), 17–23 (2008)

6. Ferlay, J., et al.: Global cancer observatory: cancer today. International Agency for
Research on Cancer, Lyon, France (2020)

7. Van Griethuysen, J.J., et al.: Computational radiomics system to decode the radio-
graphic phenotype. Can. Res. 77(21), e104–e107 (2017)



Author Index

AbdulJabbar, Khalid 78
Aminu, Muhammad 1
Arbelaez, Pablo 68
Au, Kwok-hung 21

Bandyopadhyay, Rukhmini 1, 11
Behrens, Carmen 1
Bloch, Natasha 68

Cai, Jing 21
Chan, Wing Chi Lawrence 21
Chang, Tien Yee Amy 21
Chen, Pingjun 1, 11
Cheung, Ho Kwan Alvin 78
Cui, Ming 131

Diao, Songhui 141
Dias, Jorge 47
Dong, Le 121

Ebare, Kingsley 1, 11
El Hussein, Siba 11

Fu, Yu 91

Gao, Yuhua 131
Ge, Ruiquan 121
Gibbons, Don L. 1
Grapa, Anca-Ioana 78
Guo, Qiaomei 91

He, Jiahui 141
He, Jinzheng 110
Heymach, John V. 1
Hong, Lingzhi 1

Javed, Sajid 47
Jiang, Liang 58
Jiao, Menglei 58

Kalhor, Neda 1
Karasaki, Takahiro 78
Khoury, Joseph D. 11
Kuang, Yinglan 91

Lam, Saikit 21
Lang, Ning 58
Lee, Francis 21
Lee, Victor 21
Li, Yilong 121
Li, Yongqing 150
Li, Yuan 58
Liu, Hong 58
Liu, Jianfang 58
Liu, Xinyu 35
Lou, Jiatao 91
Lu, Xing 91
Luo, Weiren 141

Ma, He 131
Ma, Zongrui 21
Magnier, Baptiste 100
Mahbub, Taslim 47
Medeiros, L. Jeffrey 11
Mejía, Gabriel 68
Moore, David A. 78

Obeid, Ahmad 47
Ouyang, Hanqiang 58

Pan, Xiaoxi 78

Qian, Yueliang 58
Qin, Wenjian 131, 141
Quesne, John Le 78

Raza, Shan E Ahmed 78
Rojas, Frank R. 1, 11

Saad, Maliazurina B. 1
Salehjahromi, Morteza 1
Schönlieb, Carola-Bibiane 110
Shi, Baorong 35
Solis Soto, Luisa M. 1, 11
Sun, Deyu 131
Swanton, Charles 78

Tang, Luyu 141
Teng, Xinzhi 21
Tian, Shuai 58



160 Author Index

Wang, Chunjie 58
Wang, Liansheng 100
Wang, Lin 91
Wang, Linyan 121
Wang, Shujun 110
Wang, Xiangdong 58
Wang, Xueqing 91
Wang, Yaqi 121
Werghi, Naoufel 47
Wistuba, Ignacio I. 1, 11
Wu, Jia 1, 11
Wu, Q. Jackie 21
Wu, Wei 100
Wu, Xinran 131

Xie, Yaoqin 131, 141
Xu, Wanxing 91

Yang, Xiaozheng 91
Yang, Zekang 58
Ye, Juan 121
Ye, Xiaodan 91

Ye, Xin 91
Yip, Wai Yi 21
Yu, Lequan 110
Yuan, Huishu 58
Yuan, Yinyin 78
Yuan, Yuan 58

Zaki, Nazar 131
Zhang, Erlei 131
Zhang, Fa 35
Zhang, Hanyun 78
Zhang, Jiang 21
Zhang, Jianjun 1, 11
Zhang, Jinglu 91
Zhang, Qianni 121
Zhang, Yuanpeng 21
Zhao, Hanqing 141
Zhao, Wei 150
Zhou, Huiyu 121
Zhu, Jiayuan 110
Zhu, Zhonghang 100


	 Preface
	 Organization
	 Contents
	Cellular Architecture on Whole Slide Images Allows the Prediction of Survival in Lung Adenocarcinoma
	1 Introduction
	2 Method
	2.1 Nuclei Segmentation and Classification on WSIs
	2.2 Cellular Composition and Architecture Profiling on WSIs
	2.3 Global Cell Architecture Profiling and Prediction Model for Survival

	3 Experiments and Results
	3.1 Dataset Description
	3.2 Results and Discussion

	4 Conclusion
	References

	Is More Always Better? Effects of Patch Sampling in Distinguishing Chronic Lymphocytic Leukemia from Transformation to Diffuse Large B-Cell Lymphoma
	1 Introduction
	2 Proposed Methodology
	2.1 WSI Preprocessing
	2.2 Patch-Level Random Sampling
	2.3 WSI Classification

	3 Experimental Analysis
	3.1 Dataset Description
	3.2 Results and Discussion

	4 Conclusion
	References

	Repeatability of Radiomic Features Against Simulated Scanning Position Stochasticity Across Imaging Modalities and Cancer Subtypes: A Retrospective Multi-institutional Study on Head-and-Neck Cases
	1 Introduction
	2 Methods and Materials
	2.1 Patient Cohorts
	2.2 Image Preprocessing, Perturbation, and Feature Extraction
	2.3 RF Repeatability and Repeatability Agreement
	2.4 Feature Collinearity

	3 Results
	3.1 RF Repeatability in Both NPC and OPC Cohorts
	3.2 Agreement of RF Repeatability Across Imaging Modalities and HNC Subtypes
	3.3 Feature Collinearity

	4 Discussion
	5 Conclusions
	6  Appendix
	References

	MLCN: Metric Learning Constrained Network for Whole Slide Image Classification with Bilinear Gated Attention Mechanism
	1 Introduction
	2 Method
	2.1 Bilinear Gated Attention Mechanism
	2.2 Center Cluster Loss
	2.3 A Global Perspective of MLCN

	3 Experiments
	3.1 Experimental Settings
	3.2 Dataset
	3.3 Controlled Experiments
	3.4 Ablation Study for MIL Aggregators
	3.5 Ablation Study for Loss
	3.6 Compare with State-of-the-Art Approahces

	4 Conclusion
	References

	NucDETR: End-to-End Transformer for Nucleus Detection in Histopathology Images
	1 Introduction
	2 Methodology
	2.1 Backbone Training
	2.2 Detection Model

	3 Experimental Evaluation
	3.1 Visual Assessment
	3.2 Quantitative Assessment

	References

	Self-supervised Learning Based on a Pre-trained Method for the Subtype Classification of Spinal Tumors
	1 Introduction
	2 Proposed Method
	2.1 Pre-trained Method Based on Self-supervised Learning
	2.2 Multi-modal Fusion Model
	2.3 Pre-trained Model Transfer to the Multi-modal Fusion Model

	3 Experiment and Results
	4 Conclusion
	References

	CanDLE: Illuminating Biases in Transcriptomic Pan-Cancer Diagnosis
	1 Introduction
	2 Related Work
	2.1 Joining the TCGA and GTEx Databases
	2.2 Classification/Detection Methods

	3 Correcting Bias in the Input Data
	4 Method
	4.1 CanDLE
	4.2 Interpretability

	5 Results and Discussion
	5.1 Mutilabel Classification
	5.2 Detection
	5.3 Interpretability

	6 Conclusion
	References

	Cross-Stream Interactions: Segmentation of Lung Adenocarcinoma Growth Patterns
	1 Introduction
	2 Method
	2.1 First-order Attention
	2.2 Second-order Attention

	3 Experimental Results
	3.1 Ablation Study
	3.2 Comparison with State-of-the-Art Methods

	4 Conclusion
	References

	Modality-Collaborative AI Model Ensemble for Lung Cancer Early Diagnosis
	1 Introduction
	2 Method
	2.1 Study Design and Participants
	2.2 Biomarkers and Models
	2.3 Multi-modality Multi-model Ensemble
	2.4 Model Performance Evaluation

	3 Results
	4 Discussion
	5 Conclusion
	References

	Clustering-Based Multi-instance Learning Network for Whole Slide Image Classification
	1 Introduction
	2 Method
	2.1 Clustering-Based MIL Framework
	2.2 Multi-task Learning
	2.3 Model Structure and Training Procedure

	3 Experiments and Results
	3.1 Dataset and Evaluation Metrics
	3.2 Implementation Details
	3.3 Experimental Results

	4 Conclusion
	References

	Multi-task Learning-Driven Volume and Slice Level Contrastive Learning for 3D Medical Image Classification
	1 Introduction
	2 Method
	2.1 Problem Definition and Overview
	2.2 Gated Attention-Based MIL Pooling for Image Classification
	2.3 Volume-Level Contrastive Learning
	2.4 Slice-Level Contrastive Learning

	3 Experiments
	3.1 Datasets
	3.2 Data Pre-processing and Experimental Setup
	3.3 Experimental Results

	4 Conclusion
	References

	Light Annotation Fine Segmentation: Histology Image Segmentation Based on VGG Fusion with Global Normalisation CAM
	1 Introduction
	2 Methods
	2.1 Annotation Enhancement
	2.2 VF Classification Network
	2.3 Global Normalised Class Activation Mapping
	2.4 Noise Eliminator

	3 Experiment and Result
	3.1 Data Introduction and Training Details
	3.2 Evaluation and Results

	4 Conclusion
	References

	Tubular Structure-Aware Convolutional Neural Networks for Organ at Risks Segmentation in Cervical Cancer Radiotherapy
	1 Introduction
	2 Method
	3 Experiments
	3.1 Dataset and Experimental Environment
	3.2 Comparing to Existing Methods
	3.3 Ablation Experiments

	4 Conclusion and Discussion
	References

	Automatic Computer-Aided Histopathologic Segmentation for Nasopharyngeal Carcinoma Using Transformer Framework
	1 Introduction
	2 Method
	2.1 Encoded Stage
	2.2 Decoded Stage

	3 Experiment and Result
	3.1 Dataset and Evaluation
	3.2 Implementation Details
	3.3 Results

	4 Conclusion
	References

	Accurate Breast Tumor Identification Using Computational Ultrasound Image Features
	1 Introduction
	2 Method
	2.1 Data Preparation
	2.2 Feature Extraction
	2.3 Feature Selection
	2.4 Modeling and Evaluation

	3 Results and Discussions
	3.1 Metrics Performance
	3.2 ROC Curve
	3.3 Calibration Curve

	4 Conclusion
	References

	Author Index

