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Abstract. We cryptanalyse the isogeny-based public key encryption
schemes SHealS and HealS, and the key exchange scheme HealSIDH of
Fouotsa and Petit from Asiacrypt 2021.

1 Introduction

An important problem is to have an efficient and secure static-static key exchange
protocol or public key encryption (PKE) from isogenies. A static-static protocol
enables participants to execute the desired primitives without changing the pub-
lic keys from time to time. This is possible and natural using CSIDH [CLM+18],
which has been used to construct several competitive isogeny-based crypto-
graphic primitives [BKV19,MOT20,EKP20,LGd21,BDK+22] while the coun-
terparts are missing in the SIDH-based constructions. However due to subexpo-
nential attacks on CSIDH based on the Kuperberg algorithm [Kup05,Pei20],
SIDH-related assumptions [JD11] might provide a more robust foundation1.
Hence, an efficient protocol with a robust underlying assumption from isoge-
nies is still an open problem.

The main bottleneck for SIDH-family schemes to achieve the static-static
property boils down to the adaptive GPST attack [GPST16]. The attack enables
malicious Bob to extract Alice’s secret key bit by bit from each handshake and
vice versa. The known countermeasures against the attack are to embed a zero-
knowledge proof [UJ20] or to utilize the k-SIDH method [AJL17]. However,
these countermeasures also inevitably incur multiple parallel isogeny computa-
tions so that the deduced schemes are not practical. To resolve this, Fouotsa and
Petit [FP21] (Asiacrypt’21) presented a variant of SIDH with a novel key vali-
dation mechanism by using the commutativity of the isogeny diagram [Leo20].
The scheme requires fewer isogeny computations than SIKE [ACC+17] with the
prime number doubled in length which still is far more efficient than the other
known abovementioned solutions. In [FP21], it is claimed that the work gives the
static-static key exchange and PKE solutions from isogenies which are immune
to any adaptive attacks.

1 We remark that the confidence of the SIDH-based protocols is still under debate due
to the recent advance given by Castryck and Decru [CD22].
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In this work we refute the claim by presenting an adaptive attack against the
protocols presented in [FP21]. Our attack builds on the flaw in the key validation
mechanism, which is the core result [FP21] to construct SHealS, HealS, and
HealSIDH. The attack can be viewed as a simple tweak of the GPST attack
and, surprisingly, it takes the same number of oracle queries as the GPST attack
against SIDH to adaptively recover a secret key. In other words, the additional
key validation mechanism not only slows down the protocol with respect to the
original SIDH scheme but also gives no advantage to the scheme in preventing
adaptive attacks.

1.1 Concurrent Works

An exciting advance in isogeny cryptanalysis given by Castryck and Decru
[CD22] gives a polynomial time key-recovery attack against the original SIDH
[JD11] by exploiting the torsion points and the known endomorphism ring of
E0. The current version of the attack does not run in polynomial time against
SHealS and HealS where the endomorphism ring is assumed to be unknown, as a
potential patch suggested in [CD22] using a trusted set-up for the public curve.
Whether the Castryck-Decru attack can be extended to the unknown endomor-
phism and run in polynomial time, of course, is worthwhile to be investigated
further before jumping to conclusions.

1.2 Technical Overview

The cornerstone of our attack is the flaw originating in the proof of the main
theorems for the key validation mechanism (Theorems 1 and 2 in [FP21]). The
main idea of the mechanism exploits the nontrivial commutativity of the SIDH
diagram [Leo20] (i.e. φ′

AφB = φ′
BφA when Alice and Bob both behave honestly).

For a given curve E0, a natural number b and a basis {P2, Q2} for E0[4a] from
the public parameter, the key validation mechanism checks the validity of three
following relations:

e4a(Ra, Sa) = e4a(P2, Q2)3
b

,

φ′
A(Ra) = [e1]Rab + [f1]Sab ∈ EAB ,

φ′
A(Sa) = [e2]Rab + [f2]Sab ∈ EAB ,

where φ′
A is an isogeny from EB with kernel 〈[2a]Ra + [α2a]Sa〉 ⊂ EB , {Ra, Sa}

and {Rab, Sab} are bases for EB [4a] and EAB [4a] respectively, (Ra, Sa, Rab, Sab,
EB , EAB) is the input given by Bob, and (α, e1, f1, e2, f2) is Alice’s secret key.
The first equation comes from the relations between isogenies and the Weil
pairing. The last two equations are derived from the commutativity of the SIDH
diagram [Leo20].

These relations will be satisfied when Bob produces the input honestly. In the
security analysis in [FP21], to make another valid input, which is not obtained by
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taking negations of the curve points, is equivalent to solve four linear equations
with four unknown variables (e1, f1, e2, f2) over the ring Z/4a

Z. Furthermore,
Bob’s input also has the restriction that e4a(Ra, Sa) = e4a(P2, Q2)3

b

and φ′
A

might vary with the choice of Ra and Sa. Therefore, it is deduced that Bob,
without knowing Alice’s secret, is not able to produce another valid input, which
is not obtained by taking negations of the original input. In this way, since Bob,
restricted by the mechanism, behaves honestly, the cryptosystem will be secure
based on the hardness assumption.

However, for an adaptive attack, what malicious Bob wants to exploit is
that Alice’s behaviour is dependent on the secret. The proof in [FP21] neglects
the spirit of the adaptive attack where malicious Bob can learn the desired

information adaptively. For example, write M =
(

e1 f1
e2 f2

)
∈ M2×2(Z/4a

Z),u =

(Ra Sa)T and v = (Rab Sab)T . We may therefore abuse the notation by writing

φ′
Au = Mv. As we will show in Sect. 3, by considering matrices P1 =

(
1 0

22a−1 1

)

and P2 = I2, the relation P1M = MP2 holds if and only if e1 = f1 = 0
mod 2. Hence, on input (R′

a, S′
a, R′

ab, S
′
ab, EB , EAB) where (R′

a S′
a)T = P1u

and (R′
ab S′

ab)
T = P2v the key validation mechanism will pass if and only

if φ′
AP1u = MP2v if and only if e1 = f1 = 0 mod 2. Note that because

det(P1) = 1 and (2a 2a)P1 = (c c) for some c ∈ Z2a , the Weil pairing check will
also pass and the isogeny used by the mechanism is still φ′

A. In this way, Bob
learns one bit information of e1 and f1. Moreover, as we will show in Sect. 3,
this is enough to recover the least significant bit of α.

On top of that, Bob can utilize the GPST attack in a “reciprocal” sense to
extract further information further. If the least significant bit of α, denoted by
α0, is 1, the secret α is invertible over the ring Z/2a

Z. By further replacing Ra

with R′
a = Ra+[22a−2]Ra−[22a−2α0]Sa, the validity of the second relation in the

mechanism depends on the second least significant bit of α. However, e4a(R′
a, Sa)

will never satisfy the first relation. To overcome this, Bob will replace Sa with
[α−1

0 22a−2]Ra + [1 − 22a−2]Sa which can be used to extract the second least
significant bit of α−1, because the equality of the third equation depends on
the second least significant bit of α−1. Remark that, the isogeny used in the
key validation mechanism is not necessarily the same φ′

A if the kernel is not
〈[2a]Ra +[α2a]Sa〉. In Sect. 4, we present the attack in details including the case
where α is even.

Structure of this Paper. We begin in Sect. 2 with some preliminary back-
ground on elliptic curves, isogenies, a brief outline the fundamental scheme of
[FP21], together with a few immediate properties of the scheme. We then intro-
duce the method of using commutativity of matrices to extract the least signifi-
cant bit of Alice’s secret in Sect. 3. Based on the least significant bit information,
a tweak of the GPST attack to recursively and adaptively recover Alice’s secret
is then deduced in Sect. 4. A brief summary is made in Sect. 5. We also provide
in Appendix A a generalized attack against mechanism using commutativity of
isogenies.
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2 Preliminaries

Notations. We begin by introducing some notations that will be used through-
out the paper. Let O represent the point at infinity of an elliptic curve, N be the
set of natural numbers, and Z be the set of integers. For n ∈ N, let Zn defined
to be Z/nZ and Fn be the finite field of order n. For convenience, when we
write u ∈ Zn, we consider u is a representative taken from {0, · · · , n − 1} ⊂ Z.
Similarly, when we write u mod n, we consider the unique representative taken
from {0, · · · , n − 1} ⊂ Z. Also, for n ∈ N, en(·, ·) represents the Weil en-pairing.

2.1 Elliptic Curves and Isogenies

An elliptic curve is a rational nonsingular curve of genus one with a distinguished
point at infinity denoted by O. An elliptic curve with O forms an additive
commutative group. Let p be an odd prime number and q be a power of p. If E
is an elliptic curve defined over Fq, then E(Fq), collecting Fq-rational points of
E and O, is a finite subgroup of E. Moreover, E is said to be supersingular if the
endomorphism ring of E is a maximal order in a quaternion algebra. For n ∈ N

coprime with p, the n-torsion subgroup E[n], collecting points of order dividing
n, is isomorphic to Zn ⊕ Zn. The Weil en-pairing en(·, ·) is bilinear, alternating
and nondegenerate.

An isogeny is a morphism between elliptic curves preserving the point at
infinity. The kernel of an isogeny is always finite and defines the isogeny up to
a power of the Frobenius map. We restrict our attention to separable isogenies
(which induce separable extensions of function fields over Fq) between supersin-
gular elliptic curves defined over Fq. Given a finite subgroup S of E, there exists
a unique separable isogeny with kernel S from E to the codomain denoted by
E/S which can be computed via Vélu’s formulas. We refer to [Sil09] to get more
exposed to the elliptic curve theory.

2.2 Brief Outline of HealSIDH Key Exchange

Both SHealS and HealS, introduced in [FP21], are PKE schemes building on the
key exchange scheme HealSIDH with a key validation mechanism. Concretely,
SHealS is a PKE scheme using the padding to encrypt the message where the
padding is the hash value of the shared curve (j-invariant) obtained from Heal-
SIDH. HealS is a variant of SHealS by changing the parameters. In other words,
our adaptive attack on HealSIDH is applicable to both SHealS and HealS.

We briefly introduce HealSIDH with the key validation mechanism as shown
in Fig. 1. The public parameter pp = (E0, P2, Q2, P3, Q3, p, a, b) contains a super-
singular curve E0 defined over Fp2 with an unknown endomorphism ring and
(p, a, b) ∈ N

3 where p is a prime of the form 22a32bf − 1 such that 2a ≈ 3b. The
requirement of the unknown endomorphism prevents the torsion-point attack
[dQKL+21] (and also [CD22]). The sets {P2, Q2}, {P3, Q3} are bases for E0[4a]
and E0[9b] respectively and PA = [2a]P2, QA = [2a]Q2, PB = [3b]P3, and
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QB = [3b]Q3. Alice and Bob sample α and β uniformly at random from Z2a and
Z3b respectively. Also, Alice and Bob compute φA : E0 → EA = E0/〈PA+[α]QA〉
and φB : E0 → EB = E0/〈PB + [β]QB〉, respectively. Alice and Bob com-
pute (φA(P2), φA(Q2), φA(P3), φA(Q3)) and (φB(P3), φB(Q3), φB(P2), φB(Q2))
respectively. Alice’s and Bob’s public keys are (EA, φA(P3), φA(Q3)) and (EB ,
φB(P2), φB(Q2)) respectively. Alice computes the canonical basis {RA, SA} for
EA[4a] and represents φA(P2) = [e1]RA +[f1]SA and φA(Q2) = [e2]RA +[f2]SA.
Bob computes the canonical basis {RB , SB} for EB [9a] and represents φB(P3) =
[g1]RB + [h1]SB and φB(Q3) = [g2]RB + [h2]SB . Alice’s and Bob’s secret keys
are skA = (α, e1, f1, e2, f2) and skB = (β, g1, h1, g2, h2) respectively.

To establish a shared secret with Alice, Bob collects Alice’s public key,
denoted by (EA, Rb, Sb), and computes φ′

B : EA → EAB = EA/〈[3b]Rb +
[β3b]Sb〉 together with (φ′

B(RA), φ′
B(SA), φ′

B(Rb), φ′
B(Sb)). He sends (Rab =

φ′
B(RA), Sab = φ′

B(SA)) to Alice.
Upon receiving (Rab, Sab) from Bob, Alice collects Bob’s public key (EB , Ra,

Sa). She computes φ′
A : EB → EBA = EB/〈[2a]Ra + [α2a]Sa〉 together with

(φ′
A(RB), φ′

A(SB), φ′
A(Ra), φ′

A(Sa)). If e4a(Ra, Sa) 	= e4a(P2, Q2)3
b

, φ′
A(Ra) 	=

[e1]Rab + [f1]Sab, or φ′
A(Sa) 	= [e2]Rab + [f2]Sab, then Alice aborts (the session).

Otherwise, she sends (Rba = φ′
A(RB), Sba = φ′

A(SB)) to Bob and keeps the
j-invariant jBA of EBA as the shared secret.

Similarly, upon receiving (Rba, Sba), Bob aborts if e9b(Rb, Sb) 	=
e9b(P3, Q3)2

a

, φ′
B(Rb) 	= [g1]Rba + [h1]Sba, or φ′

B(Sb) 	= [g2]Rba + [h2]Sba, If
not he takes the j-invariant of EAB as the shared secret.

E0, P2, Q2, PB , QB

EA, φA(P3), φA(Q3)
φA(P2) = [e1]RA + [f1]SA

φA(Q2) = [e2]RA + [f2]SA

Ra = φB(P2), Sa = φB(Q2)
Rab = φ′

B(RA), Sab = φ′
B(SA)

EB , Ra, Sa

EAB , Rab, Sab

EBA, φ′
A(Ra), φ′

A(Sa)

e4a(Ra, Sa) ?= e4a(P2, Q2)3
b

φ′
A(Ra) ?= [e1]Rab + [f1]Sab

φ′
A(Sa) ?= [e2]Rab + [f2]Sab

Honest Bob

Key Validation

φA

φB

φ′
B

φ′
A

Verify

Fig. 1. The outline of HealSIDH with the key validation mechanism. The upper right
box shows the points honest Bob will compute. The lower right box is the key vali-
dation process used by Alice to verify the public key given by Bob. The evaluations
of φA(P2), φA(Q2) are secretly computed by Alice and the coefficients e1, f1, e2, f2 are
included in her secret key.

Remark 1. In the real protocol, instead of giveing Rab, Sab directly, Bob will
give the coordinates of them with respect to the canonical basis of EAB [4a].
Otherwise, the secretly shared curve EAB can be recontructed by an eavesdrop-
per by computing its Montgomery coefficient AEAB

= (y(Rab)2 − x(Rab)3 −
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x(Rab))/x(Rab)2. For simplicity we ignore this detail and pretend Bob does send
the points Rab and Sab to Alice. Hence, for the convenience, we may assume Bob
sends the entire points Rab, Sab to Alice.

We have the following two immediate results.

Proposition 2. If Bob honestly generates Ra = φB(P2), Sa = φB(Q2), Rab =
φ′

B(RA) and Sab = φ′
B(SA), then {Rab, Sab} is a basis of EAB [4a] and {Ra, Sa}

is a basis of EB [4a].

Proof. Since [4a]Ra = φB([4a]P2) = O and [4a]Sa = φB([4a]Q2) = O, both Ra

and Sa are in EB [4a]. Due to e4a(Ra, Sa) = e4a(P2, Q2)3
b

, we know e4a(Ra, Sa)
is a primitive 4a-th root of unity. Similarly, since [4a]Rab = φ′

B([4a]RA) = O
and [4a]Sab = φ′

B([4a]SA) = O, both Rab and Sab are in EAB [4a]. Due to
e4a(Rab, Sab) = e4a(RA, SA)3

b

, we know e4a(Rab, Sab) is a primitive 4a-th root
of unity. Therefore, the result follows.

Lemma 3. Let e1, e2, f1, f2 be defined as above and α ∈ Z2a be Alice’s secret
key i.e. ker(φA) = 〈[2a]P2 + [α2a]Q2〉. If Alice follows the protocol specification,
then e1 + αe2 = f1 + αf2 = 0 mod 2a.

Proof. Given φA(P2) = [e1]RA + [f1]SA and φA(Q2) = [e2]RA + [f2]SA, we
have O = φA([2a]P2 + [α2a]Q2) = [2ae1 + α2ae2]RA + [2af1 + α2af2]SA =
[e1 + αe2]([2a]Ra) + [f1 + αf2]([2a]SA).

Note that {[2a]RA, [2a]SA} is a basis for EA[2a] due to {RA, SA} being a
basis for EA[4a]. Therefore, e1 + αe2 = f1 + αf2 = 0 mod 2a.

Modeling. We consider adaptive attacks against HealSIDH throughout this
paper. Bob, as a malicious adversary, is given access to an oracle OskA → 0/1
taking as input (Ra, Sa, Rab, Sab, EB , EAB) with the relations specified as above.
For simplicity, we denote the oracle by O and omit curves EB , EAB from the
input when they are clear from the context. The oracle O returns 1 if and only
if the following three equations hold:

e4a(Ra, Sa) = e4a(P2, Q2)3
b

, (1)

φ′
A(Ra) = [e1]Rab + [f1]Sab, (2)

φ′
A(Sa) = [e2]Rab + [f2]Sab, (3)

where φ′
A is an isogeny from EB with kernel 〈[2a]Ra + [α2a]Sa〉 ∈ EB .

When Bob follows the protocol specification, the three equations hold natu-
rally. The goal of malicious Bob in our attack is to recover Alice’s core secret α
by adaptively manipulating his input.

The flaw of the claim in [FP21] comes from the main theorem (Theorem
2) for the key validation mechanism. Theorem 2 of [FP21] states that if on
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input (R̃a, S̃a, R̃ab, S̃ab) the oracle returns 1, then there are only 16 forms of
(R̃a, S̃a, R̃ab, S̃ab) as follows:

(R̃a, S̃a, R̃ab, S̃ab) = ([±1]φB(P2), [±1]φB(Q2), [±1]φ′
B(RA), [±1]φ′

B(SA)),

where φB , φ′
B are the isogenies computed by Bob following the protocol specifi-

cation. We will immediately show this is not true in the next section.

3 Parity Recovering

In this section, we consider the least significant bits of e1, e2, f1, f2 and α. We
can recover the least significant bit of α with one oracle query by relying the
relations given by Lemma 3.

Say Bob computes φB, φ′
B honestly. The attack presented in this section and

the next section relies on following facts:

– {P2, Q2}, is a basis for E0[4a].
– {Rab, Sab} = {φ′

B(RA), φ′
B(SA)} is a basis of EAB [4a] (Proposition 2).

– {Ra, Sa} = {φB(P2), φB(Q2)} is a basis of EB [4a] (Proposition 2).
– e1 + αe2 = f1 + αf2 = 0 mod 2a (Lemma 3).

The high-level idea in this section is simple. Assume Alice and Bob follows

the protocol specification. Write M =
(

e1 f1
e2 f2

)
∈ M2×2(Z4a),u = (Ra Sa)T

and v = (Rab Sab)T . Recall that φ′
A(Ra) = [e1]Rab + [f1]Sab, φ′

A(Sa) =
[e2]Rab + [f2]Sab where Ra, Sa, Rab, Sab are honestly generated by Bob. We may
abuse the notation by writing φ′

Au = Mv based on Eqs. (2) and (3). The idea
is to find a pair of particular square matrices P1,P2 ∈ M2×2(Z4a) where P1

is of determinant 1 such that the commutativity of P1M = MP2 is condi-
tioned on the information (parity for instance) to be extracted from M. Let
(R′

a S′
a)T = P1u and (R′

ab S′
ab)

T = P2v. On input (R′
a, S′

a, R′
ab, S

′
ab) the ora-

cle returns 1 if M satisfies the commutativity condition P1M = MP2, because
P1φ

′
Au = φ′

AP1u = P1Mv = MP2v holds. Remark that the determinant 1 of
P1 ensures the new pair (R′

a S′
a) will satisfy the Weil pairing verification Eq.

(1). Futhermore, we require (2a α2a)P1 = (c c) for some c ∈ Z2a so that the
isogeny used by the oracle is still the one with the kernel 〈[2a]Ra + [α2a]Sa〉.

Though there are 24 combinations of the least significant bits of e1, e2, f1, f2.
The following lemma shows that when Alice generates them honestly, there are
only six patterns.

Lemma 4. If Alice produces φA(P2) and φA(Q2) honestly, then there are only
6 possible patterns of parities of e1, e2, f1, f2:

1. f2 = 1 mod 2 and e2 = e1 = f1 = 0 mod 2,
2. e2 = 1 mod 2 and e1 = f1 = f2 = 0 mod 2,
3. e2 = f2 = 1 mod 2 and e1 = f1 = 0 mod 2,
4. f1 = f2 = 1 mod 2 and e1 = e2 = 0 mod 2,
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5. e1 = e2 = 1 mod 2 and f1 = f2 = 0 mod 2,
6. e1 = e2 = f1 = f2 = 1 mod 2.

Proof. Recall e4a(φA(P2), φA(Q2)) = e4a(P2, Q2)2
a

= e4a(RA, SA)e1f2−e2f1 .
Since both {P2, Q2} and {RA, SA} are bases for E0[4a], EA[4a] respectively, both
e4a(P2, Q2) and e4a(RA, SA) are primitive 4a-th roots of unity. Given

e4a(RA, SA)2
a(e1f2−e2f1) = 1,

we have e1f2 − e2f1 = 0 mod 2a.
Furthermore, e2, f2 cannot be both even. Recall φ(Q2) = e2RA + f2SA.

Suppose for the purpose of contradiction that both e2 and f2 are even. Then,
[22a−1]φA(Q2) = O, which implies ker(φA) = 〈P2 + [α]Q2〉 contains [22a−1]Q2.
That is, [k]P2 +[kα]Q2 = [22a−1]Q2 for some k ∈ Z2a , so k = 0. This contradicts
the fact that {P2, Q2} is a basis for E0[4a]. The result follows.

We order the six cases according to the lemma above. The following lemmata
indicate that we can divide the overall cases into two partitions: {Case 1, Case 2,
Case 3} and {Case 4, Case 5, Case 6} with 1 oracle query.

Lemma 5. Assume Bob honestly generates Ra, Sa, Rab, Sab, EB , EAB. On input
(R̃a, S̃a, Rab, Sab), where R̃a = Ra and S̃a = [22a−1]Ra + Sa the oracle returns 1
only for Cases 1 to 3.

Proof. Firstly, the isogeny φ′
A computed by the oracle is the same one used by

Alice in the honest execution. This is because both kernels are the same:

〈[2a]Ra + [α2a]Sa〉 = 〈[2a]R̃a + [α2a]S̃a〉.
Therefore, since Ra, Sa, Rab, Sab are honestly generated, we may assume e4a(Ra,

Sa) = e4a(P2, Q2)3
b

, φ′
A(Ra) = [e1]Rab+[f1]Sab, and φ′

A(Sa) = [e2]Rab+[f2]Sab.
For Eq. (1), since e4a(Ra, Sa) = e4a(P2, Q2)3

b

, we have

e4a(R̃a, S̃a) = e4a(Ra, Sa) = e4a(P2, Q2)3
b

.

Given φ′
A(Ra) = [e1]Rab +[f1]Sab, φ′

A(Sa) = [e2]Rab +[f2]Sab and Rab, Sab ∈
EAB [2a], we have

φ′
A(R̃a) − [e1]Rab − [f1]Sab = O,

φ′
A(S̃a) − [e2]Rab − [f2]Sab = [22a−1e1]Rab + [22a−1f1]Sab.

Recall that {Rab, Sab} is a basis. Therefore, the oracle returns 1 if and only
if [22a−1e1]Rab + [22a−1f1]Sab = O or, equivalently, e1 = f1 = 0 mod 2. The
result follows.

Lemma 6. Assume Bob honestly generates Ra, Sa, Rab, Sab, EB , EAB. On input
(R̃a, S̃a, Rab, Sab), where R̃a = [1 + 22a−1]Ra − [22a−1]Sa and S̃a = [22a−1]Ra +
[1 − 22a−1]Sa the oracle returns 1 only for Cases 4 to 6.
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Proof. Firstly, the isogeny φ′
A computed by the oracle is the same one used by

Alice in the honest execution. This is because both kernels are the same:

〈[2a]Ra + [α2a]Sa〉 = 〈[2a]R̃a + [α2a]S̃a〉.
Therefore, since Ra, Sa, Rab, Sab are honestly generated, we may assume e4a(Ra,

Sa) = e4a(P2, Q2)3
b

, φ′
A(Ra) = [e1]Rab+[f1]Sab, and φ′

A(Sa) = [e2]Rab+[f2]Sab.
For Eq. (1), since e4a(Ra, Sa) = e4a(P2, Q2)3

b

, we have

e4a(R̃a, S̃a)

= e4a([1 + 2a−1]Ra − [2a−1]Sa, [2a−1]Ra + [1 − 2a−1]Sa)

= e4a(Ra, Sa)1−22a−2+22a−2

= e4a(P2, Q2)3
b

.

Given φ′
A(Ra) = [e1]Rab +[f1]Sab, φ′

A(Sa) = [e2]Rab +[f2]Sab and Rab, Sab ∈
EAB [2a], we have

φ′
A(R̃a) − [e1]Rab − [f1]Sab = [22a−1]([e1]Rab + [f1]Sab + [e2]Rab + [f2]Sab),

φ′
A(S̃a) − [e2]Rab − [f2]Sab = [22a−1]([e1]Rab + [f1]Sab + [e2]Rab + [f2]Sab).

Recall that {Rab, Sab} is a basis of EAB [2a]. Therefore, the oracle returns 1
if and only if e1 = e2 mod 2 and f1 = f2 mod 2. The result follows.

The cases {Case 1, Case 2, Case 3} occur if and only if the least significant
bit of α is 0 by Lemma 4. In fact, by choosing particular matrices P1 and P2,
one can precisely recover all parities of e1, e2, f1 and f2. However, by Lemma
4, we do not bother to find them all since the information given in Lemma 5
already is sufficient to recover the least significant bit of α. In the next section,
we will present a variant of the GPST attack. We start with the least significant
bit of α to recover each higher bit with one oracle query for each.

4 Recover the Secret

In this section, we present a variant of the GPST attack to recover the secret α
based on the knowledge extracted from the previous section. The high-level idea
is to use the GPST attack in a “reciprocal” manner. Recall that Bob has two
following equations when he generates the points (Ra, Sa, Rab, Sab) honestly:

φ′
A(Ra) = [e1]Rab + [f1]Sab,

φ′
A(Sa) = [e2]Rab + [f2]Sab,

where ker(φ′
A) = 〈[2a]Ra + [2aα]Sa〉.

To extract the second least significant bit of −α, denoted by α1, based on the
least bit α0, we consider φ′

A(Ra +[22a−2]Ra − [22a−2α0]Sa) = [e1]Rab +[f1]Sab +
([22a−2e1 − 22a−2α0e2]Rab + [22a−2f1 − 22a−2α0f2]Sab) where the purpose of
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[22a−2α0]Sa is to eliminate the lower bit. Note that ([22a−2e1 −22a−2α0e2]Rab +
[22a−2f1 − 22a−2α0f2]Sab) = ([α122a−1][e2]Rab + [α122a−1][f2]Sab) because e1 +
αe2 = f1 + αf2 = 0 mod 2a and {Ra, Sa} is a basis for EB [4a] (Lemma 3 and
Proposition 2). By Lemma 4, since e2 and f2 cannot be both even, at least one
of [22a−1e2]Rab and [22a−1f2]Sab is of order 2. It follows that the equation

φ′
A(Ra + [22a−2]Ra − [22a−2α0]Sa) = [e1]Rab + [f1]Sab

holds if and only if α1 = 0.
Unfortunately, querying the oracle on input (Ra+[22a−2]Ra−[22a−2α0]Sa, Sa,

Rab, Sab) will always return 0 so that Bob cannot obtain any useful information.
This is because e4a(Ra+[22a−2]Ra−[22a−2α0]Sa, Sa) never equals e4a(P2, Q2)3

b

.
In other words, if Bob does so, he will always get ⊥ from Alice. To resolve this,
we use the idea of “reciprocal”. Assume α is invertible modulo 2a. Bob will craft
a point replacing Sa for recovering α−1 mod 2a at the same time. Concretely,
Bob computes α̂ = α−1

0 mod 4. For the same reasoning as above, the equation

φ′
A(α̂[22a−2]Ra + [1 − 22a−2]Sa) = [e2]Rab + [f2]Sab

holds if and only if α−1 = α̂ mod 4 if and only if α1 = 0.
Moreover, e4a(Ra + [22a−2]Ra − [22a−2α0]Sa, α̂[22a−2]Ra + [1 − 22a−2]Sa) =

e4a(Ra, Sa). Therefore, by sending (Ra + [22a−2]Ra − [22a−2α0]Sa, α̂[22a−2]Ra +
[1 − 22a−2]Sa, Rab, Sab) to Alice, Bob can know whether α1 = 0. However, α is
not necessarily odd. We have to use unbalanced powers of 2 on each query and
introduce the concept of quasi-inverse elements.

Remark 7. On input (Ra +[22a−2]Ra − [22a−2α0]Sa, α̂[22a−2]Ra +[1−22a−2]Sa,
Rab, Sab), honest Alice will use the same isogeny φ′

A because 〈[2a](Ra +
[22a−2]Ra − [22a−2α0]Sa) + [α2a](α̂[22a−2]Ra + [1 − 22a−2]Sa)〉 = 〈[2a]Ra +
[α2a]Sa〉. The same kernel will therefore derive the same isogeny φ′

A.

4.1 Quasi-Inverse Element

Definition 8. Let p be a prime and a ∈ N. For an element u ∈ Z, a pa-quasi-
inverse element of u is a non-zero element v ∈ Zpa such that uv = p′ mod pa

where p′ is the maximal power of p dividing u.

When a = 1, every element obviously has a p-quasi-inverse element by taking
either its inverse over Zp or 1. Unlike the inverse over a ring, a quasi-inverse is
not necessarily unique. For instance, 1, 9, 17 and 25 are 25-quasi-inverse elements
of 4 over Z32. Also, if u = 0, any non-zero element can be its quasi-inverse.

A non-zero element being not a unit of Zpa can still have a pa-quasi-inverse
element. However, a non-zero element v in Zpa being a pa-quasi-inverse element
for a non-zero integer in Zpa implies v is a unit of Zpa .

Proposition 9. Let p be a prime and a ∈ N. For u ∈ Z, a non-zero element
over Zpa , any pa-quasi-inverse element of u is a unit of Zpa .
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Proof. Write u = u′pj where u′, j ∈ Z and u′ is not divisible by p and j < a. Say
there exists v ∈ Zpa such that uv = pj mod pa. Since u is a non-zero element
over Zpa , we know a > j so that (u/pj)v = 1 mod pj−a. It follows that v is not
divided by p, so v is a unit of Zpa .

In fact, for any u ∈ Zpa where pj | u and pj+1
� u for some non-negative

integer j, one can always find a pa-quasi-inverse by taking v = (u/pj)−1 ∈
Zpa−j and naturally lifting v to Zpa Therefore, we may let QuasiInv(u, p, i) be an
efficient algorithm outputting a pi-quasi-inverse element of u and restrict it to
output 1 when pi | u.

Remark 10. Looking ahead, in our attack, we need to compute 2i+1-quasi-inverse
elements for either αl or αl + 2i in the i-th iteration, where αl = α mod 2i has
been extracted in the previous iterations. In a more general case where the prime
2 is replaced by q ∈ N, the attack enumerates qi+1-quasi-inverse elements for
αl + tqi for every t ∈ {0, · · · , q − 1}, which corresponds to guess whether the
next digit is t or not. See Appendix A for more details.

4.2 Attack on HealS and SHealS

The algorithm in Fig. 2 together with Theorem 12 provides an iterative approach
for recovering α. It requires one oracle query to recover each bit of α in each
iteration. We need the following lemma to prove the main theorem.

Lemma 11. Let (α, e1, f1, e2, f2) denote Alice’s HealSIDH secret key as Sect.
2.2. For any i ∈ {1, . . . , a−1}, write −α = αl +2iαi (mod 2i+1) where αl ∈ Z2i

and αi ∈ Z2. Let α̂l be a 2i+1-quasi-inverse element of αl such that α̂lαl = 2j

mod 2i+1. Then, αi = 0 if and only if each of the following two equations is
true:

e1 − αle2 = f1 − αlf2 = 0 mod 2i+1 (4)

α̂le1 − 2je2 = α̂lf1 − 2jf2 = 0 mod 2i+1 (5)

Proof. By Lemma 3, we have e1−αle2 = −αe2−αle2 mod 2i+1 and f1−αlf2 =
−αf2 − αlf2 mod 2i+1. By Lemma 4, not both e2 and f2 are divisible by 2.
Therefore, the first equation is zero if and only if αi = 0.

Similarly, by Lemma 3, we have α̂le1−2je2 = α̂lαe2−2je2 = α̂(αl+αi2i)e2−
2je2 = α̂αie22i mod 2i+1. Also, α̂lf1 − 2jf2 = α̂αif22i mod 2i+1. By Lemma
4 and Proposition 9, not both e2α̂ and f2α̂ are divisible by 2. Therefore, the
second equation is zero if and only if αi = 0.

Theorem 12. Assume Alice follows the protocol specification. The algorithm in
Fig. 2 returns α in Alice’s secret key.

Proof. We are going to prove the theorem by induction on i for the i-th bit of
α where i < a. Write −α = αl + 2iαi ∈ Z2i+1 for some i ∈ {1, . . . , a − 1} where
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Algorithm: Recover(pp, skB , α0)
Input: pp public parameter of the protocol, skB the secret key of Bob,

α0 = α mod 2
Given: access to an oracle O(Ra, Sa, Rab, Sab; EB , EAB) 0/1 returns 1 iff

the following equations hold:
e4a(Ra, Sa) = e4a(P2, Q2),
φ′

A(Ra) = [e1]Rab + [f1]Sab,
φ′

A(Sa) = [e2]Rab + [f2]Sab,
where φ′

A is an isogeny from EB with kernel 〈[2a]Ra + [α2a]Sa〉 ∈ EB .
Ensure: Alice’s secret key α

1: Compute (Ra, Sa, Rab, Sab) (φB(P2), φB(Q2), φ′
B(RA), φ′

B(SA)) by follow-
ing the protocol specification using skB .

2: Obtain a from pp.
3: Obtain αl α0.
4: i = 1
5: j =⊥ � j will indicate the maximal power of 2 dividing α.
6: if αl = 1 then j 0
7: while i < a do
8: if αl = 0 then
9: (˜Ra, ˜Sa) ([1 + 22a−1]Ra, [22a−i−1]Ra + [1 − 22a−1]Sa)

10: c O(˜Ra, ˜Sa, Rab, Sab)
11: c 1 − c
12: if c = 0 then j i � Assert 2j is the maximal power of 2 dividing α.
13: else
14: α̂l QuasiInv(αl, 2, i + 1) � α̂l(αl) = 0 or 2j mod 2i+1

15: ˜Ra [1 + 22a−i+j−1]Ra − [αl22a−i+j−1]Sa

16: ˜Sa [α̂l22a−i−1]Ra + [1 − 22a−i+j−1]Sa

17: c O(˜Ra, ˜Sa, Rab, Sab)
18: if c �= 1 then � Assert i-th bit of α is 1.
19: αl αl + 2i

20: return αl

Fig. 2. An algorithm to recover the secret α in skA = (α, e1, f1, e2, f2).

αl ∈ Z2i and αi ∈ Z2 represent the bits that have been recovered and the next
bit to be recovered respectively. Since we have assumed the correctness of the
given least significant bit of α, it suffices to show that given αl the extraction of
αi, the i-th bit of α, is correct in each iteration of the while-loop of Fig. 2.

Firstly, within each query, the isogeny φ′
A computed by the oracle is the same

because the kernels are all identical:
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〈[2a]Ra + [α2a]Sa〉 = 〈[2a]([1 + 22a−1]Ra − [t22a−i−1]Sa)

+ [α2a]([t′22a−i−1]Ra + [1 − 22a−1]Sa)〉
= 〈[2a]([1 + 22a−i+j−1]Ra − [t22a−i+j−1]Sa)

+ [α2a]([t′22a−i−1]Ra + [1 − 22a−i+j−1]Sa)〉,
for any t, t′ ∈ Z2a where i, j ∈ Za. Therefore, since Ra, Sa, Rab, Sab are honestly
generated, we may assume e4a(Ra, Sa) = e4a(P2, Q2)3

b

, φ′
A(Ra) = [e1]Rab +

[f1]Sab, and φ′
A(Sa) = [e2]Rab + [f2]Sab.

Also, every input satisfies Eq. (1). Since e4a(Ra, Sa) = e4a(P2, Q2)3
b

, we have
for any α̂l ∈ Z2a , and i, j ∈ Za,

e4a([1 + 22a−1]Ra − [αl22a−i−1]Sa, [α̂l22a−i−1]Ra + [1 − 22a−1]Sa)

= e4a([1 + 22a−i+j−1]Ra − [αl22a−i+j−1]Sa, [α̂l22a−i−1]Ra + [1 − 22a−i+j−1]Sa)
= e4a(Ra, Sa)

= e4a(P2, Q2)3
b

.

To prove the correctness of the extraction of αi, we claim that Eqs. (2) and
(3) are both satisfied if and only if αi is 1 in the if-loop of αl = 0 or is 0 in the
if-loop of αl 	= 0. We therefore consider these two cases.

Case1: the if-loop of αl = 0. Being in this loop in the i-th iteration means
α = 0 mod 2i. The oracle takes (R̃a, S̃a, Rab, Sab) as input where (R̃a, S̃a) =
([1 + 22a−1]Ra, [22a−i−1]Ra + [1 − 22a−1]Sa). Recall φ′

A(Ra) = [e1]Rab + [f1]Sab,
and φ′

A(Sa) = [e2]Rab + [f2]Sab. For Eq. (2), we have

φ′
A(R̃a) − [e1]Rab − [f1]Sab

= [(1 + 22a−1)e1]Rab + [(1 + 22a−1)f1]Sab − [e1]Rab − [f1]Sab

= [22a−1e1]Rab + [22a−1f1]Sab

= [−α22a−1e2]Rab + [−α22a−1f2]Sab

= O.

That is, Eq. (2) will always hold. Remark the third equation comes from
Lemma 3 and the fact that i is less than a. The fourth equation comes from the
fact that α = 0 mod 2i and i ≥ 1 and {Rab, Sab} is a basis for EAB [4a].

Also, since αl = 0, α̂l is 1 by the specification of QuasiInv. Recall φ′
A(Ra) =

[e1]Rab + [f1]Sab, and φ′
A(Sa) = [e2]Rab + [f2]Sab. For Eq. (3), we have

φ′
A(S̃a) − [e2]Rab − [f2]Sab

= [22a−i−1e1 − 22a−1e2]Rab + [22a−i−1f1 − 22a−1f2]Sab

= [−α22a−i−1e2 − 22a−1e2]Rab + [−α22a−i−1f2 − 22a−1f2]Sab

= [αi22a−1 − 22a−1][e2]Rab + [αi22a−1 − 22a−1][f2]Sab.
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Similarly, the third equation comes from Lemma 3 and the fact that i is
less than a. The fourth equation comes from the fact that α = 0 mod 2i and
{Rab, Sab} is a basis for EAB [4a]. By Lemma 4, e2 and f2 cannot be both even
so that at least one of [22a−1e2]Rab and [22a−1f2]Sab is of order 2. Equation (3)
holds if and only if αi is 1.

Therefore, by combining conditions of Eqs. (1) to (3), in the if-loop of αl = 0,
the oracle outputs c = 1 if and only if αi = 1.

Case2: the if-loop of αl 	= 0. The condition is equivalent to 2j is the maximal
power of 2 dividing α. The oracle takes (R̃a, S̃a, Rab, Sab) as input where (R̃a, S̃a)
= ([1 + 22a−i+j−1]Ra − [αl22a−i+j−1]Sa, [α̂l22a−i−1]Ra + [1 − 22a−i+j−1]Sa).

Recall φ′
A(Ra) = [e1]Rab + [f1]Sab, and φ′

A(Sa) = [e2]Rab + [f2]Sab. For Eq.
(2), we have

φ′
A(R̃a) − [e1]Rab − [f1]Sab

= [(22a−i+j−1)e1 − αl22a−i+j−1e2]Rab + [(22a−i+j−1)f1 − αl22a−i+j−1f2]Sab

Recall that {Rab, Sab} is a basis for EAB [4a] � Z4a × Z4a . By Lemma 11 (Eq.
(4)), we know φ′

A(R̃a) − [e1]Rab − [f1]Sab = O if and only if αi2j = 0 mod 2.
Also, for Eq. (3), we have α̂

φ′
A(S̃a) − [e2]Rab − [f2]Sab

= [α̂l22a−i−1e1 + (−22a−i+j−1)e2]Rab + [α̂l22a−i−1f1 + (−22a−i+j−1)f2]Sab

Recall that {Rab, Sab} is a basis for EAB [4a] � Z4a ×Z4a . By Lemma 11 (Eq.
(5)), we know φ′

A(S̃a) − [e2]Rab − [f2]Sab = O if and only if αi = 0.
Therefore, by combining conditions of Eqs. (1) to (3), in the if-loop of j 	=⊥,

the oracle outputs c = 1 if and only if αi = 0.

Remark 13. It seems that in our attack, both the satisfaction of Eq. (1) and
the identical kernels of φ′

A used by the oracle the proof of Theorem 12 are
derived from the fact that the kernel is of the form 〈[2a]P2 + [2aα]Q2〉. Hence,
one may guess that relaxing the kernel to be 〈[2i]P2 + [2iα]Q2〉 for some i ∈
{0, · · · , a−1} can give a variant secure against the attack we presented. However,
in the appendix, we consider a more generic situation for HealSIDH covering
the concern, and the prime 2 can be replaced by any small natural number q.
The algorithm takes 2a(q − 1) oracle queries to fully recover Alice’s secret key
α ∈ Zq2a .

5 Summary

This work presents an adaptive attack on the isogeny-based key exchange and
PKE schemes in [FP21], which were claimed to have the static-static property
against any adaptive attack. Our attack is based on the subtle flaws in the main
theorems (Theorems 1 and 2) in [FP21] for the key validation mechanism used in
each scheme, which states that Bob can pass the key validation mechanism only
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if his input is correctly formed. We not only show that multiple non-trivial solu-
tions can pass the check but also derive a concrete and efficient adaptive attack
against the static-static proposals by tweaking the GPST attack. Furthermore,
we provide a generalized attack in the appendix on any immediate repairs to the
mechanism exploiting the commutativity of the SIDH evaluations.

Hence, our result points out that having an efficient static-static key exchange
or PKE from a robust isogeny assumption remains an open problem. We look
forward to future work in the community to resolve this problem.

Acknowledgement. This project is supported by the Ministry for Business, Innova-
tion and Employment in New Zealand. We thank Shuichi Katsumata and Federico Pin-
tore (alphabetically ordered) for pointing out errors in the previous version and helpful
comments to improve clarity. Also, we thank anonymous reviewers from PQCrypto2022
for their detailed comments and suggestions.

A A Generalized Attack

This section presents a generalized result. We consider a more generic condi-
tion where Alice uses qn torsion subgroup for some natural numbers n, q to
replace 22a. Furthermore, we do not restrict the secret kernel to be of the
form 〈[qn/2]Pq + [α][qn/2]Qq〉 where {Pq, Qq} is a basis of E0[qn] and α ∈ Zqa .
Instead, we permit α to be drawn arbitrarily from Zqa and the kernel to be
〈[qn−a](Pq + [α]Qq)〉. When n is even and q = 2, taking a = n/2 is the case
considered in Sect. 2.2. The generalization captures any straightforward modifi-
cation of the HealSIDH cryptosystem. The final algorithm takes a(q − 1) oracle
queries to fully recover Alice’s secret key α ∈ Zqa . Therefore, as long as q is small,
the HealSIDH cryptosystem and the key validation algorithm are vulnerable to
our new variant of GPST attack.

To be more specific, the public parameter pp = (E0, Pq, Qq, Pq′ , Qq′ , p, q, q′)
where q, q′ ∈ N are coprime, p = fqnq′n′ − 1 is prime, qn ≈ q′n′

, and {Pq, Qq}
and {Pq′ , Qq′} are bases for E0[qn] and E0[q′n′

], resp. Alice samples a secret α
uniformly at random from Zqa , computes φA : E0 → EA = E0/〈[qn−a](Pq +
[α]Qq)〉 and representing φA(Pq) = [e1]RA + [f1]SA and φA(Qq) = [e2]RA +
[f2]SA where {RA, SA} is a canonical basis for EA[qa]. Alice’s secret key is skA =
(α, e1, f1, e2, f2) and public key is (EA, φA(Pq′), φA(Qq′)).

The high-level idea of the generalized attack is similar. Different from the
“reciprocal” GPST attack presented in Sect. 4, one can view the generalized
attack as the “triple” GPTS attack. Similarly, we use the equalities of Eq. (2) and
Eq. (3) to extract the information of α and a quasi-inverse of α simultaneously.
Additionally, on input (R′

a, S′
a, R′

ab, S
′
ab), the oracle computes the isogeny with

kernel 〈R′
a + αS′

a〉. We will use the equality between 〈R′
a + αS′

a〉 and 〈φB(Pq) +
αφB(Qq)〉 to extract α again (see Lemma 18). We will show three equalities hold
if and only if the extraction of a digit of α is correct.

Heuristic Assumption. We assume that the oracle will return 0 with an
overwhelming probability if the input does not induce the same kernel as the
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honest input. Since we do not restrict the secret kernel to be of the form
〈[qn/2]Pq + [α][qn/2]Qq〉, the isogeny used by the oracle might therefore vary
with each query2. We thereby require this assumption. Given the randomness of
isogeny evaluation, the assumption is reasonable. Assume a new induced isogeny
used by the oracle mapping Ra and Sa uniformly at random over F

2
p. Then both

equations (Eqs. (2) and (3)) are satisfied with probability around 1/p2 even if
we only focus on the x-coordinate.

We start with following three simple facts similar to Proposition 2 and Lem-
mas 3 and 4.

Proposition 14. If Bob honestly generates Ra, Sa, Rab, Sab by Ra = φB(Pq),
Sa = φB(Qq), Rab = φ′

B(RA) and Sab = φ′
B(SA), then {Rab, Sab} is a basis of

EAB [qn] and {Ra, Sa} is a basis of EB [qn].

Proof. Since [qn]Ra = φB([qn]Pq) = O and [qn]Sa = φB([qn]Qq) = O, both Ra

and Sa are in EB [qn]. Due to eqn(Ra, Sa) = eqn(Pq, Qq)q′n′
, we know eqn(Ra, Sa)

is a primitive qn-th root of unity. Similarly, Since [qn]Rab = φ′
B([qn]RA) = O

and [qn]Sab = φ′
B([qn]SA) = O, both Rab and Sab are in EAB [qn]. Due to

eqn(Rab, Sab) = eqn(RA, SA)q′n′
, we know eqn(Rab, Sab) is a primitive qn-th root

of unity. Therefore, the result follows.

Lemma 15. Let e1, e2, f1, f2 defined as above and α ∈ Zqa be the secret key
of Alice such that ker(φA) = 〈[qn−a](Pq + [α]Qq)〉. If Alice follows the protocol
specification, then e1 + αe2 = f1 + αf2 = 0 mod qa.

Proof. Given φA(P2) = [e1]RA + [f1]SA and φA(Q2) = [e2]RA + [f2]SA, we
have O = φA([qn−a](Pq + [α]Qq)) = [qn−a][e1 + αe2]RA + [qn−a][f1 + αf2]SA =
[e1+αe2]RA+[f1+αf2]SA. Recall that {[qn−a]RA, [qn−a]SA} is a basis of EA[qa].
Therefore, e1 + αe2 = f1 + αf2 = 0 mod qa.

Lemma 16. If Alice produces φA(Pq) and φA(Qq) honestly, then e2 and f2
cannot be both divisible by q.

Proof. Suppose for the purpose of contradiction that both e2 and f2 are divisible
by q. Then, [qn−1]φA(Qq) = O, which implies ker(φA) = 〈[qn−a](Pq + [α]Qq)〉
contains [qn−1]Qq. That is, [kqn−a]Pq + [kqn−aα]Qq = [q2a−1]Qq for some k ∈
Zqa , so k = 0. This contradicts the fact that {Pq, Qq} is a basis for E0[qn]. The
result follows.

The algorithm in Fig. 3 together with Theorem 17 provides an iterative app-
roach for recovering α. It requires q − 1 oracle queries to recover each digit of α
in each iteration.

Theorem 17. Assume Alice follows the protocol specification. The algorithm in
Fig. 3 returns α in Alice’s secret key.
2 For instance, on input (Ra, [2a−1]Ra+Sa, Rab, Sab) as Lemma 5 for q = 2 and n = a,

the isogeny used by the oracle is with kernel 〈Ra + [α]Sa + [α22a−1]Ra〉. The kernel
is the same if and only if α is divisible by 2.
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Proof. We are going to prove the theorem by induction on i for the i-th digit
of α where i < a. Write −α = αl + qiαi mod qi+1 for some i ∈ {0, . . . , a − 1}
where αl ∈ Zqi and αi ∈ Zq represent the digits that have been recovered and
the next digit to be recovered respectively.

First of all, we will show that within each query in each loop with respect to
i, the isogeny φ′

A computed by the oracle is of the kernel 〈Ra + αSa〉 if t = αi.

Lemma 18 (Kernel analysis). For each query made in Fig. 3 in each loop with
respect to i, the kernel used by the oracle internally is identical to 〈[qn−a](Pq +
[α]Qq)〉 if t = αi.

Proof. Case1: the if-loop of i = 0. For the queries in the if-loop of i = 0, if
t = αi, we have

〈[qn−a](([1 + qn−1]Ra − [tqn−1]Sa) + [α]([α̂tlq
n−1]Ra + [1 − qn−1]Sa))〉

= 〈[qn−a](Pq + [α]Qq)〉
Remark that here αi = α0 and the quasi-inverse α̂tl = t−1 mod q for t 	= 0.
Therefore, 1 + αα̂tl = 0 mod q and −α0 − α = 0 mod q, and the second
equation follows.

Case2: the if-loop of αl = 0. For the queries in the while-loop of αl = 0, we
have

〈[qn−a](([1 + qn−1]Ra) + [α]([α̂tlq
n−i−1]Ra + [1 − qn−1]Sa))〉

= 〈[qn−a](Pq + [α]Qq)〉
Remark that being in the if-loop of αl = 0 implies i ≥ 1 and qi | α. Hence, in
this case the kernel computed by the oracle is always 〈[qn−a](Pq + [α]Qq)〉.
Case3: the if-loop of αl 	= 0. For the queries in the while-loop of αl 	= 0, if
t = αi, we have

〈[qn−a](([1 + qn−i+j−1]Ra − [(αl + tqi)qn−i+j−1]Sa)

+ [α]([α̂tlq
n−i−1]Ra + [1 − qn−i+j−1]Sa))〉

= 〈[qn−a](Pq + [α]Qq)〉
Remark that we have α̂tl(αl + tqi) = qj mod qn and −α = αl + qiαi mod qi+1

where i > j. Therefore, when t = αi, we have qj + αα̂tl = 0 mod qi+1 and
(αl + tqi) + α = 0 mod qi+1. The second equation follows.

Similarly, we analyze the satisfaction of Eq. (1) (the Weil pairing check) for
the oracle input. The following lemma shows that all oracle inputs will satisfy
Eq. (1).

Lemma 19 (Eq. (1) analysis). Each query made in Fig. 3 in each loop satisfies
Eq. (1).
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Proof. Recall that we have eqa(Ra, Sa) = eqa(P2, Q2)q′b3.

Case1: the if-loop of i = 0. For the queries in the if-loop of i = 0, we always
have

eqa([1 + qn−1]Ra − [tqn−1]Sa, [α̂tlq
n−1]Ra + [1 − qn−1]Sa)

= eqa(Ra, Sa)

= eqa(Pq, Qq)q′b
.

Case2: the if-loop of j =⊥. For the queries in the while-loop of j =⊥, we
always have

eqa([1 + qn−1]Ra, [α̂tlq
n−i−1]Ra + [1 − qn−1]Sa)

= eqa(Ra, Sa)

= eqa(Pq, Qq)q′b
.

Case3: the if-loop of j 	=⊥. For the queries in the while-loop of j 	=⊥, we
always have

eqa(Ra, Sa)1−q2n−2i+2j−2+α̂tl(αl+tqi)q2n−2i+j−2

= eqa(Ra, Sa)

= eqa(Pq, Qq)q′b
.

Note that since α̂tl(αl + tqi) = qj mod qn, we have

1 − q2n−2i+2j−2 + α̂tl(αl + tqi)q2n−2i+j−2 = 1 mod qn.

Therefore, all oracle queries made in Fig. 3 satisfy Eq. (1).

For the case i = 0 of induction, we have to show the correctness of the
extraction of α0, the least significant digit of −α. We restrict our attention
to the if-loop of the condition i = 0. Recall φ′

A(Ra) = [e1]Rab + [f1]Sab, and
φ′

A(Sa) = [e2]Rab + [f2]Sab. For Eq. (2) t ∈ Zq, we have

φ′
A([1 + qn−1]Ra − [tqn−1]Sa) − [e1]Rab − [f1]Sab

= [(1 + qn−1)e1 − tqn−1e2]Rab + [(1 + qn−1)f1 − tqn−1f2]Sab − [e1]Rab − [f1]Sab

= [qn−1e1 − tqn−1e2]Rab + [qn−1f1 − tqn−1f2]Sab

= [−αqn−1e2 − tqn−1e2]Rab + [−αqn−1f2 − tqn−1f2]Sab

= [α0q
n−1e2 − tqn−1e2]Rab + [α0q

n−1f2 − tqn−1f2]Sab

That is, Eq. (2) will always hold. Remark the third equation comes from
Lemma 15. Therefore, the condition of Eq. (2) is satisfied if and only if t = α0.

3 Since we allow to use qa- and q′b-isogenies here, the exponent thereby is q′b here.
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Similarly, for Eq. (3), we have

φ′
A([α̂tlq

n−i−1]Ra + [1 − qn−1]Sa) − [e2]Rab − [f2]Sab

= [α̂tlq
n−1e1 − qn−1e2]Rab + [α̂tlq

n−1f1 − qn−1f2]Sab

= [−αα̂tlq
n−1e2 − qn−1e2]Rab + [−αα̂tlq

n−1f2 − qn−1f2]Sab

= [α0α̂tlq
n−1 − qn−1][e2]Rab + [α0α̂tlq

n−1 − qn−1][f2]Sab.

That is, Eq. (3) will always hold. Remark the third equation comes from Lemma
15. Therefore, the condition of Eq. (3) is satisfied if and only if α0α̂tl = 1
mod q. Equivalently, t = α0, because tα̂tl = 1 mod q. If α0α̂tl 	= 1 mod q for
all t ∈ {1, · · · , q − 1}, then α0 = 0. Therefore, by combining conditions of Eqs.
(1) to (3), the extraction of α0 is correct.

It suffices to show that given αl the extraction of αi, the i-th digit of −α
mod qa for i ≥ 1, is correct in each iteration of the while-loop of Fig. 3. To prove
the correctness of the extraction of αi, in either the if-loop of αl = 0 or the
else-loop (αl 	= 0), we claim that Eqs. (2) and (3) are both satisfied if and only
if the output of the oracle is c = 1 for t ∈ {1, · · · , q − 1} used in the loop if and
only if αi = t for some t ∈ {1, · · · , q − 1}. We therefore consider two cases.

Case1: the if-loop of αl = 0. The condition is equivalent to αl = 0 which
means −α = 0 mod qi. We require the following to show the result.

Lemma 20. Assume αi 	= 0. Then, both of the following two equations are true
if and only if αi = t for some t ∈ {1, · · · , a − 1} :

qn−1e1 = qn−1f1 = 0 mod qn (6)

α̂tle1 − qie2 = α̂tlf1 − qif2 = 0 mod qi+1 (7)

Proof. By Lemma 15, we have qn−1e1 = −αqn−1e2 mod qn. Also, qn−1f1 =
−αqn−1f2 mod qn. The execution of this loop implies α is divisible by q. There-
fore, the first equation always holds.

By Lemma 15, we have α̂tle1 − qie2 = −α̂tlαe2 − qie2 mod qi+1. Since (αl +
tqi)α̂tl = qi mod qi+1, we have −α̂tlαe2 − qie2 = (αi − t)qiα̂tle2 mod qi+1.
Similarly, we have α̂tlf1 − qif2 = (αi − t)qiα̂tlf2 mod qi+1. By Lemma 16 and
Proposition 9, e2α̂tl and f2α̂tl cannot both be divisible by q. Therefore, the
second equation is zero if and only if αi = t.

Hence, both of the following two equations are true if and only if αi = t.

Recall φ′
A(Ra) = [e1]Rab + [f1]Sab, and φ′

A(Sa) = [e2]Rab + [f2]Sab. For Eq.
(2), we have

φ′
A([1 + qn−1]Ra) − [e1]Rab − [f1]Sab

= [qn−1e1]Rab + [qn−1f1]Sab

Recall that {Rab, Sab} is a basis for EAB [qn] � Zqn × Zqn . By using Lemma 20
(Eq. (6)), this condition always holds.
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Also, for Eq. (3), we have

φ′
A([α̂tlq

n−i−1]Ra + [1 − qn−1]Sa) − [e2]Rab − [f2]Sab

= [α̂tlq
n−i−1e1−qn−1e2]Rab + [α̂tlq

n−i−1f1−qn−1f2]Sab

Recall that {Rab, Sab} is a basis for EAB [qn] � Zqn × Zqn . By using Lemma
20 (Eq. (7)), this condition holds if and only if αi = t for some t ∈ {1, · · · , a−1}.

Therefore, by combining conditions of Eqs. (1) to (3), in the if-loop of αl = 0,
the oracle outputs c = 1 for t ∈ {1, q − 1} used in the loop if and only if
αi = t. Moreover, if all outputs of the oracle in the loop are 0, then αi = 0. The
extraction of αi is correct in this case.

Case2: the if-loop of αl 	= 0. The condition is equivalent to qj is the maximal
power of q dividing α.

Lemma 21. Let notation be as above. Both of the following two equations are
true if and only if αi = t :

e1 − (αl + tqi)e2 = f1 − (αl + tqi)f2 = 0 mod qi−j+1 (8)

α̂tle1 − qje2 = α̂tlf1 − qjf2 = 0 mod qi+1 (9)

Proof. By Lemma 15, we have e1−(αl+tqi)e2 = −αe2−(αl+tqi)e2 = (αi−t)qie2
mod qi−j+1 and f1−(αl+tqi)f2 = −αf2−(αl+tqi)f2 = (αi−t)qif2 mod qi−j+1.
By Lemma 16, not both e2 and f2 are divisible by q. Therefore, the first equation
is zero if and only if αi = t or j ≥ 1.

Similarly, by Lemma 15, we have α̂tle1 − qje2 = −αα̂tle2 − qje2 mod qi+1.
Since (αl + tqi)α̂tl = qj mod qi+1, we have −αα̂tle2 − qje2 = (αi − t)qiα̂tle2
mod qi+1. Similarly, we have α̂tlf1−qjf2 = (αi−t)qiα̂tlf2 mod qi+1. By Lemma
16 and Proposition 9, not both e2α̂tl and f2α̂tl are divisible by q. Therefore, the
second equation is zero if and only if αi = t.

Hence, both of the following two equations are true if and only if αi = t.

Recall φ′
A(Ra) = [e1]Rab + [f1]Sab, and φ′

A(Sa) = [e2]Rab + [f2]Sab. For Eq.
(2), we have

φ′
A([1 + qn−i+j−1]Ra − [(αl + tqi)qn−i+j−1]Sa) − [e1]Rab − [f1]Sab

= [(qn−i+j−1)e1 − (αl + tqi)qn−i+j−1e2]Rab

+ [(qn−i+j−1)f1 − (αl + tqi)qn−i+j−1f2]Sab

For Eq. (3), we have α̂

φ′
A([α̂tlq

n−i−1]Ra + [1 − qn−i+j−1]Sa) − [e2]Rab − [f2]Sab

= [α̂tlq
n−i−1e1 + (−qn−i+j−1)e2]Rab + [α̂tlq

n−i−1f1 + (−qn−i+j−1)f2]Sab

Recall that {Rab, Sab} is a basis for EAB [qn] � Zqn × Zqn . By Lemma 21, we
know both conditions (Eqs. (2) to (3)) hold if and only if αi = t.
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Algorithm: Recover(pp, skB)
Input: pp public parameter of the protocol, skB the secret key of Bob,
Given: an oracle Oα(Ra, Sa, Rab, Sab; EB , EAB) 0/1 returns 1 if and only if

the following equations hold:
eqn(Ra, Sa) = eqn(Pq, Qq),
φ′

A(Ra) = [e1]Rab + [f1]Sab,
φ′

A(Sa) = [e2]Rab + [f2]Sab,
where φ′

A is an isogeny from EB with kernel 〈[qn−a](Pq + [α]Qq)〉 ∈ EB .
Ensure: Alice’s secret key α

1: Obtain (Ra, Sa, Rab, Sab) (φB(Pq), φB(Qq), φ′
B(RA), φ′

B(SA)) by following
the protocol specification using skB .

2: Obtain a from pp.
3: i = 0
4: j =⊥
5: αl = 0
6: while i < a do
7: c = 0
8: t = q
9: for t ∈ {0, · · · , q − 1} do

10: α̂tl QuasiInv(αl + tqi, q, n)
11: if i = 0 then � Extract α0.
12: while c = 0 or t > 0 do
13: t −= 1
14: ˜Ra, ˜Sa [1 + qn−1]Ra − [tqn−1]Sa, [α̂tlq

n−1]Ra + [1 − qn−1]Sa

15: c (˜Ra, ˜Sa, Rab, Sab)
16: αl t
17: i += 1
18: if t �= 0 then j i � Assert q is the maximal power of q dividing α.
19: Continue
20: if αl = 0 then � Assert α̂tlt = 1 or 0 mod q.
21: while c = 0 or t > 0 do
22: t −= 1
23: ˜Ra, ˜Sa [1 + qn−1]Ra, [α̂tlq

n−i−1]Ra + [1 − qn−1]Sa

24: c (˜Ra, ˜Sa, Rab, Sab)
25: αl αl + tqi � Assert i-th digit of −α is t.
26: if t �= 0 then j i � Assert qj is the maximal power of q dividing α.
27: else � Assert α̂tl(αl + tqi) = qj mod qn.
28: while c = 0 or t > 0 do
29: t −= 1
30: ˜Ra [1 + qn−i+j−1]Ra − [(αl + tqi)qn−i+j−1]Sa

31: ˜Sa [α̂tlq
n−i−1]Ra + [1 − qn−i+j−1]Sa

32: c

O

O

O(˜Ra, ˜Sa, Rab, Sab)
33: αl αl + tqi � Assert i-th digit of −α is t.
34: i += 1
35: return αl mod qa

Fig. 3. A general algorithm to recover the secret α.
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Therefore, by combining conditions of Eqs. (1) to (3), in the else-loop, the
oracle outputs c = 1 for t ∈ {1, · · · , q − 1} used in the loop if and only if αi = t.
If all outputs of the oracle in the loop is 0, then αi = 0. The extraction in this
case is correct. Hence, the algorithm in Fig. 3 successfully extracts Alices’s secret
key.
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