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Preface

PQCrypto 2022, the 13th International Conference on Post-Quantum Cryptography,
was organized fully online, during September 28–30, 2022. The aim of the PQCrypto
conference series is to serve as a forum for researchers to present results and exchange
ideas on cryptography in an erawith large-scale quantum computers. Following the same
model as its predecessors, PQCrypto 2022 adopted a two-stage submission process in
which authors registered their paper one week before the final submission deadline. The
conference received 66 submissions. Each paper (that had not been withdrawn by the
authors) was reviewed in private by at least three Program Committee members. The
private review phase was followed by an intensive discussion phase, conducted online.
At the end of this process, the Program Committee selected 23 papers for inclusion
in the technical program and publication in these proceedings. The accepted papers
cover a broad spectrum of research within the conference’s scope, including code-,
hash-, isogeny-, and lattice-based cryptography, multivariate cryptography, and quantum
cryptanalysis.

Along with the 23 contributed technical presentations, the program featured three
invited talks - by Peter Schwabe on “6 years of NIST PQC, looking back and ahead”,
by Andreas Hülsing on “Hash-Based Signatures: History and Challenges”, and byWard
Beullens on “Breaking Rainbow takes a weekend on a laptop”.

The Program Committee selected by voting a paper to receive the Best Paper Award:
“Breaking Category 5 SPHINCS+ with SHA-256” by Ray Perlner, David Cooper, and
John Kelsey.

Organizing and running this year’s edition of the PQCrypto conference series was
a team effort, and we are indebted to everyone who helped make PQCrypto 2022 a
success. In particular, we would like thank all members of the Program Committee and
the external reviewers who were vital for compiling the technical program. Evaluating
and discussing the submissions was a labor-intense task, and we truly appreciate the
work that went into this. On behalf of the community, we are indebted to Tanja Lange
for organizing the meeting and managing all the technical challenges of an online event.
We also thank the team at Springer for handling the publication of these conference
proceedings.

August 2022 Jung Hee Cheon
Thomas Johansson
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Hybrid Decoding – Classical-Quantum
Trade-Offs for Information Set Decoding

Andre Esser1(B) , Sergi Ramos-Calderer1,2 , Emanuele Bellini1 ,
José I. Latorre1,2,3 , and Marc Manzano4

1 Technology Innovation Institute, Abu Dhabi, UAE
{andre.esser,sergi.ramos,emanuele.bellini,jose.ignacio.latorre}@tii.ae

2 Departament de F́ısica Quàntica i Astrof́ısica and Institut de Ciències del Cosmos,
Universitat de Barcelona, Barcelona, Spain

3 Centre for Quantum Technologies, National University of Singapore,
Singapore, Singapore

4 SandboxAQ, Palo Alto, CA, USA
marc@sandboxaq.com

Abstract. The security of code-based constructions is usually assessed
by Information Set Decoding (ISD) algorithms. In the quantum setting,
amplitude amplification yields an asymptotic square root gain over the
classical analogue. However, already the most basic ISD algorithm by
Prange suffers enormous width requirements caused by the quadratic
description length of the underlying problem. Even if polynomial, this
need for qubits is one of the biggest challenges considering the application
of real quantum circuits in the near- to mid-term.

In this work we overcome this issue by presenting the first hybrid
ISD algorithms that allow to tailor the required qubits to any available
amount while still providing quantum speedups of the form T δ, 0.5 <
δ < 1, where T is the running time of the purely classical procedure.
Interestingly, when constraining the width of the circuit instead of its
depth we are able to overcome previous optimality results on constraint
quantum search.

Further we give an implementation of the fully-fledged quantum ISD
procedure and the classical co-processor using the quantum simulation
library Qibo and SageMath.

Keywords: Decoding · Width reduction · Hybrid algorithms ·
Code-based cryptography

1 Introduction

The growing threat to modern widespread cryptography posed by the advanc-
ing development of quantum computers has led to a focus on other hardness
assumptions. One of the leading and most promising proposals for post quantum

M. Manzano—This work was conducted while the author was affiliated with Technology
Innovation Institute.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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4 A. Esser et al.

cryptography is code-based cryptography. It has a long history of withstanding
classical as well as quantum attacks and is considered to rely on one of the
most well understood hardness assumptions. The list of the four KEM finalists
of the ongoing NIST standardization process for post quantum cryptography [1]
includes one code-based proposal (McEliece [10]) and two more can be found on
the alternate candidate list (BIKE [2] and HQC [24]).

At the heart of all these code-based constructions lies the binary decoding or
syndrome decoding problem. This problem asks to find a low Hamming weight
solution e ∈ F

n
2 to the equation He = s, where H ∈ F

(n−k)×n
2 is a random binary

matrix and s ∈ F
n−k
2 a binary vector.

The best known strategy to solve this problem is based on Information Set
Decoding (ISD) [27], a technique introduced by Prange in 1962. Since then, there
has been a series of works improving on his original algorithm [4,8,11,22,23,28],
mostly by leveraging additional memory. In the quantum setting Bernstein
showed how to speed up Prange’s algorithm by an amplitude amplification rou-
tine [5], which results in an asymptotic square root gain over the classical run-
ning time. The translation of advanced ISD algorithm to the quantum setting
[19,20] yields only small asymptotic improvements. So far these improvements
can not compensate for the introduced overhead in terms of width and quantum
RAM if looking towards implementations. This is not surprising, since already
Prange’s algorithm with an only polynomial demand for qubits, is limited by its
width requirements. This is because all code-based constructions usually involve
parity-check matrices consisting of millions of bits.

To overcome this issue we develop hybrid classical-quantum ISD algorithms
that enable us to reduce the required amount of qubits to any available amount
while still providing quantum speedups. The idea of such classical co-processors
has mostly been used to parallelize quantum circuits or instantiate circuits under
depth constraints, e.g. when analyzing the quantum security of schemes under
the MAXDEPTH constraint specified by NIST [2,6,7,14,18]. Under depth con-
straints, Zalka [30] showed that the optimal way to perform a quantum search is
by partitioning the search space in small enough sets such that the resulting cir-
cuit only targeting one set at a time does not exceed the maximum depth. Then
the search has to be applied for every set of the partition. However, this optimal-
ity result only holds under depth constraints, when instead imposing constraints
on the width of the circuit, our trade-offs yield more efficient strategies.

A first attempt to formulate hybrid ISD algorithms were made by Perriello
et al. in [26]. However, their construction splits into a classical ISD part and a
quantum exhaustive search part allowing to speed up the classical procedure with
exponential time T only by a polynomial factor. In comparison our trade-offs
achieve speedups of order T δ for 0.5 < δ < 1.

Our Contribution. As a first contribution we design the full circuit performing
the quantum version of Prange’s algorithm and provide a functional implemen-
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tation using the quantum simulation library Qibo [12,13].1 Further we describe
an optimized circuit that only requires (n− k)k bits to store and operate on the
input matrix H ∈ F

(n−k)×n
2 .

Our major contribution is the design of hybrid quantum-classical trade-offs
that address the practical limitation on the amount of qubits. In particular, these
trade-offs enable quantum speedups for any available amount of qubits. We study
the behavior of our trade-offs for various different choices of code parameters.
Besides the coding-theoretic motivated settings of full and half distance decod-
ing, these include also the parameter choices made by the NIST PQC candidates
McEliece, BIKE and HQC. Our trade-offs perform best on the BIKE and HQC
schemes, which is a result of a combination of a very low error weight and a
comparably low code rate used by these schemes.
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Fig. 1. Comparison of the achieved speedups of our trade-offs t(δ) (y-axis) plotted as
a function of the qubit-reduction factor δ (x-axis).

Our trade-offs allow for a smooth interpolation between purely classical com-
putations at a running time of TC and a purely quantum based computation
taking time

√
TC. We interpolate between both complexities using a qubit reduc-

tion factor δ, where a fully classical computation corresponds to δ = 0 and an
entirely quantum based execution implies δ = 1. For each trade-off we then state
the running time for a given reduction factor δ as t(δ) ∈ �0.5, 1�, meaning that
a reduction of the amount of qubits by a factor of δ implies a total running time
of (TC)t(δ).

Figure 1 shows the behavior of our trade-off achieving the best results under
limited width. For instance in the BIKE and HQC setting we can reduce the
amount of qubits to only 1% (δ = 0.01) of an entire quantum based computa-

1 Our implementation (available at https://github.com/qiboteam/qISD) also includes
an implementation of the Lee-Brickel [21] ISD improvement.

https://github.com/qiboteam/qISD
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tion and still achieve a speedup of roughly t(δ) = 0.87 compared to a classical
computation.

2 Preliminaries

For two integers a, b ∈ N with a ≤ b let [a, b] := {a, a + 1, . . . , b}. Further
we write conveniently [b] := [1, b]. Let H be an m × n matrix and I ⊆ [n],
we write HI to denote the projection of H onto the columns indexed by I.
We use the same notation for vectors. For a binary vector w ∈ F

n
2 we define

wt(w) := |{i ∈ [n] | wi = 1}| as the Hamming weight of w. For two reals
c, d ∈ R we let �c, d� := {x ∈ R | c ≤ x ≤ d} be the (including) interval of all
reals between c and d.

We use standard Landau notation for complexity statements, where Õ-
notation suppresses polylogarithmic factors, meaning Õ(

f(x)
)

= O(
f(x) logi

f(x)
)

for any constant i. All logarithms are binary if not stated otherwise. We
define H(x) := −x log(x) − (1 − x) log(1 − x) to be the binary entropy function
and make use of the well-known approximation

(
n

k

)
= Θ̃

(
2nH( k

n )
)

. (1)

Quantum Circuits. Our algorithms are built in the quantum circuit model, where
we assume a certain familiarity of the reader (for an introduction see [25]). Note
that we use the term circuit depth and time complexity interchangeably when
analyzing our quantum circuits.

Decoding and Linear Codes. A binary linear code C is a k dimensional subspace
of F

n
2 with minimum distance d, which is defined as the minimum Hamming

weight of the elements of C. We call n the code length and R := k
n the code rate

of C. The code C can be defined via the kernel of a matrix H ∈ F
(n−k)×n
2 , so

that C := {c ∈ F
n
2 | HcT = 0}, where H is called a parity-check matrix. Note

that for ease of exposition, we treat all vectors as column vectors so that we can
omit vector transpositions.

A given point x = c + e that differs from a codeword by an error e can
be uniquely decoded to c as long as wt(e) ≤ ⌊

d−1
2

⌋
. This setting, in which the

error weight is bounded by half of the minimum distance, is also known as half
distance decoding, while the setting bounding it by d is known as full distance
decoding. We study the performance of our algorithms in these settings for
random codes, which are known to meet the Gilbert-Varshamov bound [17,29],
i.e., d ≈ H−1(1 − R)n.

The definition of the code via its parity-check matrix allows to treat the
decoding procedure independently of the specific codeword by considering the
syndrome s of a given faulty codeword x, where s := Hx = H(c + e) = He.
Recovering e from given H and s is, hence, equivalent to decoding x to c. This
leads to the definition of the syndrome decoding problem.
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Algorithm 1. Prange

Require: parity-check matrix H ∈ F
(n−k)×n
2 , syndrome s ∈ F

n−k
2 , weight ω ∈ [n]

Ensure: error vector e with wt(e) = ω satisfying He = s
1: repeat
2: choose random permutation matrix P ∈ F

n×n
2 and set HI ← (HP )[n−k]

3: solve linear system HIe1 = s for e1

4: until wt(e1) = ω
5: return P (e1, 0

k)

Definition 1 (Syndrome Decoding Problem). Let C be a linear code with
parity-check matrix H ∈ F

(n−k)×n
2 and constant rate R := k

n . For s ∈ F
n−k
2 and

ω ∈ [n], the syndrome decoding problem SDn,k,ω asks to find a vector e ∈ F
n
2

of weight wt(e) = ω satisfying He = s. We call any such e a solution while we
refer to (H, s, ω) as an instance of the SDn,k,ω.

Prange’s Information Set Decoding. Given an instance (H, s, ω) of the
SDn,k,ω Prange’s algorithm [27] starts by choosing a random set I ⊆ [n] of size
n − k and then solves the corresponding linear system

HIe1 = s (2)

for e1.2 Note that any solution e1 of weight ω′ := wt(e1) can easily be extended
to a vector ẽ ∈ F

n
2 of same weight satisfying H ẽ = s, by setting the correspond-

ing coordinates to zero. Hence, if ω′ = ω the vector ẽ forms a solution to the
syndrome decoding problem. The algorithm now chooses random subsets I until
ω′ = ω holds.

The algorithm is successful whenever e projected to the coordinates given by
I is a solution to the linear system in Eq. (2), hence if e1 = eI . This happens
whenever eI covers the full weight of e, in which case I or more precisely [n]\I is
called an information set. Transferred to Algorithm1 this applies whenever for
the permutation chosen in line 2, it holds that P−1e = (e1, 0k) for e1 ∈ F

n−k
2 .

The probability that the permutation distributes the weight in such a way is

q := Pr
[
P−1e = (e1, 0k)

]
=

(
n−k

ω

)
(

n
ω

) . (3)

Hence, the expected number of tries until we draw a suitable permutation P
becomes q−1 and the expected time complexity is T = q−1 · TG, where TG

describes the cost for solving the linear system and performing the weight check.

Remark 1. Note that in the case of S existent solutions the time complexity to
retrieve a single solution with Prange’s algorithm becomes T

S .

2 Note that in Algorithm 1 we model HI as the first n − k columns of HP , where P
is a random permutation matrix.
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3 A Quantum ISD Circuit Design

Let us briefly sketch how we realized the quantum design of Prange’s algorithm,
a detailed description of every part of the circuit can be found in the full version
of this article [16]. Our design is composed of the following three main building
blocks:

1) The creation of the uniform superposition over all size-(n − k) subsets of [n]
(corresponding to the selection of information sets in line 2 of Algorithm 1).

2) The Gaussian elimination step to derive the error related to a given informa-
tion set (line 3 of Algorithm 1).

3) A quantum search for an information set yielding an error of the desired
weight (substituting the repeat loop in line 1 of Algorithm 1).

Superposition Circuit. We realize the creation of the superposition over all
size-(n − k) subsets in a bit-by-bit fashion, obtaining a depth of (n − k) · n. This
is possible since the number of sets including element i is independent of all sub-
sequent elements j > i. More recent developments construct this superposition
in depth linear in n [3]. However, since this part of the ISD circuit does not
dominate the overall depth, we refrain from further optimizations.

Gaussian Elimination. Our Gaussian elimination circuit mostly resembles its
classical analogue. The integration of the superposition and Gaussian elimina-
tion circuit works by first swapping all selected columns (determined by the
superposition) to the back of the matrix and then implementing the Gaussian
Elimination only on the last n − k columns.

Quantum Search. The square root gain over the classical algorithm is achieved
by employing an amplitude amplification procedure. Here the diffusion layer con-
sists of our initial superposition circuit, while the sign flip is performed based
on the Hamming weight of the error obtained by performing the Gaussian elim-
ination circuit.

We find that our circuit has a depth of O
(

n3 log n√
q

)
, where q is the probability

detailed in Eq. (3). This corresponds to only a logarithmic overhead compared
to a classical implementation. The width of the circuit is dominated by the
space required for storing the parity-check matrix, which is (n − k) · n. In the
next section, we detail a procedure to reduce the width to about (n − k) · k =
(1−R)·R·n2, relying on first transforming the parity check matrix into systematic
form H := (In−k | H ′), where H ′ ∈ F

(n−k)×k
2 via Gaussian elimination. We then

show that the circuit can be adapted to work only with H ′ as input. However,
the required amount of qubits is still quadratic in the code length n and, hence,
one of the most limiting factors in terms of concrete implementations.
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3.1 Reducing the Width for Free

In the following we assume the parity-check matrix H to be in systematic form,
as shown in Fig. 2. We now describe how to adapt the quantum circuit to only
require the matrix H ′ as well as the corresponding syndrome as an input, which
saves (n−k)2 qubits. Recall that the goal of the Gaussian elimination procedure
is to obtain the identity matrix on the matrix projected to the columns of the
currently selected subset by elementary row operations. Our previous quantum
circuit achieved this by fist swapping all columns that belong to the selected
subset (determined by the superposition) to the back of the matrix and then
performing the Gaussian elimination always on the last n−k columns. But since
we now only obtain H ′ as input this is not possible anymore.

e

sIn−k H ′H

Fig. 2. Problem shape for input matrix in systematic form.

However, note that if any of the first n − k columns, which are already unit
vectors, belongs to the selected subset a single row swap is sufficient to obtain the
desired unit vector in that column. Hence, we only implement a corresponding
row swap on H ′ and s. Furthermore, the necessary swaps are fully determined by
the index of the respective column and its position in the selected subset. Thus,
we can embed them into the quantum circuit a priori. After the necessary row-
swaps are performed, all columns of H ′ belonging to the corresponding subset
are swapped to the back. Subsequently we perform the Gaussian elimination only
on the last columns of H ′ that belong to the current selection. This procedure is
depicted in Fig. 3, which shows the state of the matrix after all three operations
have been performed for the chosen subset. Note that the first n − k columns
only serve an illustrative purpose and are not part of the input.

4 Classical-Time Quantum-Memory Trade-Offs

Next we introduce our trade-offs, allowing for an adaptive scaling of the algo-
rithm to the available amount of qubits. Our trade-offs are divided in a classical
and quantum computation part, where a decrease of the amount of qubits comes
at the cost of an increased classical running time. Since the increase in running
time is exponential we neglect polynomial factors by employing Õ-notation. Our
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sH ′

I

0
row
swaps

1

2 column swaps

I

0
I

0

0

3 partial Gaussian
elimination

Fig. 3. Procedure to perform quantum version of Prange without first n−k columns as
input. Colored framed parts indicate columns belonging to the current selected subset.
(Color figure online)

trade-offs allow for a smooth interpolation between purely classical computations
at a running time of

TC := Õ
( (

n
ω

)

(
n−k

ω

)

)

, (4)

(compare to Eq. (3)) and a purely quantum based computation taking time
√

TC.
Recall that we interpolate between both complexities using a qubit reduction
factor δ and state the running time for a given reduction factor as t(δ) ∈ �0.5, 1�;
meaning that a reduction of the amount of qubits by a factor of δ implies a total
running time of (TC)t(δ).

We start with a trade-off based on shortening the underlying code, which
already achieves a better than linear dependence between δ and t(δ). After that,
we present a second trade-off based on puncturing the code which asymptotically
outperforms the first one. However, for concrete parameters in medium scale both
trade-offs remain superior to each other for certain values of δ. Finally, we obtain
improvements by combining both methods.

4.1 Shortening the Code

Our first trade-off is based on shortening the underlying code before using it as
input to the quantum circuit. In Prange’s original algorithm k zero positions of
e are guessed and then the linear system corresponding to the non-zero positions
is solved in polynomial time. In our hybrid version the classical part consists in
guessing αn ≤ k zero coordinates of e, which allows to shorten the code and,
hence, reduce the problem to a code of length (1 − α)n and dimension k − αn,
while the error weight remains unchanged (compare to Fig. 4). This reduced
instance is then solved with our previously constructed quantum circuit. Should
the quantum computation not result in an actual solution, the initial guess of
zero coordinates was incorrect and we proceed with a new guess. Algorithm 2
gives a pseudocode description of our Shortened-Hybrid.

Theorem 1 (Shortened Hybrid). Let n ∈ N, ω = τn and k = Rn for τ,R ∈
�0, 1� and let TC be as defined in Eq. (4). Then for any qubit reduction factor δ ∈
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e

sIn−k H ′

0

H

(1− α)n αn

Fig. 4. Parity-check matrix in sysetmatic form where αn zero positions of e are guessed.
Striped region of e indicates parts containing weight, crosshatched columns of H ′ do
not affect s. Framed parts are used as input to the quantum algorithm.

Algorithm 2. Shortened-Hybrid

Require: parity-check matrix H ∈ F
(n−k)×n
2 , syndrome s ∈ F

n−k
2 , weight ω ∈ [n],

qubit reduction factor δ ∈ �0, 1�
Ensure: error vector e with wt(e) = ω satisfying He = s
1: α := (1 − δ) k

n

2: repeat
3: choose random permutation matrix P ∈ F

n×n
2 and set H̃ ← HP

4: solve instance (H̃[(1−α)n], s, ω) via quantum algorithm returning e1 ∈ F
(1−α)n
2

5: e ← P (e1, 0
αn)

6: until He = s
7: return e

�0, 1� Algorithm 2 solves the SDn,k,ω problem in time (TC)t(δ) using δ(1−R)Rn2

qubits for the matrix representation, where

t(δ) = 1 −
1
2

(
(1 − α)H

(
τ

1−α

) − (1 − R)H
(

τ
1−R

))

H(τ) − (1 − R)H
(

τ
1−R

) ,

for α = (1 − δ)R.

Proof. Assume that the permutation P distributes the error such that

P−1e = (e1, 0αn), (5)

for α as defined in Algorithm 2. Then it follows, that e1 is a solution to syndrome
decoding instance ((HP )[(1−α)n], s, ω). By the correctness of our quantum circuit
the solution e1 is returned in line 4 and finally e = P (e1, 0αn) is recovered.

Next let us analyze the running time of the algorithm. The probability of a
random permutation distributing the error weight as given in Eq. (5) is

qC := Pr
[
P−1e = (e1, 0αn)

]
=

(
(1−α)n

ω

)
(

n
ω

) .

Hence, we expect that after q−1
C random permutations one of them induces the

desired weight-distribution. The asymptotic time complexity for the execution
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of the quantum circuit to solve the corresponding SD(1−α)n,(R−α)n,ω problem is
given as (compare to Sect. 3).

TQ = Õ
⎛

⎝

√√
√
√

(
(1−α)n

ω

)

(
(1−R)n

ω

)

⎞

⎠ .

Since for each classically chosen permutation we need to execute our quantum
circuit the total running time becomes

T = q−1
C · TQ = Õ

⎛

⎝
(

n
ω

)

√(
(1−α)n

ω

)(
(1−R)n

ω

)

⎞

⎠ .

Now let us determine t(δ) := log T
log TC

. First observe that T = TC
TQ

, which can
be rewritten as

log TC − log TQ = log T

⇔ 1 − log TQ

log TC
=

log T

log TC
=: t(δ).

An approximation of TQ and TC via the approximation for binomial coefficients
given in Eq. (1) together with ω := τn and k := Rn then yields

t(δ) = 1 −
1
2

(
(1 − α)H

(
τ

1−α

) − (1 − R)H
(

τ
1−R

))

H(τ) − (1 − R)H
(

τ
1−R

) ,

as claimed. Note that the input matrix of a code of length (1−α)n and dimension
(R−α)n requires (1−R)(R−α)n2 qubits for the matrix representation (compare
to Sect. 3). Hence, by setting α = (1 − δ)R we obtain a qubit reduction by

(1 − R)(R − α)n2

(1 − R)Rn2
=

R − (1 − δ)R
R

= δ.

�	
Next we simplify the statement of Theorem 1 for sublinear error-weight,

which is, e.g., the case for McEliece, BIKE and HQC. Note that in the case of a
sublinear error-weight, TC can be expressed as

TC := Õ
( (

n
ω

)

(
(1−R)n

ω

)

)

= Õ (
(1 − R)−ω

)
, (6)

see, e.g., [15, Remark A.1].
This allows us to give the following simplified corollary.



Hybrid Decoding – Classical-Quantum Trade-Offs 13

Corollary 1 (Shortened Hybrid for sublinear error weight). Let all
parameters be as in Theorem 1. For τ = o(1), we have

t(δ) =
1
2

·
(

1 +
log(1 − (1 − δ)R)

log(1 − R)

)
.

Proof. First we approximate TQ similar to TC in Eq. (6) as

TQ = Õ
⎛

⎝

√√
√
√

(
(1−α)n

ω

)

(
(1−R)n

ω

)

⎞

⎠ = Õ
((

1 − α

1 − R

)ω
2
)

.

Now we can derive the statement of the corollary as

t(δ) = 1 − log TQ

log TC
= 1 −

ω
2 (log(1 − α) − log(1 − R))

−ω log(1 − R)

=
1
2

·
(

1 +
log(1 − (1 − δ)R)

log(1 − R)

)
.

�	
Figure 5 visualizes the relation between the qubit-reduction factor and the
speedup for the full distance decoding setting with rate R = 0.5 and τ =
H−1(R) ≈ 0.11 and the parameters of the McEliece scheme, which are R = 0.8
and τ = o(1). We observed that the trade-off behavior is very insensitive to
changes in the error-rate. Therefore the behavior for the settings of full and
half distance as well as BIKE and HQC are almost identical, such that we only
included the full distance case for the sake of clarity.

However, the trade-off is more sensitive to changes in the code-rate. We
observe better performance the higher the code-rate, which lies in favour to
mounting an attack against codes using McEliece parameters. To give a con-
crete example, our Shortened-Hybrid algorithm allows for a reduction of the
necessary qubits by 80% (corresponding to δ = 0.2), while still achieving a
speedup of t(δ) ≈ 0.82 in the McEliece setting.

4.2 Puncturing the Code

While our Shortened-Hybrid decreases the amount of necessary qubits by
shortening the code, our second trade-off instead aims at puncturing the code.
In a nutshell, we consider only (1−β)n−k parity-check equations, rather than all
n−k, i.e., we omit βn rows of the parity-check matrix. The subsequently applied
quantum circuit, hence, needs fewer qubits to represent matrix and syndrome.
The advantage over Shortened-Hybrid partly comes form the fact that each
row saves n instead of only n − k bits. Also the generated classical overhead is
significantly smaller. This variant has similarities with the Canteaut-Chabaud
improvement [9] in the classical setting. Here only a certain amount of columns
(originally only one) of the identity part are exchanged in each iteration rather
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Fig. 5. Time exponent (y-axis) achieved by Theorem 1 for different code parameters
plotted as a function of the qubit-reduction factor δ (x-axis).

than drawing a completely new permutation. In our case we fix βn columns
of the permutation classically and then search for the remaining n − k − βn
quantumly. In addition we expect weight p on the fixed βn coordinates, where
p has to be optimized.

We again start with a parity-check matrix H in systematic form. Now con-
sider the projection of H onto its first n − k − βn rows, we call the result-
ing matrix H̃. Clearly, a solution e to the instance (H, s, ω) is still a solution
to the instance (H̃, s[n−k−βn], ω). Moreover, the matrix H̃ includes βn zero
columns, which can safely be removed (compare to Fig. 6). This results in a
matrix H̃ ′ = (In−k−βn | H ′) ∈ F

(n−k−βn)×(1−β)n
2 corresponding to a code of

length (1 − β)n and dimension k. Still, by removing the corresponding coor-
dinates from e we obtain a solution e′ to the instance (H̃ ′, s[n−k−βn], ω − p),
where p := wt(e[n−k−βn+1,n−k]) is the weight of coordinates removed from e.
Eventually, once e′ is recovered we can obtain e in polynomial time by solving
the respective linear system.

A crucial observation is that disregarding βn parity-check equations could
lead to the existence of multiple solutions to the reduced instance, i.e. multiple
e′ satisfying H̃ ′e′ = s[n−k−βn] but yielding an e with wt(e) > ω. Not that we can
control this amount of solutions by increasing p. Also, our algorithm compensates
for multiple solutions by recovering all solutions to the reduced instance by
repeated executions of the quantum circuit. A pseudocode description of our
Punctured-Hybrid trade-off is given by Algorithm 3.

In the following theorem we first state the time complexity of our
Punctured-Hybrid in dependence on the qubit reduction factor δ. After this
we derive the speedup t(δ) in a separate corollary.

Theorem 2 (Punctured Hybrid). Let n ∈ N, ω ∈ [n] and k = Rn for
R ∈ �0, 1�. Then for any qubit reduction factor δ ∈ �0, 1� Algorithm 3 solves the
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Algorithm 3. Punctured Hybrid

Require: parity-check matrix H ∈ F
(n−k)×n
2 , syndrome s ∈ F

n−k
2 , weight ω ∈ [n],

qubit reduction factor δ ∈ �0, 1�
Ensure: error vector e with wt(e) = ω satisfying He = s
1: choose p accordingly

2: β := (1 − δ)(1 − k
n
), S :=

((1−β)n
ω−p )

2(1−β)n−k

3: repeat
4: choose random permutation matrix P ∈ F

n×n
2 and set H̃ ← HP

5: transform H̃ to systematic form, H̃ =

(
In−k−βn 0 H ′

1

0 Iβn H ′
2

)
with syndrome s̃

6: H̃ ′ ← (In−k−βn | H ′
1), s

′ ← s̃[(1−β)n−k]

7: for i = 1 to poly(n) · S do

8: solve instance (H̃ ′, s′, ω − p) via quantum algorithm returning e′ ∈ F
(1−β)n
2

9: e′′ ← H ′
2e

′
[n−k−βn+1,(1−β)n] + s̃[n−k−βn+1,n−k]

10: if wt(e′′) ≤ p then
11: e ← P (e′

[n−k−βn], e
′′, e′

[n−k−βn+1,(1−β)n])
12: break
13: until He = s
14: return e

e

s

In−k−βn H ′
H

βn

β
n

0

p

Fig. 6. Parity-check matrix where βn rows are omitted and e contains weight p on βn
coordinates. Framed parts are used as input to the quantum algorithm.

SDn,k,ω problem in expected time TPH using δ(1 − R)Rn2 qubits for the matrix
representation, where

TPH = Õ
⎛

⎝
(

n
ω

)

√(
(1−β)n

ω−p

)(
(1−β−R)n

ω−p

)(
βn
p

) · max

(

1,

√(
(1 − β)n

ω − p

)
· 2−(1−β−R)n

)⎞

⎠

with β = (1 − δ)(1 − R) and p ∈ [min(ω, βn)].

Proof. Assume that the permutation distributes the error weight, such that for
P−1e = (e1, e2, e3) ∈ F

(1−β−R)n
2 ×F

βn
2 ×F

Rn
2 it holds wt(e2) = p. Now consider

the permuted parity-check matrix in systematic form H̃ as given in line 5 of
Algorithm 3 with corresponding syndrome s̃. We obtain

H̃P−1e = (e1 + H ′
1e3, e2 + H ′

2e3) = s̃.
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This implies that (e1, e3) is a solution to the syndrome decoding instance
(H̃ ′, s′, ω − p) with H̃ ′ = (I(1−β−R)n | H ′

1) and s′ = s̃[(1−β−R)n]. The solu-
tion is then recovered by the application of our quantum circuit in line 8. Note
that in expectation there exist

S :=
(

(1 − β)n
ω − p

)
· 2−(1−β−R)n

solutions to our reduced instance. Since we apply our quantum circuit poly(n) ·S
times and in each execution a random solution is returned, a standard coupon
collector argument yields that we recover all S solutions with high probability.
Now, when e′ = (e1, e3) is returned by the quantum circuit, we recover e2 =
s̃[(1−β−R)n+1,(1−R)n] + H ′

2e3 and eventually return e = P (e1, e2, e3).
Next let us consider the time complexity of the algorithm. Observe that the

probability, that wt(e2) = p for a random permutation holds is

qC := Pr [wt(e2) = p] =

(
(1−β)n

ω−p

)(
βn
p

)

(
n
ω

) .

Hence, after q−1
C iterations we expect that there is at least one iteration where

wt(e2) = p. In each iteration we apply our quantum circuit Õ (S) times to solve
the reduced instance (H̃ ′, s′, ω − p), corresponding to a code of length (1 − β)n
and dimension Rn. Since there exist S solutions the expected time to retrieve
one of them at random is

TQ = Õ
⎛

⎝

√√
√
√

(
(1−β)n

ω−p

)

max(1, S) · (
(1−β−R)n

ω−p

)

⎞

⎠ ,

according to Remark 1. The maximum follows since we know that there exists
at least one solution. In summary the running time becomes TPH = q−1

C · TQ ·
max(1, S), as stated in the theorem.

The required amount of qubits of the quantum circuit for solving the syn-
drome decoding problem related to the reduced code of length (1 − β)n and
dimension (1 − R)n are roughly R(1 − β − R)n2 (compare to Sect. 3). Thus, for
β := (1 − δ)(1 − R) this corresponds to a qubit reduction of

R(1 − β − R)
R(1 − R)

=
1 − R − (1 − δ)(1 − R)

1 − R
= δ.

�	
Theorem 2 allows to easily determine the corresponding speedup, whose exact
formula we give in the following corollary.

Corollary 2 (Punctured Hybrid Speedup). Let n ∈ N, ω = τn and k =
Rn, p = ρn for τ,R, ρ ∈ �0, 1� and let TC be as defined in Eq. (4). Then for any
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qubit reduction factor δ ∈ �0, 1� Algorithm 3 solves the SDn,k,ω problem in time
(TC)t(δ) using δ(1 − R)Rn2 qubits for the matrix representation, where

t(δ) =
H(τ) − βH

(
ρ
β

) − 1−β
2 · H

(
τ−ρ
1−β

) − (1−β−R)
2 · H

(
τ−ρ

1−β−R

)
+ max(0, σ)

H(τ) − (1 − R)H
(

τ
1−R

)

for β = (1 − δ)(1 − R) and σ = (1 − β)H
(

τ−ρ
1−β

) − (1 − β − R).

Proof. Recall that t(δ) = log TPH

log TC
, where TPH is the running time of Algorithm

3, given in Theorem 2. Now the statement of the corollary follows immediately
by approximating the binomial coefficients in TPH and TC via Stirling’s formula
(see Eq. (1)). �	

In Fig. 7a we compare the behavior of our new trade-off to our previ-
ously obtained Shortened-Hybrid. Recall that the performance of Short-
ened-Hybrid is not very sensitive to changes in the error-rate. Thus, for set-
tings with the same code-rate, i.e. full and half distance as well as BIKE/HQC,
the solid lines are almost on top of each other. The dashed lines represent our
new trade-off (Theorem 2) for which we optimized p numerically. It can be
observed, that this trade-off outperforms the Shortened-Hybrid for all param-
eters. Here, we observe the best behaviour for low code-rates and small error-
rates, which correspond to the case, where the solution is very unique. In these
cases our Punctured-Hybrid algorithm can disregard parity-check equations
without introducing multiple solutions to the reduced instance. Hence, still a
single execution of the quantum circuit suffices to recover the solution. The sig-
nificance of the amount of solutions can be well observed by comparing the full
and half distance settings. In the full distance setting there exists already one
random solution in expectation, therefore any omitted parity equation leads to
the existence of multiple solution and in turn leads to only a small improve-
ment over Shortened-Hybrid. Contrary, the half distance setting allows for a
significant improvement, which is due to the exponentially small probability of
existing random solutions. Note that in the McEliece, BIKE and HQC setting
the error weight is only sublinear, which lies in favour of our new trade-off, since
the probability for existing random solutions is again exponentially small. BIKE
and HQC furthermore use a very small error weight of only O(

√
n) and specify

a code-rate of R = 0.5, which results in a very unique solution. Consequently,
in Fig. 7a it can be observed, that asymptotically for these settings the second
trade-off improves drastically on Shortened-Hybrid.

Note that our formulation of the speedup for Punctured-Hybrid in con-
trast to Shortened-Hybrid (see Corollary 1) still depends on the error-rate,
not exactly allowing for ω = o(n). Thus, to obtain the asymptotic plot we com-
pared the result of Corollary 1 to Theorem 2 for McEliece (n = 6688, k =
5024, ω = 128), BIKE (n = 81946, k = 40973, ω = 264) and HQC (n =
115274, k = 57637, ω = 262), which are the suggested parameters for 256-bit
security from the corresponding NIST submission documentations [2,10,24].
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Fig. 7. Comparison of time exponents of Shortened-Hybrid and Punctured-
Hybrid (y-axis) plotted as a function of the qubit-reduction factor δ (x-axis).

To quantify the result of our new trade-off take e.g. the case of McEliece and
a qubit reduction by 80% (δ = 0.2), as before. Here we improve to a speedup of
t(δ) ≈ 0.74, compared to 0.82 for Shortened-Hybrid.

However, for concrete medium sized parameters this asymptotic behaviour
is not necessarily obtained. In Fig. 7b we show a comparison of both trade-
offs for concrete McEliece parameter sets. Note that for all parameter sets the
performance of Shortened-Hybrid is almost identical, which is why there is
only a single solid line.

For these concrete computations we used the more accurate time complexity
formula involving binomial coefficients rather than its asymptotic approximation
to determine the speedup t(δ). Note that the discontinuity for our new trade-off
is due to the restriction to discrete choices of p. We find that for parameters up
to n ≈ 2500 both trade-offs remain superior to each other for certain reduction
factors δ. For larger values of n the Punctured-Hybrid algorithm becomes
favourable for all δ.

In the BIKE and HQC settings the Punctured-Hybrid algorithm is
favourable already for small parameters corresponding to n ≥ 1000.

4.3 Combined Hybrid

Next let us outline how to combine both previous trade-offs to achieve an
improved version. We first reduce the code length and dimension, again by
guessing αn zero coordinates of e and removing the corresponding columns form
H, i.e., we shorten the code. The remaining instance is then solved using our
Punctured-Hybrid algorithm, i.e., by first omitting βn parity-check equa-
tions (compare also to Fig. 8) and then using the reduced instance as input to
the quantum circuit.
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Fig. 8. Input matrix in systematic form where βn parity-check equations are omitted
and αn zeros of e are known. The vector e is assumed to contain weight p on βn
coordinates. Framed parts are used as input to the quantum algorithm.

Algorithm 4. Combined-Hybrid

Require: parity-check matrix H ∈ F
(n−k)×n
2 , syndrome s ∈ F

n−k
2 , weight ω ∈ [n],

qubit reduction factor δ ∈ �0, 1�
Ensure: error vector e with wt(e) = ω satisfying He = s
1: choose α and p accordingly

2: β := (1 − k
n
)
(

δ k
n

k
n

−α

)
, E :=

((1−α)n
ω )

((1−α−β)n
ω−p )(βn

p )
3: repeat
4: choose random permutation matrix P ∈ F

n×n
2 and set H̃ ← HP

5: e′ ← Punctured-Hybrid(H̃[(1−α)n], s, ω, δ, β
1−α

, p) � abort after E iterations
of the outer loop

6: e ← P (e′, 0αn)
7: until He = s
8: return e

We give the pseudocode description of the procedure in Algorithm 4. Note
that here we use β and p as input parameters to Punctured-Hybrid, rather
than to the choice made in Algorithm 3 (Punctured-Hybrid). Further, since
for an incorrect guess of αn zero positions the call to Punctured-Hybrid will
not finish, we introduce an abort after the expected amount of iterations on a
correct guess.

Theorem 3 (Combined Hybrid). Let n ∈ N, ω ∈ [n] and k = Rn for
R ∈ �0, 1�. Then for any qubit reduction factor δ ∈ �0, 1� the SDn,k,ω prob-
lem can be solved in expected time TCH using δ(1 − R)Rn2 qubits for the matrix
representation, where

TCH = Õ
( (

n
ω

)
√(

(1−α−β)n
ω−p

)(
(1−β−R)n

ω−p

)(
βn
p

) · max

⎛
⎝1,

√√√√
(

(1 − α − β)n

ω − p

)
· 2−(1−β−R)n

⎞
⎠

)

with α ∈ �0, R�, β = (1 − R)
(
1 − δR

R−α

)
and p ∈ [min(ω, βn)].
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Proof. The correctness follows from the correctness of Algorithm 2 and Algo-
rithm 3. Therefore observe that for a correct guess of αn zero positions of e, the
expected amount of permutations needed by Punctured-Hybrid to find the
solution is

E :=

(
(1−α)n

ω

)

(
(1−α−β)n

ω−p

)(
βn
p

) .

Also note that Punctured-Hybrid is called on a code of length n′ = (1−α)n.
Hence, setting β′ = β

1−α guarantees that β′n′ = βn parity equations are omitted.
For the time complexity we have again with probability

qC := Pr
[
P−1e = (e1, 0αn)

]
=

(
(1−α)n

ω

)
(

n
ω

) ,

a correct guess for αn zero positions (compare to the proof of Theorem 1).
In each iteration of our combined algorithm we call the Punctured-Hybrid
algorithm. Inside this subroutine E iterations of the outer loop are executed,
each performing

S = Θ̃

(

max

(

1,

(
1−β−α

ω−p

)

2−(1−R−β)n

))

calls to the quantum circuit. This quantum circuit is applied to solve the syn-
drome decoding problem defined on a code of length (1 − α − β)n and dimens
(R − α)n with error-weight ω − p (compare to Fig. 8), which takes time

TQ = Õ
⎛

⎝

√√
√
√

(
(1−α−β)n

ω−p

)

S · (
(1−β−R)n

ω−p

)

⎞

⎠ .

Thus, eventually, the time complexity of the whole algorithm summarizes as
TCH = q−1

C · E · TQ · S, as claimed. Finally, note that for given β = (1 −
R)

(
1 − δR

R−α

)
we obtain a qubit reduction by

(R − α)(1 − R − β)
R(1 − R)

=
(R − α)(1 − R)

(
1 − (1 − δR

R−α )
)

R(1 − R)
=

(R − α) · δR
R−α

R
= δ.

�	
Our combination achieves the improved trade-off behavior depicted as dashed
lines in Fig. 9. Here the values of p and α were optimized numerically. It
shows that the combination of both trade-offs for most parameters improves
on Punctured-Hybrid (solid lines). Especially in the full distance decoding
setting an improvement for nearly all δ is achieved. This is due to the fact, that
the guessing of zero coordinates is an additional possibility to control the amount
of solutions to the reduced instance and therefore to optimize the complexity of
the Punctured-Hybrid subroutine. This is also the reason why we achieve
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Fig. 9. Asymptotically achieved time exponents. The combined trade-off is depicted
as dashed line, Punctured-Hybrid is illustrated as a solid line.

no (asymptotic) improvement in the BIKE and HQC settings, here the solution
is already so unique that the trade-off can not benefit from the new degree of
freedom.

But also in the McEliece setting we achieve notable improvements. If we again
consider a reduction-factor of δ = 0.2 the combination improves the speedup to
t(δ) ≈ 0.69 from 0.74 achieved by Punctured-Hybrid. Furthermore, when
focusing on near future realizations, i.e., the regime of small reduction factors, it
is for example possible with just one percent of the qubits (δ = 0.01) to achieve
a speedup of t(δ) ≈ 0.92.
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Abstract. We show how to backdoor the McEliece cryptosystem such
that a backdoored public key is indistinguishable from a usual public
key, but allows to efficiently retrieve the underlying secret key.

For good cryptographic reasons, McEliece uses a small random seed
δ that generates via some pseudo random generator (PRG) the random-
ness that determines the secret key. Our backdoor mechanism works by
encoding an encryption of δ into the public key. Retrieving δ then allows
to efficiently recover the (backdoored) secret key. Interestingly, McEliece
can be used itself to encrypt δ, thereby protecting our backdoor mecha-
nism with strong post-quantum security guarantees.

Our construction also works for the current Classic McEliece NIST
standard proposal for non-compressed secret keys, and therefore opens
the door for widespread maliciously backdoored implementations.

Fortunately, our backdoor mechanism can be detected by the owner
of the (backdoored) secret key if δ is stored after key generation as spec-
ified by the Classic McEliece proposal. Thus, our results provide strong
advice for implementers to store δ inside the secret key and use δ to
guard against backdoor mechanisms.

Keywords: Classic McEliece · Niederreiter · Backdoor · Public-key
cryptography · SETUP · Post-quantum cryptography

1 Introduction

Strong cryptography provides confidentiality to everyone. While this is in general
a highly desirable goal, it is a large obstacle for adversarial parties. Thus, there
exist strong interests to circumvent cryptographic mechanisms by e.g. installing
backdoors in cryptographic protocols. In a nutshell, a backdoored cryptographic
scheme is a scheme that provides strong cryptographic properties, unless one
possesses a key to a backdoor that allows for easy recovery of some secret value.

The process of establishing backdoors in cryptographic schemes is especially
promising during a standardization process. As an example, the Snowden revela-
tions showed that the Dual EC DRBG standard was maliciously backdoored [3].

Since we are now close to standardizing new cryptographic schemes for the
era of quantum computers, it is of crucial importance to understand whether
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the current candidate schemes allow for backdoor mechanisms. In this work, we
address one of the candidates, the McEliece cryptosystem, for which we show
how to install backdoors, as well as how to detect them.

Previous Work. The foundational works of Simmons [11,12] describe how digital
signatures can be used to secretly communicate information over subliminal
channels. Subliminal channels provide a way of adding hidden information to
the plain communication by choosing values not at random, but depending on
the hidden information. This core idea opened the pathway to a specific type
of backdoors, where the hidden information simplifies attacking the backdoored
scheme.

Young and Yung [14,15] initiated the area of kleptography which considers
how an adversary A can subtly modify a cryptosystem such that it leaks some
secret information that only A is able to recover, and whose output is indistin-
guishable from a legitimate system for anyone only having black-box access to it.
An example for this is captured by their SETUP (Secretly Embedded Trapdoor
with Universal Protection) notion. A SETUP mechanism encodes information
into the public key of an asymmetric cryptosystem during the key generation
process, allowing the adversary A to later retrieve the underlying secret key using
A’s secret backdoor key. A SETUP requires that given just the generated keys
(i.e. without access to source code or to the secret backdoor key), it is impossible
to tell whether the keys have been backdoored or not, and that nobody but the
owner of the secret backdoor key can retrieve secret keys from public keys even
if the implementation eventually gets revealed. This means in particular that
a SETUP mechanism has to use asymmetric encryption to embed the secret
information in its generated public keys.

RSA backdoors are described by Crépeau and Slakmon [5] who for example
encoded half of the bits of the RSA prime p into the public RSA modulus N .
However, their backdoor mechanisms do not satisfy all properties of a SETUP
since they use a secret permutation that allows anyone with access to the source
code to recover the backdoor information. Young and Yung describe a proper
kleptographic mechanism for RSA in [16].

For post-quantum secure cryptosystems, very little is known about successful
SETUP mechanisms. The work of Kwant, Lange and Thissen [7] describes a back-
door mechanism at the cost of increasing the probability of decryption failures,
which might be used to leak information about the secret key. The work of Yang,
Xie and Pan [13] however shows that [7] does not fulfill the SETUP notion since the
backdoors can be detected efficiently. Moreover, Yang, Xie and Pan [13] introduce
SETUP mechanisms for RLWE-based schemes that encode non-quantum secure
ECC encryptions of the secret key into the generated public keys.

For code-based cryptosystems and especially McEliece, to the best of our
knowledge no SETUP backdoor mechanism is known. Loidreau and Sendrier [8]
show that there is a subset of weak Goppa polynomials that makes it feasible
to enumerate them when attacking McEliece. This however does not fulfill the
SETUP notion, because one can immediately identify from the secret keys that
the resulting scheme has been backdoored. It also does not provide exclusive
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access. In the context of the NIST standardization process, [4] suggests that
maliciously chosen permutation matrices in the key generation algorithm may
allow to leak secret values.

For preventing backdoors from a theoretical viewpoint, Bellare, Paterson and
Rogaway [2] introduced the watchdog model. However, applying the watchdog
model to McEliece does not result in a practical encryption scheme.

Our Contribution. We propose the first SETUP mechanism for McEliece. For
didactic reasons, we first address a usual Vanilla Niederreiter version of McEliece,
that uses the parity check matrix of a code C as secret key. The randomness for
generating C comes from the output of a PRG applied to some secret seed δ.

The public key is a randomized and permuted basis of C. A malicious adver-
sary A may now backdoor the key generation process of a user U by encoding
an encryption of δ (under A’s public key pkA) into U ’s public key pkU using
a different permutation of C. We show that the resulting backdoored keys are
indistinguishable from ordinary McEliece keys under some mild assumption.
This indistinguishability even holds when our SETUP mechanism, pkA, and the
secret code C are known. Thus, there is no way to check for the user U whether
the generated secret/public key pair has been backdoored as long as U only has
black-box access to the key generation and cannot inspect the implementation.
In the terminology of Young and Yung we therefore provide a strong SETUP.

However, if the user U knows in addition the secret seed δ, then U can identify
backdoored keys. The reason is that the randomness for transforming the secret
key skU into the public key pkU usually also comes from the PRG output on δ.
Thus, δ already fully determines the public key given the secret key. So U may
rerun the secret/public key generation from the verifiable randomness provided
by δ to check for the validity of a key pair.

Thus, if the seed δ is included into U ’s secret key skU , then our backdoor
mechanism is detectable from skU . In the terminology of Young and Yung we
therefore provide a weak SETUP for McEliece when δ is part of the secret key
since the backdoor still cannot be detected given only the public key pkU .

As a main result, we then show that our SETUP backdoor mechanism easily
transfers from our Vanilla McEliece scheme to Classic McEliece [1], the 4th round
NIST standardization candidate. This might at first sight come as a surprise,
since our SETUP uses the permutation to embed the backdoor, while Classic
McEliece does not permute the entries of C. However, we observe that Classic
McEliece inherently includes a permutation that defines the Goppa code, which
can be used analogously for our SETUP. Since the proposal [1] requires to store
δ as part of the secret key, our construction yields a weak SETUP for Classic
McEliece, but turns into a strong SETUP if an implementer chooses to deviate
from the specification and deletes δ after key generation. This also emphasizes
the importance of making the seed δ a mandatory part of the secret key when
specifying any McEliece-based cryptosystem. Our SETUP mechanism applies to
the non-compressed key format described in the Classic McEliece submission,
not to the compressed formats.
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Last but not least, we show that a backdoor implementer A may use McEliece
itself for encrypting δ, thereby securing our backdoor even in the presence of
quantum computers.

Implementer’s Advice. Our results show that inclusion of the secret δ efficiently
protects against strong SETUP backdoor mechanisms, though not against weak
SETUPs. Thus, our results strongly suggest including δ into the secret key. This
enables users to verify the absence of our SETUP mechanism in black-box imple-
mentations of McEliece key generation with other (trusted) implementations.

We would like to stress that storing δ is not necessary for McEliece func-
tionality. The original purpose of δ is to provide a small piece of randomness,
from which one can efficiently derive the full McEliece secret/public key pairs.
To this end, standards usually recommend to store δ. Our work shows another
strong benefit of storing δ, since δ serves as a short proof for the correct, non-
backdoored, deterministic derivation of the secret/public key pair.

In general, open-source implementations and code reviews are recommended
for establishing trust in cryptographic implementations. However, code reviews
are not always feasible or sufficient in practice. In these cases, access to δ provides
an efficiently verifiable witness of a correct key generation with respect to the
specification.

Open Problems. Since we describe the first SETUP backdoor mechanism for
code-based cryptography, one might wonder whether our SETUP transfers with-
out much effort to other code-based schemes like BIKE or HQC. However,
BIKE/HQC both use cyclic codes, whose structure seems to prevent a direct
application of our method. It remains an open problem to derive weak/strong
SETUP mechanisms in the cyclic setting.

Paper Organization. In Sect. 2 we give an introduction to McEliece and the
SETUP backdoor mechanism of Young and Yung [15], Sect. 3 provides the strong
SETUP mechanism for Vanilla McEliece (without storing δ), as well as the
backdoor identification when δ is provided in the secret key. In Sect. 4 we provide
the necessary modifications to our SETUP for Classic McEliece. Eventually, in
Sect. 5 we show how to use McEliece to hide the encryption of δ in a user’s
public key. Appendix A contains a simpler but (instructively) flawed backdoor
construction.

2 Background

2.1 McEliece and Binary Goppa Codes

McEliece uses a binary linear [n, k]-code C, i.e., C ⊂ Fn
2 is a subspace of dimen-

sion k. C may be described by a generator matrix G ∈ Fk×n
2 , or equivalently by

a so-called parity check matrix H ∈ F(n−k)×n
2 whose kernel is C.

Due to efficiency reasons, all modern instantiations of McEliece use a parity
check matrix, usually called the Niederreiter version of McEliece. While our
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SETUP backdoor mechanism for Vanilla McEliece from Sect. 3 works for any
code, our SETUP mechanism from Sect. 4 also uses properties of the binary
Goppa codes that are used in the Classic McEliece scheme [1].

Thus, let us briefly recall the parity check matrix of a binary Goppa code. Let
F2m be a binary field. Choose α1, . . . , αn distinct from F2m , and an irreducible
Goppa polynomial g ∈ F2m [x] of degree t. This defines a linear length-n code C
with minimal distance at least 2t + 1 and parity check matrix

H =

⎛
⎜⎜⎜⎝

1 1 · · · 1
α1 α2 · · · αn

...
. . .

αt−1
1 αt−1

2 · · · αt−1
n

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

g(α1) 0 · · · 0
0 g(α2) · · · 0
...

. . .

0 0 · · · g(αn)

⎞
⎟⎟⎟⎠

−1

=

⎛
⎜⎜⎜⎜⎝

1
g(α1)

1
g(α2) · · · 1

g(αn)
α1

g(α1)
α2

g(α2) · · · αn

g(αn)
...

. . .
αt−1

1
g(α1)

αt−1
2

g(α2) · · · αt−1
n

g(αn)

⎞
⎟⎟⎟⎟⎠

.

Notice that H ∈ Ft×n
2m . If we write the elements of H in an F2-basis, then we

end up with an (mt × n)-matrix, i.e., C is a k ≥ n − mt dimensional subspace
of Fn

2 .

2.2 SETUP Mechanism

SETUP (Secretly Embedded Trapdoor with Universal Protection) mechanisms
were introduced by Young and Yung [14,15]. A SETUP mechanism transforms
a cryptosystem Π into a backdoored cryptosystem Π ′ for a malicious backdoor
holder A with asymmetric key pair (skA, pkA). This transformation fulfills the
following properties.

1. The input to functions in Π ′ agrees with the specification of inputs to Π.
This property ensures the compatibility of Π and Π ′.

2. Π ′ is still efficient and uses EncpkA (and possibly other functions as well).
3. DecskA is not part of Π ′ and is only known to A.

This prevents the use of symmetric schemes and guarantees A exclusive access
to the backdoor, assuming that A’s used asymmetric scheme is secure. In
particular, the legitimate user is not able to decrypt the backdoor information,
even with access to the implementation of Π ′.

4. The output of algorithms in Π ′ is compatible with the specification of out-
puts of algorithms in Π. At the same time, it contains information efficiently
derivable by A only.
The output of Π ′ needs to be compatible to Π in the sense that e.g. a cipher-
text created with an encryption function from Π ′ must be decryptable by
the corresponding decryption function in Π. While maintaining this compat-
ibility, output of Π ′ additionally needs to contain information that only the
adversary can derive efficiently.
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Moreover, SETUP mechanisms can be grouped into categories of different
strength. We focus only on the weak and strong SETUP from [15].

Weak SETUP. The output of Π and Π ′ are polynomially indistinguishable,
except for A and the legitimate user U of the implementation. Thus, in a weak
SETUP, U may identify with the help of the generated secret key skU from Π ′

the existence of a backdoor. All users knowing only pkU and pkA cannot identify
a backdoor in U ’s key, i.e. all users except U and A.

Strong SETUP. The output of Π and Π ′ are polynomially indistinguishable,
except for A. Thus, a user U cannot recognize any backdoors, even when U
knows the SETUP mechanism and pkA.

We will formalize the notions for weak and strong SETUP in Sect. 3, and
especially for proving Theorem 1.

3 Backdooring Vanilla McEliece

Recall that for didactic reasons we first define some generic McEliece system
in Niederreiter form, called Vanilla McEliece. Our Vanilla McEliece scheme has
the advantage that it does not rely on specifics of the underlying code, and as
opposed to Classic McEliece explicitly uses a permutation matrix P , in which
we embed our strong SETUP mechanism.

Let us start by defining Vanilla McEliece’s key generation algorithm.

3.1 Key Generation for Vanilla McEliece

In the key generation process of Vanilla McEliece, see also Fig. 1, the secret par-
ity check matrix H ∈ F(n−k)×n

2 of a binary linear [n, k]-code C is scrambled by a
random invertible linear transformation S ∈ F(n−k)×(n−k)

2 and a random permu-
tation matrix P ∈ Fn×n

2 . The resulting public key is pk = SHP ∈ F(n−k)×n
2 , and

the secret key is sk = (C, S, H, P ). It is important to stress that the randomness
for constructing C, S, H, P is chosen from the output of a PRG G(·) applied to a
short random seed δ, say of 256 bits. Thus a small seed δ completely determines
sk and allows compact storage of the secret key.

The invertible matrix S does not affect the code C. The matrix P permutes
the coordinates of C, resulting in a code equivalent to C. From a security per-
spective, the transformations S, P are supposed to completely hide the structure
of the underlying C. The security of McEliece is based on pk behaving like a ran-
dom parity check matrix, for which the syndrome decoding problem is hard.

3.2 Vanilla McEliece Strong SETUP

Our SETUP mechanism for Vanilla McEliece manipulates the key generation
in such a way that the keys are indistinguishable from legitimate keys, but
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KGenV(1n)

1 : $ 0, 1 s

2 : r := G( ) // G is a PRG

3 : Generate C with parity check matrix H from r.

4 : Compute random S, P from r.

5 : return sk := (C, S, H, P ), pk := SHP

Fig. 1. Vanilla McEliece key generation

knowledge of a secret backdoor allows an adversary to recover the secret key from
the corresponding public key. This is achieved by encrypting the random seed
δ using a public-key encryption scheme ΠA of the adversary’s choice with the
public key pkA to obtain a ciphertext c ←$EncpkA(δ) ∈ F�

2. Then c is embedded
in the random permutation P such that it can be recovered just from the public
key.

Encoding via Permutation. Let us denote by P (n) ⊂ Fn×n
2 the set of n-di-

mensional permutation matrices, so |P (n)| = n!. We write a permutation π :
{1, . . . , n} → {1, . . . , n} as π = (π1, . . . , πn) with πi = π(i). Let ei be the i-th
unit vector, written in column form. Then we define the permutation matrix
Pπ ∈ P (n) corresponding to π as

Pπ =
(
eπ(1) . . . eπ(n)

)
.

We use an efficiently computable bijection from Kreher and Stinson [6] (Algo-
rithms 2.15 and 2.16, see also Fig. 2),

fn : {0, 1, . . . , n! − 1} → P (n),

that maps numbers to permutation matrices, and vice versa.
We use fn to encode c ←$EncpkA(δ) ∈ F�

2 as a permutation. Notice that the
algorithms from Fig. 2 efficiently compute fn and f−1

n both in time O (
n2)

.

Idea of Our Vanilla McEliece Backdoor. Our backdoored key generation ˜KGenV
is described in Fig. 3.

The parity check matrix H and the invertible matrix S are generated from
the random seed δ as in the non-backdoored key generation KGenV from Fig. 1.

We assume w.l.o.g. that the columns of H are pairwise distinct, otherwise
the code C defined by H has minimal distance at most 2 and is not suitable
for McEliece. Therefore, SH also has pairwise distinct columns. Thus, we can
unambiguously sort the columns of SH in lexicographic order <lex. Let P ′ ∈ P (n)

be the permutation that realizes this sorting.
Using standard rejection sampling, we expand c ←$EncpkA(δ) ∈ F�

2 to a bit
representation of a number a ∈ {0, 1, . . . , n! − 1}. Notice that ˜KGenV requires

� ≤ log2(n!), (1)
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fn(a)

1 : πn := 1

2 : for j = 1..n − 1 do

3 : d := a mod (j + 1)! /j!

4 : a := a − d · j!
5 : πn−j := d + 1

6 : for i = n − j + 1..n do

7 : if πi > d then

8 : πi := πi + 1

9 : fi

10 : endfor

11 : endfor

12 : return P(π1,...,πn)

f−1
n (P )

1 : Let π = (π1, . . . , πn) with P = Pπ.

2 : a := 0

3 : for j = 1..n do

4 : a := a + (πj − 1)(n − j)!

5 : for i = j + 1..n

6 : if πi > πj then

7 : πi := πi − 1

8 : fi

9 : endfor

10 : endfor

11 : return a

Fig. 2. Algorithms for computing fn and its inverse f−1
n

Fig. 3. Backdoored Vanilla McEliece key generation.

which is easily met for many encryptions Enc. See Sect. 5, where we realize Enc
with McEliece encryption itself.

If we further assume that c is uniformly distributed in F�
2, then a is uniform

in {0, 1, . . . , n! − 1} and hence P = fn(a) is uniform in P (n). This implies that
P̃ = P ′P is uniform in P (n).
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Secret Key Recovery. Notice that our backdoored key generation algorithm
˜KGenV from Fig. 3 generates public keys of the form p̃k := SHP̃ = SHP ′P ,
where SHP ′ has lexicographically sorted columns.

This enables anybody to efficiently compute P . We then derive a = f−1
n (P ),

from which we can recover c = EncpkA(δ). This enables the adversary A to
recover δ using DecskA . One then basically reruns ˜KGenV to recover the back-
doored secret key s̃k. The details are given in Fig. 4.

RecoverV(skA, pk)

1 : Find permutation P with Col1(pkP−1) <lex · · · <lex Coln(pkP−1).

2 : a := f−1
n (P ). Write a = log2 n!

i=1
ci2

i−1.

3 : c := c1 . . . c

4 : δ := DecskA(c)

5 : r := G(δ)

6 : Generate C with parity check H from r.

7 : Compute random S from r.

8 : Find permutation P with Col1(SHP ) <lex · · · <lex Coln(SHP ).

9 : P := P P

10 : return sk = (C, S, H, P )

Fig. 4. Vanilla McEliece secret key recovery

Proof of Strong SETUP. Let us first check that our backdoor mechanism for
McEliece indeed satisfies the SETUP definition of [15] from Subsect. 2.2.

1. The input to functions in backdoored McEliece agrees with the specification of
inputs to McEliece.
All domains remain unchanged.

2. Backdoored McEliece is still efficient and uses EncpkA (and possibly other
functions as well).
Our ˜KGenV(1n) applies EncpkA , which we assume to be efficient. Since c′ is
uniformly distributed in {0, 1}�log2 n!�, a is uniform in {0, . . . , 2�log2 n!� − 1},
so Pr [a < n!] = n!/2�log2 n!� ≥ n!/2log2 n!+1 = 1/2. Therefore, the expected
number of samples is at most 2, making the rejection sampling efficient. Since
fn(a) and P ′ are also efficiently computable, our modification remains effi-
cient.

3. DecskA is not part of backdoored McEliece and is only known by A.
We solely use DecskA in RecoverV(skA, p̃k).

4. The output of algorithms in backdoored McEliece is compatible with the spec-
ification of outputs of algorithms in McEliece. At the same time, it contains
information efficiently derivable for A only.
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The output of our backdoored McEliece scheme is fully compatible with the
original McEliece scheme, in particular the original decryption function works
on the backdoored key pairs (p̃k, s̃k). Moreover, our p̃k allows to recover the
full secret key s̃k using RecoverV(skA, p̃k).

It remains to show that our backdoor mechanism provides a strong SETUP
for Vanilla McEliece. As the schemes only differ with regard to their key gener-
ation, it suffices to show that secret and public keys (sk, pk) and (s̃k, p̃k) output
by their respective key generation algorithms are polynomially indistinguishable
for anyone who knows pkA—but not skA.

Recall that we used the randomness of c ←$EncpkA(δ) ∈ F�
2 to derive a ran-

dom P . In the high-level idea, we showed that uniformly distributed c lead to
uniformly distributed P . Therefore, we want our ciphertexts c to be indistin-
guishable from random bit strings even given the adversary’s public key pkA.

This is captured more formally by the following definition.

Definition 1. Let Π = (KGen,Enc,Dec) be a public-key encryption scheme with
ciphertexts c ∈ F�

2. For any algorithm AO with oracle access to O, define its
advantage AdvIND$−CPA

Π (A) to be
∣∣∣Pr

[
AEncpk(·)(pk) = 1

∣∣∣(sk, pk) ←$KGen
]
− Pr

[
A$(·)(pk) = 1

∣∣∣(sk, pk) ←$KGen
]∣∣∣ .

Here the oracle Encpk(·) on input m returns c ←$Encpk(m), and $(·) returns
a uniformly random c ←$ {0, 1}� on any input. Π provides indistinguishability
from random bits under a chosen plaintext attack, in short IND$-CPA, if for
any ppt adversary A with access to an oracle, AdvIND$−CPA

Π (A) is negligible.

It is not hard to see that IND$-CPA implies IND-CPA. The IND$-CPA
notion has been considered in [10] in the context of symmetric encryption. In
Sect. 5 we show that a variant of the McEliece cryptosystem provides IND$-CPA
under reasonable assumptions.

Theorem 1. Assume that the adversary’s public-key encryption scheme EncpkA
is IND$-CPA and pkA is publicly known. Then original keys (sk, pk)←$KGen(1n)
and backdoored keys (s̃k, p̃k)←$ ˜KGen(1n, pkA) are polynomially indistinguish-
able. Therefore, our algorithms ˜KGenV(1n, pkA) and RecoverV(skA, p̃k) define
a strong SETUP mechanism for Vanilla McEliece.

Proof. For any ppt distinguisher D, we define D’s advantage AdvKeyDistinguish
˜KGen,KGen

(D)
for distinguishing original from backdoored keys as

∣∣∣Pr
[
D(s̃k, p̃k, pkA) = 1

∣∣∣ (s̃k, p̃k) ←$ ˜KGenV(1n, pkA)
]

− Pr [D(sk, pk, pkA) = 1 | (sk, pk) ←$KGenV(1n) ]
∣∣∣ .

Now consider the IND$-CPA game described in Definition 1 where the oracle
OIND$−CPA is either EncpkA(·) or $(·) and we have to decide which one. In Fig. 5,
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we use D to construct an adversary A
OIND$−CPA
D against the IND$-CPA game.

Here, the algorithm ˜KGenV(1n, OIND$−CPA) is the same as ˜KGenV(1n) from Fig. 3,
with the only difference that c ←$ OIND$−CPA(δ) is sampled from the given oracle
on input δ in step 7.

A
OIND$−CPA
D (1n, pkA)

1 : (sk, pk), ˜KGenV(1n,OIND$−CPA), where we compute c $OIND$−CPA(δ) F2

2 : return b $ D(sk, pk, pkA)

Fig. 5. Adversary against IND$-CPA game constructed from D

In case OIND$−CPA = EncpkA , we perfectly simulate ˜KGenV(1n, pkA). Hence

Pr
[
A

Encpk(·)
D (1n, pkA) = 1

]
= Pr

[
D(s̃k, p̃k, pkA) = 1

∣∣∣(s̃k, p̃k) ←$ ˜KGenV(1n, pkA)
]

Now suppose OIND$−CPA = $(·). In this case, ˜KGenV(1n, OIND$−CPA) computes a
uniformly distributed c and therefore also a uniform permutation. This differs
from the output distribution of KGenV only in the fact that KGenV generates P
from r = G(δ). Since G is a PRG, we obtain
∣∣∣Pr

[
A

$(·)
D (1n,pkA)=1

]
−Pr [D(sk,pk,pkA)=1 |(sk, pk)←$KGenV(1n) ]

∣∣∣≤negl(n).

Putting all this together and using that AdvIND$−CPA
ΠA

(
A

OIND$−CPA
D

)
≤ negl(n) by

assumption, we deduce that AdvKeyDistinguish
˜KGen,KGen

(D) ≤ negl(n). �	

3.3 From Strong to Weak SETUP

Recall that in the original McEliece key generation, we derive all randomness
from a random seed δ and hence a key pair (sk, pk) is solely determined by δ.
Thus, inclusion of δ into the secret key allows for a simple verification check of
the validity of a key pair, thereby preventing our strong SETUP mechanism.

Denote by ˜KGen
δ

V the same algorithm as ˜KGenV with the only difference that
the random seed δ is also included in s̃k.

Theorem 2. Algorithms ˜KGen
δ

V (1n, pkA) and RecoverV(skA, p̃k) define a weak
SETUP mechanism for Vanilla McEliece.

Proof. Let (s̃k, p̃k), ← ˜KGen
δ

V (1n, pkA) with s̃k = (C, S, H, P̃ , δ). Run ˜KGenV with
randomness r := G(δ), let the output be sk = (C, S, H, P ). We conclude that s̃k
is backdoored if and only if P 
= P̃ .
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Thus, we can decide via our secret key s̃k whether our scheme has been
backdoored. Since ˜KGen

δ

V and ˜KGenV differ only by the format of s̃k, by Theorem 1
our scheme still provides a weak SETUP mechanism. �	
Remark 1. Vanilla/Classic McEliece uses pseudorandomness from a PRG output
to construct its secret key. One might think that constructing the secret key from
true randomness only makes the scheme more secure. However, our results show
that the reproducibility feature of pseudorandomness provides an effective way
for detecting backdoors, a feature that cannot be realized by true randomness.

4 How to Backdoor Classic McEliece

In this section, we show that the strategy of embedding a backdoor in the secret
permutation P from Sect. 3 also transfers to Classic McEliece.

Changes from Vanilla to Classic McEliece. A simplified version KGenδ
C of the

Classic McEliece key generation is outlined in Fig. 6. The main differences to
the Classic McEliece specification are that we do not explicitly describe in detail
how the Goppa code is derived from the seed, and that we leave out components
of sk that are not relevant to our construction. As in Vanilla McEliece one also
uses a seed δ to compute the randomness r for the Goppa code C and its parity
check matrix H. However as opposed to Vanilla McEliece, Classic McEliece does
not involve a random invertible S, and further completely omits the use of a
permutation matrix P . Instead, let S be the deterministic Gaussian elimination
matrix that sends H to the unique reduced row-echelon form

SH =
[
In−k‖T

]
.

To this end, we assume that the first n−k columns of H define a full rank matrix.
Cases with a slightly relaxed condition can also be handled by some parameter
sets of Classic McEliece, but our backdoor remains applicable as these parameter
sets perform additional swaps on the αi of the code to create the same structure[
In−k‖T

]
.

The reason for choosing S as above is that the public key pk = T is a matrix
in F(n−k)×k

2 , thus saving n − k columns in comparison to Vanilla McEliece for
efficiency reasons. KGenδ

C outputs C and δ as secret key. The Classic McEliece
NIST submission also includes in sk a random string used for implicit rejection
in case decapsulation fails and some additional data that is only relevant for
compression purposes; otherwise the key formats are identical, and so for sim-
plicity we refer to KGenδ

C as the original Classic McEliece key generation. For
key compression, Classic McEliece also defines multiple truncation levels of sk,
where access to the seed δ is required to regenerate the removed elements. Our
construction will yield a weak SETUP only for the uncompressed representation
of sk. Finally, we also consider a modified version KGenC of the Classic McEliece
key generation that does not include the seed in the secret key for which we
obtain a strong SETUP.
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At first sight, it seems that the absence of P prevents the direct applicability
of our SETUP technique from Sect. 3. Moreover, the deterministic S does not
allow for backdoor manipulations either. However, we show in the following that
the definition of the Goppa code C already implicitly introduces a permutation
P , to which we apply a backdoor mechanism analogous to Sect. 3.

KGenC(1n) respectively KGenδ
C (1n)

1 : δ $ {0, 1}s

2 : r := G(δ)

3 : Compute from r Goppa code C = (g(x), α1 , . . . , αn) with distinct αi

and parity check matrix H.

4 : Use Gaussian elimination S to compute SH = In−k T .

5 : return sk :=
C for KGenC(1n)
(δ, C) for KGenδ

C (1n)
, pk := T

Fig. 6. Simplified representation of the Classic McEliece key generation KGenδ
C and a

modification KGenC that does not include the seed in the secret key.

Idea of Backdoored Key Generation. Recall from Subsect. 2.1 that the parity
check matrix of a binary Goppa code is of the form

H =

⎛
⎜⎜⎜⎜⎝

1
g(α1)

1
g(α2) · · · 1

g(αn)
α1

g(α1)
α2

g(α2) · · · αn

g(αn)
...

. . .
αt−1

1
g(α1)

αt−1
2

g(α2) · · · αt−1
n

g(αn)

⎞
⎟⎟⎟⎟⎠

.

Here, the αi ∈ F2m are random, distinct field elements. Note that the i-th
column hi of H depends on αi only. Thus, a random choice of the αi already
induces a random permutation of the columns. Moreover, we may use our SETUP
mechanism from Sect. 3 that modifies the permutation to encode the encryption
of δ in the public key by modifying the order of the αi. Due to manipulation
of the order of the αi, this SETUP mechanism is limited to the fully expanded
representation of sk and does not apply to the compressed key formats mentioned
above.

In our backdoored key generation algorithm from Fig. 7 we permute only the
last k columns of the parity check matrix which constitute the (backdoored)
public key.
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˜KGenC(1n, pkA) respectively ˜KGen
δ

C (1n, pkA)

1 : δ $ {0, 1}s

2 : r := G(δ)

3 : Compute from r Goppa code C = (g(x), α1, . . . , αn) with distinct αi

and parity check matrix H.

4 : Use Gaussian elimination S to compute SH = In−k T .

5 : Find permutation P with Col1(TP ) <lex · · · <lex Colk(TP ).

6 : repeat // Rejection sampling of a { 0, 1, . . . , k! − 1}
7 : c $ EncpkA(δ) F2

8 : s $ {0, 1} log2 k! −

9 : c := c s and a := log2 k!

i=1
ci2

i−1

10 : until a < k!
11 : Set P := fk(a)

12 : Set P :=
In−k 0
0 P P

.

13 : Compute C := g(x), (α1, . . . , αn) · P .

14 : return sk :=
C for ˜KGenC(1n, pkA)

(δ, C) for ˜KGen
δ

C (1n, pkA)
, pk := TP P

Fig. 7. Backdoored classic McEliece key generation

Classic McEliece Secret Key Recovery. In Fig. 8, we detail the secret key recovery.
The correctness of our RecoverC(skA, p̃k) follows analogously to the discus-

sion in Subsect. 3.2.
Analogously to Theorem 1 and Theorem 2 we obtain a weak/strong SETUP

for Classic McEliece, depending on whether we include δ into sk or not.

Theorem 3. Assume that the adversary’s public-key encryption scheme EncpkA
is IND$-CPA and pkA is publicly known. Then original keys (sk,pk)←$KGenC(1n)
and backdoored keys (s̃k, p̃k)←$ ˜KGenC(1n, pkA) are polynomially indistinguish-
able. Therefore, our algorithm ˜KGen

δ

C in combination with RecoverC defines
a weak SETUP mechanism for Classic McEliece, and ˜KGenC defines a strong
SETUP mechanism for a modification of Classic McEliece that does not include
the PRG-seed δ in the user’s secret key sk.
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RecoverC(skA, pk)

1 : Find permutation P with Col1(pkP−1) <lex · · · <lex Colk(pkP−1).

2 : a := f−1
k (P ). Write a = log2 k!

i=1
ci2

i−1.

3 : c := c1 . . . c

4 : δ := DecskA(c)

5 : r := G(δ)

6 : Compute from r Goppa code C = (g(x), α1, . . . , αn) with distinct αi

and parity check matrix H.

7 : Use Gaussian elimination S to compute SH = In−k T .

8 : Find permutation P with Col1(TP ) <lex · · · <lex Colk(TP ).

9 : Set P :=
In−k 0
0 P P

.

10 : Compute C := g(x), (α1, . . . , αn) · P .

11 : return sk := C

Fig. 8. Classic McEliece secret key recovery

5 How to Use McEliece Encryption Against Classic
McEliece

We propose to use a variant of the McEliece cryptosystem for the adversary’s
encryption algorithm Enc. Our scheme can be used to backdoor Classic McEliece
for all parameter sets proposed in the NIST submission.

IND$-CPA McEliece Encryption. As adversary A’s Enc we use the Randomized
Niederreiter Cryptosystem from [9]. Randomized Niederreiter public keys are
scrambled (n − k) × n parity check matrices of some binary Goppa codes with
minimal distance at least 2t + 1, just as in our Vanilla McEliece scheme. Let
n1, n2 with n1+n2 = n and define ti = � nit

n  for i = 1, 2. We take messages from
MRN = {m ∈ Fn2

2 | wt (m) = t2}, and pad them by a randomly chosen bitstring
from PRN = {r ∈ Fn1

2 | wt (r) = t1}. The padded message e = (m||r) ∈ Fn
2 is an

error vector of weight at most t, for which we compute the so-called syndrome
e · pkT .

The key generation and encryption algorithm are detailed in Fig. 9.
Clearly, in order to achieve IND-CPA security, the syndrome decoding prob-

lem for the code with (n − k) × n1 parity check matrix that encodes the
randomness r needs to be hard. Note that this code has dimension at least
k1 := n1−(n−k). Proposition 2 of [9] shows that under the standard assumptions
that public keys pk are indistinguishable from random matrices, and that syn-
drome decoding of random linear [n1, k1, t1]-codes is hard, Randomized Nieder-
reiter provides IND-CPA.
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KGenRN(1n)

1 : Generate random Goppa code C

with parity check matrix H F(n−k)×n
2

2 : Generate random invertible S F(n−k)×(n−k)
2

and permutation matrix P Fn×n
2

3 : return sk := (C, S, H, P ), pk := SHP

EncRN(1n, pk, m)

1 : r $ PRN

2 : e := m r

3 : return c := e · pkT

Fig. 9. Randomized Niederreiter key generation and encryption for messages m ∈ MRN

Actually, the authors of [9] prove an even stronger property, called admissibil-
ity (see Definition 5 in [9]). It is easily seen that admissibility does not only imply
IND-CPA, but even IND$-CPA from Definition 1. Thus, according to Theorems
1 and 3, Randomized Niederreiter yields a strong SETUP mechanism if δ is not
part of the secret, and a weak SETUP mechanism otherwise.

Application to Classic McEliece. For our concrete instantiation of Randomized
Niederreiter, we propose to use the Goppa codes from the highest category 5 of
the Classic McEliece submission, for which n = 8192, k = 6528 and t = 128.
We need to pick n2 large enough such that |MRN| =

(
n2
t2

) ≥ 2256 so that we
are able to encrypt all possible 256-bit strings δ using some suitable encoding
{0, 1}256 → MRN. It is easily checked that the choice n2 = 2250 and hence
t2 = � n2t

n  = 35 suffices. The ciphertext size is � = n − k = 1664. Table 1 shows
that this is significantly smaller than log2(k!) for all Classic McEliece parameter
sets of given code dimension k, thus satisfying our necessary condition from
Eq. 1.

Table 1. Parameters for Classic McEliece and the number of bits �log2(k!)� for encod-
ing a random permutation P

Target instance Category n k �log2(k!)�
kem/mceliece348864 1 3488 2720 27117
kem/mceliece460896 3 4608 3360 34520
kem/mceliece6688128 5 6688 5024 54528
kem/mceliece6960119 5 6960 5413 59332
kem/mceliece8192128 5 8192 6528 73316
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A Appendix: A Simpler (But Flawed) SETUP
Mechanism

We consider the Vanilla McEliece key generation and describe a simpler attempt
at constructing a backdoor. This construction does not even yield a weak SETUP
because the backdoor can be efficiently detected by just considering the public
keys. The distinguisher may be interesting in its own right and is also described
below.

A.1 A Flawed SETUP

A description of the original and our simpler (but flawed) backdoored key gen-
eration ˜KGen

F
V can be found in Fig. 10.

The matrices S and H are generated exactly as in the non-backdoored
scheme. The key difference is that instead of applying a random permutation
P , we choose a permutation P̃ that permutes the columns of pk such that pk’s
first row contains the ciphertext c ∈ F�

2. This is done by choosing the permu-
tation matrix as the combination of a purely random P and a permutation P ′

that sends the bits of c to the desired coordinates.

KGenV(1n)

1 : δ $ {0, 1}s

2 : r := G(δ)

3 : Generate C with parity check matrix H from r.

4 : Compute random S, P from r.

5 : return sk := (C, S, H, P ), pk := (SHP )

˜KGen
F

V(1n, pkA)

1 : δ $ {0, 1}s

2 : c $ EncpkA(δ) F2

3 : r := G(δ)

4 : Generate C with parity check matrix H from r.

5 : Compute random S, P from r.

6 : Find P with Row1(SHPP ) { c} × Fn−
2 .

7 : P := PP

8 : return sk := (C, S, H, P ), pk := SHP

Fig. 10. Original and backdoored Vanilla McEliece key generation

Notice that ˜KGen
F
V works provided that
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1. c ∈ F�
2 can be encoded in the first row v = Row1(SHP ) of the public key,

and
2. P ′ is efficiently computable.

We briefly sketch why these statements hold. Regarding the first statement,
notice that c ∈ F

�
2 can be encoded in the first row of the public key if the

Hamming weight of v lies in the interval [�, n − �]. A simple Chernoff bound
shows that under reasonable assumptions (such as � ≤ 1

4n), the probability that
this holds is exponentially close to 1.

Regarding the second statement, we can compute P ′ in an insertion-sort
fashion: Iterating through the first � entries of the first row of SHP from left to
right, if an entry differs from the corresponding one in c, we swap this column
with the first column to the right with the same entry in the first row.

A.2 The distinguisher

In order for the described backdoored keys to be indistinguishable from non-
backdoored ones, it is clearly necessary that the ciphertexts of the adversary’s
encryption scheme look like random bitstrings. So let us assume that the adver-
sary’s scheme provides indistinguishability from random bits under a chosen
plaintext attack (see Definition 1). Under this condition, does the described
backdoored scheme provide a SETUP mechanism? Perhaps surprisingly, it turns
out that it does not even provide a weak SETUP. To see this, for a public key
pk sampled from KGen or ˜KGen

F
V, we consider the random variables

X := wt (v1 . . . v�) , Y := wt (v) ,

where v = v1 . . . vn := Row1(pk), and we make the following observation:

Lemma 1. If (sk, pk) ←$ ˜KGen
F
V, then X | Y = w ∼ Binom(�, 1

2 ).
If (sk, pk) ←$KGenV, then X | Y = w ∼ Hypergeom(n, w, �).

Proof. First suppose (sk, pk) ←$ ˜KGen
F
V. Then the first � entries of Row1(pk) are

given by an encryption c ←$EncpkA(δ) of a random seed δ. Since EncpkA provides
random ciphertexts, c is uniformly distributed among all �-bit strings (or at
least computationally indistinguishable from it). Hence X = wt (c) is binomially
distributed as required, independent of the Hamming weight of Row1(pk).

Now suppose (sk, pk) ←$KGenV where sk = (C, S, H, P ). Observe that pk is
obtained from SH by randomly permuting its columns. This means that the
first � entries of Row1(pk) are obtained by randomly sampling without replace-
ment from the entries in the first row of SH. Hence X | wt (Row1(SH)) =
w ∼ Hypergeom(n, w, �). As permuting the columns of SH does not change the
Hamming weight of its first row, we have wt (Row1(pk)) = wt (Row1(SH)). This
implies the claim. �	
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Hence the conditional distributions of X | Y = w differ noticeably in the
backdoored and non-backdoored case. A maximum-likelihood distinguisher can
thus be used to distinguish backdoored from non-backdoored keys with non-
negligible advantage.

This observation can be used to construct a distinguisher. Our distinguisher
D described in Fig. 11 is inspired by Lemma 1 and requires only the public
key and the ciphertext length of the adversary’s encryption scheme. It is basi-
cally a maximum-likelihood distinguisher that, given a public key pk, considers
the Hamming weight of the first � bits of its first row. Depending on whether
this �-bit string has a higher probability of occurrence assuming Binom(�, 1

2 ) or
Hypergeom(n,wt (Row1(pk)) , �) as the underlying distribution, the distinguisher
outputs that the public key is backdoored or, respectively, non-backdoored.

Lemma 1 implies that the distinguishing advantage of D is given by the
statistical distance1 between the distributions Hypergeom(n,wt (Row1(pk)) , �)
and Binom(�, 1

2 ). Notice that it depends on wt (Row1(pk)). It is minimal for
wt (Row1(pk)) = n

2 , however even in this case it is far from negligible for rea-
sonable n and � occurring for practical McEliece parameter sets. For example,
applying the Randomized Niederreiter scheme described in Sect. 5 to the highest
Classic McEliece Category 5 parameter set (see Table 1), even in the favourable
case that half the entries in the first row of the public key equal one respec-
tively zero, the distinguishing advantage is about 0.071. It thus clearly does
not even provide a weak SETUP because we can distinguish backdoored and
non-backdoored keys from just the public keys.

Intuitively speaking, the problem with this attempt at a backdoor construc-
tion is the following: In the non-backdoored scheme, the distribution of the first

D(pk, )

1 : n := number of columns of pk

2 : r := Row1(pk)

3 : c := r1 . . . r

4 : if pBinom
, 12

(wt (c)) < pHypergeom
n,wt(r), (wt (c)) then

5 : return NON-BACKDOORED
6 : else
7 : return BACKDOORED
8 : fi

Fig. 11. Distinguishing backdoored and non-backdoored public keys. pBinom
�, 12

and
pHypergeom

n,w,� denote the probability mass functions of the binomial respectively hyper-
geometric distribution.

1 The statistical distance between two discrete distributions with probability
mass functions p and q defined over the same set X is given by d(p, q) =
1
2

∑
x∈X |p(x) − q(x)|.
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� bits of the first row of pk is in fact dependent on the Hamming weight of the
entire row. For example, if there happen to be in total more ones than zeros in
the first row of pk or equivalently of the associated SH, then applying a ran-
dom permutation to the columns of SH also results in a bias towards more ones
than zeros in the first � bits. This is in contrast with the backdoored scheme for
which the first � bits of the first row of the resulting pk are always uniformly
distributed since they are completely determined by the ciphertext c — which
is indistinguishable from a random bitstring by assumption.
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Abstract. We introduce a new rank-based key encapsulation mecha-
nism (KEM) with public key and ciphertext sizes around 3.5 Kbytes
each, for 128 bits of security, without using ideal structures. Such struc-
tures allow to compress objects, but give reductions to specific problems
whose security is potentially weaker than for unstructured problems. To
the best of our knowledge, our scheme improves in size upon all the exist-
ing unstructured post-quantum lattice or code-based algorithms such as
FrodoKEM or Classic McEliece. Our technique, whose efficiency relies
on properties of rank metric, is to build upon existing Low Rank Parity
Check (LRPC) code-based KEMs and to send multiple syndromes in one
ciphertext, allowing to reduce the parameters and still obtain an accept-
able decoding failure rate. Our system relies on the hardness of the Rank
Support Learning problem, a well-known variant of the Rank Syndrome
Decoding problem. The gain on parameters is enough to significantly
close the gap between ideal and non-ideal constructions. It also enables
to choose an error weight close to the rank Gilbert-Varshamov bound,
which is a relatively harder zone for algebraic attacks.

Keywords: Rank-based cryptography · Code-based cryptography ·
Post-quantum cryptography · Rank Support Learning · LRPC codes

1 Introduction and Previous Work

In recent years and especially since the 2017 NIST call for proposals on post-
quantum cryptography, there has been a burst of activity in this field. Recent
publications, such as the Barbulescu et al. attack against the small characteristic
discrete logarithm problem [12], stress the importance of having a wide diver-
sity of cryptographic systems before the emergence of large and fault-tolerant
quantum computers.

The most common algorithms in post-quantum cryptography are lattice-
based or code-based. Code-based cryptography relies on difficult problems
related to error-correcting codes embedded in Hamming metric spaces (often
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. H. Cheon and T. Johansson (Eds.): PQCrypto 2022, LNCS 13512, pp. 45–68, 2022.
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over small fields Fq). Lattice-based cryptography is mainly based on the study
of q-ary lattices, which can be seen as codes over rings of type Z/qZ (for large
q), embedded in Euclidean metric spaces.

In this paper we study a rank-based cryptosystem. Rank-based cryptogra-
phy is similar to code-based cryptography, with the difference that the error-
correcting codes are embedded in a rank-metric space (often over a prime order
field extension).

In rank metric, the practical difficulty of usual decoding problems grows very
quickly with parameter size, which makes it very appealing for cryptography.
This metric was introduced by Delsarte and Gabidulin [23], along with Gabidulin
codes which are a rank-metric equivalent of Reed-Solomon codes. Since then,
rank-metric codes have been used for multiple applications such as coding theory
and cryptography.

Among the different cryptographic primitives, rank-based cryptography lit-
erature is mainly focused around encryption schemes, even if rank metric is
relevant to produce small size and general purpose digital signatures, such as
Durandal [9]. Until recently, the main approach to build cryptosystems based
on rank-metric decoding problems was masking Gabidulin codes [25] in different
ways and using the McEliece (or Niederreiter) setting with these codes. Most
cryptosystems based on this idea were broken by attacks which exploit the par-
ticular structure of Gabidulin codes [16,22,24,32,33]. A similar situation exists
in the Hamming case for which most cryptosystems based on Reed-Solomon
codes have been broken for a similar reason: these codes are so structured that
they are difficult to mask and there is always some structural information leak.

To solve this difficulty, rank-based cryptosystems designers have either pro-
duced schemes without masking [2] or proposed to use LRPC codes which are
easier to mask. The latter are the foundations of the new cryptosystem presented
in this paper.

LRPC codes were first introduced in [27] and are a family of rank-metric
error-correcting codes which admit a parity matrix whose coordinates generate
a low rank vector space. They have a strong decoding power, and can be seen
as the rank-metric equivalent to Hamming-metric MDPC codes, which are for
example featured in third-round NIST candidate BIKE [6].

In their ideal form, LRPC codes are the main building block of the second-
round NIST candidate ROLLO [8]. This candidate was not selected for the third
round due to algebraic attacks [14,15], which significantly reduced the security
of the parameters proposed in the original submissions. NIST encouraged fur-
ther study on rank-metric cryptosystems [3], but these attacks have not been
improved. The NIST standardization process has improved the scientific com-
munity understanding of LRPC cryptosystems and of the associated attacks,
meanwhile there were two points which still could be improved.

A first point was related to constant time implementations which were unsat-
isfactory and for which a recent paper [18] showed how it was possible to drasti-
cally improve their performances. A second point was the Decoding Failure Rate
(DFR). Indeed, LRPC parameters led to quite efficient cryptosystems for DFRs
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around 2−30, but for DFRs below 2−128 there was a significant efficiency drop,
as to obtain such DFRs the codes needed to be quite long. The present paper
shows how to avoid larger code lengths while still obtaining very low DFRs. This
results in a significant improvement of the associated cryptosystems, both for
the structured and unstructured case, without compromising a precise analysis
of the DFR.

A usual technique to reduce public key and ciphertext sizes in cryptosystems
is to introduce structure in the underlying algebraic objects. This is done in
general by introducing some extra ideal, module, or ring structure [2,6,11,30].
However, adding structure comes at the cost of losing reductions to difficult
problems in the more general form. A hypothesis must be made: that the struc-
ture does not set the stage for better attacks than for the unstructured, general,
problem.

When compared to structured finalist and alternate candidates to the NIST
PQC standardization, using the standard communication metric (public key +
ciphertext size), our ideal scheme is more efficient than BIKE [6] and HQC [1]
(at least 1.4 times shorter for 128 bits of security), but somewhat less than
structured lattice approaches (roughly 1.4 times larger for 128 bits of security)
and significantly less than SIKE.

Using again the communication metric, our schemes perform very well in
the unstructured setting. Among the finalist and alternate candidates, only two
candidates do not use any ideal-like structure: FrodoKEM [5] for lattice-based
cryptography and Classic McEliece [4] for code-based cryptography. A proposal
of an unstructured code-based KEM was also introduced after the beginning of
the NIST project, called Loong.CCAKEM [38]. Our non-ideal proposal compares
advantageously to the three of them (2.8 times shorter than FrodoKEM for 128
bits of security).

Description of Our Technique. The usual approach to build a cryptosystem
based on LRPC codes is to send a syndrome s = He as a ciphertext where both
e and H are of low rank weight and, to decrypt, use a Rank Support Recovery
algorithm to recover the support of e from the support of the product He. The
main obstacle to reduce the parameters for such cryptosystems is not the threat
of cryptanalytic attacks but the DFR. In order for the Rank Support Recovery
algorithm to work, the syndrome s has to be large enough so as to generate the
full product of supports of H and e.

As [26] and [38] did, we use multiple syndromes s1, . . . , s� of same error sup-
port. The decoding of multiple syndromes that result from errors that share
the same support can also be referred to as the decoding of interleaved codes.
Interleaved LRPC codes and their decoding were studied in [35]. Furthermore,
the idea of using interleaved codes for Hamming-based cryptosystems was intro-
duced in [21] and for rank-based cryptosystems in [36]. Our main result is to
show that this approach, in the context of LRPC codes, can solve decryption
failure rate issues that affected previous schemes and thus reduce significantly
key and ciphertext size, as the Rank Support Recovery algorithm gets more coor-
dinates to recover the product of supports. As compared to [35], we give a more



48 C. Aguilar-Melchor et al.

analysis of the DFR formula. Indeed, while intuitive at a first glance, the proof
that multiple syndromes reduce the probability of failure is quite technical and
led us to formulate a general result on the product of two random homogeneous
matrices.

Sending multiple syndromes leads naturally to reducing the security of our
KEM to the Rank Support Learning (RSL) problem [9,26,38], which implies
that our approach is specific to rank-metric and cannot be used for Hamming-
based cryptosystems. Indeed, in a Hamming metric context, the complexity of
the Support Learning problem decreases way faster with the number of given
syndromes than its rank-metric counterpart, and thus—with a direct application
of our approach—it is not possible in Hamming metric to obtain parameter sets
that have a practical interest and are secure.

Contributions of the Paper. We present in this paper three contributions:

– A new LRPC code-based key encapsulation mechanism built upon the mul-
tiple syndrome approach that significantly improves decoding. We give an
unstructured version of our KEM that achieves a competitive size of around
3.5 Kbytes each for the public key and ciphertext. We also give an ideal
version to reduce the sizes even further.

– A proof that with our new approach, small weight parameters r and d of the
LRPC code can be chosen higher and even very close to the rank Gilbert-
Varshamov bound dRGV = O(n), whereas for a LRPC code-based cryptosys-
tem these values have to be in O(

√
n). When target weights increase, algebraic

attacks become less effective and can even be more costly than combinatorial
attacks.

– A probabilistic result on the support generated by the coordinates of a prod-
uct matrix UV where U and V are two random homogeneous matrices of
low weight. This result happens to be the cornerstone of the efficiency of our
KEM but is also general enough to be applicable elsewhere in cryptography
or in other fields.

Organization of the Paper. The paper is organized as follows: Sect. 2 recalls
basic facts about the rank-metric and the corresponding difficult problems,
Sect. 3 gives a background on LRPC codes and their decoding, Sect. 4 introduces
a new KEM using the multiple-syndrome technique to decode LRPC codes,
Sect. 5 proves the IND-CPA property of the KEM, Sect. 6 is concerned with
parameters for our KEMs.

2 Background on Rank Metric Codes

2.1 General Definitions

Let Fq denote the finite field of q elements where q is the power of a prime and
let Fqm denote the field of qm elements seen as the extension of degree m of Fq.

Fqm is also an Fq vector space of dimension m, we denote by capital letters
the Fq-subspaces of Fqm and by lower-case letters the elements of Fqm .
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We denote by 〈x1, . . . , xn〉 the Fq-subspace generated by the elements
(x1, . . . , xn) ∈ F

n
qm .

Vectors are denoted by bold lower-case letters and matrices by bold capital
letters (e.g. x = (x1, . . . , xn) ∈ F

n
qm and M = (mij)1�i�k

1�j�n
∈ F

k×n
qm ).

Let P ∈ Fq[X] be a polynomial of degree n. We can identify the vector
space F

n
qm with the ring Fqm [X]/〈P 〉, by mapping v = (v0, . . . , vn−1) to Ψ(v) =

∑n−1
i=0 viX

i. For u,v ∈ F
n
qm , we define their product similarly as in Fqm [X]/〈P 〉:

w = uv ∈ F
n
qm is the only vector such that Ψ(w) = Ψ(u)Ψ(v) mod P . In order

to lighten the formula, we will omit the symbol Ψ in the future.
If S is a finite set, we denote by x

$← S the fact that x is chosen uniformly
at random amongst S.

The number of Fq-subspaces of dimension r of Fqm is given by the Gaussian
coefficient [

m
r

]

q

=
r−1∏

i=0

qm − qi

qr − qi
.

Definition 1 (Rank metric over F
n
qm). Let x = (x1, . . . , xn) ∈ F

n
qm and let

(b1, . . . , bm) ∈ F
m
qm be a basis of Fqm over Fq. Each coordinate xj is associated

to a vector of F
m
q in this basis: xj =

∑m
i=1 mijbi. The m × n matrix associated

to x is given by M(x) = (mij)1�i�m
1�j�n

.

The rank weight ‖x‖ of x is defined as the rank of M(x). This definition does
not depend on the choice of the basis. The associated distance d(x,y) between
elements x and y in F

n
qm is defined by d(x,y) = ‖x − y‖.

The support of x, denoted Supp(x), is the Fq-subspace of Fqm generated by

the coordinates of x: Supp(x) def
= 〈x1, . . . , xn〉. We have dimSupp(x) = ‖x‖.

Definition 2 (Fqm-linear code). An Fqm-linear code C of dimension k and
length n is a subspace of dimension k of F

n
qm seen as a rank metric space. The

notation [n, k]qm is used to denote its parameters.
The code C can be represented by two equivalent ways:

– by a generator matrix G ∈ F
k×n
qm . Each row of G is an element of a basis of

C,
C = {xG,x ∈ F

k
qm}.

– by a parity-check matrix H ∈ F
(n−k)×n
qm . Each row of H determines a parity-

check equation verified by the elements of C:

C = {x ∈ F
n
qm : HxT = 0}.

We say that G (respectively H) is under systematic form if and only if it is of
the form (Ik|A) (respectively (In−k|B)).
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2.2 Ideal Codes

To describe an [n, k]qm linear code, we can give a systematic generator matrix
or a systematic parity-check matrix. In both cases, the number of bits needed
to represent such a matrix is k(n − k)m �log2 q	. To reduce the size of a rep-
resentation of a code, we introduce ideal codes. They are a generalization of
double circulant codes by choosing a polynomial P to define the quotient-ring
Fqm [X]/(P ). More details about this construction can be found in [10].

Definition 3 (Ideal codes). Let P (X) ∈ Fq[X] be a polynomial of degree n

and g1, g2 ∈ F
k
qm . Let G1(X) =

∑k−1
i=0 g1iX

i and G2(X) =
∑k−1

j=0 g2jX
j be the

polynomials associated respectively to g1 and g2. We call the [2k, k]qm ideal code
C of generator (g1, g2) the code with generator matrix

G =

⎛

⎜
⎜
⎜
⎝

G1(X) mod P G2(X) mod P
XG1(X) mod P XG2(X) mod P

...
...

Xk−1G1(X) mod P Xk−1G2(X) mod P

⎞

⎟
⎟
⎟
⎠

.

More concisely, we have C = {(xg1 mod P,xg2 mod P ),x ∈ F
k
qm}. We

will often omit mentioning the polynomial P if there is no ambiguity.
We usually require g1 to be invertible, in which case the code admits the

systematic form, C = {(x,xg),x ∈ F
k
qm} with g = g−1

1 g2 mod P .

2.3 Difficult Problems in Rank Metric

Rank Syndrome Decoding and Ideal Variant

Problem 1 (Rank Syndrome Decoding). On input (H, s) ∈ F
(n−k)×n
qm × F

(n−k)
qm ,

the Rank Syndrome Decoding Problem RSDn,k,r is to compute e ∈ F
n
qm such

that Heᵀ = sᵀ and ‖e‖ = r.

In [29] it is proven that the Syndrome Decoding problem in the Hamming
metric, which is a well-known NP-Hard problem, is probabilistically reduced
to the RSD problem. Moreover, the RSD problem can be seen as a structured
version of the NP-hard MinRank problem [17], indeed the MinRank problem is
equivalent to the RSD problem replacing Fqm -linear codes by Fq-linear codes.
The variant of this problem for ideal codes is as follows.

Problem 2 (Ideal-Rank Syndrome Decoding). Let P ∈ Fq[X] a polynomial of
degree k. On input (h,σ) ∈ F

k
qm × F

k
qm , the Ideal-Rank Syndrome Decoding

Problem IRSD2k,k,r is to compute x = (x1,x2) ∈ F
2k
qm such that x1 + x2h = σ

mod P and ‖x‖ = r.

Since h and P define a systematic parity-check matrix of a [2k, k]qm ideal
code, the IRSD problem is a particular case of the RSD problem. Although this
problem is theoretically easier than the RSD problem, in practice the best algo-
rithms for solving both these problems are the same.
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Rank Support Learning. The following problem was introduced in [26]. It is
similar to the RSD problem, the difference is that instead of having one syndrome,
we are given several syndromes of errors of same support and the goal is to find
this support. The security of RSL is considered to be similar to RSD for a small
number of syndromes. More details about the security of RSL are provided in
Sect. 5. The RSL problem also has an ideal variant called IRSL.

Problem 3. Rank Support Learning (RSL) [26] On input (H,S) ∈
F
(n−k)×n
qm × F

�×(n−k)
qm , the Rank Support Learning Problem RSLn,k,r,� is to com-

pute a subspace E of Fqm of dimension r, such that there exists a matrix
V ∈ E�×n such that HV ᵀ = Sᵀ.

Decisional Problems. For all the problems RSD, IRSD,RSL and IRSL defined
above, we can give a decisional version whose goal is to distinguish (for the
example of RSD) between a random input (H, s) or an actual syndrome input
(H,Heᵀ). We denote these decisional versions DRSD,DIRSD,DRSL and DIRSL.
The reader is referred to [10] for more details about decisional problems.

3 LRPC Codes and their Decoding

3.1 Low Rank Parity Check Codes

LRPC codes were introduced in [27]. They are the equivalent of MDPC codes
from the Hamming metric. They have a strong decoding power and a weak
algebraic structure, therefore they are well suited codes for cryptography.

Definition 4 (LRPC codes). Let H = (hij)1�i�n−k
1�j�n

∈ F
(n−k)×n
qm be a full-

rank matrix such that its coordinates generate an Fq-subspace F = 〈hij〉Fq
of

small dimension d.
Let C be the code with parity-check matrix H. By definition, C is an [n, k]qm

LRPC code of dual weight d. Such a matrix H is called a homogeneous matrix
of weight d and support F .

We can now define ideal LRPC codes similarly to our definition of ideal codes.

Definition 5 (Ideal LRPC codes). An ideal LRPC code of dual weight d is
an ideal [2k, k]qm code whose parity matrix H is an ideal matrix generated by
two polynomials (h1,h2) ∈ (F k)2 with F a subspace of Fqm of dimension d.

3.2 A Basic Decoding Algorithm

Problem 4 (Decoding LRPC codes). Given H = (hij)1�i�n−k
1�j�n

∈ F
(n−k)×n
qm a

parity-check matrix of an LRPC code such that hij ∈ F a subspace of Fqm of
dimension d, a syndrome s ∈ F

n−k
qm , and an integer r, the problem is to find a

subspace E of dimension at most r such that there exists e ∈ En, Heᵀ = sᵀ.
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Traditionally the decoding operation consists in finding not only the error
support E but also the exact vector e. However, in that case it is only a trivial
algebraic computation to find the vector e when E is known, that is why we
confuse both.

We denote by EF the subspace generated by the product of the elements of
E and F :

EF = 〈{ef, e ∈ E, f ∈ F}〉
In the typical case dimEF = rd. For the considered parameters, it can happen
that dimEF < rd, but this case is also covered without modification.

A basic decoding algorithm is described in Algorithm 1. In the case where
the syndrome s is indeed generated by Heᵀ where e is in a support E, the
coordinates of s are in a product space EF .The general idea of the algorithm is
to use the fact that we know a parity-check matrix H of the LRPC code such that
each of its coordinates hij belongs to an Fq-subspace F of Fqm of small dimension
d, hence the subspace S = 〈s1, . . . , sn−k〉 generated by the coordinates of the
syndrome enables one to recover the whole product space EF . The knowledge
of both EF and F enables to recover E. This approach is very similar to the
classical decoding procedure of BCH codes for instance, where one recovers the
error-locator polynomial, which gives the support of the error.

Algorithm 1: Rank Support Recovery (RSR) algorithm
Data: F = 〈f1, ..., fd〉 an Fq-subspace of Fqm ,

s = (s1, · · · , sn−k) ∈ F
(n−k)
qm a syndrome of an error e of weight r

and of support E
Result: A candidate for the vector space E
//Part 1: Compute the vector space EF

1 Compute S = 〈s1, · · · , sn−k〉
//Part 2: Recover the vector space E

2 E ← ⋂d
i=1 f−1

i S
3 return E

Notation. For all i we denote Si the space f−1
i S.

Probability of Failure. There are two cases for which the decoding algorithm can
fail:

– S � EF , the syndrome coordinates do not generate the entire space EF , or
– E � S1 ∩ · · · ∩ Sd, the chain of intersections generates a space of larger

dimension than E.

From [10] we have that the probability of the first failure case S � EF
is less than qrd−(n−k)−1. In [8], under the assumption that the Si behave as
random subspaces containing E (which is validated by simulations), it is proven
that the probability of the second failure case E � S1 ∩ · · · ∩ Sd is less than
q−(d−1)(m−rd−r). This leads to the following proposition from [8]:
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Proposition 1. The Decoding Failure Rate of Algorithm1 is bounded from
above by:

q−(d−1)(m−rd−r) + qrd−(n−k)−1

Computational Cost of Decoding. According to [10], the computational cost of
the decoding algorithm is in O(4r2d2m + n2r) operations in the base field Fq.

There is an improved version of this decoding algorithm which was presented
in [10]. However, we do not need these improvements in the present document.

3.3 LRPC Codes Indistinguishability

LRPC codes are easy to hide since we only need to reveal their systematic parity-
check matrix. Due to their weak algebraic structure, it is hard to distinguish an
LRPC code in its systematic form and a random systematic matrix. We can now
introduce formally this problem, on which LRPC cryptosystems, and thus ours,
are based.

Problem 5 (LRPC codes decisional problem - LRPC). Given a matrix H ∈
F
(n−k)×k
qm , distinguish whether the code C with the parity-check matrix (In−k|H)

is a random code or an LRPC code of weight d.

The problem can also be stated as: distinguish whether H was sampled
uniformly at random or as A−1B where the matrices A (of size n − k × n − k)
and B (of size n − k × k) have the same support of small dimension d. The
structured variant of the above problem follows immediately.

Problem 6 (Ideal LRPC codes decisional problem - ILRPC). Given a polynomial
P ∈ Fq[X] of degree n and a vector h ∈ F

n
qm , distinguish whether the ideal code

C with the parity-check matrix generated by h and P is a random ideal code or
an ideal LRPC code of weight d.

Again, the problem can also be stated as: distinguish whether h was sampled
uniformly at random or as x−1y mod P where the vectors x and y have the
same support of small dimension d.

The hardness of these decisional problems is presented in Sect. 5.

4 LRPC with Multiple Syndromes

4.1 General Idea

The decoding algorithm presented in the previous section has a probability of
failure whose main component is qrd−(n−k)−1 (see Proposition 1) so it forces
one to have a large n in an LRPC-cryptosystem in order to obtain a DFR
below 2−128. To overcome this constraint, we made the observation that when
several syndromes with same error support (s1, ..., s�) were used in the decoding
algorithm, the DFR was decreasing. This fact is the cornerstone of our new
cryptosystem. We describe below the associated decoding problem.
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Problem 7 (Decoding LRPC codes with mutliple syndromes). Given H ∈
F
(n−k)×n
qm a parity-check matrix of an LRPC code of dimension d and support

F ⊂ Fqm , a set of � syndromes si ∈ F
n−k
qm for 1 � i � �, and an integer r, the

problem is to find a subspace E of dimension at most r such that there exists
an error matrix V ∈ En×� satisfying HV = S where the i-th column of S is
equal to sᵀ

i .

In order to solve this decoding problem, we introduce the Rank Support
Recovery algorithm with multiple syndromes (Algorithm 2). It is exactly the
same as Algorithm 1, but several columns are given to compute the syndrome
space S. Intuitively, because the syndrome matrix HV has (n−k)×� coordinates
inside the space EF of dimension rd, we would expect the Decoding Failure
Rate of this new algorithm to be approximately qrd−(n−k)�. Actually, because
the coordinates of HV are not independent between each other, the result is
not trivially established and requires technical lemmas which are presented in
Appendix A.

Algorithm 2: Rank Support Recovery (RSR) algorithm with multiple syn-
dromes
Data: F = 〈f1, ..., fd〉 an Fq-subspace of Fqm , S = (sij) ∈ F

(n−k)×�
qm the �

syndromes of error vectors of weight r and support E
Result: A candidate for the vector space E
//Part 1: Compute the vector space EF

1 Compute S = 〈s11, · · · , s(n−k)�〉
//Part 2: Recover the vector space E

2 E ← ⋂d
i=1 f−1

i S
3 return E

In the following subsection, we describe our new scheme and its ideal variant,
then study the Decoding Failure Rate.

4.2 Description of the Scheme (LRPC-MS)

Definition 6. A Key Encapsulation Mechanism KEM = (KeyGen,Encap,
Decap) is a triple of probabilistic algorithms together with a key space K. The key
generation algorithm KeyGen generates a pair of public and secret keys (pk, sk).
The encapsulation algorithm Encap uses the public key pk to produce an encap-
sulation c and a key K ∈ K. Finally Decap, using the secret key sk and an
encapsulation c, recovers the key K ∈ K, or fails and returns ⊥.

Our scheme contains a hash function G modeled as a random oracle.

– KeyGen(1λ):
• choose uniformly at random a subspace F of Fqm of dimension d and sam-

ple an couple of homogeneous matrices of same support U = (A|B) $←
F (n−k)×(n−k) × F (n−k)×k such that A is invertible.

• compute H = (In−k|A−1B).
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• define pk = H and sk = (F,A).
– Encap(pk):

• choose uniformly at random a subspace E of Fqm of dimension r and

sample a matrix V
$← En×�.

• compute C = HV .
• define K = G(E) and return C.

– Decap(sk):
• compute S = AC (= UV )
• recover E ← RSR(F,S, r) (Algorithm 2).
• return K = G(E) or ⊥ (if RSR failed).

We need to have a common representation of a subspace of dimension r of
Fqm . The natural way is to choose the unique matrix M ∈ F

r×m
q of size r × m

in its reduced row echelon form such that the rows of M are a basis of E.
An informal description of this scheme can be found in Fig. 1. We deal with

the semantic security of the KEM in Sect. 5.

Alice Bob

choose F of dimension d at random
U = (A|B) $← F (n−k)×n,

H = (I(n−k)|A−1B) syst. form of U

S = AC
E ← RSR(F,S, r)

G (E)

H−−−−−−→

C←−−−−−−

Shared
Secret

choose E of dimension r at random
V

$← En×�

C = HV

G (E)

Fig. 1. Informal description of our new key encapsulation mechanism LRPC-MS. H
constitutes the public key.

4.3 Description of the Scheme with Ideal Structure (ILRPC-MS)

An informal description of this scheme is found in Fig. 2. As for the non-ideal
scheme, we deal with the semantic security of the KEM in Sect. 5.

4.4 Decoding Failure Rate of Our Scheme

The Decoding Failure Rate (DFR) of our scheme is the probability of failure
of the Rank Support Recovery algorithm with multiple syndromes described in
Algorithm 2. As stated in Sect. 3.2, the two cases that can provoke a failure of
the algorithm are:

– S � EF , the coordinates of the matrix UV do not generate the entire space
EF , or
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Alice Bob

choose F of dimension d at random
(x,y) $← F k × F k, h = x−1y mod P

xci = xe2i−1 + ye2i mod P
S = (xc1, ...,xc�)
E ← RSR(F,S, r)

G (E)

h−−−−−−→

c1,...,c�←−−−−−−−−−−

Shared
Secret

choose E of dimension r at random
(e1, ..., e2�)

$← (Ek)�

ci = e2i−1 + e2ih mod P

G (E)

Fig. 2. Informal description of our new key encapsulation mechanism with ideal struc-
ture ILRPC-MS. h constitutes the public key.

– E � S1∩· · ·∩Sd, the chain of intersections generate a space of larger dimension
than E.

To study the probability of each case, we restrict ourselves to the case
dim(EF ) = rd. Indeed, when dim(EF ) < rd, the correctness of the algorithm is
preserved, and the probabilities associated to the two sources of decoding fail-
ures are lower than in the case dim(EF ) = rd, since all the vector spaces will
be of smaller dimensions. Hence this restriction will lead to an upper bound on
the failure probability.

The first case of failure can be dealt with the following theorem, which is
fully proven in Appendix A. Its immediate corollary yields the probability of
failure for the first case. We will assume for the rest of this document that q = 2
since the theorem is only proven in that case.

Theorem 1. For q = 2, n1 + n2 ≤ n and for U and V random variables
chosen uniformly in Fn1×n and En×n2 respectively, P(Supp (UV ) �= EF ) ≤
(n1 + 1)qrd−n1n2

Corollary 1. For q = 2, k ≥ � and for U and V random variables chosen
uniformly in F (n−k)×n and En×� respectively, the probability that the syndrome
space S computed by the algorithm RSR(F,UV , r) is not equal to EF is bounded
by above by (n − k + 1)qrd−(n−k)�

As for the second failure case, E � S1 ∩ · · · ∩ Sd, we apply again the upper-
bound q−(d−1)(m−rd−r), used in Sect. 3 for Proposition 1. This leads to the fol-
lowing proposition:

Proposition 2. For q = 2, k ≥ � and for U and V random variables cho-
sen uniformly in F (n−k)×n and En×� respectively, the Decoding Failure Rate of
Algorithm 2 RSR(F,UV , r) is bounded from above by:

q−(d−1)(m−rd−r) + (n − k + 1)qrd−(n−k)�

This proposition extends immediately to the ideal case without modifications.
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4.5 Impact on the Asymptotic Range of Parameters

By reducing the decoding failure rate, the multiple syndrome approach funda-
mentally changes the zone of parameters that we consider for our cryptosystem.

In previous LRPC code-based cryptosystems, the decoding failure rate
imposed the choice of r and d to be below

√
n because of the need for rd < n−k

(cf. Proposition 1).
In this work, we can choose r and d bigger than

√
n. To simplify the rest

of the analysis we will consider half-rate codes only, for which k = n/2. We
will show that it is even asymptotically possible to choose r and d on the rank
Gilbert-Varshamov bound dRGV .

The DFR formula leads to the choice of a large � such that when m and n
tend to infinity, rd = n�/2 + o(1). Because we chose r = d = dRGV , we get

� ∼ 2d2RGV

n

When applying the asymptotic formula of dRGV ([9], §2.4) to the case k =
n/2, we get dRGV ≤ n/2. As a result, we obtain that � is asymptotically upper
bounded by dRGV = r. To the best of our knowledge, the range where � ≤ r is
a hard parameter range for which the RSL problem has no known polynomial
attacks. In practice, for the parameters considered at the end of this document,
when choosing r and d on the Gilbert-Varshamov bound, � has to be chosen
slightly greater than r and the RSL problem is still in a difficult zone.

The fact that we can choose r and d on the rank Gilbert-Varshamov bound
has two major implications:

– Algebraic attacks against the RSD problem are more difficult when r gets
closer to dRGV .

– The secret parity check matrix U is homogeneous of weight dRGV so the
minimal distance of the dual of the resulting LRPC code is about dRGV , just
like a random code. It gives more confidence in the indistinguishably of the
public matrix H (LRPC problem).

Our proposal is the only code-based cryptosystem with structural masking
that has such an interesting property for the distinguishing problem.

5 Security

5.1 Definitions

We define the IND-CPA-security of a KEM formally via the following experiment,
where Encap0 returns a valid pair c∗,K∗, and Encap1 returns a valid c∗ and a
random K∗.

Indistinguishability under Chosen Plaintext Attack : This notion states that
an adversary should not be able to efficiently guess which key is encapsulated.
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Expind−b
E,A (λ)

1. param ← Setup(1λ)
2. (pk, sk) ← KeyGen(param)
3. (c∗,K∗) ← Encapb(pk)
4. b′ ← A(GUESS : c∗,K∗)
5. RETURN b′

Definition 7 (IND-CPA Security). A key encapsulation scheme KEM is
IND-CPA-secure if for every PPT (probabilistic polynomial time) adversary A,
we have that

Advindcpa
KEM (A) := |Pr[IND-CPAA

real ⇒ 1] − Pr[IND-CPAA
rand ⇒ 1]|

is negligible.

5.2 IND-CPA Proof

Unstructured LRPC-MS

Theorem 2. Under the hardness of the LRPC (Problem 5) and DRSLk,n,r,�

(Problem 3) problems, the KEM presented in Sect. 4.2 is indistinguishable against
Chosen Plaintext Attack in the Random Oracle Model.

Proof. We are going to proceed in a sequence of games. The simulator first starts
from the real scheme. First we replace the public key matrix by a random matrix,
and then we use the ROM to solve Rank Support Learning.

We start from the normal game G0: We generate the public key H honestly,
as well as E, and C.

– In game G1, we now replace H by a random matrix, the rest is identical to
the previous game. From an adversary point of view, the only difference is
the distribution of H, which is either generated at random, or the systematic
form of a low weight parity matrix. This is exactly the LRPC codes decisional
problem, hence

AdvG0
A ≤ AdvG1

A + AdvLRPCA .

– In game G2, we now proceed as earlier except we receive H,C from a Rank
Support Learning challenger. After sending C to the adversary, we monitor
the adversary queries to the Random Oracle, and pick a random one that
we forward as our simulator answer to the DRSLk,n,r,� problem. Either the
adversary was able to predict the random oracle output, or with probably
1/qG, we picked the query associated with the support E (by qG we denote
the number of queries to the random oracle G), hence

AdvG1
A ≤ 2−λ + 1/qG · AdvDRSL

A

which leads to the conclusion.
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Ideal LRPC-MS. For the ideal version of our scheme, the security proof is
exactly the same except that ideal versions of hard problems appear. The IND-
CPA property follows immediately.

Theorem 3. Under the hardness of problems ILRPC and DIRSLk,n,r,�, the KEM
presented in Sect. 4.2 is indistinguishable against Chosen Plaintext Attack in the
Random Oracle Model.

The maximal value of � for which DIRSLk,n,r,� is hard is way lower than its
non-ideal counterpart. Indeed, a single ideal syndrome can be expanded in k
traditional syndromes by performing ideal rotations. That is why the value of �
is lower in the parameter sets for the ideal version.

5.3 Known Attacks

As an RSL challenge is an RSD challenge with multiple syndromes, it is possible
to try to solve RSL in two ways, either one takes only one syndrome to build an
RSD challenge and attacks RSD, or one attacks RSL with all the information in
the challenge. In order to define the parameter sets for our schemes we therefore
have to consider the best attacks against both RSD and RSL. At last we recall a
specific attack against the LRPC problem.

There are two main types of attacks for solving the generic RSD problem:
combinatorial attacks and algebraic attacks. For cryptographic parameters the
best attacks are usually the recent algebraic attacks, but it may also depend on
parameters, sometimes combinatorial attacks can be better.

Combinatorial Attacks Against RSD. The best combinatorial attacks for solving
the RSD problem on a random [n, k] code over Fqm for a rank weight d as
described in [7] have complexity (for ω the linear algebra exponent):

min((n − k)ωmωq(d−1)(k+1), (km)ωqd� km
n �−m) (1)

The first term of the min typically corresponds to the case where m ≥ n, the
second term corresponds to the case where m ≤ n, but still it can happen that
this term is better than the first one, when m ≥ n but close to n. A detailed
description of the complexity of the second term is given in [7].

Algebraic Attacks Against RSD. The general idea of algebraic attacks is to rewrite
an RSD instance as a system of multivariate polynomial equations and to find a
solution to this system.

For a long time, algebraic attacks were less efficient than combinatorial ones.
Recent results improved the understanding of these attacks. The best algebraic
attacks against RSD can be found in [15] and have complexity (for ω the linear
algebra exponent):

qarm

(
n − k − 1

r

)(
n − a

r

)ω−1

(2)

operations in Fq. a is defined as the smallest integer such that the condition
m

(
n−k−1

r

) ≥ (
n−a

r

) − 1 is fulfilled.
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On the Security of the RSL Problem. The difficulty of solving an instance of the
RSLn,k,r,N problem depends on the number N of samples. Clearly, for N = 1,
the RSL problem is exactly the RSD problem with parameters (n, k, r), which
is probabilistically reduced to the NP-hard syndrome decoding problem in the
Hamming metric in [29]. When N � nr, the RSL problem is reduced to linear
algebra, as stated in [26] where this problem was first introduced.

This raises the question of the security of the RSL problem in the case 1 <
N < nr. In [26] the authors relate this problem to the one of finding a codeword
of rank r in a code of same length and dimension containing qN words of this
weight, and conjecture that the complexity of finding such a codeword gets
reduced by at most a factor qN compared to the case N = 1. They also observe
that in practice, the complexity gain seems lower, likely due to the fact that said
codewords are deeply correlated.

There have been recent improvements on the complexity of the RSL problem.
In [19] the authors show that the condition N � kr should be met in order to
avoid a subexponential attack. We chose our parameters to fulfill this condition.

In [13], the authors propose to solve the RSL problem in the case N ≤ kr
using an algebraic approach. Our parameters – in particular the number � of
syndromes – are chosen so as to resist these recent algebraic attacks.

On the Security of the LRPC Problem. Given H ∈ F
(n−k)×k
qm such that (In−k|H)

is the parity-check matrix of a code C, the problem of distinguishing LRPC codes
is to decide whether C is a random code or an LRPC code.

The best known attack against this problem for almost ten years [28] consists
in using the underlying homogeneous structure of the LRPC code to find a
codeword of weight d in a [n − �n−k

d �, n − k − �n−k
d �]qm subcode C′ of the dual

code C⊥ generated by (In−k|H) rather than a codeword of weight d in the C⊥

[n, n − k] code. Then one can consider the previously described algebraic or
combinatorial attacks for this slightly smaller code (but for the same weight d).

6 Parameters

Choice of Parameters. In Sect. 5, the security of the protocol is reduced to the
LRPC and DRSL problems (or their ideal variants). The best known attacks
on these problems are thus used to define our parameters. We also chose our
parameters in order to have the Decoding Failure Rate (DFR) below or very
close to 2−λ, where λ is the security parameter, using Proposition 2. We only
considered parameters with k ≥ � as required by these propositions.

Size of Parameters. One may use seeds to represent the random data in order to
decrease the keysize. We use the NIST seed expander with 40 bytes long seeds.

The public key pk is composed of a matrix of size (n−k)×n in a systematic
form, so its size is

⌈
k(n−k)m

8

⌉
bytes. The size is reduced to

⌈
(n−k)m

8

⌉
bytes in

the ideal case. The secret key sk is composed of two random matrices that can
be generated from a seed, so its size is 40 bytes. The ciphertext ct is composed
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of a matrix of size (n − k) × �, so its size is
⌈
(n−k)�m

8

⌉
bytes. The shared secret

ss is composed of K = G(E), so its size is 64 bytes.
Parameters are given in Table 1. The “structure” column indicates whether

this parameter uses unstructured (random) matrices or ideal ones. The number
indicated in the “DFR” column is actually − log2(DFR).

Table 1. Parameters for our unstructured and ideal LRPC-MS cryptosystem. The
security is expressed in bits and sizes are expressed in bytes.

Instance Structure q n k m r d � Security DFR pk size ct size pk+ ct

LRPC-MS-128 Random 2 34 17 113 9 10 13 128 126 4,083 3,122 7,205
LRPC-MS-192 Random 2 42 21 151 11 11 15 192 190 8,324 5,946 14,270
ILRPC-MS-128 Ideal 2 94 47 83 7 8 4 128 126 488 1,951 2,439
ILRPC-MS-192 Ideal 2 188 89 109 9 8 3 192 189 1,213 3,638 4,851

Comparison with Other Unstructured Cryptosystems. We compare our cryp-
tosystem to other structured and unstructured proposals. Our comparison metric
is the usual TLS-oriented communication size (public key + ciphertext).

For Loong.CCAKEM [38], we consider only the third set of parameters since
the other sets of parameters have an error weight below 6 and thus are vulnera-
ble to algebraic attacks. For Loidreau cryptosystem, we consider the parameters
presented in the conclusion of [34] which take into account the recent improve-
ments on algebraic attacks. For both cryptosystems mentioned in this paragraph,
parameters were not available (N/A) for 192 bits of security (Table 2).

Table 2. Comparison of sizes of unstructured KEMs (left table) and structured code-
based KEMs (right table). The sizes represent the sum of public key and ciphertext
expressed in bytes.

Instance 128 bits 192 bits
LRPC-MS 7,205 14,270
Loong.CCAKEM-III 18,522 N/A
FrodoKEM 19,336 31,376
Loidreau cryptosystem 36,300 N/A
Classic McEliece 261,248 524,348

Instance 128 bits 192 bits
ILRPC-MS 2,439 4,851
BIKE 3,113 6,197
HQC 6,730 13,548

Performance. Indicative performance measurements of an implementation of
some of the LRPC-MS cryptosystem parameters are given in Appendix B.
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7 Conclusion and Future Work

We provided a proof that, using multiple syndromes on rank-metric key encap-
sulation mechanisms, it is possible to obtain unexpectedly low decoding failure
rates with efficient parameters. As a result, it is possible to obtain KEMs with
small ciphertext and public key sizes even without ideal structure. We provide
an IND-CPA proof for our scheme, whose security relies on the hardness of the
DRSL and LRPC distinguishing problems.

A possible future work could be to provide a state of the art implementa-
tion of this scheme both in software and hardware. Another improvement could
be to perform algebraic computation to find the right space E even when the
RSR algorithm computes a space strictly bigger. This would lead to a gain on
the m parameter. Finally, our approach could also be extended to other rank-
based cryptosystems that do not assume the hardness of the LRPC distinguishing
problem, and only relies on DRSD, such as Ouroboros [20].

Appendix

A Dimension of the Support of the Product
of Homogeneous Matrices

In this section we prove the following theorem, which is required to prove the
correctness of the multi-syndrome approach presented in Sect. 4. We fix E and F
subspaces of Fqm of dimension r and d respectively such that EF is of dimension
rd. Remember that we have q = 2 all along the proof.

Theorem 1. For q = 2, n1 + n2 ≤ n and for U and V random variables
chosen uniformly in Fn1×n and En×n2 (respectively), P(Supp(UV ) �= EF ) ≤
(n1 + 1)qrd−n1n2

A first idea which may come to mind when trying to prove this theorem
would be to use the Leftover Hash Lemma [31] (LHL) in order to prove that the
statistical distribution of UV is ε-close to the uniform statistical distribution
on EFn1×n2 . However, the total number of different couples (U ,V ) is equal
to dimFn1n dimEn2n = rdnrn2dn1 and the number of matrices in EFn1×n2 is
rdn1n2 . In a usual code-based cryptography setting where n1 ≈ n2 ≈ n/2 and
r ≈ d, we get that rdnrn2dn1 � rdn1n2 therefore we cannot expect to use the
LHL.

At first sight, this is quite an issue, as proving the statement of our theorem
without standard statistical arguments can be quite complex, or impossible. The
rest of the section presents a five stage proof of the theorem (main body and 4
lemmas), using algebraic arguments. Our approach is to study the distribution
of φ(UV ) for a linear form φ on EF . We show that the distribution of φ(UV )
is uniform in a subspace of F

n1×n2
2 whose dimension is depending on the rank of

φ viewed as a tensor in E ⊗ F and on a simple condition on matrix U .
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A.1 Preliminary Results on Binary Matrices

Lemma 1. For a uniformly random binary matrix M of size m×n with m ≤ n
and for 0 < i ≤ m, P(Rank(M) = m − i) ≤ 2i(m−n).

Proof. Let S be a subspace of {0, 1}m of dimension m − i. The number of such
possible subspaces is

(
m
i

)
2 ≤ 2im.

For a uniformly random binary m × n matrix M , since the n columns of M
are independent, P(Supp(M) ⊂ S) = 2−in. Then:

P(Rank(M) = m − i) ≤ P(Rank(M) ≤ m − i)

≤ P(
⋃

S

Supp(M) ⊂ S)

≤
∑

S

P(Supp(M) ⊂ S)

≤ 2i(m−n)

��
Definition 8. For s > 0, let Rs be the random variable defined as the rank of
a uniformly random binary matrix of size n1 × ns.

Lemma 2. For n2 > 0, E(2−n2R1) ≤ (n1 + 1)2−n1n2 .

Proof.

E(2−n2R1) =
n1∑

i=0

2−n2i
P(R1 = i)

= 2−n1n2 P(R1 = n1) +
n1−1∑

i=0

2−n2i
P(R1 = i)

≤ 2−n1n2 +
n1∑

i=1

2−n2(n1−i)
P(R1 = n1 − i)

≤ 2−n1n2 +
n1∑

i=1

2−n2(n1−i)2i(n1−n) (Lemma 1)

≤ 2−n1n2 +
n1∑

i=1

2i(n2+n1−n)−n1n2

≤ 2−n1n2 +
n1∑

i=1

2−n1n2 (n ≥ n1 + n2)

≤ (n1 + 1)2−n1n2

��
Since R1

L≤ Rs, we get an immediate corollary.

Corollary 2. For n2 > 0 and for s > 0, E(2−n2Rs) ≤ (n1 + 1)2−n1n2 .
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A.2 Proof of Theorem 1

We first fix φ a non-zero linear form from EF to Fq and we will study the
probabibilty that Supp(UV ) ⊂ ker(φ). For a vector x = (x1, ..., xi) ∈ (EF )i, we
will note φ(x) the vector (φ(x1), ..., φ(xi)). We use the similar abuse of notation
for φ(X) when X is a matrix.

Let φb be the non-zero bilinear form

φb : E × F → F2

(e, f) �→ φ(ef).

Let s = Rank(φb) be the rank of this bilinear form. Then there exists a basis
(e1, . . . , er) of E and a basis (f1, . . . , fd) of F in which the matrix representation
of φb is (

Is 0
0 0

)

In the product basis of EF

(e1, . . . , er) ⊗ (f1, . . . , fd) = (e1f1, ..., e1fd, e2f1, ..., erf1, ..., erfd)

the expression of φ is very simple. For x =
∑

1≤i≤n
1≤j≤n

xijeifj we have

φ(x) =
∑

1≤i≤s

xii.

Let u = (u1, . . . , un) be a vector of Fn and consider the map

En → F2

v = (v1, . . . vn)ᵀ �→ φ(uv) = φ(u1v1 + · · · + unvn).

For i = 1 . . . n, write ui =
∑d

j=1 uijfj the decomposition of ui along the basis
of F (f1, . . . , fd). Similarly write vi =

∑r
j=1 vijej the decomposition of vi along

the basis of E (e1, . . . , er). We clearly have:

φ(uv) =
∑

1≤i≤n
1≤j≤s

uijvij . (3)

Now let U be an n1 × n matrix of elements in F . Define U s to be the
n1 × sn binary matrix obtained from U by replacing every one of its rows u by
its expansion

u11, . . . , u1s, u21, . . . , u2s, . . . un1, . . . , uns

as defined in (3). It follows that we have:

Lemma 3. Let s = Rank(φb), U be an n1 × n matrix of elements in F and let
ϕU be the map

ϕU : En → F
n1
2

v �→ φ(Uv).

The rank of the map ϕU is equal to the rank of the n1 × sn binary matrix U s.
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Corollary 3. For U a random variable chosen uniformly in Fn1×n,
Rank(ϕU ) L= Rs where s is the rank of φb.

Now that we know the probability distribution of the rank of ϕU , we will
give a probability on Supp(UV ) depending on this rank.

Lemma 4. Let U such that the above-defined ϕU is of rank 0 ≤ i ≤ n1. Then
for V a random variable chosen uniformly in En×n2 , P(Supp(UV ) ⊂ ker(φ)) ≤
q−in2

Proof. Let H = Im(ϕU ) Let V = (v1, ...,vn2) the columns of V .
ϕU is a surjective homomorphism of finite abelian groups En and H, so according
to Theorem 8.5 in [37], for all i, Uvi is uniformly distributed. Thus because the
columns of V are independent, φ(UV ) is uniformly distributed in Hn2 .
As a result, because Supp (UV ) ⊂ ker(φ) if and only if φ(UV ) = 0,
P(Supp (UV ) ⊂ ker(φ)) ≤ 1/|Hn2 | = q−in2 . ��
Lemma 5. For a non-null linear form φ of EF , P(Supp(UV ) ⊂ ker(φ)) ≤
E(2−n2R1)

Proof. Let s > 0 be the rank of φb.

P(Supp(UV ) ⊂ ker(φ)) =

n1∑

i=0

P(Supp(UV ) ⊂ ker(φ)|Rank(ϕU ) = i)P(Rank(ϕU ) = i)

≤
n1∑

i=0

2−in2P(Rank(ϕU ) = i) (Lemma 4)

≤ E(2−n2 Rank(ϕU ))

≤ E(2−n2Rs ) (Corollary 3)

≤ E(2−n2R1 ) (Corollary 2)

��
Proof (of Theorem 1).

P(Supp (UV ) �= EF ) = P(
⋃

φ∈EF ∗\{0}
Supp (UV ) ⊂ ker(φ))

≤
∑

φ∈EF ∗\{0}
P(Supp (UV ) ⊂ ker(φ))

≤
∑

φ∈EF ∗\{0}
E(2−n2R1) (Lemma 5)

≤ 2rd
E(2−n2R1)

≤ (n1 + 1)2rd−n1n2 (Lemma 2)

��
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B Performance

This section provides indicative performance measurements of an implemen-
tation of some of the LRPC-MS cryptosystem parameters. Benchmarks were
realized on an Intel R© CoreTM i7-11850H CPU by averaging 1000 executions
(Table 3).

Table 3. Performances of our LRPC-MS cryptosystems in thousands of CPU cycles.

Instance KeyGen Encap Decap

LRPC-MS-128 383 137 3,195
ILRPC-MS-128 214 107 1,213

As for other code-based schemes, the decapsulation algorithm has a higher
computational cost than key generation and encapsulation. Note however, that
our implementation does not yet benefit from the techniques of [18]. These tech-
niques improved the decapsulation performance by a factor 15 (for 128 bits of
security) with respect to the existing (and simpler to adapt) implementations
we used as a basis for our benchmarking.
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Abstract. Due to the recent challenges in post-quantum cryptography,
several new approaches for code-based cryptography have been proposed.
For example, a variant of the McEliece cryptosystem based on inter-
leaved codes was proposed. In order to deem such new settings secure,
we first need to understand and analyze the complexity of the underly-
ing problem, in this case the problem of decoding a random interleaved
code. A simple approach to decode such codes, would be to randomly
choose a vector in the row span of the received matrix and run a classical
information set decoding algorithm on this erroneous codeword. In this
paper, we propose a new generic decoder for interleaved codes, which is
an adaption of the classical idea of information set decoding by Prange
and perfectly fits the interleaved setting. We then analyze the cost of the
new algorithm and compare it to the other approaches.

Keywords: Information set decoding · Interleaved codes · Code-based
cryptography

1 Introduction

Code-based cryptography is one of the most promising and prominent candidates
for post-quantum cryptography, which is reflected in the NIST standardization
process [7]. Although the third round of submissions has already been completed,
and the classical McEliece system [3] has been chosen as a finalist, there are
still many open challenges in the area. For example the search for efficient and
secure signature schemes [17], but also the compelling task of reducing the key
sizes of the original McEliece system. For this reason, researchers have proposed
several alternatives to the classical scheme of McEliece, not only by changing the
underlying code family, but also by considering different settings, for example by
employing the rank metric [1,2], the Lee metric [6,12,24] or by using interleaved
codes. The latter approach has been proposed in [8,11,20]. The simple reasoning
behind this proposal is that an interleaved code has a larger error-correction
capability than a non-interleaved code.

A codeword of an �-interleaved code is an �×n matrix over Fq, where each row
is a codeword of a constituent linear code of blocklength n over Fq. In this work,
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. H. Cheon and T. Johansson (Eds.): PQCrypto 2022, LNCS 13512, pp. 69–88, 2022.
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http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-17234-2_4&domain=pdf
https://doi.org/10.1007/978-3-031-17234-2_4


70 A. Porwal et al.

we consider the decoding problem for homogeneous interleaved codes, where the
same constituent code is used for all the rows.

An interleaved code C� is especially well-suited for channels that are prone
to burst errors, where t burst errors can be modeled as the addition of an � × n
matrix E with t non-zero columns to a codeword in C�. In this case, we say that
E has column weight t.

A generic decoder for any linear interleaved code was proposed in [9,16].
When the interleaving order � is at least the number of column errors t, this
decoder guarantees to correct (efficiently) any full-rank error of column weight
up to d − 2, where d is the minimum distance of the constituent code. This
decoder was generalized in [10,21] and guarantees to decode any error E of
column weight t if 2t−rk(E) ≤ d−2 and does so with low complexity of t−rk(E)
is small. However, there is no known efficient decoder for interleaved codes with
an arbitrary constituent code when � � t. In fact, it can be shown that the
corresponding decisional problem, called Interleaved Decoding (ID) problem, is
at least as hard as the decisional Syndrome Decoding (SD) problem.

This fact implies that interleaved codes are a well-suited alternative for code-
based cryptography. It is therefore of interest to understand and analyze the com-
plexity of decoding a generic interleaved code not only from a coding-theoretic
perspective, but also in order to assess the security of code-based cryptosystems
based on interleaved codes.

In this paper, we consider algorithms for the ID problem when � � t < d
for arbitrary linear constituent codes. We can categorize the generic decoding
algorithms for interleaved codes into three types:

1. Algorithms that reduce the problem to the classical SD problem.
2. Algorithms that reduce the problem to a low-weight codeword finding (CF)

problem.
3. Algorithms that do not reduce the problem to either CF or SD. We present

one such novel algorithm inspired by Prange’s information set decoder [19].

We remark that we will be content with finding just a subset of the t error
positions since then the problem reduces to a much easier problem as the com-
plexity is exponential in t.

The classical algorithm of Prange [19] can be described as picking k columns
of the generator matrix G, where the algorithm is successful if the corresponding
positions are error-free, i.e., their complement of n − k positions contains the
support of the error. Alternatively, one can pick k + 1 columns from [Gr ] where
r is the received word and check whether the (k+1)× (k+1) submatrix formed
by these columns is rank-deficient. This formulation allows for a generalization
to interleaved codes, which is the main idea of our algorithm Interleaved Prange:
we pick k+� columns of [GR ] where R is an �×n matrix containing the � received
words as rows, and check if the rank of the (k + �) × (k + �) submatrix formed
by these columns is less than k + �. The main contribution of this paper is the
proposal and the analysis of the new decoding algorithm Interleaved Prange.

This paper is structured as follows. In Sect. 2 we introduce the notation and
results for interleaved codes which are essential for the remainder of the paper.
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We present the three types of interleaved decoding algorithms in Sect. 3 together
with their corresponding complexity analysis. We then compare their asymptotic
cost in Sect. 3.5. Finally, we conclude this paper in Sect. 4.

2 Preliminaries

For a prime power q, let Fq denote the finite field with q elements. We denote
matrices and vectors by bold capital, respectively lower case letters. For k ≤ n
positive integers and a matrix G ∈ F

k×n
q we denote by 〈G〉 its rowspan, by G�

the transposed matrix and by rk(G) its rank. For a vector x ∈ F
n
q , we denote by

supp(x) its support, that is the indices of the non-zero entries of x. Similarly for
a matrix X ∈ F

k×n
q we denote by supp(X) the indices of the non-zero columns.

We will denote by wt(x) the Hamming weight of the vector x ∈ F
n
q , that is the

size of its support. For a matrix X ∈ F
k×n
q we will denote by wt(X) the number

of non-zero columns of X. We will denote by |S| the cardinality of a set S. The
set of all integers between 1 and n is denoted by [1, n]. Finally, for a set I ⊆ [1, n]
of size r and a matrix G ∈ F

k×n
q , we denote by GI ∈ F

k×r
q the matrix consisting

of all columns of G indexed by I.
A linear subspace C ⊆ F

n
q of dimension k is called a linear code of length n

and dimension k. We call this an [n, k]q code of rate R = k
n . For a linear code

C ⊆ F
n
q we can also define its minimum distance to be

d(C) = min{wt(c) | c ∈ C, c �= 0}.

An [n, k]q linear code can be represented either through a generator matrix
G ∈ F

k×n
q , which has the code as image, or through a parity-check matrix

H ∈ F
(n−k)×n
q , which has the code as right kernel. For any x ∈ F

n
q , we call

s = xH� ∈ F
n−k
q the syndrome of x.

It is well known that random codes of large blocklength over Fq achieve with
high probability the minimum distance given by the Gilbert-Varshamov bound,
that is

δ =
d(n)
n

= H−1
q (1 − R),

where we denote by Hq the q-ary entropy function.

Definition 1. Let C ⊆ F
n
q be a linear code of dimension k with generator matrix

G ∈ F
k×n
q . The homogeneous interleaved code of interleaving order � of C is

defined as
C� = {C ∈ F

�×n
q | C = MG,M ∈ F

�×k
q }.

Thus, the codewords of an interleaved code are � × n matrices. Let H be a
parity-check matrix of C and consider the interleaved code C�. The syndrome of
X ∈ F

�×n
q is then given by

S = XH ∈ F
�×(n−k)
q .

Decoding an interleaved code with an arbitrary constituent code can be seen as
the following problem.
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Problem 1 (Interleaved Syndrome Decoding (ISD) Problem). Let � ≥ 2 be a
positive integer. Given H ∈ F

(n−k)×n
q , S ∈ F

�×(n−k)
q , and t ∈ N, decide if there

exists a matrix E ∈ F
�×n
q of column weight at most t, such that HE� = S�.

This problem is equivalent to the Interleaved Decoding (ID) problem.

Problem 2 (Interleaved Decoding (ID) Problem). Given G ∈ F
k×n
q , R ∈ F

�×n
q ,

and t ∈ N, decide if there exists a matrix E ∈ F
�×n
q of column weight at most t,

such that each row of R − E is in 〈G〉.

This problem can be shown to be NP-hard by a reduction from the Hamming-
metric SD problem, which has been proven to be NP-complete in [4,5].

Problem 3 (Hamming Syndrome Decoding (SD) Problem). Given H ∈ F
(n−k)×n
q ,

s ∈ F
n−k
q , and t ∈ N, decide if there exists a e ∈ F

n
q of weight at most t, such

that s = eH�.

Theorem 1. The Interleaved Syndrome Decoding Problem (Problem 1) is NP-
complete.

Proof. We show the NP-hardness of Problem 1 by a reduction from the classical
Hamming SD. For this, take a random instance H ∈ F

(n−k)×n
q , s ∈ F

n−k
q and

t ∈ N of the Hamming SD. Now define S =

⎛
⎜⎝
s
...
s

⎞
⎟⎠ ∈ F

�×(n−k)
q . Assume we have

an oracle for Problem 1.

– If the answer is ‘yes’ on the input H,S, t, then this is also the correct answer
to the Hamming SD. In fact, if there exists E ∈ F

�×n
q , such that HE� = S�

and at most t columns of E are non-zero, then any column, e.g., the first
column e, of E is a solution to the Hamming SD, as He = s and wt(e) ≤ t.

– If the oracle returns ‘no’ on the input H,S, t, then this is also the correct
answer to the Hamming SD. In fact, if there was a solution e to the Hamming

SD then E =

⎛
⎜⎝
e
...
e

⎞
⎟⎠ would have been a solution to the interleaved SD.

Finally, we remark that for any candidate E we can check in polynomial time,
whether E is a solution to the interleaved SD. Thus, the problem is also in NP. 
�

3 Decoding Algorithms

In this section we present three types of generic decoding algorithms for inter-
leaved codes. That is, given G ∈ F

k×n
q , R ∈ F

�×n
q , and t ∈ N, these algorithms

find a matrix E ∈ F
�×n
q of column weight at most t, such that each row of R−E

is in 〈G〉.
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In the following, we assume that G ∈ F
k×n
q and a set of error positions

T ⊆ [1, n] of size t is chosen uniformly at random. Then ones takes a � × n zero
matrix E and sets each column at these t error positions equal to a random
vector in F

�
q. Thus ET is a random matrix in F

�×t
q , and E is a random matrix

in F
�×n
q of column weight at most t. Finally, we choose M ∈ F

�×k
q uniformly at

random and compute the received matrix R = C + E where C = MG. Thus,
we assume that at least one solution to the ID problem exists.

For interleaved cryptosystems, t is typically close to the minimum distance
of G which we denote by d.

3.1 SD-Based Algorithms

The most straightforward way to solve the ID problem is to simply pick a random
non-zero vector r in the rowspan of R and solve the resulting SD problem with
the parity-check matrix H ∈ F

(n−k)×n
q of the constituent code and the syndrome

s = rH� ∈ F
n−k
q . Since information set decoding (ISD) attacks are the best

known algorithms to solve the SD problem, we call this Random 〈ISD〉 (where
〈ISD〉 can be any ISD algorithm such as Prange, Stern [23], etc.).

Algorithm 1: Random ISD
Input: A generator matrix G ∈ F

k×n
q of C and a received matrix

R = C+E ∈ F
�×n
q where wt(E) = t.

Output: A nonempty subset U ⊆ supp(E).
1 Compute a parity-check matrix H ∈ F

(n−k)×n
q of C.

2 Pick a non-zero r ∈ 〈R〉 at random.
3 Compute s = rH�.
4 Use an ISD algorithm that can find errors e of any weight belonging to some

fixed subset of [1, t] and run it with inputs H, s.
5 if the ISD algorithm outputs an error e then
6 Return supp(e).

Before proceeding, we mention that in order to compute the work factor,
there are two rather subtle ways to run Random 〈ISD〉. The first way is that we
get a (1) random ciphertext R, then (2) pick a random non-zero row r from 〈R〉
and then finally (3) run one iteration of our ISD algorithm on it. If this iteration
does not succeed, then we go back to step (1) and start again by generating
a new random ciphertext R. In the second method the difference is that on
subsequent iterations we go back to step (2) instead. That is we stay with the
same ciphertext R through all our iterations until success. Our analysis below
follows the first way. While the second way might seem more appropriate to
use one can show that its workfactor is an upper bound to the workfactor of
the first method (by an application of the HM-AM inequality). Furthermore the
workfactor of the second method is also much harder to analyze than the first.
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(We also remark that this sort of consideration also applies to our analysis of
Interleaved Prange where the first interpretation is applicable.)

If the success probability of the employed ISD algorithm of finding an error of
weight v is denoted by P (v), then the success probability of the Random 〈ISD〉
approach is given by

t∑
v=0

(
t
v

)
(q − 1)v

qt
· P (v).

Note that P (v) is simply zero for all those error weights v which the chosen ISD
algorithm is not designed to solve for. Here

(
t
v

) (q−1)v

qt denotes the probability
that the chosen r has an error e of weight v. In fact, by choosing a random
codeword r ∈ 〈R〉, this results in an error vector e which is a random linear
combination of the rows of E ∈ F

�×n
q and thus when e is restricted to the t

error positions it looks like a vector drawn uniformly at random from F
t
q. Note

that this approach comes with a failure probability as the errors generally have
weight greater than the unique decoding radius of G. However, this probability
is expected to be very small as the error weights are less than the minimum
distance of G.

For the complexity analysis, let us consider first that we employ the ISD
algorithm of Prange [19]. This algorithm has a success probability of

P (v) =
(

n − k

v

)(
n

v

)−1

.

Hence the success probability of Random Prange is given by

t∑
v=0

(
t
v

)
(q − 1)v

qt

(
n − k

v

)(
n

v

)−1

.

To get an upper bound on the asymptotic complexity of Random Prange, we
can give a lower bound on the success probability, e.g., by considering just the
term in the summation where v = t q−1

q (a reasonable choice since this is the

most likely error weight in the chosen r, i.e., this v maximizes
(

t
v

) (q−1)v

qt ).
In order to give an asymptotic complexity, we first consider the parameters

k, t as functions in n and define

R = lim
n→∞

k(n)
n

,

T = lim
n→∞

t(n)
n

= H−1
q (1 − R).

To ease the notation, we also introduce the asymptotics of the binomial coeffi-
cient, denoted by

H(F,G) := lim
n→∞

1
n
logq

((
f(n)
g(n)

))

= F logq(F ) − G logq(G) − (F − G) logq(F − G),



Interleaved Prange: A New Generic Decoder for Interleaved Codes 75

where f(n), g(n) are integer-valued functions such that lim
n→∞

f(n)
n = F and

lim
n→∞

g(n)
n = G. Thus, we get the following upper bound.

Proposition 1. The asymptotic complexity of Random Prange on an �-
interleaved random code over Fq with length n and dimension k is given by
at most qneP (R,q), where

eP (R, q) = H(1, T (q − 1)/q) − H(1 − R, T (q − 1)/q).

If we employ Stern’s ISD algorithm [23], we get a slight improvement. However,
note that Stern’s algorithm (at least in its conventional formulation) only solves
the SD problem for a fixed error weight w. If instead in each iteration we run
Stern t times for all error weights w ∈ [1, t], this gives us a straightforward
extension of the algorithm that works for all errors with weights in [1, t]. While
this of course increases the cost of one iteration, it turns out that asymptoti-
cally the cost remains the same and since this formulation can only improve the
probability of success of Random Stern, we will consider this version.

The cost of Random Stern’s algorithm is in O(I ·C), where I is the expected
number of iterations and C the cost of one iteration. This is given by

I =

(
t∑

v=0

(
t
v

)
(q − 1)v

qt

(
(k + �′

v)/2
w′

v/2

)2(
n − k − �′

v

v − w′
v

)(
n

v

)−1
)−1

C =
t∑

v=1

Cv where Cv =
(
(k + �′

v)/2
w′

v/2

)
qw′

v/2 +
(
(k + �′

v)/2
w′

v/2

)2

qw′
v−�′

,

where 0 ≤ w′
v ≤ min{k + �′, v}, 0 ≤ �′

v ≤ n − k are the internal parameters of
Stern’s algorithm that can be optimized individually for each of the t runs to
give the lowest cost.

To get an upper bound on the asymptotic complexity of Random Stern, we
again just consider the v0 = t q−1

q term in the summation in I’s formula. For this
let us consider additionally the parameters w′

v0
and �′

v0
as functions in n and

define

W ′ = lim
n→∞

w′
v0
(n)

n
,

L′ = lim
n→∞

�′
v0
(n)
n

.

Proposition 2. The asymptotic complexity of Random Stern on an �-
interleaved random code over Fq with length n and dimension k is given by
at most qneS(R,q), where

eS(R, q) =H(1, T (q − 1)/q) − 2H((R + L′)/2,W ′/2)
− H(1 − R − L′, T (q − 1)/q − W ′)
+ max{H((R + L′)/2,W ′/2) + W ′/2,
2H((R + L′)/2,W ′/2) + W ′ − L′}.
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Finally, we can utilize the fact, that an attacker has the knowledge of q�

instances of the syndrome decoding problem. Such a scenario has first been con-
sidered in [13]. Following an unpublished idea, attributed to Bleichenbacher,
Sendrier considered in DOOM [22] the scenario where many instances are
decoded simultaneously and the solution for only one is needed. More in details,
if N denotes the number of instances and γ denotes the previous workfactor,
e.g. of Stern’s algorithm, then DOOM has a cost of

max{γ/
√

N, γ2/3},

depending on how large N is. In fact, if γ/
√

N ≤ N the workfactor of the new
algorithm is given by γ2/3 and else it costs γ/

√
N.

In our interleaved scenario, we can assume that an attacker has the knowledge
of q� instances from the rowspan of the received matrix R. Thus, if we denote by
γS the cost of Stern’s algorithm on one of these instances, then applying DOOM
to our scenario has a cost of

max{γS/
√

q�, γ
2/3
S }.

This leads to the following exponent in the asymptotic cost.

Proposition 3. The asymptotic complexity of DOOM using Stern on an �-
interleaved random code over Fq with length n and dimension k is given by
at most qneD(R,q), where

eD(R, q) =max{eS(R, q) − L/2, 2/3eS(R, q)},

where eS(R, q) is the exponent of the asymptotic cost of random Stern 4.

3.2 CF-Based Algorithms

A different approach is the following. Having received the matrix R, note that
the code generated by G′ = [GR ] is the same as the code generated by [GE ].
Thus the problem reduces to finding a low-weight codeword in the code 〈G′〉 of
dimension k + �.

Let us denote by H′ ∈ F
(n−(k+�))×n
q a parity-check matrix of the code 〈G′〉 .

Algorithm 2: CF-based Algorithm
Input: A generator matrix G ∈ F

k×n
q and a received matrix R = C+E ∈ F

�×n
q

where 〈E〉 has minimum distance dE.
Output: A nonempty subset U ⊆ supp(E)

1 Compute the parity-check matrix H′ ∈ F
(n−k−�)×n
q of the code 〈G′〉.

2 Use a CF algorithm with inputs H′ and weight dE to find a codeword e of
weight w in 〈G′〉 .

3 Return e.
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Algorithm 2 gives a framework of finding a codeword from 〈E〉 by using a
low-weight codeword finding algorithm as a subroutine. The complexity of this
approach is the same as the complexity of the CF algorithm used for finding
low-weight codewords in the code 〈G′〉. For example one might employ the well-
known ISD algorithm by Stern.

We remark that differently from our description of the other two algorithms,
we assume that the minimum distance dE of the error matrix E is available. For
interleaved cryptosystems, this is a parameter that is published and is usually
chosen to be as large as possible to give the system a high security level. For
large blocklengths and random E we can assume this distance is close to the
Gilbert-Varshamov bound, as we do for the asymptotic analysis below.

The asymptotic complexity of this algorithm is exactly given by the asymp-
totic complexity of Stern’s algorithm on a code of dimension k + � and a target
weight w, which is the minimum distance of 〈E〉. For this recall that we have the
internal parameters 0 ≤ w′ ≤ min{k + � + �′, w}, 0 ≤ �′ ≤ n − k − �. We define

W ′ = lim
n→∞

w′(n)
n

,

L′ = lim
n→∞

�′(n)
n

,

T = lim
n→∞

t(n)
n

= H−1
q (1 − R),

W = lim
n→∞

w(n)
n

= H−1
q (1 − �/t)T.

Proposition 4. The asymptotic complexity of the CF approach on an �-
interleaved random code over Fq with length n and dimension k is given by
at most qneC(R,q), where

eC(R, q) =H(1, T ) − 2H((R + L + L′)/2,W ′/2)
− H(1 − R − L − L′,W − W ′)
+ max{H((R + L + L′)/2,W ′/2) + W ′/2,
2H((R + L + L′)/2,W ′/2) + W ′ − L′}.

3.3 Novel Approach: Interleaved Prange

We propose a new algorithm (Algorithm 3) inspired by the classical attack of
Prange. Note that Prange’s algorithm can be described as choosing k+1 columns

in
[
G
r

]
where r is the received word and checking whether the (k + 1)× (k + 1)

submatrix formed at these positions is rank deficient. This formulation can neatly

be generalized to interleaved codes, where we pick k + � columns in
[
G
R

]
and

check if the rank of the (k + �) × (k + �) submatrix formed at these positions is
less than k + �.
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In more details, we choose a set J ⊂ [1, n] of size k + �, which contains an
information set I for G (in other words, GI and hence GJ has full rank). Let

us denote again by G′ :=
[
G
R

]
and check if the square submatrix G′

J (the blue

region in Fig. 1) is rank-deficient, that is

rk
(
(G′)J

)
< k + �.

This can be split into two cases:

1. EJ has linearly dependent rows (which implies G′
J is rank deficient).

2. EJ has linearly independent rows but G′
J is still rank deficient.

In the first case, we succeed as at least one non-zero word in 〈R〉 is error-free
at these k + � positions and so by performing the re-encoding step of Prange on
such a word r, we can find the error in this word, giving us a subset of the t
error positions. A naive way to find such an r would be to do the re-encoding
on all q� − 1 non-zero words in 〈R〉. However, this step will fail if we are in the
second case. As it turns out, the second case is far more likely than the first, so
this naive re-encoding approach will make the entire algorithm very inefficient.
Instead we do the re-encoding for only those r ∈ 〈R〉 that actually belong to some
linearly dependent set of rows in G′

J which can be easily found by computing
its left null space, i.e., the set {x ∈ F

k+�
q : xG′

J = 0}. With this modification,
the algorithm becomes efficient again, though perhaps at the expense of a more
involved complexity analysis.

G′
J

k + �

k + �

t

R

G

Fig. 1. Illustration of Interleaved Prange Algorithm.

Theorem 2. The cost of Interleaved Prange on an �-interleaved random code
over Fq with length n and dimension k is in

O
(
P−1C

)
,
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Algorithm 3: Interleaved Prange
Input: A generator matrix G ∈ F

k×n
q and a received matrix R = C+E ∈ F

�×n
q

where E has at most t non-zero columns.
Output: A nonempty subset U ⊆ supp(E).

1 Choose J ⊂ [1, n] of size k + � such that rk(GJ ) = k.
2 if rk(G′

J ) < k + � then
3 for each x ∈ F

k+�
q \ {0} in the left null space of G′

J do
4 if wt(xG′) ≤ t then return supp(xG′).
5 end
6 else
7 Go back to step 1.

where

P =
min{t,k+�}∑

i=0

(
n−t

k+�−i

)(
t
i

)
(

n
k+�

) ·

⎛
⎝1 −

�−1∏
j=0

(1 − qj−i)

⎞
⎠ ,

denotes the success probability and

C = (k + �)3 +
k−1∏
j=0

(1 − qj−k)16
�∑

p=1

q−p2+p)(k + �)(n − k − �)

denotes the cost of one iteration.

Proof. This algorithm succeeds whenever the chosen set J is such that the rows
of EJ ∩T are linearly dependent and that GJ has rank k. Since the latter is
true with high probability, we will assume this probability is one. Let i denote
|J ∩ T |, i.e., the number of error positions in the set J . Since EJ ∩T has the
distribution of a random matrix in F

�×i
q , the probability that EJ ∩T has linearly

dependent rows is given by,
⎛
⎝1 −

�−1∏
j=0

(1 − qj−i)

⎞
⎠ .

Next, we weight this term with the probability that exactly i errors land in J
and form the summation over all possible i, giving us

P =
min{t,k+�}∑

i=0

(
n−t

k+�−i

)(
t
i

)
(

n
k+�

) ·

⎛
⎝1 −

�−1∏
j=0

(1 − qj−i)

⎞
⎠ .

Hence, we will need P−1 many iterations until we succeed. Among these non-
successful iterations, we could either have that G′

J was not rank deficient, which
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costs O((k + �)3) due to the Gaussian elimination to check G′
J ’s rank (step 2)

or we have that G′
J was indeed rank deficient but EJ had linearly independent

rows. In this second case we incur the additional cost of step 3 since only after
that we will recognize that EJ did not have linearly dependent rows. Note that
step 3 consists of computing the left null space of G′ and then performing qp

re-encoding steps where p is the dimension of this space. The left null space can
be found using Gaussian elimination and thus has the same cost as the rank-
check in step 2 (in fact, it is possible to find the null space with effectively no
additional work from this step).

In order to compute the cost of doing the qp re-encodings, assume EJ has
linearly independent rows. Let P (p) denote the probability that G′

J has rank
deficiency p, i.e., rk(G′

J ) = k + � − p where p ∈ [1, �] (since J is chosen such
that rk(GJ ) = k). Thus p is the dimension of the left null space of G′. Then
the workfactor of the re-encoding is given by

C ′ =
�∑

p=1

P (p)qpα

where α ∈ O((k + �)(n − k − �)) is the cost of a single re-encoding step.
To compute P (p), we make use of the following result: if V is an n-dimensional

vector space over Fq and U is an m-dimensional subspace in V , then the number
of k-dimensional subspaces W over Fq with dim(W ∩ U) = d is given by

[
n − m

k − d

]

q

[
m

d

]

q

q(m−d)(k−d),

where
[
a
b

]
q

denotes the Gaussian binomial coefficient.
Since the number of G′

J with rank deficiency p is given by the number of
EJ ∩T of rank � times the number of GJ of rank k such that dim(〈EJ ∩T 〉 ∩
〈GJ 〉) = p, we get

�−1∏
j=0

(qi − qj)
k−1∏
j=0

(qk − qj)
[
�

p

]

q

[
k

k − p

]

q

q(�−p)(k−p),

where the first term counts the number of rank � matrices EJ ∩T , the second term
is the number of ways of picking an ordered basis of a k-dimensional subspace
and the third term counts the number of k-dimensional subspaces (i.e. 〈GJ 〉)
inside a k + � dimensional space whose intersection with a fixed �-dimensional
subspace (i.e. 〈EJ ∩T 〉) has dimension p.

Dividing this by the total number of possible G′
J , i.e.,

q(k+�)k
�−1∏
j=0

(qi − qj),

we get the probability

P (p) =
k−1∏
j=0

qk − qj

qk+�

[
�

p

]

q

[
k

k − p

]

q

q(�−p)(k−p).
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Hence the workfactor of one iteration is given by C = β+C ′ where β ∈ O((k+�)3)
and

C ′ =
�∑

p=1

P (p)qpα

=
k−1∏
j=0

(
1 − qj−k

)
q−�k

�∑
p=0

[
�

p

]

q

[
k

k − p

]

q

q(�−p)(k−p)qpα

≤
k−1∏
j=0

(1 − qj−k)q−�k
�∑

p=1

16q�k−p2+pα

=
k−1∏
j=0

(1 − qj−k)16
�∑

p=1

q−p2+pα,

where we used that
q(a−b)b ≤

[
a

b

]

q

≤ 4q(a−b)b.


�
Again, we will give an upper bound on the asymptotic cost. For this it is enough
to consider a lower bound on the success probability P , as

lim
n→∞

1
n
logq(C) = lim

n→∞

1
n
logq

⎛
⎝(k + �)3 +

k−1∏
j=0

(1 − qj−k)16
�∑

p=1

q−p2+pα

⎞
⎠

≤ lim
n→∞

1
n
logq((k + �)3 + �16(k + �)(n − k − �)) = 0.

Note that the success probability can be written as

P =
min{t,k+�}∑

i=0

Qi,

for

Qi =

(
n−t

k+�−i

)(
t
i

)
(

n
k+�

) ·

⎛
⎝1 −

�−1∏
j=0

(1 − qj−i)

⎞
⎠ .

To get a lower bound, we use that
∑min{t,k+�}

i=0 Qi ≥ Q�−1, that is we just consider

Q�−1 =
(

n − t

k + 1

)(
t

� − 1

)(
n

k + �

)−1

.

Since the interleaving order � is usually very small compared to n, we set

L = lim
n→∞

�(n)
n

=
T

α
,

for some positive integer 2 < α.
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Proposition 5. The asymptotic complexity of Interleaved Prange on an �-
interleaved random code over Fq with length n and dimension k is given by
at most qneI(R,q), where

eI(R, q) = H(1, R + L) − H(1 − T,R) − H(T,L) + min{H(R + L,R), L}.

3.4 Recognizing Failures

In all the above algorithms, there is a certain probability that the returned
set of positions is not a subset of the original error positions T . For SD-based
algorithms, this can happen because any non-zero word in 〈E〉 generally has
an error of weight greater than the unique decoding radius of G. For CF-based
algorithms or interleaved Prange, it is possible for a word with support not in
T to exist in G′ = [GR ]. This is because a word from 〈E〉 might combine with
a codeword from 〈G〉 to yield a word that has weight less than t. While the
probability of this happening is expected to very small, it is still important to
handle this case.

Following an idea of Jean-Pierre Tillich (personal communication), we can
recognize these cases with high probability. This idea is similar to the algorithm
in [18], which attacks the KKS signature scheme [14,15]. The algorithm exploits
the fact that there is a secret subcode of a publicly known code, which has
many low-weight codewords with support centered in a small subset. Similarly
for us, we have that 〈G′〉 has the secret subcode 〈E〉 which has many low-weight
codewords centered in a subset of size t. We now describe the algorithm in more
detail.

Suppose our algorithm finds a low-weight x and we want to determine if
its support U is a subset of T . We shorten the code 〈G′〉 with respect to the
complement of U and then calculate its dimension. In other words, we calculate
the dimension of the code Cs = {cU | c ∈ 〈G′〉 and c[1,n]\U = 0}. If U �⊆ T , then
we can expect that a large part of T is outside U and hence we should expect
the dimension of Cs to be zero. On the other hand, suppose U ⊆ T . Then for a
random E, any non-zero x ∈ 〈E〉 is expected to be of weight q−1

q t which is close
to t for even moderate q. Thus we should expect very few positions of T to be
left outside U and so the dimension should be greater than zero (more precisely
this will be true if less than � positions of T are outside U).

An alternative method is also available that works well for q = 2. If we
puncture 〈G′〉 in supp(e), we can run a CF algorithm on the punctured code
and look for a codeword of weight at most t−w. If e was indeed in 〈E〉, then the
CF algorithm should succeed in finding such a word. However it seems possible
that this check succeeds even when supp(e) is not in T . But as w ≥ t/2 it is
very unlikely that the punctured code in the support of a ‘wrong’ codeword e
still contains codewords of low weight. In fact, if e �∈ 〈E〉, then we are left with
many positions of supp(E) after puncturing and it is very unlikely for such a
punctured code to contain a codeword of weight t − w ≤ t/2.

The first method is clearly a polynomial time check. The second method,
while having an exponential cost, is still much less work than the main algorithm
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which tries to find a word of a much larger error weight. Further, since we expect
these failure cases to be rare, incorporating any of the above two methods should
not affect the overall complexity.

3.5 Comparison

In order to compare the different algorithms, we fix q = 7 and � the interleaving
order to be such that L = limn→∞

�(n)
n = T/α, for α ∈ {5, 10, 20, 30}. These

choices of α are motivated from the proposed parameters in cryptosystems, e.g.
compare to Table 3. In addition, we denote by R∗ = argmax0≤R≤1 (e(R, q)).
We have two different approaches for the comparison. The first one is to take
1
n logq(·) of the actual cost of the algorithms computed for large n, which seem
to converge rather quickly, thus Fig. 2 and Table 1 gives a very accurate plot of
the complexities in this case.

Fig. 2. Simulated asymptotic cost of the algorithms for q = 7 and � = t/20.

Table 1. Comparison of simulated asymptotic cost of different algorithms for q = 7
and � = t/20.

Algorithm e(R∗, q) R∗ T

Simulated Interleaved Prange 0.06832 0.475 0.254
Simulated Random Prange 0.07848 0.437 0.280

The second approach is using the presented upper bounds on the asymptotic
complexity, which can be seen in Fig. 3, 4, 5 and Table 2. In Table 2, note that
Random Prange as well as Random Stern do not depend on the different choices
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of α. We can observe that the Interleaved Prange algorithm outperforms DOOM
for small choices of α, i.e., up to α = 20, while after that point DOOM starts
outperforming Interleaved Prange. In general, for small �, it appears that CF-
based algorithms have a lower complexity than Interleaved Prange and SD-based
algorithms because SD-based algorithms generally solve the problem for a larger
error weight than CF-based ones (but only in a slightly larger code). On the
other hand, for large �, namely at � = t/5, we could observe that Interleaved
Prange outperforms even CF-based algorithms.

Fig. 3. Upper bounds on the asymptotic cost of the algorithms for q = 7 and � = t/5.

Both approaches show the same predicted behaviour, that is Interleaved
Prange has a much lower complexity than the straightforward approach of SD
for small α. Note that in the simulated asymptotics we did not compare also to
Random Stern, as the improvement on Random Prange is only marginal.

Regarding the finite regime cost, we omit to state the cumbersome formulae
in the paper and instead provide an updated table for the parameters of the
cryptosystem [11] in Table 3. In Table 3 SL stands for security level, dE is the
minimum distance of 〈E〉, r is the degree of the irreducible Goppa polynomial,
m is the extension degree and WFCFS,WFIP,WFRP stands for the workfactor of
the CF-approach using Stern, Interleaved Prange and Random Prange, respec-
tively. The cryptosystem is based on interleaved Goppa codes. We assume that
arithmetic in Fq has a logarithmic cost.
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Fig. 4. Upper bounds on the asymptotic cost of the algorithms for q = 7 and � = t/10.

Fig. 5. Upper bounds on the asymptotic cost of the algorithms for q = 7 and � = t/20.

The Mathematica code for the asymptotic complexity, as well as a SAGE
code for the finite regime cost can be found in https://doi.org/10.5281/
zenodo.6988687.

https://doi.org/10.5281/zenodo.6988687
https://doi.org/10.5281/zenodo.6988687
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Fig. 6. Upper bounds on the asymptotic cost of the algorithms for q = 7 and � = t/30.

Table 2. Comparison of the asymptotic cost of the different algorithms for q = 7 and
different α.

α Algorithm e(R∗, q) R∗ T Internal parameters

5 Upper Bound Interleaved Prange 0.04415 0.631 0.158
Upper Bound DOOM 0.06557 0.561 0.198 w′ = 0.0041, �′ = 0.0152
CF Using Stern 0.04574 0.471 0.257 w′ = 0.0017, �′ = 0.0069

10 Upper Bound Interleaved Prange 0.06471 0.565 0.196
Upper Bound DOOM 0.07466 0.516 0.227 w′ = 0.0040, �′ = 0.0147
CF Using Stern 0.05861 0.462 0.263 w′ = 0.0019, �′ = 0.0076

20 Upper Bound Interleaved Prange 0.07961 0.524 0.222
Upper Bound DOOM 0.07969 0.493 0.242 w′ = 0.0040, �′ = 0.0144
CF Using Stern 0.06777 0.455 0.268 w′ = 0.0022, �′ = 0.0087

30 Upper Bound Interleaved Prange 0.08621 0.468 0.259
Upper Bound DOOM 0.08144 0.484 0.248 w′ = 0.0039, �′ = 0.0143
CF Using Stern 0.07176 0.453 0.269 w′ = 0.0021, �′ = 0.0081

Upper Bound Random Prange 0.08621 0.468 0.259
Upper Bound Random Stern 0.08510 0.465 0.261 w′ = 0.0038, �′ = 0.0139
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Table 3. New security level for the proposed parameters in [11].

Old SL WFCFS WFIP WFRP q m r n k � tpub dE

128 94.37 127.23 135.31 3 8 100 2130 1330 7 131 59

128 117.80 126.47 136.65 4 6 90 1580 1040 7 105 68

128 114.29 128.23 139.91 5 5 100 1290 790 7 109 73

256 204.60 229.45 237.59 3 8 180 4300 2860 7 236 123

256 169.57 246.59 256.80 4 7 240 3760 2080 7 280 135

256 184.90 246.70 258.65 5 6 200 3200 2000 7 218 121

4 Conclusion

In this paper we presented several algorithms that decode a random homoge-
neous �-interleaved code, which also work for the missing case � � t. Two of
these algorithms come from a straight-forward reduction to known ISD and
CF algorithms in the classical case. In addition to those algorithms, we also
presented a new generic decoding algorithm for interleaved codes, namely Inter-
leaved Prange, which is an adaption of Prange’s classical idea to the interleaved
setting. We provided a complexity analysis and compared the asymptotic costs
of the considered algorithms.

Acknowledgements. The sixth author is supported by the Swiss National Science
Foundation grant number 195290. The authors are thankful to Jean-Pierre Tillich for
helpful discussions on the failure probability of the CF approach.
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Abstract. We present experimental findings on the decoding failure
rate (DFR) of BIKE, a fourth-round candidate in the NIST Post-
Quantum Standardization process, at the 20-bit security level. We select
parameters according to BIKE design principles and conduct a series
of experiments. We directly compute the average DFR on a range of
BIKE block sizes and identify both the waterfall and error floor regions
of the DFR curve. We then study the influence on the average DFR of
three sets C, N , and 2N of near-codewords—vectors of low weight that
induce syndromes of low weight—defined by Vasseur in 2021. We find
that error vectors leading to decoding failures have small maximum sup-
port intersection with elements of these sets; further, the distribution of
intersections is quite similar to that of sampling random error vectors
and counting the intersections with C, N , and 2N . Our results indicate
that these three sets are not sufficient in classifying vectors expected to
cause decoding failures. Finally, we study the role of syndrome weight on
the decoding behavior and conclude that the set of error vectors that lead
to decoding failures differ from random vectors by having low syndrome
weight.

Keywords: BIKE · Error-correcting codes · McEliece · PQC ·
QC-MDPC

1 Introduction

In 2016, the U.S. National Institute of Standards and Technology (NIST)
announced a Post-Quantum Cryptography (PQC) standardization process
aimed at updating NIST’s public-key cryptographic standards to include post-
quantum cryptography, that is, cryptographic algorithms that are thought to be
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secure against attacks by a quantum computer. One of the remaining code-based
candidates in the NIST PQC Standardization process is BIKE, a cryptosystem
based on quasi-cyclic moderate density parity check (QC-MDPC) codes.

The BIKE cryptosystem was originally designed for ephemeral use, that is in
settings where a KEM key pair is generated for every key exchange. The require-
ment for BIKE to be used ephemerally provides a countermeasure to a reaction
attack by GJS [10] wherein an attacker can use knowledge of messages that lead
to decoding failures to recover the private key of a scheme. During the second
and third round of the NIST PQC process, BIKE proposed parameter sets that
were designed to provide security in the static-key setting [1], that is, a setting
where KEM key pairs can be reused for several key exchanges. In fact all the
parameter sets in the third round specification of BIKE are designed to be secure
in the static-key setting, although they do not formally claim to be secure in this
setting. While security in the ephemeral setting can be provided by a scheme
meeting the weaker IND-CPA security notion, security in a static-key setting
requires a scheme meeting the stronger IND-CCA2 security notion. Achieving
IND-CCA2 security requires that BIKE’s decoder has a sufficiently low decoding
failure rate (DFR), both because the security proof of BIKE in the IND-CCA2
setting assumes a low DFR, and because if a QC-MDPC cryptosystem with a
sufficiently high DFR is used in the static-key setting, it would allow an attacker
to perform the GJS attack with a high probability of success.

By design, it is not feasible to directly compute an average DFR for BIKE
at cryptographically relevant security levels. It is possible to measure DFRs for
smaller code sizes and then use extrapolation methods to estimate the DFR for
larger parameters [9,17]. One must consider the phenomenon known as the error
floor region of DFR curves to avoid an underestimate of DFR for larger code
sizes. It is known that for LDPC and MDPC codes, the logarithm of the DFR
drops significantly faster than linearly, and then linearly as the signal-to-noise
ratio is increased [15,21]. Thus a typical DFR curve contains a concave waterfall
region followed by a near-linear error floor region. One must accurately predict
the error floor of a DFR curve to accurately predict the DFR for cryptographi-
cally relevant code sizes.

The error floor regions for low density parity check (LDPC) codes have been
extensively analyzed in the literature. These are codes which can be defined by
parity check matrices Hk×n with row Hamming weight on the order of O(1),
or up to O(log(2n)). For each parity check matrix, there is a corresponding
bipartite graph, known as a Tanner graph. Much analysis of iterative LDPC
decoding behavior focuses on properties of Tanner graph representations of the
code [4,14–16,24], such as identifying stopping sets and trapping sets.

Recent work [22,23] has considered several factors affecting the DFR of QC-
MPDC codes: choice of decoder [17,20], classes of weak keys, and sets of prob-
lematic error patterns. It was noted that error vectors with a small Hamming
distance from problematic error patterns—error vectors of low weight that emit
syndromes of low weight—are significant contributors to the error floors of QC-
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MDPC codes and it was concluded that these vectors were rare enough to not
affect the overall DFR predictions for higher code sizes.

In this work, we examine the error floor behavior of QC-MDPC codes and
focus on a scaled-down version of BIKE. Existing analysis of the DFR for BIKE
[9,17] relies on extrapolations based only on modifying the block size, but this
analysis is only accurate if an upper bound can be established for the DFR
at which the transition to error floor behavior occurs (see e.g. Assumption 3
on page 7 of [17]). Vasseur’s thesis uses experiments with error vectors based
on known classes of codewords and near-codewords to give an upper bound for
the transition DFR. We try to directly measure the transition point and see
if it can be modeled based on the known contributions to error floor behavior
described in Vasseur’s thesis, but we cannot directly measure the transition point
for cryptographic size parameters, since that transition occurs at too low a DFR.
We use the Black-Grey-Flip decoder [9], the recommended BIKE decoder as of
the time of writing, and filter out any keys belonging to the classes of weak keys
defined by [22]. We consider the three sets of near codewords as defined in [22]
and find that error vectors that lead to decoding failures have small (between
2 and 8 bits) support intersections with elements of this set. We conclude that
error vectors that emit syndromes of low weight are significant contributors to
decoding failures, but are not fully captured by the sets of near codewords defined
in [22].

2 Background

2.1 Coding Theory and QC-MDPC Codes

Throughout this document, let F2 denote the finite field of two elements. For
r ∈ N, x ∈ F

r
2, let |x| denote the Hamming weight of x. For two vectors x, y ∈ F

r
2,

let x � y = (x0 · y0, x1 · y1, . . . , xr−1 · yr−1) denote the Schur product. Let C(n, k)
be a binary linear code, n, k ∈ N. Then C : Fk

2 → F
n
2 maps information words to

codewords and the set of 2k codewords forms a k-dimensional vector space of
F

n
2 . Let B = {b0, b1, . . . , bk−1} be a basis for this subspace, bi ∈ F

n
2 . Then the

code C can be described by a generator matrix

G =

⎡
⎢⎢⎢⎣

b0
b1
...

bk−1

⎤
⎥⎥⎥⎦ .

The code can equivalently be described by a parity check matrix H ∈ F
n−k×n
2

which is a generator matrix for the dual code C⊥ = {x ∈ F
n
2 : ∀c ∈ C, x · c = 0}.

Thus the following relationship holds: HGT = 0 ∈ F
k×n−k
2 . For any vector

y ∈ F
n
2 , and parity check matrix H, the matrix-vector product HyT = s ∈ F

n−k
2

is known as the syndrome. For any y such that HyT = 0 ∈ F
n−k
2 , y is a codeword

(i.e., y ∈ C).
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A v × v circulant matrix is a square matrix such that each row ri+1 is one
shift to the right of the previous row ri for i ∈ {0, 1, . . . , v −1}. The ring of v ×v
circulant matrices over F2 is isomorphic to the polynomial ring F2[x]/〈xv + 1〉.
A quasi-cyclic (QC) matrix is a block sum of circulant matrices.

2.2 BIKE

Bit-flipping Key Encapsulation (BIKE) is a cryptosystem based on binary linear
codes with quasi-cyclic structure and moderately sparse private keys [1]. The
private key H ∈ F

r×2r
2 is composed of two circulant blocks: H0,H1 of size r × r

with r prime and such that xr −1 has only two irreducible factors modulo 2. The
columns of H have weight d and the rows hi of H are such that |hi| = w = 2d
for all i ∈ {0, . . . , r − 1}. MDPC code parameters satisfy row weight w ≈ √

n for
n the length of the code.

At a high level, the public-key encryption system underlying the BIKE KEM
is composed of three algorithms: key generation, encryption, and decryption.
The key generation algorithm generates a private key H = [H0|H1] ∈ F

r×2r
2 and

public key H ′ is H in systematic form (H ′ = H−1
0 H). To encrypt a message m,

a sender must encode m into a vector e of suitable weight t, then compute the
syndrome H ′eT = s. The receiver decrypts by decoding the syndrome s using the
secret key H and a predefined syndrome decoding algorithm. The recommended
BIKE syndrome decoder as of the time of writing is the Black-Grey-Flip decoder
[9].

Let λ denote the security parameter and let H denote a BIKE secret key.
The security of BIKE depends on the inability of an attacker to break (variants
of) the syndrome decoding problem(s). The best known attacks are information
set decoding (ISD) algorithms, first introduced in 1962 by Prange [13] and later
improved in dozens of works yielding small change in the overall asymptotic
cost. (See [5,12,19] for a non-exhaustive list). Thus, for BIKE to achieve λ bits
of security against the best known ISD attacks [7], the BIKE team determined
that

λ ≈ t − 1
2

log2 r ≈ w − log2 r

where r denotes the circulant block size of H, w denotes the row weight of H,
and t denotes the weight of the error vector in which a message is encoded [1].

2.3 Weak Keys and Near Codewords

For security level λ, the average decoding failure rate DFRD,H for an IND-CCA
secure cryptosystem should be ≤ 2−λ where D denotes the decoder and H the
key space. A set W ⊂ H of keys is said to be weak if:

|W|
|H| DFRD,W > 2−λ ≥ DFRD,H.

In [22, Chapter 15], Vasseur identifies three types of weak keys for the BIKE
cryptosystem:
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– Type I: keys with many consecutive nonzero bits in the rows of one of the
cyclic blocks, first identified by [8].

– Type II: keys with nonzero bits at many regular intervals in the rows of one
of the cyclic blocks.

– Type III: keys with many intersections between the columns of the two
cyclic blocks.

It is known that some sets of vectors are more likely to cause decoding failures
than on average. A (u, v)-near codeword for a parity-check matrix H is an error
vector e with Hamming weight u whose syndrome s = HeT has weight v [11].
When u, v are small, these near codewords can be likely to cause decoding failures
[15]. Based on the structure of BIKE, Vasseur defines three sets with small u, v
as follows:

– C: vectors which form the rows of the generator matrix G = [HT
1 |HT

0 ]; these
are codewords of weight w for the secret key H = [H0|H1].

– N : the set of (d, d)-near codewords of the form (v0,0) or (0, v1), where 0 ∈ F
r
2

and vi is a row of the circulant block Hi of the parity check matrix.
– 2N : the set of vectors formed by sums of two vectors in N . Due to the small

chance of cancellation, one may consider the set 2N as (w − ε0, w − ε1)-near
codewords for some small εi ≥ 0, i ∈ {0, 1}.

3 Methods

Cryptographically relevant DFRs are too low (< 2−128) to directly measure; it
is only possible to measure DFRs for smaller code sizes, then use extrapola-
tion methods to estimate the DFR to larger parameters. Some examples of this
approach can be found in [8,9,18]. In this ongoing work, we begin by analyzing
the decoding behavior for BIKE parameter sets targeting 20 bits of security in
several experiments.

Parameters were selected according to BIKE design principles with the max-
imum error weight t reduced to prevent any inadvertent increase in decoding
failures. Initial selected parameters are as follows: (r, w, t, λ) = (523, 30, 18, 20).
Later we include 389 ≤ r ≤ 827 for prime r such that xr − 1 has only two
irreducible factors modulo 2.

We use the Black-Grey-Flip (BGF) decoder in all experiments. We used the
original threshold selection function, defined in section 2.5.1 of the BIKE v1.0
specification [2], to compute the bit-flip threshold for all instances. The affine
threshold functions in the current version of BIKE are derived from this original
threshold rule. We precomputed the values used in the threshold function and
stored them in a hash table for ease of computation.

Vasseur identifies three classes of weak keys that impede decoding (see
Sect. 2.3 for the definitions of these classes) and describes an algorithm for filter-
ing out weak keys [22, Algorithm 15.3]. We implement this algorithm and use it
to reject weak keys. The definition of weak key depends on a parameter T , which
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Vasseur sets to 10 for BIKE parameters in the cryptographically relevant range
(λ ≥ 128). (Note that smaller values of T mean that more keys are excluded.)

We instead use T = 3 for the weak key threshold, the smallest value of T for
which finding non-weak keys is feasible. This is justified by the following empir-
ical observation: If we set T = 4, the decoding failure rate increases enormously;
for example, an experiment with (r, T ) = (587, 4) observed a DFR on the order
of 2−8, compared to around 2−20 for (r, T ) = (587, 3). Thus, to measure the
DFR for non-weak keys, we must set T = 3.

We use the Boston University Shared Computing Cluster [6], a heterogeneous
Linux-based computing cluster with approximately 21000 cores, to run SageMath
implementations of the BGF decoder [1,9] in all experiments. The experiments
yielded a graph with both the waterfall and error floor regions for our parameter
set in addition to many explicit examples of decoding failures that can be used
for future analysis. All raw data and the decoder used for this paper are available
at [3].

4 Average DFR over Full Message Space

We first compute an average DFR for all suitable block lengths r as follows.
For r in Table 1, we sample a random key H, rejecting any weak keys of types
I, II, III [22], a random vector e of weight t, compute s = HeT , run BGF
decoder on input (H, s), and record the total number of failures. This procedure
is run N times where N varies flexibly (N ∈ {103, 104, 105, 106, 107, 108}) to
ensure there are enough decoding failures at each r for robust statistical analysis.
In the waterfall region, fewer decoding trials were needed to get a statistically
adequate number of decoding failures. As r increased, the number of trials needed
increased. For r > 587, decoding failures were exceptionally sparse. Since these
computations get quite expensive and the log-DFR rate was decreasing only
linearly for r > 587, we chose not to continue increasing the number of trials.
The error vectors tested in the DFR experiment all had weight 18. The results
of this experiment are displayed in Table 1 and plotted with best fit curves in
Fig. 1.

We define a decoding failure as any instance where, on input (H, s), where s
is of the form s = HeT , the syndrome decoder output e′ is such that He′T �= s
or e′ �= e. The experiment was also designed to record any decoding instances
where He′T = s and e′ �= e, but none were discovered.

5 DFR on At,�(S) Sets

Vasseur identified and studied the influence of the proximity of error vectors to
any S ∈ {C,N , 2N}, described in Sect. 2.3, on the DFR [22]. To quantify how
close certain error vectors are to such a set S ∈ {C,N , 2N}, Vasseur introduces
the set

At,�(S) = {v ∈ F
2r
2 : |v � c| = � for some c ∈ S},
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Table 1. Decoding failure rates for r-values such that 389 ≤ r ≤ 827, r is prime, and
xr − 1 has only two irreducible factors modulo 2. The data was computed using the
parameters and methods described above.

r Decoding failures Decoding trials log2 (DFR)

389 939 103 −0.09

419 680 103 −0.56

421 652 103 −0.62

443 3289 104 −1.60

461 1172 104 −3.09

467 850 104 −3.56

491 1524 105 −6.04

509 380 105 −8.04

523 946 106 −10.05

541 164 106 −12.57

547 70 106 −13.80

557 177 107 −15.79

563 108 107 −16.50

587 128 108 −19.58

613 61 108 −20.64

619 60 108 −20.67

653 37 108 −21.37

659 35 108 −21.45

661 37 108 −21.37

677 24 108 −21.99

701 20 108 −22.25

757 8 108 −23.58

827 7 108 −23.77

where t is the error vector weight and � is the number of overlaps with an element
of S. To convert � to a distance, for v ∈ At,�(S) we define

δ(v) = |c| + t − 2�

where c is a vector in S with |v�c| = �. For δ low (equivalently, � high), decoding
failures are extremely common; see Fig. 2 for evidence at the 20-bit security level.

It is natural to consider the extent to which At,�(S) for some � and some
S ∈ {C,N , 2N} captures vectors which cause decoding failures. Our simulations
indicate that it is extremely unlikely for a typical decoding failure vector to be
in At,�(S) for any S with a high �. We define the max overlap of a decoding
failure vector v with a At,�(S) set for fixed S to be the largest value of � for
which v ∈ At,�(S). Using experimental data from r = 587, N = 108 we recorded
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Fig. 1. Decoding failure rates as in Table 1 on a semi-log graph, with a quadratic best
fit (blue) in the waterfall region r < 587 and a linear best fit (red) in the error floor
region r ≥ 587. (Color figure online)

128 total decoding failures and stored the 128 random error vectors that led to
decoding failure. The relationship between these decoding failure vectors and
the sets S is shown below; see Fig. 3a. We also repeated experiments for r = 613
and r = 619 with N = 108, recording 61 and 60 decoding failures, respectively.
See Figs. 4 and 5 for this data.

Although the maximum value of � is t = 18, the recorded values of � never
exceed 10. In fact, cases of � = 10 are quite rare. The values of � recorded in
experiments with vectors involved in decoding failures are greater than those
of randomly sampled vectors, but it is expected that near-codewords and code-
words of low weight overwhelmingly influence decoding failures in the error floor
region [11]. From our results, it appears that only a minority of the error vectors
producing a decoding failure are unusually close to a near-codeword or codeword
of low weight. More analysis is needed to assess the relationships between the
special sets S and decoding failures.

Notice that vectors close to a set S also have low syndrome weight; see Fig. 6.
Moreover, as � decreases, the syndrome weights approach the average.

From this, we are motivated to analyze to what extent syndrome weight
predicts decoding failures.
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Fig. 2. 20-bit security DFR versus δ for near-codeword sets C, N , 2N for r = 523

6 Distribution of Syndrome Weight

We investigate the syndrome weights of error vectors causing decoding failures
and compare them with those of generic vectors.

Figure 7 and Fig. 8 are obtained by generating 103 instances of non-weak
parity check matrices H, random error vectors e, and then we compute the
average weight of their syndromes s = HeT . For the ones causing decoding
failures, we extract the information from our DFR computations containing the
corresponding parity check matrices and error vectors and then we compute the
average weight of their syndromes.

We observe that the syndrome weights of generic vectors tend to follow a nor-
mal distribution while the error vectors causing decoding failures have syndrome
weights that are more concentrated around the mean, which we hypothesise to
be lower than that of the generic vectors; see Fig. 8 for the case r = 587, where
we compare the syndrome weights of the 128 vectors which caused decoding
failures with the syndrome weights of the 105 randomly generated vectors of the
same weight t = 18.

Figure 8 displays histograms of the syndrome weights of generic vectors and
error vectors causing decoding failures for r = 587. Similarly, for the ten r values
with 509 ≤ r ≤ 653, we use data from the previous DFR computation and an
additional 103 simulations of random error vectors to compare their syndrome
weights. Using this data, we explore whether or not there is convincing evidence
that the syndrome weights of error vectors causing decoding failures are lower
than those of generic vectors. The null hypothesis is that there is no difference
between the two groups in consideration while the alternative hypothesis is that
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Fig. 3. For the 128 vectors v with r = 587, d = 15, t = 18 which caused decoding
failures, we compute the distances from the sets C, N , 2N as measured by the maximum
number of intersections with an element of these sets. Here, � := |v�c| for c ∈ C, N , 2N .
We do the same computation for 128 randomly generated vectors under the same
parameters.

Fig. 4. For the 61 vectors v with r = 613, d = 15, t = 18 which caused decoding failures,
we compute the distances from the sets C, N , 2N as measured by the maximum number
of intersections with an element of these sets. Here, � := |v � c| for c ∈ C, N , 2N . We do
the same computation for 61 randomly generated vectors under the same parameters.

the generic vectors have higher syndrome weights. Both data come from random,
independent sampling and have data sets with more than 30 observations. The
difference in sample means may be modeled using a t-distribution. For each r,
one could compute the point estimates mgeneric − mDF of population difference
μ = μgeneric − μDF and standard errors of the point estimate
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Fig. 5. For the 60 vectors v with r = 619, d = 15, t = 18 which caused decoding failures,
we compute the distances from the sets C, N , 2N as measured by the maximum number
of intersections with an element of these sets. Here, � := |v � c| for c ∈ C, N , 2N . We do
the same computation for 60 randomly generated vectors under the same parameters.

Fig. 6. Syndrome weight of error vectors in At,�(S) as � (the maximum number of
overlaps with an element of the set S) varies, for r = 587, t = 18. Average syndrome
weight for an error vector of weight t = 18 was approximately 180.712, plotted as the
dotted horizontal line.

SE =

√
σ2
generic

Ngeneric
+

σ2
DF

NDF
.

With this information, one could compute the test statistic for this (one-
tailed) test by the formula T = μ−0

SE . Using either a t-table or statistics software,
we can find appropriate degrees of freedom and from there, the p-value, for each
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Fig. 7. Syndrome weights of random vectors with t = 18 (red circles) and vectors
causing decoding failures (blue diamonds). (Color figure online)

Fig. 8. A comparison of syndrome weights for r = 587 between the 128 error vectors
which were found to be involved in decoding failures and 105 random vectors. Vertical
axis is frequency, and horizontal axis is syndrome weight.

r. Our conclusion is that for the sixteen r-values in the range 509 ≤ r ≤ 827, the
p-value is less than the significance value α = 0.01, and therefore we reject the
null hypothesis, i.e., syndrome weights of error vectors causing decoding failures
are lower than those of generic vectors. A general summary of the test statistic
values mgeneric − mDF and the corresponding p-values can be found in Table 2.
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Table 2. Hypothesis test results for 509 ≤ r ≤ 827, with the corresponding test
statistic values and p-values, indicating the vectors causing decoding failures do have
lower syndrome weights than generic vectors for 509 ≤ r ≤ 701, notably a selection of
r-values where the waterfall region meets the error floor in the DFR graph of Fig. 1.

r mgeneric − mDF p

509 9.29 <0.00001

523 8.60 <0.00001

541 9.79 <0.00001

547 9.29 <0.00001

557 6.20 <0.00001

563 8.61 <0.00001

587 6.56 <0.00001

613 10.92 <0.00001

619 8.86 <0.00001

653 15.99 <0.00001

659 11.49 <0.00001

661 9.40 <0.00001

677 14.45 <0.00001

701 17.58 <0.00001

757 16.25 0.00278

827 17.53 0.00002

7 Conclusion

In order to claim IND-CCA2 security with confidence for the proposed param-
eter sets of the BIKE cryptosystem, it is necessary to demonstrate that the
BIKE decoder fails with cryptographically low probability on honestly gener-
ated ciphertexts. Such a low decoding failure rate cannot be directly measured,
but is instead estimated by extrapolation from parameters with directly mea-
surable decoding failure rates. In order for this analysis to be accurate, one must
account for error floor behavior.

In our analysis of the BIKE cryptosystem at the 20-bit security level, we find
that vectors which cause decoding failures have lower than average syndrome
weight. However, identifying where these low syndrome weight vectors come
from is still an open question. In [22,23], Vasseur proposes three classes of low
syndrome weight vectors: C, N , and 2N . Vasseur also describes sets At,�(S) of
vectors which are close to the sets S ∈ {C, N , 2N}. In our work, while we do
find that Vasseur’s sets do contain many vectors that cause decoding failures,
we do not find that these classes of vectors are responsible for the bulk of the
decoding failures.

It therefore remains for future work to identify further classes of error vec-
tors that might account for the observed decoding failures in our experiments.
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If these can be identified it may be possible to predict error floor behavior for
larger parameters, and thereby identify parameter sets that have a sufficiently
low decoding failure rate to be used for IND-CCA2 security in the BIKE cryp-
tosystem.
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Abstract. The MinRank (MR) problem is a computational problem
that arises in many cryptographic applications. In Verbel et al. [24],
the authors introduced a new way to solve superdetermined instances
of the MinRank problem, starting from the bilinear Kipnis-Shamir (KS)
modeling. They use linear algebra on specific Macaulay matrices, con-
sidering only multiples of the initial equations by one block of variables,
the so called “kernel” variables. Later, Bardet et al. [7] introduced a new
Support Minors modeling (SM), that consider the Plücker coordinates
associated to the kernel variables, i.e. the maximal minors of the Kernel
matrix in the KS modeling.

In this paper, we give a complete algebraic explanation of the link
between the (KS) and (SM) modelings (for any instance). We then show
that superdetermined MinRank instances can be seen as easy instances
of the SM modeling. In particular, we show that performing computation
at the smallest possible degree (the “first degree fall”) and the smallest
possible number of variables is not always the best strategy. We give
complexity estimates of the attack for generic random instances.

We apply those results to the DAGS cryptosystem, that was submit-
ted to the first round of the NIST standardization process. We show that
the algebraic attack from Barelli and Couvreur [8], improved in Bardet
et al. [5], is a particular superdetermined MinRank instance. Here, the
instances are not generic, but we show that it is possible to analyse the
particular instances from DAGS and provide a way to select the opti-
mal parameters (number of shortened positions) to solve a particular
instance.

Keywords: Post-quantum cryptography · MinRank problem ·
Algebraic attack · DAGS cryptosystem

1 Introduction

The MinRank Problem. The MinRank problem was first mentioned in [12]
where its NP-completeness was also proven. It is a central problem in algebraic
cryptanalysis, starting with the Kipnis and Shamir modeling [18] for the HFE
encryption scheme. The MinRank problem is very simple to state:
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Problem 1 (Homogeneous MinRank problem).
Input : a target rank r ∈ N and K matrices M1, . . . ,MK ∈ F

m×n
q .

Output : field elements x1, x2, . . . , xK ∈ Fq, not all zero, such that

Rank

(
Mx

def=
K∑

i=1

xiMi

)
� r.

It plays a central role in public key cryptography. Many multivariate schemes are
strongly related to the hardness of this problem, as in [18,20–22]. The 3rd round
NIST post-quantum competition finalist Rainbow [14], or alternate GeMSS [13]
suffered attacks based on the MinRank problem [3,9,10,23].

In code-based cryptography, the MinRank problem is exactly the decoding
problem for matrix codes in rank metric. The two submissions ROLLO and
RQC [1,2], from the 2nd round of the NIST post-quantum competition, have
been attacked using algebraic cryptanalysis in [6,7]. Their security analysis relies
on the decoding problem for Fqm -linear rank-metric codes, which can actually
be reduced to the MinRank problem.

This is of great importance for cryptographic purposes to design algorithms
that solve efficiently algebraic modeling for the MinRank problem, and to under-
stand their complexity.

Algebraic Modeling. There has been a lot of recent progress in the algebraic
modeling and solving of the MinRank problem. We start by recalling the first
modeling, namely the Kipnis-Shamir (KS) modeling. Note that it implicitely
assumes that the n−r first columns of the small-rank matrix Mx we are looking
for are linearly dependent from the last r ones. In this paper, we will assume
that we are looking for a matrix Mx of rank exactly r (this can be achieved by
looking for increasing ranks, starting from r = 1), and that the last r columns
of Mx are linearly independent (it is true up to a permutation of the columns,
and for random matrices it is true with high probability). We will see later that
this last assumption is not mandatory.

Modeling 1 (Kipnis-Shamir Modeling [18]). Consider a MinRank instance
(M1, . . . ,MK) ∈ F

m×n
q with target rank r. Then, the MR problem can be solved

by finding x1, . . . , xK ∈ F
K
q , and C = (ci,j) ∈ F

r×(n−r)
q such that

(
K∑

i=1

xiMi

)(
In−r

C

)
= 0m×(n−r). (KS)

The m(n − r) equations are bilinear in the K linear variables x = (x1, . . . , xK)
and the r(n − r) entries of the formal matrix C = (ci,j)i,j, refered to as the
kernel variables.

It is clear that a matrix has rank ≤ r if and only if its right kernel has dimension
at least n−r, so that any solution of the MinRank problem is a solution of (KS).
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The complexity of solving a generic bilinear system has been studied in [15,
17], and gives an upper bound for the KS system, but this estimate wildly
overestimates the experimental results.

The matrix Mx has rank ≤ r if and only if all its minors of size r+1 are zero.
This modeling has been presented and analysed in [16,17]. Under the assumption
that the last r columns of Mx are linearly independent, it is sufficient to consider
minors involving columns in sets T = {t} ∪ {n − r + 1..n} with 1 ≤ t ≤ n − r, as
it means that the last r columns generate the column vector space. The notation
|M|J,T represents the determinant of the submatrix of M where we keep only
rows in J and columns in T .

Modeling 2 (Minors Modeling). Let (M1, . . . ,MK) ∈ F
m×n
q be a MinRank

instance with target rank r. Then, the MR problem can be solved by finding
x1, . . . , xK ∈ F

K
q such that

{
|Mx|J,T = 0,∀J ⊂ {1..m},#J = r + 1,∀T = {t} ∪ {n − r + 1..n} ⊂ {1..n}

}
.

(Minors)

Recently, a new modeling has been introduced in [7], that is at the moment
the most efficient one from the complexity point of view. It uses two ideas, that
we will separate in two modelings: the first idea is that (KS) means that the
vector space with generator matrix Mx is orthogonal to the one with generator
matrix

(
In−r C�)

. It is then straightforward to see that any row of Mx belongs
to the dual space with generator matrix

(−C Ir

)
. This leads to:

Modeling 3 (Support Minor Modeling-C [7]). Let (M1, . . . ,MK) ∈ F
m×n
q

be a MinRank instance with target rank r. Then, the MR problem can be solved
by finding x1, . . . , xK ∈ F

K
q , and C = (ci,j)1≤i≤r,1≤j≤n−r ∈ F

r×(n−r)
q such that

{∣∣∣∣
(

ri

−CIr

)∣∣∣∣
∗,T

= 0,∀T ⊂ {1..n},#T = r + 1, and ri row of Mx

}
. (SM-C)

The m
(

n
r+1

)
equations are bi-homogeneous with bi-degree (1, r) in the K linear

variables x = (x1, . . . , xK) and the r(n − r) entries of the formal matrix C =
(ci,j)i,j, refered to as the kernel variables.

Note that in (SM-C), the entries of C appear only as maximal minors of (−CIr).
This leads to the second idea from [7], which consists in using the Plücker coor-
dinates: we replace each |(−CIr)|∗,T , that is a polynomial of degree #T = r in
the entries of C, by a new variable cT using the injective Plücker map, see [11,
p. 6].

p : {W ⊂ F
n
q : dim(W) = r} → P

N (Fq) (N =
(
n
r

) − 1)

C �→ (cT )T⊂{1..n},#T=r.
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Modeling 4 (Support Minor Modeling-cT [7]). Let (M1, . . . ,MK) ∈ F
m×n
q

be a MinRank instance with target rank r. Then, the MR problem can be solved

by finding x1, . . . , xK ∈ F
K
q , and (cT )T⊂{1..n},#T=r ⊂ F

(n
r)

q such that
{∑

t∈T

(Mx)i,tcT\{t} = 0,∀T ⊂ {1..n},#T = r + 1, and i ∈ {1..m}
}

. (SM)

The m
(

n
r+1

)
equations are bilinear in the K linear variables x = (x1, . . . , xK)

and the
(
n
r

)
minor variables cT , for all T ⊂ {1..n},#T = r.

The benefit of introducing such coordinates to describe a vector space rather
than a matrix describing a basis is that contrarily to the matrix representation,
a vector space W has unique Plücker coordinates associated to it. This is not
the case of the matrix representation of a vector space: if the rows of a matrix C
generate the vector space, then the rows of AC generate the same vector space
for any invertible A ∈ GL(r,Fq). For our algebraic system, this brings the benefit
of reducing the number of solutions of the system: there are several solutions C
to the algebraic system (SM-C), that correspond to one unique solution to (SM).
As already pointed out in [7], it is also extremely beneficial for the computation
to replace polynomials |(−CIr|∗,T with r! terms of degree r in the entries of C
by single variables cT ’s in Fq. We will use (SM-C) for the theoretical analysis of
the link between the various modelings, and (SM) for the computational solving.

Contributions. As a first contribution, we show that the first three systems
are related, more precisely

Proposition 1. The set of equations (KS) is included in the set of equations
(SM-C), and the ideals generated by the SM-C and KS equations are equal.
Equations Minors (Minors modeling) are included in the ideal generated by KS.

This proposition applies to any instance, without particular hypothesis.
Note that Eq. (Minors) contain only the linear variables, hence the ideals

cannot be equal.
This proposition is not only interesting on the theoretical point of view, but

it also allows to understand different computational strategies and to select the
best one. A discussion is provided in 1.

In [24], Verbel et al. analyse degree falls occuring during a Gröbner basis
computation of (KS), and show that for overdetermined systems this can occur
before degree r+2, which is the general case. As a second contribution, we show
that these degree falls are in fact equations from SM-C. Using the Plücker coor-
dinates in (SM) allows to drastically reduce the size of the considered matrices.
Moreover, we give example to show that minimising the degree and number of
equations is not always the best strategy for optimising the solving complexity.

Finally, we revisit the DAGS cryptosystem [4], that was a 1st round candidate
to the NIST post-quantum standardization process, and was attacked by Barelli
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and Couvreur [8]. We show that the attack is in fact a MinRank attack, and
describe the structure of this non-random superdetermined MinRank instance.
This precise understanding of the problem makes it possible to choose the right
parameters for an optimal attack.

2 Notation and Preliminaries

Vectors are denoted by lower case boldface letters such as x, e and matrices by
upper case letters C, M. The all-zero vector of length � is denoted by 0�. The
j-th coordinate of a vector x is denoted by xj and the submatrix of a matrix
C formed from the rows in I and columns in J by CI,J . When I (resp. J)
represents all the rows (resp. columns), we may use the notation C∗,J (resp.
CI,∗). We simplify Ci,∗ = C{i},∗ (resp. C∗,j = C∗,{j}) for the i-th row of C
(resp. j-th column of C) and ci,j = C{i},{j} for the entry in row i and column j.
Finally, |C| is the determinant of a matrix C, |C|I,J is the determinant of the
submatrix CI,J and |C|∗,J the one of C∗,J . The transpose of a matrix C is C�.

The all-one vector of size n is denoted by 1n = (1, . . . , 1).
To simplify the presentation, we restrict ourselves to a field of characteristic

2, but the results are valid for any characteristic, the only difference being the
occurrence of a ± sign before each formula.

For any matrix A of size q × r with r ≤ q, and any set J ⊂ {1..q} of size
r + 1, we define the vector VJ (A) of length q whose jst entry is 0 if j /∈ J and
|A|J\{j},∗ for j ∈ J . For A of size r×q with r ≤ q we define VJ (A) def= VJ (A�).

Using Laplace expansion along a column, it is clear that for any vector a of
length q we have

VJ (A)a� =
∣∣(a� A

)∣∣
J,∗ . (1)

We denote by vecrow(A) (resp. veccol(A)) the vertical vector formed by con-
catenating successives rows (resp. cols) of A. We have the formula

vecrow(AXY) = (A ⊗ Y�)vecrow(X) (2)

veccol(AXY) = (Y� ⊗ A)veccol(X)

where A⊗B def= (ai,jB)i,j is the Kronecker product of two matrices A = (ai,j)i,j

and B.
For a system F = {f1, . . . , fM} of bilinear equations in two sets of vari-

ables x = (xj)1≤j≤nx
and y = (y�)1�l≤ny

, it is usual to consider the associated
Jacobian matrices:

Jacx(F) =
(

∂fi

∂xj

)
i=1..M,j=1..nx

, Jacy(F) =
(

∂fi

∂y�

)
i=1..M,�=1..ny

.

For homogeneous bilinear systems they satisfy the particular relation:

Jacx(F)x� =
(
f1 . . . fM

)�
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and any vector in the left kernel of a Jacobian matrix is a syzygy of the system.
Moreover, Jacx is a matrix whose entries are linear form in the variables y, and
Cramer’s rule show that the left kernel of Jacx contains vectors VT (Jacx(F)T,∗)
using the notation from (1) for all T ⊂ {1..M} of size ny + 1. Generically those
vectors generate the left kernel. For affine systems, we consider the jacobian
matrix associated to the homogeneous part of highest degree of the system, and
any syzygy for this part, that is not a syzygy of the entire system leads to a
degree fall.

3 Relations Between the Various Modelings

This section applies to any MinRank instance without any specific hypothesis.
The KS modeling consists in bilinear equations in two blocks of variables x

and C, whereas the SM-C modeling contains equations of degree 1 in x and r
in C, the variables C appearing only as maximal minors of

(−C Ir

)
.

In the case of the KS modeling, it has been noticed in [24], and later [7,
Lemma1] that the jacobian matrices have a very particular shape: if we write
Mx =

(
M(1)

x M(2)
x

)
with M(1)

x of size m × (n − r) and M(2)
x of size m × r, and

in the same way we write each Mi =
(
M(1)

i M(2)
i

)
, then the homogeneous part

of highest degree of the system is M(2)
x C, and its Jacobian matrices are, if we

take the variables and equations in row/column order:

Jacxi

(
vecrow

(
xiM

(2)
i C

))
= vecrow

(
M(2)

i C
)

=
(
Im ⊗ C�)

vecrow

(
M(2)

i

)
Jacx

(
vecrow

(
M(2)

x C
))

=
(
Im ⊗ C�) (

vecrow

(
M(2)

1

)
. . . vecrow

(
M(2)

K

))
Jacveccol(C)

(
veccol

(
M(2)

x C
))

= In−r ⊗ M(2)
x (3)

The jacobian matrix in C admits a left kernel that contains the following vectors:

ei ⊗ VJ(M(2)
x ) for any J ⊂ {1..p},#J = r + 1, 1 ≤ i ≤ n − r, (4)

where ei is the ith row of In−r. As a consequence, the ideal generated by the (KS)
equations contains the equations

(ei ⊗ VJ (M(2)
x ))veccol(Mx

(
In−r

C

)
) = (ei ⊗ VJ (M(2)

x ))veccol(Mx1)

= VJ (M(2)
x )M(1)

x ei
�( thanks to (2))

= |Mx|J,{i}∪{n−r+1..n} ( thanks to (1)).

Those are precisely the (Minors) equations.
The jacobian matrix in x admits a left kernel that contains the vectors

e� ⊗ VJ (C) for any J ⊂ {1..n − r},#J = r + 1, 1 ≤ � ≤ m. (5)
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The ideal generated by the (KS) equations contains the equations

(e� ⊗ VJ (C))vecrow(M(1)
x ) = e�M(1)

x VJ(C)� = VJ(C)(M(1)
x �,∗)

�

=
∣∣∣((M(1)

x �,∗)
�
C�

)∣∣∣
J,∗

=
∣∣∣∣
(
M(1)

x �,∗
C

)∣∣∣∣
∗,J

.

They are exactly the (SM-C) equations for J ⊂ {1..n − r}. They have a degree
r in the kernel variables ci,j .

In [24], the authors propose to solve (any) instances of KS by considering
particular elements in the left kernel of the Jacobian matrix in x for some degree
1 ≤ d ≤ r − 1. This is done by considering all combination of the polynomials
with coefficients

e� ⊗ VJ (CT,∗) (6)

for any d ∈ {1..r}, J ⊂ {1..n − r}, #J = d + 1, T ⊂ {1..r}, #T = d and
� ∈ {1..m}. The authors in [24, Theorem 2] construct a matrix BJ whose left
kernel contains elements related to the left kernel of the Jacobian matrix in x.
The key remark is that the equations they consider are

(e� ⊗ VJ(CT,∗))vecrow(Mx

(
In−r

C

)
) = e�Mx

(
In−r

C

)
VJ (CT,∗)

�

=
∣∣∣∣
(

r�

−CIr

)∣∣∣∣
∗,T ′

for T ′ = J ∪ ({n − r + 1..n}\(T + n − r)) ⊂ {1..n} of size r + 1. The equations
have indeed a degree d in the kernel variables ci,j .

Note that for d = 0, for T ′ = {�}∪{n− r +1..n} the equation
∣∣∣∣
(

r�

−CIr

)∣∣∣∣
∗,T ′

is the �th KS equation, and we get all SM equations. As a consequence, we have
proven Proposition 1.

Remark 1. In the light of the previous results, we can understand more precisely
the behavior of a generic Gröbner basis (GB) algorithm with a graded monomial
ordering and a Normal selection strategy run on (KS) or (SM-C). As (SM-C)
contains (KS) directly into the system, computing a GB on (SM-C) will also
compute all equations that would be computed by (KS). On the other hand,
when computing a GB for (KS), the algorithm will produce all equations (SM-
C) by multiplying by monomials in C, hence we can expect many syzygies during
a GB computation on (SM-C).

This encourages to compute with (SM-C), but to look only at multiple of the
equations by the xi’s variables, which is the strategy proposed in [7]. Adding to
this the change of variable that consider any minor of C as a variable removes
the hardness of computing with high degree polynomials (as the new variables
have degree 1 instead of a polynomial of degree d with d! coefficients for the
minor).
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4 Complexity of Solving Superdetermined Systems

Superdetermined MinRank instances are defined in [24] as MinRank instances
where K < rm. In the light of the previous section, it is now clear that [24]
considers for any 0 ≤ d ≤ r the equations

E(d) def=
{

EJ,T,�
def= e�Mx

(
In−r

C

)
VJ(CT,∗)

� :
∀J⊂{1..n−r},#J=d+1,

∀T⊂{1..r},#T=d,
∀�∈{1..m}

}
. (7)

and search for linear combination that will produce degree falls. We can rewrite
the equations

EJ,T,� =
∣∣∣∣
(

r�

CIr

)∣∣∣∣
∗,T ′

with T ′ = J ∪ ({n − r + 1..n}\(T + n − r)) ⊂ {1..n}

=
K∑

i=1

∑
j∈J

(M(1)
i )�,jxi |C|T,J\{j} +

K∑
i=1

∑
s/∈T

(M(2)
i )�,sxi |C|T∪{s},J .

We have a total of
∑r

d=0 m
(
n−r
d+1

)(
r
d

)
= m

(
n

r+1

)
equations in

∑r
d=0 K

(
n−r

d

)(
r
d

)
=

K
(
n
r

)
variables described by

V(d) def={xi |C|T,J}i=1..K,#J=d,#T=d, V(r + 1) = ∅.

The system can be solved by linearization by constructing the associated
Macaulay matrix: its rows are indexed by J, T, � (with #J = d+1, #T = d) and
its columns by i, J ′, T ′ (with #J ′ = d = #T ′), and the coefficient in row (J, T, l)
and column (i, J ′, T ′) corresponds to the coefficient of EJ,T,� in the monomial
xi |C|T ′,J ′ . We can sort the columns by decreasing degree, i.e. consider first
monomials in V(r), up to V(0) that are the K variables xi, see Fig. 1. Then find-
ing linear combination of the equations that produce degree falls can be done by
computing the echelon form of the Macaulay matrix. For a set of rows in E(d),
we have m

(
n−r
d+1

)(
r
d

)
equations in K

(
n−r
d+1

)(
r

r+1

)
+ K

(
n−r

d

)(
r
d

)
monomials, and we

get generically a degree fall under the condition

m

(
n − r

d + 1

)(
r

d

)
� K

(
n − r

d + 1

)(
r

d + 1

)

which is Corollary 5 in [24], and the first part of the Macaulay matrix with
columns in V(d+1) is, up to a good choice of the ordering of rows and columns,
a block of diagonal matrices BJ as described in [24].

The best complexity estimates comes from the (SM) modeling, when consid-
ering the minors |C|T,J as new variables. Equation (7) contains m

(
n

r+1

)
equations

in K variables xi and
(
n
r

)
variables that are minors of (−CIr). Hence the system

can be solved whenever m
(

n
r+1

)
� K

(
n
r

)
by linearization, i.e. m(n−r) � K(r+1).

After linearization, we get with overwhelming probability #V(0) − 1 = m − 1
linear equations in the xi’s only.
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V(r) V(r − 1) . . . V(d+ 1) V(d) . . . V(1) V(0)
E(r)
E(r − 1)
...

E(d)
...

E(0)

Fig. 1. Shape of the Macaulay matrix associated to Eq. (7). The columns correspond
to equations in V(d), the rows to equations E(d). Gray cells correspond to non-zero
part of the matrix.

As always, it is possible to improve computation by puncturing the matrix
Mx (taking only sufficiently many columns so that we keep an overdetermined
system), or by hybrid approach (performing an exhaustive search on some
columns of C, at the cost of qar operation in Fq for a columns). It is also
possible, as in [7, Eq. (23) p. 19], to compute equations at higher degree b in xi.
For instance, at b = 2 we can multiply all equations in (SM) by xi’s variables,
and we get for each set E(d) of equations:

m

(
n

r + 1

)
K −

(
n

r + 2

)(
m + 1

2

)
equations,

(
n

r

)(
K + 1

2

)
monomials. (8)

For instance, Table 1 compares the (SM) system with previous results from
[24]. For r = 5, the ratio between equations and monomials in (SM) is smaller
than 1, so that we cannot expect to solve by linearization directly. Computing
at b = 2 would produce 14400 equations in 13860 variables of degree less than
or equal to 7 in (x,C). Note that the last entry for r = 6 would theoretically
require to go up to b = 5 with matrices of size 427350.

However, [24] suggest that we can have a closer look at the shape of the
equations and maybe find a better complexity for some very overdetermined
instances.

Hence, for a fixed d ∈ {0..r}, the set E(d) contains m
(
n−r
d+1

)(
r
d

)
equations

with K
(
n−r

d

)(
r
d

)
monomials V(d) of bidegree (1, d) and K

(
n−r
d+1

)(
r

d+1

)
variables

V(d+1) of bidegree (1, d+1). In [24], the authors determine the first degree fall
in KS by looking for the smallest d for which we have more equations in E(d)
than variables in V(d + 1). This produces Rank(E(d)) − #V(d + 1) degree fall,
but it is not clear how to end the computation. If there is more equations than
variables, i.e.

m

(
n − r

d + 1

)(
r

d

)
� K

(
n − r

d + 1

)(
r

d + 1

)
+ K

(
n − r

d

)(
r

d

)
− 1
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Table 1. Size of matrices on (SM) for a MinRank instance with K = 10 matrices
of size m × n, for various r. n can be decreased by puncturing the matrices to get a
speedup. The results have been verified experimentally on random instances.

m n K r m(n−r)
K(r+1)

neq nvars nrows in [24]

10 10 10 2 2.6 1200 450 1530

10 5 10 2 1 100 100

10 10 10 3 1.75 2100 1200 20240

10 7 10 3 1 350 350

10 10 10 4 1.2 2520 2100 38586

10 9 10 4 1 1260 1260

10 10 10 5 0.8 2100 2520 341495

then with overwhelming probability, the linear system is full rank (its kernel has
dimension 1 as the system is homogeneous in x) and a non-zero element in the
kernel of the Macaulay matrix gives a value for each variable xi |C|T,J . It is then
straightforward to deduce xi/xi0 from two values xi |C|T,J and xi0 |C|T,J . On
the other hand, if

K

(
n − r

d + 1

)(
r

d + 1

)
≤ m

(
n − r

d + 1

)(
r

d

)

and m

(
n − r

d + 1

)(
r

d

)
< K

(
n − r

d + 1

)(
r

d + 1

)
+ K

(
n − r

d

)(
r

d

)
− 1

then it is necessary to add new equations to end the computation. It can be
done by consider equations of “higher degree”. If each minor of C is taken as
a variable, it doesn’t add a computational burden. We can solve as soon as
we can get sufficiently many blocks of equations E(d) such that we get more
equations than columns. Experimental results are presented Table 2 on the same
parameters as [24, Table 2]. For instance for a MinRank problem with 12 × 12
matrices and a target rank r = 4, the authors in [24] solve at degree d = 4 in 58 s,
whereas it is more interesting to consider equations in E(3..4) that have degree
up to 5, without considering equations of degree 2..3. Note that if we puncture
too much the matrices, for instance by taking only n = 8 columns, then we do
not have any more an overdetermined SM system, and solving it now require to
produce more equations, for instance by considering b = 2. In this case, we get a
system of 5880 equations in 5460 and we can solve, but this will be more costly
than solving with n = 9.

Remark 2. There is an asymetry between m and n in the modelings. It is always
possible to exchange m and n by considering the transpose of the matrices, but
it is not clear in general which problem will be easier (m > n or m < n). For
instance, for K = 10, r = 2 we can have the following behaviors: for m = 6, n = 7
the Macaulay matrix up to d = r has size 210×210, whereas for m = 7, n = 6 it
is not possible to solve at b = 1 (the Macaulay matrix has dimension 140×150).
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Table 2. Experimental size of matrices on SM for a MinRank instance with K = 12
matrices of size 12×12, for various r. It is possible to puncture the codes, by considering
only n = κ + r columns of the matrices. We consider only systems for which SM solves
at b = 1. The second row gives the size of a submatrix of blocks E(d) for some d that
solves the problem faster.

r κ d size time [24] r κ d size time [24]

4 8 0..4 9504 × 5940 5.6 s 58 s 5 7 0..5 11088 × 9504 11 s 756 s

3..4 4032 × 3528 2.4 s 2..4 9660 × 9072 9.6 s

7 0..4 5544 × 3960 2.1 s 38 s 6 0..5 5544 × 5544 3.1 s 367s

6 0..4 3024 × 2520 0.74 s 21 s

2..4 2232 × 2220 0.52 s

5 0..4 1512 × 1512 0.23 s 13 s

We need to go to b = 2 and solve a matrix of size 980 × 825. On the contrary,
for m = 10, n = 6, the Macaulay matrix has dimension 160 × 140 (d = 1..2),
whereas for m = 6, n = 10, the Macaulay matrix for d = r has size 336 × 280.

However, as the number of equations is a multiple of m, the best solution is
often with m ≥ n.

5 Application to DAGS

DAGS scheme [4] is a key encapsulation mechanism (KEM) based on quasi-
dyadic alternant codes that was submitted to the first round of the NIST stan-
dardization process for a quantum resistant public key algorithm. It suffered
from an algebraic attack [8] that efficiently recovers the private key, and was
improved in [5]. Here, we show that the DAGS algebraic modeling is in fact a
MinRank problem. However, the previous complexity results do not apply, as
those MinRank instances have a structure, that can be used to understand more
precisely the complexity.

5.1 Principle of the Attack

We recall some elements of the scheme. DAGS is based on the McEliece scheme
and uses Quasi-Dyadic Generalized Srivastava codes, which are a subfamily
of alternant codes. The structure of such codes is what allowed DAGS to be
attacked [5,8].

The idea of the key-recovery attack leading to the modeling presented here is
to find a subcode of the public code. The attack was proposed in two versions: a
combinatorial one that uses brute force to find the subcode, and an algebraic one
that relies on solving a polynomial system. The complexity of the combinatorial
version is easy to compute, however the numbers of calculations remains too high
to be done in practice. On the contrary, the algebraic attack is more efficient
but its complexity is harder to estimate.
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We focus on the second version and explain the principle. We begin by com-
puting the invariant subcode of the public code of the scheme. Then, we search
for a subcode of this invariant code by solving a bilinear system built from public
parts of the scheme. Finally, we can recover the support and multiplier of the
original alternant code.

In the next subsection, we explain how the system we want to solve is built.

5.2 Original Modeling

Let Cpub be the DAGS public code, Hpub be the public key of the scheme, which
is a parity-check matrix of Cpub, and let Gpub be its generator matrix.

We refer to [19, Chap. 12] for the definition of alternant codes. DAGS codes
are quasi-dyadic alternant codes over Fqm , with q a power of 2 and m = 2. To
build the system we need to understand the construction of quasi-dyadic alter-
nant codes, that are alternant codes for which the support x and the multiplier
y have a particular structure.

Definition 1. Let γ � 1 and n = 2γn0. The support x ∈ F
n
qm of a quasi-dyadic

alternant code of order 2γ is constructed from (b1, . . . , bγ) ∈ F
γ
qm that are linearly

independent over F2, and τ = (τ1, . . . , τn0) ∈ F
n0
qm as

x
def
= τ ⊗ 12γ + 1n0 ⊗ g,

where g
def
= (g)g∈G is a vector of all 2γ elements of the group G = 〈b1, . . . , bγ〉F2

which is the vector space generated by the elements (bi) over F2.
The elements τi are randomy drawn from Fqm such that the cosets τi +G are

pairwise disjoint.

For instance for γ = 2, we can choose g = (0, b1, b2, b1 + b2) = b1(0, 1, 0, 1) +
b2(0, 0, 1, 1). For γ = 3 we take g = (0, b1, b2, b1 + b2, b3, b1 + b3, b2 + b3, b1 +
b2 + b3) = b1(0, 1, 0, 1, 0, 1, 0, 1) + b2(0, 0, 1, 1, 0, 0, 1, 1) + b3(0, 0, 0, 0, 1, 1, 1, 1). In
general, one possible order for g is given by g =

∑γ
i=1 biei where

ei
def= (02i−1 ,12i−1 ,02i−1 ,12i−1 , . . . ) = 12γ−i ⊗ (0, 1) ⊗ 12i−1 .

The group G acts by translation on Fqm , and its action induces a permutation
of the code Cpub. This is what allows the DAGS system to have reduced public
keys: the public matrix Gpub is formed by blocks of size 2γ where each row of
the block is deduced from the first row by one of the permutation induced by G.

The attack in [8] introduces the invariant subcode Cpub
G with respect to G

of Cpub, which is defined as

Definition 2. The invariant code of Cpub is defined by:

Cpub
G = {c ∈ Cpub|∀(i, j) ∈ {0..n0 − 1} × {1..2γ}, ci2γ+j = ci2γ+1} .
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The invariant subcode has dimension k0 = k/2γ where k is the dimension of
Cpub. Its generator matrix Ginv is easy to compute from Gpub: each block of
2γ rows of Gpub gives one row of Ginv by summation. The entries of Gpub are
then repeated by blocks of size 2γ , so that we can define a matrix G̃ ∈ F

k0×n0
qm

satisfying Ginv = G̃ ⊗ 12γ .
We introduce the component-wise product called Schur product:

Definition 3. The Schur product of two codes A and B ⊆ F
n
q corresponds to

the code generated by all the component-wise products of one codeword from A
and one codeword of B:

A � B = 〈a � b | a ∈ A ,b ∈ B〉Fq

The attack in [8] amounts to find D , an unknown subcode of Cpub
G such that x

is orthogonal to D � Cpub
⊥. This leads to following system with 2 unknowns, D

and x:
GD �C pub

⊥ · x� = 0 (9)

Algebraically, a generator matrix for D � Cpub
⊥ can be written with high prob-

ability as ((
Ik0−c U

) · Ginv

)
� Hpub (10)

with c the codimension of D in the invariant subcode Cpub
G. If we can not

express the system like that, we just need to take another generator matrix for
the invariant subcode of Cpub. This finally leads to the original modeling:((

Ik0−c U
)
Ginv � Hpub

)
x� = 0 (11)

where U is a matrix of unknowns of size (k0 − c) × c, Ginv = G̃ ⊗ 12γ and
G̃ is a public invariant matrix of size k0 × n0, Hpub is the public parity-check
matrix, and x = τ ⊗ 12γ +

∑γ
i=1 bi1n0 ⊗ ei ∈ F

n
qm is a vector of unknowns

τ = (τ1, . . . , τn0) and (b1, . . . , bγ).

Remark 3. As explained in [8], any affine map x → ax + b for a ∈ F
∗
qm , b ∈ Fqm

preserves the quasi-dyadic structure of the code, and leaves the code invariant,
so that it is always possible to search among all possible x for the ones that
satisfy b1 = 1 and τn0 = 0. Moreover, the vector xq, hence Tr(x) def= x + xq are
also solution of the system (11), so that Tr(b2)−1Tr(x) is a solution with τn0 = 0,
b1 = 0 and b2 = 1 (as Tr(a) = 0 for a ∈ Fq when m = 2).

Remark 4. As explained in [5], there is a lot of redundancy among the equations.
We avoid that by considering only one out of every 2γ rows in Hpub.

5.3 Modeling Update

A simple (but fastidious, see Appendix A) computation allows to write the sys-
tem as a MinRank instance with matrices of size (n0−k0)×k0, when G̃ = (Ik0G)
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is taken in systematic form:⎛
⎝ k0∑

i=1

τiMi +
n0−k0∑

j=1

τj+k0Mj+k0 +
γ∑

b=2

biHi

⎞
⎠ (

Ik0−c

U�

)
= 0 (12)

with Mi =
(
0i−1 (G{i},∗)

� 0k0−i

)
∀1 ≤ i ≤ k0

Mj+k0 =

⎛
⎝ 0j−1

(G∗,{j})
�

0n0−k0−j

⎞
⎠ ∀1 ≤ j ≤ n0 − k0

Hi = Hpub(In0 ⊗ ei
�)∗,{1..k0}∀2 ≤ i ≤ γ

It is clear that the matrices Mi from DAGS instances are not random, and
in practice we have more degree falls than expected. On the other hand, the
part concerning the variables bi with matrices Hi seems to behave like a random
system. Note also that experimentally we find that the system always produces
3 solutions. However, this is small enough to be able to recover the good one
from the kernel of the Macaulay matrix, as only one belong to the finite field Fq.

Proposition 2. For the DAGS modeling, the Macaulay matrix associated to the
set of equations E(d) has size Nrows × Ncols = (n0 − k0)

(
k0−c
d+1

)(
c
d

) × (n0 − k0 −
1 + c + γ − 1)

(
k0−c
d+1

)(
c

d+1

)
, but its rank is

Rank(E(d)) = min
(

Nrows,

(
k0 − c

d + 1

)(
(n0 − k0)

(
c − 1

d

)
+

(
c

d + 1

)
d

))

Note that it is always possible to use shortened codes on a0 positions, that
amounts to consider codes with parameters (n0 − a0, k0 − a0).

The first sets of parameters were given in the specifications of the scheme.
They are shown in Table 3. Experimental results in [5] give a solution of the
system DAGS 3 in degree 4 with linear algebra on a matrix of size 725, 895 ×
671, 071. It is improved by shortening the system up to k0 − a0 − c = 4 with
a matrix of size 103, 973 × 97, 980 and a computation lasting 70 s. All results
presented here allows to choose to shorten the system to k0 − a0 − c = 5 instead
of 4, as for 4 the system does not leads directly to linear equations, and it reduces
the computation to linear algebra on a matrix of size 2772 by 4284 that last only
few seconds.

Table 3. DAGS original sets of parameters

Security level q n0 k0 γ c k0 − a0 − c Matrix size Rank Time

DAGS 1 (128) 25 52 26 4 4 4 1456 × 2520 1322 3.5 s

DAGS 3 (192) 26 38 16 4 4 5 2772 × 4284 2540 8.8 s

DAGS 5 (256) 26 33 11 2 2 3 220 × 310 194 0.0 s
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Conclusion

We have presented the link between the different modelings for the MinRank
problem. This allows a more accurate understanding of the best strategy to
solve MinRank instances.

We have shown that superdetermined MinRank instances are instances for
which (SM) solves at b = 1, and that the maximal degree in the computations
is not the best parameter to use to optimize the computation.

We have also presented the DAGS attack as a particular superdetermined
MinRank one, and how the accurate study of the involved matrices allows to
find the best strategy.

Acknowledgements. This work has been supported by the French ANR project
CBCRYPT (ANR-17-CE39-0007).

A Appendix

We want to reduce (11) to a MinRank problem (12). We start from (11):((
Ik0−c U

)
(G̃ ⊗ 12γ ) � Hpub

)
x� = 0.

Using the fact that (A �B)a� = 0 is equivalent to (A �a)B� = 0, that A⊗a =
A(I ⊗ a) and (AB) � a = A(B � a), it can be rewritten(

Ik0−c U
)
G̃((In0 ⊗ 12γ ) � x)Hpub

� = 0

Now we can use the relations (A⊗a)�(b⊗x) = (A�b)⊗(a�x), τ �I = Diag(τ)
and A ⊗ a = A(I ⊗ a) to simplify

(In0 ⊗ 12γ ) � x = (In0 ⊗ 12γ ) � (τ ⊗ 12γ +
γ∑

i=1

bi1n0 ⊗ ei)

= (τ � In0) ⊗ 12γ +
γ∑

i=1

bi(In0 ⊗ ei)

= Diag(τ)(In0 ⊗ 12γ ) +
γ∑

i=1

bi(In0 ⊗ ei)

We can now define H̃i = Hpub(In0 ⊗ei
�) and H̃ = Hpub(In0 ⊗12γ

�) and we get
the system

(
Ik0−c U

)
G̃(Diag(τ)H̃� +

γ∑
i=1

biH̃i
�

) = 0,

(H̃Diag(τ)G̃� +
γ∑

i=1

biH̃iG̃�)
(
Ik0−c

U�

)
= 0

We now simplify the products using the remark that H̃ is the parity-check matrix
corresponding to G̃ = (Ik0G): H̃ = (G�In0−k0), and that H̃i = (Hi0n0−k0)
contains columns of zeros on the last n0 − k0 positions. This gives (12).
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Abstract. The unbalanced oil and vinegar signature scheme (UOV),
which is one of the multivariate signature schemes, is expected to be
secure against quantum attacks. To achieve cryptosystem security in a
practical manner, we need to deal with security against physical attacks
such as fault attacks, which generate computational errors to lead to
security failures. In this study, we propose a new fault attack on UOV
using faults occurring on the secret key. The proposed attack first recov-
ers a part of the linear map of the secret key by utilizing faults occurring
on the secret key, and then transforms the public key system. As a result,
the proposed attack reduces a given public key system into one with fewer
variables than the original system. After applying our proposed attack,
the secret key can be recovered with less complexity than the original
system by using an existing key recovery attack. Our simulation results
show that, for two practical parameter sets satisfying 100-bit security,
the proposed attack can reduce the given system into one with only 90-
bit security with a probability of approximately 80 ∼ 90%. We also show
that the proposed attack achieves a smaller resulting system than the
above case with lower probability, and that such a system can be broken
even more efficiently.

Keywords: Post-quantum cryptography · Multivariate public key
cryptography · UOV · Fault attack

1 Introduction

Currently used public key cryptosystems such as RSA and ECC can be broken
in polynomial time using Shor’s algorithm [22], which is a quantum computer
algorithm. Thus, the amount of research conducted on post-quantum cryptog-
raphy (PQC), which is secure against quantum computing attacks, has been
accelerating. Indeed, the U.S. National Institute for Standards and Technology
(NIST) has initiated a PQC standardization project [19]. Among various PQC
candidates, multivariate public key cryptography (MPKC) is one of the main cat-
egories. MPKCs are cryptosystems constructed based on the difficulty of solving
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a system of multivariate quadratic polynomial equations over a finite field (the
multivariate quadratic (MQ) problem). The MQ problem is NP-complete [13]
and is thus likely to be secure against quantum computers.

The unbalanced oil and vinegar signature scheme (UOV) is a multivariate
signature scheme proposed by Kipnis et al. [15]. UOV has withstood various
types of attacks since 1999 and thus is considered to achieve sufficient secu-
rity. In addition, UOV is a well-established signature scheme owing to its short
signature and brief execution time. Indeed, several studies [5,7,8,24] have pre-
sented efficient implementations of UOV and Rainbow [9], the latter of which
is a multilayer UOV variant selected as a third-round finalist in the NIST PQC
project [20]. Concretely, the public key of UOV is a quadratic map P constructed
using P = F ◦ T with an invertible quadratic map F and a linear map T , which
make up the secret key. In [2] and [3], Beullens recently proposed some attacks on
UOV and Rainbow, the intersection, rectangular MinRank, and simple attacks.
The rectangular MinRank and simple attacks do not work on the plain UOV, and
by choosing the parameters properly, UOV can be secure against the intersection
attack.

To achieve the security of a cryptosystem in a practical manner, we need to
consider not only the weaknesses of the cryptographic protocols but also those
of the devices implementing the cryptosystems. Physical attacks utilize informa-
tion gained from the implementation of a computer system. As an example of
such attacks on UOV-type signature schemes, a correlation power analysis attack
was proposed at CHES 2018 [21]. Furthermore, among various physical attacks,
fault attacks aim to stress the cryptographic device and generate computational
errors, leading to a security failure of the cryptosystem. As fault attacks on
UOV or its variants, some attacks combining information leakage through com-
putational errors and algebraic measures have been proposed. Hashimoto et al.
proposed two fault attacks at PQCrypto 2011 [14]. One attack is applicable to
MPKCs with the public key P = S ◦ F ◦ T , where an invertible quadratic map
F and two linear maps S and T make up the secret key. This attack utilizes a
fault that changes the coefficients of unknown terms in F and recovers the secret
linear map S. This can be applied to Rainbow owing to its construction of the
public and secret keys. The other fault attack in [14] is one in which the attacker
fixes parameters chosen at random during the signature generation step. This
attack weakens the security of UOV-like schemes such as UOV and Rainbow.
These attacks proposed by Hashimoto et al. were complemented by [17] and
[23], who analyzed how to apply them to UOV and Rainbow. Furthermore, at
ACM CCS 2020 [18], Mus et al. proposed QuantumHammer, which is a fault
attack on LUOV [4], a variant of UOV using a subfield. This attack utilizes
faults occurring on the secret key, similar to the first attack described in [14].
The authors demonstrated a full key recovery for LUOV-7-57-197 with a bit-
tracing phase of less than 4 h and an algebraic phase of 49 h. Note that these
proposed fault attacks on UOV do not utilize the recently proposed intersection
algebraic attack.
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Although several fault attacks on UOV or its variants have been proposed, a
fault attack on plain UOV using faults occurring on the secret key F and T has
yet to be proposed. The attack on the central map described in [14] cannot be
applied to UOV because the secret key of the scheme is composed of a quadratic
map F and a linear map T , unlike Rainbow. Indeed, at COSADE 2019 [17], the
authors confirmed that the first attack described in [14] does not work on UOV.
Furthermore, the attack detailed in [18] also does not work on UOV because
it utilizes the fact that the secret key of LUOV is over the finite field of two
elements.

Our Contributions. In this study, we propose a new fault attack on the plain
UOV scheme. To the best of our knowledge, this is the first fault attack on UOV
that causes faults on the secret key F and T . The proposed attack transforms
the public key system into a UOV system with fewer variables than the original.
The secret key can then be fully recovered from this smaller system by using
existing key recovery attacks on UOV. It should be noted that our attack model
mainly follows the model used in [14].

In the proposed attack, we assume that the fault caused on the secret key
randomly changes the coefficient of the secret key, which is composed of the
central map F and linear map T . In UOV with n variables and m equations,
the numbers of coefficients of F and T are estimated as O(m · n2) and O(n2),
respectively, and thus we utilize the faults caused on the central map F . The
proposed attack is mainly composed of two steps:

1. Recover a part of T utilizing faults.
2. Transform the public key system P.

The first step utilizes a fault occurring on the quadratic map F . Some of the rows
of the representation matrix of T are recovered from the computational error
generated using the signing oracle several times, which generates a signature
using the secret key with a fault. This step is iterated for each new fault unless
a new fault is generated on T . Subsequently, using a part of T recovered in
the first step, the second step reduces the given public key system into one
with fewer variables than the original. For the resulting smaller system obtained
by executing the proposed attack, existing key recovery attacks can clearly be
conducted with a smaller complexity than that of the key recovery attack on the
original system.

In this paper, we simulated the proposed attack on two parameter sets
(q, v,m) = (16, 60, 39) and (256, 50, 33) satisfying 100-bit security, and then con-
firmed the size of the public key system transformed by the proposed attack. As
a result, there are five fewer variables of the resulting system than the original
system with a probability of approximately 80–90%, and this resulting system
can be broken using manipulations of smaller than 90-bits by applying a Kipnis-
Shamir or intersection attack. Furthermore, we can obtain a smaller resulting
system than the above case with a smaller probability, and such a system can be
broken even more efficiently. For example, in the case of (q, v,m) = (256, 50, 33),
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the secret key can be recovered with smaller manipulations, i.e., 81.3 bits
with 68.0% probability, 63.2 bits with 46.2% probability, and 40.6 bits with
26.2% probability. Finally, in Subsect. 4.3 below, we confirm that the proposed
attack works even when the number of faults is limited. For the parameter set
(q, v,m) = (16, 60, 39), the secret key of the resulting system of the proposed
attack with one, two, or three faults is recovered by 93.1-, 85.1-, or 77.1-bit
manipulations with 41.4%, 17.1%, or 7.1% probability, respectively.

Organizations. In Sect. 2, we review the construction of multivariate signature
schemes, UOV, some attacks conducted on UOV, and fault attacks on UOV or
its variants. Section 3 describes the details of the proposed attack, and Sect. 4
shows how to apply existing key recovery attacks after executing the proposed
attack and how the proposed attack behaves on actual parameter sets. Finally,
in Sect. 5, we provide some concluding remarks.

2 Preliminaries

In this section, we first describe the MQ problem and general signature schemes
based on this problem. Subsequently, we review the construction of UOV [15]
and some attacks applied to it. Finally, we recall some existing fault attacks on
UOV or its variants.

2.1 Multivariate Signature Schemes

Let Fq be a finite field with q elements, and let n and m be two positive integers.
For a system of quadratic polynomials P = (p1(x), . . . , pm(x)) in n variables
over Fq, the problem of obtaining a solution x ∈ F

n
q to P(x) = 0 is called the

MQ problem. Garey and Johnson [13] proved that this problem is NP-complete if
n ≈ m, and is thus considered to have the potential to resist quantum computer
attacks.

Next, we briefly describe the construction of general multivariate signature
schemes. First, an easily invertible quadratic map F = (f1, . . . , fm) : Fn

q → F
m
q ,

called a central map, is generated. Next, two invertible linear maps T : Fn
q → F

n
q

and S : Fm
q → F

m
q are randomly chosen to hide the structure of F . These two

linear maps S and T can be seen as two matrices in F
m×m
q and F

n×n
q . The public

key P is then provided as a polynomial map,

P = S ◦ F ◦ T : Fn
q → F

m
q , (1)

and the secret key comprises S, F , and T . The signature is generated as follows:
Given a message m ∈ F

m
q to be signed, compute m1 = S−1(m), and obtain a

solution m2 to the equation F(x) = m1. This gives the signature s = T −1(m2) ∈
F

n
q for the message m. Verification is applied by confirming whether P(s) = m.
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2.2 Unbalanced Oil and Vinegar Signature Scheme

In this subsection, UOV is described. Let v be a positive integer and n = v +m.
For variables x = (x1, . . . , xn) over Fq, we call x1, . . . , xv vinegar variables and
xv+1, . . . , xn oil variables.

In UOV, a central map F = (f1, . . . , fm) : Fn
q → F

m
q is designed such that

each fk (k = 1, . . . ,m) is a quadratic polynomial of the form

fk(x1, . . . , xn) =
v∑

i=1

n∑

j=i

α
(k)
i,j xixj (2)

where α
(k)
i,j ∈ Fq. By using a randomly chosen linear map T : F

n
q → F

n
q , the

public key map P : Fn
q → F

m
q is computed using P = F ◦ T . The linear map

S in Eq. (1) is not required because it does not help hide the structure of F in
UOV. Indeed, the secret key is composed of only two maps F and T . It should
be noted that we here omit linear and constant terms of F and constant terms
of T for simplicity.

Next, we describe the inversion of the central map F . When we find x ∈
F

n
q satisfying F(x) = y for a given y ∈ F

m
q , we first choose random values

a1, . . . , av in Fq as the values of the vinegar variables. We can then easily obtain a
solution for the equation F(a1, . . . , av, xv+1, . . . , xn) = y, because this is a linear
system of m equations in m oil variables. If there is no solution to this equation,
we choose new random values a′

1, . . . , a
′
v, and repeat the above procedure. By

using this inversion approach, we can execute the signing process described in
Subsect. 2.1.

Finally, we introduce some matrices representing the public and secret keys
of UOV. For each polynomial pi of the public key P, there exists an n×n matrix
Pi such that pi(x) = x� · Pi · x. Similarly, an n × n matrix Fi can be taken for
each fi with 1 ≤ i ≤ m, and an n×n matrix T is defined to satisfy T (x) = T ·x.
In general, these matrices Pi and Fi are taken as symmetric matrices if q is odd,
and are taken as upper triangular matrices if q is even. For these representation
matrices, based on Eq. (2), Fi can be considered as follows:

(
∗v×v ∗v×m

∗m×v 0m×m

)
.

Furthermore, from P = F ◦ T , we have

Pi = T�FiT, (i = 1, . . . ,m).

2.3 Attacks on UOV

A straightforward approach to attacking UOV is finding a signature s satisfying
P(s) = m for a given public key P and a message m. A direct attack tries to
solve this MQ system using an algorithm such as XL [6] or a Gröbner based
approach such as F4 [11] and F5 [12].
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Several attacks that aim to recover the secret key have also been proposed.
The attacker can sign any message after the secret key is recovered, and we
call such attacks key recovery attacks. In the following, we review three key
recovery attacks, the Kipnis-Shamir attack [16], a reconciliation attack [10], and
an intersection attack [2]. All of these attacks are constructed for the purpose of
obtaining the subspace T −1(O) of Fn

q , where O is the oil subspace defined as

O :=
{

(0, . . . , 0, α1, . . . , αm)� ∣∣ αi ∈ Fq

}
.

This subspace T −1(O) can induce the secret linear map T or an equivalent
linear map T ′ : Fn

q → F
n
q such that every component of P ◦ T ′−1 has the form

of Eq. (2).

Kipnis-Shamir Attack. To obtain T −1(O), the Kipnis-Shamir attack chooses
two invertible matrices Wi,Wj from the set of linear combinations of the repre-
sentation matrices P1, . . . , Pm for the public key. We then compute the invariant
subspace of W−1

i Wj , and a part of the subspace T −1(O) is probabilistically
recovered. The complexity of the Kipnis-Shamir attack is estimated as

O
(
qv−m−1 · m4

)
. (3)

Reconciliation Attack. The reconciliation attack treats a vector y of T −1(O)
as variables and solves the quadratic system y�Piy = 0 (i = 1, . . . ,m). Here, the
number of dimensions of T −1(O) is m, and thus if we impose affine constraints,
we then solve a system of m equations in n − m = v variables and still have a
solution with high probability. However, the parameters of UOV are set to satisfy
v > m for the security against the Kipnis-Shamir attack, and in this case the
system of y�Piy = 0 has a large number of solutions. Therefore, to determine a
solution uniquely, we need to solve the following system to find multiple vectors
y1, . . . , yk of T −1(O):

{
y�

j Piyj = 0 (1 ≤ i ≤ m, 1 ≤ j ≤ k)
y�

j Piy� = 0 (1 ≤ i ≤ m, 1 ≤ j < � ≤ k) .

However, this attack will usually not outperform a direct attack because the
number of variables to be solved increases.

Intersection Attack. In [2], Beullens proposed a new attack against UOV,
called an intersection attack. For an integer k satisfying k < v

v−m , let L1, . . . , Lk

be k invertible matrices randomly chosen from a set of linear combinations of the
representation matrices P1, . . . , Pm for the public key. This attack then solves
the following equations for y ∈ F

n
q :

{
(L−1

j y)�Pi(L−1
j y) = 0 (1 ≤ i ≤ m, 1 ≤ j ≤ k)

(L−1
j y)�Pi(L−1

� y) = 0 (1 ≤ i ≤ m, 1 ≤ j < � ≤ k)
.
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The solution space obtained from the above equation has km − (k − 1)v dimen-
sions. Thus, its complexity is equivalent to that of solving the quadratic system
with n− (km− (k −1)v) = kv − (k −1)m variables and

(
k+1
2

)
m−2

(
k
2

)
equations

owing to its linear dependency. The value of k is generally chosen such that
the complexity of solving the above system takes the minimum value under the
condition of k < v

v−m . Note that, when v ≥ 2m, the intersection attack becomes
a probabilistic algorithm.

2.4 Existing Fault Attacks on UOV or Its Variant

This subsection mainly recalls two fault attacks on multivariate signatures pro-
posed by Hashimoto et al. [14] and the attack on LUOV [4] proposed by Mus
et al. [18].

Hashimoto et al. proposed a fault attack on the stepwise triangular system
(STS) and big field (BF) type signatures that have the public and secret keys
of the form (1). This attack causes a fault to change the coefficients of unknown
terms in the secret key S, F , and T . In the case of the STS type, if the fault is
caused on the central map F , the attacker can recover a part of S directly from
a message and signature pair given by the faulty central map. The authors also
show that the probability that the fault will successfully change F is sufficiently
high. In [17], the authors complementary investigated the behavior of this attack
on UOV and Rainbow and confirmed it does not work on UOV owing to the
construction of the secret key.

Furthermore, Hashimoto et al. proposed another attack that creates faults on
the randomly chosen values in the process of the signature generation. For UOV
and its variant, this attack can recover a part of T . Regarding this attack on
UOV and Rainbow, Krämer and Loiero discussed a special case in [17], whereas
Shim and Koo investigated the algebraic part in detail in [23].

In [18], Mus et al. proposed QuantumHammer for use on LUOV [4], whose
secret keys, like those of UOV, are composed of a central map F and a linear map
T . This attack combines a bit tracing phase, which causes faults on the linear
map T and recovers a part of T , with an algebraic phase, which recovers the
remaining part of T . The authors demonstrated a full key recovery for LUOV
with (q, v,m) = (7, 197, 57) using a bit-tracing phase of less than 4 h and an
algebraic phase of 49 h.

3 New Fault Attack on UOV

In this section, we propose a new fault attack on UOV. The proposed attack
utilizes faults generated on the secret key, particularly on the central map F .
After describing our attack model in Subsect. 3.1, we describe the details of the
proposed attack in Subsect. 3.2.
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3.1 Attack Model

This subsection describes our attack model. We suppose that the coefficients of
the secret key, F and T , are stored in the device as fixed parameters used in
UOV. In our proposed attack, we deal with the case in which the attacker causes
a fault to change a coefficient, F or T , of the secret key. The proposed attack is
then constructed under the following assumptions:

– One fault changes one coefficient of the secret key, F or T .
– A coefficient changed by a fault is randomly chosen.
– The attacker cannot know the location of the fault.
– Coefficients changed by the faults do not return to the original values (even

if new faults are injected).

It should be noted that our attack model mainly follows that used in fault attacks
on the secret key proposed in [14].

Fig. 1. Rough description of the proposed attack

3.2 Description

This subsection describes the details of the proposed attack. Our proposed attack
mainly consists of the following two steps (Fig. 1):

1. Some rows of the representation matrix T for the secret key are recovered
utilizing faults.

2. The public key system P is reduced to a UOV public key system P̄ with fewer
variables than the original system.

The resulting system with fewer variables can be broken with smaller complexity
using existing key recovery attacks. In the following, for any vector v ∈ F

a
q with

a ∈ N, (v)b with b ∈ {1, . . . , a} denotes the b-th element of v.

Partial Recovery of T . Herein, because, the data sizes of F and T are esti-
mated as O(log(q) · m · n2) and O(log(q) · n2), respectively, and thus a random
fault is generated on the central map F with high probability, we consider a
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case in which the first fault is generated on F . Concretely, we suppose that the
coefficient α

(k)
i,j in Eq. (2) is changed into ᾱ

(k)
i,j with α

(k)
i,j 	= ᾱ

(k)
i,j . The central map

with the fault is then denoted by F ′.
For each fault occurring on F , the row vector recovery step is described as

follows:

1. Iterate the following three steps N times
(a) Randomly choose m� ∈ F

m
q .

(b) Obtain s� = T −1 ◦ F ′−1(m�) using the signing oracle with the fault.
(c) δ� = P(s�) − m�.

2. Solve the following linear system in {yp,r}1≤p≤r≤n

∑

p≤r

(s�)p(s�)ryp,r = δ̄� (1 ≤ � ≤ N) , (4)

where δ̄� is the only nonzero element of δ�. (If δ� = 0, then δ̄� = 0.)
3. For the solution {zp,r}1≤p≤r≤n of Eq. (4), find two vectors (a1, . . . , an) and

(b1, . . . , bn) satisfying
{

aibj + ajbi = zi,j (i < j)
aibi = zi,i

. (5)

As a result, two vectors (a1, . . . , an) and (b1, . . . , bn) obtained in the third step
correspond to the row vectors of the secret key T .

The first step generates N pairs of two vectors s� ∈ F
n
q and δ� ∈ F

m
q . These

pairs are generated through the following three steps: First, a message m� is
randomly chosen in F

m
q . Second, we input m� to the signing oracle with the faulty

central map F ′ and receive s� as an output. Third, we compute the difference
δ� between P(s�) and m�. These manipulations are iterated N times. For each
1 ≤ � ≤ N , we then have

δ� = (F ◦ T )(s�) − (F ′ ◦ T )(s�)
= (F − F ′) ◦ T (s�)

=
(
0, . . . , 0,

(
α
(k)
i,j − ᾱ

(k)
i,j

)
· (T (s�))i · (T (s�))j , 0, . . . , 0

)
,

and thus, if (T (s�))i 	= 0 and (T (s�))j 	= 0, then δ� has the only nonzero k-th
element. This is because F and F ′ only differ in the coefficient of xixj of fk.
Here, let δ̄� ∈ Fq be the nonzero element of δ� (if δ� = 0, then δ̄� = 0), and ti,j
be the (i, j)-element of the representation matrix T for the secret key. We then
hold

δ̄� =
(
α
(k)
i,j − ᾱ

(k)
i,j

)
·
(

∑

p

ti,p(s�)p

)
·
(

∑

r

tj,r(s�)r

)

=
(
α
(k)
i,j − ᾱ

(k)
i,j

)∑

p≤r

(s�)p(s�)r

{
(ti,ptj,r + tj,pti,r) (p 	= r)

ti,ptj,p (p = r) . (6)
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In the second step, we introduce new n(n + 1)/2 variables {yp,r}1≤p≤r≤n

such that every component yp,r corresponds to (ti,ptj,r + tj,pti,r) in the case of
p 	= r and ti,ptj,p in the case of p = r, as in Eq. (6). We then generate a linear
system of N equations (4) in n(n+1)/2 variables {yp,r}1≤p≤r≤n. Here, although
equation (4) is clearly deduced from Eq. (6), we omit the part of α

(k)
i,j − ᾱ

(k)
i,j from

Eq. (6) because recovering a multiple of row vectors of T is sufficient. If we set
N = n(n+1)/2, then the solution is determined uniquely with high probability.
When a linear system has some solutions, we add a new linear equation obtained
using a new pairing of s� and δ� until the solution is uniquely determined.

Subsequently, from the solution {zp,r}1≤p≤r≤n of Eq. (4), we generate two
vectors (a1, . . . , an) and (b1, . . . , bn) satisfying Eq. (5), as in the definition of
{yp,r}1≤p≤r≤n. Specifically, these two vectors can be found as follows:

1. a1 = 1.
2. b1 = z1,1.
3. Find a2 and b2 solving {

a1b2 + a2b1 = z1,2

a2b2 = z2,2
.

4. For 3 ≤ i ≤ n, find ai and bi solving
{

a1bi + aib1 = z1,i

a2bi + aib2 = z2,i
.

Then, (a1, . . . , an) and (b1, . . . , bn) clearly correspond to constant multiples of
two row vectors of T from Eq. (6).

After executing the manipulations described above for the first fault, we
cause another fault on the secret key and recover two row vectors of T again by
applying a similar method if a new fault also occurs on F . As the main difference
from the first fault, δ� may have several nonzero elements owing to the previous
faults. Herein, we suppose that, for the i-th fault with 1 ≤ i < ī caused on F ,
we obtain {z

(i)
p,r}1≤p≤r≤n by solving Eq. (4), and ki then denotes the index in

which δ� has a nonzero element. Then, after generating the ī-th fault, for a new
pairing of s� and δ�, by subtracting

(∑
p≤r(s�)p(s�)rz

(i)
p,r

)
eki

from δ� for every

1 ≤ i < ī, δ� becomes a vector with one nonzero element, as in the first fault
case. Based on this manipulation, the same recovery approach as the first fault
case can be applied. Note that if a recovered row vector of T is dependent on
one of the row vectors already recovered, it indicates that the same vector is
recovered in a duplicate manner.

These manipulations are iterated until n independent row vectors are recov-
ered or a new fault is caused on T , which can be easily confirmed because δ� has
many nonzero elements even after subtracting

(∑
p≤r(s�)p(s�)rz

(i)
p,r

)
eki

.

Reduction to Smaller UOV. Herein, we assume that α row vectors
(a(i)

1 , . . . , a
(i)
n ) with 1 ≤ i ≤ α are recovered in the first step, and each



134 H. Furue et al.

(a(i)
1 , . . . , a

(i)
n ) corresponds to the βi-th row of T . This reduction step is then

described as follows:

1. For i = 1, . . . , α do
(a) (b1, . . . , bn) := (a(i)

1 , . . . , a
(i)
n ) · T1 · · · Ti−1,

(b) Choose ki from {k′ /∈ {k1, . . . , ki−1} | bk′ 	= 0},
(c) Ti ∈ F

n×n
q is taken as follows:

Ti :=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ki

I O

ki − b1
bki

· · · − bki−1

bki
1 − bki+1

bki
· · · − bn

bki

O I

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (7)

2. Substitute 0 for {xk | k ∈ {k1, . . . , kα}} in P (T1 · · · Tα · x).

It should be noted that the first part of this reduction step mainly originates
from [14].

First, for (a(1)
1 , . . . , a

(1)
n ) obtained in Subsect. 3.2, we take the matrix T1 to

transform the β1-th row of T . We then choose one nonzero element a
(1)
k1

from

(a(1)
1 , . . . , a

(1)
n ) and take a matrix T1 following Eq. (7). We then have

T · T1 =

⎛

⎜⎜⎜⎜⎝

k1

*
β1 0 · · · 0 ∗ 0 · · · 0

*

⎞

⎟⎟⎟⎟⎠
.

We iterate such processes for all α row vectors obtained in the first step. It
should be noted that, because the βi-th row of T has already been transformed
by T1 · · · Ti−1, we need to multiply T1 · · · Ti−1 to (a(i)

1 , . . . , a
(i)
n ) from the right

side before choosing ki and setting Ti. As a result, when we let T ′ := T1 · · · Tα,
the β1, . . . , βα rows of T are eliminated by multiplying T ′ from the right side.
Indeed, if we take two n × n permutation matrices A1 and A2 satisfying

A1 · (1 · · · m)� = (β1 · · · βα ∗ · · · ∗)�

(1 · · · m) · A2 = (k1 · · · kα ∗ · · · ∗),

then we have

A1 · (T · T ′) · A2 =
(

Iα 0α×(n−α)

B1 B2

)
, (8)
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where B1 and B2 are (n − α) × α and (n − α) × (n − α) matrices, respectively.
Subsequently, the second part reduces the transformed public key system

P (T ′ · x) into a UOV public key system with fewer variables than the original.
In this part, we substitute 0 for xk1 , . . . , xkα

in P (T ′ · x). Here, we denote the
remaining n − α variables x̄ = (x̄1, . . . , x̄n−α) such that

A−1
2 · x = A�

2 · x
= (xβ1 · · · xβα

x̄1 · · · x̄n−α)�,

and denote by P̄ = (p̄1(x̄), . . . , p̄m(x̄)) the resulting public key system obtained
by executing the second part. With two permutation matrices in Eq. (8), we
assume that A−�

1 · Fi · A−1
1 is written in the following forms:

A−�
1 · Fi · A−1

1 =
(

C1 C2

C3 C4

)
,

where C1, C2, C3, and C4 are α × α, α × (n − α), (n − α) × α, and
(n − α) × (n − α) matrices, respectively. We then have

pi(T ′ · x)
= (T · T ′ · x)� · Fi · (T · T ′ · x),
= (A−1

2 · x)� · (A1 · T · T ′ · A2)� · (A−�
1 · Fi · A−1

1 ) · (A1 · T · T ′ · A2) · (A−1
2 · x),

and thus it holds that

p̄i(x̄)

= (0, . . . , 0, x̄�)
(

Iα 0α×(n−α)

B1 B2

)� (
C1 C2

C3 C4

)(
Iα 0α×(n−α)

B1 B2

)
(0, . . . , 0, x̄�)�

= x̄�
(

0α×(n−α)

B2

)� (
C1 C2

C3 C4

)(
0α×(n−α)

B2

)
x̄

= x̄� · B2 · C4 · B2 · x̄.

In the above equation, because A−1
1 is also a permutation matrix, C4 can be

seen as a representation matrix of the central map of UOV with n−α variables.
Therefore, we can regard P̄ as the public key system of UOV in n − α variables.
Furthermore, if, among β1, . . . , β�, the v′ elements are in the set of {1, . . . , v}
and the m′ elements are in the set of {v + 1, . . . , n}, then P̄ is the UOV public
key with v − v′ vinegar variables and m−m′ oil variables owing to the structure
of A−1

1 .

4 Analysis of Our Proposed Attack

As we described in Sect. 3, we obtain a smaller UOV public key system P̄ with
v − v′ vinegar and m − m′ oil variables with v′ + m′ = α using our proposed
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attack. This section first explains the method of applying existing key recovery
attacks to P̄. Next, we show the results of our simulations in our attack model
and the behavior of the proposed attack under the condition that the number
of faults is limited to small values.

4.1 Application of Key Recovery Attacks

In this subsection, we describe how to recover the secret key from the result-
ing smaller system P̄ with v − v′ vinegar variables and m − m′ oil variables
obtained by the proposed attack described in Sect. 3. In the resulting system P̄,
key recovery attacks on UOV can be executed with a smaller complexity in most
cases. As the reason why the direct attack cannot be conducted with a smaller
complexity, no pre-image of P̄ exists with high probability because the number
m − m′ of the oil variables is smaller than the number m of equations if m′ > 0.

As stated in Subsect. 2.3, key recovery attacks on UOV aim to recover
T −1(O), where O is the oil subspace. If we obtain a vector a ∈ F

n−α
q by

applying key recovery attacks on P̄, then we can obtain a vector in T −1(O)
by concatenating a with 0 for xk1 , . . . , xkα

and multiplying T1 · · · Tα from the
construction of P̄. Note that, using key recovery attacks on P̄, we only obtain
at most m − m′ independent vectors of T −1(O). However, in most cases, after
some basis of T −1(O) is obtained, it becomes easy to recover the remaining basis
of T −1(O). The proposed attack described in Sect. 3 can be clearly executed in
polynomial time, and thus the complexity of the attack is dominated by that of
the key recovery attacks. In the following, we apply two key recovery attacks,
the Kipnis-Shamir attack [16] and intersection attack [2] because they are par-
ticularly effective for our chosen parameter sets in Subsect. 4.2. Note that the
attacker here cannot know the number of vinegar and oil variables of P̄.

Kipnis-Shamir Attack. The Kipnis-Shamir attack can be executed without
the number of vinegar and oil variables, and thus we can simply apply the Kipnis-
Shamir attack on P̄. From Eq. (3), the complexity of the Kipnis-Shamir attack
on P̄ is estimated as

O
(
q(v−v′)−(m−m′)−1 · (m − m′)4

)
. (9)

Because v′ is larger than m′ with high probability, as stated in Subsect. 4.2, this
attack will be applied with a smaller complexity than that of the Kipnis-Shamir
attack on the original system.

Intersection Attack. By contrast, the intersection attack generally requires
the number of vinegar and oil variables. As described in Subsect. 2.3, for UOV
with v vinegar variables, o oil variables, and m equations, the intersection attack
solves an MQ system of

(
k+1
2

)
m − 2

(
k
2

)
equations in kv − (k − 1)o variables for

an integer k < v
v−o . (We here distinguish the number o of oil variables and the

number m of equations unlike Subsect. 2.3.) The above value kv − (k − 1)o is



A New Fault Attack on UOV Multivariate Signature Scheme 137

determined by subtracting the dimension ko − (k − 1)v of the solution subspace
from the number n = v + o of variables to be solved. However, the attacker here
only knows the value of α = v′ + m′ and does not know each value of v′ and m′,
and thus the dimensions of the solution space and the value of k for the optimal
complexity cannot be correctly conjectured before solving the system.

In the following, we introduce a way to execute the intersection attack on
P̄. First, the attacker assumes that v′ = α and m′ = 0, and then conducts the
intersection attack by choosing the optimal k < v−α

(v−α)−m and supposing that
the dimension of the solution space is km − (k − 1)(v − α), namely, the number
of variables to be solved is

(v + m − α) − (km − (k − 1)(v − α)) = k(v − α) − (k − 1)m.

If there exists no solution for the above system, we then assume that v′ =
α − 1 and m′ = 1, and solve the system by supposing that the solution space
is k(m − 1) − (k − 1)(v − α + 1) for k < v−α+1

(v−α+1)−(m−1) . In this way, we iterate
the decrease in v′ and increase in m′ until we obtain a solution. We can then
find a solution in which we correctly assume the values of v′ and m′, which will
dominate the complexity because the number of variables is larger than that of
the previous case. In conclusion, the complexity of the intersection attack on
P̄ is estimated as that of solving an MQ system of

(
k+1
2

)
m − 2

(
k
2

)
equations in

k(v − v′) − (k − 1)(m − m′) variables for k < v−v′
(v−v′)−(m−m′) . If we set N =

k(v − v′) − (k − 1)(m − m′) and M =
(
k+1
2

)
m − 2

(
k
2

)
, by considering the hybrid

approach [1,25] with Wiedemann XL [26], the complexity of solving the above
system is given as

min
k

(
O

(
qk · 3 ·

(
N − k

2

)
·
(

D + N − k

D

)2
))

, (10)

where D is the degree of the first non-positive term of (1 − z)M−N+k(1 + z)M .

Remark 1. This remark indicates that the proposed attack can be executed more
efficiently when the secret key T is limited to a specific compact form. It is known
that the secret linear map T can be restricted to a special form [7]:

T =
(

Iv×v T ′

0m×v Im×m

)
, (11)

where T ′ is a v × m matrix, and such a compact form is often used for efficiency.
Although the proposed attack assumes that T is a randomly chosen line map,

it can be clearly applied to UOV with a compact T . For each row vector obtained
in the recovery step, we can identify which row of T in the form of (11) that the
recovered vector corresponds to. We then dismiss vectors corresponding to the
last m rows, which are unit vectors, and transform only v′ row vectors during
the reduction step. By doing so, the proposed attack gives the public key system
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of UOV with v − v′ vinegar variables and m oil variables. The complexity of the
Kipnis-Shamir attack can then be given as

O
(
q(v−v′)−m−1 · m4

)
.

Furthermore, we can simply apply the intersection attack, which solves an MQ
system of

(
k+1
2

)
m − 2

(
k
2

)
equations in k(v − v′) − (k − 1)m variables for k <

v−v′
(v−v′)−m . These complexities are clearly smaller than that of the proposed attack
on UOV with a plain T , as estimated above.

4.2 Simulations of Our Proposed Attack

This subsection describes how our proposed algorithm transforms the given pub-
lic key system and the complexity of key recovery attacks on the resulting system
for two practical parameter sets (q, v,m) = (16, 60, 39) and (256, 50, 33) satis-
fying 100-bit security. These parameter sets are chosen such that the public
key and signature sizes reach the smallest values unless the complexity of the
direct attack, Kipnis-Shamir attack [16], reconciliation attack [10], or intersec-
tion attack [2] is smaller than 100 bits.

Table 1. With two parameters (q, v,m) = (16, 60, 39) and (256, 50, 33) satisfying 100-
bit security, for each difference between the numbers of variables of the public key
system P and the resulting system P̄ of the proposed attack (= v′+m′), the probability
of its occurrence, the average rate of v′ to v′ + m′, and the average number of faults
used in the attack

(q, v,m) =
(16, 60, 39)

The difference between the numbers of variables of P and P̄

0∼4 5∼9 10∼19 20∼29 30∼
Probability 15.4% 9.5% 22.6% 19.8% 32.7%

v′/(v′ + m′) – 0.68 0.70 0.71 0.69

The number
of faults

1.9 4.8 8.7 14.8 33.9

(q, v,m) =
(256, 50, 33)

The difference between the numbers of variables of P and P̄

0∼4 5∼9 10∼19 20∼29 30∼
Probability 18.8% 13.2% 21.8% 20.0% 26.2%

v′/(v′ + m′) – 0.73 0.71 0.70 0.68

The number
of faults

1.9 4.8 8.7 15.7 32.1

We simulated our proposed attack 1000 times for each parameter set. Table 1
shows the occurrence probabilities, the average rate of v′ to v′+m′, and the aver-
age number of faults occurring in the attack for each difference in the numbers of
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variables of P and P̄, which is equal to v′ +m′. For example, with the parameter
set (q, v,m) = (16, 60, 39), v′ + m′ falls within the range of 5 to 9 with a 9.5%
probability, and in this case, the average value of v′/(v′ + m′) and the number
of faults are 0.68 and 4.8, respectively. From this table, we can confirm that, by
using the proposed fault attack, we can obtain P̄ with 5 fewer variables than
the original system with a probability of approximately 80–90%, and P̄ with 10
fewer variables with a probability of approximately 70%. Furthermore, Table 1
shows that v′ is larger than m′ in most cases because, for each fault, either one
of the first v rows and one of the last m rows, or two of the first v rows are recov-
ered during the recovery step described in Subsect. 3.2 owing to equation (2).
In addition, the number of faults used in the proposed attack clearly increases
with the increase in the difference in the numbers of variables of P and P̄.

Table 2. With the two parameter sets (q, v,m) = (16, 60, 39) and (256, 50, 33) satisfy-
ing 100-bit security, the complexities of the Kipnis-Shamir (KS) and intersection (Int)
attacks breaking the resulting system P̄ of the proposed attack when the parameters
(v′,m′) of the proposed attack are set to (4, 1), (7, 3), (14, 6), or (21, 9)

Parameter (100 bits)

(q, v,m)

Attack (v′ + m′, v′,m′)

(5, 4, 1) (10, 7, 3) (20, 14, 6) (30, 21, 9)

(16, 60, 39) KS Eq. (9) 89.0 84.7 68.2 51.6

Int Eq. (10) 105.8 97.6 75.8 59.9

(256, 50, 33) KS Eq. (9) 124.0 115.6 83.0 50.3

Int Eq. (10) 89.5 81.3 63.2 40.6

Subsequently, for the two parameter sets satisfying 100-bit security, herein
we estimate the complexity of the Kipnis-Shamir and intersection attacks on the
resulting system P̄ of the proposed attack. As indicated in Table 2, we choose
four values, 5, 10, 20, and 30, for v′+m′, which is equal to the difference between
the numbers of variables of P and P̄. In addition, we set (v′,m′) as (4, 1), (7, 3),
(14, 6), and (21, 9) in each case owing to the rate of v′ to v′ + m′ shown in
Table 1. Table 2 shows the bit complexities of the Kipnis-Shamir and intersection
attacks, where for example the complexity of the Kipnis-Shamir attack on P̄ with
(q, v,m) = (16, 60, 39) and (v′,m′) = (4, 1) is 89.0 bits. This table indicates that,
by choosing the optimal attack among the two key recovery attacks, the secret
key can be recovered from P̄ with less complexity than the claimed security level
in each case. Along with the results shown in Table 1, for (q, v,m) = (16, 60, 39),
the Kipnis-Shamir attack can be applied with smaller manipulations than 89.0
bits with 84.6% probability, since v′ + m′ ≥ 5 with a probability of 100− 15.4 =
84.6%. Similarly, for (q, v,m) = (16, 60, 39), the secret key can be recovered with
smaller manipulations than 84.7 bits with 75.1% probability, 68.2 bits with 52.5%
probability, and 51.6 bits with 32.7% probability. For the case of (q, v,m) =
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(256, 50, 33), the secret key can be recovered with smaller manipulations than
89.5 bits with 81.2% probability, 81.3 bits with 68.0% probability, 63.2 bits with
46.2% probability, and 40.6 bits with 26.2% probability. These results indicate a
trade-off between the complexity of recovering the secret key and the probability
that it will occur.

Table 3. For the parameter (q, v,m) = (16, 60, 39) satisfying 100-bit security, the
values of v′ and m′, the probability of such occurrence, and the complexity of the
Kipnis-Shamir attack on the resulting system P̄ obtained from Eq. (9) when a fault
occurs once, twice, and three times, respectively.

Faults

1 (v′,m′) (1,1) (2,0) (0,0)

Probability 52.9% 41.4% 5.7%

log2(complexity) 101.0 93.1 101.1

2 (v′,m′) (3,1) (2,2) (4,0) (0,0) Other

Probability 43.8% 28.0% 17.1% 5.7% 5.4%

log2(complexity) 93.0 100.8 85.1 101.1

3 (v′,m′) (4,2) (5,1) (3,3) (6,0) Other

Probability 34.8% 27.2% 14.8% 7.1% 16.1%

log2(complexity) 92.8 85.0 100.7 77.1

4.3 Limited Faults Cases

In this subsection, we consider applying our proposed attack in a case in which
the number of faults is limited. Table 3 shows the results of the proposed attack
on the parameter set (q, v,m) = (16, 60, 39) under the conditions in which a
fault occurs once, twice, and three times. For each case, we show the probability
of occurrence and the complexity of the Kipnis Shamir attack on the resulting
system with v − v′ vinegar variables and m − m′ oil variables for each set of v′

and m′. Herein, we choose the Kipnis-Shamir attack because it is more efficient
than the intersection attack, as indicated from Table 2. Note that we dismiss the
case in which rows of T are recovered in duplicate during the recovery step of
the proposed attack, which occurs with negligible probability.

As a result, in a case in which a fault occurs once, the secret key is recovered
with a smaller complexity of 93.1 bits in comparison to the claimed security
level when (v′,m′) = (2, 0) with a probability of 41.4%. In the case of two
faults, the system is less secure when (v′,m′) = (3, 1) and (4, 0) with a total
probability of 60.9%, and in the case of three faults, the system is less secure
when (v′,m′) = (4, 2), (5, 1), and (6, 0) with a total probability of 69.1%. These
results indicate that the proposed approach weakens the security of UOV even
when the number of faults is limited.
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5 Conclusion

In this paper, we proposed a new fault attack on UOV, which is a multivariate
signature scheme. This is the first fault attack on UOV that uses faults occurring
on the secret key.

Our proposed attack is mainly composed of two steps: We recover some row
vectors of the secret linear map T using faults generated on the central map F ,
and transform the public key system. Given a UOV public key system with v
vinegar variables and m oil variables, the resulting system of the proposed attack
is a UOV system with v −v′ vinegar variables and m−m′ oil variables, where v′

and m′ are determined based on the faults. In this paper, we also showed that
the existing key recovery attacks on UOV, i.e., Kipnis-Shamir and intersection
attacks, can be applied to the resulting proposed attack system with smaller
complexity than that on the original system.

Moreover, we simulated the proposed attack on two parameter sets satisfying
100-bit security. For example, in the case of (q, v,m) = (256, 50, 33), the secret
key can be recovered with smaller manipulations of 89.5, 81.3, or 63.2 bits with a
probability of 84.6%, 68.0%, or 46.2%, respectively. We also confirmed that the
proposed attack works even when the number of faults is limited. In the case of
one, two, and three faults, the secret key of the resulting system can be recovered
through 93.1-, 85.1-, and 77.1-bit manipulations with a feasible probability of
41.4%, 17.1%, and 7.1%, respectively.

It should be noted that a naive countermeasure against the proposed attack
would be to check whether the secret key is faulty, and if so, to avoid generating
the signature, as described in [14]. This countermeasure will be practical in online
scenario since the verification of UOV is known to be so efficient.
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Abstract. In the light of NIST’s announced reopening of the call for dig-
ital signature proposals in 2023 due to lacking diversity, there is a strong
need for constructions based on other established hardness assumptions.
In this work we construct a new post-quantum secure digital signature
scheme based on the MinRank problem, a problem with a long history
of applications in cryptanalysis that led to a strong belief in its hard-
ness. Initially following a design by Courtois (Asiacrypt ’01) based on
the Fiat–Shamir transform, we make use of several recent developments
in the design of sigma protocols to reduce signature size and improve effi-
ciency. This includes the recently introduced sigma protocol with helper
paradigm (Eurocrypt ’19) and combinations with cut-and-choose tech-
niques (CCS ’18). Moreover, we introduce several improvements to the
core of the scheme to further reduce its signature size.

As a second contribution, we formalize the natural extension of our
construction to a ring signature scheme and show that it achieves desired
anonymity and unforgeability guarantees. Our ring signature is charac-
terized by a sublinear scaling of the signature size in the number of users.
Moreover, we achieve competitive practical signature sizes for moderate
amount of users in comparison to recent ring signature proposals.

Keywords: Fiat–Shamir · MinRank · Post-quantum signature · Ring
signature · Sigma protocols

1 Introduction

The NIST standardization process for post-quantum secure cryptographic
schemes is in transition to its fourth round. While the process for post-quantum
secure KEMs is progressing well, the process for digital signatures suffers from
a lack of diversity among the hardness assumptions of the remaining candi-
dates. In particular, the remaining signature schemes are either based on struc-
tured lattices or symmetric primitives [40]. Although, both foundations have
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desirable attributes, the security guarantees of structured lattice-based schemes
have recently been challenged [39] and schemes based on symmetric primitives,
while generally secure, suffer from performance issues [40]. For this reason, NIST
announced that it will reopen the call for digital signature schemes in early 2023,
making the study of schemes based on other established hardness assumptions
an important and urgent task.

In this work we propose a new post-quantum secure digital signature scheme
based on the so-called MinRank problem, which was introduced in 1999 by Buss,
Frandsen, and Shallit [21]. Roughly speaking, the MinRank problem asks to find
a low-rank linear combination of some given matrices over a finite field. The
MinRank problem is an attractive candidate for post-quantum cryptography
for multiple reasons. First, it is entirely based on linear algebra computations,
allowing constructions to benefit from the long line of research in optimizing
the involved operations [3,36,47]. Also, the MinRank problem has been exten-
sively studied due to its applications in cryptanalysis [14,19,20,22,35,41,45,48],
where faster algorithms for solving the MinRank problem usually imply improved
attacks on the involved schemes. This relation has established a strong belief in
the hardness of the MinRank problem over the last decades. Furthermore, there
are no quantum attacks known that go beyond straightforward quantum search
applications. However, there has been very limited work on cryptographic primi-
tives based on this problem. To the best of our knowledge, the only construction
based on the hardness of the MinRank problem is a sigma protocol from 2001
due to Courtois [23].

Sigma protocols implement zero-knowledge proofs of knowledge (PoK). These
constructions allow a prover to prove to a verifier that he knows a secret object
x, which satisfies a certain relation, without revealing any information about x.
For example, x might be the secret key corresponding to a known public key
or, as in the protocol of Courtois, the solution to a publicly-known MinRank
instance. Sigma protocols do not reach perfect soundness, i.e., a cheating prover
not knowing x might be able to convince the verifier that he actually knows x.
If a cheating prover is able to convince the verifier with probability p, then p is
called the soundness error of the protocol.

It is well known that a sigma protocol that offers security against passive
attacks can be transformed into a digital signature scheme, secure in the random
oracle model, by using the Fiat–Shamir transform. A straightforward application
of this transformation to Courtois’ protocol results in a digital signature scheme
with not particularly desirable parameters. However, starting from Courtois’
initial protocol, we adopt recent techniques in the design of sigma-protocols
to reduce the soundness error of the construction. Combining this with several
modifications and improvements to the original protocol, we are able to derive
a new digital signature scheme with significantly reduced signature and public
key sizes.

Another major advantage of our construction is that it naturally extends to
ring-signatures. A ring-signature allows a signer to sign a message on behalf of
a group of users, called a ring. A verifier is then able to verify the signature
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as usual, but can not identify the signer among all members of the ring. The
performance of those schemes is usually a function depending on the number of
users in the ring. There exist constant size ring-signatures [2,25], however, none
of those are post-quantum secure. Our scheme is characterized by a sublinear
scaling of the signature size in the number of users and allowing to achieve
competitive practical parameters.

1.1 Related Work

Signature schemes constructed from sigma protocols have a long standing history
(e.g. [1,11,12,30,38,42,46,49]). A main advantage of such constructions is that
they do not require a trapdoor-relation. This makes it possible to base their
security on presumably hard instances of the underlying problem. However, a
common drawback is usually a larger signature size due to necessary repetitions
of the protocol when applying the Fiat–Shamir transformation. These repetitions
reduce the (high) soundness error of the sigma protocol from p to pR ≤ 2−λ,
where R is the number of repetitions and λ the security parameter.

Multiple recent works try to lower the initial soundness error, to reduce
the amount of repetitions. Katz et al. [34] have constructed a zero knowledge
PoK using the MPC-in-the-head paradigm [33] in combination with a prepro-
cessing stage to distribute some auxiliary information to the participants. The
protocol extends to an arbitrary number of users n resulting in a sigma proto-
col with soundness error 1

n . Beullens [17] then generalized the approach from
Katz, Kolesnikov and Wang [34] by introducing the sigma protocol with helper
paradigm. Here, the sigma protocol uses a trusted third party, called the helper,
to provide some auxiliary information to the verifier, which similarly results in
a lower soundness error of the construction. Eventually, the helper is removed
using a cut-and-choose technique. The helper paradigm and independent sim-
ilar techniques to lower the soundness error have recently led to efficient zero-
knowledge-based signature schemes [28,29,32].

1.2 Contribution

We construct a post-quantum secure digital signature scheme based on the Min-
Rank problem, which we call MR-DSS. Our construction obtains about half the
signature size and slightly more than half the public key size of a straightforward
application of the Fiat–Shamir transform to the sigma protocol by Courtois.

From a design point of view, we follow the sigma protocol with helper
paradigm of Beullens. By introducing the helper we reduce the soundness error
of Courtois’ protocol from 2

3 to 1
2 . We then use a cut-and-choose technique

from [34] to remove the helper. This results in a sigma protocol with very low
soundness error, mitigating the need for multiple iterations when applying the
Fiat–Shamir transform. We further introduce several improvements to Courtois’
protocol reducing its communication complexity and, implicitly, the signature
size. Overall, we are able to decrease the signature size by a factor of roughly 2.
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Further we formalize the natural extension of our scheme to ring signatures.
The possibility of such an extension was already observed by Courtois [23]. How-
ever, he did neither formalize the resulting scheme nor argue about its security or
determine its parameters. We show that the extension of our scheme matches the
security definitions of ring-signatures given by Bender, Katz, and Morselli [13].
Moreover, the ring signature scheme is characterized by a sublinear scaling of
the signature size in the amount of users, leading to particularly good practical
signature sizes, especially for moderate amounts of users.

Outline. In Sect. 2 we cover used notations and definitions, followed by a recap
of basic properties of sigma protocols with helpers and commitment schemes.
Subsequently, in Sect. 3 we recall the initial sigma protocol from Courtois. In
the following Sect. 4 we then describe our new scheme, including an analysis of
its public key and signature size as well as suggested parameters. Eventually,
Sect. 5 covers our extension of the scheme to ring-signatures.

Concurrent Work. Recently, Santoso et al. [44] independently proposed a vari-
ation of Courtois’ sigma protocol that achieves soundness probability 1

2 . They
adapt challenge space and responses to lower the soundness. However, their app-
roach yields only slight improvements (in the magnitude of bytes) over Courtois’
signature size. Moreover, the authors disregard the size of the initial commit-
ments in their analysis of the communication complexity. Taking commitment
sizes into account they achieve no improvement over Courtois. We give more
details on this in AppendixC.

2 Preliminaries

For each prime power q, we let Fq denote the finite field of q elements. For
positive integers m and n, we write Mm,n(Fq) for the vector space of m × n
matrices with entries in Fq, and GLn(Fq) for the group of invertible matrices
in Mn,n(Fq). We let λ denote the security parameter. We use standard Landau
notation for complexity statements and write log for the logarithm in base 2.

Let us define the MinRank problem. By MinRank we refer to the search
version of the MinRank problem over finite fields defined as follows.

Definition 1 (MinRank problem).

– Parameters: Positive integers q,m, n, k, r with q a prime power.
– Instance: (k + 1)-tuple M of matrices M0;M1, . . . , Mk ∈ Mm,n(Fq).
– Solution: α ∈ F

k
q such that E := M0 +

∑k
i=1 αiMi has rank less than or equal

to r.
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2.1 Sigma Protocols with Helper

Sigma protocols with helper were recently introduced by Beullens [17]. Infor-
mally, a sigma protocol with helper extends a sigma protocol by adding a trusted
party, which is called the helper. This trusted party runs a setup algorithm based
on a random seed at the beginning of each execution of the protocol. The helper
then sends the seed value to the prover and some auxiliary information to the
verifier. The formal definition of a sigma protocol with helper is the following.

Helper(x)

seed $← {0, 1}λ

aux ← Setup(seed)

Send seed to the prover and aux to the verifier.

Prover(x, w, seed) Verifier(x, aux)

com,P state ← P1(x, w, seed) com

ch $← Cch

rsp ← P2(P state, ch) rsp

return V (x, aux, com, ch, rsp)

Fig. 1. Structure of a sigma protocol with helper.

Definition 2 (Sigma protocol with helper). A protocol is a sigma protocol
with helper for a relation R with challenge space C if it is of the form of Fig. 1
and satisfies the following properties:

– Completeness: If all parties follow the protocol on input (x,w) ∈ R, then
the verifier always accepts.

– 2-Special soundness: From an adversary that outputs with significant prob-
ability two valid transcripts (x, aux, com, ch, rsp) and (x, aux, com, ch′, rsp′),
with ch �= ch′ and where aux = Setup(seed) for some seed values (unknown to
the extractor), one can efficiently extract a witness w such that (x,w) ∈ R.

– Special honest-verifier zero-knowledge: There exists a probabilistic
polynomial-time simulator that takes as input x, a random seed, and a
random challenge ch; and outputs a transcript (x, aux, com, ch, rsp), with
aux = Setup(seed), that is computationally indistinguishable from the prob-
ability distribution of transcripts of an honest execution of the protocol on
input (x,w) for some w such that (x,w) ∈ R, conditioned on the auxiliary
information being equal to aux and the challenge being equal to ch.
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Every sigma protocol with helper can be transformed into a standard sigma
protocol by a cut-and-choose approach, which we outline in Sect. 4.2.

2.2 Commitment Schemes

In our constructions we assume the existence of a non-interactive commitment
function Com : {0, 1}λ × {0, 1}∗ → {0, 1}2λ, which takes as input a pair (r,m)
consisting of λ random bits r and an arbitrary message m, and returns a com-
mitment of 2λ bits. The function Com is assumed to be computational hiding,
which informally means that the commitments do not reveal anything about the
committed message, and computational binding, which informally states that it
should not be possible to find a different message m′ that leads to the same com-
mitment. The formal definitions of these properties are given in Appendix A. In
practice, Com can be implemented by a cryptographic secure hash function.

3 The Sigma Protocol of Courtois

Let us briefly recall the sigma protocol of Courtois [23] for a zero-knowledge proof
of knowledge of the solution α to an instance of the MinRank problem. It follows
a three-pass design with challenge space {0, 1, 2} and achieves a soundness error
of 2

3 . The protocol is based on an additive masking of the solution vector α with
some random vector β. Initially, the prover commits to the matrices

N1 =
k∑

i=1

βiMi and N2 = M0 +
k∑

i=1

(αi + βi)Mi = N1 + E,

where E is the matrix of rank less than r from the underlying MinRank problem.
Then challenges 1 and 2 lead to revealing either β or α + β, which enables the
verifier to check that the prover followed the protocol for the computation of
either N1 or N2. In case of challenge equal to 0, the prover sends to the verifier
two matrices Z1 and Z2, which are obtained by multiplicatively and additively
masking N1 and N2 with the matrices S, T and X. Then the verifier checks
that rank(Z2 − Z1) ≤ r, which implies that rank(N2 − N1) ≤ r, i.e., that α is
a solution to the MinRank problem. See Fig. 2 for a formal description of the
protocol.

4 Improved MinRank-Based Signature Scheme

In this section, we present an improved signature scheme based on the MinRank
problem. The scheme is constructed in three steps. First, in Sect. 4.1, we give
a sigma protocol with helper for a zero-knowledge proof of knowledge of the
solution to an instance of the MinRank problem. Second, the helper is removed
using a cut-and-choose technique, detailed in Sect. 4.2, to obtain a standard
sigma protocol. Eventually, the sigma protocol is converted to a signature scheme
by a standard application of the Fiat–Shamir transform.

Furthermore, in Sect. 4.3 we give several improvements to our initial design,
reducing the communication complexity and, implicitly, the signature size.
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Prover(M , α) Verifier(M)

S
$← GLn(Fq), T

$← GLm(Fq)

X
$← Mm,n(Fq), β

$← F
k
q

E ← M0 +
k∑

i=1

αiMi

N1 ←
k∑

i=1

βiMi, N2 ← N1 + E

Zi ← TNiS + X (i = 1, 2)

r0, r1, r2
$← {0, 1}λ × {0, 1}λ × {0, 1}λ

com0 ← Com r0, (S, T, X)
)

comi ← Com ri, Zi

)
(i = 1, 2)

com ← (com0, com1, com2) com

ch $← {0, 1, 2}ch

if ch = 0 then

rsp ← (r1, r2, Z1, Z2)

if ch = 1 then

rsp ← (r0, r1, S, T, X, β)

if ch = 2 then

rsp ← (r0, r2, S, T, X, α + β) rsp

if ch = 0 then

return Com(r1, Z1) = com1

)

∧ Com(r2, Z2) = com2

)

∧ rank(Z2 − Z1) ≤ r
)

if ch ∈ {1, 2} then

Recompute Zch from rsp

return (S, T are invertible)

∧ Com r0, (S, T, X)
)
= com0

)

∧ Com(rch, Zch) = comch
)

Fig. 2. The sigma protocol of Courtois for ZK proof of MinRank.

4.1 Sigma Protocol with Helper for ZK Proof of MinRank

On a high level, we use the helper as a trusted third party to provide the non-
secret-key dependent commitments. This allows us to decrease the challenge
space to {0, 1}, since the prover has to commit only to a single value. For chal-
lenge 1 the prover then allows the verifier to check that he followed the protocol
when computing the commitment, while for challenge 0 he proves his knowledge
of the solution to the MinRank problem.

More precisely, the helper provides the non-secret-key dependent commit-
ments com0 and com1 of Fig. 2. He then sends those commitments to the verifier
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Helper(M)

seed $← {0, 1}λ

Generate S ∈ GLn(Fq), T ∈ GLm(Fq), X ∈ Mm,n(Fq), and β ∈ F
k
q from seed.

Generate r0
$← {0, 1}λ and r1

$← {0, 1}λ from seed

N1 ← ∑k
i=1 βiMi

com0 ← Com(r0, (S, T, X))

com1 ← Com(r1, TN1S + X)

aux ← (com0, com1)

Send seed to the prover and aux to the verifier.

Prover(M , α, seed) Verifier(M , aux)

Regenerate S, T, X, β, r0, and r1 from seed.

Recompute N1.

N2 ← N1 + E, Zi = TNiS + X (i = 1, 2)

r2
$← {0, 1}λ, com2 ← Com(r2, TN2S + X) com2

ch $← {0, 1}ch

if ch = 0 then

rsp ← (r1, r2, Z1, Z2)

if ch = 1 then

rsp ← r0, r2, (S, T, X), α + β
)

rsp

if ch = 0 then

return Com(r1, Z1) = com1

)

∧ Com(r2, Z2) = com2

)

∧ rank(Z2 − Z1) ≤ r
)

if ch = 1 then

Recompute N2, Z2 from rsp

N2 ← M0 +
∑k

i=1(αi + βi)Mi

Z2 ← TN2S + X

return (S, T are invertible)

∧ Com r0, (S, T, X)
)
= com0

)

∧ Com(r2, Z2) = com2

)

Fig. 3. Structure of a sigma protocol with helper for ZK proof of MinRank.

and the used randomness to the prover. The prover only needs to provide the
key-dependent commitment com2, after recomputing the helper-generated data
from the given randomness seed. The challenge space reduces to {0, 1}, since
the helper-provided commitment does not have to be challenged. Analogously
to before, in case of challenge 1 the prover reveals the masked secret α + β,
allowing the re-computation of N2, while for challenge 0 he answers with Z1 and
Z2 allowing to verify his knowledge of the MinRank solution. Our full protocol
is detailed in Fig. 3.

Theorem 1 (MinRank with Helper). Let Com be a commitment scheme
which is computational binding and hiding. Then the protocol detailed in Fig. 3
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satisfies Definition 2 for sigma protocols with helper for challenge space C =
{0, 1}.
Proof. We have to prove that the protocol of Fig. 3 fulfills the notions of com-
pleteness, 2-special soundness, and special honest-verifier zero-knowledge given
in Definition 2. In the following, we let rsp = (r0, r2, Y, γ) denote the response
for challenge ch = 1. In particular, an honest prover sends Y := (Y1, Y2, Y3) =
(S, T,X) and γ = α + β.
Completeness. If all parties follow the protocol, then it is clear that the verifier
accepts, since

rank(Z2 − Z1) = rank
(
T (N2 − N1)S

)
= rank(N2 − N1) = rank(E) ≤ r.

2-Special Soundness. Suppose that an adversary knows two valid transcripts

(M , aux, com, ch, rsp) and (M , aux, com, ch′, rsp′)

with ch �= ch′ and where aux = Setup(seed) for some value of seed, which is
unknown to the adversary. We have to prove that the adversary can efficiently
compute a solution to M .

Without loss of generality, assume that ch = 1 and ch′ = 0. Since the verifier
accepts the response rsp, we have that com0 = Com(r0, Y ) and

com2 = Com
(
r, Y2(M0 +

∑k
i=1 γiMi)Y1 + Y3

)
.

From the computational binding property of the commitment we now conclude
that Y = (S, T,X) since Com(r0, Y ) = com0 = Com

(
r0, (S, T,X)

)
.

Moreover, from the verifier accepting the response rsp′, we know that com2 =
Com(r, Z ′

2). Thus, we find analogously that

Com
(
r, T (M0 +

∑k
i=1 γiMi)S + X

)
= com2 = Com(r, Z ′

2),

implying Z ′
2 = T (M0 +

∑k
i=1 γiMi)S + X. Further, by the helper behaving

honestly we know that com1 = Com(r1, T
∑k

i βiMiS +X) while the verifier only
accepts rsp′ if com1 = Com(r1, Z ′

1), giving Z ′
1 = T (

∑k
i=1 βiMi)S + X.

In turn, this gives that

Z ′
2 − Z ′

1 =
(
T (M0 +

∑k
i=1 γiMi)S + X

) − (
T (

∑k
i=1 βiMi)S + X

)

= T
(
M0 +

∑k
i=1(γi − βi)Mi

)
S = T

(
M0 +

∑k
i=1 δiMi

)
S,

where δ := γ − β ∈ F
k
q . Since Y = (S, T,X) is known, we can compute δ by

solving the linear system
∑k

i=1 δiMi = Y −1
2 (Z ′

2 − Z ′
1)Y

−1
1 − M0.

Finally, from the verifier accepting rsp′ we know that rank(Z ′
2 − Z ′

1) ≤ r which
implies

rank
(
M0 +

∑k
i=1 δiMi

)
= rank

(
T

(
M0 +

∑k
i=1 δiMi

)
S

)
= rank(Z ′

2 − Z ′
1) ≤ r,

thus δ is a solution to the instance M .
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Special Honest-Verifier Zero-Knowledge. Define a simulator that takes as
input M , a random seed seed, and a random challenge ch; and outputs a valid
transcript (M , aux, c̃om2, ch, r̃sp) computed as follows:

1. Generate S, T,X, β,N1, r0, r1, com0, com1, aux from seed as a honest helper
would do.

2. If ch = 1 then pick a random r ∈ {0, 1}λ and a random γ̃ ∈ F
k
q , and set Ñ2 =

M0 +
∑k

i=1 γ̃iMi, c̃om2 = Com(r, T Ñ2S + X), and r̃sp =
(
r, r0, (S, T,X), γ̃

)
.

3. If ch = 0 then pick a random r ∈ {0, 1}λ and a random R ∈ Mm,n(Fq)
of rank r, and set Z̃2 = T (N1 + R)S + X, c̃om2 = Com(r, Z̃2), and r̃sp =
(r, r1, TN1S + X, Z̃2).

Then, by construction, (M , aux, c̃om2, ch, r̃sp) is a valid transcript where r̃sp is
uniformly distributed in

{0, 1}λ × {0, 1}λ × GLn(Fq) × GLm(Fq) × Mm,n(Fq) × F
k
q

∪ {0, 1}λ × {0, 1}λ × {(U, V ) : U, V ∈ Mm,n(Fq), rank(U − V ) = r}.

Since also rsp is uniformly distributed in the above set, we get that rsp and r̃sp
follow the same distribution. Moreover, c̃om2 is completely determined by r̃sp
in the same way that com2 is completely determined by rsp. This implies that
the transcripts (M , aux, c̃om2, ch, rsp) and (M , aux, com, ch, rsp) follow the same
distribution.

Eventually, since the commitment com1−ch is never opened, by the computa-
tional hiding property of the commitment the transcripts are indistinguishable.

��

4.2 Removing the Helper

In order to remove the helper, we use a cut-and-choose technique of Katz et
al. [34] that proceeds as follows. The prover computes several setups and sends
all generated auxiliary information to the verifier. The verifier then chooses a
certain amount of the setups to execute, i.e., run the normal protocol based on
the seeds of the chosen setups. Additionally, the prover sends all seeds belonging
to the setups that are not executed to the verifier, allowing him to check that
those setups have been computed honestly.

More precisely, we let the prover compute s setups and the verifier has to
choose a subset of τ setups to execute. We illustrate this procedure schematically
in Fig. 4. Now, if the soundness error of a single execution of the protocol with
helper is p then the soundness error of the whole construction becomes

pτ := max
0≤i≤τ

(
s−i
τ−i

)
pτ−i

(
s
τ

) . (1)

Therefore assume that the prover computed a total of i setups dishonestly to
provide valid responses in the online phase. Since the prover discloses all seeds
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Prover(x, w) Verifier(x)

for i ∈ {1, . . . , s} do
seedi

$← {0, 1}λ

(com0,i, com1,i) ← Setup(seedi)

auxi = (com0,i, com1,i)

com2,i ← P1(x, w, seedi)

end for auxi, com2,i, ∀i

I ⊆ {1, . . . , s}, |I| = τ

chi
$← C, ∀i ∈ II, chi, ∀i ∈ I

rspi ← P2(x, w, seedi, chi), ∀i ∈ I

rspi, ∀i ∈ I

seedi, ∀i /∈ I

for i ∈ {1, . . . , s} \ I do

if auxi �= Setup(seedi) then

return false

return
∧

i∈I

V (x, auxi, com2,i, chi, rspi)

Fig. 4. Sigma protocol obtained by removing the helper from the protocol in Fig. 3.
P1, P2 and V relate to the actions performed by the prover and verifier in Fig. 3 respec-
tively.

belonging to setups that have not been executed, the cheating can only be hidden
from the verifier if all these i setups are executed. The probability for this to
happen is

(
s−i
τ−i

)
/
(

s
τ

)
. Now, the prover still needs to provide valid responses for

the τ − i executed and honestly computed setups, in which he succeeds with
probability pτ−i. For a more formal proof we refer to [10].

4.3 Further Improvements

In order to reduce the communication complexity of the sigma protocol of Fig. 4,
we apply various improvements outlined in the following.

Merkle-Tree. First, we combine the com2,i in a Merkle-tree, with com2,i being
the i-th leaf of the tree, where we label the root of the tree ρ. Then instead
of sending com2,i, ∀i, we only send ρ as a commitment. Later we then provide
missing nodes of the tree to the verifier to be able to recompute the root ρ.

Seed-Tree. Similarly, we optimize the transmission of the seeds by using a seed-
tree that expands an initial root into two seeds via a hash function. From there
every node of the tree is expanded in a similar fashion, until the tree reaches a
depth of 
log s�, i.e., it contains at least s leaves. Now we declare seedi to be the
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i-th leaf of that tree. The transmission of the seeds then only requires to reveal
a certain (fewer) number of nodes of the tree.

Single Initial Commitment. Instead of initially sending the root of the Merkle-
tree ρ together with all auxi’s as commitment, we just send a single commitment
com := Com(ρ, aux1, . . . , auxn). Later we then provide the missing inputs similar
to the missing nodes of the Merkle-tree so that the verifier can recompute com.

Sending a Rank-r Matrix. In the case of challenge equal to 0 instead of send-
ing Z1, Z2 as response, we send Z1, Z1 − Z2. Note, that the response still car-
ries the same information. However, the benefit lies in Z1 − Z2 being a rank-r
matrix, which for small r has a shorter description length. Precisely, we can write
Z1 − Z2 = XY , where X is an m × r matrix and Y an r × n matrix. Hence,
instead of sending the entries of Z2, we can send the entries of X and Y , which
requires to transmit (m + n)r log q bits instead of mn log q bits, i.e., we obtain
an improvement as long as r < mn/(m + n).

4.4 Public Key Size

The public key of the scheme is the MinRank instance M . Courtois [23] generates
M0, . . . , Mk−1 from an initial seed and chooses Mk such that there exists a
solution to the MinRank instance. Precisely, for a random matrix E ∈ Mm,n(Fq)
of rank r and a random secret key α ∈ F

k
q with αk �= 0, he lets

Mk := α−1
k

(
−E + M0 +

∑k−1
i=1 αiMi

)
.

The public key then consists of the seed and Mk and, thus, has a size of λ +
mn log q bits. We improve on this by showing that any generic MinRank instance
can be transformed into a canonical form which yields a shorter description
length for its matrices.

More precisely, let L be the (k + 1) × mn matrix whose i-th row consists of
the entries of Mi in row-major order, for i = 1, . . . , k and whose (k + 1)-th row
is formed by the entries of M0. Now, row operations on L correspond to linear
transformations of the variables αi, i.e., we can apply elementary row operations
without affecting the existence of a solution. Hence, we assume

L =
(

I
L′

0 . . . 0

)

, (2)

where I is the k × k identity matrix. Here, we restrict to keys where the first k
columns and k rows of L form a matrix of full rank. However, since we consider
random instances this is a constant fraction of the whole keyspace.

The public key is now generated as follows. First, from a random seed of λ
bits, generate the first k rows of L′, from which the matrices M1, . . . , Mk can be
derived following Eq. (2). Then generate a random m × n matrix E of rank r,
a random β ∈ F

k
q , and compute F := E − ∑k

i=1 βiMi. Finally, let f1, . . . , fk be
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the first k entries of F in row-major order, and let M0 := F − ∑k
i=1 fiMi and

αi := βi + fi for i = 1, . . . , k. This ensures that the last row of L starts with k
zeros. The compressed public key now consists of the seed and the last mn − k
entries of M0 (the first k entries are all zero) and so its size is λ + (mn − k) log q
bits.

4.5 Signature Size

The signature size after the Fiat–Shamir transform is determined by the commu-
nication size of messages send from the prover to the verifier. For our improved
version of the protocol (see Sect. 4.3) this communication includes:

1. initial commitment of size 2λ,
2. missing nodes of the Merkle-tree to compute ρ,
3. seed values seedi for i /∈ I,
4. missing auxiliary information auxi to compute com :=Com(ρ, aux1, . . ., auxn),
5. responses rspi for i ∈ I.

In the online phase the verifier can compute all τ values com2,i for i ∈ I.
Hence, due to the usage of a Merkle-tree, the prover needs to send at most

τ log s

τ � tree-nodes, each of size 2λ, to allow the verifier the re-computation of
the root ρ. Similarly, the usage of the seed-tree requires the prover to reveal at
most 
τ log s

τ � nodes of the tree, each of size λ, to enable the verifier to recompute
all s − τ seeds seedi for i /∈ I.

These seeds allow to compute auxi := (com0,i, com1,i) for i /∈ I. Further in
the online phase the verifier can compute one of either com0,i or com1,i for i ∈ I.
In order to finally re-compute com the verifier, now, misses τ values comj,i,
not obtained in the online phase, which have to be provided by the prover,
corresponding to τ · 2λ bits of communication.

Eventually the average size of each of the τ responses is

|rsp| =

(
mn + r(m + n)

)
log q

2︸ ︷︷ ︸
ch=0

+
λ + k log q

2︸ ︷︷ ︸
ch=1

.

Indeed, in the case of ch = 0 the response is composed of one m × n matrix and
one rank-r (m × n)-matrix over Fq; while in the case of ch = 1 it consists of the
seed used to derive the matrices (S, T,X) and a vector of length k over Fq.

In total we find a communication complexity of

C := 2λ
︸︷︷︸
1)

+ 3λ
⌈
log

s

τ

⌉

︸ ︷︷ ︸
2) + 3)

+ τ · 2λ
︸ ︷︷ ︸

4)

+ τ · |rsp|
︸ ︷︷ ︸

5)

, (3)

while the soundness of the protocol is pτ detailed in Eq. (1).
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4.6 Parameters

In this section, we propose parameters for our signature scheme targeting NIST’s
security categories I, III, and V and detail the corresponding signature and public
key sizes.

We estimate the security of our parameters by using the recent hybrid-
MinRank approach from [6]. Given 0 ≤ a ≤ n, this hybrid-MinRank app-
roach reduces the cost of solving a rank-r MinRank problem with K matrices in
Mm,n(Fq) to the cost of solving qar smaller instances with only K −am matrices
in Mm,n−a(Fq) and rank r. The complexity of the smaller instances is estimated
by using the kernel-search algorithm [31], the Support-Minors modeling [4], and
the big-k algorithm [24]1. Notice that we do not consider the Kipnis-Shamir [35],
and Minors [27] modelings, since it was recently proven that these modelings are
less efficient than Support-Minors [5].

The complexity of the aforementioned algorithms depends on the linear alge-
bra constant 2 ≤ ω ≤ 3, where the complexity of multiplying two n×n matrices
is O(nω). All our bit security estimates are done for the conservative choice of
ω = 2. Also, we assume that multiplying two elements in Fq costs (log q)2 bit
operations. Table 1 states the parameter sets for our scheme targeting the differ-
ent security categories. The column KS contains the complexity of the kernel-
search algorithm, while SM indicates the complexity of the Support-Minors mod-
eling. The value of a inside the parenthesis shows the hybridization parameter
of the hybrid-MinRank approach from [6].

Avoiding Random Solutions. Further, it is known that a set of k′ randomly
chosen matrices in Mm,n(Fq), in expectation, does not to span a rank r matrix
when k′ < (m−r)(n−r) [24, Sec. 24.2]. Hence we enforce k+1 < (m−r)(n−r)
in order to avoid random solutions to the underlying MinRank problem.

Table 1. Estimated bit-security of proposed parameter sets using ω = 2.

Category λ q m n k r KS(a) SM(a) big-k(a)

I 128 16 14 14 108 4 144(6) 146(6) 150(0)

III 192 16 17 17 130 6 209(6) 207(6) 251(0)

V 256 16 20 20 208 6 281(9) 274(9) 312(0)

Table 2 gives the signature and public key sizes obtained for the proposed
parameters. We compare our scheme to the original scheme by Courtois. Here,
we obtain an optimal signature size of our scheme for cut-and-choose parameters
τ = λ and s = 2λ (compare to Sect. 4.2). For this choice, using Merkle- and
seed-trees (as described in Sect. 4.3) yields signature size improvements (only)
on average.

1 The big-k algorithms is called big-m in [24].
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Nevertheless, our scheme improves significantly on Courtois’ design. In terms
of signature size we, e.g., obtain a reduction by a factor of 2.18 for category III,
while achieving a public key reduction by 1.62 using the improvement described
in Sect. 4.4.

Table 2. Signature sizes (in kilobytes) and public key sizes (in bytes) for suggested
parameters of our new scheme in comparison to Courtois’ scheme. The signature size
of our scheme is computed by setting τ = λ and s = 2λ in Eq. (3)

Category Signature (kB) Public key (B)

Courtois New Courtois New

I 55 24 114 60

III 118 54 169 104

V 221 97 232 128

Note that the nature of the MinRank problem involves the transmission of
matrices between the corresponding parties, which leads in general to larger
signatures compared to schemes that only involve vector exchanges. Neverthe-
less, the signature size of our construction gets close to being competitive to
other NIST PQC candidates that are not based on structured problems. As for
example to those of SPHINCS+, which achieves roughly 17 kB signatures for
category I.

5 MinRank-Based Ring Signatures

In the following we formalize the extension of our MinRank-based signature
scheme to ring-signatures. We follow the formalism and the security definitions
for ring signatures given by Bender, Katz, and Morselli [13]. We refer as a ring
(of users) to a list of public keys R = (pk1, . . . , pku). The formal definition of
a ring signature scheme is given in Appendix B. An essential property of a
ring signature scheme is that no coordination between the potential users of
the scheme is needed. First, anyone can generate keys independently using Gen.
Second, at the time of signing a message msg, a particular user holding a secret
key sk uses its own public key along with any set of u− 1 public keys from other
users to create a ring R and computes σ ← Signsk(msg,R). Anyone knowing
R can verify the signature σ of the message msg, and guarantee that msg was
signed by someone holding a secret key with corresponding public key in R. In
the following we refer to the holder of sk as the signer.

A desired property of a ring signature scheme is to preserve the anonymity of
the signer, i.e., informally speaking, the verifier can not identify the signer among
all members of R. Another fundamental security property is the unforgeability
for fixed rings. Roughly speaking, for a given ring R, without knowing any of
the secret keys corresponding to public keys in R, an adversary is not able to
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produce a valid signature. Formal definitions of those security properties are
given in Appendix B.1.

5.1 Extending to Ring Signatures

Let us briefly outline the idea of how to extend our signature scheme to a ring-
signature scheme. The public key of each user is a matrix R, while the instance
M (the public key of our regular signature scheme) is now a public parameter
of the ring-signature scheme. Each user crafts R, such that he knows a linear
combination of the Mi’s that added to R yields a low-rank matrix, i.e., he knows
a solution to the instance (M , R), which defines his secret key. Recall that a ring
is defined as u public keys R := (R1, R2, . . . , Ru). A ring signature is obtained
by invoking the signing function of our regular scheme with (M ,R) as public
key and the known solution as private-key.

Formal Definition of the Scheme. In the following we let MR-Sign and
MR-Verify denote the signing and verification function of our signature scheme
outlined in Sect. 4. Further, let M := (M0,M1, . . . , Mk) ∈ (

Mm,n(Fq)
)k+1 be a

public parameter of the scheme (generated from some public Initseed ∈ {0, 1}λ).
In the following R is the public-key corresponding to secret-key α and the ring
is R = (R1, . . . , Ru).

Gen(1λ) :

1. Choose random secret key α := (α1, . . . , αk) ∈ F
k
q ,

2. Set the public key to R = −
(
M0 +

∑k
i=1 αiMi

)
+ E, where E ∈ F

m×n
q is a

randomly chosen rank r matrix.
3. Output (R,α)

Signα(msg,R) :

1. Set γ ← (α, εj), where εj ∈ F
u
q denotes the j-th canonical vector.

2. Output MR-Signγ(msg)

VerifyR(msg, σ) :

1. Output MR-Verify
˜M

(msg, σ), where M̃ := (M ,R)

The proof of correctness as well as the proofs of our scheme fulfilling the secu-
rity notions of anonymity with regard to adversarially-chosen keys and unforge-
ability against fixed rings is given in Appendix B.2.

5.2 Parameters of the Scheme

Next we derive parameter sets for our constructed ring signature scheme. There-
fore, we need to make some observations on the security of the constructed
instances. Let us start with a remark on the amount of users a certain parame-
ter set can support.
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Limitation on the Number of Users. A given parameter set for our
MinRank-based ring signature scheme can not afford an unlimited number of
users. This is because for a ring of size u we can forge a signature by solving
a MinRank instance with u + k + 1 matrices in Mm,n(Fq). Such an instance
turns easy if u + k + 1 is big enough. By using the big-k algorithm [23] one
solves any MinRank problem with parameters (m,n, k′, r) in polynomial time
Poly(m,n, k′) as long as k′ ≥ m(n−r). Hence in both cases, i.e., for the one-user
and the ring version of our scheme we make sure that

k′ < m(n − r). (4)

Still, in the case k′ < m(n − r), the attacker can succeed with probability
qk′−m(n−r). Hence, the complexity of the algorithm becomes

qm(n−r)−k′ · Poly(m,n, k′).

We take this attack into account when deriving parameters. Further, we enforce
u + k + 1 ≤ (m − r)(n − r) in order to avoid random solutions to the underlying
MinRank problem.

Attack Scenarios. To forge a signature for a given ring R := (R1, R2, . . . , Ru)
one has to solve an instance of the rank-r MinRank problem with matrices
(M ,R) ⊂ Mm,n(Fq), where M := (M0;M1, . . . , Mk) is the fixed set of matrices
of the scheme. We consider two attack scenarios. First, due to the construction
of our ring signature, one can fix to zero the coefficients of all but one matrix
in R and still the remaining problem has a solution. That is, for any 1 ≤ i ≤ u,
the rank-r MinRank problem defined on the k+1 matrices M0+Ri,M1, . . . , Mk

has a solution. Finding this solution corresponds to solving a MinRank instance
with parameters (q,m, n, k + 1, r). In the second scenario the attacker aims at
finding a solution to the instance M0,M1, . . . , Mk, R1, . . . , Ri, for 2 ≤ i ≤ u
which has i solutions. We then take the minimum time complexity obtained in
both scenarios to derive the bit complexity.

Table 3 shows a list of parameters for our ring signature achieving NIST
category I security.

5.3 Public Key and Signature Size

Suppose we have a ring with u users. The public key size for a ring of u users is
given by

λ + u · mn log q.

This means that the public key size is linear in the number of users u.
The signature size is given by f(m,n, k+u, r, q), where f(m,n, k, r, q) denotes

the signature size with one user and parameters (m,n, k, r, q). Asymptotically
we find
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Table 3. Suggested parameters for our ring signature an their estimated bit-security.

# users 8 16 32 64 128 256 512 1024 4096

q 16 16 16 16 16 16 16 16 16

m 16 16 18 20 23 29 36 46 81

n 16 16 18 20 23 29 36 46 81

k 102 102 102 124 158 216 320 340 560

r 5 5 6 6 6 7 7 9 12

bit-security 143 143 146 146 143 147 151 144 155

Table 4. Ring signature size (in kilobytes) of our ring signature in comparison to
recent proposals.

#users 23 24 25 26 27 28 210 212 Assumption Security

MRr-DSS 27 27 32 36 45 64 145 422 MinRank Cat. I

KKW [34] - - - 250 - - - 456 LowMC Cat. V

Raptor [37] 10 - - 81 - 333 1290 5161 MSIS/MLWE 100 bit

EZSLL [26] 19 - - 31 - - - 148 MSIS/MLWE Cat. II

Falafl [15] 30 - - 32 - - - 35 MSIS/MLWE Cat. I

Calamari [15] 5 - - 8 - - - 14 CSIDH 128 bit (60 bit)

LESS [8] 11 - - 14 - - - 20 Code equiv. 128 bit

f(m,n, k + u, r, q)
f(m,n, k, r, q)

= O
(

λ/ log q + mn + k + u

λ/ log q + mn + k

)

= O
(

mn + k + u

mn + k

)

,

assuming that λ
log q = O (mn). Since we know from Eq. (4) that k < mn we

achieve a signature size that scales with the number of users u roughly as
O (

u
mn

)
. Note that as long as mn is a function in u that tends to infinity

for growing u, this corresponds to a sublinear scaling. Moreover, for practical
parameters the large denominator allows us to achieve a competitive signature
size for low to moderate amounts of users.

Table 4 states the signature sizes of our ring signature MRr-DSS achieved
for different amounts of ring sizes using the parameters detailed in Table 3. We
compare our parameters to various recent developments. Note that parameters
for NIST category I are not available for all designs, so we also indicate the
achieved security level.

The most compact ring signatures are obtained by the Calamari construc-
tion of Beullens, Katsumata, and Pintore [15], which follows a group-action-
based construction similar to classical discrete logarithm based schemes. How-
ever, there is some doubt about the quantum security of its hardness assump-
tion. Moreover, the chosen parameters offer at most 60 bits of quantum security
employing NIST metrics [43]. Recently, Barenghi et al. [8] adapted the same idea
but instantiated the group action via the code equivalence problem. However,
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despite recent efforts [9,16] motivated by cryptographic constructions [7,8,18],
the code equivalence problem has not yet reached the same level of cryptanalytic
maturity as the MinRank problem.

Apart from group action based constructions, for a large number of users the
Falafl scheme [15] yields the best signature size, due to its logarithmic depen-
dence on the ring size.

However, for low to moderate amounts of users (≤27) our scheme yields com-
petitive performance. Even though some of the considered schemes might achieve
(slightly) lower signature sizes in this regime, those are all based on structured
lattice-based assumptions. Our scheme yields a solid alternative to this trend by
being based on the hardness of random instances of a non-structured problem.

A Commitment Scheme

In this section we give the formal definition of a computation hiding and com-
putation binding commitment scheme.

Definition 3 (Computational hiding). We say that Com is computation-
ally hiding if for all polynomial time algorithms A, and every pair of messages
m, m′ the advantage AdvhidingCom (A,m,m′) is a negligible function of the security
parameter λ, where

AdvhidingCom (A,m,m′) :=

∣
∣
∣
∣
∣

Pr
bits $← {0,1}λ

[A(
Com(bits,m)

)
= 1

] − Pr
bits $← {0,1}λ

[A(
Com(bits,m′)

)
= 1

]
∣
∣
∣
∣
∣
.

Definition 4 (Computational binding). We say that Com is computation-
ally binding if for all polynomial time algorithms A, the advantage AdvbindingCom (A)
is a negligible function of the security parameter λ, where

AdvbindingCom (A) = Pr
[
Com(bits, m) = Com(bits′, m′) | (bits, m, bits′, m′) ← A(1λ)

]
.

B Ring Signatures

In the following we give the formal definition of a ring signature scheme.

Definition 5 (Ring signature scheme). A ring signature scheme is a triple
of polynomial time algorithms (Gen,Sign,Verify) that generates keys, sign a mes-
sage, and verify the signature of a message, respectively. Formally:

– Gen(1λ) outputs a key pair (pk, sk), where pk denotes the public key and sk
its corresponding secret key.

– Signski
(msg,R) outputs a signature σ of the message msg with respect to the

ring R = (pk1, . . . , pku). Here it is assumed that: (1) (pki, ski) is a valid key-
pair output by Gen; (2) |R| ≥ 2; and (3) each public key in the ring is distinct.

– VerifyR(msg, σ) verifies a signature σ of the message msg with respect to R.
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We say that a ring signature scheme is correct if it satisfy the following correct-
ness condition: for every λ and for every set of outputs {(pki, ski)}u

i=1 of Gen(1λ)
it holds

VerifyR(msg,Signski
(msg,R)) = 1,

where R = (pk1, . . . , pku).

B.1 Security Definitions

Next we give the security definitions for ring signatures following Bender, Katz,
and Morselli [13].

Definition 6 (Anonymity w.r.t adversarially-chosen keys). Let
(Gen,Sign,Verify) be a ring signature scheme, u(·) a polynomial, and let A be
a PPT adversary. Consider the following game:

1. The key pairs {(pki, ski)}u(λ)
i=1 are generated using Gen(1λ), and the set of

public keys S := {pki}u(λ)
i=1 is given to A.

2. A is given access to an oracle OSign(·, ·, ·) such that for every R and 1 ≤ i ≤
u(λ) it holds OSign(i,msg,R) := Signski

(msg,R), where pki ∈ R.
3. A outputs a message msg and a ring R that contains at least two public keys

pki0 , pki1 ∈ S.

4. A challenge signature σ ← Signskib
(msg,R), where b

$← {0, 1} is a random
bit, is given to A.

5. A outputs a bit b′, and it succeeds if b′ = b.

We say (Gen,Sign,Verify) achieves Anonymity w.r.t adversarially-chosen keys
if, for any PPT A and any polynomial u(·), the success probability of A in the
aforementioned game is negligibly close to 1

2 .

Note that in contrast to the weaker security notion of basic anonymity the
property of anonymity w.r.t adversarially-chosen keys allows the adversary to
inject own public keys in R. This holds for the usage of the oracle in step 2 as
well as when providing the challenge data in step 3.

Definition 7 (Unforgeability against fixed-ring attacks). We say that a
ring signature (Gen,Sign,Verify) is unforgeable against fixed-ring attacks if for
any PPT adversary A and for any polynomial u(·), the probability that A succeeds
in the following game is negligible:

1. The key pairs {(pki, ski)}u(λ)
i=1 are generated using Gen(1λ), and the set of

public keys R := {pki}u(λ)
i=1 is given to A.

2. A is given access to a signing oracle OSign(·, ·), where OSign(i,msg) outputs
Signski

(msg,R).
3. A outputs (msg∗, σ∗), and succeeds if Verify(msg∗, σ∗) = 1 and also A never

made a query of the form OSign(∗,msg∗).
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B.2 Proofs

In the following we prove the correctness, anonymity, and unforgeability of our
ring-signature scheme defined in Sect. 5.1.

Correctness. Let εi be the i-th canonical vector in F
u
q and ski denote the

secret key of the i-th user in the ring R. Clearly, γi := (ski, εi) is a solution
to the MinRank problem defined on M̃ := (M ,R). The correctness of the ring
signature scheme now follows from the correctness of our basic signature scheme
by observing that

VerifyR
(
msg,Signski

(msg,R)
)

= MR-Verify
˜M

(
msg,MR-Signγi

(msg)
)
.

Anonymity w.r.t Adversarially-Chosen Keys. We proof anonymity w.r.t
adversarially-chosen keys in the random oracle model by showing the existence
of a simulator that, without knowing any of the secret keys corresponding to one
of the public keys in the ring, can produce signatures that are indistinguishable
from signatures build by a legitimate user.

First note that from the HVZK property of our sigma protocol in the random
oracle model it follows that there exists a simulator S ′ which is able to provide
values σ′ indistinguishable from legitimate signatures produced with MR-Sign. To
construct S ′ we simply follow the Fiat–Shamir transform but using the simulator
S of our sigma protocol whenever a valid transcript is needed.

Now, recall that the signing operation of our ring signature is a call to MR-
Sign with adapted public-key (M ,R), where

Signski
(msg,R) = MR-Signsk′

i
(msg).

Therefore we can use S ′ as a simulator to obtain values σ′ which are indis-
tinguishable from legitimate ring signatures.

Now, let G0 denote the game described in Definition 6. We modify step 4
in G0 to define a new game G1. Instead of σ ← Signskib

(msg,R), the output of
step 4 in G1 is σ′ ← S ′(msg,R). Notice G0 and G1 are indistinguishable games.
Hence, the advantage of any adversary A against G0 and G1 is the same. Also,
the challenge σ′ given in G1 does not depend on the bit b chosen in step 3.
Therefore, the advantage of an adversary A against game G1 is zero.

Unforgeability Against Fixed-Ring Attacks. Forging a signature for a fixed
ring R, i.e., winning the game given in Definition 7, directly reduces to forging a
signature for MR-Sign with public-key (M ,R). The unforgeability for MR-Sign
now follows from the Fiat–Shamir transform applied to the sigma protocol and
its HVZK property.

C A Note on Santoso et al.’s Scheme

The parameters given by Santoso et al. [44] to obtain a security level of λ bits
are shown in Table 5.



MR-DSS – Smaller MinRank-Based (Ring-)Signatures 165

Table 5. Parameter sets proposed in [44].

Parameter set λ q n m k r

A 128 2 26 26 208 13

B 192 2 33 33 330 17

C 256 2 39 39 468 20

Missing Commitments in the Signature Size. The authors of [44] disre-
gard the size of the initial commitments in their analysis of the communication
complexity. Taking commitment sizes into account (2λ bits for each hash, to be
collision-resistant) the signature size of [44] is given by

λ

(
29
2

λ + mn log q +
k

2
log q

)

. (5)

While the signature size of Courtiois’ scheme is given by

λ

log(3/2)

(
20
3

λ +
2
3
mn log q +

2
3
k log q

)

. (6)

Random Solutions. As stated in Sect. 4.6, a random instance of the Min-
Rank problem with parameters (q, n,m, k, r) has, in expectation, nsol :=
qk−(m−r)(n−r) solutions. Some algorithms, as e.g., the kernel search algorithm,
can directly benefit from multiple solutions by obtaining a speed-up of magni-
tude nsol > 1 in those cases. It turns out that the parameter sets given in [44]
contain a large amount of solutions, affecting security.

New Security Estimates and Signature Size. Table 6 shows the bit-security
of the kernel search algorithm for parameters suggested in [44]. Note that all the
parameter sets are far below the claimed bit-security, which is 128 for set A, 192
for set B, and 256 for set C. Also, observe that the signature size is larger than
the one of standard Courtois for all suggested parameters.

Table 6. Bit-security and signature size for parameter sets proposed in [44].

Parameters
set

Algorithm Bit-security Courtois’ signature
size using Eq. (6)

Santoso et al.’s
signature size given in
[44]

Santoso et al.’s
signature size using
Eq. (5)

A Kernel search 88 38.54 KB 18.81 KB 41.19 KB

B Kernel search 121 89.19 KB 44.50 KB 94.64 KB

C Kernel search 159 162.01 KB 82.15 KB 170.84 KB
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Abstract. The Rainbow signature scheme is the only multivariate
scheme listed as a finalist in round 3 of the NIST post-quantum standard-
ization process. A few recent attacks, including the intersection attack,
rectangular MinRank attacks, and the “simple attack,” have changed
this landscape; leaving questions about the viability of this scheme for
future application.

The purpose of this paper is to analyze the possibility of repairing
Rainbow by adding an internal perturbation modifier and to compare
its performance with that of UOV at the same security level. While
the costly internal perturbation modifier was originally designed with
encryption in mind, the use of schemes with performance characteristics
similar to Rainbow is most interesting for applications in which short
signatures or fast verification is a necessity, while signing can be done
offline. We find that Rainbow can be made secure while achieving smaller
keys, shorter signatures and faster verification times than UOV, but this
advantage comes at significant cost in terms of signing time.

Keywords: Multivariate cryptography · Rainbow · MinRank

1 Introduction

As the world marches toward a future of widespread quantum computing, the
need for secure post-quantum cryptosystems is imperative. One branch of post-
quantum cryptography is multivariate cryptography. Multivariate cryptosystems
are based on the MQ problem, which is the problem of solving a system of nonlin-
ear equations over a finite field. The Rainbow signature scheme is the only mul-
tivariate cryptosystem among the round 3 finalists of the National Institute for
Standards and Technology (NIST) Post Quantum Standardization process [18].

The first massively multivariate cryptosystem published in the west was C∗,
introduced in 1988 by Matsumoto and Imai [17]. This encryption scheme is
an example of a big-field scheme, which makes use of computations in both a
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base field and an extension field. Given a base field Fq and an extension field
K, C∗ will have an Fq-quadratic central map F : K → K, whose structure is
hidden by function composition. C∗ was broken by Patarin in 1995 [19] with
the introduction of linearization equations, which exploits a linear relationship
between plain text and ciphertext vectors. Many modifiers were introduced after
the break of C∗ in the hopes of repairing the scheme, including minus, projection
and internal perturbation modifiers, see [9,21,22]. The security of this family of
modifiers is discussed in [6].

Another avenue of study is to consider small-field cryptosystems, which are
multivariate schemes that work over only one field, Fq. Patarin introduced the
small field scheme Oil and Vinegar [20] as a new possible multivariate signature
scheme. The Oil and Vinegar scheme consists of two different types of variables,
specifically oil variables and vinegar variables. In the original presentation of the
scheme, the number of oil variables was equal to the number of vinegar variables.
Cryptanlysis from Kipnis and Shamir [16] showed this parameterization to be
insecure, which lead to the Unbalanced Oil and Vinegar scheme (UOV) which
necessitates that the number of vinegar variables is much larger than the number
of oil variables.

The Rainbow Signature scheme [11] is an extension of the UOV signature
scheme that consists of layers of UOV central maps. Despite the relatively large
size of public keys associated with the Rainbow scheme, its short signatures and
high degree of computational efficiency in verification make it an attractive choice
for many applications, such as verified/secure boot and certificate transparency.

Following the support minors advance in MinRank methodology, see [1], new
attacks in [3], and more significantly [4], have reduced the security of Rainbow
below their claimed NIST security levels, rendering the scheme significantly less
efficient. The critical insight of these attacks is that information about the secret
key can be encoded in equations in the public variable set and combined with
the public equations, resulting in a significant enhancement of a direct algebraic
attack targeting a hidden subspace.

In this paper, we introduce the variant “IPRainbow”, which adds an inter-
nal perturbation modifier to the Rainbow central map. This perturbation of the
private key disrupts the above attacks by decoupling the new relations from the
public equations; specifically, the public equations are satisfied by a vector in
the secret subspace with low probability, corrupting the attack mechanism. We
analyze the security and efficiency of this new scheme in comparison with UOV.
We show that it is still possible for Rainbow to outperform UOV in terms of ver-
ification speed, signature size and public key size; however, these enhancements
come at a significant cost in signing time.

2 UOV and Rainbow

2.1 Oil and Vinegar

The Oil and Vinegar signature scheme was introduced in [20] as a response
to Patarin’s linearization equations in [19], which broke the first multivariate
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cryptosystem C∗. The scheme consists of two types of variables over a finite field
Fq, namely oil and vinegar variables. Furthermore, the number of oil variables
and the number of vinegar variables were equal in the original parameterization.
Kipnis and Shamir broke this balanced Oil and Vinegar scheme in [16], so we now
only consider the case of Unbalanced Oil and Vinegar (UOV), where the number
of vinegar variables is sufficiently large enough that the statistical attacks of [15]
and the intersection attack from [3] are infeasible.

Let x = (x1, . . . , xv, xv+1, . . . , xn) ∈ F
n
q . We will call x1, . . . , xv the vine-

gar variables whereas xv+1, . . . , xn will denote the oil variables. We define the
following central map F = (f1, . . . , fv+1), where each f is of the form:

f(x) =
v∑

i=1

v∑

j=i

αijxixj +
v∑

i=1

n∑

j=v+1

βijxixj +
n∑

i=1

γixi + δ

To create the public key equations P we compose F with an invertible affine
map T : F

n
q → F

n
q to get P = F ◦ T . Notice that although F is a quadratic

map, F is linear on the oil variables. Therefore, inversion of the central map
is completed by choosing random values in Fq for each of the vinegar variables.
Each equation is then set equal to zero and Gaussian Elimination is used to solve
for the remaining oil variables. If no solution is found, choose different values for
the vinegar variables. Repeat this process until a solution is found.

2.2 Rainbow

The Rainbow signature scheme was first introduced in [11]. Rainbow can be
thought of a banded construction of UOV, where Rainbow consists of L different
UOV layers. Rainbow is the only multivariate signature scheme to make it into
the finalists of the third round of the NIST standardization process [18], but the
scheme has recently faced substantial attacks from [3] and [4].

To create a Rainbow signature scheme, we will still consider input vectors
of the form x = (x1, . . . , xn) ∈ F

n
q , but now each layer of Rainbow will con-

tain a different number of vinegar variables. Consider a sequence of integer
values 0 < v1 < v2 < . . . < vL < n, and corresponding sets of variables
V1 = {x1, . . . , xv1}, V2 = {x1 . . . , xv1 , . . . , xv2}, . . . , VL = {x1, . . . , xvL

} that con-
tain the vinegar variables for the 1st, 2nd, . . ., and Lth layers, respectively. Note
that the oil variables in layer � will contain O� = {xv�+1, . . . , xn}. Furthermore
V1 ⊂ V2 ⊂ · · · ⊂ VL, whereas OL ⊂ · · · ⊂ O2 ⊂ O1.

Each layer � will be composed of n − v� equations, which is also the number
of oil variables in that layer. A polynomial in the �th layer will have the form:

f�(x) =
v�∑

i=1

v�∑

j=1

αij�xixj +
v�∑

i=1

n∑

j=v�+1

βij�xixj +
n∑

i=1

γi�xi + δ�

The public key is then formed by composing the central map with two affine
maps, P = U ◦ F ◦ T . The Rainbow parameterization proposed in the current
submission [10] to NIST’s standardization process utilizes L = 2 layers, as is
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historically typical. Also, in order to speed up key generation, by convention we
consider only homogeneous polynomials fi (Fig. 1).

Layer 1 Rainbow Map Layer 2 Rainbow Map

Fig. 1. These diagrams represent the matrices corresponding to the central map of
a Rainbow scheme with two layers. White areas represent entries of the matrix that
are zero, whereas gray areas correspond to possibly nonzero entries. The lined gray
areas correspond to coefficients on the quadratic vinegar terms, and solid gray areas
correspond to mixed vinegar and oil coefficients.

To invert the central map F = f (1), . . . , f (n) we choose values for the first
layer vinegar variables x1, . . . , xv1 and substitute these values into the first layer
maps f (1), . . . , f (o1). Then we solve the resulting linear system in the first layer
oil variables xv1+1, . . . , xv2 . Next we substitute the values of these variables into
the central maps f (v+1), . . . , f (n) and solve similarly for the remaining variables,
xv2+1, . . . , xn.

3 Known Attacks of Rainbow

3.1 Background

MinRank attacks have proven to be highly effective against multivariate schemes.
We can define the MinRank problem as follows:

Problem 1 (MinRank Problem). Given matrices A1, . . . , Ak ∈ F
n×m
q and

r ∈ N, decide if there exists a linear combination y1, . . . , yk ∈ Fq (not all zero)
such that

rank

(
k∑

i=1

yiAi

)
≤ r.

The MinRank attack was first introduced in [14] as the first effective attack
on the multivariate scheme HFE. This first iteration of the MinRank attack
is commonly called the Kipnis-Shamir (KS) attack. Other methods have since
followed, including minors modeling and support minors modeling [2,13]. The
goal of MinRank attacks is to try to find linear combinations of the public
matrices that result in a matrix with low rank. This is useful against schemes
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like HFE and C∗ as the central map has low rank, thus the attacker can find
an equivalent key. The MinRank attack is also applicable to Rainbow, since the
first layer maps exhibit a rank defect.

The complexity of MinRank attacks are tied to the complexity of polyno-
mial solvers, such as the XL algorithm of [8]. These algorithms create a larger
generating set by generating higher degree equations through monomial mul-
tiplication. The first degree fall of the XL-style algorithm should occur at the
degree corresponding to the first non-positive coefficient of the corresponding
Hilbert Series.

We briefly explain the idea of the support minors modeling of [2], see [2] for
the details. The support minors system from [2] involves two variable sets, the
so-called “minor” variables, whereas the above variables are given the moniker
“linear”. As mentioned in [24] with more details following in [23], the additivity
of Hilbert Series can be generalized to a multi-series respecting disparate variable
sets. Due to the large number of the minor variables, we may restrict ourselves
to consider the algebra of degree one in the minor variables and graded with
respect to the degree of the linear variables. In this way, we can “forget” the
minor variables and recover a univariate series.

In [2], the coefficients of this series for degree b where m′ columns are used
is derived. Specifically, the degree b coefficient is given by

b∑

i=0

(−1)i

(
m′

o2 + i

)(
n + i − 1

i

)(
n + b − i − 1

b − i

)
.

Note that we must include all n matrices. Thus we obtain the series

G(t) =
∞∑

b=0

b∑

i=0

(−1)i

(
m′

o2 + i

)(
n + i − 1

i

)(
n + b − i − 1

b − i

)
tb.

Given that the solving bi-degree is (1, b), it follows that the support-minors
algorithm solves a MinRank instance of k many n × m matrices with a target
rank r with an estimated cost of

3(k − 1)(r + 1)
(

m′

r

)2(
k + b − 2

b

)2

field multiplications. Note that it is sometimes more efficient to increase b if it
is possible to use a smaller m′.

3.2 Rectangular MinRank Attack

In this section, we describe the attack presented in [3]. The public key of a
multivariate cryptosystem is a set of m nonlinear equations in n variables. We
can consider the quadratic form of each equation fi, which will be an n × n
matrix Fi of the form:

fi(x) = xFix�.
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It is often useful to consider the public or private key of a multivariate scheme
with m equations in n variables as a single 3-tensor. In this vein, consider the
Rainbow public and private keys as 3-tensors of dimension n×n×m. In partic-
ular, consider Fig. 2, where the white represents zero coordinates and the gray
represents nonzero coordinates. Given a vector from O2, the multiplication of
the public key with this oil vector will result in a matrix with nonzero elements
only in the upper (v + o1) × o2 coordinates.

× = −→

← o1 → ← o2 →
← m = o1 + o2 →

↑
o2
↓

↑
v + o1

↓

Fig. 2. Multiplication of a Rainbow public key by a vector in O2.

Thus, if we can find a linear combination of the public key equations such
that

rank

(
n−o2+1∑

i=1

yiPi

)
≤ o2,

then it is probable that y ∈ O2. This instance of the MinRank problem requires
n − o2 + 1 different n × m matrices with a target rank of o2.

3.3 Simple Attack

The Simple attack of [4] breaks the Rainbow I parameters quite efficiently. The
technique can also be used in conjunction with the Rectangular MinRank attack
to significantly impact security for the higher security parameters, Rainbow III
and Rainbow V as well. The attack introduces a new strategy to find vectors
in O2, which then can be used to remove the outer layer of the Rainbow public
key, leaving us with a small instance of UOV.

The Simple attack will make use of the discrete differential of the public key,
defined as

P ′(x,y) = P (x + y) − P (x) − P (y).

We denote W := P (O1), dim(O2) = dim(W ) = o2. From analysis in [3], we
know that for y ∈ O2, P ′(x,y) ∈ W for any x ∈ F

n
q . This structure is illustrated

in Fig. 3.
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O2 ⊂ O1 ⊂ F
n
q

P P P

{0} ⊂ W ⊂ F
m
q

P ′(x, ·)

Fig. 3. Structure of nested subspaces.

By fixing a random x ∈ F
n
q , we can define

Dx(y) = P (x + y) − P (x) − P (y),

where for any nonzero x and y ∈ O2, Dx(y) ∈ W . So, if we restrict our domain
to O2, we see that Dx|O2 is a linear map from O2 to W . Therefore, for any choice
of basis, we can express Dx|O2 as an o2×o2 matrix. For a fixed x, the probability
that there exists a nontrivial kernel vector y ∈ O2 such that Dx(y) = 0 is the
same as the probability that a random o2 × o2 matrix will be singular. This is a
well known problem and gives us the probability

1 −
o2−1∏

i=0

(1 − qi−o2),

which for large q is approximately q−1. This leads to the strategy of guessing a
random vector x and trying to find a solution to the system of equations

{
Dx(y) = 0
P (y) = 0.

If we can find such a y, then it is likely that y ∈ O2. If we cannot find such a y,
choose a different x and repeat the process.

Once we have a vector y ∈ O2, we can generate a subspace of W by computing

〈P ′(e1,y), · · · , P ′(en,y)〉 ⊆ W.

Analysis from [4] shows that with high probability the generated space will be
equal to W . This gives us access to a subspace of, if not the entirety of, the
secret space W . Given this information, we can create a map V that allows us
to find the secret space O2. We define V to be the change of variables such that

V ◦ P (x) =

{
P1(x)
P2(x)

where P1 : Fn
q → F

m−o2
q and P2 : Fn

q → F
o2
q . From here, we can find the kernel

of the map

x 
→

⎛

⎜⎝
P ′(e1,x)

...
P ′(en,x)

⎞

⎟⎠ .
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With high probability, the kernel of this map will be O2. Beullens completes the
attack using another change of variable map. Let U : Fn

q → F
n
q send the last o2

coordinates to O2 and then consider

V ◦ P ◦ U(x) =

{
F1(x)
F2(x)

.

It is shown in [4] that finding a preimage P is equivalent to finding a preimage
of F , and finding a preimage of F1 gives a preimage of F . F1 is a system of m−o2
equations that has the structure of a UOV public key with n − o2 variables and
an oil space of dimension m−o2. Given this smaller UOV system, the remainder
of the attack is to solve a system of m equations in n − m unknowns. Under the
assumption that this system is semi-regular, it can be solved with an XL-style
algorithm at degree

dsr = min
d

{
[td]

(
1 − t2

)m

(1 − t)n−m ≤ 0

}
.

In such a case, the complexity of the attack is dominated by the cost of the block
Wiedemann [7] step in the XL algorithm. This cost is well known to be

3
(

n − m − 1 + dsr

dsr

)(
n − m + 1

2

)
,

where
(
n−m−1+dsr

dsr

)
is the number of monomials (i.e., the dimension of the square

Macaulay submatrix), and
(
n−m+1

2

)
is the number of nonzero entries in each row

of the Macaulay matrix.
The Simple attack of [4] can be combined with the Rectangular MinRank

attack of [3]. We may construct a Hilbert series in this case by pasting together
the rectangular MinRank support minors system with the two systems

Dx(y) = 0, and
P (y) = 0.

The latter two systems involve the same variable set, thus we obtain the Hilbert
series

(1 − t)m(1 − t2)m

(1 − t)n
=

(1 − t2)m

(1 − t)n−m
.

To obtain the Hilbert series for the entire system, we merely add the relations
in the already present variables. Under the assumption of semi-regularity of the
resulting system, we obtain the series

(1 − t)m(1 − t2)mG(t),

where G(t) is as described in Sect. 3.1. This is a similar result to what was
observed in [3].
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4 IPRainbow

4.1 Description of IPRainbow

We will consider the internal perturbation (IP) modifier, see [9], applied to the
Rainbow scheme. The IP modifier can be described as follows. Let Q : Fn

q → F
m
q

be a set of m quadratic equations where qi denotes the ith equation. Given a
public key P : Fn

q → F
m
q whose ith equation is denoted pi we create the internally

perturbed public key P̃ (x) by defining

p̃i(x) = pi(x) + qi(x)

for each 0 < i ≤ m. The support dimension of IP will be denoted as s.
To define IPRainbow, we will keep the layer 1 central maps the same and

internally perturb the 2nd layer maps. Specifically, we will consider an internally
perturbed 2nd layer homogeneous equation of the form:

f(x) =
v2∑

i=1

v2∑

j=1

αijxixj +
v2∑

i=1

n∑

j=v2+1

βijxixj +
v2+s∑

i=v2+1

v2+s∑

j=v2+1

μijxixj ,

see Algorithm 1 in Appendix A. The matrix representations of the central maps
are illustrated in Fig. 4.

Layer 1 Rainbow Map. Layer 2 Rainbow Map.

Fig. 4. The first layer maps remain the same as the unmodified Rainbow first layer
maps. Now we consider a s×s submatrix of the oil times oil section of the second layer
map that is nonzero and denoted as light gray.

Given an unmodified Rainbow public key, we know that for any x ∈ F
n
q

such that Tx ∈ O2, P (x) = 0. Now, given the IPModifier, the O2 space is not a
subspace of the kernel. Indeed, an O2 vector is in the kernel of Q with probability
approximately q−s.

Inversion is similar to the process of inversion for Rainbow. One randomly
assigns values to the first layer vinegar variables, x1, . . . , xv1 and uses the first
layer maps to solve for the first layer oil variables, xv1+1, . . . , xv2 . To invert the
second layer maps, they are evaluated at x1, . . . , xv2 to recover o2 equations
in o2 variables. These equations are quadratic, however, only s variables occur
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in quadratic terms, thus by Gaussian elimination, we may recover a system
of s quadratic equations in s variables whose resolution by standard Gröbner
basis techniques allows for the remaining variables to be linearly solved, see
Algorithm 2 in Appendix A.

4.2 Security Analysis

Simple Attack. The simple attack of [4] remains applicable to IPRainbow, with
some slight differences. Note that the matrix structure of Dx remains the same
as in the case of Rainbow. Thus, with probability roughly q−1 the linear map
defined by Dx contains an O2 vector y in its left kernel. For our new IPRainbow
scheme, an oil vector in the kernel of Dx may not necessarily be in the kernel of
the public key. Given that the second layer maps contain quadratic summands in
s of the second layer oil variables, we expect the simple attack of [4] to proceed
with probability roughly q−s−1 (See Lemma 1).

Lemma 1. For sufficiently small s, the linear map Dx has an O2 vector y in
its left kernel that satisfies P (y) = 0 with probability approximately q−s−1.

Proof. Let y be an O2 vector satisfying P (y) = 0. First, note that there are(
s+1
2

)
homogeneous quadratic monomials in the variables yv2+1, . . . , yv2+s. Since

the m unperturbed 2nd layer maps vanish at y, the possibly nonzero terms of
the perturbed second layer maps involve precisely these monomials. Thus, the
probability that all of these monomials are zero (and hence yv2+i = 0 for i from
1 to s) is bounded below by the probability that this set of m equations has rank(
s+1
2

)
, which is

pr =
∏(s+1

2 )−1

i=0 qm − qi

qm(s+1
2 )

=
(s+1

2 )−1∏

i=0

1 − qi−m.

Next, we work under the condition that the values yv2+1, . . . , yv2+s are all
zero and determine the probability that such an O2 vector is in the left kernel of
Dx. This probability is the same as the probability that there exists a nontrivial
kernel vector of Dx restricted to this o2 − s-dimensional subspace of O2. This
restricted linear map, which we may represent as a random (o2 − s) × o2 matrix
over Fq, is of full rank with probability

pk =
∏o2−s−1

i=0 qo2 − qi

qo2(o2−s)
=

o2−s−1∏

i=0

1 − qi−o2 ,

Finally, by Markov’s inequality, the probability that there is at least a one-
dimensional subspace W of O2 in the left kernel of Dx such that P (y) = 0 for
all y ∈ W is then bounded by q−1 times the expected number of such vectors.
We then note that the dominant term in the second expression is bounded by
(1 − pr) + (1 − pk), which is approximately q−s−1 for sufficiently small s. ��
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We further remark that the constraint on s being small is not very strict.
Even if s is such that 1 < pr, pk, there is still a rank condition that must be
satisfied for such a vector to exist in the kernel of Dx. Thus, we find that the
above probability estimate is accurate even when

(
s+1
2

)
is somewhat larger than

m, a fact we have verified experimentally.

Rectangular MinRank Attack. As is the case with Rainbow, the Simple
attack of [4] can be combined with the Rectangular MinRank attack of [3].
As the attack still involves the finding a second layer oil variable and uses the
property that such a vector satisfies the public equations, Lemma 1 applies, and
we find that the complexity of the combined Rectangular MinRank attack costs
a factor of approximately qs times more for IPRainbow than for Rainbow. Thus,
the complexity of the enhanced Rectangular MinRank Attack is given by

3qs+1(n − m − 1)(o2 + 1)
(

m′

r

)2(
n − m + b − 3

b

)2

field multiplications, where m′ ≤ m and b are chosen to optimize the attack.

Intersection Attack. In addition to the Simple attack and Rectangular Min-
Rank attacks, Beullens also enhanced the Rainbow Band Separation attack of
[12] and the tighter analysis of [23] with what he calls the Intersection Attack,
see [3]. Once again, this attack relies on finding vectors in O2 that satisfy the
public polynomials. Therefore, once again, Lemma 1 applies and the complex-
ity of these attacks is increased by a factor of about qs. Even in the case that
n = 3m, this attack is not the limiting attack.

4.3 Efficiency and Key Size

The complexity of the signing procedure is dominated by the complexity of the
Gröbner basis algorithm used to solve the s-quadratic terms introduced in the
IP modifier. Since the security of IPRainbow is exponential in s with base q,
we choose q = 257 so that s can remain small for the fastest inversion. Figure 5
compares the efficiency of IPRainbow with comparable UOV parameters. These
estimates were computed with unoptimized implementations using the Magma
Computer Algebra System,1 see [5], on a 2.4 GHz Quad-Core Intel Core i5 pro-
cessor.

We find that it is easy to achieve secure parameters of IPRainbow with
smaller keys and smaller signatures. While it is possible to set parameters so
that IPRainbow verification is faster than UOV, in all of the experiments we
performed the signing times for these instances are very costly, to the point of
possibly being disqualifying even for applications using offline signing. Still, it
is important to note that our data seem a bit noisy and better implementation
can make the relationship between key size and verification time tighter.
1 Any mention of commercial products does not indicate endorsement by NIST.
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Scheme-(q, o1, o2, v, s) Signing
time

Verif.
time

Key
size

Sign.
size

Security

UOV-(257, 47, 0, 71, 0) 0.750ms 0.370ms 330.2KB 118 144.5
IPRainbow-(257, 32, 32, 32, 9) 13700ms 0.370ms 298.2KB 96 145
IPRainbow-(257, 32, 32, 36, 8) 1976.5ms 0.380ms 323.4KB 100 144.3
IPRainbow-(257, 32, 32, 38, 7) 491ms 0.440ms 336.4KB 102 142.4
IPRainbow-(257, 32, 36, 44, 6) 127ms 0.510ms 430.6KB 112 143.1

UOV-(257, 71, 0, 107, 0) 138ms 1.190ms 1131.9KB 178 205.5
IPRainbow-(257, 32, 42, 68, 9) 16552ms 0.850ms 751.9KB 142 207.1
IPRainbow-(257, 32, 48, 70, 8) 4579ms 1.100ms 906.6KB 150 206.8
IPRainbow-(257, 32, 48, 76, 7) 987ms 1.020ms 980.4KB 156 206.9
IPRainbow-(257, 32, 50, 84, 6) 269ms 1.440ms 1137.4KB 166 206.9

UOV-(257, 97, 0, 146, 0) 5.240ms 4.630ms 2854.1KB 243 271
UOV-(257, 98, 0, 147, 0) 5.320ms 4.670ms 2931.3KB 245 275
IPRainbow-(257, 36, 64, 112, 9) 22026ms 2.390ms 2259.4KB 212 272
IPRainbow-(257, 36, 64, 122, 8) 29597ms 2.460ms 2477KB 222 271
IPRainbow-(257, 36, 64, 135, 7) 1123ms 5.300ms 2774.9KB 235 271.5
IPRainbow-(257, 36, 66, 148, 6) 298ms 5.280ms 3202.5KB 250 272.4

Fig. 5. Parameters targeting NIST security levels I, III and V.

5 Conclusion

In the past year and a half, the new attacks from Beullens have significantly
improved the cryptanalysis of Rainbow and have rendered it less efficient than
UOV. As the motivation of Rainbow was originally to create a more efficient
scheme based on the oil-vinegar structure, these attacks are particularly prob-
lematic for Rainbow.

Still, the appeal of schemes such as Rainbow is their ability to provide low cost
for applications that are not dominated by investment in public key transmission.
Such applications are naturally amenable to offline signing, so a penalty in the
cost of inversion may be acceptable if there is sufficient benefit in verification
speed or signature size.

As we have shown, the implementation of the IP modifier on Rainbow adds
solid theoretical protection from these new attacks at the cost of a significant
increase in the complexity of inversion. Our data indicate that it is indeed feasible
to salvage an advantage in verification time, key size and signature size at the
cost of additional signing time. The next step for future work is optimizing this
construction and determining the market for such a product.

Acknowledgements. The authors would like to thank Kyle Salyer for his help on
this project.
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A Algorithms

Below are the key generation and central map inversion algorithms of IPRain-
bow.

Algorithm 1. IPRainbowKeyGen
Input: IPRainbow Parameters (q, v1, o1, o2, s)
Output: IPRainbow Key Pair (sk, pk)
1: Set m := o1 + o2, n := m + v1
2: T ,U ← GL(n,Fq)
3: F ← RainbowMap(q, v1, o1, o2)
4: Q ← IPModifier(s)
5: P = T ◦ (F + Q) ◦ U
6: sk = (T ,F ,Q,U)
7: pk = P
8: return (sk, pk)

Algorithm 2. Inversion of IPRainbow Central Map
Input: IPRainbow central map F + Q = (fv1+1, . . . , fm), vector x ∈ F

m

Output: y ∈ F
n with F̃(y) = x

1: y1, . . . , yv1
$←− Fq

2: f̃i := fi(y1, . . . , yv1) for i ∈ {v1 + 1, . . . ,m}.
3: yv1+1, . . . , yv2 := GaussElim(f̃v1+1, . . . , f̃m).
4: f̂j := f̃j(yv1+1, . . . , yv2) for j ∈ {v2 + 1, . . . ,m}.
5: g1, . . . , gs := GaussElim(f̂v2+1, . . . , f̂m).
6: yv2+1, . . . , yn := PolySolve(g1, . . . , gs).
7: y := y1, . . . , yv1 , yv1+1, . . . , yv2 , yv2+1, . . . , yn.
8: return y.
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Abstract. The Support Minors method of solving the MinRank prob-
lem has contributed to several new cryptanalyses of post-quantum cryp-
tosystems including some of the most efficient multivariate cryptosys-
tems. While there are a few viable multivariate schemes that are secure
against rank methods, the most prominent schemes, particularly for
encryption, are not particularly efficient.

In this article we present a new generic construction for building effi-
cient multivariate encryption schemes. Such schemes can be built from
maps having rank properties that would otherwise be damaging, but are
immune to traditional rank attack. We then construct one such efficient
multivariate encryption scheme and show it to be about 100 times faster
than other secure multivariate encryption schemes in the literature.

Keywords: Multivariate cryptography · MinRank · Encryption

1 Introduction

In the past two years there have been several new advances in cryptanalysis that
have significantly impacted the efficiency of various post-quantum cryptosys-
tems. In particular, there has been a dramatic change in the power and variety
of attacks exploiting rank properties of cryptosystems.

These new attacks rely on creative instances or more efficient modeling of
the MinRank problem. The MinRank problem is the generic problem of finding
a low rank linear combination of a collection of matrices.

In the rank-metric code-based regime, the basic problem of rank syndrome
decoding is exactly an instance of MinRank. While it was previously assumed
that the asymptotically most efficient attack on such schemes is the so-called
support-trapping method, see [1], the new support minors technique of [2]
not only significantly outperforms support-trapping asymptotically, but greatly
reduces the efficiency of secure instances of these schemes. Schemes such as
ROLLO [3] suffered a roughly square root security reduction.
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In the multivariate arena, new MinRank instances have been found that have
significantly changed the security level of prominent schemes. The rectangular
MinRank attack of [4] reduces the security of Rainbow and is made possible by
the efficiency of support minors modeling. Even in conjunction with the new
“simple attack” of [5], the support minors technique supporting the rectangular
MinRank attack is required for the cryptanalysis of larger parameters. While the
new MinRank instances found in GeMSS, see [6], reduce the security level even
with the minors technique, see [7], MinRank attacks powered by the support
minors modeling make the HFEv- framework infeasible for practical use, see [8].

These results along with numerous other rank-based attacks on encryption
and signature schemes, see [9–12], show that MinRank methods are a major
obstacle to overcome in the construction of secure and efficient schemes. Thus
we are in need of a method to side-step MinRank attacks.

Our Contributions. We offer a new method for generating multivariate
encryption schemes that are immune from rank attacks. The technique exploits
the fact that modulus switching induces a nonlinear action over finite fields. We
find that we can take essentially any multivariate encryption primitive and apply
a modulus switching hack that we call 2F (since two fields of differing charac-
teristic are used) to mask rank properties and construct an efficient encryption
scheme. As an exercise, we construct from a primitive that is insecure against
four different attacks (two rank-based, one differential and one algebraic) a new
multivariate encryption scheme and show that the new 2F version is secure
against these attacks.

The paper is organized as follows. In Sect. 2, we present some historical
schemes that have relevance to our construction. Next, in Sect. 3, we introduce
the generic 2F construction and verify its correctness. Then in Sect. 4, we intro-
duce a prototype 2F scheme chosen to illustrate the effects on security the 2F
construction has. Section 5 then provides a detailed security analysis highlighting
the impact of the construction on every known attack surface. We then suggest
parameters for the 128-bit and 143-bit security levels in Sect. 6, drawing per-
formance comparisons with other secure multivariate encryption schemes in the
literature. Finally, we conclude, reflecting on the changes we have seen in the
design approach to multivariate cryptography and noting directions for future
work.

2 Multivariate Encryption Schemes

In this section we describe the relevant historical schemes that motivate and
power our new construction as well as schemes to which we want to draw com-
parison. We introduce them in order of their development and mention the known
results on these schemes in the literature.
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2.1 HFE

The HFE cryptosystem presented in [13] is a “big field” scheme in the lineage of
C∗, see [14]. Such schemes rely on the vector space structure of finite extension
fields to create vector-valued maps whose nonlinear component is derived from
multiplication in the extension field.

Let Fq be a finite field with q elements, let K be a degree n extension of Fq,
and let φ : Fn

q → K be an Fq-vector space isomorphism. An HFE polynomial of
degree bound D is a polynomial f : K → K of the form

f(X) =
∑

qi+qj≤D

αijX
qi+qj

+
∑

qi≤D

βiX
qi

+ γ,

where αij , βi, γ ∈ K. We note that since the ith and jth Frobenius powers are
Fq-linear, f is Fq-quadratic. The HFE public key is then given by

P (x) = T ◦ φ−1 ◦ f ◦ φ ◦ U(x),

where U and T are Fq-linear or Fq-affine maps, see Fig. 1.

F
n
p F

n
p

K K

F
n
p F

n
q

φ

f

φ−1

U T

P

Fig. 1. The HFE scheme. Given the Fq-quadratic map f , the Fq-vector space iso-
morphism φ, and Fq-linear maps U , and T , we construct the vector-valued function
P : Fn

q → F
n
q .

One may use the plain HFE as a public key encryption scheme. Encryption is
accomplished by evaluating the public key at an encoding of the plaintext while
decryption is performed by inverting each of the private maps sequentially. The
inversion of the central map can be performed efficiently by using Berlekamp’s
algorithm, see [15], as long as D is fairly small.

There are a few attacks that make HFE inefficient. The first attack on HFE
was [16]. An improvement on this technique in [9] modeled a MinRank instance
with matrices over the small field with solutions in the large field and solved
that instance with the minors modeling technique. The same MinRank instance
was later found to be more efficiently solvable by once again returning to the
Kipnis-Shamir method with variables defined over the extension field in [17].
The new attack on GeMSS, see [7], exploits a new MinRank instance associated
with the structure of the HFE public key, but for naked HFE instances has the
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same complexity as the above attack. Finally, the new method for using support
minors for MinRank instances with solutions in extension fields of [8] significantly
reduces the complexity of attacking HFE and renders it too inefficient for use.

2.2 SQUARE

The SQUARE multivariate encryption scheme, see [18], is a big field scheme
using a simple monomial map that is two-to-one and that employs the projection
modifier, the idea of fixing certain variables before the publication of the key to
alter its algebraic properties. The SQUARE central map can be seen as an odd
field HFE map but with degree bound 2 and no affine component.

Specifically, choose an odd characteristic field Fq and let K be a degree n+ p
extension of Fq. Let f : K → K be defined by f(X) = X2. Let T : Fn+p

q → F
n+p
q

be an invertible linear map and let U : Fn
q → F

n+p
q be an injection. We then

generate a public key P = T ◦φ−1 ◦ f ◦φ ◦U , where φ : Fn+p
q → K is a Fq-vector

space isomorphism.
We note that unlike the case of HFE where most elements in the range of

the central map have a unique preimage, the map f above is a 2-to-1 map.
Thus, some sort of padding of the plaintext is necessary to ensure uniqueness of
preimages.

SQUARE was broken in [19] with a differential attack similar to that of [20].
We note also that attacks in the style of [7–9,17] also break SQUARE due to
the very low Q-rank of the central map.

2.3 ABC Simple Matrix

The ABC Simple Matrix Encryption scheme of [21] uses the structure of a matrix
algebra instead of an extension field to obtain its nonlinear central map. A
modified version of this scheme was published in [22] to repair a high decryption
failure rate of the original that leaked information about the secret key. Another
version with a cubic public key was introduced in [23].

Fix parameters s ≤ r and set n = rs. Let A be an r × s matrix of random
linear forms in n variables and let B and C be s × u and s × v matrices of
random linear forms, respectively, where u and v are additional parameters of
the system. We construct the quadratic map F : Frs

q → F
r(u+v)
q by vectorizing

the matrix product A
[
B C

]
. The public key P is then computed by composing

with linear transformations U and T .
As before, encryption is achieved by simply evaluating the public key at an

encoding of the plaintext. To invert the central map, one parses the preimage
of the ciphertext under T into an r × (u + v) matrix V, sets W to be a formal
left inverse of A consisting of rs unknowns wij and computes the product WV.
Since W is a left inverse of A, this product must produce

[
B C

]
evaluated at

U(x). This equality produces a system of s(u + v) equations that are linear in
2rs unknowns, the values wij and the values xi. Via Gaussian elimination, all
of the variables wij can be eliminated to produce s(u + v) − rs linear equations
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in the rs unknown values xi. Since this system has a small dimensional solution
space, these relations can be used to transform the public key into a system with
very few unknowns that can be solved directly to reveal the preimage.

Several attacks are known to affect the security of the ABC scheme. The
first attack that broke security claims was [24]. The attack revealed that there
exist rank 2s maps in the span of the public quadratic forms and outlined an
algebraic/combinatorial attack that was more efficient than the designers antic-
ipated. Subsequently, in [25] it was shown that the cubic scheme was vulnerable
to a similar attack and is less efficient than the quadratic scheme. These attacks
on the cubic version were further improved in [26]. Most recently, it was shown
in [11] that increasing r relative to s decreases security against rank attacks at
the same rate that it decreases the decryption failure rate, thus showing that
there are fundamental limits to the efficiency of any such scheme.

2.4 PCBM

The PCBM multivariate encryption scheme, see [27] is a relatively new encryp-
tion scheme with similar algebraic structure to HFERP, see [28], but with a
wildly different approach to parametrization. PCBM is currently the fastest
published multivariate encryption scheme targeting CCA security that remains
secure at the 128-bit level.

Fix q and n and let C be a random k-dimensional subspace of F
n
q . Let H

be an (n − k) × n matrix whose right kernel is C. Given k random n × (n − k)
matrices Ai, we form the products Bi = AiH. Then define the polynomial

fi(x) = xBix� + xLi,

where Li is a random n × 1 matrix.
Note that for any x ∈ F

n
q , the value Hx� uniquely identifies the coset of C

in F
n
q containing x. This value is encoded in extra polynomials gi via a small

instance of EFLASH or PFLASH, see [29,30]. Finally, a large number of random
quadratic equations hi are included. The public key is then given by

P (x) = T ◦ (F‖G‖H) ◦ U,

where T is affine, U is an affine embedding not intersecting C, F =
[
fi

]
, G =

[
gi

]

and H =
[
hi

]
.

Inversion is accomplished sequentially with the most interesting step being
the inversion of F . Once the coset to which x belongs is extracted from G, it
is easy to derive x by solving a linear system. Specifically, if x = x′ + x̂, where
x̂ ∈ C and x′ is a coset representative derived from G we have that

fi(x) = (x′ + x̂)Bi

(
x′� + x̂�)

+ (x′ + x̂)L�
i = x′Bix′� + x̂Bix′� + (x′ + x̂)L�

i ,

for all i and thus we can solve linearly for x̂ and x.
The natural ways to attack this structure relate to searching for the large

subspace C and MinRank methods attacking either the low rank, in general
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2(n − k), maps of F or by attacking the low Q-rank map G. The very large
number of random maps H added mitigates these risks though, and the check
equations that H provides makes PCBM have a very low decryption failure rate.

3 2F Modulus Switching

The first post-quantum cryptosystem to employ modulus switching was NTRU,
see [31]. There, independent reduction modulo two coprime integers was used to
mix and unmix operations in two polynomial rings.

While the original NTRU proposal was probabilistic in nature, with appro-
priate restrictions on the parameters, perfect correctness can be assured, such as
is the case for the NIST Round 3 finalist NTRU, see [32]. The same analogy will
hold with the 2F construction as well. In the following, we present a perfectly
correct version of 2F but comment that we may select parameters to construct
a probabilistic version as well.

Let p and q be primes with q much larger than p. Let F : Fn
p → F

n
p be an

efficiently invertible and computationally injective quadratic function. In par-
ticular, we may consider F to be any public key of a multivariate encryption
scheme over a prime field. Let T : Fn

q → F
n
q be an invertible linear map and let

ι be the map that casts a function on F
n
p as a function on F

n
q with the same

coefficients considered as least absolute residues lying in Fq. The 2F version of
the map F is then F̃ : Fn

q → F
n
q (with domain restricted to (−p

2 , p
2 )n) defined by

F̃ = T ◦ ι(F ).

The reason this simple modulus-switching transformation changes the alge-
braic properties of the function is that ι is neither Fp-linear nor Fq-linear. A
key observation is that even ι modulo p is not Fp-linear since reduction is first
computed modulo q and then modulo p. Thus, in general, F̃ �= T ′ ◦ F for any
Fp-linear function T ′.

First, we must show that the inversion process succeeds; that is, we must show
that finding a preimage under T , reducing modulo p, and, finally computing a
preimage under F produces a preimage of F̃ . This discussion establishes the
necessary relationship between the sizes of p and q for the inversion of F̃ to
depend only on the ability to invert F .

Theorem 1. Let p and q be odd primes, let F : Fn
p → F

n
p be a homogeneous

quadratic map and let T : Fn
q → F

n
q be an invertible Fq-linear transformation. If

q >
(p − 1)3

4

(
n + 1

2

)
,

then y = T ◦ ι(F )(x) if and only if T−1(y) (mod p) = F (x)

Proof. Clearly, T−1(y) = ι(F )(x). It remains to be shown that ι(F )(x) (mod p)
is the same as F (x).
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To accomplish the above task, we first consider computing the value of a
coordinate function Fi over the integers. Since the least residue value of each
coordinate of x is bounded in absolute value by p−1

2 , as are the coefficients of Fi,

each monomial has a least residue bounded in absolute value by (p−1)3

8 . As there
are

(
n+1
2

)
such monomials in Fi, the value calculated as an integer is bounded in

absolute value by (p−1)3

8

(
n+1
2

)
. Since this quantity is less than q

2 , no reduction
modulo q occurs in the computation of Fi. Therefore ι(F )(x) equals F (x) over
the integers, and thus reduced modulo p has the same value as F (x).

Recall that valid decryption for any encryption scheme requires that a cipher-
text has a unique preimage. Injective functions satisfy this property with prob-
ability 1; however, many encryption schemes are based on functions that are
not injective, but satisfy some weaker property. We describe two such properties
below.

Definition 1. A finite family F of functions F : A → B on the finite sets A

and B is statistically injective with bound p if given G
U←− F ,

P (∃a �= a0 ∈ A with G(a) = G(a0)) ≤ p.

The family F is computationally injective with bound p if given G
U←− F and

a0
U←− A,

P (∃a ∈ A \ {a0} with G(a) = G(a0)) ≤ p.

A good example of a statistically injective family of functions is the collection
of public keys for the PCBM encryption scheme, see [27]. It is estimated in [27]
that the probability that a uniformly sampled PCBM(148, 149, 113, 37, 12, 414)
public key is an injective function is approximately 1−2−200; thus, since decryp-
tion failure can only occur when a ciphertext has multiple preimages, PCBM may
be used to target CCA security.

For an example of a computationally injective family of functions, consider
the collection of public keys with parameters (q, n,m) = (3, 140, 226) of the
HFERP encryption scheme, see [28, Section 7]. There the bound for computa-
tional injectivity (and therefore a bound on the probability that a randomly gen-
erated ciphertext has multiple preimages) is about 2−136, though the probability
that a given public key is an injective function is quite low. Due to Theorem 1,
we have that injectivity as well as computational and statistical injectivity are
preserved by the 2F construction.

Corollary 1. Let p and q be primes, let F : F
n
p → F

n
p be a homogeneous

quadratic map and let T : Fn
q → F

n
q be an invertible Fq-linear transformation. If

q >
(p − 1)3

4

(
n + 1

2

)
,

then P = T ◦ ι(F ) is injective if and only if F is injective. Under the same
condition, P is computationally (or statistically) injective if and only if F is
computationally (or statistically) injective.



192 D. Smith-Tone

We note here that it may be desirable for efficiency to choose a smaller value
of q than the one mentioned above. There are two clear motivations for such a
choice.

First, the output distributions for fixed quadratic forms are typically far
narrower than the theoretical limit given by the bound above. Thus it is possible
to pick a far smaller q that still has a very low, or even zero, decryption failure
rate.

Second, it is not necessary to have the plaintext space be all of F
n
p . For

example, we could insist that valid plaintexts lie in {−1, 0, 1}n, in which case
we can use a much larger p and still utilize a smaller q for which the natural
analogue of Theorem 1 still holds. In this latter case, the output distribution of a
fixed quadratic form is even narrower, so there is room for further optimization
of q if we allow a small decryption failure rate from the 2F construction.

4 An Instance of 2F Multivariate Encryption

As an exercise, we construct and demonstrate 2FSQUARE, the 2F version of the
SQUARE encryption scheme, see [18], without projection. Since SQUARE can
be broken by numerous methods, see [8,9,33], this choice offers the best chance
for future cryptanalysis and advancement in this line of research.

Let p be an odd prime and fix a positive integer n. Let q be a prime larger
than (p−1)3

4

(
n+1
2

)
. Let K be a degree n extension of Fp and let φ : F

n
p → K

be an Fp-vector space isomorphism. Select an invertible linear transformation
U : Fn

p → F
n
p and define F : Fn

p → F
n
p by

F (x) = φ−1(φ(U(x))2).

Select another invertible linear transformation T : Fn
q → F

n
q and define

P (x) = T ◦ ι(F )(x),

where ι be the map that casts a function on F
n
p as a function on F

n
q with the

same coefficients considered as least absolute residues lying in Fq. See Fig. 2 for
a visual description of P .

Encryption is accomplished by evaluating the public key P at the plaintext
x. Decryption is accomplished by inverting T , reducing the result modulo p and
inverting F . For the latter step, some redundancy must be built into the domain
of F to produce unique preimages as was already the case for SQUARE.

5 Security Analysis

The 2F construction adds a nonlinear modification to a multivariate cryptosys-
tem, so we expect it to change the algebraic properties such as rank that we
normally use to cryptanalyze multivariate cryptosystems. We verify the security
of 2FSQUARE against the typical attacks we use on multivariate schemes in
this section. In addition to analyzing what structure is taken away by the 2F
construction, we analyze the structure added by 2F at the end of the section.
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Fig. 2. The 2FSQUARE scheme. Given the Fp-vector space isomorphism φ, Fp-linear
map U , Fq-linear map T and the modulus switching map ι, we construct the vector-
valued function P : F

n
p → F

n
q . The inclusion of F

n
p into F

n
q is understood to coor-

dinatewise map the least absolute residue a ∈ Fp to least absolute residue a ∈ Fq.

5.1 MinRank Attacks

The SQUARE cryptosystem is vulnerable to two different types of rank attacks.
The historically first such attack originated in the work of Kipnis and Shamir,
see [16], and was improved in [9].

Note that we may represent elements of K as n-dimensional vectors over Fp.
Then the Fp-vector space isomorphism φ can be expressed as a matrix over Fp.
In particular, if θ is a primitive element for K over Fp, then we can represent φ
via right multiplication by the matrix

M =

⎡

⎢⎢⎢⎢⎢⎢⎣

1 1 · · · 1
θ θp · · · θpn−1

θ2 θ2p · · · θ2pn−1

...
...

. . .
...

θ(n−1) θ(n−1)p · · · θ(n−1)pn−1

⎤

⎥⎥⎥⎥⎥⎥⎦
,

given that the vector representations of elements in K is relative to the same
basis, {1, θ, θ2, . . . , θ(n−1)}.

Letting G(X) = X2, and setting G∗i to be the matrix representation of the
ith Frobenius power of G, we have that

G(X)pi

=
[
X Xp · · · Xp(n−1)

]
G∗i

⎡

⎢⎢⎢⎣

X
Xp

...
Xp(n−1)

⎤

⎥⎥⎥⎦ .

The matrix G∗i has only one nonzero value, a 1 in the ith row and column.
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Let U be the matrix representation of U and set S = UM. We may then
note that if Hi is the ith quadratic form in H = φ−1 ◦ G ◦ φ ◦ U , we have

[
H0 H1 · · · Hn−1

]
(M ⊗ In) =

[
SG∗0S� · · · SG∗(n−1)S�]

. (1)

Since G∗0, for example, has rank 1, there is thus a K-linear combination of the
matrices Hi of rank 1.

Notice that the public key of 2FSQUARE is given in matrix form by
[
P0 P1 · · · Pn−1

]
=

[
H̃0 H̃1 · · · H̃n−1

]
(T ⊗ In) , (2)

where T is the matrix representation of T and Pi are the matrix representations
of the public quadratic forms. Critically, T is Fq-linear, and so not Fp-linear.
Thus there is a K-linear combination of Fq-linear combinations of the Pi that
has low rank as a K-valued matrix. This combination does not correspond to
a linear combination over any ring, and so the rank property is broken. We
verified experimentally for small instances that the smallest rank in the span of
the public matrices is high over Fp, Fq and K.

The second kind of rank attack affecting SQUARE is that of [7]. This rank
attack is also based on Eq. (1). The attack works by finding a row of S−1 and
reconstructing S by Frobenius relations. Specifically, if s =

[
s0 s1 . . . sn−1

]
is

the first row of S−1, then the matrix Z whose ith row is given by sHi has rank
1. This rank condition induces a system of equations on the unknown coefficients
of s which can be solved at low degree, in fact, at degree 2 in this case.

Again, the Fq-linear map T present in Eq. (2) halts the attack. Since the
relationship between the public matrices Pi and G∗i is not linear with respect
to any ring, the rank condition present in the Hi is not echoed by the public
matrices. Once again, we have verified this property experimentally.

5.2 Differential

Another class of attack against which SQUARE is vulnerable is the attack based
on differential symmetry. This attack is the one that first broke SQUARE, see
[19].

Recall that the discrete differential of any function F (x) is merely the asso-
ciated bilinear function DF (a, x) = F (a + x) − F (a) − F (x) + F (0). We may
examine the differential over the small field where the function of interest is
vector-valued, or over the large field in which our function is the monomial map
G(X) = X2. In the latter case, the differential is DG(A,X) = 2AX.

Given any element β of the extension field K, we see that the differential
satisfies a symmetric multiplicative symmetry

DG(βA,X) + DG(A, βX) = 2βDG(A,X).

Passing this relation to the small field and incorporating U we obtain the linear
differential symmetry

DH(MβUa,Ux) + DH(Ua,MβUx) = 2MβDH(Ua,Ux),
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where H = φ−1 ◦ G ◦ φ.
For the original SQUARE cryptosystem the linear transformation T was

Fp-linear, and then there is an easy way to translate the above relation into a
relation on the public key. This relation can then be used to complete an attack
on SQUARE by the same technique as [33]. Due to the fact that T is not Fp-
linear, however, the symmetric application of an Fp-linear map corresponding
to multiplication by an element of K in the correct basis is not equivalent to
the composition of a linear map with the public differential over any ring. Thus,
2FSQUARE is immune from differential attack as well.

5.3 Direct

In [34], the authors present evidence that the analysis of EFLASH, see [29],
against direct message recovery attacks is incomplete. Specifically, they show
that low Q-rank relations in the extension field correspond to low degree syzygies
in the direct attack. This observation offers another method of cryptanalysis
against SQUARE as an instance of EFLASH with special parameters.

Note, however, that the observation of [34] relies on relations induced by the
Frobenius automorphisms of K “passing through” the output transformation in
the sense that there exists an Fp linear map L such that L composed with T
is equal to T composed with the Frobenius automorphism. As before, since T
is not Fp-linear in 2FSQUARE, this property fails to hold, thus, 2FSQUARE
does not have the anomalous low degree syzygies observed in [34]. We have
experimentally verified for small instances that the first fall degree matches the
semi-regular degree.

The best method for effecting a direct attack on a balanced multivariate
system is called the hybrid approach. First the attacker guesses the values of
k variables. Then some polynomial system solver is used to solve the resulting
system.

The type of polynomial system solver that is optimal depends on many
parameters including the density of the equations, the number of variables and
the solving degree. Typically denser systems for which the solving degree is
lower benefit from Gröbner basis solvers powered by F4, see [35]. Systems with
a larger number of variables or less dense systems or that require a higher oper-
ating degree do not benefit as greatly from the normalization step in F4 and can
therefore benefit from the lower memory costs, see [8], of the XL algorithm [36].
For parameters of cryptographic interest, we expect that XL variants will be the
most effective.

Notice that the system must be solved over Fq, and so we are not able to
add the normal field equations. Still, we may add equations of the form

gi(xi) =

p−1
2∏

j= 1−p
2

(xi − j),

which perform the same role as Fp field equations when solving over Fq.
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Thus, under the standard semi-regular assumption, the complexity of the
hybrid direct attack with k guesses will then be

Complexitydirect = 3pk

(
n + 1

2

)(
n + d

d

)2

(3)

Fq operations, where d is the smallest degree with a nonpositive coefficient in
the series expansion of

H(t) =
(1 − t2)n(1 − tp)n−k

(1 − t)n−k
.

Note that each such field operation will cost 2(log2 q2 + log2 q) bit operations.

5.4 Lattice Attacks

While it seems that all of the standard multivariate attacks are made less efficient
by the 2F construction, some structure is added to the public key. Notice that
there exist Fq-linear combinations of the public key that are polynomials with
small coefficients, bounded in size by p−1

2 . This observation is the basis for an
attack based on lattices.

Notice that, analogous to the NTRU lattice, we may construct the lattice
given by the rowspace of [

p
q In P
0 qI(n+1

2 )

]
,

where P is the matrix whose ith row is the ordered list of monomial coefficients
of the ith public equation Pi. Notice that there exists a vector w with entries
in Fq such that ti‖w multiplied by the above matrix is p

q ti concatenated with
the list of monomial coefficients of Hi ◦ U , where ti is the ith row of T−1. Thus,
we expect that the shortest vector in this dimension d =

(
n+1
2

)
+ n lattice to be

among these vectors.
All coordinates of this short vector lie in the interval (−p/2, p/2) with at

least
(
n+1
2

)
of them taking integral values, and so the expected length is well-

approximated by s =
√

(p2 − 1)d/12. In contrast the expected length of the
shortest vector in a random lattice of dimension d and volume V = pnqd−2n is
approximately npn/dq1−2n/d/2

√
πe.

We may follow the core-SVP methodology of [37] to estimate the complexity
of solving this SVP instance conservatively ignoring some polynomial overhead.
Following the geometric series assumption, we suppose that the length of the
ith Gram-Schmidt basis vector is given by ‖b∗

i ‖ = δd−2i−1V 1/d, where δ =
((πb)1/bb/2πe)1/2(b−1). The BKZ block size is then the smallest b for which the
projected length s

√
b/d is bounded by ‖b∗

d−b‖. The classical core-SVP hardness
of this problem instance is then computed as

Complexitycore-SVP = 20.292b. (4)
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Of course, we may change the disparity in the length of the shortest vector in
the above lattice and the value suggested by the Gaussian heuristic by bringing
the values of p and q closer, either by introducing a nonzero decryption failure
rate, by restricting the plaintext space or both, as discussed in Sect. 3. Thus, the
2F construction has the strength to address any vulnerability arising from some
future lattice attack by adjusting these parameters in such a way as to make the
vectors associated with the secret key not be among the shortest vectors in the
lattice. The optimization of these strategies as well as other lattice attacks is an
interesting direction to further study.

6 Parameters and Performance

As discussed in Sect. 5, the best known attacks on 2FSQUARE are the direct
attack and the lattice attack. We find that for p = 3 the disparity in the length
between the shortest vector in the lattice of Subsect. 5.4 and the Gaussian heuris-
tic is sufficiently small and the dimension sufficiently large that the limiting
attack is the direct attack. In contrast, for p = 7 the shortest vector is much
smaller than would be implied by the Gaussian heuristic and the lattice attack
then offers an advantage. Thus, we may select parameters based on the for-
mula (3) for p = 3 and based on formula (4) for p = 7. To be careful, we assume
that one bit of information is leaked in the form of the parity of some coordinate
of the plaintext. We do this because the central map of SQUARE is a two-to-
one function and 1-bit of redundant information is necessary to specify a unique
preimage. For 128-bit security, we may select p = 3, q = 6653 and n = 81 or
p = 7, q = 344, 749 and n = 54. Targeting NIST level I security, see [38], we
may select p = 3, q = 8377 and n = 91 or p = 7, q = 449, 287 and n = 64. We
summarize the complexity of attacks at these security levels in Table 1.

Table 1. Complexity of known attacks at the 128-bit and 143-bit (corresponding to
NIST level I) security levels.

Scheme Sec. k Direct b core-SVP

2FSQUARE(3, 6653, 81) 128 43 128 463 135

2FSQUARE(3, 8377, 91) 143 46 143 700 204

2FSQUARE(7, 130411, 69) 128 18 169 360 105

2FSQUARE(7, 145861, 73) 143 20 176 412 120

We made a proof-of-concept implementation on the Magma Computer Alge-
bra System,1 see [39], to make a comparison to other secure multivariate encryp-
tion schemes, see [21,27]. We find that our simple implementation is dramatically
faster at the same security level, even when compared with optimized code. Still,

1 Any mention of commercial products does not indicate endorsement by NIST.
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Magma’s implementation of the Sqrt command for finite fields is extremely
efficient, so we suspect that an optimized implementation will not significantly
outperform this one. The results of these experiments are recorded in Table 2.

Table 2. Public key, message and ciphertext sizes, decryption failure rate and encryp-
tion and decryption performance of multivariate encryption schemes at the best avail-
able comparison to the 128-bit security level.

Scheme Sec. PK pt ct Enc.(ms) Dec.(ms) DFR

ABC(28,384,760) 128 54863KB 384B 760B 502 545 2−32

PCBM(149,414) 128 743KB 149b 414b 13 743 2−350

2FSQ(3, 6653, 81) 128 417KB 162b 129B 1.5 0.4 0

2FSQ(3, 8377, 91) 143 606KB 182b 148B 1.2 0.5 0

2FSQ(7, 130411, 69) 128 346KB 207b 147B 1.0 2.6 0

2FSQ(7, 145861, 73) 143 413KB 219b 157B 1.1 2.8 0

7 Conclusion

In the aftermath of several significant advances in cryptanalysis, there are sev-
eral new directions to explore to find secure post-quantum schemes. These new
schemes have motivations coming from avoiding rank attacks as well as import-
ing ideas from other areas in cryptography.

In the area of multivariate digital signatures the new Mayo scheme of [40]
introduces a method of creating oil-vinegar style maps, see [41], that can have
more balance between the number of variables and number of equations. The Q
modifier of [42] introduces a new method inspired by the relinearization algo-
rithm of [16] to construct structured instances of UOV that have a more efficient
inversion. While the recent result [43] shows that the latter scheme has limits
on how long the keys can be used statically, both schemes appear to be secure
for now.

The PCBM multivariate encryption scheme, inspired by linear codes, see [27],
establishes a new way of parameterizing a multivariate encryption scheme similar
to HFERP, see [28], but far more efficient. Now the 2F construction provides a
new way, inspired by the modulus switching of NTRU, to build secure and very
efficient multivariate encryption schemes.

While the above digital signature schemes take inspiration from established
knowledge in multivariate cryptography, the encryption schemes mentioned are
derived from examining code-based and lattice-based ideas. In all cases, how-
ever, there is a motivation to build a more efficient scheme that does not have
exploitable rank properties.

In particular, both the Q-modifier and the 2F construction are generic and
attempt to nonlinearly modify a given multivariate primitive. This genericity
means that there is a multitude of possible schemes that may be derived from
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these constructions that may have disparate security properties. This fact sug-
gests that there may be an enticing direction in which this work can progress
aside from advancing new targets for cryptanalysis; namely, we may work in the
attempt to build new multivariate schemes based on the 2F construction with
other profitable modifications.
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Abstract. Aaram Yun et al. considered that Lai-Massey structure has the same
security as Feistel structure. However, Luo et al. showed that 3-round Lai-Massey
structure can resist quantum attacks of Simon’s algorithm, which is different from
Feistel structure. We give quantum attacks against a typical Lai-Massey struc-
ture. The result shows that there exists a quantum CPA distinguisher against 3-
round Lai-Massey structure and a quantum CCA distinguisher against 4-round
Lai-Massey Structure, which is the same as Feistel structure. We extend the
attack on Lai-Massey structure to quasi-Feistel structure. We show that if the
combiner of quasi-Feistel structure is linear, there exists a quantum CPA dis-
tinguisher against 3-round balanced quasi-Feistel structure and a quantum CCA
distinguisher against 4-round balanced quasi-Feistel Structure.

Keywords: Quantum attacks · Lai-Massey structure · Quasi-Feistel structure

1 Introduction

Quantum Attacks. With the rapid development of quantum computers, the security
of classic algorithms has been challenged. Shor [31] found that both the large number
decomposition problem and the discrete logarithm problem have quantum polynomial-
time algorithms, which pose a serious threat to RSA and other mainstream asymmetric
crypto algorithms. In symmetric cryptography, it has always been considered that the
biggest threat comes from Grover’s quantum search algorithm [12]. It can reduce the
complexity of k bits exhaustive algorithm to O

(
2k/2

)
.

In his seminal paper, Simon [32] answered the question of how to find the period
of a periodic function in O(n) quantum queries. Many structures and the most widely
used modes of operation for authentication and authenticated encryption were attacked
by using Simon’s algorithm. For example, the attacks of 3-round [21], 4-round [17]
Feistel structures, 3-round MISTY-L structure, 3-round MISTY-R structure [29], Even-
Mansour structure, LRW structure, CBC-MAC, PMAC, GMAC, GCM, and OCB [19].

Leander and May combined Simon’s Algorithm with Gover’s algorithm, giving a
quantum key-recovery attack on FX-construction [24], which caused a quantum CPA
attack on 5-round Feistel structure [8], quantum CCA attack on 7-round Feistel-KF
structure and 9-round Feistel-FK structure [17].
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Lai-Massey Structure. IDEA algorithm [22,23] was designed by Lai and Massey.
Vaudenay [35] generalized the structure adopted by IDEA algorithm and proposed the
Lai-Massey structure. Lai-Massey structure uses general addition and subtraction oper-
ations in a finite abelian group G and has an orthomorphism permutation σ : G → G.
σ has the orthomorphism property: σ and x �→ σ(x) − x are both permutations. Based
on Lai-Massey structure, FOX [18] (also known as “IDEA NXT”) was produced. FOX
uses XOR operation instead of general addition and subtraction operations, and it reifies
σ as σ (xL, xR) = (xR, xL ⊕ xR). In this paper, we attack the instantiated Lai-Massey
structure used in FOX. The ith-round of Lai-Massey structure is shown in Fig. 1.

Fig. 1. The ith-round of Lai-Massey structure

Let LMi(ai−1, bi−1) = (σ(ai−1 ⊕ fi(Δi)), bi−1 ⊕ fi(Δi)), LM′
i(ai−1, bi−1) =

(ai−1 ⊕ fi(Δi), bi−1 ⊕ fi(Δi)). Then r-round Lai-Massey structure can be written as:

FrLM
def= (ar, br) = LM′

r ◦ LMr−1 ◦ · · · ◦ LM1.

3-round and 4-round Lai-Massey structures are proven to be secure against chosen-
plaintext attacks (CPAs) and chosen-ciphertext attacks (CCAs), respectively by Vau-
denay et al. [35], like Feistel structure [9]. Luo, et al. [27] proved that 3 rounds (4
rounds) are necessary for CPA secure (CCA secure). Sui et al. [34] proved that 4-round
Lai-Massey structure is CCA secure even if the adversary extra access to two internal
rounds. Luo, et al. [28] proved beyond-birthday-bound for the CCA-security of many-
round Lai-Massey scheme. Attacks like integral attacks [37,38], impossible differen-
tial cryptanalysis [7,13,39], collision-integral attacks [36], fault attacks [25], differen-
tial cryptanalysis [10,11], linear cryptanalysis [10], all-subkeys recovery attacks [16],
imprimitivity attacks [3] were applied to block ciphers with Lai-Massey structure.

Quasi-Feistel Structure. Feistel structure is one of the most important block-cipher
structures. Many block ciphers are designed by this scheme like DES [33], FEAL [30],
SKIPJACK [1] and SIMON [4]. Michael Luby and Charles Rackoff [26] proved that
3-round Feistel structure is CPA secure, and 4-round Feistel structure is CCA secure if
round functions are independent random functions. Zhang Liting et al. [41] extended
those conclusions and proved that k + 1 rounds unbalanced Feistel networks with
contracting functions(UFN-C) is CPA secure, k + 2 rounds UFN-C is CCA secure.

In [40], Aaram Yun et al. proposed quasi-Feistel structure and proved that Feistel
structure and Lai-Massey structure are quasi-Feistel structures. They shown that the
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birthday security of (2b−1)-round and (3b−2)-round unbalanced quasi-Feistel ciphers
with b branches against CPA and CCA attacks respectively.

In [29], Luo, et al. shown that 3-round Lai-Massey structure can resist the attacks
of Simon’s algorithm in quantum, which is different from Feistel structure. This leads
to natural questions:

Do Lai-Massey structure and Feistel structure have the same number of rounds
that can be attacked in quantum? Can the attacks be extended to quasi-Feistel struc-
tures?

Our Contributions. The contributions of this paper are listed as follows:

1. We show a quantum CPA distinguisher against 3-round Lai-Massey structure and a
quantum CCA distinguisher against 4-round Lai-Massey structure with O(n) quan-
tum queries, where the input length of Lai-Massey structure is 2n bits. So Lai-
Massey structure and Feistel structure have the same number of rounds that can
be attacked efficiently in quantum, this makes it possible for quasi-Feistel structures
to have similar security strength in quantum.

2. we give a quantum Grover-meet-Simon attack on 4-round Lai-Massey structure with
O(n2m/2) quantum queries, where m is the length of the key k4 of the fourth round
function f4.

3. We extend the quantum attack on Lai-Massey structure to quasi-Feistel structure.
We show that 3-rounds (4-round) balanced quasi-Feistel structure including Feistel
structure and Lai-Massey structure with linear combiners can be attacked with O(n)
quantum queries in quantum CPA (CCA).

2 Preliminaries

2.1 Notation

Let X be a finite set. Let Perm(X ) be the set of all permutations on X . Let x
$←

X denote selecting an element x from the set X uniformly and randomly. Let π
$←

Perm(X ) be a random permutation on X . X k denotes the set of all k-tuples of elements
from X . A block cipher keyed by K is a function EK ∈ Perm(X ). We call the input
and output of EK as plaintext and ciphertext respectively. Let Func(X ,Y) be the set of
all functions f : X → Y . We write Func(X ) def= Func(X ,X ).

Let A be an adversary. Let Af(·) ⇒ b (resp. Af(�) ⇒ b
)
denote an algorithm

performs classical queries (resp. quantum queries) to oracle f and outputs b.

2.2 Pseudo-Random Permutation

In this paper, we consider the adversary A making chosen-plaintext attack (CPA), i.e.,
A queries with plaintexts and get corresponding ciphertexts, or chosen-ciphertext attack
(CCA), i.e., A queries with plaintexts or ciphertexts and get corresponding cipher-
texts or plaintexts. Let PRP-CPA and PRP-CPA denote the pseudo-random permutation
(PRP) security under CPA and CCA respectively. Let qPRP-CPA and qPRP-CPA denote
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the quantum PRP security under CPA and CCA respectively. We put the formal defini-
tions as follows.

Definition 1 (PRP-CPA/qPRP-CPA). Let E : K×X → X be a family of permutations
indexed by the elements in K, g : X → X . Let A be a adversary. The PRP-CPA/qPRP-
CPA advantage of A is defined as:

Advprp-cpa/qprp-cpa
E (A) =

∣
∣
∣
∣
∣

Pr
K

$←K

[
AEK(∗) ⇒ 1

]
− Pr

g
$←Perm(X )

[
Ag(∗) ⇒ 1

]
∣
∣
∣
∣
∣
,

where we replace the ∗ symbol by · (classical) or 
 (quantum).

Definition 2 (PRP-CCA/qPRP-CCA). Let E : K×X → X be a family of permutations
indexed by the elements in K, g : X → X . Let A be a adversary. The PRP-CCA/qPRP-
CCA advantage of A is defined as:

Advprp-cca/qprp-cca
E (A) =

∣
∣
∣
∣
∣
∣

Pr
K

$←K

[

AEK(∗),E−1
K

(∗) ⇒ 1
]

− Pr
g

$←Perm(X )

[

Ag(∗),g−1(∗) ⇒ 1
]

∣
∣
∣
∣
∣
∣

,

where we replace the ∗ symbol by · (classical) or 
 (quantum).

2.3 Quantum Algorithms

In this section, we present some quantum algorithms that will be applied in our attacks.

Simon’s Algorithm. Simon’s algorithm is a quantum algorithm to recover the period
of a periodic function with polynomial queries. It solves the Simon’s problem.

Simon’s problem [32]. Given a Boolean function f : {0, 1}n → {0, 1}m, x, y ∈
{0, 1}n. x, y satisfied the condition [f(x) = f(y)] ⇔ [x ⊕ y ∈ {0n, s}], s is non-zero
and s ∈ {0, 1}n, the goal is to find s.

The steps of Simon’s algorithm [32]:

1. Initialize the state of 2n qubits to |0〉⊗n|0〉⊗m;
2. Apply Hadamard transformation H⊗n to the first n qubits to obtain quantum super-

position 1√
2n

∑
x∈{0,1}n |x〉|0〉⊗m;

3. A quantum query to the function f maps this to the state: 1√
2n

∑
x∈{0,1}n |x〉|f(x)〉;

4. Measure the last m qubits to get the output z of f(x), and the first n qubits collapse
to 1√

2
(|z〉 + |z ⊕ s〉);

5. Apply the Hadamard transform to the first n quantum again H⊗n, we can get
1√
2

1√
2n

∑
y∈{0,1}n(−1)y·z (1 + (−1)y·s) |y〉. If y · s = 1 then the amplitude of

|y〉 is 0. So measuring the state in the computational basis yields a random vector y
such that y · s = 0, which means that y must be orthogonal to s.
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By repeating this step O(n) times, n − 1 independent vectors y orthogonal to s can be
obtained with high probability, then we can recover s with high probability by using
linear algebra.

For f : {0, 1}n → {0, 1}n and f(x ⊕ s) = f(x), Kaplan [19] define:

ε(f, s) = max
t∈{0,1}n\{0,s}

Prx[f(x) = f(x ⊕ t)].

ε represents max probability of unwanted additional collisions that f(x) = f(x ⊕ t)
where t ∈ {0, 1}n\{0, s}. The following theorem shows that Simon’s algorithm can
succeed even with additional collisions.

Theorem 1 [19]. If m = n and ε(f, s) ≤ p0 < 1, then Simon’s algorithm returns s

with cn queries, with probability at least 1 −
(
2
( 1+p0

2

)c
)n

.

Guo et al. [14] shows Simon’s conclusion holds for m = n as well.

Grover’s Algorithm. Grover’s Algorithm can find a marked element from a set with an
acceleration of the square root compared to classical computing. It solves the Grover’s
problem.

Grover’s Problem. Given a Boolean function f : {0, 1}n → {0, 1}. Find a marked
element x0 from {0, 1}n such that f(x0) = 1.

The Steps of Grover’s Algorithm [12]:

1. Initializing a n-bit register |0〉⊗n.
2. Apply Hadamard transformation H⊗n to the first register to obtain quantum super-

position H⊗n|0〉 = 1√
2n

∑
x∈{0,1}n |x〉 = |ϕ〉.

3. Construct an Oracle O : |x〉 O→ (−1)f(x)|x〉, if x is the correct state then f(x) = 1,
otherwise f(x) = 0.

4. Apply Grover iteration for R ≈ π
4

√
2n times: [(2|ϕ〉〈ϕ| − I)O]R|ϕ〉 ≈ |x0〉 .

5. Return x0.

Grover-Meet-Simon Algorithm. In 2017, Leander and May [24] combined Grover’s
algorithm with Simon’s algorithm to attack FX construction [20]. Their main idea is
to construct a function with two inputs based on FX, say f(u, x). When the first input
u equals to a special value k, the function has a hidden period s such that f(k, x) =
f(k, x ⊕ s) for all x. Their combined algorithm use Grover’s algorithm to search k,
by running many independent Simon’s algorithms to check whether the function is
periodic or not, and recover both k and s in the end. The attack only costs O(2m/2(m+
n)) quantum queries to FX, which is much less than the proved security up to 2

m+n
2

queries [20], where m is the bit length of u, which is the key length of the underlying
block cipher and n is the bit length of s, which is the block size.
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3 Quantum Attacks on Lai-Massey Structures

3.1 Quantum Chosen-Plaintext Attack Against 3-Round Lai-Massey Structure

Figure 2 shows the 3-round Lai-Massey Structure, where f1, f2, f3 are round functions
and σ (xL, xR) = (xR, xL ⊕ xR). We define [a, b] ∈ {0, 1}n, where a, b represent
the highest n/2 bits and the lowest n/2 bits respectively. Let xi, yi ∈ {0, 1}n/2, i =
1, 2, 3, 4. The inputs of 3-round Lai-Massey structure can be written as [x1, x2], [x3, x4],
the outputs can be written as [y1, y2],[y3, y4]. ai, bi and Δi, i = 1, 2, 3 are intermediate
parameters as shown in Fig. 2.

Fig. 2. 3-round Lai-Massey structure

Theorem 2. If fi, i = 1, 2, 3 are random functions, we can construct a quantum CPA
distinguisher against 3-round Lai-Massey structure with σ (xL, xR) = (xR, xL ⊕ xR)
in O(n) quantum queries by using Simon’s algorithm.

We first give some lemmas before proving Theorem 2. To attack 3-round Lai-
Massey structure with Simon’s algorithm, we will find a periodic function. Due to the
complex structure of Lai-Massey, first we write the values of intermediate parameters.

For the 3-round Lai-Massey structure shown in the Fig. 2, the intermediate parame-
ters are as follows

a1 = [x2 ⊕ f1R(Δ), x1 ⊕ x2 ⊕ f1L (Δ1) ⊕ f1R (Δ1)] ,

b1 = [x3 ⊕ f1L (Δ1) , x4 ⊕ f1R (Δ1)] ,

a2 = [x1 ⊕ x2 ⊕ f1L (Δ1) ⊕ f1R (Δ1) ⊕ f2R (Δ2) ,

x1 ⊕ f1L (Δ1) ⊕ f2L (Δ2) ⊕ f2R (Δ2)] ,

b2 = [x3 ⊕ f1L (Δ1) ⊕ f2L (Δ2) , x4 ⊕ f1R (Δ1) ⊕ f2R (Δ2)] ,

a3 = [y1, y2]

= [x1 ⊕ x2 ⊕ f1L (Δ1) ⊕ f1R (Δ1) ⊕ f2R (Δ2) ⊕ f3L (Δ3) ,

x1 ⊕ f1L (Δ1) ⊕ f2L (Δ2) ⊕ f2R (Δ2) ⊕ f3R (Δ3)]

b3 = [y3, y4]

= [x3 ⊕ f1L (Δ1) ⊕ f2L (Δ2) ⊕ f3L (Δ3) , x4 ⊕ f1R (Δ1) ⊕ f2R (Δ2) ⊕ f3R (Δ3)] ,
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where

Δ1 = [x1 ⊕ x3, x2 ⊕ x4] ,
Δ2 = [x2 ⊕ x3 ⊕ f1L (Δ1) ⊕ f1R (Δ1) , x1 ⊕ x2 ⊕ x4 ⊕ f1L (Δ1)] ,
Δ3 = [x1 ⊕ x2 ⊕ x3 ⊕ f1R (Δ1) ⊕ f2L (Δ2) ⊕ f2R (Δ2) ,

x1 ⊕ x4 ⊕ f1L (Δ1) ⊕ f1R (Δ1) ⊕ f2L (Δ2)] .

Lemma 1. Let x, x′ ∈ {0, 1}n/2, b ∈ {0, 1} and α0, α1 be arbitrary two fixed dif-

ferent numbers in {0, 1}n/2. Let ([xαb
1 , xαb

2 ], [xαb
3 , xαb

4 ])
def
= ([x ⊕ αb, x

′], [x, x′ ⊕
αb]) being the input of 3-round Lai-Massey structure with corresponding output
([yαb

1 , yαb
2 ], [yαb

3 , yαb
4 ]). We can construct a periodic function g1 from 3-round Lai-

Massey structure with period s = f1[α0, α0] ⊕ f1[α1, α1] by letting

g1 : {0, 1}n →{0, 1}n/2

[x, x′] �→xα0
1 ⊕ xα0

2 ⊕ xα0
3 ⊕ yα0

1 ⊕ yα0
3 ⊕ xα1

1 ⊕ xα1
2 ⊕ xα1

3 ⊕ yα1
1 ⊕ yα1

3

g1([x, x′]) = f1R[α0, α0] ⊕ f2L(Δα0
2 ([x, x′])) ⊕ f2R(Δα0

2 ([x, x′]))
⊕ f1R[α1, α1] ⊕ f2L(Δα1

2 ([x, x′])) ⊕ f2R(Δα1
2 ([x, x′])), (1)

where Δαb
2 ([x, x′]) denotes the value of intermediate parameter Δ2 when the input of

3-round Lai-Massey structure is ([xαb
1 , xαb

2 ], [xαb
3 , xαb

4 ]) and

Δαb
2 ([x, x′]) = [x′ ⊕ x ⊕ f1L[αb, αb] ⊕ f1R[αb, αb], x ⊕ f1L[αb, αb]] .

Proof. we show that g1 is obviously a periodic function.

(a) Δαb
2 ([x, x′]) = Δ

αb⊕1
2 ([x, x′] ⊕ s) holds for all x, x′ ∈ {0, 1}n/2.

(b) g1 ([x, x′]) has a period s deriving from (a). ��
Proof (Proof of Theorem 2). Now we have a periodic function g1 with period s =
f1[α0, α0] ⊕ f1[α1, α1]. Actually, other t’s (t = s) may occur due to collisions, which
may lead to misjudgments. Theorem 1 guarantees that Simon’s algorithm can still suc-
ceed with probability 1 − (

2
( 3
4

)c)n
if ε(f, s) ≤ p0 < 1. For 3-round Lai-Massey

structure, the following certificate ε(g1, s) < 1
2 :

Assuming ε(g1, s) ≥ 1
2 , then there is at least one t /∈ {0, s} such that

Pr[g1([x, x′]) = g1([x, x′] ⊕ t]) ≥ 1/2. We denote f2L or f2R as f2∗. From Eq. (1) we
have Pr{f2∗ [x′ ⊕ x ⊕ u′, x ⊕ v′] = f2∗ [x′ ⊕ tR ⊕ x ⊕ tL ⊕ u′, x ⊕ tL ⊕ v′]} ≥ 1

2 ,
where u′, v′ are some parameters. That is, if ε(g1, s) ≥ 1

2 , then the probability that
the permutation f2∗ [x′ ⊕ x ⊕ u, x ⊕ v] has a collision is greater than 1

2 . For differ-
ent m1,m2, Pr{f2∗ [m′

1 ⊕ m1 ⊕ u,m1 ⊕ v] = f2∗ [m2′ ⊕ m2 ⊕ u,m2 ⊕ v]} = 1
2n ,

which is contradictory. Therefore ε(g1, s) < 1
2 .

let A be an adversary, we write 3-round Lai-Massey structure as 3LM. For 3-
round Lai-Massey structure, we can construct a period function g1 with period s,
and g1 ([x, x′]) = g1 ([x, x′] ⊕ s). In the first query we ask x, and then we ask
x ⊕ s. If A is asking about 3-round Lai-Massey structure, then the outputs are the
same. If A is asking about random permutation, then the outputs are different. So
Adv qprp-cpa

3LM (A) = 1 − (
2
( 3
4

)c)n − 1
2n/2 . If we choose c ≥ 3/(1 − p0), the error

decreases exponentially with n. So if c ≥ 6, Adv qprp-cpa
3LM (A) = 1 − 1

2n/2 .
��
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3.2 Quantum Chosen-Ciphertext Attack Against 4 Round Lai-Massey Structure

For 4-round Lai-Massey Structure, let f1, f2, f3, f4 be round functions and
σ (xL, xR) = (xR, xL ⊕ xR). Let xi, yi, ni, zi, x

′
i ∈ {0, 1}n/2, i = 1, 2, 3, 4. To attack

4-round Lai-Massey Structure in CCA model, our attack strategy is as follows.

– Query the 4-round Lai- Massey structure with inputs ([x1, x2], [x3, x4])s and get
corresponding outputs ([y1, y2], [y3, y4])s;

– Xor ([y1, y2], [y3, y4])s with ([n1, n2], [n3, n4]) and get ([z3, z4], [z1, z2]);
– Query the inverse of 4-round Lai- Massey structure with inputs ([z1, z2], [z3, z4])s

and get corresponding outputs ([x′
1, x

′
2], [x

′
3, x

′
4])s;

– Construct a periodic function g2 based on x′
1, x

′
2, x

′
3, x

′
4s.

– Apply the periodicity of g2 to distinguish 4-round Lai-Massey structure from a ran-
dom permutation.

Let ai, bi, a
′
i, b

′
i and Δi,Δ

′
i, i = 1, 2, 3, 4 be intermediate parameters as shown in Fig.

3. In the following, we show the formulation.

Fig. 3. The encryption and decryption process of 4-round Lai-Massey structure

Theorem 3. If fi, i = 1, 2, 3, 4 are random functions, we can construct a quantum CCA
distinguisher against 4-round Lai-Massey Structure with σ (xL, xR) = (xR, xL ⊕ xR)
in O(n) quantum queries by using Simon’s algorithm.

We first give a lemma before proving Theorem 3. To show a quantum CCA distin-
guisher against 4-round Lai-Massey Structure with Simon’s algorithm, we will find a
periodic function based the function showed in Fig. 3.

Intermediate parameters ai, bi,Δj , i = 1, 2; j = 1, 2, 3 are the same as Sect. 3.1.
Intermediate parameters a3, b3, a4, b4,Δ4 are shown as follows. Other intermediate
parameters a′

i, b
′
i,Δ

′
i, i = 1, 2, 3, 4 with respect to [z1, z2], [z3, z4] are showed in in

Appendix A.

a3 = [x1 ⊕ f1L(Δ1) ⊕ f2L(Δ2) ⊕ f2R(Δ2) ⊕ f3R(Δ3),
x2 ⊕ f1R(Δ1) ⊕ f2L(Δ2) ⊕ f3L(Δ3) ⊕ f3R(Δ3)],

b3 = [x3 ⊕ f1L(Δ1) ⊕ f2L(Δ2) ⊕ f3L(Δ3), x4 ⊕ f1R(Δ1) ⊕ f2R(Δ2) ⊕ f3R(Δ3)],
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a4 = [y1, y2]
= [x1 ⊕ f1L(Δ1) ⊕ f2L(Δ2) ⊕ f2R(Δ2) ⊕ f3R(Δ3) ⊕ f4L(Δ4),

x2 ⊕ f1R(Δ1) ⊕ f2L(Δ2) ⊕ f3R(Δ3) ⊕ f3L(Δ3) ⊕ f4R(Δ4)],
b4 = [y3, y4]

= [x3 ⊕ f1L(Δ1) ⊕ f2L(Δ2) ⊕ f3L(Δ3) ⊕ f4L(Δ4),
x4 ⊕ f1R(Δ1) ⊕ f2R(Δ2) ⊕ f3R(Δ3) ⊕ f4R(Δ4)].

where

Δ4 = [x1 ⊕ x3 ⊕ f2R (Δ2) ⊕ f3L (Δ3) ⊕ f3R (Δ3) ,

x2 ⊕ x4 ⊕ f2L (Δ2) ⊕ f2R (Δ2) ⊕ f3L (Δ3)].

Let n1⊕n3 = 0, n2⊕n4 = 0. After the whole process of 4-round Lai-Massey structure
shown in the Fig. 3, the outputs [x′

1, x
′
2], [x

′
3, x

′
4] can be expressed with [x1, x2], [x3, x4]:

x′
1 =x1 ⊕ n1 ⊕ f1L (Δ1) ⊕ f2L (Δ2) ⊕ f2R (Δ2) ⊕ f3R (Δ3)

⊕ f1L

(
Δ′

1

) ⊕ f2L

(
Δ′

2

) ⊕ f2R

(
Δ′

2

) ⊕ f3R

(
Δ′

3

)
,

x′
2 =x2 ⊕ n2 ⊕ f1R (Δ1) ⊕ f2L (Δ2) ⊕ f3R (Δ3) ⊕ f3L (Δ3)

⊕ f1R

(
Δ′

1

) ⊕ f2L

(
Δ′

2

) ⊕ f3R

(
Δ′

3

) ⊕ f3L

(
Δ′

3

)
,

x′
3 =x3 ⊕ n3 ⊕ f1L (Δ1) ⊕ f2L (Δ2) ⊕ f3L (Δ3) ⊕ f1L

(
Δ′

1

) ⊕ f2L

(
Δ′

2

) ⊕ f3L

(
Δ′

3

)
,

x′
4 =x4 ⊕ n4 ⊕ f1R (Δ1) ⊕ f2R (Δ2) ⊕ f3R (Δ3) ⊕ f1R

(
Δ′

1

) ⊕ f2R

(
Δ′

2

) ⊕ f3R

(
Δ′

3

)
,

where

Δ′
3 =Δ3 ⊕ [n2, n1 ⊕ n4] ,

Δ′
2 =Δ2 ⊕ [f3R (Δ3) ⊕ f3R (Δ′

3) ⊕ n2 ⊕ n3,

f3L (Δ3) ⊕ f3R (Δ3) ⊕ f3L (Δ′
3) ⊕ f3R (Δ′

3) ⊕ n1] ,
Δ′

1 =Δ1 ⊕ [f2R (Δ2) ⊕ f3R (Δ3) ⊕ f3L (Δ3) ⊕ f2R (Δ′
2) ⊕ f3L (Δ′

3) ⊕ f3R (Δ′
3) ,

f2R (Δ2) ⊕ f2L (Δ2) ⊕ f3L (Δ3) ⊕ f2L (Δ′
2) ⊕ f2R (Δ′

2) ⊕ f3L (Δ′
3)] .

Lemma 2. Let x, x′ ∈ {0, 1}n/2, b ∈ {0, 1} and α0, α1 be arbitrary two fixed different

numbers in {0, 1}n/2. Let ([xαb
1 , xαb

2 ], [xαb
3 , xαb

4 ])
def
= ([x ⊕ αb, x

′], [x, x′ ⊕ αb]) being
the input of the function in Fig. 3 based on 4-round Lai-Massey structure and its inverse
with corresponding output ([x′

1
αb , x′

2
αb ], [x′

3
αb , x′

4
αb ]) when n1 = n2 = n3 = n4 =

α0 ⊕ α1. We an construct a periodic function g2 from 4-round Lai-Massey structure
with period s = f1[α0, α0] ⊕ f1[α1, α1] by letting

g2 : {0, 1}n →{0, 1}n/2

[x, x′] �→x′
1
α0 ⊕ x′

3
α0 ⊕ x′

1
α1 ⊕ x′

3
α1

g2([x, x′]) = f2R (Δα0
2 ([x, x′])) ⊕ f2R

(
Δ′

2
α0([x, x′])

) ⊕ f2R (Δα1
2 ([x, x′]))

⊕ f2R

(
Δ′

2
α1([x, x′])

) ⊕ f3R (Δα0
3 ([x, x′])) ⊕ f3R

(
Δ′

3
α0([x, x′])

)

⊕ f3R (Δα1
3 ([x, x′])) ⊕ f3R

(
Δ′

3
α1([x, x′])

) ⊕ f3L (Δα0
3 ([x, x′]))

⊕ f3L

(
Δ′

3
α0([x, x′])

) ⊕ f3L (Δα1
3 ([x, x′])) ⊕ f3L

(
Δ′

3
α1([x, x′])

)

⊕ α0 ⊕ α1,
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where Δαb
2 ([x, x′]),Δ′

2
αb([x, x′]),Δαb

3 ([x, x′]), and Δ′
3
αb([x, x′]) denote the values of

intermediate parameters Δ2,Δ
′
2,Δ3, and Δ′

3 respectively when the input of the func-
tion in Fig. 3 is ([xαb

1 , xαb
2 ], [xαb

3 , xαb
4 ]).

Proof. For i = 2, 3, we let

hi([x, x′])
def=fi (Δα0

i ([x, x′])) ⊕ fi

(
Δ′

i
α0([x, x′])

) ⊕ fi (Δα1
i ([x, x′])) ⊕ fi

(
Δ′

i
α1([x, x′])

)
.

Then we will clearly show that g2 is a periodic function step by step.

(a) Δαb
2 ([x, x′]) = Δ

αb⊕1
2 ([x, x′] ⊕ s) holds for all x, x′ ∈ {0, 1}n/2 the same as

Lemma 1.
(b) Δαb

3 ([x, x′]) = Δ′
3
αb⊕1([x, x′] ⊕ s) holds for all x, x′ ∈ {0, 1}n/2. We have

Δαb
3 ([x, x′]) = [x′ ⊕ αb ⊕ f1R[αb, αb] ⊕ f2L(Δαb

2 ([x, x′])) ⊕ f2R(Δαb
2 ([x, x′])),

x ⊕ x′ ⊕ f1L[αb, αb] ⊕ f1R[αb, αb] ⊕ f2L(Δαb
2 ([x, x′]))],

Δ′
3
αb([x, x′]) = Δαb

3 ([x, x′]) ⊕ [α0 ⊕ α1, 0].

Thus we get Δαb
3 ([x, x′]) = Δ′

3
αb⊕1([x, x′] ⊕ s) deriving from (a).

(c) h3([x, x′]) has a period s deriving from (b).
(d) Δ′

2
αb([x, x′]) = Δ′

2
αb⊕1([x, x′] ⊕ s) holds for all x, x′ ∈ {0, 1}n/2. We have

Δ′
2
αb([x, x′]) =Δαb

2 ([x, x′]) ⊕ [f3R (Δαb
3 ([x, x′])) ⊕ f3R

(
Δ′

3
αb([x, x′])

)
,

f3L (Δαb
3 ([x, x′])) ⊕ f3L

(
Δ′

3
αb([x, x′])

) ⊕ f3R (Δαb
3 ([x, x′]))

⊕ f3R

(
Δ′

3
αb([x, x′])

) ⊕ α0 ⊕ α1].

Thus Δ′
2
αb([x, x′]) = Δ′

2
αb⊕1([x, x′] ⊕ s) deriving from (a) and (b).

(e) h2([x, x′]) has a period s deriving from (d).
(f) g2([x, x′]) has a period s. We have

g2([x, x′]) = h2R([x, x′]) ⊕ h3R([x, x′]) ⊕ h3L([x, x′]) ⊕ α0 ⊕ α1.

Thus we get g2([x, x′]) has a period s deriving from (c) and (e). ��
Proof (Proof of Theorem 3). When the period is not unique, that is, Simon’s algorithm
satisfies the approximate commitment, there is ε(g2, s) < 1

2 , the probability of getting

the correct s is at least 1 − (
2
( 3
4

)c)n
.

Let A be an Adversary, we write 4-round Lai-Massey structure as 4LM. Similar to
the proof of Theorem 2, We haveAdvqprp-cpa

4LM (A) = 1−(
2
( 3
4

)c)n− 1
2n/2 . If we choose

c ≥ 6, Adv qprp-cpa
4LM (A) = 1 − 1

2n/2 .
��
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3.3 Quantum Key-Recovery Attack on 4-Round Lai-Massey Structure

Figure 4 shows the 4-round Lai-Massey Structure, where f1, f2, f3, f4 are round func-
tions and σ (xL, xR) = (xR, xL ⊕ xR). ai, bi and Δi, i = 1, 2, 3, 4 are intermediate
parameters as shown in Fig. 4. Let xi, yi, zi ∈ {0, 1}n/2, i = 1, 2, 3, 4. Let the inputs of
4-round Lai-Massey Structure be [x1, x2], [x3, x4], the outputs be [z1, z2], [z3, z4], and
the immediate parameters after 3-round Lai-Massey be [y1, y2], [y3, y4].

Fig. 4. 4-round Lai-Massey structure

To recover the partial key of 4-round Lai-Massey structure in CPA model, our strat-
egy is as follows.

– Query the 4-round Lai- Massey structure with inputs ([x1, x2], [x3, x4])s and get
corresponding outputs ([z1, z2], [z3, z4])s;

– Guess the key k4 of f4 as k;
– Given the value of the outputs ([z1, z2], [z3, z4])s of 4-round Lai- Massey structure
and key k, compute the value of immediate parameters after 3-round Lai-Massey
([y1, y2], [y3, y4])s as ([y1(k), y2(k)], [y3(k), y4(k)])s through the reverse of the last
round Lai-Massey;

– Construct function g3(k, ·) based on x1, x2, x3, x4, y1(k), y2(k), y3(k), y4(k)s the
same as g1 in Lemma 1 when attacking 3-round Lai-Massey.

– If g3(k, ·) is a periodic function, then k is the correct key k4 of f4; Or it doesn’t hold
by the randomness of f4.

Thus we can recover key k4 and g3(k4, ·) is a periodic function. However, when replac-
ing above 4-round Lai- Massey structure with random permutation, g3 isn’t a periodic
any more. So we can distinguish 4-round Lai-Massey Structure from a random permu-
tation. In the following, we show the formulation.

Theorem 4. If fi, i = 1, 2, 3, 4 are random functions, the length of the key k4 of f4 ism
bits. We can give a quantum Grover-meet-Simon attack on 4-round Lai- Massey struc-
ture with σ (xL, xR) = (xR, xL ⊕ xR) with O(n2m/2) quantum queries in quantum
CPA.

We first give a lemma before proving Theorem 4.
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Lemma 3. If fi, i = 1, 2, 3, 4 are random functions, the length of the key k4 of f4
is m bits. Let x, x′ ∈ {0, 1}n/2, b ∈ {0, 1} and α0, α1 be arbitrary two fixed dif-

ferent numbers in {0, 1}n/2. Let ([xαb
1 , xαb

2 ], [xαb
3 , xαb

4 ])
def
= ([x ⊕ αb, x

′], [x, x′ ⊕
αb]) being the input of 4-round Lai-Massey structure with corresponding output
([zαb

1 , zαb
2 ], [zαb

3 , zαb
4 ]). And let ([yαb

1 (k), yαb
2 (k)], [yαb

3 (k), yαb
4 (k)]) be the immediate

parameters when reverse the last round of 4-round Lai-Massey with a guessed key k of
f4. We construct a function g3 from 4-round Lai-Massey structure by letting

g3 : {0, 1}m × {0, 1}n →{0, 1}n/2

k, [x, x′] �→xα0
1 ⊕ xα0

2 ⊕ xα0
3 ⊕ yα0

1 (k) ⊕ yα0
3 (k)⊕

xα1
1 ⊕ xα1

2 ⊕ xα1
3 ⊕ yα1

1 (k) ⊕ yα1
3 (k)

g3(k, [x, x′]) = zα0
1 ⊕ zα0

2 ⊕ zα0
3 ⊕ f4R([zα0

1 ⊕ zα0
3 , zα0

2 ⊕ zα0
4 ])

⊕ zα1
1 ⊕ zα1

2 ⊕ zα1
3 ⊕ f4R([zα1

1 ⊕ zα1
3 , zα1

2 ⊕ zα1
4 ])

⊕ α0 ⊕ α1.

Then g3(k4, ·) is a periodic function with period s = f1[α0, α0] ⊕ f1[α1, α1] in its
second component.

It is obviously that g3(k4, [x, x′]) = g1([x, x′]). By Lemma 1 we get the Lemma 3.

Proof (Proof of Theorem 4). Given quantum oracle to g3 , k4 and f1[α0, α0] ⊕
f1[α1, α1] could be computed with O(n2) qubits and about 2n/2 quantum queries. The
details are provided in Appendix B. And Theorem 4 is proved.

��

4 Lai-Massey and Quasi-Feistel Structures

4.1 Quasi-Feistel Structure

Aaram Yun et al. [40] proposed the notion of quasi-Feistel structure, which is an exten-
sion of Feistel structure and Lai-Massey structure. Combiner is an important notion in
quasi-Feistel structure, we briefly recall the definitions.

Definition 3 [40] (Combiner). A function Γ : X × X × Y → X is a combiner over
(X ,Y), if for y ∈ X , z ∈ Y , x �→ Γ (x, y, z) is a permutation, and for x ∈ X , z ∈ Y ,

y �→ Γ (x, y, z) is a permutation. We denote Γ [[x 	 y | z]]
def
= Γ (x, y, z).

Definition 4 [40] (b-branched, r-round quasi-Feistel structure). Let b > 1 and r ≥ 1
be fixed integers, and fix a b-combiner Γ over X . Suppose that P,Q : X b → X b

are permutations. Given r functions f1, ..., fr : X b−1 → X , we define a function
Ψ = Ψb,r

P,Q (f1, . . . , fr) : X b → X b as follows; for x = (x1, x2, ..., xb) ∈ X b,we
compute y = Ψ(x) by

1. (z0, z1, . . . , zb−1) ← P (x),
2. zi+b−1 ← Γ [[zi−1 	 fi (zi · · · zi+b−2) | zi · · · zi+b−2]] for i = 1, . . . , r.
3. y ← Q−1 (zr, zr+1, . . . , zr+b−1).
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Then Ψ is a permutation. For integer b > 1, we call Ψ a b-branched, r-
round quasi-Feistel permutation for f1, ..., fr with respect to (P,Q, Γ ). If Ψb,r :
Func

(X b−1,X )r → Perm
(X b

)
. We call Ψ a b-branched, r-round quasi-Feistel

structure for f1, ..., fr with respect to (P,Q, Γ ).

Note 1. Quasi-Feistel structure is balanced when b = 2, and unbalanced when b >
2. In our subsequent discussion, Feistel and Lai-Massey structures are both under the
condition of b = 2.

Aaram Yun et al. [40] showed that Feistel and Lai-Massey structures are quasi-
Feistel structures with different combiners when b = 2. The Lai-Massey structure ver-
sion they used is given by Vaudenay [35].

Lemma 4 [40] (Unbalanced). Feistel structure is a special case of the quasi-Feistel
structure, and the combiner is Γ [[x 	 y | z]] = x ⊕ y.

Lemma 5 [40]. Lai-Massey structure is an instance of the quasi-Feistel structure. Let
G be a finite abelian group, σ : G → G. The underlying set X is the group G. τ(x) =
σ(x) − x. The combiner is Γ [[x 	 y | z]] = z + τ(z − x + y + τ−1(z − x)).

4.2 Lai-Massey and Quasi-Feistel Structures

Fig. 5. The ith-round of Lai-Massey structure

First we write the combiner of Lai-Massey structure with σ (xL, xR) =
(xR, xL ⊕ xR). Note that our notation is slightly different from the above in order to
match the definition of quasi-Feistel (Fig. 5).

Theorem 5. The r-round Lai-Massey structure with σ (xL, xR) = (xR, xL ⊕ xR) can
be written as:

α1 ← [x1, x2], β1 ← [x3, x4].
αi+1 ← [αiR ⊕ fiR(αi ⊕ βi), αiL ⊕ αiR ⊕ fiL(αi ⊕ βi) ⊕ fiR(αi ⊕ βi)],
βi+1 ← [βiL ⊕ fiL(αi ⊕ βi), βiR ⊕ fiR(αi ⊕ βi)], i = 1...r,

yL ← αr+1, yR ← βr+1,

Return y = (yL, yR).

The combiner of Lai-Massey structure is Γ [[x 	 y | z]] = σ(x) ⊕ σ−1(y) ⊕ σ−1(z).
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Proof. Let x = αi−1 ⊕βi−1, y = fi(αi ⊕βi), zi = αi ⊕βi, zi+1 = αi+1 ⊕βi+1. Then

αi+1 ⊕ βi+1 = [αiR ⊕ βiL ⊕ fiL(αi ⊕ βi) ⊕ fiR(αi ⊕ βi), αiL ⊕ αiR ⊕ βiR ⊕ fiL(αi ⊕ βi)].

Similarly, we can get αi ⊕ βi, which means that

zi+1 = [xL ⊕ αi−1R ⊕ fi−1R(αi−1 ⊕ βi−1) ⊕ yL ⊕ yR,

αi−1L ⊕ βi−1R ⊕ fi−1L(αi−1 ⊕ βi−1) ⊕ fi−1R(αi−1 ⊕ βi−1) ⊕ yL]
= [ziL ⊕ ziR ⊕ xR ⊕ yL ⊕ yR, ziL ⊕ xL ⊕ xR ⊕ yL].

Hence, we may define the combiner by

Γ [[x � y | z]] = [zL ⊕ zR ⊕ xR ⊕ yL ⊕ yR, zL ⊕ xL ⊕ xR ⊕ yL] = σ(x) ⊕ σ
−1(y) ⊕ σ

−1(z).

We can see that x �→ Γ [[x 	 y | z]] and y �→ Γ [[x 	 y | z]] are permutations.
We give the following equivalent description of Lai-Massey structure: given the input
x = (α1, β1).

Let H(x, y) =
(
σ−1(x) ⊕ y, x ⊕ y

)
and we can compute (z0, z1) = H (α1, β1).

We calculate z2, ..., zr+1 by

zi+1 = σ(zi−1) ⊕ σ−1(fi(zi)) ⊕ σ−1(zi) = Γ [[zi−1 � fi(zi) | zi]].

We compute the output (αr+1, βr+1) by (αr+1, βr+1) = H−1 (zr, zr+1). ��
The result of Theorem 5 is consistent with Lemma 5.

5 Quantum Attacks Against Quasi-Feistel Structures

Since Feistel structure and Lai-Massey structure are quasi-Feistel structures, a problem
of much interest is whether it is possible to directly perform quantum attacks on quasi-
Feistel structures. Here we consider b = 2. The ith-round of quasi-Feistel structure is
shown in Fig. 6.

Fig. 6. ith-round of quasi-Feistel structure
with b = 2.

Fig. 7. ith-round of quasi-Feistel structure
with linear combiner and b = 2.

We only consider the case where the combiner Γ of quasi-Feistel structure is linear.
Let A be a matrix of linear transformation. Then we write

Γ (x, y, z) = A ·
⎡

⎣
x
y
z

⎤

⎦ = [A1 A2 A3 ] ·
⎡

⎣
x
y
z

⎤

⎦ def= L1(x) ⊕ L2(y) ⊕ L3(z),
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According to Definition 3, L1, L2 are reversible. The ith-round of quasi-Feistel struc-
ture with linear combiner and b = 2 is shown in Fig. 7.

5.1 Quantum Chosen-Plaintext Attack Against 3-Round Quasi-Feistel Structure

Figure 8 shows the 3-round quasi-Feistel Structure with linear combiner and b = 2,
where f1, f2, f3 are round functions. For b = 2, the inputs are z0, z1 and the outputs are
z3, z4 as we shown in Definition 4.

Fig. 8. 3-round quasi-Feistel structure with linear combiner and b = 2

Theorem 6. If fi, i = 1, 2, 3 are random functions, we can construct a quantum
CPA distinguisher against 3-round balanced quasi-Feistel Structure in O(n) queries
by using Simon’s algorithm.

Proof. For inputs z0, z1, zi = L1(zi−2) ⊕ L2(fi−1(zi−1)) ⊕ L3(zi−1), i = 2, 3, 4. let
z0 = x, z1 = αb. We have

zαb
2 (x) = L1(x) ⊕ L2(f1(αb)) ⊕ L3(αb) = L1[x ⊕ L−1

1 L2(f1(αb)) ⊕ L−1
1 L3(αb)],

Then zαb
3 (x) = L1(αb) ⊕ L2(f2(zαb

2 )) ⊕ L3(zαb
2 ).

Lemma 6. Let x ∈ {0, 1}n, b ∈ {0, 1} and α0, α1 be arbitrary two fixed differ-

ent numbers in {0, 1}n. Let (zαb
0 , zαb

1 )
def
= (x, αb) being the input of 3-round bal-

anced quasi-Feistel structure with corresponding output (zαb
3 , zαb

4 ). We can construct
a periodic function g4 from 3-round balanced quasi-Feistel structure with period
s = L−1

1 L2(f1(α0)) ⊕ L−1
1 L2(f1(α1)) ⊕ L−1

1 L3(α0) ⊕ L−1
1 L3(α1) by letting

g4 : {0, 1}n → {0, 1}n

x �→ zα0
3 (x) ⊕ zα1

3 (x)
g4(x) = L1(α0) ⊕ L2(f2(zα0

2 (x))) ⊕ L3(zα0
2 (x))

⊕ L1(α1) ⊕ L2(f2(zα1
2 (x))) ⊕ L3(zα1

2 (x)),

where zαb
2 (x) denotes the value of z2 when the input of 3-round balanced quasi-Feistel

structure is (zαb
0 , zαb

1 ).
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Proof. we show that g4 is obviously a periodic function.

(a) zαb
2 (x) = z

αb⊕1
2 (x ⊕ s) holds for all x ∈ {0, 1}n.

(b) g4(x) has a period s deriving from (a). ��
When the period is not unique, that is, Simon’s algorithm satisfies the approximate

commitment, there is ε(g4, s) < 1
2 , the probability of getting the correct s is at least

1 − (
2
( 3
4

)c)n
. Let A be an Adversary, we write 3-round balanced quasi-Feistel struc-

ture as 3qF. We have Adv qprp-cpa
3qF (A) = 1 − (

2
( 3
4

)c)n − 1
2n . If we choose c ≥ 6,

Adv qprp-cpa
3qF (A) = 1 − 1

2n . ��

5.2 Quantum Chosen-Ciphertext Attack Against 4-Round Quasi-Feistel
Structure

Figure 9 shows the attack progress of 4-round quasi-Feistel Structure with linear com-
biner and b = 2, where f1, f2, f3, f4 are round functions. zi, z

′
i, i = 0, ..., 4 follow the

definition in Definition 4.
Let the inputs of the encryption process be z0, z1, and the outputs be z4, z5. Let the

inputs of the decryption process be z′
4, z

′
5, and the outputs be z′

0, z
′
1. z

′
4 = z4 ⊕ m1 and

z′
5 = z5 ⊕ m5, where mj , j = 1, 2 and zi have the same length.

Fig. 9. The encryption and decryption progress of 4-round quasi-Feistel structure with linear com-
biner and b = 2

Theorem 7. If fi, i = 1, 2, 3 are random functions, 4-round balanced quasi-Feistel
Structure can be attacked inO(n) queries by using Simon’s algorithm in quantum CCA.

Proof. For the encryption process we have

zi = L1(zi−2) ⊕ L2(fi−1(zi−1)) ⊕ L3(zi−1), i = 2, 3, 4, 5.

And for the decryption process we have

z′
j = L−1

1 [z′
j+2 ⊕ L2(fj+1(z′

j+1)) ⊕ L3(z′
j+1)], j = 0, 1, 2, 3.
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Let m1 = 0. Let m2 = L1L1(α0) ⊕ L1L1(α1). So we can get

z′
3 = z3 ⊕ L1(α0 ⊕ α1),

z′
2 = z2 ⊕ L−1

1 L2(f3(z3) ⊕ f3(z′
3)) ⊕ L−1

1 L3L1(α0 ⊕ α1),

z′
1 = z1 ⊕ L−1

1 L2(f2(z2) ⊕ f2(z′
2)) ⊕ L−1

1 L3L
−1
1 L2(f3(z3) ⊕ f3(z′

3))

⊕ α0 ⊕ α1 ⊕ L−1
1 L3L

−1
1 L3L1(α0 ⊕ α1).

Lemma 7. Let x ∈ {0, 1}n, b ∈ {0, 1} and α0, α1 be arbitrary two fixed different

numbers in {0, 1}n. Let (zαb
0 , zαb

1 )
def
= (x, αb) being the input of the function in Fig. 9

based on 4-round balanced quasi-Feistel structure and its inverse with corresponding
output (z′αb

0 , z′αb

1 ) when m1 = 0,m2 = L1L1(α0) ⊕ L1L1(α1). We an construct a
periodic function g5 from 4-round round balanced quasi-Feistel structure with period
s = L−1

1 L2(f1(α0)) ⊕ L−1
1 L2(f1(α1)) ⊕ L−1

1 L3(α0) ⊕ L−1
1 L3(α1) by letting

g5 : {0, 1}n → {0, 1}n

x �→ z′α0
1 (x) ⊕ z′α1

1 (x) ⊕ α0 ⊕ α1

g5(x) =L−1
1 L2(f2(zα0

2 (x)) ⊕ f2(z′α0
2 (x)) ⊕ f2(zα1

2 (x)) ⊕ f2(z′α1
2 (x)))

⊕ L−1
1 L3L

−1
1 L2(f3(zα0

3 (x)) ⊕ f3(z′α0
3 (x)) ⊕ f3(zα1

3 (x)) ⊕ f3(z′α1
3 (x))),

where zαb
2 (x), z′αb

2 (x), zαb
3 (x), and z′αb

3 (x) denote the values of intermediate parame-
ters z2, z

′
2, z3, and z′

3 respectively when the input of the function in Fig. 9 is (z′αb

0 , z′αb

1 ).

Proof. For i = 2, 3, we let h′
i(x) def= fi (zα0

i (x)) ⊕ fi

(
z′
i
α0(x)

) ⊕ fi (zα1
i (x)) ⊕

fi

(
z′
i
α1(x)

)
. Then we will clearly show that g5 is a periodic function step by step.

(a) zαb
2 (x) = z

αb⊕1
2 (x ⊕ s) holds for all x ∈ {0, 1}n the same as Lemma 6.

(b) zαb
3 (x) = z′

3
αb⊕1(x ⊕ s) holds for all x ∈ {0, 1}n. We have

zαb
3 (x) = L1(αb) ⊕ L2(f2(zαb

2 )) ⊕ L3(zαb
2 ),

z′
3
αb(x) = L1(αb⊕1) ⊕ L2(f2(zαb

2 )) ⊕ L3(zαb
2 ).

Thus we get zαb
3 (x) = z′

3
αb⊕1(x ⊕ s) deriving from (a).

(c) h′
3(x) has a period s deriving from (b).

(d) z′
2
αb(x) = z′

2
αb⊕1(x ⊕ s) holds for all x ∈ {0, 1}n. We have

z′
2
αb(x) = zαb

2 (x) ⊕ L−1
1 L2(f3(zαb

3 (x)) ⊕ f3(z′αb

3 (x))) ⊕ L−1
1 L3L1(α0 ⊕ α1).

Thus z′
2
αb(x) = z′

2
αb⊕1(x ⊕ s) deriving from (a) and (b).

(e) h′
2(x) has a period s deriving from (d).

(f) g5(x) has a period s. We have g5(x) = L−1
1 L2(h′

2(x)) ⊕ L−1
1 L3L

−1
1 L2(h′

3(x)).
Thus we get g5(x) has a period s deriving from (c) and (e). ��

Proof (Proof of Theorem 7). Now we have g5(x) = g5(x ⊕ s) with period s =
L−1
1 L2(f1(α0)) ⊕ L−1

1 L2(f1(α1)) ⊕ L−1
1 L3(α0) ⊕ L−1

1 L3(α1). When the period is
not unique, that is, Simon’s algorithm satisfies the approximate commitment, there is
ε(g5, s) < 1

2 , the probability of getting the correct s is at least 1 − (
2
( 3
4

)c)n
. Let

A be an Adversary, we write 4-round balanced quasi-Feistel structure as 4qF. We have
Adv qprp-cpa

4qF (A) = 1−(
2
( 3
4

)c)n− 1
2n . If we choose c ≥ 6,Adv qprp-cpa

4qF (A) = 1− 1
2n .
��
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6 Conclusion and Discussion

There has been a discussion about whether the security of Lai-Massey structure and
Feistel structure are the same. Aaram Yun et al. [40] proved that Feistel structure and
Lai-Massey structure are quasi-Feistel structures and proved the birthday security of
(2b − 1) and (3b − 2)-round unbalanced quasi-Feistel networks with b branches against
CPA and CCA attacks in classical. In [29], Luo, et al. shown that 3-round Lai-Massey
structure can resist the attacks of Simon’s algorithm in quantum, which is different from
Feistel structure. According to Luo, this means that Lai-Massey structure and Feistel
structure have a different number of rounds for CPA attacks in quantum, which also
means that quasi-Feistel structures do not have similar security strength in quantum.

We first give quantum attacks on Lai-Massey structure used in FOX. We show that
3-round Lai-Massey structure can be attacked by using Simon’s algorithm in O(n)
quantum queries against quantum CPA attacks, which is the same as Feistel structure.
Then we give quantum CCA attacks on 4-round Lai-Massey structure, O(n) quantum
queries are sufficient to distinguish 4-round Lai-Massey structure from random per-
mutation, which is the same as Feistel structure too. This makes us realize that quasi-
Feistel structures may have similar security strength in quantum. So we give quantum
attacks on quasi-Feistel structures and show that 3-round (4-round) balanced quasi-
Feistel structure with linear combiners can be attacked with O(n) quantum queries in
quantum CPA(CCA).

For Lai-Massey structure, the version given by Vaudenay [35] used general oper-
ations in a finite group, and the version given by FOX [18] used XOR operation. In
both versions, the operation used in σ and the remainder of Lai-Massey structure are
the same. We consider that σ and the remainder of Lai-Massey structure use different
operations, i.e., we use XOR operation in σ and general operations in the remainder of
Lai-Massey structure. A problem of much interest is whether different operations can
improve the security of Lai-Massey structure. If the security can be improved, another
problem has been whether it is possible to resist quantum attacks as shown in [2].

Here we use quantum attacks that can make superposition queries. Quantum attacks
work with classical queries and offline quantum computations can be further consid-
ered, as Bonnetain et al. did in [5].

Hosoyamada and Iwata [15] show that 4-round Feistel structure against sufficient
qCPAs. More precisely, they prove that 4-round Feistel structure is secure up toO(2n/3)
quantum queries if the input length is 2n bits. We guess that the quantum security bound
of 4-round Lai-Massey structure maybe O(2n/3), too. But this still needs to be proved
in the future.

Acknowledgement. Many thanks to the reviewers for their constructive comments during the
review process. One of reviewers pointed out that the combiner Γ of balanced quasi-Feistel struc-
ture in Sect. 5 does not need to be all linear. After our verification, only L1 needs to be linear.
Specifically, if the combiner of quasi-Feistel structure is like Γ (x, y, z) = L1(x) ⊕ F (y, z),
where L1 is linear and F is a function, there exists a quantum CPA distinguisher against 3-
round balanced quasi-Feistel structure and a quantum CCA distinguisher against 4-round bal-
anced quasi-Feistel Structure.
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A Intermediate Parameters in the Decryption Process of 4-round
Lai-Massey Structure in Sect. 3.2

For the decryption process of 4-round Lai-Massey structure shown in the Fig. 3, we
write the inputs as [z1, z2], [z3, z4] and the outputs as [x′

1, x
′
2], [x

′
3, x

′
4]. Intermediate

parameters are as follows.

a′
4 = [z1, z2], b′

4 = [z3, z4],
a′
3 = [z1 ⊕ f4L(Δ′

4), z2 ⊕ f4R(Δ′
4)], b

′
3 = [z3 ⊕ f4L(Δ′

4), z4 ⊕ f4R(Δ′
4)],

a′
2 = [z1 ⊕ z2 ⊕ f3L(Δ′

3) ⊕ f4L(Δ′
4) ⊕ f4R(Δ′

4), z1 ⊕ f3R(Δ′
3) ⊕ f4L(Δ′

4)],
b′
2 = [z3 ⊕ f3L(Δ′

3) ⊕ f4L(Δ′
4), z4 ⊕ f3R(Δ′

3) ⊕ f4R(Δ′
4)],

a′
1 = [z2 ⊕ f2L(Δ′

2) ⊕ f3L(Δ′
3) ⊕ f3R(Δ′

3) ⊕ f4R(Δ′
4),

z1 ⊕ z2 ⊕ f2R(Δ′
2) ⊕ f3L(Δ′

3) ⊕ f4L(Δ′
4) ⊕ f4R(Δ′

4)],
b′
1 = [z3 ⊕ f2L(Δ′

2) ⊕ f3L(Δ′
3) ⊕ f4L(Δ′

4), z4 ⊕ f2R(Δ′
2) ⊕ f3R(Δ′

3) ⊕ f4R(Δ′
4)],

where

Δ′
4 = [z1 ⊕ z3, z2 ⊕ z4],

Δ′
3 = [z1 ⊕ z2 ⊕ z3 ⊕ f4R(Δ′

4), z1 ⊕ z4 ⊕ f4L(Δ′
4) ⊕ f4R(Δ′

4)],
Δ′

2 = [z2 ⊕ z3 ⊕ f3R(Δ′
3) ⊕ f4L(Δ′

4) ⊕ f4R(Δ′
4),

z1 ⊕ z2 ⊕ z4 ⊕ f3L(Δ′
3) ⊕ f3R(Δ′

3) ⊕ f4L(Δ′
4)],

Δ′
1 = [z1 ⊕ z3 ⊕ f2R(Δ′

2) ⊕ f3L(Δ′
3) ⊕ f3R(Δ′

3),
z2 ⊕ z4 ⊕ f2L(Δ′

2) ⊕ f2R(Δ′
2) ⊕ f3L(Δ′

3)].

Proof. Let a′
4 = [z1, z2], b′

4 = [z3, z4]. Intermediate parameters ai, bi,Δj , i = 1, 2, 3, 4
are the same as Sect. 3.1 and Sect. 3.2.

Fig. 10. The fourth round of the decryption progress of 4-round Lai-Massey structure

Lemma 8. For the fourth round of the decryption progress of 4-round Lai-Massey
structure (Fig. 10), intermediate parameters Δ′

4, a
′
3, b

′
3 can be expressed as:

Δ′
4 = [z1 ⊕ z3, z2 ⊕ z4],
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a′
3 = [z1 ⊕ f4L(Δ′

4), z2 ⊕ f4R(Δ′
4)],

b′
3 = [z3 ⊕ f4L(Δ′

4), z4 ⊕ f4R(Δ′
4)].

Proof. According to the decryption progress of 4-round Lai-Massey structure, we can
get the following system of equations

⎧
⎪⎨

⎪⎩

Δ′
4 = a′

3 ⊕ b′
3,

a′
3 ⊕ f4(Δ′

4) = a′
4,

b′
3 ⊕ f4(Δ′

4) = b′
4.

Solving the system of equations gives the result.

Fig. 11. The third round of the decryption progress of 4-round Lai-Massey structure

Lemma 9. For the third round of the decryption progress of 4-round Lai-Massey struc-
ture (Fig. 11), intermediate parameters Δ′

3, a
′
2, b

′
2 can be expressed as:

Δ′
3 = a′

2 ⊕ b′
2 = [z1 ⊕ z2 ⊕ z3 ⊕ f4R(Δ′

4), z1 ⊕ z4 ⊕ f4L(Δ′
4) ⊕ f4R(Δ′

4)],
a′
2 = [z1 ⊕ z2 ⊕ f3L(Δ′

3) ⊕ f4L(Δ′
4) ⊕ f4R(Δ′

4), z1 ⊕ f3R(Δ′
3) ⊕ f4L(Δ′

4)],
b′
2 = [z3 ⊕ f3L(Δ′

3) ⊕ f4L(Δ′
4), z4 ⊕ f3R(Δ′

3) ⊕ f4R(Δ′
4)].

Proof. According to the decryption progress of 4-round Lai-Massey structure, we can
get the following system of equations

⎧
⎪⎨

⎪⎩

Δ′
3 = a′

2 ⊕ b′
2,

a′
3 = [a′

2R ⊕ f3R(Δ′
3), a

′
2L ⊕ a′

2R ⊕ f3L(Δ′
3) ⊕ f3R(Δ′

3)],
b′
3 = [b′

2L ⊕ f3L(Δ′
3), b

′
2R ⊕ f3R(Δ′

3)].

From Lemma 8 we can get:
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

a′
2R ⊕ f3R(Δ′

3) = z1 ⊕ f4L(Δ′
4),

a′
2L ⊕ a′

2R ⊕ f3L(Δ′
3) ⊕ f3R(Δ′

3) = z2 ⊕ f4R(Δ′
4),

b′
2L ⊕ f3L(Δ′

3) = z3 ⊕ f4L(Δ′
4),

b′
2R ⊕ f3R(Δ′

3) = z4 ⊕ f4R(Δ′
4).

Solving the system of equations gives the result.

Lemma 10. For the second round of the decryption progress of 4-round Lai-Massey
structure, intermediate parameters Δ′

2, a
′
1, b

′
1 can be expressed as:
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Δ′
2 = [z2 ⊕ z3 ⊕ f3R(Δ′

3) ⊕ f4L(Δ′
4) ⊕ f4R(Δ′

4),
z1 ⊕ z2 ⊕ z4 ⊕ f3L(Δ′

3) ⊕ f3R(Δ′
3) ⊕ f4L(Δ′

4)],
a′
1 = [z2 ⊕ f2L(Δ′

2) ⊕ f3L(Δ′
3) ⊕ f3R(Δ′

3) ⊕ f4R(Δ′
4),

z1 ⊕ z2 ⊕ f2R(Δ′
2) ⊕ f3L(Δ′

3) ⊕ f4L(Δ′
4) ⊕ f4R(Δ′

4)],
b′
1 = [z3 ⊕ f2L(Δ′

2) ⊕ f3L(Δ′
3) ⊕ f4L(Δ′

4), z4 ⊕ f2R(Δ′
2) ⊕ f3R(Δ′

3) ⊕ f4R(Δ′
4)].

Proof. According to the decryption progress of 4-round Lai-Massey structure, we can
get the following system of equations

⎧
⎪⎨

⎪⎩

Δ′
2 = a′

1 ⊕ b′
1,

a′
2 = [a′

1R ⊕ f2R(Δ′
2), a

′
1L ⊕ a′

1R ⊕ f2L(Δ′
2) ⊕ f2R(Δ′

2)],
b′
2 = [b′

1L ⊕ f2L(Δ′
2), b1R ⊕ f2R(Δ′

2)].

From Lemma 9 we have:
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

a′
1R ⊕ f2R(Δ′

2) = z1 ⊕ z2 ⊕ f3L(Δ′
3) ⊕ f4L(Δ′

4) ⊕ f4R(Δ′
4),

a′
1L ⊕ a′

1R ⊕ f2L(Δ′
2) ⊕ f2R(Δ′

2) = z1 ⊕ f3R(Δ′
3) ⊕ f4L(Δ′

4),
b′
1L ⊕ f2L(Δ′

2) = z3 ⊕ f3L(Δ′
3) ⊕ f4L(Δ′

4),
b′
1R ⊕ f2R(Δ′

2) = z4 ⊕ f3R(Δ′
3) ⊕ f4R(Δ′

4).

Solving the system of equations gives the result.

Lemma 11. For the first round of the decryption progress of 4-round Lai-Massey struc-
ture, intermediate parameters Δ′

1, [x
′
1, x

′
2], [x

′
3, x

′
4] can be expressed as:

Δ′
1 = [z1 ⊕ z3 ⊕ f2R(Δ′

2) ⊕ f3L(Δ′
3) ⊕ f3R(Δ′

3),
z2 ⊕ z4 ⊕ f2L(Δ′

2) ⊕ f2R(Δ′
2) ⊕ f3L(Δ′

3)],
[x′

1, x
′
2] = [z1 ⊕ f1L(Δ′

1) ⊕ f2L(Δ′
2) ⊕ f2R(Δ′

2) ⊕ f3R(Δ′
3) ⊕ f4L(Δ′

4),
z2 ⊕ f1R(Δ′

1) ⊕ f2L(Δ′
2) ⊕ f3L(Δ′

3) ⊕ f3R(Δ′
3) ⊕ f4R(Δ′

4),
[x′

3, x
′
4] = [z3 ⊕ f1L(Δ′

1) ⊕ f2L(Δ′
2) ⊕ f3L(Δ′

3) ⊕ f4L(Δ′
4),

z4 ⊕ f1R(Δ′
1) ⊕ f2R(Δ′

2) ⊕ f3R(Δ′
3) ⊕ f4R(Δ′

4)].

Proof. According to the decryption progress of 4-round Lai-Massey structure, we can
get the following system of equations

⎧
⎪⎨

⎪⎩

Δ′
1 = [x′

1, x
′
2] ⊕ [x′

3, x
′
4],

a′
1 = [x′

2 ⊕ f1R(Δ′
1), x

′
1 ⊕ x′

2 ⊕ f1L(Δ′
1) ⊕ f1R(Δ′

1)],
b′
1 = b′

0 ⊕ f1(Δ′
1) = [x′

3 ⊕ f1L(Δ′
1), x

′
4 ⊕ f1R(Δ′

1)].

From Lemma 11 we have
⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x′
2 ⊕ f1R(Δ′

1) = z2 ⊕ f2L(Δ′
2) ⊕ f3L(Δ′

3) ⊕ f3R(Δ′
3) ⊕ f4R(Δ′

4),

x′
1 ⊕ x′

2 ⊕ f1L(Δ′
1) ⊕ f1R(Δ′

1) = z1 ⊕ z2 ⊕ f2R(Δ′
2) ⊕ f3L(Δ′

3) ⊕ f4L(Δ′
4) ⊕ f4R(Δ′

4),

x′
3 ⊕ f1L(Δ′

1) = z3 ⊕ f2L(Δ′
2) ⊕ f3L(Δ′

3) ⊕ f4L(Δ′
4),

x′
4 ⊕ f1R(Δ′

1) = z4 ⊕ f2R(Δ′
2) ⊕ f3R(Δ′

3) ⊕ f4R(Δ′
4).

Solving the system of equations gives the result.
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B Proof of Theorem 4

Proof. First, we introduce a Theorem and a Lemma for subsequent proofs.

Theorem 8 [6] (Brassard, Hoyer, Mosca and Tapp). Let A be any quantum algorithm
on q qubits that uses no measurement. Let B : Fq

2 → {0, 1} be a function that classifies
outcomes of A as good or bad. Let p > 0 be the initial success probability that a mea-
surement of A|0〉 is good. Set t = � π

4θ �, where θ is defined via sin2(θ) = p. Moreover,
define the unitary operator Q = −AS0A−1SB, where the operator SB changes the
sign of the good state:

|x〉 �→
{−|x〉 if B(x) = 1

|x〉 if B(x) = 0

while S0 changes the sign of the amplitude only for the zero state |0〉. Then after the
computation of QtA|0〉, a measurement yields well with probability a least max{1 −
p, p}.
Lemma 12 [24]. Any state |zi〉 = (−1)〈ui,xi〉|ui〉 is proper with probability at least 1

2 .
Any set of  = 2(n +

√
n) states contains at least n − 1 proper states with probability

greater than 4
5 .

Let Uh be a quantum oracle as |x1, ..., xl, 0〉 �→ |x1, ..., xl, h(x1, ..., xl)〉. If k4

guessed right, then g3(k4, [x, x′]) = g3(k4, [x, x′] ⊕ s). Let h : Fm
2 × F

nl

2 → F
(n/2)l

2
with: (k, [x1, x

′
1], ..., [xl, x

′
l]) �→ g3(k, [x1, x

′
1])||...||g3(k, [xl, x

′
l]). Then we can con-

struct the following quantum algorithm A :

1. Initializing a m + nl + nl/2-qubit register |0〉⊗m+nl+nl/2.
2. Apply Hadamard transformation H⊗(m+nl) to the first m+nl qubits to obtain quan-

tum superposition

H⊗(m+nl)|0〉 =
1√

2m+nl

∑

k∈F
m
2 ,[x1,x′

1],...,[xl,x′
l]∈F

n
2

|k〉|[x1, x
′
1]〉...|[xl, x

′
l]〉|0, ..., 0〉.

3. Applying Uh:

1√
2m+nl

∑

k∈F
m
2 ,[x1,x′

1],...,[xl,x′
l]∈F

n
2

|k〉|[x1, x
′
1]〉...|[xl, x

′
l]〉|h(k, [x1, x

′
1], ..., [xl, x

′
l])〉.

4. Apply Hadamard transformation to the qubits |[x1, x
′
1]〉...|[xl, x

′
l]〉:

|ϕ〉 =
1√

2m+2nl

∑

k∈F
m
2 ,u1,...,ul,[x1,x′

1],...,[xl,x
′
l
]∈F

n
2

|k〉(−1)〈u1,[x1,x′
1]〉|u1〉 · · · (−1)〈u1,[xl,x

′
l]〉

|ul〉|h(k, [x1, x′
1], ..., [xl, x

′
l])〉.

If k4 is guessed right, the period s will orthogonal to all the ui, i = 1...l. From
Lemma 12, we choose l = 2(n+

√
n). Then we can construct a classifier B : Fm+nl

2 →
{0, 1} with a good subspace |ϕ1〉 and a bad subspace |ϕ0〉 as Definition 5. |x〉 in the
good subspace if B(x) = 1. Let |ϕ〉 = |ϕ1〉 + |ϕ0〉. |ϕ1〉 is the sum of basis states for
which the right k4. We can check it by whether g3(k, [x, x′]) = g3(k, [x, x′] ⊕ s):
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Definition 5. Let Ũ = 〈u1, ..., ul〉 be the linear span of all ui. We define Classifier
B : Fm+nl

2 �→ {0, 1} which maps (k, u1, ..., ul) �→ {0, 1}.
1. If dim(Ũ) = n − 1, output 0. Otherwise compute the unique period s by using

Lemma 2 in [24].
2. For random [x, x′], if g3(k, [x, x′]) = g3(k, [x, x′] ⊕ s), then output 1, otherwise

output 0.

Mearsure |ϕ〉 and the initial probability of the good state is:

p = Pr[|k〉|u1〉...|ul〉 is good] = Pr[k = k4] · Pr[B(k, u1, ..., ul) = 1|k = k4] ≈ 1
2m

.

Set t = � π
4θ �, where θ is defined via sin2(θ) = p. Then θ ≈ arcsin(2−m/2) ≈

2−m/2, t ≈ � π
4×2−m/2 � ≈ 2m/2. We define the unitary operator Q = −AS0A−1SB,

where the operator SB changes the sign of the good state:

|k〉|u1〉...|ul〉 �→
{−|k〉|u1〉...|ul〉 if B(k, u1, ..., ul) = 1

|k〉|u1〉...|ul〉 if B(k, u1, ..., ul) = 0.

S0 changes the sign of the amplitude only for the zero state |0〉. Then after the
computation of QtA|0〉, according to the Theorem 8, a measurement yields good with
probability a least max{1 − p, p} ≈ 1 − 1

2m .
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Abstract. In this work, we study the security of sponge-based authen-
ticated encryption schemes against quantum attackers. In particular, we
analyse the sponge-based authenticated encryption scheme Slae as put
forward by Degabriele et al. (ASIACRYPT’19) due to its modularity.
We show that the scheme achieves security in the post-quantum (QS1)
setting in the quantum random oracle model by using the one-way to
hiding lemma. Furthermore, we analyse the scheme in a fully-quantum
(QS2) setting. There we provide a set of attacks showing that Slae does
not achieve ciphertext indistinguishability and hence overall does not
provide the desired level of security.

1 Introduction

Authenticated encryption schemes with associated data (AEAD) [47] are the
main employed cryptographic scheme when it comes to securing the communi-
cation between two parties who already share a secret key by ensuring both con-
fidentiality and authenticity of the exchanged messages. Several works show that
AEAD schemes can be constructed purely from sponges [21–24,35], which were
initially introduced as a tool to construct cryptographic hash functions. Recent
examples of such sponge-based AEAD schemes are Isap [22,23] and Slae [21].
Observe that these schemes are already analysed showing that they are even
secure against side-channel leakage, however, their security against quantum
adversaries has yet to be studied.

Unlike public key cryptography that is based on number theoretic problems,
which is completely broken by Shor’s algorithm [49], AEAD schemes are often
assumed to be only mildly affected by Grover’s algorithm [31], although this
assumption turns out to be delusive in some cases [13]. To compensate this,
usually one simply doubles the key length. This approach indeed works for many
symmetric schemes in the standard model, namely those where their security
proofs can be easily translated to one against quantum adversaries [50]. However,
schemes that rely on random oracles [7] cannot be translated in a straightforward
manner and hence require more attention. In particular, translating their security
to hold against quantum adversaries requires a proof in the quantum random
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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oracle model (QROM) [10], and it has recently been shown that proofs cannot
always be translated from the ROM to the QROM [56]. In particular, this will
also apply to sponge-based AEAD schemes where we typically model the block
function that underlies the sponge construction as a random oracle and includes
the schemes in [21–23].

The security of cryptographic primitives against quantum adversaries can
nowadays be divided into two cases [27,37]. The first case corresponds to the
setting of post-quantum security (usually abbreviated as QS1) where the adver-
sary only has quantum computing power. This setting covers the scenario once
the first large-scale quantum computer exists and corresponds to the setting
described above which typically requires switching from the ROM to the QROM.
The second case deals with the setting of quantum security (usually referred to
as QS2) where protocol participants also have quantum computing power. This
covers a scenario where quantum computers are ubiquitous but also earlier sce-
narios using more sophisticated attacks such as the frozen smart-card attack [28].

Observe that security in the QS2 setting is more involved since the adver-
sary gets superposition access to the primitive, e.g., it can encrypt/sign mes-
sages in a superposition. Many schemes that are secure in the QS1 setting
are however completely broken in the QS2 setting as is shown by a series of
works [2,4,33,36,41,42,48]. Yet another difficulty in the QS2 setting is that there
are many different security notions [1,12,14,15,25,28–30,43]. These notions
use different approaches to formalise the idea of allowing the adversary to
“encrypt/sign messages in a superposition” in order to obtain a security notion
that translates the classical intuition of the corresponding security notion to the
QS2 setting.

Our Contribution. In this work, we study the security of sponge-based authen-
ticated encryption schemes against quantum attackers which has so far only
received very little attention. In particular, we scrutinize the scheme Slae as
put forward by Degabriele et al. [21] in both settings, namely in the QS1 and
QS2 setting. Observe that the beauty of Slae is its simplicity in terms of their
construction, i.e., Slae is a N2-composition [44] of a symmetric key encryption
scheme and a message authentication code. In particular, Degabriele et al. show
that Slae can be viewed in terms of smaller components (with slight improve-
ments by [39]), i.e., the encryption scheme consists of a sponge-based pseudoran-
dom function (PRF) and a sponge-based pseudorandom generator (PRG) while
the MAC consists of the combination of a sponge-based hash function and a
sponge-based PRF (a more detailed description can be found in Sect. 3). Note
that our analysis does not only contribute towards the study of Slae but rather
also provides a QS1 and QS2 analysis of the core primitives themselves which
is of independent interest. Note that Slae is a leakage-resilient AEAD scheme.
However, in this work we do not consider the leakage setting but rather use the
scheme Slae due to its simplicity in order to provide a thorough security analy-
sis of sponge-based AEAD schemes and the employed core primitives in the QS1
and QS2 setting closing this gap in the literature.



232 C. Janson and P. Struck

In the QS1 setting, we are able to establish security for Slae. In particular,
by using the one-way to hiding lemma [3,53], we can show that the underlying
building blocks, namely the sponge-based PRF and PRG are secure with respect
to quantum adversaries. For the sponge-based hash function, we show that we
can leverage existing results [18] to the construction specifics of Slae. Finally,
being equipped with the established results, we can overall establish security of
Slae in the QS1 setting.

In the QS2 setting, we analyse the ciphertext indistinguishability of Slae.
Unlike the QS1 setting, there are different notions for ciphertext indistinguisha-
bility in the QS2 setting which do not form a strict hierarchy. We consider the
two strongest, incomparable notions by Gagliardoni et al. [28] and Mossayebi
and Schack [43]. We extend these notions to the nonce-based setting and show
that Slae achieves neither of these notions by showing attacks. Finally, we argue
that one may establish QS2 security in the sense of [12] of the generic construc-
tion that underlies Slae. However, the security when studying the sponge-based
construction is left as an open problem.

As mentioned above, we chose to analyse Slae rather than other relevant
sponge-based schemes due to its modularity. Since Slae is based on a ran-
dom transformation, we can leverage techniques for the QROM, whereas other
sponge-based primitives are typically based on a random permutation. Our
results yield post-quantum secure pseudorandom functions, pseudorandom gen-
erators, and hash functions all constructed entirely from sponges. Since these are
fundamental cryptographic building blocks our contribution is more than just a
post-quantum security proof for an AEAD scheme and can be applied elsewhere.
In particular, it provides a starting point for proving post-quantum security of
more practical schemes.

Related Work. Sponges were introduced by Bertoni et al. [8] as a tool to construct
cryptographic hash functions which resulted in the hash function SHA-3. Since
then, sponges were shown to be a versatile tool allowing not only the construc-
tion of hash functions but also primitives including authenticated encryption
schemes [21–24,35].

Research in the realm of QS1 security of sponges mainly targets the secu-
rity of hash functions. The first result addresses sponge-based hash functions
based on random transformations or non-invertible random permutations [18].
The ultimate goal is a post-quantum proof for SHA-3 which is targeted both
by Unruh [55]1 and Czajkowski [16] using Zhandry’s compressed oracle tech-
nique [58]. Apart from that we are not aware of other works considering the QS1
security of sponge-based constructions.

In the QS2 setting, [20] studies the quantum indifferentiability of sponges
and [19] analyses the quantum indistinguishability of sponge-based pseudoran-
dom functions. The analysis in [19] uses keyed functions for the underlying block
function which allow the adversary only classical access to these block functions
while it has superposition access to the resulting pseudorandom function.

1 Observe that the current version of the paper is flawed.
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Soukharev et al. [51] study the generic composition paradigms for authenti-
cated encryption in the QS2 setting according to the security notions put forth by
Boneh and Zhandry [12]. However, their proof implicitly assumes that superpo-
sition queries by the adversary can be recorded which, at this point, was unclear
how to do as was pointed out Chevalier et al. [15].

Structure of the Paper. In Sect. 2 and Appendix A, we provide the necessary
notation and background. The general sponge construction and the particular
instantiation Slae is provided in Sect. 3. In Sect. 4, we provide a security analysis
in the QS1 setting while in Sect. 5, we provide an analysis in the QS2 setting. We
conclude the paper in Sect. 6 and provide proof details in Appendices B and C.

2 Preliminaries

2.1 Notation

For any positive integer n ∈ N, we use [n] to denote the set {1, . . . , n}. For any
two bit strings x and y of length n, |x| denotes the size of x, x ‖ y denotes their
concatenation and by x · y = x1y1 ⊕ x2y2 ⊕ . . . ⊕ xnyn we denote their inner
product. Furthermore, for a positive integer k ≤ |x|, we use the notation �x�k

to denote the string when truncated to its k least significant bits while �x	k

denotes the string when truncated to its k most significant bits. We denote the
set of bit strings of size n by {0, 1}n, and we denote by {0, 1}∗ the set of all bit
strings of finite length. By writing x ←$ X , we denote the process of sampling
at random a value from a finite set X and assigning it to x. We simply denote
by par(x) the parity of x. Furthermore, we denote by YX the set of all functions
from X to Y. We assume familiarity with the basics of quantum computation
such as bra-ket notion for quantum states, e.g., |x〉, Hadamard operators, and
measurements. For an in-depth discussion we refer to [46].

2.2 Definitions

Due to space restrictions, we provide basic definitions about authenticated
encryption with associated data (AEAD) and message authentication codes
(MAC) in Appendix A.

Pseudorandom Function. Next we define pseudorandom functions and their
respective security.

Definition 1. Let F : K × X → Y be a deterministic function. We define the
PRF advantage of an adversary A against F as

AdvPRF
F (A) =

∣
∣
∣
∣
Pr

K←$ K
[AF(K,·) → 1] − Pr

F←$ YX
[AF(·) → 1]

∣
∣
∣
∣

.
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Pseudorandom Generator. Next we define a pseudorandom generator and its
security. Observe that we specify a PRG with variable output length, where the
length is specified as part of the input.

Definition 2. Let G : S ×N → {0, 1}∗ be a pseudorandom generator with asso-
ciated seed space S and let � ∈ N define the PRG’s output length. We define the
PRG advantage of an adversary A against G as

AdvPRG
G (A) =

∣
∣
∣
∣
Pr

z←$ S
[A(G(z , �)) → 1] − Pr

R←$ {0,1}�
[A(R) → 1]

∣
∣
∣
∣

.

Hash Function. Hash functions are a versatile cryptographic primitive that are
efficiently computable functions that compress bit strings of arbitrary length to
bit strings of fixed length. Hash functions do enjoy a variety of security properties
and next we define collision resistance over a domain X = {0, 1}∗.

Definition 3. Let H : X → {0, 1}w be a hash function constructed from a ran-
dom transformation ρ. We define the collision-resistance advantage of an adver-
sary A against H where the adversary has (quantum) oracle access to ρ as

AdvCR
H (A) = Pr[(X0,X1) ←$ Aρ : H(X0) = H(X1) ∧ X0 �= X1 ∧ X0,X1 ∈ X ] .

Since we consider hash functions in the QS1 and QS2 setting in this work,
we require two additional properties when arguing about the security of a hash
function, namely collapsing hash functions and zero-preimage resistance.

The collapsing property of hash functions is due to Unruh [54], who observed
that collision resistance is not sufficient to construct commitment schemes secure
against quantum adversaries.2 Intuitively, a hash function is collapsing if an
adversary can not distinguish between a measurement of the output (the hash
value) and a measurement of the input. In [52, Lemma 25], Unruh shows that
collapsing hash functions are also collision resistant. We present the formal def-
inition of collapsing security in Appendix A.3.

Zero-preimage resistance states that it is infeasible for the adversary to out-
put an element from the function’s domain which evaluates to the zero string.

Definition 4. Let fρ : {0, 1}x → {0, 1}y be a function. We define the zero-
preimage resistance advantage of an adversary A against fρ where the adversary
has (quantum) oracle access to ρ as

AdvZP
fρ (A) = Pr[fρ(X ) = 0y : X ←$ Aρ] .

2 In a nutshell, a quantum adversary can open a commitment to an arbitrary message
but not to two different messages. Thus it breaks the binding property without
finding a collision.
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Quantum Random Oracle Model and One-way to Hiding Lemma. The quantum
random oracle model (QROM) was formalised by Boneh et al. [10] extending
the random oracle model (ROM) [7] to the quantum setting. The QROM has
become the de-facto standard for analysing primitives which rely on random
oracles. Boneh et al. [10] gave a separation between the ROM and the QROM,
yet under non-standard assumptions. Recently, Yamakawa and Zhandry [56] pro-
vided a separation under standard assumptions. More precisely, let H : {0, 1}n →
{0, 1}n ,3 then the QROM allows a quantum adversary access to the unitary UH

that does the following
∑

x,y∈{0,1}n

αx,y |x〉 |y〉 �→
∑

x,y∈{0,1}n

αx,y |x〉 |y ⊕ H(x)〉 .

We write AH to denote that A has oracle access to H which means having access
to an oracle performing the unitary above.

The one-way to hiding (O2H) lemma is a fundamental tool for proofs in
the quantum random oracle model (QROM). It provides an upper bound on
the distinguishing advantage of a quantum adversary between different random
oracles when having superposition access to it. The first variant was given by
Unruh [53]. Subsequently, variants achieving tighter bounds were given in [3,9,
40], yet at the cost of a more restricted applicability.

Below we recall the O2H lemma by Unruh [53], albeit in the formulation put
forth by Ambainis et al. [3].

Lemma 5 (One-way to hiding (O2H) [3]). Let G, H : X → Y be random
functions, let z be a random bitstring, and let S ⊂ X be a random set such
that ∀x /∈ S, G(x) = H(x). (G,H,S, z) may have arbitrary joint distribution.
Furthermore, let AH be a quantum oracle algorithm which queries H at most q
times. Define an oracle algorithm BH as follows: Pick i ←$ [q ]. Run AH

q (z) until
just before its i-th query to H. Measure the query in the computational basis, and
output the measurement outcome. Then it holds that

∣
∣Pr[AH(z) → 1] − Pr[AG(z) → 1]

∣
∣ ≤ 2q

√

Pr[x ∈ S |BH(z) → x] .

3 The Sponge Construction and Slae

In this section, we provide the basic syntax about the sponge construction. Being
equipped with the required syntax, we review Slae which is a N2-based authen-
ticated encryption scheme [44] based on the sponge construction. Recall that a
N2-construction follows the Encrypt-then-MAC paradigm and Slae is a refine-
ment that builds a nonce-based AEAD scheme from a nonce-based symmetric
key encryption scheme and a vector MAC.

3 We assume that domain and co-domain are of the same size as it is the only case we
are considering in this work.
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3.1 Sponge Construction

The sponge construction has been introduced by Bertoni et al. [8] and has been
used to build various cryptographic primitives. In Fig. 1, we provide an illustra-
tion of the plain sponge construction.

0 ρ
⊕

N1

ρ
⊕

N2

ρ
⊕

N3

ρ
⊕

N4

ρ

Z1 Z2

absorb squeeze

Fig. 1. Plain sponge using four rounds of absorbing and two rounds of squeezing.

The sponge construction consists of a so-called absorbing phase and a squeez-
ing phase that is built upon a transformation ρ that is iteratively called on its
input. This transformation basically maps strings of length n to strings of the
same length, and in particular one can decompose n into two values r + c where
r is called the rate and c is called the capacity. After each iteration of the trans-
formation we refer to its output as the state S . Furthermore, we usually refer to
the leftmost r bits of the state as the outer part S̄ , which is equivalent to �S	r ,
and we refer to the remaining c bits as the inner part Ŝ , which is equivalent to
�S�c . In order to input some element N , this input is first padded to a non-zero
multiple of the rate r . For this, we use an injective padding function pad to
get l ≥ 1 input blocks N1 ‖ N2 ‖ . . . ‖ Nl = pad(N ). At the ith iteration, Ni

is XORed with the outer part S̄ before being inputted to the transformation,
i.e., more formally Yi ← (Ni ⊕ S̄i) ‖ Ŝi and evaluating Si+1 ← ρ(Yi). In the
squeezing phase, one can produce an output in one or more iterations obtaining
r bits of output per iteration, i.e., more formally at the jth iteration the output
Zj is produced by Zj ← S̄j .

3.2 The FGHF’ Construction and Slae

Degabriele et al. [21] provide a generic N2-construction [44] of a leakage-resilient
authenticated encryption scheme with associated data called the FGHF’ con-
struction. In particular, they show that the encryption component can be con-
structed from a fixed-input length function family that retains pseudorandom-
ness in the presence of leakage (F ) combined with a (standard) pseudorandom
generator (G) while the authentication component is built from a collision-
resistant hash function (H) and a fixed-input length function family that retains
both pseudorandomness and unpredictability in the presence of leakage (F ′).
Overall this yields a leakage-resilient AEAD scheme. Observe that Krämer and
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Slae-Enc(K,N ,A,M )

C SlEnc(K,N ,M )

T SlMac(K, (N ,A,C ))

return (C ,T )

SlEnc-Enc(K,N ,M )

z SlFunc(K,N )

Z SPrg(z , |M |)
C Z ⊕ M

return C

SlMac-T(K, (N ,A,C ))

H SvHash(N ,A,C )

T SlFunc(K, H)

return T

SlFunc(K,N )

l
⌈

|N |
r

⌉

Y0 K

for i = 1..l

Si ρ(Yi−1)

Yi (Ni ⊕ S̄i) ‖ Ŝi

Sl+1 ρ(Yl)

return Sl+1

SPrg(z , y)

l
⌈
y
r

⌉

S0 z

for i = 1..l

Si ρ(Si−1)

Zi S̄i

Z Z1 ‖ . . . ‖ Zl

return �Z �y

SvHash(N ,A,C )

S0 0n

Y0 (N ⊕ S̄0) ‖ Ŝ0

S1 ρ(Y0)

u
⌈

|A|
r

⌉

for i = 1..u

Yi (Ai ⊕ S̄i) ‖ Ŝi

Si+1 ρ(Yi)

Ŝu+1 Ŝu+1 ⊕ (1 ‖ 0c−1)

v
⌈

|C |
r

⌉

for i = u + 1..u + v

Yi (Ci−u ⊕ S̄i) ‖ Ŝi

Si+1 ρ(Yi)

h �Su+v+1�w
return h

Fig. 2. Pseudocode of Slae and the underlying components. We only provide the
details of the encryption and tagging algorithms. Decryption and verification works in
the obvious reversed way.

Struck [39] showed that leakage-resilient pseudorandom functions suffice to build
the scheme of Degabriele et al. [21] dropping the unpredictability requirement.

Furthermore, Degabriele et al. [21] show that the generic construction FGHF’
can be instantiated entirely from the sponge construction using a random trans-
formation. Their particular sponge construction is called Slae which is com-
posed of a symmetric key encryption scheme SlEnc and a MAC SlMac accord-
ing to the N2-construction. In particular, viewing each of the schemes in terms of
their smaller components, Degabriele et al. build SlEnc from a leakage-resilient
function SlFunc and a pseudorandom generator SPrg while SlMac can be
built from a collision-resistant hash function SvHash and a leakage-resilient
function SlFunc, and a formal description is given in Fig. 2. Regarding the
security of Slae, they prove the security via a composition theorem for the
N2-construction in the leakage setting as established by Barwell et al. [5].

However, the quantum resistance of Slae has not been considered yet. In
the following, we will scrutinize the Slae construction in this regard and we set
the respective leakage sets to be empty. Therefore, we analyse the construction
in the standard setting without leakage.
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4 Post-Quantum (QS1) Security

In this section we analyse the security of Slae against quantum adversaries in the
QS1 setting. The respective proofs of this Section can be found in Appendix B.

4.1 Security of SlFunc

The sponge-based pseudorandom function SlFunc is illustrated in Fig. 3 while
the pseudocode can be found in Fig. 2. The function initialises the state of the
sponge with the key and then absorbs the input, in case of Slae the nonce N ,
r bits at a time. After the nonce has been absorbed, the output is obtained
by applying the transformation ρ a final time and outputting the state. Note
that the function outputs the full state rather than squeezing it over several
rounds. That is also the reason why ρ is required to be a random transformation
rather than a random permutation. Otherwise, an adversary could simply undo
the transformation from the output by applying the inverse permutation. The
theorem below gives a bound on distinguishing SlFunc from a random function
when having superposition access to the underlying random oracle ρ. The proof
utilises the O2H lemma (cf. Lemma 5).

K ρ ρ ρ ρY0 S1 Y1 S2 Yl−1 Sl Yl Sl+1

⊕ ⊕ . . .

. . .

⊕ ⊕

N1 N2 Nl−1 Nl

Fig. 3. Sponge-based pseudorandom function SlFunc.

Theorem 6. Let F = SlFunc be the function displayed in Fig. 3. Then for
any quantum adversary A, making qF (classical) queries to SlFunc and qρ

(quantum) queries to ρ, it holds that

AdvPRF
SlFunc(A) ≤ q2F + qF

2n+1 + 2qρ

√

2ν

2n
.

Proof. Let l =
⌈

ν
r

⌉

be the number of absorption steps and we assume for sim-
plicity that ν is a multiple of the rate. We further recursively define sets Yi

as

Y0 = {K} and Yi = {R ‖ �ρ(x)�c |R ∈ {0, 1}r , x ∈ Yi−1}
for all i ∈ {1, . . . , l}, i.e., Yi is the set of all possible values that can occur as input
to ρ while evaluating F(K, ·). It follows that |Yi| ≤ 2ir and, in particular, |Yl | ≤
2lr = 2ν . Note that every input N defines a sequence of states Y0,Y1, . . . ,Yl



Sponge-Based Authenticated Encryption 239

that occur while evaluating the sponge. For an input N , let Yi[N ] denote the
state Yi for this particular input, e.g., Y1[N ] = (�ρ(K)	r ⊕ N1) ‖ �ρ(K)�c , where
N = N1 ‖ . . . ‖ Nl . In particular, for every input N it holds that Y0[N ] = K.

We want to bound the following difference

AdvPRF
SlFunc(A) =

∣
∣
∣
∣
Pr

K←$ K
[AF(K,·),ρ → 1] − Pr

F←$ YX
[AF(·),ρ → 1]

∣
∣
∣
∣

.

In order to do this, we define the oracle ρ∗, where ρ∗(Yl [N ]) = F(N ) for all
Yl [N ] ∈ Yl . That is, oracle ρ∗ is reprogrammed on all final input states Yl [N ] to
output the output of a random function F on the input N . Then it holds that

∣
∣
∣
∣
Pr

K←$ K
[AF(K,·),ρ → 1] − Pr

F←$ YX
[AF(·),ρ → 1]

∣
∣
∣
∣

≤
∣
∣
∣
∣
Pr

K←$ K
[AF(K,·),ρ → 1] − Pr

F←$ YX
[AF(·),ρ∗ → 1]

∣
∣
∣
∣

+
∣
∣
∣
∣

Pr
F←$ YX

[AF(·),ρ∗ → 1] − Pr
F←$ YX

[AF(·),ρ → 1]
∣
∣
∣
∣

.

For the first difference on the right-hand side, the oracles are consistent in
both cases. However, if the adversary finds a collision on the final input to
ρ for SlFunc(K, ·), more precisely, two inputs N and N ′ such that �N 	ν−r �=
�N ′	ν−r and Yl [N ] = Yl [N ′], then these two inputs will result in the same output
for F and (most likely) different outputs for F . Finding such a collision is a
counting argument over the number of queries to the function and an application
of Gaussian summation. Hence, it follows that

∣
∣
∣
∣
Pr

K←$ K
[AF(K,·),ρ → 1] − Pr

F←$ YX
[AF(·),ρ∗ → 1]

∣
∣
∣
∣
≤ q2F + qF

2n+1 .

For the second difference, we can apply the O2H lemma (cf. Lemma 5) which
yields
∣
∣
∣
∣

Pr
F←$ YX

[AF(·),ρ∗ → 1] − Pr
F←$ YX

[AF(·),ρ → 1]
∣
∣
∣
∣
≤ 2qρ

√

Pr[x ∈ Yl | BF(·),ρ → x] .

Recall that BF(·),ρ simply runs AF(·),ρ and outputs the measurement outcome
of a randomly chosen query to ρ. However, A has no information about the set
Yl , hence we conclude with

2qρ

√

Pr[x ∈ Yl | BF(·),ρ → x] ≤ 2qρ

√

|Yl |
2n

≤ 2qρ

√

2ν

2n
.

Collecting everything yields

AdvPRF
SlFunc(A)=

∣
∣
∣
∣
Pr

K←$ K
[AF(K,·),ρ → 1] − Pr

F←$ YX
[AF(·),ρ → 1]

∣
∣
∣
∣

≤ q2F + qF
2n+1 + 2qρ

√

2ν

2n
.

��
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We would like to point out the following. The length of the nonce ν is typically
of fixed size, e.g., in case of the NIST lightweight cryptography standardization
process [45] the nonce is assumed to be 12 bytes long. In particular, ν will be
much smaller than the size of the sponge n.

4.2 Security of SPrg

In this section we show that the sponge-based pseudorandom generator SPrg is
secure against adversaries having superposition access to the underlying random
oracle ρ. The PRG SPrg is displayed in Fig. 4 and the respective pseudocode
is given in Fig. 2. The construction deviates from more common constructions
for pseudorandom generators since it initialises the state of the sponge with the
seed rather than absorbing it. The output is then generated by squeezing r bits
at each iteration of the sponge. Similar to the previous section, the proof relies
on the O2H lemma.

ρ ρ ρ ρz S1 S2 S3 S4 Sl−1 Sl

. . .

. . .

Z1 Z2 Z3 Z4 Zl−1 Zl

Fig. 4. Sponge-based pseudorandom generator SPrg.

Theorem 7. Let SPrg be the pseudorandom generator displayed in Fig. 4.
Then for any quantum adversary A, making q (quantum) queries to ρ, and
receiving an input of length μ it holds that

AdvPRG
SPrg(A) ≤ 2lq√

2c
,

where l =
⌈

μ
r

⌉

is the number of squeezing steps to obtain the required output
length μ.

Proof. Let l =
⌈

μ
r

⌉

be the number of squeezing steps. We assume, for sake of
simplicity, that μ is a multiple of r . For a seed z , let S1,S2, . . . ,Sl denote the
sequence of states that occur during evaluation of the sponge, i.e., Si = ρi−1(z ),
where ρi corresponds to i consecutive evaluations of ρ. We want to bound the
following difference

AdvPRG
SPrg(A) =

∣
∣
∣
∣
Pr

z←$ S
[Aρ(Z ) → 1] − Pr

R←$ {0,1}μ
[Aρ(R) → 1]

∣
∣
∣
∣

,

where Z = Z1 ‖ . . . ‖ Zl = SPrg(z , lr), i.e., obtaining an output of length
lr using SPrg on seed z and R = R1 ‖ . . . ‖ Rl , such that |Zi| = |Ri| = r .
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We write R[i,j] for Ri ‖ . . . ‖ Rj , the same for Z . In particular, R[i,j] for i > j
equals the empty string. In the following we leave out the probability spaces for
readability. We obtain

AdvPRG
SPrg(A) =

∣
∣Pr[Aρ(Z[1,l]) → 1] − Pr[Aρ(R[1,l]) → 1]

∣
∣

≤
l∑

i=1

∣
∣Pr[Aρ(R[1,i−1] ‖ Z[i,l]) → 1] − Pr[Aρ(R[1,i] ‖ Z[i+1,l]) → 1]

∣
∣ .

We start with the first difference, that, after simple rewriting, is,
∣
∣Pr[Aρ(Z1 ‖ Z[2,l]) → 1] − Pr[Aρ(R1 ‖ Z[2,l]) → 1]

∣
∣

≤ ∣
∣Pr[Aρ(Z1 ‖ Z[2,l]) → 1] − Pr[Aρ1(R1 ‖ Z[2,l]) → 1]

∣
∣

+
∣
∣Pr[Aρ1(R1 ‖ Z[2,l]) → 1] − Pr[Aρ(R1 ‖ Z[2,l]) → 1]

∣
∣ ,

where ρ1(R1 ‖ [S1]c) = S2. Then it holds that the first difference above is 0, as
the relation between R1 and ρ1 is the same as between Z1 and ρ, and we merely
need to bound the second difference, which only differs in the random oracle (ρ
and ρ1) at input R1 ‖ [S1]c . Let S1 = {R1 ‖ [S1]c}, then we can apply the O2H
lemma (cf. Lemma 5) to obtain

∣
∣Pr[Aρ1(R1 ‖ Z[2,l]) → 1] − Pr[Aρ(R1 ‖ Z[2,l]) → 1]

∣
∣

≤ 2q
√

Pr[x ∈ S1 | Bρ(R1 ‖ Z[2,l]) → x] .

While A knows R1, it has no information about [S1]c (note that Zi, for i > 1
provides no information about S1 due to ρ being one-way in the random oracle
model). This yields

Pr[x ∈ S1 | Bρ(R1 ‖ Z[2,l]) → x] ≤ |S1|
2c

≤ 1
2c

.

The same argument applies to the other differences, where more and more r bit
blocks of A’s input are replaced with Ri. More precisely, we obtain

∣
∣Pr[Aρ(R[1,i−1] ‖ Z[i,l]) → 1] − Pr[Aρ(R[1,i] ‖ Z[i+1,l]) → 1]

∣
∣

≤ 2q
√

Pr[x ∈ Si | Bρ(R[1,i] ‖ Z[i+1,l]) → x] ≤ 2q√
2c

,

where Si = {Ri ‖ [Si]c}. Collecting everything then yields

AdvPRG
SPrg(A) =

∣
∣Pr[Aρ(Z[1,l−1]) → 1] − Pr[Aρ(R[1,l−1]) → 1]

∣
∣

≤
l∑

i=1

∣
∣Pr[Aρ(R[1,i−1] ‖ Z[i,l]) → 1] − Pr[Aρ(R[1,i] ‖ Z[i+1,l]) → 1]

∣
∣

≤
l∑

i=1

2q
√

Pr[x ∈ Si | Bρ(R[1,i] ‖ Z[i+1,l]) → x] ≤ 2lq√
2c

.

��
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4.3 Security of SvHash

In this section we analyse the QS1 security of SvHash which we display in
Fig. 5 and its respective pseudocode can be found in Fig. 2. Observe that in
order to compute a hash digest, the internal state is initialised to an evaluation
of the random transformation of a zero bit string of length n XORed with the
passed nonce. Afterwards the padded associated data and padded ciphertext
are absorbed blockwise. Degabriele et al. chose to employ a domain separation
to separate the boundary between associated data and ciphertext consisting of
XORing the string 1 ‖ 0c−1 to the inner state Ŝ as soon as the associated data
has been absorbed. Observe that the domain separation can be viewed as a
sponge construction with a rate increased by one bit. In this sense, an adversary
A against SvHash with rate r and capacity c can be viewed as an adversary
against the plain sponge-based hash function with rate r +1 and capacity c − 1,
where A guarantees that the (r +1)th bit of each input block is 0 except for the
block which corresponds to absorbing the first ciphertext block. Hence a bound
for the plain sponge-based hash function directly yields a bound for SvHash
by accounting for the one bit loss in the capacity. The proof can be found in
Appendix B.

0 ρ
⊕

N

ρ
⊕

A1

. . .

. . .

ρ
⊕

Au

ρ
⊕

⊕

C1

. . .

. . .

1 0c−1

ρ
⊕

Cv

Fig. 5. Sponge-based Hash function SvHash.

Theorem 8. Let SvHash be the hash function as displayed in Fig. 5. Then for
any quantum adversary A making q (quantum) queries to ρ, it holds that

AdvCR
SvHash(A) ≤ √

ε1 + l · ε2 + ε3 ,

where ε1 ≤ (q+1)22−c+4, ε2 ≤ q3
(

δ′+324
2c−1

)

+7δ
√

3(q+4)3
2c and ε3 ≤ q3

(
δ′+324
2w+1

)

+

7δ
√

3(q+4)3
2w+2 with non-zero constants δ and δ′ as well as l =

⌈
μ
r

⌉

where μ is the
length of the (padded) message.

4.4 Security of Slae

In this section we show that the IND-CPA and INT-CTXT security of the
authenticated encryption scheme Slae in the QS1 follows from the QS1 security
of the underlying primitives SlFunc, SPrg, and SvHash. The proofs can be
found in Appendix B.



Sponge-Based Authenticated Encryption 243

IND-CPA Security of Slae. IND-CPA security follows from SlFunc and SPrg
being a secure PRF and PRG, respectively. Theorem 9 first shows that SlFunc
and SPrg yield SlEnc being IND-CPA-secure while Theorem 10 then estab-
lishes the IND-CPA security of Slae.
Theorem 9. Let SlFunc be a pseudorandom function and SPrg a pseudoran-
dom generator. Let further SlEnc be the symmetric key encryption scheme con-
structed from SlFunc and SPrg as shown in Fig. 2. For any quantum adversary
A, making qEnc queries to its encryption oracle, against the IND-CPA security
there exist adversaries Aprf and Aprg against SlFunc and SPrg, respectively,
such that

AdvIND-CPA
SlEnc (A) ≤ 2AdvPRF

SlFunc(Aprf ) + 2q AdvPRG
SPrg(Aprg) .

Theorem 10. Let SlEnc be the symmetric key encryption scheme and SlMac
be a MAC. Let further Slae be the authenticated encryption scheme constructed
from SlEnc and SlMac as shown in Fig. 2. For any quantum adversary A,
making qEnc queries to its encryption oracle, against the IND-CPA security there
exists an adversary Ase , such that

AdvIND-CPA
Slae (A) ≤ AdvIND-CPA

SlEnc (Ase) .

INT-CTXT Security of Slae. The INT-CTXT security follows from SlFunc
being a secure PRF and SvHash being a collision-resistant hash function. In
Theorem 11, we show that both yield a SUF-CMA-secure MAC SlMac. Sub-
sequently, Theorem 12 shows that the SUF-CMA security of SlMac ensures
INT-CTXT security of Slae.
Theorem 11. Let SlFunc be a function and SvHash a hash function. Let
further SlMac be the MAC constructed from SlFunc and SvHash as shown
in Fig. 2. For any quantum adversary A, making qT queries to its tagging oracle
and qF to its forge oracle, against the SUF-CMA security there exist adversaries
Aprf and Ahash against SlFunc and SvHash, respectively, such that

AdvSUF-CMA
SlMac (A) ≤ AdvPRF

SlFunc(Aprf ) +AdvCR
SvHash(Ahash) +

qF

2τ
.

Theorem 12. Let SlEnc be the symmetric key encryption scheme and SlMac
be a MAC. Let further Slae be the authenticated encryption scheme constructed
from SlEnc and SlMac as shown in Fig. 2. For any quantum adversary A,
making qE queries to its encryption oracle and qF queries to its forge oracle,
against the INT-CTXT security there exists an adversary Amac, such that

AdvINT-CTXT
Slae (A) ≤ AdvSUF-CMA

SlMac (Amac) .

5 Quantum (QS2) Security

In this section we study the security of Slae in the QS2 setting, where both
the adversary and the challenger are quantum. Unlike the QS1 setting, the QS2
setting comes with several security notions. We analyse Slae, or even more
precisely its encryption component SlEnc, with respect to the quantum security
notions put forward in [12,28,43] providing positive and negative results.
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5.1 QS2 Security Notions for SKE

Unlike the QS1 setting, there are several notions in the QS2 setting for encryp-
tion schemes. The first notion, called IND-qCPA, was presented by Boneh and
Zhandry [12]. This notion allows the adversary superposition queries in the
learning (qCPA) phase, while its challenge (IND) phase is restricted to classical
queries. They further showed that simply allowing a quantum indistinguishabil-
ity phase results in an unachievable security notion, called fqIND-CPA. More
precisely, they consider a left-or-right oracle which performs the following

∑

x0,x1,y

αx0,x1,y |x0〉 |x1〉 |y〉 �→
∑

x0,x1,y

αx0,x1,y |x0〉 |x1〉 |y ⊕ Enc(K, xb)〉 .

This operator entangles the ciphertext register with one of the message registers.
Boneh and Zhandry show how this entanglement can be exploited to determine
the bit b, irrespectively of the underlying encryption scheme.

Later, Gagliardoni et al. [28] and Mossayebi and Schack [43] provided security
notions which allow the challenge (IND) phase to be quantum while not suffering
from the impossibility result from [12].

An exhaustive study of QS2 security notions for encryption schemes is given
by Carstens et al. [14]. Their study includes the aforementioned notions, along
with many variants differing in the number of queries during challenge resp.
learning phase. They show, surprisingly, that the notions do not form a strict
hierarchy. Instead, the notions by Gagliardoni et al. [28] and Mossayebi and
Schack [43] are incomparable but, together, imply all other notions. To ensure
security in the QS2 setting, schemes have to be analysed with respect to both
of these notions.

Nonce-Respecting Adversaries in the QS2 Setting. Another question that arises
for the security of Slae, deals with the nonce selection. Typically, adversaries
are assumed to be nonce-respecting, meaning that they never repeat a nonce.
While this is well defined in both the classical as well as QS1 setting, there is
no definition for such adversaries in the QS2 setting. Kaplan et al. [36] mention
this problem and sidestep it by letting the game pick the nonce at random.
Thus, they essentially switch to the weaker IV setting which is well-studied
in the classical setting. In our adapted security notions, we let the adversary
submit a nonce register along with its message(s). We observe that it is not
necessary to observe nonces in superposition since all QS2 notions for encryption
schemes [12,15,28,29,43] consider the randomness (in case of Slae the nonce)
to be classical.4 To comply with this, we let the challenger measure the nonce
register, thus ensuring a classical nonce, and reject a query if a nonce repeats.

5.2 Left-or-Right Security of SlEnc

The notion by Gagliardoni et al. [28] follows a left-or-right approach, similar
to the one by Boneh and Zhandry [12], in which the adversary submits two
4 The same applies to QS2 notions for MACs and signatures [1,11,12,25].
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messages (possibly in superposition) and receives the encryption of one of the
two. The main difference is that Gagliardoni et al. use type-2 operators which
operate directly on the register (instead of XORing the output to a separate
output register). These operators are more powerful than the corresponding type-
1 operator and they can only be realised for functions that are reversible. Type-2
operators were first studied by Kashefi et al. [38] and have further been studied
by Carstens et al. [14] for symmetric key encryption and by Gagliardoni et al. [29]
for public key encryption.

More formally those operators can be formalised as follows. Let F : {0, 1}n →
{0, 1}n be a function. The type-1 operator for F is the unitary U

(1)
F that does

the following
∑

x,y∈{0,1}n

αx,y |x〉 |y〉 �→
∑

x,y∈{0,1}n

αx,y |x〉 |y ⊕ F(x)〉 .

Observe that the realisation of U
(1)
F is efficient if F can be realised efficiently [46].

The type-2 operator for F is the unitary U
(2)
F that does the following

∑

x∈{0,1}n

αx |x〉 �→
∑

x

αx |F(x)〉 .

A realisation of a type-2 operator is, unlike for type-1 operators, not straightfor-
ward. Kashefi et al. [38] show that they can be realised using type-1 operators for
both F and F−1. Gagliardoni et al. [28] use this to show that type-2 operators
for symmetric key encryption schemes can be realised using type-1 operators for
encryption and decryption (cf. Fig. 6).

Using type-2 operators, Gagliardoni et al. [28] bypass the impossibility result
by Boneh and Zhandry [12]. Since the adversary only receives a ciphertext reg-
ister, it can not exploit the entanglement between registers as was the case for
fqIND-CPA.

U
(1)
Enc U

(1)
Dec

|N 〉

|M 〉

|0〉

|N 〉

|C 〉

|0〉

Fig. 6. Circuit for realising the type-2 operator U
(2)
Enc using type-1 operators U

(1)
Enc and

U
(1)
Dec for Enc and Dec, respectively.

Below we define LoR-qIND security. This is the notion given in [28] restricted
to a single challenge and no learning queries. The difference is that our notion
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allows the adversary to specify a register containing the nonce used for encryp-
tion. To ensure the usage of classical randomness, we let the challenger mea-
sure this register. We restrict ourselves to the weaker LoR-qIND notion, since
we show below that Slae does not even achieve this notion. Extension to the
stronger LoR-qINDqCPA (allowing multiple challenges and learning queries) is
straightforward by giving the adversary oracle access to a left-or-right oracle
and a learning oracle implementing the type-2 encryption operator. The nonce-
respecting property is ensured by letting the challenger reject queries for which
the measurement of the nonce register yields an already measured nonce.

Definition 13. Let Σ = (Enc, Dec) be symmetric key encryption scheme and
the security game LoR-qIND be defined as in Fig. 7. For any adversary A we
define its LoR-qIND advantage as

AdvLoR-qIND
Σ (A) =

∣
∣2 Pr[LoR-qINDA → 1] − 1

∣
∣ .

LoR-qIND

K $ K
implement U

(2)
Enc using K

b $ {0, 1}
|N 〉N , |ϕ0〉M , |ϕ1〉M $ A1 ()

Measure register |N 〉N
trace out |ϕ1−b〉
|ψ〉 U

(2)
Enc (|N 〉N |ϕb〉M )

b′
$ A2 (|ψ〉)

return (b′ = b)

Fig. 7. Security notion LoR-qIND following [28].

The following theorem shows that the sponge-based encryption scheme
SlEnc is not LoR-qIND-secure. The attack uses a Hadamard distinguisher, fol-
lowing the one given in [28], that exploits the quantum insecurity of the one-time
pad approach. The proof details can be found in Appendix C.

Theorem 14. Let SlEnc be the sponge-based encryption scheme displayed in
Fig. 2 with message space {0, 1}μ. Then there exist an adversary A such that

AdvLoR-qIND
SlEnc (A) = 1 − 1

2μ
.

Observe that there is no security notion for AEAD schemes using type-2 opera-
tors. Both [28] and [29] only focus on encryption schemes. The obvious question
is whether the MAC can be implemented using a type-2 operator. Regardless
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of this, we point out that the attack does not necessarily extend to Slae. The
reason is that the register containing the tag will be entangled which thwarts an
attack by simply discarding the tag.

Note that the same attack applies to the encryption scheme underlying the
sponge-based AEAD schemes ISAP [23] and its successor ISAP v2.0 [22].

5.3 Real-or-Random Security of SlEnc

The notion by Mossayebi and Schack [43] follows a real-or-random approach,
where the adversary submits only a single message (possibly in superposition)
and receives back the message along with a ciphertext. The ciphertext is either
the encryption of the submitted message or of the permuted message using a per-
mutation picked at random. Usage of the permutation ensures that the number
of messages in superposition is the same for both the submitted and permuted
message. Mossayebi and Schack [43] also defined the corresponding security with
respect to chosen ciphertext attacks. The relevance of this notion is questionable,
as it assumes non-cheating adversaries, that do not try to decrypt the challenge
ciphertext with its decryption oracle.

In this notion, there is only a single message register that will always be
entangled with the ciphertext register. This bypasses the impossibility result by
Boneh and Zhandry [12].

RoR-qIND

K $ K
implement U

(1)
Enc using K

b $ {0, 1}
π $ P({0, 1}µ)

|N 〉N |M 〉M |C 〉C $ A1 ()

Measure register |N 〉N
if b = 0

|ψ〉 U
(1)
Enc (|N 〉N |M 〉M |C 〉C)

if b = 1

|ψ ((id ⊗ π−1 ⊗ id) ◦ U
(1)
Enc ◦ (id ⊗ π ⊗ id))(|N 〉N |M 〉M |C 〉C)

b′
$ A2 (|ψ〉)

return (b′ = b)

Fig. 8. Security notion RoR-qIND following [43].

Below we define RoR-qIND security, where the adversary is restricted to a
single challenge query and no learning query, again, extended by letting the
adversary send a register with the nonce that is measured by the challenger.
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Extension to RoR-qINDqCPA security works by providing the adversary a real-
or-random challenge oracle and a learning oracle and reject queries where (mea-
sured) nonces repeat (Fig. 9).

Definition 15. Let Σ = (Enc, Dec) be a symmetric key encryption scheme and
the security game RoR-qIND be defined as in Fig. 8. For any adversary A we
define its RoR-qIND advantage as

AdvRoR-qIND
Σ (A) =

∣
∣2 Pr[RoR-qINDA → 1] − 1

∣
∣ .

U
(2)
π U

(1)
Enc U

(2)

π−1

|N 〉

|M 〉

|0〉

|N 〉

|M 〉

|Enc(K,N , π(M ))〉

Fig. 9. Circuit for real-or-random security notion. The permutation π is applied if
b = 1.

The following theorem shows that the sponge-based encryption scheme
SlEnc is not RoR-qIND-secure. The attack follows [15] exploiting the outcome
of a measurement in the Hadamard basis on two entangled registers. The full
proof details can be found in the full version of the paper [34].

Theorem 16. Let SlEnc be the sponge-based encryption scheme displayed in
Fig. 2. Then there exist an adversary A such that

AdvRoR-qIND
SlEnc (A) =

1
2

.

5.4 IND-qCPA Security of Slae and FGHF’

In Sect. 5.1, we have discussed various different security notions for symmetric
key encryption schemes in the QS2 setting. So far we have shown that SlEnc
is neither LoR-qIND nor RoR-qIND secure. Observe that the attacks also apply
to the generic construction FGHF’, as the weakness lies in the one-time pad
(OTP) approach exploiting an inherent insecurity of the OTP against quantum
attackers.

Observe that both the generic FGHF’ construction as well as Slae are stream
ciphers. Following the results by Anand et al. [4], we obtain that both con-
structions are IND-qCPA secure which is a direct consequence from the estab-
lished IND-CPA security in the QS1 sense.
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6 Conclusion

In this work we have given both positive and negative results for the security of
the sponge-based AEAD scheme Slae. On the one hand, we have shown that
Slae as well as the underlying core primitives are post-quantum secure. On the
other hand, we have shown that their quantum security is not fully clear yet.
While Slae, as well as the generic FGHF’ construction, are easily seen to be not
quantum secure for notions that allow challenge queries by the adversary to be
in superposition, its quantum security with respect to IND-qCPA is still open.
More precisely, we argued that its IND-qCPA security reduces to the quantum
security of the underlying function SlFunc via the generic FGHF’ construction.

In the realm of quantum security, it is open to analyse the quantum secu-
rity of the sponge-based function SlFunc as well as addressing the quantum
unforgeability of Slae and its underlying MAC SlMac. The reason is that
the landscape of quantum unforgeability notions is still unclear as the existing
notions [1,12,25,30] suffer from some drawbacks that allow for intuitive forgeries
that are not covered by the notions.

Regarding the post-quantum security of Slae, one can investigate whether
tighter bounds can be achieved. Generally, our bounds establish for the first time
post-quantum security for the AEAD scheme and the underlying primitives but
they are rather conservative and there might be room for improvements. For
example, for SlFunc one may be able to use the semi-classical variant of the
O2H lemma developed by Ambainis et al. [3] and for SPrg one may get tighter
bounds by using the doubled-sided O2H lemma by Bindel et al. [9]. One can also
consider an adaptive version, where the random oracle is reprogrammed only on
the points that the adversary queries to its classical oracle.
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meinschaft (DFG) – SFB 1119 – 236615297.

A Additional Preliminaries

A.1 Authenticated Encryption

We begin with a definition of authenticated encryption schemes with associated
data [6,47].

Definition 17. An authenticated encryption scheme with associated data
(AEAD) AEAD = (Enc, Dec) is a pair of efficient algorithms associated with key
space K, nonce space N , associated-data space H, message space M, and cipher-
text space C such that:

– The deterministic encryption algorithm Enc : K × N × H × M → C takes as
input a secret key K, a nonce N , associated data A, and a message M . It
outputs a ciphertext C .
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– The deterministic decryption algorithm Dec : K × N × H × C → M ∪ {⊥}
takes as input a secret key K, a nonce N , associated data A, and a ciphertext
C . It outputs a message M or ⊥ indicating an invalid ciphertext.

We say that an AEAD scheme is correct, if for all K ∈ K, N ∈ N , A ∈ H and
M ∈ M, it holds that Dec(K,N ,A, Enc(K,N ,A,M )) = M .

Throughout this work, we consider K = {0, 1}k , N = {0, 1}ν , H = {0, 1}α,
M = {0, 1}μ, and C = {0, 1}γ .

Security of an AEAD scheme now demands that an adversary cannot dis-
tinguish encryptions of equal-length messages which corresponds to the usual
CPA-security notion of encryption schemes. The formal description of the game
can be found on the left side of Fig. 10. Additionally, security also demands that
the adversary is not able to forge further valid ciphertexts which corresponds to
an integrity notion on the ciphertext level. The formal description of the games
can be found on the right side of Fig. 10.

IND-CPA

K $ K
Q ∅
b $ {0, 1}
b′

$ AEnc(K,·,·,·,·)

return (b′ = b)

Enc(K,N ,A,M0,M1)

if |M0| 
= |M1| then
return ⊥

if N ∈ Q then

return ⊥
C Enc(K,N ,A,Mb)

Q Q ∪ {N }
return C

INT-CTXT

K $ K
Q ∅
win 0

AEnc(K,·,·,·),Forge(K,·,·,·)

return win

Enc(K,N ,A,M )

if (N , ·, ·) ∈ Q then

return ⊥
C Enc(K,N ,A,M )

Q Q ∪ {(N ,A,C )}
return C

Forge(K,N ,A,C )

if (N ,A,C ) ∈ Q then

return ⊥
d Dec(K,N ,A,C )

if d 
= ⊥ then

win 1

return d

Fig. 10. Security games for AEAD.

Definition 18. Let AEAD be an authenticated encryption scheme with associated
data.

– For an adversary A, making qE queries to its encryption oracle, we define its
IND-CPA advantage as

AdvIND-CPA
AEAD (A) = 2 Pr[IND-CPAA → 1] − 1 .

– For an adversary A, making qE and qF queries to its encryption oracle and
forge oracle, respectively, we define its INT-CTXT advantage as

AdvINT-CTXT
AEAD (A) = Pr[INT-CTXTA → 1] .
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Symmetric Key Encryption. Observe that the definition of a symmetric key
encryption (SKE) scheme is very close to the given about AEAD. Note that
one can obtain a SKE scheme by analogously defining an encryption scheme
which does not admit associated data as a part of its input in comparison to
Definition 17.

Usually one defines CPA-security of a SKE scheme. Here the formalisation
is again very close to the description in Fig. 10 with the modification of not
including the associated data as an input to the encryption oracle.

A.2 Message Authentication Code

Next we will provide the basic definition of a message authentication code.

Definition 19. A message authentication code (MAC) MAC = (Tag, Vfy) is a
pair of efficient algorithms associated with key space K and domain space X such
that:

– The deterministic tagging algorithm Tag : K × X → {0, 1}τ takes as input a
key K and an element X . It returns a tag T of size {0, 1}τ .

– The deterministic verification algorithm Vfy : K × X × {0, 1}τ → {0, 1} takes
as input a key K, an element X , and a tag T and outputs 1 indicating that
the input is valid, or otherwise 0.

We say that a MAC scheme is correct, if for all K ∈ K and any admissible input
X ∈ X , it holds that Vfy(K,X , Tag(K,X )) = 1.

SUF-CMA

K $ K
Q
win 0

ATag(K,·),Forge(K,·,·)

return win

Tag(K,M )

T Tag(K,M )

Q∅ Q ∪ {(M ,T )}
return T

Forge (K, M , T )

if (M ,T ) ∈ Q then

return ⊥
d Vfy(K,M ,T )

if d = 1 then

win 1

return d

Fig. 11. Security game for MAC.

Definition 20. Let MAC be a message authentication code. We define the
SUF-CMA advantage of an adversary A making at most qT queries to its tag
oracle and qF many queries to its forge oracle as

AdvSUF-CMA
MAC (A) = Pr[SUF-CMAA → 1] ,

where the respective game is depicted in Fig. 11.
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A.3 Hash Function

In this section, we simply review the collapsing property of hash functions [54]
in the formalisation of [18].

Definition 21. For algorithms A and B, consider the following games given in
Fig. 12. There are quantum registers S and M , and M(M) is a measurement of
M in the computational basis.

For a set m, we call an adversary (A,B) valid on m for HO if and only if
Pr[HO(m) = h ∧ m ∈ m] when we run (S,M, h) ← AO() and measure M in the
computational basis as m.

A function H is collapsing on m if and only if for any quantum-polynomial-
time adversary (A,B) that is valid for HO on m and |Pr[b = 1: Game1]−Pr[b =
1: Game2]| is negligible.

Game1

(S, M, h) O()

m (M)

b O(S, M)

Game2

(S, M, h) O()

b

A
M

A

O(S, M)

Fig. 12. Collapsing games.

B QS1 Proofs

B.1 Proof of Theorem 8

Proof. The above collision resistance bound can be obtained from a combination
of results from Czajkowski et al. [17] and Unruh [52] with a slight modification
that stems from the way SvHash is constructed. Observe that the small modifi-
cation is due to the interpretation that we consider a sponge-based hash function
with the capacity being reduced by one bit and hence the rate being increased
by one bit. We take care of this one bit loss when applying the following results.

A crucial property in the realm of hash functions in the post-quantum setting
is called the collapsing property which is a strengthening of collision resistance
and Unruh has showed in [52,54] that if a hash function is collapsing then this
also implies that it is quantum collision resistant. Additionally, Czajkowski et
al. [17,18] showed that if the underlying function of the sponge construction
is a random transformation then the sponge construction is collapsing. Being
equipped with their result, we can derive the required bound for our setting.

We will follow the proof strategy put forward by Czajkowski et al. [17, Theo-
rem 33] to show that the sponge construction is collapsing. This requires to show
that the inner state Ŝ is collapsing in the absorbing phase while the outer state
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S̄ is collapsing in the squeezing phase and that there are no zero-preimages in
the inner state Ŝ . Then using [52, Lemma 25] provides us with the implication
that the sponge construction is then also collision resistant. It now remains to
apply the above strategy appropriately to derive the bound.

We have that l =
⌈

μ
r

⌉

and by [17, Theorem 33], we know that the collapsing
advantage is bounded by

√
ε1+ l ·ε2+ε3, where ε1 corresponds to the probability

of finding zero-preimages, ε2 corresponds to the collapsing advantage of the
inner state and ε3 corresponds to the collapsing advantage of the outer state,
respectively. By applying [17, Lemma 19], we obtain that ε1 ≤ (q + 1)22−c+4.
By a simple combination of [17, Lemma 32] and [52, Theorem 38], we can derive

ε2 ≤ q3
(

δ′+324
2c−1

)

+7δ
√

3(q+4)3
2c and ε3 ≤ q3

(
δ′+324
2w+1

)

+7δ
√

3(q+4)3
2w+2 where both δ

and δ′ are non-zero constants. Then by [52, Lemma 25], we have a tight reduction
from collapsing to collision resistance and hence the same bound holds for the
collision resistance of the sponge construction. ��

B.2 Proof of Theorem 9

Proof. The proof can be obtained from [21] by dropping everything related to the
leakage setting. It proceeds in two game hops. The first game hop replaces the
function SlFunc by a random function which can be straightforwardly bound
by the PRF advantage of SlFunc. More precisely, Aprf uses its own oracle for
everything related to SlFunc while simulating SPrg using (classical) queries
to the random oracle ρ. All (quantum) queries by A to ρ are simply forwarded
by Aprf , as are the responses back to A.

The second game hop replaces the output of SPrg by a random output. A
standard hybrid argument [26] shows that this can be bound by the security of
SPrg. The reduction Aprg picks a random query of A to its encryption oracle,
where it uses its own input (either the output of SPrg or a random bit string) to
encrypt the message. Prior queries are answered by XORing random bit string
to the message while subsequent queries are answered by simulating SPrg using
(classical) queries to ρ. All (quantum) queries by A to ρ are simply forwarded
by Aprg , as are the responses back to A.

The resulting game yields identically distributed ciphertexts, irrespectively
of the message. The factor 2 accounts for doing the game hops for both cases
b = 0 and b = 1. ��

B.3 Proof of Theorem 10

Proof. The proof proceeds by a simple reduction. In more detail, the reduction
Ase picks a key for the MAC SlMac. For every query to the encryption oracle
by A, Ase invokes its own encryption oracle and locally computes the tag of the
ciphertext using (classical) queries to ρ before sending the ciphertext and the
tag back to A. Every (quantum) query by A to ρ is simply forwarded by Ase . ��
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B.4 Proof of Theorem 11

Proof. We assume that all messages queried by A result in different hash values,
otherwise, we obtain a simple reduction Ahash from the collision resistance of
SvHash.

Then the proof proceeds by a game hop in which SlFunc is replaced by a
random function. The reduction Aprf will invoke its own function to simulate
the tagging and verification of SlMac and (classical) queries to ρ to evaluate
SvHash. Every (quantum) query to ρ by A is simply forwarded by Aprf .

The resulting game is bound by a simple counting argument that A predicts
the output of a random function. ��

B.5 Proof of Theorem 12

Proof. The reduction Amac picks a key for the symmetric key encryption scheme
SlEnc. For every query to the encryption oracle by A, Amac locally computes
the ciphertext using (classical) queries to ρ and obtains the tag using its own
tagging oracle. It then sends the ciphertext and the tag back to A. For every
forgery attempt by A, Amac queries the ciphertext and the tag as its own forgery
attempt. If the tag verifies correctly, Amac locally decrypts the ciphertext using
the sampled key and (classical) queries to ρ and sends the message back to
A, otherwise, i.e., if the tag was invalid, Amac simply returns ⊥ to A. Every
(quantum) query by A to ρ is simply forwarded by Ase . ��

C QS2 Proofs

C.1 Proof of Theorem 14

Proof. We construct the following adversary A = (A1 ,A2 ). It picks a nonce
N ←$ {0, 1}ν and prepares the states |ϕ0〉 = H |0μ〉 = |+〉⊗μ and |ϕ1〉 = |0μ〉. It
outputs the state

|ϕ〉 = |N 〉 ⊗ |+〉⊗μ ⊗ |ϕ1〉 .

Upon receiving the state |ψ〉, A2 applies the Hadamard operator to it and mea-
sures the register. If the measurement output is 0μ, A0 outputs 0, otherwise, it
outputs 1.

Before analysing the different cases, note that measuring the nonce register
as well as tracing out one of the message registers does not affect the other
registers as they are all unentangled. Let us now start with the case distinctions.

If b = 0, the game encrypts the left message, i.e., the state

|ϕ〉 = H |0μ〉 = |+〉⊗μ =
1√
2μ

⎛

⎝
∑

x∈{0,1}μ

|x〉
⎞

⎠ .



Sponge-Based Authenticated Encryption 255

A2 receives the state

|ψ〉 = 1√
2μ

⎛

⎝
∑

x∈{0,1}μ

|N 〉 |x ⊕ SPrg(SlFunc(K,N ))〉
⎞

⎠ = |ϕ〉 ,

i.e., the state |ϕ〉 is left unchanged. Application of the Hadamard operator there-
fore yields the state |0μ〉, for which the measurement outcome is 0μ with proba-
bility 1. Thus we get

Pr[ALoR-qIND → 0 | b = 0] = 1 .

If b = 1, A2 receives the state

|ψ〉 = |Enc(K,N , 0μ)〉 = |0μ ⊕ SPrg(SlFunc(K,N ))〉 .

Application of the Hadamard operator yields

H |ψ〉 = 1√
2μ

⎛

⎝
∑

x∈{0,1}μ

(−1)x·SPrg(SlFunc(K,N )) |x〉
⎞

⎠ .

Measurement yields a random x ∈ {0, 1}μ. Since A2 outputs 0 if and only if the
measurement yields 0μ, we obtain

Pr[ALoR-qIND → 0 | b = 1] =
1
2μ

.

Collecting everything yields

AdvLoR-qIND(A) =
∣
∣Pr[ALoR-qIND → 0 | b = 0] − Pr[ALoR-qIND → 0 | b = 1]

∣
∣

= 1 − 1
2μ

.

��

References

1. Alagic, G., Majenz, C., Russell, A., Song, F.: Quantum-access-secure message
authentication via blind-unforgeability. In: Canteaut, A., Ishai, Y. (eds.) EURO-
CRYPT 2020, Part III. LNCS, vol. 12107, pp. 788–817. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-45727-3_27

2. Alagic, G., Russell, A.: Quantum-secure symmetric-key cryptography based on
hidden shifts. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017, Part III.
LNCS, vol. 10212, pp. 65–93. Springer, Cham (2017). https://doi.org/10.1007/978-
3-319-56617-7_3

3. Ambainis, A., Hamburg, M., Unruh, D.: Quantum security proofs using semi-
classical oracles. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019, Part II.
LNCS, vol. 11693, pp. 269–295. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-26951-7_10

https://doi.org/10.1007/978-3-030-45727-3_27
https://doi.org/10.1007/978-3-319-56617-7_3
https://doi.org/10.1007/978-3-319-56617-7_3
https://doi.org/10.1007/978-3-030-26951-7_10
https://doi.org/10.1007/978-3-030-26951-7_10


256 C. Janson and P. Struck

4. Anand, M.V., Targhi, E.E., Tabia, G.N., Unruh, D.: Post-quantum security of
the CBC, CFB, OFB, CTR, and XTS modes of operation. In: Takagi, T. (ed.)
PQCrypto 2016. LNCS, vol. 9606, pp. 44–63. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-29360-8_4

5. Barwell, G., Martin, D.P., Oswald, E., Stam, M.: Authenticated encryption in
the face of protocol and side channel leakage. In: Takagi, T., Peyrin, T. (eds.)
ASIACRYPT 2017, Part I. LNCS, vol. 10624, pp. 693–723. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-70694-8_24

6. Bellare, M., Namprempre, C.: Authenticated encryption: relations among notions
and analysis of the generic composition paradigm. In: Okamoto, T. (ed.) ASI-
ACRYPT 2000. LNCS, vol. 1976, pp. 531–545. Springer, Heidelberg (2000).
https://doi.org/10.1007/3-540-44448-3_41

7. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing
efficient protocols. In: Denning, D.E., Pyle, R., Ganesan, R., Sandhu, R.S., Ashby,
V. (eds.) ACM CCS 1993, pp. 62–73. ACM Press, November 1993

8. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Sponge functions. In:
ECRYPT Hash Workshop (2007)

9. Bindel, N., Hamburg, M., Hövelmanns, K., Hülsing, A., Persichetti, E.: Tighter
proofs of CCA security in the quantum random oracle model. In: Hofheinz, D.,
Rosen, A. (eds.) TCC 2019, Part II. LNCS, vol. 11892, pp. 61–90. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-36033-7_3

10. Boneh, D., Dagdelen, Ö., Fischlin, M., Lehmann, A., Schaffner, C., Zhandry, M.:
Random oracles in a quantum world. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT
2011. LNCS, vol. 7073, pp. 41–69. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-25385-0_3

11. Boneh, D., Zhandry, M.: Quantum-secure message authentication codes. In:
Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp.
592–608. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-
9_35

12. Boneh, D., Zhandry, M.: Secure signatures and chosen ciphertext security in a
quantum computing world. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013,
Part II. LNCS, vol. 8043, pp. 361–379. Springer, Heidelberg (2013). https://doi.
org/10.1007/978-3-642-40084-1_21

13. Bonnetain, X., Hosoyamada, A., Naya-Plasencia, M., Sasaki, Yu., Schrottenloher,
A.: Quantum attacks without superposition queries: the offline Simon’s algorithm.
In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019, Part I. LNCS, vol. 11921,
pp. 552–583. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34578-
5_20

14. Carstens, T.V., Ebrahimi, E., Tabia, G.N., Unruh, D.: On quantum indistinguisha-
bility under chosen plaintext attack. Cryptology ePrint Archive, Report 2020/596
(2020). https://eprint.iacr.org/2020/596

15. Chevalier, C., Ebrahimi, E., Vu, Q.-H.: On security notions for encryption in
a quantum world. Cryptology ePrint Archive, Report 2020/237 (2020). https://
eprint.iacr.org/2020/237

16. Czajkowski, J.: Quantum indifferentiability of SHA-3. IACR Cryptology ePrint
Archive 2021/192 (2021)

17. Czajkowski, J., Groot Bruinderink, L., Hülsing, A., Schaffner, C., Unruh, D.: Post-
quantum security of the sponge construction. Cryptology ePrint Archive, Report
2017/771 (2017). https://eprint.iacr.org/2017/771

https://doi.org/10.1007/978-3-319-29360-8_4
https://doi.org/10.1007/978-3-319-29360-8_4
https://doi.org/10.1007/978-3-319-70694-8_24
https://doi.org/10.1007/3-540-44448-3_41
https://doi.org/10.1007/978-3-030-36033-7_3
https://doi.org/10.1007/978-3-642-25385-0_3
https://doi.org/10.1007/978-3-642-25385-0_3
https://doi.org/10.1007/978-3-642-38348-9_35
https://doi.org/10.1007/978-3-642-38348-9_35
https://doi.org/10.1007/978-3-642-40084-1_21
https://doi.org/10.1007/978-3-642-40084-1_21
https://doi.org/10.1007/978-3-030-34578-5_20
https://doi.org/10.1007/978-3-030-34578-5_20
https://eprint.iacr.org/2020/596
https://eprint.iacr.org/2020/237
https://eprint.iacr.org/2020/237
https://eprint.iacr.org/2017/771


Sponge-Based Authenticated Encryption 257

18. Czajkowski, J., Groot Bruinderink, L., Hülsing, A., Schaffner, C., Unruh, D.: Post-
quantum security of the sponge construction. In: Lange, T., Steinwandt, R. (eds.)
PQCrypto 2018. LNCS, vol. 10786, pp. 185–204. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-79063-3_9

19. Czajkowski, J., Hülsing, A., Schaffner, C.: Quantum indistinguishability of random
sponges. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019, Part II. LNCS,
vol. 11693, pp. 296–325. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-26951-7_11

20. Czajkowski, J., Majenz, C., Schaffner, C., Zur, S.: Quantum lazy sampling and
game-playing proofs for quantum indifferentiability. Cryptology ePrint Archive,
Report 2019/428 (2019). https://eprint.iacr.org/2019/428

21. Degabriele, J.P., Janson, C., Struck, P.: Sponges resist leakage: the case of authenti-
cated encryption. In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019, Part II.
LNCS, vol. 11922, pp. 209–240. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-34621-8_8

22. Dobraunig, C., et al.: ISAP v2.0. IACR Trans. Symm. Cryptol. 2020(S1), 390–416
(2020)

23. Dobraunig, C., Eichlseder, M., Mangard, S., Mendel, F., Unterluggauer, T.: ISAP -
towards side-channel secure authenticated encryption. IACR Trans. Symm. Cryp-
tol. 2017(1), 80–105 (2017)

24. Dobraunig, C., Eichlseder, M., Mendel, F., Schläffer, M.: Ascon v1. 2. Submission
to the CAESAR Competition (2016)

25. Doosti, M., Delavar, M., Kashefi, E., Arapinis, M.: A unified framework for quan-
tum unforgeability. CoRR, abs/2103.13994 (2021)

26. Fischlin, M., Mittelbach, A.: An overview of the hybrid argument. Cryptology
ePrint Archive, Report 2021/088 (2021). https://eprint.iacr.org/2021/088

27. Gagliardoni, T.: Quantum security of cryptographic primitives. Ph.D. thesis,
Darmstadt University of Technology, Germany (2017)

28. Gagliardoni, T., Hülsing, A., Schaffner, C.: Semantic security and indistinguisha-
bility in the quantum world. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part
III. LNCS, vol. 9816, pp. 60–89. Springer, Heidelberg (2016). https://doi.org/10.
1007/978-3-662-53015-3_3

29. Gagliardoni, T., Krämer, J., Struck, P.: Quantum indistinguishability for public
key encryption. In: Cheon, J.H., Tillich, J.-P. (eds.) PQCrypto 2021 2021. LNCS,
vol. 12841, pp. 463–482. Springer, Cham (2021). https://doi.org/10.1007/978-3-
030-81293-5_24

30. Garg, S., Yuen, H., Zhandry, M.: New security notions and feasibility results for
authentication of quantum data. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017,
Part III. LNCS, vol. 10402, pp. 342–371. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-63715-0_12

31. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: 28th
ACM STOC, pp. 212–219. ACM Press, May 1996

32. Hosoyamada, A., Sasaki, Yu.: Quantum Demiric-Selçuk meet-in-the-middle
attacks: applications to 6-round generic feistel constructions. In: Catalano, D.,
De Prisco, R. (eds.) SCN 2018. LNCS, vol. 11035, pp. 386–403. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-98113-0_21

33. Ito, G., Hosoyamada, A., Matsumoto, R., Sasaki, Yu., Iwata, T.: Quantum chosen-
ciphertext attacks against feistel ciphers. In: Matsui, M. (ed.) CT-RSA 2019.
LNCS, vol. 11405, pp. 391–411. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-12612-4_20

https://doi.org/10.1007/978-3-319-79063-3_9
https://doi.org/10.1007/978-3-319-79063-3_9
https://doi.org/10.1007/978-3-030-26951-7_11
https://doi.org/10.1007/978-3-030-26951-7_11
https://eprint.iacr.org/2019/428
https://doi.org/10.1007/978-3-030-34621-8_8
https://doi.org/10.1007/978-3-030-34621-8_8
https://eprint.iacr.org/2021/088
https://doi.org/10.1007/978-3-662-53015-3_3
https://doi.org/10.1007/978-3-662-53015-3_3
https://doi.org/10.1007/978-3-030-81293-5_24
https://doi.org/10.1007/978-3-030-81293-5_24
https://doi.org/10.1007/978-3-319-63715-0_12
https://doi.org/10.1007/978-3-319-63715-0_12
https://doi.org/10.1007/978-3-319-98113-0_21
https://doi.org/10.1007/978-3-030-12612-4_20
https://doi.org/10.1007/978-3-030-12612-4_20


258 C. Janson and P. Struck

34. Janson, C., Struck, P.: Sponge-based authenticated encryption: security against
quantum attackers. Cryptology ePrint Archive, Report 2022/139 (2022). https://
eprint.iacr.org/2022/139

35. Jovanovic, P., Luykx, A., Mennink, B.: Beyond 2c/2 security in sponge-based
authenticated encryption modes. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014,
Part I. LNCS, vol. 8873, pp. 85–104. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-662-45611-8_5

36. Kaplan, M., Leurent, G., Leverrier, A., Naya-Plasencia, M.: Breaking symmetric
cryptosystems using quantum period finding. In: Robshaw, M., Katz, J. (eds.)
CRYPTO 2016, Part II. LNCS, vol. 9815, pp. 207–237. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53008-5_8

37. Kaplan, M., Leurent, G., Leverrier, A., Naya-Plasencia, M.: Quantum differential
and linear cryptanalysis. IACR Trans. Symm. Cryptol. 2016(1), 71–94 (2016).
https://tosc.iacr.org/index.php/ToSC/article/view/536

38. Kashefi, E., Kent, A., Vedral, V., Banaszek, K.: Comparison of quantum oracles.
Phys. Rev. A 65(5), 050304 (2002)

39. Krämer, J., Struck, P.: Leakage-resilient authenticated encryption from leakage-
resilient pseudorandom functions. In: Bertoni, G.M., Regazzoni, F. (eds.) COSADE
2020. LNCS, vol. 12244, pp. 315–337. Springer, Cham (2021). https://doi.org/10.
1007/978-3-030-68773-1_15

40. Kuchta, V., Sakzad, A., Stehlé, D., Steinfeld, R., Sun, S.-F.: Measure-rewind-
measure: tighter quantum random oracle model proofs for one-way to hiding and
CCA security. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020, Part III.
LNCS, vol. 12107, pp. 703–728. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-45727-3_24

41. Kuwakado, H., Morii, M.: Quantum distinguisher between the 3-round feistel cipher
and the random permutation. In: ISIT 2010 (2010)

42. Kuwakado, H., Morii, M.: Security on the quantum-type even-mansour cipher. In:
ISITA 2012 (2012)

43. Mossayebi, S., Schack, R.: Concrete security against adversaries with quantum
superposition access to encryption and decryption oracles. CoRR, abs/1609.03780
(2016)

44. Namprempre, C., Rogaway, P., Shrimpton, T.: Reconsidering generic composition.
In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp.
257–274. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-
5_15

45. National Institute of Standards and Technology. Lightweight cryptography stan-
dardization process (2015)

46. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information:
10th Anniversary Edition, 10th edn. Cambridge University Press, New York (2011)

47. Rogaway, P.: Authenticated-encryption with associated-data. In: Atluri, V. (ed.)
ACM CCS 2002, pp. 98–107. ACM Press, November 2002

48. Rötteler, M., Steinwandt, R.: A note on quantum related-key attacks. Inf. Process.
Lett. 115(1), 40–44 (2015)

49. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factor-
ing. In: 35th FOCS, pp. 124–134. IEEE Computer Society Press, November 1994

50. Song, F.: A note on quantum security for post-quantum cryptography. In: Mosca,
M. (ed.) PQCrypto 2014. LNCS, vol. 8772, pp. 246–265. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-11659-4_15

https://eprint.iacr.org/2022/139
https://eprint.iacr.org/2022/139
https://doi.org/10.1007/978-3-662-45611-8_5
https://doi.org/10.1007/978-3-662-45611-8_5
https://doi.org/10.1007/978-3-662-53008-5_8
https://tosc.iacr.org/index.php/ToSC/article/view/536
https://doi.org/10.1007/978-3-030-68773-1_15
https://doi.org/10.1007/978-3-030-68773-1_15
https://doi.org/10.1007/978-3-030-45727-3_24
https://doi.org/10.1007/978-3-030-45727-3_24
https://doi.org/10.1007/978-3-642-55220-5_15
https://doi.org/10.1007/978-3-642-55220-5_15
https://doi.org/10.1007/978-3-319-11659-4_15


Sponge-Based Authenticated Encryption 259

51. Soukharev, V., Jao, D., Seshadri, S.: Post-quantum security models for authenti-
cated encryption. In: Takagi, T. (ed.) PQCrypto 2016. LNCS, vol. 9606, pp. 64–78.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29360-8_5

52. Unruh, D.: Computationally binding quantum commitments. Cryptology ePrint
Archive, Report 2015/361 (2015). https://eprint.iacr.org/2015/361

53. Unruh, D.: Revocable quantum timed-release encryption. J. ACM 62(6), 1–76
(2015)

54. Unruh, D.: Computationally binding quantum commitments. In: Fischlin, M.,
Coron, J.-S. (eds.) EUROCRYPT 2016, Part II. LNCS, vol. 9666, pp. 497–527.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5_18

55. Unruh, D.: Compressed permutation oracles (and the collision-resistance of
sponge/SHA3). Cryptology ePrint Archive, Report 2021/062 (2021). https://
eprint.iacr.org/2021/062

56. Yamakawa, T., Zhandry, M.: Classical vs quantum random oracles. In: Canteaut,
A., Standaert, F.-X. (eds.) EUROCRYPT 2021, Part II. LNCS, vol. 12697, pp.
568–597. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77886-6_20

57. Zhandry, M.: How to construct quantum random functions. In: 53rd FOCS, pp.
679–687. IEEE Computer Society Press, October 2012

58. Zhandry, M.: How to record quantum queries, and applications to quantum indif-
ferentiability. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019, Part II.
LNCS, vol. 11693, pp. 239–268. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-26951-7_9

https://doi.org/10.1007/978-3-319-29360-8_5
https://eprint.iacr.org/2015/361
https://doi.org/10.1007/978-3-662-49896-5_18
https://eprint.iacr.org/2021/062
https://eprint.iacr.org/2021/062
https://doi.org/10.1007/978-3-030-77886-6_20
https://doi.org/10.1007/978-3-030-26951-7_9
https://doi.org/10.1007/978-3-030-26951-7_9


Post-quantum Plaintext-Awareness

Ehsan Ebrahimi1,2(B) and Jeroen van Wier2

1 Department of Computer Science, University of Luxembourg, Esch-sur-Alzette,
Luxembourg

ehsan.ebrahimi@uni.lu
2 SnT, University of Luxembourg, Esch-sur-Alzette, Luxembourg

Abstract. In this paper, we formalize the plaintext-awareness notion
in the superposition access model in which a quantum adversary may
implement the encryption oracle in a quantum device and make super-
position queries to the decryption oracle. Due to various possible ways
an adversary can access the decryption oracles, we present six security
definitions to capture the plaintext-awareness notion with respect to each
way of access. We study the relationships between these definitions and
present various implications and non-implications.

Classically, the strongest plaintext-awareness notion (PA2) accom-
panied by the indistinguishability under chosen-plaintext attack (IND-
CPA) notion yields the indistinguishability under chosen-ciphertext
attack (IND-CCA) notion. We show that the PA2 notion is not suffi-
cient to show the above relation when targeting the IND-qCCA notion
(Boneh-Zhandry definition, Crypto 2013). However, our proposed post-
quantum PA2 notion with superposition decryption queries fulfils this
implication.

Keywords: Plaintext-awareness · Post-quantum security · Public-key
encryption

1 Introduction

Plaintext-awareness is the property of a public-key encryption scheme that guar-
antees the only way to feasibly create a ciphertext is using the encryption
algorithm, similar to the unforgeability notion for symmetric-key schemes. This
property guarantees that the creator of a ciphertext knows the corresponding
plaintext, even without knowing the secret key. This becomes a powerful tool
when constructing proofs of other security properties, as it effectively negates the
need to provide the adversary with a decryption oracle. For example, plaintext-
awareness allows us to boost security from IND-CPA to IND-CCA since the
only difference between these security properties is the availability of a decryp-
tion oracle to the adversary. Plaintext-awareness is also a useful property in the
setting of deniability, where one would often like a process between two parties
to be simulatable by either party. Plaintext-awareness steps in here and guar-
antees that any ciphertext created in this simulation can be decrypted without
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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the need of a secret key, as the plaintext is known by the ciphertext-creating
party and can be extracted from the simulation. Lastly, plaintext-awareness can
provide useful insight into why a scheme does or does not achieve a certain level
of security. Clearly, it is a property that one would intuitively like to satisfy,
as the natural way of creating ciphertexts is to use the encryption algorithm.
When another way to craft ciphertext is available, i.e. when a scheme is not
plaintext-aware, this might indicate a gap in security.

The plaintext-awareness notion was first introduced in the random ora-
cle model by Bellare and Rogaway [4]. Vaguely speaking, their definition of
plaintext-awareness implies the existence of an extractor algorithm which, given
access to the random oracle queries, is able to decrypt any ciphertext outputted
by the adversary. The main motivation to define this notion was to show the
security of Optimal Asymmetric Encryption Padding (OAEP).

The definition in [4] does not take into account the possibility of eavesdrop-
ping the communication by the adversary. Subsequently in [2], a stronger defi-
nition of plaintext-awareness was introduced in the random oracle model. In [2],
the adversary is able to eavesdrop some valid ciphertexts (through an oracle) and
the extractor, given access to these ciphertexts and the random oracle queries
made by the adversary, should be able to decrypt any ciphertext outputted by
the adversary.

The first attempt to define a plaintext-awareness notion in the standard
model was in [13], but, it needs to access a trusted third party. Later, Bellare
and Palacio defined three levels of plaintext-awareness notions in the standard
model (PA0, PA1, PA2) without the use of a third party [3]. In addition, they
study the relations between these notions and IND-CCA notions.

The PA+1 notion, which lies between PA1 and PA2, was introduced by Dent
[9]. Dent showed that an encryption scheme that is PA+1 and “simulatable” is
PA2. Then he showed that the Cramer-Shoup encryption scheme is PA+1 and
simulatable and therefore it satisfies the PA2 notion. This result is extended
in the journal version [5]. A symmetric-key version of plaintext-awareness was
considered in [1].

In this paper, we investigate the plaintext-awareness notion in the quantum
setting. This includes adopting the plaintext-awareness notion to the superpo-
sition setting in which a quantum adversary is attacking a classical public-key
encryption scheme.

1.1 Motivation

The plaintext-awareness notion is a strong security notion for public-key encryp-
tion schemes. It guarantees that the adversary is not able to generate a valid
ciphertext without knowing the corresponding plaintext (called PA1). If we con-
sider the possibility of eavesdropping the communication for the adversary, a
stronger notion is considered. Namely, an adversary with the ability to eaves-
drop on the communication is not able to generate a valid ciphertext without
knowing the corresponding plaintext unless it obtains this ciphertext through
eavesdropping (called PA2).
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Since the advent of quantum algorithms that break some classical compu-
tational problems [19], there has been extensive research to construct post-
quantum secure public-key encryption schemes1. This line of works varies from
constructing public-key encryption schemes from quantum-hard assumptions
[17,18] to considering stronger security notions for public-key encryption schemes
[6]. (For instance, the IND-qCCA notion introduced in [6] in which a quantum
adversary has superposition access to the decryption oracle.)

Traditionally, the PA2 plaintext-awareness notion, accompanied by the IND-
CPA notion, is used to prove IND-CCA security. If we use public-key encryption
schemes based on quantum-hard assumptions, we will get the same result in the
presence of a quantum adversary as well (PA2 + IND-CPA implies IND-CCA
in the presence of a quantum adversary). However, if one wants to achieve a
stronger level of security (e.g. IND-qCCA security), the classical PA2 notion
is not sufficient. In fact, we show that Classical PA2 + IND-qCPA does not
imply IND-qCCA security (see Corollary 3.). Therefore, we need to formalize a
stronger plaintext-awareness notion to achieve a security level of type IND-qCCA
for public-key encryption schemes.

In addition, a post-quantum plaintext-awareness notion is used in a high-
level manner in some existing security proofs in the literature without giving any
formal treatment of the notion. For instance in [10], to show IND-qCCA security
of plain OAEP transform in the quantum random oracle model, the adversary’s
inability in producing a valid ciphertext (without executing the encryption oracle
or eavesdropping the communication) is crucial in the transition from Game 4
to Game 5 in their security proof. Note that this step will not hold with a
classical PA2 notion since the adversary attacking in the sense of the IND-
qCCA notion has superposition access to the decryption oracle. However, in the
classical PA2 notion the adversary can only make classical decryption queries
in order to generate a valid ciphertext. Formalizing a post-quantum plaintext-
awareness notion will lead to more formal and accessible IND-qCCA security
proofs. And currently, such a notion is not available in the literature.

And last but not least, a quantum adversary on input pk can implement
the encryption oracle in his quantum device. So it is natural and necessary to
investigate the effect of this stronger access to the encryption oracle on the
plaintext-awareness notion. Currently, it is unknown if superposition access to
the encryption oracle renders public-key encryption schemes not-plaintext-aware
or it does not give a noticeable advantage to the ciphertext-creator adversary.

The overall conclusion is that formalizing and investigating the plaintext-
awareness notion in the quantum setting seems a natural and necessary extension
given the facts that: 1) a quantum adversary can have quantum access to the
encryption oracle and the effect of this access to PA notions is unknown, 2) avail-
able plaintext-awareness notions are not sufficient to conclude stronger security
notions like the IND-qCCA notion, 3) some post-quantum security proofs rely

1 Along with NIST competition to standardize the post-quantum public-key encryp-
tion schemes.
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on post-quantum plaintext-awareness notions in a high-level argument without
any formal definition for PA notions in the quantum setting, etc.

1.2 Challenges and Our Contribution

Intuitively, we say a scheme is (classically) plaintext-aware if for any (ciphertext-
creator) adversary A, there exists a (plaintext-extractor) algorithm A∗ that,
when given access to the “view” of A, is able to answer the decryption queries
outputted by A.

In the quantum setting, a quantum adversary on input pk can implement
the encryption oracle in its quantum device, thus, the adversary can run the
encryption oracle in superposition. At a first glance, it seems that the plaintext-
awareness notion might not be possible to achieve when the adversary can
execute the encryption oracle in superposition. Hypothetically, assume that an
adversary A is able to access the encryption oracle by the “minimal-query model”
[15], that is |m〉 → |Enc(m; r)〉 (where r is a classical value chosen uniformly at
random from the randomness space), without using any ancillary registers. In
this model, the adversary is able to generate a valid ciphertext without knowing
its corresponding plaintext. Namely, the adversary queries the uniform superpo-
sition of all messages,

∑ |m〉, to get the superposition of corresponding cipher-
texts,

∑ |Enc(m; r)〉. Now if the adversary measures the state
∑ |Enc(m; r)〉,

the result is a random valid ciphertext for which the algorithm A∗ might not be
able to decrypt.

Even though the minimal query model has been studied in many works
[7,11,12,15], it is not a canonical quantum access model. For private-key encryp-
tion schemes, the implementation of this query model requires some ancillary
quantum registers and a decryption query. In the public-key setting, the query
model can be implemented for some public-key encryption schemes without
knowledge of the secret key but with access to an ancillary register contain-
ing the randomness needed for the encryption [12]. These encryption schemes
called “recoverable public-key encryption schemes” in [12]. Note that this imple-
mentation of the minimal query model requires an ancillary register to store
the randomness, that is, |r,m〉 → |r,Enc(m; r)〉. Measuring the quantum state
after the query fixes a randomness r and c := Enc(m; r) and using this ran-
domness r, A∗ is able to recover m from c, that is, the adversary knows the
corresponding plaintext of c and the attack sketched above does not work for
this implementation.

In this paper, we consider the “standard query model” and not the minimal
query model to formulate superposition access to the encryption oracle. For any
classical function f , the standard way to implement this function in a quantum
computer is Uf : |x, y〉 → |x, y ⊕ f(x)〉. So for an encryption oracle Encpk, we
consider UEncpk : |m, r, c〉 → |m, r, c ⊕ Encpk(m; r)〉. Clearly, this transformation
is a unitary and an involution. In the above, we briefly discussed that available
implementations of the minimal query model require some ancillary registers
along with either a decryption query or access to the randomness register. Even
though there is no implementation of the minimal query model without using
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ancillary registers (|m〉 → |Encpk(m; r)〉) and it might not be possible at all to
implement the minimal query model without the use of ancillary registers (since
a quantum operation is a unitary but the size of the ciphertext space is usually
bigger than the size of the plaintext space and the operation |m〉 → |Encpk(m; r)〉
might not be a unitary), we give an argument below why it is not reasonable
to consider the query model |m〉 → |Encpk(m; r)〉 to define plaintext-awareness
notions.

Philosophical Reasoning. Note that in the public-key setting, the encryp-
tion oracle can be implemented in the standard way, so any effort conducted
by the adversary to implement the query model |m〉 → |Encpk(m; r)〉 instead of
implementing the encryption oracle as a standard query might be considered an
intentional effort to forget the corresponding plaintext that is encrypted. Consid-
ering it from a different angle, let us consider this classical scenario in which the
classical adversary encrypts a message m to obtain the ciphertext c := Enc(m; r),
then it permanently deletes m from its memory. Now, the adversary possesses
a ciphertext c without knowing its corresponding plaintext. We argue that any
effort by the adversary to implement the query model |m〉 → |Encpk(m; r)〉 lies
in the “encrypt-then-forget” argument sketched above.

In addition, we need to propose a notion that captures the vague intuition
that we established above: “a valid ciphertext that is not the output of a super-
position execution of the encryption oracle”. Note that a superposition query to
the encryption oracle can contain an exponential number of ciphertexts and thus
we cannot argue that the output of the adversary is not in this superposition of
ciphertexts.

1.3 Our Contribution

In the superposition setting (when a classical public-key encryption scheme is
attacked by a quantum adversary), we present various definitions. These defini-
tions vary with respect to the following criteria:

– Number of decryption queries: one or many.
– Type of decryption queries: classical or quantum.
– Possibility of eavesdropping some ciphertexts.

Then, we study the relationship between these notions. Table 1 summarizes these
notions and their relations with each other. In the abbreviation of notions, pq
stands for post-quantum, Cdec stands for classical decryption queries, Qdec stands
for quantum decryption queries, PA0 is a notion with one decryption query and
without the possibility of eavesdropping, PA1 is a notion with many decryption
queries and without the possibility of eavesdropping and PA2 is a notion with
many decryption queries and the possibility of eavesdropping. So for example,
pqPA1-Qdec is a notion in which the adversary is allowed to make many quantum
decryption queries but is not allowed to eavesdrop ciphertexts.

Our notions are an adaptation of classical PA0, PA1, and PA2 notions in
the standard model [3] to the quantum setting. Vaguely speaking, a public-key
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Table 1. Implications and separations between definitions. An arrow in row n, column
m indicates whether n implies or does not imply m. The superscript number next
to an arrow indicates the number of the corresponding theorem. Arrows without a
superscript follow by transitivity.

pqPA2-Qdec pqPA2-Cdec pqPA1-Qdec pqPA1-Cdec pqPA0-Qdec pqPA0-Cdec

pqPA2-Qdec ⇒Theorem1 ⇒Theorem2 ⇒ ⇒ ⇒
pqPA2-Cdec �

Theorem4 ⇒ ⇒Theorem1
�

Corollary2 ⇒
pqPA1-Qdec � �

Theorem5 ⇒Theorem1 ⇒Theorem3 ⇒
pqPA1-Cdec � � �

Theorem4
� ⇒Theorem3

pqPA0-Qdec � � � �
Theorem6 ⇒Theorem1

pqPA0-Cdec � � � � �
Corollary1

encryption scheme is plaintext-aware with respect to a class of adversaries if for
any adversary A in the class, there exists a plaintext-extractor algorithm A∗ that
given access to the view of A is able to simulate the decryption algorithm without
using the secret key. Classically, given access to the view of A is formalized by
given A∗ the access to the coin tosses of A. In our paper, the adversaries are
QPT algorithms and are able to generate randomness by doing some quantum
operations. For instance, applying Hadamard to |0〉 and measuring the result in
the computational basis gives a random bit. To formalize our notions, we give
A∗ the access to the internal quantum registers of A.

For instance, we say a public-key encryption scheme is pqPA1-Qdec if for
any QPT ciphertext-creator adversary A that makes quantum queries to the
decryption oracle, there exists a QPT plaintext-extractor algorithm A∗ that given
access to the internal registers of A can simulate the decryption queries. In more
detail, the execution of A querying the decryption oracle is indistinguishable
from the execution of A querying A∗ for any QPT distinguisher D.

For PA2 notions, the possibility of eavesdropping the communication is given
to A by classical access to a randomized algorithm P (called a plaintext-creator)
that upon receiving a query from A generates a message, encrypts it and sends
the ciphertext to A. (Since in the post-quantum setting the honest parties use
the classical public-key encryption schemes to communicate, we do not consider
the possibility of eavesdropping a superposition of ciphertexts in this paper.)
Note that A∗ does not have any access to the internal quantum registers of P,
so it might not be able to decrypt a ciphertext obtained from P. The list of these
ciphertexts is given to both the decryption oracle and A∗ to return ⊥ when one
of these ciphertexts is submitted as a decryption query.

1.4 Organization

We present some preliminaries in Sect. 2. In Sect. 3, we define six possible defini-
tions for the plaintext-awareness notion in the post-quantum setting. Section 4
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discusses the relationships between notions. Finally, we discuss the achievability
of our notions in Sect. 5.

2 Preliminaries

Any classical function f : X → Y can be implemented as a unitary operator
Uf in a quantum computer where Uf : |x, y〉 → |x, y ⊕ f(x)〉 and it is clear that
U

†
f = Uf . A quantum adversary has standard oracle access to a classical function

f if it can query the unitary Uf . We refer the reader to Appendix A.2 for a
short introduction to quantum computing. We refer to the class of quantum
polynomial-time algorithms as QPT.

2.1 Definitions

We define a strong quantum-secure pseudo-random permutation as a permuta-
tion that is indistinguishable from a random permutation when the quantum
adversary has superposition access to the permutation and its inverse.

Definition 1. We say a permutation P a strong quantum-secure pseudo-
random permutation if for any QPT adversary A,

|Pr[b = 1 : b ← AUP ,UP −1 ] − Pr[b = 1 : b ← AUπ,Uπ−1 ]| ≤ neg(η),

where π is a truly random permutation and η is the security parameter.

We define a public-key encryption scheme in the following.

Definition 2. A public-key encryption scheme Π consists of three polynomial
time (in the security parameter η) algorithms, (KGen,Enc,Dec), such that:

1. KGen, the key generation algorithm, is a probabilistic algorithm which on
input 1η outputs a pair of keys, (pk, sk) ← KGen(1η), called the public key
and the secret key for the encryption scheme, respectively.

2. Enc, the encryption algorithm, is a probabilistic algorithm which takes as
input a public key pk and a message m from the message space and outputs a
ciphertext c ← Encpk(m). We may specify the randomness r that is used for
computing c and write c = Encpk(m; r).

3. Dec, the decryption algorithm, is a deterministic algorithm that takes as input
a secret key sk and a ciphertext c and returns the message m := Decsk(c). It
is required that the decryption algorithm returns the original message, i.e.,
Decsk(Encpk(m)) = m, for every (pk, sk) ← KGen(1η) and every m. The
algorithm Dec returns ⊥ if ciphertext c is not decryptable.

We define a one-way public-key encryption scheme below. This is the minimal
security requirement for an encryption scheme. This is needed for separation
theorems between PA notions to exclude trivial encryption schemes, for example
the identity encryption scheme that is defined as Encpk(m) = m, which are
plaintext-aware with respect to any reasonable definition.
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Definition 3. We say a public-key encryption scheme Π = (KGen,Enc,Dec)
is one-way if for any QPT adversary A

Pr[A(pk, c) = m : (pk, sk) ← KGen(1η),m $←− M, c ← Encpk(m)] ≤ neg(η),

where M is the message space.

IND-qCPA and IND-qCCA. Here, we define a quantum IND-CPA and
quantum IND-CCA notion used in this paper. Note that a quantum adver-
sary can implement a public-key encryption algorithm in its quantum device
since pk is public. To define IND-qCPA and IND-qCCA notions, we need to
determine whether the challenge queries and decryption queries are classical or
quantum. There are many quantum IND-CPA notions available in the literature
[7] that include definitions with classical challenge queries and quantum chal-
lenge queries, on the other hand, there is only one definite quantum IND-CCA
notion (called IND-qCCA) available in the literature that only allows classical
challenge queries [6]2 the weakest quantum IND-CPA notion which, accompa-
nied by our quantum PA2 notion, implies the IND-qCCA notion. We follow the
definitions proposed in [6] by Boneh and Zhandry in this paper.

Definition 4. We say an encryption scheme Enc is IND-qCPA secure if the
following two games are indistinguishable for any QPT adversary X .

Game 0: GqCPA
X ,0

(pk, sk) ← KGen(1η), m0,m1 ← X (pk),
Enc(m0; r0) ← Challenger(m0,m1), b ← X (pk,Enc(m0; r0))

Game 1: GqCPA
X ,1

(pk, sk) ← KGen(1η), m0,m1 ← X (pk),
Enc(m1; r1) ← Challenger(m0,m1), b ← X (pk,Enc(m1; r1))

In other words, |Pr[GqCPA
X ,0 = 1] − Pr[GqCPA

X ,1 = 1]| ≤ neg(η) for any QPT
adversary X .

IND-qCCA. Here, a quantum adversary can query the encryption and decryp-
tion oracle on superposition of inputs but the challenge queries are classical.
Let List be the list of ciphertexts obtained during the challenge phase. We say
List is defined if at least one challenge query has been executed. We define a
decryption algorithm Dec′

(sk,List) as follows:

Dec′
(sk,List)(c) =

{
⊥ if List is defined and c ∈ List
Decsk(c) otherwise

.

2 There are some very recent research to define a quantum IND-CCA notion with
quantum challenge queries (for instance [8,12]).
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Definition 5. We say an encryption scheme Enc is IND-qCCA secure if the
following two games are indistinguishable for any QPT adversary X .

Game 0: GqCCA
X ,0

(pk, sk) ← KGen(1η), m0,m1 ← XUDecsk (pk),

Enc(m0; r0) ← Challenger(m0,m1), b ← XUDec′
(sk,List) (pk,Enc(m0; r0))

Game 1: GqCCA
X ,1

(pk, sk) ← KGen(1η), m0,m1 ← XUDecsk (pk),

Enc(m1; r1) ← Challenger(m0,m1), b ← XUDec′
(sk,List) (pk,Enc(m1; r1))

In other words, |Pr[GqCCA
X ,0 = 1] − Pr[GqCCA

X ,1 ]| ≤ neg(η) for any QPT adver-
sary X .

We define a computationally hiding and binding commitment scheme in
Appendix A.1.

3 Post-quantum Plaintext-Awareness

In this section, we define plaintext-awareness for classical encryption schemes in
the presence of a quantum adversary. Let Qint indicate the internal registers of
the ciphertext-creator adversary A. Note that Qint includes the input, output
and some ancillary registers of A.

3.1 Post-quantum PA0, PA1

There are two possible cases to define PA0 and PA1. Namely, either A’s goal
is to output a classical ciphertext without knowing its corresponding plaintext
or its goal is to output a superposition of ciphertexts where the corresponding
quantum plaintext is unknown to A. In the formulation of these two possible
cases, the access to the decryption oracle will differ. Namely, either the adversary
A has classical access to the decryption oracle or it has superposition access to
the decryption oracle. In other words, to say that A is not able to output a valid
classical (quantum) ciphertext unless it executes the encryption algorithm, there
should be an algorithm A∗ that can respond to classical (quantum) decryption
queries given the internal registers of A. That is, any valid ciphertext known to
A can be decrypted if A∗ has access to the internal register of A.

Classical Decryption Queries. We define the definition using two games. In
the real game, A given pk has access to the decryption oracle. In the fake game,
the decryption queries will be answered with an algorithm A∗ that has access
to the internal register of A. In both games, A outputs a quantum state in the
end. We say a public-key encryption scheme is plaintext-aware if for any QPT
adversary A, there exists a QPT algorithm A∗ such that the output of these
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two games is indistinguishable for any QPT distinguisher D. Without loss of
generality, we assume that the output of D is determined with a computational
basis measurement. This computational indistinguishability definition for quan-
tum states is common in the literature, for instance in Definition 1 in [16].

Game GpqPA1-Cdec
real . In this game, the ciphertext-creator adversary A given pk

has classical access to the decryption oracle. At the end, A outputs a quantum
state.
Game GpqPA1-Cdec

real

(pk, sk) ← KGen(1η), ρη ← ADecsk(pk)

Game GpqPA1-Cdec
fake . In this game, A’s decryption queries will be responded by

a plaintext-extractor algorithm A∗. Here, A∗ has access to pk and the internal
register of A. At the end, A outputs a quantum state.

Game GpqPA1-Cdec
fake

(pk, sk) ← KGen(1η), ρη ← AA∗(pk,Qint)(pk)

Definition 6 (pqPA1-Cdec). We say a public-key encryption scheme Enc is
pqPA1-Cdec plaintext-aware if for any QPT ciphertext-creator A, there exists
a QPT plaintext-extractor A∗ such that for all QPT distinguishing algorithms
D, the advantage of D in distinguishing GpqPA1-Cdec

real and GpqPA1-Cdec
fake is negligible

as a function of the security parameter:

AdvD, A = |Pr[D(ρη) = 1 : ρη ← GpqPA1-Cdec
real ]−

Pr[D(ρη) = 1 : ρη ← GpqPA1-Cdec
fake ]| ≤ neg(η),

where the output of D is determined with the computational basis measurement.

Definition 7 (pqPA0-Cdec). This is defined similarly to pqPA1-Cdec except the
adversary A is allowed to make only one decryption query.

Superposition Decryption Queries. In this subsection, we define plaintext-
awareness definition when the adversary A has superposition access to the
decryption oracle. Similar to the above definition, we define this notion using
two games.

Game GpqPA1-Qdec
real . In this game, the ciphertext-creator adversary A given pk

has quantum access to the decryption oracle. At the end, A outputs a quantum
state.
Game GpqPA1-Qdec

real

(pk, sk) ← KGen(1η), ρη ← AUDecsk (pk)
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Game GpqPA1-Qdec
fake . In this game, A’s quantum decryption queries will be

responded by a plaintext-extractor algorithm A∗. Here, A∗ has access to pk
and the internal register of A. At the end, A outputs a quantum state.

Game GpqPA1-Qdec
fake

(pk, sk) ← KGen(1η), ρη ← AA∗(pk,Qint)(pk)

Definition 8 (pqPA1-Qdec). We say a public-key encryption scheme Enc is
pqPA1-Qdec plaintext-aware if for any QPT ciphertext-creator A, there exists
a QPT plaintext-extractor A∗ such that for all QPT distinguishing algorithms
D, the advantage of D in distinguishing GpqPA1-Qdec

real and GpqPA1-Qdec
fake is negligible

as a function of the security parameter:

AdvD,A = |Pr[D(ρη) = 1 : ρη ← GpqPA1-Qdec
real ]−

Pr[D(ρη) = 1 : ρη ← GpqPA1-Qdec
fake ]| ≤ neg(η),

where the output of D is determined with the computational basis measurement.

Definition 9 (pqPA0-Qdec). This is defined similarly to pqPA1-Qdec except the
adversary A is allowed to make only one decryption query.

3.2 Post-quantum PA2

In pqPA0 and pqPA1 definitions, it has not been considered that the adversary
may be able to eavesdrop some ciphertexts and use them to generate new cipher-
texts without knowing their corresponding plaintexts. There are two scenarios
for the eavesdropping:

– The adversary may eavesdrop some classical ciphertexts.
– The adversary may obtain some superposition of ciphertexts.

Note that in the post-quantum setting, the honest parties are using their classical
devices to communicate. So the assumption that the adversary may be able to
eavesdrop some superposition of ciphertexts seems too exotic and we do not
analyse it in this paper. We provide a short discussion on the main obstacle in
defining a plaintext-awareness definition with the superposition eavesdropping
in Appendix B.

The possibility for eavesdropping is granted to the adversary by a randomized
algorithm P (called the plaintext-creator). Here, P upon receiving a query from
A outputs the encryption of a message of its choosing to A. Additionally, P adds
m and its corresponding ciphertext to a List.

Similar to pqPA0 and pqPA1, we consider two possible goals for the adversary
A: outputting a classical ciphertext without knowing its corresponding plaintext
or a superposition of ciphertexts without knowing its corresponding superposi-
tion of plaintexts.
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Recall that Dec′
(sk,List) is defined as:

Dec′
(sk,List)(c) =

{
⊥ if List is defined and c ∈ List
Decsk(c) otherwise

.

Classical Decryption Queries. In this subsection, we define plaintext-
awareness when the adversary A has classical access to a plaintext creator algo-
rithm P and the decryption oracle Dec′

(sk,List). Similarly, we define the notion
using two games.

Game GpqPA2-Cdec
real . In this game, the ciphertext-creator adversary A given pk has

oracle access to P. It has classical access to the decryption oracle Dec′
(sk,List).

At the end, A outputs a quantum state.

Game GpqPA2-Cdec
real

(pk, sk) ← KGen(1η), ρη ← AP,Dec′
(sk,List)(pk)

Game GpqPA2-Cdec
fake . In this game, A’s decryption queries will be responded by a

plaintext-extractor algorithm A∗. Here, A∗ given pk has access to List and the
internal register of A. At the end, A outputs a quantum state.

Game GpqPA2-Cdec
fake

(pk, sk) ← KGen(1η), ρη ← AP,A∗(pk,List,Qint)(pk)

Definition 10 (pqPA2-Cdec). We say a public-key encryption scheme Enc is
pqPA2-Cdec plaintext-aware if for any QPT ciphertext-creator A, there exists
a QPT plaintext-extractor A∗ such that for any QPT plaintext-creator P and
any QPT distinguishing algorithms D, the advantage of D in distinguishing
GpqPA2-Cdec

real and GpqPA2-Cdec
fake is negligible as a function of the security parameter:

AdvD,A = |Pr[D(ρη) = 1 : ρη ← GpqPA2-Cdec
real ]−

Pr[D(ρη) = 1 : ρη ← GpqPA2-Cdec
fake ]| ≤ neg(η),

where the output of D is determined with the computational basis measurement.

Superposition Decryption Queries. In this subsection, we define plaintext-
awareness when the adversary A has classical access to a plaintext creator algo-
rithm P and superposition access to the decryption oracle Dec′

(sk,List). Similarly,
we define the notion using two games.

Game GpqPA2-Qdec
real . In this game, the ciphertext-creator adversary A given pk

has oracle access to P and superposition access to the decryption oracle. At the
end, A outputs a quantum state.
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Game GpqPA2-Qdec
real

(pk, sk) ← KGen(1η), ρη ← AP,UDec′
(sk,List) (pk)

Game GpqPA2-Qdec
fake . In this game, A’s decryption queries will be responded by a

plaintext-extractor algorithm A∗. Here, A∗ given pk has access to List and the
internal register of A. At the end, A outputs a quantum state.

Game GpqPA2-Qdec
fake

(pk, sk) ← KGen(1η), ρη ← AP,A∗(pk,List,Qint)(pk)

Definition 11 (pqPA2-Qdec). We say a public-key encryption scheme Enc is
pqPA2-Qdec plaintext-aware if for any QPT ciphertext-creator A, there exists a
QPT plaintext-extractor A∗ such that that for any QPT plaintext-extractor P
and any QPT distinguishing algorithms D, the advantage of D in distinguishing
GpqPA2-Qdec

real and GpqPA2-Qdec
fake is negligible as a function of the security parameter:

AdvD, A = |Pr[D(ρη) = 1 : ρη ← GpqPA2-Qdec
real ]−

Pr[D(ρη) = 1 : ρη ← GpqPA2-Qdec
fake ]| ≤ neg(η),

where the output of D is determined with the computational basis measurement.

4 Relationships Between Notions

In this section, we study the relations between different PA notions defined in
this paper. In addition, we show that the pqPA2-Qdec plaintext-awareness notion
defined in this paper along with IND-qCPA security implies IND-qCCA security.

4.1 Relationships Between PA Notions

Implications. First we show implications between the notions. Clearly,
pqPAi-Qdec plaintext-awareness implies pqPAi-Cdec plaintext-awareness for i =
0, 1, 2. The reason is the existence of a plaintext-extractor algorithm A∗ for an
adversary A that makes superposition queries to the decryption oracle is enough
to prove pqPAi-Cdec plaintext-awareness. In other words, the algorithm A∗ is a
plaintext extractor for an adversary attacking in the sense of pqPAi-Cdec.

Theorem 1. For any i = 0, 1, 2, a public-key encryption scheme Enc that is
pqPAi-Qdec plaintext-aware, it is pqPAi-Cdec plaintext-aware.

Below, we investigate the relations between PAi notions for different i.

Theorem 2. If an encryption scheme is pqPA2-Qu aware then it is pqPA1-Qu
aware when Qu ∈ {Cdec,Qdec}.
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Proof. The proof is straightforward because an adversary A that breaks
pqPA1-Qu awareness can be run to break pqPA2-Qu awareness. In more detail,
the reduction adversary B runs A and simulates A’s decryption queries using its
decryption oracle. (Note that the reduction adversary B does not use the pos-
sibility of querying the plaintext-creator and breaks the pqPA2-Qu awareness
notion.) 	

Theorem 3. If an encryption scheme is pqPA1-Qu aware then it is pqPA0-Qu
aware when Qu ∈ {Cdec,Qdec}.
Proof. The proof is obvious since the only difference between PA1 and PA0
notions are the number of decryption queries, which is polynomially many queries
and one query, respectively. 	


Non-implications. The rest of this subsection shows non-implications (i.e. sep-
arations) between notions. Note that in order to exclude the trivial encryption
schemes that are plaintext-aware with respect to all definitions (for instance, the
identity encryption), we add a security requirement (one-wayness or IND-qCPA
security) for encryption in the separation theorems.

Below, we show that pqPAi-Qdec is strictly stronger than pqPAi-Cdec for i =
1, 2. The high-level idea is to take an encryption scheme that is pqPAi-Cdec

plaintext-aware and modifies its decryption algorithm in a way that remains
pqPAi-Cdec plaintext-aware but it leaks a valid ciphertext to the pqPAi-Qdec

adversary.

Theorem 4. A one-way pqPAi-Cdec plaintext-aware public-key encryption
scheme is not necessarily pqPAi-Qdec plaintext-aware for i = 1, 2.

Proof. Let Π = (KGen,Enc,Dec) be a public-key encryption scheme that is
pqPAi-Cdec plaintext-aware. Let {0, 1}n be the ciphertext space of Π. Let the
ciphertext cv be generated by choosing a random message m and a random-
ness r and computing Enc(m; r). We modify Π to a new encryption scheme
Π ′ = (KGen′,Enc′,Dec′). The algorithm KGen′ runs KGen to get (pk, sk), it
outputs a key pkcom for a computationally hiding and binding commitment
scheme (Com,Ver), and it chooses a random periodic function f on cv. (That
is for any x ∈ {0, 1}n, f(x ⊕ cv) = f(x).) It returns the pair (pk′, sk′) =
((pk, pkcom), (sk, f)) and the commitment value ccom = Com(pkcom, cv) with
the corresponding opening ω. For any message m in the message-space of Π,
Enc′

pk′(m) = Encpk(m)|| ⊥. The new decryption algorithm Dec′
(sk,f) takes as

input a ciphertext from ({0, 1}n ∪ ⊥) × ({0, 1}n ∪ ⊥) and operates as the follow-
ing:

Dec′
(sk,f,r)(c1, c2) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Decsk(c1) if c1 �=⊥ and c2 =⊥
Decsk(cv)‖r‖ω if c1 =⊥ and c2 = cv

⊥ if c1 =⊥ and c2 �= cv

f(c2) otherwise

.
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Since Dec′
sk′(Enc′

pk′(m)) = Decsk(Encpk(m)), Π ′ satisfies the correctness prop-
erty. It is clear that Π ′ is one-way since Π is one-way. We show that Π ′ is
pqPA1-Cdec plaintext-aware. Let A∗ be the QPT plaintext-extractor algorithm
for Π. We construct a QPT plaintext-extractor algorithm A′∗ for Π ′. Namely,
A′∗ chooses a random function f ′ with the same domain and co-domain as f
and for any (c1, c2) operates as follows:

A′∗(c1, c2) =

⎧
⎪⎨

⎪⎩

A∗(c1) if c1 �=⊥ and c2 =⊥
⊥ if c1 =⊥
f ′(c2) otherwise

.

Note that an adversary with classical access to the decryption oracle is not able
to get cv. In addition, the commitment scheme is computationally hiding and
ccom reveals cv only with a negligible probability. Therefore, the decryption query
(⊥, cv) will be submitted with a negligible probability. Since for a polynomial-
time adversary with classical access to f and f ′, these two functions are indis-
tinguishable, A′∗ is a successful polynomial-time plaintext-extractor algorithm
for Π ′.

However, an adversary A with superposition access to Dec′, can choose a
random ciphertext c′ from {0, 1}n and queries |c′〉 ⊗ ∑

c∈{0,1}n
1√
n

|c〉 to Dec′.
Therefore, the adversary can employ the Simon’s quantum algorithm [20] to
obtain cv and break pqPAi-Qdec plaintext-awareness. In more detail, A submits
(⊥, cv) as a decryption query. After getting a response m′‖r′‖ω′, it checks if
cv = Enc(m′; r′) and Ver(pkcom, ccom, cv, ω′) = 1. If both equalities hold, it
returns 1, otherwise, it returns 0.

In the real case, the Dec′ returns Decsk(cv)‖r and A outputs 1 with a high
probability, namely the probability of Simon’s algorithm succeeding. However,
in the fake game, since Enc is one-way and the commitment scheme is compu-
tationally binding, there is no QPT algorithm A∗ that can simulate an answer
to the decryption query (⊥, cv) such that both equalities above hold with a
non-negligible probability. So A returns 1 with a negligible probability in this
case. Consequently, a distinguisher that returns the output of A can distinguish
between the real game and the fake game with a non-negligible probability. 	

We can use a similar trick to show that pqPA0-Qdec is strictly stronger than
pqPA0-Cdec. Since Simon’s algorithm needs a polynomial number of queries to
extract cv but in the pqPA0-Cdec notion the adversary is only allowed to make
a single query, we need to modify Dec′ a bit further. Namely, we expand the
ciphertext space and define Dec′′ as the following:

Dec′′(c1, c2, · · · , cm) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Dec(c1) if c1 �=⊥ and c2 = · · · = cm =⊥
Decsk(cv)‖r‖ω if c1 = c3 = · · · = cm =⊥ and c2 = cv

⊥ if c1 =⊥ and c2 �= cv

f(c2)|| · · · ||f(cm) otherwise

.
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The adversary queries

|c〉 ⊗
∑

c∈{0,1}n

1√
n

|c〉 ⊗ · · · ⊗
∑

c∈{0,1}n

1√
n

|c〉

to Dec′′ to extract cv. (Note that m is big enough that Simon’s algorithm returns
cv with a high probability.)

Corollary 1. A one-way pqPA0-Cdec plaintext-aware public-key encryption
scheme Enc is not necessarily pqPA0-Qdec plaintext-aware.

Therefore, we can conclude that even the strongest plaintext-awareness
notion with classical decryption queries will not imply the weakest plaintext-
awareness notion with quantum decryption queries.

Corollary 2. A one-way pqPA2-Cdec plaintext-aware public-key encryption
scheme Enc is not necessarily pqPA0-Qdec plaintext-aware.

Proof. The proof is similar to the proof of Corollary 1. 	

In the theorem below, we show that an adversary with the ability to eaves-
drop some ciphertexts is strictly stronger than an adversary without this ability.
Namely, we show that an encryption scheme that is pqPA1-Qdec plaintext-aware,
it is not necessarily pqPA2-Cdec plaintext-aware. The high-level idea to show this
claim is to design an encryption scheme that is malleable on the last bit, however,
this malleability does not change the corresponding plaintext. In other words, if
we flip the last bit of any ciphertext, we will get a valid ciphertext, but, without
any change on the corresponding plaintext. A PA1 adversary is not able to use
this malleability since this does not change the plaintext inside of the ciphertext.
However, an PA2 adversary can obtain a valid ciphertext (c, b) by eavesdropping
and change it to a new ciphertext (c, b ⊕ 1) where its corresponding plaintext is
unknown to the adversary.

Theorem 5. A public-key encryption scheme that is pqPA1-Qdec plaintext-
aware and IND-qCPA secure, it is not necessarily pqPA2-Cdec plaintext-aware.

Proof. Let Π = (Enc,Dec,KGen) be a pqPA1-Qdec plaintext-aware. We con-
struct the following encryption scheme Π ′:

– KGen′ = KGen
– Enc′(m) = Enc(m)‖0
– Dec′(c‖b) = Dec(c), where b ∈ {0, 1}
The IND-qCPA security of Π ′ is obtained easily by the IND-qCPA security of
Π. We show that Π ′ is also pqPA1-Qdec plaintext-aware. Let A be an adversary
that attacks Π ′ in the sense of pqPA1-Qdec. We construct an adversary B that
attacks Π. The adversary B runs A and answers its decryption queries as follows.
Let Qc, Qb be the input quantum registers for c, b respectively. Let Qout be the
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output quantum register. The adversary B upon receiving Qc, Qb, Qout registers
from A, it forwards Qc, Qout registers to its decryption oracle. After getting
back UDec(QcQout) from its decryption oracle, it sends all three registers to
A. It is clear that the decryption queries are simulated perfectly for A. Since
Π is pqPA1-Qdec plaintext-aware, there exists a plaintext-extractor algorithm
B∗ for B. Now from B∗, one can construct an extractor A∗ for A. Namely,
A∗(c‖b) := B∗(c).

However, Π ′ is not pqPA2-Cdec plaintext-aware. Let A be an adversary that
sends two messages m0 := 0n and m1 := 1n as a query to its plaintext-creator
P. Upon receiving a ciphertext (c‖0) from P, it sends (c‖1) as a decryption
query. If the answer is 0n, it returns 0, otherwise it returns 1. Consider a
plaintext-creator algorithm Pb that upon receiving a query m0,m1, it sends
mb to Enc. Then, it forwards (cb‖0) := Enc(mb) to the adversary. Let D be a
distinguisher that returns the output of A. Proof by contrary, let assume that Π ′

is pqPA2-Cdec plaintext-aware. Then, there exists a plaintext-extractor algorithm
A∗ that works for (A,P0,D) and (A,P1,D). That is,

GpqPA2-Cdec
real (A, UDec′ ,P0,D) ∼= GpqPA2-Cdec

fake (A,A∗,P0,D)

and
GpqPA2-Cdec

real (A, UDec′ ,P1,D) ∼= GpqPA2-Cdec
fake (A,A∗,P1,D)

It is clear that in the real case, D returns 0 with the probability 1 when A
interacts with P0 and it returns 1 with the probability 1 when A interacts with
P1. So these two games are distinguishable. Consequently, in the fake game, A’s
interaction with P0 is distinguishable from its interaction with P1. And this is
a contradiction to the IND-qCPA security of Π ′. Namely, an adversary B that
runs A and answers its decryption queries with A∗ and its queries to a plaintext
creator with Π ′’s challenger can break IND-qCPA security of Π ′. 	

In the following theorem, we show that a one-way public-key encryption scheme
that is plaintext-aware against adversaries that make a single quantum decryp-
tion query is not necessarily plaintext-aware against adversaries that make many
classical decryption queries. The high-level idea is that the decryption oracle par-
tially reveals a valid ciphertext in each query. In more details, we write a valid
ciphertext cv as XOR of two random values c

(1)
v and c

(2)
v , that is cv = c

(1)
v ⊕ c

(2)
v .

Then the decryption oracle reveals one of c
(1)
v or c

(2)
v randomly in each query.

Obviously, the adversary with a single query is able to get one of c
(1)
v or c

(2)
v and

that does not give any useful information. On other hand, the adversary with
many decryption queries is able to obtain cv.

Theorem 6. A one-way pqPA0-Qdec plaintext-aware public-key encryption
scheme is not necessarily pqPA1-Cdec plaintext-aware.

Proof. Let Π = (KGen,Enc,Dec) be a pqPA0-Qdec plaintext-aware encryption
scheme. Let cv be a ciphertext that is generated by choosing a random message
m and a randomness r and computing Enc(m; r). Let c

(1)
v and c

(2)
v be two ran-

dom elements such that cv = c
(1)
v ⊕ c

(2)
v . We construct an encryption scheme
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Π ′ = (KGen′,Enc′,Dec′). The algorithm KGen′ runs KGen to get (pk, sk) and
it outputs a key pkcom for a computationally hiding and binding commitment
scheme (Com,Ver). That is, the outputs of KGen′ are ((pk, pkcom), sk) and the
commitment value ccom = Com(pkcom, cv) with the corresponding opening ω.
Note that a QPT adversary is not able to compute cv from ccom with a non-
negligible probability since the commitment scheme is computationally hiding.
Let ω = ω(1) ⊕ ω(2) for random values ω(1) and ω(2). For any message m,
Enc′(m) = Enc(m)‖0. Dec′ is a probabilistic algorithm and is defined as:

Dec′(c‖b) =

{
Dec(c) if Dec(c) �=⊥ or b = 0
c
(i)
v ‖r‖ω(i) for a random i ∈ {0, 1} if b = 1 and Dec(c) =⊥ .

It is clear that Dec′(Enc′(m)) = m with the probability 1. We make a convention
that for any bit string x, x⊕ ⊥= x. We show that Π ′ is pqPA0-Qdec plaintext-
aware. Let A be an adversary that attacks Π ′ in the sense of pqPA0-Qdec. From
A, we construct an adversary B that attacks Π in the sense of pqPA0-Qdec. The
adversary B runs A and answers to its decryption query as follows. Let Qc, Qb be
the quantum input registers to store the c-part and the b-part of the ciphertext,
respectively. Let Qout be a register to store the output. The adversary B upon
receiving these three registers Qc, Qb, Qout, it forwards Qc, Qout to its decryption
oracle. After getting UDec(QcQout) back from its decryption oracle, it applies a
control operator Ucnt on Qc, Qb, Qout. The unitary Ucnt XORs a classical random
value c′‖r′‖ω′ to the Qout register if b = 1 and Dec(c) =⊥. Otherwise, Ucnt is
identity. It is clear that the decryption query is simulated perfectly. Since Π
is pqPA0-Qdec, there exists a successful plaintext-extractor B∗ for B. Now we
construct a successful plaintext-extractor for A. Namely,

A∗(c‖b) =

{
B∗(c) if B∗(c) �=⊥ or b = 0
c′‖r′‖ω′ if b = 1 and B∗(c) =⊥ ,

where c′, r′ and ω′ are random values.
The encryption scheme Π ′ is not pqPA1-Cdec aware since an adversary A

is able to obtain cv, ω, and the corresponding randomness r. It then sends cv

as a decryption query to get m′. Then it outputs 1 if cv = Enc(m′; r) and
Ver(pkcom, ccom, cv, ω) = 1. Otherwise, it returns 0. It is clear that in the real
case, A outputs 1 with the probability 1. However, in the fake game, A outputs
0 with a non-negligible probability since Π is one-way and the commitment
scheme is computationally binding. 	


4.2 Relation with IND-qCCA

First we show that IND-qCPA security and pqPA2-Cdec plaintext-awareness
notions are not enough to conclude IND-qCCA security. The proof technique
is similar to the proof of Theorem 4.

Theorem 7. A public-key encryption scheme Enc that is pqPA2-Cdec plaintext-
aware and IND-qCPA secure is not necessarily IND-qCCA secure.
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Proof. Let Enc with the decryption algorithm Dec be a public-key encryption
scheme that is pqPA2-Cdec plaintext-aware and IND-qCPA. Let {0, 1}n is the
ciphertext space of Enc. We modify Dec to a new decryption algorithm Dec′ in
which it takes as input a ciphertext from {0, 1}n × {0, 1}n and operates as the
following:

Dec′(c1, c2) =

{
Dec(c1)|| ⊥ if Dec(c1) �=⊥
⊥ ||f(c2) otherwise

,

where f is a periodic function on the secret key sk. (That is for any x ∈ {0, 1}n,
f(x ⊕ sk) = f(x).) It is clear that Enc remains pqPA1-Cdec plaintext-aware
and IND-qCPA secure with this modification to Dec since exponential classical
decryption queries are needed to recover sk. However, an adversary with superpo-
sition access to Dec′, can choose a random ciphertext c′ from {0, 1}n and queries
|c′〉 ⊗ ∑

c∈{0,1}n
1√
n

|c〉 to Dec′. Since Enc is pqPAi-Cdec plaintext-aware, with
overwhelming probability Dec(c′) =⊥. Therefore, the adversary can employ the
Simon’s quantum algorithm [20] to obtain sk and breaks IND-qCCA security. 	

Since pqPA2-Cdec plaintext-awareness notion implies classical PA2 notion, we can
conclude that PA2 + IND-qCPA notion does not imply IND-qCCA security.

Corollary 3. A public-key encryption scheme Enc that is PA2 plaintext-aware
and IND-qCPA secure is not necessarily IND-qCCA secure.

In the theorem below, we show that a plaintext-awareness notion that allows
quantum decryption queries, namely the pqPA2-Qdec notion, along with the IND-
qCPA notion is enough to imply IND-qCCA security.

Theorem 8. Any public-key encryption scheme Enc that is pqPA2-Qdec

plaintext-aware and IND-qCPA secure is IND-qCCA secure.

Proof. On a high level, we start with the IND-qCCA game when b = 0. Since
Enc is plaintext-aware there is a ciphertext-extractor algorithm A∗ that can
simulate the decryption queries. We replace the decryption oracle with A∗. Then,
we switch to the IND-qCCA game with b = 1 by IND-qCPA security of Enc.
And finally, we replace A∗ with the actual decryption oracle. (See Appendix C
for a detailed proof.) 	


5 Achievability

In Appendix D, we argue that OAEP transform is pqPA1-Qdec plaintext-aware
using a recent result [10]. In addition, we lift any public-key encryption scheme
that is PA2 plaintext-aware against a quantum adversary (a post-quantum secure
public-key encryption scheme that is PA2) to a public-key encryption scheme
that is pqPA2-Qdec plaintext-aware. We use the hybrid framework. Namely to
encrypt a message m, a fresh randomness r is encrypted using the public-key
encryption scheme and m appended with a zero bitstring is encrypted with a
strong PRP defined with the key r.
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A Preliminaries

A.1 Commitment Scheme

In the following, we define a commitment scheme.

Definition 12 (Commitment Scheme). A commitment scheme consists of
three polynomial algorithms Gen, Com and Ver described below.

– The key generating algorithm Gen that on the input of the security parameter
1n returns a public-key pkcom.

– The commitment algorithm Com on the inputs pkcom and a message m
chooses a randomness r and returns c := Com(pkcom,m; r) and the corre-
sponding opening information ω.

– The verification algorithm Ver on the inputs pkcom, c, ω and m, either accepts
(b = 1) or rejects (b = 0).

The scheme has the correctness property, that is, the verification algorithm
returns 1 with the probability 1 if c, ω are the output of Com:

Pr[b = 1 : pkcom ← Gen(1n), (c, ω) ← Com(pkcom,m), b ← Ver(pkcom, c, ω,m)] = 1.

We define hiding and binding properties of a commitment scheme against a QPT
adversary.

Definition 13. We say a commitment scheme (Gen(1n),Com,Ver) is compu-
tationally hiding if for any pkcom ← Gen(1n), for any two messages m1,m2 and
for any QPT distinguisher D

|Pr[D(pkcom, c1) = 1 : (c1, ω1) ← Compkcom
(m1)]−

Pr[D(pkcom, c2) = 1 : (c2, ω2) ← Compkcom
(m2)]| ≤ neg(n).

Definition 14. A commitment scheme (Gen(1n),Com,Ver) is computationally
binding if for any commitment c, and any QPT adversary A

|Pr[Ver(pkcom, c,m1, ω1) = 1 ∧ Ver(pkcom, c,m2, ω2) = 1 ∧ m1 �= m2 :
pkcom ← Gen(1n), (m1, ω1,m2, ω2) ← A(c, pkcom)]| ≤ neg(n).

Note that these properties are achievable, for instance, the commitment scheme
in [14] fulfills these properties.
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A.2 Basics of Quantum Computing

Here, we present some basics of quantum information and computation. For
two vectors |Ψ〉 = (ψ1, ψ2, · · · , ψn) and |Φ〉 = (φ1, φ2, · · · , φn) in C

n, the inner
product is defined as 〈Ψ,Φ〉 =

∑
i ψ∗

i φi where ψ∗
i is the complex conjugate of

ψi. Norm of |Φ〉 is defined as ‖ |Φ〉 ‖ =
√〈Φ,Φ〉. The n-dimensional Hilbert

space H is the complex vector space C
n with the inner product defined above.

A quantum system is a Hilbert space H and a quantum state |ψ〉 is a vector |ψ〉
in H with norm 1. A unitary operation over H is a transformation U such that
UU

† = U
†
U = I where U

† is the Hermitian transpose of U and I is the identity
operator over H. The computational basis for H consists of log n vectors |bi〉
of length log n with 1 in the position i and 0 elsewhere. With this basis, the
Hadamard unitary is defined as

H : |b〉 → 1√
2
(|b̄〉 + (−1)b |b〉),

for b ∈ {0, 1} where b̄ = 1 − b. An orthogonal projection P over H is a linear
transformation such that P

2 = P = P
†. A measurement on a Hilbert space is

defined with a family of projectors that are pairwise orthogonal. An example of
measurement is the computational basis measurement in which any projection is
defined by a basis vector. The output of computational measurement on a state
|Ψ〉 is i with probability ‖〈 bi, Ψ〉‖2 and the post measurement state is |bi〉. For
a general measurement {Pi}i, the output of this measurement on a state |Ψ〉 is
i with probability ‖Pi |Ψ〉 ‖2 and the post measurement state is Pi|Ψ〉

‖Pi|Ψ〉‖ .
For two quantum systems H1 and H2, the composition of them is defined by

the tensor product and it is H1 ⊗ H2. For two unitary U1 and U2 defined over
H1 and H2 respectively, (U1 ⊗ U2)(H1 ⊗ H2) = U1(H1) ⊗ U2(H2).

B Discussion on Quantum Eavesdropping

A possible plaintext-awareness definition that considers superposition eavesdrop-
ping may be difficult to define due to the no-cloning theorem. For instance, if
we follow the above formalism, the plaintext-creator adversary P upon receiv-
ing the input and output registers Qinp and Qout from A, can apply a random
unitary to Qinp, then applies the encryption unitary and sends both registers
back to the adversary. But now it is not clear how one can handle decryption
queries. More specifically, the superposition ciphertexts that have been created
by calling P can not be recorded in general and if one of them is submitted
as a decryption query, in the real game, the decryption oracle will return the
corresponding superposition of messages but in the fake game, A∗ is not able to
return the corresponding superposition of messages without access to the inter-
nal register of P. Note that if A∗ is able to decrypt those queries without access
to the internal register of P and the secret key, it renders the encryption scheme
insecure.
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C Proof of Theorem 8

Proof. Let X be a QPT adversary that attacks the encryption scheme Enc in
the sense of IND-qCCA. We start with IND-qCCA game with the challenge bit
b = 0 (GqCCA

0 ) and reach the IND-qCCA game with the challenge bit 1 (GqCCA
1 )

by introducing intermediate games that are in a negligible distance.

Game 0: GqCCA
0

(pk, sk) ← KGen(1η), m0,m1 ← XUDec′
(sk,List) (pk),

Enc(m0; r0) ← Challenger(m0,m1), b ← XUDec′
(sk,List) (pk,Enc(m0; r0))

Let P0 be a plaintext-creator that upon receiving a query of type m0,m1

chooses a randomness r0 and returns Enc(m0, r0). We replace the challenger in
GqCCA

b=0 with P0 to reach Game 1.

Game 1: GpqPA2-Qdec
real with P0

(pk, sk) ← KGen(1η), m0,m1 ← XUDec′
(sk,List) (pk),

Enc(m0; r0) ← P0(m0,m1), b ← XUDec′
(sk,List) (pk,Enc(m0; r0))

It is obvious that Game 0 and Game 1 are indistinguishable.
Since Enc is pqPA2-Qdec aware there exists a successful ciphertext extractor

A∗ for X . Let Qint be the internal register of X . In Game 2, we replace the
decryption oracle with A∗.

Game 2: GpqPA2-Qdec
fake with P0

(pk, sk) ← KGen(1η), m0,m1 ← X A∗(pk,Qint),
Enc(m0; r0) ← P0, b ← X A∗(pk,List,Qint)(pk,Enc(m0; r0))

Since A∗ is a successful ciphertext extractor for X , Game 1 and Game 2 are
indistinguishable.

Let P1 be a plaintext-creator algorithm that upon receiving a query of type
m0,m1 chooses randomness r1 and returns Enc(m1; r1). We replace P0 with P1

in Game 2 to reach Game 3.
Game 3: GpqPA2-Qdec

fake with P1

(pk, sk) ← KGen(1η), m0,m1 ← X A∗(pk,Qint),
Enc(m1; r1) ← P1, b ← X A∗(pk,List,Qint)(pk,Enc(m1; r1))

Since Enc is IND-qCPA secure, Game 2 and Game 3 are indistinguishable.
In more detail, let us assume there is a distinguisher D with a non-negligible
advantage for these two games. Now Y = (X ,A∗,D) is an adversary to break
IND-qCPA security of Enc that is a contradiction.

In Game 4, we replace A∗ with the decryption oracle.
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Game 4

(pk, sk) ← KGen(1η), m0,m1 ← XUDec′
(sk,List) (pk),

Enc(m1; r1) ← P1(m0,m1), b ← XUDec′
(sk,List) (pk,Enc(m1; r1))

Since A∗ is a successful plaintext-extractor for X , these two games are indis-
tinguishable.

Finally, we replace P1 with the challenger in Game 5 to reach GqCCA
1 .

Game 5: GqCCA
1

(pk, sk) ← KGen(1η), m0,m1 ← XUDec′
(sk,List) (pk),

Enc(m1; r1) ← Challenger(m0,m1), b ← XUDec′
(sk,List) (pk,Enc(m1; r1))

It is clear that Game 4 and Game 5 are indistinguishable. And this finishes
the proof. 	


D Achievability

In this section, we lift a public-key encryption scheme that is PA2 plaintext-
aware against a quantum adversary (PA2 notion with classical decryption) to
an encryption scheme that is pqPA2-Qdec.

Let Πasy = (KGenasy,Encasy,Decasy) be a public-key encryption scheme
that is PA2 plaintext-aware. We construct a public-key encryption scheme
Πhyb = (KGenhyb,Enchyb,Dechyb) and shows that it is pqPA2-Qdec. The encryp-
tion scheme Πhyb is defined as :

– The algorithm KGenhyb on input of the security parameter η runs KGenasy(η)
and returns its output (pk, sk).

– For any message m ∈ {0, 1}n, the algorithm Enchyb chooses a randomness
r and returns Encasy

pk (r)||qPRPr(m||0k) where qPRP is a strong quantum-
secure pseudo-random permutation and k depends on the security parameter
η.

– For any ciphertext (c1, c2), Dechyb first decrypts c1 using sk, if the output
is ⊥, it returns ⊥. Otherwise, it uses the output as the key for qPRP to
decrypt c2. If the k1 least significant bits of the outcome is not 0, it returns
⊥, otherwise it returns the n most significant bits of the outcome.

Dechyb(c1, c2) =

⎧
⎪⎪⎨

⎪⎪⎩

⊥ if Decasy
sk (c1) =⊥

⊥ if [qPRP−1
Decasy

sk (c1)
(c2)]k �= 0k

[qPRP−1
Decasy

sk (c1)
(c2)]n otherwise

.

Theorem 9. Under the assumption of the existence of a quantum one-way
function, the public-key encryption scheme Πhyb = (KGenhyb,Enchyb,Dechyb)
described above is pqPA2-Qdec.
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Proof. Let A be an adversary that attacks Πhyb in the sense of pqPA2-Qdec.
We construct an adversary B that attacks Πasy in the sense of PA2. Let PB

be a plaintext-creator adversary that upon receiving a query, chooses a random-
ness r and sends it to the encryption oracle Πasy to receive Encasy

pk (r). Then it
sends Encasy

pk (r) to the ciphertex-creator adversary. The adversary B runs A and
answers to the decryption queries as follows. When A makes a decryption query∑

c2
αc2 |c1〉 |c2〉, the adversary B forwards only the first part of the ciphertext

(c1) to its oracle. (Note that c1 is a classical value and it is not entangled with
the rest of the query. So forwarding the c1-part does not disturb the decryption
query.) If its oracle on input c1 returns ⊥, B returns ⊥. Otherwise, if its ora-
cle on input c1 returns r (�=⊥), B uses r as the key for qPRP to decrypt the
c2-part. Note that if the k1 least significant bits of qPRP−1

r (c2) is not zero, the
output of B will be ⊥. Otherwise, the output will be the n most significant bits
of qPRP−1

r (c2). When A makes a query m to its plaintext-creator PA, B makes
a query to PB to receive the ciphertext c1. Then it sends (c1, π(m||0k)) to A
where π is a random permutation. Since Πasy is PA2, there exists a ciphertex
extractor B∗ for B.

Now we consider the ciphertex extractor UA∗
1

where for any (c1, c2),

A∗
1(c1, c2) =

⎧
⎪⎨

⎪⎩

⊥ if B∗(c1) =⊥
⊥ if [qPRP−1

B∗(c1)
(c2)]k �= 0k

[qPRP−1
B∗(c1)

(c2)]n otherwise
.

We show that UA∗
1

is a successful plaintext-extractor for A in the following.

Game 0: We start with GpqPA2-Qdec
real that is run by a plaintext-creator PA and a

distinguisher D.
Game 1: We change the plaintex creator PA to a new plaintext-creator P ′

B

that upon receiving a query m runs PB to obtain c1, then it chooses a random
permutation π and returns (c1, π(m||0k)). We show that these two games are
indistinguishable. An observation is that the first part of the PA’s output (c1)
is independent of PA since it is the encryption of a random string that is chosen
by the encryption algorithm. In other words, the c1-part is generated exactly
the same by PA and P ′

B . The indistinguishability of the c2-part holds as well
since a quantum-secure pseudo-random permutation is indistinguishable from a
random permutation.
Game 2: In this game, the decryption queries will be answered by UA∗

1
. An

observation is that A∗
1 is indistinguishable from Dechyb because B∗ is indistin-

guishable from Decasy
sk (the rest of A∗

1 and Dechyb are the same). Therefore,
these two games remain indistinguishable. In other words, these two games are
indistinguishable because B∗ is a successful plaintext-extractor for B.
Game 3: In the last game, we replace the plaintext-creator P ′

B with PA. The
same reasoning as Game 0,1 shows that Game 2 and Game 3 are indistinguish-
able and this finishes the proof. 	
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D.1 OAEP transform

The main motivation to present the first definition for plaintext-awareness
notion [4] was to show the security of Optimal Asymmetric Encryption Padding
(OAEP). Even though our definitions for PA notions are in the standard model,
we argue that these definitions apply to the random oracle model as well because
queries to the random oracles is a part of the internal register of the adver-
sary. We briefly explain why we think OAEP is pqPA1-Qdec plaintext-aware. We
take this from a recent work on the IND-qCCA security of OAEP transform
[10]. There, Ebrahimi started with the actual decryption algorithm UDec and
introduced a sequence of indistinguishable decryption algorithms to construct a
decryption algorithm UDec(4) that does not use the secret key. (Since the queries
to the random oracles are quantum, Zhandry’s compressed oracle technique [21]
has been used in [10].) This decryption algorithm UDec(4) can be invoked by
a plaintext-extractor adversary A∗ in the fake game. The indistinguishably of
UDec and UDec(4) gives us the pqPA1-Qdec plaintext-awareness. However, whether
OAEP is pqPA2-Qdec plaintext-aware or not is an open question. The reason is
the random oracle queries that are submitted by a plaintext-creator P are not
accessible by A∗. So UDec(4) sketched above is not able to decrypt a cipher-
text that is obtained by indirect (for instance by a malleability of a ciphertext
obtained from P) use of these random oracle queries.
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Abstract. The qINDqCPA security notion for public-key encryption
schemes by Gagliardoni et al. (PQCrypto’21) models security against
adversaries which are able to obtain ciphertexts in superposition. Defin-
ing this security notion requires a special type of quantum operator.
Known constructions differ in which keys are necessary to construct this
operator, depending on properties of the encryption scheme.

We argue—for the typical setting of securing communication between
Alice and Bob—that in order to apply the notion, the quantum operator
should be realizable for challengers knowing only the public key. This
is already known to be the case for a wide range of public-key encryp-
tion schemes, in particular, those exhibiting the so-called recoverability
property which allows to recover the message from a ciphertext using the
randomness instead of the secret key.

The open question is whether there are real-world public-key encryp-
tion schemes for which the notion is not applicable, considering the afore-
mentioned observation on the keys known by the challenger. We answer
this question in the affirmative by showing that applying the qINDqCPA
security notion to the OAEP construction requires the challenger to know
the secret key. We conclude that the qINDqCPA security notion might
need to be refined to eventually yield a universally applicable PKE notion
of quantum security with a quantum indistinguishability phase.

1 Introduction

In light of the threat posed by quantum algorithms such as Shor’s [33], crypto-
graphic primitives that are assumed to withstand attacks using quantum com-
puting are mandatory to ensure security also in the future. Over the last decade,
a lot of research focused on exactly this type of cryptographic primitives—
commonly known as post-quantum cryptography.

Security against attackers with quantum computing power can be divided
into two categories. The first, and arguably the one that will be realistic in
the upcoming years, is post-quantum security. Here, the adversary has local
quantum computing power, which allows to evaluate public primitives like hash
functions in superposition, while keyed cryptographic primitives can be accessed
only classically. The second, and more conservative setting, is quantum security,
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which grants the adversary superposition access also to keyed cryptographic
primitives. The latter defines the scope of this work.

The research area of quantum security was initiated by Boneh and Zhandry,
who gave the first quantum security notions for encryption schemes and sig-
nature schemes [8]. At the moment, quantum security is still at a point where
definitional challenges have to be solved, e.g., it has to be understood how clas-
sically well-established concepts like “distinguishing two ciphertexts” and “forge
a signature for a new message” can be translated to the quantum setting. For
signatures, initial problems of the Boneh–Zhandry notion where identified in [20]
and a potential solution was given in [1]. For public-key encryption schemes, there
are two different approaches to avoid limitations when switching to a quantum
challenge phase: a left-or-right approach given in [19] and a real-or-random app-
roach given in [12]. While the latter can be defined for any public-key encryption
scheme, this is not the case for the former. This is discussed in detail in the full
version of [19] and stems from the fact that the security notion developed in [19]
requires a special type of quantum operator. Simply speaking, the notion requires
an in-place quantum operator that transforms a state |x〉 into |F(x)〉 instead of
the canonical xor operator that transforms |x, y〉 into |x, y ⊕ F(x)〉. The authors
of [19] give two constructions for the required in-place operator, based on the
properties of the encryption scheme. These two constructions, which we describe
later, differ in the keys that are necessary: one construction requires merely the
public key, the other construction requires both the secret key and the public
key. While the latter seems artificial, we stress that [19] focuses on whether the
operator required by their security notion can be constructed at all. In fact, the
authors show, surprisingly, that most real-world public-key encryption schemes
allow for the construction that requires just the public key.

1.1 Our Contribution

In this work, we study the quantum security notion from [19] regarding its appli-
cability.

We first revisit the typical notion of ciphertext indistinguishability in the
context of securing communication between two parties. We argue that, for this
setting, challengers should only have access to the public key. Regarding the
construction of the in-place quantum operator from the qINDqCPA security
notion, this is known to be the case for most real-world public-key encryption
schemes, namely, those exhibiting the recoverability property [19].

We then focus on the question whether there are public-key encryption
schemes which do not have the recoverability property. The only known schemes
are obtained by a generic transformation [19] which transforms a recoverable
public-key encryption scheme into a non-recoverable one. We refine the classifi-
cation by showing that there are not just recoverable and non-recoverable public
key encryption schemes, but also what we call equivalent recoverable.

Finally, we investigate the OAEP construction. We show that this construc-
tion is non-recoverable, thereby giving the first real-world PKE scheme with this
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property. We then show that—for the OAEP construction—the in-place oper-
ator needed for the quantum security notion from [19] cannot be constructed
using just the public key. Thereby we show that the quantum security notion
qINDqCPA cannot be applied to all PKE schemes when imposing the restriction
that the challenger only knows the public key.

1.2 Related Work

Quantum security notions were first considered by Boneh and Zhandry [8]. Since
then, many works developed new quantum security notions or analyzed primi-
tives with respect to existing notions, ranging from signature schemes and mes-
sage authentication codes [1,7,20], to symmetric encryption [11,12,14,18,28,29],
and to public-key encryption schemes [12,19].

A series of works [2,3,9,10,21–23,25–27,31] show that superposition attacks
(which are modeled by quantum security notions) can have devastating effects
on cryptographic primitives by providing attacks against primitives like Even-
Mansour, the FX construction, Feistel networks, block ciphers, and HMAC.

The optimal asymmetric encryption padding (OAEP) was developed by Bel-
lare and Rogaway [6]. The initial proof had a gap, as detected by Shoup [34],
who provided a variant of OAEP with an alternative proof. Fujisaki et al. [17]
provide a proof for OAEP avoiding the initial gap by strengthening the require-
ments of the underlying function. Security of OAEP against quantum attackers
was first considered in [35] which required a slight modification to prove security.
Recently, post-quantum security of the plain OAEP construction was shown [15].

1.3 Outline

In Sect. 2, we provide background on quantum security notions, quantum oper-
ators, and cryptography as necessary for this work. In Sect. 3, we refine the
qINDqCPA security notion. In Sect. 4 we review the notion of recoverable PKE
schemes. In Sect. 5, we analyze the OAEP construction with respect to the
qINDqCPA security notion.

2 Preliminaries

2.1 Notation

For a set X , we write x ←$ X to denote the process of picking an element from
X at random and assigning it to x. By P, S, M, C, and R, we denote the public
key space, secret key space, message space, ciphertext space, and randomness
space of a cryptographic scheme, respectively. For a deterministic algorithm F ,
we write y ← F(x) to denote that y is the output of F on input x. For a
probabilistic algorithm, y ← F(x; r) denotes that the output of F on input x
with randomness r equals y. We write y ←$ F(x) to denote the process that the
randomness r is chosen uniformly at random and y is the output of F on input
x with randomness r.
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2.2 Public-Key Cryptography

Public-key encryption schemes are defined below.

Definition 1. A public-key encryption (PKE) scheme is a tuple (KGen, Enc,
Dec) of three efficient algorithms such that:

– KGen : N× R → P × S is the key generation algorithm which takes a security
parameter λ and a randomness r as input, and returns a keypair consisting of
a public key pk and a secret key sk. If clear from the context, we will denote
it by (pk , sk) ←$ KGen(). We will generally drop the security parameter.

– Enc : P × M × R → C is the encryption algorithm which takes a public key
pk, a message m, and a randomness r as input, and returns a ciphertext c.
It will be usually denoted by c ←$ Enc(pk ,m) or c ← Enc(pk ,m; r).

– Dec : S × C → M is the deterministic decryption algorithm which takes as
input a secret key sk and a ciphertext c, and returns a message m. It will be
usually denoted by m ← Dec(sk , c).

Next we define trapdoor permutations. The definition is tailored to permutations
over the Cartesian product over two sets X1 and X2. This is without loss of
generality but allows for a simple definition of the security notions required
later.

Definition 2. A trapdoor permutation is a tuple (KGenF ,F ,F−1) of three effi-
cient algorithms such that:

– KGen : N× R → P × S is the key generation algorithm which takes a security
parameter λ and a randomness r as input, and returns a keypair consisting
of a public key pk and a secret key sk.

– F : P ×X1 ×X2 → X1 ×X2 is the permutation algorithm which takes a public
key pk, permuting over the set X1 × X2.

– F−1 : S ×X1 ×X2 → X1 ×X2 is the inverse permutation which takes as input
a secret key sk and permutes over the set X1 × X2.

Below we define two security notions for a trapdoor permutation Π =
(KGenF , F ,F−1). One asks to find the preimage of a given output whereas the
other only asks to find a partial preimage, i.e., a preimage with respect to X1.

Definition 3. Let Π = (KGenF ,F ,F−1) be a trapdoor permutation. Let further
the games OW and pdOW be defined as in Fig. 1. For any adversary A, we define
its advantages as

AdvOW(A) := Pr[OWA → true]

AdvpdOW(A) := Pr[pdOWA → true].
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Game OW

(pk , sk) $ KGen()

(x1, x2) $ X1 × X2

(z1, z2) (pk , (x1, x2))

(y1, y2) (pk , (z1, z2))

return (y1, y2) = (x1, x2)

Game pdOW

(pk , sk) $ KGen()

(x1, x2) $ X1 × X2

(z1, z2) (pk , (x1, x2))

y1A A(pk , (z1, z2))

return y1 = x1

Fig. 1. Game OW (One-Wayness) and game pdOW (Partial-Domain One-Wayness) to
define security of a trapdoor permutation F .

2.3 Quantum Computing

We assume familiarity with quantum computing and refer to [30] for details.
Implementing a function F : X → Y on a quantum computer is typically done
via the canonical construction. This is what we call an xor operator, which is
defined as

U⊕
F :

∑

x,y

αx,y |x, y〉 �→
∑

x,y

αx,y |x, y ⊕ F(x)〉 .

This xor operator can be implemented efficiently whenever F is efficient [30]. If a
function is invertible, there is another operator—besides the xor operator—with
which the function can be realized. This operator is what we call an in-place
operator, which is defined as

U
(ip)
F : |x〉 �→ |F(x)〉 .

Figure 2 illustrates the two operators for a function F . Kashefi et al. [24] first
introduced in-place operators giving them the name minimal oracles. They show
that the two variants are not equivalent by showing that in-place operators are
stronger than xor operators. The core observation is that inverting an in-place
operator gate-by-gate gives an in-place operator for the inverse function. The
same does not apply to the xor operator, as xor operators are self-inverse.

U⊕
U

(ip)

|x〉

|y〉

|x〉

|y (x)〉
|x〉

⊕
(x)〉

Fig. 2. Left: xor operator for F . Right: in-place operator for F .

In the following we recall two variants how xor and in-place operators (for
invertible functions) can be constructed from one another. Figure 3 shows how
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an xor operator for F can be constructed from an in-place operator for F .
Likewise, Fig. 4 shows how an in-place operator for F can be constructed from
xor operators for both F and F−1. Note here, that an xor operator for F does—
in general—not allow to construct an xor operator for F−1. As an example,
consider F to be some one-way function. The latter construction (cf. Fig. 4) is
important for the qINDqCPA security notion.

|x〉

|0〉

|x〉

(x)〉⊕

U
(ip)

(
U

(ip)
)

Fig. 3. Construction of an xor operator for a function F from an in-place operator for
F and its inverse.

|x〉

|0〉

(x)〉

|0〉
U⊕ U⊕

−1

Fig. 4. Construction of an in-place operator for a function F from xor operators for F
and F−1.

3 (Quantum) Ciphertext Indistinguishability

3.1 The qINDqCPA Security Notion

Ciphertext indistinguishability is a security notion for encryption schemes—both
symmetric encryption and public-key encryption. It asks an adversary to distin-
guish between the encryption of two adversarial chosen messages. An encryption
scheme that achieves ciphertext indistinguishability comes with the guarantee
that an adversary cannot learn any information about the message underlying
a ciphertext.

When considering quantum adversaries, one can distinguish between adver-
saries restricted to local quantum computing power—the setting that is widely
known as post-quantum security—and adversaries that have full quantum access
to all oracles—known as quantum security. The latter is the setting considered by
Gagliardoni et al. [19] who develop the qINDqCPA security notion for public-key
encryption schemes. This notion models security where the challenge ciphertexts
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by the adversary can be in superposition, hence it provides stronger security
guarantees than post-quantum security.

The security game qINDqCPA is displayed in Fig. 5. The adversary receives
a public key pk and gets access to an in-place operator for encryption.1 The
adversary then outputs two messages |ϕ0〉 and |ϕ1〉, possibly in superposition,
one of which will be encrypted and then sent back to the adversary. The adver-
sary continues to have access to the in-place operator for encryption and finally
has to output its guess b′, indicating which of the two messages was encrypted.

Game qINDqCPA

b $ {0, 1}
(pk , sk) $ KGen()

|ϕ0〉 , |ϕ1
Enc
1 (pk)

trace out |ϕ1−b〉
r $ R
|r〉 |c U ip

Enc (|r〉 |ϕb〉 |0 · · · 0〉)
trace out |r〉
b′ Enc

2 (|c〉)
return (b′ = b)

oracle Enc(|ϕ〉), where |ϕ〉 =
∑

m αm |m〉
r $ R
|r〉 |c

〉 A

〉

A

〉 U ip
Enc (|r〉 |ϕ〉 |0 · · · 0〉)

trace out |r〉
return |c〉

Fig. 5. Security game qINDqCPA.

At the core of the qINDqCPA security notion2 is the in-place operator U ip
Enc

of the form

U ip
Enc : |r ,m, 0 · · · 0〉 �→ |r〉 |Enc(pk ,m; r)〉 , (1)

where the extra qubits initialized with 0 are for the ciphertext expansion as,
in general, we have |C| > |M|. In [19], the authors observe that this is the
most general in-place operator for encryption. Keeping the randomness in an
extra register deals with randomness collisions, i.e., different randomnesses that
encrypt a message to the same ciphertext, which would thwart the mandatory
reversibility. Note that the extra randomness register also prevents to construct
a simple decryption operator by inverting the encryption operator gate-by-gate.
It would only allow to decrypt if the randomness used to produce a ciphertext
is known.
1 Note that this oracle is important in case the adversary cannot locally implement

this oracle. Without it, the standard simplification to a single challenge via a hybrid
argument does not work.

2 Note that there are other security notions [8,12,28] which only require an xor oper-
ator. However, the relation between these different approaches is not completely
understood and requires more research.
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The core part of [19] lies in the construction of the in-place operator for
encryption. The authors show that for schemes which do not suffer from decryp-
tion failures, such in-place operators can be efficiently constructed. This con-
struction consists of an xor operator for encryption and an xor operator for
decryption. This part exploits that decryption is the inverse of encryption and
essentially follows the idea of the construction in Fig. 4. They further show that
in-place operators can also be constructed for schemes which are recoverable; a
property they define and which was concurrently3 and independently defined by
Bellare et al. in the context of domain separation for random oracles [4]. This
construction also consists of an xor operator for encryption, but instead of an
xor operator for decryption, it uses an xor operator for the so-called recover
algorithm (see Sect. 4 for details). Interestingly, realizations of the in-place oper-
ator for the two types of encryption schemes—those without decryption failures
and those exhibiting the recoverable property—is quite different: while it can
be realized solely from the public key for the latter, the former necessitates the
secret key. For schemes which fall into neither category, they show that there are
schemes for which the in-place operator can be realized, as well as schemes for
which it simply cannot be realized. We illustrate the two constructions from [19]
in Fig. 6.

|r〉
|m〉

|0〉

|r〉
|c〉

|0〉
U⊕

Enc

U⊕
Dec

|r〉
|m〉

|0〉

|r〉
|c〉

|0〉
U⊕

Enc U⊕
Rec

Fig. 6. Two constructions for an in-place encryption operator as given in [19].

3.2 Interpretation of Ciphertext Indistinguishability

Having discussed the qINDqCPA security notion and the relevance of the keys
for constructing the required in-place operator, we now take a step back and
focus on ciphertext indistinguishability in general.

Figure 7 displays the security game for ciphertext indistinguishability under
chosen ciphertext attacks. Here, the adversary receives a public key and can
query two oracles: First, an encryption oracle that takes two messages as input
and encrypts one of the two, based on a secret bit chosen uniformly at random at
the beginning of the game. Second, a decryption oracle which takes a ciphertext
as input and returns the decryption of it.4

3 The full version of both works appeared within a week.
4 For simplicity we ignore how cheating adversaries, which forward a response from

the encryption to the decryption oracle, are prevented. For a detailed discussion on
this, we refer to [5].
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In the security notion, there is only one challenger providing the adversary
its input (the public key) and its oracles (encryption and decryption oracle).
In particular, the challenger generates, and thus knows, both keys. Considering
what the two oracles correspond to in the real-world, they are quite different.
The encryption oracle represents the sender, sending a ciphertext, while the
decryption oracle represents the recipient, receiving a ciphertext. In the typical
setting of Alice sending an encrypted message to Bob, Alice is represented by
the encryption oracle while Bob is represented by the decryption oracle. The
main difference is that Alice only knows Bob’s public key, whereas Bob knows
both his public and secret key. In this sense, the encryption oracle should be
realizable using only the public key. The decryption oracle can be realized from
both the secret and the public key.5

We note that there are scenarios where the above observation does not apply,
for instance when considering public-key encryption schemes used for commit-
ment schemes. Here, Alice, holding both keys, would encrypt the message she
wants to commit to and send the ciphertext to Bob. Later, when Alice wants
to open the commitment, she reveals her secret key, more precisely the random
coins used to generate it, to Bob. In this case, the encrypting party, Alice, knows
both keys while the adversary still only knows the public key.

We conclude this section with the observation that in the qINDqCPA secu-
rity notion—when modeling standard encrypted communication with it—, the
challenger should be able to construct the in-place encryption operator using the
public key only. One can, for instance, let the challenger discard the secret key
after generating the key pair or let the challenger receive only the public key
from another trusted party. This raises the following question:

Are there public-key encryption schemes for which qINDqCPA security cannot
be defined for challengers knowing only the public key?

Using the results by Gagliardoni et al. [19], we know that the notion, when
imposing the restriction that the challenger only knows the public key, can be
defined for any recoverable public-key encryption scheme. For non-recoverable
schemes, however, the answer is unclear. Gagliardoni et al. [19] show that it
can be defined for challengers knowing both keys, but they do not discuss if it
can only be defined if the challenger knows both keys. Hence, in Sect. 4 we will
focus on non-recoverable public-key encryption schemes and recoverability in
general. In Sect. 5 we return to the main question above by studying the OAEP
construction.

4 Observations on Recoverability

The notion of recoverable PKE schemes has been introduced in [19]. In Sect. 3
we concluded that especially non-recoverable schemes have to be further studied
5 When using the FO transformation [16], the public key is mandatory for the re-

encrypting part. This dependence is often implicit, e.g., schemes such as Kyber [32]
and Saber [13] specify the secret key to already include the public key.
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Game INDCCA

b $ {0, 1}
(pk , sk) $ KGen()

b′ ALR-Enc,Dec(pk)

return (b′ = b)

oracle LR-Enc(m0,m1)

c Enc(pk ,mb)

return c

oracle Dec(c)

m Dec(sk , c)

return m

Fig. 7. Security game INDCCA. For simplicity we drop the check that the decryption
oracle checks whether a queried ciphertext was forwarded from the oracle LR-Enc.

to understand whether qINDqCPA security can be defined using solely the pub-
lic key. Unfortunately, so far we are not aware of any real-world non-recoverable
scheme. Instead of a concrete non-recoverable scheme, in [19] a generic trans-
formation was introduced that transforms a recoverable scheme into a non-
recoverable scheme. In this section, however, by introducing what we call equiv-
alent recoverable schemes, we show that this transformation can also be defined
inversely, which questions the meaningfulness of the transformation with respect
to the existence of a non-recoverable scheme. By introducing equivalent recover-
able schemes, we hence refine the classification introduced in [19], such that two
kinds of schemes exist which are not recoverable: equivalent recoverable schemes
and non-recoverable schemes. We conclude this section with the open question
whether (real-world) non-recoverable PKE schemes exist at all.

We first repeat the notion of recoverability in Sect. 4.1 and then define equiv-
alent recoverable schemes in Sect. 4.2.

4.1 Recoverability

Recoverability is a property of public-key encryption schemes that was defined
by Gagliardoni et al. [19]. Simply speaking, a public-key encryption scheme is
recoverable if one can recover the message from a ciphertext when knowing the
randomness that was used to create said ciphertext—even without the secret
key. Below we formally define recoverable public-key encryption schemes.

Definition 4 (Recoverable PKE Scheme [19, Definition 6]). Let Σ =
(KGen, Enc, Dec) be a PKE scheme. We call Σ a recoverable PKE scheme if
there exists an efficient algorithm Rec : P × R × C → M such that, for any
pk ∈ P, r ∈ R,m ∈ M, it holds that

Rec(pk , r , Enc(pk ,m; r)) = m .

An important property of recoverable PKE schemes is that the recover algo-
rithm Rec allows to perfectly recover the message from a ciphertext; even if the
scheme itself suffers from decryption failures as is the case for many candidate
quantum-resistant cryptographic algorithms.

Based on the recoverability property, the following Fig. 8 classifies PKE
schemes regarding the applicability of the qINDqCPA security notion.
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Fig. 9

Fig. 8. Classification of PKE schemes as presented in the full version of [19]. (The
terms (efficiently) isometric and non-isometric have been introduced in the full version
of [19]. They are not relevant for the work at hand, but for better comprehensibility
and comparability with the original work, we decided not to remove them from this
figure.)

Remark 5. Concurrently and independent of [19], Bellare et al. [4] defined the
same property, which they call randomness-based decryption. They show that
some submissions to the NIST PQC standardization process instantiate the ran-
dom oracles in a way, that an adversary can recover the randomness (that is
used for encryption) from the ciphertext. Based on this, they then exploit the
randomness-based decryption property (i.e., the recoverability) to extract the
message, thereby breaking these submission. We note that this weakness is not
due to the scheme but rather the specific choice of how the random oracles are
instantiated from a single hash function.

Gagliardoni et al. [19] show that most real-world PKE schemes are indeed
recoverable. In fact, they do not give a real-world PKE scheme that is non-
recoverable. They provide, however, a generic transformation from a recoverable
PKE scheme into a non-recoverable PKE scheme via a trapdoor permutation.
The transformed scheme is displayed in Fig. 9. It first permutes the message
using the trapdoor permutation and afterwards encrypts the permuted message
using the encryption scheme. Decryption works in the obvious reversed way,
i.e., first decrypting using the encryption scheme followed by inverting the trap-
door permutation. Gagliardoni et al. [19] observe that the trapdoor permutation
prevents the transformed scheme from being recoverable.

In Theorem 6 we show that the transformed scheme as displayed in Fig. 9
indeed is non-recoverable.
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KGenΣ′
()

(pkΣ , skΣ) $ KGen
Σ()

(pkΠ , skΠ) $ KGen ()

pk (pkΣ , pkΠ)

sk (skΣ , skΠ)

return (pk , sk)

EncΣ′
(pk ,m; r)

parse pk as (pkΣ , pkΠ)

y (pkΠ ,m)

c Enc
Σ(pkΣ , y; r)

return c

DecΣ′
(sk , c)

parse sk as (skΣ , skΠ)

y Dec
Σ(skΣ , c)

m −1(skΠ , y)

return m

Fig. 9. Transformed scheme Σ′ = (KGenΣ′
, EncΣ′

, DecΣ′
) as presented in the full ver-

sion of [19], where Σ = (KGenΣ , EncΣ , DecΣ) is a public-key encryption scheme and
Π = (KGenF ,F ,F−1) is a deterministic trapdoor permutation.

Theorem 6 ([19, adapted from the full version’s Theorem 26]). Let
Π = (KGenF ,F ,F−1) be a deterministic trapdoor permutation and Σ = (KGenΣ ,
EncΣ , DecΣ) be a PKE scheme. Let further Σ′ = (KGenΣ′

, EncΣ′
, DecΣ′

) be the
PKE scheme constructed from Π and Σ according to the transformation depicted
in Fig. 9. If Σ is recoverable, then Σ′ is non-recoverable.

Remark 7. In the full version of [19], the theorem comprises further requirements
on Π and Σ, which achieve further properties for the transformed scheme. Since
these are not relevant for the remainder of this section, we omit them.

4.2 Equivalent Recoverable PKE Schemes

We refine the classification shown in Fig. 8 by identifying a set of schemes which
are not recoverable but for which it is possible to transform them into a recov-
erable PKE scheme. We call such schemes equivalent recoverable. Hence, equiv-
alent recoverable schemes are not recoverable, but for them it still holds that
after transformation it is possible to decrypt a ciphertext without knowledge
of the secret key, but having access to the randomness used for the encryption
instead. The transformation exploits that the secret key of an equivalent recov-
erable scheme consists of two parts, one of which is part of the public key after
transformation. Note that equivalent recoverable schemes are neither recover-
able nor non-recoverable (and, hence, not all schemes that are not recoverable
are non-recoverable), but a third class of PKE schemes that are worth to be
studied in the context of qINDqCPA security.

Definition 8 (Equivalent recoverable PKE Scheme). Let Σ′ = (KGenΣ′
,

EncΣ′
, DecΣ′

) be a PKE scheme with key pair (pkΣ′ , skΣ′), using internally a
deterministic trapdoor permutation Π = (KGenF ,F ,F−1) and a PKE scheme
Σ = (KGenΣ , EncΣ , DecΣ) such that pkΣ′ = (pkΠ , pkΣ) and skΣ′ = (skΠ , skΣ).

Let Σ∗ = (KGenΣ∗
, EncΣ∗

, DecΣ∗
) be a transformed scheme which works iden-

tically as Σ′ (thus, Σ∗ and Σ′ have the same plaintext, ciphertext, and random-
ness spaces M, C, and R, respectively) except that the secret key skΠ of Π is
part of the scheme’s public key, i.e., pkΣ∗ = (pkΣ′ , skΠ) = (pkΠ , pkΣ , skΠ) and
skΣ∗ = skΣ.
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We call Σ′ an equivalent recoverable PKE scheme if Σ′ is not recoverable but
Σ∗ is recoverable, i.e., if there exists an efficient algorithm Rec : PΣ∗ ×R×C →
M such that, for any pk ∈ PΣ∗ , r ∈ R,m ∈ M, it holds that

Rec(pk , r , EncΣ∗
(pk ,m; r)) = m.

In particular, all schemes that are constructed from the transformation shown
in Fig. 9 are equivalent recoverable, thus they are not really non-recoverable
since the transformation can be inverted. In the following Fig. 10 we display an
equivalent recoverable scheme after transformation.

KGenΣ∗
()

(pkΣ , skΣ) $ KGen
Σ()

(pkΠ , skΠ) $ KGen ()

pk (pkΠ , pkΣ , skΠ)

sk (skΣ)

return (pk , sk)

EncΣ∗
(pk ,m; r)

parse pk as (pkΠ , pkΣ , skΠ)

y (pkΠ ,m)

c Enc
Σ(pkΣ , y; r)

return c

DecΣ∗
(sk , c)

parse sk as (skΣ)

y Dec
Σ(skΣ , c)

m −1(skΠ , y)

return m

Fig. 10. Transformed recoverable scheme Σ∗ = (KGenΣ∗
, EncΣ∗

, DecΣ∗
), where Σ =

(KGenΣ , EncΣ , DecΣ) and Π = (KGenF ,F ,F−1) are a PKE scheme and a determinis-
tic trapdoor permutation, respectively, that are used internally within an equivalent
recoverable PKE scheme Σ′.

Recoverability of the transformed scheme from Fig. 10 can be easily seen.
First, the recover algorithm from the underlying PKE scheme is applied to
recover y from the ciphertext c, subsequently, the trapdoor permutation is
inverted which can be done as skΠ is part of the public key.

Note that the above definition of equivalent recoverable schemes does not
include a statement on the security of the involved schemes. In particular, we
do not claim that all equivalent recoverable schemes are as secure after trans-
formation as they are before. This of course depends on whether the security
of the equivalent recoverable scheme depends on the trapdoor permutation or
only on the underlying encryption scheme. What we claim instead is that all
schemes that are constructed from the transformation shown in Fig. 9 are not
helpful examples for non-recoverable schemes since in fact they are equivalent
recoverable. For these schemes, we observe that their security depends entirely
on the underlying encryption scheme, but not on the trapdoor permutation.
Hence, after applying the transformation from Fig. 10, these schemes remain as
secure as they are before.

We conclude this section with two findings: First, the transformation pre-
sented in [19] (cf. Fig. 9), that transforms a recoverable PKE scheme into a
non-recoverable PKE scheme, in fact transforms the scheme into an equivalent
recoverable PKE scheme, see Fig. 11. We are not aware of any transformation
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Fig. 11. Refined classification of PKE schemes. Compared to Fig. 8, equivalent recov-
erable schemes have been included. The transformation shown in Fig. 10 unveils that
the existence of a non-recoverable PKE scheme is still unexplained.

that transforms a recoverable PKE scheme into a non-recoverable PKE scheme.
Any such transformation would, if it was reversible, entail the extension of Def-
inition 8, hence also transform the scheme into an equivalent recoverable PKE
scheme. Second, the existence of real-world schemes that are non-recoverable
(and not equivalent recoverable) remains unclear. We will provide an example of
such a scheme in the following section by proving that the OAEP construction
is non-recoverable, i.e., both not recoverable and not equivalent recoverable.

5 OAEP

The optimal asymmetric encryption padding (OAEP) is due to Bellare and
Rogaway [6]. It constructs an encryption scheme from a trapdoor permutation
Π = (KGenF ,F ,F−1) and two hash functions G and H. The construction is illus-
trated in Fig. 12, the pseudocode is given in Fig. 13.6 The OAEP construction
takes a message m and randomness r and applies a two-round Feistel construc-
tion using G and H to it, yielding s and t. These values are then used as input
to the trapdoor permutation F to compute the ciphertext c. The security of the
construction is based on the trapdoor permutation being partial-domain one-way
(cf. Definition 3), meaning it is infeasible to compute s from a ciphertext c.

6 Note that we consider the CPA-secure variant of OAEP for simplicity. The CCA-
secure variant pads the message with additional 0 s.
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G

H

‖

m r

s t

c

⊕

⊕

Fig. 12. The OAEP construction using a trapdoor permutation F and two hash func-
tions G and H.

KGen()

(pk , sk) $ KGen ()

return (pk , sk)

Enc(pk ,m; r)

s m ⊕ G(r)

t r ⊕ H(s)

c (pk , s ‖ t)

return c

Dec(sk , c)

s ‖ t −1(sk , c)

r H(s) ⊕ t

m s ⊕ G(r)

return m

Fig. 13. Pseudocode of the OAEP construction using a trapdoor permutation Π =
(KGenF ,F ,F−1) and two hash functions G and H.

5.1 Recoverability of OAEP

Section 4 raises the question whether there are real-world public-key encryp-
tion scheme which are non-recoverable. In the following lemma, we answer this
question in the affirmative by showing that the OAEP construction is non-
recoverable, given that the trapdoor permutation is partial-domain one-way.

Lemma 9. The OAEP construction is non-recoverable under the assumption
that the trapdoor permutation is partial-domain one-way with respect to X1.

Proof. We can view G(r) as a one-time pad encryption of m with key s. From
the randomness r , one can trivially compute G(r). The ciphertext c does not
reveal s due to the assumption of F being partial-domain one-way. Knowledge
of the randomness r (corresponding to H(s)⊕ t) does not provide any additional
information about s due to H being a random oracle, hence one-way. �	
It turns out that partial-domain one-wayness is crucial for the non-recoverability
of the OAEP construction—just one-wayness is not sufficient. To show this, we
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consider the function

F∗(s, t) := (s,F(t)) .

If the underlying function F is OW-secure, then F∗ is OW-secure but not pdOW-
secure. The adversary trivially finds s as it is part of its input. Based on this,
it is straightforward to show that the OAEP construction instantiated with this
function is recoverable. The adversary obtains the value s from the ciphertext
(simply the first part of the ciphertext). From the randomness r , it computes
G(r) and xors it with s to get the message m.

5.2 Quantum Operators for OAEP

In the previous section we showed that the OAEP construction is non-
recoverable. This precludes the construction of the public-key-based in-place
encryption operator that Gagliardoni et al. [19] provide for recoverable public-
key encryption schemes. The open question is whether the in-place operator can
be constructed solely using the public key, which we answer negatively here.
This also answers the main question from Sect. 3 by showing that there are
PKE schemes for which the qINDqCPA security notion cannot be defined for
challengers knowing only the public key.

We first introduce a variant of pdOW, which we denote pdOW∗. The cor-
responding game is illustrated in Fig. 14. In this variant, the adversary receives
some extra information, which corresponds to the randomness of the OAEP con-
struction. As a first step, we show that the extra information does not help the
adversary in breaking security (cf. Lemma 10). Subsequently, we show how an in-
place operator for the OAEP construction can be transformed into one breaking
security according to pdOW∗, yielding a contradiction (cf. Theorem 11).

The following lemma shows that, for OAEP, the extra information from game
pdOW∗ does not help the adversary in breaking security.

Lemma 10. Let H be a random oracle and the games pdOW and pdOW∗ be
as displayed in Fig. 1 and Fig. 14, respectively. Then for any adversary A, there
exists an adversary B such that

AdvpdOW∗
OAEP (A) ≤ 2AdvpdOW

OAEP (B) .

Proof. The proof essentially relies on the fact that r does not yield any additional
information for A. As a first step, we modify game pdOW∗ by picking r uniformly
at random. To distinguish pdOW∗ from the modified game, A needs to query H
on s. Hence, a distinguishing adversary can be transformed into an adversary
winning pdOW. In the modified game, the value r is independent of anything else,
hence a straightforward reduction allows to transform any adversary A, playing
pdOW∗, into an adversary B, playing pdOW, with the same winning probability.
Adversary B simply runs A on its own challenge and a value r sampled uniformly
at random. In addition, B simulates two random oracles G and H for A. �	
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Game pdOW∗

(pk , sk) $ KGen ()

(s, t) $ X1 × X2

c (pk , (s, t))

r H(s) ⊕ t

s′ A(pk , c, r)

return s′ = s

Fig. 14. Security game pdOW∗. It is a variant of pdOW where the adversary addition-
ally receives the xor of H(s) and t as an input.

We finally show that an in-place encryption operator can be used to construct
an xor operator for the inverse permutation F−1 underlying the OAEP con-
struction. Hence, assuming that the in-place operator can be constructed using
just the public key would yield an xor operator for the inverse permutation,
contradicting its security as anyone could invert it using only the public key.

Theorem 11. Assuming F to be partial-domain one-way, the in-place encryp-
tion operator for the OAEP construction instantiated with F cannot be con-
structed using solely the public key.

Proof. For sake of contradiction, assume that the in-place encryption operator
for the OAEP construction can be constructed solely using the public key. We
show how to use this operator to construct an xor operator for the inverse trap-
door permutation which also only requires the public key, thus contradicting its
security. The circuit is displayed in Fig. 15.

Constructing the in-place operator U
(ip)
Enc allows to compute its inverse oper-

ator
(
U

(ip)
Enc

)†
. By definition of the operator,

(
U

(ip)
Enc

)†
on input |r〉 and |c〉 yields

|r〉, |m〉, and |0〉, such that encrypting m using randomness r equals c. In the
next step, the registers |r〉 and |m〉 are xored to the two output registers initial-
ized with |0〉. The first three registers are input to U

(ip)
Enc , yielding |r〉 and |c〉. The

operator U⊕
G is applied to the third and fourth register (the former being the

input, the latter being the output), which yields |r〉 and |m ⊕ G(r)〉. Then the
operator U⊕

H is applied to |m ⊕ G(r)〉 (input register) and |r〉 (output register)
which results in |m ⊕ G(r)〉 and |r ⊕ H(m ⊕ G(r))〉.

By construction, it holds that the concatenation of register |m ⊕ G(r)〉 and
register |r ⊕ H(m ⊕ G(r))〉 equals the preimage of |c〉 under the function F
(otherwise, the in-place operator would not correctly encrypt). This contradicts
the security of F as we get an algorithm for inverting the trapdoor permutation
F (using r as the extra information as specified in game pdOW) using only the
public key. �	
The above theorem shows that there are PKE schemes for which the in-place
encryption operator, required for the qINDqCPA security notion, cannot be
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constructed using only the public key. This answers the open question from
Sect. 3 by showing that the qINDqCPA security notion is not always applicable
for the scenario of confidential communication between two parties.

|r〉

|c〉

|0〉

|0〉

|r〉

|c〉

|s〉

|t〉⊕

⊕

(
U

(ip)
Enc

)
U

(ip)
Enc

U⊕
G U⊕

H

Fig. 15. Circuit for inverting F based on an in-place operator for Enc and xor operators
for G and H.

Remark 12. The qINDqCPA security notion essentially provides the adversary a
quantum channel transforming the message into a ciphertext, where the random-
ness is out of reach for the adversary. One might wonder whether ruling out the
in-place quantum operator from above (cf. Eq. (1)) is sufficient to argue that the
qINDqCPA security is not applicable to the OAEP construction. Theoretically,
one can consider alternative ways of realizing the quantum channel. Consider,
for instance, that the challenger itself has some quantum channel which it uses
to realize the quantum channel for the adversary. In this case, the challenger
might not know the secret key but its own quantum channel uses it; the quan-
tum channel from the qINDqCPA security notion would then still depend on the
secret key. From a cryptographic perspective, we do not believe this setting to be
of relevance as the security notion corresponds to communication between the
adversary and a challenger, where parts (i.e., the randomness) are beyond the
access of the adversary. In this sense, we believe the quantum channel realized by
the quantum operator from above to be the only relevant one, while we consider
other realizations to be irrelevant from a cryptographic point of view.
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Abstract. Physical side-channel analysis poses a huge threat to post-
quantum cryptographic schemes implemented on embedded devices.
Still, secure implementations are missing for many schemes. In this
paper, we present an efficient solution for masked polynomial inversion,
a main component of the key generation of multiple post-quantum Key
Encapsulation Mechanisms (KEMs). For this, we introduce a polynomial-
multiplicative masking scheme with efficient arbitrary order conversions
from and to additive masking. Furthermore, we show how to integrate
polynomial inversion and multiplication into the masking schemes to
reduce costs considerably. We demonstrate the performance of our algo-
rithms for two different post-quantum cryptographic schemes on the
Cortex-M4. For NTRU, we measure an overhead of 35% for the first-
order masked inversion compared to the unmasked inversion while for
BIKE the overhead is as little as 11%. Lastly, we verify the security of
our algorithms for the first masking order by measuring and performing
a TVLA based side-channel analysis.

Keywords: PQC · Masking · Polynomial inversion · Higher-order
masking

1 Introduction

Our digital infrastructure relies and trusts Public-Key Cryptography (PKC) to
establish secure communication channels. However, due to Shor’s algorithm pre-
sented in 1999 [36], currently used schemes like RSA [33] and ECC [29] can be bro-
ken by quantum computers in polynomial time. Therefore, in 2017, the National
Institute of Standards and Technology (NIST) announced a Post-Quantum Cryp-
tography Standardization Project to find and standardize new cryptographic
schemes that provide security against attacks mounted on classical and quantum
computers. After three rounds, the NIST identified seven finalists and eight alter-
nate candidates which are considered for standardization. Besides security, impor-
tant metrics like costs, performance, and implementation characteristics on var-
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ious platforms are considered in the selection process [2]. Driven by these crite-
ria, the research community has proposed a plethora of highly efficient implemen-
tations for software and hardware. However, implementations of Post-Quantum
Cryptography (PQC) schemes on embedded devices are faced with the same prob-
lems as traditional cryptographic algorithms, which includes physical attacks like
Side-Channel Analysis (SCA) and Fault-Injection Analysis (FIA).

So far, most of the side-channel research with respect to the finalists in
NIST’s PQC standardization process focuses on schemes based on the Learning
with Error (LWE) problem. Bos et al. presented the first higher-order masked
implementation for the Cortex-M0+ and the Cortex-M4 for Kyber [8]. Just
recently, Heinz et al. published a report on an optimized first-order protected
Kyber implementation for the Cortex-M4 including practical measurements [19].
In 2021, Beirendonck et al. presented a first-order protected implementation of
Saber for the Cortex-M4 [4]. An optimized implementation that also provides
protection against higher-order attacks was afterwards proposed in [26].

Besides these studies that directly target the protection of specific algorithms,
others [14,18] proposed optimizations and implementations which can be applied
to both schemes. Coron et al.[14] concentrated their work on the improvements
of higher-order masked comparisons by considering different approaches and
techniques. As a case study, they applied their optimizations to Kyber and Saber.
The work of Fritzmann et al.[18] explored different masked accelerators used
as instruction set extensions for a RISC-V processor. They demonstrated their
improvements on a hardware software co-design for Kyber and Saber. Eventually,
D’Anvers et al. improved the work of Coron et al.[14] and presented an optimized
higher-order masked comparison [15].

Summarizing, we can see that the side-channel security countermeasures for
the LWE problem based schemes Kyber and Saber have already received some
attention. However, masking NTRU-like [20,21] and code-based [3,28] systems
is still an open research question and has so far only been sparsely investi-
gated. In contrast, several side-channel attacks on these schemes were demon-
strated. At CHES 2019, Sim et al. present a generic side-channel attack using
conditional moves in implementations of PQC schemes based on Quasi-Cyclic
Moderate-Density Parity-Check (QC-MDPC) codes [37]. Recently, a single-trace
side-channel attack on the polynomial sampling of NTRU, NTRU Prime, and
Dilithium has been proposed in [25]. In the work of Mujdei et al.[30] the authors
present a powerful correlation power analysis on polynomial multiplications
effecting all lattice-based PQC schemes.

An important operation in almost all NTRU-like and code-based systems
is the polynomial inversion. It is required in the key generation of the finalists
NTRU-HPS and NTRU-HRSS [10] as well as in the two alternate candidates
Streamline NTRU Prime [5] and BIKE [3].

Contribution. To this end, we present the first efficient methodology for
masking polynomial inversion by introducing polynomial-multiplicative mask-
ing (Sect. 3). As a foundation for our approach, we develop secure arbitrary-
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order conversions from polynomial-additive to polynomial-multiplicative mask-
ing (Sect. 3.1) and vice versa (Sect. 3.2). We show how to integrate a masked
polynomial inversion into this conversion to reduce the number of unmasked
inversions to one, independent of the masking order (Sect. 3.3). Additionally,
we develop an algorithm to integrate a masked polynomial multiplication into
the conversion to save costly unmasked multiplications (Sect. 3.4). Finally, we
implement our algorithms for two use cases to demonstrate the performance ben-
efits and we back our security claims for the first masking order by performing
practical measurements on a Cortex-M4 microcontroller (Sect. 4).

2 Preliminaries

Inthissectionweintroduceimportantpreliminariesthatarenecessarytoadequately
describeourapproaches ofmaskedarithmetic operations.Besides statingnotations
used throughout this work, we briefly recap masking. Eventually, we describe prac-
tical applications of masked polynomial inversions in the field of PQC.

2.1 Notation

Throughout this work, we denote polynomials by x. The i-th share of a shared
polynomial x is denoted by xi. A uniform random sampling of a polynomial r

is denoted by r
$← R where R is the set of all valid polynomials. The set R∗

denotes all uniform sampled polynomials from R that are invertible.

2.2 Masking

Masking is a common countermeasure to prevent SCA on embedded devices
and is studied in the scientific community for more than twenty years [9]. The
foundation of masking is secret sharing which splits a sensitive value x into
multiple shares xi with 0 ≤ i ≤ d. For a correct sharing holds

x = x0 ◦ x1 ◦ · · · ◦ xd (1)

where ◦ defines the group operator of the applied masking scheme and d defines
the security order based on the d-probing model proposed in [22]. As a conse-
quence, a function f processing x needs to be transformed as well such that
f = f0 ◦ f1 ◦ · · · ◦ fd. When applying ⊕ as the group operator in Eq. 1, the
secret sharing scheme is called boolean masking. The encoding is called arith-
metic masking when ◦ is replaced by an addition or multiplication which we
further categorize as additive masking or multiplicative masking, respectively.

2.3 Polynomial Inversion Applications

Polynomial inversion is a regular used operation in several PQC schemes
[3,20,21]. Since it is such a critical operation, several works concentrated on
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efficient implementations of the polynomial inversion for software and hardware
[11,17,31,32]. However, most approaches are based on Fermat’s Little Theorem
performed by the Itoh-Tsujii Algorithm (ITA) algorithm [23] or on the extGCD
proposed by Bernstein and Yang [7]. In the following, we will briefly introduce the
finalist NTRU, and the two alternate candidates streamlined NTRU Prime and
Bit Flipping Key Encapsulation (BIKE) as examples of PQC schemes requiring
polynomial inversions.

NTRU. The finalist NTRU is based on the original work by Hoffstein et al. [20]
and on the work by Hülsing et al. [21]. NTRU is defined by three coprime
positive integers (n, p, q), the sample spaces Lf ,Lg,Lr,Lm, and an injection
Lift : Lm → Z[X]. Furthermore, the authors of the NTRU submission recom-
mend two families of parameter sets called NTRU-HPS and NTRU-HRSS [10].
NTRU-HPS uses a fixed-weight sampling space and allows several choices of q
for each n which are based on [20] while NTRU-HRSS uses an arbitrary weight
sampling space and fixed q as a function of n as suggested in [21].

The key generation requires to perform two polynomial inversions to generate
the public and private key as shown in Algorithm 1. Note, for NTRU-HPS as
well as for NTRU-HRSS the parameter p is always fixed to three. However, the
two parameters (n, q) are different for the three security levels λ ∈ {1, 3, 5} and
are defined as (509, 2048), (677, 2048), and (821, 4096), respectively.

Streamlined NTRU Prime. Streamlined NTRU Prime [5] is an alternate
candidate in the NIST standardization process. NTRU Prime is also based on
the original proposal by Hoffstein et al. [20] and defined by a prime number p, a
prime number q, and a positive integer w [6]. One of the main differences to the
classic NTRU cryptosystem is that NTRU Prime works over prime fields which
avoids various attack vectors as claimed by the authors [5]. The key genera-
tion in NTRU Prime (see Algorithm 2) also contains two polynomial inversions.
The first inversion inverts the randomly sampled polynomial g drawn from R
while the second inversion inverts 3 · f where f is a polynomial with coefficients
fi ∈ {−1, 0, 1} with exactly w non-zero coefficients. Note, the first sampled poly-
nomial g is not always invertible in R3 while the second polynomial f is always
invertible in Rq since it is a field.

For the three security levels λ ∈ {1, 3, 5} the NTRU Prime parameters
(p, q, w) are defined as (653, 4621, 288), (953, 6343, 396), and (1277, 7879, 492),
respectively.
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Algorithm 1. KeyGen NTRU.
Require: NTRU parameters n, p, q.
Ensure: Priv. key (f, fp, fq), pub. key h.

1: Generate f
$← Lf

2: Generate g
$← Lg

3: Compute fp ← 1/f in S3

4: Compute fq ← 1/f in Sq

5: Compute g ← 3 · g · fg in Rq

6: Compute hq ← 1/h in Sq

7: Return (f, fp, fq) and h.

Algorithm 2. KeyGen sNTRUp.
Require: sNTRUp parameter q.
Ensure: Priv. key (f, ginv), pub. key h.

repeat

Generate g
$← R, g small

until g is invertible in R3

Generate f
$← Short

Compute ginv ← 1/g in R3

Compute h ← g/(3 · f) in Rq

Return (f, ginv) and h.

BIKE. As well as Streamlined NTRU Prime, BIKE has been selected as an
alternate candidate. In contrast to NTRU, BIKE is a code-based scheme rely-
ing on QC-MDPC codes [3]. The scheme originally consists of three different
algorithms BIKE-1, BIKE-2, and BIKE-3 which, however, were reduced to just
one single Key Encapsulation Mechanism (KEM) called BIKE. In BIKE, all
polynomials are from the cyclic polynomial ring R := F2[X]/(Xr − 1) where r
defines the size of the polynomials. The public key h is generated by sampling
two private sparse polynomials (h0, h1) with |h0| = |h1| = w/2, inverting h0, and
multiplying the results with h1. The entire key generation is formally described
in Algorithm 3. For the three security levels λ ∈ {1, 3, 5}, the two parameters
(r, w) are defined as (12323, 141), (24659, 206), and (40973, 274), respectively.
Since BIKE is suggested to be used with ephemeral keys, an efficient masked
implementation of the polynomial inversion for side-channel protected designs is
necessary.

In summary, it can be seen in Algorithm 1, Algorithm 2, and Algorithm 3
that the polynomial inversion is a major operation in the key generation of all
three algorithms. Our measurements in Sect. 4.1 confirm that the polynomial
inversion dominates the costs in terms of cycle counts. Hence, to construct pro-
tected designs against SCA, it is essential to find efficient algorithms for masked
implementations. However, not only the inversion itself should be implemented
efficiently but also preceding and subsequent operations must be masked with-
out any expensive conversions between different masking techniques. Before we
present our approach of an efficient higher-order masked polynomial inversion,
we briefly discuss different cases of invertibility of random polynomials.

Invertibility of Random Polynomials. Among these three schemes, three
different cases of invertibility occur. Since the target polynomials are sampled
randomly but based on certain rules, we identify the following cases.
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Algorithm 3. Key Generation of BIKE.
Require: BIKE parameters n, w, �.
Ensure: Private key (h0, h1, σ) and public key h.

Generate (h0, h1)
$← R2 both of odd weight |h0| = |h1| = w/2.

Generate σ
$← {0, 1}� uniformly at random.

Compute h ← h1h
−1
0 .

Return (h0, h1, σ) and h.

1. All sampled polynomials (except the polynomial representing 0) are invert-
ible. This case is trivial and no further exceptions need to be covered which
is the case for NTRU.

2. Not all polynomials from the used ring are invertible but following some
certain rules always allows to sample an invertible polynomial. For example,
this is the case for BIKE where the polynomials requires to have an odd
Hamming weight. Hence, applying the defined sampling procedure always
generates an invertible polynomials such that the inversion cannot fail.

3. Not all polynomials from the underlying ring are invertible and they are not
easily distinguishable. For example, this is the case for Streamlined NTRU
Prime where the sampling procedure just sample uniformly random polyno-
mials without applying dedicated rules. In case the sampled polynomial is
not invertible, the inversion fails in the last step and a new polynomial needs
to be sampled.

3 Masking Polynomial Inversion

Masking boolean operations in PQC schemes can efficiently be implemented with
a boolean sharing, while arithmetic operations such as the addition and subtrac-
tion of polynomials or the multiplication with public values are implemented with
additive sharing as the masked implementation for Kyber [8] demonstrates. An
alternative sharing, that had already been proposed for AES in the year 2001 [1],
is multiplicative sharing. The problem with multiplicative sharing that hinders
its application, is that if one share is zero, the attacker already knows that the
masked value is zero.

For polynomial inversion, that is used in multiple PQC schemes as shown in
Sect. 2.3, we need a masking approach for which inversion is a linear operation.
Given uniformly random polynomials mi ∈ R such that m =

∏d
i=0 mi, a valid

polynomial-multiplicative sharing can be realized by

m−1 =
d∏

i=0

m−1
i , (2)

i.e., the inversion is applied to each share independently. As the zero polynomial
is not invertible, it will not be given as an input to a masked inversion. With
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d + 1 unmasked polynomial inversions, that is already an expensive operation
on its own, this approach is very costly and asks for alternative solutions.

Obviously, multiplication of two secret polynomials is very efficient in the
multiplicative domain as it requires only d + 1 unmasked multiplications com-
pared to the additive domain where the number of unmasked multiplications
is quadratic to the masking order in current solutions [35]. The cost to con-
vert polynomials from and to the multiplicative domain determines, however,
whether this approach is viable (cf. Section 3.4).

In the following, we present algorithms that efficiently transform additive
shares of polynomials in a ring to multiplicative shares and vice versa. With the
motivation to perform a more efficient polynomial inversion than shown in Eq. 2,
we demonstrate how to integrate the inversion into the transformation, and how
to perform a multiplication and back transformation in one joint operation.

3.1 Conversion from Additive to Multiplicative Sharing

Let a be a polynomial and ai shares with a =
∑d

i=0 ai, where all ai are uni-
form random in the respective polynomial ring. To transform this sharing to
a polynomial-multiplicative sharing in the same ring, we adapt the well-known
technique of first appending a share in the new masking domain, enlarging the
sharing in two domains (additive and multiplicative), and then to combine two
old shares to remove one share.

We now introduce our algorithm by presenting an example for first-order
masking. Given a polynomial a split into two additive shares a0 and a1, we start
by sampling one invertible polynomial r and multiply each additive share with
this polynomial, yielding ra0 and ra1. We set the inverted polynomial r−1 as
a new multiplicative share, expanding the number of shares from two to three.
To reduce our number of shares, we add corresponding two additive shares:
ra0 + ra1 = r(a0 + a1). By treating the sum as a multiplicative share, we are
left with two correct multiplicative shares for a, since r−1r(a0 + a1) = a.

The full algorithm for arbitrary orders can be summarized with the following
steps:

1. Sample a uniform random and invertible polynomial r, observing that a =
r−1ra.

2. Compute a′
i = rai, we now have d + 2 shares, d + 1 additive shares and one

multiplicative share.
3. To return to d + 1 shares, we combine two additive shares.
4. Repeat from start until there is only one additive share left, which now can

be viewed as a multiplicative share.

The algorithm is shown in detail in Algorithm 4. Note that for this conversion,
d polynomial inversions and (d + 1)(d + 2)/2 − 1 polynomial multiplications, as
well as d − 1 polynomial additions are needed.
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Algorithm 4.Additive to Polynomial-Multiplicative Masking Conversion (A2M)

Require: a =
∑d

i=0 ai

Ensure: m =
∏d

i=0 mi = a
function A2M(a0, . . . , ad)

for i := d downto 1 do
r

$← R∗ � sample from the set of invertible polynomials
for j := 0 to i do

aj := raj

end for
mi := r−1 � now we have d + 2 shares with a =

(∑i
j=0 aj

) ∏d
j=i mj

ai−1 := ai−1 + ai � combining two additive shares
end for
m0 := a0

end function

3.2 Conversion from Multiplicative to Additive Sharing

For subsequent operations in the additive domain, a transformation from the
multiplicative to the additive domain is necessary. Given a masked polyno-
mial m split into two multiplicative shares m0 and m1 for our M2A conver-
sion, we start by sampling one random polynomial r. The first step is to com-
pute m0 + r before we multiply it with m1 to get (m0 + r)m1 = m0m1 + rm1.
Together with the product −rm1 we have two additive shares that yield
m0m1 + rm1 − rm1 = m0m1 = m.

This method can be generalized to arbitrary masking orders by reapplying
the core idea of adding a random polynomial before the multiplication with one
of the multiplicative shares mi. Our strategy is to compute m =

∏d
i=0 mi step

by step in the first share, while protecting this sum with d random summands.
Thus, iterating from i = 1 to d, we sample a uniform random additive sharing of
i + 1 polynomials such that

∑i
j=0 rij = 0. We add these random polynomials to

the first i + 1 shares before we multiply the shares with mi. After d iterations,
we get a0 = m +

∑d
i=1(ri0

∏d
j=i mj) as the first additive share for m together

with d additive shares ak =
∑d

i=k(rik
∏d

j=i mj) that cancel out the summands
in a0 except m.

The algorithm can efficiently be implemented in situ as shown in Algorithm
5 and utilizes d(d + 1)/2 + d polynomial multiplications, d(d + 1) + d additions,
d(d + 1)/2 fresh random polynomials and no costly inversion.

3.3 Reducing the Number of Inversions

The main application of the polynomial-multiplicative masking is polynomial
inversion. Naively, we would perform a polynomial inversion on each polynomial-
multiplicative share individually to obtain a sharing of the inverted polynomial
(cf. Equation 2). Together with the d inversions required for the A2M conversion,
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Algorithm 5.Polynomial-Multiplicative to Additive Masking Conversion (M2A)

Require: m =
∏d

i=0 mi

Ensure: a =
∑d

i=0 ai = m
function M2A(m0, . . . , md)

for i := 1 to d do
ri := 0
for j := 0 to i − 1 do

r
$← R

ri := ri + r
mj := mj + r � refreshing
mj := mjmi � combining two multiplicative shares

end for
mi := −rimi

end for
for i := 0 to d do

ai := mi

end for
end function

this would lead to 2d + 1 unmasked inversions for one masked inversion, given a
polynomial shared in the additive domain.

However, we can adapt Algorithm 4 such that only one polynomial inversion
is necessary, independent of the masking degree. This is shown in Algorithm 6.
The idea is to not set the new multiplicative shares to the inverse, which we
would invert again later, but to the original sample. Instead we only invert m0

at the end to get an A2M conversion with implicit inversion. With this method
we can drastically reduce the number of polynomial inversions that are the most
expensive operations compared to polynomial multiplications and additions as
we show in Sect. 4. We thus save two inversions for first order, four inversions
for second and already six inversions for third order masking, compared to the
naive approach.

3.4 Reducing the Number of Multiplications

Although a masked polynomial multiplication is cheaper in the multiplicative
domain (d + 1 unmasked multiplications) compared to the additive domain
where it is quadratic [35], the additional costs of the A2M and M2A conversions
render this approach obsolete for polynomials that are not given in the multi-
plicative domain anyway. In particular the A2M conversion without inversion is
too expensive with its d unmasked inversions.

We can, however, save unmasked multiplications when one factor is already
in the multiplicative domain due to a prior inversion. Given a polynomial
a =

∑d
i=0 ai in the additive domain and a polynomial b =

∏d
i=0 bi in the

multiplicative domain, we observe that the masked product c =
∑d

i=0 ci = ab
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Algorithm 6. Additive to Polynomial-Multiplicative Masking Conversion with
Implicit Polynomial Inversion (A2MINV)

Require: a =
∑d

i=0 ai

Ensure: m =
∏d

i=0 mi = a−1

function A2Minv(a0, . . . , ad)
for i := d downto 1 do

r
$← R∗ � sample from the set of invertible polynomials

for j := 0 to i do
aj := raj

end for
mi := r � note that we do not set this to the inverse
ai−1 := ai−1 + ai

end for
m0 := a−1

0 � the only inverse we need to compute
end function

can be computed with c = ab =
∑d

i=0 ai

∏d
j=0 bj =

∑d
i=0(ai

∏d
j=0 bj), where

ci = ai

∏d
j=0 bj represents an additive share of the product c. The straightfor-

ward computation would leak the polynomial b, but by adding fresh random
polynomials between the unmasked multiplications similar as in our M2A con-
version, we can get a secure conversion from multiplicative domain to additive
domain including a multiplication with an additive shared polynomial as shown
in Algorithm 7.

The costs for this masked conversion with implicit multiplication are (d + 1)2

unmasked multiplications, (d + 1)2d additions and (d + 1)d fresh random poly-
nomials. Compared to the naive approach of first converting a from the multi-
plicative to the additive domain and then performing the multiplication, we save
about the amount of unmasked multiplications and additions required for the
M2A conversion.

For the case where we want to securely invert a polynomial and multiply the
result with another polynomial, which is often the case as we see in Sect. 2.3, we
apply our A2MINV first, where the costs are dominated by the single unmasked
inversion, resulting in an inverted polynomial in the multiplicative domain. As a
second step, we apply our M2AMUL, to transform the inverted polynomial back
into the additive domain while simultaneously multiplying it with another addi-
tive shared polynomial, at the cost of a multiplication in the additive domain,
so the back transformation is basically free. In Sect. 4 we present performance
results by exemplary applying our approaches to NTRU and BIKE.

4 Implementation and Evaluation

To evaluate the performance and security of our algorithms, we implemented
them for NTRU and BIKE on the STM32F4 discovery board, which is equipped
with a 32-bit Cortex-M4 microcontroller, 192-KB SRAM and 1-MB flash mem-
ory and can be clocked up to 168 MHz.
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Algorithm 7. Polynomial-Multiplicative to Additive Masking Conversion with
Implicit Polynomial Multiplication (M2AMUL)

Require: a =
∑d

i=0 ai, b =
∏d

i=0 bi

Ensure: c =
∑d

i=0 ci = ab
function M2AMUL(a0, . . . , ad, b0, . . . , bd)

for j := 0 to d do
cj := ajb0 � implicit multiplication

end for
for i := 1 to d do

rd := 0
for j := 0 to d − 1 do

r
$← R

rd := rd + r
cj := cj + r � refreshing
cj := cjbi � combining two multiplicative shares

end for
cd := cd − rd

cd := cdbi

end for
end function

We based our implementation on the respective ring operations of the state-
of-the-art Cortex-M4 implementations of the schemes. For BIKE this is the work
by Chen et al. [12], for NTRU this is the work by Chung et al. [13] with an
improved inversion by Li et al. [27].

4.1 Implementation Results

As it is common [24], we measured cycle counts at 24 MHz to not have mem-
ory wait states. We compiled our code with the arm-none-eabi-gcc-10.3.1
compiler with optimization-level O3. The stated cycle counts are averages of 100
runs.

We did not implement and measure the plain A2M conversion, because it is
not interesting for our use cases with its high costs.

NTRU. We first measured the cycle counts for unmasked ring operations
to have a baseline to compare our masked versions with. For NTRU in the
parameter set ntruhps2048677, polynomials in the ring S3 have 677 coefficients
∈ {0, 1, 2}. Unprotected polynomial inversion costs 1273864 clock cycles here,
about six times the cycles for an unprotected polynomial multiplication that
takes 201383 cycles. An unprotected addition is done in only 18340 cycles and
is thus insignificant compared to inversions and multiplications.

The costs for the masked A2MINV in the first masking order are mainly
determined by the unmasked inversion and two unmasked multiplications. The
overhead compared to an unmasked inversion is therefore mostly the cost of two
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multiplications, resulting in about 35% overhead, which is an excellent result
compared to other masked operations. This calculation excludes the cost of an
M2A conversion, but as we argued in Sect. 3.4, this comes for free by using the
M2AMUL. Since the number of unmasked inversions required for one A2MINV

is only one, independent of the masking order, the cycle counts of the A2MINV

increase only slowly with the masking order. For the sixth order, which operates
on seven shares, the cycle counts are less than six fold the ones of the unmasked
as shown in Table 1.

For the M2AMUL we measured 885773 cycles in the first order, less than
twice the cost of one M2A that costs 486165. This proportion stays with increas-
ing masking order while the number of unmasked multiplications and additions
grows quadratically for both algorithms.

Table 1. Cycle counts for our proposed masked A2MINV, M2AMUL, and M2A con-
version for ntruhps2048677 on the Cortex-M4. Unprotected addition requires 18340
clock cycles, unprotected multiplication requires 201383 clock cycles and unprotected
inversion 1273864 clock cycles.

Ord. d A2M inversion M2A mul. M2A conversion

Cycles MUL INV Cycles MUL ADD Cycles MUL ADD

1 1723778 2 1 885773 4 4 486165 2 3

2 2372502 5 1 2090841 9 12 1230767 5 8

3 3211410 9 1 3802004 16 24 2238833 9 15

4 4260732 14 1 6057128 25 40 3503189 14 24

5 5524861 20 1 8848501 36 60 5049140 20 35

6 6991050 27 1 12097869 49 84 6859272 27 48

BIKE. For BIKE in the parameter set bikel1, polynomials have 12323 coeffi-
cients ∈ {0, 1}. As 32 coefficients are stored in one register and the addition of
coefficients equates to a xor operation, the unmasked addition of polynomials is
very cheap with 3534 clock cycles. Due to the higher polynomial degree, how-
ever, multiplications and inversions take longer, compared to the operations in
NTRU. For one unmasked multiplication, we measured about one million cycles,
and for one unmasked inversion 19182916 cycles.

With the increased gap between multiplication and inversion, compared to
NTRU, the overhead of the A2MINV reduces. With 21317392 cycles for the first
order A2MINV, the overhead is as little as 11% compared to an unmasked inver-
sion. Also the cost of M2AMUL and M2A become less significant compared a
A2MINV in the lower masking orders, due to the order of magnitude difference
in cycle counts between unmasked inversion and unmasked multiplication. In the
first masking order we measure 4240017 cycles for one M2AMUL and 2131405 for
one M2A as shown in Table 2. The gap between A2MINV and M2A or M2AMUL
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decreases in relative terms with increasing masking order due to the quadratic
cost in unmasked multiplications.

Table 2. Cycle counts for our proposed masked A2MINV, M2AMUL, and M2A con-
version for bikel1 on the Cortex-M4. Unprotected addition requires 3534 clock cycles,
unprotected multiplication requires 1052253 clock cycles and unprotected inversion
19182916 clock cycles.

Ord. d A2M inversion M2A mul. M2A conversion

Cycles MUL INV Cycles MUL ADD Cycles MUL ADD

1 21317392 2 1 4240017 4 4 2131405 2 3

2 24487146 5 1 9584999 9 12 5342630 5 8

3 28736397 9 1 17068753 16 24 9622491 9 15

4 34007250 14 1 26740596 25 40 14994627 14 24

5 40275530 20 1 38507790 36 60 21419851 20 35

6 47744390 27 1 52493255 49 84 28945019 27 48

4.2 Side-Channel Evaluation

To evaluate the security against power side-channel attacks, we performed mea-
surements on the same STM32F4 discovery board with the Cortex-M4 microcon-
troller. The power consumption is indirectly measured via a 1 Ω shunt resistor
placed in the supply path of the microcontroller (the board provides dedicated
pads for such applications) and the signal is amplified by a ZFL-1000LN+ Low
Noise Amplifier (LNA). We use an 8 bit oscilloscope from PicoScope sampling
with 625 MS/s to acquire the power traces. During the measurements, the micro-
controller operates with a 24 MHz clock, which results in roughly 26 sample
points per clock cycle, and is powered by an external power supply to ensure a
clean and stable supply voltage.

For the security evaluation, we use a common fixed vs. random univari-
ate Test Vector Leakage Assessment (TVLA) evaluation procedure as detailed
described in [34]. Commonly, the measured power traces of the fixed and ran-
dom inputs are used for a Welsh t-test where the t-value is compared to a ±4.5
threshold corresponding to a α = 0.0001 confidence level. In case the threshold is
exceeded, the implementation is assumed to leak sensitive information since the
power consumption of the fixed and the random inputs can be distinguished.
However, in 2017 Ding et al. demonstrated that the threshold of ±4.5 needs
to be adapted for measurements with many sample points to avoid false posi-
tives in the evaluation [16]. Since we measure operations that require up to 1.7e6
clock cycles (which are approximately 26 · 1.7e6 = 44.2e6 sample points with our
setup), we applied their approach and adapted the corresponding threshold that
still results in a confidence level of α.
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Fig. 1. Measurement results of
A2MINV with no randomness (2000
traces).
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Fig. 2. Measurement results of
A2MINV with randomness (100000
traces).

In the following, we present the measurement results for the first-order
masked inversion A2MINV and the multiplicative to additive conversion M2A.
We limit our evaluation to these two algorithms as they exemplary demonstrate
the ideas of our proposals. Both, the A2M conversion and the M2AMUL, are simi-
lar to the other two algorithms such that we only performed the time-consuming
measurements for them.

Masked Inversion. Figure 1 shows the measurement results for the masked
inversion presented in Algorithm 6 with disabled randomness to demonstrate the
correct functionality of our measurement setup. As expected, the t-test reveals
first- and second-order univariate leakage. Figure 2 presents the measurement
results for the protected inversion with randomness enabled. We acquired 100000
power traces and could not detect any first-order univariate leakage. Interest-
ingly, the second-order t-test also does not reveal any leakage which is may
due to the univariate analysis technique applied in our evaluation. We expect
that second-order leakage would be visible once an attacker utilizes multivariate
analysis techniques, i.e., combines samples from multiple points in time. Another
reason for this phenomena could be the applied masking technique. When we
look at a single coefficient of a polynomial with multiplicative sharing, it can not
be recreated by d+1 respective coefficients of the polynomial shares, but depends
on other coefficients too. For the first masking order we combine one random
coefficient of one polynomial with all random coefficients of another polynomial



Efficiently Masking Polynomial Inversion at Arbitrary Order 323

Time [ms]

V
o
lt
a
g
e

0 5.1 15.3 20.4

−0.4

−0.2

0

0.2

0.4

(a) Sample trace.

Time [ms]

t
-v

a
lu

e

0 5.1 15.3 20.4
−10

−5

0

5

10

(b) First-order t-test results.

Time [ms]

t
-v

a
lu

e

0 5.1 15.3 20.4
−10

−5

0

5

10

(c) Second-order t-test results.

Fig. 3. Measurement results of the
M2A conversion with no randomness
(2000 traces).
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Fig. 4. Measurement results of the
M2A conversion with randomness
(100000 traces).

which can be seen as some kind of higher-order masking. However, this artifact
is out of scope of this work and we leave the investigation for future work.

Multiplicative to Additive Conversion. Besides the masked polynomial
inversion, we additionally evaluate the multiplicative to additive conversion M2A
from Algorithm 5. Again, we first measured the operation with disabled random-
ness (masks and fresh randomness are constant) which is visualized in Fig. 3.
After 2000 traces, the t-test results for the first- and second-order clearly indi-
cate leakage. However, in the next experiment we enable all randomness and
perform 100000 measurements. The t-test does not reveal any leakage which
is shown in Fig. 4. Again, no second-order leakage is visible due to the same
argumentation as above.

5 Conclusion

In this work, we demonstrate that polynomial-multiplicative sharing is a viable
solution to mask arithmetic operations of multiple PQC schemes. To this end, we
propose an efficient higher-order masked polynomial inversion with implicit addi-
tive to multiplicative conversion, conversion algorithms used to switch between
different sharings, and a novel masked multiplication that accepts an additive
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shared operand and a multiplicative shared operand. Applying our masked poly-
nomial inversion to NTRU, the first-order masked design requires an overhead
of only 35%, while the overhead for BIKE is only 11%.

However, there are still masking solutions missing for other operations to have
all the pieces necessary for a masked implementation of NTRU or BIKE, which
is an interesting target for future work. Another open question is the additional
security that polynomial-multiplicative masking provides, when looking at the
coefficient level. As already mentioned in Sect. 4.2, traditional masking schemes
split one value into d+1 values. But in polynomial multiplication, all coefficients
are combined with each other and make one coefficient of the masked polynomial
dependent of more than d + 1 values.
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Abstract. The code-based post-quantum algorithm Hamming Quasi-
Cyclic (HQC) is a fourth round candidate in the NIST standardiza-
tion project. Since their third round version the authors utilize a new
combination of error correcting codes, namely a combination of a Reed-
Muller and a Reed-Solomon code, which requires an adaption of pub-
lished attacks. We identify that the power side-channel attack by Uneo et
al. from CHES 2021 does not work in practice as they miss the fact that
the implemented Reed-Muller decoder does not have a fixed decoding
boundary. In this work we provide a novel attack strategy that again
allows for a successful attack. Our attack does not rely on simulation
to verify its success but is proven with high probability for the HQC
parameter sets. In contrast to the timing side-channel attack by Guo
et al. we are able to reduce the required attack queries by a factor of 12
and are able to eliminate the inherent uncertainty of their used timing
oracle. We show practical attack results utilizing a power side-channel of
the used Reed-Solomon decoder on an ARM Cortex-M4 microcontroller.
In addition, we provide a discussion on how or whether our attack strat-
egy is usable with the side-channel targets of mentioned related work.
Finally, we use information set decoding to evaluate the remaining attack
complexity for partially retrieved secret keys. This work again empha-
sizes the need for a side-channel secure implementation of all relevant
building blocks of HQC.

Keywords: Error correction · HQC · Post-quantum cryptography ·
Power analysis · Side-channel analysis

1 Introduction

The post-quantum cryptography (PQC) contest of NIST is currently in its
fourth round with the goal of evaluating alternative candidates, which are based
on other mathematical problems than the lattice-based algorithm CRYSTALS-
KYBER that is already chosen for standardization. While the first two rounds
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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were dominated with research on possible performance improvements and opti-
mized implementations the focus of the third round was mainly on the side-
channel security of systems. Research in this direction is again encouraged by
NIST in its final report of the third round [10]. This paper discusses a new side-
channel attack against the code-based post-quantum cryptosystem Hamming
Quasi Cyclic (HQC) [8], which is a candidate in the fourth round of the contest.
HQC makes use of the concatenation of two error correcting codes in order to
offer a good trade-off between error-correction capability and fast encryption
and decryption. The authors changed the used codes in their third round sub-
mission from a repetition in combination with a BCH code to a concatenated
Reed-Muller and Reed-Solomon code. As most works on side-channel attacks
against HQC are based on the former combination, these attacks have to be
revised.

Related Work. Attacks on the second-round version of HQC are mostly based
on the observation that a side-channel leakage of the used BCH code can be
used to construct a decoding oracle that allows to distinguish whether an error
has to be corrected by the BCH decoder during decryption. There are timing
side-channel attacks [11,16] against a non-constant time implementation of the
BCH decoder as well as a power side-channel attack [13].

Attacks against the current version of the HQC cryptosystem, with a combi-
nation of a Reed-Muller and Reed-Solomon code, use parts of the implemented
variant of the Fujisaki-Okamoto transformation to build a plaintext-checking
oracle. This allows distinguishing if crafted ciphertexts decrypt to the same
plaintext dependent on the secret key, again resulting in a possible attack on
the whole key using multiple queries to the oracle. Xagawa et al. [17] use a
fault injection to skip the ciphertext comparison setup of the transformation
resulting in direct access to the plaintext, while Ueno et al. [15] attack the used
pseudorandom number generator (PRG) required in the transformation through
a power side-channel. Both use an adaption of an attack described in [2,5] to the
third round version of HQC. Most recent Guo et al. [3] observed that the imple-
mented fixed-weight sampler in combination with the pseudorandom function
(PRF) provide a timing side-channel that can be used as a plaintext checking
oracle. They claim a success rate of 87% in retrieving the whole key.

Contributions. With their choice of Reed-Muller codes in their third round
version of the HQC algorithm the authors implicitly induce a different form
of decoder, as for Reed-Muller codes the decoder is usually implemented as
a maximum likelihood decoder. This decoder class, in contrast to a bounded-
distance decoder, as used for the former repetition code, does not have a distinct
decoding boundary. In other words the amount of correctable errors is dependent
on the support of the error, which in some cases allows correcting more errors
than the specified error correction capability of the code. This characteristic
breaks the attack attempts by [2,5], which has been unfortunately missed in
[15,17] and therefore described attacks do not work. In this paper we provide an
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attack strategy that again allows successful power side-channel attacks on the
third round version of HQC. Our contributions are as follows:

– We show through simulation and with the use of a counterexample that
attacks described in [15,17] are not successful. Thus, we develop a new attack
strategy that again allows the retrieval of the secret key through a power side-
channel attack.

– While the previous attacks had to rely on simulations or an attack on a
few keys to verify the success of their attack strategy, we are able to prove
sufficient conditions for the success of our approach. These conditions are
fulfilled with very high probability for the parameters of HQC.

– We provide an evaluation of the remaining attack complexity for partially
retrieved secret keys with the use of information set decoding.

– Finally, we discuss possible side-channel oracles and show an analysis of the
power side-channel from [13] for the updated HQC version.

2 Preliminaries

2.1 Notation

Let Fq be the finite field of size q. Denote by F2[x1, . . . , xm] = F2[x ] the ring
of polynomials in x = (x1, . . . , xm) with coefficients in F2. For a polynomial
f(x ) ∈ F2[x ] and integer s ≥ 1, define the evaluation map

ev×s : F2[x ] �→ F
s2m

2

ev×s(f(x )) �→ (f(a), f(a), . . . , f(a)
︸ ︷︷ ︸

s times

)a∈F
m
2

.

Note that if the degree of each variable x1, . . . , xm is restricted to be at most 1,
this is a bijective mapping, i.e., any vector in F

2m

2 can be uniquely associated
to a polynomial f(x ) ∈ F2[x ]. For any ordering of the elements a ∈ F

2m

2 we
define the mapping χ(a) from F

m
2 to the indices of the s positions in ev×s(f(x ))

corresponding to f(a). For ease of notation, we neglect the dependence of f(x )
on x , if clear from context. By slight abuse of notation, we define the Ham-
ming weight HW×s(f) := HW×s(ev×s(f)) and Hamming distance d×s(f, f ′) :=
d(ev×s(f), ev×s(f ′)) of polynomials via the respective evaluation map. The sup-
port of a polynomial is defined to be supp×s(f) := {χ(a) | f(a) �= 0,a ∈ F

m
2 }.

If s = 1 we omit the ×1 superscript from our notation.
We define F

m×n
2 to be the set of all m × n matrices over F2, F

n
2 = F

1×n
2

for the set of all row vectors of length n over F2, and define the set of integers
[a, b] := {i : a ≤ i ≤ b}. We index rows and columns of m × n matrices by
0, . . . ,m − 1 and 0, . . . , n − 1, where the entry in the i-th row and j-th column
of the matrix A is denoted by Ai,j .

The Hamming weight of a vector a is indicated by HW(a) and the Hamming
support of a is denoted by supp(a) := {i ∈ Z : ai �= 0}. Let V be a vector space
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of dimension n over F2. We define the product of u , v ∈ V as uv = u rot(v)� =
v rot(u)� = vu , where

rot(v) :=

⎡

⎢

⎢

⎢

⎣

v0 vn−1 . . . v1
v1 v0 . . . v2
...

...
. . .

...
vn−1 vn−2 . . . v0

⎤

⎥

⎥

⎥

⎦

∈ F
n×n
2 .

As a consequence of this definition, elements of V can be interpreted as polyno-
mials in the ring R := F2[X]/(Xn − 1).

2.2 HQC

The HQC scheme consists of a public code C ⊆ F
n
2 of length n and dimension

k, where it is assumed that both an efficient encoding algorithm Encode and
an efficient decoding algorithm Decode are known publicly. In the following we
describe the HQC algorithm as submitted to the third round of the NIST post-
quantum standardization contest with its specification last updated in June 2021.
We start by introducing the PKE version of the algorithm as shown in Algorithms
1, 2 and 3. Within these algorithms several polynomials are uniformly sampled
from R, denoted as $←− with the optional argument of specifying the Hamming
weight w of the polynomial as well as the randomness θ used to initialize the
sampler. The parameter sets of HQC are shown in Table 1.

Algorithm 1: Key-
Gen
Input: param
Output: pk, sk

1 h $←− R
2 (x ,y)

$(w)←−−− R2

3 s ← x + hy
4 pk = (h , s)
5 sk = (x ,y)
6 return pk, sk

Algorithm 2: Encrypt
Input: m , pk, θ
Output: c

1 e ′ $(we,θ)←−−−−− R
2 (r1, r2)

$(wr,θ)←−−−− R2

3 u ← r1 + hr2

4 v ← Encode(m) +
sr2 + e ′

5 return c = (u, v)

Algorithm 3: Decrypt
Input: sk = (x ,y)

c = (u , v)
Output: m

1 v ′ ← v − uy
2 m ← Decode(v ′)
3 return m

Table 1. Parameter sets of HQC [9]

Shortened RS code Duplicated RM code n w wr = we

[n1, k, dRS ] [n2, kRM , dRM , s]

HQC-128 [46, 16, 31] [384, 8, 192, 3] 17,669 66 75

HQC-192 [56, 24, 33] [640, 8, 320, 5] 35,851 100 114

HQC-256 [90, 32, 49] [640, 8, 320, 5] 57,637 131 149
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The HQC authors use the PKE version of HQC to construct an IND-CCA2
secure KEM. Using this KEM, a random shared secret K can be exchanged where
the sender applies encapsulation (Algorithm 4) and the receiver decapsulation
(Algorithm 5). These algorithms use three different hash functions G,H, and K,
which are based on SHAKE256 with 512 bits of output. In order to counter-
act chosen-chipertext attacks, the decrypted message is re-encrypted and com-
pared to the original ciphertext input. Only if both ciphertexts are equal K gets
released otherwise the decapsulation is aborted. In order for the re-encryption to
be possible the sampling of the random elements has to be deterministic, which
is ensured by deriving a seed from the message which is used to initialize the
sampler.

Algorithm 4: Encapsulate
Input: pk
Output: K, c = (u , v),d

1 m $←− F
k
2

2 θ ← G(m)
3 c ← Encrypt(pk,m , θ)
4 K ← K(m , c)
5 d ← H(m)

Algorithm 5: Decapsulate
Input: sk, c,d
Output: K

1 m ′ ← Decrypt(sk, c)
2 θ′ ← G(m ′)
3 c′ ← Encrypt(pk,m ′, θ′)
4 if c �= c′ and d �= H(m′) then
5 abort

6 else
7 K ← K(m , c)

2.3 Choice of Error Correcting Code C
For the third round version of HQC the code C is instantiated as a concatenated
code with a Reed-Muller (RM) code as the inner and a Reed-Solomon (RS) code
as the outer code. The function Encode describes the encoding of a message
m ∈ F

k
2 into m̃ ∈ F

n1n2
2 using the concatenated code. First the outer RS code

is used to encode m into m1 ∈ F
n1
28 , followed by encoding each coordinate m1,i

of m1 into m̃1,i ∈ F
n2
2 using the inner duplicated RM code. The duplicated

encoding works in two phases. First, each m1,i is encoded with the underlying
[128, 8, 64]-RM code to obtain m̄1,i, which is then duplicated based on the
multiplicity s (see Table 1) resulting in m̃1,i. In other words the final encoding
result is constructed as m̃ = (m̃1,0, . . . , m̃1,n1−1) ∈ F

n1n2
2 .

The function Decode describes the decoding of an input in F
n1n2
2 to a mes-

sage m ∈ F
k
2 . First the individual m̃1,i are decoded with the duplicated RM

decoder (DRM), which results in the input to RS decoder (DRS) as an element
in F

n1
28 . Finally, the RS decoding results in the message m ∈ F

k
2 .

Definition 1 (First Order Reed-Muller Code). Denote x = (x1, . . . , xm).
Define the code RM×s(m) to be

RM×s(m) =
{

ev×s(f(x))
∣

∣ f(x) ∈ F2[x],deg(f(x)) ≤ 1
}

.
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We refer to s as the multiplicity of the RM code. If s = 1 we omit the superscript
and write RM(m).

For details on RM codes and their properties we refer the reader to [7,
Chap. 13].

3 Novel Oracle-Based Side-Channel Attack

In this section we describe our chosen-ciphertext attack against the HQC cryp-
tosystem which is able to retrieve the secret key polynomial y during decryp-
tion/decapsulation. We start by describing the support distribution of y , which
is essential for the attack. In a second step we introduce the general idea of our
attack and focus on the characteristics of RM codes that render some published
attacks unsuccessful. As a third step we describe our attack strategy based on
a close-to-zero oracle. We additionally provide attack results and compare the
required oracle queries to related work. Finally, we show how to retrieve the
secret key from partial attack results using information set decoding.

3.1 Support Distribution of y

With the proposed HQC parameter sets, y is sampled as a sparse polynomial
with HW(y) = w. As our attack targets each duplicated RM codeword of length
n2 individually, we split y into corresponding chunks y (0)

i with 0 ≤ i ≤ n1, as
shown in Fig. 1. In order to prevent algebraic attacks, y is chosen to be of length
n, which is the smallest primitive prime greater than n1n2. Therefore, y contains
a second part y (1) consisting of the remaining n − n1n2 bits.

y
(0)
0 y

(0)
1 y

(0)
2

. . . y
(0)
n1−1 y(1)

y(0) ∈ F
n1n2
2 y(1) ∈ F

n−n1n2
2

y
(0)
i ∈ F

n2
2

Fig. 1. Different parts of the secret key y ∈ F
n
2 .

Our proof of the attack is defined for a maximum Hamming weight of all y (0)
i .

For this we define yw,max = max{HW(y (0)
0 ), . . . ,HW(y (0)

n1−1)} as the maximum
Hamming weight of all chunks of y (0). We determine the probabilities of certain
yw,max by simulating the weight distribution of 10 million samples of y (0) with
the results shown in Table 2.

With our attack strategy we are able to attack y (0), as only this part acts
as an input to the decoder. Nevertheless, we discuss methods to retrieve the
whole y in Sect. 3.2. The probability that HW(y (1)) > 0 can be computed by
1 − (

n1·n2
w

)

/
(

n
w

)

. Considering the parameters of HQC-128, HQC-192, and HQC-
256 we determine the respective probabilities to be 1.85%, 3.02%, and 8.07%.
This means that in most cases it suffices to determine the y (0) because there are
no ones in y (1).
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Table 2. Probabilities that y (0) is generated such that the weight of y (0)
i for i =

0, . . . , n1 − 1 is at most yw,max.

yw,max 1 2 3 4 5 6 7 8 9

HQC-128 0% ≈0% 3.75% 48.77% 86.49% 97.44% 99.59% 99.94% 99.99%

HQC-192 0% ≈0% 0.01% 10.74% 57.96% 88.50% 97.57% 99.56% 99.93%

HQC-256 0% ≈0% 0.09% 20.83% 71.87% 93.94% 98.96% 99.84% 99.97%

3.2 General Attack Idea

With our chosen-ciphertext attack we are able to determine all parts of the
secret key y (0)

i individually and in sequential manner. Within the Hamming
Quasi-Cyclic (HQC) algorithm the only operation utilizing the secret key is the
decoding of the vector v ′ = v − uy during decryption (c.f. Algorithm 3). By
setting u = (1, 0 . . . , 0) ∈ F

n
2 the decoder input results in v ′ = v − y . As v is

part of the ciphertext c = (u , v), it is controllable by the attacker. By setting it
to a valid codeword ∈ C, y can be seen as an error that has to be corrected by
the decoder. Note that due to the sparseness of y it is sufficient to only retrieve
its support.

Now the general idea of the attack is to choose v such that the decoding
result depends on y (0)

i , revealing its support. In the case of HQC an attacker
requires access to the individual RM decoder results, as the respective input
consists of y (0)

i subtracted from its corresponding part of v . It is not possible to
directly attack the decapsulation of HQC (Algorithm 5), as it includes a check
for the validity of the ciphertext that does not reveal information about m in
case of failure. Nevertheless, a side-channel can be used in order to construct an
oracle that again reveals information about the decoding result. We therefore
construct an oracle that is able to determine whether the RM decoder decoded
to the all-zero or a non-zero codeword in a given position. The oracle is formally
defined in Definition 2. We discuss different side-channels, which can be used to
construct this oracle, in Sect. 4.

Definition 2 (Close-to-zero Oracle). Let C be an RM(m) code. Define
De

0 : Fn
q �→ {True,False} with e ∈ F

n
q to be the function given by

De
0(r) =

{

True, if DRM(r + e) = 0,

False, else,

where DRM denotes a decoder for the RM code.

By querying the oracle and therefore having access to the decoding result
our attack strategy as well as the related work is based on two steps. First, an
input has to be found (or set for some attacks) that, after the subtraction of the
corresponding y (0)

i , lies exactly at the decoding boundary of the RM decoder. An
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example is to find an input that lies exactly one error above the border meaning
the input results in a decoding error, i.e. in the decoder not returning the all-zero
codeword 0, and therefore the oracle returns False. This implies that if we set an
additional bit in the input, which is in the support of y (0)

i , we reduce the error
resulting in a successful decoding indicated by the oracle as True. Now in the
second attack step we can query the oracle by successively inverting each bit of
the input we found in the first step. In this process an oracle result of True, i.e., a
successful decoding to the all-zero codeword, indicates that this position is in the
support of y (0)

i . This allows to retrieve the whole support of the attacked secret
key block. By repeating this approach for all n1 RM blocks we can retrieve the
complete y (0).

Limitations of Previous Works. With the change of the used codes in the
third round version of the HQC, the first attack step, namely finding an input
that lies at the decoding border of the internal code, has to be changed due to
the use of a different decoder type. This is the case as the decoder of the now
used RM code is implemented as a maximum likelihood (ML) decoder, where
ties are resolved in favor of the word of smaller lexicographical order. An ML
decoder is formally defined as follows:

Definition 3 (Maximum likelihood (ML) decoder). Let C be an [n, k]q
code. Define DML : Fn

q �→ C to be a function returning the codeword that maxi-
mizes the probability P (r|c), i.e.,

DML(r) = arg max
c∈C

P (r|c).

If this choice is not unique, it returns the word that is smaller in lexicographical
order.

In the Hamming metric and without considering soft information an ML
decoder translates to a function returning the codeword of the smallest Ham-
ming distance to the given vector, i.e., DML(r) = arg minc∈C d(r , c). Note that
ML decoding is known to be very complex and therefore rarely used in practice.
However, for a few code classes, such as first-order RM codes, efficient decoders
are known, a fact that is exploited in this system. Most other systems based on
algebraic codes, such as Classic McEliece [1], instead employ bounded-distance
decoders, which decode any error up to a given weight and fail if no codeword
is within this specified radius1. On the other hand, for a symmetric memoryless
channel an ML decoder always returns (one of) the codeword(s) closest to the
received word, regardless of its distance to the received word. Importantly, this
1 The previous version of the HQC system employed repetition codes of odd length

instead of RM codes. It is well-known that this class of codes is perfect, i.e., the
unique decoding error balls centered on the codewords fill the entire space. In this
specific case, a bounded-distance decoder with radius (d − 1)/2 is equivalent to an
ML decoder. Note that first-order RM codes are not perfect, so this special case does
not apply here.
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implies that the behavior of this decoder does not only depend on the num-
ber of errors but also on the positions of these errors. However, this indepen-
dence of the error positions in a bounded-distance decoder is essential to some
known attack strategies such as [2,5]. Hence, while the setup might look similar,
these methods cannot be directly applied to a system employing an ML decoder
instead of a bounded-distance decoder. For instance, the side-channel attack in
[17, Sect. C.7]2 claims that the method for determining an additive error vector
from oracle outputs, given in [2, Fig. 7], also applies the third round version of
HQC. In Appendix A we show that this leads to incorrect outputs of the algo-
rithm, which are caused by exactly this difference in behavior between an ML
and a bounded-distance decoder, rendering their described attack unsuccessful.

Retrieval of y(1). If y (0) has been retrieved completely and error free, we can
use the published linear algebraic approach shown in [13] to get the remaining
part of the secret key defined as y (1). Assuming that HW(y (1)) ≤ 2 the resulting
work factor of this approach for HQC-128, HQC-192 and HQC-256 is 219.02,
224.08 and 230.32, respectively. In the case that y (0) is only partially retrieved we
have to use information set decoding, as described in Sect. 3.4, which directly
retrieves the complete secret key y from the partial information.

3.3 Description of the Attack Strategy

In this section we introduce our attack strategy that considers the characteristics
of the RM ML decoder and therefore again allows for the correct retrieval of
y (0). It is based on two algorithms, where first the strategy to find an input
word that lies at the decoder border is described as Algorithm 6 and then the
strategy to retrieve the support of the error with the use of multiple of these
words as Algorithm 7. We start by introducing the reasoning for our strategy
leading to a formal proof to successfully retrieve y (0) if the Hamming weight
of the respective RM block is smaller than dRM

4 . Our simulation of yw,max (see
Table 2) indicates that this condition holds for nearly all possible keys of HQC,
as 99.9% of simulated keys show a yw,max of 9 with dRM being 192 for HQC-
128 and 320 for HQC-192/HQC-256 (c.f. Table 1), respectively. We conclude this
section with a discussion of the required oracle calls of our strategy in comparison
to related work.

2 Note that the description of the attack in [15] is based on the same assumptions, as
it directly refers to [17].
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Algorithm 6: FindWordAtBorder

Input : Oracle function De
0

Sets Î, Ǐ ⊂ [0, n2 − 1]
Output: Vector r ∈ F

n2
2

1 r ← 0
2 for ξ ∈ Î ∩ Ǐ do
3 if De

0(r) = True then
4 rξ ← 1

5 else
6 return Vector r ∈ F

n2
2

7 for ξ ∈ Î \ Ǐ do
8 if De

0(r) = True then
9 rξ ← 1

10 else
11 return Vector r ∈ F

n2
2

Algorithm 7: FindError
Input : Oracle function De

0

Sets I1, I2 ⊂ [0, n2 − 1]
Output: Vector ẽ ∈ F

n2
2

1 ẽ ← 0
2 for Î ∈ {I1, [0, n2 − 1] \ I1} do
3 for Ǐ ∈ {I2, [0, n2 − 1] \ I2} do
4 r ←

FindWordAtBorder(De
0, Î, Ǐ)

5 ê ← r
6 for ξ ∈ Î ∩ Ǐ do
7 rξ ← rξ + 1
8 if De

0(r) = True then
9 êξ ← êξ + 1

10 rξ ← rξ + 1

11 ẽ Î∩Ǐ ← ê Î∩Ǐ

12 return Vector ẽ ∈ F
n2
2

To begin, we show some general results on the intersection of the supports
of RM(m) codewords. Note that there exists an extensive literature on RM
codes and their supports are well understood. For completeness, we nevertheless
include the following statement in the form required to prove the main results
of this section. As the statements and proofs in the following heavily rely on the
properties of the multivariate polynomials associated with each RM codeword,
we denote all vectors in the following by the polynomial which results in the
respective vector when evaluated in F

2m

2 .

Lemma 1. Consider two polynomials p̂, p̌ ∈ F2[x] with deg(p̂) = deg(p̌) = 1
and p̌ �∈ {p̂, p̂ + 1}. Denote d = 2m−1. Then, for any f ∈ RM(m) we have

| supp(f) ∩ supp(p̂p̌)| = HW(fp̂p̌) =

⎧

⎪
⎨

⎪
⎩

0, if f ∈ {0, p̂ + 1, p̌ + 1, p̂ + p̌}
d
2 , if f ∈ {1, p̂, p̌, p̂ + p̌ + 1}
d
4 , else.

Proof. The first case follows from observing that fp̂p̌ = 0 for these polynomials3.
It is well-known that any codeword p ∈ RM(m), except the all-zero and the
all-one word, i.e., any word with deg(p) = 1, is of weight d = 2m−1. Since
deg(p̂) = deg(p̌) = 1 and p̌ �∈ {p̂, p̂ + 1} we have deg(p̂ + p̌) = 1. Therefore,
HW(p̂ + p̌) = d and we get

HW(p̂ + p̌) = HW(p̂) + HW(p̌) − 2HW(p̂p̌)

3 Note that f2 = f in F2[x], so (p̂ + 1)p̂p̌ = p̂2p̌ + p̂p̌ = 2p̂p̌ = 0.
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d = 2d − 2HW(p̂p̌)
d

2
= HW(p̂p̌).

The second case follows since we have supp(p̂p̌) ⊂ supp(f) for any f ∈ {1, p̂, p̌, p̂+
p̌+1}. Now consider some f ∈ RM(m)\{0, p̂+1, p̌+1, p̂+ p̌, 1, p̂, p̌, p̂+ p̌+1} and
note that deg(f) = 1. Observe that the supports of the polynomials {p̂p̌, p̂(p̌ +
1), (p̂ + 1)p̌, (p̂ + 1)(p̌ + 1)} partition the 2m codeword positions. Hence, by the
pigeonhole principle, there exists some p̄ ∈ {p̂(p̌ + 1), (p̂ + 1)p̌, (p̂ + 1)(p̌ + 1)}
with

HW(p̄f) ≥
⌈

HW(f) − HW(p̂p̌f)
3

⌉

≥ d − HW(p̂p̌f)
3

.

Further, it is easy to check that p̂p̌+ p̄ ∈ {p̂, p̌, p̂+ p̌+1}, which implies deg(p̂p̌+
p̄) = 1 and HW(p̂p̌ + p̄) = d. Now, towards a contradiction, assume HW(fp̂p̌) >
d
4 . Then, we have

d(p̂p̌ + p̄, f) = HW(p̂p̌ + p̄) + HW(f) − 2HW((p̂p̌ + p̄)f)
= 2d − 2(HW(p̂p̌f) + HW(p̄f))

≤ 2
(

d −
(

HW(p̂p̌f) +
d − HW(p̂p̌f)

3

)
)

≤ 2
(

d − d + 2HW(p̂p̌f)
3

)

< 2
(

d − d + 2d
4

3

)

= d.

As both p̂p̌ + p̄ and f are in RM(m), this can only be true if p̂p̌ + p̄ = f .
However, we have p̂p̌ + p̄ ∈ {p̂, p̌, p̂ + p̌ + 1} and therefore, by definition of f ,
a contradiction. Now assume there exists an f ′ ∈ RM(m)\{0, p̂ + 1, p̌ + 1, p̂ +
p̌, 1, p̂, p̌, p̂ + p̌ + 1} with HW(fp̂p̌) < d

4 and note that this set is closed under
inversions, i.e., also contains f ′ + 1. Then, we have HW((f ′ + 1)p̂p̌) > d

4 , which
cannot be true, as shown above. �
Using these results, we now show that the output of Algorithm 6 always results
in a word that causes a specific ML decoding result, under certain non-restrictive
assumptions.

Lemma 2. Denote by p̂, p̌ ∈ F2[x] two polynomials with deg(p̂) = deg(p̌) = 1
and p̌ �∈ {p̂, p̂ + 1}. Then, for r = FindWordAtBorder(De

0, supp(p̂), supp(p̌)) as in
Algorithm 6 it holds that DRM(r + e) ∈ {p̂, p̌, p̂ + p̌ + 1} and the decision is not
the result of a tie in the distance with some other word RM(m)\F .

Proof. Denote F = {p̂, p̌, p̂ + p̌ + 1}. First note that the algorithm always returns
a word r such that De

0(r) = False. Clearly, this statement would only be false
if De

0(r) = True for all steps in the for loops of Lines 2 and 7. To see that this
cannot be the case, consider the d

4 -th iteration in the for-loop of Line 7. In this
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iteration we have HW(r) = 3
4d and supp(r) ⊂ Î = supp(p̂), where p̂ ∈ RM(m)

by definition. It follows that r + e is in the unique decoding ball of p̂, since

d(r + e, p̂) = HW(p̂ + r + e)
≤ HW(p̂ + r) + HW(e)

= d − HW(r) + HW(e) <
d

2
.

In this case, an ML decoder for the RM code would decide for p̂, and it holds
that De

0(r) = False and DRM(r + e) = p̂ ∈ {p̂, p̌, p̂ + p̌ + 1}. Note that this
also implies HW(p̂(p̌ + 1)r) ≤ d

4 for any returned word r. Now consider the
case that Algorithm 6 terminates in the for loop of Line 2, i.e., for an r with
supp(r) ⊆ (Î ∩ Ǐ). For this case, we show a statement that is slightly stronger
than required, namely, we prove that for any f ∈ RM(m)\(F ∪ {0}) we have
d(r + e, 0) < d(r + e, f), which implies that f cannot be the outcome of an
ML decoder4. To begin, observe that DRM(r + e) �= 1 since HW(r + e) ≤
HW(r)+HW(e) < n

4 + d
4 and therefore d(r+e, 0) = HW(r+e) < n−HW(r+e) =

d(r+e, 1), so the ML decoder does not decode to the all-one word in this case. If
HW(r) ≤ d

4 , we get HW(r+e) < d
2 and an ML decoder always decides for 0, i.e.,

De
0 = True, so we can assume that HW(r) > d

4 when Algorithm 6 terminates.
Denote F̄ = RM(m)\(F ∪ {0, 1}). Now consider some f ∈ F̄ and note that
supp(p̂p̌) = Î ∩ Ǐ. Then, we have

d(r + e, f) = HW(f + r + e)
≥ HW(f + r) − HW(e)
= HW(p̂p̌(f + r)) + HW((p̂p̌ + 1)(f + r)) − HW(e)
= HW(p̂p̌(f + r)) + HW((p̂p̌ + 1)f) − HW(e)
≥ HW(r) − HW(p̂p̌f) + HW((p̂p̌ + 1)f) − HW(e).

Since f �∈ (F ∪{0, 1}) Lemma 1 gives HW(p̂p̌f) ≤ d
4 , so −HW(p̂p̌f)+HW((p̂p̌+

1)f) ≥ 3
4d. Therefore, we get d(r + e, f) > HW(r) + 3

4d − 1
4d = HW(r) + 1

4d. On
the other hand, the distance of r + e to 0 is

d(r + e, 0) = HW(r + e)
≤ HW(r) + HW(e)

< HW(r) +
1
4
d.

Therefore, if Algorithm 6 terminates in the for-loop of Line 2, the outcome of
the ML decoder cannot be a word of F̄ ∪ {1}, which implies that DRM(r) ∈ F .
Now consider the case where Algorithm 6 terminates in the for-loop of Line 7.
Note that, by definition of the sets Î and Ǐ, we have supp(r) ⊂ supp(p̂) and,

4 Note that this does not imply that the outcome is 0, since one of the words of F
could still be closer to r + e than 0.
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since the for-loop of Line 2 is completed, it holds that HW(p̂p̌r) = d
2 . To begin,

observe that

d(r + e, p̂) = HW(p̂ + r + e)
≥ HW(p̂ + r) + HW(e)
(a)
= d − HW(r) + HW(e) <

5
4
d − HW(r), (1)

where (a) holds because supp(r) ⊂ supp(p̂) and HW(p̂) = d. It follows immedi-
ately from Lemma 1 that an RM(m) code can be partitioned by

RM(m) = {0} ∪ {1} ∪ {p̂ + 1} ∪ F ∪ {f | HW(p̂p̌f) = 0,HW(p̂(p̌ + 1)f) =
d

2
}

∪ {f | HW(p̂p̌f) =
d

4
,HW(p̂(p̌ + 1)f) =

d

4
}.

The statement holds if the distance to the words in all subsets except {0} and
F is larger than Eq. 1. We consider each subset separately:

– For f = 1 we have

d(r + e, f) = HW(f + r + e)
≥ HW(f) − HW(r) − HW(e)

> 2d − HW(r) − d

4

>
7
4
d − HW(r) > d(r + e, p̂).

– For f = p̂ + 1 we have

d(r + e, f) = HW(f + r + e)
≥ HW(f + r) − HW(e)
= HW(p̂(f + r)) + HW((p̂ + 1)(f + r)) − HW(e)
= HW(p̂r) + HW((p̂ + 1)f) − HW(e)
= HW(r) + HW(f) − HW(e)
= 2HW(r) + d − HW(r) − HW(e)
(a)
≥ 2d − HW(r) − HW(e)

>
7
4
d − HW(r) > d(r + e, p̂),

where (a) holds because HW(r) ≥ HW(p̂p̌r) = d
2 , as noted above.

– For any f ∈ RM(m) with HW(p̂p̌f) = 0 and HW(p̂(p̌ + 1)f) ≥ d
4 we have

d(r + e, f) = HW(f + r + e)
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≥ HW(f + r) − HW(e)
= HW(p̂p̌(f + r)) + HW((p̂p̌ + 1)(f + r)) − HW(e)
≥ HW(p̂p̌r) + HW((p̂p̌ + 1)f)

︸ ︷︷ ︸

=HW(f)=d

−HW((p̂p̌ + 1)r) − HW(e)

= d + HW(p̂p̌r) − HW((p̂p̌ + 1)r) − HW(e)
= d + 2HW(p̂p̌r)

︸ ︷︷ ︸

=d

−(HW(p̂p̌r) + HW((p̂p̌ + 1)r)) − HW(e)

= 2d − HW(r) − HW(e)

>
7
4
d − HW(r) > d(r + e, p̂).

– For any f ∈ RM(m) with HW(p̂p̌f) = HW(p̂(p̌ + 1)f) = d
4 we have

d(r + e, f) = HW(f + r + e)
≥ HW(f + r) − HW(e)
= HW(p̂p̌(f + r)) + HW(p̂(p̌ + 1)(f + r)) + HW((p1 + 1)(f + r))

− HW(e)
= HW(p̂p̌(f + r)) + HW(p̂(p̌ + 1)f) − HW(p̂(p̌ + 1)r)

+ HW((p1 + 1)f)
︸ ︷︷ ︸

= d
2

−HW(e)

=
d

4
+

d

4
− HW(p̂(p̌ + 1)r) +

d

2
− HW(e)

= d + HW(p̂p̌r) − (HW(p̂p̌r) + HW(p̂(p̌ + 1)r)) − HW(e)

=
3
2
d − HW(r) − HW(e)

>
5
4
d − HW(r) > d(r + e, p̂).

We conclude that for any f ∈ RM\(F ∪ {0}) a word of F (specifically p̂) is
closer5 to r + e than f , and it follows that DRM(r + e) ∈ F . Since the distance
to the word of F was truly smaller in each of the discussed cases, i.e., not a
tie, the decision is not the result of a tie in the distance with some other word
RM(m)\F . �

Due to the specific structure of the words in the set F , i.e., the possible
outputs of an ML decoder for the considered input, we are now able to make a
statement on the behavior of the oracle when a single bit of this input is flipped.

Lemma 3. Denote by p̂, p̌ ∈ F2[x] two polynomials with deg(p̂) = deg(p̌) = 1
and p̌ �∈ {p̂, p̂ + 1}. Then, for r = FindWordAtBorder(De

0, supp(p̂), supp(p̌)) as in
5 Similarly to the previous case, this does not mean that the ML decoding result is

necessarily p̂, since the proof does not hold for p̌ and p̂ + p̌ + 1.
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Algorithm 6 and any ξ ∈ supp(p̂p̌) it holds that

De
0(r + u(ξ)) =

{

True, if rξ + eξ = 1
False, else,

where u(ξ) ∈ F
2m

2 denotes (polynomial corresponding to) the ξ-th unit vector.

Proof. Denote F = {p̂, p̌, p̂+ p̌+1}. By Lemma 2, we have DRM(r+e) =: p̃ ∈ F
for the word r returned at Step 4 of Algorithm 7. By definition of F , this implies
that (Î ∩ Ǐ) ⊂ supp(p̃), i.e., the positions Î ∩ Ǐ of p̃ are all one. Therefore, if
a position in Î ∩ Ǐ of r + e is changed from 0 to 1, the distance to p̃ always
decreases by 1 and the ML decoder output does not change. On the other hand,
if a position in Î ∩ Ǐ of r + e is changed from 1 to 0, the distance to any
polynomial of F always increases by 1, the distance to 0 decreases by 1, and the
distance to any other word in RM(m)\(F ∪{0}) decreases by at most 1. Hence,
the ML decoding result changes from p̃ to 0 and the oracle returns True. �

Finally, we show that Algorithm 7 is always successful in recovering the
correct vector e, given that some non-restrictive assumptions are fulfilled.

Theorem 1. Let De
0 be a oracle for the code RM×s(m) ⊂ F

s2m

2 of minimum
distance d = s2m−1, where e ∈ F

s2m

2 with HW(e) < d
4 . Consider two polynomials

p1, p2 ∈ F2[x] with deg(p1) = deg(p2) = 1 and p2 �∈ {p1, p1+1}. Then, the output
of Algorithm 7 is FindError(De

0, supp×s(p1), supp×s(p2)) = e.

Proof. For sake of readability and ease of notation, we focus on the case of
multiplicity s = 1 in this proof. It is easy to verify that all statements also hold
for s > 1 by essentially multiplying every weight/distance by s. Note that both
Algorithms 6 and 7 are independent of s. Consider some choice of Î and Ǐ in
Steps 2 and 3 of Algorithm 7. Note that there exist corresponding polynomials
p̂ ∈ {p1, p1 + 1} and p̌ ∈ {p2, p2 + 1} with supp(p̂) = Î and supp(p̌) = Î and we
have deg(p̂) = deg(p̌) = 1 and p̌ �∈ {p̂, p̂ + 1} for any such choice. Step 6 iterates
over all positions of r in Î ∩ Ǐ and queries the oracle with this bit flipped. If
this changes the oracle output to True, the corresponding bit is flipped in ê , with
the goal of obtaining ê Î∩Ǐ = e Î∩Ǐ at the end of the loop. We consider the four
different possible combinations of eξ and r ξ:

– eξ = 0, rξ = 0 or eξ = 1, rξ = 1: Flipping positions rξ corresponds to setting a
0 in r+e to 1. By Lemma 3, this does not change the ML decoding result, i.e.,
the oracle still returns False. The bit êξ is not flipped, i.e., we have êξ = rξ,
and we correctly obtain êξ = eξ.

– eξ = 0, rξ = 1 or eξ = 1, rξ = 0: Flipping positions rξ corresponds to setting
a 1 in r + e to 0. By Lemma 3, this does change the ML decoding result to
all-zero, i.e., the oracle now returns True. The bit êξ is flipped, i.e., we have
êξ = rξ + 1, and we correctly obtain êξ = eξ.

We conclude that ẽ Î∩Ǐ = ê Î∩Ǐ = e Î∩Ǐ . This holds for any choice of Î and Ǐ.
The lemma statement follows from observing that the corresponding sets Î ∩ Ǐ
partition the set of all positions [0, qm − 1]. �
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Required Oracle Calls. Our strategy as described in Algorithm 7 requires
at most 4 · ( 2·n2

4 + n2
4 ) oracle calls dependent on the length of the RM code.

Note that the algorithm has to be repeated for all n1 blocks of y (0) introduc-
ing an additional factor of n1. We compare the required oracle calls with the
timing attack by Guo et al. [3] in Table 3. In addition to some disadvantages
of the exploited timing side-channel (see Sect. 4 for a detailed discussion) this
approach shows a largely increased number of required oracle calls. In essence
their attack works by randomly increasing the Hamming weight of an input to
the RM decoder until they reach the decoding boundary. Then the oracle can be
queried with the individual bits of the input flipped. From the now found error
positions only those that are not self introduced in the first step are counted
as a valid part of the support of y (0)

i . Therefore, the attack steps have to be
repeated until each position is evaluated and optionally a certain threshold for
each position is reached. This makes the attack non-deterministic and therefore
the authors report the amount of required ideal timing oracle calls as the median
of 6096 attacks. For HQC-128 our attack strategy reduces the required oracle
queries by a factor of 16.34.

We additionally observed that the attack strategy shown by Guo et al. [3]
is also useable with our close-to-zero oracle. We implemented their strategy
targeting a single y (0)

i block and simulated the required oracle calls6 for 400,000
attacks with yw,max in the range 1 ≤ yw,max ≤ 10 given a threshold of one (each
position has to be evaluated once). The resulting median of the required oracle
calls is shown in the third column of Table 3. We report these numbers in the
paper to ensure a fair comparison that is not influenced by the different types
of oracles. To summarize, our attack strategy in comparison to [3] requires by
a factor of 11.44 (HQC-128) and 12.07 (HQC-192/256) less oracle queries when
using the proposed close-to-zero oracle. In addition, it is proven to be successful
for HW(y (0)

i ) < dRM
4 , where dRM = s · 2m−1.

Table 3. Comparison of required oracle queries for the different attack strategies.

This work Timing attack [3] Strategy of [3] using De
0

HQC-128 1152 * 46 18829 * 46a 13174 * 46

HQC-192 1920 * 56 – b 23170 * 56

HQC-256c 1920 * 90 – b 23170 * 90

a) The authors report a median of 866,143 oracle calls to retrieve the
whole y (0). To provide comparable numbers we report the required
calls per block.
b) Numbers not given in [3].
c) Same simulation results as for HQC-192, since both use the same
RM code.

6 The simulation integrates the C reference implementation of the RM decoder and
directly uses the decoding result to build the required oracle.
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3.4 Retrieval of y from Partial Information with Information Set
Decoding

In the case that y (0) is only partially retrieved we can still use this partial infor-
mation to mount an attack through information set decoding. For a general
approach on how to incorporate partial side-channel information into informa-
tion set decoding we refer the reader to [4]. There are two main reasons for the
information to be limited. Either there is a limit on the amount of possible ora-
cle calls due to the amount of decryptions that can be observed by the attacker
or the side-channel used to create the oracle does not result in perfect oracle
answers. In Appendix B we describe a modified variant of Stern’s algorithm [14]
that is able to incorporate correct information about the support of the individ-
ual y (0)

i to lower the complexity of information set decoding. The resulting work
factor WModSt given the knowledge of τ elements of the support of y (0) is shown
in Fig. 2. Note that our algorithm also uses the information whether a full block
y (0)

i has been retrieved, and we therefore assume the support of y (0) is evenly
distributed between the different blocks of y (0)

i in Fig. 2.
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Fig. 2. Resulting work factor of Algorithm 8 for all HQC parameter sets given the
knowledge of τ elements of the support of y (0).

4 Side-Channel Targets to Build the Required Oracle

There are several possible side-channels that can be used to construct our close-
to-zero oracle as given in Definition 2. In this section we describe our results
of directly attacking the implemented RS decoder of the HQC round 3 refer-
ence implementation using our power side-channel described in [13]. In addi-
tion, we discuss the approaches in related work and show how or whether these
side-channels can be adapted to build our oracle. An overview of the different
side-channel targets of the HQC decapsulation is shown in Fig. 3. Note that we
consider a discussion of the fault-attack of Xagawa et al. [17] out of scope for
this work.
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Fig. 3. Building blocks of the HQC decapsulation (c.f. Algorithm 5) with the side-
channel attack targets used in related work.

4.1 Power Side-Channel of the RS Decoder

It is possible to construct our required oracle from the decoding result of the RS
decoder. First we have to recall that our oracle indicates whether the RM decoder
is able to correctly decode to the all-zero codeword or the decoding fails, and any
other codeword is returned. Transferring this behavior to be observable through
the RS decoder requires to set all the remaining y (0)

i that are not attacked to
zero. Then if the RS decoder has to correct an error we know that the RM
decoder was not able to return the correct all-zero codeword and the oracle
result is True.

In order to observe that the RS decoder has to correct an error we use the
template matching approach shown in [13]. Note that although this method is
targeting a BCH decoder we can still use the approach in our setting. This is due
to the fact that BCH codes are subcodes of RS codes and usually decoded using
the same procedure as RS codes7. Therefore, steps during the decoding of these
codes are essentially the same. The attack target for building the templates is the
computation of the error-locator polynomial, as it showed the highest amount
of exploitable leakage. As the input can be directly controlled by an attacker,
templates for both classes can be constructed through the power side-channel.
Then for each oracle call the constructed input is fed into the decapsulation and
the respective power trace is compared to the templates through the use of a
sum-of-squared-difference metric. As a result the class with the smallest metric
is chosen as the oracle result.

7 A (linear) subcode consists of a subset of codewords of the original code, usually in
the form of a linear subspace. It is easy to see that any decoder for the original code
can also be applied to the subcode, since it contains any codeword of the subcode.
For more details on the relation between RS and BCH codes, the reader is referred
to [7, Chap. 12].
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Attack Results. We evaluated the oracle with our power side-channel setup
consisting of a STM32F415RGT6 ARM Cortex-M4 microcontroller mounted on
a Chipwhisperer CW308 UFO board running at 10 MHz. The power consumption
is measured through the integrated shunt resistor with a PicoScope 6402D USB-
oscilloscope running at a sampling rate of 156.25 MHz. As an attack target we
use the latest version of the HQC-128 reference implementation. With our setup
a total amount of 1000 template traces is used for the initialization of the oracle
using a t-test threshold of 100 for point of interest detection (see Appendix C
for the t-test result). Using the initialized oracle we are able to correctly classify
100,000 attack traces. As this number is above the required number of oracle
calls for a complete key recovery we consider an attack on the complete secret
key successful.

4.2 Power Side-Channel of the Used Hash Functions G,H
In [15] the authors show how to create a plaintext-checking oracle for HQC
by observing a power side-channel of the used hash functions SHAKE256-512.
With their oracle they are able to distinguish if a certain input results in a fixed
message m ′ or if the result is different to this fixed message. As m ′ is directly
used as an input to G and H the authors identify these hash functions as an
attack target. In order to instantiate their oracle they use a machine learning
classifier based on a convolutional neural network (CNN). They evaluate their
CNN on the SHAKE software implementation of pqm4 [6] with the same side-
channel platform and microcontroller as we described in the previous section.
Using 30,000 training traces they achieve an accuracy of 0.998 when classifying
10,000 test traces, which can be further increased through the combination of
multiple classifications.

This oracle can not be directly used with our proposed attack strategy as the
resulting message after decryption is always zero. It can nevertheless be adapted
to work as our close-to-zero oracle (Definition 2) by setting the resulting input to
Decode such that the input to the RS decoder is set to its decoding boundary.
This can be done by setting (dRS − 1)/2 blocks of y (0), that are not currently
attacked, to be decoded as a non-zero value and therefore acting as an error for
the all-zero RS codeword. Then the RM decoding result of the attacked y (0)

i

determines if the resulting message is zero (True) or unequal to zero (False),
which is observable through their oracle.

4.3 Timing Side-Channel of the Used Sampler

Guo et al. [3] showed a timing side-channel in the implementation of the sampler
of the HQC reference implementation that is used to generate the random fixed-
weight vectors e , r1, and r2. This is the case as the sampler implements rejection
sampling, which requires a varying amount of calls to the PRNG in order to
generate potential required additional randomness. As the seed θ for the PRNG
is derived from the message m , the amount of additional required PRNG calls
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is dependent on m and therefore also the execution time of the decapsulation.
This timing side-channel allows to build a plaintext-checking oracle for which
the authors show an attack strategy. In order for two different messages to be
distinguishable through their oracle the initial message is chosen such that it
requires at least three additional calls to the PRNG which has a low probability
of 0.58% for all possible messages. Due to the inherent uncertainty of timing
side-channels and this probability still leaving room for ambiguity the authors
introduce a majority threshold for the classification of each bit. Their empirical
results show a classification success rate of 87% with a majority threshold of
five.

Their oracle can not be used with our attack strategy as its resulting mes-
sage m is always zero. This message unfortunately does not require multiple
calls to the PRNG, and therefore it is not easily distinguishable through this
timing side-channel. In contrast, our developed attack strategy allows the usage
of both described power side-channels, which show a better classification result
and eliminate the inherent uncertainty of timing side-channels removing the need
for a majority decision.

5 Conclusion

In this paper we showed a novel proven side-channel attack strategy that again
allows for a successful power side-channel attack against the updated round three
version of the HQC cryptosystem. Published attacks against the former HQC
version are not valid anymore, as the authors updated their used error correcting
codes for their third round submission. We identified that the published power
side-channel attack on the updated HQC version by Uneo et al. [15] is not valid in
practice, as the authors miss a crucial property of the implemented Reed-Muller
decoder that renders their attack unsuccessful. In contrast to the attack strategy
by Guo et al. [3], that exploits a timing side-channel in the implemented polyno-
mial sampler, our attack shows a by a factor of 12 reduced amount of required
side-channel oracle calls. Our attack strategy allows the use of two power side-
channel targets, namely the Reed-Solomon decoder as shown in [13] and the used
SHAKE256 hash function as described in [15], to build the required oracle for
our attack. We show practical attack results for the latest Reed-Solomon decoder
of the latest HQC-128 implementation on an ARM Cortex-M4 microcontroller.
Finally, we provided an estimation of the remaining attack complexity for partial
attack results with the use of information set decoding.
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A Counterexample to the Attack Strategy in [15,17]

The work [2, Fig. 7] presents a learning algorithm which allows for determining
an additive error given access to a decode-to-zero oracle for a bounded-distance
decoder. In [2, Theorem 11] it is shown that this algorithm succeeds with proba-
bility 1 in the considered setting. Given the vectors r and e , the oracle is defined
as

BOO(r) =

{

True, if HW(r + e) ≤ τ,

False, else.

In other words, the oracle provides the information whether the sum of the input
r and the error e would be corrected to zero by a bounded-distance decoder of
radius τ . Note that BOO(r) is similar to the oracle De

0(r) in our work, as given
in Definition 2, except that it assumes a bounded-distance decoder, i.e., a fixed
decoding threshold, instead of an ML decoder. In [17, Sect. C.7]8 it is claimed
that this algorithm can be applied to the round three version of HQC system,
which employs an ML decoder. However, the fixed decoding threshold of the
bounded-distance decoder is essential to the algorithm of [2, Fig. 7] and in this
section we show that replacing the BOO(r) oracle with the De

0(r) oracle, i.e.,
considering an ML decoder instead of a bounded-distance decoder, causes this
algorithm to return incorrect error vectors. Note that this choice of decoder is
inherent to the system and cannot be influenced by the attacker, so the ora-
cle De

0(r) is the appropriate oracle to use for this system. In addition to this
counterexample we implemented the attack strategy and performed a simulated
attack by directly accessing the RM decoder results of the HQC reference imple-
mentation. We were not able to correctly retrieve the support y (0)

i with our
simulations.

The algorithm of [2, Fig. 7] is based on constructing a vector, such that the
sum of this vector and the error is at the decoding threshold. For a bounded-
distance decoder, the result of the BOO oracle, when queried with a single bit
of this input flipped, then determines the corresponding position of the error
vector. However, this only applies if the result of input x plus error e is at the
decoding threshold for every position. We give an example of a vector for which
this is only the case for a subset of positions, which leads to an incorrect output,
even in the case of a single error. We follow the steps of the algorithm of [2,
Fig. 7] and fix the error vector to be the first unit vector e = e(1).

Initialize
x (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
y (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)

First while loop iteration
u (1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0)
v (0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1)

De
0(x + u) = False

y ← u (1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0)
8 The authors of [15] directly cite [17] for their attack description.
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Second while loop iteration
u (0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
v (1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0)

De
0(x + u) = False

y ← u (0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
Third while loop iteration

u (0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
v (0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

De
0(x + u) = True

x ← x + u (0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
y ← v (0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

Fourth while loop iteration
u (0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
v (0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

De
0(x + u) = True

x ← x + u (0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
y ← v (0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

||y|| = 1 Terminate while loop.

As claimed, we now have a word x + e that is at the threshold of decoding, i.e.,
if a position inside its support is flipped, we decode to zero, i.e., De

0(x) = True.
The last for-loop of the algorithm iterates over all positions, checking if flipping
each bit alters the decoding result. Initialize z to

z ← x (0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) .

So, e.g., for the error position we have

x + e(1) (1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
x + e(1) + e (0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

and therefore De
0(x + e(1)) = True. Hence, the first bit in the vector z is flipped

to obtain

z ← z + e(1) (1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) .

Similarly, for any other position in the support, such as, e.g., i = 2, we have

x + e(2) (1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
x + e(2) + e (0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

and therefore De
0(x + e(2)) = True, so the second bit of z is flipped to obtain

z ← z + e(2) (0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) .
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After the first 8 positions we have

z ← z + e(1) (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) .

However, take for example i = 9. Then,

x + e(9) (0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0)
x + e(9) + e (1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0)

.

At this point the difference between a bounded-distance decoder and an ML
decoder affects the decoding decision. While this word does have weight more
than d/2, it is easy to check that an ML decoder still decides for the all-zero
word, so De

0(x + e(9)) = True and we get

z ← z + e(1) (1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0) .

This holds for all positions in the second part of the word, so at the end of the
algorithm the “approximated error vector” is given by

z ← z + e(1) (1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1) .

Hence, even in this simple case of a single error, the strategy does not return the
correct error vector.

B Modified Variant of Stern’s Algorithm

Let J := {j0, . . . , jτ−1} ⊆ supp(y) ⊆ [0 : n − 1] be the subset of the support
of y that we retrieved, and let L := {l0, . . . , lι−1} ⊆ [0 :n − 1]\ supp(y) denote
the indices of the zero entries in y that we determined. Then, we us obtain the
secret vectors x and y using the modified variant of Stern’s algorithm [14] that
is shown in Algorithm 8.

Theorem 2. Let n and w be parameters chosen according to Table 1. Let (x,y)
and (h, s) be a private and public key pair generated by Algorithm 1 for the
chosen parameters. Let J := {j0, . . . , jτ−1} be a subset of the support of y, let
L = {l0, . . . , lι−1} denote a set of indices of zero entries in y, and let n′ = n − ι
and w′ = w−τ . Furthermore, let k1, pSt, νSt,1, and νSt,2 be non-negative integers
such that k1 ≤ n′, pSt ≤ w + w′, νSt,1 ≤ n − k1, and νSt,2 ≤ n − n′ + k1.

Then, given H = [1, rot(h)] ∈ F
n×2n
2 , w, s ∈ F

n
2 , k1, pSt, νSt,1, νSt,2, J , and

L, Algorithm 8 outputs the vector [x,y] with, on average, approximately

WModSt :=
WSt,Iter

PSt

operations in F2, where

WSt,Iter := (n + n′)3 + (νSt,1 + νSt,2)

(
pSt
∑

i=1

(

M1

i

)

+
pSt
∑

i=1

(

M2

i

)

− n′ +
(

M2

pSt

)
)
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+ 21−νSt,1−νSt,2

(

M1

pSt

)(

M2

pSt

)

(w + w′ − 2pSt + 1)(2pSt + 1),

the quantities M1 = �k1/2� + �(n′ − k1)/2� and M2 = �k1/2� + �(n′ − k1)/2�,
and

PSt :=
∑

a∈N
2
0

a1≤w
a2≤w′

a1+a2=pSt

∑

b∈N
2
0

b1≤w−a1
b2≤w′−a2
b1+b2=pSt

(�k1/2�
a1

)(�k1/2�
b1

)(n−k1−νSt,1
w−a1−b1

)
(n

w)
(�(n′−k1)/2�

a2
)(�(n′−k1)/2�

b2
)( k1−νSt,2

w′−a2−b2
)

(n′
w′)

.

Proof. In Line 1, the algorithm uses J to transform the syndrome decoding
instance (H , s, [x ,y ]) of length 2n, dimension n and error weight 2w into the
syndrome decoding instance (H , s̃, [x , ỹ ]) of length 2n, dimension n and error
weight w + w′, where HW(ỹ) = w′ and supp(ỹ) ∪ J = supp(y). The remaining
steps are equal to the modification of Stern’s algorithm presented in [4] and
[12, Alg. 17] except that the set X2 always contains L1 = {l0, . . . , l�ι/2	−1}
and the set Y2 always contains L2 = {l�ι/2	, . . . , lι−1}. By this choice of X2

and Y2, the syndrome decoding instance (H , s̃, [x , ỹ ]) is transformed into the
(H̄ , s̄, [x , ȳ ]) instance of length n + n′, dimension n′ and error weight w + w′,
where H̄ ∈ F

n′×(n+n′)
2 , s̄ ∈ F

n+n′
2 , and ȳ ∈ F

n′
2 .

Such that an iteration of Stern’s algorithm can solve the (H̄ , s̄, [x , ȳ ]) syn-
drome decoding instance, there must be exactly pSt error positions in both
X1 ∪ X2 and Y1 ∪ Y2 and no error positions in Z1 and Z2. The probability
that this event occurs is equal to PSt, cf. [4] and [12, Thm. 4.9]. This implies
that, on average, Lines 5 to 12 need to be executed 1/PSt, where each iteration
has a complexity of WSt,Iter. �

C T-Test Result: Power Side-Channel of the RS Decoder

The t-test results used for identifying points of interest for building our oracle
with the power side-channel of the RS decoder (Sect. 4.1) is shown in Fig. 4. The
high t-values clearly indicate that both classes can be distinguished through this
power side-channel. The shown samples correspond to the complete execution
time of the error-locator polynomial computation implemented in the HQC-128
reference implementation.
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Algorithm 8: Modified Stern Algorithm

Input : Parity-check matrix H ∈ F
n×2n
2

Non-negative integer w
Syndrome vector s ∈ F

n
2

Non-negative integers k1, pSt, νSt,1, νSt,2

Subset of the support J := {j0, . . . , jτ−1} ⊆ supp(y)
Subset of zero entries L = {l0, . . . , lι−1} ⊆ [0 :n − 1]\ supp(y)

Output: Vector [x , y ] ∈ F
2n
2

1 s̃ ← s + h�
n+j0 + . . . + h�

n+jτ−1 ∈ F
n
2 , where h� is the �-th column of H

2 L1 ← {l0, . . . , l�ι/2�−1}
3 L2 ← {l�ι/2�, . . . , lι−1}
4 e ′ ← 0 ∈ F

2n
2

5 while HW(e′) > 2w − τ ∨ s̃ �= e′H� do

6 X1
$←− {S ⊆ [0 :n − 1] : |S| = �k1/2	}

7 Y1
$←− {S ⊆ [0 :n − 1]\X1 : |S| = 
k1/2�}

8 Z1
$←− {S ⊆ [0 :n − 1]\(X1 ∪ Y1) : |S| = νSt,1}

9 X2
$←− {S ∪ L1 ⊆ [n :2n − 1]\L2 : |S ∪ L1| = �(n − k1)/2	}

10 Y2
$←− {S ∪ L2 ⊆ [n :2n − 1]\X2 : |S ∪ L2| = 
(n − k1)/2�}

11 Z2
$←− {S ⊆ [n :2n − 1]\(X2 ∪ Y2) : |S| = νSt,2}

12 e ′ ← Iteration of original Stern algorithm w.r.t. the syndrome s̃, the sets
X1 ∪ X2, Y1 ∪ Y2, Z1 ∪ Z2 and the parameters pSt and νSt = νSt,1 + νSt,2

13 return e ∈ F
2n
2 with support supp e′ ∪ J
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Fig. 4. Resulting t-values used for identifying points of interest using the side-channel
described in Sect. 4.1. The marked Thattack is used as a threshold for the actual attack.
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Abstract. Hamming Quasi-Cyclic (HQC) is a code-based candidate of
NIST post-quantum standardization procedure. The decoding steps of
code-based cryptosystems are known to be vulnerable to side-channel
attacks and HQC is no exception to this rule. In this paper, we present
a new key recovery side-channel attack on HQC with chosen cipher-
text. Our attack takes advantage of the reuse of a static secret key on a
micro-controller with a physical access. The goal is to retrieve the static
secret key by targeting the Reed-Muller decoding step of the decap-
sulation and more precisely the Hadamard transform. This function is
known for its diffusion property, a property that we exploit through side-
channel analysis. The side-channel information is used to build an Oracle
that distinguishes between several decoding patterns of the Reed-Muller
codes. We show how to query the Oracle such that the responses give a
full information about the static secret key. Experiments show that less
than 20.000 electromagnetic attack traces are sufficient to retrieve the
whole static secret key used for the decapsulation. Finally, we present a
masking-based countermeasure to thwart our attack.

Keywords: HQC · Reed-Muller codes · Chosen ciphertext attack ·
Side-channel attack · Post-quantum cryptography

1 Introduction

The interest for Post-Quantum Cryptography (PQC) increased with the quan-
tum computers threat to classic cryptography schemes like RSA [20]. The
research is promoted by the National Institute of Standards and Technology
(NIST) who launched a call for proposal [16] in 2016 with the aim to standard-
ize new signature and Key Encapsulation Mechanism (KEM) schemes. NIST
moves closer to making standardization decisions and aims to precisely measur-
ing the security of the schemes, including Side-Channel Attacks (SCA) and their
countermeasures. Thus, the security against SCA and the cost and performance
of side-channel protection could be criteria for standards selection [3].

Hamming Quasi-Cyclic (HQC) [1,2,4] is a promising candidate of the fourth
round of the PQC NIST contest. Unlike the McEliece construction [15] and
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. H. Cheon and T. Johansson (Eds.): PQCrypto 2022, LNCS 13512, pp. 353–371, 2022.
https://doi.org/10.1007/978-3-031-17234-2_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-17234-2_17&domain=pdf
https://doi.org/10.1007/978-3-031-17234-2_17
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derivates, the security of HQC is not related to hiding the structure of an error
correcting code. In HQC, the structure of the decoding codes is publicly known
and the security can be reduced to the Quasi-Cyclic version of the well know
Syndrome Decoding (SD) problem [2,5,24].

Nowadays cryptographic schemes are assessed to be theoretically secure, for
HQC, the security comes from two sides. On the one hand, the IND-CCA2 secu-
rity is provided by the transformation of a IND-CPA scheme with a Fujisaki-
Okamoto like transform [7,8,11]. This point guarantees the security against mali-
cious adversaries who would make a diverted use of the scheme. On the other
hand, finding the secret key is impossible given the reduction of security to a
known NP-hard problem [5]. However, implementation of a secure scheme in
constrained devices, such as micro-controller, can still be vulnerable to physical
attacks.

Side-Channel Attacks (SCA) [12,13], introduced by P. Kocher in 1996, are
non-invasive physical attacks with aim to exploit side-channel leakage (timing,
power consumption, electromagnetic radiation, execution time, heat, sound ...).
Since their introduction, SCA have a long history of success in extracting secret
information (such as secret key or message) of cryptographic algorithms [6,19,
26]. The leakage is statistically dependent on the intermediate variables that are
processed and this side-channel information can be exploited to extract secret
information.

Related Works. SCA already targeted the HQC scheme in various ways. In
2019 and 2020, the first version of HQC based on BCH codes was attacked by
Timing attacks (TA). These TA [17,25] use a correlation between the weight of
the decoded error and the computation time of the decoder. As a result, HQC
authors’ team proposed a constant time implementation for decoding BCH codes
to mitigate these TA.

In 2021, a novel TA [10,23] targeted the RMRS version of HQC. This TA
uses the rejection sampling construction to attack both HQC and BIKE. Indeed,
the sampling of a vector of small Hamming weight ω is performed by randomly
choosing its support. ω locations are sampled and sometimes collisions occur at
these locations which, leads to rejecting the vector and sampling another one
from the beginning. However, all the randomness is generated with a seed (see
Algorithm 4) which is derived from the exchanged message used to compute
the shared key. This observation leads to a relation between the run-time of the
rejection sampling and the exchanged message. This relation is strong enough
to extract information about the secret key in HQC with a chosen ciphertext
strategy.

In 2022, an horizontal SCA [9] used the Decryption Failure Rate (DFR) of
HQC by targeting Reed-Solomon (RS) decoding. Indeed, the low DFR implies
that the Reed-Muller decoder almost always decodes all the errors. This leads to
an error-free codeword decoding by the RS decoder. By studying the behaviour
of the RS decoder and using a better decoder for the RS codes in order to correct
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side-channel induced errors, authors are able to recover the exchanged message
in a single trace.

In 2020 and 2022, Schamberger et al. [21,22] proposed two chosen ciphertext
attacks (CCA) based on a side-channel Oracle able to determine whenever an
error is corrected by the HQC decoder through a supervised approach. These
attacks are possible despite the IND-CCA2 security because the side-channel
distinguisher is performed before the re-encryption phase, during the decoding
part. The first attack [22] targets the BCH version of HQC, they chose the
ciphertext in order to create a single error for the BCH decoder, which can be
seen by the Oracle. They are able to recover a large part of the possible keys
in HQC with a secret key support (non-zero locations) research. By a complex
chosen ciphertext attack, they are able to deduce information about the support
of the secret key which is used during the decapsulation. Authors adapted their
power side-channel attack to the Reed-Muller Reed-Solomon version of HQC
[21], leading to a complex but functional attack on the new version of HQC.
These attacks are a serious threat to the HQC security and no countermeasure
have been proposed to thwart these attacks neither in the first paper, nor in
the second. In this context, finding a new distinguisher on the HQC decoding
procedure allows to build the same kind of attacks.

Our Contributions. In this paper, we propose a simpler key recovery side-
channel attack with a chosen ciphertext strategy targeting the new RMRS ver-
sion of HQC. We are able to retrieve a static secret key of HQC by building
a chosen ciphertext attack with a less complex queries selection process. The
main idea is to build queries in order to create collisions with the secret key
support, changing the decoding behaviour. We show how to construct a new
simple Oracle on the RM decoding step that is able to determine the number
of corrected errors. This Oracle is based on a supervised side-channel approach
with the used of a Linear Discriminant Analysis. The knowledge of the secret
key is not required for the Oracle’s training stage, allowing a training phase on
a clone device and reducing the number of attack measurements. We build an
Oracle of 120.000 training traces and use 50 attack traces per bit to create an
attack with 100% accuracy. A divide and conquer strategy allows at recover-
ing the whole decoding static secret key with less than 20.000 attack traces. Our
attack can be avoided by a masking-based countermeasure applied on the Oracle
target function.

Paper Organization. The paper is organized as follows: In Sect. 2, we recall
the HQC framework and the main algorithms useful for the understanding of the
attack. Section 3 is devoted to the description of our chosen ciphertext attack,
showing how to build the queries in order to recover the secret key using a
decoding Oracle. In Sect. 4, we describe the construction and evaluation of the
Oracle based on side-channel measurements. Then we present our results and
give the attack complexity. We present a simple masking based countermeasure
in Sect. 5 to thwart our attack before concluding.
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2 Hamming Quasi-Cyclic (HQC)

2.1 HQC Overview

HQC [2] is a code-based post-quantum resistant Key Encapsulation Mechanism
(KEM). Unlike other code-based cryptosystems, the security of HQC does not
rely on hiding the structure of an error correcting code. The security is guar-
anteed by a random double circulant code with a reduction to the well-studied
Quasi-Cyclic Syndrome Decoding Problem (QCSD) [2,5,24]. HQC uses another
code C with an efficient decoder C.Decode that is publicly known. Neither the
security of the scheme nor the decryption capability depend on the knowledge
of C.Decode. A classic construction is to turn a Public Key Encryption (PKE)
scheme into a KEM. HQC-PKE is fully described by three algorithms (see Algo-
rithms 1,2 and 3 in Fig. 1). Considering R = F2[X]/(Xn − 1) the ambient space
with n a primitive prime given as parameter and Rω the space restriction to
words of Hamming weight ω.

Algorithm 1 Keygen
Input: param
Output: (pk, sk)

1: h $

2: (x,y) $ 2
ω

3: s = x+ hy
4: pk = (h, s)
5: sk = (x,y)

Algorithm 2 Encrypt

Input: (pk,m), param
Output: ciphertext c

1: e $
, wt(e) = ωe

2: (r1, r2)
$

R
R

R
R2

ωr

3: u = r1 + hr2
4: v = mG + sr2 + e
5: c = (u,v)

Algorithm 3 Decrypt

Input: (sk, c)
Output: m

1: m = C.Decode(v − uy)

Fig. 1. HQC-PKE algorithms [1,2]

A quantum adapted Fujisaki-Okamoto transformation [7,8] called the Hof-
heinz-Hövelmanns-Kiltz (HHK) transformation [11] turns the PKE into a KEM
and allows HQC-KEM scheme to reach IND-CCA2 security. The main idea of
such a construction is the re-encryption during the decapsulation that prevent
from chosen ciphertext attack (CCA). The KEM IND-CCA2 property is guar-
anteed given that the PKE has been proved IND-CPA (see HQC specifications
[2] for details). HQC KEM algorithms [1] are described with Algorithms 4 and
5 in Fig. 2.

As mentioned earlier, the formal security of HQC does not rely on the chosen
publicly known code. Therefore, this code can be chosen at the convenience of
the developer. Authors of HQC propose the use of a concatenated code with
a duplicated Reed-Muller (RM) code for internal code and a Reed-Solomon
(RS) code for the external one. Formally, the internal code is a [n1, k1, d1] code
over Fq and an external code a [n2, k2, d2] code, with q = 2k2 . To encode with
a concatenated construction, we first encode a message of length k1 with the
external code to obtain an intermediate codeword of length n1 over Fq = F2k2 .
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Algorithm 4 Encaps

Input: pk = (h, s)
Output: (c,d)

1: m $
F

k
2

2: θ = G(m) � seed
3: c = Encrypt(m, pk, θ)
4: K = K(m, c)
5: d = (m)
6: return (c,d)

Algorithm 5 Decaps
Input: c,d, sk, pk
Output: shared key K or ⊥

1: m’ = Decrypt(c, sk)
2: θ′ = G(m′) � seed
3: c′ = Encrypt(m′, pk, Θ′) � re-encrypt
4: if c �= c or d �= (m′) then
5: return ⊥
6: else
7: return K = K(m, c)
8: end if

Fig. 2. HQC-KEM algorithms [1,2]. (Same key gen. as PKE version, see Fig. 1)

The internal code can be independently applied on each of the n1 elements of
Fq, leading to encode n1 times with the internal code, obtaining a final codeword
of length n1n2 (see Fig. 3).

k1

RS.Encode

k2

n1

RM.Encode

RM.Encode

RM.Encode

RM.Encode

n2

RM.Decode

RM.Decode

RM.Decode

RM.Decode

k2

RS.Decode

k1

n1

Fig. 3. Simplified HQC concatenated RMRS codes framework

The decoder is then a double decoder that decodes the internal code first and
then the external. The decoding procedure is the same as the encoder and the
first operation is to decode a n1n2 sized codeword with n1 independent decoding
steps applied on blocs of size n2. Our attack only targets these RM decoding
steps and, for the sake of clarity, we will only describe the RM construction in
this paper.

2.2 Decoding Reed-Muller Codes

HQC uses the same RM code RM(1, 7), which is a [128, 8, 64] code over F2,
regardless of the chosen security level. Furthermore, each bit is duplicated 3 or
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5 times (see Fig. 2), adding multiplicity to the codewords, to obtain codes of
parameters [384, 8, 192] or [640, 8, 320]. These RM codes of order 1 are seen as
Hadamard codes and can be decoded using a Fast Hadamard Transform (FHT).
The decoding procedure is always the same, composed of three main algorithms
in the June 2020 HQC reference implementation [1]. The procedure is composed
by the following main steps:

1. Removing the multiplicity of codewords with the expand and sum function
(see Algorithm 6).

2. Apply the Fast Hadamard Transform (FHT) (see Algorithm 7).
3. Recover the message with the find peaks function (see Algorithm 8).

The first step goal is to remove the multiplicity of the codeword by adding
in N bit to bit each repetition (see Algorithm 6). The result is an expanded
codeword of length 128 leaving in �0, 3� or �0, 5� depending on the value of the
multiplicity mul.

Algorithm 6. Expand and sum
Input: codeword c and the multiplicity mul.
Output: expanded codeword c′

1: c′ = 0 ∈ N
128

2: for i ∈ �0,mul� do
3: for j ∈ �0, 128� do
4: c′[j] += c[128 × i + j]
5: end for
6: end for
7: return c’

Fast Hadamard Transform (FHT). The FHT is a generalized discrete Fourier
Transform applied to expand codeword (see Algorithm 7). In practice, this func-
tion is equivalent to multiplying the expand codeword with an Hadamard matrix.
Indeed, MacWilliams and Sloane [14] showed that the weight distribution of
the cosets can be determined by the application of an Hadamard transform.
This allows to decode with a maximum likelihood strategy, finding the distance
between a received message and every codewords. For a RM(1,m) code, the
Hadamard matrix to choose is H2m which can be described recursively (see Eq.
(1)).

H2m =
(

Hm Hm

Hm −Hm

)
, H1 = 1 (1)

Applying such a vector matrix multiplication would require 2m × 2m additions
and subtractions. Fortunately, H2m can be written as a product of m 2m × 2m

sparse matrices with only two non-zeros elements per column (see Eq. 2). This
observation allows to change the vector matrix multiplication by m vector and
sparse matrix multiplication.

H2m = M
(1)
2m M

(2)
2m · · · M (m)

2m , M
(i)
2m = I2m−i ⊗ H2 ⊗ I2i−1 , 1 ≤ i ≤ m (2)



A New Key Recovery Side-Channel Attack on HQC with Chosen Ciphertext 359

with In the identity matrix of size n × n and ⊗ the Kronecker product. That is
the reason why the Algorithm 7 is composed of a for loop with argument m = 7.

Algorithm 7. Fast Hadamard Transform (FHT)
Input: expanded codeword c and the multiplicity mul.
Output: expanded codeword transformed structure c

1: for pass ∈ �0, 6� do
2: for i ∈ �0, 63� do
3: d[i] = c[2i] + c[2i + 1]
4: d[i + 64] = c[2i] − c[2i + 1]
5: end for
6: swap(d, c) � copy d in c and c in d
7: end for
8: c′[0] −= 64 ∗ mul
9: return c

In our RM(1, 7) case, this transformation returns a vector of length 128.
The last function Find Peaks permits to finish the decoding. Among this vector,
the argument of the absolute maximum gives the 7 least significant bits of the
decoded message. The most significant bit is given by the sign of this maximum
(see Algorithm 8).

Algorithm 8. Find Peaks
Input: expanded codeword transformed structure c
Output: message m

1: (peak value, peak abs value, peak pos) = (0, 0, 0)
2: for i ∈ �0, 123� do
3: (t, tabs) = (c[i], absolute(c[i])
4: if tabs > peak abs value then
5: (peak value, peak abs value, peak pos) = (t, tabs, i)
6: end if
7: end for
8: peak pos += 128 ∗ (peak value > 0) � Setting the msb
9: return peak pos

3 Theoretical Combined Chosen Ciphertext
and Side-Channel Attacks

In this section, we present a new attack to recover the secret key y ∈ F
n
2 . The

main operation during the decapsulation part of HQC is decoding the erroneous
codeword v− uy. Then the knowledge of the y part of the secret key is enough
to decapsulate.
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Attack Scenario. We consider a physical access to a device performing the
HQC decapsulation with a static secret key. We assume that we can submit any
ciphertext to the device. Our goal is to retrieve this key and then be able to
decapsulate any message encapsulated by the associated public key. Our attack
exploits the side-channel leakage to create an Oracle that is able to distinguish
between several decoding patterns. We use the chosen ciphertext attack construc-
tion to send appropriate ciphertexts to the static secret key decapsulation chip.
The electromagnetic measurements during the decapsulation constitute queries
we can give to the Oracle.

We show how to build queries that allows to fully recover y. First of all, notice
that choosing the special ciphertext (u,v) = (1,0) leads to decode the secret
key y. Vector y is a sparse vector, with a small Hamming weight wt(y) = ω.
As a result, the RM decoder manipulates almost only zeros which is decoding
into 0. This ciphertext is rejected by the re-encryption phase and the decapsu-
lation returns a random vector as shared key for the IND-CCA2 security. This
security could prevent our attack, however this is not an issue, given that our
distinguisher does not depend on the output of the decapsulation but on the
SCA leakage. Indeed, before the re-encryption, this ciphertext is manipulated
by HQC decryption algorithms, among which the RM decoder, which give us all
the necessary information to recover the secret key.

The RM decoder is independently applied on n1 codewords blocs of size n2

(see Fig. 3), individually retrieving each of the n1 bloc of y leads at recovering
y. Our Oracle allows to recognize the number of errors corrected in each bloc.
The idea is to vary the number of corrected errors by choosing the value of v.
The goal is to find v = y which leads to decode v − y = 0. We show a strategy
to effectively achieve this result.

The Oracle behaviour depends on the Hamming weight of the bloc to be
decoded. Then, we study the support distribution of y among its different blocs.

3.1 Support Distribution of y

The support Supp(x) of a vector x = (x0, · · · , xn) is the location of its non-zero
coordinates (see Eq. (3)). If x is seen as a binary vector, its support is exactly
the locations of the ones and the knowledge of the support is equivalent to the
knowledge of the vector.

Supp(x) = {i ∈ Z |xi �= 0} (3)

The vector y has a length of n bits which is the smallest primitive prime
number greater than n1n2. The primitive prime n is used for the ambient space
in order to thwart structural attacks. However, only the n1n2 first bits, corre-
sponding to the length of the concatenated code, are used during the decoding
code, making the last l = n − n1n2 truncated bits useless. Then, y ∈ F

n
2 can

be seen as the concatenation of two vectors y = (y′,y′′) with y′ ∈ F
n1n2
2 and

y′′ ∈ F
l
2. This particularity prevents us for recovering any information about

Supp(y′′). Fortunately, these bits are not relevant for the decoding step, and
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setting them to 0 is sufficient for a successful decoding. Furthermore, in almost
all cases, wt(y′′) = 0 (see Fig. 1) and in other cases, wt(y′′) is close too zero with
a high probability. The probability P (wt(y′′) = k) can be approximated by:

Qk := P (wt(y′′) = k) ∼=
(

ω

k

)
pk(1 − p)ω−k (4)

where ω = wt(y) and p the probability to draw with replacement a bit in y′

which is equal to p =
|y′|
|y| .

Table 1. A few parameters of HQC and Support Probability Distribution (For each
line, the sum is not equal to one because of the chosen approximation) between y′ and
y′′ following Eq. (4)

λ n n1n2 ω Q0 Q1 Q2 Q≥2

128 17.669 17.664 66 98,15% 1,83% 0,02% ≤ 10−3%

192 35.851 35.840 100 96,98% 2,98% 0,05% ≤ 10−3%

256 57.637 57.600 131 91,93% 7,73% 0,32% ≤ 10−2%

Recovering y′ is enough to call the attack successful. Nevertheless, strategies
exist to deduce the last l bits, for a complete recovery of y. This low Hamming
weight distribution allows to build an exhaustive research for the last l = n−n1n2

bits of y. Alternatively, Schamberger et al. [22], proposes a method in Sect. 3.3 of
their paper to recover Supp(y′′) given the knowledge of Supp(y′) in polynomial
time.

Support Distribution of y’. The vector y′ lives in F
n1n2
2 and the external

decoder manipulates the codeword by bloc of size n1, we can rewrite:

y′ =
(
y′
0,y

′
1, · · · ,y′

n1−1

)
and for all i, y′

i ∈ F
n2
2 (5)

For our attack, the worst case is when y′ is full weight, i.e. wt(y′) = wt(y)
which happens when wt(y′′) = 0 with a high probability (see Fig. 1). Indeed, this
case increases the probability of having blocs with high Hamming weight. Later
we will see that our distinguisher can only distinguish blocs with Hamming
weight up to τ . Since the support distribution of y is almost always in this
unfavorable case, we will only consider it for the following.

The Reed-Muller decoder manipulates each bloc y′
i independently, we calcu-

late the probability Pk such as a randomly sampled bloc y′
i has an Hamming

weight of k (see Eq. (6) and Fig. 2).

Pk := P

(
wt(y′

i) = k
∣∣∣ y $← Rω, i

$← �0, n1 − 1�
)

(6)

From Fig. 2, we observe that the small Hamming weight blocs are mostly
represented. Furthermore, it is relatively rare to sample blocs of weight greater
than or equal to 5. For the following, as an approximation, we consider all blocs
of weight 5 or more in the same class.
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Table 2. A few parameters of HQC and Support Probability Distribution (For each
line, the sum is not equal to one because of the chosen approximation) among the blocs
of y’ following Eq. (6).

λ mul. n1 n2 ω P0 P1 P2 P3 P4 P≥5

128 3 46 384 66 23,44% 34,38% 24,83% 11,77% 4,12% 1,45%

192 5 56 640 100 16,50% 30,00% 27,00% 16,04% 7,07% 3.40%

256 5 90 640 131 23,14% 34,06% 24,87% 12,02% 4,32% 1,59%

Higher Magnitude Error (HME). Expand And Sum is the first decoding
function and realises a classic addition over N. Then, the expanded codeword
lives in �0,mul�. Applied to y, in most cases, the result is in �0, 1� but it happens
that two errors share the same location modulo 128 in a bloc (y′

i). This gives
an error of magnitude 2. These errors induce a slightly different behavior of the
FHT within the same class, affecting the behavior of our Oracle. Fortunately,
these higher magnitude errors happen with a low probability. Equation (7) gives
the probability of having an error of magnitude at least 2.

P (HME) =
n2∑

k=0

P (wt(y′
i) = k) × P (HME | wt(y′

i) = k)

=
n2∑

k=0

Pk × (
1 − P

(
HME | wt(y′

i) = k
))

=
n2∑

k=0

Pk ×
(

1 −
k∏

i=0

n2 − (mul − 1) × i

n2

)
(7)

An HME happens in vector y′ with probabilities 0, 53%, 0, 97% and 0, 65%
for respectively HQC-128, HQC-192 and HQC-256.

3.2 Chosen Ciphertext Attack with Oracle

We use a RM decoding Oracle ORM
i,b which takes as input an HQC ciphertext

(u,v). ORM
i,b is able to determine the number of errors corrected by the RM

decoder in the ith bloc y′
i for i ∈ �0, n1 − 1�. Our oracle works in a given range

and correctly determine the number of corrected errors if it does not exceed a
given threshold τ . The Oracle can be queried for different inputs and returns
b ∈ �0, τ�. Notice that in the case of decoding y, the number of decoded errors
in a bloc y′

i is almost always the Hamming weight wt(y′
i). We describe how to

construct this Oracle ORM
i,b from side-channel leakage in Sect. 4.

Attack Description. Let us focus on a single chosen bloc y′
j , the attack is

identical for other blocs of y. In a first step, the Oracle ORM
j,b is queried to

known the number of errors to correct in y′
j which gives a reference value for
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the next steps. Second, the main idea of the attack is to recursively select vj of
Hamming weight 1 in order to find a collision with the support of y′

j . Finding
a collision implies to modify the number of errors decoded compared to the
reference value and then recover an information about Supp(y′

j). In fact, for a
chosen vj there are two cases we can distinguish with the Oracle:

1. Supp(y′
j)∩Supp(vj) = Supp(vj). Then wt(vj −y′

j) = wt(y′
j)−1, the decoder

will correct one error less than the reference decoding of y′
j .

ORM
j,b (v − y) = ORM

j,b (y) − 1

2. Supp(y′
j) ∩ Supp(vj) = ∅. Then wt(vj − yj) = wt(yj) + 1, the decoder will

correct one error more than the reference decoding of y.

ORM
j,b (v − y) = ORM

j,b (y) + 1

These observations allow to determine the support of y′
j by choosing vj

successively equal to all vectors of Hamming weight 1. By remembering the
locations for which the Oracle outputs 1 less than the reference value ORM

j,b (y),
we are able to determine the entire support Supp(y′

j). Applying this strategy to
all blocs of y′ aims at recovering the entire support Supp(y′).

Divide and Conquer Strategy. As described, the attack requires as many
queries as the number of bits in y′, i.e. n1n2 bits, in order to test all elements
of Hamming weight one. However, given that the RM blocs decoding are inde-
pendent, the attack can be performed in parallel on each bloc. We query the
n1 Oracles ORM

i,b at the same time, leading to a single query. Then, the mini-
mal number of query needed to recover y′ is reduced to the number of bits in
a single bloc, i.e. n2 bits. As a result, targeting HQC-128 (resp. HQC-192 and
HQC-256) requires 384 queries (resp. 640). To know the total number of attack
traces needed, this value is multiplied by the number of attack traces necessary
to determine a single bit.

4 Building Decoding Oracle with a Side-Channel

In this section, we build a RM decoding Oracle that allows to identify the number
of decoded errors. This Oracle is constructed from side-channel leakages and
enables to retrieve the secret key y′, as explained in Sect. 3. We first present
our practical set-up which allows traces measurements. Then we describe our
Oracle and conduct a leakage assessment with Welch t-test. Finally we evaluate
the strength of our Oracle with a different number of training traces and give
the cost and performance of the practical attack.
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Side-Channel Attack Set-up. We realise our measurements on a ARM Cor-
tex M4 micro-controller with a clock frequency of 168 MHz. We record the
side-channel leakage from electromagnetic emanations (EM) with a LANGER
EMV-Technik near field microprobe ICR HH 100-6. Measurements are regis-
tered with a 750M sampling rate oscilloscope ROHDE & SCHWARZ RTO2014.
During acquisitions, the communication between the micro-controller and the
computer is performed through an UART connection. During the acquisitions,
we used an external clock to mitigate the jitter effects among the traces. We
extract the Hadamard transform algorithm from the reference implementation
of HQC [1] of June 2021. We set a dedicated GPIO pin just before the FHT func-
tion to trigger the oscilloscope and reset it after, we will call trace the resulting
EM measurement.

4.1 Building the Oracle

We build the Oracle according to the 6 main classes identified with the support
probability distribution (see Fig. 2). Each of these classes corresponds to a dif-
ferent Hamming weight for y′

i a bloc of y. Each element of class k is created
by randomly sampling its supports, corresponding to k random locations for the
ones. Then, among these classes, the proportion of HME vectors is the same
as in a HQC instance, following Eq. (7). The randomness is provided by the
random generator of the micro-controller. We acquired a set of 10.000 traces
per class used to evaluate the Oracle. These acquisitions were performed in a
random order.

Leakage Assesment. We use a Welch t-test to conduct a leakage assessment
for the Oracle. The t-value between two sets S0 and S1 with their respective
cardinality n0 and n1, mean of μ0 and μ1 and variance of σ0 and σ1 is computed
with the formula from Eq. (8). Usually, a threshold |t| = 4.5 is defined, admitting
a significant statistical difference with a high degree of confidence when this
threshold is exceeded.

t =
μ0 − μ1√(
σ2
0

n0
+

σ2
1

n1

) (8)

We compute the t-values for each class pair in order to characterize the
distinction between them. Results are presented in Fig. 4. For each sub-figure,
we observe the 7 occurrences of the for loop during the FHT (see Algorithm 7).
This test indicates a good level of distinguishability, which could allow to build
a classifier.

Regions of Interest. In the way of the Points of Interest (PoI) selection, the
leakage assessment allows us to select Regions of Interest (RoI). This selection
allows to keep only relevant parts of the traces and to reduce the computation
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(a) Classes 0 and 1 (b) Classes 0 and 2 (c) Classes 0 and 3

(d) Classes 0 and 4 (e) Classes 0 and 5 (f) Classes 1 and 2

(g) Classes 1 and 3 (h) Classes 1 and 4 (i) Classes 1 and 5

(j) Classes 2 and 3 (k) Classes 2 and 4 (l) Classes 2 and 5

(m) Classes 3 and 4 (n) Classes 3 and 5 (o) Classes 4 and 5

Fig. 4. Welch t-test results between each classes using 10, 000 traces of randomly sam-
pled inputs within the classe. The trace correspond to the FHT. −4, 5 and 4, 5 are
plotted with dashed red lines. (Color figure online)

time of our classifier. As we can see, among the seven occurrences of the for loop,
the last one (approx. samples 41, 000 to 48, 000) seems to be very informative
(see Fig. 4a, c, f, h, j, l, m, o). This part of the traces is the first considered RoI
for further studies.

However, this RoI does not seem sufficient to build a complete distinguisher,
indeed, some results show no leakage in the last occurrence (see Figs. 4e, g, i,
n). In practice, using only trace segments in this RoI is not enough to mount an
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attack with a sufficient accuracy. To fill this information gap, we also use another
RoI. In order to create a complete distinguisher between every classes, we also
extract a RoI from the fifth occurrence (approx. samples 27, 300 to 34, 200). This
second RoI allows to distinguish between cases not covered by the first one (see
Figs. 4e, g, i, k, n). For both of these RoI, we keep only the first thousand samples
which significantly reduces the computation time and the memory requirements.

4.2 Results

We build a distinguisher with a Linear Discriminant Analysis (LDA) which is a
linear classifier. We use the LDA version from the sklearn python library [18].
We carry out several times the attack with a different number of training traces
per class, respectively 1, 000, 2, 500, 5, 000, 10, 000, 20, 000 and 40, 000 traces.
The traces are sliced according to the area of interest identified in Sect. 4.1 and
evenly distributed among the target classes.

Theoretically, with a perfect Oracle, recovering a single bit in a given bloc
requires only one trace. Practically, we quickly see that a single attack trace is not
enough to obtain a sufficient success rate (see Fig. 5). Then, we build an attack
with s traces in order to increase the success rate. Each trace is independently
handled by the Oracle and we reconcile the s query outputs with a soft-max

technique. Given (p1, · · · , pτ ) =
s∑

i=1

(p1,i, · · · , pτ,i) the sum of the probabilities

returning by the s instances of the attack for each of the τ classes. The output
of the Oracle is given by b = argmax(p1, · · · , pτ ). We realize the attack several
times with s from 0 to 60, we plot in Fig. 5 the results of these tests.

Attack Success Rate and Cost. Experiments of Fig. 5 show that s = 50
attack traces are enough to reach a perfect success rate on a bit with a training
set of 40, 000 traces per class. We build the attack on our set of measurements
with 40, 000 training traces per class, 240, 000 training traces in total. With this
set of parameters and our specific training and attack set-up, we are able to
recover all bits of y′ with s×n2 = 50×384 = 19, 200 attack traces for HQC-128
(see Sect. 3.2).

5 Countermeasure

A direct countermeasure against RM decoding distinguisher is the used of a
mask. The idea is to hide the sensitive data by dividing its knowledge in several
part. Indeed, if the input c of the FHT satisfies the relation 9,

c =
n∑

i=0

ci (9)

by the linearity of the Hadamard transform, the result is given by Eq. (10).

FHT(c) =
n∑

i=0

FHT(ci) (10)
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Fig. 5. Single bit success rate recovery depending on the number of attack traces s.
Comparison of the success rate between attacks with a different number of training
traces per class.

To create a secure masking scheme, the n − 1 first ci must be sampled uni-
formly at random and the last element cn is chosen to satisfy the relation (9).
The n order mask countermeasure requires to compute n+1 times the FHT. We
give the first order masking Hadamard transform in Algorithm 9.

Algorithm 9. Hadamard Transform with first order mask
Input: expanded codeword c and the multiplicity mul.
Output: expanded codeword transformed structure c

1: c0
$← expanded codeword

2: c1 = c − c0
3: c0 = FHT(c0)
4: c1 = FHT(c1)
5: c = c0 + c1
6: return c

Countermeasure Evaluation. An attacker who would like to target the mas-
ked version of the Hadamard transform would have to target the n shares in order
to retrieve the whole information. Our attack scenario cannot be applied directly
against the shares given that the expanded codewords ci are randomly sampled.
This implies that the shares do not respect the Hamming weight restrictions
imposed by our Oracle.
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(a) Classes 0 and 1 (b) Classes 0 and 2 (c) Classes 0 and 3

(d) Classes 0 and 4 (e) Classes 0 and 5 (f) Classes 1 and 2

(g) Classes 1 and 3 (h) Classes 1 and 4 (i) Classes 1 and 5

(j) Classes 2 and 3 (k) Classes 2 and 4 (l) Classes 2 and 5

(m) Classes 3 and 4 (n) Classes 3 and 5 (o) Classes 4 and 5

Fig. 6. Welch t-test results between each classes using 10, 000 traces of randomly sam-
pled inputs within the classe. The trace correspond to the FHT with the counter-
measure. −4, 5 and 4, 5 are plotted with dashed red lines. (Color figure online)

In spite of this, we evaluate the strength of the counter-measure by repeating
the experiment as in the Sect. 4. We compute the FHT with the first order mask
(see Algorithm 9) on 60, 000 expanded codewords evenly distributed among the
classes. Then, we compute the t-values for each class peer, leading to the results
presented in Fig. 6. We assume that the significant reduction in the number of
observed statistical differences with the Welch t-test ensures that the counter-
measure is effective against our attack.
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6 Conclusion and Future Work

In this paper we present a new side-channel attack on the RMRS version of HQC
which aims at recovering a static secret key. We show that by choosing a certain
ciphertext, a part of the secret key is given as input of the decoding algorithm.
We build a chosen ciphertext attack from this point by slightly modifying the
ciphertext in order to find collision with the secret key. In the paper, we show
a strategy, a query sequence, that allows to find collisions and then recover the
entire secret key.

Our attack is based on a side-channel Oracle that is able to distinguish
between several decoding patterns. We evaluate our Oracle with electromag-
netic side-channel measurements from our Cortex M4 micro-controller set-up
and show that it is easy to build and reliable. Indeed, the best performances of
our Oracle were observed with a trade-off of 40, 000 training traces per classes,
and 50 attack trace to recover a bit on a bloc with a success rate of 1 on our test
set measurements. The independence of the decoding among the different blocs
allows to parallelize the attack and recover all bits of the secret key with 19, 200
attacks traces.

Our attack is a threat to the security of HQC and contributes to the need
of an efficient countermeasure to mitigate such attacks. We propose a simple
masking-based countermeasure in order to thwart our attack that doubles the
run-time of the target function. As a perspective, the number of attack traces
could be reduce by finding more efficient query sequence. For the same purpose,
other functions of HQC could play the role of distinguisher, allowing to improve
the performance or even to build new attacks.
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cache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 286–299. Springer,
Heidelberg (2001). https://doi.org/10.1007/3-540-44709-1 24

https://doi.org/10.1007/3-540-44709-1_24


Isogeny



On Actively Secure Fine-Grained Access
Structures from Isogeny Assumptions

Fabio Campos1,2(B) and Philipp Muth3

1 RheinMain University of Applied Sciences, Wiesbaden, Germany
2 Radboud University, Nijmegen, The Netherlands

campos@sopmac.de
3 Technische Universität Darmstadt, Darmstadt, Germany

philipp.muth@tu-darmstadt.de

Abstract. We present an actively secure threshold scheme in the setting
of Hard Homogeneous Spaces (HHS) which allows fine-grained access
structures. More precisely, we elevate a passively secure isogeny-based
threshold scheme to an actively secure setting. We prove the active secu-
rity and simulatability of our advanced schemes. By characterising the
necessary properties, we open our schemes to a significantly wider field of
applicable secret sharing schemes. Furthermore, we show that Shamir’s
scheme has our generalised properties, and thereby our approach truly
represents a less restrictive generalisation.

Keywords: Post-quantum cryptography · Isogeny-based
cryptography · Threshold cryptography

1 Introduction

The principal motivation for a secret sharing scheme is to split private informa-
tion into fragments and securely distribute these shares among a set of sharehold-
ers. Then, any collaborating set with a sufficient number of participants is able to
reconstruct the shared private information, while the secret remains confidential
to any unauthorised, that is not sufficiently large, subset of shareholders.

Since their introduction in the 1970s s by Blakley [4] and Shamir [15], the
field of secret sharing schemes, information theoretic and computational, has
been studied extensively. In previous years, due to applications in blockchain
and other scenarios, the interest in new developments and applications for secret
sharing schemes has increased.

Post-quantum schemes have, however, only received little attention with
respect to secret sharing. Recently, De Feo and Meyer [11] proposed a key
exchange mechanism and a signature scheme making use of isogeny based public
key cryptography for which the secret key is stored in a Shamir shared way. Their
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approach enables decapsulation for the key exchange mechanism and signing for
the signature scheme in a round-robin way without reconstructing the secret key
in clear for any sufficiently large set of shareholders. Yet in applying Shamir’s
secret sharing scheme they restrict themselves to simple threshold access struc-
tures. Furthermore, their protocols are only passively secure, in that while a
misbehaving shareholder cannot obtain information on the secret key shares of
other shareholders participating in a decapsulation or a signing execution via
maliciously formed inputs, his deviation from the protocol cannot be detected.

We aim to tackle both caveats by proposing an actively secure isogeny based
key exchange mechanism, for which the secret key is secret shared by a trusted
dealer. We further transform the key exchange mechanism into an actively secure
signature scheme with shared secret key.

Our Contribution. Our contribution is manifold. First, we transfer the active
security measures outlined in [2] from their setting of full engagement protocols
to a setting of threshold secret sharing. We thereby open the active security
measures to a wider field of application and improve upon their efficiency sig-
nificantly. Second, we apply the adapted active security measures to propose an
actively secure key exchange mechanism with secret shared secret key. Third, we
present an actively secure signature scheme by applying a Fiat-Shamir transform
to our key exchange mechanism. And fourth, we expand our key encapsulation
mechanism and our signature scheme to a wider field of secret sharing schemes.
For that we characterise the necessary properties for a secret sharing scheme and
give several examples of compatible schemes.

Related Work. Secret sharing schemes were first introduced by Blakley
[4] and Shamir [15]. In both their approaches, secrets from the secret space
Zp := Z mod p for prime p are shared by distributing interpolation points of
randomly sampled polynomials. Damg̊ard and Thorbek [9] presented a secret
sharing scheme with secret space Z. Thorbek [18] later improved their scheme.
Yet their scheme is only computationally confidential, compared to the infor-
mation theoretical confidentiality of Shamir and Blakley’s schemes. Tassa [17]
opened Shamir’s scheme to a more general application by utilising the deriva-
tives of the sharing polynomial to construct a hierarchical access structure,.
These basic secret sharing schemes rely on the dealer providing honestly gener-
ated shares to the shareholders. Verifiable secret sharing schemes eliminate this
drawback by providing the shareholders with the means to verify the correctness
of the received shares with varying overhead. Examples of these are [1,13,16].
With minor efficiency losses, Herranz and Sáez [12] were able to achieve verifiable
secret sharing for generalised access structures. Traverso et al. [19] proposed an
approach for evaluating arithmetic circuits on secret shared in Tassa’s scheme,
that also enabled auditing the results. Cozzo and Smart [7] investigated the pos-
sibility of constructing shared secret schemes based on the Round 2 candidate
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signature schemes in the NIST standardization process1. Based on CSI-FiSh
[3], De Feo and Meyer [11] introduced threshold variants of passively secure
encryption and signature schemes in the Hard Homogeneous Spaces (HHS) set-
ting. Cozzo and Smart [8] presented the first actively secure but not robust
distributed signature scheme based on isogeny assumptions. In [2], the authors
presented CSI-RAShi, a robust and actively secure distributed key generation
protocol based on Shamir’s secret sharing in the setting of HHS, which necessi-
tates all shareholders to participate.

Outline. In Sect. 2 the terminology, primitives and security notions relevant
for this work are introduced. Section 3 presents an actively secure threshold key
exchange mechanism and proves our scheme’s active security and simulatability.
The actively secure signature scheme resulting from applying the Fiat-Shamir-
transform to our key exchange mechanism is discussed in Sect. 4. Finally, the
necessary properties for a secret sharing scheme to be compatible with our key
exchange mechanism and signature scheme are characterised in Sect. 5 in order
to enable applying a more general class of secret sharing schemes.

2 Preliminaries

Notation. Throughout this work we use a security parameter λ ∈ N. It is
implicitly handed to a protocol whenever needed, that is protocols with com-
putational security. Information theoretic schemes and protocols such as secret
sharing schemes used in this work do not require a security parameter.

For an indexed set X = {xi}i∈I , we denote the projection onto a subset
I ′ ⊂ I by XI′ = {xi ∈ X : i ∈ I ′}. The same holds for indexed tuples (xi)i∈I .

2.1 Secret Sharing Schemes

A secret sharing scheme is a cryptographic primitive that allows a dealer to share
a secret among a set of shareholders. An instance is thus defined by a secret space
G, a set of shareholders S and an access structure ΓS . A set S′ ∈ ΓS is called
authorised and can from their respective shares reconstruct a shared secret. If the
instance S is clear from the context, we omit the index in the access structure Γ .
In this work, we consider monotone access structures, that is for any A ⊂ B ⊂ S
with A ∈ Γ , we also have B ∈ Γ .

A secret sharing instance S provides two algorithms: Share and Rec. A dealer
executes S.Share(s) to generate shares s1, . . . , sk of a secret s. A share si is
assigned to a shareholder Pφ(i) via a surjective map φ : {1, . . . , k} → {1, . . . , n}
induced by ΓS . A set of shareholders S′ ∈ ΓS executes

S.Rec
(
{si}Pφ(i)∈S′

)

1 https://csrc.nist.gov/Projects/post-quantum-cryptography/Post-Quantum-
Cryptography-Standardization.

https://csrc.nist.gov/Projects/post-quantum-cryptography/Post-Quantum-Cryptography-Standardization
https://csrc.nist.gov/Projects/post-quantum-cryptography/Post-Quantum-Cryptography-Standardization
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on their respective shares to retrieve a previously shared secret.

Definition 1 (Superauthorised sets). For a secret sharing instance S =
(G,S, ΓS), we call a set S′ ⊂ S superauthorised, if for any P ∈ S′, we have
S′ \ {P} ∈ ΓS . We denote the set of superauthorised sets of shareholders by Γ+

S .

Any superauthorised set is also authorised.

Example 1 (Shamir’s secret sharing). An instance of Shamir’s famous secret
sharing scheme consists of a set of n > 0 shareholders, a secret space Z mod p,
where p is a prime larger than n, and an access structure Γ = {S′ ⊂ S : #S′ ≥ t}
for a threshold t ≤ n. A secret s ∈ Z mod p is shared by handing each shareholder
Pi an interpolation point of a randomly sampled polynomial of degree t−1 with
constant term s. Reconstruction is achieved via Lagrange interpolation, that is

s =
∑

Pi∈S′
Li,S′si =

∑
Pi∈S′

∏
Pj∈S′

j �=i

j

j − i
f(i)

for some S′ ∈ Γ and Lagrange interpolation coefficients Li,S′ . The set of super-
authorised sets of shareholders is

Γ+ = {S+ ⊂ S : #S+ ≥ t + 1}.

2.2 Hard Homogeneous Spaces

We present our key exchange mechanism and signature scheme in the context
of hard homogeneous spaces (HHS). HHS were first discussed by Couveignes [6]
in 2006. He defines a HHS (E ,G) as a set E and a group (G,�) equipped with a
transitive action ∗ : G × E → E . This action has the following properties:

– Compatibility: For any g, g′ ∈ G and any E ∈ E , we have g ∗ (g′ ∗ E) =
(g � g′) ∗ E.

– Identity: For any E ∈ E , i∗E = E if and only if i ∈ G is the identity element.
– Transitivity: For any E,E′ ∈ E , there exists exactly one g ∈ G such that

g ∗ E = E′.

Definition 2 (Notation). For a HHS (E ,G) with a fixed g ∈ G, let p|#G be a
fixed prime. We denote [s] E := gs ∗ E for all s ∈ Zp and all E ∈ E.
The following problems are assumed to be efficiently computable in a HHS (E ,G),
i.e., there exist polynomial time algorithms to solve them:

– Group operations on G (membership, inverting elements, evaluating �).
– Sampling elements of E and G.
– Testing the membership of E .
– Computing the transitive action ∗: given g ∈ G and E ∈ E as input, compute

g ∗ E.
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Whereas the subsequent problems are assumed to be hard in a HHS (E ,G).

Problem 1 (Group Action Inverse Problem (GAIP)). Given two elements
E,E′ ∈ E as input, the challenge is to provide g ∈ G with E′ = g ∗ E. Due
to the transitivity property of HHS given instance of the GAIP has a solution.

Problem 2 (Parallelisation Problem). An instance of the Parallelisation Problem
is defined by a triple (E,E′, F ) ∈ E3 with E′ = g∗E. The challenge is to provide
F ′ with F ′ = g ∗ F .

The intuitive decisional continuation of this problem is as follows.

Problem 3 (Decisional Parallelisation Problem). An instance of the Decisional
Parallelisation Problem is defined by a base element E ∈ E and a triple
(Ea, Eb, Ec) with Ea = [a]E, Eb = [b]E and Ec = [c]E. The challenge is to
distinguish whether c = a + b or c←$Zp was randomly sampled.

Remark 1. It is obvious that the decisional parallelisation problem reduces to
the parallelisation problem, which reduces to the group action inverse problem.

2.3 Threshold Group Action

Let s be a Shamir shared secret among shareholders P1, . . . , Pn, that is each Pi

holds a share si of s, i = 1, . . . , n. To compute E′ = [s] E for an arbitrary but
fixed E ∈ E without reconstructing s, we have an authorised set of shareholders
execute Algorithm 5. If it is executed successfully, we have by the compatibility
property of ∗ and the repeated application of Ek ← [Li,S′si] Ek−1 the result

E#S′
=

[ ∑
Pi∈S′

Li,S′si

]
E = [s] E.

2.4 Piecewise Verifiable Proofs

A piecewise verifiable proof (PVP) is a cryptographic primitive in the context
of hard homogeneous spaces and was first introduced in [2]. It is a compact
non-interactive zero-knowledge proof of knowledge of a witness f ∈ Zq [X] for a
statement

x = ((E0, E1) , s1, . . . , sn) , (2.1)

with statement pieces si = f(i) for i = 0, . . . , n and E1 = [s0] E0 ∈ E . A PVP
provides a proving protocol PVP.P , which takes a statement x of the form (2.1)
and a witness f and outputs a proof (π, {πi}i=0,...,n), where (π, πi) is a proof
piece for si, i = 0, . . . , n. The PVP also provides a verifying protocol PVP.V ,
which takes an index i ∈ {0, . . . , n}, a statement piece si and a proof piece
(π, πi) and outputs true or false. Let R = {(x, f)}, where f is a witness for the
statement x. The projection RI for some I ⊂ {0, . . . , n} denotes (xI , f).
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Definition 3 (Completeness). We call a PVP complete, if, for any (x, f) ∈
R and

(π, {πi}i=0,...,n) ← PVP.P (f, x) ,

the verification succeeds, that is

∀j ∈ {0, . . . , n} : Pr [PVP.V (j, xj , (π, πj)) = true] = 1.

Definition 4 (Soundness). A PVP is called sound if, for any adversary A,
any I ⊂ {0, . . . , n} and any x for which there exists no f with (xI , f) ∈ RI ,

Pr [PVP.V (j, xj , (π, πj)) = true]

is negligible in the security parameter λ for all j ∈ I, where (π, {πi}i∈I) ← A(1λ).

Definition 5 (Zero-knowledge). A PVP is zero-knowledge, if for any I ⊂
{1, . . . , n} and any (x, f) ∈ R, there exists a simulator Sim such that for any
polynomial-time distinguisher A the advantage

∣∣∣Pr
[
ASim(xI)(1λ) = 1

]
− Pr

[
AP (x,f)(1λ) = 1

]∣∣∣

is negligible in the security parameter λ, where P is an oracle that upon input
(x, f) returns (π, {πj}j∈I) with (π, {πj}j=0,...,n) ← PVP.P (f, x).

We refer to [2] for the precise proving and verifying protocols and the security
thereof. In combination they state a complete, sound and zero-knowledge non-
interactive PVP. A prover can hence show knowledge of a sharing polynomial f
to a secret s0 = f(0) with shares si = f(i). In Sect. 3, we adjust [2]’s proving
protocol to our setting of threshold schemes, so that knowledge of a subset of
interpolation points is proven instead of all interpolation points.

2.5 Zero-Knowledge Proofs for the GAIP

We give a non-interactive zero-knowledge proof protocol for an element s ∈ Zp

with respect to the group action inverse problem. That is, a prover shows the
knowledge of s so that E′

i = [s] Ei, for Ei, E
′
i ∈ E and i = 1, . . . ,m, simultane-

ously, without revealing s.
The prover samples bj ∈ Zp and computes Êi,j ← [bj ] Ei for i = 1, . . . ,m

and j = 1, . . . , λ. He then derives challenge bits

(c1, . . . , cλ) ← H
(
E1, E

′
1, . . . , Em, E′

m, Ê1,1 . . . , Êm,λ

)

via a hash function H : E(2+λ)m → {0, 1}λ and prepares the answers rj ←
bj − cjs, j = 1, . . . , λ. The proof π = (c1, . . . , cλ, r1, . . . , rλ) is then published.

The verification protocol is straight forward: given a statement (Ei, E
′
i)i=1,...,m

and a proof π = (c1, . . . , cλ, r1, . . . , rλ), the verifier computes Ẽi,j ← [rj ] Ei if
cj = 0 and Ẽi,j ← [rj ] E′

i otherwise, for i = 1, . . . ,m and j = 1, . . . , λ. He then
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generates verification bits (c̃1, . . . c̃λ) ← H
(
E1, E

′
1, . . . , Em, E′

m, Ẽ1,1 . . . , Ẽm,λ

)

and accepts the proof if (c1, . . . , cλ) = (c̃1, . . . , c̃λ).
We sketch the proving and verifying protocols in Algorithm 6 and Algorithm

7, respectively. Again, we refer to [3] for the proof of completeness, soundness
and zero-knowledge with respect to the security parameter λ.

2.6 The Adversary

We consider a static and active adversary. At the beginning of a protocol execu-
tion, the adversary corrupts a set of shareholders. The adversary is able to see
their inputs and control their outputs. The set of corrupted shareholders cannot
be changed throughout the execution of the protocol.

The adversary’s aim is two-fold. On the one hand it wants to obtain informa-
tion on the uncorrupted parties’ inputs, on the other hand it wants to manipulate
the execution of our protocol towards an incorrect output without detection.

2.7 Communication Channels

Both our schemes assume the existence of a trusted dealer in the secret shar-
ing instance. The shareholders’ communication occurs in the execution of the
decapsulation protocol of our key exchange mechanism and the signing protocol
of our signature scheme.

The communication from the dealer to a shareholder must not be eaves-
dropped upon or tampered with, we hence assume secure private channels
between the dealer and each shareholder. However, the communication between
shareholders need not be kept private, thus we assume a simple broadcast channel
between the shareholders. The means of how to establish secure private channels
and immutable broadcast channels are out of scope of this work.

3 Key Exchange Mechanism

A key exchange mechanism is a cryptographic public key scheme that provides
three protocols: KeyGen, Encaps and Decaps. These enable a party to establish
an ephemeral key between the holder of the secret key. We present our actively
secure key exchange mechanism with private key that is secret shared among
a set of shareholders. An authorised subset can execute the Decaps protocol
without reconstructing the secret key.

3.1 Public Parameters

We fix the following publically known parameters.

– A secret sharing instance S with shareholders S = {P1, . . . , Pn}, secret space
Zp and access structure Γ .
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– A hard homogeneous space (E ,G) with a fixed starting point E0 ∈ E .
– A fixed element g ∈ G with ordg = p for the mapping [·]· : Zp × E → E ; s �→

gsE.

We give our key exchange mechanism in the context of Shamir’s secret sharing
scheme and elaborate possible extensions to other, more general secret sharing
schemes in Sect. 5.

3.2 Key Generation

A public and secret key pair is established by a trusted dealer (even an untrusted
dealer is feasible by employing verifiable secret sharing schemes) executing Algo-
rithm 1. For that he samples a secret key s and publishes the public key
pk ← [s]E0. The secret key s is then shared among the {P1, . . . , Pn} via
S.Share (s). The dealer shares each share si, i = 1, . . . , n, once more. Each share-
holder Pi, i = 1, . . . , n, eventually receives si, {sji, sij}j=1,...,n, that is his share
si of s, the sharing of si and a share of other sj , j �= i.

Algorithm 1: Key generation
Input: S
s ←$Zp

pk ← [s] E0

{s1, . . . , sn} ← S.Share (s)
for i = 1, . . . , n do

{si1, . . . , sin} ← S.Share (si)

publish pk
for i = 1, . . . , n do

send {si, {sij}j=1,...,n, {ski}k=1,...,n} to Pi

This key generation protocol can be regarded as a “two-level sharing”, where
each share of the secret key is itself shared again among the shareholders. While
this is not necessary for De Feo and Meyer’s passively secure protocol, we require
the two-level sharing in ensuring the active security of our key encapsulation
mechanism.

3.3 Encapsulation

With a public key pk ∈ E as input, the encapsulation protocol returns an
ephemeral key K ∈ E and a ciphertext c ∈ E . Our encapsulation protocol is
identical to the protocol of [11], thus we just give a short sketch and refer to De
Feo’s and Meyer’s work for the respective proofs of security.
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Algorithm 2: Encapsulation
Input: pk
b ←$ G
K ← b ∗ pk
c ← b ∗ E0

return (K, c)

3.4 Decapsulation

A decapsulation protocol takes a ciphertext c and outputs a key K. De Feo and
Meyer [11] applied the threshold group action (Algorithm 5) so that an autho-
rised set S′ ∈ Γ decapsulates a ciphertext c and produces an ephemeral key
[s] c = [s] (b ∗ E0) = b ∗ ([s] E0). For that, the shareholders agree on an arbitrary
order of turns. With E0 := c, the kth shareholder Pi outputs Ek = [Li,S′si] Ek−1

for k = 1, . . . ,#S′. The last shareholder outputs the decapsulated ciphertext
E#S′

= [s] c. Their approach is simulatable. It does not leak any information on
the shares si, yet it is only passively secure. Thus, a malicious shareholder can
provide malformed input to the protocol and thereby manipulate the output of
the computation towards incorrect results without the other parties recognising
this deviation from the protocol. We extend their approach to enable the detec-
tion of misbehaving shareholders in a decapsulation. For that we maintain the
threshold group action and apply the PVP and zero-knowledge proof for the
group action inverse problem as layed out in Sect. 2.

3.5 Amending the PVP

In the PVP protocol sketched in Sect. 2, a prover produces a proof of knowl-
edge for a witness polynomial f of the statement ((E0, E1) , s1, . . . , sn) , where
E0 ←$ E , E1 = [s0] E0 and si = f (i) for i = 0, . . . , n. He thereby proves knowl-
edge of the sharing polynomial f of s0 = f (0).

This approach does not agree with the threshold group action, for which
a shareholder Pi’s output in the round-robin approach is Ek ← [Li,S′si] Ek−1

rather than Ek ← [si] Ek−1, where Ek−1 denotes the previous shareholder’s
output. Futhermore, authorised sets need not contain all shareholders. Example
2 illustrates a further conflict with of the PVP with the threshold group action.

Example 2. Let sk be a secret key generated and shared by KeyGen. That is each
shareholder Pi holds

{si, fi, {fj (i)}Pj∈S}.

Also let S′ ∈ Γ be a minimally authorised set executing Algorithm 5, i.e., for any
Pi ∈ S′, S′\{Pi} is unauthorised. Thus, for any arbitrary but fixed s′

i ∈ Zp, there
exists a polynomial f ′

i ∈ Zp [X]k−1 so that f ′
i (j) = Li,S′fi (j) and R′ = [f ′

i (0)]R
for any R,R′ ∈ E and all Pj ∈ S′ \ {Pi}. Therefore, Pi can publish

(
π, {πj}Pj∈S

) ←PVP.P
((

(R,R′) , (Li,S′fi (∗) j)Pj∈S

)
, f ′

i

)
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which is indistinguishable from

PVP.P
((

(E0, E1) , (Li,S′fi (∗) j)Pj∈S

)
, Li,S′fi

)

to S′\{Pi} with E0 ←$ E and E1 = [Li,S′si] E0. Thus, for a minimally authorised
set S′, the soundness of the PVP does not hold with respect to Pi ∈ S′ and fi.

We resolve the conflicts by amending [2]’s PVP protocol, so that a shareholder
Pi ∈ S∗ proves knowledge of a witness polynomial Li,S∗fi for a statement

(
(R,R′) , (fi (j))Pj∈S∗

)
,

to a superauthorised set S∗, where R ←$ E , R′ = [Li,S∗fi (0)]R = [Li,S∗si] R.
The inputs of our amended proving protocol are the proving shareholder’s index
i, the witness polynomial fi, the superauthorised set S∗ ∈ Γ+ and the statement(
(R,R′) , (fi (j))Pj∈S∗

)
. The protocol can be found in Algorithm 8, in which C

denotes a commitment scheme. The verifying protocol in turn has the prover’s
and the verifier’s indices i and j, respectively, a set S∗ ∈ Γ+, a statement piece
xj and a proof piece (π, πj) as input, where xj = (R,R′) ∈ E2 if j = 0 and
xj ∈ Zp otherwise. The verifying protocol is given in Algorithm 9.

It is here, that the two-level sharing we introduced in Sect. 3.2 comes into
play. We will have each shareholder Pi engaged in an execution of Decaps provide
a PVP with respect to its share si of the secret key sk, that is then verified by
each other participating shareholder with its respective share of si.

The definitions of soundness and zero-knowledge for a threshold PVP scheme
carry over from the non-threshold setting in Sect. 2 intuitively, yet we restate the
completeness definition for the threshold setting.

Definition 6 (Completeness in the threshold setting). We call a threshold
PVP scheme complete if, for any S′ ∈ Γ , any (x, f) ∈ R, any Pi ∈ S′ and(
π, {πj}Pj∈S′

) ← PVP.P (i, f, S′, xS′), we have

Pr [PVP.V (i, j, S′, xj , (π, πj)) = true] = 1 for all Pj ∈ S′.

The proofs for soundness, correctness and zero-knowledge for Beullens et al.’s
[2] approach are easily transferred to our amended protocols, thus we do not
restate them here.

We arrive at our decapsulation protocol, executed by a superauthorised set
S∗: The partaking shareholders fix a turn order. A shareholder Pi’s turn consists
of the following steps.

1. If the previous shareholder’s output Ek−1 is not in E , Pi outputs ⊥ and
aborts. The first shareholder’s input E0 is the protocol’s input ciphertext c.

2. Otherwise Pi samples Rk ←$ E and computes R′
k ← [Li,S∗si] Rk.

3. Pi computes and publishes

(
πk, {πk

j }Pj∈S∗
) ← PVP.P

(
i, fi, S

∗,
(
(Rk, R′

k) , (fi (j))Pj∈S∗

))
.
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4. Pi computes Ek ← [Li,S∗si] Ek−1 and the zero-knowledge proof

zk ← ZK.P
(
(Rk, R′

k) ,
(
Ek−1, Ek

)
, Li,S∗si

)
.

He publishes both.
5. Each shareholder Pj ∈ S∗ \ {Pi} verifies

PVP.V
(
i, j, S∗, fi (j) ,

(
πk, πk

j

)) ∧ PVP.V
(
i, 0, S∗, (Rk, R′

k) ,
(
πk, πk

0

))
(3.1)

and
ZK.V

(
(Rk, R′

k) ,
(
Ek−1, Ek

)
, zk

)
. (3.2)

If (3.1) fails, Pj issues a complaint against Pi. If Pi is convicted of cheating by
more than #S∗

/2 shareholders, decapsulation is restarted with an S∗′ ∈ Γ+,
so that Pi �∈ S∗′. If (3.2) fails, the decapsulation is restarted outright with
S∗′ ∈ Γ+, so that Pi �∈ S∗′.

6. Otherwise, Pi outputs Ek and finalises its turn.
7. The protocol terminates with the last shareholder’s E#S∗

as output.

The combination of the PVP and the zero-knowledge proof in steps 3 and 4
ensure, that Pi has knowledge of the sharing polynomial Li,S∗fi and also inputs
Li,S∗fi (0) to compute Ek. We give the precise protocol in Algorithm 3.

Definition 7. A key exchange mechanism with secret shared private key is cor-
rect, if for any authorised set S′, any public key pk and any (K, c) ← Encaps (pk),
we have K = K′ ← Decaps (c, S′) .

The correctness of our key exchange mechanism presented in Algorithm 1, Algo-
rithm 2 and Algorithm 3 follows from the correctness of the threshold group
action (Algorithm 5). Let sk be a secret key and pk = [sk] E0 be the respective
public key, that have been generated by KeyGen, thus each shareholder Pi holds
a share si of sk, i = 1, . . . , n. For an authorised set S′ we therefore have

sk =
∑

Pi∈S′
Li,S′si.

Furthermore, let (K, c) ← Encaps (pk). To show correctness, K′ = K has to
hold, where K′ ← Decaps (c, S′). Now, after executing Decaps (c, S′), we have
K′ = E#S′

emerging as the result of the threshold group action applied to c.
This gives us

K′ =

[ ∑
Pi∈S′

Li,S′si

]
c = [sk] (b ∗ E0) = b ∗ pk = K.

The decapsulation is executed by superauthorised sets S∗ ∈ Γ+ ⊂ Γ . This shows
that our key exchange mechanism is correct.
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Algorithm 3: Decapsulation
Input: c, S∗

E0 ← c
k ← 0
for Pi ∈ S∗ do

if Ek �∈ E then
Pi outputs ⊥ and aborts.

k ← k + 1
Rk ←$ E
R′

k ← [Li,S∗si] Rk(
πk, {πk

j }Pj∈S∗
) ← PVP.P

(
i, fi, S

∗, ((Rk, R′
k), (fi (j))Pj∈S∗)

)

Pi publishes (Rk, R′
k) and

(
πk, {πk

j }Pj∈S∗
)

Ek ← [Li,S∗si] E
k−1

zkk ← ZK.P
(
(Rk, R′

k) ,
(
Ek−1, Ek

)
, Li,S∗si

)

Pi publishes
(
Ek, zkk

)

for Pj ∈ S∗ \ {Pi} do

if ZK.V
(
(Rk, R′

k) ,
(
Ek−1, Ek

)
, zkk

)
= false then

return Decapsulation
(
c, S∗′) with S∗′ ∈ Γ ∧ Pi �∈ S∗′

if PVP.V
(
i, j, S∗, fi (j) ,

(
πk, πk

j

))
= false∨

PVP.V
(
i, 0, S∗, (Rk, R′

k) ,
(
πk, πk

0

))
= false then

Pj publishes fi (j)
if Pi is convicted then

return Decapsulation
(
c, S∗′) with S∗′ ∈ Γ ∧ Pi �∈ S∗′

return K ← Ek

3.6 Security

There are two aspects of security to consider:

– Active security: A malicious shareholder cannot generate his contribution to
the decapsulation protocol dishonestly without being detected. We prove this
by showing that an adversary that can provide malformed inputs without
detection can break the PVP or the zero-knowledge proof of knowledge.

– Simulatability: An adversary that corrupts an unauthorised set of sharehold-
ers cannot learn any information about the uncorrupted shareholders’ inputs
from an execution of the decapsulation protocol. We show this by proving the
simulatability of Decaps.

Active Security

Theorem 1. Let S∗ ∈ Γ+ and let (pk, sk) ← KeyGen be a public/secret key pair,
where sk has been shared. Also let (K, c) ← Encaps (pk). Denote the transcript of
Decaps (c, S∗) by

(
Ek, (Rk, R′

k) ,
(
πk, {πk

j }Pj∈S∗
)
, zkk

)
k=1,...,#S∗ .
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Let Pi ∈ S∗ be an arbitrary but fixed shareholder. If Decaps (c, S∗) terminated
successfully and Pi′ ’s output was generated dishonestly, then there exists an algo-
rithm that breaks the soundness property of PVP or ZK.

Proof. Let Pi′ be the malicious shareholder and let k′ be the index of Pi′ ’s output
in the transcript. Since Decaps (c, S∗) terminated successfully, we have

PVP.V
(
i′, j, S∗, fi′ (j) ,

(
πk′

, πk′
j

))
=true (3.3)

PVP.V
(
i′, 0, S∗, (Rk′ , R′

k′) ,
(
πk′

, πk′
0

))
=true (3.4)

ZK.V
((

Ek′−1, Ek′)
, (Rk′ , R′

k′) , zkk′)
=true (3.5)

for all Pj ∈ S∗ \ {Pi′}. Ek′
was generated dishonestly, thus we have

Ek′
= [α] Ek′−1, for some α �= Li′,S∗si′ .

We distinguish two cases: R′
k′ �= [α] Rk′ and R′

k′ = [α] Rk′ .
In the first case, Pi′ published a zero-knowledge proof zkk′

so that (3.5) holds,
where Ek′

= [α] Ek′−1 yet R′
k′ �= [α] Rk′ . Pi′ thus broke the soundness property

of the zero-knowledge proof.
In the second case, Pi′ published

(
πk′

, {πk′
j }Pj∈S∗

)
so that (3.3) and (3.4)

hold for all Pj ∈ S∗ \ {Pi′} and for j = 0. Thus, Pi′ proved knowledge of a
witness polynomial f ′ with

f ′ (j) = Li′,S∗fi′ (j) (3.6)

for all Pj ∈ S∗ \ {Pi′} and R′
k′ = [f ′ (0)]Rk′ , that is f ′ (0) = α. Since f ′ has

degree at most k − 1, it is well-defined from (3.6). Thus, we have f ′ ≡ Li′,S∗fi′ ,
where fi′ is the polynomial with which si′ was shared, i.e., fi′ (0) = si′ . This
gives us α = f ′ (0) = Li′,S∗fi′ (0) = Li′,S∗si′ . We arrive at a contradiction,
assuming the soundness of the PVP.

Simulatability. We show that an adversary who corrupts an unauthorised sub-
set of shareholder does not learn any additional information from an execution
of the decapsulation protocol.

Definition 8 (Simulatability). We call a key exchange mechanism simulat-
able, if for any HHS (E ,G) with security parameter λ and any compatible secret
sharing instance S, there exists a polynomial-time algorithm Sim so that, for any
polynomial-time adversary A the advantage

Advdist−transcript
A,Sim ((E ,G) ,S) :=

∣∣∣∣Pr
[
Expdist-transcriptA,Sim (S)

]
− 1

2

∣∣∣∣

in the security game Expdist-transcriptA,Sim (S) (Algorithm 10) is negligible in λ.
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Theorem 2. If the PVP protocol and the GAIP ZK protocol employed are zero-
knowledge, then the decapsulation protocol (Algorithm 3) is simulatable.

Proof. We give a finite series of simulators, the first of which simulates the
behaviour of the uncorrupted parties faithfully and the last of which fulfills the
secrecy requirements. This series is inspired by the simulators, that [2] gave for
the secrecy proof of their key generation algorithm, yet differs in some significant
aspects. The outputs of the respective simulators will be proven indistinguish-
able, hence resulting in the indistinguishability of the first and last one. As a
slight misuse of the notation, we denote the set of corrupted shareholders by A,
where A is the adversary corrupting an unauthorised set of shareholders. This
means Pi is corrupted iff Pi ∈ A.

The input for each simulator is a ciphertext c, a derived key K and the
adversary’s knowledge after KeyGen was successfully executed, that is

{si, fi, {fj (i)}Pj∈S∗\A}Pi∈A.

1. The adversary corrupted an unauthorised set A, hence each share of the
secret key is uniformly distributed from his view. Sim1 samples a polynomial
f ′

i ∈ Zp [X]k−1 with
∀Pj ∈ A : f ′

i (j) = fi (j)

uniformly at random for each Pi ∈ S∗ \A. Since A is unauthorised, f ′
i exists.

Sim1 then proceeds by honestly producing the output of each Pi ∈ S∗ \ A
according to the decapsulation protocol, i.e., it samples Rk ←$ E , computes
R′

k ← [Li,S∗f ′
i (0)]Rk and outputs

PVP.P
(
i, f ′

i , S
∗,

(
(Rk, R′

k) , (f ′
i (j))Pj∈S∗

))
,

Ek ← [Li,S∗f ′
i (0)]Ek−1

and
ZK.P

(
(Rk, R′

k) ,
(
Ek−1, Ek

)
, Li,S∗f ′

i (∗) 0
)
,

where k is the index of Pi’s output in the transcript. Since, for all Pi ∈
S∗ \ A, the real share si = fi (0) of Pi is information theoretically hidden
to the adversary, the resulting transcript is identically distributed to a real
transcript.

2. Let i′ denote the index of the last honest party in the execution of the decap-
sulation protocol and k′ the index of its output. Sim2 behaves exactly as Sim1

with the exception, that it does not compute the PVP itself but calls the simu-
lator SimPVP for the PVP to generate the proof

(
πk′

, {πk′
j }

)
for the statement(

(Rk′ , R′
k′) , (fi′ (j))Pj∈S∗

)
. Since the PVP is zero-knowledge, Sim2’s output

is indistinguishable from that of Sim1.
3. Sim3 behaves identical to Sim2 apart from not generating the zero-knowledge

proof for Pi′ itself, but outsourcing it to the simulator for the zero-knowledge
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proof. That is Sim3 hands tuples (Rk′ , R′
k′) and

(
Ek′−1, Ek′

)
to SimZK

and publishes its answer as the zero-knowledge proof. With ZK being zero-
knowledge, the output of Sim3 is indistinguishable from that of Sim2.

4. The final simulator Sim4 enforces the correct decapsulation output, that is
E#S∗

= K. Since, for Pj ∈ A, sj was provided as input and Pi′ is the last
honest shareholder in the order of decapsulation execution, Sim4 computes

∑
Pj∈S′

Lj,S∗sj ,

where S′ contains the shareholders, whose turn is after Pi′ ’s. To achieve the
correct output of the decapsulation E, Sim4 thus sets

Ek′ ←
⎡
⎣−

∑
Pj∈S′

Lj,S∗sj

⎤
⎦E

instead of Ek′ ← [Li′,S∗s′
i′ ] Ek′−1. Assuming the soundness of the PVP as well

as of the zero-knowledge proof, this guarantees the result to be E#S∗
= E,

since

E#S∗
=

⎡
⎣ ∑

Pj∈S′
Lj,S∗sj

⎤
⎦Ek′

= E

holds. It remains to show, that the output of Sim4 cannot be distinguished
from that of Sim3. The following reasoning is similar to that of [2], yet for
completeness we give a reduction B′, that uses a distinguisher A′, that distin-
guishes Sim3 from Sim4, to break the decisional parallelisation problem. We
highlight the necessary modifications.
Let (Ea, Eb, Ec) be an instance of the decisional parallelisation problem with
base element c. B′ computes

Ek′ ←
⎡
⎣ ∑

Pj∈S∗\(S′∪{Pi′})
Lj,S∗sj

⎤
⎦Ea.

With si′ looking uniformly distributed from A’s view, this choice of Ek′
is

indistinguishable from Ek′
= [Li′,S∗s′

i′ ] Ek′−1. B′ furthermore does not sam-
ple Rk′ ←$ E but puts Rk′ ← Eb and R′

k′ ← Ec. The resulting transcript is
handed to A′ and B′ outputs whatever A′ outputs.
Comparing the distributions, we see that

Ek′
= [a] Ek′−1 = [a]

⎛
⎝

⎡
⎣ ∑

Pj∈S∗\(S′∪{Pi′})
Lj,S∗sj

⎤
⎦ c

⎞
⎠

if and only if Ea = [a]c, where sj := s′
j for Pj �∈ A. Furthermore, R′

k′ = [a]Rk′

is equivalent to Ec = [a]Eb. In the case of Ea = [a]c and Ec = [a]Eb, the



390 F. Campos and P. Muth

transcript handed to A′ is identically distributed to Sim3’s output. If, on the
other hand, (Ea, Eb, Ec) is a random triple, then the transcript follows the
same distribution as Sim4’s output. B′ thus breaks the DPP with the same
advantage as A′ distinguishes Sim3 from Sim4.

Sim4 outputs a transcript of the decapsulation protocol with input c and
output K that cannot be distinguished from the output of Sim1, which is indis-
tinguishable from a real execution protocol.

3.7 Efficiency

Each shareholder engaged in an execution of the decapsulation protocol has
one round of messages to send. The messages of the k-th shareholder consist
of the tuple (Rk, R′

k), a PVP proof
(
πk, {πk

j }Pj∈S∗
)
, the output Ek and the

zero-knowledge proof zk. Thus, the total size of a shareholder’s messages is

2x + 2c + λk log p + 2λ(#S∗) + x + λk log p + λ

= 3x + 2c + λ (1 + 2(#S∗) + 2k log p)

where x is the size of the bit representation of an element of E and c is the
size of a commitment produced in PVP.P . Assuming x, c and the secret sharing
parameters k and p to be constant, the message size is thus linear in the security
parameter λ with moderate cofactor.

4 Actively Secure Secret Shared Signature Protocols

We convert the key exchange mechanism in Algorithm 1, Algorithm 2 and Algo-
rithm 3 into an actively secure signature scheme with secret shared signing key.

A signature scheme consists of three protocols: key generation, signing and
verifying. We transfer the unmodified key generation protocol from the key
exchange mechnism in Sect. 3 to our signature scheme. The signing protocol
is derived from the decapsulation protocol (Algorithm 3) by applying the Fiat-
Shamir-transformation, the verifying protocol follows straightforward. The pro-
tocols are given in Algorithm 4 and Algorithm 11.

We concede, that applying active security measures to a signature scheme to
ensure the correctness of the resulting signature is counter-intuitive, since the
correctness of a signature can easily be checked through the verifying proto-
col. Yet verification returning false only shows that the signature is incorrect, a
misbehaving shareholder cannot be identified this way. An actively secure sig-
nature scheme achieves just that. An identified cheating shareholder can hence
be excluded from future runs of the signing protocol.

Similar to [3], the results from [10] on Fiat-Shamir in the QROM can be
applied to our setting as follows. First, in the case without hashing, since the
sigma protocol has special soundness [3] and in our case perfect unique reponses,
[10] shows that the protocol is a quantum proof of knowledge. Further, in the case
with hashing, the collapsingness property implies that the protocol has unique
responses in a quantum scenario.
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Algorithm 4: Secret Shared Signing Algorithm
Input: m, S∗
(
E0

1 , . . . , E0
λ

) ← (E0, . . . , E0)
k ← 0
for Pi ∈ S∗ do

k ← k + 1
for l ∈ 1, . . . , λ do

Pi samples bil ←$Zq [X]≤k−1

Pi publishes Rk
il ←$ E

Pi publishes R′
il

k ← [bil (0)] Rk
il

Pi publishes
(
π, {πj}Pj∈S∗

) ←
PVP.P

(
i, bil, S

∗,
((

Rk
il, R

′
il

k
)

, (bil (∗) l)Pj∈S∗

))

Pi outputs Ek
l ← [bil (0)] Ek−1

l

Pi publishes zk ← ZK.P
((

Rk
il, R

′
il

k
)

,
(
Ek−1

l , Ek
l

)
, bil (0)

)

if ZK.V
((

Rk
il, R

′
il

k
)

,
(
Ek−1

l , Ek
l

)
, zk

)
= false then

restart without Pi

(c1, . . . , cλ) ← H
(
E#S∗

1 , . . . , E#S∗
λ , m

)

for Pi ∈ S∗ do
for l ∈ 1, . . . , λ do

Pi outputs zil = bil − cl · Li,S∗ · si

for Pj ∈ S∗ do
Pj computes b′

il (j) ← zil (j) + clLi,S∗fi (j)
and verifies

PVP.V (i, j, S∗, b′
il (∗) j, π, πj) ∧ PVP.V

(
i, 0, S∗,

(
Rk

il, R
′
il

k
)

, π, π0

)

if Pi is convicted of cheating then
restart without Pi

for l ∈ 1, . . . , λ do
zj ← ∑

Pi∈S∗ zij

return ((c1, . . . , cλ) , (z1, . . . , zλ))

4.1 Instantiations

As a practical instantiation, we propose the available parameter set for CSIDH-
512 HHS from [3]. Currently no other instantiation of the presented schemes
seems feasible in a practical sense. Furthermore, according to recent works [5,14]
CSIDH-512 may not reach the initially estimated security level.
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5 Generalising the Secret Sharing Schemes

We constructed the protocols above in the context of Shamir’s secret sharing
protocol [15]. The key exchange mechanism in Sect. 3 as well as the signature
scheme in Sect. 4 can be extended to more general secret sharing schemes. In the
following, we characterise the requirements that a secret sharing scheme has to
meet in order to successfully implement the key exchange mechanism and the
signature scheme.

5.1 Compatibility Requirements

Definition 9 (Independent Reconstruction). We say a secret sharing
instance S = (S, Γ,G) is independently reconstructible, if, for any shared secret
s ∈ G, any S′ ∈ Γ and any shareholder Pi ∈ S′, Pi’s input to reconstructing s
is independent of the share of each other engaged shareholder Pj ∈ S′.

A secret sharing scheme compatible with our key exchange mechanism and sig-
nature scheme has to be independently reconstructible, since each shareholder’s
input into the threshold group action is hidden from every other party by virtue
of the GAIP.

Definition 10 (Self-contained reconstruction). An instance S = (S, Γ,G)
of a secret sharing scheme is called self-contained, if, for any authorised set S′,
the input of any shareholder Pi ∈ S′ in an execution of Rec is an element of G.

It is necessary, that G = Zp for some prime p holds to enable the mapping
· �→ [·]. This requirement may be loosened by replacing · �→ [·] appropriately.
To enable two-level sharing, it has to hold that for a share si ∈ S.Share (s) of a
secret s, si ∈ G holds. The secret sharing scheme also has to allow for a PVP
scheme, that is compatible with a zero-knowledge proof for the GAIP.

5.2 Examples of Secret Sharing Schemes

– It is evident, that Shamir’s approach fulfills all aforementioned requirements.
In fact, the two-level sharing and the PVP have been tailored to Shamir’s
polynomial based secret sharing approach.

– Tassa [17] extended Shamir’s approach of threshold secret sharing to a hierar-
chical access structure. To share a secret s ∈ Zp with prime p, a polynomial f
with constant term s is sampled. Shareholders of the top level of the hierarchy
are assigned interpolation points of f as in Shamir’s scheme. The k-th level of
the hierarchy receives interpolation points of the k − 1st derivative of f . The
shares in Tassa’s scheme are elements of Zp themselves. The key generation
(Algorithm 1) can easily be transferred to this setting, as each shareholder
receives a description of the polynomial utilised in sharing his share. Hence all
derivatives and their respective interpolation points can easily be computed.
Reconstructing a shared secret is achieved via Birkhoff interpolation, the exe-
cution of which is independent and self-contained. The zero-knowledge proof



On Actively Secure Access Structures from Isogeny Assumptions 393

(Algorithm 6 and Algorithm 7) as well as the piecewise verifiable proof (Algo-
rithm 8 and Algorithm 9) thus directly transfer to Tassa’s approach utilising
the appropriate derivatives in the verifying protocols. The decapsulation and
the signing protocols hence can be executed with adjustments only to the
verifying steps.

– In 2006, Damgard and Thorbek proposed a linear integer secret sharing
scheme [9] with secret space Z. Given an access structure Γ , a matrix M is
generated in which each shareholder is assigned a column so that iff S′ ∈ Γ ,
the submatrix MS′ has full rank. A secret s is shared by multiplying a random
vector v with first entry s with M and sending the resulting vector entries to
the respective shareholders. Reconstruction follows intuitively. Their scheme
hence further generalises Tassa’s with respect to secret space and feasible
access structures. With the secret space Z their approach is not compati-
ble with the mapping · �→ [·] and our PVP scheme. Thus, neither our key
exchange mechanism nor our signature scheme can in its current form be
instantiated with Damgard’s and Thorbek’s scheme.

6 Conclusion

In this work, we presented an actively secure key exchange mechanism based
on Shamir’s secret sharing scheme and derived a signature scheme from it.
The active security measures consist of a piecewise verifiable proof and a zero-
knowledge proof for the GAIP, that in combination prove the knowledge of the
correct share of the secret key and ensure its use in the protocol. For that we
reworked the piecewise verifiable proof and zero-knowledge proof introduced in
[2] to fit the threshold setting of Shamir’s secret sharing and applied it to the
threshold group action of [11]. Active security and simulatability were proven
under the assumption of hardness of the decisional parallelisation problem.

Furthermore, we characterised the properties necessary for a secret sharing
scheme in order for our key exchange mechanism and signature scheme to be
based on it. We gave examples and counter-examples of secret sharing schemes
compatible with our approach to demonstrate its limits. We thereby demon-
strated that cryptographic schemes with secret shared private key in the HHS
setting are not limited to threshold schemes, but applicable to more general
access structures.

Acknowledgements. We thank Lena Ries, Luca De Feo, and Michael Meyer for
inspiring discussions. Philipp Muth was funded by the Deutsche Forschungsgemein-
schaft (DFG) – SFB 1119 – 236615297.
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Appendix A Algorithms

Algorithm 5: Threshold group action
Input: E,S′

E0 ← E
k ← 0
for Pi ∈ S′ do

if Ek �∈ E then
Pi outputs ⊥ and aborts.

else
k ← k + 1
Pi outputs Ek ← [Li,S′si] Ek−1

return Ek

Algorithm 6: The ZK proving protocol for the GAIP
Input: s, (Ei, E

′
i)i=1,...,m

for j = 1, . . . , λ do
bj ←$Zp

for i = 1, . . . , m do
Êij ← [bj ]Ei

(c1, . . . , cλ) ← H
(
E1, E

′
1, . . . , Em, E′

m, Ê1,1, . . . , Êm,λ

)

for j = 1, . . . , m do
rj ← bj − cjs

return π ← (c1, . . . , cλ, r1, . . . , rλ)

Algorithm 7: The ZK verifying protocol for the GAIP
Input: π, (Ei, E

′
i)i=1,...,m

Parse (c1, . . . , cλ, r1, . . . , rλ) ← π
for i = 1, . . . , m and j = 1, . . . , λ do

if cj == 0 then
Ẽi,j ← [rj ] Ei

else
Ẽi,j ← [rj ] E′

i

(c′
1, . . . , c

′
λ) ← H

(
E1, E

′
1, . . . , Em, E′

m, Ẽ1,1, . . . , Ẽm,λ

)

return (c1, . . . , cλ) == (c′
1, . . . , c

′
λ)
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Algorithm 8: Proving protocol of the threshold PVP

Input: i, f, S∗,
(
(E0, E1), (fi (j))Pj∈S∗

)

for l ∈ 1, . . . , λ do
bl ←$ZN [x]≤k−1

Êl ← [bl (0)] E0

y0, y
′
0 ←$ {0, 1}λ

C0 ← C
(
Ê1‖ . . . ‖Êλ, y0

)

C′
0 ← C (E0‖E1, y

′
0)

for Pj ∈ S∗ do

yj , y
′
j ←$ {0, 1}λ

Cj ← C (b1 (∗) j‖ . . . ‖bλ (∗) j, yj)
C′

j ← C (
Li,S∗ · fi (j) , y′

j

)

C ← (Cj)Pj∈S∗

C′ ← (
C′

j

)
Pj∈S∗

c1, . . . , cλ ← H (C, C′)
for l ∈ 1, . . . , λ do

rl ← bl − cl · Li,S∗ · f

r ← (r1, . . . , rλ)(
π, {πj}Pj∈S∗

) ← (
(C, C′, r) , {(

yj , y
′
j

)}Pj∈S∗
)

return
(
π, {πj}Pj∈S∗

)

Algorithm 9: Verifying protocol of the threshold PVP
Input: i, j, S∗, xj , (π, πj)
parse (C, C′, r) ← π
parse

(
yj , y

′
j

) ← πj

c1, . . . , cλ ← H (C, C′)
if j == 0 then

if C′
j �= C (

xj , y
′
j

)
then

return false
for l ∈ 1, . . . , λ do

Ẽl ← [rl (0)] Ecl

return C0 == C
(
Ẽ1‖ . . . ‖Ẽλ, y0

)

else
if C′

j �= C (
Li,S∗xj , y

′
j

)
then

return false
return Cj == C (r1 (∗) j + c1 · Li,S∗ · xj‖ . . . ‖rλ (∗) j + cλ · Li,S∗ · xj , yj)
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Algorithm 10: The security game Expdist-transcriptA,Sim (S)

Input: S
b ←$ {0, 1}
S∗ ←$ Γ+

S′ ←$ 2S∗ \ Γ({si, fi, fj (i)}Pi,Pj∈S , pk
) ← KeyGen (S)

(K, c) ← Encaps (pk)
t0 ← Sim

(K, c, {si, fi, fj (i)}Pi∈S′,Pj∈S

)

E0 ← E0, k ← 0
for Pi ∈ S∗ do

k ← k + 1

Ek ← [Li,S∗si] E
k−1

Rk ←$ E
R′

k ← [Li,S∗si] Rk
(
πk, {πk

j }Pj∈S∗
) ← PVP.P

(
i, fi, S

∗,
(
(Rk, R′

k) , (Li,S∗fi (j))Pj∈S∗

))

zkk ← ZK.P
(
(Rk, R′

k) ,
(
Ek−1, Ek

)
, Li,S∗si

)

t1 ← (
Ek,

(
πk, {πk

j }Pj∈S∗
)
, zkk

)
k=1,...,#S∗

b′ ← A (tb)
return b == b′

Algorithm 11: Signature verification protocol
Input: m, s, pk
parse (c1, . . . , cλ, z1, . . . , zλ) ← s
for j = 1, . . . , λ do

if cj == 0 then

E′
j ← [zj ] E0 =

[∑
Pi∈S∗ bij

]
E0

else

E′
j ← [zj ] pk =

[∑
Pi∈S∗ bij − Li,S∗si + s

]
E0

(c′
1, . . . , c

′
λ) ← H (E′

1, . . . , E
′
λ, m)

return (c1, . . . , cλ) == (c′
1, . . . , c

′
λ)
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Abstract. We cryptanalyse the isogeny-based public key encryption
schemes SHealS and HealS, and the key exchange scheme HealSIDH of
Fouotsa and Petit from Asiacrypt 2021.

1 Introduction

An important problem is to have an efficient and secure static-static key exchange
protocol or public key encryption (PKE) from isogenies. A static-static protocol
enables participants to execute the desired primitives without changing the pub-
lic keys from time to time. This is possible and natural using CSIDH [CLM+18],
which has been used to construct several competitive isogeny-based crypto-
graphic primitives [BKV19,MOT20,EKP20,LGd21,BDK+22] while the coun-
terparts are missing in the SIDH-based constructions. However due to subexpo-
nential attacks on CSIDH based on the Kuperberg algorithm [Kup05,Pei20],
SIDH-related assumptions [JD11] might provide a more robust foundation1.
Hence, an efficient protocol with a robust underlying assumption from isoge-
nies is still an open problem.

The main bottleneck for SIDH-family schemes to achieve the static-static
property boils down to the adaptive GPST attack [GPST16]. The attack enables
malicious Bob to extract Alice’s secret key bit by bit from each handshake and
vice versa. The known countermeasures against the attack are to embed a zero-
knowledge proof [UJ20] or to utilize the k-SIDH method [AJL17]. However,
these countermeasures also inevitably incur multiple parallel isogeny computa-
tions so that the deduced schemes are not practical. To resolve this, Fouotsa and
Petit [FP21] (Asiacrypt’21) presented a variant of SIDH with a novel key vali-
dation mechanism by using the commutativity of the isogeny diagram [Leo20].
The scheme requires fewer isogeny computations than SIKE [ACC+17] with the
prime number doubled in length which still is far more efficient than the other
known abovementioned solutions. In [FP21], it is claimed that the work gives the
static-static key exchange and PKE solutions from isogenies which are immune
to any adaptive attacks.

1 We remark that the confidence of the SIDH-based protocols is still under debate due
to the recent advance given by Castryck and Decru [CD22].

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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In this work we refute the claim by presenting an adaptive attack against the
protocols presented in [FP21]. Our attack builds on the flaw in the key validation
mechanism, which is the core result [FP21] to construct SHealS, HealS, and
HealSIDH. The attack can be viewed as a simple tweak of the GPST attack
and, surprisingly, it takes the same number of oracle queries as the GPST attack
against SIDH to adaptively recover a secret key. In other words, the additional
key validation mechanism not only slows down the protocol with respect to the
original SIDH scheme but also gives no advantage to the scheme in preventing
adaptive attacks.

1.1 Concurrent Works

An exciting advance in isogeny cryptanalysis given by Castryck and Decru
[CD22] gives a polynomial time key-recovery attack against the original SIDH
[JD11] by exploiting the torsion points and the known endomorphism ring of
E0. The current version of the attack does not run in polynomial time against
SHealS and HealS where the endomorphism ring is assumed to be unknown, as a
potential patch suggested in [CD22] using a trusted set-up for the public curve.
Whether the Castryck-Decru attack can be extended to the unknown endomor-
phism and run in polynomial time, of course, is worthwhile to be investigated
further before jumping to conclusions.

1.2 Technical Overview

The cornerstone of our attack is the flaw originating in the proof of the main
theorems for the key validation mechanism (Theorems 1 and 2 in [FP21]). The
main idea of the mechanism exploits the nontrivial commutativity of the SIDH
diagram [Leo20] (i.e. φ′

AφB = φ′
BφA when Alice and Bob both behave honestly).

For a given curve E0, a natural number b and a basis {P2, Q2} for E0[4a] from
the public parameter, the key validation mechanism checks the validity of three
following relations:

e4a(Ra, Sa) = e4a(P2, Q2)3
b

,

φ′
A(Ra) = [e1]Rab + [f1]Sab ∈ EAB ,

φ′
A(Sa) = [e2]Rab + [f2]Sab ∈ EAB ,

where φ′
A is an isogeny from EB with kernel 〈[2a]Ra + [α2a]Sa〉 ⊂ EB , {Ra, Sa}

and {Rab, Sab} are bases for EB [4a] and EAB [4a] respectively, (Ra, Sa, Rab, Sab,
EB , EAB) is the input given by Bob, and (α, e1, f1, e2, f2) is Alice’s secret key.
The first equation comes from the relations between isogenies and the Weil
pairing. The last two equations are derived from the commutativity of the SIDH
diagram [Leo20].

These relations will be satisfied when Bob produces the input honestly. In the
security analysis in [FP21], to make another valid input, which is not obtained by
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taking negations of the curve points, is equivalent to solve four linear equations
with four unknown variables (e1, f1, e2, f2) over the ring Z/4a

Z. Furthermore,
Bob’s input also has the restriction that e4a(Ra, Sa) = e4a(P2, Q2)3

b

and φ′
A

might vary with the choice of Ra and Sa. Therefore, it is deduced that Bob,
without knowing Alice’s secret, is not able to produce another valid input, which
is not obtained by taking negations of the original input. In this way, since Bob,
restricted by the mechanism, behaves honestly, the cryptosystem will be secure
based on the hardness assumption.

However, for an adaptive attack, what malicious Bob wants to exploit is
that Alice’s behaviour is dependent on the secret. The proof in [FP21] neglects
the spirit of the adaptive attack where malicious Bob can learn the desired

information adaptively. For example, write M =
(

e1 f1
e2 f2

)
∈ M2×2(Z/4a

Z),u =

(Ra Sa)T and v = (Rab Sab)T . We may therefore abuse the notation by writing

φ′
Au = Mv. As we will show in Sect. 3, by considering matrices P1 =

(
1 0

22a−1 1

)

and P2 = I2, the relation P1M = MP2 holds if and only if e1 = f1 = 0
mod 2. Hence, on input (R′

a, S′
a, R′

ab, S
′
ab, EB , EAB) where (R′

a S′
a)T = P1u

and (R′
ab S′

ab)
T = P2v the key validation mechanism will pass if and only

if φ′
AP1u = MP2v if and only if e1 = f1 = 0 mod 2. Note that because

det(P1) = 1 and (2a 2a)P1 = (c c) for some c ∈ Z2a , the Weil pairing check will
also pass and the isogeny used by the mechanism is still φ′

A. In this way, Bob
learns one bit information of e1 and f1. Moreover, as we will show in Sect. 3,
this is enough to recover the least significant bit of α.

On top of that, Bob can utilize the GPST attack in a “reciprocal” sense to
extract further information further. If the least significant bit of α, denoted by
α0, is 1, the secret α is invertible over the ring Z/2a

Z. By further replacing Ra

with R′
a = Ra+[22a−2]Ra−[22a−2α0]Sa, the validity of the second relation in the

mechanism depends on the second least significant bit of α. However, e4a(R′
a, Sa)

will never satisfy the first relation. To overcome this, Bob will replace Sa with
[α−1

0 22a−2]Ra + [1 − 22a−2]Sa which can be used to extract the second least
significant bit of α−1, because the equality of the third equation depends on
the second least significant bit of α−1. Remark that, the isogeny used in the
key validation mechanism is not necessarily the same φ′

A if the kernel is not
〈[2a]Ra +[α2a]Sa〉. In Sect. 4, we present the attack in details including the case
where α is even.

Structure of this Paper. We begin in Sect. 2 with some preliminary back-
ground on elliptic curves, isogenies, a brief outline the fundamental scheme of
[FP21], together with a few immediate properties of the scheme. We then intro-
duce the method of using commutativity of matrices to extract the least signifi-
cant bit of Alice’s secret in Sect. 3. Based on the least significant bit information,
a tweak of the GPST attack to recursively and adaptively recover Alice’s secret
is then deduced in Sect. 4. A brief summary is made in Sect. 5. We also provide
in Appendix A a generalized attack against mechanism using commutativity of
isogenies.
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2 Preliminaries

Notations. We begin by introducing some notations that will be used through-
out the paper. Let O represent the point at infinity of an elliptic curve, N be the
set of natural numbers, and Z be the set of integers. For n ∈ N, let Zn defined
to be Z/nZ and Fn be the finite field of order n. For convenience, when we
write u ∈ Zn, we consider u is a representative taken from {0, · · · , n − 1} ⊂ Z.
Similarly, when we write u mod n, we consider the unique representative taken
from {0, · · · , n − 1} ⊂ Z. Also, for n ∈ N, en(·, ·) represents the Weil en-pairing.

2.1 Elliptic Curves and Isogenies

An elliptic curve is a rational nonsingular curve of genus one with a distinguished
point at infinity denoted by O. An elliptic curve with O forms an additive
commutative group. Let p be an odd prime number and q be a power of p. If E
is an elliptic curve defined over Fq, then E(Fq), collecting Fq-rational points of
E and O, is a finite subgroup of E. Moreover, E is said to be supersingular if the
endomorphism ring of E is a maximal order in a quaternion algebra. For n ∈ N

coprime with p, the n-torsion subgroup E[n], collecting points of order dividing
n, is isomorphic to Zn ⊕ Zn. The Weil en-pairing en(·, ·) is bilinear, alternating
and nondegenerate.

An isogeny is a morphism between elliptic curves preserving the point at
infinity. The kernel of an isogeny is always finite and defines the isogeny up to
a power of the Frobenius map. We restrict our attention to separable isogenies
(which induce separable extensions of function fields over Fq) between supersin-
gular elliptic curves defined over Fq. Given a finite subgroup S of E, there exists
a unique separable isogeny with kernel S from E to the codomain denoted by
E/S which can be computed via Vélu’s formulas. We refer to [Sil09] to get more
exposed to the elliptic curve theory.

2.2 Brief Outline of HealSIDH Key Exchange

Both SHealS and HealS, introduced in [FP21], are PKE schemes building on the
key exchange scheme HealSIDH with a key validation mechanism. Concretely,
SHealS is a PKE scheme using the padding to encrypt the message where the
padding is the hash value of the shared curve (j-invariant) obtained from Heal-
SIDH. HealS is a variant of SHealS by changing the parameters. In other words,
our adaptive attack on HealSIDH is applicable to both SHealS and HealS.

We briefly introduce HealSIDH with the key validation mechanism as shown
in Fig. 1. The public parameter pp = (E0, P2, Q2, P3, Q3, p, a, b) contains a super-
singular curve E0 defined over Fp2 with an unknown endomorphism ring and
(p, a, b) ∈ N

3 where p is a prime of the form 22a32bf − 1 such that 2a ≈ 3b. The
requirement of the unknown endomorphism prevents the torsion-point attack
[dQKL+21] (and also [CD22]). The sets {P2, Q2}, {P3, Q3} are bases for E0[4a]
and E0[9b] respectively and PA = [2a]P2, QA = [2a]Q2, PB = [3b]P3, and
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QB = [3b]Q3. Alice and Bob sample α and β uniformly at random from Z2a and
Z3b respectively. Also, Alice and Bob compute φA : E0 → EA = E0/〈PA+[α]QA〉
and φB : E0 → EB = E0/〈PB + [β]QB〉, respectively. Alice and Bob com-
pute (φA(P2), φA(Q2), φA(P3), φA(Q3)) and (φB(P3), φB(Q3), φB(P2), φB(Q2))
respectively. Alice’s and Bob’s public keys are (EA, φA(P3), φA(Q3)) and (EB ,
φB(P2), φB(Q2)) respectively. Alice computes the canonical basis {RA, SA} for
EA[4a] and represents φA(P2) = [e1]RA +[f1]SA and φA(Q2) = [e2]RA +[f2]SA.
Bob computes the canonical basis {RB , SB} for EB [9a] and represents φB(P3) =
[g1]RB + [h1]SB and φB(Q3) = [g2]RB + [h2]SB . Alice’s and Bob’s secret keys
are skA = (α, e1, f1, e2, f2) and skB = (β, g1, h1, g2, h2) respectively.

To establish a shared secret with Alice, Bob collects Alice’s public key,
denoted by (EA, Rb, Sb), and computes φ′

B : EA → EAB = EA/〈[3b]Rb +
[β3b]Sb〉 together with (φ′

B(RA), φ′
B(SA), φ′

B(Rb), φ′
B(Sb)). He sends (Rab =

φ′
B(RA), Sab = φ′

B(SA)) to Alice.
Upon receiving (Rab, Sab) from Bob, Alice collects Bob’s public key (EB , Ra,

Sa). She computes φ′
A : EB → EBA = EB/〈[2a]Ra + [α2a]Sa〉 together with

(φ′
A(RB), φ′

A(SB), φ′
A(Ra), φ′

A(Sa)). If e4a(Ra, Sa) 	= e4a(P2, Q2)3
b

, φ′
A(Ra) 	=

[e1]Rab + [f1]Sab, or φ′
A(Sa) 	= [e2]Rab + [f2]Sab, then Alice aborts (the session).

Otherwise, she sends (Rba = φ′
A(RB), Sba = φ′

A(SB)) to Bob and keeps the
j-invariant jBA of EBA as the shared secret.

Similarly, upon receiving (Rba, Sba), Bob aborts if e9b(Rb, Sb) 	=
e9b(P3, Q3)2

a

, φ′
B(Rb) 	= [g1]Rba + [h1]Sba, or φ′

B(Sb) 	= [g2]Rba + [h2]Sba, If
not he takes the j-invariant of EAB as the shared secret.

E0, P2, Q2, PB , QB

EA, φA(P3), φA(Q3)
φA(P2) = [e1]RA + [f1]SA

φA(Q2) = [e2]RA + [f2]SA

Ra = φB(P2), Sa = φB(Q2)
Rab = φ′

B(RA), Sab = φ′
B(SA)

EB , Ra, Sa

EAB , Rab, Sab

EBA, φ′
A(Ra), φ′

A(Sa)

e4a(Ra, Sa) ?= e4a(P2, Q2)3
b

φ′
A(Ra) ?= [e1]Rab + [f1]Sab

φ′
A(Sa) ?= [e2]Rab + [f2]Sab

Honest Bob

Key Validation

φA

φB

φ′
B

φ′
A

Verify

Fig. 1. The outline of HealSIDH with the key validation mechanism. The upper right
box shows the points honest Bob will compute. The lower right box is the key vali-
dation process used by Alice to verify the public key given by Bob. The evaluations
of φA(P2), φA(Q2) are secretly computed by Alice and the coefficients e1, f1, e2, f2 are
included in her secret key.

Remark 1. In the real protocol, instead of giveing Rab, Sab directly, Bob will
give the coordinates of them with respect to the canonical basis of EAB [4a].
Otherwise, the secretly shared curve EAB can be recontructed by an eavesdrop-
per by computing its Montgomery coefficient AEAB

= (y(Rab)2 − x(Rab)3 −
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x(Rab))/x(Rab)2. For simplicity we ignore this detail and pretend Bob does send
the points Rab and Sab to Alice. Hence, for the convenience, we may assume Bob
sends the entire points Rab, Sab to Alice.

We have the following two immediate results.

Proposition 2. If Bob honestly generates Ra = φB(P2), Sa = φB(Q2), Rab =
φ′

B(RA) and Sab = φ′
B(SA), then {Rab, Sab} is a basis of EAB [4a] and {Ra, Sa}

is a basis of EB [4a].

Proof. Since [4a]Ra = φB([4a]P2) = O and [4a]Sa = φB([4a]Q2) = O, both Ra

and Sa are in EB [4a]. Due to e4a(Ra, Sa) = e4a(P2, Q2)3
b

, we know e4a(Ra, Sa)
is a primitive 4a-th root of unity. Similarly, since [4a]Rab = φ′

B([4a]RA) = O
and [4a]Sab = φ′

B([4a]SA) = O, both Rab and Sab are in EAB [4a]. Due to
e4a(Rab, Sab) = e4a(RA, SA)3

b

, we know e4a(Rab, Sab) is a primitive 4a-th root
of unity. Therefore, the result follows.

Lemma 3. Let e1, e2, f1, f2 be defined as above and α ∈ Z2a be Alice’s secret
key i.e. ker(φA) = 〈[2a]P2 + [α2a]Q2〉. If Alice follows the protocol specification,
then e1 + αe2 = f1 + αf2 = 0 mod 2a.

Proof. Given φA(P2) = [e1]RA + [f1]SA and φA(Q2) = [e2]RA + [f2]SA, we
have O = φA([2a]P2 + [α2a]Q2) = [2ae1 + α2ae2]RA + [2af1 + α2af2]SA =
[e1 + αe2]([2a]Ra) + [f1 + αf2]([2a]SA).

Note that {[2a]RA, [2a]SA} is a basis for EA[2a] due to {RA, SA} being a
basis for EA[4a]. Therefore, e1 + αe2 = f1 + αf2 = 0 mod 2a.

Modeling. We consider adaptive attacks against HealSIDH throughout this
paper. Bob, as a malicious adversary, is given access to an oracle OskA → 0/1
taking as input (Ra, Sa, Rab, Sab, EB , EAB) with the relations specified as above.
For simplicity, we denote the oracle by O and omit curves EB , EAB from the
input when they are clear from the context. The oracle O returns 1 if and only
if the following three equations hold:

e4a(Ra, Sa) = e4a(P2, Q2)3
b

, (1)

φ′
A(Ra) = [e1]Rab + [f1]Sab, (2)

φ′
A(Sa) = [e2]Rab + [f2]Sab, (3)

where φ′
A is an isogeny from EB with kernel 〈[2a]Ra + [α2a]Sa〉 ∈ EB .

When Bob follows the protocol specification, the three equations hold natu-
rally. The goal of malicious Bob in our attack is to recover Alice’s core secret α
by adaptively manipulating his input.

The flaw of the claim in [FP21] comes from the main theorem (Theorem
2) for the key validation mechanism. Theorem 2 of [FP21] states that if on
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input (R̃a, S̃a, R̃ab, S̃ab) the oracle returns 1, then there are only 16 forms of
(R̃a, S̃a, R̃ab, S̃ab) as follows:

(R̃a, S̃a, R̃ab, S̃ab) = ([±1]φB(P2), [±1]φB(Q2), [±1]φ′
B(RA), [±1]φ′

B(SA)),

where φB , φ′
B are the isogenies computed by Bob following the protocol specifi-

cation. We will immediately show this is not true in the next section.

3 Parity Recovering

In this section, we consider the least significant bits of e1, e2, f1, f2 and α. We
can recover the least significant bit of α with one oracle query by relying the
relations given by Lemma 3.

Say Bob computes φB, φ′
B honestly. The attack presented in this section and

the next section relies on following facts:

– {P2, Q2}, is a basis for E0[4a].
– {Rab, Sab} = {φ′

B(RA), φ′
B(SA)} is a basis of EAB [4a] (Proposition 2).

– {Ra, Sa} = {φB(P2), φB(Q2)} is a basis of EB [4a] (Proposition 2).
– e1 + αe2 = f1 + αf2 = 0 mod 2a (Lemma 3).

The high-level idea in this section is simple. Assume Alice and Bob follows

the protocol specification. Write M =
(

e1 f1
e2 f2

)
∈ M2×2(Z4a),u = (Ra Sa)T

and v = (Rab Sab)T . Recall that φ′
A(Ra) = [e1]Rab + [f1]Sab, φ′

A(Sa) =
[e2]Rab + [f2]Sab where Ra, Sa, Rab, Sab are honestly generated by Bob. We may
abuse the notation by writing φ′

Au = Mv based on Eqs. (2) and (3). The idea
is to find a pair of particular square matrices P1,P2 ∈ M2×2(Z4a) where P1

is of determinant 1 such that the commutativity of P1M = MP2 is condi-
tioned on the information (parity for instance) to be extracted from M. Let
(R′

a S′
a)T = P1u and (R′

ab S′
ab)

T = P2v. On input (R′
a, S′

a, R′
ab, S

′
ab) the ora-

cle returns 1 if M satisfies the commutativity condition P1M = MP2, because
P1φ

′
Au = φ′

AP1u = P1Mv = MP2v holds. Remark that the determinant 1 of
P1 ensures the new pair (R′

a S′
a) will satisfy the Weil pairing verification Eq.

(1). Futhermore, we require (2a α2a)P1 = (c c) for some c ∈ Z2a so that the
isogeny used by the oracle is still the one with the kernel 〈[2a]Ra + [α2a]Sa〉.

Though there are 24 combinations of the least significant bits of e1, e2, f1, f2.
The following lemma shows that when Alice generates them honestly, there are
only six patterns.

Lemma 4. If Alice produces φA(P2) and φA(Q2) honestly, then there are only
6 possible patterns of parities of e1, e2, f1, f2:

1. f2 = 1 mod 2 and e2 = e1 = f1 = 0 mod 2,
2. e2 = 1 mod 2 and e1 = f1 = f2 = 0 mod 2,
3. e2 = f2 = 1 mod 2 and e1 = f1 = 0 mod 2,
4. f1 = f2 = 1 mod 2 and e1 = e2 = 0 mod 2,
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5. e1 = e2 = 1 mod 2 and f1 = f2 = 0 mod 2,
6. e1 = e2 = f1 = f2 = 1 mod 2.

Proof. Recall e4a(φA(P2), φA(Q2)) = e4a(P2, Q2)2
a

= e4a(RA, SA)e1f2−e2f1 .
Since both {P2, Q2} and {RA, SA} are bases for E0[4a], EA[4a] respectively, both
e4a(P2, Q2) and e4a(RA, SA) are primitive 4a-th roots of unity. Given

e4a(RA, SA)2
a(e1f2−e2f1) = 1,

we have e1f2 − e2f1 = 0 mod 2a.
Furthermore, e2, f2 cannot be both even. Recall φ(Q2) = e2RA + f2SA.

Suppose for the purpose of contradiction that both e2 and f2 are even. Then,
[22a−1]φA(Q2) = O, which implies ker(φA) = 〈P2 + [α]Q2〉 contains [22a−1]Q2.
That is, [k]P2 +[kα]Q2 = [22a−1]Q2 for some k ∈ Z2a , so k = 0. This contradicts
the fact that {P2, Q2} is a basis for E0[4a]. The result follows.

We order the six cases according to the lemma above. The following lemmata
indicate that we can divide the overall cases into two partitions: {Case 1, Case 2,
Case 3} and {Case 4, Case 5, Case 6} with 1 oracle query.

Lemma 5. Assume Bob honestly generates Ra, Sa, Rab, Sab, EB , EAB. On input
(R̃a, S̃a, Rab, Sab), where R̃a = Ra and S̃a = [22a−1]Ra + Sa the oracle returns 1
only for Cases 1 to 3.

Proof. Firstly, the isogeny φ′
A computed by the oracle is the same one used by

Alice in the honest execution. This is because both kernels are the same:

〈[2a]Ra + [α2a]Sa〉 = 〈[2a]R̃a + [α2a]S̃a〉.
Therefore, since Ra, Sa, Rab, Sab are honestly generated, we may assume e4a(Ra,

Sa) = e4a(P2, Q2)3
b

, φ′
A(Ra) = [e1]Rab+[f1]Sab, and φ′

A(Sa) = [e2]Rab+[f2]Sab.
For Eq. (1), since e4a(Ra, Sa) = e4a(P2, Q2)3

b

, we have

e4a(R̃a, S̃a) = e4a(Ra, Sa) = e4a(P2, Q2)3
b

.

Given φ′
A(Ra) = [e1]Rab +[f1]Sab, φ′

A(Sa) = [e2]Rab +[f2]Sab and Rab, Sab ∈
EAB [2a], we have

φ′
A(R̃a) − [e1]Rab − [f1]Sab = O,

φ′
A(S̃a) − [e2]Rab − [f2]Sab = [22a−1e1]Rab + [22a−1f1]Sab.

Recall that {Rab, Sab} is a basis. Therefore, the oracle returns 1 if and only
if [22a−1e1]Rab + [22a−1f1]Sab = O or, equivalently, e1 = f1 = 0 mod 2. The
result follows.

Lemma 6. Assume Bob honestly generates Ra, Sa, Rab, Sab, EB , EAB. On input
(R̃a, S̃a, Rab, Sab), where R̃a = [1 + 22a−1]Ra − [22a−1]Sa and S̃a = [22a−1]Ra +
[1 − 22a−1]Sa the oracle returns 1 only for Cases 4 to 6.
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Proof. Firstly, the isogeny φ′
A computed by the oracle is the same one used by

Alice in the honest execution. This is because both kernels are the same:

〈[2a]Ra + [α2a]Sa〉 = 〈[2a]R̃a + [α2a]S̃a〉.
Therefore, since Ra, Sa, Rab, Sab are honestly generated, we may assume e4a(Ra,

Sa) = e4a(P2, Q2)3
b

, φ′
A(Ra) = [e1]Rab+[f1]Sab, and φ′

A(Sa) = [e2]Rab+[f2]Sab.
For Eq. (1), since e4a(Ra, Sa) = e4a(P2, Q2)3

b

, we have

e4a(R̃a, S̃a)

= e4a([1 + 2a−1]Ra − [2a−1]Sa, [2a−1]Ra + [1 − 2a−1]Sa)

= e4a(Ra, Sa)1−22a−2+22a−2

= e4a(P2, Q2)3
b

.

Given φ′
A(Ra) = [e1]Rab +[f1]Sab, φ′

A(Sa) = [e2]Rab +[f2]Sab and Rab, Sab ∈
EAB [2a], we have

φ′
A(R̃a) − [e1]Rab − [f1]Sab = [22a−1]([e1]Rab + [f1]Sab + [e2]Rab + [f2]Sab),

φ′
A(S̃a) − [e2]Rab − [f2]Sab = [22a−1]([e1]Rab + [f1]Sab + [e2]Rab + [f2]Sab).

Recall that {Rab, Sab} is a basis of EAB [2a]. Therefore, the oracle returns 1
if and only if e1 = e2 mod 2 and f1 = f2 mod 2. The result follows.

The cases {Case 1, Case 2, Case 3} occur if and only if the least significant
bit of α is 0 by Lemma 4. In fact, by choosing particular matrices P1 and P2,
one can precisely recover all parities of e1, e2, f1 and f2. However, by Lemma
4, we do not bother to find them all since the information given in Lemma 5
already is sufficient to recover the least significant bit of α. In the next section,
we will present a variant of the GPST attack. We start with the least significant
bit of α to recover each higher bit with one oracle query for each.

4 Recover the Secret

In this section, we present a variant of the GPST attack to recover the secret α
based on the knowledge extracted from the previous section. The high-level idea
is to use the GPST attack in a “reciprocal” manner. Recall that Bob has two
following equations when he generates the points (Ra, Sa, Rab, Sab) honestly:

φ′
A(Ra) = [e1]Rab + [f1]Sab,

φ′
A(Sa) = [e2]Rab + [f2]Sab,

where ker(φ′
A) = 〈[2a]Ra + [2aα]Sa〉.

To extract the second least significant bit of −α, denoted by α1, based on the
least bit α0, we consider φ′

A(Ra +[22a−2]Ra − [22a−2α0]Sa) = [e1]Rab +[f1]Sab +
([22a−2e1 − 22a−2α0e2]Rab + [22a−2f1 − 22a−2α0f2]Sab) where the purpose of
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[22a−2α0]Sa is to eliminate the lower bit. Note that ([22a−2e1 −22a−2α0e2]Rab +
[22a−2f1 − 22a−2α0f2]Sab) = ([α122a−1][e2]Rab + [α122a−1][f2]Sab) because e1 +
αe2 = f1 + αf2 = 0 mod 2a and {Ra, Sa} is a basis for EB [4a] (Lemma 3 and
Proposition 2). By Lemma 4, since e2 and f2 cannot be both even, at least one
of [22a−1e2]Rab and [22a−1f2]Sab is of order 2. It follows that the equation

φ′
A(Ra + [22a−2]Ra − [22a−2α0]Sa) = [e1]Rab + [f1]Sab

holds if and only if α1 = 0.
Unfortunately, querying the oracle on input (Ra+[22a−2]Ra−[22a−2α0]Sa, Sa,

Rab, Sab) will always return 0 so that Bob cannot obtain any useful information.
This is because e4a(Ra+[22a−2]Ra−[22a−2α0]Sa, Sa) never equals e4a(P2, Q2)3

b

.
In other words, if Bob does so, he will always get ⊥ from Alice. To resolve this,
we use the idea of “reciprocal”. Assume α is invertible modulo 2a. Bob will craft
a point replacing Sa for recovering α−1 mod 2a at the same time. Concretely,
Bob computes α̂ = α−1

0 mod 4. For the same reasoning as above, the equation

φ′
A(α̂[22a−2]Ra + [1 − 22a−2]Sa) = [e2]Rab + [f2]Sab

holds if and only if α−1 = α̂ mod 4 if and only if α1 = 0.
Moreover, e4a(Ra + [22a−2]Ra − [22a−2α0]Sa, α̂[22a−2]Ra + [1 − 22a−2]Sa) =

e4a(Ra, Sa). Therefore, by sending (Ra + [22a−2]Ra − [22a−2α0]Sa, α̂[22a−2]Ra +
[1 − 22a−2]Sa, Rab, Sab) to Alice, Bob can know whether α1 = 0. However, α is
not necessarily odd. We have to use unbalanced powers of 2 on each query and
introduce the concept of quasi-inverse elements.

Remark 7. On input (Ra +[22a−2]Ra − [22a−2α0]Sa, α̂[22a−2]Ra +[1−22a−2]Sa,
Rab, Sab), honest Alice will use the same isogeny φ′

A because 〈[2a](Ra +
[22a−2]Ra − [22a−2α0]Sa) + [α2a](α̂[22a−2]Ra + [1 − 22a−2]Sa)〉 = 〈[2a]Ra +
[α2a]Sa〉. The same kernel will therefore derive the same isogeny φ′

A.

4.1 Quasi-Inverse Element

Definition 8. Let p be a prime and a ∈ N. For an element u ∈ Z, a pa-quasi-
inverse element of u is a non-zero element v ∈ Zpa such that uv = p′ mod pa

where p′ is the maximal power of p dividing u.

When a = 1, every element obviously has a p-quasi-inverse element by taking
either its inverse over Zp or 1. Unlike the inverse over a ring, a quasi-inverse is
not necessarily unique. For instance, 1, 9, 17 and 25 are 25-quasi-inverse elements
of 4 over Z32. Also, if u = 0, any non-zero element can be its quasi-inverse.

A non-zero element being not a unit of Zpa can still have a pa-quasi-inverse
element. However, a non-zero element v in Zpa being a pa-quasi-inverse element
for a non-zero integer in Zpa implies v is a unit of Zpa .

Proposition 9. Let p be a prime and a ∈ N. For u ∈ Z, a non-zero element
over Zpa , any pa-quasi-inverse element of u is a unit of Zpa .
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Proof. Write u = u′pj where u′, j ∈ Z and u′ is not divisible by p and j < a. Say
there exists v ∈ Zpa such that uv = pj mod pa. Since u is a non-zero element
over Zpa , we know a > j so that (u/pj)v = 1 mod pj−a. It follows that v is not
divided by p, so v is a unit of Zpa .

In fact, for any u ∈ Zpa where pj | u and pj+1
� u for some non-negative

integer j, one can always find a pa-quasi-inverse by taking v = (u/pj)−1 ∈
Zpa−j and naturally lifting v to Zpa Therefore, we may let QuasiInv(u, p, i) be an
efficient algorithm outputting a pi-quasi-inverse element of u and restrict it to
output 1 when pi | u.

Remark 10. Looking ahead, in our attack, we need to compute 2i+1-quasi-inverse
elements for either αl or αl + 2i in the i-th iteration, where αl = α mod 2i has
been extracted in the previous iterations. In a more general case where the prime
2 is replaced by q ∈ N, the attack enumerates qi+1-quasi-inverse elements for
αl + tqi for every t ∈ {0, · · · , q − 1}, which corresponds to guess whether the
next digit is t or not. See Appendix A for more details.

4.2 Attack on HealS and SHealS

The algorithm in Fig. 2 together with Theorem 12 provides an iterative approach
for recovering α. It requires one oracle query to recover each bit of α in each
iteration. We need the following lemma to prove the main theorem.

Lemma 11. Let (α, e1, f1, e2, f2) denote Alice’s HealSIDH secret key as Sect.
2.2. For any i ∈ {1, . . . , a−1}, write −α = αl +2iαi (mod 2i+1) where αl ∈ Z2i

and αi ∈ Z2. Let α̂l be a 2i+1-quasi-inverse element of αl such that α̂lαl = 2j

mod 2i+1. Then, αi = 0 if and only if each of the following two equations is
true:

e1 − αle2 = f1 − αlf2 = 0 mod 2i+1 (4)

α̂le1 − 2je2 = α̂lf1 − 2jf2 = 0 mod 2i+1 (5)

Proof. By Lemma 3, we have e1−αle2 = −αe2−αle2 mod 2i+1 and f1−αlf2 =
−αf2 − αlf2 mod 2i+1. By Lemma 4, not both e2 and f2 are divisible by 2.
Therefore, the first equation is zero if and only if αi = 0.

Similarly, by Lemma 3, we have α̂le1−2je2 = α̂lαe2−2je2 = α̂(αl+αi2i)e2−
2je2 = α̂αie22i mod 2i+1. Also, α̂lf1 − 2jf2 = α̂αif22i mod 2i+1. By Lemma
4 and Proposition 9, not both e2α̂ and f2α̂ are divisible by 2. Therefore, the
second equation is zero if and only if αi = 0.

Theorem 12. Assume Alice follows the protocol specification. The algorithm in
Fig. 2 returns α in Alice’s secret key.

Proof. We are going to prove the theorem by induction on i for the i-th bit of
α where i < a. Write −α = αl + 2iαi ∈ Z2i+1 for some i ∈ {1, . . . , a − 1} where
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Algorithm: Recover(pp, skB , α0)
Input: pp public parameter of the protocol, skB the secret key of Bob,

α0 = α mod 2
Given: access to an oracle O(Ra, Sa, Rab, Sab; EB , EAB) 0/1 returns 1 iff

the following equations hold:
e4a(Ra, Sa) = e4a(P2, Q2),
φ′

A(Ra) = [e1]Rab + [f1]Sab,
φ′

A(Sa) = [e2]Rab + [f2]Sab,
where φ′

A is an isogeny from EB with kernel 〈[2a]Ra + [α2a]Sa〉 ∈ EB .
Ensure: Alice’s secret key α

1: Compute (Ra, Sa, Rab, Sab) (φB(P2), φB(Q2), φ′
B(RA), φ′

B(SA)) by follow-
ing the protocol specification using skB .

2: Obtain a from pp.
3: Obtain αl α0.
4: i = 1
5: j =⊥ � j will indicate the maximal power of 2 dividing α.
6: if αl = 1 then j 0
7: while i < a do
8: if αl = 0 then
9: (˜Ra, ˜Sa) ([1 + 22a−1]Ra, [22a−i−1]Ra + [1 − 22a−1]Sa)

10: c O(˜Ra, ˜Sa, Rab, Sab)
11: c 1 − c
12: if c = 0 then j i � Assert 2j is the maximal power of 2 dividing α.
13: else
14: α̂l QuasiInv(αl, 2, i + 1) � α̂l(αl) = 0 or 2j mod 2i+1

15: ˜Ra [1 + 22a−i+j−1]Ra − [αl22a−i+j−1]Sa

16: ˜Sa [α̂l22a−i−1]Ra + [1 − 22a−i+j−1]Sa

17: c O(˜Ra, ˜Sa, Rab, Sab)
18: if c �= 1 then � Assert i-th bit of α is 1.
19: αl αl + 2i

20: return αl

Fig. 2. An algorithm to recover the secret α in skA = (α, e1, f1, e2, f2).

αl ∈ Z2i and αi ∈ Z2 represent the bits that have been recovered and the next
bit to be recovered respectively. Since we have assumed the correctness of the
given least significant bit of α, it suffices to show that given αl the extraction of
αi, the i-th bit of α, is correct in each iteration of the while-loop of Fig. 2.

Firstly, within each query, the isogeny φ′
A computed by the oracle is the same

because the kernels are all identical:
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〈[2a]Ra + [α2a]Sa〉 = 〈[2a]([1 + 22a−1]Ra − [t22a−i−1]Sa)

+ [α2a]([t′22a−i−1]Ra + [1 − 22a−1]Sa)〉
= 〈[2a]([1 + 22a−i+j−1]Ra − [t22a−i+j−1]Sa)

+ [α2a]([t′22a−i−1]Ra + [1 − 22a−i+j−1]Sa)〉,
for any t, t′ ∈ Z2a where i, j ∈ Za. Therefore, since Ra, Sa, Rab, Sab are honestly
generated, we may assume e4a(Ra, Sa) = e4a(P2, Q2)3

b

, φ′
A(Ra) = [e1]Rab +

[f1]Sab, and φ′
A(Sa) = [e2]Rab + [f2]Sab.

Also, every input satisfies Eq. (1). Since e4a(Ra, Sa) = e4a(P2, Q2)3
b

, we have
for any α̂l ∈ Z2a , and i, j ∈ Za,

e4a([1 + 22a−1]Ra − [αl22a−i−1]Sa, [α̂l22a−i−1]Ra + [1 − 22a−1]Sa)

= e4a([1 + 22a−i+j−1]Ra − [αl22a−i+j−1]Sa, [α̂l22a−i−1]Ra + [1 − 22a−i+j−1]Sa)
= e4a(Ra, Sa)

= e4a(P2, Q2)3
b

.

To prove the correctness of the extraction of αi, we claim that Eqs. (2) and
(3) are both satisfied if and only if αi is 1 in the if-loop of αl = 0 or is 0 in the
if-loop of αl 	= 0. We therefore consider these two cases.

Case1: the if-loop of αl = 0. Being in this loop in the i-th iteration means
α = 0 mod 2i. The oracle takes (R̃a, S̃a, Rab, Sab) as input where (R̃a, S̃a) =
([1 + 22a−1]Ra, [22a−i−1]Ra + [1 − 22a−1]Sa). Recall φ′

A(Ra) = [e1]Rab + [f1]Sab,
and φ′

A(Sa) = [e2]Rab + [f2]Sab. For Eq. (2), we have

φ′
A(R̃a) − [e1]Rab − [f1]Sab

= [(1 + 22a−1)e1]Rab + [(1 + 22a−1)f1]Sab − [e1]Rab − [f1]Sab

= [22a−1e1]Rab + [22a−1f1]Sab

= [−α22a−1e2]Rab + [−α22a−1f2]Sab

= O.

That is, Eq. (2) will always hold. Remark the third equation comes from
Lemma 3 and the fact that i is less than a. The fourth equation comes from the
fact that α = 0 mod 2i and i ≥ 1 and {Rab, Sab} is a basis for EAB [4a].

Also, since αl = 0, α̂l is 1 by the specification of QuasiInv. Recall φ′
A(Ra) =

[e1]Rab + [f1]Sab, and φ′
A(Sa) = [e2]Rab + [f2]Sab. For Eq. (3), we have

φ′
A(S̃a) − [e2]Rab − [f2]Sab

= [22a−i−1e1 − 22a−1e2]Rab + [22a−i−1f1 − 22a−1f2]Sab

= [−α22a−i−1e2 − 22a−1e2]Rab + [−α22a−i−1f2 − 22a−1f2]Sab

= [αi22a−1 − 22a−1][e2]Rab + [αi22a−1 − 22a−1][f2]Sab.
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Similarly, the third equation comes from Lemma 3 and the fact that i is
less than a. The fourth equation comes from the fact that α = 0 mod 2i and
{Rab, Sab} is a basis for EAB [4a]. By Lemma 4, e2 and f2 cannot be both even
so that at least one of [22a−1e2]Rab and [22a−1f2]Sab is of order 2. Equation (3)
holds if and only if αi is 1.

Therefore, by combining conditions of Eqs. (1) to (3), in the if-loop of αl = 0,
the oracle outputs c = 1 if and only if αi = 1.

Case2: the if-loop of αl 	= 0. The condition is equivalent to 2j is the maximal
power of 2 dividing α. The oracle takes (R̃a, S̃a, Rab, Sab) as input where (R̃a, S̃a)
= ([1 + 22a−i+j−1]Ra − [αl22a−i+j−1]Sa, [α̂l22a−i−1]Ra + [1 − 22a−i+j−1]Sa).

Recall φ′
A(Ra) = [e1]Rab + [f1]Sab, and φ′

A(Sa) = [e2]Rab + [f2]Sab. For Eq.
(2), we have

φ′
A(R̃a) − [e1]Rab − [f1]Sab

= [(22a−i+j−1)e1 − αl22a−i+j−1e2]Rab + [(22a−i+j−1)f1 − αl22a−i+j−1f2]Sab

Recall that {Rab, Sab} is a basis for EAB [4a] � Z4a × Z4a . By Lemma 11 (Eq.
(4)), we know φ′

A(R̃a) − [e1]Rab − [f1]Sab = O if and only if αi2j = 0 mod 2.
Also, for Eq. (3), we have α̂

φ′
A(S̃a) − [e2]Rab − [f2]Sab

= [α̂l22a−i−1e1 + (−22a−i+j−1)e2]Rab + [α̂l22a−i−1f1 + (−22a−i+j−1)f2]Sab

Recall that {Rab, Sab} is a basis for EAB [4a] � Z4a ×Z4a . By Lemma 11 (Eq.
(5)), we know φ′

A(S̃a) − [e2]Rab − [f2]Sab = O if and only if αi = 0.
Therefore, by combining conditions of Eqs. (1) to (3), in the if-loop of j 	=⊥,

the oracle outputs c = 1 if and only if αi = 0.

Remark 13. It seems that in our attack, both the satisfaction of Eq. (1) and
the identical kernels of φ′

A used by the oracle the proof of Theorem 12 are
derived from the fact that the kernel is of the form 〈[2a]P2 + [2aα]Q2〉. Hence,
one may guess that relaxing the kernel to be 〈[2i]P2 + [2iα]Q2〉 for some i ∈
{0, · · · , a−1} can give a variant secure against the attack we presented. However,
in the appendix, we consider a more generic situation for HealSIDH covering
the concern, and the prime 2 can be replaced by any small natural number q.
The algorithm takes 2a(q − 1) oracle queries to fully recover Alice’s secret key
α ∈ Zq2a .

5 Summary

This work presents an adaptive attack on the isogeny-based key exchange and
PKE schemes in [FP21], which were claimed to have the static-static property
against any adaptive attack. Our attack is based on the subtle flaws in the main
theorems (Theorems 1 and 2) in [FP21] for the key validation mechanism used in
each scheme, which states that Bob can pass the key validation mechanism only
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if his input is correctly formed. We not only show that multiple non-trivial solu-
tions can pass the check but also derive a concrete and efficient adaptive attack
against the static-static proposals by tweaking the GPST attack. Furthermore,
we provide a generalized attack in the appendix on any immediate repairs to the
mechanism exploiting the commutativity of the SIDH evaluations.

Hence, our result points out that having an efficient static-static key exchange
or PKE from a robust isogeny assumption remains an open problem. We look
forward to future work in the community to resolve this problem.
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tion and Employment in New Zealand. We thank Shuichi Katsumata and Federico Pin-
tore (alphabetically ordered) for pointing out errors in the previous version and helpful
comments to improve clarity. Also, we thank anonymous reviewers from PQCrypto2022
for their detailed comments and suggestions.

A A Generalized Attack

This section presents a generalized result. We consider a more generic condi-
tion where Alice uses qn torsion subgroup for some natural numbers n, q to
replace 22a. Furthermore, we do not restrict the secret kernel to be of the
form 〈[qn/2]Pq + [α][qn/2]Qq〉 where {Pq, Qq} is a basis of E0[qn] and α ∈ Zqa .
Instead, we permit α to be drawn arbitrarily from Zqa and the kernel to be
〈[qn−a](Pq + [α]Qq)〉. When n is even and q = 2, taking a = n/2 is the case
considered in Sect. 2.2. The generalization captures any straightforward modifi-
cation of the HealSIDH cryptosystem. The final algorithm takes a(q − 1) oracle
queries to fully recover Alice’s secret key α ∈ Zqa . Therefore, as long as q is small,
the HealSIDH cryptosystem and the key validation algorithm are vulnerable to
our new variant of GPST attack.

To be more specific, the public parameter pp = (E0, Pq, Qq, Pq′ , Qq′ , p, q, q′)
where q, q′ ∈ N are coprime, p = fqnq′n′ − 1 is prime, qn ≈ q′n′

, and {Pq, Qq}
and {Pq′ , Qq′} are bases for E0[qn] and E0[q′n′

], resp. Alice samples a secret α
uniformly at random from Zqa , computes φA : E0 → EA = E0/〈[qn−a](Pq +
[α]Qq)〉 and representing φA(Pq) = [e1]RA + [f1]SA and φA(Qq) = [e2]RA +
[f2]SA where {RA, SA} is a canonical basis for EA[qa]. Alice’s secret key is skA =
(α, e1, f1, e2, f2) and public key is (EA, φA(Pq′), φA(Qq′)).

The high-level idea of the generalized attack is similar. Different from the
“reciprocal” GPST attack presented in Sect. 4, one can view the generalized
attack as the “triple” GPTS attack. Similarly, we use the equalities of Eq. (2) and
Eq. (3) to extract the information of α and a quasi-inverse of α simultaneously.
Additionally, on input (R′

a, S′
a, R′

ab, S
′
ab), the oracle computes the isogeny with

kernel 〈R′
a + αS′

a〉. We will use the equality between 〈R′
a + αS′

a〉 and 〈φB(Pq) +
αφB(Qq)〉 to extract α again (see Lemma 18). We will show three equalities hold
if and only if the extraction of a digit of α is correct.

Heuristic Assumption. We assume that the oracle will return 0 with an
overwhelming probability if the input does not induce the same kernel as the
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honest input. Since we do not restrict the secret kernel to be of the form
〈[qn/2]Pq + [α][qn/2]Qq〉, the isogeny used by the oracle might therefore vary
with each query2. We thereby require this assumption. Given the randomness of
isogeny evaluation, the assumption is reasonable. Assume a new induced isogeny
used by the oracle mapping Ra and Sa uniformly at random over F

2
p. Then both

equations (Eqs. (2) and (3)) are satisfied with probability around 1/p2 even if
we only focus on the x-coordinate.

We start with following three simple facts similar to Proposition 2 and Lem-
mas 3 and 4.

Proposition 14. If Bob honestly generates Ra, Sa, Rab, Sab by Ra = φB(Pq),
Sa = φB(Qq), Rab = φ′

B(RA) and Sab = φ′
B(SA), then {Rab, Sab} is a basis of

EAB [qn] and {Ra, Sa} is a basis of EB [qn].

Proof. Since [qn]Ra = φB([qn]Pq) = O and [qn]Sa = φB([qn]Qq) = O, both Ra

and Sa are in EB [qn]. Due to eqn(Ra, Sa) = eqn(Pq, Qq)q′n′
, we know eqn(Ra, Sa)

is a primitive qn-th root of unity. Similarly, Since [qn]Rab = φ′
B([qn]RA) = O

and [qn]Sab = φ′
B([qn]SA) = O, both Rab and Sab are in EAB [qn]. Due to

eqn(Rab, Sab) = eqn(RA, SA)q′n′
, we know eqn(Rab, Sab) is a primitive qn-th root

of unity. Therefore, the result follows.

Lemma 15. Let e1, e2, f1, f2 defined as above and α ∈ Zqa be the secret key
of Alice such that ker(φA) = 〈[qn−a](Pq + [α]Qq)〉. If Alice follows the protocol
specification, then e1 + αe2 = f1 + αf2 = 0 mod qa.

Proof. Given φA(P2) = [e1]RA + [f1]SA and φA(Q2) = [e2]RA + [f2]SA, we
have O = φA([qn−a](Pq + [α]Qq)) = [qn−a][e1 + αe2]RA + [qn−a][f1 + αf2]SA =
[e1+αe2]RA+[f1+αf2]SA. Recall that {[qn−a]RA, [qn−a]SA} is a basis of EA[qa].
Therefore, e1 + αe2 = f1 + αf2 = 0 mod qa.

Lemma 16. If Alice produces φA(Pq) and φA(Qq) honestly, then e2 and f2
cannot be both divisible by q.

Proof. Suppose for the purpose of contradiction that both e2 and f2 are divisible
by q. Then, [qn−1]φA(Qq) = O, which implies ker(φA) = 〈[qn−a](Pq + [α]Qq)〉
contains [qn−1]Qq. That is, [kqn−a]Pq + [kqn−aα]Qq = [q2a−1]Qq for some k ∈
Zqa , so k = 0. This contradicts the fact that {Pq, Qq} is a basis for E0[qn]. The
result follows.

The algorithm in Fig. 3 together with Theorem 17 provides an iterative app-
roach for recovering α. It requires q − 1 oracle queries to recover each digit of α
in each iteration.

Theorem 17. Assume Alice follows the protocol specification. The algorithm in
Fig. 3 returns α in Alice’s secret key.
2 For instance, on input (Ra, [2a−1]Ra+Sa, Rab, Sab) as Lemma 5 for q = 2 and n = a,

the isogeny used by the oracle is with kernel 〈Ra + [α]Sa + [α22a−1]Ra〉. The kernel
is the same if and only if α is divisible by 2.
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Proof. We are going to prove the theorem by induction on i for the i-th digit
of α where i < a. Write −α = αl + qiαi mod qi+1 for some i ∈ {0, . . . , a − 1}
where αl ∈ Zqi and αi ∈ Zq represent the digits that have been recovered and
the next digit to be recovered respectively.

First of all, we will show that within each query in each loop with respect to
i, the isogeny φ′

A computed by the oracle is of the kernel 〈Ra + αSa〉 if t = αi.

Lemma 18 (Kernel analysis). For each query made in Fig. 3 in each loop with
respect to i, the kernel used by the oracle internally is identical to 〈[qn−a](Pq +
[α]Qq)〉 if t = αi.

Proof. Case1: the if-loop of i = 0. For the queries in the if-loop of i = 0, if
t = αi, we have

〈[qn−a](([1 + qn−1]Ra − [tqn−1]Sa) + [α]([α̂tlq
n−1]Ra + [1 − qn−1]Sa))〉

= 〈[qn−a](Pq + [α]Qq)〉
Remark that here αi = α0 and the quasi-inverse α̂tl = t−1 mod q for t 	= 0.
Therefore, 1 + αα̂tl = 0 mod q and −α0 − α = 0 mod q, and the second
equation follows.

Case2: the if-loop of αl = 0. For the queries in the while-loop of αl = 0, we
have

〈[qn−a](([1 + qn−1]Ra) + [α]([α̂tlq
n−i−1]Ra + [1 − qn−1]Sa))〉

= 〈[qn−a](Pq + [α]Qq)〉
Remark that being in the if-loop of αl = 0 implies i ≥ 1 and qi | α. Hence, in
this case the kernel computed by the oracle is always 〈[qn−a](Pq + [α]Qq)〉.
Case3: the if-loop of αl 	= 0. For the queries in the while-loop of αl 	= 0, if
t = αi, we have

〈[qn−a](([1 + qn−i+j−1]Ra − [(αl + tqi)qn−i+j−1]Sa)

+ [α]([α̂tlq
n−i−1]Ra + [1 − qn−i+j−1]Sa))〉

= 〈[qn−a](Pq + [α]Qq)〉
Remark that we have α̂tl(αl + tqi) = qj mod qn and −α = αl + qiαi mod qi+1

where i > j. Therefore, when t = αi, we have qj + αα̂tl = 0 mod qi+1 and
(αl + tqi) + α = 0 mod qi+1. The second equation follows.

Similarly, we analyze the satisfaction of Eq. (1) (the Weil pairing check) for
the oracle input. The following lemma shows that all oracle inputs will satisfy
Eq. (1).

Lemma 19 (Eq. (1) analysis). Each query made in Fig. 3 in each loop satisfies
Eq. (1).
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Proof. Recall that we have eqa(Ra, Sa) = eqa(P2, Q2)q′b3.

Case1: the if-loop of i = 0. For the queries in the if-loop of i = 0, we always
have

eqa([1 + qn−1]Ra − [tqn−1]Sa, [α̂tlq
n−1]Ra + [1 − qn−1]Sa)

= eqa(Ra, Sa)

= eqa(Pq, Qq)q′b
.

Case2: the if-loop of j =⊥. For the queries in the while-loop of j =⊥, we
always have

eqa([1 + qn−1]Ra, [α̂tlq
n−i−1]Ra + [1 − qn−1]Sa)

= eqa(Ra, Sa)

= eqa(Pq, Qq)q′b
.

Case3: the if-loop of j 	=⊥. For the queries in the while-loop of j 	=⊥, we
always have

eqa(Ra, Sa)1−q2n−2i+2j−2+α̂tl(αl+tqi)q2n−2i+j−2

= eqa(Ra, Sa)

= eqa(Pq, Qq)q′b
.

Note that since α̂tl(αl + tqi) = qj mod qn, we have

1 − q2n−2i+2j−2 + α̂tl(αl + tqi)q2n−2i+j−2 = 1 mod qn.

Therefore, all oracle queries made in Fig. 3 satisfy Eq. (1).

For the case i = 0 of induction, we have to show the correctness of the
extraction of α0, the least significant digit of −α. We restrict our attention
to the if-loop of the condition i = 0. Recall φ′

A(Ra) = [e1]Rab + [f1]Sab, and
φ′

A(Sa) = [e2]Rab + [f2]Sab. For Eq. (2) t ∈ Zq, we have

φ′
A([1 + qn−1]Ra − [tqn−1]Sa) − [e1]Rab − [f1]Sab

= [(1 + qn−1)e1 − tqn−1e2]Rab + [(1 + qn−1)f1 − tqn−1f2]Sab − [e1]Rab − [f1]Sab

= [qn−1e1 − tqn−1e2]Rab + [qn−1f1 − tqn−1f2]Sab

= [−αqn−1e2 − tqn−1e2]Rab + [−αqn−1f2 − tqn−1f2]Sab

= [α0q
n−1e2 − tqn−1e2]Rab + [α0q

n−1f2 − tqn−1f2]Sab

That is, Eq. (2) will always hold. Remark the third equation comes from
Lemma 15. Therefore, the condition of Eq. (2) is satisfied if and only if t = α0.

3 Since we allow to use qa- and q′b-isogenies here, the exponent thereby is q′b here.
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Similarly, for Eq. (3), we have

φ′
A([α̂tlq

n−i−1]Ra + [1 − qn−1]Sa) − [e2]Rab − [f2]Sab

= [α̂tlq
n−1e1 − qn−1e2]Rab + [α̂tlq

n−1f1 − qn−1f2]Sab

= [−αα̂tlq
n−1e2 − qn−1e2]Rab + [−αα̂tlq

n−1f2 − qn−1f2]Sab

= [α0α̂tlq
n−1 − qn−1][e2]Rab + [α0α̂tlq

n−1 − qn−1][f2]Sab.

That is, Eq. (3) will always hold. Remark the third equation comes from Lemma
15. Therefore, the condition of Eq. (3) is satisfied if and only if α0α̂tl = 1
mod q. Equivalently, t = α0, because tα̂tl = 1 mod q. If α0α̂tl 	= 1 mod q for
all t ∈ {1, · · · , q − 1}, then α0 = 0. Therefore, by combining conditions of Eqs.
(1) to (3), the extraction of α0 is correct.

It suffices to show that given αl the extraction of αi, the i-th digit of −α
mod qa for i ≥ 1, is correct in each iteration of the while-loop of Fig. 3. To prove
the correctness of the extraction of αi, in either the if-loop of αl = 0 or the
else-loop (αl 	= 0), we claim that Eqs. (2) and (3) are both satisfied if and only
if the output of the oracle is c = 1 for t ∈ {1, · · · , q − 1} used in the loop if and
only if αi = t for some t ∈ {1, · · · , q − 1}. We therefore consider two cases.

Case1: the if-loop of αl = 0. The condition is equivalent to αl = 0 which
means −α = 0 mod qi. We require the following to show the result.

Lemma 20. Assume αi 	= 0. Then, both of the following two equations are true
if and only if αi = t for some t ∈ {1, · · · , a − 1} :

qn−1e1 = qn−1f1 = 0 mod qn (6)

α̂tle1 − qie2 = α̂tlf1 − qif2 = 0 mod qi+1 (7)

Proof. By Lemma 15, we have qn−1e1 = −αqn−1e2 mod qn. Also, qn−1f1 =
−αqn−1f2 mod qn. The execution of this loop implies α is divisible by q. There-
fore, the first equation always holds.

By Lemma 15, we have α̂tle1 − qie2 = −α̂tlαe2 − qie2 mod qi+1. Since (αl +
tqi)α̂tl = qi mod qi+1, we have −α̂tlαe2 − qie2 = (αi − t)qiα̂tle2 mod qi+1.
Similarly, we have α̂tlf1 − qif2 = (αi − t)qiα̂tlf2 mod qi+1. By Lemma 16 and
Proposition 9, e2α̂tl and f2α̂tl cannot both be divisible by q. Therefore, the
second equation is zero if and only if αi = t.

Hence, both of the following two equations are true if and only if αi = t.

Recall φ′
A(Ra) = [e1]Rab + [f1]Sab, and φ′

A(Sa) = [e2]Rab + [f2]Sab. For Eq.
(2), we have

φ′
A([1 + qn−1]Ra) − [e1]Rab − [f1]Sab

= [qn−1e1]Rab + [qn−1f1]Sab

Recall that {Rab, Sab} is a basis for EAB [qn] � Zqn × Zqn . By using Lemma 20
(Eq. (6)), this condition always holds.
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Also, for Eq. (3), we have

φ′
A([α̂tlq

n−i−1]Ra + [1 − qn−1]Sa) − [e2]Rab − [f2]Sab

= [α̂tlq
n−i−1e1−qn−1e2]Rab + [α̂tlq

n−i−1f1−qn−1f2]Sab

Recall that {Rab, Sab} is a basis for EAB [qn] � Zqn × Zqn . By using Lemma
20 (Eq. (7)), this condition holds if and only if αi = t for some t ∈ {1, · · · , a−1}.

Therefore, by combining conditions of Eqs. (1) to (3), in the if-loop of αl = 0,
the oracle outputs c = 1 for t ∈ {1, q − 1} used in the loop if and only if
αi = t. Moreover, if all outputs of the oracle in the loop are 0, then αi = 0. The
extraction of αi is correct in this case.

Case2: the if-loop of αl 	= 0. The condition is equivalent to qj is the maximal
power of q dividing α.

Lemma 21. Let notation be as above. Both of the following two equations are
true if and only if αi = t :

e1 − (αl + tqi)e2 = f1 − (αl + tqi)f2 = 0 mod qi−j+1 (8)

α̂tle1 − qje2 = α̂tlf1 − qjf2 = 0 mod qi+1 (9)

Proof. By Lemma 15, we have e1−(αl+tqi)e2 = −αe2−(αl+tqi)e2 = (αi−t)qie2
mod qi−j+1 and f1−(αl+tqi)f2 = −αf2−(αl+tqi)f2 = (αi−t)qif2 mod qi−j+1.
By Lemma 16, not both e2 and f2 are divisible by q. Therefore, the first equation
is zero if and only if αi = t or j ≥ 1.

Similarly, by Lemma 15, we have α̂tle1 − qje2 = −αα̂tle2 − qje2 mod qi+1.
Since (αl + tqi)α̂tl = qj mod qi+1, we have −αα̂tle2 − qje2 = (αi − t)qiα̂tle2
mod qi+1. Similarly, we have α̂tlf1−qjf2 = (αi−t)qiα̂tlf2 mod qi+1. By Lemma
16 and Proposition 9, not both e2α̂tl and f2α̂tl are divisible by q. Therefore, the
second equation is zero if and only if αi = t.

Hence, both of the following two equations are true if and only if αi = t.

Recall φ′
A(Ra) = [e1]Rab + [f1]Sab, and φ′

A(Sa) = [e2]Rab + [f2]Sab. For Eq.
(2), we have

φ′
A([1 + qn−i+j−1]Ra − [(αl + tqi)qn−i+j−1]Sa) − [e1]Rab − [f1]Sab

= [(qn−i+j−1)e1 − (αl + tqi)qn−i+j−1e2]Rab

+ [(qn−i+j−1)f1 − (αl + tqi)qn−i+j−1f2]Sab

For Eq. (3), we have α̂

φ′
A([α̂tlq

n−i−1]Ra + [1 − qn−i+j−1]Sa) − [e2]Rab − [f2]Sab

= [α̂tlq
n−i−1e1 + (−qn−i+j−1)e2]Rab + [α̂tlq

n−i−1f1 + (−qn−i+j−1)f2]Sab

Recall that {Rab, Sab} is a basis for EAB [qn] � Zqn × Zqn . By Lemma 21, we
know both conditions (Eqs. (2) to (3)) hold if and only if αi = t.
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Algorithm: Recover(pp, skB)
Input: pp public parameter of the protocol, skB the secret key of Bob,
Given: an oracle Oα(Ra, Sa, Rab, Sab; EB , EAB) 0/1 returns 1 if and only if

the following equations hold:
eqn(Ra, Sa) = eqn(Pq, Qq),
φ′

A(Ra) = [e1]Rab + [f1]Sab,
φ′

A(Sa) = [e2]Rab + [f2]Sab,
where φ′

A is an isogeny from EB with kernel 〈[qn−a](Pq + [α]Qq)〉 ∈ EB .
Ensure: Alice’s secret key α

1: Obtain (Ra, Sa, Rab, Sab) (φB(Pq), φB(Qq), φ′
B(RA), φ′

B(SA)) by following
the protocol specification using skB .

2: Obtain a from pp.
3: i = 0
4: j =⊥
5: αl = 0
6: while i < a do
7: c = 0
8: t = q
9: for t ∈ {0, · · · , q − 1} do

10: α̂tl QuasiInv(αl + tqi, q, n)
11: if i = 0 then � Extract α0.
12: while c = 0 or t > 0 do
13: t −= 1
14: ˜Ra, ˜Sa [1 + qn−1]Ra − [tqn−1]Sa, [α̂tlq

n−1]Ra + [1 − qn−1]Sa

15: c (˜Ra, ˜Sa, Rab, Sab)
16: αl t
17: i += 1
18: if t �= 0 then j i � Assert q is the maximal power of q dividing α.
19: Continue
20: if αl = 0 then � Assert α̂tlt = 1 or 0 mod q.
21: while c = 0 or t > 0 do
22: t −= 1
23: ˜Ra, ˜Sa [1 + qn−1]Ra, [α̂tlq

n−i−1]Ra + [1 − qn−1]Sa

24: c (˜Ra, ˜Sa, Rab, Sab)
25: αl αl + tqi � Assert i-th digit of −α is t.
26: if t �= 0 then j i � Assert qj is the maximal power of q dividing α.
27: else � Assert α̂tl(αl + tqi) = qj mod qn.
28: while c = 0 or t > 0 do
29: t −= 1
30: ˜Ra [1 + qn−i+j−1]Ra − [(αl + tqi)qn−i+j−1]Sa

31: ˜Sa [α̂tlq
n−i−1]Ra + [1 − qn−i+j−1]Sa

32: c

O

O

O(˜Ra, ˜Sa, Rab, Sab)
33: αl αl + tqi � Assert i-th digit of −α is t.
34: i += 1
35: return αl mod qa

Fig. 3. A general algorithm to recover the secret α.
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Therefore, by combining conditions of Eqs. (1) to (3), in the else-loop, the
oracle outputs c = 1 for t ∈ {1, · · · , q − 1} used in the loop if and only if αi = t.
If all outputs of the oracle in the loop is 0, then αi = 0. The extraction in this
case is correct. Hence, the algorithm in Fig. 3 successfully extracts Alices’s secret
key.
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Abstract. In the effort to transition cryptographic primitives and pro-
tocols to quantum-resistant alternatives, an interesting and useful chal-
lenge is found in the Signal protocol. The initial key agreement com-
ponent of this protocol, called X3DH, has so far proved more subtle
to replace—in part due to the unclear security model and properties
the original protocol is designed for. This paper defines a formal security
model for the original Signal protocol, in the context of the standard eCK
and CK+ type models, which we call the Signal-adapted-CK model. We
then propose a replacement for the Signal X3DH key exchange protocol
based on SIDH, and provide a proof of security in the Signal-adapted-
CK model, showing our protocol satisfies all security properties of the
original Signal X3DH. We call this new protocol SI-X3DH. Our protocol
shows that SIDH can be used to construct a secure X3DH replacement
despite the existence of adaptive attacks against it. Unlike the generic
constructions proposed in the literature, our protocol achieves deniabil-
ity without expensive machinery such as post-quantum ring signatures.
It also benefits from the small key sizes of SIDH, and its efficiency as a
key-exchange protocol compared to other isogeny-based protocols such
as CSIDH.

1 Introduction

Signal is a widely-used secure messaging protocol with implementations in its
namesake app (Signal Private Messenger), as well as others including WhatsApp,
Facebook Messenger and more. Due to its popularity, it is an interesting problem
to design a post-quantum secure variant of the protocol. However, some difficulty
arises due to the lack of a formally-defined security model or properties for the
original protocol itself.

The Signal protocol consists of two general stages: the first is the initial key
agreement, which is then followed by the double ratchet protocol [MP16a]. The
initial key agreement is currently done via a protocol known as Extended Triple
Diffie–Hellman (X3DH) [MP16b]. While Alwen, Coretti, and Dodis [ACD19]
construct a version of the double ratchet component using key encapsulation
mechanisms (KEMs), which can be made post-quantum secure, the X3DH stage
has proven to be more subtle and challenging to replace in an efficient way with
post-quantum solutions. Recent work by Brendel, Fischlin, Günther, Janson, and
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Stebila [BFG+20] examines some of these challenges and suggests that SIDH
cannot be used to make X3DH post-quantum secure due to its vulnerability to
adaptive attacks when static keys are used.1

Specifically, [BFG+20] is referring to an adaptive attack on SIDH given by
Galbraith, Petit, Shani, and Ti [GPST16] (henceforth referred to as the GPST
attack), which uses specially crafted points in a user’s public key to extract bits
of information about the isogeny path (and thus the secret key) of the other
participant. The Signal X3DH protocol is an authenticated key exchange (AKE)
protocol, requiring keys from both parties involved. Without a secure method
of validating the correctness of the other party’s keys, it would be insecure to
perform a naive SIDH key exchange with them. For example, the initiator of
a key exchange could adaptively modify the ephemeral public keys they use, in
order to learn the receiver’s long-term identity private key via this GPST attack.

Known methods of validation used to prevent adaptive attacks in SIDH are
not well-suited to solving this issue in the Signal X3DH context. One proposed
method of overcoming the GPST attack, known as k-SIDH [AJL17], has both
parties use k different SIDH public keys, and runs k2 instances of SIDH in parallel
with pairwise combinations of these keys, combining all the shared secrets using a
hash function in the final step of the protocol. The GPST attack was extended to
k-SIDH in [DGL+20] and shown to be feasible for small k (an attack on k = 2 is
demonstrated concretely). Due to the possibility of attacking k-SIDH for small
k, it has been suggested that k of at least 92 would be required to achieve
security against quantum adversaries. Unfortunately, this makes the protocol
very inefficient. An alternative which is commonly used, as in SIKE [CCH+19],
is to convert the key exchange into a key encapsulation mechanism (KEM) using
the Fujisaki–Okamoto (FO) transform or its variants [HHK17], and verify that
the public key is well-formed and honestly generated [Pei14,KLM+15]. The idea
of the FO-transform is that the initiator, A, of the key exchange can encrypt the
randomness they used in the exchange (for example, to generate their secret key)
under the symmetric shared key K they derived, and send it to their partner B.
If the encryption method is one-time secure, then because only A and B know K,
only they can decrypt this randomness. B can then check that A performed the
exchange protocol correctly, and in particular, that the public key they generated
is indeed derived from the randomness they provided, to prove that A’s public
key is well-formed. Because B learns the secret key of A in every exchange, A
can only do this with ephemeral keys. Hence, while extremely useful, the FO-
transform does not provide a solution in cases where both parties use static keys.
We cannot exclude the possibility that participants use their long-term (static)
keys as part of an attack: a dedicated or well-resourced attacker could certainly

1 Since this paper was submitted for publication, new attacks on SIDH have been
announced [CD22,MM22,Rob22]. This paper assumes that a variant of SIDH can
be developed which is still secure. However, if SIDH is broken entirely, techniques
from this paper may be of independent interest—for example, the Signal security
model and use of the Honest and Verifiable CDH problems to avoid relying on Gap-
DH assumptions.
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register many new accounts whose identity keys are maliciously crafted, and
initiate exchanges with an unsuspecting user (perhaps by masquerading as their
friends or colleagues) to learn their secret key. For these reasons, [BFG+20]
disregards SIDH as a contender and suggest using CSIDH [CLM+18] for an
isogeny-based variant of Signal. However, this primitive is much less efficient
than SIDH—in part due to sub-exponential quantum attacks that lead to much
larger parameters.

One of the primary goals of this paper is to show that SIDH can indeed be
used to construct a post-quantum X3DH replacement that satisfies the same
security model as the original X3DH protocol—despite the existence of these
adaptive attacks. In order to design good post-quantum replacements for the
Signal protocol, a clear security model is required. This is an area of difficulty
because the original Signal protocol did not define a security model—it appears
to be designed empirically. There have since been a few efforts to formalise
the security properties of the Signal protocol and X3DH. Notably, the work by
Cohn-Gordon, Cremers, Dowling, Garratt, and Stebila [CGCD+20] was the first
to propose a security model and prove the security of Signal in it. The recent
work of Hashimoto, Katsumata, Kwiatkowski, and Prest [HKKP21] also pro-
poses a generic security model for the Signal initial key agreement (specifically,
for what they call Signal-conforming AKEs), and gives a generic construction
from KEMs and signature schemes (as mentioned above, KEMs do not allow
static–static key exchange, so a signature scheme is required to provide explicit
authentication of the initiating party). From these analyses of the protocol, the
following security properties have been identified as important, which any post-
quantum replacement should therefore also satisfy:

1. Correctness: If Alice and Bob complete an exchange together, they should
derive the same shared secret key.

2. Secrecy (also known as key-indistinguishability): Under the corruption of var-
ious combinations of the participants’ secret keys, the shared secret for the
session should not be recoverable, or even distinguishable from a random key.
The combinations are defined by the specific security model used, for exam-
ple, the CK model [CK01] or the model in [CGCD+20]. This is, of course, a
basic requirement for any secure key exchange.

3. (Implicit) authentication: Both participants should know who they are talking
to, and be able to verify their partner’s identity.

4. Perfect forward secrecy (PFS): Past communication should remain secure
and unreadable by adversaries even if the participants’ long-term keys are
compromised in the future.

5. Asynchronicity: The protocol can be made non-interactive by hosting partic-
ipants’ public keys on a third-party server, which is untrusted. In the security
model, the only possible malicious ability the server should have is that it
could deny Alice the retrieval of Bob’s keys (or, say, not give out his one-time
keys). This property is also called receiver obliviousness in [HKKP21].

6. (Offline) deniability [VGIK20], also known as identity-hiding: The transcript
of an exchange session should not reveal the participants of the exchange (in
a non-repudiable way).
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We propose a new post-quantum key exchange protocol using SIDH, modelled
after X3DH, which we call SI-X3DH. This new protocol solves the problem of
adaptive attacks by using a variant of the FO transformation to prove that
the initiator’s ephemeral key is honestly generated, and a Proof of Knowledge
to ensure the long term public keys are well-formed. We prove security of the
SI-X3DH protocol formally in the random oracle model (ROM) using a new key-
indistinguishability model we call the Signal-adapted-CK model. We show the
security of SI-X3DH reduces to the hardness of the supersingular isogeny CDH
(SI-CDH) assumption in the ROM.

SIDH has small key sizes compared to other post-quantum proposals (e.g.
lattice-based key exchange), and is much faster than using CSIDH—as was sug-
gested in [BFG+20]—because CSIDH uses larger-prime degree isogenies while
SIDH commonly uses only isogenies of degree (a power of) two and three. During
the online phase of an exchange (i.e., ignoring the initial setup with the proof
of knowledge), our scheme only requires three or four SIDH instances (unlike
k-SIDH) and one small FO-proof, and achieves deniability without using a ring
signature (as [HKKP21] does). There are some structural differences between SI-
X3DH and X3DH—for example, SI-X3DH performs an SIDH exchange between
the two parties’ identity keys (IKA and IKB), while X3DH used IKA and SKB

(Bob’s semi-static key) instead; also, due to the asymmetry between the degrees
of the isogenies the two parties in SIDH use, SI-X3DH requires different keys
for receiving and sending. Despite these differences, the structure of our proto-
col more closely resembles X3DH than any of the other post-quantum propos-
als presented to date. For example, SI-X3DH allows Bob the balance between
one-time keys and medium-term (semi-static) keys—where the former may be
exhausted, leading to denial of service, while the latter provide less security in
some attack scenarios. These semi-static receiver keys are a feature that no other
post-quantum proposal has captured. These factors make our protocol viable for
use in post-quantum Signal initial key agreement.

There are two primary drawbacks of our scheme. The first is that it relies
on proving knowledge of the secret long-term identity keys, by using the SIDH
Proof of Knowledge from [DDGZ21] for example. This only needs to be done
once per contact (or could be offloaded to the keyserver, if we trusted it—we
shall not delve deeper into the discussion on Signal’s trust model here), but for
users who add many new contacts regularly, this may create an unacceptable
overhead. The efficiency of our scheme is discussed more in Sect. 6. The second,
as discussed in Sect. 5, is that SI-X3DH suffers from the possibility of more per-
manent key compromise impersonation (KCI) than the original Signal X3DH
protocol does. Technically, neither Signal X3DH nor SI-X3DH satisfy the KCI
resistance requirement of the eCK and CK+ security models, but there is a
practical difference between the schemes. Impersonation was possible with the
compromise of the semi-static key in Signal X3DH, whereas in SI-X3DH, imper-
sonation is possible with compromise of the long-term identity key. Thus, cycling
the semi-static key is no longer sufficient to prevent long-term impersonation.
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1.1 Related Work

[BFG+20] proposed a new model for post-quantum X3DH replacements using
a primitive they call split-KEMs. Their construction is a theoretical work, as
they leave it an open question whether post-quantum primitives such as CSIDH
satisfy the security definitions of their split-KEM. Recently, [HKKP21] pre-
sented their Signal-Conforming AKE (SC-AKE) construction, also using post-
quantum KEMs to construct a generic Signal X3DH replacement. To achieve
deniability, their scheme requires a post-quantum ring signature scheme. Inde-
pendently, but following a very similar approach to [HKKP21], [BFG+22] also
proposed a deniable AKE using post-quantum KEMs (which they call “Signal in
a Post-Quantum Regime” (SPQR)) and a designated verifier signature (DVS)
scheme. As they mention, little work has been done to date in constructing
DVS schemes from post-quantum assumptions (an isogeny-based scheme was
proposed in [STW12], but is broken by the GPST attack), so [BFG+22] also
propose using a two-party post-quantum ring signature scheme for the same pur-
pose. We briefly outline the differences between these works and that presented
in this paper using Table 1, with the original Signal X3DH protocol included as
a reference.

The original Signal X3DH scheme requires Bob to sign his semi-static keys
(using XEdDSA [Per16] with his identity key), to prevent a malicious keyserver
from providing its own keys and compromising the perfect forward secrecy guar-
antee of the scheme. This requirement must still hold in any post-quantum
replacement too, otherwise MITM attacks can break the PFS of the scheme.
Because there are no efficient post-quantum constructions with a public key
that can be used in both a signature scheme and a key exchange, requiring a
separate signature scheme (and verification key Kσ) seems unavoidable for any
post-quantum X3DH replacement. In general, these X3DH replacements (includ-
ing SI-X3DH) are agnostic to the signature scheme used for this purpose, so any
efficient post-quantum signature scheme may be used alongside them—there is
no restriction to use an isogeny-based signature scheme with SI-X3DH.

For deniability, SC-AKE requires the initiator of the key exchange to sign
the session ID. This signature creates non-repudiable evidence of the initiator’s
involvement in the exchange. [HKKP21] and [BFG+22] suggest using a ring
signature to attain deniability. Specifically, a signature under a two-party ring
involving just the sender and receiver is sufficient to authenticate the other party
in the exchange (since one party knows the signatures that they themselves gen-
erated), but to a third party, the signature could have been generated by either
participant. Unfortunately, however, a post-quantum ring signature scheme is a
much more expensive construction than a standard signature. In both [HKKP21]
and [BFG+22], one of these signatures is required in every exchange session.
Deniability of the split-KEM construction is not discussed in [BFG+20], and
would appear to depend on how the split-KEM is instantiated. Our scheme
attains deniability without using a ring signature.

Finally, it is important to note that the SC-AKE protocol does not use a
semi-static key—only long-term and ephemeral keys. This means that unlike in
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Table 1. Comparison of post-quantum Signal X3DH replacements. Long-term data
refers to the size of the initial registration cost for each user (the “offline” data).
Exchanged data gives the amount of ephemeral data sent in a single exchange (by both
parties combined), that is, the size of the “online” transcript.

Scheme PQ-secure Deniable Requires sig Long-term
data

Exchanged data

Original Signal
X3DH protocol

x � � K 3 keys

Split-KEM based
X3DH [BFG+20]

� ? � K, Kσ 3 keys, 4
ciphertexts

Signal-Conforming
AKE [HKKP21]

� *with PQ ring
signature

� (×2) K, Kσ, K∗
σ 1 key, 3

ciphertexts

SPQR [BFG+22] � *with PQ ring
signature or DVS

� (×2) K, Kσ, K∗
σ 2 keys, 4

ciphertexts

SI-X3DH (this
work)

� � � K2, K3, Kσ +
PoK

3 keys, 1
ciphertext

Signal X3DH, if a receiver is offline for an extended period of time, it is possible
for all the ephemeral keys they uploaded to the server to be exhausted (either
due to popularity or a malicious attempt to do so). This creates an opportunity
for denial of service which is not present when semi-static keys are used and the
ephemeral component is optional. Our scheme, and the scheme in [BFG+22],
address this by using both semi-static and ephemeral keys if available, as in
Signal’s X3DH.

Other works on post-quantum key exchange, for example for TLS, are not
suitable for use in the Signal X3DH setting because these schemes are interactive
over multiple rounds (failing the asynchronicity requirement above), and often
do not authenticate the initiator (or client).

We begin in Sect. 2 by reviewing the existing X3DH protocol used as Signal’s
initial key agreement. We then review the supersingular isogeny Diffie–Hellman
key exchange (SIDH) in Sect. 3. In Sect. 4 we discuss the security properties of an
appropriate Signal key agreement protocol in more detail and define a security
model to be used. This is followed by our construction of a new protocol in
Sect. 5 using SIDH, which we propose as a post-quantum replacement for X3DH.
Section 6 discusses the efficiency of our protocol and the key differences between
our proposal and the original X3DH scheme.

2 The Signal X3DH Protocol

The basic process of the X3DH protocol is given in Fig. 1, where Alice is the
initiator and Bob is the responder. Let DHpp(ga, gb) = gab denote the result of a
Diffie–Hellman key exchange between keys A and B (at least one of the private
keys is needed to compute this, but the result is unambiguous), with public
parameters pp including g. Because we assume fixed public parameters, we will
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usually omit the subscript. Throughout this paper, we will use dashed boxes
to denote optional parameters which may be omitted.

Alice Server Bob

register IKB

upload SKB , SigB(SKB), {EKi
B}i

request prekey bundle

IKB , SKB , SigB(SKB), EKB

IKA,EKA, fingerprint(EKB)

dh1 = DH(IKA, SKB)
dh2 = DH(EKA, IKB)
dh3 = DH(EKA, SKB)
dh4 = DH(EKA,EKB)

K = KDF(dh1 ‖ dh2 ‖ dh3 ‖ dh4 )

Fig. 1. The X3DH protocol [MP16b]. dh4 is optional on the basis of one-time key
availability.

Because the X3DH protocol is designed to work when the recipient (Bob) is
offline, Alice obtains his public key information from a server. IKA and IKB are
the fixed long-term identity keys of Alice and Bob respectively. Bob additionally
uploads a semi-static public key SKB signed by him to the server, which he
rotates semi-regularly. He also uploads a number of one-time keys EKB , but the
use of these is optional as the supply on the server may run out.

After Alice has received Bob’s identity, semi-static, and (optional) one-time
keys from the server, she performs a three- or four-part key exchange with her
own identity key and ephemeral key. These three or four shared keys are specified
in the figure (denoted by dhi), and are combined using some sort of secure hash
or key derivation function (KDF). We shall assume they are simply concatenated
and hashed with a cryptographic hash function. This results in the master shared
secret for the exchange, which is then used in subsequent protocols such as
Signal’s Double Ratchet protocol.

Finally, Alice sends to Bob identifiers of which of his semi-static and one-time
public keys she used (for example, short fingerprint), as well as her own identity
and ephemeral keys. This allows Bob to also compute the same shared master
secret.

Verification of the long-term identity keys is out-of-scope for the protocol,
and may be done either by trusting a third party (e.g. the server) as a PKI, or
verifying the keys in-person or out-of-band in some other way.
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3 SIDH

We briefly recall the Supersingular Isogeny Diffie–Hellman (SIDH) key exchange
protocol2 [JD11] by Jao and De Feo. Let p = �e1

1 �e2
2 f ± 1 be prime, with �1, �2

distinct small primes, f an integer cofactor, and �e1
1 ≈ �e2

2 . We work over the
finite field Fp2 . Fix a supersingular elliptic curve E0 and a basis {Pi, Qi} for
both the �1 and �2 torsion subgroups of E0(Fp2) (such that E0[�ei

i ] = 〈Pi, Qi〉).
Typically �1 = 2 and �2 = 3, and this will be assumed from here forward in this
paper. We will use both the index 1 and the subscript A to represent Alice’s
information, while B � 2 will be used interchangeably for Bob’s, for clarity in
various situations and for consistency with existing literature.

Alice’s secret key is an isogeny φA : E(Fp2) → EA(Fp2) of degree 2e1 (Bob’s
is analogous, with degree 3e2). It is well known that knowledge of an isogeny
(up to equivalence, i.e., post-composition with an isomorphism) and knowledge
of its kernel are equivalent via Vélu’s formulae [Vél71], so both the kernel and
the isogeny will be referred to as “the secret key”. Alice’s public key is the
tuple (EA, φA(PB), φA(QB)). The image of the 3e2 basis under φA allows Bob to
“transport” his isogeny to EA and make the diagram commute: if the kernel of
φB on E0 is generated by PB +[β]QB , then Bob defines the corresponding kernel
〈φA(PB)+ [β]φA(QB)〉 on EA. Both Alice’s and Bob’s transported isogenies will
have isomorphic codomain curves EAB � EBA, and their j-invariant j(EAB) =
j(EBA) can be used as a shared secret. Figure 2 depicts the commutative diagram
making up the SIDH key exchange.

E EA

EB EAB

φA

φB

φBA

φAB

Fig. 2. Commutative diagram of SIDH, where ker(φBA) = φB(ker(φA)) and
ker(φAB) = φA(ker(φB)).

Throughout this paper, we will use the function SIDHpp(·, ·) to represent this
protocol with respect to public parameters pp, outputting the final j-invariant.
Generally, the public parameters will be clear from context, so they may be
omitted for ease of notation. The arguments to SIDH will be the two public
keys of the participants (first the degree-3e2 isogeny key, second the degree-
2e1 isogeny key), because clearly the result is independent of which participant
computed the value (using their secret key). Specifically, if 〈PB + [β]QB〉 is

2 Since publication, attacks have been proposed on the variant of SIDH described here
[CD22,MM22,Rob22].
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the secret kernel corresponding to the public key KB = (EB , P ′
A, Q′

A), then
SIDHpp((EA, P ′

B , Q′
B),KB) = j(EA/〈P ′

B + [β]Q′
B〉).

Definition 1 (Computational Supersingular Isogeny Diffie–Hellman
(SI-CDH) problem). Let pp = (p, �1, �2, e1, e2, E0, P1, Q1, P2, Q2) be SIDH
public parameters, and

K1 = (E1, φ1(P2), φ1(Q2)) ,

K2 = (E2, φ2(P1), φ2(Q1)) ,

be two SIDH public keys, where φi : E0 → Ei has degree �ei
i . The SI-CDH problem

is, given pp, K1, and K2, to compute the j-invariant j = SIDHpp(K2,K1).

We define the advantage of a probabilistic polynomial-time (PPT) adversary A
solving the SI-CDH problem as

Advsi-cdh(A) = Pr [ j′ = SIDHpp(K2,K1) | j′ ← A(pp,K1,K2) ] .

3.1 New SI-CDH-Based Assumptions

We now introduce two new computational assumptions, both of which SI-CDH
(Definition 1) can be reduced to in the random oracle model. These two assump-
tions are merely tools to simplify the proof of security of our new SI-X3DH
protocol. For ease of notation, let Ki (the i-keyspace) be the set of possible iso-
genies of degree �ei

i from the fixed SIDH base curve E0 (up to equivalence). Let
H1 : {0, 1}∗ → K2 be a pseudorandom generator (PRG) whose codomain is the
second of these secret isogeny keyspaces. PubkeyFromSecret is a function taking
a secret isogeny or kernel generator and outputting the SIDH public key corre-
sponding to that isogeny (or the isogeny with that kernel, via Vélu’s formulae).

Definition 2 (Verifiable SI-CDH (VCDH) problem).
Let pp be SIDH public parameters, and K1 and K2 be two SIDH public keys
(whose secret isogenies have coprime degrees specified by pp). Let OK1,K2 be an
oracle defined as

OK1,K2(j
′) =

{
1 if j′ = SIDHpp(K2,K1),
0 otherwise.

Note that K1,K2 are fixed in the definition of O.
The Verifiable SI-CDH problem is to compute the j-invariant j =

SIDHpp(K2,K1), given pp, K1, K2, and OK1,K2 .

On all except one j-invariant, the oracle OK1,K2 will return 0. Because K1 and
K2 are fixed, the oracle O is much weaker than an SI-DDH oracle (which takes
keys as input parameters). Thus, intuitively, in polynomially-many queries, the
likelihood of guessing the correct j-invariant is negligible (as in the SI-CDH
problem). The second problem models an SI-CDH instance with an additional
FO-like proof that the second key in the instance, K2, was honestly generated.
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Definition 3 (Honest SI-CDH (HCDH) problem).
Let pp be SIDH public parameters, and s ← {0, 1}n be a random seed, where n is
the security parameter. Then, let K2 = PubkeyFromSecret(H1(s)) be a public key
derived from s, where H1(s) is an isogeny of degree �e2

2 . Let K1 be a second public
key (corresponding to an isogeny of degree �e1

1 ). Finally, let π be an FO-proof of
the form

π = s ⊕ H2(SIDHpp(K2,K1)),

where H2 : {0, 1}∗ → {0, 1}n is a PRG.
The Verifiable SI-CDH problem is, given pp, K1, K2, and π, to compute the

j-invariant j = SIDHpp(K2,K1).

Reductions from SI-CDH to both of these problems can be found in Appendix A.

4 Security Model

In the field of Authenticated Key Exchange (AKE), the eCK and CK+ models
are generally viewed as the strongest and most desirable security models, as
they capture attacks which are outside the scope of the earlier CK model [CK01]:
weak perfect forward secrecy (wPFS), key compromise impersonation (KCI), and
maximal exposure (MEX). All of these properties relate to certain combinations
of long-term and ephemeral keys being compromised by an adversary. A protocol
is secure in these models if an adversary cannot distinguish the true session key
from a random one, even when given these abilities to compromise keys.

Unfortunately, Signal X3DH does not meet the definition of security required
by these models. This was observed in [CGCD+20]. Precisely, this is because
some combinations of keys from Alice and Bob are not used for Diffie–Hellman
exchanges in the protocol—for example, there is no DH exchange between Alice’s
identity key and Bob’s identity or ephemeral keys. Our benchmark for security
is that a replacement protocol should meet at least the same security definition
as that of the original protocol, so we must observe where exactly the original
protocol breaks down in the eCK and CK+ models. This allows us to propose a
slightly weaker model, though still stronger than the CK model, that successfully
represents the security goals of Signal X3DH. This gives a formal security model
with a more standard presentation than the model used in [CGCD+20] to prove
security of the original Signal X3DH protocol—allowing much easier comparison
with other works. We call our new security model the Signal-adapted-CK model.
One difference of note is that standard security models generally define keys to
be either long-term or ephemeral. As a recipient in the Signal protocol uses
up to three keys, including a semi-static (medium-term) key, it is not at first
obvious how to integrate this semi-static key into such two-key models. We
choose to consider it as both long-term and ephemeral in different situations.
This is discussed further in Remark 1.

[HKKP21] provides a similar security model, for what they call a Signal-
conforming AKE protocol. Their security model differs from ours in the fact
that it does not take semi-static keys into account (their proposed construction
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does not use semi-static keys). Their model is stronger than the Signal-adapted-
CK model—in fact, the original Signal X3DH protocol would not satisfy their
model even if the semi-static keys were somehow included (it requires security
against the two events E4 and E8 in Table 3, discussed further below). However,
our goal is to propose a model that exactly captures the security properties of
the original Signal X3DH protocol, which was not the goal of their model. In
other words, we wish to analyse Signal, not some stronger protocol.

4.1 Key Indistinguishability Experiment

Due to space requirements, standard definitions for the key indistinguishability
experiment can be found in Appendix C. We focus on our non-standard defini-
tion of freshness, which differentiates the Signal-adapted-CK model from the
standard eCK and CK+ models.

Definition 4 (Freshness). A session Πj
i , with Πj

i .peer id = k, is fresh if
none of the following hold:

– Πj
i .status 	= accept.

– The session key of Πj
i , or any matching session, is revealed.

– If Πj
i .role = init:

• Both RevealIK(i) and RevealEK(i, j) are issued.
• Πj

i has a partner Π�
k for some �, RevealIK(k) is issued, and either

RevealSK(k,Πj
i .peer sk id) (�) or RevealEK(k, �) are issued.

See Remark 1.
– If Πj

i .role = resp:
• Πj

i has a partner Π�
k for some � and both RevealIK(k) and

RevealEK(k, �) are issued.
• RevealIK(i) and either RevealSK(i,Πj

i .sk id) (�) or
RevealEK(i, j) are issued. See Remark 1.

– Πj
i has no partner session and RevealIK(Πj

i .peer id) is issued.

We emphasise that Table 2 and our definition of freshness in Definition 4 are
strictly weaker than the standard eCK/CK+ cases and definitions—specifically,
we have removed the adversary’s ability to perform two specific cases of KCI
attack. Both of these removed cases are given in Table 3, and correspond to the
extra restrictions on freshness marked with a (�) in Definition 4. These are the
cases that weaken the eCK/CK+ models to our Signal-adapted-CK model.

The KCI attack on the original protocol is as follows: if Bob’s semi-static
key SKB is compromised, an adversary can impersonate anyone to Bob. This is
because Alice is only authenticated through dh1 (the exchange with SKB), so
an adversary can claim the use of any other public key IKE and calculate the
correct Diffie–Hellman value with SKB. As SKB is periodically replaced by Bob,
the impersonation to Bob can last only as long as he accepts exchanges with
that particular SKB . However, we consider this a failure of the KCI property
because SKB is not ephemeral. This is discussed further in Remark 1.
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Table 2. Behaviour of the adversary in our model, corresponding to the various fresh-
ness conditions in Definition 4. I and R denote whether the key belongs to the initiator
or responder respectively. “�” means the corresponding secret key is revealed or cor-
rupted, “x” means it is not revealed, and “-” means it does not exist or is provided by
the adversary. *Discussed further in Remark 1.

Event Matching session
exists

IKI EKI IKR SKR EKR Attack

E1 No � x x � - KCI

E2 No x � x x * - MEX

E3 No x - x x * � MEX

E5 Yes � x � x x wPFS

E6 Yes x � x x * � MEX

E7 Yes � x x � � KCI

Table 3. The two cases of the eCK/CK+ model which are NOT satisfied by Signal’s
X3DH, and so are not included in our model. This lack of KCI is exactly where these
protocols break down.

Event Matching session
exists

IKI EKI IKR SKR EKR Attack

E4 No x - � � x KCI

E8 Yes x � � � x KCI

Remark 1. In the original Signal X3DH protocol, the semi-static keys SKB are
used to strike a balance between perfect forward secrecy and key-exhaustion
denial of service. To correctly model the purpose of this key, we assume it is
“ephemeral enough” to have been replaced some time before a PFS attack (event
E5 in Table 2) takes place—this is generally a longer-term attack and the cycling
of the semi-static key is designed to prevent precisely this. However, the semi-
static key is not truly ephemeral, so we allow it to be revealed as both ephemeral
and long-term in the KCI attacks of Table 2. This properly captures the various
forms of key-leakage that could lead to a KCI attack and strengthens the security
model. Finally, in the MEX cases, we observe that the original Signal X3DH
protocol is not secure if the semi-static key can be revealed in cases E2, E3, and
E6. They are set to x in Table 2 due to our goal of accurately capturing the
security of this original Signal protocol. In the spirit of the MEX property, the
protocol would ideally be secure even when these three cases allowed SK to be
revealed—there is no reason to treat the semi-static key as long-term in these
cases. As we will show later, our new protocol (SI-X3DH) is secure even if these
three cases marked by asterisks are changed to �.
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4.2 Further Security Properties

It is claimed in [MP16b] that X3DH can be considered to have (full) perfect
forward secrecy (PFS), as opposed to just weak PFS which is proved in the
model above. The situation is identical in our scheme, so will not be discussed
further in this paper.

Another very important property of X3DH, which is not captured by the
above security model (or in general by the eCK or CK+ models), is that of deni-
ability. Deniability has two flavours: offline and online deniability. A protocol is
offline-deniable if an adversary can gain no non-repudiable evidence of message
authorship from a transcript even if the long-term keys involved are compro-
mised. On the other hand, online deniability means that even by interacting
with the target (or colluding with another user with whom the target inter-
acts), the adversary cannot gain any such evidence. A protocol satisfying both
offline and online deniability is known as strongly-deniable. Unfortunately, the
Signal protocol fails to achieve online-deniability, as shown by Unger and Gold-
berg [UG18]—although this notion is very difficult to obtain and arguably less
important that offline-deniability. The first formal proof that offline-deniability
is indeed achieved by Signal was given by [VGIK20].

The proof of offline-deniability for Signal carries over to our protocol in
an essentially identical manner, because of how similar the two protocols are.
The proof reduces to the Knowledge of DH (KDH) assumption and its variants
(K2DH and EKDH) which informally state that it should be infeasible for an
adversary, given as input public keys for which the secret keys are unknown, to
output DH values and other public keys they do not know the secret key to, yet
still satisfy relationships of the form dh = DH(K1,K2) (where K1,K2 are public
keys). We will not formally define the assumptions here, but refer the reader to
[VGIK20]. We give a brief, informal outline of this proof in Appendix B.4.

5 Using SIDH for Post-quantum X3DH

We now briefly outline the design process of our SI-X3DH scheme. The obvious
starting point is to naively drop in SIDH as a replacement for DH in Fig. 1. Due
to adaptive attacks, we then require both parties to prove that their keys are
honestly generated whenever they are used in exchanges with non-ephemeral
keys from their partner. In the case of EKA, this can easily be done through an
FO-like transformation [HHK17], as was done in the SIKE [CCH+19] KEM.

Unfortunately this approach cannot be used to prove the honest generation
of non-ephemeral keys. For example, Bob’s semi-static key could be used to
adaptively attack Alice’s identity key if not proven to be well-formed, but he
may be offline at the time of exchange, and the semi-static key may be reused
across multiple sessions of the protocol with different users, so he cannot reveal
the secret key to Alice. It is undesirable to use the other known methods of
proving honest generation of SKB , due to their inefficiency and the fact that
regular rotation of SKB mean such proofs need to be regenerated and reverified
every time. Instead, we modify the original X3DH protocol somewhat, replacing
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dh1 between IKA and SKB with one between IKA and IKB . Then, SKB is only used
in exchanges with ephemeral key EKA, removing the need to prove its honesty.
The other components, dh2, dh3, and dh4, all involve only Alice’s provably honest
ephemeral key, so neither party can learn anything in these exchanges.

Finally, we require proof that IKA and IKB are honestly generated, to ensure
an adaptive attack cannot be performed by registering multiple fake users with
adaptive public identity keys to attack a target’s private identity key. Because
identity keys are fixed (and only need to be verified once per new contact),
we do not encounter the efficiency degradation of using a more expensive proof
to prove knowledge of the corresponding secret keys. The Signal X3DH pro-
tocol already assumes that participants will verify each other’s identity public
key for authentication, so verifying honest key generation can be done at the
same time. One method of proving SIDH public keys are honestly generated is
via a non-interactive zero-knowledge (NIZK) Proof of Knowledge (PoK) of the
corresponding secret key. De Feo, Dobson, Galbraith, and Zobernig [DDGZ21]
present such a proof protocol and show that using it as part of a non-interactive
key exchange is asymptotically more efficient than resorting to other protocols
such as k-SIDH (in terms of isogeny computations). Thus, this SIDH PoK is
perfectly suitable for our situation.

One disadvantage of this modification is that it impacts the KCI resistance
of the scheme. If an adversary corrupted IKB , they could pretend to Bob to be
Alice by choosing any ephemeral key they like, and calculating dh1 using the
known secret key, so Bob would accept it as coming from Alice herself. This
was the case with the original Signal X3DH if SKB was corrupted, as discussed
above. However, there is a practical difference to consider—the impersonation
can persist for longer than in X3DH, since corruption is no longer repaired by
the regular replacement of SKB . We suspect that medium-term impersonation
would be just as damaging as long-term, and corruption of an identity key is a
severe break in security anyway. Because neither scheme can claim to have KCI
resistance, we still assert that SI-X3DH satisfies the same security requirements
as Signal X3DH, but this difference may be worthy of consideration.

Unlike traditional Diffie–Hellman, where both participants’ keys are of the
form gx, in SIDH we have an asymmetric setup—one user uses a degree-�e1

1

isogeny, while the other uses a degree-�e2
2 isogeny. In order to make this work in

X3DH where users can be both initiators and receivers, we require that all “initi-
ating” keys (IKA and EKA) have degree 3e2 , and all “receiving” keys (IKB ,SKB,
and optionally EKB) have degree 2e1 . This arrangement is chosen so that the
sender has a slightly higher computational burden than the receiver, for DOS
reasons. This does mean that all users will require two identity keys—a receiv-
ing and an initiating key. All other aspects of the SI-X3DH protocol follow the
original Signal X3DH closely, including Bob’s signatures on his semi-static keys
(already discussed in Sect. 1.1), for which any suitable post-quantum signature
scheme (for example, a hash-based signature) can be used.

We remark that Galbraith [Gal18, A.3] briefly suggests that using an
ephemeral key in an exchange introduces enough randomness to prevent infor-
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mation about the long-term secret being leaked, however in CK-type models the
adversary can make reveal queries against the private key of EKA, providing a
concrete attack. We also remark that in the Signal protocol, there is a natural
asymmetry between sender and receiver in the exchange, so we avoid interleaving
attacks like the one by Blake-Wilson, Johnson, and Menezes [BWJM97, Protocol
3]).

Our SI-X3DH (Supersingular Isogeny X3DH) protocol is given in Fig. 3.
In each instance of the protocol, Alice obtains a key package from the server
including Bob’s signature verification key VKB , which is used to validate the
signature on his semi-static key SKB . Alice will then generate a random seed s
and use a preimage resistant hash function H1 to compute an ephemeral secret
key φe ← H1(s). Let the corresponding public key be EKA. She will then compute
the pre-shared key PSK, and an FO-proof π as follows:

dh1 = SIDH(IKA, IKB),
dh2 = SIDH(EKA, IKB),
dh3 = SIDH(EKA,SKB),

dh4 = SIDH(EKA,EKB) ,

PSK = KDF(dh1 ‖ dh2 ‖ dh3 ‖ dh4 ),

π = s ⊕ H2(dh1) ⊕ H2(dh2) ⊕ H2(dh3) ⊕H2(dh4) .

(1)

H1 and H2 are the same PRGs used in Sect. 3.1. The reason π takes this form
will be clear from the security proof we present in Appendix B. Alice then sends
(EKA, π) to Bob, along with an identifier for herself, and information about
which of his ephemeral keys she used in the exchange (if any). Bob can check π
is valid and honest by using IKA and EKA to compute the values H2(dhj) (for
j = 1, 2, 3, and if used, 4), XORing these with π to compute s′, then recomputing
φ′

e ← H1(s′), and checking that the corresponding public key is equal to EKA.
He computes PSK as in Eq. 1. If the verification of π succeeds, both Alice and
Bob can compute the shared secret K = KDF(s ‖ EKA ‖ PSK). However, if
verification fails, Bob should instead choose a (or, to avoid timing leakage, use a
pre-chosen) random r ← {0, 1}n and compute K = KDF(r ‖ EKA ‖ PSK). This
way, his key will not match the one Alice derives with overwhelming probability,
and the exchange fails, with Alice learning no information about the cause of
failure (or about Bob’s secret keys).

Theorem 1. The SI-X3DH protocol presented in Sect. 5 is secure (correct and
sound) in the Signal-adapted-CK model of Definition 5, in the random oracle
model (where H1,H2 and KDF are modelled as random oracles), assuming the
SI-CDH problem is hard.

The proof of Theorem 1 can be found in Appendix B. Furthermore, as men-
tioned in Sect. 4.2, the proof of offline-deniability of SI-X3DH is almost identical
to that of the original Signal X3DH protocol (given in [VGIK20]), due to the
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Alice Server Bob

register IKI
A, IKR

A ,VKA register IKI
B , IKR

B ,VKB

upload SKB , SigB(SKB), {EKi
B}iAlice obtains and verifies IKR

B , VKB , and
PoK for IKR

B .

Bob obtains and verifies IKI
A and

PoK for IKI
A.

request prekey bundle

SKB , SigB(SKB), EKB

Alice verifies SigB(SKB) using VKB .
s {0, 1}n; derive EKA from s.
Compute PSK and π as in Eq 1.

IKA,EKA, π, fingerprint(EKB)

Bob verifies π and recovers s.
Compute PSK as in Eq 1.

Both Alice and Bob compute shared secret K = KDF(s ‖ EKA ‖ PSK).

Fig. 3. The SI-X3DH protocol.

similarity between the schemes. We give a brief informal outline of that proof in
Appendix B.4.

6 Efficiency

An SI-X3DH session requires sharing a total of four or five keys between Alice and
Bob, along with a small n-bit FO-proof π, and the unavoidable signature from
Bob on SKB . Because SIDH has some of the shortest public key sizes of any of
the post-quantum contenders, the total transcript size of an SI-X3DH exchange
is competitive (albeit still larger than the original X3DH protocol transcripts).
One minor drawback of the SI-X3DH protocol is that it requires registering two
identity keys rather than one on the server—a receiving key and a sending key
(note that this does not apply to the semi-static key, which is always of degree
2e1). Because of the short key sizes, and the fact that only one of the peer’s
keys is ever required per session (e.g. a peer’s sending key is not needed if they
are the responder), we believe this is of little practical impact. Duits [Dui19]
examined the efficiency of using SIDH in the Signal protocol (though note that
the implementation is not SI-X3DH, but the naive implementation, vulnerable
to adaptive attacks), and also concluded that the speed was practical.

In particular, our protocol is more efficient in terms of computation at
exchange-time than the Split-KEM based X3DH protocol in [BFG+20] using
CSIDH (assuming CSIDH does even satisfy the security properties needed for
their split-KEM scheme, which they leave as an open problem). Based on
NIST security level 1, we compare the fast, constant-time CTIDH [BBC+21]
implementation of CSIDH-512 with the SIKEp434 parameter set. According to
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[BBC+21], the cost of computing the CSIDH action is approximately 125 mil-
lion Skylake clock cycles, while [COR21] states that SIKEp434 key generation
and agreement takes around 5 million Skylake clock cycles—roughly 25 times
faster. The split-KEM protocol proposed in [BFG+20] would require two CSIDH
actions for each of the four encapsulations and decapsulations. SI-X3DH on the
other hand, ignoring the PoK, requires only four SIDH exchanges so in total
would be around 50 times faster.

The main efficiency drawback of SI-X3DH is that the identity keys also
require an SIDH Proof of Knowledge or proof of honest generation, such as the
one given by [DDGZ21]. Because identity keys are retrieved and verified once per
contact, in advance of key establishment taking place, the PoK has no impact on
exchange-time efficiency—it essentially just increases the bandwidth required to
retrieve the identity keys, and can be discarded after verification. As mentioned
earlier, depending on the amount of trust users wish to place in the server, ver-
ification of these proofs can be offloaded to the server at registration time. The
best case is that a user verifies the proof for a contact once and then continues
creating sessions with that same contact over a long period of time. However, if
users regularly add new contacts, this could create a large overhead by requiring
verification of such a proof for each. In the worst case, if a proof is required on
nearly every new key exchange session, the overhead would be very large, and our
scheme would no longer be competitive, though still more efficient than k-SIDH.
On the plus side, SI-X3DH does not require an expensive ring or DVS signature
to attain deniability as the generic schemes in [HKKP21] and [BFG+22] do. If
these schemes were instantiated with the ring signature schemes of Beullens,
Katsumata, and Pintore [BKP20], then choosing the lattice-based instantiation
(Falafl) to optimise for speed (rather than signature and key size) would require
around 78 million clock cycles for signing—already four times slower than the
full SI-X3DH key exchange—and such a signature would be around 30 KB in
size. The smaller isogeny-based instantiation (Calamari), whose signatures are
around 3.6 KB, would take on the order of 1011 clock cycles—many orders of
magnitude slower.

7 Conclusion

An SIDH key exchange is still safe for use if we have sufficient guarantee by
both parties that their keys are honestly generated. This important observation
allows us to use SIDH in a secure post-quantum replacement for Signal’s X3DH
protocol, despite concerns around the adaptive attacks against SIDH [BFG+20].
While a naive drop-in use of SIDH into X3DH would be insecure as [BFG+20]
claims, by tweaking the protocol to use a novel FO-like transform and a proof of
knowledge for identity keys, we can make SIDH safe for use in the Signal X3DH
protocol. Our new protocol, SI-X3DH, provides an efficient, post-quantum secure
replacement for X3DH which closely resembles the original protocol.
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A Proofs of VCDH and HCDH Reductions

Theorem 2. Let B be an adversary solving the VCDH problem with advantage
ε after making q queries to the oracle OK1,K2 . Then B can be used to solve the
SI-CDH problem with probability at least ε/2q.

Proof. Without loss of generality, we assume all q queries are made with distinct
inputs. Let (K1,K2) be an SI-CDH challenge instance. We define two different
oracles O0 and O1. Oracle O0 will return 0 regardless of the query made. To
define oracle O1, we select a random index 0 ≤ � < q and let O2 return 1 on the
�-th unique query (and 0 on all other queries). We run the adversary B in two
settings, giving instance (K1,K2,Oi) to B in setting i ∈ {0, 1}. Define found to
be the event that B makes a query to the oracle O it is given with the correct j-
invariant (the solution to the SI-CDH instance). We can consider the probability
of B succeeding against the VCDH problem as

ε = Pr[B wins | found occurs ] · Pr[ found occurs ]
+ Pr[B wins | found does not occur ] · Pr[ found does not occur ].

If found does not occur, then B running in setting 0 (where oracle O0 always
returns 0) will be unable to distinguish the simulated oracle from the true one,
and will win with advantage ε. Hence,

Pr[B wins in setting 0 ] ≥ Pr[B wins | found does not occur ].

On the other hand, if found occurs, then we correctly simulated the oracle in
setting 1 with probability 1/q (the probability that we guessed � correctly).
Therefore,

Pr[B wins in setting 1 ] ≥ 1
q

Pr[B wins | found occurs ].

We uniformly sample b ← {0, 1} and return the solution from B running in
setting b to the SI-CDH challenger. Because 0 ≤ Pr[ found occurs ] ≤ 1, we solve
the SI-CDH instance with overall probability

1
2

Pr[B wins in setting 0 ] +
1
2

Pr[B wins in setting 1 ]

≥ 1
2

Pr[B wins | found does not occur ] +
1
2q

Pr[B wins | found occurs ]

≥ 1
2q

(Pr[B wins | found does not occur ] + Pr[B wins | found occurs ])

≥ 1
2q

ε,

which is non-negligible if ε is (since q must be polynomially-sized).
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Theorem 3. Let B be an adversary solving the HCDH problem with advantage
ε after making q queries to H2, modelled as a random oracle. Then B can be
used to solve the SI-CDH problem with probability at least min(1/q, ε)/2.

Proof. We argue that the FO-like proof leaks no information because we obvi-
ously assume that SIDHpp(K2,K1) is unknown (since it is the answer to the
SI-CDH problem) and s is random. Thus, if the SI-CDH problem is hard, then
so too is this problem. We sketch a reduction in the random oracle model. Treat
H2 as a random oracle. Let B be an adversary making q queries to H2 and win-
ning with advantage ε against the HCDH problem. Obtain an SI-CDH challenge
(K1,K2). Choose π to be a random binary string, and provide (K1,K2, π) to B.

In order to distinguish the simulated π from an honest FO-proof, B must
query H2(j) for the correct j-invariant solution of the SI-CDH instance. Call
this even found, as above. If found occurs, we can return one of the q queries
made to H2 and win with probability 1/q. Otherwise, the output of B wins with
advantage ε despite π being uniformly random, by a simple hybrid argument.
Thus, the reduction can simply return one of the q queries to H2 or the output
of B to the SI-CDH challenger with equal probability. We then have that B’s
advantage against the CDH problem is at least:

1
2q

Pr[ found occurs ] +
ε

2
Pr[ found does not occur ]

≥ min
(

1
2q

,
ε

2

)
.

which is non-negligible if ε is, since q is polynomially-sized.

B Proof of Theorem 1

Proof Sketch. We briefly outline the proof methodology. The proof is similar
to the one given by [CGCD+20], refitted to our Signal-adapted-CK model and
using the Verifiable and Honest SI-CDH assumptions from Sect. 3.1 instead of
the standard DDH oracle in the gap assumption. Cases E2, E3, and E6 require
IKA and IKB not to be revealed, so we use that as the basis for security in those
cases. Similarly, cases E1 and E7 will use the fact that EKA and IKB are not
revealed, and case E5 relies on EKA and SKB not being revealed. Informally, the
proof begins by forming a game in which the challenger guesses in advance which
session will be tested, as well as the peer ID of that session. The challenger then
simulates the game and inserts a VCDH or HCDH challenge into that predicted
session, showing that an adversary winning the game can be used to successfully
solve the respective hard problem. Once the cases are combined, this gives a
proof of soundness of the SI-X3DH protocol.

Proof. It is clear that two parties following the protocol honestly will become
partners. It is also clear that they will both successfully derive the same session
key and enter an accept state, as an SIDH protocol has no failure probability
if both parties are faithful. Thus the SI-X3DH protocol is correct.



Post-Quantum Signal Key Agreement from SIDH 441

To prove soundness, we will use a series of game hops. The proof will require
splitting into cases following Table 2. Games 0 to 3 are common to all cases;
we then break into a case-by-case proof. Without loss of generality, we assume
participant A is the initiator and B is the responder—the test query is handled
in the same way by the simulator regardless of whether it is called on the initiator
or responder.

Game 0. This game equals the security experiment in Sect. 4.1. The advan-
tage of the adversary in this game is Adv0. All queries to the random oracles
(H1,H2,KDF) are simulated in an on-the-fly manner, and a table of (query,
result) pairs is stored.

Game 1. We ensure all honestly generated SIDH keys are unique, or in other
words, that there are no key collisions. If a key is generated that collides with
any previously generated key, the challenger aborts and the adversary loses the
game. With at most n parties, S sessions per party, m medium-term (semi-static)
keys per party, we have at most n + nm + nS receiving (2e1 -isogeny) keys, and
at most n + nS sending (3e2 -isogeny) keys. A collision among these keys is an
instance of the generalised birthday problem, which we now briefly recall.

If M is the size of the domain from which N ≤ M objects are uniformly
drawn, the generalised birthday problem shows that the probability of a collision
between two objects is

p(N ;M) = 1 −
N−1∏
k=1

(
1 − k

M

)
. (2)

So,
Adv0 ≤ p(n + nm + nS; |K2|) + p(n + nS; |K3|) + Adv1.

To be explicit, the size of an �e-isogeny keyspace is

(� + 1) · �e−1, (3)

so |K2| = 3 · 2e1−1 and |K3| = 4 · 3e2−1. Note that the difference between Adv0
and Adv1 is therefore negligible, since the numerator in the collision probability
is polynomially-sized while the denominator is exponential.

Game 2. We guess in advance which session Πi
u the adversary will call the Test

query against, and abort if this guess is incorrect. Note that we abort with high
probability—there is only a 1/nS chance of success—but the advantages still
only differ by a polynomial factor.

Adv1 = nSAdv2.

Game 3. In this game, we guess in advance the index of the peer of the test session
Πi

u—we guess a v ∈ {1, . . . , n} and abort if Πi
u.peer id 	= v. The probability of

guessing v correctly is 1/n, so

Adv2 ≤ nAdv3.
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We now split into cases based on Table 2. The cases will be grouped by the
approach we take to reduce each case to the VCDH and HCDH hard problems.
Specifically, in each scenario, we consider which of the (three or four) SIDH
exchanges is not compromised by any reveal queries (i.e., neither key involved
is compromised), and embed the hard problem into that pair of keys. Firstly,
we address the MEX events, where neither IKA nor IKB are revealed—cases
E2, E3, and E6. We then treat the KCI events, cases E1 and E7, where EKA and
IKB remain unrevealed. Finally, we come to the wPFS event, E5, in which the
adversary does not reveal either EKA or SKB . We shall have, overall, that

Adv3 = Adv2,3,6
3 + Adv1,7

3 + Adv53.

B.1 Cases E2, E3, E6 (MEX)

As mentioned above, the three cases E2, E3, and E6 all rely on IKA and
IKB not being revealed—the adversary should thus be unable to compute
SIDH(IKA, IKB). This is the basis for the following part of the security proof.

Game 4. In this game, we abort if the adversary queries dh1 = SIDH(IKA, IKB)
as the first component of a call to the KDF oracle. We call this event abort4.

Whenever abort4 occurs, we show that we can construct an algorithm B that
can solve the Verifiable SI-CDH problem (VCDH) in Definition 2. As per that
problem, B receives a triple (K1,K2,O). B will simulate Game 3, except that
it replaces IKu with K2 and IKv with K1. It is guaranteed by freshness that B
will never have to output the corresponding (unknown) secret keys. However,
these two keys may be used in other sessions, so B must be able to behave in a
consistent manner even when these keys are involved. Specifically, there are only
two cases in which B is unable to compute the session key:

1. A non-tested session between the same users u, v where u is the initiator and
v is the responder.

2. A non-tested session between any user other than u, and v, where v is the
responder.

In the first of these two cases, the simulator does not know SIDH(K2,K1), which
is needed for two reasons: B needs it to compute the session key, but it is also the
solution to the VCDH challenge. In the second case, the simulator does not know
SIDH(EKE ,K1) for potentially malicious ephemeral key EKE , whose secret key
is unknown to B. In all other situations, B will know at least one of the secret
keys involved in each SIDH exchange because they were all generated by the
challenger.

We begin with the first case. If a session key or ephemeral key reveal query is
made on such a session, B returns a random key. B also maintains a list of these
random keys it generated, and correspondingly the public keys which should
have been used to compute each one. Then, to ensure that other KDF queries
made are consistent with these replaced keys, we do the following on receipt of
a query KDF(dh1 ‖ dh2 ‖ dh3): B will query O(dh1), and if 1 is returned, this is
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exactly the case where abort4 occurs—then B can return dh1 as the answer to
the VCDH challenge. Otherwise, B samples a new random key to return as the
KDF response, and updates its list accordingly.

In the second case, we involve the FO-proof πE also sent as part of the key
exchange—a proof of honest generation for EKE . In such a session, B will check
through the output table of queries A has made to oracle H2 (which can only have
polynomially-many entries). Let IKw be the identity key of the initiator. For each
pair of entries (h, h′), we check whether H1(πE ⊕h⊕h′ ⊕H2(SIDH(IKw,K1))) is
the secret key of EKE . The simulator can always compute SIDH(IKw,K1) when
w 	= u because it knows the private key for IKw. In order for πE to be valid, it
must have the form

πE = sE ⊕ H2(SIDH(IKw,K1)) ⊕ H2(dh2) ⊕ H2(dh3)

so the only way for the adversary to have honestly generated πE is for it to have
queried H2 on inputs dh2, dh3. Therefore, searching through all pairs (h, h′) of
queries will always result in recovery of sE if πE is valid, and if no such pair exists,
the receiver would reject the FO-proof and fail the exchange. If such a pair is
found, we can use the computed secret key sE to also compute SIDH(EKE ,K1).
B can now use this j-invariant in a query to KDF to compute a consistent session
key. Thus, Adv(abort4) = Advvcdh(B) and

Adv2,3,6
3 ≤ Advvcdh(B) + Adv4.

Game 5. In this game, we replace the session key of the test session with a
uniformly random key. Because Game 4 aborts whenever a KDF oracle query
is made involving dh1, we know in this game that the adversary never queried
KDF to get the true session key. Hence, the advantage of winning this game is

Adv4 = Adv5 = 0.

Therefore, we have
Adv2,3,6

3 ≤ Advvcdh(B).

B.2 Cases E1, E7

These two cases rely on EKA and IKB not being revealed. Then dh2 =
SIDH(EKA, IKB) should be unknown to the adversary. The proof is very sim-
ilar to the first cases above, but now relies on the Honest SI-CDH assumption
from Definition 3. The main difference is that now, we must guess which of the
signed semi-static keys will be used in the test session because we will need to
modify the FO proof provided in the Honest SI-CDH assumption to get a correct
FO proof for the SI-X3DH protocol.

Game 4′. In this game, the challenger guesses the index j ∈ {1, . . . , m}, such
that signed semi-static key SKj

v is used in the test session, and aborts if this
guess is wrong. Consequently,

Adv1,7
3 ≤ mAdv4′ .
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Game 5′ and 6′. In Game 5′, we abort if the adversary queries the KDF oracle
with second component dh2, equal to the test session’s dh2 component (derived
from EKu and IKv). Once again, B will simulate Game 4′. After receiving an
HCDH instance triple (K1,K2, π), B will replace the ephemeral key of the test
session with K2, and IKv with K1. B will then also replace the test session FO-
proof with πT := π ⊕ H2(SIDH(K2,SK

j
v)) ⊕ H2(SIDH(IKu,K1)). Recall from

the definition of the HCDH problem, that π already includes the component
H2(SIDH(K2,K1)), as required, so πT has the correct form.

There are two cases in which B will not be able to compute valid session keys
for non-tested sessions. The first is for a session where any user initiates with
EKE 	= EKu, and v is the responder. This is because SIDH(EKE ,K1) is unknown
when the secret key of EKE is unknown. The second case is a special case of the
first, when EKu is reused in an exchange with v as the responder. As above, at
least one secret key is known in all other situations, so these are the only two
SIDH exchanges unable to be computed by B.

In the first case, B will look up all pairs (h, h′) in the polynomial-length
output table of queries A has made to H2. Suppose IKw is the identity key of
the initiator, and πE is the FO-proof sent along with the ephemeral key EKE .
B will check whether H1(πE ⊕ h ⊕ h′ ⊕ H2(SIDH(IKw,K1))) is the secret key
of EKE . As above, SIDH(IKw,K1) is known to B since the secret key of IKw is.
Also as above, the only way for the adversary to have generated a valid proof
πE is if they had made queries H2(dh2) and H2(dh3)—otherwise, even if the
adversary guessed the outputs of H2 correctly (with negligible probability), they
would not be able to verify that the πE they created was actually correct without
making the required queries to H2 anyway. Hence, the only case the proof πE is
accepted is when a valid pair (h, h′) exists in the query list of H2, and if such
a pair is found, we can use the secret key to compute the needed j-invariant
SIDH(EKE ,K1). B can now use this j-invariant in a query to KDF to compute a
consistent session key. If no pair is found, the receiver would reject the FO-proof
and fail the exchange.

In the second case, we cannot compute the output of KDF because dh2 =
SIDH(K2,K1) is unknown. So B will return a random key and keep a table for
consistency as in the previous cases. Whenever the adversary makes a query to
the KDF oracle, we check if H1(π ⊕ H2(dh2)) corresponds to the secret key of
K2, and if it does, B has learned dh2 as the SI-CDH value of K1 and K2, this is
also the case in which the game aborts. Note that the π used here is the one from
the HCDH challenge, not from the exchange (πE) or the test session (πT ). There
is a negligible probability 1/2n that the adversary guessed the correct output of
H2 without making a query of the form H2(dh2) (leading to an abort without
recovering the answer to the HCDH challenge).

Game 6′ is identical to Game 5 in the previous section. We therefore have

Adv1,7
3 ≤ m(Advhcdh(B) + 1/2n).
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B.3 Case E5 (wPFS)

This case relies on EKA and SKB not being revealed (wPFS assumes that, in
the future, these secrets are unrecoverable). Alternatively, this proof could be
reduced to EKA and EKB which are both purely ephemeral. However, because
EKB is optional in the Signal protocol (to avoid key exhaustion DoS), we reduce
to the former scenario. In this case, we must again guess which of the signed
semi-static keys will be used in the test session.

Game 4′′. In this game, the challenger guesses the index j ∈ {1, . . . , m}, such
that signed semi-static key SKj

v is used in the test session. The game aborts if
this guess is wrong. Hence,

Adv53 ≤ nmAdv4′′ .

Game 5′′ and 6′′. These proceed exactly as in Games 5′ and 6′ of cases E1

and E7 above, but with the HCDH challenge keys inserted into EKu and SKj
v.

Furthermore, exactly as in the previous subsections, B knows the secret keys
needed to compute the SIDH values of all exchanges except in two cases: an
exchange with v as the responder using semi-static key SKj

v (because EKE is
unknown and potentially maliciously chosen), and the specific subcase where
EKE = EKu. This is essentially identical to cases E1 and E7. We conclude that

Adv53 ≤ m(Advhcdh(B) + 1/2n).

Finally, bringing all the game hops and cases together, we have

Advkien,m,S ≤ p(n + nm + nS; |K2|)
+ p(n + nS; |K3|) (4)

+ n2S
[
Advvcdh + 2mAdvhcdh + m/2n−1

]
,

where n is the number of participants, m is the number of semi-static keys per
participant, and S is the maximum number of sessions run per party.

Because the VCDH and HCDH problems are hard if the SI-CDH problem is
(shown in Sect. 3.1), it directly follows that SI-X3DH is secure if the standard
SI-CDH problem is hard.

B.4 Deniability Proof Sketch

We now briefly sketch a proof of the offline deniability of SI-X3DH, in an identical
manner to [VGIK20]. Intuitively, for Bob to prove Alice’s involvement, he would
have to provide a Diffie–Hellman value DH(A, · ) which he could not possibly have
generated himself—it must therefore have been generated by Alice. Because no
DH values are exchanged between Alice and Bob in X3DH or SI-X3DH, and
because the KDH, K2DH and/or EKDH assumptions hold, this is impossible.
On top of this, because neither protocol uses a signature on session-specific
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information (unlike [HKKP21]), there is no loss of deniability there either. Proof
of offline-deniability proceeds as an argument about simulatability, which we
shall now sketch.

In the case of deniability for the initiator, given Alice’s public key IKA, the
simulator Sim will generate x ← K3 and compute EKA. Sim will then send
this to Bob, who outputs keys IKB ,SKB ,EKB . The simulator can compute
dh2 = SIDH(EKA, IKB), dh3 = SIDH(EKA,SKB), and dh4 = SIDH(EKA,EKB)
because x is known, but cannot compute SIDH(IKA, IKB). Under the KDH-type
assumptions, there must be an extractor B̂ for Bob’s key IKB—let us call it B̂. If
B̂ outputs Ẑ then the shared key is KDF(Ẑ ‖ dh2 ‖ dh3 ‖ dh4)—the real shared
key. On the other hand, if B̂ outputs ⊥, then Sim chooses a session key at ran-
dom. In either case, Sim also computes the FO-proof π using the session key it
computed. In the second case, no PPT algorithm can compute SIDH(IKA, IKB)
without knowing IKB, so the random key is indistinguishable from the real key.

We come now to the case of deniability for the responder, given Bob’s public
key IKB , and also a signed semi-static key SKB ,SigB(SKB). The simulator will
send these two public keys to Alice, who outputs a key EKA. Under the KDH-
type assumptions, there exists an extractor Â for Alice which will either output
the required SIDH values needed to compute the real key or will fail to output,
in which case a random key will be indistinguishable from the real one as above.
Thus, either way, assuming the KDH, K2DH and EKDH assumptions hold in the
SIDH setting (which we claim they do), our SI-X3DH protocol is offline-deniable.

C Standard Key Indistinguishability Definitions

Let K denote the space of all possible session keys that could be derived in an
exchange between two parties. We model n parties P1, . . . , Pn through oracles
Πj

i , denoting the j-th session run by participant Pi. We limit the number of
sessions per party by 1 ≤ j ≤ S. Each oracle has access to the secret key of
the corresponding party Pi’s fixed long-term identity key IKi, as well as the
secrets for each of the m semi-static keys SK1

i , . . . ,SK
m
i . Each oracle also has the

following local variables:

– Πj
i .rand: The fixed randomness of oracle i for its j-th session (where Πj

i is
deterministic based on this randomness).

– Πj
i .role ∈ {⊥, init, resp}: The role of participant i in their j-th exchange.

– Πj
i .sk id: The index � of the semi-static key SK�

i that participant i uses in
their exchange j.

– Πj
i .peer id: The index k of the alleged peer Pk in the j-th exchange of oracle

i.
– Πj

i .peer sk id: The index � of the alleged peer’s semi-static key SK�
peer id used

in the exchange.
– Πj

i .sid: The session ID, explained further below.
– Πj

i .status ∈ {⊥, accept, reject}: Indicates whether the oracle has com-
pleted this session of the key exchange protocol and computed a session key
from the exchange.

– Πj
i .session key ∈ K: The computed session key.
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These values are all initialised to ⊥ at the start of the security experiment,
except rand, which is initialised with random coins for each oracle. The oracle
status is set to accept or reject on the computation of session key.

The session ID is a feature of the security experiment, not the real protocol.
We define the session ID to be a tuple (Π, IKI , IKR,SKR,EKI , EKR ) where
I,R denote the initiator and responder respectively, Π is a protocol identifier,
and EKR is optional (so may be null). We say two sessions with the same sid
are matching. This is done to restrict the adversary from making queries against
any session matching the test session for the game—to avoid trivialising security.
For a session Πj

i we also define a partner session to be any session Π�
k for which

Πj
i .peer id = k and Π�

k.peer id = i, Πj
i .role 	= Π�

k.role, and Πj
i .sid = Π�

k.sid. We
say any two such sessions are partners. Note that if two sessions are partners,
they are also, by definition, matching.

Setup. The security game is played between challenger C and a probabilistic
polynomial-time (PPT) adversary A. C will generate identity keys for the n
participants, IK1, . . . , IKn, and for each participant i, generate m semi-static keys
SK1

i , . . . ,SK
m
i . C will finally choose a uniformly random secret bit b ← {0, 1},

and provide A with access to the oracles Πj
i .

Game. Adversary A can adaptively make the following queries in the game:

– Send(i, j, μ): Send an arbitrary message μ to oracle Πj
i . The oracle will

behave according to the key exchange protocol and update its status appro-
priately.

– RevealIK(i): Return the secret long-term key(s) of participant i. After this,
participant i is corrupted. See Remark 2.

– RevealSK(i, �): Return the �-th secret semi-static key of participant i. After
this, SK�

i is said to be revealed.
– RevealEK(i, j): Return the ephemeral key (i.e., the random coins) of the j-th

session of participant i. After this, EKj
i and Πj

i .rand are said to be revealed.
– RevealSessionKey(i, j): Return Πj

i .session key. After this, session Πj
i is

said to be revealed.

Test. At some point in the game, A will issue a special Test(i, j) query exactly
once. C will return Kb to the adversary, where K0 := Πj

i .session key and K1 ← K
(a random key from the keyspace). After this query is made, session Πj

i is said to
be tested. A can continue to adaptively make queries to the above game functions
after the Test query has been issued. Finally, A outputs a bit b∗ ∈ {0, 1} as their
guess. At this point, the tested session Πj

i must be fresh. Freshness is defined
in Definition 4, and the cases for freshness are also summarised in Table 2 for
clarity. Let fresh(session) return true if session is fresh, and false otherwise.

Definition 5 (Security). Let A be a PPT adversary. We define the advantage
of A in winning the above key indistinguishability experiment kie with n parties,
m semi-static keys per party, and S sessions per party, as

Advkien,m,S(A) =
∣∣∣∣Pr [ b = b∗ ∧ fresh(test session) ] − 1

2

∣∣∣∣ .
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An authenticated key exchange protocol Π is secure in the Signal-adapted-CK
model if it is:

– Correct: Any two parties following the protocol honestly derive the same sid,
session key, and both arrive at an accept state.

– Sound: The advantage of any PPT adversary A is Advkien,m,S(A) ≤ negl.

Remark 2. Note that, in SI-X3DH, each participant has two identity keys (a
receiving key and a sending key). We assume both are revealed to the adversary
when a RevealIK query is made.
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Abstract. Secret handshake (SH), as a fundamental privacy-preserving
primitive, allows members from the same organization to anonymously
authenticate each other. Since its proposal by Balfanz et al., numerous
constructions have been proposed, among which only the ones separately
designed by Zhang et al. over coding and An et al. over lattice are secure
against quantum attacks. However, none of known schemes consider the
issue of key exposure, which is a common threat to cryptosystem imple-
mentations. To guarantee users’ privacy against the key exposure attack,
forward-secure mechanism is believed to be a promising countermeasure,
where secret keys are periodically evolved in such a one-way manner
that, past transactions of users are protected even if a break-in happens.

In this work we formalize the model of forward-secure secret hand-
shake and present the first lattice-based instantiation, where ABB HIBE
is applied to handle key evolution process through regarding time peri-
ods as hierarchies. In particular, dynamic revocability is captured by
upgrading the static verifier-local revocation techniques into updatable
ones. To achieve anonymous handshake with ease, we present a generic
way of transforming zero-knowledge argument systems termed as Fiat-
Shamir with abort, into mutual authentication protocols. Our scheme is
proved secure under the Short Integer Solution (SIS) and Learning With
Errors (LWE) assumptions in the random oracle model.

Keywords: Secret handshake · Lattice cryptography · Forward
security · User revocation · Zero-knowledge

1 Introduction

Secret Handshake, introduced by Balfanz et al. [7], is a fundamental
anonymity primitive, where potential members form different groups and
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conduct an interactive protocol to authenticate each other. The mutual hand-
shake is successful if and only if both parties belong to the same organization.
Except for the affiliations, no extra information (including the identities) about
the involved members will be leaked. Therefore, secret handshakes provide all-
sided privacy-preserving property for enrolled members. To date, many practical
applications of secret handshakes in social networks have been explored, such as
online dating, mobile access [30] and e-healthcare [39], etc.

Unfortunately, most online infrastructures offering authentication interface
run in the unprotected environment, where key exposure can be one of the most
fatal damages as it thoroughly destroys the expected security [36]. Forward-
secure mechanism [8,21], is a promising method to address the above problem,
which preserves the validity of users’ past actions. Its core design is a key evolving
technique that proceeds as follows. The lifetime of the related scheme is divided
into discrete periods. Upon each new period advancing, a subsequent secret key
is evolved from the current one via a one-way key update algorithm. Then the
current key is erased from the user’s records. Due to the one-wayness of the
evolving method, the security of past periods’ keys is preserved after a break-in
at some group member. By leveraging this technique, numerous cryptographic
primitives supporting forward security have been constructed, such as digital
signature [1,12,32] and public-key encryption [10,15].

Compared with the cases of ordinary signatures or authentication protocols,
key exposure can be more damaging to SH systems. Once an adversary obtains
the exposed credential of some legitimate user, it can impersonate that user to
authenticate any others from the same group, such that a successful handshake
no longer ensures a valid authentication. Besides, due to the anonymity of inter-
actions, key exposure essentially undermines the whole group as it invalidates all
previously completed handshakes within that group, regardless of who the par-
ticipants were. Moreover, malicious users, who communicated with honest ones
(after authenticating each other) and got their handshakes opened, may defend
themselves by giving away their credentials over the Internet and claiming that
some hacker conducted the behaviors. Albeit the potential threats of credentials
being compromised, no previous SH schemes considered this issue, except the
construction of Wen et al. [38], where users are provided with a series of random
credentials corresponding to discrete time periods. However, this countermea-
sure obviously brings huge storage cost and falls short of being succinct. On the
other side, to conceptually explore the security against key exposure in SH, it
would be better to first formalize the related generic model.

Our Contributions. This work exploits the field of forward-secure secret hand-
shakes. Our contributions are summarized in the following.

• By carefully reforming the desired functionalities and security notations, we
adapt the basic model of SH to the forward-secure setting.

• Under the above model, we present a lattice-based SH scheme. In particular,
– We upgrade the static verifier-local revocation method into time-advanced

updatable one, and prove that the iterative process works exactly in a
zero-knowledge manner.
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– We show how to transform a special type of zero-knowledge system into
an anonymous mutual authentication protocol, in a generic manner.

Other Related Works. Following Balfanz et al.’s pioneering work [7], early
SH constructions [17,22,43] employed one-time pseudonyms, which bears huge
storage cost. One more efficient method is to apply reusable credentials. Xu and
Yung [40] first designed a such scheme with weaker unlinkability. Ateniese et
al. [6] proposed an efficient unlinkable secret handshake scheme in the standard
model. Subsequently, Jarecki and Liu [23] proposed a framework for unlinkable
secret handshake scheme that supports both traceability and revocation. From
then on, various SH schemes offering different functionalities were proposed [20,
37,39]. However, these schemes are designed over number-theoretic assumptions
and are vulnerable to quantum attacks. As all we know, only the ones separately
proposed by Zhang et al. over coding theory [42] and An et al. [5] over lattice
are secure against quantum computations.

Note that none of existing SH schemes has formally considered the issue of
key exposure, let alone propose available schemes over post-quantum candidates.

Organization. In Sect. 2, we recall some necessary background and techniques.
Model and security requirements of forward-secure secret handshakes are pro-
vided in Sect. 3. Section 4 describes the supporting zero-knowledge argument
system, which is further modified to support mutual authentication in a hand-
shake. In Sect. 5, we present our lattice-based secret handshake scheme, followed
by the analysis of efficiency and security.

2 Preliminaries

Vectors will be denoted in bold lower-case letters and matrices will be denoted
in bold upper-case letters. Let ‖·‖ and ‖·‖∞ denote the Euclidean norm (�2)
and infinity norm (�∞), respectively. The Euclidean norm of matrix B ∈ R

m×n

with columns (bi)i≤n is denoted by ‖B‖ = maxi≤n‖bi‖. If B is full column-
rank, let ˜B denote its Gram-Schmidt orthogonalization. The concatenation of
matrices A ∈ R

n×m and B ∈ R
n×k is denoted by [A|B]. For positive integer n,

let [n] denote the set {1, . . . , n}. If S is a finite set, denote by U(S) the uniform
distribution over S and by x ←↩ D sampling x according to the distribution D.

2.1 Background on Lattices

Classic Lattices and Gaussian Distribution. Let n,m, q ∈ Z
+ with q > 2.

For A ∈ Z
n×m
q , define two lattices as Λ⊥(A) = {x ∈ Z

m | A ·x = 0 mod q} and
Λu(A) = {x ∈ Z

m | A · x = u mod q}. For a real σ > 0, a vector c ∈ R
n and

n-dimensional lattice L, define the function ρσ,c(x) = exp(−π‖x − c‖2/σ2). The
discrete Gaussian distribution over L with parameter σ and center c is defined
as DL,σ,c(x) =

ρσ,c(x)
ρσ,c(L) (write DL,σ(x) for short when c = 0).
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Lemma 1 ([19,29]). Given integers n, q ≥ 2, and σ ≥ ω(
√
log n). we have

Prx←↩DZn,σ
[‖x‖∞ ≥ σ · log n] is negligible.

Lattice Algorithms. The following facts describe the algorithms for trapdoor
generation, Gaussian sampling, lattice basis randomization and delegations.

Lemma 2 ([4]). Given integers n > 0, m = O(n log n), q ≥ 2, this PPT
algorithm TrapGen(n,m, q) returns a matrix pair (A,TA) satisfies that i) A ∈
Z

n×m
q is within negligible statistical distance from uniform. ii) TA is a basis of

Λ⊥(A) and ‖˜TA‖ ≤ O(
√

n log q).

Lemma 3 ([19]). Given matrices A ∈ Z
n×m, TA ∈ Z

m×m as a basis of Λ⊥(A),
vector u ∈ Z

n
q and gaussian parameter σ ≥ ω(

√
log n)·‖˜TA‖, this PPT algorithm

SamplePre(A,TA,u, σ) returns a vector v ∈ Λu(A) sampled from a distribution
statistically close to DΛu(A),σ.

Lemma 4 ([16]). Given matrix TA be a basis of lattice Λ⊥(A) and gaussian
parameter σ ≥ ‖˜TA‖ · ω√

log n, this PPT algorithm RandBasis(TA, σ) outputs a
new a basis T′

A of Λ⊥(A) such that ‖T′
A‖ ≤ σ · √m and the distribution of T′

A

does not depend on TA up to a statistical distance.

Besides, the following depicts that lattice basis can be efficiently delegated
and simulated, which will be used in the user key update and security proof.

Lemma 5 ([2,16]). Set σR =
√

n log q · ω(
√
logm), let Dm×m denote the dis-

tribution of matrices in Z
m×m defined as (DZm,σR

)m conditioned on the sampled
matrix being “Zq-invertible”. Given matrices A ∈ Z

n×m, TA ∈ Z
m×m as a basis

of Λ⊥(A), R ∈ Z
m×m
q as a product of � matrices sampled from Dm×m. Then:

1. Let A′ ∈ Z
n×m′

be any matrix containing A as a submatrix. This deter-
ministic polynomial-time algorithm ExtBasis(TA,A′) outputs a basis TA′ of
Λ⊥(A′) with ‖ ˜TA′‖ = ‖˜TA‖.

2. This PPT algorithm SampleR(1m) outputs a matrix R ∈ Z
m×m from a dis-

tribution that is statistically close to Dm×m.
3. Let Gaussian parameter σ ≥ ‖˜TA‖·(σR

√
mω(log1/2 m))�·ω(logm). This PPT

algorithm BasisDel(A,R,TA, σ) outputs a basis TB of Λ⊥(AR−1) distributed
statistically close to the distribution RandBasis(T, σ), where T is an arbitrary
basis of Λ⊥(AR−1) satisfying ‖˜T‖ < σ/ω(

√
logm).

4. This PPT algorithm SampleRwithBasis(A) outputs a matrix R sampled from a
distribution statistically close to Dm×m and a basis TB of Λ⊥(AR−1) having
‖˜TB‖ ≤ σR/ω(

√
logm).

Computational Lattice Problems. We recall the definitions and hardness
results of SIS, ISIS and LWE, on which the security of our scheme provably relies.
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Definition 1 ([3,19]). Given parameters m, q, β the functions of n, uniformly
random vector u ∈ Z

n
q and matrix A ∈ Z

n×m
q , SISn,m,q,β (resp., ISISn,m,q,β)

demands to find a non-zero vector x ∈ Λ⊥(A) (resp., Λu(A)) such that ‖x‖ ≤ β.

For any q ≥ β · ω(
√

n log n), hardness of SISn,m,q,β and ISISn,m,q,β is given by a
worst-case to average-case reduction from SIVPγ for some γ = β · ˜O(

√
nm).

Definition 2 ([35]). Let n,m ≥ 1, q ≥ 2, and Let χ be a probability distribution
over Z. For s ∈ Z

n
q , let As,χ be the distribution obtained by sampling a $← Z

n
q

and e ←↩ χ, and outputting the pair (a,a� · s+ e) ∈ Z
n
q ×Zq. Decision-LWEn,q,χ

problem is to distinguish m samples from As,χ (let s ← U(Zn
q )) and m sam-

ples chosen according to the uniform distribution over Z
n
q ×Zq. Search-LWEn,q,χ

problem is to find the uniformly random s given m samples from As,χ.

For prime power q, β ≥ √
nO(log n), γ = ˜O(nq/β), and a β-bounded distribution

χ, decision-LWEn,q,χ problem is as least as hard as SIVPγ . Also, decision-LWE
is proved to be equivalent to search-LWE up to some polynomial increase of the
sample number m (see [33]). In this work, for a discrete Gaussian distribution χ
(i.e., χ = DZm,σ), we write decision-LWEn,q,χ as LWEn,q,σ for short.

2.2 Efficient Signature Scheme from Lattices

Libert et al. in [24] proposed a signature scheme (extended from the Böhl et
al.’s signature [9]) with efficient protocols, of which a variant will serve for
the joining phase in our scheme. The scheme utilizes the following param-
eters: security parameter λ; integers � = poly(λ), n = O(λ), q = ˜O(n4)
and m = 2n�log q	; Gaussian parameter σ = Ω(

√
n log q); public key pk :=

(G,G0,G1,D,D0,D1,u) and private key sk := TG, where (G,TG) ←
TrapGen(n,m, q), D ←↩ U(Zn×m/2

q ), Gi,Di ←↩ U(Zn×m
q ) for i ∈ {0, 1} and

u ←↩ U(Zn
q ).

To make a signature on m ∈ {0, 1}m, one first chooses i ←↩ [2�] and builds the
encoding matrix Gi = [G|G0 + iG1] with its delegated basis Ti, then computes
the chameleon hash of m as cM = D0 · r + D1 · m with vector r ←↩ DZm,σ,
which is used to define uM = u +D · vdecn,q−1(cM ). The resulted signature is
sig = (i,d, r) where d ∈ Z

2m
q is a short vector in DΛuM (Gi),σ. The verification

step is conducted via checking if Gi · d = u + D · vdecn,q−1(D0 · r + D1 · m),
‖d‖ < σ

√
2m and ‖r‖ < σ

√
m. It was proved in [24] that the signature above is

secure under chosen-message attacks under the SIS assumption.

2.3 Zero-Knowledge Argument Systems

In a zero-knowledge argument of knowledge (ZKAoK) system [13], a prover proves
the possession of some witness for an NP relation to a verifier, without revealing
any additional information. Generally, a secure ZKAoK must satisfy 3 require-
ments: completeness, proof of knowledge and (honest verifier) zero knowledge.
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Yang et al. [41] have proposed an efficient lattice-based ZKAoK for relation:

R = {(M ,y,L), (x) : M · x = y ∧ ∀(i, j, k) ∈ L,x[i] = x[j] · x[k]},

where x ∈ Z
n
q is the secret witness and set L defines quadratic constraints over

x. The protocol can be further transformed into an NIZKAoK consisting of two
algorithms Prove and Verify via Fiat-Shamir heuristic. Prove produces com-
mitments cmt = (cmts, cmtr), a challenge ch = G(cmt, ·) where G is a random
oracle, and some responses rsp related to ch and cmt. Then (cmts, ch, rsp) is
sent to a verifier, on input which Verify recovers reserved commitment cmtr

and computes ch′ by assembling cmt, it finally checks ch′ ?= ch to verify the
ZK proof. In this paper, we will adapt the NIZKAoK to an anonymous mutual
authentication protocol.

Theorem 1. The scheme described in Fig. 2 of [41] is a secure NIZKAoK with
negligible completeness and soundness error, under the hardness assumptions of
SIS and LWE, and has well-designed simulator and knowledge extractor.

2.4 LWE-Based Key Exchange

Derived from the design in [18,34] describes an LWE-based key exchange using
reconciliation mechanism, which yields keys indistinguishable from random. Let
χ be a probability distribution over Zq, integer θ be the number of bits for key
extraction and K is a public matrix. The following protocol is utilized to produce
a communication key in our scheme.

– Alice samples a secret matrix Sa ←↩ χ(Zn×m
q ) and a small noise Ea ←↩

χ(Zn×m
q ). Then, she computes Ca = K · Sa +Ea and sends it to Bob.

– Receiving Ca, Bob chooses his secret matrix Sb ←↩ χ(Zm×n
q ) and com-

putes Cb = K · Sb + Eb, where Eb ←↩ χ(Zm×n
q ). Then he samples a noise

E′
b ←↩ χ(Zm×m

q ) and sets Vb = Sb ·Ca+E′
b. Such that he extracts the shared

secret key Kb = Extract(Vb), namely, Kb[i, j] = round((2θ/q1) · Vb[i, j])
mod 2θ.. Bob also produces a check matrix M = Check(Vb) as M[i, j] =
floor((2θ+1/q1) · Vb[i, j]) mod 2. Finally, Bob sends (Cb,M) to Alice.

– With (Cb,M), Alice computes Va = Cb ·Sa and obtains Ka = Recon(Va,M)
via Ka[i, j] = round((2θ/q1) · Va[i, j] + 1

4 · (2M[i, j] − 1)) mod 2θ.

Theorem 2. ([18]). The key exchange above produces the same shared key, i.e.,
Ka = Kb, with overwhelming probability via applying suitable parameters.

3 Model of Forward-Secure Secret Handshakes

As its analogues of group signature [26,32], we consider SH schemes having
lifetime divided into discrete time periods, at the beginning of which group
members autonomously update the secret keys for forward security. Let time
period t = 0 be the moment that an SH system is activated, and assume that
a handshake always finishes during the period at which it starts. The syntax of
forward secure secret handshake (FSSH) is formalized as follows.
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• Setup. Given a security parameter λ ∈ N, this algorithm, possibly run by a
trusted party or decentralized setting, generates public parameter par.

• CreateGroup. Given par, group authority (GA) invokes this algorithm to create
a group. It publishes the group public key gpk and retains secret key gsk.

• AddMember. This protocol is run between a potential user U and GA to enroll
the user into a chosen group. At time period t, U generates individual key
pair (upk, uskt) and sends upk to GA. If it terminates successfully, GA issues a
group credential cred0 (including a unique group identity ID) to U and adds
cred0 to user’s registration table Reg.

• UpdateU. On input user’s private pair (credt−1, uskt−1) at the beginning of
time period t, this one-way algorithm evolves it into (credt, uskt).

• Handshake. This is a mutual authentication protocol between two participants
(A,B). It outputs 1 and produces a session key for both active parties at the
current time period t if and only if they belong to the same group.

• TraceMember. Given a handshake transcript, GA runs this algorithm to trace
the involved users, or outputs ⊥ to indicate a failure.

• RemoveMember. This algorithm is invoked by GA to revoke an active member.
GA also publishes some updated group information of that group for current
time period, such that users can conduct revocation check.

Based on the considerations in [7,26], we reform the security requirements an
FSSH must satisfy as Completeness, Forward impersonator resistance, Detector
resistance and Backward unlinkability, all of which are defined via the corre-
sponding experiments. Hereafter we use CU and CG to denote the corruption list
of users and groups, respectively.

Completeness demands that Handshake outputs 1 with overwhelming prob-
ability if both participants are active with updated secret keys and belong
to the same group. Moreover, TraceMember can always identify the involved
users. For plain description, we define an auxiliary polynomial-time algorithm
IsActive(ID, t) : outputs 1 if ID is active at current time period t and 0 otherwise.

Definition 3. The completeness is achieved if the following experiment returns
1 with negligible probability.

Experiment: ExpCOM
A (λ)

par ← Setup(λ), (gpk, gsk) ← CreateGroup(par).
{(ID0, cred0‖t, usk0‖t), (ID1, cred1‖t, usk1‖t)} ← AddMember(gpk, gsk, t)
IsActive(IDb, t) = 1 ∧ uskb‖t ← UpdateU(credb, uskb‖t−1) for b ∈ {0, 1}.
If Handshake(ID0, ID1, t) = 0 with transcript T or TraceMember(T ) /∈

{ID0,ID1},
then return 1 else retun 0.

Forward impersonator resistance requires that it is infeasible for any PPT
adversary A to impersonate an uncorrupted user, or some corrupted user at the
period preceding the one where she was broken into, even if it can corrupt all the
users and groups (except the chosen group) via accessing the following oracles.

Below are oracles that entitle A to obtain exterior information of an FSSH.
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– KeyP(par) simulates to create a new group and returns gpk to A.
– HS(U, V ) simulates a two-party handshake by generating the transcripts dur-

ing the interaction.
– Trace(T ) returns the participant of transcript T . Hereafter we require that T

is not generated from the challenging oracles.
– Remove(U) simulates to revoke user U from her G, it also updates the corre-

sponding group information at current period t.

The other oracles below enable A to break into the internal of an FSSH.

– CorU(U,G) is a user corruption oracle. It returns user’s cred and usk of U in
group G to A at period t, then it adds (IDU , G, t) to CU.

– AddU(U,G) enrolls a user U whose key pair is chosen by A to G at period
t. It also adds (IDU , G, t) to CU. Compared with CorU, AddU endows A with
more power to create dummy users or perform injection attacks.

– KeyG(par) returns msk of some group G to A and adds G to CG, meaning
that G is under the control of A.

Now we describe the challenge game of forward impersonator resistance.

– ChalF-IR(ID, G, t) simulates ID of group G and executes a handshake with A
using the updated secret key of ID at period t. It returns 1 if the protocol
outputs 1 and 0 otherwise.

Hereafter we denote the transcript of A during the challenge game as T .

Definition 4. Forward impersonator resistance is achieved if, for any A, the
following experiment returns 1 with negligible probability.
Experiment: ExpF-IR

A (λ)

par ← Setup(λ), CG, CU := ∅.
(ID∗, G∗, t∗) ← AKeyP,HS,Trace,Remove,CorU,AddU,KeyG(¬G∗)(par).
If ChalF-IR(ID∗, G∗, t∗) = 0, return 0. Else if for ID′ ← TraceMember(T ) :
(ID′, ·, · ) /∈ CU or t∗ < t for (ID′, ·, t) ∈ CU, return 1. Else return 0.

Detector resistance makes sure that A cannot succeed when he activates a
handshake with an honest and active user to identify her affiliation at the chosen
time period, even if it can corrupt all the users and groups (except the chosen
group). The related challenge game is described as follows.

– ChalDR
b (ID, G, t) chooses a random bit b ∈ {0, 1}. For b = 0, it simulates ID

from G to handshake with A. For b = 1, it simulates an arbitrary (active)
user IDr to handshake with A. Then A guesses the value of b as b∗.

Definition 5. Detector resistance is achieved if, for any A, the absolute differ-
ence of probability of outputting 1 between ExpDR−1

A and ExpDR−0
A is negligible.
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Experiment: ExpDR−b
A (λ)

par ← Setup(λ), CG, CU := ∅.
(ID∗, G∗, t∗) ← AKeyP,HS,Trace,Remove,CorU,AddU,KeyG(¬G∗)(par), ChalDR

b (ID∗, G∗, t∗),
holding that for ID′ ← TraceMember(T ), (ID′, ·, · ) /∈ CU or IsActive(ID′, t∗) = 0.
Return b∗ ← AKeyP,HS,Trace,Remove,CorU,AddU,KeyG(¬G∗)(par).

Backward Unlinkability ensures that no adversary can distinguish whether
two handshakes (executed during two distinct periods) involve the same honest
user, even if it can corrupt any user and any group (except the chosen pair), and
that user is later revoked. Below is the related challenge game.

– ChalB-Unlinkb (ID0, G0, ID1, G1, t) first picks a random bit b ∈ {0, 1}, then it
successionally simulates ID0 and IDb to handshake with A using evolved secret.
Finally A guesses the value of b as b∗.

Definition 6. Backward unlinkability is achieved if, for any A, the absolute
difference of probability of outputting 1 between ExpB-Unlink−1

A and ExpB-Unlink−0
A

is negligible.
Experiment: ExpB-Unlink−b

A (λ)

par ← Setup(λ), CoG, CoU := ∅.
(ID0, G0, ID1, G1, t) ← AKeyP,HS,Trace,Remove,CorU,AddU,KeyG(¬G∗)(par),
holding that Gi /∈ CG ∧ (IDi, Gi, · ) /∈ CU for i ∈ {0, 1}.
b∗ ← AChalB-Unlink

b (ID0,G0,ID1,G1,t)(par). Return b∗.

Note that if A has corrupted some user of Gi for i ∈ {0, 1}, then he is only
allowed to choose target users within that group, i.e., G0 = G1.

4 The Supporting Zero-Knowledge Layer

In this section, we first construct a system that allows obtaining ZKAoK for
some relations, which are linear equations within users’ credential and secret
key of our FSSH scheme. Then we clarify why ZK argument cannot be directly
used in a handshake procedure, for this reason we further present a generic
way of transforming ZK systems termed as Fiat-Shamir with abort into mutual
authentication protocols, where participants can “handshake” with each other
and negotiate a session key.

Below we extensively use the decomposition techniques in [24,27]. Namely,
for any integer β > 0, let δβ = �log(β + 1)	 and βj = �β+2j−1

2j � ∀j ∈ [1, δβ ]. Then
any i ∈ [0, β] can be decomposed as i = hβ · idecβ(i), where hβ = (β1, . . . , βδβ

)
and idecβ is a binary function. Further, [25] build two more functions for decom-
posing vectors and matrices: vdecm,β : [0, β]m → {0, 1}mδβ ; mdecn,m,q : Zm×n

q →
{0, 1}nmδq−1 . (see [25] or the full version of this paper for detailed definitions.)



462 Z. An et al.

4.1 ZKAoK System for Proving a Valid User

Now we describe the system that produces ZK arguments for users’ secret. Given
the same situation as that of Handshake in Sect. 5 with extra setting: Hm,β =
Im ⊗ hβ , ti = tadd + i for i ∈ [t∗], hN = (N1, . . . , N�), a′ = (a

′�
1 . . . a

′�
n )� =

mdecn,m,q(A�), b = vdec2n,q−1(h), w = (w�
1 . . . w�

n )� = mdecn,m,q(A�
t ) and

z = vdecn,q−1(D0 · r+D1 · b), the desired system is summarized as follows.

Public Input: Matrices G,G0,G1,D,D0,D1,B,P,W; Vectors u, t,w,k; Inte-
ger t∗. System public parameter par.

Prover’s Witness: Vectors and Matrices which satisfy the following constraints
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

ID = i ∈ {0, 1}�, urtt = q ∈ Z
n
q ,d = (d�

1 d�
2 )

� ∈ {−β, β}2m,

r ∈ {−β, β}m,a′ ∈ {0, 1}nmk,b ∈ {0, 1}2nk,v ∈ {−βd, βd}m

e ∈ {−B,B}m, s ∈ {−B,B}n, e1 ∈ {−B,B}m, e2 ∈ {−B,B}�,

A = [a1| . . . |an] ∈ Z
n×m
q ,A�

t = [at,1| . . . |at,n] ∈ Z
m×n
q .

(1)

Prover’s Goal: Convince the verifier in zero-knowledge that the following set
of modular linear equations holds1 (under the same modulus q):

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

F · a − H2n,q−1 · b = 0,

D0 · r + D1 · b − Hn,q−1 · z = 0,

[G|G0|N1G1| . . . |N�G1] · (d1,d2, i[1]d2, . . . , i[�]d2)� − D · z = u,

A (Rt[1]
1 )−1 (Rt[2]

2 )−1 . . . (Rt[d]
d )−1 − At = 0,

At · v = u,

a1 − Hn,q−1 · q′ = 0,

Q1 · q′ + Q2 · tadd − q0 = 0, qt∗ = q,

∀i ∈ [t∗] : (qi−1 − Hn,q−1 · q′
i−1,Q1 · q′

i−1 + Q2 · ti − qi) = (0,0),
W · q + e = w,

B� · s + e1 = c1,
P� · s + e2 + � q

2� · i = c2.

(2)

Since Set 2 is somewhat complicated, we first design two sub-systems: Π1
arguing that user’s credential is issued via making a signature on her public
key, and her secret key is updated rightly with time advances.; Π2 evidencing
that 1) her updatable revocation token is rightly derived from the public key
and embedded in an LWE function; 2) her identity is correctly encrypted with
ciphertexts (c1, c2). Then we establish Πhs by combining Π1 and Π2.

Build System Π1. This system covers the first five equations of Set 2. Our goal
is to integrate these linear equations into a uniform relation

R1 = {(M1,y1,L1), (x1) : M1 · x1 = y1 ∧ x1 ∈ cons1}.

Let β = (β . . . β)�,βd = (βd . . . βd)� ∈ Z
m
q . First perform the following steps.

1 We refer readers to Sect. 5 for more information of these equations.
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1. Set r′ = r + β ∈ [0, 2β]m, d
′�
j = dj + β ∈ [0, 2β]m for each j ∈ {1, 2} and

v′ = v + βd ∈ [0, 2βd]m. Decompose r′,d′
j ,v

′ such that r′ = Hm,2β · r′′,
d′

j = Hm,2β · d′′
j for j ∈ {1, 2} and v′ = Hm,2βd

· v′′, respectively.
2. Set matrices G′ = G ·Hm,2β , G′

0 = G0 ·Hm,2β , D′
0 = D0 ·Hm,2β and G′

j =
NjG1 ·Hm,2β for each j ∈ [�]. Assemble auxiliary matrices G′′

j = −NjG1 · β
for each j ∈ [�], and vectors u′ = u+ (G+G0) · β, u1 = D · β.

3. Denote [G′|G′
0|G′

1| . . . |G′
�] and [G′′

1 | . . . |G′′
� ] as Ḡ′ and Ḡ′′, respectively.

4. Denote transpose of product (Rt[d]
1 )−1 . . . (Rt[1]

d )−1 as R(t). Define N = R(t) ·
Hm,q−1, and build the extension matrix L1 = Im ⊗ N, L2 = In ⊗ 1m.

5. Let c = (at,1[1]v[1] . . . at,1[m]v[m] . . . at,n[1]v[1] . . . at,n[m]v[m]) ∈ Zmn
q .

Through the above settings, we can change the target part of Set 2 into:
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

F · a − H2n,q−1 · b = 0,

D′
0 · r′′ +D1 · b − Hn,q−1 · z = u1,

Ḡ′ · (d′′
1 ,d′′

2 , i[1]d′′
2 , . . . , i[�]d′′

2)
� + Ḡ′′ · i − D · z = u′,

L1 · [a′
1| . . . |a′

n] − [at,1| . . . |at,n] = 0,

(a�
t,1v . . . a�

t,nv)
� = u,

Hm,2βd
· v′′ − v − βd = 0.

(3)

After the above preparations, we can obtain the desired variables as follows:

1. Denote −Hn,q−1, −H2n,q−1 and Hm,2βd
by H1, H2 and H3, respectively.

Build the public matrix M1 and vector y1 as
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

F H2 0 0 0 0 0 0 . . . 0 0 0 0 0

0 D1 D′
0 H1 0 0 0 0 . . . 0 0 0 0 0

0 0 0 −D Ḡ′′ G′ G′
0 G′

1 . . . G′
� 0 0 0 0

L1 0 0 0 0 0 0 0 . . . 0 Inm 0 0 0

0 0 0 0 0 0 0 0 . . . 0 0 L2 0 0

0 0 0 0 0 0 0 0 . . . 0 0 0 H3 −Im

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
u1

u′

0
u
βd

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

2. The private witness x can be build as

( a
′� b� r

′′� z� i� d
′′�
1 d

′′�
2 i[1]d

′′�
2 . . . i[�]d

′′�
2 a�

t,1 . . . a�
t,n c� v

′′� v�)�.

3. Then set cons1 = L1,1 ∪ L1,2 ∪ L1,3 where

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

L1,1 = {(i, i, i)}, i ∈ [1, (m + 3)nk + � + 3mδ2β ];
L1,2 = {((m + 3)nk + � + (3m + �)δ2β + mn + (u − 1)m + v,

(m + 3)nk + � + (3m + �)δ2β + (u − 1)m + v,

(m + 3)nk + � + (3m + �)δ2β + 2mn + 2mδβd
+ v)},

u ∈ [n], v ∈ [m];
L1,3 = {(i, i, i)}, i ∈ [(m + 3)nk + � + (3m + �)δ2β + 2mn + 1,

(m + 3)nk + � + (3m + �)δ2β + 2mn + 2mδβd
],
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where L1,1 indicates that a′,b, r′′, z, i,d′′
1 and d′′

2 are all binary vectors, L1,2
ensures that c[(u − 1)m + v] = at,u[v] · v[v] for (u, v) ∈ [n] × [m], and L1,3
ensures that v′′ is binary.

Build System Π2. This system also covers the rest part by a unified relation

R2 = {(M2,y2,L2), (x2) : M2 · x2 = y2 ∧ x2 ∈ cons2},

which evidences the correct embedding of user’s revocation token and identity.
The concrete construction of Π2 is much like that of Π1 and we also take some
preprocessing.

1. Let b1 = (B . . . B)� ∈ Zm
q , b2 = (B . . . B)� ∈ Zn

q and b3 = (B . . . B)� ∈
Z�

q.
2. Set e′ = e+b1, s′ = s+b2, e′

1 = e1+b1 and e′
2 = e2+b3. Decompose them

via functions vdec and mdec to get vectors e′′, s′′, e′′
1 , e′′

2 .
3. Compute time-binding vectors t′

0 = Q2 · tadd and t′
i = Q2 · ti for i ∈ [t∗], set

t′ = (t
′�
0 t

′�
1 . . . t

′�
t∗ )�. Assemble quasi-diagonal matrices L3 and L4 as

L3 =

⎛

⎜

⎝

−H1
. . .

−H1

⎞

⎟

⎠
, L4 =

⎛

⎜

⎝

−Q1
. . .

−Q1

⎞

⎟

⎠
∈ Z

(t∗+1)n×(t∗+1)(nk).

4. Set B′ = B� · Hn,2B , P′ = P� · Hn,2B , I′ = � q
2� · I�, w′ = w + b1, c′

1 =
c1 + b1 +B� · b2 and c′

2 = c2 + b3 +B� · b2.

Use H4 and H5 to denote Hm,2B and H�,2B , respectively. Then we can construct
the target variables as follows:

1. Build the public matrix M2 and vector y2 as
⎛

⎜

⎜

⎜

⎜

⎜

⎝

[I(t∗+1)n|0] L3 0 0 0 0 0

[0|I(t∗+1)n] L4 0 0 0 0 0

[0 . . . W] 0 H4 0 0 0 0

0 . . . 0 0 0 B′ H4 0 0

0 . . . 0 0 0 P′ 0 H5 I′

⎞

⎟

⎟

⎟

⎟

⎟

⎠

,

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0
t′

w′

c′
1

c′
2

⎞

⎟

⎟

⎟

⎟

⎟

⎠

.

2. Set x2 = ( a�
1 q�

0 . . . q�
t∗ q

′� q
′�
0 . . . q

′�
t∗−1 e

′′� s
′′� e

′′�
1 e

′′�
2 i)�,

which has length n2 = (t∗ + 2)n + (t∗ + 1)nk + (2m + n + �)δ2B + �.
3. The constriants over x2 is cons2 = {(i, i, i)}, i ∈ [(t∗+2)n+1, (t∗+2)n+(t∗+

1)nk+(2m+n+�)δ2B +�], indicating that q
′
, q

′
0, . . . ,q

′
t∗−1, e

′′,, s
′′
, e

′′
1 , e

′′
2

and i are all binary.

Build System Πhs. We obtain the desired system Πhs by instantiating the
framework in Sect. 2.3 with Π1 and Π2. Namely, for the final relation

Rhs = {(M,y,L), (x) : M · x = y ∧ x ∈ cons},
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set M =
(

M1 0
0 M2

)

, x =
(

x1
x2

)

, y =
(

y1
y2

)

and cons = cons1 ∪ cons′2 ∪ cons′3,

where cons′2 is simply performing right shift in cons2 by the size of x1, and
cons′3 = (i, j, j) ensures that vector i in two sub-systems is the same one.

4.2 Transformation to Anonymous Mutual Authentication

Although users in our FSSH scheme can invoke Πhs to obtain ZK proof for their
group secrets, they cannot directly send the proof in Handshake. The reason is
that the other participant receiving that proof can unilaterally verify its validity,
so as to verify the legality of the sender without any further interactions, which
obviously violates the demand for mutual authentication.

To fill the gap, below we show how to adapt the Fiat-Shamir-type framework
[41], by transforming one-side identification into mutual authentication.

• Provehs : On input public parameter and secret witness, produce commit-
ments cmt = (cmts, cmtr) and ch = G(cmt, ·) the same as the original algo-
rithm. Then additionally compute a mixed challenge ˜ch = ch ⊕ C where C
is interim matrix in a KE, and generate rsp using (cmt, ˜ch). Finally output
π = (cmts, ˜ch, rsp).

• Verifyhs : Recover cmtr via rsp and ˜ch as Verify does, then get the original
challenge ch′ = G(cmt, ·) by assembling cmt = (cmts, cmtr), so as to retrieve
the hidden message C = ch′ ⊕ ˜ch.

Here the key point is that a receiver can no longer check the validity of the
proof by checking ch′ ?= ch, since he only receives ˜ch. On the other side, a KE
element can be recovered to negotiate a communication key for both partici-
pants, whose hash value is further dispatched to conduct authentication. This
strategy can be seen as a generic way of transforming ZK systems termed as Fiat-
Shamir with abort into anonymous mutual authentication, for which a concrete
instantiation is detailed in Handshake of our main scheme.

5 FSSH with Revocability from Lattices

In this section, by devising updatable VLR method and adaptively applying the
building blocks recalled in Sect. 2, we present the first FSSH with revocability
from lattice. To clarify the roadmap on how to make all things work, below we
first give some key points of our construction.

When enrolling in a group, potential user first samples her initial pub-
lic/secret key pair (A,T) via Trapdoor and sends A to GA, on which GA produces
an unforgeable signature [24] as her credential. Since users retain the secret keys,
even a malicious GA can not frame a legal user. To enable periodical key updat-
ing, we combine the binary-tree representation technique and ABB HIBE [2].
Namely, each node of the tree is assigned a short-norm invertible matrix Rb

i for
i ∈ [d] and b ∈ {0, 1}, and successive periods are associated with leaves of the
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binary tree in the LTR order. At the joining period t = (t[1], . . . , t[d]), users
extract the corresponding key (trapdoor) Tt at this leaf for A(Rt[d]

d . . .Rt[1]
1 )−1

by use of BasisDel. Observe that users can generate possible trapdoors of any
leaves from the root key T. Thus, one trivial method of key update is to precom-
pute all possible Tt and then delete the previous one upon new period advancing.
However, as noted in [28], this will bring key size undesirable dependency on T .
Considering the level structure of a binary-tree, it suffices to only record the keys
for sub-set Evolve(t→T−1) [12,26], which contains exactly one ancestor of each
leaf between [t, T − 1] and has size at most log T . Under this setting, users can
update uskt into uskt+1 (consisting of trapdoors for elements in Evolve(t+1→T−1)),
by repeatedly invoking BasisDel within Evolve(t→T−1).

Now we demonstrate how to achieve revocability by applying VLR mecha-
nism [11], where a revocation token urt is issued to a user and will be published
when she is revoked. Similar to the case of key exposure, it is worthwhile to pro-
tect user’s anonymity of previous behaviors even if her token is revealed (known
as backward unlinkability [31]). We tackle this problem by subtly devising an
updatable VLR algorithm: urtt = Q · (vdec(urtt−1), t)� ∈ Z

n
q . Choosing uni-

formly random Q, this equation is linked to an ISIS instance, so as to achieve
one-wayness of updating. Besides, we embed the time tag into the token to
enable synchronous revocation check, such that expired tokens cannot be reused.
Finally, to bind urtt to user’s secret, we set the initial token as Q · (vdec(a0), t)�,
where a0 is the first column of A. When executing a handshake, users need to
demonstrate in zero-knowledge the possession of a valid secret. This task is done
by reducing the overall linear relations set to system Πhs designed in Sect. 4.1.
In particular, to argue the current urtt and uskt are correctly derived from the
previous ones and are compatible with each other, we unify a time-advancing
chain of iterative equations into a universal matrix-vector formula, which can be
seen as a generic way of proving updatable VLR in zero-knowledge.

Finally, by combining the modified ZK system in Sect. 4.2 with a KE pro-
tocol [18], we obtain the desired algorithm Handshake, where participants can
anonymously authenticate each other and negotiate a session key.

5.1 Description of the Scheme

As in [12,26,28], we imagine a binary tree of depth d = log T where the root
has tag ε. For a node at depth ≤ d with tag w, its left and right children have
tags w0 and w1, respectively. Lifetime of our scheme is divided into T = 2d

discrete periods, such that successive periods t ∈ [T ] are associated with leaves
of the binary tree in the LTR order. To derive keys from previous periods, let
Evolve(t→T−1) be the set containing exactly one ancestor of each leaf or the leaf
itself between period t and T − 1. This set can be determined by function sibling
in [12] or algorithm NodeSelect in [26]. Our FSSH scheme is described as follows.

• Setup. Given a security parameter λ ∈ N, this algorithm specifies the follow-
ing:

– Maximum member size of a group N = 2�, time period bound T = 2d.
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– Integer n = O(λ), prime modulus q = ˜O(n2) > T , k = �log q	 and
dimension m = 2nk,m = nk. B-bounded distribution χ over Z with
B =

√
nω(log n).

– Discrete Gaussian distribution DZ,σ with parameter σ = Ω(
√

n log q log n).
Let β = �σ · log n	 be the upper bound of samples from DZ,σ.

– Guassian parameters σi = m
3
2 i+ 1

2 · ω(log2k n) for i ∈ [d], and σd =
σd

√
mω(

√
logm). Integer bound βd = �σd · log n	.

– Uniformly random vector u0 ∈ Z
n
q and matrices Rb

i ← SampleR(1m) for
all i ∈ [d] and b ∈ {0, 1}, Q = [Q1|Q2] ∈ Z

n×(nk+d)
q , F ∈ Z

2n×nmk
q ,

K ∈ Z
n1×n1
q1 .

– Matrix dimensions n1 = poly(λ),m1 = O(n1), integer modulus q1 =
2O(n3), and integer θ ≥ 2λ

n1m1
for session key exchange.

– Discrete Gaussian distribution χ1 over Z with deviation σ1 >
√

2n1
π .

– Injective mapping F : Zn1×m1
q1 → [−p, p]t and its inverse F−1, where p, t

are defined in [41]. Random oracle H0 : {0, 1}∗ → Z
m×n
q and collision

resistant hash function H1 : {0, 1}∗ → Z
∗
q .

Outputs global public parameter
par = {N, �, T, d, n, q, k, m, m, χ, B, σ, β, {σk}d

k=1, σd, βd,R0
1,R1

1, . . . ,R0
d,R1

d,

Q,F, n1, m1, q1, θ, χ1, σ1,u0,K, F, F −1,H0,H1,H2}.

• CreateGroup. On input par, GA performs the following to establish a new
group.
1. Run TrapGen(n,m, q) to get a tuple (G,TG), then sample matrices

G0,G1,D0,D1 ← U(Zn×m
q ), D ← U(Zn×m

q ) and vector u ← U(Zn
q ).

2. Run TrapGen(n,m, q) to generate a tracing key pair (B,S) (assume all
groups share the same tracing keys).

3. Set registration table reg = ∅ and secret key gsk = (TG,S); Publish
group public key gpk = (G,G0,G1,D,D0,D1,B,u) and revocation list
RL = ∅.

• AddMember. At time period t, one prospective user Ui and GA interact in the
following protocol to enroll her in group G. Denote t = (t[1], . . . , t[d]) as the
binary representation of t with length d hereunder.
1. Ui runs TrapGen(n,m, q) to generate a pair (Ai,Ti), and builds the

set Evolve(t→T−1). For s ∈ Evolve(t→T−1), if s =⊥, set uski‖t[s] =⊥.
Otherwise, denote ds as the length of s holding ds ≤ d, set matrix
R(s) = (Rs[1]

1 )−1 (Rs[2]
2 )−1 . . . (Rs[ds]

ds
)−1 ∈ Z

n×m
q , and proceed as follows:

a) If ds = d, compute a short vector vi‖s via SamplePre(AiR(s),

BasisDel(Ai, (R(s))−1,Ti, σd),u, σd). Set uski‖t[s] = vi‖s.
b) Else, evaluate BasisDel(Ai, (R(s))−1,Ti, σds) to obtain a short basis

Ti‖s for Λ⊥
q (AiR(s)), and set uski‖t[s] = Ti‖s.

Now let upki = Ai be the long-term public key and uski‖t = {uski‖t[s] |
s ∈ Evolve(t→T−1)} be the initial secret key of Ui. Finally, Ui samples
a proof vector vi ← SamplePre(Ai,Ti,u0, σd) and sends (Ai,vi) to GA.
She discards the original Ti for forward security.
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2. Upon receiving the request from Ui, GA first checks: (i) whether there is
a collision between Ai and the previous records of users’ public keys; (ii)
whether Ai is valid w.r.t. vi by verifying Aivi = u0 and ‖vi‖∞ ≤ βd.
If either case occurs, GA outputs ⊥ and aborts. Otherwise, GA performs
the following steps to issue a credential to Ui.
a) To generate user’s revocation token, set urti‖t = Q1 ·vdecn,q−1(ai,0)+

Q2 · t ∈ Z
n
q , where ai,0 is the first column of Ai and we assume that

it is a non-zero vector. In the long term, the current time period is
embedded in the corresponding token, such that no adversary can
deploy a previous token to conduct a handshake.

b) Choose a random spare i ∈ {0, 1}� for user’s identity IDi having dec-
imal value i. Then hash Ui’s public key as hi = F ·mdecn,m,q(A�

i ) ∈
Z
2n
q .

c) Encode the identity through building the compressed matrix G(i) =
[G|G0 + i ·G1]. Runs ExtBasis(G(i),TG) to get a basis T(i)

G for G(i).
d) Sample ri ←↩ DZm,σ, and compute the chameleon hash of hi as ci =

D0 · ri +D1 · vdec2n,q−1(hi).
e) Invoke SamplePre(G(i),T(i)

G ,u+D ·vdecn,q−1(ci), σ) to obtain a short
vector di ∈ Z

2m satisfying that

G(i)di = u+D · vdecn,q−1(ci) mod q, (4)

then return the credential credi = (upki, IDi, urti‖t,di, ri) to Ui and
adds credi to table reg.

3. Ui verifies that credi is consistent with Eq. 4 and di ∈ [−β, β]2m, ri ∈
[−β, β]m. She aborts if it is not the case. To avoid confusion, use ti,add = t
to denote the time period at which Ui has been registered.

• UpdateU. At the beginning of time period t, member Ui conducts the following
procedures to update her secret pair (credi‖t−1, uski‖t−1).

For revocation token update, compute urti‖t = Q1 · vdecn,q−1(urti‖t−1) +
Q2 · t ∈ Z

n
q . W.L.O.G, we assume that there is no all-zero token or two

identical tokens. (Otherwise, the user would find a solution to SISn,q,
√

nk+d

problem associated with matrix Q, which is of negligible probability.)
For the secret key derivation, first specify the node set Evolve(t→T−1).

Then for s ∈ Evolve(t→T−1), if s =⊥, set uski‖t[s] =⊥, otherwise, there exists
exactly one s′ ∈ Evolve(t−1→T−1) as the prefix of s, i.e., s = s′‖x for some
binary string x. Consider two cases:
1. If s = s′, set uski‖t[s] = uski‖t−1[s′].
2. Else, it holds that x is not empty and uski‖t−1[s′] = Ti‖s′ is a short basis.

Compute matrix R(x) = (Rx[1]
1+ds′ )

−1 (Rx[2]
2+ds′ )

−1 . . . (Rx[dx]
ds

)−1, then con-
sider the following two sub-cases:
a) If ds = d, generate a short vector vi‖s by running SamplePre(AiR(s′)

R(x),BasisDel(AiR(s′), (R(x))−1,Ti‖s′ , σds),u, σd). Set uski‖t[s] =
vi‖s.
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b) If ds < d, run BasisDel(AiR(s′), (R(x))−1,Ti‖s′ , σds) to obtain a short
basis Ti‖s, and set uski‖t[s] = Ti‖s.

Set uski‖t = {uski‖t[s] | s ∈ Evolve(t→T−1)} and erases the previous one.

• Handshake. At time period t, suppose a member A from group Ga with gpka =
(G(a),G(a)

0 ,G(a)
1 ,D(a),D(a)

0 ,D(a)
1 ,B,ua), creda = (upka, IDa, urta‖t,da, ra),

revocation list RLa, uska‖t = {uska‖t[s] | s ∈ Evolvet→T−1}, and another
member B from group Gb having (gpkb, credb,RLb, uskb‖t) of same structure,
aim to execute a handshake. They proceed the following two-round protocol.
1. A → B : (PROOFa)

a) A samples a small private key Sa ←↩ χ1(Zn1×m1
q1 ) and a small noise

Ea ←↩ χ1(Zn1×m1
q1 ). Then she computes Ca = K · Sa +Ea ∈ Z

n1×m1
q1 .

b) Parse upka = Aa, A fetches the secret key for string t from uska‖t as
va‖t and assembles the corresponding matrix Aa‖t as

Aa‖t = Aa (Rt[1]
1 )−1 (Rt[2]

2 )−1 . . . (Rt[d]
d )−1 ∈ Z

n×m
q . (5)

c) A samples ρa
$← {0, 1}n and let Wa = H0(gpka, ρa). Next, she com-

putes wa = Wa · urta‖t + ea mod q where ea ←↩ χm.
d) A samples Pa ← U(Zn×�

q ), s(a) ←↩ χn, e(a)1 ←↩ χm, e(a)2 ←↩ χ�, so that
produces the ciphertext (c(a)1 , c(a)2 ) as

(c(a)1 = B� · s(a) + e(a)1 , c(a)2 = P�
a · s(a) + e(a)2 + �q

2
� · IDa). (6)

e) With public input ppa = (par, gpka, c(a)1 , c(a)2 , ta) where ta = t−ta,add,
A runs Provehs designed in Sect. 4.2 to generate a proof πa for ξa =
(IDa, urta‖t,da, ra,Aa,va‖t, ea, s(a), e(a)1 , e(a)2 ), satisfying that:

– urta‖t is correctly derived from Aa after ta times of updates.
– (IDa,da, ra) satisfies Eq. 4 with the specific form in AddMember.
– Wa · rta + ea = wa and ‖ea‖∞ ≤ B.
– Eq. 5 holds with Aa‖t · va‖t = ua mod q and ‖va‖t‖∞ ≤ βd.
– Eq. 6 holds with ‖s(a)‖∞ ≤ B, ‖e(a)1 ‖∞ ≤ B, and ‖e(a)2 ‖∞ ≤ B.

Note that the challenge part of πa is modified as ˜cha := cha ⊕F (Ca).
f) A finally sends PROOFa = (ρa,wa,Pa, c(a)1 , c(a)2 , ta, πa) to B.

2. B → A : (PROOFb, Vb)
a) B computes W′

a = H0(gpkb, ρa). Then he checks if there exists an
index i such that e′

i = wa − W′
a · vi and ‖e′

i‖∞ ≤ B for vi ∈ RLb. If
so, B sends A a random pair (PROOFb, Vb) and aborts. Otherwise, he
continues to perform the following steps.

b) B runs Verifyhs(pp
′
a, πa) where pp′

a = (par, gpkb, c
(a)
1 , c(a)2 , ta), to

recover the hidden message of A as C′
a = F−1(ch′

a ⊕ ˜cha).
c) B samples his ephemeral private key Sb ←↩ χ1(Zn1×m1

q1 ) and a small
noise Eb ←↩ χ1(Zn1×m1

q1 ). Then B computes Cb = K · Sb +Eb.
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d) Similarly, B computes the LWE function of his revocation token as
wb = Wb · urtb‖t + eb, and encrypts his identity as (c(b)1 , c(b)2 ).

e) With analogous public input ppb, B runs Provehs to generate an argu-
ment πb for his secret tuple ξb, of which each element meets the similar
constraints as that of ξa. Remark ˜chb := chb ⊕ F (C�

b ).
f) Upon obtaining C′

a, B generates the check matrix M and the com-
munication key Kb as depicted in Sect. 2.4. Then B computes the
authentication code Vb = H1(Kb‖Cb‖0).

g) B dispatches PROOFb = (ρb,wb,Pb, c
(b)
1 , c(b)2 , tb, πb,M) and Vb to A.

3. A → B : (Va)
a) A computes W′

b = H0(gpka, ρb) and also checks if there exists an
index j such that e′

j = wb − W′
b · vj and ‖e′

j‖∞ ≤ B for vj ∈ RLa.
If so, A responds a random value Va ← U({0, 1}q1 , outputs 0 and
aborts. Otherwise, A moves to execute the following steps.

b) A also runs Verifyhs(pp
′
b, πb) to retrieve C′�

b = F−1(˜chb ⊕ ch′
b).

c) A extracts the shared key Ka following the steps in Sect. 2.4. Then
A verifies that Vb

?= H1(Ka‖C′
b‖0). If so, A outputs 1 and sends

Va = H(Ka‖Ca‖1) to B. Else, A outputs 0 and responds a random
Va.

d) B verifies Va via a similar equation Va
?= H1(Kb‖C′

a‖1). B outputs 1
if the equation holds, else he outputs 0.

• TraceMember. With transcript (PROOF, V) of a handshake executed at time
period t, TA performs the following steps to trace the involved group member:
1. Parse PROOF = (ρ,w,P, c1, c2, t∗, π) where P = [p1| . . . |p�] ∈ Z

n×�
q . Then

for all i ∈ [�], invoke SamplePre(B,S,pi, σ) to obtain a small vector fi.
Set F = [f1| . . . |f�] such that B · F = P mod q.

2. Decrypt (c1, c2) by computing ID = �c2 − F� · c1/�q/2�� ∈ {0, 1}�.
3. If there exists an elements IDi = ID, return IDi. Otherwise, output ⊥.

• RemoveMember. To remove IDi from group G at the beginning of period t,
GA gets the initial revocation token urti‖ti,add

of IDi from table Reg, and adds
it to public list RL. Since the current token can be computed from the initial
one, for simplicity we assume the elements of RL are all the updated ones.

5.2 Analysis of the Scheme

Completeness. We demonstrate that our scheme is complete with overwhelm-
ing probability if A and B belong to the same group (gpk1 = gpk2) with unre-
voked and updated group secret, and they both follow the specified protocol.

First, by completeness of system Πhs, both A and B can produce a valid
proof (πa, πb) at the first round of a handshake, which means that the receiver
can always rightly recover the original challenge ch′ = ch, such that they can
retrieve the hidden message C′ = C. It follows that Ka �= Kb with negligible
probability from Theorem 2. Therefore, the two members can verify the corre-
sponding equations successfully, i.e., the message authentication code Va (Vb)
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is correct. Consequently, the handshake protocol will output 1 for both partici-
pants.

Next, we show that TraceMember always outputs IDa (IDb). Observe that,
the decryption procedure computes c2 − F� · c1 = P� · s + e2 + � q

2� · ID −
F� · (B� · s + e1), which can be further simplified into e2 − F� · e1 + � q

2� · ID,
where ‖e1‖∞ ≤ B, ‖e2‖∞ ≤ B, and ‖fi‖∞ ≤ �σ · logm	 implied by Lemma 1.
Recall that q = ˜O(n2), m = 2n log q and B =

√
nω(log n). Hence we always have

‖e2 − F� · e1‖∞ ≤ B + m · B · �σ · logm	 < q/5, inducing that the ID = IDa.

Security. Now we give security analysis for our scheme, proof of the following
theorem is deferred to Appendix A.

Theorem 3. In the random oracle model, our scheme satisfies the forward
impersonator resistance, detector resistance and backward unlinkability under
the SIS, ISIS and LWE assumptions.

Efficiency. Finally we analyze the complexity of our scheme, with respect to
security parameter λ, two system parameters � = logN and d = log T .

– Group public key contains several matrices and a vector with bit-size ˜O(λ2).
– Group credential consists of 4 vectors and has bit-size ˜O(λ + �).
– User secret key has one vector from SamplePre and at most d trapdoor matri-

ces from BasisDel, all of which have bit-size ˜O(λ2d3).
– The communication cost of a handshake protocol can be viewed as four parts:
(ρ,w,P, t) for revocation check; Modified ZK argument πhs, whose bit-size
largely relies on the length of witness x and can be quantized as ˜O(λ2+d ·λ+
�2); Two IBE ciphertexts and one authentication code. Overall, the dispatched
data has bit-size ˜O(λ2 + (d + �) · λ + �2).

– Dynamic revocation list has bit-size ˜O(N · λ).

Table 1. Comparison between scheme [5] and ours.

Scheme gpk cred usk Handshake cost RL FS

[5] ˜O(λ2) ˜O(� · λ) ˜O(� · λ) ˜O(� · λ) ˜O(N · λ) �
Ours ˜O(λ2) ˜O(λ + �) ˜O(λ2d3) ˜O(λ2 + (d + �) · λ + �2) ˜O(N · λ) �

In Table 1, we give a detailed comparison of our scheme with the only known
lattice-based one [5], in terms of efficiency and functionality. Note that forward
security is achieved with a reasonable increase in communication cost, thanks
to the more efficient ZK system [41]. Besides, our scheme allows dynamic user
enrollment. In other words, users autonomously generate their secret keys rather
than being issued by GA, which prevents malicious GA from framing honest users.
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A Deferred Proof of Theorem 3

Proof. We prove Theorem 3 by separately proving that our scheme satisfies the
3 required properties defined in Sect. 3.

Forward Impersonator Resistance. We prove this property by contradiction. Sup-
pose that a PPT adversary A succeeds in experiment ExpF-IR

A with non-negligible
advantage ε. Then we can build a PPT algorithm B that solves SISn,m,q,2

√
mβd

problem with non-negligible probability.
Given an SIS instance A ∈ Z

n×m
q , the goal of B is to find a non-zero vector

z ∈ Z
m
q such that A · z = 0 mod q and ‖z‖ ≤ √

mβ. Towards this goal, B first
prepares a simulated attack environment for A as follows:

– Randomly guess the target user’s identity ID∗ : i∗ ∈ {0, 1}� and forgery time
period t∗ ∈ [0, T − 1].

– Sample random matrices Rt∗[1]
1 ,Rt∗[2]

2 , . . . ,Rt∗[d]
d ∈ Z

m×m from the distribu-
tion Dm×m. Set Ai∗ = A Rt∗[d]

d · · ·Rt∗[2]
2 Rt∗[1]

1 ∈ Z
n×m
q , which is the public

key of target user ID∗.
– Sample v ←↩ DZm,σd

. If ‖v‖∞ > βd, then repeat the sampling. Compute
u∗ = A · v mod q.

– Assemble d matrices Fj = Ai∗ (Rt∗[1]
1 )−1 . . . (Rt∗[j]

j )−1 for j ∈ [0, d − 1]
(F0 = Ai∗). For each Fj , invoke SampleRwithBasis(Fj) to obtain a matrix
R1−t∗[j+1]

j+1 , along with a short basis Tj+1 for Λ⊥(F′
j+1) where F′

j+1 =

Fj (R1−t∗[j+1]
j+1 )−1. As the simulation in [2], B can use these bases to gen-

erate ID∗’s secret key for every period t′ > t∗.
– Generate other elements of (gpk∗, gsk∗) for group G∗ that ID∗ belongs to.
– Operates as GA in algorithm AddMember to determine the target user’s cre-

dential credID∗‖t∗ at period t∗.

Note that, by construction, the distribution of (par∗, gpk∗, gsk∗, credID∗‖t∗) is sta-
tistically close to that of the real scheme, and the choice of (ID∗, t∗) is hidden
from the adversary.

B responds to A’s queries of {KeyP,Trace,Remove,AddU,KeyG} exactly the
same as the real scheme. For other queries at current period t, B interacts with
A as follows.

• When A queries random oracles H0 or G, B replies with uniformly random
strings and records the inputs/outputs of these queries.

• For queries of oracle CorU, if the requested user has been already corrupted,
i.e., (ID, ·, ·, ) ∈ CU, B aborts. Otherwise, consider two cases:
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i) The chosen user’s identity is ID∗. If t ≤ t∗, B aborts. Otherwise, for each
node s ∈ Evolvet→T−1, denote the length of s as ds, B first computes
the smallest index js such that 1 ≤ js ≤ ds and s[js] �= t∗[js]. After
setting delegation matrix R(s) = (Rs[js+1]

js+1 )−1 · · · (Rs[ds]
ds

)−1, B computes
uski∗‖t[s] via SamplePre(F′

js
R(s),BasisDel(F′

js
, (R(s))−1,Tjs , σds),u, σd)

if ds = d, or via BasisDel(F′
js

, (R(s))−1,Tjs , σds) if ds < d. Next, B builds
uski∗‖t and derives credi∗‖t as in our main scheme. Finally B returns the
secret pair to A and adds (ID∗, G∗, t) to CU. Note that A can not obtain
the target user’s secret until period t∗ + 1.

ii) ID �= ID∗, then B can perfectly answer the query as it stores the ini-
tial secret key (a short basis T) when ID was enrolled in group G. In
other words, B performs as that in UpdateU to derive user’s secret pair
(credID‖t, uskID‖t) and returns it to A. Finally, it adds (ID, G, t) to CU.

• For queries of oracle HS with input ID, if (ID, ·, · ) ∈ CU, B aborts. Otherwise,
if ID �= ID∗ or t > t∗, B acts as in algorithm Handshake using the corresponding
secrets. Else, B has to answer without using the user’s secret key. To do so,
B also performs the same as in Handshake, except that in the second flow
B generates a simulated proof π′ by utilizing the well-designed simulator of
applied NIZKAoK [41].

We claim that A cannot distinguish whether it interacts with a real chal-
lenger or with B. First, the secret pair of ID∗ given to A after period t∗ is
indistinguishable from the real one, due to the facts that

i) the revocation token is uniform over Z
n
q and other elements of credID∗‖t are

produced in the same way as that in AddMember;
ii) the outputs of BasisDel are uniformly random by Lemma 5. Second, the hand-

shake queries make no difference to the view of A, implied by the zero knowl-
edge property of the underlying NIZKAoK.

After A halts with her output PROOF∗ = (ρ∗,w∗,P∗, c∗
1, c

∗
2, t̂, π

∗) at period
t′, B checks if t′ = t∗. If not, the guess of the impersonator period t∗ fails
and B aborts. Else, parse π∗ = (cmt∗s, ˜ch

∗
, rsp∗), since A wins, we argue that by

completeness of our scheme, A must have queried the related random oracle G via
Fiat-Shamir heuristic on input η∗ = (cmt∗, pp∗). Otherwise, guessing correctly
this value occurs only with negligible probability ε′ = ( 1

2p+1 )
t. Therefore, with

probability at least ε − ε′, the tuple η∗ has been an input of one hash query,
denoted as κ∗ ≤ qG , where qG is the total number of queries to G made by A.

Next, B picks κ∗ as the target forking point and replays A polynomial time.
For each new run, B starts with the same random tape and input as in the
original execution, but from the κ∗-th query onwards, B will reply to A with
fresh and independent hash values. Moreover, B always replies as in the original
run for queries of H0. Note that the input of κ∗ hash query must be η∗. The
Forking Lemma in [14] implies that, with probability larger than 1/2, B can
obtain 3 forks involving the same tuple η∗, but with pairwise distinct challenges

˜ch
∗
1,

˜ch
∗
2,

˜ch
∗
3 ∈ [−p, p]t.
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Moreover, by the binding property of used commitment scheme, B can obtain 3
valid tuples from the output of A as

{(ch∗
1, cmt∗, rsp∗

1), (ch
∗
2, cmt∗, rsp∗

2), ch
∗
3, cmt∗, rsp∗

3} ,

by first recovering the unsent cmt∗r and then the original ch∗. Then by proof of
knowledge of system Πhs, B can extract the witness

ξ∗ = (ID′, urt∗ID′‖t∗ ,d∗, r∗,Ai∗ ,vID′‖t∗ , e∗, s∗, e∗
1, e

∗
2),

which satisfies that

– urt∗ID′‖t∗ is correctly derived from Ai∗ after t̂ times of updates.
– Triple (ID′,d∗, r∗) has the specific form as that in algorithm AddMember and

satisfies Eq. 4.
– W∗ · urt∗ID′‖t∗ + e∗ = w∗ and ‖e∗‖∞ ≤ B, where W∗ = H1(gpk∗, ρ∗).

– AID′‖t∗ = Ai∗ (Rt∗[1]
1 )−1 (Rt∗[2]

2 )−1 . . . (Rt∗[d]
d )−1.

– AID′‖t∗ · vID′‖t∗ = u∗ mod q and ‖vID′‖t∗‖∞ ≤ βd.
– c∗

1 = B
∗� ·s∗+e∗

1, c
∗
2 = P∗� ·s∗+e∗

2+� q
2�·ID′, where ‖s∗‖∞ ≤ B, ‖e∗

1‖∞ ≤ B,
and ‖e∗

2‖∞ ≤ B.

Now consider the following cases:
a. There is no element in table reg that contains ID′. This implies that the pair

(

A∗, (ID′,d∗, r∗)
)

forms a forgery for the SIS-based signature of Sect. 2.2.
b. ID′ �= ID∗, indicating the guess of the impersonator user fails, then B aborts.
c. Conditioned on guessing correctly t∗ and ID∗, we have that AID′‖t∗ · vID′‖t∗ =
A · vID′‖t∗ = u∗ mod q, recall that Ai∗ = A Rt∗[d]

d · · ·Rt∗[2]
2 Rt∗[1]

1 . Besides,
with the fact that A either queried the secret key of ID∗ after period t∗ or never
requested it at all, it is clear that v is not known to A. In this sense, because v
has large min-entropy given u∗, we argue that vID′‖t∗ �= v with overwhelming
probability. Now let z = vID′‖t∗ − v ∈ Z

m
q , it holds that i) z �= 0; ii) A · z = 0

mod q; iii) ‖z‖ ≤ √
m · ‖z‖∞ ≤ √

m · (‖vID′‖t∗‖∞ + ‖v‖∞) ≤ 2
√

mβd. B finally
outputs z, which is a valid solution of the given SISn,m,q,2

√
mβd

instance.

We observe that the probability that B does not abort is at least 1
qG·N ·T , and

conditioned on not aborting, it can solve the SISn,m,q,2
√

mβd
problem with prob-

ability larger than 1/2.

Detector Resistance. We define a sequence of hybrid games Gb
i for i ∈ [0, 5] and

G6, such that game Gb
0, for b ∈ {0, 1}, is the original experiment ExpDR−b

A .
We then prove that any two consecutive games are indistinguishable. Detector
resistance follows from the fact that game G6 is independent of the bit b. For
consistency, use IDb to denote the involved user (IDb = ID∗ or IDr for b = 0 or
1, respectively).

Game Gb
0: This is exactly the original game ExpDR−b

A , where B relies with
random strings for oracle queries of H0 and G.
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Game Gb
1: This game is the same as Game Gb

0 with only one modification: at the
challenge query ChalDR

b , we utilize the well-designed simulator in [41], so as to
produce a simulated proof π̃∗, which is computationally indistinguishable from
the real one due to zero knowledge of the underlying system.

Game Gb
2: There is one change in Game Gb

2: for the token embedding step in the
challenge query, compute the LWE function of revocation token using a random
nonce s instead of the real value urtIDb‖t∗ , namely, w∗ = W ·s+e∗ mod q where
s ← U(Zn

q ). Recall that the current token urtIDb‖t∗ = Q1 ·vdecn,q−1(urtIDb‖t∗−1)+
Q2 · t∗ is statistically close to uniform over Z

n
q . Thus, Game Gb

2 and Gb
1 are

statistically indistinguishable.

Game Gb
3: This game follows Game Gb

2 with one difference: sample w∗ uniformly
from Z

m
q . Note that in the previous game, W is uniformly random over Z

m×n
q ,

so the pair (W,w∗) is a valid LWEn,q,χ instance and its distribution is computa-
tionally close to the uniform distribution over Zm×n

q ×Z
m
q . Thus, the two games

are computationally indistinguishable.

Game Gb
4: This game conducts the same as that in Game Gb

3, except that it uses
matrix B′ ← U(Zn×m

q ) to encrypt users’ identity. From Lemma 2, we know that
the original matrix B is statistically close to uniform over Zn×m

q . Hence, the two
games are statistically indistinguishable.

Game Gb
5: This game encrypts the identity with random samples, namely, it

generates ciphertexts c′
1 = z1 and c′

2 = z2 + � q
2� · IDb where z1 ← U(Zm

q ),
z2 ← U(Z�

q). Based on the hardness of decision-LWE, we have that Game Gb
5

and Gb
4 are computationally indistinguishable.

Game G6: This game is the same as Game Gb
5 except that it replaces the cipher-

texts with random vectors, i.e., c′′
1 = z′

1 and c′′
2 = z′

2 where z′
1 ← U(Zm

q ),
z′
2 ← U(Z�

q). Since users’ identity is an unknown random string in the view of
A, it is clear that Game G6 and Gb

5 are statistically indistinguishable.

Combine the whole analysis above, we have that

G0
0

c≈ G0
1

s≈ G0
2

c≈ G0
3

s≈ G0
4

c≈ G0
5

s≈ G6, G6
s≈ G1

5
c≈ G1

4
s≈ G1

3
c≈ G1

2
s≈ G1

1
c≈ G1

0,

it then follows that |Pr[ExpDR−1
A = 1] − Pr[ExpDR−0

A = 1]| = negl(λ). This
concludes the proof.

Backward Unlinkability. Experiment ExpB-Unlink−b
A is much similar to ExpDR−b

A ,
in the sense that the challenger also picks one out of two users to simulate a
handshake with A twice, except now the arbitrary user is predetermined as ID1.
Therefore we can also build a sequence of hybrid games to prove this property
as the above constructions, with the only difference that we need to additionally
argue the anonymity of revoked users (attribute “backward”). To this effect, it
suffices to prove that the publicity of revocation tokens at period t′ brings no
advantage for A at period t holding t < t′. We tackle this issue in two steps:



476 Z. An et al.

First we demonstrate that the update algorithm for revocation token is one-
way, i.e., it is impossible to recover a previous token from the current one, the
claimed fact is as follows.

Lemma 6. The update function of revocation token defined in algorithm
UpdateU is one-way, assuming the hardness of ISISn,q,

√
nk problem.

Proof. Let u = urti‖t − Q2 · t ∈ Z
n
q , if one can recover the previous token

urti‖t−1 := v ∈ Z
n
q from the current one, satisfying that urti‖t = Q1 ·

vdecn,q−1(v) + Q2 · t mod q, then one can obtain a non-zero vector z =
vdecn,q−1(v) ∈ {0, 1}nk such that Q1 · z = u mod q. In other words, z is a
valid solution to the ISISn,q,

√
nk problem associated with matrix Q1 and vec-

tor u.

Next we show that A gains no extra advantage after knowing later revocation
tokens (e.g., urti‖t+1). It suffices to prove that A still can not distinguish the LWE

instance (W,w∗) in Game Gb
2 from real random samples.

Suppose that now Game Gb
2 and Gb

3 are distinguishable with a non-negligible
advantage, which directly implies that A solves decision-LWE with non-negligible
probability. It then follows that A can also solve search-LWE with non-negligible
probability and a larger sample number m′ = poly(m), implying A can find the
secret token urti‖t at current period t by use of urti‖t+1. In this way, A will break
the one-way property of the update function stated in Lemma 6.
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Abstract. The lattice sieving algorithm based on list-decoding of
Becker-Ducas-Gama-Laarhoven (SODA 2016) is currently at the center
of cryptanalysis cost estimates of candidate lattice schemes for post-
quantum standardization.

Yet, only an idealized version of this algorithm has been carefully
modelled, i.e. given an efficient list-decoding oracle for a perfectly ran-
dom spherical code. In this work, we propose an experimental analysis
of the actual algorithm. The difficulty lies in estimating the probabilistic
defect with respect to perfectly random spherical codes for the task at
hand. While it should be in principle infeasible to run the algorithm in
cryptographically relevant dimensions, a few tricks allow to nevertheless
measure experimentally the relevant quantity.

Concretely, we conclude on an overhead factor of about 26 on the
number of gates in the RAM model compared to the idealized model for
dimensions around 380 after an appropriate re-parametrization. Part of
this overhead can be traded for extra memory, at a costly rate. We also
clarify that these overheads apply to an internal routine, and discuss how
they can be partially mitigated in the whole attack.

Keywords: Concrete cryptanalysis · Lattice · Sieving

1 Introduction

1.1 Context

Sieving refers to a class of algorithm for finding the shortest vector in a Euclidean
lattice; it proceeds by continuously searching within a list L of lattice vectors
for pairs u,v ∈ L such that u − v is shorter than either of the original vectors.
Assuming that all the vectors have roughly the same length (say, length 1), this
is equivalent to searching for reducing pairs of vectors, i.e. pairs with angle less
than π/3.

While proving that sieving does indeed succeed requires convoluted and costly
tricks [AKS01], such a simple algorithm works well in practice [NV08] when
working with a list of size roughly N ≈ (4/3)n/2 in dimension n. A naive imple-
mentation of this strategy therefore leads to finding the shortest vector in time
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roughly nO(1) · N2, for a complexity of 2.415n+o(n). A line of work initiated by
Laarhoven [Laa15a,Laa15b,LW15] has led to lower complexity, by the introduc-
tion of the Near Neighbour Search formalism (NNS), using Locality Sensitive
Hashing. This approach allows one to find (most of) the reducing pairs in a time
Lc for some constant c ∈ [1, 2].

Among many variants [Laa15b,LW15,BGJ15,Laa15a], the asymptotically
fastest is that of Becker-Ducas-Gama-Laarhoven [BDGL16], with a time com-
plexity of (3/2)n/2+o(n) = 2.292n+o(n). It is based on efficient list-decoding of well
chosen spherical codes. It also underlies the current fastest implementation on
CPUs [ADH+19,DSvW21], though the cross-over point with the simpler sieve
of [BGJ15] has not yet been reached on GPUs [DSvW21].

This algorithm has also been the object of precise gate cost estimation
in large dimensions [AGPS20], or more specifically its internal near-neighbors
search (NNS) routine. These estimates are used in the documentation of several
NIST post-quantum standardization candidates. In particular, the Kyber docu-
mentation [ABD+21, Sec. 5.3] gives a list of eight open question about various
approximations and foreseeable improvements that may affect these estimates,
both upward and downward.

1.2 This Work

This work aims to resolve the open question Q2 of [ABD+21, Sec. 5.3] regarding
the idealized model for the near neighbors search procedure of [BDGL16]. In the
idealized model, the spherical code is assumed to be perfectly random, and to be
efficiently list-decodable. The instantiated NNS procedure instead resorts to a
product of random codes, which induces overheads. More specifically, there is a
trade-off between three overheads when instantiating the [BDGL16] framework
with product codes:

– a computation overhead CO×, to list-decode the spherical code,
– a memory overhead MO×, to store pointers to vectors in buckets,
– a probability overhead PO×, accounting for the randomness defect of product

codes

The computation and probability overhead both contribute to the gate count
of the algorithm, defining a time overhead TO× = CO× · PO×. It is known
from [BDGL16] that all three overheads can be made subexponential, and that
either the memory overhead or the computation overhead can be made negligible.

While the computation overhead CO× and memory overhead MO× are easy
to calculate concretely, the probability overhead PO× seems harder to model
precisely and rigorously, and naive measurements would not be feasible for cryp-
tographically relevant parameters. The main technical contribution of this work
resides in the design of feasible experiments to measure this overhead (Sect. 3).

Implementing this experiment leads to concrete conclusions on these over-
heads and their trade-off (Sect. 4). In dimension n = 384 (roughly what is needed
to break lattice candidates at level NIST 1) the idealized NNS procedure is
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costed by [AGPS20] at 2134.1 gates and 297.6 bits of memory. We conclude on
a 26 slowdown factor on time for small memory overhead. A partial trade-off is
possible, but costly, and even with a factor 212 increase in memory consumption,
a slowdown factor of 22.5 remains.

We also discuss how these overheads of the internal NNS routine can be some-
what mitigated inside a complete lattice attacks (Sect. 5), and propose further
open problems (Sect. 6).

Source Code. The artifact associated with this work are available at https://
github.com/lducas/BDGL_overhead.

2 Preliminaries

Complexity. Time and memory complexity are given in the RAM model, and for
readability are given in terms of elementary operations during most of this paper;
constant factors will be gracefully ignored. Only in Sect. 4.3 do we quantify costs
more precisely in terms of binary gates.

Independent Small Probability Events. We will silently abuse the approximation
1 − (1 − W)M ≈ W · M to our best convenience.

Euclidean Vector Space. In all this work, bold lowercase (u,v,w, . . . ) letters
denotes row vectors of the real vector space R

n endowed with its canonical
Euclidean inner product: 〈x,y〉 :=

∑
xiyi, and associated Euclidean metric

‖x‖ =
√〈x,x〉.

Spheres, Caps and Wedges. We define the following bodies in dimension R
n:

– The unit sphere : Sn := {x ∈ R
n | ‖x‖ = 1}

– The halfspace : Hn
v,a := {x ∈ R

n | 〈x,v〉 ≥ a}
– The spherical cap : Cn

v,a := Sn ∩ Hv,a

– The (symmetric) spherical wedge:1 Wn
v,w,a := Cv,a ∩ Cw,a

where v,w ∈ Sn and a ∈ [0, 1]. Furthermore, we define the relative volume of
caps and wedges as follows.

– Cn(a) := Vol(Cv,a)/Vol(Sn) for any v ∈ Sn

– Wn(a, c) := Vol(Wv,w,a)/Vol(Sn) for any v,w ∈ Sn such that 〈v,w〉 = c.

The dimension n being generally clear from context, the exponent n might be
omitted in the rest of this document. For asymptotic analysis, we have the fol-
lowing lemma.

1 The literature usually defines asymmetric spherical wedge with two different bounds
a, b for the halfspace in directions v and w. However the best choice appears to be
a = b [BDGL16,AGPS20].

https://github.com/lducas/BDGL_overhead
https://github.com/lducas/BDGL_overhead
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Lemma 1 ([BDGL16]). For any fixed a ∈ [0, 1] and growing n,

– Cn(a) =
(
1 − a2

)n/2 · nO(1)

– Wn(a, c) =
(
1 − 2a2

1+c

)n/2
· nO(1).

These quantities Cn(a) and Wn(a, c) can be efficiently computed pre-
cisely [AGPS20]; in particular C(a) directly relates to the incomplete beta func-
tion.

2.1 List-Decoding Sieve, Idealized

The idealized version of [BDGL16] proceeds by assuming that one is given ran-
dom yet efficiently list decodable spherical code F ⊂ Sn of size M . More pre-
cisely, it is assumed that one can compute the set of codewords falling in a
given spherical cap F (v, a) := F ∩ Cv,a, and this efficiently, that is in time,
say, #F (v, a) + LDO+ where LDO+ = 2o(n) denotes a sub-exponential additive
overhead for list decoding. In the idealized model, this factor is assumed to be
LDO+ = 1.

Given such a set and such an oracle, one proceeds with the search for reducing
pairs as follows:

1. Compute F (v, a) for each v ∈ L, and store v in buckets labelled by each
f ∈ F (v, a)

2. For each f ∈ F , and for each pair v,w in the bucket labelled by f , check
whether 〈v,w〉 ≤ 1/2.

Assuming that each codeword f ∈ F and each lattice vector of the list v ∈ L
is uniform and independent over the sphere, one expects each v to fall in M ·C(a)
buckets, and each bucket to contain N ·C(a) vectors, leading to a time complexity
of

N · (n · M · C(a) + LDO+) + n · M ·(N · C(a))2
≈ 2nM when a = 1/2

and a memory complexity of N · M · C(a) for the procedure.
A reducing pair will be detected if and only if there is a codeword falling in

the wedge Wv,w,a = Cv,a ∩Cw,a. Given that f ∈ F are uniform and independent,
this happens with probability 1−(1−W(a, 1/2))M ≈ M ·W(a, 1/2). One should
therefore choose M ≈ 1/W(a, 1/2) to find essentially all reducing pairs.

Recalling that N ≈ 1/C(1/2) = (4/3)n/2 · nO(1), one finds that the optimal
asymptotic time complexity of T = 1/W(1/2, 1/2) = (3/2)n/2 · nO(1) is reached
at a = 1/2, and with a similar memory complexity M = (3/2)n/2 · nO(1). In
practice [BDGL16], a slightly smaller value of a < 1/2 seems preferable. How-
ever we note that after the update of [AGPS20] including the model correction
of [MAT22] for BDGL cost, a slightly larger a > 1/2 now gives optimal gate
count.
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Low Memory Variant. Following an original remark of [BGJ15,BDGL16] also
propose a variant where the memory cost is dominated by that of the list of
vectors, rather than by the buckets. One can simply choose a smaller value of
M = 1/C(a), and to repeat the whole procedure with a fresh spherical code
R = M/W(a, 1/2) = (9/8)n/2 · nO(1) many times. The new time complexity is
now

RN · (nM · C(a) + LDO+) + nRM ·(N · C(a))2
≈ nRM(2 + LDO+) when a = 1/2

which is similar to the above, up to an extra sub-exponential factor LDO+. That
is, we have traded an exponential factor (9/8)n/2 · nO(1) on memory for a sub-
exponential factor on time. Intermediate choices are also possible, ranging from
Mmin = 1/C(a) to Mmax = 1/W(a, 1/2).

2.2 List-Decoding Sieve, Instantiated

It remains to replace the random spherical code by one that is structured enough
to allow efficient list-decoding, while not affecting the success probability of
detecting reducing pairs too much. This is an issue of independence. Indeed,
consider for a second a code of size M = 1/W(a, 1/2), whose codewords would
all be concentrated in a small region. The average number of codewords in a
random wedge Wn

v,w,a would still be 1, yet most of the time a wedge will contain
no codewords at all, while the remaining rare case is a wedge containing almost
all of the M codewords. The desired situation is one there is always about 1
codeword in such a random wedge.

To do so, it is proposed in [BDGL16] to use a product of random codes
in smaller dimensions. That is, F is constructed as the Cartesian product of
m random spherical codes in dimension n/m, each of size B = M1/m. For
such a code, a decoding algorithm is devised [BDGL16, Sec. 5], running in time
essentially

nB + mB logB + m · #F (v, a).

We will not describe the algorithm in detail (see [BDGL16, Sec. 5]), but briefly
explain the three terms:

1. nB corresponds to the cost of computing B inner products in dimension n/m
for each of the m subcode.

2. mB logB corresponds to sorting the m lists of inner products.
3. m ·#F (v, a) corresponds to a tree enumeration without any backtracking, in

a tree of depth m with #F (v, a) leaves.

In practice, these costs can be tackled further [MLB17,DSvW21,MAT22], as will
be discussed in Sect. 4.3, and a more optimistic model would be

mB +#F (v, a).
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For now, one may simply consider that the additive overhead of the list
decoder is LDO+ = nB = nM1/m. Furthermore, it is proved [BDGL16, Theorem
5.1] that such random product codes are not that far off perfectly random codes
when m = log n; more precisely, the success probability for detecting a reducing
pair is only a sub-exponential factor PO× = 2Õ(

√
n) away of the idealized model:

PW [#(F ∩ W ) ≥ 1] = M · W(a, c)/PO×

where W is a random wedge with parameter (a, c). This multiplicative proba-
bility overhead must be compensated for by repeating the algorithm PO× many
times.

Low Memory Variant. For the low memory variant, one can ensure independence
across the R repetitions by applying a fresh random rotation to the input of each
repetition. This ensures that the overall probability overhead is the same as the
individual ones.

3 Analyzing the List-Decoding Sieve Instantiation

3.1 Overheads and Trade-Offs

We have identified three overheads between the idealized and the instantiated
list-decoding sieving algorithm [BDGL16]: a cost overhead on the procedure CO×

induced by the non-trivial cost of list-decoding, a memory overhead MO× for
storing pointers to vectors in buckets, and a probabilistic overhead PO× induced
by the independence defect of random product codes. The overall time overhead
is given by TO× = CO× · PO×, and one may also consider the time-memory
overhead TMO× = TO× · MO×.

The first two overheads CO× and MO× can be calculated from the algorithm
parameter, though the exact formula might be bulky and hard to parse. For
illustration, in a simple model ignoring constants, and assuming a = 1/2 and
N = 1/C(1/2), we have:

TO× ≈ 1 +
LDO+

nMC(a) ≈ 1 +
Mmin

M
· M1/m and MO× ≈ 1 +

M

Mmin
.

The overhead PO× is however more problematic, and the author admits to
having no clue on how to approach it analytically. In this position, one would
be tempted to just ignore PO×, and focus on the above; however such an anal-
ysis would result in essentially the same result as the idealized model: setting
M = Mmin and m = log2(M) = Θ(n) gives constants overheads TO× and
MO×. In such an extreme regime, the BDGL algorithm starts resembling the
hyperplane-LSH algorithm of Laarhoven [Laa15b], whose complexity is supposed
to be exponentially worse, that is, we’d expect PO× = 2Θ(n).

In conclusion, to refine the cost analysis of [BDGL16] one has no choice but
to estimate PO× some way or another. Before we explore how to experimentally



486 L. Ducas

measure such a quantity, let us briefly recapitulate how the parameters affect
each overhead:

1. The parameter M can range from Mmin = 1/C(a) to Mmax = 1/W(a, 1/2).
Straightforwardly, increasing M decreases memory overhead and increases
time overhead. One may also guess that PO× grows with M ; indeed, a larger
value of R = Mmax/M improves independence of the success events bringing
us closer to the idealized model. This trend is confirmed by the experiments
of Sect. 4.2.

2. The parameter m is a positive integer, and time overhead decrease with it;
however we expect PO× to grow with m. This will also be confirmed by
experiments of Sect. 4.2.

3. The parameter a may also affect both the base-line performance and the
probabilistic overhead PO×. Though it is not clear a-priori in which direction.
Experiments of Sect. 4.2 will show that for a fixed M , PO× increases as a
decrease.

3.2 Measuring PO×, Naively

In this section, we discuss how to experimentally measure PO×, hopefully up
to cryptographically relevant dimension. By definition, running the full sieve
algorithm is not an option. When giving explicit complexity, we tacitly assume
a = 1/2.

The Naive Approach. The naive approach consists in generating random
reducing pair on the sphere v,w such that 〈v,w〉 = 1/2, and simply testing
whether F (v, a) ∩ F (w, a) is non-empty.

Lemma 2. There is a polynomial time algorithm that, given a ∈ [0, 1] samples
a uniform pair v,w ∈ Sn conditioned on 〈v,w〉 = a.

Proof. The algorithm follows:

1. Sample v uniformly on S
2. Sample x uniformly on S∩v⊥, by sampling uniformly on S, projecting orthog-

onally to v, and renormalizing.
3. Set w =

√
1 − a2 · x+ a · v. �

Testing whether this pair is detected costs time LDO+ + M/Mmin per trial,
and memory M/Mmin. However, the success probability is only M/(MmaxPO×),
so the experiments must be repeated(MmaxPO×)/M leading to a complexity of
(MmaxPO×)/Mmin = (9/8)n/2+o(n) = 2.085n+o(n) to get a single success. And we
may want to record up to a 1000 success for a decent estimate of the success
probability.
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3.3 Measuring PO×, a First Speed-Up

Because in this experimental set up we know in advance the reducing pair v,w
that the list-decoding is searching for, we can use this information to narrow
down the search. In particular, consider the following lemma.

Lemma 3. For any a, c ∈ [0, 1], and v,w ∈ Sn such that 〈v,w〉 = c, we have
the inclusion

Wn
v,w,a ⊂ Cn

z,2·a/
√
2+2c

where z = v+w
‖v+w‖ is the midpoint of v,w on the sphere Sn.

Proof. Let x be in the wedge Wn
v,w,a; by definition we have 〈v,x〉 ≥ a and

〈w,x〉 ≥ a. Thus, it holds that 〈v +w,x〉 ≥ 2 · a, or equivalently that 〈z,x〉 ≥
2·a/‖v+w‖. We conclude noting that ‖v+w‖2 = ‖v‖2+‖w‖2+2〈v,w〉 = 2+2c.

�
Further, we note that this inclusion Cn

z,2·a/
√
2+2c

⊃ Wn
v,w,a is rather a good

over-approximation: the ratio CW(a, c) := C(2a/
√
2 + 2c)/W(a, c) is not too

large.

Lemma 4 ([BDGL16], App. A). For any a, c ∈ [0, 1), CW(a, c) = O(
√

n).

In our case, this implies that F (v, a) ∩ F (w, a) is included in F (z, 2a/
√
3);

one can now test for each f ∈ F (z, 2a/
√
3) whether 〈f ,v〉 ≤ a and 〈f ,w〉 ≤ a.

This gives significant savings when M/Mmin > LDO+; in particular for M =
Mmax the time and memory complexity drop down to sub-exponential (LDO++
CW) · PO× = 2o(n) per successful sample.

3.4 Measuring PO×, a Second Speed-Up

While the previous speed-up is appreciable in the high-memory regime, it is not
very effective in the low memory regime, the main issue being that it inherently
takes (MmaxPO×)/M trials to get a success. And we are indeed most interested
in the case where M is close to Mmin. To tackle it, we need not improve the
algorithm, but instead design a different experiment.

Consider the following distribution D : #(F (v, a) ∩ F (w, a)) where v,w
are uniform over the sphere conditioned on 〈v,w〉 = 1/2. In other word, the
distribution of the size of W ∩ F for a random (a, 1/2)-wedge. Let us call di :=
Pj←D[j = i] its density at i.

We know that the average size of W ∩F is M ·W(a, 1/2), that is
∑

i≥0 di · i =
M ·W(a, 1/2) is essentially equal to the success probability of when F is perfectly
random. We are interested in the probability of success S, that i ≥ 1 for i ← D,
i.e. S =

∑
i≥1 di. An idea would be to design an experiment that focuses on the

cases i ≥ 1, i.e. an experiment that is conditioned on successful detection.
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Conditioned Sampling. We start with a sampling procedure for generating
pairs that are successfully detected by a given filter f .

Lemma 5. There is a polynomial time algorithm that, given a, c ∈ [0, 1] and f ∈
Sn samples a uniform pair v,w ∈ Sn conditioned on 〈v,w〉 = c and Wv,w,a � f .

Proof. Setting z = v+w
‖v+w‖ , we know by the previous lemma that f ∈ Wv,w,a

implies f ∈ Cz,2·a/
√
2+2c, which is equivalent to z ∈ Cf ,2·a/

√
2+2c. Our strategy is

therefore to

1. Sample z uniformly in Cf ,2·a/
√
2+2c

2. Sample v,w such that z is their midpoint, and 〈v,w〉 = c
3. Return (v,w) if f ∈ Wv,w,a, otherwise restart.

For the first step, note that r := 〈f , z〉 is not determined, but constrained
to r ∈ [b := 2·a√

2+2c
, 1]. Defining β = cos−1(b), ρ = cos−1(r), we sample

ρ uniformly in [0, β] and use rejection sampling with acceptance probability
(sin(ρ)/ sin(β))n−2. Finally, we choose z ∈ S under the constraint 〈f , z〉 = r.

The second step is easy, by first choosing v conditioned an inner product of
1+c√
2+2c

with z, and then setting w to be its reflection against the axis z.
Regarding last step, we note that the accepting probability is 1/CW(a, c) =

1/O(
√

n) by Lemma 4. �

An Auxiliary Distribution. We can now consider the following distribution
D′ of #(F (v, a)∩F (w, a)), where f is chosen uniformly from F , and v,w chosen
uniformly conditioned on 〈v,w〉 = 1/2 and on Wv,w,a � f . By construction, it
always holds that i ≥ 1 for i ← D′. In fact, the density at i is proportional to
idi, because there are i many ways to get to that same pair (v,w); that is, the
density of D′ is given by d′

i = idi/
∑

j jdj .

Conclusion. Now consider the expectation of 1/i for i ← D′:

E[1/i] =

∑
i≥1 idi/i
∑

j jdj
=

∑
i≥1 di

∑
j jdj

=
S

M · W(a, 1/2)
=

1
PO× .

This means we can estimate PO× simply as the average of E[1/i] where i ← D′.
The remaining question is how many sample do we need to get a precise

estimate? The variance of the empirical average grows as Θ(V/k) using k samples
and where V denotes the variance of individual samples; drawing k = Θ(V/E2)
samples one therefore reaches a relative error of

√
V/E = O(1). Because the 1/i

is supported by [0, 1], it holds that V ≤ E, and we get k ≤ Θ(1/E) = O(PO×).
We therefore only need a sub-exponential amount O(PO×) of sample in any

regime, to be compared to (MmaxPO×)/M , a quantity as large as (9/8)n/2+o(n)

in the low memory regime.
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4 Implementation and Experiments

We implemented BDGL list-decoder in python, with the library numpy for vector
operation, which makes most of the operation reasonably fast. The experiments
to measure PO× are proudly parallel2 over the many samples they require.

Only the tree enumeration is implemented without numpy acceleration, how-
ever this is reasonably mitigated by our first speed-up: the tree should be small
on average for the regime we are interested in. We nevertheless experienced that
a few instances had unreasonably large tree (enough to fill gigabytes worth of
leaves); we therefore implemented a cap on the number of leaves at which the
tree enumeration is halted, with a default value of 107. This might lead to under-
estimating PO× in the experiments of Sect. 3.4, but no significantly unless PO×

itself reaches similar order of magnitude. In particular, this is not significant in
the regime of our experiments.

We also depend on the software of [AGPS20] for computing C and W exactly,
as well as for computing baseline cost, that is the cost of idealized near neighbor
search.

4.1 Consistency Checks

In consistency_check.py, we implement some consistency checks for both
speed-ups described in Sect. 3.3 and 3.4. For the first speed-up, we check that it
is indeed the case that F (v, a) ∩ F (w, a) is included in F (z, 2a/

√
3) where z is

the spherical midpoint of v and w.
For the second speed-up, we simply measure PO× using both methods, using

216 samples, and check that both results are equal up to a 20% relative error.

4.2 Trends

We plot the variation of PO× as a function of various parameters in Fig. 1. These
plots confirm that PO× indeed increases with m and M . Interestingly, for fixed
m and either M = Mmin or M = Mmax, PO× appears to be converging as n
grows. We also note that PO× decrease with a for a fixed M .

4.3 Concrete Estimate in Dimension 384

In this section, we will be more precise about costs, giving an gate count for
time and a bit count for memory.

The [AGPS20] Estimates. The original version of the software associated
with [AGPS20] was costing list-decoding in the idealized model, that is, the

2 The terminology was communicated to us by M. Albrecht, and is meant as a synonym
of embarrassingly parallel.
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Fig. 1. Variations of PO× as a function of various parameters. Measured over 214

samples per datapoint.

cost of bucketing a vector was proportional to the number of buckets it falls
into, following the formula3:

m · M · C(a) · Cip(n) (1)

choosing m = log2(n) and where Cip(n) = 210 · n denotes the cost of an inner
product in dimension n in gates (computed at 32 bit precision). Not withstand-
ing the idealization of ignoring the additive overhead LDO+, this formula does
3 https://github.com/jschanck/eprint-2019-1161/blob/09d72d2125e75fdd35e49e54c3

5663a1affa212a/cost.py#L783.

https://github.com/jschanck/eprint-2019-1161/blob/09d72d2125e75fdd35e49e54c35663a1affa212a/cost.py#L783
https://github.com/jschanck/eprint-2019-1161/blob/09d72d2125e75fdd35e49e54c35663a1affa212a/cost.py#L783
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not adequately reflects the cost stated in the original [BDGL16] paper; this
was pointed out in [MAT22]. Indeed, in [BDGL16] the inner products are pre-
computed and reused through the tree enumeration, reducing the Cip(n) factor4
to a Cadd = 160 factor, the cost of a single 32 bit addition. Furthermore, the
work of [MAT22] propose a variation on the tree enumeration order to tackle
the m factor5.

Following this report and further discussion on the NIST forum6, this cost
has been revised to7

m · B · Cip(n/m) + mB log2 B(Ccp + log2 B)
︸ ︷︷ ︸

LDO+

+M · C(a) · (Cadd + log2 B) (2)

where Ccp = 32 is the cost of a comparison (for sorting), and the additive terms
log2(B) are meant to account for moving and addressing pointers8.

The addition of the LDO+ term is in fact negligible, because the whole algo-
rithm is costed in its high-memory regime M = Mmax, R = 1. Though, the
memory consumption is not reported upon by the software, nor by other report
using this software, nor in the reports of [AGPS20,GJ21,MAT22]. In the Kyber
documentation (Round 3 version) [ABD+21], a memory cost of 293.8 bits for
sieving dimension 375, which corresponds to storing N = 1/C(1/2) vectors of
dimension n at 8-bit precision. That is, the memory was costed following the
low-memory regime.

Costing time in the high memory regime, while costing memory in the low
memory regime, all while ignoring the probabilistic overhead essentially corre-
sponds to the idealized model for [BDGL16].

Further Improvement on LDO+. There has been some further improvement
on implementing [BDGL16], in particular improving the LDO+ term. In per-
sonal communication about [MLB17], Laarhoven mentioned that partial inner
products need not be entirely sorted as only the top fraction is visited during
the tree enumeration. In the low memory regime, one would expect that the tree
visit about a single branch on average, so this sorting may be reduced down to
finding a single maximum. We will therefore ignore this cost which is dominated
by the other LDO+ term.

A second improvement comes from the implementation of [DSvW21], which
replace explicit inner products with random vectors, by a sequence of implicit

4 Even without this precomputation, this cost should have been Cip(n/m).
5 Though in the original [BDGL16] this factor comes from a worst-case analysis on

the tree shape, and one would expect this factor to also vanish to 1 for large random
trees without tweaking the tree enumeration.

6 https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/Fm4cDfsx65s/m/
m1vVrpoAAgAJ.

7 https://github.com/jschanck/eprint-2019-1161/blob/a4d3a53fe1f428fe3b4402bd63e
e164ba6cc571c/cost.py#L801.

8 We believe the last term should be log2(M) rather than log(B) since there are M
buckets to point to.

https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/Fm4cDfsx65s/m/m1vVrpoAAgAJ
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/Fm4cDfsx65s/m/m1vVrpoAAgAJ
https://github.com/jschanck/eprint-2019-1161/blob/a4d3a53fe1f428fe3b4402bd63ee164ba6cc571c/cost.py#L801
https://github.com/jschanck/eprint-2019-1161/blob/a4d3a53fe1f428fe3b4402bd63ee164ba6cc571c/cost.py#L801
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inner products using permutations and Hadamard matrices. This allows to
decrease the cost from m · B · Cip(n/m) to essentially

m · log2 n/m · B · Cadd (3)

where the additions are computed at 16-bit precision (Cadd = 80).

First Overhead Estimation. Having now costed the overheads following the
state of the art [MLB17,DSvW21], and being equipped with an efficient method
to measure the probability overhead, we may now provide an analysis of the
previously neglected overheads. We fix parameters according to the optimization
provided by the (revised) software of [AGPS20]:

– Dimension is n = 384
– Xor-popcount parameters [FBB+14,Duc18,ADH+19] are done over 511 bits,

with a threshold at 170, giving an positive detection rate of η = 0.456
– The number of vectors for the sieve is set to N = 2/((1 − η)C(1/2)) = 286.0,
– The filter parameter is optimized at a = 0.512 by the revised script

of [AGPS20], giving Mmin = 289.0 and Mmax = 2127.6.

The revised script of [AGPS20] concludes on a cost of Tideal = 2134.1 gates,
while we need at least Mideal = 8nN = 297.6 bits of memory for storing all
the sieve vectors. In Fig. 2a we report on the time and memory overheads
(TO×,MO×) for various values of m and M .

For each value of m, we first see time decrease as we increase the memory
overhead, until a certain point, after which is starts increasing again. In other
words, and perhaps surprisingly, the minimal time is not reached at the high-
memory regime M = Mmax, but somewhere halfway Mmin < M < Mmax. A
breakdown of the time overhead TO× = CO× · PO× explains the phenomenon
(Fig. 2b): while CO× tends to 0, PO× increases at a steady rate; once CO×

approaches 0, the decay of CO× gets lower than the increase of PO×.
The plot shows that whatever the parametrization, the overhead on time-

memory is TO× ·MO× ≥ 28; furthermore, even for very large memory overhead
the time overhead remains non-negligible.

One can also note that the number of vectors per bucket is NC(a) ≈ 1/8,
which is surprisingly low; only one bucket in 64 will actually have a pair to
attempt reduction. This is understandable in the idealized model, because the
cost of bucketing Cadd+log2 B is significantly lower than a xor-popcount on 511
bits (costed at 3072 gates by [AGPS20]). But this could be sub-optimal when
considering overheads. That is, to conclude, we first need to re-optimize the value
of a with the overhead in the equation.

Reparametrizing, with Overheads. We now have three parameters to opti-
mize over, m,M, and a, so we need to be mindful of the search space for the
experiment to be feasible. We explore M by multiplicative increment of 2, and
for each M , we use the previous curve to determine the relevant range for a.
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Fig. 2. Overheads in dimension 384 for a = 0.512.



494 L. Ducas

98 100 102 104 106 108 110 112 114 116

136

138

140

142

144

146

148

log
2 (TM

) =
idealized +

6

log2 M

lo
g 2

T

m = 6
m = 7
m = 8
m = 9
m = 10
m = 12
Idealized [AGPS20]

Each measure of PO× was done over 213 samples. The computation took about 40 core-
days.

Fig. 3. Cost in dimension 384 when optimizing a with overheads.

This explain the “hairy” appearance of our plot in Fig. 3: each “thread” (for a
fixed m) is in fact a union of curves for a fixed M and a small range of relevant
a.

Qualitatively, the conclusion remain similar to that of the previous experi-
ments, but quantitatively, the gap with the idealized cost is now a bit smaller
near the low-memory regime (from 28 down to 26). Numerically, we can for
example parametrize the algorithm to have time and memory complexity about
(T = 2140.1,M = 298), against a baseline of (Tideal = 2134.1,Tideal = 297.6). The
time-memory trade-off is however costly: from this point, decreasing the time by
a factor 2−2 costs an extra factor of 24.5 on memory, and gets worse as the curve
flatten to minimal time around (T = 2136.5,M = 2112).

5 Impact on Attacks

We clarify that the cost given all along this paper corresponds to the NNS task
of finding all reducing pairs once inside sieving, and not that of the whole attack.
In particular, we can not conclude that all attacks using sieving have their time-
memory cost increased by a 26 factor. The most advanced attacks [GJ21,MAT22]
have several stages, and reparametrizing them adequately should partially mit-
igate these overheads.

We also recall that there remain several known unknown in precisely model-
ing and costing lattice attacks, summarized in [ABD+21, Sec. 5.3]. This works
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resolves question Q2 (Idealized Near-Neighbors Search) of [ABD+21, Sec. 5.3].
We note that question Q7 (Refined BKZ Strategies) is now accounted for in the
recent estimator of Albrecht [Alb22] under the label bdd.

We also warn against regressions on the accuracy of lattice attack esti-
mates [GJ21,MAT22], such as the use of the Geometric-Series Assumption
instead of a (progressive) BKZ simulator [CN11,DSDGR20,Alb22].

5.1 Mitigation Inside Progressive-Sieve and Progressive-BKZ

Even in the simplest attack whose cost comes essentially from sieving, the over-
head can also be mitigated. The reason is that the routine at hand is not only
ran in the final sieving dimension (say n = 384) but also in dimension below it;
for those calls in smaller dimension we can move on the time-memory curve.

More specifically, the simplest primal BKZ attack9 makes about d(i+1) calls
in dimension n− i where d is the total lattice dimension; these calls accumulates
over progressive-sieving for each SVP oracle call [Duc18,ADH+19], and over
progressive-BKZ tours. In the idealized model, this adds an extra dC2 factor on
time where C =

∑∞
i=0 2

−.292i ≈ 5.46 stands for the progressivity overhead.
To correct the progressivity overhead using this strategy, we rely on the data

collected at n = 384, and make the working assumption10 that for small i < 30,
the time-memory curve of Fig. 3 is simply shifted by (T = 2−.292i,M = 2−.2075i).
We aim to make optimal use of M = 298 bits of memory throughout all calls to
the inner routine in dimension 384 − i.

For each i, we collect the minimal time Ti such that Mi < 298, and finally
compute

∑
(i + 1)Ti/T0 ≈ 15.6. This is to be compared with the idealized

progressivity overhead squared C2 ≈ 29.6. That is, this strategy should mitigate
the 26 overhead of the inner routine by a factor 2−0.9 on the whole primal BKZ
attack, lowering the overhead down to 25.1. Given the concavity of the curve, one
would expect this mitigation works best in the low memory regime; for example,
at M = 2100 we get

∑
(i + 1)Ti/T0 ≈ 20.0, i.e. a mitigation factor of 2−0.6.

For a single progressive sieve, we can also compare
∑

Ti/T0 ≈ 3.78 to C ≈
5.46, and conclude on a mitigation factor of 2−0.5 at M = 298.

6 Open Problems

The analysis of the overheads of the algorithm of [BDGL16] presented in this
work is based on instantiating it is random product codes. While this is the only
proposed instantiation so far, the framework of [BDGL16] can also work with
other efficiently list-decodable spherical codes. A natural open problem would

9 The BKZ blocksize β is here slightly larger than n thanks to the dimensions for free
of [Duc18].

10 Collecting all those curves would be rather costly, about 40 core-days per curve.
Furthermore, the software of [AGPS20] which we rely on is only set for n a multiple
of 8.
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therefore be to design spherical codes giving better trade-offs between PO×,CO×

and MO×.
Another natural problem would be to find a theoretical model for the prob-

abilistic overhead PO× as a function of the various parameters. We hope that
the experimental data provided by the method of this work can be helpful for
conjecturing or validating such a theoretical analysis.
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Abstract. SPHINCS+ is a stateless hash-based signature scheme that
has been selected for standardization as part of the NIST post-quantum
cryptography (PQC) standardization process. Its security proof relies
on the distinct-function multi-target second-preimage resistance (DM-
SPR) of the underlying keyed hash function. The SPHINCS+ submission
offered several instantiations of this keyed hash function, including one
based on SHA-256. A recent observation by Sydney Antonov on the PQC
mailing list demonstrated that the construction based on SHA-256 did
not have DM-SPR at NIST category five, for several of the parameter
sets submitted to NIST; however, it remained an open question whether
this observation leads to a forgery attack. We answer this question in
the affirmative by giving a complete forgery attack that reduces the
concrete classical security of these parameter sets by approximately 40
bits of security.

Our attack works by applying Antonov’s technique to the WOTS+

public keys in SPHINCS+, leading to a new one-time key that can sign
a very limited set of hash values. From that key, we construct a slightly
altered version of the original hypertree with which we can sign arbitrary
messages, yielding signatures that appear valid.

Keywords: Hash-based signatures · Post-quantum cryptography ·
SPHINCS+

1 Introduction

SPHINCS+ [2] is a stateless hash-based signature scheme that has been selected
for standardization as part of the NIST post-quantum cryptography standard-
ization process [16]. Much of the underlying technology for SPHINCS+ goes back
to the very earliest days of academic cryptography [13–15]. Its security is based
entirely on the security of symmetric cryptographic primitives.

Because of the age of the underlying technology and the lack of additional
hardness assumptions (most other post-quantum algorithms depend on the dif-
ficulty of problems such as finding short vectors in a lattice or solving systems
of multivariate quadratic equations), SPHINCS+ appears to provide extremely

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. H. Cheon and T. Johansson (Eds.): PQCrypto 2022, LNCS 13512, pp. 501–522, 2022.
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https://doi.org/10.1007/978-3-031-17234-2_23


502 R. Perlner et al.

reliable security, albeit at the cost of larger and slower signatures than most
other post-quantum signature schemes.

Recently, however, Sydney Antonov described a failure of a particular prop-
erty (the DM-SPR property1) claimed by the SPHINCS+ designers when SHA-
256 is the hash function used [1]. It was not clear, however, whether this obser-
vation led to an attack on the full SPHINCS+ signature scheme.

In this paper, we describe such an attack. Specifically, we extend Antonov’s
observation to a forgery attack on both of the recommended parameter sets for
SPHINCS+ that claim category five [17] security (256 bits of classical security)
and use the SHA-256 hash function. Our attack becomes even more powerful
for other choices of SPHINCS+ parameters that use SHA-256 while claiming
category five security, specifically for smaller values of w than are used in the
recommended parameter sets.

Our attack allows forgery of an unlimited number of signatures of the
attacker’s choice. While our attack is far too expensive to pose a real-world secu-
rity threat, it demonstrates a failure of SPHINCS+ to meet its claimed security
goals for the category five parameter set. Table 1 gives the results of our attack
for the two category five parameter sets in [2], assuming a SPHINCS+ key that
has been used to sign its maximum allowed number of signatures (264).

Table 1. Summary of our results on SPHINCS+ category five parameters

Parameter set Cost Reference

Herd Link Signable Total

SPHINCS+-256f 2214.8 2216.4 2215.7 ≈ 2217.4 Section 4.3

SPHINCS+-256s 2214.8 2216.4 2215.7 ≈ 2217.4 Section 4.3

Both Antonov’s approach and our extension of it are partly based on prop-
erties of Merkle-Damg̊ard hash functions first described in [9,11,12] (notably,
these attacks would not work if the hash function were replaced with a random
oracle), but also incorporate details of the internal structure of SPHINCS+. Ear-
lier [19], another security issue with SPHINCS+ level five parameters was noted,
again due to the use of SHA-256 to provide 256 bits of security.

These results do not seem to us to indicate any fundamental weakness in
SPHINCS+. Instead, they demonstrate that using a 256-bit Merkle-Damg̊ard
hash like SHA-256 to get more than 128 bits of security is quite difficult. If
SHA-512 were used in place of SHA-256 for category five security in SPHINCS+,
all of these observations and attacks would be entirely blocked. Similarly, when
SPHINCS+ uses SHAKE256 to get category five security, none of these attacks
are possible. Very recently [7], the SPHINCS+ team has proposed a tweak which
appears to block these attacks. A discussion of the proposed tweaks appears in
Sect. 6.
1 For a formal definition of this property, see Sect. 3.2.
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Fig. 1. The SPHINCS+ hypertree.

The rest of the paper is organized as follows: We begin by describing
SPHINCS+ (Sect. 2). We then introduce some tools, concepts, and notation
that will be used in the rest of the paper (Sect. 3). We then describe our attack
(Sect. 4). Next, we justify the costs we assigned to each step of our attack, and
some possible optimizations (Sect. 5). Finally, we conclude the paper with a dis-
cussion of what can be done to prevent this kind of attack, and where else the
attack or variants of it may apply (Sect. 6).

2 The SPHINCS+ Signature Scheme

The SPHINCS+ signature scheme consists of a few components: a one-time
signature scheme, WOTS+ (a specific variant of Winternitz signatures defined
in [8]); a few-time signature scheme, FORS (Forest of Random Subsets); and
Merkle trees [14]. SPHINCS+ forms the WOTS+ public keys into a hypertree,
or tree of trees (see Fig. 1). Each tree is a Merkle tree in which the leaves are
WOTS+ public keys. The root of each tree is signed by a WOTS+ key from a
tree at the next level up, and the root of the top-level tree is the SPHINCS+

public key. The WOTS+ keys from the lowest-level tree are used to sign FORS
public keys, and the FORS keys are in turn used to sign messages.

SPHINCS+ uses randomized hashing. When a message is to be signed, a
random bit string, R, is generated and is hashed along with the message. Some
bits from the hash value are then used to select a FORS key (which selects a path
through the hypertree); the rest are signed using that FORS key. A SPHINCS+

signature then consists of R, the signature created using the selected FORS key,
the sequence of WOTS+ signatures in the hypertree leading from the top-level
tree to the FORS public key used to sign the message, and the authentication
paths corresponding to each WOTS+ signature needed to compute the roots of
each of the Merkle trees.

In this paper, we apply a multi-target preimage attack (described in Sect. 3)
to the WOTS+ public keys that are used to sign the roots of Merkle trees and
FORS public keys. The WOTS+ public keys are computed as shown in Fig. 2.
For the parameter sets in [2] that target category five security, which use a
hash function with a 256-bit output and a Winternitz parameter, w, of 16, the
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Fig. 2. A WOTS+ public key.

public key is the hash of a public seed, PK.seed, which is padded to 64 bytes,
a 22-byte compressed address, and 67 public values. Computing the public key
hash requires 35 iterations of the SHA-256 compression function, as shown in
Fig. 7. Each public value is computed by generating a hash chain, which involves
iterating a different secret value through the hash function 15 times. Each call
to the hash function includes an unique address as input, which identifies the
tree layer in which the WOTS+ key appears along with the key’s index within
that layer. For the computations of the public values, the address also identifies
which of the 67 public values is being computed as well as the iteration of the
hash function. It is these addresses that were intended to prevent multi-target
attacks.

A WOTS+ signature consists of one entry from each of the 67 hash chains of
the WOTS+ one-time key.2 The 256-bit hash of the value to be signed is written
as 64 hexadecimal digits, and each is signed using a different hash chain. For
example, if the first hexadecimal digit is 0, then sk0,0 is the signature for the
first digit. If the second digit is f, then pk1 is the signature for that digit. If the
third digit is 3, then the signature value for the third digit is sk2,3 – the result
of iterating sk2,0 through the hash function three times.

A WOTS+ signature is verified by completing the computation of each of
the hash chains. In the example from the previous paragraph, the signature
on the first digit (0) is checked by iterating the signature value through the
hash function 15 times and comparing the result to pk0. The second digit (f)

2 This description is accurate for the recommended parameters for SPHINCS+ at
category five security; other choices of parameters would require the description to
be slightly changed.
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is checked by simply comparing the signature value to pk1. The third digit (3)
is checked by iterating the signature value through the hash function 12 times
and comparing the result to pk2. Note that when the digit signed is an f, the
verifier does no additional hashing of the value from the signature. Unlike digits
0-e, the verifier’s calculation on an f digit does not incorporate the value of the
one-time key’s ADRS.

The final three hash chains are used to sign a three-hexadecimal-digit check-
sum value. The checksum value is computed by summing the digits of the 256-bit
hash value and then subtracting the result from the maximum possible sum, 960.
Including the checksum in the signature prevents an attacker from modifying the
signature without performing a preimage attack on the hash function.

The SPHINCS+ submission [2] defines two parameter sets that target cat-
egory five security: SPHINCS+-256s, which contains eight levels of trees, each
with a height of eight; and SPHINCS+-256f, which contains 17 levels of trees,
each with a height of four. So, the SPHINCS+-256s parameter set includes a
little over 264 WOTS+ keys and the SPHINCS+-256f parameter set includes a
little over 268 WOTS+ keys.

3 Building Blocks

3.1 Merkle-Damg̊ard Hash Functions

A Merkle-Damg̊ard hash function is constructed from a fixed-length hash func-
tion called a compression function. In the case of SHA-256, the compression
function takes a chaining value of 256 bits and a message block of 512 bits. In
order to process a message, the message is unambiguously padded to an inte-
ger multiple of 512 bits (the padding incorporates the length of the unpadded
message), broken into a sequence of 512-bit message blocks M0,1,...,L−1, and pro-
cessed sequentially, starting from a constant initial chaining value. Thus, to hash
the above sequence of message blocks, we compute (Fig. 3)

H−1 = initial chaining value
Hj = COMPRESS(Hj−1,Mj)

Fig. 3. Merkle-Damg̊ard hashing

After each 512-bit message block, the state of the hash is reduced to a 256-
bit chaining value, and this chaining value is the only information about the
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iv
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h1

h2

h3

h4

h5

h6

h7

h10

h11

h12

h13

h20

h21

h30

Fig. 4. A diamond structure – constructing eight messages with the same hash

message processed so far that is carried forward into the hash computation. A
consequence of this fact is we can choose the beginning of two different messages
so that their chaining value h1 collides, and then we can get a new collision
by appending any sequence of message blocks to both messages. As noted in
[9], this process can be repeated, constructing many different messages with the
same hash value.

Diamond Structures. Applying the techniques from [11], we can extend this
attack, finding these internal hash chain collisions in a tree structure. Starting
from 2k different initial message blocks, we find subsequent message blocks that
map them all to a single hash chaining value. This structure of collisions is called
a diamond structure, and is illustrated in Fig. 4. In the figure, lines represent
message blocks, labels represent intermediate hash values; each path from iv to
h30 gives a sequence of four message blocks, and all eight possible sequences
of four message blocks yield the same hash value. Constructing the diamond
structure requires a sequence of batched collision searches, resulting in a distinct
message block for each line in the diagram.

3.2 Multi-target Preimage Attacks and SPHINCS+

Consider an attacker asked to find a preimage – that is, a message that hashes
to a single target value, T . If SHA-256 behaves randomly, this should require
about 2256 trial hashes to accomplish – the attacker can simply hash random
messages until one gives the right result. Now consider an attacker asked to find
a message that hashes to any one of 264 different hash values, T0,1,...,264−1. Again,
if SHA-256 behaves randomly, this should require only about 2192 trial hashes –
the attacker hashes random messages until one matches any one of the values
in the target list. Intuitively, the attacker has many targets, so is more likely to
hit one. The situation where the attacker tries to find a message that hashes to
any one of many targets is called a multi-target preimage attack.

Consider the same attacker, given 264 different target hash values, but each
target hash value is associated with a different prefix and the preimage is only
valid if it starts with the correct prefix. The straightforward multi-target preim-
age attack no longer works. The attacker must start each message with a par-
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ticular prefix to get a valid preimage, and if the message hashes to a target
associated with a different prefix, it isn’t valid.

The SPHINCS+ specification formalizes the above defense against multi-
target preimage attacks by (in the “simple” SHA-256 parameter sets) treating
the SHA-256 hash of a message, prepended with each prefix, as a separate mem-
ber in a hash function family. SPHINCS+ also includes “robust” parameter sets,
where the hash function members process the input not just by prefixing a con-
stant, but also by XORing the input message with a constant deterministically
generated pseudorandom keystream. Our attack applies to both schemes, but for
simplicity, we will describe the attack only in terms of the “simple” parameter
sets.

Definition 1. PQ-DM-SPR (definition 8 from [5]). Let H : K × {0, 1}α −→
{0, 1}n be a keyed hash function. We define the advantage of any adversary
A = (A1),A2 against distinct-function, multi-target second-preimage resistance
(DM-SPR). This definition is parameterized by the number of targets p.

SuccDM-SPR(A) =
[
{Ki}p

i=1 ←− A1(), {Mi}p
1 ←−R ({0, 1}α)p;

(j,M ′) ←−R A2({(Ki,Mi)}p
i−1) : M ′ �= Mj

∧H(Kj ,Mj) = H(Kj ,M
′) ∧ DIST({Ki}p

i=1)
]
.

where we assume that A1 and A2 share state and define the predicate
DIST({Ki}p

i=1) = (∀i, k ∈ [1, p], i �= k) : Ki �= Kk.

3.3 Antonov’s Attack on DM-SPR

In 2022, Sydney Antonov described an attack against the DM-SPR property of
the SHA-256-based keyed hash functions used in SPHINCS+ [1]. The attack
takes advantage of SHA-256’s Merkle-Damg̊ard construction, using a series
of collision attacks against the underlying compression function to transform
a distinct-function multi-target second-preimage attack into a single-function
multi-target second-preimage attack, using several of the techniques described
in Sect. 3.

Figure 5 shows an example of how the attack works.
Suppose there are six target messages, M0 . . . M5, each hashed using a dif-

ferent key, ADRS0 . . . ADRS5. The attack begins building a diamond structure,
as shown in Fig. 4, above. The SHA-256 compression function is applied to the
addresses for each of the targets using the SHA-256 initialization vector.3 This
results in a set of intermediate hash values, H

(1)
0 . . . H

(1)
5 . Then collision attacks

are performed on pairs of intermediate hash values. For example, the attacker
searches for random values x0 and x1 such that C(H(1)

0 , x0) = C(H(1)
1 , x1). The

3 For simplicity, the example assumes that ADRSi is exactly 512-bits in length, but
this is not a requirement for the attack to work.
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H
(1)
0 = C(IV, ADRS0)

H
(1)
1 = C(IV, ADRS1)

H
(1)
2 = C(IV, ADRS2)

H
(1)
3 = C(IV, ADRS3)

H
(2)
0,1 = C(H(1)

0 , x0) = C(H(1)
1 , x1)

H
(2)
2,3 = C(H(1)

2 , x2) = C(H(1)
3 , x3)

H
(3)
0...5 = C(H(2)

0,1 , x0,1) = C(H(2)
2,3 , x2,3) = C(H(2)

4,5 , x4,5)

C(H(3)
0...5, z ‖ padding) = SHA-256(ADRSi ‖ Mi)

H
(1)
4 = C(IV, ADRS4)

H
(1)
5 = C(IV, ADRS5)

H
(2)
4,5 = C(H(1)

4 , x4) = C(H(1)
5 , x5)

Fig. 5. A multi-target second-preimage attack on a SHA-256-based keyed hash func-
tion.

search yields message blocks x0, x1 and the intermediate hash, H
(2)
0,1 . A second

iteration of collision attacks is then performed using the intermediate hash val-
ues generated from the first iteration. In this case, there are three intermediate
hash values, H

(2)
0,1 , H

(2)
2,3 , and H

(2)
4,5 , and a three-way collision can be found such

that H
(3)
0...5 = C(H(2)

0,1 , x0,1) = C(H(2)
2,3 , x2,3) = C(H(2)

4,5 , x4,5), for some H
(3)
0...5,

x0,1, x2,3, and x4,5. (If there were more targets, then more iterations of collision
attacks could be performed until all of the targets had been herded4 to a single
intermediate hash value.)

Next, the attack carries out a multi-target preimage attack, as discussed in
Sect. 3. The attacker searches for some message block z such that

C(H(3)
0...5, z‖padding) = SHA-256(ADRSi,Mi)

for some i ∈ {0, . . . , 5}. If, for example, the final step finds a second preimage
for M3, then SHA-256(ADRS3‖x3‖x2,3‖z) = SHA-256(ADRS3‖M3).

Given t target messages, the expected cost for the final step in the attack,
finding a preimage, is 2256/t calls to the compression function, C. The preceding
steps require performing Õ(t) collision attacks. The expected cost of each colli-
sion attack will depend on whether a 2-way, 3-way, 4-way, etc. collision is sought.
In general, the expected cost of finding an n-way collision is Õ(2256(n−1)/n) calls
to the compression function.

For a generic second-preimage attack, the attack cost is optimized by using
(t − 1) 2-way collisions to herd t targets down to 1 intermediate hash value.

4 The combination of building a diamond structure and finding a linking message is
referred to as a herding attack in [11].
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However, when attacking SPHINCS+, messages have fixed lengths, which limits
the number of targets that may be used in the attack. Using some 3- and 4-
way collisions increases the cost of the collisions-finding step, but increases the
number of targets that may be used, which reduces the overall cost of the attack.

4 Creating Forgeries for SPHINCS+ Category Five
Parameters

4.1 Turning Antonov’s Attack into a Forgery Attack

Suppose the target of Antonov’s attack is a set of WOTS+ public keys within
the same SPHINCS+ hypertree. After the owner of the key has signed many
messages, the attacker has many choices of one-time public key to choose from.
Each one-time public key that was used to produce a signature can be computed
from the corresponding message and signature, and so is known to the attacker.
Further, the attacker can reconstruct the exact hash computation (every 512-bit
message block and 256-bit intermediate chaining value) that appeared in the
hash computation for each one-time public key used. That hash is computed by
hashing some values that are constant for a given SPHINCS+ key, followed by
a unique ADRSC that is guaranteed to be different for every one-time key used,
followed by a sequence of 67 hash values. In turn, each of those hash values is
the last entry in a hash chain of length 16, and each of the hash computations
in that chain is also done with a unique ADRSC value linked to the ADRSC of the
public key, as shown in Fig. 2.

SPHINCS+ uses a huge number of these one-time public keys – after 264

messages are signed, we expect to be able to find more than 262 such hashes,
each a plausible target.5

In this case, we can apply Antonov’s attack to construct a set of many
WOTS+ keys with different ADRSC values, herd them down to a single chain-
ing value, and then carry out a multi-target preimage attack against the original
keys’ hashes. The result is a chimera – a new one-time public key with the ADRSC

value of one of the target messages, many hash chains at the beginning which
the attacker has generated anew, followed by some hash chains at the end from
an existing key (Fig. 6).

Original: PK.seed ADRSC PK0 PK1 PK2 . . . PK62 PK63 PK64 PK65 PK66

Chimera: PK.seed ADRSC PK∗
0 PK∗

1 PK∗
2 . . . PK∗

62 PK∗
63 PK64 PK65 PK66

same for both keys new values same for both keys

Fig. 6. Original key and chimera key

5 In this paper we assume that the attacker only chooses target WOTS+ keys from a
single SPHINCS+ key. However, an attacker may choose target WOTS+ keys from
multiple SPHINCS+ keys, in which case a successful attack would result in the ability
to forge messages for one of the targeted SPHINCS+ keys.
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H(1) = C(IVSHA-256,PK.seed‖toByte(0, 64 − n))
H(2) = C(H(1),ADRSc

i,j‖pki,j,0‖pki,j,1[0 . . . 9])
H(3) = C(H(2), pki,j,1[10 . . . 31]‖pki,j,2‖pki,j,3[0 . . . 9])
H(4) = C(H(3), pki,j,3[10 . . . 31]‖pki,j,4‖pki,j,5[0 . . . 9])
H(5) = C(H(4), pki,j,5[10 . . . 31]‖pki,j,6‖pki,j,7[0 . . . 9])
H(6) = C(H(5), pki,j,7[10 . . . 31]‖pki,j,8‖pki,j,9[0 . . . 9])
. . .
H(32) = C(H(31), pki,j,59[10 . . . 31]‖pki,j,60‖pki,j,61[0 . . . 9])
H(33) = C(H(32), pki,j,61[10 . . . 31]‖pki,j,62‖pki,j,63[0 . . . 9])
H(34) = C(H(33), pki,j,63[10 . . . 31]‖pki,j,64‖pki,j,65[0 . . . 9])
H(35) = C(H(34), pki,j,65[10 . . . 31]‖pki,j,66‖padding)
SHA-256(PK.seed,ADRSi,j , pk) = H(35)

Fig. 7. Computing the SHA-256 hash for a WOTS+ public key.

The chimera key contains the same beginning (PK.seed and ADRSC) as the
original key, and also the same final three hash values. But the rest of the hash
values in the key are newly produced by the attacker, and critically, the chimera
key has the same SHA-256 hash as the original key. To be more specific, the
values of PK∗

0...62, along with the first nine bytes of PK∗
63, must be chosen so

that the intermediate hash of the chimera key after processing those bytes is
identical to that of the original key after processing PK0...62 and the first nine
bytes of PK63. (In Fig. 7, this intermediate hash value is H(33).)

Constructing such a chimera key whose hash matches one of the WOTS+

keys in the SPHINCS+ hypertree is a major part of our attack, but several more
steps are needed to get a complete forgery attack. Unfortunately, the chimera
key we get from Antonov’s attack cannot yet be used to create valid WOTS+

signatures.
The problem is as follows: in order to use the diamond structure, many dif-

ferent starting ADRSC values might be associated with the same chimera key. We
will not know which ADRSC value should be used until we have found the linking
message, that is, found a choice of ADRSC , pk0...62, pk63[0 . . . 9] whose intermedi-
ate hash is the same as the value of H(33) for one of the target WOTS+ keys.
Because the verifier will re-derive pk0...66 by iterated hashing of the elements
of the signature, and will incorporate ADRSC into those hash computations, the
value of ADRSC is bound to the hash chains. With very high probability, the
linking message will be to a different ADRSC than the one used to compute the
hash chains used for the herding step, and so the resulting chimera key won’t
work.

This leads to a key insight of our attack: Recall that signing a message with
WOTS+ starts by writing the hash of the message as a hexadecimal number.
Consider the ith digit of the hash. If the digit is any value except f, the verifier
must use the correct ADRSC to derive the value of pki. The value of pki is bound
to a single value of ADRSC in this case. But when the ith digit of the hash is f,
the verifier does not have to do any hashing operation the corresponding element
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of the signature, and so ADRSC is not incorporated. Thus, when we construct the
chimera key, the first X hash chain values can be chosen to allow signing of any
digit; the next 62 − X chains can be used only to sign the digit f, and the last
three chains will encode the checksum. This allows us to construct a chimera
key that can be used to sign at least some hashes.

4.2 Summary of Our Attack

The full attack thus happens in multiple phases.

1. Choose 2k target keys. Select a set of WOTS+ keys from the SPHINCS+

hypertree to target in the attack. We do this by examining the set of one-time
signature keys that have appeared in at least one SPHINCS+ signature. Each
such one-time key will have been used to sign either a Merkle tree root or
a FORS public key. We select a set of 2k target keys whose signatures had
acceptably low checksum values, for reasons explained below.

2. Generate 2k candidate keys. Each candidate key starts from the ADRSC

of one of the 2k target keys; one of these 2k ADRSC values will appear in our
final chimera key. For each candidate key, we generate X new hash chains
using the new key’s ADRSC , ensuring that we can sign any possible hex digit
in the first X digits of the hash with this key.

3. Build a diamond structure mapping all the new one-time keys to the
same hash chaining value. To do this, we start with 2k distinct chaining
values (one for each candidate key), and carry out a set of collision attacks to
reduce the number to 2k−2, then 2k−4, and so on until we get down to a single
hash chaining value.6 Each 512-bit message block reduces our number of hash
chains by a factor of four. In order to do the herding, we select random values
for the ends of the next Y hash chains. Note that we only know the end value
of these hash chains, and so when this key is used, the corresponding digits
of the hash can only be signed if they are f, but they can be used in this
way with any ADRSC . The result of this step is a single hash chaining value
(internal to SHA-256) that is reached by all 2k of our new candidate keys.

4. Find a linking message. From that single hash chaining value, select Z
random values for the end of hash chains (filling in the values of one 512-bit
message block for SHA-256), so that the resulting hash chaining value collides
with a hash chaining value at the right position in one of our original target
messages. This is a multitarget preimage attack, and requires about 2256−k

hash operations. Steps 1–4 are illustrated in Fig. 8. In the diagram, P1 . . . P8
are used as shorthand for the PK.seed and ADRSC of eight different target
keys; t0...7 are the intermediate hash values of the target keys just before the
checksum chains.

5. Construct the chimera key. We now have a chimera key–a WOTS+ key
whose first X hash chains are newly generated (and can be used to sign any

6 This assumes we search for 4-collisions at each step; optimizing the attack can vary
this–see Sect. 5.



512 R. Perlner et al.

hash digit), while its next Y + Z chains are random (and can be used to sign
only an f hash digit), and the last three (used to encode the checksum) are
original to the key whose ADRSC our chimera key has taken. The chimera key
has the same ADRSC and the same hash as that original key. The chimera key
produced consists of the following components:
(a) PK.seed
(b) The ADRSC of the target key – the one that will be replaced by the chimera.
(c) X hash values from newly-generated hash chains with the correct ADRSC .

These will allow us to sign any value in the first X digits of the hash.
(d) Y + Z randomly-generated hash values. These will allow us to sign the

next Y + Z digits of the hash only if those digits are all f.
(e) Three hash values from the key that will be replaced by the chimera.

These encode the checksum from the signature produced by the original
key. Because of the properties of WOTS+, we can increase any digit of
the checksum and get a valid signature, but we cannot decrease any digit
of the checksum.

6. Sign a Merkle tree root or FORS key with the chimera key. Given
the chimera key, we can sign with it. While an ordinary WOTS+ key can sign
any hash, the chimera key can only sign a small subset of hashes–ones with
f digits in each of the Y + Z random chains’ positions, with the sum of the
free digits small enough to yield either the same checksum as the one that
appeared in the key’s original signature, or a checksum that can be reached by
incrementing the original checksum’s digits. We must do a large brute-force
search to find a Merkle tree root full of one-time keys or a FORS key whose
hash this chimera key can sign. However, note that this need only be done
once, to allow an arbitrary number of forged messages to be produced.

7. Forge a signature. With the chimera key and its signature computed, we
now brute-force search for randomized messages until we find one whose
hypertree path (determined by the idx value) includes the location of the
original key, whose hash is the same as that of our chimera key. (This will
take less than 268 work). Once we find such a message, we can use the new
one-time key or FORS key we signed with our chimera key to construct a
valid SPHINCS+ signature on the message.

Steps 3, 4, and 6 are each computationally very expensive. However, they
are done sequentially. The total cost of the attack is the sum of the costs of
building the diamond structure (step 3), finding the linking message (step 4),
and constructing a Merkle tree root or FORS key whose hash the chimera key
can sign (step 6).

Step 6 can only succeed for a very limited set of hash values. In this step,
we must create a Merkle tree root or FORS key whose hash value, written as a
hexadecimal string, follows the pattern:

xxxxxxxx xxxxxxxx xxxxxxxf ffffffff

ffffffff ffffffff ffffffff ffffffff
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where an x may be any digit, but an f must be a hex digit f. Let C be the
checksum of the original key that was replaced by the chimera key, and S be the
sum of the digits of the hash. Along with following the above pattern, we must
find a hash value for which we can sign a valid checksum. Since 41 of the hex
digits must be f, the lowest possible value of the checksum is 0x159.

Each digit in the checksum can be increased but not decreased, to reach our
goal. If C > 960−S, then the chimera key cannot be used to construct any valid
signature. For this reason, we choose candidate keys based on the checksum they
produced when they signed. In general, we want the lowest checksums possible.
The probability of a random WOTS+ signature having an acceptable checksum
(for example, 0x140-143) is about 2−18, so with many WOTS+ keys that have
been used to create signatures to choose from (around 263 after all possible
signatures have been made with a given SPHINCS+ public key), we can always
find a large set (> 240) of target messages.

Finding a hash that can be signed by the chimera key is accomplished by a
brute force attack–we simply try many inputs to the hash until we get one that
can be signed. Depending on the location in the hypertree of the original key
that is to be replaced by the chimera key, we will either have to sign a root of
a Merkle tree or a FORS key. In either case, we can generate many candidate
values relatively efficiently by keeping most of the tree or key fixed and only
altering a single leaf in the tree (or leaf in the last tree of the FORS key).

Once we have successfully signed a single Merkle tree or FORS key with the
chimera key, we can use the Merkle tree’s WOTS+ keys or the FORS key to
sign arbitrary messages, as many as we like. Since the chimera key has the same
hash as the target WOTS+ key it has replaced, new SPHINCS+ signatures can
be constructed, substituting the chimera key and the new Merkle tree or FORS
key, but otherwise just like previous signatures with the same key.

4.3 Overview of the Forgery Attack on SPHINCS+-SHA-256
with Category Five Parameters

In this section, we describe the full forgery attack against the SPHINCS+-SHA-
256-256f-simple parameter set from [2]. The basic idea behind the attack also
applies to the other category five SHA-256-based parameter sets from [2] (includ-
ing the ‘robust’ parameter sets), and would also apply to category five SHA-256-
based parameter sets that used a Winternitz parameter, w, other than 16. The
attacks follow the same basic outline, but some of the details differ.

In [1], Sydney Antonov’s goal was simply to find a message of the same
length as a WOTS+ public key (32 · 67 = 2144 bytes) that would hash to the
same value as the WOTS+ public key when using the same prefix (PK.seed and
ADRSC). In order to extend this into an forgery attack against SPHINCS+, we
must construct a chimera key which can be used to generate a valid signature
for at least some hash values.

In order to do this, our attack takes advantage of a detail of WOTS+ signa-
tures: The one-time public key is computed by hashing together the final value
in each of the 67 hash chains used in the signature. The signature contains 67
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Fig. 8. Steps 1–4 of the attack

elements, each an entry in one of the hash chains, and the verifier must derive
the final entry in each hash chain from these.

When a given signature element is signing a hex digit of 0 . . . e, computing
the final element in that chain requires hashing the signature element, and that
hash incorporates the correct value of ADRS. But when the signature element
signs a hex digit of f, the verifier simply uses the provided element as the final
entry in that chain.

This means that the verifier’s processing of that signature element will be
identical, regardless of the ADRS.

Step 1 in the attack is to choose a set of t = 3 · 238 ≈ 239.58 targets. In
order to be able to sign a Merkle tree root, each digit in the checksum for that
root must be at least as large as in the original signature. So, targets with small
checksums need to be chosen. For this attack, t = 3 · 238 targets are chosen that
have a checksum of 319 or less. An attacker that has collected about 258 WOTS+

signatures should have access to 3 · 238 signatures with checksums of this form.
Step 2 is to create the starting points for the multi-target second-preimage

attack. For each of the t target keys (0 ≤ i < 3 · 238), we create a new string
which starts with the PK.seed and ADRSC value from the target key, and then
construct 22 hash chains using the ADRSC value and other metadata, so that we
will be able to sign arbitrary digits with these hash chains. We compute 22 secret
values (ski[0], . . . , ski[21]), and iterate through the hash chains to compute the
corresponding public values (pki[0], . . . , pki[21]). We then compute the twelfth
intermediate hash value, H

(12)
i .

Step 3 is to herd these 3·238 targets down to a single intermediate hash chain-
ing value. The process begins by creating 238 3-way collisions for the thirteenth
intermediate hash value, H(13). When creating an input value for the function,
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f , values are chosen for sk[22] and the first ten bytes of pk[23]. Performing 238

3-way collision searches would require about 2214 calls to the compression func-
tion, but this cost can be dramatically reduced (to the approximate equivalent
of 2196 compression function calls accounting for memory costs) by performing
a batched multi-target multi-collision search as described in Sect. 5.4.

The herding process is completed by performing 19 rounds of 4-way collision
searches, resulting in all 3 ·238 targets having the same value for H

(32)
i . For each

round, the input value for the function, f , is an arbitrary 512-bit value. For the
corresponding portions of the WOTS+ key (pk[23], . . . , pk[61]) only the public
value will be known, and so only a digit with a value of 0xf may be signed.
The 19 rounds would require about 2230 calls to the compression function, if
236.42 separate 4-way collision searches were performed, but the cost may be
significantly reduced by performing batched multi-target multi-collision searches.
We estimate the complexity of these searches in Eq. 1 in Sect. 5.4. Accounting
for memory costs as well as computation, the combined cost is approximately
equivalent to 2214.8 compression function calls.

Step 4 is to find a message block that links with an intermediate chaining
value in the right position in one of the target messages. Finding a message
block that collides with one of these 3 · 238 target vales for H

(33)
i should require

approximately 2256−39.58 = 2216.42 calls to the compression function.
Step 5 is to construct our chimera key, as discussed above.
Step 6 is to construct a Merkle tree or FORS key that can be signed by the

chimera key.
An initial Merkle tree is generated by creating 16 WOTS+ keys and then

computing the root of the Merkle tree for those keys. Additional Merkle tree
roots may be created by changing just the final public value for one of the 16
WOTS+ keys. Computing the new WOTS+ key and updating the Merkle tree
would require 20 calls to the compression function.7,8 New Merkle tree roots are
created until one is generated that has the form

xxxxxxxx xxxxxxxx xxxxxxxf ffffffff

ffffffff ffffffff ffffffff ffffffff

and that has a checksum that can be signed using the chimera key. More than(
26+23−1

26

) ≈ 244.64 Merkle tree roots that have this form, so finding one should
require less than 20 · 2256−44.64 = 2215.68 calls to the compression function.

The final step is to create a message whose signature makes use of the forged
Merkle tree or FORS key. Since SPHINCS+ uses randomized hashing, any mes-
sage can be signed by finding a randomizer that results in the forged Merkle
tree being used in the signing process. In the worst-case scenario, the forged
Merkle tree or FORS key will appear at the bottom the SPHINCS+ hypertree.

7 This can be optimized so that only one call to the compression function is required
to generate each additional Merkle tree root.

8 If the original key was used to sign a FORS key, then new FORS keys could similarly
be created at a cost for 17 calls to the compression function for each new key.
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As there are 268 WOTS+ keys at the lowest level, approximately 268 random-
izers will need to be tried in order to find one that results in the correct path
through the hypertree being used. For each randomizer, two hashes will need to
be computed. One of the messages to be hashed will be short. The length of the
second message to be hashed will correspond to the length of the message to be
signed. Note that once the above steps are completed, we can forge arbitrarily
many new messages, each one costing about 268 work to create.

5 Optimizations and Attack Cost Calculations

Our attack uses subroutines that find multi-collisions and multi-target preimages
in generic functions. Here we review, and where necessary, adapt the best-known
techniques for doing this. We discuss how to estimate costs both in models that
ignore memory costs and in models that try to take them into account. As this
turns out to only make about 2 bits of security difference in the complexity
of our attack, we present our results only in terms of a fairly pessimistic 2-
dimensional model of classical memory. We also briefly discuss known quantum
speedups. While we don’t explicitly analyze how to optimize our attack to take
advantage of quantum computation, the existence of known quantum speedups
for multi-target preimage search, even in models of computation where memory
access is expensive, combined with the ability to drastically reduce the cost of
herding (e.g., by targeting 2-collisions instead of 4-collisions) likely means that
SPHINCS+’s claimed category five parameters using SHA-256, not only fail to
meet category five, but category four as well.

5.1 Collision Search and General Framework

All these techniques follow the paradigm of the Van-Oorschot, Wiener parallel
collision search [18]. In each case the computation is divided up among p par-
allel threads that repeatedly compose the function, f , which is being attacked,
starting with a seed, and stopping when a “distinguished point” is reached. The
distinguished point is defined by an output that meets a rare, easily identifiable
condition. For example, if it is desirable that the expected number of iterations
to reach a distinguished point is m, the distinguished point may be an output
value which is 0 modulo m. If any output value occurring in one chain appears
anywhere in a second chain (i.e., a collision occurs in f), then all subsequent
values in both chains will be the same, and both chains will reach the same dis-
tinguished point. The collision can be recovered by sorting the p distinguished
points to find any duplicates. Once a duplicate resulting from a collision has
been found, the actual colliding inputs can be recovered for an expected cost of
m additional computations of f ; assuming a total iteration count and seed value
have been saved for each thread, the collision is recovered by recomputing the
output values in both chains and comparing each pair of output values with an
iteration count offset by the difference in the number of iterations required to
reach the shared distinguished point.
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If the function f can be modeled as random and has an n bit output size, then
it is expected that approximately (mp)2

2·2n collisions will be found (This approxi-

mation holds as long as p � (mp)2

2·2n . When p < (mp)2

2·2n most of the computations
of f are duplicated across multiple chains and are therefore less useful).

Depending on the parameters of the attack, (m and p), and assumptions on
the relative cost of computation, memory, and memory access, the dominant
cost of the attack may be any of the following:

1. Building and maintaining M = p(n + p + log2(m)) bits of memory.
2. Approximately mp computations of f required to compute the distinguished

points.
3. Sorting the list of p distinguished point values.

The last cost depends on assumptions regarding the cost of random access queries
to memory. If one, unrealistically, assumes memory access costs are independent
of the size of memory, the cost of sorting the distinguished points could be
assumed to be as small as np log2(p). However, it is perhaps more reasonable
to assume the cost of random access to a memory of size M follows a power
law where, for a d-dimensional memory architecture, the cost per bit to read a
register from a memory of size M would be C ·M1/d. A popular choice of C and
d is given by [4], with C = 2−5 bit operation equivalents and d = 2. This latter
estimate likely overestimates the cost of memory access for very large memories,
so we will take it is an upper bound for memory costs in order to demonstrate
that our attack does not lose much efficacy when memory costs are taken into
consideration. For comparison, we will follow [17] in estimating the cost of the
SHA-256 compression function as requiring 218 bit operations.

5.2 Multi-target Preimage Search

The problem of finding a preimage of one of t targets with respect to a function
f with an n-bit output is discussed by [3], which considers classical and quantum
models of computation, with either O(1) or O(M1/2) memory access cost.

Classically, the non-memory cost of multi-target preimage search is 2n

t eval-
uations of f . Section 1.2 of [3] describes how to modify the techniques of [18] to
minimize memory costs without significantly increasing computation costs. By
our calculations, with respect to SHA-256, this technique makes memory access
costs negligible for t � 2106, which is the case in all examples we consider.

In the quantum case [3] gives a cost per thread for t-target preimage search,
using p-way parallelism of O(

√
2n

pt ) in the O(1) memory access cost case, and

O(
√

2n

pt1/2
) in the O(M1/2) case (the main result of the paper). If we assume,

following the NIST PQC Call For Proposals [17] that the quantum circuit is
depth-limited, then these costs represent a cost savings factor compared to single
target preimage search of O(t) in the O(1) memory access cost case and O(t1/2)
in the O(M1/2) case.
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5.3 Multi-collision Search

The use of parallel collision search techniques for finding k-way collisions is
described in [10]. As with 2-way parallel collision search, the computation is
divided among p threads, each computing f iteratively on a seed until a distin-
guished point is reached after an average of m steps. In order for a k-way collision
to be found with reasonable probability, the total number of computations of f ,
mp must satisfy:

(mp)k

k! · 2n(k−1)
≥ 1,

and to ensure that most of the computations of f act on distinct inputs, p must
be set to be comparable to the expected number of 2-way collisions, i.e., so that:

p ≥ (mp)2

2 · 2n
.

5.4 Batched Multi-target Multi-collision Search

A key step in our attack requires us to herd together t/k groups of k hash inputs
where each hash input must have a prefix chosen without repetition from a list
of t targets S0, ..., St−1. We can relate this procedure to finding collisions in a
single function f by defining a function f(x) with an n-bit input and output
that hashes an input, injectively derived from x with the prefix Si indexed by
i = x mod t. Then our goal is to find t/k k-collisions in f meeting the constraint
that each input x has a different remainder mod t.

While it is possible to compute each k-collision individually, it is generally
more efficient to compute the k-collisions in large batches, taking advantage of
the fact that we don’t care which prefixes collide. This is because finding t/k
k-collisions in f only requires (t/k)1/k times as many queries to f as finding one
collision. This situation is somewhat complicated by the requirement that each
input has a different prefix, but nonetheless we find that efficiency is optimized
when k-collisions are computed in batches of size α(t/k), where α is a constant
of the same order of magnitude as 1, whose exact value depends on the cost of
f , the value of k, and assumptions about memory costs.

We expect a batch of α(t/k) k-collisions to contain approximately β(t/k)
k-collisions with different prefixes, where β is given by the differential equation
dβ
dα = (1 − β)k and the initial condition β = 0 when α = 0. Once this batch of
k-collisions is computed, the search for k-collisions continues recursively with t
reduced by a factor of 1 − β.

Optimal values of α and β depend upon whether the complexity of batched
collision search is dominated by queries to f or memory access while sorting the
list of distinguished points. The number of queries required is proportional to
α1/k, while the size of the list of distinguished points is proportional to the square
of the number of queries, i.e., proportional to α2/k. If we assume, according to
a 2-dimensional memory model, that the cost of sorting the list scales with the
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3/2 power of the list size, then rather than scaling as α1/k, the cost of computing
a batch of k collisions will scale like α3/k.

For k = 4 the values of α and β that minimize the cost per k-collision are
α = 3.27; β = 0.548 ignoring memory costs and α = 0.185; β = 0.137 assuming
costs are dominated by square root memory access costs while sorting the list of
distinguished points. Interestingly, the situation relevant to analyzing our attack
in a 2-dimensional memory model will turn out to be intermediate between these
two cases for reasons we will discuss shortly, so we will use α = 1; β = 0.37. For
k = 3 the cost of sorting is dominated by the cost of queries for all values of
t that are of interest to us, so whether memory is included or not, the optimal
values for α and β are α = 1.89 β = 0.543.

We will now go on to give a concrete estimate of the cost of batched 4-collision
search for t > 227 assuming the cost to access a bit of memory in a memory of
size M is equivalent to 2−5 · √

M bit operations, and the cost of the SHA-256
compression function is equivalent to 218 bit operations.

First we analyze the cost of computing f : Since the function f must retrieve
a chaining value corresponding to one of t target prefixes, as well as the address
string, computing f will require looking up approximately 29 bits in a memory
of size 29t. (We will assume this memory is shared among many threads so as not
to inflate the size of the memory in which the distinguished points are stored.)
The cost of this memory access is equivalent to 28.5t1/2 bit operations, and this
is the dominant cost of f for t > 227, even if computing f requires computing a
hash chain of length w − 1 = 15

The number of queries required by the first batch is q = 2192(4!αt/4)1/4,
and since the cost of a query is O(t1/2), the cost of a batch is O(t3/4), which
means each subsequent batch is cheaper than the previous batch by a factor of
(1 − β)3/4. If we use the summation for a geometric series to estimate the total
cost of computing all batches required to find the full set of t/4 4-collisions, we
find that the total cost of queries to f is 1

1−(1−β)3/4
· α1/4t3/4 · 2200.8.

Now we consider the cost of sorting the list of distinguished points. In order
for p to be at least comparable to the number of 2-collisions existing in q queries,
we need p = q2

2·2256 . The cost of sorting distinguished points associated with the
first batch is then given by 2−5(29p)3/2, which is O(t3/4). We can therefore use
the same rule as before to sum the costs of all the batches. The resulting cost is

1
1−(1−β)3/4

· α3/4t3/4 · 2200.9.

Summing these costs with α = 1 (β = 0.37) gives a total cost of approxi-
mately 2203.7t3/4 bit operations, or the equivalent of approximately

MemoryCost(k = 4, t > 227) ≈ 2185.7t3/4 (1)

SHA-256 compression function calls.
If we instead ignore memory costs, then the cost of batched 4-collision search

is dominated by approximately 2195.5t1/4 queries to f . The computational cost
of the queries will either be 1 SHA-256 compression function computation (if
we can freely choose 256 input bits without needing to know a preimage) or 16
compression functions (if we need to construct a hash chain of length w−1 = 15).
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We can do similar calculations for k = 3. In both the free memory cost model
and the square-root memory cost model, the cost is dominated by approximately
2173.4t1/3 queries to f . In the free memory cost model, the cost of each query is
the equivalent of either 1 or 16 compression functions (similar to the 4-collision
case). In the square root memory cost model, the total cost of all the queries is
the equivalent of 2162.8 · t5/6 compression function computations.

6 Conclusions

In this paper, we have shown how to extend Antonov’s attack on the PQ-DM-
SPR property in SPHINCS+ into a full signature forgery attack, allowing an
attacker to forge signatures on arbitrary messages. This attack requires access
to a large number of legitimate signatures formed by the key, and an enor-
mous computation which, while practically infeasible, is substantially below the
claimed security strength for the category five parameter sets of SPHINCS+.

We do not believe this attack calls the general soundness of the SPHINCS+

design into question. Combined with the earlier observations on the PQC forum
regarding weaknesses in category five security in the message hashing [19], it
seems clear that both their attack and ours are made possible by the SPHINCS+

designers’ attempt to use a 256-bit Merkle-Damg̊ard hash like SHA-256 to gener-
ically get 256 bits of security.9

Very recently in [7], Hülsing has described a set of tweaks to SPHINCS+ to
address a number of observations and proposed attacks, including Antonov’s and
ours. The relevant tweak for our attack is to the T� tweakable hash function–for
category three or five security, the function now uses SHA-512 instead of SHA-
256. This change means that building the diamond structure and finding the
linking message (see Sect. 3) for the hash function requires at least 2256 hash
function computations, effectively blocking both Antonov’s attack and our own.

Our work leaves many questions open. Among them:

1. Are there still places within SPHINCS+ in which the internal properties of
SHA-256 can be used to carry out some attack with less than 2256 work,
despite the tweak? SHA-256 is still used in the definition of F and PRF, even
for category five security.

2. Can these or similar techniques be used to attack the category three (192 bit
classical security) parameters?

3. Is there a technique to construct inputs to the hash which can be shown to
prevent all such attacks, despite using SHA-256 to achieve 256-bit security?
This would allow the use of the slightly more efficient SHA-256 instead of
SHA-512 for category three or five security.

9 Modeling a Merkle-Damg̊ard hash function as a random oracle can easily give mis-
leading results for more than 2n/2 queries. Indeed, even modeling the compression
function as a random oracle may not work, since the SHA-256 compression function
is constructed from a large block cipher in Davies-Meyer mode. Note that this means
that fixed points for the hash function are easy to find, as exploited in [6,12].
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