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Abstract. In this work, we study the security of sponge-based authen-
ticated encryption schemes against quantum attackers. In particular, we
analyse the sponge-based authenticated encryption scheme Slae as put
forward by Degabriele et al. (ASIACRYPT’19) due to its modularity.
We show that the scheme achieves security in the post-quantum (QS1)
setting in the quantum random oracle model by using the one-way to
hiding lemma. Furthermore, we analyse the scheme in a fully-quantum
(QS2) setting. There we provide a set of attacks showing that Slae does
not achieve ciphertext indistinguishability and hence overall does not
provide the desired level of security.

1 Introduction

Authenticated encryption schemes with associated data (AEAD) [47] are the
main employed cryptographic scheme when it comes to securing the communi-
cation between two parties who already share a secret key by ensuring both con-
fidentiality and authenticity of the exchanged messages. Several works show that
AEAD schemes can be constructed purely from sponges [21–24,35], which were
initially introduced as a tool to construct cryptographic hash functions. Recent
examples of such sponge-based AEAD schemes are Isap [22,23] and Slae [21].
Observe that these schemes are already analysed showing that they are even
secure against side-channel leakage, however, their security against quantum
adversaries has yet to be studied.

Unlike public key cryptography that is based on number theoretic problems,
which is completely broken by Shor’s algorithm [49], AEAD schemes are often
assumed to be only mildly affected by Grover’s algorithm [31], although this
assumption turns out to be delusive in some cases [13]. To compensate this,
usually one simply doubles the key length. This approach indeed works for many
symmetric schemes in the standard model, namely those where their security
proofs can be easily translated to one against quantum adversaries [50]. However,
schemes that rely on random oracles [7] cannot be translated in a straightforward
manner and hence require more attention. In particular, translating their security
to hold against quantum adversaries requires a proof in the quantum random
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oracle model (QROM) [10], and it has recently been shown that proofs cannot
always be translated from the ROM to the QROM [56]. In particular, this will
also apply to sponge-based AEAD schemes where we typically model the block
function that underlies the sponge construction as a random oracle and includes
the schemes in [21–23].

The security of cryptographic primitives against quantum adversaries can
nowadays be divided into two cases [27,37]. The first case corresponds to the
setting of post-quantum security (usually abbreviated as QS1) where the adver-
sary only has quantum computing power. This setting covers the scenario once
the first large-scale quantum computer exists and corresponds to the setting
described above which typically requires switching from the ROM to the QROM.
The second case deals with the setting of quantum security (usually referred to
as QS2) where protocol participants also have quantum computing power. This
covers a scenario where quantum computers are ubiquitous but also earlier sce-
narios using more sophisticated attacks such as the frozen smart-card attack [28].

Observe that security in the QS2 setting is more involved since the adver-
sary gets superposition access to the primitive, e.g., it can encrypt/sign mes-
sages in a superposition. Many schemes that are secure in the QS1 setting
are however completely broken in the QS2 setting as is shown by a series of
works [2,4,33,36,41,42,48]. Yet another difficulty in the QS2 setting is that there
are many different security notions [1,12,14,15,25,28–30,43]. These notions
use different approaches to formalise the idea of allowing the adversary to
“encrypt/sign messages in a superposition” in order to obtain a security notion
that translates the classical intuition of the corresponding security notion to the
QS2 setting.

Our Contribution. In this work, we study the security of sponge-based authen-
ticated encryption schemes against quantum attackers which has so far only
received very little attention. In particular, we scrutinize the scheme Slae as
put forward by Degabriele et al. [21] in both settings, namely in the QS1 and
QS2 setting. Observe that the beauty of Slae is its simplicity in terms of their
construction, i.e., Slae is a N2-composition [44] of a symmetric key encryption
scheme and a message authentication code. In particular, Degabriele et al. show
that Slae can be viewed in terms of smaller components (with slight improve-
ments by [39]), i.e., the encryption scheme consists of a sponge-based pseudoran-
dom function (PRF) and a sponge-based pseudorandom generator (PRG) while
the MAC consists of the combination of a sponge-based hash function and a
sponge-based PRF (a more detailed description can be found in Sect. 3). Note
that our analysis does not only contribute towards the study of Slae but rather
also provides a QS1 and QS2 analysis of the core primitives themselves which
is of independent interest. Note that Slae is a leakage-resilient AEAD scheme.
However, in this work we do not consider the leakage setting but rather use the
scheme Slae due to its simplicity in order to provide a thorough security analy-
sis of sponge-based AEAD schemes and the employed core primitives in the QS1
and QS2 setting closing this gap in the literature.
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In the QS1 setting, we are able to establish security for Slae. In particular,
by using the one-way to hiding lemma [3,53], we can show that the underlying
building blocks, namely the sponge-based PRF and PRG are secure with respect
to quantum adversaries. For the sponge-based hash function, we show that we
can leverage existing results [18] to the construction specifics of Slae. Finally,
being equipped with the established results, we can overall establish security of
Slae in the QS1 setting.

In the QS2 setting, we analyse the ciphertext indistinguishability of Slae.
Unlike the QS1 setting, there are different notions for ciphertext indistinguisha-
bility in the QS2 setting which do not form a strict hierarchy. We consider the
two strongest, incomparable notions by Gagliardoni et al. [28] and Mossayebi
and Schack [43]. We extend these notions to the nonce-based setting and show
that Slae achieves neither of these notions by showing attacks. Finally, we argue
that one may establish QS2 security in the sense of [12] of the generic construc-
tion that underlies Slae. However, the security when studying the sponge-based
construction is left as an open problem.

As mentioned above, we chose to analyse Slae rather than other relevant
sponge-based schemes due to its modularity. Since Slae is based on a ran-
dom transformation, we can leverage techniques for the QROM, whereas other
sponge-based primitives are typically based on a random permutation. Our
results yield post-quantum secure pseudorandom functions, pseudorandom gen-
erators, and hash functions all constructed entirely from sponges. Since these are
fundamental cryptographic building blocks our contribution is more than just a
post-quantum security proof for an AEAD scheme and can be applied elsewhere.
In particular, it provides a starting point for proving post-quantum security of
more practical schemes.

Related Work. Sponges were introduced by Bertoni et al. [8] as a tool to construct
cryptographic hash functions which resulted in the hash function SHA-3. Since
then, sponges were shown to be a versatile tool allowing not only the construc-
tion of hash functions but also primitives including authenticated encryption
schemes [21–24,35].

Research in the realm of QS1 security of sponges mainly targets the secu-
rity of hash functions. The first result addresses sponge-based hash functions
based on random transformations or non-invertible random permutations [18].
The ultimate goal is a post-quantum proof for SHA-3 which is targeted both
by Unruh [55]1 and Czajkowski [16] using Zhandry’s compressed oracle tech-
nique [58]. Apart from that we are not aware of other works considering the QS1
security of sponge-based constructions.

In the QS2 setting, [20] studies the quantum indifferentiability of sponges
and [19] analyses the quantum indistinguishability of sponge-based pseudoran-
dom functions. The analysis in [19] uses keyed functions for the underlying block
function which allow the adversary only classical access to these block functions
while it has superposition access to the resulting pseudorandom function.

1 Observe that the current version of the paper is flawed.
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Soukharev et al. [51] study the generic composition paradigms for authenti-
cated encryption in the QS2 setting according to the security notions put forth by
Boneh and Zhandry [12]. However, their proof implicitly assumes that superpo-
sition queries by the adversary can be recorded which, at this point, was unclear
how to do as was pointed out Chevalier et al. [15].

Structure of the Paper. In Sect. 2 and Appendix A, we provide the necessary
notation and background. The general sponge construction and the particular
instantiation Slae is provided in Sect. 3. In Sect. 4, we provide a security analysis
in the QS1 setting while in Sect. 5, we provide an analysis in the QS2 setting. We
conclude the paper in Sect. 6 and provide proof details in Appendices B and C.

2 Preliminaries

2.1 Notation

For any positive integer n ∈ N, we use [n] to denote the set {1, . . . , n}. For any
two bit strings x and y of length n, |x| denotes the size of x, x ‖ y denotes their
concatenation and by x · y = x1y1 ⊕ x2y2 ⊕ . . . ⊕ xnyn we denote their inner
product. Furthermore, for a positive integer k ≤ |x|, we use the notation �x�k

to denote the string when truncated to its k least significant bits while �x	k

denotes the string when truncated to its k most significant bits. We denote the
set of bit strings of size n by {0, 1}n, and we denote by {0, 1}∗ the set of all bit
strings of finite length. By writing x ←$ X , we denote the process of sampling
at random a value from a finite set X and assigning it to x. We simply denote
by par(x) the parity of x. Furthermore, we denote by YX the set of all functions
from X to Y. We assume familiarity with the basics of quantum computation
such as bra-ket notion for quantum states, e.g., |x〉, Hadamard operators, and
measurements. For an in-depth discussion we refer to [46].

2.2 Definitions

Due to space restrictions, we provide basic definitions about authenticated
encryption with associated data (AEAD) and message authentication codes
(MAC) in Appendix A.

Pseudorandom Function. Next we define pseudorandom functions and their
respective security.

Definition 1. Let F : K × X → Y be a deterministic function. We define the
PRF advantage of an adversary A against F as

AdvPRF
F (A) =

∣
∣
∣
∣
Pr

K←$ K
[AF(K,·) → 1] − Pr

F←$ YX
[AF(·) → 1]

∣
∣
∣
∣

.
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Pseudorandom Generator. Next we define a pseudorandom generator and its
security. Observe that we specify a PRG with variable output length, where the
length is specified as part of the input.

Definition 2. Let G : S ×N → {0, 1}∗ be a pseudorandom generator with asso-
ciated seed space S and let � ∈ N define the PRG’s output length. We define the
PRG advantage of an adversary A against G as

AdvPRG
G (A) =

∣
∣
∣
∣
Pr

z←$ S
[A(G(z , �)) → 1] − Pr

R←$ {0,1}�
[A(R) → 1]

∣
∣
∣
∣

.

Hash Function. Hash functions are a versatile cryptographic primitive that are
efficiently computable functions that compress bit strings of arbitrary length to
bit strings of fixed length. Hash functions do enjoy a variety of security properties
and next we define collision resistance over a domain X = {0, 1}∗.

Definition 3. Let H : X → {0, 1}w be a hash function constructed from a ran-
dom transformation ρ. We define the collision-resistance advantage of an adver-
sary A against H where the adversary has (quantum) oracle access to ρ as

AdvCR
H (A) = Pr[(X0,X1) ←$ Aρ : H(X0) = H(X1) ∧ X0 �= X1 ∧ X0,X1 ∈ X ] .

Since we consider hash functions in the QS1 and QS2 setting in this work,
we require two additional properties when arguing about the security of a hash
function, namely collapsing hash functions and zero-preimage resistance.

The collapsing property of hash functions is due to Unruh [54], who observed
that collision resistance is not sufficient to construct commitment schemes secure
against quantum adversaries.2 Intuitively, a hash function is collapsing if an
adversary can not distinguish between a measurement of the output (the hash
value) and a measurement of the input. In [52, Lemma 25], Unruh shows that
collapsing hash functions are also collision resistant. We present the formal def-
inition of collapsing security in Appendix A.3.

Zero-preimage resistance states that it is infeasible for the adversary to out-
put an element from the function’s domain which evaluates to the zero string.

Definition 4. Let fρ : {0, 1}x → {0, 1}y be a function. We define the zero-
preimage resistance advantage of an adversary A against fρ where the adversary
has (quantum) oracle access to ρ as

AdvZP
fρ (A) = Pr[fρ(X ) = 0y : X ←$ Aρ] .

2 In a nutshell, a quantum adversary can open a commitment to an arbitrary message
but not to two different messages. Thus it breaks the binding property without
finding a collision.
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Quantum Random Oracle Model and One-way to Hiding Lemma. The quantum
random oracle model (QROM) was formalised by Boneh et al. [10] extending
the random oracle model (ROM) [7] to the quantum setting. The QROM has
become the de-facto standard for analysing primitives which rely on random
oracles. Boneh et al. [10] gave a separation between the ROM and the QROM,
yet under non-standard assumptions. Recently, Yamakawa and Zhandry [56] pro-
vided a separation under standard assumptions. More precisely, let H : {0, 1}n →
{0, 1}n ,3 then the QROM allows a quantum adversary access to the unitary UH

that does the following
∑

x,y∈{0,1}n

αx,y |x〉 |y〉 �→
∑

x,y∈{0,1}n

αx,y |x〉 |y ⊕ H(x)〉 .

We write AH to denote that A has oracle access to H which means having access
to an oracle performing the unitary above.

The one-way to hiding (O2H) lemma is a fundamental tool for proofs in
the quantum random oracle model (QROM). It provides an upper bound on
the distinguishing advantage of a quantum adversary between different random
oracles when having superposition access to it. The first variant was given by
Unruh [53]. Subsequently, variants achieving tighter bounds were given in [3,9,
40], yet at the cost of a more restricted applicability.

Below we recall the O2H lemma by Unruh [53], albeit in the formulation put
forth by Ambainis et al. [3].

Lemma 5 (One-way to hiding (O2H) [3]). Let G, H : X → Y be random
functions, let z be a random bitstring, and let S ⊂ X be a random set such
that ∀x /∈ S, G(x) = H(x). (G,H,S, z) may have arbitrary joint distribution.
Furthermore, let AH be a quantum oracle algorithm which queries H at most q
times. Define an oracle algorithm BH as follows: Pick i ←$ [q ]. Run AH

q (z) until
just before its i-th query to H. Measure the query in the computational basis, and
output the measurement outcome. Then it holds that

∣
∣Pr[AH(z) → 1] − Pr[AG(z) → 1]

∣
∣ ≤ 2q

√

Pr[x ∈ S |BH(z) → x] .

3 The Sponge Construction and Slae

In this section, we provide the basic syntax about the sponge construction. Being
equipped with the required syntax, we review Slae which is a N2-based authen-
ticated encryption scheme [44] based on the sponge construction. Recall that a
N2-construction follows the Encrypt-then-MAC paradigm and Slae is a refine-
ment that builds a nonce-based AEAD scheme from a nonce-based symmetric
key encryption scheme and a vector MAC.

3 We assume that domain and co-domain are of the same size as it is the only case we
are considering in this work.
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3.1 Sponge Construction

The sponge construction has been introduced by Bertoni et al. [8] and has been
used to build various cryptographic primitives. In Fig. 1, we provide an illustra-
tion of the plain sponge construction.

0 ρ
⊕

N1

ρ
⊕

N2

ρ
⊕

N3

ρ
⊕

N4

ρ

Z1 Z2

absorb squeeze

Fig. 1. Plain sponge using four rounds of absorbing and two rounds of squeezing.

The sponge construction consists of a so-called absorbing phase and a squeez-
ing phase that is built upon a transformation ρ that is iteratively called on its
input. This transformation basically maps strings of length n to strings of the
same length, and in particular one can decompose n into two values r + c where
r is called the rate and c is called the capacity. After each iteration of the trans-
formation we refer to its output as the state S . Furthermore, we usually refer to
the leftmost r bits of the state as the outer part S̄ , which is equivalent to �S	r ,
and we refer to the remaining c bits as the inner part Ŝ , which is equivalent to
�S�c . In order to input some element N , this input is first padded to a non-zero
multiple of the rate r . For this, we use an injective padding function pad to
get l ≥ 1 input blocks N1 ‖ N2 ‖ . . . ‖ Nl = pad(N ). At the ith iteration, Ni

is XORed with the outer part S̄ before being inputted to the transformation,
i.e., more formally Yi ← (Ni ⊕ S̄i) ‖ Ŝi and evaluating Si+1 ← ρ(Yi). In the
squeezing phase, one can produce an output in one or more iterations obtaining
r bits of output per iteration, i.e., more formally at the jth iteration the output
Zj is produced by Zj ← S̄j .

3.2 The FGHF’ Construction and Slae

Degabriele et al. [21] provide a generic N2-construction [44] of a leakage-resilient
authenticated encryption scheme with associated data called the FGHF’ con-
struction. In particular, they show that the encryption component can be con-
structed from a fixed-input length function family that retains pseudorandom-
ness in the presence of leakage (F ) combined with a (standard) pseudorandom
generator (G) while the authentication component is built from a collision-
resistant hash function (H) and a fixed-input length function family that retains
both pseudorandomness and unpredictability in the presence of leakage (F ′).
Overall this yields a leakage-resilient AEAD scheme. Observe that Krämer and



Sponge-Based Authenticated Encryption 237

Slae-Enc(K,N ,A,M )

C SlEnc(K,N ,M )

T SlMac(K, (N ,A,C ))

return (C ,T )

SlEnc-Enc(K,N ,M )

z SlFunc(K,N )

Z SPrg(z , |M |)
C Z ⊕ M

return C

SlMac-T(K, (N ,A,C ))

H SvHash(N ,A,C )

T SlFunc(K, H)

return T

SlFunc(K,N )

l
⌈

|N |
r

⌉

Y0 K

for i = 1..l

Si ρ(Yi−1)

Yi (Ni ⊕ S̄i) ‖ Ŝi

Sl+1 ρ(Yl)

return Sl+1

SPrg(z , y)

l
⌈
y
r

⌉

S0 z

for i = 1..l

Si ρ(Si−1)

Zi S̄i

Z Z1 ‖ . . . ‖ Zl

return �Z �y

SvHash(N ,A,C )

S0 0n

Y0 (N ⊕ S̄0) ‖ Ŝ0

S1 ρ(Y0)

u
⌈

|A|
r

⌉

for i = 1..u

Yi (Ai ⊕ S̄i) ‖ Ŝi

Si+1 ρ(Yi)

Ŝu+1 Ŝu+1 ⊕ (1 ‖ 0c−1)

v
⌈

|C |
r

⌉

for i = u + 1..u + v

Yi (Ci−u ⊕ S̄i) ‖ Ŝi

Si+1 ρ(Yi)

h �Su+v+1�w
return h

Fig. 2. Pseudocode of Slae and the underlying components. We only provide the
details of the encryption and tagging algorithms. Decryption and verification works in
the obvious reversed way.

Struck [39] showed that leakage-resilient pseudorandom functions suffice to build
the scheme of Degabriele et al. [21] dropping the unpredictability requirement.

Furthermore, Degabriele et al. [21] show that the generic construction FGHF’
can be instantiated entirely from the sponge construction using a random trans-
formation. Their particular sponge construction is called Slae which is com-
posed of a symmetric key encryption scheme SlEnc and a MAC SlMac accord-
ing to the N2-construction. In particular, viewing each of the schemes in terms of
their smaller components, Degabriele et al. build SlEnc from a leakage-resilient
function SlFunc and a pseudorandom generator SPrg while SlMac can be
built from a collision-resistant hash function SvHash and a leakage-resilient
function SlFunc, and a formal description is given in Fig. 2. Regarding the
security of Slae, they prove the security via a composition theorem for the
N2-construction in the leakage setting as established by Barwell et al. [5].

However, the quantum resistance of Slae has not been considered yet. In
the following, we will scrutinize the Slae construction in this regard and we set
the respective leakage sets to be empty. Therefore, we analyse the construction
in the standard setting without leakage.
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4 Post-Quantum (QS1) Security

In this section we analyse the security of Slae against quantum adversaries in the
QS1 setting. The respective proofs of this Section can be found in Appendix B.

4.1 Security of SlFunc

The sponge-based pseudorandom function SlFunc is illustrated in Fig. 3 while
the pseudocode can be found in Fig. 2. The function initialises the state of the
sponge with the key and then absorbs the input, in case of Slae the nonce N ,
r bits at a time. After the nonce has been absorbed, the output is obtained
by applying the transformation ρ a final time and outputting the state. Note
that the function outputs the full state rather than squeezing it over several
rounds. That is also the reason why ρ is required to be a random transformation
rather than a random permutation. Otherwise, an adversary could simply undo
the transformation from the output by applying the inverse permutation. The
theorem below gives a bound on distinguishing SlFunc from a random function
when having superposition access to the underlying random oracle ρ. The proof
utilises the O2H lemma (cf. Lemma 5).

K ρ ρ ρ ρY0 S1 Y1 S2 Yl−1 Sl Yl Sl+1

⊕ ⊕ . . .

. . .

⊕ ⊕

N1 N2 Nl−1 Nl

Fig. 3. Sponge-based pseudorandom function SlFunc.

Theorem 6. Let F = SlFunc be the function displayed in Fig. 3. Then for
any quantum adversary A, making qF (classical) queries to SlFunc and qρ

(quantum) queries to ρ, it holds that

AdvPRF
SlFunc(A) ≤ q2F + qF

2n+1
+ 2qρ

√

2ν

2n
.

Proof. Let l =
⌈

ν
r

⌉

be the number of absorption steps and we assume for sim-
plicity that ν is a multiple of the rate. We further recursively define sets Yi

as

Y0 = {K} and Yi = {R ‖ �ρ(x)�c |R ∈ {0, 1}r , x ∈ Yi−1}
for all i ∈ {1, . . . , l}, i.e., Yi is the set of all possible values that can occur as input
to ρ while evaluating F(K, ·). It follows that |Yi| ≤ 2ir and, in particular, |Yl | ≤
2lr = 2ν . Note that every input N defines a sequence of states Y0,Y1, . . . ,Yl
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that occur while evaluating the sponge. For an input N , let Yi[N ] denote the
state Yi for this particular input, e.g., Y1[N ] = (�ρ(K)	r ⊕ N1) ‖ �ρ(K)�c , where
N = N1 ‖ . . . ‖ Nl . In particular, for every input N it holds that Y0[N ] = K.

We want to bound the following difference

AdvPRF
SlFunc(A) =

∣
∣
∣
∣
Pr

K←$ K
[AF(K,·),ρ → 1] − Pr

F←$ YX
[AF(·),ρ → 1]

∣
∣
∣
∣

.

In order to do this, we define the oracle ρ∗, where ρ∗(Yl [N ]) = F(N ) for all
Yl [N ] ∈ Yl . That is, oracle ρ∗ is reprogrammed on all final input states Yl [N ] to
output the output of a random function F on the input N . Then it holds that

∣
∣
∣
∣
Pr

K←$ K
[AF(K,·),ρ → 1] − Pr

F←$ YX
[AF(·),ρ → 1]

∣
∣
∣
∣

≤
∣
∣
∣
∣
Pr

K←$ K
[AF(K,·),ρ → 1] − Pr

F←$ YX
[AF(·),ρ∗ → 1]

∣
∣
∣
∣

+
∣
∣
∣
∣

Pr
F←$ YX

[AF(·),ρ∗ → 1] − Pr
F←$ YX

[AF(·),ρ → 1]
∣
∣
∣
∣

.

For the first difference on the right-hand side, the oracles are consistent in
both cases. However, if the adversary finds a collision on the final input to
ρ for SlFunc(K, ·), more precisely, two inputs N and N ′ such that �N 	ν−r �=
�N ′	ν−r and Yl [N ] = Yl [N ′], then these two inputs will result in the same output
for F and (most likely) different outputs for F . Finding such a collision is a
counting argument over the number of queries to the function and an application
of Gaussian summation. Hence, it follows that

∣
∣
∣
∣
Pr

K←$ K
[AF(K,·),ρ → 1] − Pr

F←$ YX
[AF(·),ρ∗ → 1]

∣
∣
∣
∣
≤ q2F + qF

2n+1
.

For the second difference, we can apply the O2H lemma (cf. Lemma 5) which
yields
∣
∣
∣
∣

Pr
F←$ YX

[AF(·),ρ∗ → 1] − Pr
F←$ YX

[AF(·),ρ → 1]
∣
∣
∣
∣
≤ 2qρ

√

Pr[x ∈ Yl | BF(·),ρ → x] .

Recall that BF(·),ρ simply runs AF(·),ρ and outputs the measurement outcome
of a randomly chosen query to ρ. However, A has no information about the set
Yl , hence we conclude with

2qρ

√

Pr[x ∈ Yl | BF(·),ρ → x] ≤ 2qρ

√

|Yl |
2n

≤ 2qρ

√

2ν

2n
.

Collecting everything yields

AdvPRF
SlFunc(A)=

∣
∣
∣
∣
Pr

K←$ K
[AF(K,·),ρ → 1] − Pr

F←$ YX
[AF(·),ρ → 1]

∣
∣
∣
∣

≤ q2F + qF
2n+1

+ 2qρ

√

2ν

2n
.

��
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We would like to point out the following. The length of the nonce ν is typically
of fixed size, e.g., in case of the NIST lightweight cryptography standardization
process [45] the nonce is assumed to be 12 bytes long. In particular, ν will be
much smaller than the size of the sponge n.

4.2 Security of SPrg

In this section we show that the sponge-based pseudorandom generator SPrg is
secure against adversaries having superposition access to the underlying random
oracle ρ. The PRG SPrg is displayed in Fig. 4 and the respective pseudocode
is given in Fig. 2. The construction deviates from more common constructions
for pseudorandom generators since it initialises the state of the sponge with the
seed rather than absorbing it. The output is then generated by squeezing r bits
at each iteration of the sponge. Similar to the previous section, the proof relies
on the O2H lemma.

ρ ρ ρ ρz S1 S2 S3 S4 Sl−1 Sl

. . .

. . .

Z1 Z2 Z3 Z4 Zl−1 Zl

Fig. 4. Sponge-based pseudorandom generator SPrg.

Theorem 7. Let SPrg be the pseudorandom generator displayed in Fig. 4.
Then for any quantum adversary A, making q (quantum) queries to ρ, and
receiving an input of length μ it holds that

AdvPRG
SPrg(A) ≤ 2lq√

2c
,

where l =
⌈

μ
r

⌉

is the number of squeezing steps to obtain the required output
length μ.

Proof. Let l =
⌈

μ
r

⌉

be the number of squeezing steps. We assume, for sake of
simplicity, that μ is a multiple of r . For a seed z , let S1,S2, . . . ,Sl denote the
sequence of states that occur during evaluation of the sponge, i.e., Si = ρi−1(z ),
where ρi corresponds to i consecutive evaluations of ρ. We want to bound the
following difference

AdvPRG
SPrg(A) =

∣
∣
∣
∣
Pr

z←$ S
[Aρ(Z ) → 1] − Pr

R←$ {0,1}μ
[Aρ(R) → 1]

∣
∣
∣
∣

,

where Z = Z1 ‖ . . . ‖ Zl = SPrg(z , lr), i.e., obtaining an output of length
lr using SPrg on seed z and R = R1 ‖ . . . ‖ Rl , such that |Zi| = |Ri| = r .
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We write R[i,j] for Ri ‖ . . . ‖ Rj , the same for Z . In particular, R[i,j] for i > j
equals the empty string. In the following we leave out the probability spaces for
readability. We obtain

AdvPRG
SPrg(A) =

∣
∣Pr[Aρ(Z[1,l]) → 1] − Pr[Aρ(R[1,l]) → 1]

∣
∣

≤
l∑

i=1

∣
∣Pr[Aρ(R[1,i−1] ‖ Z[i,l]) → 1] − Pr[Aρ(R[1,i] ‖ Z[i+1,l]) → 1]

∣
∣ .

We start with the first difference, that, after simple rewriting, is,
∣
∣Pr[Aρ(Z1 ‖ Z[2,l]) → 1] − Pr[Aρ(R1 ‖ Z[2,l]) → 1]

∣
∣

≤ ∣
∣Pr[Aρ(Z1 ‖ Z[2,l]) → 1] − Pr[Aρ1(R1 ‖ Z[2,l]) → 1]

∣
∣

+
∣
∣Pr[Aρ1(R1 ‖ Z[2,l]) → 1] − Pr[Aρ(R1 ‖ Z[2,l]) → 1]

∣
∣ ,

where ρ1(R1 ‖ [S1]c) = S2. Then it holds that the first difference above is 0, as
the relation between R1 and ρ1 is the same as between Z1 and ρ, and we merely
need to bound the second difference, which only differs in the random oracle (ρ
and ρ1) at input R1 ‖ [S1]c . Let S1 = {R1 ‖ [S1]c}, then we can apply the O2H
lemma (cf. Lemma 5) to obtain

∣
∣Pr[Aρ1(R1 ‖ Z[2,l]) → 1] − Pr[Aρ(R1 ‖ Z[2,l]) → 1]

∣
∣

≤ 2q
√

Pr[x ∈ S1 | Bρ(R1 ‖ Z[2,l]) → x] .

While A knows R1, it has no information about [S1]c (note that Zi, for i > 1
provides no information about S1 due to ρ being one-way in the random oracle
model). This yields

Pr[x ∈ S1 | Bρ(R1 ‖ Z[2,l]) → x] ≤ |S1|
2c

≤ 1
2c

.

The same argument applies to the other differences, where more and more r bit
blocks of A’s input are replaced with Ri. More precisely, we obtain

∣
∣Pr[Aρ(R[1,i−1] ‖ Z[i,l]) → 1] − Pr[Aρ(R[1,i] ‖ Z[i+1,l]) → 1]

∣
∣

≤ 2q
√

Pr[x ∈ Si | Bρ(R[1,i] ‖ Z[i+1,l]) → x] ≤ 2q√
2c

,

where Si = {Ri ‖ [Si]c}. Collecting everything then yields

AdvPRG
SPrg(A) =

∣
∣Pr[Aρ(Z[1,l−1]) → 1] − Pr[Aρ(R[1,l−1]) → 1]

∣
∣

≤
l∑

i=1

∣
∣Pr[Aρ(R[1,i−1] ‖ Z[i,l]) → 1] − Pr[Aρ(R[1,i] ‖ Z[i+1,l]) → 1]

∣
∣

≤
l∑

i=1

2q
√

Pr[x ∈ Si | Bρ(R[1,i] ‖ Z[i+1,l]) → x] ≤ 2lq√
2c

.

��
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4.3 Security of SvHash

In this section we analyse the QS1 security of SvHash which we display in
Fig. 5 and its respective pseudocode can be found in Fig. 2. Observe that in
order to compute a hash digest, the internal state is initialised to an evaluation
of the random transformation of a zero bit string of length n XORed with the
passed nonce. Afterwards the padded associated data and padded ciphertext
are absorbed blockwise. Degabriele et al. chose to employ a domain separation
to separate the boundary between associated data and ciphertext consisting of
XORing the string 1 ‖ 0c−1 to the inner state Ŝ as soon as the associated data
has been absorbed. Observe that the domain separation can be viewed as a
sponge construction with a rate increased by one bit. In this sense, an adversary
A against SvHash with rate r and capacity c can be viewed as an adversary
against the plain sponge-based hash function with rate r +1 and capacity c − 1,
where A guarantees that the (r +1)th bit of each input block is 0 except for the
block which corresponds to absorbing the first ciphertext block. Hence a bound
for the plain sponge-based hash function directly yields a bound for SvHash
by accounting for the one bit loss in the capacity. The proof can be found in
Appendix B.

0 ρ
⊕

N

ρ
⊕

A1

. . .

. . .

ρ
⊕

Au

ρ
⊕

⊕

C1

. . .

. . .

1 0c−1

ρ
⊕

Cv

Fig. 5. Sponge-based Hash function SvHash.

Theorem 8. Let SvHash be the hash function as displayed in Fig. 5. Then for
any quantum adversary A making q (quantum) queries to ρ, it holds that

AdvCR
SvHash(A) ≤ √

ε1 + l · ε2 + ε3 ,

where ε1 ≤ (q+1)22−c+4, ε2 ≤ q3
(

δ′+324
2c−1

)

+7δ
√

3(q+4)3

2c and ε3 ≤ q3
(

δ′+324
2w+1

)

+

7δ
√

3(q+4)3

2w+2 with non-zero constants δ and δ′ as well as l =
⌈

μ
r

⌉

where μ is the
length of the (padded) message.

4.4 Security of Slae

In this section we show that the IND-CPA and INT-CTXT security of the
authenticated encryption scheme Slae in the QS1 follows from the QS1 security
of the underlying primitives SlFunc, SPrg, and SvHash. The proofs can be
found in Appendix B.
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IND-CPA Security of Slae. IND-CPA security follows from SlFunc and SPrg
being a secure PRF and PRG, respectively. Theorem 9 first shows that SlFunc
and SPrg yield SlEnc being IND-CPA-secure while Theorem 10 then estab-
lishes the IND-CPA security of Slae.
Theorem 9. Let SlFunc be a pseudorandom function and SPrg a pseudoran-
dom generator. Let further SlEnc be the symmetric key encryption scheme con-
structed from SlFunc and SPrg as shown in Fig. 2. For any quantum adversary
A, making qEnc queries to its encryption oracle, against the IND-CPA security
there exist adversaries Aprf and Aprg against SlFunc and SPrg, respectively,
such that

AdvIND-CPA
SlEnc (A) ≤ 2AdvPRF

SlFunc(Aprf ) + 2q AdvPRG
SPrg(Aprg) .

Theorem 10. Let SlEnc be the symmetric key encryption scheme and SlMac
be a MAC. Let further Slae be the authenticated encryption scheme constructed
from SlEnc and SlMac as shown in Fig. 2. For any quantum adversary A,
making qEnc queries to its encryption oracle, against the IND-CPA security there
exists an adversary Ase , such that

AdvIND-CPA
Slae (A) ≤ AdvIND-CPA

SlEnc (Ase) .

INT-CTXT Security of Slae. The INT-CTXT security follows from SlFunc
being a secure PRF and SvHash being a collision-resistant hash function. In
Theorem 11, we show that both yield a SUF-CMA-secure MAC SlMac. Sub-
sequently, Theorem 12 shows that the SUF-CMA security of SlMac ensures
INT-CTXT security of Slae.
Theorem 11. Let SlFunc be a function and SvHash a hash function. Let
further SlMac be the MAC constructed from SlFunc and SvHash as shown
in Fig. 2. For any quantum adversary A, making qT queries to its tagging oracle
and qF to its forge oracle, against the SUF-CMA security there exist adversaries
Aprf and Ahash against SlFunc and SvHash, respectively, such that

AdvSUF-CMA
SlMac (A) ≤ AdvPRF

SlFunc(Aprf ) +AdvCR
SvHash(Ahash) +

qF

2τ
.

Theorem 12. Let SlEnc be the symmetric key encryption scheme and SlMac
be a MAC. Let further Slae be the authenticated encryption scheme constructed
from SlEnc and SlMac as shown in Fig. 2. For any quantum adversary A,
making qE queries to its encryption oracle and qF queries to its forge oracle,
against the INT-CTXT security there exists an adversary Amac, such that

AdvINT-CTXT
Slae (A) ≤ AdvSUF-CMA

SlMac (Amac) .

5 Quantum (QS2) Security

In this section we study the security of Slae in the QS2 setting, where both
the adversary and the challenger are quantum. Unlike the QS1 setting, the QS2
setting comes with several security notions. We analyse Slae, or even more
precisely its encryption component SlEnc, with respect to the quantum security
notions put forward in [12,28,43] providing positive and negative results.
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5.1 QS2 Security Notions for SKE

Unlike the QS1 setting, there are several notions in the QS2 setting for encryp-
tion schemes. The first notion, called IND-qCPA, was presented by Boneh and
Zhandry [12]. This notion allows the adversary superposition queries in the
learning (qCPA) phase, while its challenge (IND) phase is restricted to classical
queries. They further showed that simply allowing a quantum indistinguishabil-
ity phase results in an unachievable security notion, called fqIND-CPA. More
precisely, they consider a left-or-right oracle which performs the following

∑

x0,x1,y

αx0,x1,y |x0〉 |x1〉 |y〉 �→
∑

x0,x1,y

αx0,x1,y |x0〉 |x1〉 |y ⊕ Enc(K, xb)〉 .

This operator entangles the ciphertext register with one of the message registers.
Boneh and Zhandry show how this entanglement can be exploited to determine
the bit b, irrespectively of the underlying encryption scheme.

Later, Gagliardoni et al. [28] and Mossayebi and Schack [43] provided security
notions which allow the challenge (IND) phase to be quantum while not suffering
from the impossibility result from [12].

An exhaustive study of QS2 security notions for encryption schemes is given
by Carstens et al. [14]. Their study includes the aforementioned notions, along
with many variants differing in the number of queries during challenge resp.
learning phase. They show, surprisingly, that the notions do not form a strict
hierarchy. Instead, the notions by Gagliardoni et al. [28] and Mossayebi and
Schack [43] are incomparable but, together, imply all other notions. To ensure
security in the QS2 setting, schemes have to be analysed with respect to both
of these notions.

Nonce-Respecting Adversaries in the QS2 Setting. Another question that arises
for the security of Slae, deals with the nonce selection. Typically, adversaries
are assumed to be nonce-respecting, meaning that they never repeat a nonce.
While this is well defined in both the classical as well as QS1 setting, there is
no definition for such adversaries in the QS2 setting. Kaplan et al. [36] mention
this problem and sidestep it by letting the game pick the nonce at random.
Thus, they essentially switch to the weaker IV setting which is well-studied
in the classical setting. In our adapted security notions, we let the adversary
submit a nonce register along with its message(s). We observe that it is not
necessary to observe nonces in superposition since all QS2 notions for encryption
schemes [12,15,28,29,43] consider the randomness (in case of Slae the nonce)
to be classical.4 To comply with this, we let the challenger measure the nonce
register, thus ensuring a classical nonce, and reject a query if a nonce repeats.

5.2 Left-or-Right Security of SlEnc

The notion by Gagliardoni et al. [28] follows a left-or-right approach, similar
to the one by Boneh and Zhandry [12], in which the adversary submits two
4 The same applies to QS2 notions for MACs and signatures [1,11,12,25].
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messages (possibly in superposition) and receives the encryption of one of the
two. The main difference is that Gagliardoni et al. use type-2 operators which
operate directly on the register (instead of XORing the output to a separate
output register). These operators are more powerful than the corresponding type-
1 operator and they can only be realised for functions that are reversible. Type-2
operators were first studied by Kashefi et al. [38] and have further been studied
by Carstens et al. [14] for symmetric key encryption and by Gagliardoni et al. [29]
for public key encryption.

More formally those operators can be formalised as follows. Let F : {0, 1}n →
{0, 1}n be a function. The type-1 operator for F is the unitary U

(1)
F that does

the following
∑

x,y∈{0,1}n

αx,y |x〉 |y〉 �→
∑

x,y∈{0,1}n

αx,y |x〉 |y ⊕ F(x)〉 .

Observe that the realisation of U
(1)
F is efficient if F can be realised efficiently [46].

The type-2 operator for F is the unitary U
(2)
F that does the following

∑

x∈{0,1}n

αx |x〉 �→
∑

x

αx |F(x)〉 .

A realisation of a type-2 operator is, unlike for type-1 operators, not straightfor-
ward. Kashefi et al. [38] show that they can be realised using type-1 operators for
both F and F−1. Gagliardoni et al. [28] use this to show that type-2 operators
for symmetric key encryption schemes can be realised using type-1 operators for
encryption and decryption (cf. Fig. 6).

Using type-2 operators, Gagliardoni et al. [28] bypass the impossibility result
by Boneh and Zhandry [12]. Since the adversary only receives a ciphertext reg-
ister, it can not exploit the entanglement between registers as was the case for
fqIND-CPA.

U
(1)
Enc U

(1)
Dec

|N 〉

|M 〉

|0〉

|N 〉

|C 〉

|0〉

Fig. 6. Circuit for realising the type-2 operator U
(2)
Enc using type-1 operators U

(1)
Enc and

U
(1)
Dec for Enc and Dec, respectively.

Below we define LoR-qIND security. This is the notion given in [28] restricted
to a single challenge and no learning queries. The difference is that our notion
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allows the adversary to specify a register containing the nonce used for encryp-
tion. To ensure the usage of classical randomness, we let the challenger mea-
sure this register. We restrict ourselves to the weaker LoR-qIND notion, since
we show below that Slae does not even achieve this notion. Extension to the
stronger LoR-qINDqCPA (allowing multiple challenges and learning queries) is
straightforward by giving the adversary oracle access to a left-or-right oracle
and a learning oracle implementing the type-2 encryption operator. The nonce-
respecting property is ensured by letting the challenger reject queries for which
the measurement of the nonce register yields an already measured nonce.

Definition 13. Let Σ = (Enc, Dec) be symmetric key encryption scheme and
the security game LoR-qIND be defined as in Fig. 7. For any adversary A we
define its LoR-qIND advantage as

AdvLoR-qIND
Σ (A) =

∣
∣2 Pr[LoR-qINDA → 1] − 1

∣
∣ .

LoR-qIND

K $ K
implement U

(2)
Enc using K

b $ {0, 1}
|N 〉N , |ϕ0〉M , |ϕ1〉M $ A1 ()

Measure register |N 〉N
trace out |ϕ1−b〉
|ψ〉 U

(2)
Enc (|N 〉N |ϕb〉M )

b′
$ A2 (|ψ〉)

return (b′ = b)

Fig. 7. Security notion LoR-qIND following [28].

The following theorem shows that the sponge-based encryption scheme
SlEnc is not LoR-qIND-secure. The attack uses a Hadamard distinguisher, fol-
lowing the one given in [28], that exploits the quantum insecurity of the one-time
pad approach. The proof details can be found in Appendix C.

Theorem 14. Let SlEnc be the sponge-based encryption scheme displayed in
Fig. 2 with message space {0, 1}μ. Then there exist an adversary A such that

AdvLoR-qIND
SlEnc (A) = 1 − 1

2μ
.

Observe that there is no security notion for AEAD schemes using type-2 opera-
tors. Both [28] and [29] only focus on encryption schemes. The obvious question
is whether the MAC can be implemented using a type-2 operator. Regardless
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of this, we point out that the attack does not necessarily extend to Slae. The
reason is that the register containing the tag will be entangled which thwarts an
attack by simply discarding the tag.

Note that the same attack applies to the encryption scheme underlying the
sponge-based AEAD schemes ISAP [23] and its successor ISAP v2.0 [22].

5.3 Real-or-Random Security of SlEnc

The notion by Mossayebi and Schack [43] follows a real-or-random approach,
where the adversary submits only a single message (possibly in superposition)
and receives back the message along with a ciphertext. The ciphertext is either
the encryption of the submitted message or of the permuted message using a per-
mutation picked at random. Usage of the permutation ensures that the number
of messages in superposition is the same for both the submitted and permuted
message. Mossayebi and Schack [43] also defined the corresponding security with
respect to chosen ciphertext attacks. The relevance of this notion is questionable,
as it assumes non-cheating adversaries, that do not try to decrypt the challenge
ciphertext with its decryption oracle.

In this notion, there is only a single message register that will always be
entangled with the ciphertext register. This bypasses the impossibility result by
Boneh and Zhandry [12].

RoR-qIND

K $ K
implement U

(1)
Enc using K

b $ {0, 1}
π $ P({0, 1}µ)

|N 〉N |M 〉M |C 〉C $ A1 ()

Measure register |N 〉N
if b = 0

|ψ〉 U
(1)
Enc (|N 〉N |M 〉M |C 〉C)

if b = 1

|ψ ((id ⊗ π−1 ⊗ id) ◦ U
(1)
Enc ◦ (id ⊗ π ⊗ id))(|N 〉N |M 〉M |C 〉C)

b′
$ A2 (|ψ〉)

return (b′ = b)

Fig. 8. Security notion RoR-qIND following [43].

Below we define RoR-qIND security, where the adversary is restricted to a
single challenge query and no learning query, again, extended by letting the
adversary send a register with the nonce that is measured by the challenger.
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Extension to RoR-qINDqCPA security works by providing the adversary a real-
or-random challenge oracle and a learning oracle and reject queries where (mea-
sured) nonces repeat (Fig. 9).

Definition 15. Let Σ = (Enc, Dec) be a symmetric key encryption scheme and
the security game RoR-qIND be defined as in Fig. 8. For any adversary A we
define its RoR-qIND advantage as

AdvRoR-qIND
Σ (A) =

∣
∣2 Pr[RoR-qINDA → 1] − 1

∣
∣ .

U
(2)
π U

(1)
Enc U

(2)
π−1

|N 〉

|M 〉

|0〉

|N 〉

|M 〉

|Enc(K,N , π(M ))〉

Fig. 9. Circuit for real-or-random security notion. The permutation π is applied if
b = 1.

The following theorem shows that the sponge-based encryption scheme
SlEnc is not RoR-qIND-secure. The attack follows [15] exploiting the outcome
of a measurement in the Hadamard basis on two entangled registers. The full
proof details can be found in the full version of the paper [34].

Theorem 16. Let SlEnc be the sponge-based encryption scheme displayed in
Fig. 2. Then there exist an adversary A such that

AdvRoR-qIND
SlEnc (A) =

1
2

.

5.4 IND-qCPA Security of Slae and FGHF’

In Sect. 5.1, we have discussed various different security notions for symmetric
key encryption schemes in the QS2 setting. So far we have shown that SlEnc
is neither LoR-qIND nor RoR-qIND secure. Observe that the attacks also apply
to the generic construction FGHF’, as the weakness lies in the one-time pad
(OTP) approach exploiting an inherent insecurity of the OTP against quantum
attackers.

Observe that both the generic FGHF’ construction as well as Slae are stream
ciphers. Following the results by Anand et al. [4], we obtain that both con-
structions are IND-qCPA secure which is a direct consequence from the estab-
lished IND-CPA security in the QS1 sense.
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6 Conclusion

In this work we have given both positive and negative results for the security of
the sponge-based AEAD scheme Slae. On the one hand, we have shown that
Slae as well as the underlying core primitives are post-quantum secure. On the
other hand, we have shown that their quantum security is not fully clear yet.
While Slae, as well as the generic FGHF’ construction, are easily seen to be not
quantum secure for notions that allow challenge queries by the adversary to be
in superposition, its quantum security with respect to IND-qCPA is still open.
More precisely, we argued that its IND-qCPA security reduces to the quantum
security of the underlying function SlFunc via the generic FGHF’ construction.

In the realm of quantum security, it is open to analyse the quantum secu-
rity of the sponge-based function SlFunc as well as addressing the quantum
unforgeability of Slae and its underlying MAC SlMac. The reason is that
the landscape of quantum unforgeability notions is still unclear as the existing
notions [1,12,25,30] suffer from some drawbacks that allow for intuitive forgeries
that are not covered by the notions.

Regarding the post-quantum security of Slae, one can investigate whether
tighter bounds can be achieved. Generally, our bounds establish for the first time
post-quantum security for the AEAD scheme and the underlying primitives but
they are rather conservative and there might be room for improvements. For
example, for SlFunc one may be able to use the semi-classical variant of the
O2H lemma developed by Ambainis et al. [3] and for SPrg one may get tighter
bounds by using the doubled-sided O2H lemma by Bindel et al. [9]. One can also
consider an adaptive version, where the random oracle is reprogrammed only on
the points that the adversary queries to its classical oracle.

Acknowledgements. We thank anonymous reviewers for their valuable comments
on an earlier draft of this work. This work was funded by the Deutsche Forschungsge-
meinschaft (DFG) – SFB 1119 – 236615297.

A Additional Preliminaries

A.1 Authenticated Encryption

We begin with a definition of authenticated encryption schemes with associated
data [6,47].

Definition 17. An authenticated encryption scheme with associated data
(AEAD) AEAD = (Enc, Dec) is a pair of efficient algorithms associated with key
space K, nonce space N , associated-data space H, message space M, and cipher-
text space C such that:

– The deterministic encryption algorithm Enc : K × N × H × M → C takes as
input a secret key K, a nonce N , associated data A, and a message M . It
outputs a ciphertext C .
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– The deterministic decryption algorithm Dec : K × N × H × C → M ∪ {⊥}
takes as input a secret key K, a nonce N , associated data A, and a ciphertext
C . It outputs a message M or ⊥ indicating an invalid ciphertext.

We say that an AEAD scheme is correct, if for all K ∈ K, N ∈ N , A ∈ H and
M ∈ M, it holds that Dec(K,N ,A, Enc(K,N ,A,M )) = M .

Throughout this work, we consider K = {0, 1}k , N = {0, 1}ν , H = {0, 1}α,
M = {0, 1}μ, and C = {0, 1}γ .

Security of an AEAD scheme now demands that an adversary cannot dis-
tinguish encryptions of equal-length messages which corresponds to the usual
CPA-security notion of encryption schemes. The formal description of the game
can be found on the left side of Fig. 10. Additionally, security also demands that
the adversary is not able to forge further valid ciphertexts which corresponds to
an integrity notion on the ciphertext level. The formal description of the games
can be found on the right side of Fig. 10.

IND-CPA

K $ K
Q ∅
b $ {0, 1}
b′

$ AEnc(K,·,·,·,·)

return (b′ = b)

Enc(K,N ,A,M0,M1)

if |M0| 
= |M1| then
return ⊥

if N ∈ Q then

return ⊥
C Enc(K,N ,A,Mb)

Q Q ∪ {N }
return C

INT-CTXT

K $ K
Q ∅
win 0

AEnc(K,·,·,·),Forge(K,·,·,·)

return win

Enc(K,N ,A,M )

if (N , ·, ·) ∈ Q then

return ⊥
C Enc(K,N ,A,M )

Q Q ∪ {(N ,A,C )}
return C

Forge(K,N ,A,C )

if (N ,A,C ) ∈ Q then

return ⊥
d Dec(K,N ,A,C )

if d 
= ⊥ then

win 1

return d

Fig. 10. Security games for AEAD.

Definition 18. Let AEAD be an authenticated encryption scheme with associated
data.

– For an adversary A, making qE queries to its encryption oracle, we define its
IND-CPA advantage as

AdvIND-CPA
AEAD (A) = 2 Pr[IND-CPAA → 1] − 1 .

– For an adversary A, making qE and qF queries to its encryption oracle and
forge oracle, respectively, we define its INT-CTXT advantage as

AdvINT-CTXT
AEAD (A) = Pr[INT-CTXTA → 1] .
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Symmetric Key Encryption. Observe that the definition of a symmetric key
encryption (SKE) scheme is very close to the given about AEAD. Note that
one can obtain a SKE scheme by analogously defining an encryption scheme
which does not admit associated data as a part of its input in comparison to
Definition 17.

Usually one defines CPA-security of a SKE scheme. Here the formalisation
is again very close to the description in Fig. 10 with the modification of not
including the associated data as an input to the encryption oracle.

A.2 Message Authentication Code

Next we will provide the basic definition of a message authentication code.

Definition 19. A message authentication code (MAC) MAC = (Tag, Vfy) is a
pair of efficient algorithms associated with key space K and domain space X such
that:

– The deterministic tagging algorithm Tag : K × X → {0, 1}τ takes as input a
key K and an element X . It returns a tag T of size {0, 1}τ .

– The deterministic verification algorithm Vfy : K × X × {0, 1}τ → {0, 1} takes
as input a key K, an element X , and a tag T and outputs 1 indicating that
the input is valid, or otherwise 0.

We say that a MAC scheme is correct, if for all K ∈ K and any admissible input
X ∈ X , it holds that Vfy(K,X , Tag(K,X )) = 1.

SUF-CMA

K $ K
Q
win 0

ATag(K,·),Forge(K,·,·)

return win

Tag(K,M )

T Tag(K,M )

Q∅ Q ∪ {(M ,T )}
return T

Forge (K, M , T )

if (M ,T ) ∈ Q then

return ⊥
d Vfy(K,M ,T )

if d = 1 then

win 1

return d

Fig. 11. Security game for MAC.

Definition 20. Let MAC be a message authentication code. We define the
SUF-CMA advantage of an adversary A making at most qT queries to its tag
oracle and qF many queries to its forge oracle as

AdvSUF-CMA
MAC (A) = Pr[SUF-CMAA → 1] ,

where the respective game is depicted in Fig. 11.
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A.3 Hash Function

In this section, we simply review the collapsing property of hash functions [54]
in the formalisation of [18].

Definition 21. For algorithms A and B, consider the following games given in
Fig. 12. There are quantum registers S and M , and M(M) is a measurement of
M in the computational basis.

For a set m, we call an adversary (A,B) valid on m for HO if and only if
Pr[HO(m) = h ∧ m ∈ m] when we run (S,M, h) ← AO() and measure M in the
computational basis as m.

A function H is collapsing on m if and only if for any quantum-polynomial-
time adversary (A,B) that is valid for HO on m and |Pr[b = 1: Game1]−Pr[b =
1: Game2]| is negligible.

Game1

(S, M, h) O()

m (M)

b O(S, M)

Game2

(S, M, h) O()

b

A
M

A

O(S, M)

Fig. 12. Collapsing games.

B QS1 Proofs

B.1 Proof of Theorem 8

Proof. The above collision resistance bound can be obtained from a combination
of results from Czajkowski et al. [17] and Unruh [52] with a slight modification
that stems from the way SvHash is constructed. Observe that the small modifi-
cation is due to the interpretation that we consider a sponge-based hash function
with the capacity being reduced by one bit and hence the rate being increased
by one bit. We take care of this one bit loss when applying the following results.

A crucial property in the realm of hash functions in the post-quantum setting
is called the collapsing property which is a strengthening of collision resistance
and Unruh has showed in [52,54] that if a hash function is collapsing then this
also implies that it is quantum collision resistant. Additionally, Czajkowski et
al. [17,18] showed that if the underlying function of the sponge construction
is a random transformation then the sponge construction is collapsing. Being
equipped with their result, we can derive the required bound for our setting.

We will follow the proof strategy put forward by Czajkowski et al. [17, Theo-
rem 33] to show that the sponge construction is collapsing. This requires to show
that the inner state Ŝ is collapsing in the absorbing phase while the outer state
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S̄ is collapsing in the squeezing phase and that there are no zero-preimages in
the inner state Ŝ . Then using [52, Lemma 25] provides us with the implication
that the sponge construction is then also collision resistant. It now remains to
apply the above strategy appropriately to derive the bound.

We have that l =
⌈

μ
r

⌉

and by [17, Theorem 33], we know that the collapsing
advantage is bounded by

√
ε1+ l ·ε2+ε3, where ε1 corresponds to the probability

of finding zero-preimages, ε2 corresponds to the collapsing advantage of the
inner state and ε3 corresponds to the collapsing advantage of the outer state,
respectively. By applying [17, Lemma 19], we obtain that ε1 ≤ (q + 1)22−c+4.
By a simple combination of [17, Lemma 32] and [52, Theorem 38], we can derive

ε2 ≤ q3
(

δ′+324
2c−1

)

+7δ
√

3(q+4)3

2c and ε3 ≤ q3
(

δ′+324
2w+1

)

+7δ
√

3(q+4)3

2w+2 where both δ

and δ′ are non-zero constants. Then by [52, Lemma 25], we have a tight reduction
from collapsing to collision resistance and hence the same bound holds for the
collision resistance of the sponge construction. ��

B.2 Proof of Theorem 9

Proof. The proof can be obtained from [21] by dropping everything related to the
leakage setting. It proceeds in two game hops. The first game hop replaces the
function SlFunc by a random function which can be straightforwardly bound
by the PRF advantage of SlFunc. More precisely, Aprf uses its own oracle for
everything related to SlFunc while simulating SPrg using (classical) queries
to the random oracle ρ. All (quantum) queries by A to ρ are simply forwarded
by Aprf , as are the responses back to A.

The second game hop replaces the output of SPrg by a random output. A
standard hybrid argument [26] shows that this can be bound by the security of
SPrg. The reduction Aprg picks a random query of A to its encryption oracle,
where it uses its own input (either the output of SPrg or a random bit string) to
encrypt the message. Prior queries are answered by XORing random bit string
to the message while subsequent queries are answered by simulating SPrg using
(classical) queries to ρ. All (quantum) queries by A to ρ are simply forwarded
by Aprg , as are the responses back to A.

The resulting game yields identically distributed ciphertexts, irrespectively
of the message. The factor 2 accounts for doing the game hops for both cases
b = 0 and b = 1. ��

B.3 Proof of Theorem 10

Proof. The proof proceeds by a simple reduction. In more detail, the reduction
Ase picks a key for the MAC SlMac. For every query to the encryption oracle
by A, Ase invokes its own encryption oracle and locally computes the tag of the
ciphertext using (classical) queries to ρ before sending the ciphertext and the
tag back to A. Every (quantum) query by A to ρ is simply forwarded by Ase . ��
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B.4 Proof of Theorem 11

Proof. We assume that all messages queried by A result in different hash values,
otherwise, we obtain a simple reduction Ahash from the collision resistance of
SvHash.

Then the proof proceeds by a game hop in which SlFunc is replaced by a
random function. The reduction Aprf will invoke its own function to simulate
the tagging and verification of SlMac and (classical) queries to ρ to evaluate
SvHash. Every (quantum) query to ρ by A is simply forwarded by Aprf .

The resulting game is bound by a simple counting argument that A predicts
the output of a random function. ��

B.5 Proof of Theorem 12

Proof. The reduction Amac picks a key for the symmetric key encryption scheme
SlEnc. For every query to the encryption oracle by A, Amac locally computes
the ciphertext using (classical) queries to ρ and obtains the tag using its own
tagging oracle. It then sends the ciphertext and the tag back to A. For every
forgery attempt by A, Amac queries the ciphertext and the tag as its own forgery
attempt. If the tag verifies correctly, Amac locally decrypts the ciphertext using
the sampled key and (classical) queries to ρ and sends the message back to
A, otherwise, i.e., if the tag was invalid, Amac simply returns ⊥ to A. Every
(quantum) query by A to ρ is simply forwarded by Ase . ��

C QS2 Proofs

C.1 Proof of Theorem 14

Proof. We construct the following adversary A = (A1 ,A2 ). It picks a nonce
N ←$ {0, 1}ν and prepares the states |ϕ0〉 = H |0μ〉 = |+〉⊗μ and |ϕ1〉 = |0μ〉. It
outputs the state

|ϕ〉 = |N 〉 ⊗ |+〉⊗μ ⊗ |ϕ1〉 .

Upon receiving the state |ψ〉, A2 applies the Hadamard operator to it and mea-
sures the register. If the measurement output is 0μ, A0 outputs 0, otherwise, it
outputs 1.

Before analysing the different cases, note that measuring the nonce register
as well as tracing out one of the message registers does not affect the other
registers as they are all unentangled. Let us now start with the case distinctions.

If b = 0, the game encrypts the left message, i.e., the state

|ϕ〉 = H |0μ〉 = |+〉⊗μ =
1√
2μ

⎛

⎝
∑

x∈{0,1}μ

|x〉
⎞

⎠ .
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A2 receives the state

|ψ〉 = 1√
2μ

⎛

⎝
∑

x∈{0,1}μ

|N 〉 |x ⊕ SPrg(SlFunc(K,N ))〉
⎞

⎠ = |ϕ〉 ,

i.e., the state |ϕ〉 is left unchanged. Application of the Hadamard operator there-
fore yields the state |0μ〉, for which the measurement outcome is 0μ with proba-
bility 1. Thus we get

Pr[ALoR-qIND → 0 | b = 0] = 1 .

If b = 1, A2 receives the state

|ψ〉 = |Enc(K,N , 0μ)〉 = |0μ ⊕ SPrg(SlFunc(K,N ))〉 .

Application of the Hadamard operator yields

H |ψ〉 = 1√
2μ

⎛

⎝
∑

x∈{0,1}μ

(−1)x·SPrg(SlFunc(K,N )) |x〉
⎞

⎠ .

Measurement yields a random x ∈ {0, 1}μ. Since A2 outputs 0 if and only if the
measurement yields 0μ, we obtain

Pr[ALoR-qIND → 0 | b = 1] =
1
2μ

.

Collecting everything yields

AdvLoR-qIND(A) =
∣
∣Pr[ALoR-qIND → 0 | b = 0] − Pr[ALoR-qIND → 0 | b = 1]

∣
∣

= 1 − 1
2μ

.

��
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