
Forward-Secure Revocable Secret
Handshakes from Lattices

Zhiyuan An1,2, Jing Pan3, Yamin Wen2,4, and Fangguo Zhang1,2(B)

1 School of Computer Science and Engineering,
Sun Yat-sen University, Guangzhou 510006, China

anzhy@mail2.sysu.edu.cn, isszhfg@mail.sysu.edu.cn
2 Guangdong Province Key Laboratory of Information Security Technology,

Guangzhou 510006, China
3 State Key Laboratory of Integrated Service Networks, Xidian University,

Xi’an 710071, China
jinglap@aliyun.com

4 School of Statistics and Mathematics, Guangdong University of Finance
and Economics, Guangzhou 510320, China

wenyamin@gdufe.edu.cn

Abstract. Secret handshake (SH), as a fundamental privacy-preserving
primitive, allows members from the same organization to anonymously
authenticate each other. Since its proposal by Balfanz et al., numerous
constructions have been proposed, among which only the ones separately
designed by Zhang et al. over coding and An et al. over lattice are secure
against quantum attacks. However, none of known schemes consider the
issue of key exposure, which is a common threat to cryptosystem imple-
mentations. To guarantee users’ privacy against the key exposure attack,
forward-secure mechanism is believed to be a promising countermeasure,
where secret keys are periodically evolved in such a one-way manner
that, past transactions of users are protected even if a break-in happens.

In this work we formalize the model of forward-secure secret hand-
shake and present the first lattice-based instantiation, where ABB HIBE
is applied to handle key evolution process through regarding time peri-
ods as hierarchies. In particular, dynamic revocability is captured by
upgrading the static verifier-local revocation techniques into updatable
ones. To achieve anonymous handshake with ease, we present a generic
way of transforming zero-knowledge argument systems termed as Fiat-
Shamir with abort, into mutual authentication protocols. Our scheme is
proved secure under the Short Integer Solution (SIS) and Learning With
Errors (LWE) assumptions in the random oracle model.

Keywords: Secret handshake · Lattice cryptography · Forward
security · User revocation · Zero-knowledge

1 Introduction

Secret Handshake, introduced by Balfanz et al. [7], is a fundamental
anonymity primitive, where potential members form different groups and
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. H. Cheon and T. Johansson (Eds.): PQCrypto 2022, LNCS 13512, pp. 453–479, 2022.
https://doi.org/10.1007/978-3-031-17234-2_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-17234-2_21&domain=pdf
https://doi.org/10.1007/978-3-031-17234-2_21

454 Z. An et al.

conduct an interactive protocol to authenticate each other. The mutual hand-
shake is successful if and only if both parties belong to the same organization.
Except for the affiliations, no extra information (including the identities) about
the involved members will be leaked. Therefore, secret handshakes provide all-
sided privacy-preserving property for enrolled members. To date, many practical
applications of secret handshakes in social networks have been explored, such as
online dating, mobile access [30] and e-healthcare [39], etc.

Unfortunately, most online infrastructures offering authentication interface
run in the unprotected environment, where key exposure can be one of the most
fatal damages as it thoroughly destroys the expected security [36]. Forward-
secure mechanism [8,21], is a promising method to address the above problem,
which preserves the validity of users’ past actions. Its core design is a key evolving
technique that proceeds as follows. The lifetime of the related scheme is divided
into discrete periods. Upon each new period advancing, a subsequent secret key
is evolved from the current one via a one-way key update algorithm. Then the
current key is erased from the user’s records. Due to the one-wayness of the
evolving method, the security of past periods’ keys is preserved after a break-in
at some group member. By leveraging this technique, numerous cryptographic
primitives supporting forward security have been constructed, such as digital
signature [1,12,32] and public-key encryption [10,15].

Compared with the cases of ordinary signatures or authentication protocols,
key exposure can be more damaging to SH systems. Once an adversary obtains
the exposed credential of some legitimate user, it can impersonate that user to
authenticate any others from the same group, such that a successful handshake
no longer ensures a valid authentication. Besides, due to the anonymity of inter-
actions, key exposure essentially undermines the whole group as it invalidates all
previously completed handshakes within that group, regardless of who the par-
ticipants were. Moreover, malicious users, who communicated with honest ones
(after authenticating each other) and got their handshakes opened, may defend
themselves by giving away their credentials over the Internet and claiming that
some hacker conducted the behaviors. Albeit the potential threats of credentials
being compromised, no previous SH schemes considered this issue, except the
construction of Wen et al. [38], where users are provided with a series of random
credentials corresponding to discrete time periods. However, this countermea-
sure obviously brings huge storage cost and falls short of being succinct. On the
other side, to conceptually explore the security against key exposure in SH, it
would be better to first formalize the related generic model.

Our Contributions. This work exploits the field of forward-secure secret hand-
shakes. Our contributions are summarized in the following.

• By carefully reforming the desired functionalities and security notations, we
adapt the basic model of SH to the forward-secure setting.

• Under the above model, we present a lattice-based SH scheme. In particular,
– We upgrade the static verifier-local revocation method into time-advanced

updatable one, and prove that the iterative process works exactly in a
zero-knowledge manner.

Forward-Secure Revocable Secret Handshakes from Lattices 455

– We show how to transform a special type of zero-knowledge system into
an anonymous mutual authentication protocol, in a generic manner.

Other Related Works. Following Balfanz et al.’s pioneering work [7], early
SH constructions [17,22,43] employed one-time pseudonyms, which bears huge
storage cost. One more efficient method is to apply reusable credentials. Xu and
Yung [40] first designed a such scheme with weaker unlinkability. Ateniese et
al. [6] proposed an efficient unlinkable secret handshake scheme in the standard
model. Subsequently, Jarecki and Liu [23] proposed a framework for unlinkable
secret handshake scheme that supports both traceability and revocation. From
then on, various SH schemes offering different functionalities were proposed [20,
37,39]. However, these schemes are designed over number-theoretic assumptions
and are vulnerable to quantum attacks. As all we know, only the ones separately
proposed by Zhang et al. over coding theory [42] and An et al. [5] over lattice
are secure against quantum computations.

Note that none of existing SH schemes has formally considered the issue of
key exposure, let alone propose available schemes over post-quantum candidates.

Organization. In Sect. 2, we recall some necessary background and techniques.
Model and security requirements of forward-secure secret handshakes are pro-
vided in Sect. 3. Section 4 describes the supporting zero-knowledge argument
system, which is further modified to support mutual authentication in a hand-
shake. In Sect. 5, we present our lattice-based secret handshake scheme, followed
by the analysis of efficiency and security.

2 Preliminaries

Vectors will be denoted in bold lower-case letters and matrices will be denoted
in bold upper-case letters. Let ‖·‖ and ‖·‖∞ denote the Euclidean norm (�2)
and infinity norm (�∞), respectively. The Euclidean norm of matrix B ∈ R

m×n

with columns (bi)i≤n is denoted by ‖B‖ = maxi≤n‖bi‖. If B is full column-
rank, let ˜B denote its Gram-Schmidt orthogonalization. The concatenation of
matrices A ∈ R

n×m and B ∈ R
n×k is denoted by [A|B]. For positive integer n,

let [n] denote the set {1, . . . , n}. If S is a finite set, denote by U(S) the uniform
distribution over S and by x ←↩ D sampling x according to the distribution D.

2.1 Background on Lattices

Classic Lattices and Gaussian Distribution. Let n,m, q ∈ Z
+ with q > 2.

For A ∈ Z
n×m
q , define two lattices as Λ⊥(A) = {x ∈ Z

m | A ·x = 0 mod q} and
Λu(A) = {x ∈ Z

m | A · x = u mod q}. For a real σ > 0, a vector c ∈ R
n and

n-dimensional lattice L, define the function ρσ,c(x) = exp(−π‖x − c‖2/σ2). The
discrete Gaussian distribution over L with parameter σ and center c is defined
as DL,σ,c(x) =

ρσ,c(x)
ρσ,c(L) (write DL,σ(x) for short when c = 0).

456 Z. An et al.

Lemma 1 ([19,29]). Given integers n, q ≥ 2, and σ ≥ ω(
√
log n). we have

Prx←↩DZn,σ
[‖x‖∞ ≥ σ · log n] is negligible.

Lattice Algorithms. The following facts describe the algorithms for trapdoor
generation, Gaussian sampling, lattice basis randomization and delegations.

Lemma 2 ([4]). Given integers n > 0, m = O(n log n), q ≥ 2, this PPT
algorithm TrapGen(n,m, q) returns a matrix pair (A,TA) satisfies that i) A ∈
Z

n×m
q is within negligible statistical distance from uniform. ii) TA is a basis of

Λ⊥(A) and ‖˜TA‖ ≤ O(
√

n log q).

Lemma 3 ([19]). Given matrices A ∈ Z
n×m, TA ∈ Z

m×m as a basis of Λ⊥(A),
vector u ∈ Z

n
q and gaussian parameter σ ≥ ω(

√
log n)·‖˜TA‖, this PPT algorithm

SamplePre(A,TA,u, σ) returns a vector v ∈ Λu(A) sampled from a distribution
statistically close to DΛu(A),σ.

Lemma 4 ([16]). Given matrix TA be a basis of lattice Λ⊥(A) and gaussian
parameter σ ≥ ‖˜TA‖ · ω√

log n, this PPT algorithm RandBasis(TA, σ) outputs a
new a basis T′

A of Λ⊥(A) such that ‖T′
A‖ ≤ σ · √m and the distribution of T′

A

does not depend on TA up to a statistical distance.

Besides, the following depicts that lattice basis can be efficiently delegated
and simulated, which will be used in the user key update and security proof.

Lemma 5 ([2,16]). Set σR =
√

n log q · ω(
√
logm), let Dm×m denote the dis-

tribution of matrices in Z
m×m defined as (DZm,σR

)m conditioned on the sampled
matrix being “Zq-invertible”. Given matrices A ∈ Z

n×m, TA ∈ Z
m×m as a basis

of Λ⊥(A), R ∈ Z
m×m
q as a product of � matrices sampled from Dm×m. Then:

1. Let A′ ∈ Z
n×m′

be any matrix containing A as a submatrix. This deter-
ministic polynomial-time algorithm ExtBasis(TA,A′) outputs a basis TA′ of
Λ⊥(A′) with ‖ ˜TA′‖ = ‖˜TA‖.

2. This PPT algorithm SampleR(1m) outputs a matrix R ∈ Z
m×m from a dis-

tribution that is statistically close to Dm×m.
3. Let Gaussian parameter σ ≥ ‖˜TA‖·(σR

√
mω(log1/2 m))�·ω(logm). This PPT

algorithm BasisDel(A,R,TA, σ) outputs a basis TB of Λ⊥(AR−1) distributed
statistically close to the distribution RandBasis(T, σ), where T is an arbitrary
basis of Λ⊥(AR−1) satisfying ‖˜T‖ < σ/ω(

√
logm).

4. This PPT algorithm SampleRwithBasis(A) outputs a matrix R sampled from a
distribution statistically close to Dm×m and a basis TB of Λ⊥(AR−1) having
‖˜TB‖ ≤ σR/ω(

√
logm).

Computational Lattice Problems. We recall the definitions and hardness
results of SIS, ISIS and LWE, on which the security of our scheme provably relies.

Forward-Secure Revocable Secret Handshakes from Lattices 457

Definition 1 ([3,19]). Given parameters m, q, β the functions of n, uniformly
random vector u ∈ Z

n
q and matrix A ∈ Z

n×m
q , SISn,m,q,β (resp., ISISn,m,q,β)

demands to find a non-zero vector x ∈ Λ⊥(A) (resp., Λu(A)) such that ‖x‖ ≤ β.

For any q ≥ β · ω(
√

n log n), hardness of SISn,m,q,β and ISISn,m,q,β is given by a
worst-case to average-case reduction from SIVPγ for some γ = β · ˜O(

√
nm).

Definition 2 ([35]). Let n,m ≥ 1, q ≥ 2, and Let χ be a probability distribution
over Z. For s ∈ Z

n
q , let As,χ be the distribution obtained by sampling a $← Z

n
q

and e ←↩ χ, and outputting the pair (a,a� · s+ e) ∈ Z
n
q ×Zq. Decision-LWEn,q,χ

problem is to distinguish m samples from As,χ (let s ← U(Zn
q)) and m sam-

ples chosen according to the uniform distribution over Z
n
q ×Zq. Search-LWEn,q,χ

problem is to find the uniformly random s given m samples from As,χ.

For prime power q, β ≥ √
nO(log n), γ = ˜O(nq/β), and a β-bounded distribution

χ, decision-LWEn,q,χ problem is as least as hard as SIVPγ . Also, decision-LWE
is proved to be equivalent to search-LWE up to some polynomial increase of the
sample number m (see [33]). In this work, for a discrete Gaussian distribution χ
(i.e., χ = DZm,σ), we write decision-LWEn,q,χ as LWEn,q,σ for short.

2.2 Efficient Signature Scheme from Lattices

Libert et al. in [24] proposed a signature scheme (extended from the Böhl et
al.’s signature [9]) with efficient protocols, of which a variant will serve for
the joining phase in our scheme. The scheme utilizes the following param-
eters: security parameter λ; integers � = poly(λ), n = O(λ), q = ˜O(n4)
and m = 2n�log q	; Gaussian parameter σ = Ω(

√
n log q); public key pk :=

(G,G0,G1,D,D0,D1,u) and private key sk := TG, where (G,TG) ←
TrapGen(n,m, q), D ←↩ U(Zn×m/2

q), Gi,Di ←↩ U(Zn×m
q) for i ∈ {0, 1} and

u ←↩ U(Zn
q).

To make a signature on m ∈ {0, 1}m, one first chooses i ←↩ [2�] and builds the
encoding matrix Gi = [G|G0 + iG1] with its delegated basis Ti, then computes
the chameleon hash of m as cM = D0 · r + D1 · m with vector r ←↩ DZm,σ,
which is used to define uM = u +D · vdecn,q−1(cM). The resulted signature is
sig = (i,d, r) where d ∈ Z

2m
q is a short vector in DΛuM (Gi),σ. The verification

step is conducted via checking if Gi · d = u + D · vdecn,q−1(D0 · r + D1 · m),
‖d‖ < σ

√
2m and ‖r‖ < σ

√
m. It was proved in [24] that the signature above is

secure under chosen-message attacks under the SIS assumption.

2.3 Zero-Knowledge Argument Systems

In a zero-knowledge argument of knowledge (ZKAoK) system [13], a prover proves
the possession of some witness for an NP relation to a verifier, without revealing
any additional information. Generally, a secure ZKAoK must satisfy 3 require-
ments: completeness, proof of knowledge and (honest verifier) zero knowledge.

458 Z. An et al.

Yang et al. [41] have proposed an efficient lattice-based ZKAoK for relation:

R = {(M ,y,L), (x) : M · x = y ∧ ∀(i, j, k) ∈ L,x[i] = x[j] · x[k]},

where x ∈ Z
n
q is the secret witness and set L defines quadratic constraints over

x. The protocol can be further transformed into an NIZKAoK consisting of two
algorithms Prove and Verify via Fiat-Shamir heuristic. Prove produces com-
mitments cmt = (cmts, cmtr), a challenge ch = G(cmt, ·) where G is a random
oracle, and some responses rsp related to ch and cmt. Then (cmts, ch, rsp) is
sent to a verifier, on input which Verify recovers reserved commitment cmtr

and computes ch′ by assembling cmt, it finally checks ch′ ?= ch to verify the
ZK proof. In this paper, we will adapt the NIZKAoK to an anonymous mutual
authentication protocol.

Theorem 1. The scheme described in Fig. 2 of [41] is a secure NIZKAoK with
negligible completeness and soundness error, under the hardness assumptions of
SIS and LWE, and has well-designed simulator and knowledge extractor.

2.4 LWE-Based Key Exchange

Derived from the design in [18,34] describes an LWE-based key exchange using
reconciliation mechanism, which yields keys indistinguishable from random. Let
χ be a probability distribution over Zq, integer θ be the number of bits for key
extraction and K is a public matrix. The following protocol is utilized to produce
a communication key in our scheme.

– Alice samples a secret matrix Sa ←↩ χ(Zn×m
q) and a small noise Ea ←↩

χ(Zn×m
q). Then, she computes Ca = K · Sa +Ea and sends it to Bob.

– Receiving Ca, Bob chooses his secret matrix Sb ←↩ χ(Zm×n
q) and com-

putes Cb = K · Sb + Eb, where Eb ←↩ χ(Zm×n
q). Then he samples a noise

E′
b ←↩ χ(Zm×m

q) and sets Vb = Sb ·Ca+E′
b. Such that he extracts the shared

secret key Kb = Extract(Vb), namely, Kb[i, j] = round((2θ/q1) · Vb[i, j])
mod 2θ.. Bob also produces a check matrix M = Check(Vb) as M[i, j] =
floor((2θ+1/q1) · Vb[i, j]) mod 2. Finally, Bob sends (Cb,M) to Alice.

– With (Cb,M), Alice computes Va = Cb ·Sa and obtains Ka = Recon(Va,M)
via Ka[i, j] = round((2θ/q1) · Va[i, j] + 1

4 · (2M[i, j] − 1)) mod 2θ.

Theorem 2. ([18]). The key exchange above produces the same shared key, i.e.,
Ka = Kb, with overwhelming probability via applying suitable parameters.

3 Model of Forward-Secure Secret Handshakes

As its analogues of group signature [26,32], we consider SH schemes having
lifetime divided into discrete time periods, at the beginning of which group
members autonomously update the secret keys for forward security. Let time
period t = 0 be the moment that an SH system is activated, and assume that
a handshake always finishes during the period at which it starts. The syntax of
forward secure secret handshake (FSSH) is formalized as follows.

Forward-Secure Revocable Secret Handshakes from Lattices 459

• Setup. Given a security parameter λ ∈ N, this algorithm, possibly run by a
trusted party or decentralized setting, generates public parameter par.

• CreateGroup. Given par, group authority (GA) invokes this algorithm to create
a group. It publishes the group public key gpk and retains secret key gsk.

• AddMember. This protocol is run between a potential user U and GA to enroll
the user into a chosen group. At time period t, U generates individual key
pair (upk, uskt) and sends upk to GA. If it terminates successfully, GA issues a
group credential cred0 (including a unique group identity ID) to U and adds
cred0 to user’s registration table Reg.

• UpdateU. On input user’s private pair (credt−1, uskt−1) at the beginning of
time period t, this one-way algorithm evolves it into (credt, uskt).

• Handshake. This is a mutual authentication protocol between two participants
(A,B). It outputs 1 and produces a session key for both active parties at the
current time period t if and only if they belong to the same group.

• TraceMember. Given a handshake transcript, GA runs this algorithm to trace
the involved users, or outputs ⊥ to indicate a failure.

• RemoveMember. This algorithm is invoked by GA to revoke an active member.
GA also publishes some updated group information of that group for current
time period, such that users can conduct revocation check.

Based on the considerations in [7,26], we reform the security requirements an
FSSH must satisfy as Completeness, Forward impersonator resistance, Detector
resistance and Backward unlinkability, all of which are defined via the corre-
sponding experiments. Hereafter we use CU and CG to denote the corruption list
of users and groups, respectively.

Completeness demands that Handshake outputs 1 with overwhelming prob-
ability if both participants are active with updated secret keys and belong
to the same group. Moreover, TraceMember can always identify the involved
users. For plain description, we define an auxiliary polynomial-time algorithm
IsActive(ID, t) : outputs 1 if ID is active at current time period t and 0 otherwise.

Definition 3. The completeness is achieved if the following experiment returns
1 with negligible probability.

Experiment: ExpCOM
A (λ)

par ← Setup(λ), (gpk, gsk) ← CreateGroup(par).
{(ID0, cred0‖t, usk0‖t), (ID1, cred1‖t, usk1‖t)} ← AddMember(gpk, gsk, t)
IsActive(IDb, t) = 1 ∧ uskb‖t ← UpdateU(credb, uskb‖t−1) for b ∈ {0, 1}.
If Handshake(ID0, ID1, t) = 0 with transcript T or TraceMember(T) /∈

{ID0,ID1},
then return 1 else retun 0.

Forward impersonator resistance requires that it is infeasible for any PPT
adversary A to impersonate an uncorrupted user, or some corrupted user at the
period preceding the one where she was broken into, even if it can corrupt all the
users and groups (except the chosen group) via accessing the following oracles.

Below are oracles that entitle A to obtain exterior information of an FSSH.

460 Z. An et al.

– KeyP(par) simulates to create a new group and returns gpk to A.
– HS(U, V) simulates a two-party handshake by generating the transcripts dur-

ing the interaction.
– Trace(T) returns the participant of transcript T . Hereafter we require that T

is not generated from the challenging oracles.
– Remove(U) simulates to revoke user U from her G, it also updates the corre-

sponding group information at current period t.

The other oracles below enable A to break into the internal of an FSSH.

– CorU(U,G) is a user corruption oracle. It returns user’s cred and usk of U in
group G to A at period t, then it adds (IDU , G, t) to CU.

– AddU(U,G) enrolls a user U whose key pair is chosen by A to G at period
t. It also adds (IDU , G, t) to CU. Compared with CorU, AddU endows A with
more power to create dummy users or perform injection attacks.

– KeyG(par) returns msk of some group G to A and adds G to CG, meaning
that G is under the control of A.

Now we describe the challenge game of forward impersonator resistance.

– ChalF-IR(ID, G, t) simulates ID of group G and executes a handshake with A
using the updated secret key of ID at period t. It returns 1 if the protocol
outputs 1 and 0 otherwise.

Hereafter we denote the transcript of A during the challenge game as T .

Definition 4. Forward impersonator resistance is achieved if, for any A, the
following experiment returns 1 with negligible probability.
Experiment: ExpF-IR

A (λ)

par ← Setup(λ), CG, CU := ∅.
(ID∗, G∗, t∗) ← AKeyP,HS,Trace,Remove,CorU,AddU,KeyG(¬G∗)(par).
If ChalF-IR(ID∗, G∗, t∗) = 0, return 0. Else if for ID′ ← TraceMember(T) :
(ID′, ·, ·) /∈ CU or t∗ < t for (ID′, ·, t) ∈ CU, return 1. Else return 0.

Detector resistance makes sure that A cannot succeed when he activates a
handshake with an honest and active user to identify her affiliation at the chosen
time period, even if it can corrupt all the users and groups (except the chosen
group). The related challenge game is described as follows.

– ChalDR
b (ID, G, t) chooses a random bit b ∈ {0, 1}. For b = 0, it simulates ID

from G to handshake with A. For b = 1, it simulates an arbitrary (active)
user IDr to handshake with A. Then A guesses the value of b as b∗.

Definition 5. Detector resistance is achieved if, for any A, the absolute differ-
ence of probability of outputting 1 between ExpDR−1

A and ExpDR−0
A is negligible.

Forward-Secure Revocable Secret Handshakes from Lattices 461

Experiment: ExpDR−b
A (λ)

par ← Setup(λ), CG, CU := ∅.
(ID∗, G∗, t∗) ← AKeyP,HS,Trace,Remove,CorU,AddU,KeyG(¬G∗)(par), ChalDR

b (ID∗, G∗, t∗),
holding that for ID′ ← TraceMember(T), (ID′, ·, ·) /∈ CU or IsActive(ID′, t∗) = 0.
Return b∗ ← AKeyP,HS,Trace,Remove,CorU,AddU,KeyG(¬G∗)(par).

Backward Unlinkability ensures that no adversary can distinguish whether
two handshakes (executed during two distinct periods) involve the same honest
user, even if it can corrupt any user and any group (except the chosen pair), and
that user is later revoked. Below is the related challenge game.

– ChalB-Unlinkb (ID0, G0, ID1, G1, t) first picks a random bit b ∈ {0, 1}, then it
successionally simulates ID0 and IDb to handshake with A using evolved secret.
Finally A guesses the value of b as b∗.

Definition 6. Backward unlinkability is achieved if, for any A, the absolute
difference of probability of outputting 1 between ExpB-Unlink−1

A and ExpB-Unlink−0
A

is negligible.
Experiment: ExpB-Unlink−b

A (λ)

par ← Setup(λ), CoG, CoU := ∅.
(ID0, G0, ID1, G1, t) ← AKeyP,HS,Trace,Remove,CorU,AddU,KeyG(¬G∗)(par),
holding that Gi /∈ CG ∧ (IDi, Gi, ·) /∈ CU for i ∈ {0, 1}.
b∗ ← AChalB-Unlink

b (ID0,G0,ID1,G1,t)(par). Return b∗.

Note that if A has corrupted some user of Gi for i ∈ {0, 1}, then he is only
allowed to choose target users within that group, i.e., G0 = G1.

4 The Supporting Zero-Knowledge Layer

In this section, we first construct a system that allows obtaining ZKAoK for
some relations, which are linear equations within users’ credential and secret
key of our FSSH scheme. Then we clarify why ZK argument cannot be directly
used in a handshake procedure, for this reason we further present a generic
way of transforming ZK systems termed as Fiat-Shamir with abort into mutual
authentication protocols, where participants can “handshake” with each other
and negotiate a session key.

Below we extensively use the decomposition techniques in [24,27]. Namely,
for any integer β > 0, let δβ = �log(β + 1)	 and βj = �β+2j−1

2j � ∀j ∈ [1, δβ]. Then
any i ∈ [0, β] can be decomposed as i = hβ · idecβ(i), where hβ = (β1, . . . , βδβ

)
and idecβ is a binary function. Further, [25] build two more functions for decom-
posing vectors and matrices: vdecm,β : [0, β]m → {0, 1}mδβ ; mdecn,m,q : Zm×n

q →
{0, 1}nmδq−1 . (see [25] or the full version of this paper for detailed definitions.)

462 Z. An et al.

4.1 ZKAoK System for Proving a Valid User

Now we describe the system that produces ZK arguments for users’ secret. Given
the same situation as that of Handshake in Sect. 5 with extra setting: Hm,β =
Im ⊗ hβ , ti = tadd + i for i ∈ [t∗], hN = (N1, . . . , N�), a′ = (a

′�
1 . . . a

′�
n)� =

mdecn,m,q(A�), b = vdec2n,q−1(h), w = (w�
1 . . . w�

n)� = mdecn,m,q(A�
t) and

z = vdecn,q−1(D0 · r+D1 · b), the desired system is summarized as follows.

Public Input: Matrices G,G0,G1,D,D0,D1,B,P,W; Vectors u, t,w,k; Inte-
ger t∗. System public parameter par.

Prover’s Witness: Vectors and Matrices which satisfy the following constraints
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

ID = i ∈ {0, 1}�, urtt = q ∈ Z
n
q ,d = (d�

1 d�
2)

� ∈ {−β, β}2m,

r ∈ {−β, β}m,a′ ∈ {0, 1}nmk,b ∈ {0, 1}2nk,v ∈ {−βd, βd}m

e ∈ {−B,B}m, s ∈ {−B,B}n, e1 ∈ {−B,B}m, e2 ∈ {−B,B}�,

A = [a1| . . . |an] ∈ Z
n×m
q ,A�

t = [at,1| . . . |at,n] ∈ Z
m×n
q .

(1)

Prover’s Goal: Convince the verifier in zero-knowledge that the following set
of modular linear equations holds1 (under the same modulus q):

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

F · a − H2n,q−1 · b = 0,

D0 · r + D1 · b − Hn,q−1 · z = 0,

[G|G0|N1G1| . . . |N�G1] · (d1,d2, i[1]d2, . . . , i[�]d2)� − D · z = u,

A (Rt[1]
1)−1 (Rt[2]

2)−1 . . . (Rt[d]
d)−1 − At = 0,

At · v = u,

a1 − Hn,q−1 · q′ = 0,

Q1 · q′ + Q2 · tadd − q0 = 0, qt∗ = q,

∀i ∈ [t∗] : (qi−1 − Hn,q−1 · q′
i−1,Q1 · q′

i−1 + Q2 · ti − qi) = (0,0),
W · q + e = w,

B� · s + e1 = c1,
P� · s + e2 + � q

2� · i = c2.

(2)

Since Set 2 is somewhat complicated, we first design two sub-systems: Π1

arguing that user’s credential is issued via making a signature on her public
key, and her secret key is updated rightly with time advances.; Π2 evidencing
that 1) her updatable revocation token is rightly derived from the public key
and embedded in an LWE function; 2) her identity is correctly encrypted with
ciphertexts (c1, c2). Then we establish Πhs by combining Π1 and Π2.

Build System Π1. This system covers the first five equations of Set 2. Our goal
is to integrate these linear equations into a uniform relation

R1 = {(M1,y1,L1), (x1) : M1 · x1 = y1 ∧ x1 ∈ cons1}.

Let β = (β . . . β)�,βd = (βd . . . βd)� ∈ Z
m
q . First perform the following steps.

1 We refer readers to Sect. 5 for more information of these equations.

Forward-Secure Revocable Secret Handshakes from Lattices 463

1. Set r′ = r + β ∈ [0, 2β]m, d
′�
j = dj + β ∈ [0, 2β]m for each j ∈ {1, 2} and

v′ = v + βd ∈ [0, 2βd]m. Decompose r′,d′
j ,v

′ such that r′ = Hm,2β · r′′,
d′

j = Hm,2β · d′′
j for j ∈ {1, 2} and v′ = Hm,2βd

· v′′, respectively.
2. Set matrices G′ = G ·Hm,2β , G′

0 = G0 ·Hm,2β , D′
0 = D0 ·Hm,2β and G′

j =
NjG1 ·Hm,2β for each j ∈ [�]. Assemble auxiliary matrices G′′

j = −NjG1 · β
for each j ∈ [�], and vectors u′ = u+ (G+G0) · β, u1 = D · β.

3. Denote [G′|G′
0|G′

1| . . . |G′
�] and [G′′

1 | . . . |G′′
�] as Ḡ′ and Ḡ′′, respectively.

4. Denote transpose of product (Rt[d]
1)−1 . . . (Rt[1]

d)−1 as R(t). Define N = R(t) ·
Hm,q−1, and build the extension matrix L1 = Im ⊗ N, L2 = In ⊗ 1m.

5. Let c = (at,1[1]v[1] . . . at,1[m]v[m] . . . at,n[1]v[1] . . . at,n[m]v[m]) ∈ Zmn
q .

Through the above settings, we can change the target part of Set 2 into:
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

F · a − H2n,q−1 · b = 0,

D′
0 · r′′ +D1 · b − Hn,q−1 · z = u1,

Ḡ′ · (d′′
1 ,d′′

2 , i[1]d′′
2 , . . . , i[�]d′′

2)
� + Ḡ′′ · i − D · z = u′,

L1 · [a′
1| . . . |a′

n] − [at,1| . . . |at,n] = 0,

(a�
t,1v . . . a�

t,nv)
� = u,

Hm,2βd
· v′′ − v − βd = 0.

(3)

After the above preparations, we can obtain the desired variables as follows:

1. Denote −Hn,q−1, −H2n,q−1 and Hm,2βd
by H1, H2 and H3, respectively.

Build the public matrix M1 and vector y1 as
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

F H2 0 0 0 0 0 0 . . . 0 0 0 0 0

0 D1 D′
0 H1 0 0 0 0 . . . 0 0 0 0 0

0 0 0 −D Ḡ′′ G′ G′
0 G′

1 . . . G′
� 0 0 0 0

L1 0 0 0 0 0 0 0 . . . 0 Inm 0 0 0

0 0 0 0 0 0 0 0 . . . 0 0 L2 0 0

0 0 0 0 0 0 0 0 . . . 0 0 0 H3 −Im

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

u1

u′

0

u

βd

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

2. The private witness x can be build as

(a
′� b� r

′′� z� i� d
′′�
1 d

′′�
2 i[1]d

′′�
2 . . . i[�]d

′′�
2 a�

t,1 . . . a�
t,n c� v

′′� v�)�.

3. Then set cons1 = L1,1 ∪ L1,2 ∪ L1,3 where

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

L1,1 = {(i, i, i)}, i ∈ [1, (m + 3)nk + � + 3mδ2β];
L1,2 = {((m + 3)nk + � + (3m + �)δ2β + mn + (u − 1)m + v,

(m + 3)nk + � + (3m + �)δ2β + (u − 1)m + v,

(m + 3)nk + � + (3m + �)δ2β + 2mn + 2mδβd
+ v)},

u ∈ [n], v ∈ [m];
L1,3 = {(i, i, i)}, i ∈ [(m + 3)nk + � + (3m + �)δ2β + 2mn + 1,

(m + 3)nk + � + (3m + �)δ2β + 2mn + 2mδβd
],

464 Z. An et al.

where L1,1 indicates that a′,b, r′′, z, i,d′′
1 and d′′

2 are all binary vectors, L1,2

ensures that c[(u − 1)m + v] = at,u[v] · v[v] for (u, v) ∈ [n] × [m], and L1,3

ensures that v′′ is binary.

Build System Π2. This system also covers the rest part by a unified relation

R2 = {(M2,y2,L2), (x2) : M2 · x2 = y2 ∧ x2 ∈ cons2},

which evidences the correct embedding of user’s revocation token and identity.
The concrete construction of Π2 is much like that of Π1 and we also take some
preprocessing.

1. Let b1 = (B . . . B)� ∈ Zm
q , b2 = (B . . . B)� ∈ Zn

q and b3 = (B . . . B)� ∈
Z�

q.
2. Set e′ = e+b1, s′ = s+b2, e′

1 = e1+b1 and e′
2 = e2+b3. Decompose them

via functions vdec and mdec to get vectors e′′, s′′, e′′
1 , e′′

2 .
3. Compute time-binding vectors t′

0 = Q2 · tadd and t′
i = Q2 · ti for i ∈ [t∗], set

t′ = (t
′�
0 t

′�
1 . . . t

′�
t∗)�. Assemble quasi-diagonal matrices L3 and L4 as

L3 =

⎛

⎜

⎝

−H1

. . .
−H1

⎞

⎟

⎠
, L4 =

⎛

⎜

⎝

−Q1

. . .
−Q1

⎞

⎟

⎠
∈ Z

(t∗+1)n×(t∗+1)(nk).

4. Set B′ = B� · Hn,2B , P′ = P� · Hn,2B , I′ = � q
2� · I�, w′ = w + b1, c′

1 =
c1 + b1 +B� · b2 and c′

2 = c2 + b3 +B� · b2.

Use H4 and H5 to denote Hm,2B and H�,2B , respectively. Then we can construct
the target variables as follows:

1. Build the public matrix M2 and vector y2 as
⎛

⎜

⎜

⎜

⎜

⎜

⎝

[I(t∗+1)n|0] L3 0 0 0 0 0

[0|I(t∗+1)n] L4 0 0 0 0 0

[0 . . . W] 0 H4 0 0 0 0

0 . . . 0 0 0 B′ H4 0 0

0 . . . 0 0 0 P′ 0 H5 I′

⎞

⎟

⎟

⎟

⎟

⎟

⎠

,

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0
t′

w′

c′
1

c′
2

⎞

⎟

⎟

⎟

⎟

⎟

⎠

.

2. Set x2 = (a�
1 q�

0 . . . q�
t∗ q

′� q
′�
0 . . . q

′�
t∗−1 e

′′� s
′′� e

′′�
1 e

′′�
2 i)�,

which has length n2 = (t∗ + 2)n + (t∗ + 1)nk + (2m + n + �)δ2B + �.
3. The constriants over x2 is cons2 = {(i, i, i)}, i ∈ [(t∗+2)n+1, (t∗+2)n+(t∗+

1)nk+(2m+n+�)δ2B +�], indicating that q
′
, q

′
0, . . . ,q

′
t∗−1, e

′′,, s
′′
, e

′′
1 , e

′′
2

and i are all binary.

Build System Πhs. We obtain the desired system Πhs by instantiating the
framework in Sect. 2.3 with Π1 and Π2. Namely, for the final relation

Rhs = {(M,y,L), (x) : M · x = y ∧ x ∈ cons},

Forward-Secure Revocable Secret Handshakes from Lattices 465

set M =
(

M1 0
0 M2

)

, x =
(

x1

x2

)

, y =
(

y1

y2

)

and cons = cons1 ∪ cons′2 ∪ cons′3,

where cons′2 is simply performing right shift in cons2 by the size of x1, and
cons′3 = (i, j, j) ensures that vector i in two sub-systems is the same one.

4.2 Transformation to Anonymous Mutual Authentication

Although users in our FSSH scheme can invoke Πhs to obtain ZK proof for their
group secrets, they cannot directly send the proof in Handshake. The reason is
that the other participant receiving that proof can unilaterally verify its validity,
so as to verify the legality of the sender without any further interactions, which
obviously violates the demand for mutual authentication.

To fill the gap, below we show how to adapt the Fiat-Shamir-type framework
[41], by transforming one-side identification into mutual authentication.

• Provehs : On input public parameter and secret witness, produce commit-
ments cmt = (cmts, cmtr) and ch = G(cmt, ·) the same as the original algo-
rithm. Then additionally compute a mixed challenge ˜ch = ch ⊕ C where C
is interim matrix in a KE, and generate rsp using (cmt, ˜ch). Finally output
π = (cmts, ˜ch, rsp).

• Verifyhs : Recover cmtr via rsp and ˜ch as Verify does, then get the original
challenge ch′ = G(cmt, ·) by assembling cmt = (cmts, cmtr), so as to retrieve
the hidden message C = ch′ ⊕ ˜ch.

Here the key point is that a receiver can no longer check the validity of the
proof by checking ch′ ?= ch, since he only receives ˜ch. On the other side, a KE
element can be recovered to negotiate a communication key for both partici-
pants, whose hash value is further dispatched to conduct authentication. This
strategy can be seen as a generic way of transforming ZK systems termed as Fiat-
Shamir with abort into anonymous mutual authentication, for which a concrete
instantiation is detailed in Handshake of our main scheme.

5 FSSH with Revocability from Lattices

In this section, by devising updatable VLR method and adaptively applying the
building blocks recalled in Sect. 2, we present the first FSSH with revocability
from lattice. To clarify the roadmap on how to make all things work, below we
first give some key points of our construction.

When enrolling in a group, potential user first samples her initial pub-
lic/secret key pair (A,T) via Trapdoor and sends A to GA, on which GA produces
an unforgeable signature [24] as her credential. Since users retain the secret keys,
even a malicious GA can not frame a legal user. To enable periodical key updat-
ing, we combine the binary-tree representation technique and ABB HIBE [2].
Namely, each node of the tree is assigned a short-norm invertible matrix Rb

i for
i ∈ [d] and b ∈ {0, 1}, and successive periods are associated with leaves of the

466 Z. An et al.

binary tree in the LTR order. At the joining period t = (t[1], . . . , t[d]), users
extract the corresponding key (trapdoor) Tt at this leaf for A(Rt[d]

d . . .Rt[1]
1)−1

by use of BasisDel. Observe that users can generate possible trapdoors of any
leaves from the root key T. Thus, one trivial method of key update is to precom-
pute all possible Tt and then delete the previous one upon new period advancing.
However, as noted in [28], this will bring key size undesirable dependency on T .
Considering the level structure of a binary-tree, it suffices to only record the keys
for sub-set Evolve(t→T−1) [12,26], which contains exactly one ancestor of each
leaf between [t, T − 1] and has size at most log T . Under this setting, users can
update uskt into uskt+1 (consisting of trapdoors for elements in Evolve(t+1→T−1)),
by repeatedly invoking BasisDel within Evolve(t→T−1).

Now we demonstrate how to achieve revocability by applying VLR mecha-
nism [11], where a revocation token urt is issued to a user and will be published
when she is revoked. Similar to the case of key exposure, it is worthwhile to pro-
tect user’s anonymity of previous behaviors even if her token is revealed (known
as backward unlinkability [31]). We tackle this problem by subtly devising an
updatable VLR algorithm: urtt = Q · (vdec(urtt−1), t)� ∈ Z

n
q . Choosing uni-

formly random Q, this equation is linked to an ISIS instance, so as to achieve
one-wayness of updating. Besides, we embed the time tag into the token to
enable synchronous revocation check, such that expired tokens cannot be reused.
Finally, to bind urtt to user’s secret, we set the initial token as Q · (vdec(a0), t)�,
where a0 is the first column of A. When executing a handshake, users need to
demonstrate in zero-knowledge the possession of a valid secret. This task is done
by reducing the overall linear relations set to system Πhs designed in Sect. 4.1.
In particular, to argue the current urtt and uskt are correctly derived from the
previous ones and are compatible with each other, we unify a time-advancing
chain of iterative equations into a universal matrix-vector formula, which can be
seen as a generic way of proving updatable VLR in zero-knowledge.

Finally, by combining the modified ZK system in Sect. 4.2 with a KE pro-
tocol [18], we obtain the desired algorithm Handshake, where participants can
anonymously authenticate each other and negotiate a session key.

5.1 Description of the Scheme

As in [12,26,28], we imagine a binary tree of depth d = log T where the root
has tag ε. For a node at depth ≤ d with tag w, its left and right children have
tags w0 and w1, respectively. Lifetime of our scheme is divided into T = 2d

discrete periods, such that successive periods t ∈ [T] are associated with leaves
of the binary tree in the LTR order. To derive keys from previous periods, let
Evolve(t→T−1) be the set containing exactly one ancestor of each leaf or the leaf
itself between period t and T − 1. This set can be determined by function sibling
in [12] or algorithm NodeSelect in [26]. Our FSSH scheme is described as follows.

• Setup. Given a security parameter λ ∈ N, this algorithm specifies the follow-
ing:

– Maximum member size of a group N = 2�, time period bound T = 2d.

Forward-Secure Revocable Secret Handshakes from Lattices 467

– Integer n = O(λ), prime modulus q = ˜O(n2) > T , k = �log q	 and
dimension m = 2nk,m = nk. B-bounded distribution χ over Z with
B =

√
nω(log n).

– Discrete Gaussian distribution DZ,σ with parameter σ = Ω(
√

n log q log n).
Let β = �σ · log n	 be the upper bound of samples from DZ,σ.

– Guassian parameters σi = m
3
2 i+ 1

2 · ω(log2k n) for i ∈ [d], and σd =
σd

√
mω(

√
logm). Integer bound βd = �σd · log n	.

– Uniformly random vector u0 ∈ Z
n
q and matrices Rb

i ← SampleR(1m) for
all i ∈ [d] and b ∈ {0, 1}, Q = [Q1|Q2] ∈ Z

n×(nk+d)
q , F ∈ Z

2n×nmk
q ,

K ∈ Z
n1×n1
q1 .

– Matrix dimensions n1 = poly(λ),m1 = O(n1), integer modulus q1 =
2O(n3), and integer θ ≥ 2λ

n1m1
for session key exchange.

– Discrete Gaussian distribution χ1 over Z with deviation σ1 >
√

2n1
π .

– Injective mapping F : Zn1×m1
q1 → [−p, p]t and its inverse F−1, where p, t

are defined in [41]. Random oracle H0 : {0, 1}∗ → Z
m×n
q and collision

resistant hash function H1 : {0, 1}∗ → Z
∗
q .

Outputs global public parameter
par = {N, �, T, d, n, q, k, m, m, χ, B, σ, β, {σk}d

k=1, σd, βd,R0
1,R1

1, . . . ,R0
d,R1

d,

Q,F, n1, m1, q1, θ, χ1, σ1,u0,K, F, F −1,H0,H1,H2}.

• CreateGroup. On input par, GA performs the following to establish a new
group.
1. Run TrapGen(n,m, q) to get a tuple (G,TG), then sample matrices

G0,G1,D0,D1 ← U(Zn×m
q), D ← U(Zn×m

q) and vector u ← U(Zn
q).

2. Run TrapGen(n,m, q) to generate a tracing key pair (B,S) (assume all
groups share the same tracing keys).

3. Set registration table reg = ∅ and secret key gsk = (TG,S); Publish
group public key gpk = (G,G0,G1,D,D0,D1,B,u) and revocation list
RL = ∅.

• AddMember. At time period t, one prospective user Ui and GA interact in the
following protocol to enroll her in group G. Denote t = (t[1], . . . , t[d]) as the
binary representation of t with length d hereunder.
1. Ui runs TrapGen(n,m, q) to generate a pair (Ai,Ti), and builds the

set Evolve(t→T−1). For s ∈ Evolve(t→T−1), if s =⊥, set uski‖t[s] =⊥.
Otherwise, denote ds as the length of s holding ds ≤ d, set matrix
R(s) = (Rs[1]

1)−1 (Rs[2]
2)−1 . . . (Rs[ds]

ds
)−1 ∈ Z

n×m
q , and proceed as follows:

a) If ds = d, compute a short vector vi‖s via SamplePre(AiR(s),

BasisDel(Ai, (R(s))−1,Ti, σd),u, σd). Set uski‖t[s] = vi‖s.
b) Else, evaluate BasisDel(Ai, (R(s))−1,Ti, σds) to obtain a short basis

Ti‖s for Λ⊥
q (AiR(s)), and set uski‖t[s] = Ti‖s.

Now let upki = Ai be the long-term public key and uski‖t = {uski‖t[s] |
s ∈ Evolve(t→T−1)} be the initial secret key of Ui. Finally, Ui samples
a proof vector vi ← SamplePre(Ai,Ti,u0, σd) and sends (Ai,vi) to GA.
She discards the original Ti for forward security.

468 Z. An et al.

2. Upon receiving the request from Ui, GA first checks: (i) whether there is
a collision between Ai and the previous records of users’ public keys; (ii)
whether Ai is valid w.r.t. vi by verifying Aivi = u0 and ‖vi‖∞ ≤ βd.
If either case occurs, GA outputs ⊥ and aborts. Otherwise, GA performs
the following steps to issue a credential to Ui.
a) To generate user’s revocation token, set urti‖t = Q1 ·vdecn,q−1(ai,0)+

Q2 · t ∈ Z
n
q , where ai,0 is the first column of Ai and we assume that

it is a non-zero vector. In the long term, the current time period is
embedded in the corresponding token, such that no adversary can
deploy a previous token to conduct a handshake.

b) Choose a random spare i ∈ {0, 1}� for user’s identity IDi having dec-
imal value i. Then hash Ui’s public key as hi = F ·mdecn,m,q(A�

i) ∈
Z
2n
q .

c) Encode the identity through building the compressed matrix G(i) =
[G|G0 + i ·G1]. Runs ExtBasis(G(i),TG) to get a basis T(i)

G for G(i).
d) Sample ri ←↩ DZm,σ, and compute the chameleon hash of hi as ci =

D0 · ri +D1 · vdec2n,q−1(hi).
e) Invoke SamplePre(G(i),T(i)

G ,u+D ·vdecn,q−1(ci), σ) to obtain a short
vector di ∈ Z

2m satisfying that

G(i)di = u+D · vdecn,q−1(ci) mod q, (4)

then return the credential credi = (upki, IDi, urti‖t,di, ri) to Ui and
adds credi to table reg.

3. Ui verifies that credi is consistent with Eq. 4 and di ∈ [−β, β]2m, ri ∈
[−β, β]m. She aborts if it is not the case. To avoid confusion, use ti,add = t
to denote the time period at which Ui has been registered.

• UpdateU. At the beginning of time period t, member Ui conducts the following
procedures to update her secret pair (credi‖t−1, uski‖t−1).

For revocation token update, compute urti‖t = Q1 · vdecn,q−1(urti‖t−1) +
Q2 · t ∈ Z

n
q . W.L.O.G, we assume that there is no all-zero token or two

identical tokens. (Otherwise, the user would find a solution to SISn,q,
√

nk+d

problem associated with matrix Q, which is of negligible probability.)
For the secret key derivation, first specify the node set Evolve(t→T−1).

Then for s ∈ Evolve(t→T−1), if s =⊥, set uski‖t[s] =⊥, otherwise, there exists
exactly one s′ ∈ Evolve(t−1→T−1) as the prefix of s, i.e., s = s′‖x for some
binary string x. Consider two cases:
1. If s = s′, set uski‖t[s] = uski‖t−1[s′].
2. Else, it holds that x is not empty and uski‖t−1[s′] = Ti‖s′ is a short basis.

Compute matrix R(x) = (Rx[1]
1+ds′)

−1 (Rx[2]
2+ds′)

−1 . . . (Rx[dx]
ds

)−1, then con-
sider the following two sub-cases:
a) If ds = d, generate a short vector vi‖s by running SamplePre(AiR(s′)

R(x),BasisDel(AiR(s′), (R(x))−1,Ti‖s′ , σds),u, σd). Set uski‖t[s] =
vi‖s.

Forward-Secure Revocable Secret Handshakes from Lattices 469

b) If ds < d, run BasisDel(AiR(s′), (R(x))−1,Ti‖s′ , σds) to obtain a short
basis Ti‖s, and set uski‖t[s] = Ti‖s.

Set uski‖t = {uski‖t[s] | s ∈ Evolve(t→T−1)} and erases the previous one.

• Handshake. At time period t, suppose a member A from group Ga with gpka =
(G(a),G(a)

0 ,G(a)
1 ,D(a),D(a)

0 ,D(a)
1 ,B,ua), creda = (upka, IDa, urta‖t,da, ra),

revocation list RLa, uska‖t = {uska‖t[s] | s ∈ Evolvet→T−1}, and another
member B from group Gb having (gpkb, credb,RLb, uskb‖t) of same structure,
aim to execute a handshake. They proceed the following two-round protocol.
1. A → B : (PROOFa)

a) A samples a small private key Sa ←↩ χ1(Zn1×m1
q1) and a small noise

Ea ←↩ χ1(Zn1×m1
q1). Then she computes Ca = K · Sa +Ea ∈ Z

n1×m1
q1 .

b) Parse upka = Aa, A fetches the secret key for string t from uska‖t as
va‖t and assembles the corresponding matrix Aa‖t as

Aa‖t = Aa (Rt[1]
1)−1 (Rt[2]

2)−1 . . . (Rt[d]
d)−1 ∈ Z

n×m
q . (5)

c) A samples ρa
$← {0, 1}n and let Wa = H0(gpka, ρa). Next, she com-

putes wa = Wa · urta‖t + ea mod q where ea ←↩ χm.
d) A samples Pa ← U(Zn×�

q), s(a) ←↩ χn, e(a)1 ←↩ χm, e(a)2 ←↩ χ�, so that
produces the ciphertext (c(a)1 , c(a)2) as

(c(a)1 = B� · s(a) + e(a)1 , c(a)2 = P�
a · s(a) + e(a)2 + �q

2
� · IDa). (6)

e) With public input ppa = (par, gpka, c(a)1 , c(a)2 , ta) where ta = t−ta,add,
A runs Provehs designed in Sect. 4.2 to generate a proof πa for ξa =
(IDa, urta‖t,da, ra,Aa,va‖t, ea, s(a), e(a)1 , e(a)2), satisfying that:

– urta‖t is correctly derived from Aa after ta times of updates.
– (IDa,da, ra) satisfies Eq. 4 with the specific form in AddMember.
– Wa · rta + ea = wa and ‖ea‖∞ ≤ B.
– Eq. 5 holds with Aa‖t · va‖t = ua mod q and ‖va‖t‖∞ ≤ βd.
– Eq. 6 holds with ‖s(a)‖∞ ≤ B, ‖e(a)1 ‖∞ ≤ B, and ‖e(a)2 ‖∞ ≤ B.

Note that the challenge part of πa is modified as ˜cha := cha ⊕F (Ca).
f) A finally sends PROOFa = (ρa,wa,Pa, c(a)1 , c(a)2 , ta, πa) to B.

2. B → A : (PROOFb, Vb)
a) B computes W′

a = H0(gpkb, ρa). Then he checks if there exists an
index i such that e′

i = wa − W′
a · vi and ‖e′

i‖∞ ≤ B for vi ∈ RLb. If
so, B sends A a random pair (PROOFb, Vb) and aborts. Otherwise, he
continues to perform the following steps.

b) B runs Verifyhs(pp
′
a, πa) where pp′

a = (par, gpkb, c
(a)
1 , c(a)2 , ta), to

recover the hidden message of A as C′
a = F−1(ch′

a ⊕ ˜cha).
c) B samples his ephemeral private key Sb ←↩ χ1(Zn1×m1

q1) and a small
noise Eb ←↩ χ1(Zn1×m1

q1). Then B computes Cb = K · Sb +Eb.

470 Z. An et al.

d) Similarly, B computes the LWE function of his revocation token as
wb = Wb · urtb‖t + eb, and encrypts his identity as (c(b)1 , c(b)2).

e) With analogous public input ppb, B runs Provehs to generate an argu-
ment πb for his secret tuple ξb, of which each element meets the similar
constraints as that of ξa. Remark ˜chb := chb ⊕ F (C�

b).
f) Upon obtaining C′

a, B generates the check matrix M and the com-
munication key Kb as depicted in Sect. 2.4. Then B computes the
authentication code Vb = H1(Kb‖Cb‖0).

g) B dispatches PROOFb = (ρb,wb,Pb, c
(b)
1 , c(b)2 , tb, πb,M) and Vb to A.

3. A → B : (Va)
a) A computes W′

b = H0(gpka, ρb) and also checks if there exists an
index j such that e′

j = wb − W′
b · vj and ‖e′

j‖∞ ≤ B for vj ∈ RLa.
If so, A responds a random value Va ← U({0, 1}q1 , outputs 0 and
aborts. Otherwise, A moves to execute the following steps.

b) A also runs Verifyhs(pp
′
b, πb) to retrieve C′�

b = F−1(˜chb ⊕ ch′
b).

c) A extracts the shared key Ka following the steps in Sect. 2.4. Then
A verifies that Vb

?= H1(Ka‖C′
b‖0). If so, A outputs 1 and sends

Va = H(Ka‖Ca‖1) to B. Else, A outputs 0 and responds a random
Va.

d) B verifies Va via a similar equation Va
?= H1(Kb‖C′

a‖1). B outputs 1
if the equation holds, else he outputs 0.

• TraceMember. With transcript (PROOF, V) of a handshake executed at time
period t, TA performs the following steps to trace the involved group member:
1. Parse PROOF = (ρ,w,P, c1, c2, t∗, π) where P = [p1| . . . |p�] ∈ Z

n×�
q . Then

for all i ∈ [�], invoke SamplePre(B,S,pi, σ) to obtain a small vector fi.
Set F = [f1| . . . |f�] such that B · F = P mod q.

2. Decrypt (c1, c2) by computing ID = �c2 − F� · c1/�q/2�� ∈ {0, 1}�.
3. If there exists an elements IDi = ID, return IDi. Otherwise, output ⊥.

• RemoveMember. To remove IDi from group G at the beginning of period t,
GA gets the initial revocation token urti‖ti,add

of IDi from table Reg, and adds
it to public list RL. Since the current token can be computed from the initial
one, for simplicity we assume the elements of RL are all the updated ones.

5.2 Analysis of the Scheme

Completeness. We demonstrate that our scheme is complete with overwhelm-
ing probability if A and B belong to the same group (gpk1 = gpk2) with unre-
voked and updated group secret, and they both follow the specified protocol.

First, by completeness of system Πhs, both A and B can produce a valid
proof (πa, πb) at the first round of a handshake, which means that the receiver
can always rightly recover the original challenge ch′ = ch, such that they can
retrieve the hidden message C′ = C. It follows that Ka �= Kb with negligible
probability from Theorem 2. Therefore, the two members can verify the corre-
sponding equations successfully, i.e., the message authentication code Va (Vb)

Forward-Secure Revocable Secret Handshakes from Lattices 471

is correct. Consequently, the handshake protocol will output 1 for both partici-
pants.

Next, we show that TraceMember always outputs IDa (IDb). Observe that,
the decryption procedure computes c2 − F� · c1 = P� · s + e2 + � q

2� · ID −
F� · (B� · s + e1), which can be further simplified into e2 − F� · e1 + � q

2� · ID,
where ‖e1‖∞ ≤ B, ‖e2‖∞ ≤ B, and ‖fi‖∞ ≤ �σ · logm	 implied by Lemma 1.
Recall that q = ˜O(n2), m = 2n log q and B =

√
nω(log n). Hence we always have

‖e2 − F� · e1‖∞ ≤ B + m · B · �σ · logm	 < q/5, inducing that the ID = IDa.

Security. Now we give security analysis for our scheme, proof of the following
theorem is deferred to Appendix A.

Theorem 3. In the random oracle model, our scheme satisfies the forward
impersonator resistance, detector resistance and backward unlinkability under
the SIS, ISIS and LWE assumptions.

Efficiency. Finally we analyze the complexity of our scheme, with respect to
security parameter λ, two system parameters � = logN and d = log T .

– Group public key contains several matrices and a vector with bit-size ˜O(λ2).
– Group credential consists of 4 vectors and has bit-size ˜O(λ + �).
– User secret key has one vector from SamplePre and at most d trapdoor matri-

ces from BasisDel, all of which have bit-size ˜O(λ2d3).
– The communication cost of a handshake protocol can be viewed as four parts:
(ρ,w,P, t) for revocation check; Modified ZK argument πhs, whose bit-size
largely relies on the length of witness x and can be quantized as ˜O(λ2+d ·λ+
�2); Two IBE ciphertexts and one authentication code. Overall, the dispatched
data has bit-size ˜O(λ2 + (d + �) · λ + �2).

– Dynamic revocation list has bit-size ˜O(N · λ).

Table 1. Comparison between scheme [5] and ours.

Scheme gpk cred usk Handshake cost RL FS

[5] ˜O(λ2) ˜O(� · λ) ˜O(� · λ) ˜O(� · λ) ˜O(N · λ) �
Ours ˜O(λ2) ˜O(λ + �) ˜O(λ2d3) ˜O(λ2 + (d + �) · λ + �2) ˜O(N · λ) �

In Table 1, we give a detailed comparison of our scheme with the only known
lattice-based one [5], in terms of efficiency and functionality. Note that forward
security is achieved with a reasonable increase in communication cost, thanks
to the more efficient ZK system [41]. Besides, our scheme allows dynamic user
enrollment. In other words, users autonomously generate their secret keys rather
than being issued by GA, which prevents malicious GA from framing honest users.

472 Z. An et al.

Acknowledgements. This work is supported by Guangdong Major Project of Basic
and Applied Basic Research (2019B030302008) and the National Natural Science Foun-
dation of China (No. 61972429) and Guangdong Basic and Applied Basic Research
Foundation (No. 2019A1515011797) and the Opening Project of Guangdong Provin-
cial Key Laboratory of Information Security Technology (2020B1212060078-09).

A Deferred Proof of Theorem 3

Proof. We prove Theorem 3 by separately proving that our scheme satisfies the
3 required properties defined in Sect. 3.

Forward Impersonator Resistance. We prove this property by contradiction. Sup-
pose that a PPT adversary A succeeds in experiment ExpF-IR

A with non-negligible
advantage ε. Then we can build a PPT algorithm B that solves SISn,m,q,2

√
mβd

problem with non-negligible probability.
Given an SIS instance A ∈ Z

n×m
q , the goal of B is to find a non-zero vector

z ∈ Z
m
q such that A · z = 0 mod q and ‖z‖ ≤ √

mβ. Towards this goal, B first
prepares a simulated attack environment for A as follows:

– Randomly guess the target user’s identity ID∗ : i∗ ∈ {0, 1}� and forgery time
period t∗ ∈ [0, T − 1].

– Sample random matrices Rt∗[1]
1 ,Rt∗[2]

2 , . . . ,Rt∗[d]
d ∈ Z

m×m from the distribu-
tion Dm×m. Set Ai∗ = A Rt∗[d]

d · · ·Rt∗[2]
2 Rt∗[1]

1 ∈ Z
n×m
q , which is the public

key of target user ID∗.
– Sample v ←↩ DZm,σd

. If ‖v‖∞ > βd, then repeat the sampling. Compute
u∗ = A · v mod q.

– Assemble d matrices Fj = Ai∗ (Rt∗[1]
1)−1 . . . (Rt∗[j]

j)−1 for j ∈ [0, d − 1]
(F0 = Ai∗). For each Fj , invoke SampleRwithBasis(Fj) to obtain a matrix
R1−t∗[j+1]

j+1 , along with a short basis Tj+1 for Λ⊥(F′
j+1) where F′

j+1 =

Fj (R1−t∗[j+1]
j+1)−1. As the simulation in [2], B can use these bases to gen-

erate ID∗’s secret key for every period t′ > t∗.
– Generate other elements of (gpk∗, gsk∗) for group G∗ that ID∗ belongs to.
– Operates as GA in algorithm AddMember to determine the target user’s cre-

dential credID∗‖t∗ at period t∗.

Note that, by construction, the distribution of (par∗, gpk∗, gsk∗, credID∗‖t∗) is sta-
tistically close to that of the real scheme, and the choice of (ID∗, t∗) is hidden
from the adversary.

B responds to A’s queries of {KeyP,Trace,Remove,AddU,KeyG} exactly the
same as the real scheme. For other queries at current period t, B interacts with
A as follows.

• When A queries random oracles H0 or G, B replies with uniformly random
strings and records the inputs/outputs of these queries.

• For queries of oracle CorU, if the requested user has been already corrupted,
i.e., (ID, ·, ·,) ∈ CU, B aborts. Otherwise, consider two cases:

Forward-Secure Revocable Secret Handshakes from Lattices 473

i) The chosen user’s identity is ID∗. If t ≤ t∗, B aborts. Otherwise, for each
node s ∈ Evolvet→T−1, denote the length of s as ds, B first computes
the smallest index js such that 1 ≤ js ≤ ds and s[js] �= t∗[js]. After
setting delegation matrix R(s) = (Rs[js+1]

js+1)−1 · · · (Rs[ds]
ds

)−1, B computes
uski∗‖t[s] via SamplePre(F′

js
R(s),BasisDel(F′

js
, (R(s))−1,Tjs , σds),u, σd)

if ds = d, or via BasisDel(F′
js

, (R(s))−1,Tjs , σds) if ds < d. Next, B builds
uski∗‖t and derives credi∗‖t as in our main scheme. Finally B returns the
secret pair to A and adds (ID∗, G∗, t) to CU. Note that A can not obtain
the target user’s secret until period t∗ + 1.

ii) ID �= ID∗, then B can perfectly answer the query as it stores the ini-
tial secret key (a short basis T) when ID was enrolled in group G. In
other words, B performs as that in UpdateU to derive user’s secret pair
(credID‖t, uskID‖t) and returns it to A. Finally, it adds (ID, G, t) to CU.

• For queries of oracle HS with input ID, if (ID, ·, ·) ∈ CU, B aborts. Otherwise,
if ID �= ID∗ or t > t∗, B acts as in algorithm Handshake using the corresponding
secrets. Else, B has to answer without using the user’s secret key. To do so,
B also performs the same as in Handshake, except that in the second flow
B generates a simulated proof π′ by utilizing the well-designed simulator of
applied NIZKAoK [41].

We claim that A cannot distinguish whether it interacts with a real chal-
lenger or with B. First, the secret pair of ID∗ given to A after period t∗ is
indistinguishable from the real one, due to the facts that

i) the revocation token is uniform over Z
n
q and other elements of credID∗‖t are

produced in the same way as that in AddMember;
ii) the outputs of BasisDel are uniformly random by Lemma 5. Second, the hand-

shake queries make no difference to the view of A, implied by the zero knowl-
edge property of the underlying NIZKAoK.

After A halts with her output PROOF∗ = (ρ∗,w∗,P∗, c∗
1, c

∗
2, t̂, π

∗) at period
t′, B checks if t′ = t∗. If not, the guess of the impersonator period t∗ fails
and B aborts. Else, parse π∗ = (cmt∗s, ˜ch

∗
, rsp∗), since A wins, we argue that by

completeness of our scheme, A must have queried the related random oracle G via
Fiat-Shamir heuristic on input η∗ = (cmt∗, pp∗). Otherwise, guessing correctly
this value occurs only with negligible probability ε′ = (1

2p+1)
t. Therefore, with

probability at least ε − ε′, the tuple η∗ has been an input of one hash query,
denoted as κ∗ ≤ qG , where qG is the total number of queries to G made by A.

Next, B picks κ∗ as the target forking point and replays A polynomial time.
For each new run, B starts with the same random tape and input as in the
original execution, but from the κ∗-th query onwards, B will reply to A with
fresh and independent hash values. Moreover, B always replies as in the original
run for queries of H0. Note that the input of κ∗ hash query must be η∗. The
Forking Lemma in [14] implies that, with probability larger than 1/2, B can
obtain 3 forks involving the same tuple η∗, but with pairwise distinct challenges

˜ch
∗
1,

˜ch
∗
2,

˜ch
∗
3 ∈ [−p, p]t.

474 Z. An et al.

Moreover, by the binding property of used commitment scheme, B can obtain 3
valid tuples from the output of A as

{(ch∗
1, cmt∗, rsp∗

1), (ch
∗
2, cmt∗, rsp∗

2), ch
∗
3, cmt∗, rsp∗

3} ,

by first recovering the unsent cmt∗r and then the original ch∗. Then by proof of
knowledge of system Πhs, B can extract the witness

ξ∗ = (ID′, urt∗ID′‖t∗ ,d∗, r∗,Ai∗ ,vID′‖t∗ , e∗, s∗, e∗
1, e

∗
2),

which satisfies that

– urt∗ID′‖t∗ is correctly derived from Ai∗ after t̂ times of updates.
– Triple (ID′,d∗, r∗) has the specific form as that in algorithm AddMember and

satisfies Eq. 4.
– W∗ · urt∗ID′‖t∗ + e∗ = w∗ and ‖e∗‖∞ ≤ B, where W∗ = H1(gpk∗, ρ∗).

– AID′‖t∗ = Ai∗ (Rt∗[1]
1)−1 (Rt∗[2]

2)−1 . . . (Rt∗[d]
d)−1.

– AID′‖t∗ · vID′‖t∗ = u∗ mod q and ‖vID′‖t∗‖∞ ≤ βd.
– c∗

1 = B
∗� ·s∗+e∗

1, c
∗
2 = P∗� ·s∗+e∗

2+� q
2�·ID′, where ‖s∗‖∞ ≤ B, ‖e∗

1‖∞ ≤ B,
and ‖e∗

2‖∞ ≤ B.

Now consider the following cases:
a. There is no element in table reg that contains ID′. This implies that the pair

(

A∗, (ID′,d∗, r∗)
)

forms a forgery for the SIS-based signature of Sect. 2.2.
b. ID′ �= ID∗, indicating the guess of the impersonator user fails, then B aborts.
c. Conditioned on guessing correctly t∗ and ID∗, we have that AID′‖t∗ · vID′‖t∗ =
A · vID′‖t∗ = u∗ mod q, recall that Ai∗ = A Rt∗[d]

d · · ·Rt∗[2]
2 Rt∗[1]

1 . Besides,
with the fact that A either queried the secret key of ID∗ after period t∗ or never
requested it at all, it is clear that v is not known to A. In this sense, because v
has large min-entropy given u∗, we argue that vID′‖t∗ �= v with overwhelming
probability. Now let z = vID′‖t∗ − v ∈ Z

m
q , it holds that i) z �= 0; ii) A · z = 0

mod q; iii) ‖z‖ ≤ √
m · ‖z‖∞ ≤ √

m · (‖vID′‖t∗‖∞ + ‖v‖∞) ≤ 2
√

mβd. B finally
outputs z, which is a valid solution of the given SISn,m,q,2

√
mβd

instance.

We observe that the probability that B does not abort is at least 1
qG·N ·T , and

conditioned on not aborting, it can solve the SISn,m,q,2
√

mβd
problem with prob-

ability larger than 1/2.

Detector Resistance. We define a sequence of hybrid games Gb
i for i ∈ [0, 5] and

G6, such that game Gb
0, for b ∈ {0, 1}, is the original experiment ExpDR−b

A .
We then prove that any two consecutive games are indistinguishable. Detector
resistance follows from the fact that game G6 is independent of the bit b. For
consistency, use IDb to denote the involved user (IDb = ID∗ or IDr for b = 0 or
1, respectively).

Game Gb
0: This is exactly the original game ExpDR−b

A , where B relies with
random strings for oracle queries of H0 and G.

Forward-Secure Revocable Secret Handshakes from Lattices 475

Game Gb
1: This game is the same as Game Gb

0 with only one modification: at the
challenge query ChalDR

b , we utilize the well-designed simulator in [41], so as to
produce a simulated proof π̃∗, which is computationally indistinguishable from
the real one due to zero knowledge of the underlying system.

Game Gb
2: There is one change in Game Gb

2: for the token embedding step in the
challenge query, compute the LWE function of revocation token using a random
nonce s instead of the real value urtIDb‖t∗ , namely, w∗ = W ·s+e∗ mod q where
s ← U(Zn

q). Recall that the current token urtIDb‖t∗ = Q1 ·vdecn,q−1(urtIDb‖t∗−1)+
Q2 · t∗ is statistically close to uniform over Z

n
q . Thus, Game Gb

2 and Gb
1 are

statistically indistinguishable.

Game Gb
3: This game follows Game Gb

2 with one difference: sample w∗ uniformly
from Z

m
q . Note that in the previous game, W is uniformly random over Z

m×n
q ,

so the pair (W,w∗) is a valid LWEn,q,χ instance and its distribution is computa-
tionally close to the uniform distribution over Zm×n

q ×Z
m
q . Thus, the two games

are computationally indistinguishable.

Game Gb
4: This game conducts the same as that in Game Gb

3, except that it uses
matrix B′ ← U(Zn×m

q) to encrypt users’ identity. From Lemma 2, we know that
the original matrix B is statistically close to uniform over Zn×m

q . Hence, the two
games are statistically indistinguishable.

Game Gb
5: This game encrypts the identity with random samples, namely, it

generates ciphertexts c′
1 = z1 and c′

2 = z2 + � q
2� · IDb where z1 ← U(Zm

q),
z2 ← U(Z�

q). Based on the hardness of decision-LWE, we have that Game Gb
5

and Gb
4 are computationally indistinguishable.

Game G6: This game is the same as Game Gb
5 except that it replaces the cipher-

texts with random vectors, i.e., c′′
1 = z′

1 and c′′
2 = z′

2 where z′
1 ← U(Zm

q),
z′
2 ← U(Z�

q). Since users’ identity is an unknown random string in the view of
A, it is clear that Game G6 and Gb

5 are statistically indistinguishable.

Combine the whole analysis above, we have that

G0
0

c≈ G0
1

s≈ G0
2

c≈ G0
3

s≈ G0
4

c≈ G0
5

s≈ G6, G6
s≈ G1

5

c≈ G1
4

s≈ G1
3

c≈ G1
2

s≈ G1
1

c≈ G1
0,

it then follows that |Pr[ExpDR−1
A = 1] − Pr[ExpDR−0

A = 1]| = negl(λ). This
concludes the proof.

Backward Unlinkability. Experiment ExpB-Unlink−b
A is much similar to ExpDR−b

A ,
in the sense that the challenger also picks one out of two users to simulate a
handshake with A twice, except now the arbitrary user is predetermined as ID1.
Therefore we can also build a sequence of hybrid games to prove this property
as the above constructions, with the only difference that we need to additionally
argue the anonymity of revoked users (attribute “backward”). To this effect, it
suffices to prove that the publicity of revocation tokens at period t′ brings no
advantage for A at period t holding t < t′. We tackle this issue in two steps:

476 Z. An et al.

First we demonstrate that the update algorithm for revocation token is one-
way, i.e., it is impossible to recover a previous token from the current one, the
claimed fact is as follows.

Lemma 6. The update function of revocation token defined in algorithm
UpdateU is one-way, assuming the hardness of ISISn,q,

√
nk problem.

Proof. Let u = urti‖t − Q2 · t ∈ Z
n
q , if one can recover the previous token

urti‖t−1 := v ∈ Z
n
q from the current one, satisfying that urti‖t = Q1 ·

vdecn,q−1(v) + Q2 · t mod q, then one can obtain a non-zero vector z =
vdecn,q−1(v) ∈ {0, 1}nk such that Q1 · z = u mod q. In other words, z is a
valid solution to the ISISn,q,

√
nk problem associated with matrix Q1 and vec-

tor u.

Next we show that A gains no extra advantage after knowing later revocation
tokens (e.g., urti‖t+1). It suffices to prove that A still can not distinguish the LWE

instance (W,w∗) in Game Gb
2 from real random samples.

Suppose that now Game Gb
2 and Gb

3 are distinguishable with a non-negligible
advantage, which directly implies that A solves decision-LWE with non-negligible
probability. It then follows that A can also solve search-LWE with non-negligible
probability and a larger sample number m′ = poly(m), implying A can find the
secret token urti‖t at current period t by use of urti‖t+1. In this way, A will break
the one-way property of the update function stated in Lemma 6.

References

1. Abdalla, M., Reyzin, L.: A new forward-secure digital signature scheme. In:
Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 116–129. Springer,
Heidelberg (2000). https://doi.org/10.1007/3-540-44448-3_10

2. Agrawal, S., Boneh, D., Boyen, X.: Lattice basis delegation in fixed dimension and
shorter-ciphertext hierarchical IBE. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol.
6223, pp. 98–115. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-
14623-7_6

3. Ajtai, M.: Generating hard instances of lattice problems (extended abstract). In:
Miller, G.L. (ed.) STOC 1996, pp. 99–108. ACM (1996). https://doi.org/10.1145/
237814.237838

4. Alwen, J., Peikert, C.: Generating shorter bases for hard random lattices. Theory
Comput. Syst. 48(3), 535–553 (2011). https://doi.org/10.1007/s00224-010-9278-3

5. An, Z., Zhang, Z., Wen, Y., Zhang, F.: Lattice-based secret handshakes
with reusable credentials. In: Gao, D., Li, Q., Guan, X., Liao, X. (eds.) ICICS
2021. LNCS, vol. 12919, pp. 231–248. Springer, Cham (2021). https://doi.org/10.
1007/978-3-030-88052-1_14

6. Ateniese, G., Kirsch, J., Blanton, M.: Secret handshakes with dynamic and
fuzzy matching. In: NDSS 2007. The Internet Society (2007). https://www.ndss-
symposium.org/ndss2007/secret-handshakes-dynamic-and-fuzzy-matching/

7. Balfanz, D., Durfee, G., Shankar, N., Smetters, D.K., Staddon, J., Wong, H.: Secret
handshakes from pairing-based key agreements. In: S&P 2003, pp. 180–196. IEEE
Computer Society (2003). https://doi.org/10.1109/SECPRI.2003.1199336

https://doi.org/10.1007/3-540-44448-3_10
https://doi.org/10.1007/978-3-642-14623-7_6
https://doi.org/10.1007/978-3-642-14623-7_6
https://doi.org/10.1145/237814.237838
https://doi.org/10.1145/237814.237838
https://doi.org/10.1007/s00224-010-9278-3
https://doi.org/10.1007/978-3-030-88052-1_14
https://doi.org/10.1007/978-3-030-88052-1_14
https://www.ndss-symposium.org/ndss2007/secret-handshakes-dynamic-and-fuzzy-matching/
https://www.ndss-symposium.org/ndss2007/secret-handshakes-dynamic-and-fuzzy-matching/
https://doi.org/10.1109/SECPRI.2003.1199336

Forward-Secure Revocable Secret Handshakes from Lattices 477

8. Bellare, M., Miner, S.K.: A forward-secure digital signature scheme. In: Wiener, M.
(ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 431–448. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48405-1_28

9. Böhl, F., Hofheinz, D., Jager, T., Koch, J., Striecks, C.: Confined guessing: new
signatures from standard assumptions. J. Cryptol. 28(1), 176–208 (2015). https://
doi.org/10.1007/s00145-014-9183-z

10. Boneh, D., Boyen, X., Goh, E.-J.: Hierarchical identity based encryption with
constant size ciphertext. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494,
pp. 440–456. Springer, Heidelberg (2005). https://doi.org/10.1007/11426639_26

11. Boneh, D., Shacham, H.: Group signatures with verifier-local revocation. In: Atluri,
V., Pfitzmann, B., McDaniel, P.D. (eds.) CCS 2004, pp. 168–177. ACM (2004).
https://doi.org/10.1145/1030083.1030106

12. Boyen, X., Shacham, H., Shen, E., Waters, B.: Forward-secure signatures with
untrusted update. In: Juels, A., Wright, R.N., di Vimercati, S.D.C. (eds.) CCS
2006, pp. 191–200. ACM (2006). https://doi.org/10.1145/1180405.1180430

13. Brassard, G., Chaum, D., Crépeau, C.: Minimum disclosure proofs of knowl-
edge. J. Comput. Syst. Sci. 37(2), 156–189 (1988). https://doi.org/10.1016/0022-
0000(88)90005-0

14. Brickell, E., Pointcheval, D., Vaudenay, S., Yung, M.: Design validations for discrete
logarithm based signature schemes. In: Imai, H., Zheng, Y. (eds.) PKC 2000. LNCS,
vol. 1751, pp. 276–292. Springer, Heidelberg (2000). https://doi.org/10.1007/978-
3-540-46588-1_19

15. Canetti, R., Halevi, S., Katz, J.: A forward-secure public-key encryption scheme.
In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 255–271. Springer,
Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9_16

16. Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai trees, or how to delegate a
lattice basis. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 523–
552. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_27

17. Castelluccia, C., Jarecki, S., Tsudik, G.: Secret handshakes from CA-oblivious
encryption. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 293–307.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30539-2_21

18. ETSI: ETSI TR 103 570: CYBER; Quantum-Safe Key Exchange, 1.1.1 edn (2017)
19. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new

cryptographic constructions. In: Dwork, C. (ed.) STOC 2008, pp. 197–206. ACM
(2008). https://doi.org/10.1145/1374376.1374407

20. Hou, L., Lai, J., Liu, L.: Secret handshakes with dynamic expressive matching
policy. In: Liu, J.K., Steinfeld, R. (eds.) ACISP 2016. LNCS, vol. 9722, pp. 461–
476. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40253-6_28

21. Itkis, G., Reyzin, L.: Forward-secure signatures with optimal signing and verify-
ing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 332–354. Springer,
Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8_20

22. Jarecki, S., Kim, J., Tsudik, G.: Group secret handshakes or affiliation-hiding
authenticated group key agreement. In: Abe, M. (ed.) CT-RSA 2007. LNCS,
vol. 4377, pp. 287–308. Springer, Heidelberg (2006). https://doi.org/10.1007/
11967668_19

23. Jarecki, S., Liu, X.: Private mutual authentication and conditional oblivious trans-
fer. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 90–107. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-03356-8_6

24. Libert, B., Ling, S., Mouhartem, F., Nguyen, K., Wang, H.: Signature schemes
with efficient protocols and dynamic group signatures from lattice assumptions.

https://doi.org/10.1007/3-540-48405-1_28
https://doi.org/10.1007/s00145-014-9183-z
https://doi.org/10.1007/s00145-014-9183-z
https://doi.org/10.1007/11426639_26
https://doi.org/10.1145/1030083.1030106
https://doi.org/10.1145/1180405.1180430
https://doi.org/10.1016/0022-0000(88)90005-0
https://doi.org/10.1016/0022-0000(88)90005-0
https://doi.org/10.1007/978-3-540-46588-1_19
https://doi.org/10.1007/978-3-540-46588-1_19
https://doi.org/10.1007/3-540-39200-9_16
https://doi.org/10.1007/978-3-642-13190-5_27
https://doi.org/10.1007/978-3-540-30539-2_21
https://doi.org/10.1145/1374376.1374407
https://doi.org/10.1007/978-3-319-40253-6_28
https://doi.org/10.1007/3-540-44647-8_20
https://doi.org/10.1007/11967668_19
https://doi.org/10.1007/11967668_19
https://doi.org/10.1007/978-3-642-03356-8_6

478 Z. An et al.

In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10032, pp. 373–
403. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53890-6_13

25. Libert, B., Ling, S., Mouhartem, F., Nguyen, K., Wang, H.: Zero-knowledge
arguments for matrix-vector relations and lattice-based group encryption. In:
Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10032, pp. 101–131.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53890-6_4

26. Libert, B., Yung, M.: Dynamic fully forward-secure group signatures. In: Feng, D.,
Basin, D.A., Liu, P. (eds.) ASIACCS 2010, pp. 70–81. ACM (2010). https://doi.
org/10.1145/1755688.1755698

27. Ling, S., Nguyen, K., Stehlé, D., Wang, H.: Improved zero-knowledge proofs of
knowledge for the ISIS problem, and applications. In: Kurosawa, K., Hanaoka,
G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 107–124. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-36362-7_8

28. Ling, S., Nguyen, K., Wang, H., Xu, Y.: Forward-secure group signatures from
lattices. In: Ding, J., Steinwandt, R. (eds.) PQCrypto 2019. LNCS, vol. 11505, pp.
44–64. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25510-7_3

29. Micciancio, D., Regev, O.: Worst-case to average-case reductions based on gaus-
sian measures. SIAM J. Comput. 37(1), 267–302 (2007). https://doi.org/10.1137/
S0097539705447360

30. Michalevsky, Y., Nath, S., Liu, J.: Mashable: mobile applications of secret hand-
shakes over bluetooth LE. In: Chen, Y., Gruteser, M., Hu, Y.C., Sundaresan,
K. (eds.) MobiCom 2016, pp. 387–400. ACM (2016). https://doi.org/10.1145/
2973750.2973778

31. Nakanishi, T., Funabiki, N.: Verifier-local revocation group signature schemes with
backward unlinkability from bilinear maps. In: Roy, B. (ed.) ASIACRYPT 2005.
LNCS, vol. 3788, pp. 533–548. Springer, Heidelberg (2005). https://doi.org/10.
1007/11593447_29

32. Nakanishi, T., Hira, Y., Funabiki, N.: Forward-secure group signatures from pair-
ings. In: Shacham, H., Waters, B. (eds.) Pairing 2009. LNCS, vol. 5671, pp. 171–
186. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03298-1_12

33. Peikert, C.: Public-key cryptosystems from the worst-case shortest vector problem:
extended abstract. In: Mitzenmacher, M. (ed.) STOC 2009, pp. 333–342. ACM
(2009). https://doi.org/10.1145/1536414.1536461

34. Peikert, C.: Lattice cryptography for the internet. In: Mosca, M. (ed.) PQCrypto
2014. LNCS, vol. 8772, pp. 197–219. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-11659-4_12

35. Regev, O.: On lattices, learning with errors, random linear codes, and cryptog-
raphy. In: Gabow, H.N., Fagin, R. (eds.) STOC 2005, pp. 84–93. ACM (2005).
https://doi.org/10.1145/1060590.1060603

36. Song, D.X.: Practical forward secure group signature schemes. In: Reiter, M.K.,
Samarati, P. (eds.) CCS 2001, pp. 225–234. ACM (2001). https://doi.org/10.1145/
501983.502015

37. Tian, Y., Li, Y., Zhang, Y., Li, N., Yang, G., Yu, Y.: DSH: deniable secret hand-
shake framework. In: Su, C., Kikuchi, H. (eds.) ISPEC 2018. LNCS, vol. 11125, pp.
341–353. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99807-7_21

38. Wen, Y., Zhang, F.: A new revocable secret handshake scheme with backward
unlinkability. In: Camenisch, J., Lambrinoudakis, C. (eds.) EuroPKI 2010. LNCS,
vol. 6711, pp. 17–30. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-22633-5_2

https://doi.org/10.1007/978-3-662-53890-6_13
https://doi.org/10.1007/978-3-662-53890-6_4
https://doi.org/10.1145/1755688.1755698
https://doi.org/10.1145/1755688.1755698
https://doi.org/10.1007/978-3-642-36362-7_8
https://doi.org/10.1007/978-3-030-25510-7_3
https://doi.org/10.1137/S0097539705447360
https://doi.org/10.1137/S0097539705447360
https://doi.org/10.1145/2973750.2973778
https://doi.org/10.1145/2973750.2973778
https://doi.org/10.1007/11593447_29
https://doi.org/10.1007/11593447_29
https://doi.org/10.1007/978-3-642-03298-1_12
https://doi.org/10.1145/1536414.1536461
https://doi.org/10.1007/978-3-319-11659-4_12
https://doi.org/10.1007/978-3-319-11659-4_12
https://doi.org/10.1145/1060590.1060603
https://doi.org/10.1145/501983.502015
https://doi.org/10.1145/501983.502015
https://doi.org/10.1007/978-3-319-99807-7_21
https://doi.org/10.1007/978-3-642-22633-5_2
https://doi.org/10.1007/978-3-642-22633-5_2

Forward-Secure Revocable Secret Handshakes from Lattices 479

39. Wen, Y., Zhang, F., Wang, H., Gong, Z., Miao, Y., Deng, Y.: A new secret hand-
shake scheme with multi-symptom intersection for mobile healthcare social net-
works. Inf. Sci. 520, 142–154 (2020)

40. Xu, S., Yung, M.: k-anonymous secret handshakes with reusable credentials. In:
Atluri, V., Pfitzmann, B., McDaniel, P.D. (eds.) CCS 2004, pp. 158–167. ACM
(2004). https://doi.org/10.1145/1030083.1030105

41. Yang, R., Au, M.H., Zhang, Z., Xu, Q., Yu, Z., Whyte, W.: Efficient lattice-based
zero-knowledge arguments with standard soundness: construction and applications.
In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11692, pp. 147–
175. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26948-7_6

42. Zhang, Z., Zhang, F., Tian, H.: CSH: a post-quantum secret handshake scheme
from coding theory. In: Chen, L., Li, N., Liang, K., Schneider, S. (eds.) ESORICS
2020. LNCS, vol. 12309, pp. 317–335. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-59013-0_16

43. Zhou, L., Susilo, W., Mu, Y.: Three-round secret handshakes based on ElGamal and
DSA. In: Chen, K., Deng, R., Lai, X., Zhou, J. (eds.) ISPEC 2006. LNCS, vol. 3903,
pp. 332–342. Springer, Heidelberg (2006). https://doi.org/10.1007/11689522_31

https://doi.org/10.1145/1030083.1030105
https://doi.org/10.1007/978-3-030-26948-7_6
https://doi.org/10.1007/978-3-030-59013-0_16
https://doi.org/10.1007/978-3-030-59013-0_16
https://doi.org/10.1007/11689522_31

	Forward-Secure Revocable Secret Handshakes from Lattices
	1 Introduction
	2 Preliminaries
	2.1 Background on Lattices
	2.2 Efficient Signature Scheme from Lattices
	2.3 Zero-Knowledge Argument Systems
	2.4 LWE-Based Key Exchange

	3 Model of Forward-Secure Secret Handshakes
	4 The Supporting Zero-Knowledge Layer
	4.1 ZKAoK System for Proving a Valid User
	4.2 Transformation to Anonymous Mutual Authentication

	5 FSSH with Revocability from Lattices
	5.1 Description of the Scheme
	5.2 Analysis of the Scheme

	A Deferred Proof of Theorem 3
	References

