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Abstract. We present experimental findings on the decoding failure
rate (DFR) of BIKE, a fourth-round candidate in the NIST Post-
Quantum Standardization process, at the 20-bit security level. We select
parameters according to BIKE design principles and conduct a series
of experiments. We directly compute the average DFR on a range of
BIKE block sizes and identify both the waterfall and error floor regions
of the DFR curve. We then study the influence on the average DFR of
three sets C, N , and 2N of near-codewords—vectors of low weight that
induce syndromes of low weight—defined by Vasseur in 2021. We find
that error vectors leading to decoding failures have small maximum sup-
port intersection with elements of these sets; further, the distribution of
intersections is quite similar to that of sampling random error vectors
and counting the intersections with C, N , and 2N . Our results indicate
that these three sets are not sufficient in classifying vectors expected to
cause decoding failures. Finally, we study the role of syndrome weight on
the decoding behavior and conclude that the set of error vectors that lead
to decoding failures differ from random vectors by having low syndrome
weight.

Keywords: BIKE · Error-correcting codes · McEliece · PQC ·
QC-MDPC

1 Introduction

In 2016, the U.S. National Institute of Standards and Technology (NIST)
announced a Post-Quantum Cryptography (PQC) standardization process
aimed at updating NIST’s public-key cryptographic standards to include post-
quantum cryptography, that is, cryptographic algorithms that are thought to be
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secure against attacks by a quantum computer. One of the remaining code-based
candidates in the NIST PQC Standardization process is BIKE, a cryptosystem
based on quasi-cyclic moderate density parity check (QC-MDPC) codes.

The BIKE cryptosystem was originally designed for ephemeral use, that is in
settings where a KEM key pair is generated for every key exchange. The require-
ment for BIKE to be used ephemerally provides a countermeasure to a reaction
attack by GJS [10] wherein an attacker can use knowledge of messages that lead
to decoding failures to recover the private key of a scheme. During the second
and third round of the NIST PQC process, BIKE proposed parameter sets that
were designed to provide security in the static-key setting [1], that is, a setting
where KEM key pairs can be reused for several key exchanges. In fact all the
parameter sets in the third round specification of BIKE are designed to be secure
in the static-key setting, although they do not formally claim to be secure in this
setting. While security in the ephemeral setting can be provided by a scheme
meeting the weaker IND-CPA security notion, security in a static-key setting
requires a scheme meeting the stronger IND-CCA2 security notion. Achieving
IND-CCA2 security requires that BIKE’s decoder has a sufficiently low decoding
failure rate (DFR), both because the security proof of BIKE in the IND-CCA2
setting assumes a low DFR, and because if a QC-MDPC cryptosystem with a
sufficiently high DFR is used in the static-key setting, it would allow an attacker
to perform the GJS attack with a high probability of success.

By design, it is not feasible to directly compute an average DFR for BIKE
at cryptographically relevant security levels. It is possible to measure DFRs for
smaller code sizes and then use extrapolation methods to estimate the DFR for
larger parameters [9,17]. One must consider the phenomenon known as the error
floor region of DFR curves to avoid an underestimate of DFR for larger code
sizes. It is known that for LDPC and MDPC codes, the logarithm of the DFR
drops significantly faster than linearly, and then linearly as the signal-to-noise
ratio is increased [15,21]. Thus a typical DFR curve contains a concave waterfall
region followed by a near-linear error floor region. One must accurately predict
the error floor of a DFR curve to accurately predict the DFR for cryptographi-
cally relevant code sizes.

The error floor regions for low density parity check (LDPC) codes have been
extensively analyzed in the literature. These are codes which can be defined by
parity check matrices Hk×n with row Hamming weight on the order of O(1),
or up to O(log(2n)). For each parity check matrix, there is a corresponding
bipartite graph, known as a Tanner graph. Much analysis of iterative LDPC
decoding behavior focuses on properties of Tanner graph representations of the
code [4,14–16,24], such as identifying stopping sets and trapping sets.

Recent work [22,23] has considered several factors affecting the DFR of QC-
MPDC codes: choice of decoder [17,20], classes of weak keys, and sets of prob-
lematic error patterns. It was noted that error vectors with a small Hamming
distance from problematic error patterns—error vectors of low weight that emit
syndromes of low weight—are significant contributors to the error floors of QC-
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MDPC codes and it was concluded that these vectors were rare enough to not
affect the overall DFR predictions for higher code sizes.

In this work, we examine the error floor behavior of QC-MDPC codes and
focus on a scaled-down version of BIKE. Existing analysis of the DFR for BIKE
[9,17] relies on extrapolations based only on modifying the block size, but this
analysis is only accurate if an upper bound can be established for the DFR
at which the transition to error floor behavior occurs (see e.g. Assumption 3
on page 7 of [17]). Vasseur’s thesis uses experiments with error vectors based
on known classes of codewords and near-codewords to give an upper bound for
the transition DFR. We try to directly measure the transition point and see
if it can be modeled based on the known contributions to error floor behavior
described in Vasseur’s thesis, but we cannot directly measure the transition point
for cryptographic size parameters, since that transition occurs at too low a DFR.
We use the Black-Grey-Flip decoder [9], the recommended BIKE decoder as of
the time of writing, and filter out any keys belonging to the classes of weak keys
defined by [22]. We consider the three sets of near codewords as defined in [22]
and find that error vectors that lead to decoding failures have small (between
2 and 8 bits) support intersections with elements of this set. We conclude that
error vectors that emit syndromes of low weight are significant contributors to
decoding failures, but are not fully captured by the sets of near codewords defined
in [22].

2 Background

2.1 Coding Theory and QC-MDPC Codes

Throughout this document, let F2 denote the finite field of two elements. For
r ∈ N, x ∈ F

r
2, let |x| denote the Hamming weight of x. For two vectors x, y ∈ F

r
2,

let x � y = (x0 · y0, x1 · y1, . . . , xr−1 · yr−1) denote the Schur product. Let C(n, k)
be a binary linear code, n, k ∈ N. Then C : Fk

2 → F
n
2 maps information words to

codewords and the set of 2k codewords forms a k-dimensional vector space of
F

n
2 . Let B = {b0, b1, . . . , bk−1} be a basis for this subspace, bi ∈ F

n
2 . Then the

code C can be described by a generator matrix

G =

⎡
⎢⎢⎢⎣

b0
b1
...

bk−1

⎤
⎥⎥⎥⎦ .

The code can equivalently be described by a parity check matrix H ∈ F
n−k×n
2

which is a generator matrix for the dual code C⊥ = {x ∈ F
n
2 : ∀c ∈ C, x · c = 0}.

Thus the following relationship holds: HGT = 0 ∈ F
k×n−k
2 . For any vector

y ∈ F
n
2 , and parity check matrix H, the matrix-vector product HyT = s ∈ F

n−k
2

is known as the syndrome. For any y such that HyT = 0 ∈ F
n−k
2 , y is a codeword

(i.e., y ∈ C).
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A v × v circulant matrix is a square matrix such that each row ri+1 is one
shift to the right of the previous row ri for i ∈ {0, 1, . . . , v −1}. The ring of v ×v
circulant matrices over F2 is isomorphic to the polynomial ring F2[x]/〈xv + 1〉.
A quasi-cyclic (QC) matrix is a block sum of circulant matrices.

2.2 BIKE

Bit-flipping Key Encapsulation (BIKE) is a cryptosystem based on binary linear
codes with quasi-cyclic structure and moderately sparse private keys [1]. The
private key H ∈ F

r×2r
2 is composed of two circulant blocks: H0,H1 of size r × r

with r prime and such that xr −1 has only two irreducible factors modulo 2. The
columns of H have weight d and the rows hi of H are such that |hi| = w = 2d
for all i ∈ {0, . . . , r − 1}. MDPC code parameters satisfy row weight w ≈ √

n for
n the length of the code.

At a high level, the public-key encryption system underlying the BIKE KEM
is composed of three algorithms: key generation, encryption, and decryption.
The key generation algorithm generates a private key H = [H0|H1] ∈ F

r×2r
2 and

public key H ′ is H in systematic form (H ′ = H−1
0 H). To encrypt a message m,

a sender must encode m into a vector e of suitable weight t, then compute the
syndrome H ′eT = s. The receiver decrypts by decoding the syndrome s using the
secret key H and a predefined syndrome decoding algorithm. The recommended
BIKE syndrome decoder as of the time of writing is the Black-Grey-Flip decoder
[9].

Let λ denote the security parameter and let H denote a BIKE secret key.
The security of BIKE depends on the inability of an attacker to break (variants
of) the syndrome decoding problem(s). The best known attacks are information
set decoding (ISD) algorithms, first introduced in 1962 by Prange [13] and later
improved in dozens of works yielding small change in the overall asymptotic
cost. (See [5,12,19] for a non-exhaustive list). Thus, for BIKE to achieve λ bits
of security against the best known ISD attacks [7], the BIKE team determined
that

λ ≈ t − 1
2

log2 r ≈ w − log2 r

where r denotes the circulant block size of H, w denotes the row weight of H,
and t denotes the weight of the error vector in which a message is encoded [1].

2.3 Weak Keys and Near Codewords

For security level λ, the average decoding failure rate DFRD,H for an IND-CCA
secure cryptosystem should be ≤ 2−λ where D denotes the decoder and H the
key space. A set W ⊂ H of keys is said to be weak if:

|W|
|H| DFRD,W > 2−λ ≥ DFRD,H.

In [22, Chapter 15], Vasseur identifies three types of weak keys for the BIKE
cryptosystem:
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– Type I: keys with many consecutive nonzero bits in the rows of one of the
cyclic blocks, first identified by [8].

– Type II: keys with nonzero bits at many regular intervals in the rows of one
of the cyclic blocks.

– Type III: keys with many intersections between the columns of the two
cyclic blocks.

It is known that some sets of vectors are more likely to cause decoding failures
than on average. A (u, v)-near codeword for a parity-check matrix H is an error
vector e with Hamming weight u whose syndrome s = HeT has weight v [11].
When u, v are small, these near codewords can be likely to cause decoding failures
[15]. Based on the structure of BIKE, Vasseur defines three sets with small u, v
as follows:

– C: vectors which form the rows of the generator matrix G = [HT
1 |HT

0 ]; these
are codewords of weight w for the secret key H = [H0|H1].

– N : the set of (d, d)-near codewords of the form (v0,0) or (0, v1), where 0 ∈ F
r
2

and vi is a row of the circulant block Hi of the parity check matrix.
– 2N : the set of vectors formed by sums of two vectors in N . Due to the small

chance of cancellation, one may consider the set 2N as (w − ε0, w − ε1)-near
codewords for some small εi ≥ 0, i ∈ {0, 1}.

3 Methods

Cryptographically relevant DFRs are too low (< 2−128) to directly measure; it
is only possible to measure DFRs for smaller code sizes, then use extrapola-
tion methods to estimate the DFR to larger parameters. Some examples of this
approach can be found in [8,9,18]. In this ongoing work, we begin by analyzing
the decoding behavior for BIKE parameter sets targeting 20 bits of security in
several experiments.

Parameters were selected according to BIKE design principles with the max-
imum error weight t reduced to prevent any inadvertent increase in decoding
failures. Initial selected parameters are as follows: (r, w, t, λ) = (523, 30, 18, 20).
Later we include 389 ≤ r ≤ 827 for prime r such that xr − 1 has only two
irreducible factors modulo 2.

We use the Black-Grey-Flip (BGF) decoder in all experiments. We used the
original threshold selection function, defined in section 2.5.1 of the BIKE v1.0
specification [2], to compute the bit-flip threshold for all instances. The affine
threshold functions in the current version of BIKE are derived from this original
threshold rule. We precomputed the values used in the threshold function and
stored them in a hash table for ease of computation.

Vasseur identifies three classes of weak keys that impede decoding (see
Sect. 2.3 for the definitions of these classes) and describes an algorithm for filter-
ing out weak keys [22, Algorithm 15.3]. We implement this algorithm and use it
to reject weak keys. The definition of weak key depends on a parameter T , which
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Vasseur sets to 10 for BIKE parameters in the cryptographically relevant range
(λ ≥ 128). (Note that smaller values of T mean that more keys are excluded.)

We instead use T = 3 for the weak key threshold, the smallest value of T for
which finding non-weak keys is feasible. This is justified by the following empir-
ical observation: If we set T = 4, the decoding failure rate increases enormously;
for example, an experiment with (r, T ) = (587, 4) observed a DFR on the order
of 2−8, compared to around 2−20 for (r, T ) = (587, 3). Thus, to measure the
DFR for non-weak keys, we must set T = 3.

We use the Boston University Shared Computing Cluster [6], a heterogeneous
Linux-based computing cluster with approximately 21000 cores, to run SageMath
implementations of the BGF decoder [1,9] in all experiments. The experiments
yielded a graph with both the waterfall and error floor regions for our parameter
set in addition to many explicit examples of decoding failures that can be used
for future analysis. All raw data and the decoder used for this paper are available
at [3].

4 Average DFR over Full Message Space

We first compute an average DFR for all suitable block lengths r as follows.
For r in Table 1, we sample a random key H, rejecting any weak keys of types
I, II, III [22], a random vector e of weight t, compute s = HeT , run BGF
decoder on input (H, s), and record the total number of failures. This procedure
is run N times where N varies flexibly (N ∈ {103, 104, 105, 106, 107, 108}) to
ensure there are enough decoding failures at each r for robust statistical analysis.
In the waterfall region, fewer decoding trials were needed to get a statistically
adequate number of decoding failures. As r increased, the number of trials needed
increased. For r > 587, decoding failures were exceptionally sparse. Since these
computations get quite expensive and the log-DFR rate was decreasing only
linearly for r > 587, we chose not to continue increasing the number of trials.
The error vectors tested in the DFR experiment all had weight 18. The results
of this experiment are displayed in Table 1 and plotted with best fit curves in
Fig. 1.

We define a decoding failure as any instance where, on input (H, s), where s
is of the form s = HeT , the syndrome decoder output e′ is such that He′T �= s
or e′ �= e. The experiment was also designed to record any decoding instances
where He′T = s and e′ �= e, but none were discovered.

5 DFR on At,�(S) Sets

Vasseur identified and studied the influence of the proximity of error vectors to
any S ∈ {C,N , 2N}, described in Sect. 2.3, on the DFR [22]. To quantify how
close certain error vectors are to such a set S ∈ {C,N , 2N}, Vasseur introduces
the set

At,�(S) = {v ∈ F
2r
2 : |v � c| = � for some c ∈ S},
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Table 1. Decoding failure rates for r-values such that 389 ≤ r ≤ 827, r is prime, and
xr − 1 has only two irreducible factors modulo 2. The data was computed using the
parameters and methods described above.

r Decoding failures Decoding trials log2 (DFR)

389 939 103 −0.09

419 680 103 −0.56

421 652 103 −0.62

443 3289 104 −1.60

461 1172 104 −3.09

467 850 104 −3.56

491 1524 105 −6.04

509 380 105 −8.04

523 946 106 −10.05

541 164 106 −12.57

547 70 106 −13.80

557 177 107 −15.79

563 108 107 −16.50

587 128 108 −19.58

613 61 108 −20.64

619 60 108 −20.67

653 37 108 −21.37

659 35 108 −21.45

661 37 108 −21.37

677 24 108 −21.99

701 20 108 −22.25

757 8 108 −23.58

827 7 108 −23.77

where t is the error vector weight and � is the number of overlaps with an element
of S. To convert � to a distance, for v ∈ At,�(S) we define

δ(v) = |c| + t − 2�

where c is a vector in S with |v�c| = �. For δ low (equivalently, � high), decoding
failures are extremely common; see Fig. 2 for evidence at the 20-bit security level.

It is natural to consider the extent to which At,�(S) for some � and some
S ∈ {C,N , 2N} captures vectors which cause decoding failures. Our simulations
indicate that it is extremely unlikely for a typical decoding failure vector to be
in At,�(S) for any S with a high �. We define the max overlap of a decoding
failure vector v with a At,�(S) set for fixed S to be the largest value of � for
which v ∈ At,�(S). Using experimental data from r = 587, N = 108 we recorded
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Fig. 1. Decoding failure rates as in Table 1 on a semi-log graph, with a quadratic best
fit (blue) in the waterfall region r < 587 and a linear best fit (red) in the error floor
region r ≥ 587. (Color figure online)

128 total decoding failures and stored the 128 random error vectors that led to
decoding failure. The relationship between these decoding failure vectors and
the sets S is shown below; see Fig. 3a. We also repeated experiments for r = 613
and r = 619 with N = 108, recording 61 and 60 decoding failures, respectively.
See Figs. 4 and 5 for this data.

Although the maximum value of � is t = 18, the recorded values of � never
exceed 10. In fact, cases of � = 10 are quite rare. The values of � recorded in
experiments with vectors involved in decoding failures are greater than those
of randomly sampled vectors, but it is expected that near-codewords and code-
words of low weight overwhelmingly influence decoding failures in the error floor
region [11]. From our results, it appears that only a minority of the error vectors
producing a decoding failure are unusually close to a near-codeword or codeword
of low weight. More analysis is needed to assess the relationships between the
special sets S and decoding failures.

Notice that vectors close to a set S also have low syndrome weight; see Fig. 6.
Moreover, as � decreases, the syndrome weights approach the average.

From this, we are motivated to analyze to what extent syndrome weight
predicts decoding failures.
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Fig. 2. 20-bit security DFR versus δ for near-codeword sets C, N , 2N for r = 523

6 Distribution of Syndrome Weight

We investigate the syndrome weights of error vectors causing decoding failures
and compare them with those of generic vectors.

Figure 7 and Fig. 8 are obtained by generating 103 instances of non-weak
parity check matrices H, random error vectors e, and then we compute the
average weight of their syndromes s = HeT . For the ones causing decoding
failures, we extract the information from our DFR computations containing the
corresponding parity check matrices and error vectors and then we compute the
average weight of their syndromes.

We observe that the syndrome weights of generic vectors tend to follow a nor-
mal distribution while the error vectors causing decoding failures have syndrome
weights that are more concentrated around the mean, which we hypothesise to
be lower than that of the generic vectors; see Fig. 8 for the case r = 587, where
we compare the syndrome weights of the 128 vectors which caused decoding
failures with the syndrome weights of the 105 randomly generated vectors of the
same weight t = 18.

Figure 8 displays histograms of the syndrome weights of generic vectors and
error vectors causing decoding failures for r = 587. Similarly, for the ten r values
with 509 ≤ r ≤ 653, we use data from the previous DFR computation and an
additional 103 simulations of random error vectors to compare their syndrome
weights. Using this data, we explore whether or not there is convincing evidence
that the syndrome weights of error vectors causing decoding failures are lower
than those of generic vectors. The null hypothesis is that there is no difference
between the two groups in consideration while the alternative hypothesis is that
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Fig. 3. For the 128 vectors v with r = 587, d = 15, t = 18 which caused decoding
failures, we compute the distances from the sets C, N , 2N as measured by the maximum
number of intersections with an element of these sets. Here, � := |v�c| for c ∈ C, N , 2N .
We do the same computation for 128 randomly generated vectors under the same
parameters.

Fig. 4. For the 61 vectors v with r = 613, d = 15, t = 18 which caused decoding failures,
we compute the distances from the sets C, N , 2N as measured by the maximum number
of intersections with an element of these sets. Here, � := |v � c| for c ∈ C, N , 2N . We do
the same computation for 61 randomly generated vectors under the same parameters.

the generic vectors have higher syndrome weights. Both data come from random,
independent sampling and have data sets with more than 30 observations. The
difference in sample means may be modeled using a t-distribution. For each r,
one could compute the point estimates mgeneric − mDF of population difference
μ = μgeneric − μDF and standard errors of the point estimate
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Fig. 5. For the 60 vectors v with r = 619, d = 15, t = 18 which caused decoding failures,
we compute the distances from the sets C, N , 2N as measured by the maximum number
of intersections with an element of these sets. Here, � := |v � c| for c ∈ C, N , 2N . We do
the same computation for 60 randomly generated vectors under the same parameters.

Fig. 6. Syndrome weight of error vectors in At,�(S) as � (the maximum number of
overlaps with an element of the set S) varies, for r = 587, t = 18. Average syndrome
weight for an error vector of weight t = 18 was approximately 180.712, plotted as the
dotted horizontal line.

SE =

√
σ2
generic

Ngeneric
+

σ2
DF

NDF
.

With this information, one could compute the test statistic for this (one-
tailed) test by the formula T = μ−0

SE . Using either a t-table or statistics software,
we can find appropriate degrees of freedom and from there, the p-value, for each
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Fig. 7. Syndrome weights of random vectors with t = 18 (red circles) and vectors
causing decoding failures (blue diamonds). (Color figure online)

Fig. 8. A comparison of syndrome weights for r = 587 between the 128 error vectors
which were found to be involved in decoding failures and 105 random vectors. Vertical
axis is frequency, and horizontal axis is syndrome weight.

r. Our conclusion is that for the sixteen r-values in the range 509 ≤ r ≤ 827, the
p-value is less than the significance value α = 0.01, and therefore we reject the
null hypothesis, i.e., syndrome weights of error vectors causing decoding failures
are lower than those of generic vectors. A general summary of the test statistic
values mgeneric − mDF and the corresponding p-values can be found in Table 2.
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Table 2. Hypothesis test results for 509 ≤ r ≤ 827, with the corresponding test
statistic values and p-values, indicating the vectors causing decoding failures do have
lower syndrome weights than generic vectors for 509 ≤ r ≤ 701, notably a selection of
r-values where the waterfall region meets the error floor in the DFR graph of Fig. 1.

r mgeneric − mDF p

509 9.29 <0.00001

523 8.60 <0.00001

541 9.79 <0.00001

547 9.29 <0.00001

557 6.20 <0.00001

563 8.61 <0.00001

587 6.56 <0.00001

613 10.92 <0.00001

619 8.86 <0.00001

653 15.99 <0.00001

659 11.49 <0.00001

661 9.40 <0.00001

677 14.45 <0.00001

701 17.58 <0.00001

757 16.25 0.00278

827 17.53 0.00002

7 Conclusion

In order to claim IND-CCA2 security with confidence for the proposed param-
eter sets of the BIKE cryptosystem, it is necessary to demonstrate that the
BIKE decoder fails with cryptographically low probability on honestly gener-
ated ciphertexts. Such a low decoding failure rate cannot be directly measured,
but is instead estimated by extrapolation from parameters with directly mea-
surable decoding failure rates. In order for this analysis to be accurate, one must
account for error floor behavior.

In our analysis of the BIKE cryptosystem at the 20-bit security level, we find
that vectors which cause decoding failures have lower than average syndrome
weight. However, identifying where these low syndrome weight vectors come
from is still an open question. In [22,23], Vasseur proposes three classes of low
syndrome weight vectors: C, N , and 2N . Vasseur also describes sets At,�(S) of
vectors which are close to the sets S ∈ {C, N , 2N}. In our work, while we do
find that Vasseur’s sets do contain many vectors that cause decoding failures,
we do not find that these classes of vectors are responsible for the bulk of the
decoding failures.

It therefore remains for future work to identify further classes of error vec-
tors that might account for the observed decoding failures in our experiments.
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If these can be identified it may be possible to predict error floor behavior for
larger parameters, and thereby identify parameter sets that have a sufficiently
low decoding failure rate to be used for IND-CCA2 security in the BIKE cryp-
tosystem.
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