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Abstract. Physical side-channel analysis poses a huge threat to post-
quantum cryptographic schemes implemented on embedded devices.
Still, secure implementations are missing for many schemes. In this
paper, we present an efficient solution for masked polynomial inversion,
a main component of the key generation of multiple post-quantum Key
Encapsulation Mechanisms (KEMs). For this, we introduce a polynomial-
multiplicative masking scheme with efficient arbitrary order conversions
from and to additive masking. Furthermore, we show how to integrate
polynomial inversion and multiplication into the masking schemes to
reduce costs considerably. We demonstrate the performance of our algo-
rithms for two different post-quantum cryptographic schemes on the
Cortex-M4. For NTRU, we measure an overhead of 35% for the first-
order masked inversion compared to the unmasked inversion while for
BIKE the overhead is as little as 11%. Lastly, we verify the security of
our algorithms for the first masking order by measuring and performing
a TVLA based side-channel analysis.

Keywords: PQC · Masking · Polynomial inversion · Higher-order
masking

1 Introduction

Our digital infrastructure relies and trusts Public-Key Cryptography (PKC) to
establish secure communication channels. However, due to Shor’s algorithm pre-
sented in 1999 [36], currently used schemes like RSA [33] and ECC [29] can be bro-
ken by quantum computers in polynomial time. Therefore, in 2017, the National
Institute of Standards and Technology (NIST) announced a Post-Quantum Cryp-
tography Standardization Project to find and standardize new cryptographic
schemes that provide security against attacks mounted on classical and quantum
computers. After three rounds, the NIST identified seven finalists and eight alter-
nate candidates which are considered for standardization. Besides security, impor-
tant metrics like costs, performance, and implementation characteristics on var-
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ious platforms are considered in the selection process [2]. Driven by these crite-
ria, the research community has proposed a plethora of highly efficient implemen-
tations for software and hardware. However, implementations of Post-Quantum
Cryptography (PQC) schemes on embedded devices are faced with the same prob-
lems as traditional cryptographic algorithms, which includes physical attacks like
Side-Channel Analysis (SCA) and Fault-Injection Analysis (FIA).

So far, most of the side-channel research with respect to the finalists in
NIST’s PQC standardization process focuses on schemes based on the Learning
with Error (LWE) problem. Bos et al. presented the first higher-order masked
implementation for the Cortex-M0+ and the Cortex-M4 for Kyber [8]. Just
recently, Heinz et al. published a report on an optimized first-order protected
Kyber implementation for the Cortex-M4 including practical measurements [19].
In 2021, Beirendonck et al. presented a first-order protected implementation of
Saber for the Cortex-M4 [4]. An optimized implementation that also provides
protection against higher-order attacks was afterwards proposed in [26].

Besides these studies that directly target the protection of specific algorithms,
others [14,18] proposed optimizations and implementations which can be applied
to both schemes. Coron et al.[14] concentrated their work on the improvements
of higher-order masked comparisons by considering different approaches and
techniques. As a case study, they applied their optimizations to Kyber and Saber.
The work of Fritzmann et al.[18] explored different masked accelerators used
as instruction set extensions for a RISC-V processor. They demonstrated their
improvements on a hardware software co-design for Kyber and Saber. Eventually,
D’Anvers et al. improved the work of Coron et al.[14] and presented an optimized
higher-order masked comparison [15].

Summarizing, we can see that the side-channel security countermeasures for
the LWE problem based schemes Kyber and Saber have already received some
attention. However, masking NTRU-like [20,21] and code-based [3,28] systems
is still an open research question and has so far only been sparsely investi-
gated. In contrast, several side-channel attacks on these schemes were demon-
strated. At CHES 2019, Sim et al. present a generic side-channel attack using
conditional moves in implementations of PQC schemes based on Quasi-Cyclic
Moderate-Density Parity-Check (QC-MDPC) codes [37]. Recently, a single-trace
side-channel attack on the polynomial sampling of NTRU, NTRU Prime, and
Dilithium has been proposed in [25]. In the work of Mujdei et al.[30] the authors
present a powerful correlation power analysis on polynomial multiplications
effecting all lattice-based PQC schemes.

An important operation in almost all NTRU-like and code-based systems
is the polynomial inversion. It is required in the key generation of the finalists
NTRU-HPS and NTRU-HRSS [10] as well as in the two alternate candidates
Streamline NTRU Prime [5] and BIKE [3].

Contribution. To this end, we present the first efficient methodology for
masking polynomial inversion by introducing polynomial-multiplicative mask-
ing (Sect. 3). As a foundation for our approach, we develop secure arbitrary-
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order conversions from polynomial-additive to polynomial-multiplicative mask-
ing (Sect. 3.1) and vice versa (Sect. 3.2). We show how to integrate a masked
polynomial inversion into this conversion to reduce the number of unmasked
inversions to one, independent of the masking order (Sect. 3.3). Additionally,
we develop an algorithm to integrate a masked polynomial multiplication into
the conversion to save costly unmasked multiplications (Sect. 3.4). Finally, we
implement our algorithms for two use cases to demonstrate the performance ben-
efits and we back our security claims for the first masking order by performing
practical measurements on a Cortex-M4 microcontroller (Sect. 4).

2 Preliminaries

Inthissectionweintroduceimportantpreliminariesthatarenecessarytoadequately
describeourapproaches ofmaskedarithmetic operations.Besides statingnotations
used throughout this work, we briefly recap masking. Eventually, we describe prac-
tical applications of masked polynomial inversions in the field of PQC.

2.1 Notation

Throughout this work, we denote polynomials by x. The i-th share of a shared
polynomial x is denoted by xi. A uniform random sampling of a polynomial r

is denoted by r
$← R where R is the set of all valid polynomials. The set R∗

denotes all uniform sampled polynomials from R that are invertible.

2.2 Masking

Masking is a common countermeasure to prevent SCA on embedded devices
and is studied in the scientific community for more than twenty years [9]. The
foundation of masking is secret sharing which splits a sensitive value x into
multiple shares xi with 0 ≤ i ≤ d. For a correct sharing holds

x = x0 ◦ x1 ◦ · · · ◦ xd (1)

where ◦ defines the group operator of the applied masking scheme and d defines
the security order based on the d-probing model proposed in [22]. As a conse-
quence, a function f processing x needs to be transformed as well such that
f = f0 ◦ f1 ◦ · · · ◦ fd. When applying ⊕ as the group operator in Eq. 1, the
secret sharing scheme is called boolean masking. The encoding is called arith-
metic masking when ◦ is replaced by an addition or multiplication which we
further categorize as additive masking or multiplicative masking, respectively.

2.3 Polynomial Inversion Applications

Polynomial inversion is a regular used operation in several PQC schemes
[3,20,21]. Since it is such a critical operation, several works concentrated on
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efficient implementations of the polynomial inversion for software and hardware
[11,17,31,32]. However, most approaches are based on Fermat’s Little Theorem
performed by the Itoh-Tsujii Algorithm (ITA) algorithm [23] or on the extGCD
proposed by Bernstein and Yang [7]. In the following, we will briefly introduce the
finalist NTRU, and the two alternate candidates streamlined NTRU Prime and
Bit Flipping Key Encapsulation (BIKE) as examples of PQC schemes requiring
polynomial inversions.

NTRU. The finalist NTRU is based on the original work by Hoffstein et al. [20]
and on the work by Hülsing et al. [21]. NTRU is defined by three coprime
positive integers (n, p, q), the sample spaces Lf ,Lg,Lr,Lm, and an injection
Lift : Lm → Z[X]. Furthermore, the authors of the NTRU submission recom-
mend two families of parameter sets called NTRU-HPS and NTRU-HRSS [10].
NTRU-HPS uses a fixed-weight sampling space and allows several choices of q
for each n which are based on [20] while NTRU-HRSS uses an arbitrary weight
sampling space and fixed q as a function of n as suggested in [21].

The key generation requires to perform two polynomial inversions to generate
the public and private key as shown in Algorithm 1. Note, for NTRU-HPS as
well as for NTRU-HRSS the parameter p is always fixed to three. However, the
two parameters (n, q) are different for the three security levels λ ∈ {1, 3, 5} and
are defined as (509, 2048), (677, 2048), and (821, 4096), respectively.

Streamlined NTRU Prime. Streamlined NTRU Prime [5] is an alternate
candidate in the NIST standardization process. NTRU Prime is also based on
the original proposal by Hoffstein et al. [20] and defined by a prime number p, a
prime number q, and a positive integer w [6]. One of the main differences to the
classic NTRU cryptosystem is that NTRU Prime works over prime fields which
avoids various attack vectors as claimed by the authors [5]. The key genera-
tion in NTRU Prime (see Algorithm 2) also contains two polynomial inversions.
The first inversion inverts the randomly sampled polynomial g drawn from R
while the second inversion inverts 3 · f where f is a polynomial with coefficients
fi ∈ {−1, 0, 1} with exactly w non-zero coefficients. Note, the first sampled poly-
nomial g is not always invertible in R3 while the second polynomial f is always
invertible in Rq since it is a field.

For the three security levels λ ∈ {1, 3, 5} the NTRU Prime parameters
(p, q, w) are defined as (653, 4621, 288), (953, 6343, 396), and (1277, 7879, 492),
respectively.
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Algorithm 1. KeyGen NTRU.
Require: NTRU parameters n, p, q.
Ensure: Priv. key (f, fp, fq), pub. key h.

1: Generate f
$← Lf

2: Generate g
$← Lg

3: Compute fp ← 1/f in S3

4: Compute fq ← 1/f in Sq

5: Compute g ← 3 · g · fg in Rq

6: Compute hq ← 1/h in Sq

7: Return (f, fp, fq) and h.

Algorithm 2. KeyGen sNTRUp.
Require: sNTRUp parameter q.
Ensure: Priv. key (f, ginv), pub. key h.

repeat

Generate g
$← R, g small

until g is invertible in R3

Generate f
$← Short

Compute ginv ← 1/g in R3

Compute h ← g/(3 · f) in Rq

Return (f, ginv) and h.

BIKE. As well as Streamlined NTRU Prime, BIKE has been selected as an
alternate candidate. In contrast to NTRU, BIKE is a code-based scheme rely-
ing on QC-MDPC codes [3]. The scheme originally consists of three different
algorithms BIKE-1, BIKE-2, and BIKE-3 which, however, were reduced to just
one single Key Encapsulation Mechanism (KEM) called BIKE. In BIKE, all
polynomials are from the cyclic polynomial ring R := F2[X]/(Xr − 1) where r
defines the size of the polynomials. The public key h is generated by sampling
two private sparse polynomials (h0, h1) with |h0| = |h1| = w/2, inverting h0, and
multiplying the results with h1. The entire key generation is formally described
in Algorithm 3. For the three security levels λ ∈ {1, 3, 5}, the two parameters
(r, w) are defined as (12323, 141), (24659, 206), and (40973, 274), respectively.
Since BIKE is suggested to be used with ephemeral keys, an efficient masked
implementation of the polynomial inversion for side-channel protected designs is
necessary.

In summary, it can be seen in Algorithm 1, Algorithm 2, and Algorithm 3
that the polynomial inversion is a major operation in the key generation of all
three algorithms. Our measurements in Sect. 4.1 confirm that the polynomial
inversion dominates the costs in terms of cycle counts. Hence, to construct pro-
tected designs against SCA, it is essential to find efficient algorithms for masked
implementations. However, not only the inversion itself should be implemented
efficiently but also preceding and subsequent operations must be masked with-
out any expensive conversions between different masking techniques. Before we
present our approach of an efficient higher-order masked polynomial inversion,
we briefly discuss different cases of invertibility of random polynomials.

Invertibility of Random Polynomials. Among these three schemes, three
different cases of invertibility occur. Since the target polynomials are sampled
randomly but based on certain rules, we identify the following cases.
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Algorithm 3. Key Generation of BIKE.
Require: BIKE parameters n, w, �.
Ensure: Private key (h0, h1, σ) and public key h.

Generate (h0, h1)
$← R2 both of odd weight |h0| = |h1| = w/2.

Generate σ
$← {0, 1}� uniformly at random.

Compute h ← h1h
−1
0 .

Return (h0, h1, σ) and h.

1. All sampled polynomials (except the polynomial representing 0) are invert-
ible. This case is trivial and no further exceptions need to be covered which
is the case for NTRU.

2. Not all polynomials from the used ring are invertible but following some
certain rules always allows to sample an invertible polynomial. For example,
this is the case for BIKE where the polynomials requires to have an odd
Hamming weight. Hence, applying the defined sampling procedure always
generates an invertible polynomials such that the inversion cannot fail.

3. Not all polynomials from the underlying ring are invertible and they are not
easily distinguishable. For example, this is the case for Streamlined NTRU
Prime where the sampling procedure just sample uniformly random polyno-
mials without applying dedicated rules. In case the sampled polynomial is
not invertible, the inversion fails in the last step and a new polynomial needs
to be sampled.

3 Masking Polynomial Inversion

Masking boolean operations in PQC schemes can efficiently be implemented with
a boolean sharing, while arithmetic operations such as the addition and subtrac-
tion of polynomials or the multiplication with public values are implemented with
additive sharing as the masked implementation for Kyber [8] demonstrates. An
alternative sharing, that had already been proposed for AES in the year 2001 [1],
is multiplicative sharing. The problem with multiplicative sharing that hinders
its application, is that if one share is zero, the attacker already knows that the
masked value is zero.

For polynomial inversion, that is used in multiple PQC schemes as shown in
Sect. 2.3, we need a masking approach for which inversion is a linear operation.
Given uniformly random polynomials mi ∈ R such that m =

∏d
i=0 mi, a valid

polynomial-multiplicative sharing can be realized by

m−1 =
d∏

i=0

m−1
i , (2)

i.e., the inversion is applied to each share independently. As the zero polynomial
is not invertible, it will not be given as an input to a masked inversion. With
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d + 1 unmasked polynomial inversions, that is already an expensive operation
on its own, this approach is very costly and asks for alternative solutions.

Obviously, multiplication of two secret polynomials is very efficient in the
multiplicative domain as it requires only d + 1 unmasked multiplications com-
pared to the additive domain where the number of unmasked multiplications
is quadratic to the masking order in current solutions [35]. The cost to con-
vert polynomials from and to the multiplicative domain determines, however,
whether this approach is viable (cf. Section 3.4).

In the following, we present algorithms that efficiently transform additive
shares of polynomials in a ring to multiplicative shares and vice versa. With the
motivation to perform a more efficient polynomial inversion than shown in Eq. 2,
we demonstrate how to integrate the inversion into the transformation, and how
to perform a multiplication and back transformation in one joint operation.

3.1 Conversion from Additive to Multiplicative Sharing

Let a be a polynomial and ai shares with a =
∑d

i=0 ai, where all ai are uni-
form random in the respective polynomial ring. To transform this sharing to
a polynomial-multiplicative sharing in the same ring, we adapt the well-known
technique of first appending a share in the new masking domain, enlarging the
sharing in two domains (additive and multiplicative), and then to combine two
old shares to remove one share.

We now introduce our algorithm by presenting an example for first-order
masking. Given a polynomial a split into two additive shares a0 and a1, we start
by sampling one invertible polynomial r and multiply each additive share with
this polynomial, yielding ra0 and ra1. We set the inverted polynomial r−1 as
a new multiplicative share, expanding the number of shares from two to three.
To reduce our number of shares, we add corresponding two additive shares:
ra0 + ra1 = r(a0 + a1). By treating the sum as a multiplicative share, we are
left with two correct multiplicative shares for a, since r−1r(a0 + a1) = a.

The full algorithm for arbitrary orders can be summarized with the following
steps:

1. Sample a uniform random and invertible polynomial r, observing that a =
r−1ra.

2. Compute a′
i = rai, we now have d + 2 shares, d + 1 additive shares and one

multiplicative share.
3. To return to d + 1 shares, we combine two additive shares.
4. Repeat from start until there is only one additive share left, which now can

be viewed as a multiplicative share.

The algorithm is shown in detail in Algorithm 4. Note that for this conversion,
d polynomial inversions and (d + 1)(d + 2)/2 − 1 polynomial multiplications, as
well as d − 1 polynomial additions are needed.
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Algorithm 4.Additive to Polynomial-Multiplicative Masking Conversion (A2M)

Require: a =
∑d

i=0 ai

Ensure: m =
∏d

i=0 mi = a
function A2M(a0, . . . , ad)

for i := d downto 1 do
r

$← R∗ � sample from the set of invertible polynomials
for j := 0 to i do

aj := raj

end for
mi := r−1 � now we have d + 2 shares with a =

(∑i
j=0 aj

) ∏d
j=i mj

ai−1 := ai−1 + ai � combining two additive shares
end for
m0 := a0

end function

3.2 Conversion from Multiplicative to Additive Sharing

For subsequent operations in the additive domain, a transformation from the
multiplicative to the additive domain is necessary. Given a masked polyno-
mial m split into two multiplicative shares m0 and m1 for our M2A conver-
sion, we start by sampling one random polynomial r. The first step is to com-
pute m0 + r before we multiply it with m1 to get (m0 + r)m1 = m0m1 + rm1.
Together with the product −rm1 we have two additive shares that yield
m0m1 + rm1 − rm1 = m0m1 = m.

This method can be generalized to arbitrary masking orders by reapplying
the core idea of adding a random polynomial before the multiplication with one
of the multiplicative shares mi. Our strategy is to compute m =

∏d
i=0 mi step

by step in the first share, while protecting this sum with d random summands.
Thus, iterating from i = 1 to d, we sample a uniform random additive sharing of
i + 1 polynomials such that

∑i
j=0 rij = 0. We add these random polynomials to

the first i + 1 shares before we multiply the shares with mi. After d iterations,
we get a0 = m +

∑d
i=1(ri0

∏d
j=i mj) as the first additive share for m together

with d additive shares ak =
∑d

i=k(rik
∏d

j=i mj) that cancel out the summands
in a0 except m.

The algorithm can efficiently be implemented in situ as shown in Algorithm
5 and utilizes d(d + 1)/2 + d polynomial multiplications, d(d + 1) + d additions,
d(d + 1)/2 fresh random polynomials and no costly inversion.

3.3 Reducing the Number of Inversions

The main application of the polynomial-multiplicative masking is polynomial
inversion. Naively, we would perform a polynomial inversion on each polynomial-
multiplicative share individually to obtain a sharing of the inverted polynomial
(cf. Equation 2). Together with the d inversions required for the A2M conversion,
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Algorithm 5.Polynomial-Multiplicative to Additive Masking Conversion (M2A)

Require: m =
∏d

i=0 mi

Ensure: a =
∑d

i=0 ai = m
function M2A(m0, . . . , md)

for i := 1 to d do
ri := 0
for j := 0 to i − 1 do

r
$← R

ri := ri + r
mj := mj + r � refreshing
mj := mjmi � combining two multiplicative shares

end for
mi := −rimi

end for
for i := 0 to d do

ai := mi

end for
end function

this would lead to 2d + 1 unmasked inversions for one masked inversion, given a
polynomial shared in the additive domain.

However, we can adapt Algorithm 4 such that only one polynomial inversion
is necessary, independent of the masking degree. This is shown in Algorithm 6.
The idea is to not set the new multiplicative shares to the inverse, which we
would invert again later, but to the original sample. Instead we only invert m0

at the end to get an A2M conversion with implicit inversion. With this method
we can drastically reduce the number of polynomial inversions that are the most
expensive operations compared to polynomial multiplications and additions as
we show in Sect. 4. We thus save two inversions for first order, four inversions
for second and already six inversions for third order masking, compared to the
naive approach.

3.4 Reducing the Number of Multiplications

Although a masked polynomial multiplication is cheaper in the multiplicative
domain (d + 1 unmasked multiplications) compared to the additive domain
where it is quadratic [35], the additional costs of the A2M and M2A conversions
render this approach obsolete for polynomials that are not given in the multi-
plicative domain anyway. In particular the A2M conversion without inversion is
too expensive with its d unmasked inversions.

We can, however, save unmasked multiplications when one factor is already
in the multiplicative domain due to a prior inversion. Given a polynomial
a =

∑d
i=0 ai in the additive domain and a polynomial b =

∏d
i=0 bi in the

multiplicative domain, we observe that the masked product c =
∑d

i=0 ci = ab
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Algorithm 6. Additive to Polynomial-Multiplicative Masking Conversion with
Implicit Polynomial Inversion (A2MINV)

Require: a =
∑d

i=0 ai

Ensure: m =
∏d

i=0 mi = a−1

function A2Minv(a0, . . . , ad)
for i := d downto 1 do

r
$← R∗ � sample from the set of invertible polynomials

for j := 0 to i do
aj := raj

end for
mi := r � note that we do not set this to the inverse
ai−1 := ai−1 + ai

end for
m0 := a−1

0 � the only inverse we need to compute
end function

can be computed with c = ab =
∑d

i=0 ai

∏d
j=0 bj =

∑d
i=0(ai

∏d
j=0 bj), where

ci = ai

∏d
j=0 bj represents an additive share of the product c. The straightfor-

ward computation would leak the polynomial b, but by adding fresh random
polynomials between the unmasked multiplications similar as in our M2A con-
version, we can get a secure conversion from multiplicative domain to additive
domain including a multiplication with an additive shared polynomial as shown
in Algorithm 7.

The costs for this masked conversion with implicit multiplication are (d + 1)2

unmasked multiplications, (d + 1)2d additions and (d + 1)d fresh random poly-
nomials. Compared to the naive approach of first converting a from the multi-
plicative to the additive domain and then performing the multiplication, we save
about the amount of unmasked multiplications and additions required for the
M2A conversion.

For the case where we want to securely invert a polynomial and multiply the
result with another polynomial, which is often the case as we see in Sect. 2.3, we
apply our A2MINV first, where the costs are dominated by the single unmasked
inversion, resulting in an inverted polynomial in the multiplicative domain. As a
second step, we apply our M2AMUL, to transform the inverted polynomial back
into the additive domain while simultaneously multiplying it with another addi-
tive shared polynomial, at the cost of a multiplication in the additive domain,
so the back transformation is basically free. In Sect. 4 we present performance
results by exemplary applying our approaches to NTRU and BIKE.

4 Implementation and Evaluation

To evaluate the performance and security of our algorithms, we implemented
them for NTRU and BIKE on the STM32F4 discovery board, which is equipped
with a 32-bit Cortex-M4 microcontroller, 192-KB SRAM and 1-MB flash mem-
ory and can be clocked up to 168 MHz.
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Algorithm 7. Polynomial-Multiplicative to Additive Masking Conversion with
Implicit Polynomial Multiplication (M2AMUL)

Require: a =
∑d

i=0 ai, b =
∏d

i=0 bi

Ensure: c =
∑d

i=0 ci = ab
function M2AMUL(a0, . . . , ad, b0, . . . , bd)

for j := 0 to d do
cj := ajb0 � implicit multiplication

end for
for i := 1 to d do

rd := 0
for j := 0 to d − 1 do

r
$← R

rd := rd + r
cj := cj + r � refreshing
cj := cjbi � combining two multiplicative shares

end for
cd := cd − rd

cd := cdbi

end for
end function

We based our implementation on the respective ring operations of the state-
of-the-art Cortex-M4 implementations of the schemes. For BIKE this is the work
by Chen et al. [12], for NTRU this is the work by Chung et al. [13] with an
improved inversion by Li et al. [27].

4.1 Implementation Results

As it is common [24], we measured cycle counts at 24 MHz to not have mem-
ory wait states. We compiled our code with the arm-none-eabi-gcc-10.3.1
compiler with optimization-level O3. The stated cycle counts are averages of 100
runs.

We did not implement and measure the plain A2M conversion, because it is
not interesting for our use cases with its high costs.

NTRU. We first measured the cycle counts for unmasked ring operations
to have a baseline to compare our masked versions with. For NTRU in the
parameter set ntruhps2048677, polynomials in the ring S3 have 677 coefficients
∈ {0, 1, 2}. Unprotected polynomial inversion costs 1273864 clock cycles here,
about six times the cycles for an unprotected polynomial multiplication that
takes 201383 cycles. An unprotected addition is done in only 18340 cycles and
is thus insignificant compared to inversions and multiplications.

The costs for the masked A2MINV in the first masking order are mainly
determined by the unmasked inversion and two unmasked multiplications. The
overhead compared to an unmasked inversion is therefore mostly the cost of two
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multiplications, resulting in about 35% overhead, which is an excellent result
compared to other masked operations. This calculation excludes the cost of an
M2A conversion, but as we argued in Sect. 3.4, this comes for free by using the
M2AMUL. Since the number of unmasked inversions required for one A2MINV

is only one, independent of the masking order, the cycle counts of the A2MINV

increase only slowly with the masking order. For the sixth order, which operates
on seven shares, the cycle counts are less than six fold the ones of the unmasked
as shown in Table 1.

For the M2AMUL we measured 885773 cycles in the first order, less than
twice the cost of one M2A that costs 486165. This proportion stays with increas-
ing masking order while the number of unmasked multiplications and additions
grows quadratically for both algorithms.

Table 1. Cycle counts for our proposed masked A2MINV, M2AMUL, and M2A con-
version for ntruhps2048677 on the Cortex-M4. Unprotected addition requires 18340
clock cycles, unprotected multiplication requires 201383 clock cycles and unprotected
inversion 1273864 clock cycles.

Ord. d A2M inversion M2A mul. M2A conversion

Cycles MUL INV Cycles MUL ADD Cycles MUL ADD

1 1723778 2 1 885773 4 4 486165 2 3

2 2372502 5 1 2090841 9 12 1230767 5 8

3 3211410 9 1 3802004 16 24 2238833 9 15

4 4260732 14 1 6057128 25 40 3503189 14 24

5 5524861 20 1 8848501 36 60 5049140 20 35

6 6991050 27 1 12097869 49 84 6859272 27 48

BIKE. For BIKE in the parameter set bikel1, polynomials have 12323 coeffi-
cients ∈ {0, 1}. As 32 coefficients are stored in one register and the addition of
coefficients equates to a xor operation, the unmasked addition of polynomials is
very cheap with 3534 clock cycles. Due to the higher polynomial degree, how-
ever, multiplications and inversions take longer, compared to the operations in
NTRU. For one unmasked multiplication, we measured about one million cycles,
and for one unmasked inversion 19182916 cycles.

With the increased gap between multiplication and inversion, compared to
NTRU, the overhead of the A2MINV reduces. With 21317392 cycles for the first
order A2MINV, the overhead is as little as 11% compared to an unmasked inver-
sion. Also the cost of M2AMUL and M2A become less significant compared a
A2MINV in the lower masking orders, due to the order of magnitude difference
in cycle counts between unmasked inversion and unmasked multiplication. In the
first masking order we measure 4240017 cycles for one M2AMUL and 2131405 for
one M2A as shown in Table 2. The gap between A2MINV and M2A or M2AMUL
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decreases in relative terms with increasing masking order due to the quadratic
cost in unmasked multiplications.

Table 2. Cycle counts for our proposed masked A2MINV, M2AMUL, and M2A con-
version for bikel1 on the Cortex-M4. Unprotected addition requires 3534 clock cycles,
unprotected multiplication requires 1052253 clock cycles and unprotected inversion
19182916 clock cycles.

Ord. d A2M inversion M2A mul. M2A conversion

Cycles MUL INV Cycles MUL ADD Cycles MUL ADD

1 21317392 2 1 4240017 4 4 2131405 2 3

2 24487146 5 1 9584999 9 12 5342630 5 8

3 28736397 9 1 17068753 16 24 9622491 9 15

4 34007250 14 1 26740596 25 40 14994627 14 24

5 40275530 20 1 38507790 36 60 21419851 20 35

6 47744390 27 1 52493255 49 84 28945019 27 48

4.2 Side-Channel Evaluation

To evaluate the security against power side-channel attacks, we performed mea-
surements on the same STM32F4 discovery board with the Cortex-M4 microcon-
troller. The power consumption is indirectly measured via a 1 Ω shunt resistor
placed in the supply path of the microcontroller (the board provides dedicated
pads for such applications) and the signal is amplified by a ZFL-1000LN+ Low
Noise Amplifier (LNA). We use an 8 bit oscilloscope from PicoScope sampling
with 625 MS/s to acquire the power traces. During the measurements, the micro-
controller operates with a 24 MHz clock, which results in roughly 26 sample
points per clock cycle, and is powered by an external power supply to ensure a
clean and stable supply voltage.

For the security evaluation, we use a common fixed vs. random univari-
ate Test Vector Leakage Assessment (TVLA) evaluation procedure as detailed
described in [34]. Commonly, the measured power traces of the fixed and ran-
dom inputs are used for a Welsh t-test where the t-value is compared to a ±4.5
threshold corresponding to a α = 0.0001 confidence level. In case the threshold is
exceeded, the implementation is assumed to leak sensitive information since the
power consumption of the fixed and the random inputs can be distinguished.
However, in 2017 Ding et al. demonstrated that the threshold of ±4.5 needs
to be adapted for measurements with many sample points to avoid false posi-
tives in the evaluation [16]. Since we measure operations that require up to 1.7e6
clock cycles (which are approximately 26 · 1.7e6 = 44.2e6 sample points with our
setup), we applied their approach and adapted the corresponding threshold that
still results in a confidence level of α.
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Fig. 1. Measurement results of
A2MINV with no randomness (2000
traces).
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Fig. 2. Measurement results of
A2MINV with randomness (100000
traces).

In the following, we present the measurement results for the first-order
masked inversion A2MINV and the multiplicative to additive conversion M2A.
We limit our evaluation to these two algorithms as they exemplary demonstrate
the ideas of our proposals. Both, the A2M conversion and the M2AMUL, are simi-
lar to the other two algorithms such that we only performed the time-consuming
measurements for them.

Masked Inversion. Figure 1 shows the measurement results for the masked
inversion presented in Algorithm 6 with disabled randomness to demonstrate the
correct functionality of our measurement setup. As expected, the t-test reveals
first- and second-order univariate leakage. Figure 2 presents the measurement
results for the protected inversion with randomness enabled. We acquired 100000
power traces and could not detect any first-order univariate leakage. Interest-
ingly, the second-order t-test also does not reveal any leakage which is may
due to the univariate analysis technique applied in our evaluation. We expect
that second-order leakage would be visible once an attacker utilizes multivariate
analysis techniques, i.e., combines samples from multiple points in time. Another
reason for this phenomena could be the applied masking technique. When we
look at a single coefficient of a polynomial with multiplicative sharing, it can not
be recreated by d+1 respective coefficients of the polynomial shares, but depends
on other coefficients too. For the first masking order we combine one random
coefficient of one polynomial with all random coefficients of another polynomial
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Fig. 3. Measurement results of the
M2A conversion with no randomness
(2000 traces).
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Fig. 4. Measurement results of the
M2A conversion with randomness
(100000 traces).

which can be seen as some kind of higher-order masking. However, this artifact
is out of scope of this work and we leave the investigation for future work.

Multiplicative to Additive Conversion. Besides the masked polynomial
inversion, we additionally evaluate the multiplicative to additive conversion M2A
from Algorithm 5. Again, we first measured the operation with disabled random-
ness (masks and fresh randomness are constant) which is visualized in Fig. 3.
After 2000 traces, the t-test results for the first- and second-order clearly indi-
cate leakage. However, in the next experiment we enable all randomness and
perform 100000 measurements. The t-test does not reveal any leakage which
is shown in Fig. 4. Again, no second-order leakage is visible due to the same
argumentation as above.

5 Conclusion

In this work, we demonstrate that polynomial-multiplicative sharing is a viable
solution to mask arithmetic operations of multiple PQC schemes. To this end, we
propose an efficient higher-order masked polynomial inversion with implicit addi-
tive to multiplicative conversion, conversion algorithms used to switch between
different sharings, and a novel masked multiplication that accepts an additive
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shared operand and a multiplicative shared operand. Applying our masked poly-
nomial inversion to NTRU, the first-order masked design requires an overhead
of only 35%, while the overhead for BIKE is only 11%.

However, there are still masking solutions missing for other operations to have
all the pieces necessary for a masked implementation of NTRU or BIKE, which
is an interesting target for future work. Another open question is the additional
security that polynomial-multiplicative masking provides, when looking at the
coefficient level. As already mentioned in Sect. 4.2, traditional masking schemes
split one value into d+1 values. But in polynomial multiplication, all coefficients
are combined with each other and make one coefficient of the masked polynomial
dependent of more than d + 1 values.

Acknowledgments. This work was supported by the German Research Foundation
under Germany’s Excellence Strategy – EXC 2092 CASA – 390781972, through the
H2020 project PROMETHEUS (grant agreement ID 780701), and by the Federal Min-
istry of Education and Research of Germany through the QuantumRISC (16KIS1038)
and PQC4Med (16KIS1044) projects.

References

1. Akkar, M.-L., Giraud, C.: An implementation of DES and AES, secure against
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