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Foreword

I am delighted to provide a Foreword to this book Marine organisms: a solution to
environmental pollution?, edited by Telma Encarnação and Alberto Canelas Pais,
with contributions from a number of other well respected workers in the field.

Our contemporary society, with its ready access to the convenience of fast
communications, mass transportation, good illumination, home entertainment, etc.
has developed over the last three Centuries through advances in science and tech-
nology. This has involved a series of industrial revolutions, based on increasing
mechanisation, automation and mass production, with the involvement more
recently of computer control, artificial intelligence and robotics. This has led to the
demand for new materials, such as polymers, alloys and advanced ceramics to
replace the traditional ones, such as wood and stone. The supply of the new
materials, and their precursors, has been one of the factors responsible for the
development of the chemical industry, with its consequent impact on the
environment.

Chemicals are vital in almost all areas of our life, including medicine, agriculture,
food and drinks, textiles, construction, packaging, personal care and domestic care
products. Although most of these chemicals are beneficial for society, uncontrolled
or inappropriate use of them can also have serious negative consequences for the
environment. High priority must be given as a major goal to minimising such
chemical pollution through the development of cyclic systems, or control or elimi-
nation of chemical pollutants by using some technique to transform them into
innocuous species. The ideal scenario would be complete mineralisation, where
pollutants are transformed into water, carbon dioxide and other small molecules.

Possible methodologies for pollutant treatment involve the use of chemical
oxidants, such as hydrogen peroxide, photochemistry (using ultraviolet or visible
light), frequently with a catalyst such as titanium dioxide, high energy radiation, and
the use of various biological organisms. This book focuses on the latter approach
using marine-based microorganisms.

Care must be taken in the treatment process that any reaction intermediates are not
more toxic than the original pollutants. For detailed study of pollutant degradation,
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vi Foreword

identification of all species involved and study of their effect on the viability of
microorganisms is desirable.

It is sometimes convenient to distinguish between synthetic chemicals, such as
aspirin, and naturally occurring ones, like water and oxygen. However, the fact that a
substance occurs in nature does not necessarily mean that it is innocuous. Carbon
dioxide is a colourless gas, that is essential for processes such as respiration and
photosynthesis, However, its presence above a certain concentration can prove fatal.
It is also implicated as a greenhouse gas in global warming.

Environmental pollution can be described in terms of the bulk phase involved
(water, air, soil. . .), type of pollutant (pesticides, pharmaceuticals. . .), chemical
category (polycyclic aromatic hydrocarbons (PAHs), heavy metals, polychlorinated
compounds. . .) or by chemical structure (carbon monoxide..). Methods of pollutant
treatment frequently show selectivity in terms of chemical structure, and in the case
of water treatment may depend on parameters such as pH, salinity and temperature.

The choice of treatment method depends on a variety of factors. Economic
parameters are of particular importance, and the use of plants and microorganisms
is particularly attractive in this respect. In addition to their Green credentials, since
they do not normally require the use of any expensive chemicals, biological pro-
cesses frequently produce biomass, which is a value added product that can be used
as a feedstock for a variety of materials, including pharmaceuticals, biopolymers,
fertilisers and biofuels, and may be a source of novel chemicals. This makes such
systems particularly attractive, and economically viable, for the treatment of envi-
ronmental wastes. Their potential is further enhanced by the number and diversity of
species available. Although until recently the use of marine sources for bioremedi-
ation has been limited, they are attracting increasing interest for various applications
in biotechnology. In part this is because they are rich in a variety of interesting
species, with a number of actual and potential applications.

In this book, Marine organisms: a solution to environmental pollution?, Telma
Encarnação, Alberto Canelas País and co-authors present an excellent overview of
the potential of marine based species such as microalgae, fungi, bacteria, yeasts and
sponges in bioremediation and in the preparation of biobased materials. It makes an
important contribution to environmental technology and pollution control, and its
multidisciplinary approach makes it attractive to research workers in a wide variety
of areas, including biotechnology, microbiology, chemistry, and environmental
sciences.

It is well structured and provides an excellent introduction to this rapidly devel-
oping field. A succinct introductory chapter is followed by 11 chapters covering
various aspects of bioremediation, treatment of specific pollutants, and biomass
valorisation using different marine based microorganisms. The book concludes
with a chapter on environmental management. A comprehensive and up-to-date
bibliography provides rapid access to the current research in this area.

This book fills a gap in the literature on the use of marine microorganisms in the
treatment of pollutants. It also acts as a valuable source of information on the
application of such systems in the production of value-added biomass, makes an
excellent contribution to the fields of biotechnology and bioremediation, and
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provides valuable information on how these species can be used for sustainable
bioharvesting of novel molecules. These may have interesting properties for appli-
cations such as pharmaceuticals, cosmetics, and fine chemicals.

In conclusion, the book, Marine organisms: a solution to environmental pollu-
tion?, makes an important contribution to the literature and provides an excellent
testimony to the authors well recognised scholarly insight in this area.

Coimbra Chemistry Centre (CQC-IMS),
Department of Chemistry, University of
Coimbra, Coimbra, Portugal

Hugh D. Burrows
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Chapter 1
Introduction: Environmental Pollution
and Biotechnological Solutions

Telma Encarnação, Maria da Graça Campos, and Artur Mateus

Abstract Progress, wealth, comfort, increased productivity and economic growth
are some of the repercussions that emerged from the Industrial Revolutions, provid-
ing greater benefits and opportunities. But these advances also brought us great
challenges, bringing uncertainties for the future. Our social organization, economic
models and lifestyles are altering ecosystems and Earth’s patterns, causing environ-
mental degradation, and shaping the face of the Earth. But the same revolutions that
brought us challenges can provide us with opportunities to restore the environment.
And biotechnology can unlock potential solutions for a more sustainable and
resilient future.

Keywords Industrial Revolutions · Environmental pollutants · Biotechnology ·
Bioremediation · Circular economy · Industry 5.0

The Industrial Revolution marked significant and remarkable milestones in human
history. They spurred faster progress in several areas that benefit human life and led
to economic, political, and societal changes, changing life in unforeseen ways. The
First Industrial Revolution began in Great Britain after the 1750s with the introduc-
tion of hydraulic power and steam engine, which led to the mechanization of
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agriculture, manufacturing, and transportation. In 1870, the Second Industrial revo-
lution started with the generation of electricity, shortly after its discovery, incorpo-
rating electromotive force in the industry, enabling mass production for the first time.
A century later, in the 1970s, the Third Industrial Revolution started with the
invention of the transistor and the first microchip; the advances in computer tech-
nology after the Second World War triggered further development in the automation
of the production process. Since then, a digital revolution has been disrupting
traditional industries. A technological fusion of physical, chemical, digital, and
biological dimensions is transforming industry, economies, jobs, and society itself,
leading us to a New Era, the Fourth Industrial Revolution or Industry 4.0. Although
no consensually accepted definition exists yet, the Industry 4.0 concept can be
described as the advent of cyber-physical systems (CPSs), the Internet of Things
(IoT), and services (MinHwa Lee et al. 2018) which have a significant impact on the
efficiency of the production processes and in product development. The COVID-19
pandemic forced a rapid transition to digital technologies, even in sectors that were
particularly resistant to the digital transition. The development of the Industry 4.0
technologies such as the Internet, Big Data (BD), blockchain, IoT, Additive
Manufacturing (AM), virtual and enhanced reality, and Artificial Intelligence
(AI) will probably lead us to radical changes, more human-centered, more sustain-
able, and more resilient: Industry 5.0. Without a doubt, Industry 5.0 (European
Commission 2021) will significantly transform the manufacturing processes and
services sectors where collaborative interactions between humans, machines, and
systems materialize.

Despite the fact that social inequality may be found in all societies, the industri-
alized world brought us comfort and wealth in our lives. But this comes with a high
price to pay: with all the improvements, a rapid urbanization brought significant
challenges to the cities that suffered an increased pressure, such as growing popu-
lation, lack of potable water, and residues management; a high consumption
increased the release of pollutants into the environment. Carbon dioxide, dioxins,
phthalates, bisphenols, pharmaceuticals metabolites, pesticides, flame retardants,
and so many thousands of chemicals are released into the environment every day
and have a dramatic impact on human health and wildlife. Although some damages
could become irreversible in a very short time, we still have the opportunity to
reverse the trend. We must boost science, technology, and innovation to implement
biobased solutions to benefit from the progress that industrial revolutions brought us,
reducing the environmental footprint. To achieve that, the entire planet needs to be
united in a Green Revolution: civil society, governments, companies, and industries,
organizations, all segments of society.

We are living a crisis for resources that will push forward the transition to new
and renewable raw materials. Allying this with the emergency of the pollutants
mitigation, we will be able to create a structure that allows a sustainable evolution of
the planet, both in terms of well-being for humans and the environment.

Among all the tasks that should be done in a very short time, bioremediation,
which has already started using plants and microorganisms, allow the production of
biomass to be used in different feedstock sources for many industries applications:
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for instance, bioplastics, fertilizers, new pharmaceuticals compounds, building
blocks, energy, and many other exciting solutions, which unlock new sustainable
and eco-friendly possibilities. These challenges also create enthusiastic economic
opportunities. These economic outputs should be improved by countries with cred-
ible, efficient, and concrete policies that enhance the advancement of sustainable
technologies. Science should provide the tools and robust evidence to support
decisions before these are implemented into legislation for an ecological transition
toward sustainable development.

This book aims to contribute to this fascinating process toward the next industrial
revolution. The following chapters will comprehensively discuss bioremediation
technologies, to reduce environmental pollution while producing value-added bio-
mass that meets the need for new and better sustainable materials. Various marine
microorganisms, such as sponges, microalgae, fungi, bacteria, yeasts, and consor-
tiums of different microorganisms, are all able to biodegrade several families of
compounds; for instance, carbon dioxide, PAHs, heavy metals, petroleum sludge,
naphthalene and pyrene, pharmaceuticals, persistent organic pollutants. Tailored
solutions will be discussed with the primary goal of contributing to zero carbon
and zero pollution, and groundbreakingly scientific and technological advances will
be critically approached. Legislation and regulatory requirements are also an essen-
tial topic of discussion and debate since the release into the market of new developed
biobased products can be hindered by legal requirements.

Some Industry 4.0 technologies, such as additive manufacturing and Artificial
Intelligence, will be debated in the approached context. The massification applica-
tion of technologies that result from industry digitization plays and will play an
increasingly important role in the development of intelligent solutions. Production
and treatment systems will be increasingly monitored and controlled in real time
based on machine learning. Waste treatment plants, as well as collection systems,
present an increasing application of Digital Twins concepts. Digitization is and
should be extended to electromechanical systems for the collection and treatment
of waste and water to the point that, in real-time, there is such a collection of data that
allows the existence of a digital twin, if possible autonomous and controlled by
machine learning (Vitorino et al. 2019). The digital definition of systems (more
common on electromechanical systems) must also be followed by the digital defini-
tion of products and every tangible material. The increasing of understanding on
transforming processes and the increasing of optimization, monitoring and control,
allow, the spatial and temporal definition of molecular organization, applied (for
example) to additive manufacturing. In this way, this depth increasing of digital
control is a precursor to a molecular-level definition of meso parts (from molecules
to parts). The products of the future will be designed at the molecular level and
implemented with digital, spatial, and temporal control (da Silva et al. 2022).

Can we glimpse the future? Can we glimpse the next industrial revolution,
Industry 6.0? It is predicted that possible new technologies may include quantum
computing and nanotechnologies. But what about changes in our values and our
perceptions? Changes in how we socially relate, work, and connect with Nature for
many years separated? Perhaps we can come to say: “Industry 6.0 significantly
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transformed the world where collaborative interactions between humans, machines,
and Nature materialize.”
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Chapter 2
Bioremediation Using Microalgae
and Cyanobacteria and Biomass
Valorisation

Telma Encarnação, Pedro Ramos, Danouche Mohammed, Joe McDonald,
Marco Lizzul, Nadia Nicolau, Maria da Graça Campos,
and Abílio J. F. N. Sobral

Abstract Microalgae and cyanobacteria are photosynthetic microorganisms that
can be used to bioremediate anthropogenic pollutants from air, water and soil.
These organisms can remediate several anthropogenic pollutants, such as carbon
dioxide, nitrates and phosphates, heavy metals, pharmaceuticals, pesticides and
persistent organic pollutants. The biomass generated in this process can be used as
a feedstock source for the production of a multitude of valuable biobased products
and applications. Polymers, resins, binders, lubricants, and coatings are some of the
promising examples. This chapter provides an overview of the entire process:
bioremediation using microalgae and production of value-added products, based
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on a biorefinery concept, focusing on circular economy and sustainability. Essential
aspects of legislation and regulations are also approached.

Keywords Biorefinery · Microalgae · Bioremediation · Biomass · Biofuels ·
Wastewater · Lipids · Biobased · Circular economy

2.1 Introduction

Microalgae is a diverse group of prokaryotic and eukaryotic photosynthetic micro-
organisms living in different environments. Microalgae include prokaryotic blue-
green algae (cyanobacteria) and eukaryotic microalgae (diatoms and green algae).
These organisms use light energy and carbon dioxide as carbon source and, through
metabolic processes, convert them into various biopolymers such as proteins,
nucleic acids, lipids, and polysaccharides, releasing molecular oxygen in the pro-
cess. They produce a wide range of compounds, some of which have potential
commercial value. Depending on species, microalgae and cyanobacteria produce
different biomolecules, and, depending on the growth conditions, these biomole-
cules might vary in composition and concentration. This versatility is reflected in the
remarkable number of products and applications that can be developed.

Microalgae and cyanobacteria have been cultivated for decades, but only a
limited number of species have been commercially used, mainly for pigments
production and food and feed supplements. The most commercially used species
are Chlorella, Spirulina, Dunaliella, Haematococcus, Nannochloropsis, tetraselmis
and Isochrisis.

Despite their versatility, resilience, and potentialities, a consolidated and accepted
microalgae cultivation system is not yet implemented worldwide. Many factors
contribute to this reality: the many decades of established and implemented fossil
economy, the confidence from investors, the initial costs of the investment, the
downstream processing challenges, and the acceptance and willingness of all the
stakeholders (political, industry, civil society). In recent years, the number of
microalgae production units has increased and represents a significant step towards
a sustainable resource for the future. These aspects will be further discussed in the
following sections of this chapter.

2.2 Brief History

The importance of microalgae in wastewater treatment was recognised several
decades ago. At the beginning of the twentieth century, the first studies focused on
nitrogen/phosphorus uptake alongside oxygenation potential. Early studies on
wastewater treatment using algal pond systems were developed in the mid-1950s;
these systems were used to study algal growth and photosynthetic oxygen produc-
tion to assist with bacterial degradation of Biological Oxygen Demand (BOD). In the
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1960s, researchers began to focus on nutrient removal from sewage and wastewater,
such as nitrates and phosphates. At the beginning of the 1970s, a 300 m2 pilot plant
was built and operated for algae wastewater treatment (Borowitzka 2013) and
semicontinuous cultures of microalgae began to be studied for their ability to remove
heavy metals, such as cadmium, chromium and mercury, from wastewaters.

The concern with environmental degradation by chemicals is not new. Several
reports from the late 1960s and during the decade of 1970s state the problem of
persistent pesticides in the environment and the impact on human health. And in this
period, many reports were published to address the issue of their presence in
underground and superficial waters, mainly using microalgae in the process. A
notable a paper published in 1976 reported the removal of two herbicides (amitrole
and atrazine), from water, by four microalgae species (Chlorella pyrenoidosa,
Scenedesmus quadricauta, Chlamydomonas reinhardtii, and Euglena gracilis).
During the decade of 1980s, many studies on the uptake of nitrogen and phosphorus
from wastewater by microalgae were undertaken. The studies on this subject have
been constant over many decades (PierreChevalier 1985,Hammouda et al. 1995, Shi
et al. 2007, Eroglu et al. 2012, Ferrando and Matamoros 2020, Castellanos-
Estupinan et al. 2022).

Much progress has been made in understanding many aspects of microalgal
biology and physiology, nutrition, and cultivation conditions. Less research has
focused on the uptake and removal of emerging contaminants. But one of the
significant limitations of an implemented microalgae system, limiting further expan-
sion, is the high cost of investment and cost-effective harvesting of biomass and
extraction of compounds (downstream process).

In the last three decades, researchers have studied harvesting and extraction
techniques involving physical (centrifugation, sedimentation, filtration, flotation,
etc.) and chemical processes (e.g. flocculation). However, these are energy-
demanding processes, and some chemical processes use toxic chemicals (Hoang
et al. 2022). Academy and public research institutions, companies, and government
agencies have funded research projects focused on the field of microalgae technol-
ogy. Nevertheless, it still requires much knowledge and innovation, particularly in
the engineering field applied to the downstream processing steps.

The history of each field of science is of great importance since one can analyse
what was done by the peers in previous decades, what remained to be studied, what
failed, and why it was not moved forward. In the case of the removal of pollutants
from the environment, although there was some level of concern in previous
decades, it was only more recently that public opinion, governments, world organi-
sations, and companies are more willing to protect the environment by restoration
and with more ecological alternatives.
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2.3 Microalgae Bioremediation: An Effective Approach
Towards Environment Restoration

Globally, the emissions of greenhouse gas of which, carbon dioxide (CO2), methane
(CH4) and nitrous oxide (N2O), as well as surface and groundwater contamination by
organic and metal pollutants, are the major global environmental issues that have
captured the attention of scientists, environmentalists and legislators (Sundarrajan
et al. 2019). Various physical-chemical methods have thus been proposed. While
they are effective, such methods require expensive chemicals and energy-intensive
equipment, rendering the treatment costs high and limiting their large-scale appli-
cation (Danouche et al. 2021).

2.3.1 Application of Microalgae in CO2 Mitigation

Sequestration of CO2 can be achieved by using physicochemical and/or biological
approaches. Currently, the main abiotic approaches employed for the mitigation of
CO2 include physicochemical adsorption (Song et al. 2019), direct injection into the
deep ocean, old coal mines, oil wells, geological formations such as saline aquifers,
and CO2 mineral carbonation. However, some drawbacks are associated with these
approaches, for instance, the control of the physicochemical adsorption process is
generally difficult, and the sorbent materials are generally expensive and
non-renewable. Additionally, the injection of CO2 into geological formations pre-
sents significant challenges in terms of space requirements and potential leakage
over time (Zeng et al. 2011). Naturally, microalgae capture photons from the sun’s
energy to convert CO2 dissolved in water (as free CO2, bicarbonate (HCO3

-),
carbonate (CO3

2-), and carbonic acid (H2CO3)) to produce organic molecules
through the process of photosynthesis (Eze et al. 2018; Fu et al. 2019). As reported
by Zhou et al. (2017), microalgae have a high growth rate and a photoautotrophic
efficiency 10–50 times higher than that of terrestrial plants, which makes the capture
of CO2 using microalgae as one of the most promising approaches (An et al. 2021).
A number of Chlorophyceae species have exhibited a high capacity for CO2

sequestration. The most studied species for CO2 fixation from flue gases belong to
Chlorella genus, such as C. vulgaris, C. fusca, C. sorokiniana, C. pyrenoidosa and
C. kessleri (Kong et al. 2021). The detailed mechanisms of CO2 fixation and nitrogen
assimilation in microalgae are described in Fig. 2.1.

2.3.2 Application of Microalgae in Wastewater Treatment

Phycoremediation, or the use of microalgae for the remediation of wastewater or
contaminated aquatic ecosystems by organic or metallic pollutants, has recently
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Fig. 2.1 Mechanisms of CO2 fixation and nitrogen assimilation in microalgae

emerged as a promising, efficient, economical and environmentally friendly strategy
compared to other physicochemical processes (Danouche et al. 2020; Singh et al.
2021a, b). The use of wastewater as a culture medium for microalgae is an innova-
tive concept particularly suited to tertiary wastewater treatment. Indeed, microalgae
can assimilate a wide range of inorganic contaminants as well as some organic
pollutants, besides their capacity to accumulate heavy metals (HMs).

Phycoremediation of Inorganic Pollutants In wastewater treatment systems,
microalgae can use several inorganic pollutants during their growth, such as nitro-
gen, phosphates, chlorides, sulfates and other inorganic pollutants, and may have a
major role as intermediates in metabolic activity (Abdel-Raouf et al. 2012). Several
studies have highlighted the possibility of using wastewater as a source of nutrients
for the cultivation of microalgae, allowing both the elimination of the pollution load
and the production of biomass at low cost (Fal et al. 2021). On the other hand, the
ability of microalgae to eliminate and detoxify HMs is the result of adaptation
mechanisms developed over centuries of evolution in contaminated environments
(Ubando et al. 2021). These mechanisms are subdivided into metabolism-dependent
and metabolism-independent pathways. Extracellular biosorption of HMs refers to a
physicochemical property of the microalgae cell surface that binds to HMs ions
independently to the cellular metabolism. However, HMs biosorption into extracel-
lular polymeric substances (EPS) formed by microalgae under conditions of stress is
a metabolism-dependent process (Naveed et al. 2019). It has been reported that the
biosorption efficiency varies depending on the genus and the species of microalgae
(Kumar et al. 2015a, b). For instance, the growth of C. sorokiniana and S. obliquus
in media contaminated with Pb(II), Cd(II), Cu(II) and Cr(VI) was significantly
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Fig. 2.2 Intracellular and extracellular mitigation pathways for HMs using microalgae

different (Danouche et al. 2020). This can be attributed to the physiology of the
strain, in particular, the cell wall composition (Baudelet et al. 2017). In contrast,
bioaccumulation is a metabolism-dependent mechanism. It consists of an intracel-
lular accumulation of HMs into the cytosolic compartment through passive and/or
active transport across the cell membranes (Chojnacka 2010). According to Pérez-
Rama et al. (2002), the bioaccumulation of Cd(II) using Tetraselmis suecica was a
biphasic process, assisted in the first phase by an adsorption to proteins or poly-
saccharides, followed by an energy-dependent accumulation to the cytosol. The
intracellular mitigation of toxic HMs may involve the chelation by metallothioneins
(Balzano et al. 2020), phytochelatins (Gómez-Jacinto et al. 2015), poly-phosphates
(Wang and Dei 2006), the compartmentalisation in the vacuole (Shanab et al. 2012),
chloroplast (Hanikenne et al. 2009) and mitochondria (Mendoza-co et al. 2005) or
the biotransformation via an enzymatic reaction such the biotransformation of Cr
(VI) to Cr(III) by strains of C. vulgaris through an enzymatic reaction catalysed by
the chromate reductase (Lee et al. 2017; Yen et al. 2017). Figure 2.2 depicts the
intracellular and extracellular mitigation pathways for HMs using microalgae.

Phycoremediation of Organic Pollutants Although microalgae are classified as
autophotrophic organisms, some species have a heterotrophic metabolism, and under
certain conditions, some microalgae strains are able to grow in mixotrophic mode.
This trophic particularity allows microalgae cells to use the carbons contained in
organic pollutants and to ensure the bioremediation of contaminated aquatic eco-
systems (Zhou et al. 2017). It has been reported that many microalgae strains have
the capability of removing a range of organic pollutants such as polycyclic aromatic
hydrocarbon (Semple et al. 1999), synthetic dyes (Bhardwaj and Bharadvaja 2021),
pharmaceuticals and personal care products (Hena et al. 2021), pesticides and other
emerging contaminants (Maryjoseph and Ketheesan 2020).

Based on the above considerations, we can infer that the benefits of
phycoremediation technology are to allow both CO2 capture through photosynthesis
and to remove nutrients and xenobiotics from wastewater. Thus, the resulting
biomass can be used as a raw material for several valuable products depending on
their composition and the type of pollutant to which it has been exposed. For
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example, it can be used for the production of biofuels, animal feed, fertilisers,
pharmaceuticals, biosurfactants, proteins, pigments and many other valuable prod-
ucts, that can be extracted from microalgae.

Microalgae production could be integrated into a biorefinery to achieve greater
economic potential.

2.4 Microalgae Biomass: Valorisation within a Biorefinery
Concept

Like a traditional petroleum refinery, a biorefinery converts feedstock into energy
and several chemicals. The process entails different technologies and can be applied
for processing different raw materials. There are several types of biorefineries based
on biobased feedstock or waste source, end-products and conversion technologies.
Potential organic feedstock sources include corn, potato, cellulosic biomass, for-
estry, agricultural waste, food waste and algae. The variety of possible organic raw
materials implies a rich diversity of potential chemicals. Bioethanol, biogas, lignin,
secondary metabolites, carbohydrates, lipids and proteins are some of the products
that can be obtained using the biorefinery concept (Espinoza Pérez et al. 2017). To
obtain this variety, different conversion processing technologies are required.
Biorefinery conversion techniques can involve different separation technologies
such as thermochemical conversion, chemical conversion and biochemical conver-
sion (Sankaran et al. 2018).

There are three different phases of development of a biorefinery depending upon
feedstock and products. Phase I converts a single raw material into one main product
using a fixed process. The Phase II biorefinery also processes a single raw material
but is capable of producing various products with diverse processing technologies.
The biorefinery processes using single raw material sources can lead to food
competition, land use issues and environmental impact (Espinoza Pérez et al.
2017; Sankaran et al. 2018). Phase III biorefinery uses a mixture of biomass from
different sources, such as whole-crop, lignocellulose and microalgae, that allows the
production of many biobased industrial products using different processing technol-
ogies. Phase III, the most advanced form of biorefinery, is also an engineering
challenge due to the complexity involved. Some of these constraints are related to
product separation and purification.

Among the various biomass sources, microalgae are a very promising and
remarkable feedstock for the biorefinery process; they do not compete with food,
do not require arable land, and can be used for air and water cleaning processes.
Large-scale microalgae production requires a high initial investment, especially for
the installation of photobioreactors, and production costs; these include high-power
consumption, artificial light illumination, the CO2 feed, the cultivation medium, and
nitrates and phosphates. To save water and decrease production costs, microalgae
can be used in wastewater treatment stations; they can also be integrated into
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different industrial production units such as cement, paper, textile, tannery and dairy.
An integrated system requires the full use of waste and exhaust gases.

The biorefinery process consists of the separation of different fractions, such as
lipids, minerals, carbohydrates and secondary metabolites. That separation process
should not cause damage to the other fractions. Microalgae are rich in lipids, but
during the separation process is possible to obtain many other products that can be
also transformed into value-added products (pigments, polyunsaturated fatty acids
(PUFAs), toxins, and polysaccharides) or may be used to produce bioplastics, for
instance. Microalgae biorefinery is divided into several stages which can be
categorised into upstream and downstream processes. The upstream processing is
determined by the strain selection, carbon dioxide supply, light source and intensity,
and nutrients, such as nitrogen and phosphorus sources.

2.4.1 Upstream Production Systems

The production of microalgal biomass, and derived products, is highly dependent on
the cultivation production systems. The choice of production system is particularly
important for bioremediation applications, as large-scale algae production requires
high initial capital investment. Broadly speaking, there are two main types of
production system for microalgae; the open pond system or closed
systems (Fig. 2.3).

Fig. 2.3 Microalgae cultivation systems
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2.4.1.1 Open Systems

Open ponds are systems that allow large-scale production for commercial purposes.
Open ponds have various sizes, shapes and types of turbulence. Their construction is
often dictated by local conditions and available materials and can be constructed of
plastic, bricks, concrete, or adobe. Open ponds include lakes and lagoons, raceway
ponds, paddle-wheel-driven open raceway ponds, circular ponds and Inclined and
cascaded systems. Open systems generally present some shortcomings in relation to
control over process parameters. These systems offer little or no guarantee on
the control of the operational variables (temperature and incident light intensity).
The contamination by other microorganisms that may occur during the process and
the low efficiency of CO2 utilisation due to lack of agitation of the flow and poor gas
exchange in the culture medium compromise the overall algal growth rates.

• Natural ponds. It is a naturally selective system, the type of species and strain is
closely linked to the soil and climatic conditions of the region, generally being a
low-cost, monospecies that can be grown almost all year round. In these systems,
the risk of contamination is very high due to its open characteristics.

• Raceway ponds (also known as high-rate algal ponds). These are open-air
extensive cultivation systems, in the form of a racetrack, shallow, with mixing
undertaken by a paddlewheel that distributes nutrients homogeneously to the
microalgae. Generally, they are built with low-cost materials, cement, clay and
white plastic to facilitate light capture.

• Circular ponds. Since these systems present an inefficient configuration com-
pared with raceway ponds, they are rarely used for commercial purposes. How-
ever, in some countries, such as Japan, Taiwan and Indonesia, this process is
widely used to produce biomass.

• Inclined and cascaded systems. In these systems, the turbulence is generated by
gravity and the crop moves from the top to the bottom of an inclined suspended
surface. This process is particularly interesting because the flow is highly turbu-
lent, and the thin culture layers improve light absorption, and produce a greater
concentration of cells. However, this system has a high evaporation rate,
increased sedimentation of the cells under low turbulence mixing regimes and a
high energy consumption compared to other pond systems.

The major disadvantages of open systems are essentially the high evaporation
rates, the difficulties of temperature control and the high risk of contamination. In
general, open cultivation systems produce less biomass per unit area compared to
closed photobioreactors.

Although research to develop cultivation systems for microalgae has focused
more on closed cultivation systems, today’s large-scale industries rely more on open
systems for economic reasons; they are cheaper to maintain, easier to operate and
require less energy. However, only a small number of algae species can be success-
fully cultivated in outdoor systems due to contamination, which directly compro-
mises productivity.
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Due to the several problems associated with open culture systems, there is a
particular interest in closed photobioreactors which, offer more efficiency and more
advantages over open culture systems. These advantages include better results in
terms of efficiency in photosynthesis; greater capacity for CO2 removal; versatility in
terms of the culture medium; production is not seasonal; the absence or reduction of
contaminations; ease of monitoring operational variables such as temperature, pH
and CO2; greater incidence of light on the culture medium. The photobioreactors can
be exposed to sunlight or artificial light, the latter offers better control over the
process variables.

2.4.1.2 Closed Systems

Closed photobioreactor systems strongly limit any direct exchange of contaminants
into the cultivation medium. The algae and cultivation medium flows within the
transparent walls of the reactor to reach the cultured cells. Photobioreactors are
classified according to their mode of operation and design. Some examples include
tubular vertical and horizontal, shaking tank photobioreactors, helical tubular, flat
plate photobioreactors, and photobioreactors mixed by air “airlifts”.

Although photobioreactors have limitation of contamination as the main advan-
tage, this may not be completely achievable, except in some designs specifically
developed for this purpose. They are also more expensive than open systems.

• Vertical Tubular Photobioreactors. Since the first invention of photobioreactors
in 1950, several models have been developed. The construction cost of this
system is very high; however, its maintenance and monitoring are very econom-
ical. The vertical stacked system presents a higher concentration of cells and a
higher productivity thanks to the gentle and controlled agitation of the mixture
which is obtained through the injection of compressed air. Furthermore, vertical
tubular photobioreactors are compatible with the majority of microalgae species.
The disadvantage of this system is that it has a lower efficiency of sunlight
incidence, an issue that can easily be circumvented by applying artificial lighting.

• Horizontal tubular photobioreactors. Horizontal tubular photobioreactors were
the best solution to solve the problem of sunlight incidence in vertical tubular
systems. The horizontal orientation of the tubes increases the capacity to absorb
the incidence of light. However, this system also has some difficulties in the O2

removal and in the CO2 supply, also the increase of the light absorption capacity
implies the growth of the installation area of the tubes.

• Flat photobioreactors. These are systems with large, transparent panels, which
can be made of glass or polycarbonate, arranged vertically or at an inclined angle.
The light intensity is easily controlled due to the possibility of directing the panels
in different directions and at different angles. This system has received special
attention from the scientific community, which considers it to be a promising
system thanks to the light conversion efficiency and productivity per unit area.
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• Airlift photobioreactors. These are cylindrical tubes with two interconnecting
zones, one of which is called a “riser”, where the gas mixture is spread, while the
other zone, the “downcomer”, does not receive the gas. This system stands out for
having high levels of mass transfer. The pneumatic agitation caused by the
injection of CO2 at the bottom of the tank increases the velocity of the medium
circulation, which in turn increases the efficiency of the microalgae growth.

2.4.2 Downstream Processing

After the cultivation stage, the upstream processing ends, and the downstream
processing begins. Typically, downstream processing involves several stages:
harvesting of biomass through centrifugation, filtration or flocculation, drying,
product extraction, purification and conversion processes. These operation units
account for 50–60% of the total costs in the microalgae multi-product biorefinery,
with harvesting accounting for at least 20% of these costs ('t Lam et al. 2018; Xu
et al. 2020). Microalgae cultures are dilute suspensions, typically varying from 0.5 to
5 g L-1, depending on species, making harvesting a challenge. Common harvesting
and dewatering methods encompass centrifugation, filtration, sedimentation, flota-
tion and flocculation. The latter include chemical, biological and electro-
flocculation.

After the dewatering process, the microalgae biomass will be subjected to drying
processes such as spray drying, solar drying, convective and freeze drying (Chen
et al. 2015).

The extraction of high-value products such as lipids, pigments, secondary metab-
olites, and others can be performed using either wet or dry biomass. The extraction
processes vary depending on the products. Some microalgae species can have thick
and multilayered walls, silicified, and wall-bound exopolysacharides membranes
implying a reduced extraction efficiency. Therefore, appropriated pre-treatment
methods are often required before extraction takes place. Cell disruption can be
achieved through soaking, maceration, bead-beating, sonification, alkaline lysis, etc.
(Catherine Dupré et al. 2020).

After the pre-treatment steps, the biomass can be converted into several products.
Extraction methods include conventional solvent extraction, supercritical fluid
extraction, enzyme extraction, subcritical water extraction, among others (Catherine
Dupré et al. 2020).

2.4.2.1 Production of High-Value Products and Applications

A variety of products and compounds can be extracted and isolated from microalgae
biomass: biopolymers, lipids, bioactive compounds, proteins and carbohydrates,
which can be applied in a multitude of applications (Table 2.1). The currently
existing applications on the market focus on food, feed, nutraceuticals, cosmetics
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Table 2.1 Species of marine microalgae, their products and potential applications

Potential
industrial
products and
applications

Bioremediation/
biodegradation

Chlamydomonas
reinhardtii

Spidroin Biomedical Cd, Cu, Al and Zn João Vitor
Dutra Molino
et al. (2016),
Ibuot et al.
(2017)

Chaetoceros sp. Lipids,
carotenoids

Nutraceutical,
pharmaceuticals,
cosmetics, paint,
and paper indus-
tries, and
aquaculture

Bioremediation
nitrites, phospho-
rus, lead

Parvin
Molazadeh
et al. (2015),
Singh et al.
(2021a),
Tiwari (2021)

Chlorella marina Lipids,
carotenoids

Biodiesel, cos-
metics and phar-
maceutical
industries, feed
(colourants and
additives), and
the healthcare
sector

Bioremediation of
nitrate, nitrite,
ammonia, phos-
phorus, silicate,
chromium, lead,
zinc, copper, cad-
mium, and sul-
phide, tannery
wastewater

Muthukumar
et al. (2012),
Adam et al.
(2015), Kumar
et al. (2015a),
Cezare-Gomes
et al. (2019),
Singaram
(2022)

Chlorella sp. PHB Biomedical,
package
applications

Bioremediation of
nitrogen, ammo-
nia, heavy metals

Da Silva et al.
(2018)

Dunaliella salina Lipids, caroten-
oids,
phytosterols

Biodiesel, nutra-
ceutical industry,
aquaculture

Bioremediation of
nitrate, silicate,
chromium and sul-
phide, tannery
wastewater

Francavilla
et al. (2010),
Adam et al.
(2015),
Cesário et al.
(2018),
Singaram
(2022)

Isochrysis
galbana

Lipids, carbohy-
drates, proteins,
carotenoids,
polyunsaturated
fatty acids

Biofuels, food
and nutraceutical
industry,
cosmetics

Biodegradation of
phenol, bioremedi-
ation of nitrate,
silicate, chromium
and sulphide

Wang et al.
(2019), Koutra
et al. (2018),
Gomez-
Loredo et al.
(2016), Ruiz-
Dominguez
et al. (2020),
Adam et al.
(2015)

Isochrysis sp. Lipids, carbohy-
drates, proteins,
carotenoids,
polyunsaturated
fatty acids,
alkenones

Nutraceutical
industry, aqua-
culture, fuels,
polymers, phase
change materials,

Bioremediation of
nitrites and
phosphorus

O'Neil et al.
(2021), Singh
et al. (2021a)
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Table 2.1 (continued)

Potential
industrial
products and
applications

Bioremediation/
biodegradation

Reference

Nannochloropsis
sp.

Lipids, carbohy-
drates, proteins,
carotenoids,
polyunsaturated
fatty acids

Biodiesel,
aquaculture

Bioremediation of
nitrate, silicate,
chromium and sul-
phide,
imidacloprid,
paracetamol, ibu-
profen,
olanzapine. Tan-
nery wastewater

Adam et al.
(2015),
Encarnação
et al. (2020),
Encarnação
et al. (2021),
Singaram
(2022)

Rhodomonas sp. Lipids,
carbohydrates

Feed for
aquaculture

Bioremediation
of para-xylene

Cesario et al.
(2018), Li
et al. (2020)

Scenedesmus sp. PHB Biomedical,
package
applications

Bioremediation of
nitrogen, phospho-
rus, heavy metals

García et al.
(2020)

Spirulina sp. PHB Biomedical,
package
applications

Bioremediation of
nitrogen, phospho-
rus, ammonia,
heavy metals

Da Silva et al.
(2018),
Selvaraj et al.
(2021)

Thalassiosira sp. Lipids Biodiesel Tannery
wastewater

Singaram
(2022)

Tetraselmis sp. Lipids,
carotenoids

Aquaculture,
nutraceuticals,
cosmetics

Bioremediation of
nitrate, silicate,
chromium and
sulphide

Adam et al.
(2015),
Schuler et al.
(2020)

and pharmaceuticals with several companies commercialising different microalgae
products. Few are focused on the chemical industry, and the potentialities are vast
and could extend into new areas.

Biopolymers, such as polyhydroxy butyrate (PHB) have been identified in some
marine and freshwater microalgae species. They are used in the food industry,
pharmaceutical industry, environmental remediation and medical devices.
Polyhydroxyalkanoates (PHAs) are biodegradable biopolyesters produced by micro-
organisms, including microalgae. With properties like those of polyethylene and
polypropylene, they can be processed similarly to fossil-based thermoplastics,
including injection moulding, extrusion and blow moulding. PHAs are generally
produced by heterotrophic bacteria, natural or artificially modified bacteria, such as
Cupriavidus necator, recombinant Escherichia coli., Ralstonia sp., Halomonas sp.,
among several others {Khatami, 2021 #1}(Khatami et al. 2021); it is known that at
least 75 distinct genera synthesise PHAs (Reddy et al. 2003). The intracellular levels
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accumulated can reach 90% of the cell’s dry weight under conditions of nutrient
stress (Reddy et al. 2003). At present, more than 160 different monomer units have
been identified, and their molecular weight ranges from 50,000 to a million Da
(Taguchi and Matsumoto 2021; Vermeer et al. 2022). The variation in the compo-
sition of the monomeric units implies a diversity of chemical and physical properties.
Microalgae are an alternative to the production of bacterial PHA. PHAs such as PHB
can be stored by microalgae and cyanobacteria as reserves of energy material in
response to nutritional stress. Excess carbon and nutrient depletion growth condi-
tions lead to the production of these polyesters by these microorganisms. Microalgae
species Chlorella sp., Scenedesmus sp., and Spirulina sp. are three species capable of
producing PHB (Da Silva et al. 2018; García et al. 2020; Selvaraj et al. 2021). Large
quantities of carbon source, such as glucose, are required to produce PHAs, which
represents 50% of the total costs of production (Costa et al. 2019). This limitation
can be overcome using waste feedstock from industrial waste streams.

Spider silk proteins, such as spider fibroins or spidroins, are another interesting
biomaterial that can be obtained from the cultivation of microalgae. The recombinant
spider silk proteins have similar properties to those of natural spider silk. This
biomaterial has extraordinary properties, such as toughness, strength, elasticity,
and biocompatibility, exceeding those of other natural and synthetic materials such
as steel, and textile fibres, including Kevlar-like super fibres. Potential applications
include biomedical (scaffolds and tissue engineering), hydrogel formation,
constructing fibres and electronics.

Genes encoding recombinant spidroin have been expressed in Chlamydomonas
reinhardtii. (João Vitor Dutra Molino et al. 2016).

Microalgae lipids provide a potential and attractive alternative to crude oil and a
source of building blocks for many interesting chemicals. Many microalgae species
can produce large amounts of lipids depending on culture parameters, such as light
intensity and nitrates concentration. Several reports on lipid production indicate a
production range of up to 80% of dry weight (Encarnação et al. 2018, Hess et al.
2018). These microalgal oils are a great source of feedstock chemicals. Lubricants
(Farfan-Cabrera et al. 2022), resins (Hidalgo et al. 2019), additives, polyols and
polyurethanes (Peyrton et al. 2020), coatings (Decostanzi et al. 2018), plasticisers
and surfactants (Pleissner et al. 2015) are some of the potential products.

Regarding biofuel applications, the development has been at a lab and pilot scale.
The conversion of microalgae lipids to biodiesel is performed by a transesterification
process in which triglycerides react with monoalcohol (methanol or ethanol) in the
presence of acid or alkali catalyst to produce fatty acid methyl esters (FAME) and
glycerol as a side product. The two most imposing barriers and limitations to the
scale-up of this technology to produce biofuels are the downstream processing costs
and the bioprocessing.

Companies, industries, and governments should invest in the circular economy,
stimulating the transition for a biobased and green economy. The development has
been supported by several National, European and International projects. The
European Commission has launched ambitious programmes boosting these transi-
tions (Table 2.2).
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Table 2.2 Selection of European projects with focus on microalgae. Information related to funded
projects can be found on cordis.europa.eu

Total cost
(Private + Public)

ALGAECEUTICALS Development of
microalgae-based nat-
ural UV Sunscreens
and Proteins as
cosmeceuticals and
nutraceuticals

H2020 EU 2018–2023 € 1,129,500

ALGFUEL Biodiesel production
from microalgae

FP7-EU 2011–2013 153,917

BISIGODOS High value-added
chemicals and
BIoreSIns from alGae
biorefineries produced
from CO2 provided by
industrial emissions

FP7-EU 2013–2017 € 5,605,438,85

DEMA Direct Ethanol from
MicroAlgae

FP7-EU 2012–2017 € 6,388,935,04

D-FACTORY The microalgae
biorefinery

FP7-KBBE 2013–2017 € 10,074,870,03

INTERCOME International
commercialisation of
innovative products
based on Microalgae

H2020 EU 2016–2018 € 2,426,437,75

FUEL4ME Sustainable biofuel
from algae

FP7-EU 2013–2016 € 5,369,514,10

MAGNIFICENT Microalgae as a green
source for nutritional
ingredients for food/
feed and ingredients
for cosmetics by cost-
effective new
technologies

H2020 EU 2017–2021 € 5,685,015,41

SOLENALGAE Algae biomass:
Unlocking new uses as
food, feed and fuel

ERC 2016–2021 € 1,441,875

SUNBIOPATH Microalgae
engineering—Greener
biomass and biofuel
production

FP7-KBBE 2010–2013 € 4,366,894,60
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2.5 Legislation Framework and Regulations/Policy
and Legal Framework

Biobased products are non-food goods, fundamental in a Circular Bioeconomy,
which can help to reduce CO2 and pollution (EuropeanCommission n.d.). They
are derived from renewable raw materials. When these are obtained from microalgae
biomass used in cleaning processes, as the present chapter discusses, special atten-
tion to the legislation applicable to them should be verified. Despite the importance
attributed to those products by the Regulatory Entities, and some progress has been
made, there is still a long way ahead for better clarification of the rules. For instance,
the Legislation for Biobased products in the EU and USA should guarantee stan-
dards and measurements which allow the industries to make them available in terms
of sustainability. Depending on the type of biobased products, details in quality
control still need to ensure better products and to achieve high acceptance by the
Market. It would be ideal that the EU and USA, among others, develop harmonised
standards for such products to reduce trade barriers and foster a more broad market.
However, until now, limited research has been conducted on biobased products
derived from microalgae used in bioremediation, and this could drive some con-
straints on the companies due to some toxic contaminants not yet well evaluated or
unknown.

Before we go further in detail on the legislation available, we must highlight some
considerations. Regarding biobased materials from microalgae, it is important to
identify the products produced and what will be the targeting industry. Thus, it is
possible to organise and orient the application of the available legislation. Until now,
the well-established bioproducts obtained from algae (macroalgae) were alginates,
agar and carrageenans (phycocolloid production), almost exclusively from seaweeds
(macroalgae brown and red) and other biopolymers, such as starch, cellulose, chitin
and PHA (biodegradable plastic). It is consensual that in these last years, the growth
in the production of microalgae introduced a new perspective in the biotransforma-
tion and production of different new biomaterials, which require a more detailed
look at the possibilities. Moreover, as referred to above in this chapter, the produc-
tion of high-value products include biopolymers, carbohydrates, lipids, phycobilins,
pigments, proteins, polyhydroxyalkanoates, and many more compounds. Resins,
coatings, binders, and bioplastics are the main industrial applications as well
biofertilisers, food and feed, pharmaceuticals, cosmetics and products for personal
care. Even bioplastics which can be converted to produce high-value final products
such as medical equipment, prosthetics and scaffolds, will add a new perspective
market for these biobased products. Therefore, the legislation available should
reflect clear information to be followed, if different from the biobased obtained
from plants, for instance. Other interesting microalgae products include the bioactive
oligosaccharides (extracted by enzymatic methods), biopigments for food supple-
ments (carotenoids and xanthophylls) or for paints, and cosmetic bioactive com-
pounds for skincare (ex. Porphyridium cruentum extract) and γ-linoleic acid or
alguronic acid from Chlorella extract. For all of the cited products, the legislation
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used is the same that should be followed for other similar products from different
sources. Fertilisers or soil improvers, feed, energy or fuels, soap, and building or
packaging materials are some of the possible examples.

Nevertheless, the main concern for biobased materials production for various
applications requires intensive regulatory work in order to protect human health and
the environment from harmful fractions of waste, especially if the start material is
microalgae previously used for wastewater bioremediation. The legal maximum of
residues should be cautious, especially because, in certain cases, some of them are
unknown. Despite this, the legislation for Agro-food, Cosmetics and Pharmaceutics
have already a list of contaminants that should be avoided, and when admitted, the
low amounts of them need to be reevaluated cycling, face to the evolution of data
provided by science.

Nevertheless, the companies, when preparing a submission to obtain clearance of
the material, should evaluate, for instance, which are the appropriate food simulants
to be used to estimate the potential for migration and found to prove to authorities
that the substance is stable for an intended application that involves a specific type of
food, cosmetic or a pharmaceutical purpose. Generally speaking, it may be necessary
to demonstrate the suitable purity of a product with respect to the potential presence
of possible contaminants such as, for instance, algal biotoxins and mycotoxins, toxic
organic compounds such as dioxins and polychlorinated biphenyls, or inorganic
compounds already regulated in various materials as human and veterinary medicine
residues, heavy metals, nitrates and pesticides.

For instance, a scientific risk assessment carried out by the Scientific Committee
for Consumer Safety (SCCS) in Regulation (EC) No. 1223/2009, in order to address
potential risks for human health, lays down a system of restrictions and bans on the
use of certain substances in cosmetics based classified as carcinogenic, mutagenic or
toxic for the reproduction (CMR), of category 1a, 1b or 2, under Part 3 of Annex VI
to Regulation (EC) No. 1272/2008. Substances classified as endocrine disruptors are
only banned or restricted automatically in cosmetics if they are also classified as
CMR. Actually, some substances classified as endocrine disruptors derived from
plants are still found in certain cosmetic products, but this issue should be reviewed
for the safety of consumers once scientists continue to link endocrine-disrupting
chemicals to various diseases and disorders such as cancer, infertility and obesity.

The legislation here referred to below is representative of the most detailed data
that should be consulted before submitting for Market Authorization in EU and in
the USA biobased products obtained from microalgae used in the bioremediation of
wastewater from different sources (Tables 2.3 and 2.4).

In summary, eco-innovation is a priority on the international agenda, and, despite
this, all the regulation available is mainly for biobased products other than
microalgae derivatives. The tailored production of microalgae biomass and the
respective bio-products still have barriers and constraints, mainly in the understand-
ing of the levels and types of contaminants that sometimes could be under-evaluated
in the current legislation. Better and more active involvement of the companies in a
green intervention will contribute to a stable policy framework with greater
harmonisation and coordination around the world, together with a simplification of
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Table 2.3 Lead Market for biobased products from microalgae in Europe legislation

General information https://eur-lex.europa.eu/
http://data.europa.eu/eli/reg/2019/1009/oj
https://ec.europa.eu/growth/sectors/biotechnology/bio-
based-products_en
https://www.biobasedconsultancy.com/en/database
https://ec.europa.eu/growth/industry/policy/key-
enabling-technologies_en)

Conversion of waste streams into
value-added products

https://www.bbi-europe.eu/
https://ec.europa.eu/growth/tools-databases/eip-
rawmaterials/en

Materials and articles intended to
come into contact with food

https://ec.europa.eu/food/safety/chemical_safety/food_
contact_materials/legislation_en
Plastics Regulation, (EU) No. 10/2011, for all multi-layer
food contact materials (FCM). This regulation includes
monomers and other substances and additives (other than
colourants) and some polymer production aids that are
permissible. For new monomers or additives produced, it
is possible to start a petition to the European Food Safety
Authority (EFSA), which will review and issue a formal
opinion on the safety of the substance and, if approved,
will be included in the Plastics Regulation’s positive list
through an amendment to the regulation.
All FCMs in the EU must comply with the safety criteria
specified in Framework Regulation (EC) No. 1935/2004:
“The principle underlying this Regulation is that any
material or article intended to come into contact directly
or indirectly with food must be sufficiently inert to pre-
clude substances from being transferred to food in quan-
tities large enough to endanger human health or to bring
about an unacceptable change in the composition of the
food or a deterioration in its organoleptic properties”.
All FCMs must also comply with the Regulation,
(EC) No. 2023/2006, on good manufacturing practice for
materials and articles intended to come into contact
with food.
Bioplastics from biobased products from algae are
required to comply with the same regulations with respect
to food and safety as fossil fuel-based plastics, and some
concerns related to end-of-life issues remain on the actual
agenda.

Fertilising products Regulation (EU) 2019/1009 of the European Parliament
and of the Council of 5 June 2019 laying down rules on
the making available on the Market of EU fertilising
products and amending Regulations (EC) No 1069/2009
and (EC) No 1107/2009 and repealing Regulation
(EC) No 2003/2003 (Text with EEA relevance) PE/76/
2018/REV/1

Pharmaceutics All products used should be pharmaceutical grade and, in
general, fulfil the guidelines required for specific
purposes.

https://eur-lex.europa.eu/
http://data.europa.eu/eli/reg/2019/1009/oj
https://ec.europa.eu/growth/sectors/biotechnology/bio-based-products_en
https://ec.europa.eu/growth/sectors/biotechnology/bio-based-products_en
https://www.biobasedconsultancy.com/en/database
https://ec.europa.eu/growth/industry/policy/key-enabling-technologies_en
https://ec.europa.eu/growth/industry/policy/key-enabling-technologies_en
https://www.bbi-europe.eu/
https://ec.europa.eu/growth/tools-databases/eip-rawmaterials/en
https://ec.europa.eu/growth/tools-databases/eip-rawmaterials/en
https://ec.europa.eu/food/safety/chemical_safety/food_contact_materials/legislation_en
https://ec.europa.eu/food/safety/chemical_safety/food_contact_materials/legislation_en
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Table 2.4 Lead Market for biobased products from microalgae in US legislation

General information Any substance, the intended use of which is rea-
sonably expected to become a component of food
must be authorised for such use by the US Food and
Drug Administration (FDA) through a food additive
regulation, and all the substances must be recognised
as safe.

Food-contact polymers/plastic materials
and articles intended to contact food

Food additives are listed in the Code of Federal
Regulations (C.F.R.), Part 177, “Indirect Food
Additives: Polymers”, and food packaging material
intended to come in contact with food must comply
with FDA’s Good Manufacturing Practices (GMP).
This implies that “additives may only be used in an
amount necessary to achieve their function or pur-
pose and may not contain impurities at levels suffi-
ciently high as to result in the adulteration of food”.
In US regulations, the Plastics Regulation includes
limits on co-reactants or use levels for starting
materials, temperature restrictions, specification of
single versus repeated use, and food types for spe-
cific substances.
www.food.gov.uk/sites/default/files/media/docu
ment/bio-based-materials-for-use-in-food-contact-
applications.pdf

complex national regulations, which provides more transparency for relevant stake-
holders in knowing how sustainable are their products.

Also, national and international programmes and research funding will push
forward the development and innovation of these technologies. Moreover, the fact
that the alternative products are considered green and biobased is not guaranteed that
they have not a similar negative impact on the environment and human health as
their conventional counterparts. Therefore, more research is needed to mitigate the
potential impacts.

As a final note, the biorefinery concept can transform the linear economy through
a biobased circular economy which is an integrated concept that envisages the
cascade use of biomass from different sources.
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Chapter 3
Removal of Heavy Metals and Organic
Pollutants by Marine Microalgae

Jagannathan Umamaheswari, Ricky Rajamanickam, Sowmya Vilvanathan,
Subramanian Shanthakumar, Kadiyala Venkateswarlu,
Sudharsanam Abinandan, and Mallavarapu Megharaj

Abstract Marine environment is a predominant player in the overall ecosystem
functioning with almost half of oxygen evolution into the atmosphere through the
photosynthetic activity of plankton communities. Anthropogenic activities cause
pollution at an enhanced pace and pose a major threat to the biological cyclings in
the marine ecosystem. Pollutants such as heavy metals and organic compounds in
the marine environment are a serious concern as they are associated with complex
challenges. Marine microalgae are promising candidates in remediating inorganic
and organic pollutants due to their versatile metabolic mechanisms. The present
chapter provides a comprehensive understanding of the response of marine
microalgae in the removal of heavy metals and organic pollutants. Initially, we
present the importance of microalgae and the sources of heavy metals and organic
pollutants that reach the marine environment besides highlighting the merits and
demerits of the conventional and biological treatment systems used for the removal
of these pollutants. Finally, we provide a general perspective on the implication of
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marine microalgae and the associated mechanisms in the removal of heavy metals
and organic pollutants.

Keywords Marine microalgae · Heavy metals · Organic pollutants · Bioremediation

3.1 Introduction

The environment is the global ecological life-supporting system that has been
affected in complex and accelerating ways because of pervasive and profound
human activities. The past few decades witnessed rapid industrial development,
population growth, economic wealth, and urbanization, which ultimately disturb
the very processes and components of the nature. Marine ecosystems are at serious
risk due to the elevated levels of pollutants discharged from industrial and domestic
activities (Bergmann et al. 2015; Nelms et al. 2017). The impact of these pollutants
on coastal zone has been significantly greater in estuaries due to their residence time
than in inland rivers (Saldarriaga-Hernandez et al. 2020). In fact, the occurrence of
both heavy metals and organic pollutants in the marine environment is of significant
ecological concern. International scientific experts on marine protection define
marine pollution as “chemicals introduced by human activities either directly or
indirectly into the marine environment affecting the biota and impairment of water
quality” (Kuppusamy et al. 2020). Fish inhabiting polluted waters was reported to
accumulate metals in the tissues and the accumulation depends on various biotic and
abiotic factors (Zeitoun and Mehana 2014). The heavy metals tend to be widely
distributed in liver, kidney, and other tissues and potentially get transferred to
humans as they are at the top of the food web (Gabriel et al. 2006). Oils are the
major sources of organic contaminants released into the marine environment either
during processing or accidentally from drilling, production, and storage
(Kuppusamy et al. 2020). Consequently, the deteriorated health of the oceans around
the world impacted the social and economic status and prompted to bring interna-
tional options for safer and healthier marine systems (Gelcich et al. 2014).

Several environmental agencies recognized the severity of these pollutants and
proposed various policies in reducing the risk toward marine biota. For instance, a
list of priority pollutants that should be universally avoided has been prepared as
they can cause shorter or longer effects in any ecosystem (Grip 2017; Beiras 2018).
The United States Environmental Protection Agency recently updated the priority
pollutant list in the Clean Water Act, which includes several heavy metals, organic
contaminants such as dyes, phenols, organophosphates, etc. (USEPA 2014). The
United Nations Convention on Law of Sea proposed major duties for member states
to investigate potential threats in the marine environment (Stelzenmüller et al. 2018).
European Commission endorsed the marine strategy framework directive with an
aim to manage Europe-bound seas to gain a healthy state following an ecosystem-
based approach (Borja et al. 2013; Danovaro et al. 2016). Marine environments
contain several biotas together with marine microalgae that serve as the primary
producers and can also be used as sensitive bioindicators (Torres et al. 2008). This
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chapter highlights the implication of marine microalgae in the removal of heavy
metals and organic pollutants.

3.2 Marine Microalgae—An Overview

Marine environments are inhabited by assemblages of several organisms (Tragin and
Vaulot 2018). The diversity of marine plankters based on their size is presented in
Fig. 3.1. They are easily distinguished based on the nutrition mode: autotrophic
organisms, referred to as phytoplankton (microalgae), and grazing organisms, called
zooplankton. In addition, marine microalgae are the major primary producers in the
marine environment that use solar energy for CO2 uptake, thus contributing to ocean
carbon sink (Huang et al. 2017). These microalgae are generally divided into two

Fig. 3.1 Diversity and classification of marine plankters based on their sizes
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lineages such as green and red, with the former being originated by primary and the
latter from the secondary or tertiary endosymbiotic process (Nakayama et al. 1998).
Chlorophyta is the major algal group in marine waters representing the green
lineage, whereas the protists and dinoflagellates fall within the red lineage.
Chlorophyta encompasses prasinophytes and chlorophytes, where the abundance
is dominated later with Ulvophyceae, Trebouxiophyceae, and Chlorophyceae, all
known as the UTC Clade (Leliaert et al. 2012; Fučíková et al. 2014). Chlorophyta
consists of chloroplasts surrounded by two membranes with chlorophyll b as the
major pigment. Parsinophytes comprise eight lineages of different taxonomic levels,
and the numbers increase based on the environmental sequences and novel cultures
(Tragin and Vaulot 2018). Chlorophyceae alone comprises two thousand species and
are well known for several biotechnological applications (Barra et al. 2014). For
example, microalgal biomass is reported to yield several primary metabolites such as
carotenoids, proteins, lipids, and polyunsaturated fatty acids (Becker 2004; Guedes
et al. 2011; Sharma et al. 2012; Christaki et al. 2013). Due to their biomass
productivity and surface ratio, microalgae also play a crucial role in biogeochemical
cycling of pollutants in marine waters (Van Gestel and Van Brummelen 1996). For
example, the cell wall composition of microalgae is reported to have greater capacity
for the metal-binding that can be transferred to food chain through grazing (Wang
et al. 1998).

Due to the abundance of microalgae in waters, they have been overwhelmingly
considered as sensitive bioindicators to monitor pollutants in the marine environ-
ment (Levine 1984; Whitton and Kelly 1995; Ali et al. 1999; Volterra and Conti
2000). While thoroughly reviewing the toxic profile of marine algae, Torres et al.
(2008) proposed that the widespread abundance of microalgae in the marine envi-
ronment can be used for seasonal evaluation or the effect of time change in the
ecosystem in response to heavy metals and organic pollutants. Owing to the presence
of these pollutants, microalgae tend to respond through physiological changes.
Reports indicate that among other marine plankton, diatoms are severely affected
by pollutants than green microalgae (Harrison et al. 1986; González et al. 2009). In
addition, the green marine microalgae are reported to often dominate the bloom of
natural population in the marine environment, particularly at increased pollution
levels (Bonin et al. 1986; Folgar et al. 2009). Microalgae are known to respond to
pollutants through two mechanisms: accumulation and sorption, and they also
synthesize phytochelatins that are responsible for metal detoxification (Gekeler
et al. 1988; Folgar et al. 2009). Furthermore, the antioxidants and innate enzymes
have been shown to detoxify organic pollutants (Sunda et al. 2002; Stahl and Sies
2003; Sharma et al. 2012). Despite their versatile biochemical mechanisms, a
detailed understanding of metal and organic pollutant removal by marine microalgae
is very limited. The following sections present a comprehensive overview on the role
of marine microalgae in the removal of heavy metals and organic pollutants.
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3.3 Pollution in the Marine Environment—Sources
of Heavy Metals and Organics

Anthropogenic sources of heavy metals and organic pollutants in the marine eco-
system generally result from the direct discharge of wastes, water runoff, and
airborne pollutants (Leprovost 2001). These pollutants are carried from inland
through sewage, dredged spoil, rainwater, and domestic and industrial waste
discharged into coastal waterbodies through estuaries that enter the oceans
(Wu et al. 2001; Adeniji et al. 2017). Hydrocarbon pollution is one of the great
threats to the marine environment, with estimates of discharge accounting for 1–8
million tons per year (National Research Council Committee on Oil in the Sea,
2003). In addition, around 25,000 ship cargo with 18.5 million barrels of oil per day
navigates through gulf waters which can potentially result in minor accidental spills
causing a threat to the marine environment (Chitrakar et al. 2019). These crude oil
spills affect marine organisms by limiting gas exchange and reducing light penetra-
tion (González et al. 2009). Moreover, crude oil spills release several organic
pollutants such as benzene, toluene, xylene, and aromatic hydrocarbons that can
accumulate in marine biota and sediments, thus acting as a sink affecting the
ecosystems (Kachel 2008).

The marine environment is also reported to receive copious and stable inputs of
pyrogenic hydrocarbons from coal and oil combustion as well as other organic
products such as wood (Ravindra et al. 2008; Page et al. 1999). The predominant
source of heavy metals in the marine environment is the industrial effluents
discharged into the ocean either through runoff or improper disposal. Three types
of heavy metals that cause major environmental problems include toxic metals such
as cadmium (Cd), lead (Pb), copper (Cu), zinc (Zn), nickel (Ni), cobalt (Co), etc.,
precious metals like silver (Ag), gold (Au), palladium (Pd), platinum (Pt), etc., and
radionuclides such as uranium (U), thorium (Th), radium (Ra), etc. (Wang and Chen
2009). Human exposure to heavy metals has dramatically risen because of an
exponential increase in their use in several industrial, domestic, agricultural and
technological applications. Other potential anthropogenic sources of heavy metal
pollution are industrial effluents, acid mine drainage associated with mining opera-
tions, and coal-based and nuclear power plants. Various industries produce and
discharge different heavy metals at varying concentrations into the environment;
few of them include electroplating, metallurgy, surface finishing industries, energy
and fuel production, iron and steel manufacturing, lead-acid battery manufacturing,
fertilizer and pesticide industry, electrolysis, electro-osmosis, microelectronics,
leather manufacturing, electrical appliance manufacturing, photography, etc.
(Ahmaruzzaman 2011). Natural phenomena such as weathering of rocks and volca-
nic eruptions also significantly contribute to heavy metal pollution.
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3.4 Removal of Heavy Metals and Organic Pollutants by
Marine Microalgae

A comparison of conventional remediation techniques such as chemical precipita-
tion, ion exchange, membrane filtration, electrochemical treatment, coagulation, and
flocculation with those of bioremediation approaches, in terms of their merits and
demerits (Table 3.1), clearly indicates that remediation of the polluted sites follow-
ing the conventional engineering approaches is challenging both technically and
economically. Also, bioremediation that involves the capabilities of microorganisms
in the removal of pollutants is the most promising, relatively efficient, and cost-
effective technology. The following sections particularly deal with the innate capa-
bilities of microalgae in the removal of heavy metals and organic pollutants from
marine environments.

3.4.1 Removal of Heavy Metals by Marine Microalgae

Abundant occurrence of metals in the environment leads to their increased concen-
tration in the organisms over time. Bioavailability most often refers to the availabil-
ity of contaminants, such as heavy metals or organic pollutants, in an ecosystem.
Frequently, it is also used to determine the potential risk of pollutants toward
nontarget organisms in any system. Bioavailability in the environment primarily
involves physical, chemical, and biological processes. Contaminants or pollutants
may be present in varying forms: (i) associated with soil and or sediment particles
(bound form), (ii) released from liquid and or gaseous phases (release form), and (iii)
associated with living organisms (attached form). A contaminant enters a liquid or
gaseous phase once it is released from the bound phase. During this stage contam-
inant transport will take place through advection, diffusion, and dispersion, which
result in the movement of contaminant molecules in the medium (liquid or gas) and
thereby reassociation of contaminant or return to the bound state (soil). Meanwhile,
the contaminants are carried to the surface of the living organisms (Fig. 3.1). Similar
processes occur in the medium and eventually the contaminant reaches the living
organisms and enters their tissues through cell membrane. Thus, contaminant trans-
port is an important component of its bioavailability. The contaminants after their
entry into the cells are metabolized and/or excreted, causing adverse or toxic effects
to living organisms (Fig. 3.2).

3.4.1.1 Biosorption of Metals

Biosorption is the process of removing sorbet (metal ions) from the solvent (water)
using biological material called a biosorbent. Marine microalgae have recently
gained attention for the development of biosorbent materials due to their high
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Fig. 3.2 Fate of the contaminants after their entry into the cell system

sorption capacity and availability in seas and oceans. Due to the presence of alkaline
metal ions in the composition of algal cell walls the heavy metal ions in the water can
be easily treated through a simple ion-exchange process. These sorbents have the
metal-sequestering property that can be used to reduce the concentration of heavy
metal ions in the solvent from parts per million (ppm) to parts per billion (ppb) level.
Biosorption capacity determines the number of metal ions that microalgae can bind
on the surface, and it is denoted by qmax. Brinza et al. (2007) reviewed the
biosorption capacity of some marine microalgal species involving the commonly
detected heavy metals found in the wastewater, as shown in Table 3.2.
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Table 3.2 The maximum heavy metal biosorption capacity of some marine microalgal species
(based on data from Brinza et al. 2007)

Biosorption capacity qmax (mmol g-1)

Heavy metal

Pb Cd Ni Zn Cu

Chlorella sp. 0.46 0.44 0.31 0.18 0.55

Chlorococcum sp. 0.23 0.15 0.27 0.21 0.36

Cyclotella cryptica 0.42 – 0.14 0.1 0.33

Spirogyra sp. 0.49 0.27 0.12 0.23 0.53

Lyngbya taylorii 0.84 0.32 0.43 0.37 –

Microcystis aeruginosa 0.35 – 0.21 0.23 0.37

Scendesmus sp. 0.45 0.11 – 0.35 0.22

Fig. 3.3 Biosorption of pollutants in marine microalgae

Biosorption is an extracellular process that is carried out in the cell membrane in
which the algal biomass binds the heavy metals in the cell wall. The algal cell wall is
composed of polysaccharides that contain sulfate. Imidazole, phosphate, hydroxyl,
amine, and amino functional groups act as a binding site for the heavy metals to be
adsorbed. The biosorption mechanism (Fig. 3.3) can be divided into metabolism-
dependent biosorption in which transportation of the pollutant across the cell
membrane takes place, followed by intercellular accumulation or detoxification.
Metabolism-independent mechanisms involve ion exchange, complexation, chela-
tion, and precipitation process. For example, the cell wall of microalgae is composed
of polysaccharides, lipids, and proteins that provide many functional groups capable
of attracting both anionic and cationic heavy metal ions exchanging them with the
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functional groups present in the cell wall. While investigating the mechanism for
removing Cr3+, Cd2+, and Cu2+ by Spirulina, Chojnacka et al. (2005) found that
hydroxyl, carboxyl, and phosphate functional groups were involved in the removal
of the metal ions by the ionic-exchange process. Similarly, a microalgal strain,
Tetraselmis marina AC16-MESO, could remove Cu (90%), Fe (100%), and Mn
(50%) after 72-h incubation period, mostly by complexation of metal ions onto
functional groups at the cell surface (Cameron et al. 2018). In fact, complexation
mechanism is the result of electrostatic attraction between heavy metal ions and
organic molecules present on the cell which act as ligands. The complex formation
between the metal ion and ligand is due to the covalent bonds. The functional group
(phosphonate, carboxyl, and amine) present in the cell wall of Chlorella miniate
removed Cr3+ by the complexation process (Han et al. 2006). Organic acids such as
citric, fumaric, lactic, oxalic and gluonic have been found to chelate metal ions
resulting in the formation of metallo-organic complexes. Chelation is the advanced
form of complexation mechanism in which the metal ion would bond with a ligand
in many positions at the same time with higher stability. Chlamydomonas reinhardtii
removed Hg2+ by direct chelation mechanism in which glutathione not only
adsorbed the metal ion but also reduced the toxicity of the pollutant in water
(Perales-Vela et al. 2006).

Two marine algae, Chlorella sp. and Phormidium sp., exposed to tannery waste-
waters removed Cr concentration by 81 and 90%, respectively, at the end of 15 days
incubation period as revealed by metabolic mechanism (Das et al. 2018). When the
metal ion solubility decreases, the bioavailability is reduced, resulting in the mech-
anism of precipitation. Upon exposure to the heavy metal-polluted medium, the algal
biomass favored precipitation that was based on pH of the medium. If pH of the
medium increases, the active sites on the cell wall attract heavy metal ions. Cu, Ag,
and Pb ions were removed by the alga, Tertaselmis suecica, by the mechanism of
precipitation due to the presence of phosphates on the cellular surface (Ballan-
Dufrançais et al. 1991). While growing Chlorella sp. in seawater-based medium,
nearly 4% of Cd supplemented was found precipitated due to an increase in pH to
8 besides 67% accumulation and 25% adsorption of the metal (Matsunaga et al.
1999).

3.4.1.2 Factors Influencing Biosorption of Heavy Metals

Biotic Factors

Algal Species Marine microalgae can be classified into three broad categories based
on the composition of pigment color in green algae (Chlorophyta), red algae
(Rhodophyta), brown algae (Phaeophyta) (Davis et al. 2003). Romera et al. (2007)
summarized the biosorption capacity of algae related to some heavy metals as
indicated in Table 3.3. Brown algae have a higher sorption capacity than red and
green algae due to their high alginate content and the presence of functional groups
in the structure. But the use of brown and red marine algae has a major drawback due
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Table 3.3 Average heavy metal sorption capacity (qmax), in mmol g-1, of different algae (data
based on Romera et al. 2007)

Phylum Cadmium Nickel Zinc Copper Lead

Chlorophyta 0.60 0.51 0.37 0.50 0.80

Rhodophyta 0.20 0.27 0.65

Phaeophyta 0.90 0.84 0.67 1.01 1.23

to the presence of certain organic compounds such as alginate. Also, the pigments
generate secondary pollutants and reduce the biosorption capacity. In green algae the
secondary pollutant generation is insignificant but their biosorption capacity is lower
as compared to brown and red algae. While studying the impact of biotic factors on
Cu adsorption capacity in marine microalgae, Levy et al. (2007) observed that
Dunaliella tertiolecta was least sensitive than Minutocellus polymorphus and was
depended on uptake rates across cell membrane rather than the taxonomic status and
cell size.

Concentration of Biomass In the biosorption process, the removal efficiency
depends upon the biomass concentration because of the greater availability of
binding sites on the cell surface. Increased biomass concentration enhances the
removal percentage of heavy metals. An increase in biomass concentration of Ulva
fasciata from 0.5 to 4 g L-1 resulted in the improvement of Pb removal efficiency in
the range of 42–75%, while the removal efficiency of Cd increased from 43 to 73%
with the increase in biomass concentration from 0.5 to 6 g L-1 (Nessim et al. 2011).
Increased biomass concentration often reduces the biosorbent capacity of microalgae
because of the reduction in intercellular distance and cell agglomeration. Kaparapu
and Prasad (2018) observed higher biosorption of Cd(II) in Nannochloropsis oculata
with biomass concentration of 7 g L-1 and a decrease in biosorption capacity with
increased biomass concentration probably due to the partial biomass aggregation that
results in surface area reduction.

Tolerance Algal species are known to grow, adapt, and tolerate hazardous envi-
ronmental conditions. Heavy metal tolerance in algae depends upon the algal
species. However, members of Chlorophyceae are generally known to tolerate
Cu2+, Zn2+, and Cd2+. Strains of Chlorella sp. isolated from mercury-contaminated
sites tolerated higher Hg2+ concentration than the isolates from uncontaminated
habitats (Gaur and Rai 2001). Pérez-Rama et al. (2010) observed 87% of Cd
accumulation in a marine microalga, T. sueccia, and was related to phytochelatin
synthesis. Folgar et al. (2009) reported that Dunaliella salina was tolerant to higher
concentrations of Cd due to the intracellular metal-binding ligands.

Surface Area to Volume Ratio The ratio of surface area to volume in microalgae
influences the sequestration of heavy metals in the solution. The take-up nutrients, in
terms of per biomass, are faster in microalgae than macroalgae because of the size,
growth, metabolism, and biochemical composition (Hein et al. 1995). Khoshmanesh
et al. (1997) reported that the uptake of Cd was similar in an algal species having
different sizes. The microalgal culture with a specific surface area of 2.20 m2 mg-1



3 Removal of Heavy Metals and Organic Pollutants by Marine Microalgae 51

cells showed higher uptake of Cd ions as compared to the culture with a specific
surface area of 0.98 m2 mg-1 cells.

Abiotic Factors

pH Biosorption of heavy metals in solution depends upon pH conditions due to the
functional groups that dissociate at certain pH levels in the algal biomass. The
maximum sorption of heavy metal ions by the marine microalgal biomass was
obtained at a pH range between 4.0 and 6.0. The observed percentage removal
efficiency for Cr, Cd, As, Pb, and Hg at pH 6.0 were 98.30, 92.50, 96, 92.20, and
80, respectively (Kumar et al. 2020; Leong and Chang 2020). When the pH value is
lower than 6.0, the hydrogen ion concentration does not compete with the metal ions,
and during adsorption of heavy metals no vacant active sites are created in the algal
biomass (Gupta et al. 2011). If the pH value is greater than 6.0, the metal species are
hydrolysed and are no longer available for the biosorption process (Romera et al.
2007). Kaparapu and Prasad (2018) reported that the biosorption of Cd(II) at pH >7
was reduced in a marine microalga, Nannochloropsis sp., and at pH 2–4 there was a
competition between metal ions and metal-binding sites located on algal cell surface.
The reduced Cd biosorption at higher pH was attributed to the maximum immobi-
lization of positive charges. When the initial pH was maintained at 7.8, the cells of
T. suecica were metabolically active and increased in cell number from 30 to
40 mg g-1 within 48 h, suggesting that the live cells are more suitable for biosorption
than dead cells (Pérez-Rama et al. 2010).

Temperature Temperature plays a vital role in the biosorption process as it influ-
ences the process in both positive and negative ways depending upon the range in
temperature (Khambhaty et al. 2009). The solubility of metal ions was found to be
higher at elevated temperatures, but an increase in temperature decreases the
biosorption capacity of the biomass. The maximum biosorption of Cu2+ ions attained
at 37 °C was 90% in Spirulina species but the biosorption capacity was reduced to
82% at 60 °C and then gradually decreased with further increase in temperature
(Al-Homaidan et al. 2014). The biosorption efficiency of N. oculata biomass
increased with contact time up to 90 min and remained constant (Kaparapu and
Prasad 2018).

Contact Time The efficiency of biosorption process depends upon the contact time
between the algal biomass and the heavy metal ion. It was observed that the optimum
contact time for the maximum adsorption of 80–90% of Cu, As, Cd, Cr, Pb, and Hg
by various marine algal species was within 60–90 min (Al-Homaidan et al. 2014;
Leong and Chang 2020). Initially, many active sites are available on the cell surface
for the adsorption of heavy metals, and there will be a reduction in active sites with
time, resulting in a gradual decline in the removal capacity of biomass that requires
regeneration of algal biomass. The amount of biosorbed Cd inD. salina biomass was
greater after 24-h contact time and was subsequently reduced due to the enhanced
sorption onto the cellular surface (Folgar et al. 2009). It has been reported that



52 J. Umamaheswari et al.

biosorption yield of Cd(II) decreased with increased temperature at an optimal
contact time due to the following reasons: relative increase in leaching tendency of
ions from solid phase to bulk phase, and weakness of active sites for biosorption in
the sorbed phase (Kaparapu and Prasad 2018).

3.4.1.3 Desorption of Heavy Metals and Biomass Regeneration

Desorption of heavy metals is the process of recovering valuable metal ions from the
algal biomass by adding eluent. The eluent restores the biosorbent to its original state
for the reuse of biomass in the process. Mineral acids, complexing agents,
and organic acids are used as the eluents as they are non-damaging to the sorbent,
and they ensure the metal-binding capacity of microalgae. Desorption of Cr3+, Cd2+,
and Cu2+ from biomass of Spirulina sp. by nitric acid resulted in 98% removal of the
metal ions (Chojnacka et al. 2005). In fact, Chlorella vulgaris remains unaffected
even after five cycles of biomass regeneration using 0.1 M EDTA as eluent to
recover Cd metal ions, and the adsorption capacity loss was less the 5.8% (Kumar
et al. 2018). Both HCl and EDTA are the most used eluents for desorbing algal
biosorbents. However, HCl decreases biosorption capacity of algal biomass after
every wash, and the use of EDTA is not eco-friendly as it dissolves alginate upon
every use which can lead to secondary pollution. Therefore, it is essential to screen
the desorbing agents for efficient metal ion recovery.

3.4.1.4 Heavy Metal Detoxification by Marine Microalgae

The ability of microalgae to adapt and survive in habitats contaminated with heavy
metals and organic pollutants depends on genetic adaptation which enables them to
develop defence mechanisms to resist and adapt the harsh environmental conditions
(Nayaka et al. 2017). This mechanism of defence allows microalgae to develop some
tolerance and resistance toward the pollutant that can detoxify the pollutants inside
the cell. The defence mechanism involves the production of short-chained poly-
peptides such as phytochelatins (PCs) and metallothioneins (MTs) that are abundant
in sulfhydryl and carboxyl groups and can bind to the pollutants (Cobbett and
Goldsbrough 2002). The bound pollutant further moves in for internal detoxification
process which involves conjugation of the pollutant with the polypeptides and
further compartmentalization of the pollutants by transporting them into the vacuoles
(Qin et al. 2006). Folgar et al. (2009) reported that metal complexing ligands in
D. salina were rich in cystine although most of the known are GSH and PCs. They
observed that levels of cystine synthesis led to maximum Cd accumulation intracel-
lularly. In another study, D. salina was shown to be resistant to As which exhibited
higher levels of lipid peroxidation with a differential expression of 65 proteins
involved in energy metabolism, protein synthesis and folding, ROS scavenging,
and amino acid synthesis (Ge et al. 2016). Wang et al. (2017) reported variation in
thiols such as cysteine, glutathione, and PCs in D. salina exposed to arsenite and
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Fig. 3.4 Biotransformation mechanism for heavy metal detoxification in microalgae. MMA,
Monomethylarsonic acid; DMA, Dimethylarsinic acid (Source: National Research Council 2003)

demonstrated that transformation of arsenite-induced several PCs initially and later
decreased under various phosphate regimes. The synthesis of PCs varied with As
(V) and As(III) which affected GSH levels, suggesting that the conversion of GSH to
PCs is essential for arsenite mitigation (Wang et al. 2017). The biochemical mech-
anisms involved in heavy metal detoxification by microalgae (National Research
Council 2003) are presented in Fig. 3.4. Sathasivam and Ki (2019) observed higher
levels of phytoene synthase (PSY), phytoene desaturase (PDS), and β-lycopene
cyclase (LCY-B) in T. suecica exposed to copper.

3.4.2 Removal of Organic Pollutants by Marine Microalgae

Human attempts to produce various organic compounds to protect many lives and
support economic advantages significantly resulted in acute and chronic toxicity of
some of these chemical substances making the biota deteriorate rapidly (Adeola
2004). Although these organic compounds are susceptible to degradation at a very
slow process, they tend to persist in the environment or accumulate inside the biota
(Subashchandrabose et al. 2013). Organic pollutants that are widely distributed in
marine environments and prone to biodegradation by marine microalgae include
phenolics, pesticides, persistent organic pollutants (POPs), and hydrocarbons
(Dsikowitzky et al. 2011).
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3.4.2.1 Pesticides

Pesticides including insecticides, fungicides, and herbicides are often detected in
marine waters due to the urban or agriculture runoff causing serious threats to the
marine biota. Atrazine sensitivity, in terms of 96-h growth inhibition, for the
estuarine phytoplankter, D. tertiolecta, in nutrient-replete media was 159.16 μg L-

1 and was influenced by the duration and nutrient-limited conditions (Flood et al.
2018). Chen and Jiang (2011) reported enhanced catalase activity in D. salina when
exposed to trichlorfon and dimehypo at lower concentrations of 0.025 g L-1 and
0.0005 g L-1, respectively. In a toxicity study involving treatment of D. salina with
dimethylphenol and dinitroaniline, Zhu and Jiang (2009) observed that the EC50

values were significantly higher when exposed to a single pesticide compared to
their combination. However, increased concentrations led to significant inhibition in
the growth of the microalga that was attributed to the effect on osmosis of cell
membrane allowing toxicants to react with internal parts and damage membrane
lipids. Thakkar et al. (2013) exposed D. tertiolecta and a brown tide alga,
Aureococcus anophagefferens, to various concentrations of metachlor and observed
a significant increase in cell size with glutathione production as detoxification
mechanism. Although 40–50% of sublethal concentration of tributylin (TBT)
could be removed by N. oculata and Dunaliella parava during 2–6 days of incuba-
tion, the former microalga adsorbed most of the added anti-fouling agent while the
latter degraded it to mono-butyltin and di-butyltin (Taha et al. 2009). DeLorenzo and
Serrano (2003) determined the toxicity of atrazine, chlorpyrifos, and chlorothalonil
individually and as mixtures on D. tertiolecta and observed that atrazine and
chlorothalonil concentrations at 25 and 33 μg L-1 decreased growth rate, while
chlorpyrifos was toxic only at >400 μg L-1. In another study, the effect of herbi-
cides such as diuron, irgarol, atrazine, and ametryn was tested toward D. tertiolecta
in four different scenarios of increased temperature and salinity and reported that
increasing temperature reduced growth but enhanced the contents of chlorophyll and
starch and lipids (DeLorenzo et al. 2013).

3.4.2.2 Hydrocarbons

Water soluble fraction of crude oil containing mono- and diaromatic hydrocarbons
affected D. tertiolecta within 24 h though photosynthesis impairment and cell
division inhibition occurred. Despite the well-known tolerance of Dunaliella spe-
cies, the exponential phase measured in terms of photosynthesis was reduced while
lag phase showed growth inhibition, suggesting that duration of exposure influenced
the overall growth (Siron et al. 1991). Fabregas et al. (1984) reported stimulation in
the growth of T. suecica upon exposure to low hydrocarbon concentrations in crude
oil whereas the dispersant did not exhibit any selective toxicity. Dunstan et al. (1975)
observed that low concentration (10 mg L-1) of oil had no effect on the growth of
D. tertiolecta. Similarly, low concentration (0.05%) of light diesel and an oil
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dispersant (0.005%), either alone or in combination stimulated the growth of Chlo-
rella salina and impaired respiration (Chan and Chiu 1985). Photosynthesis in
D. tertiolecta exposed to oil samples from tanker spill was significantly affected
within 60 min, while survival of the cells was slightly affected (Carrera-Martinez
et al. 2011). Jiang et al. (2002) exposed microalgal strains to four PAHs, viz.,
toluene, naphthalene, 2-methylnapthalene, and phenanthrene, and reported that
C. vulgaris and Platymonas subcordiformis were least sensitive compared to other
tested species.

Exposure of Chlorella salina to phenanthrene significantly increased the toxicity
with an EC50 value that ranged from 1.893 to 0.23 mg L-1, and a decrease in pH
from 9 to 6 was also significantly toxic suggesting that the acidification of sweater
greatly influenced the effect of organic compounds (Chen et al. 2018a). Bretherton
et al. (2018) observed that marine alga, D. tertiolecta, was resistant to oil and
dispersant and referred to it as “robust” because chlorophyll was not affected during
lag phase and was followed by biomass accumulation. Moreover, short-term expo-
sure of D. tertiolecta to petroleum and diesel oil impacted the growth and photo-
synthetic performance and reported to recover during long-term incubation
(Romero-lopez et al. 2012). Recently, Salinas-Whittaker et al. (2020) observed
that D. tertiolecta exposed to water-soluble fraction (WSF) from fuel oil/diesel
mixture increased physiological and biochemical response in unsaturated acyl
chain of fatty acid suggesting the uptake of hydrocarbons. Mohammady et al.
(2005) exposed Nannochloropsis salina to various concentrations (0–100%) of
diesel fuel oil aqueous extract and observed a decrease in cell bioavailability leading
to cell division and enhanced membrane permeability. Both the limitation of carbon
and hormesis phenomenon, as evaluated by stable isotope analysis, were prevalent in
Platymonas helgolandica when it was treated with water accommodated fraction of
fuel oil (Liu et al. 2020). Dissolved crude oil at lower concentration (20 mg L-1)
stimulated the growth of Dicrateria sp. but growth was inhibited with increased
exposure time. However, consortia of marine microalgae involvingDicrateria sp. on
biotreated seawater showed enhanced cell density that ranged from 4.0 × 105 to
1.7 × 106 cells mL-1. Chao et al. (2012) reported that four fuel oils, viz., F120, F180,
F380, and F20 were toxic to a marine alga, Chlorella sp., due to the concentration of
several PAHs. Hing et al. (2011) demonstrated that C. salina was able to tolerate
diesel concentrations at steady state and was only affected when the concentration
exceeded 170 mg L-1. Very recently, Marques et al. (2021) reported that N. oculata
was able to grow in petroleum-contaminated water exhibiting a PAH removal
efficiency of 94%. In particular, the percentage removal of several organic com-
pounds such as naphthalene, benzopyrene, and acenaphthylene was 89–99% due to
their intracellular biodegradation by oxidoreductase enzymes.

3.4.2.3 Other Organic Compounds

Phenol is an organic compound that results from the transformation of aromatic
compounds via degradation, oxidation, and synthesis. Besides being enriched in coal
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tar, phenol is also produced as a by-product from several industrial processes as well
as during organic matter decomposition (Michalowicz and Duda 2007). Mofeed and
Abdel-Aal (2015) found that exposure of D. salina to various concentrations (50–-
200 μmol L-1) of phenol significantly affected antioxidant enzyme activities. Phenol
at a concentration of 72 mg L-1 led to programmed cell death in marine microalgae
by inducing changes in ultrastructure with shrinkage of the nucleolus and vacuole
enlargement (Duan et al. 2017). During treatment of real refinery wastewater
containing phenol and its derivatives such as o-cresol and p-cresol, marine alga,
Nannochloropsis sp., removed >80% of both the cresols as compared to freshwater
Chlorella sp. (Surkatti and Al-Zuhair 2018). The biodegradation was reported to
occur in two steps: split in methyl group resulting in its conversion to methanol and
further breakdown of phenol produced as an intermediate (Papazi et al. 2012).
Bisphenol A, with production estimates of approximately two million tons, is well
distributed in the environment and known for its endocrine disruption potential
(Burridge 2003). While reporting the first toxicity data of chlorophenols on
D. tertiolecta, Ertürk and Saçan (2012) reported that toxicity of chlorophenols
decreased between 48 and 96 h due to the increase in pH of the medium or
acclimation response of the marine microalga to the toxicants. Regardless of the
exposure time, the toxicity was greater with an increasing number of chlorine atoms,
while ortho-substituted chlorophenol was lesser than meta and para congeners
(Ertürk and Saçan 2012). POPs are widely distributed due to domestic and industrial
activities that are reported to reach marine environments (ter Schure et al. 2004;
Lema et al. 2007). Polybrominated diphenyl ethers (PBDEs), the flame retardants,
enhanced oxidative stress in D. salina with increased activities of superoxide
dismutase, catalase, and glutathione reductase and decreased glutathione peroxidase
activity (Zhao et al. 2017). Similarly, exposure of D. salina to dibutyl phthalate at
100 mg L-1 decreased glutathione peroxidase and superoxide dismutase (Wei et al.
2021).

3.5 Conclusions

Besides highlighting the advantages of the use of marine microalgae for the removal
of heavy metals and organic pollutants, we presented the inherent drawbacks of the
conventional treatment processes. Marine microalgae respond to heavy metals in
several ways such as biosorption and bioaccumulation; however, there is a very clear
paucity of data on organic contaminant removal and the associated mechanisms.
Furthermore, it is very clear that marine microalgae can offer sustainable approach in
the treatment of heavy metals and organic pollutants for safer marine ecosystem and
biomass production from microalgae after detoxification. Thus, this chapter presents
the overall understanding of the potential of marine microalgae in the removal of
heavy metals and organic pollutants.
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Abstract Microalgae cultures offers solutions for pollution control at water reuse.
The ability to nutrient and heavy metal up-take along with disinfection is a consid-
erable more sustainable solution than conventional wastewater treatment processes
based on mechanical aeration. Since microalgae have evolved together with bacteria
in natural aquatic environments a whole range of interactions take place between
both organisms. Ecology descriptions and population characterizations of the
phycosphere are key elements for the design of microalgae-based units addressed
to pollution control and for the understanding of the biochemical transformations
that take place during cultivation. Negative interactions occur as consequence of
resources competence or parasitism. Mutualism have the basis on substrate exchange
and release of promotors. These and other interactions take place during the envi-
ronmental applications such as wastewater treatment, gas treatment, or water reuse
affecting the final performance.
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4.1 Microalgae Biomass Culture

Microalgae cultures are a highly productive pathway to convert solar energy and
inorganic substrates (CO2, water and ions) in high value biomass and oxygen. The
process of algae production and processing has been done for millennia in different
parts of the globe. For instance, the cyanobacteria Nostocwas produced in China and
Arthrospira in Chad and Mexico (Hamed 2018). Presently, microalgae have several
applications apart of human and animal nutrition: cosmetics and the production of
high value molecules (essential fatty acids, pigments, stable isotope biochemicals)
(Pulz and Gross 2004). Proteins, lipids, sugars, minerals and vitamins and other
biocomponents are contained in microalgae biomass. For decades, commercializa-
tion of Haematococcus is taking place in Japan and Israel while Chlorella is
produced in Germany and Portugal. The ability to accumulate lipids of algae
biomass has been extensively explored as source of biodiesel for decades, although
implementation at industrial scale has not been materialized (Grima et al. 2003).
Carbon dioxide fixation with intense algae cultivation has been researched using flue
gas and other polluted gas streams (de Godos et al. 2014a). A summary of the
microalgae culture applications is depicted in Fig. 4.1.

Fig. 4.1 Applications microalgae biomass
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Microalgae production process can be summarized in chemical reaction as
follows:

CO2 þ 0:148 NO3 þ 0:014 H2SO4 þ 0:012 H2PO4 þ 0:751 H20
→CH1:715O0:427N0:148S0:014P0:012 þ 1:437 O2 ð4:1Þ

Therefore, carbon, nitrogen, and other elements are assimilated from culture broth
and while oxygen is released along with the generation of biomass. This primary
metabolism of microalgae is highly efficient in wastewater treatment applications
(de Godos et al. 2017). The oxygen released by polycultures of different species of
algae provides biological oxidation of organic matter while the high rates nitrogen
and phosphorous assimilation results in high quality effluents. This ability to remove
pollution from water has been proposed 60 years ago when wastewater treatment
systems began to be implemented in western countries (Oswald and Ramani 1978).
However, bacteria based systems consisted in aeration tanks such as activated sludge
have been much more successful solution with millions of installations worldwide.
Recent concern about sustainability have attracted interest toward systems based in
carbon and nutrient recovery. In this sense, microalgae based systems offers assim-
ilation of key elements (nitrogen, phosphorus) and neutral or even negative green-
house gases emissions. Since the process is driven by sunlight, electricity
consumption during the process is considerably lower than aeration systems. Beside
this, the possible synergies between environmental applications and other algae uses,
such energy production, carbon dioxide capture or bioproducts is attracting more
interest around this technology (Murry et al. 2019).

Wrongly termed microalgae cultures are rather a co-culture of microalgae and
bacteria in most of cases (except for axenic cultures of algae performed in conditions
of microbiological isolation). The interactions between algae and bacteria could
affect positively or negatively the biomass production and biochemical transforma-
tions that take place. A wider range of culture conditions can be found since
microalgae grow in illuminated water bodies and wet surfaces all over the world.
As consequence of the photosynthesis, microalgae create a particular environment
with high concentrations of dissolved oxygen and elevated pH, particularly during
central hours of the day when the light intensity reach its maximum (Arbib et al.
2017a). Organic materials are released as consequence of physiologic activity and
algae cells decay. This particular environment presents appropriate conditions for the
development of a wide range of organisms. In this sense, bacteria, which exhibits an
extensive variety of metabolic routes from photo and chemoautotrophic to hetero-
trophic growth using different organic substrates, grow and interact with microalgae
in natural and artificial environments (Rosenberg 2013). These interactions are still
not well studied from a biotechnological point of view. At this point it must be notice
that only a few thousand microalgae strains are kept in collections, only few hundred
are researched for their possible application and just a handful are cultivated in
industrial quantities, while more than 50.000 species are believed to exist. In case of
environmental applications such as wastewater treatment, the knowledge about these
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interactions is even more limited since cultures are not usually studied form the
microbiological point of view (Ferrero et al. 2012). Microbiology characterizations
and ecology studies have been barely explored. Recent progress in molecular
identifications and the interdisciplinary approach of the research projects have
shed light on the importance and impact of the symbiotic bacteria in the microalgae
growth (Barreiro-Vescovo et al. 2021). This chapter reviews the ecological interac-
tions between algae and bacteria and their importance in microalgae environmental
applications.

4.2 Evolution of Microalgae and Bacteria

Half of the global net primary productivity is produced by microalgae in water
bodies, with oceans as the major habitat of these organisms (Parlevliet and
Moheimani 2014). These photosynthetic organisms beside with cyanobacteria
grow in the illuminated region of the aquatic habitat and receive the name of
phytoplankton. Bacterioplankton is the term applied to bacteria living in the same
habitat. The metabolic activity of both communities impacts the global geocycles of
oxygen, carbon, nitrogen, phosphorous, and other elements. The very intimate
interactions between both groups of microorganisms have shaped the actual atmo-
sphere and geosphere composition. Three thousand eight hundred million years ago,
when the atmosphere was anoxic and mainly formed by N2, CO2, NH3, and CH4,
simple living organisms have appeared (Sleep 2010). Prokaryotes existing in hydro-
thermal vents using chemoautotroph reactions are believed to be the first living
organisms according to the reconstruction of the ancestral sequences. Photoautotro-
phic organisms arose 3500 million year ago, first without oxygen production and
later with reactions that produce oxygen and final by-product. Photoxygenic organ-
isms transformed the atmosphere increasing the levels of O2 until the actual values of
20,9% (v/v) (Rasmussen et al. 2008). Cyanobacteria were responsible for this
oxygenation environment and later to the formation of the photosynthetic eukary-
otes, such microalgae and plants, through the process named primary endosymbio-
sis. This hypothesis established that heterotrophic eukaryotic organisms engulfed
cyanobacterium and engaged it as an organelle. Consequently, eukaryote organisms
acquired photosynthetic metabolism (Yoon et al. 2004). Although bacteria were
proposed as the early host cell which received the cyanobacterium, most recent
studies are suggesting that an archaea-type organism was responsible for this
evolution event. Phylogenic studies indicate that three different lineages appear as
a consequence of endosymbiosis: red algae, green algae, and glaucophytes
(Ramanan et al. 2016). Subsequent endosymbiosis events, involving bacteria,
archaea, protest, and cyanobacteria, resulted in a diversification of the phototrophic
organism. More recent studies indicate that apart from the endosymbiotic events,
horizontal gene transfer for each group of organism took and take place and facilitate
the adaptation of an organism to the different environments (Schönknecht et al.
2013).
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4.3 Ecological Interactions Between Organisms

Algae are the primary producers while bacteria present decomposing and producing
activity depending on the substrate and light availability. Therefore most of the
ecological interactions can be found between both organisms and most of them are
present in the planktonic habitat (Ramanan et al. 2016). Occurrence of these
interactions during microalgae culture in environmental applications affects posi-
tively when microalgae biomass production is enhanced resulting in high rates of
pollutant up-take. However, negative interactions can negatively impact algae
growth rate limiting the treatment capacity. At this point it must be stressed that
microalgae growth rate (and biomass productivity) is mainly impacted by external
factors such as temperature, light intensity, reactor configuration, and hydrodynamic
factors (Fig. 4.2). Since bacteria are simultaneously co-cultured with the microalgae,
and also affected by these external variables, microbial interactions can often go
unnoticed or their effects may be attributed to the external variables. In this context,
the improvement of culture techniques must take into consideration all the possible
interactions: mutualism, parasitism, commensalism, and others.

Mutualisms interactions, where both parts take advantage of the coexistence,
have been described between microalgae and bacteria in natural environments or
lab-controlled experiments. These interactions can be facultative, obligate, or

Fig. 4.2 Diagram of the main factors affecting microalgae cultures
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Fig. 4.3 Interactions between microalgae and bacteria

opportunistic. The main mutualistic interaction is the aforementioned gas exchange
where microalgae can provide the oxygen that heterotrophic bacteria require for the
breakdown of the organic materials, while bacteria concomitantly release the carbon
dioxide, nitrogen, and phosphorus needed by microalgae during photosynthesis
(Fig. 4.3). This is of important relevance in eutrophic environments with high
concentrations of organic matter and it has been extensively used for the treatment
of polluted water streams such as domestic, industrial, or livestock wastewaters.
However, the mutualistic interactions are not limited to the inorganic components
exchange. Exchange of organic compounds has been described in both directions.
Vitamin B12 is produced by some bacteria and assimilated by microalgae. In some
cases, microalgae even repress the expression of genes associated to Vitamin B12
synthesis when symbiotic bacteria provide this supplement (Croft et al. 2005).
Mutualistic interactions have been described between green algae and bacteria that
are also responsible for the very well-known growth promotion of plants. That is the
case of Rhyzombium, Mesorhizobium and Azospirillum, which enhance microalgae
growth and the other way around (Luz et al. 2004). Although some cyanobacteria are
capable of atmospheric nitrogen fixation, green algae do not present this metabolic
route. Rhyzobium provides organic nitrogen in oligotrophic ecosystems where this
element is limiting the primary production. Besides this, this interaction is not
limited to nitrogen since carbon can be also exchanged concomitantly. Organic
compounds are supplied to the bacteria (Rhyzobium or others) while inorganic
carbon as CO2 or HCO3

- is supplied in return. These bacteria promote algae growth
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by the release of compounds such as indol acetic acid. It is worth noting that similar
interactions have been also described between multicellular algae (Dao et al. 2018).

Negative interactions have also been described between microalgae and bacteria
(parasitism interaction). Algicidal activity of some bacteria, for instance genera
Alteromonas, Pseudomonas, Bacillus,Dietzia, Janibacter, has attracted the attention
of its potential use as a controlling agent of algal or cyanobacteria blooms, also
named Harmful algal blooms (Coyne et al. 2022; Croci et al. 2006). These natural
phenomena occur across the world and considerably affect the aquaculture produc-
tion systems placed in coastal waters. The occurrence of algal blooms has increased
over the last decades likely due to two main factors: increasing pollution of water
bodies and global warming. Species of dinoflagellates cause severe physiological
and biochemical damage to fish. Algae toxins are accumulated by bivalves and
human intoxication has been described after mollusk consumption. Worldwide,
these algae toxins are responsible for more than 60,000 cases of intoxication per
year, and the human mortality rate reaches a value of 1.5%.

Occurrence of bacteria with the capacity to kill microalgae during harmful
blooms is being studied and proposed as a control system. Some bacteria species
present physiological and biochemical mechanisms to attack microalgae. These
mechanisms are similar to the existing in bacteria attacking higher plants. Chitinases,
glucosidases, cellulases, and other enzymes found in the disruption of plant cell
walls have been reported in phycosphere bacteria. It is worth mentioning that this
parasitic interaction and similar enzymatic mechanism has been documented in other
organisms such as marine fungi and mollusk (Nikolaeva et al. 1999). Algae cell
decay results in the release of intracellular materials that are used as nutrients by
bacteria and fungi. Consequently, competition for existing nutrients with microalgae
results in reduced growth rates of phototrophs and outcompeting their existence in
the environment. Enzymes present in these organisms (bacteria, mollusk, and fungi)
are useful for many applications in algal and industrial biotechnology (Dahiya et al.
2006). Development of these industrial applications is based in the knowledge of the
interactions and the study of the ecology of species succession, parasitism, and
competition. Parasitic bacteria can easily be found attached to the algal cell wall or
in the associated mats contributing degradation of the cell wall. Some marine
bacteria living in association with microalgae are able to produce substances that
block the sodium channels in algae resulting in algae decay. In the case of
microalgae cultures used for environmental purposes, predatory events have been
described on several occasions but the organisms involved are rather protozoa or
animals than bacteria (Martínez et al. 2021).

Negative interactions between microorganisms are also based on competition.
Substrate competition between microalgae and bacteria has been described in natural
environments and bioreactors. While heterotrophic bacteria create a mutual interac-
tion based on exchange of inorganic (CO2, NH4

+, PO4
3-) and organic substrates,

autotrophic bacteria could be characterized by competitive interactions. In this sense,
ammonia-oxidizing bacteria use the same substrates than microalgae, inorganic
carbon, and ammonia, for their primary metabolism. As consequence, the
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coexistence of nitrifiers and microalgae is hampered (de Godos et al. 2014b). In case
of natural environments, a wide range of conditions can be found and the presence of
both groups of microorganisms has been reported. In the case of artificial environ-
ments, such as photobioreactors treating wastewater, conditions are created for
maximizing microalgae productivity. For instance, the design of photobioreactors
provides elevated irradiance inside the culture media, creating an environment
similar to surface of water bodies. That is the case of high-rate algae ponds treating
wastewater of different natures: domestic, agro-industrial, or livestock. Limitation of
ammonia-oxidizing bacteria has been reported under these conditions (de Godos
et al. 2010). It is important to highlight that this competitive phenomenon impacts
the performance of wastewater treatment facilities positively or negatively
depending on the bioprocess configuration. In this sense, most of the
photobioreactors treating wastewater are designed for a maximum ammonia assim-
ilation by microalgae (Arbib et al. 2017b). Although microalgae can use nitrate,
nitrite, and ammonia as nitrogen sources, the last one is assimilated in first place
since oxidized forms involved more energy investment by cells. Therefore, ammonia
oxidation can result in the accumulation of NO2

- and NO3
- and consequently

effluents will not achieve the discharge limits (De Godos et al. 2016). However,
other reactor configurations based on nitrification and denitrification rely on high
rates of nitrification (de Godos et al. 2014b). In that case, sufficient inorganic carbon
must be present in the influent.

4.4 Environmental Applications of the Microalgae-Bacteria
Consortia

Effluents resulting from various human activities such as farming, households and
industrial production contains pollutants that can potentially endanger ecosystems
and reduce possibilities of water reuse. If not treated properly this leads to water
ecosystem destruction and involved human health risks (UN-Water 2021). Conven-
tional water treatment are focused in organic matter, phosphorus and nitrogen
removal (Jenkins 2014). Besides this, organic and inorganic substances including
important amounts of elements such as sulfur, arsenic, chlorine, magnesium, cal-
cium, and metals could be present in wastewater (Metcalf and Eddy 2003). Patho-
genic organisms present in wastewater include a wide variety of microorganisms,
including protozoa, viruses, and bacteria (Chambonniere et al. 2021), which are the
origin of waterborne diseases like cholera, hepatitis, typhoid, tuberculosis, and
dysentery. These diseases cause more than one million deaths yearly (UN-Water
2021). Both organic and inorganic components of polluted effluents, such as nitro-
gen and phosphorous, and carbonaceous compounds, are assimilated into
microalgae biomass and thus, the concentrations of these compounds are reduced
reaching the discharge limits (Barreiro-Vescovo et al. 2020). The main advantage of
using microalgae-bacteria consortia instead of only bacteria systems is energy and
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equipment saving involved in oxygen supply. Besides this, microalgae utilize any
nitrogen source present in the wastewater: organic molecules, ammonium, nitrite,
and nitrates (Taylor et al. 2012). Unlike, conventional water treatment facilities
based on activated sludge, microalgae assimilate the nitrogen allowing for
reutilization. Moreover, algae treatment units comprise primary and secondary
treatment in one basin (normally a shallow pond mixed). Therefore, no transition
between multiple operational conditions is required in order to remove inorganic
nitrogen and phosphorous, simplifying the facilities and reducing the energy con-
sumption of the treatment due to pumps and water elevation (de Godos et al. 2017).

Microalgae-based treatment is not limited to organic matter and nutrient removal.
In fact, heavy metals and emerging contaminants like pharmaceutical and personal
care products are efficiently removed during algae cultivation (López-Serna
et al., 2022; de Godos et al. 2010). Heavy metals present a high binding affinity
with the cell wall of microorganisms (including algae and bacteria) (Hwang et al.,
2016). Metals that are usually found in domestic wastewater: include mercury,
copper, zinc, nickel, arsenic, lead, cadmium, chromium, and manganese (Metcalf
and Eddy 2003). Presence of these elements can be caused by oxidative damage in
microorganisms cells by the stimulation of production of reactive oxygen species
inside cells (Shahid et al., 2020). Experiments conducted by Shahid et al. (2020)
demonstrate that microalgae exposed to high concentrations of copper presented
higher levels of lipid peroxidation as a consequence of reactive oxygen species
formation and a decrease in the level of pigments such as chlorophyll-a, chlorophyll-
b, and carotenoids. Metal and heavy metal elimination mechanisms taking place
during algae-bacteria cultures include: absorption, detoxification by the low-weight
proteins called metallothioneins which induce complexation by chelates and poly-
saccharides and alkaline precipitation due to high pH values. Active and passive
mechanisms have an effect on metal ions uptake by cells. The passive uptake or
biosorption consists in the intermolecular binding that takes place when the cellular
structure entraps heavy metal ions at binding sites (Kumar et al., 2015). Metals ions
are bonded to sulfate, carboxyl, and phosphate groups existing in cell polysaccha-
rides, On the other hand, during active uptake, heavy metals are included in
metabolic cell pathways. While active sorption is limited to living cells, passive
removal includes the elimination of non-living biomass. At this point it must be
stressed that dead biomass (of algae and bacteria) can account for an important
proportion of total biomass existing in wastewater treatment process). During the
first stage, metal cations undergo adsorption onto the cell surface and the active
transportation of metal species inside the cells takes place in the second phase.
Transportation is a complex and irreversible process that requires energy consump-
tion. Active process of metal uptake involves the following steps: transport across
the cell membrane, formation of complexes, cation exchange, physical adsorption,
and precipitation metabolism of the cell. During the cation exchange process, metal
ions that are bounded to the cell surface can be replaced with another cation present
in solution of similar charge. Complexation involved the formation of secondary
compounds formed as a result of the linkage between organic molecules and metal
ions acting as ligands. Electrostatic interactions and covalent bonds stabilize these
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complexes. It is worth mentioning that the precipitation of metals occurs in both
active (dependent of metabolism) and passive processes.

Disinfection or pathogen removal is a key process in water reutilization. In this
sense, algae systems provide a tertiary treatment since pathogenic bacteria face harsh
conditions inside cultures (Neil 2014). Microalgae cultivation is normally carried out
in shallow ponds specifically designed to support a high algal productivity by
optimizing sunlight exposition of the culture broth. However, elevated biomass
concentration increases light attenuation and reduces the significance of the light
decay and inactivation mechanisms of bacteria a virus. Nevertheless, the negative
impact of light reduction may be counteracted by the intense mixing, provided by
paddle wheels or similar, that enables intermittent light exposure of moving cells
toward the surface (Chambonniere et al. 2021). In addition, the high microalgae
photosynthesis rates increase the magnitude of diurnal pH peaks (values higher than
10) and dissolved oxygen concentration, which can easily double the saturation
levels. These conditions enhance sunlight-mediated pathogen deaths. Presence of
toxic algae metabolites has been suggested; however, limited information is avail-
able in this topic.

4.5 Communities in the Phycosphere

Associated bacteria and other organisms growing in environments dominated by
microalgae is defined as phycosphere. In some cases, specific microbiota has been
described in cultures treating effluents or cultures devoted to biomass production.
Other studies have found wider distributed organisms community found in the
association. At this point, it must be stressed that techniques employed in microbial
population determination finally impacts the amount of organism detected. In this
sense, first studies based on characterization by selective media cultivation introduce
a significant bias in population determination (Ferrero et al. 2012). Molecular tools
techniques developed at the end of the last century have emerged as the fundamental
basis of microbial determination and therefore microbial ecology research. These
techniques have provided new insights that have helped improve the understanding
of biological processes and consequently the design and operation of bioreactors
(Manoylov 2014). In contrast to the high biodiversity observed in bacterial commu-
nities associated with rhizospheres of higher plants, phycosphere is characterized by
a significantly less diverse microbial community. Bacterial communities are domi-
nated by the phyla: Bacteroidetes and Proteobacterial, classes alpha, beta, and
epsilon. Archea species have not been detected in the reported studies (Sapp et al.
2008). Important metabolic features impacting the treatment performance have been
detected: chemoautotrophs involved in organic matter oxidation, chemoautotrophs
responsible for ammonia or nitrate oxidation, predatory organisms that could impact
the concentration of pathogen. Recently the characterization followed by
metatranscriptome analysis, study of the genes activated, have indicated activity in
genes that are involved in the interaction of bacteria with the microalgae. These
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genes are related to infection-related secretion pathways, biosynthesis of exoen-
zymes, modifying important metabolic pathways such as the synthesis of carbohy-
drates, lipids, and flagella.

4.6 Conclusions

Human activities deeply impact the Earth’s equilibrium between organisms and
geosphere, atmosphere and hydrosphere. Alteration of biogeocyles as a consequence
of resource exploitation has been reported for many of the elements of the periodic
table. In this scenario application of nature-based solutions with assimilatory capac-
ity of key elements present in polluted effluents is becoming a necessity. Microalgae
cultures present the ability to up-take some of the elements which present elevated
concentrations in polluted wastewaters, such as nitrogen and phosphorous, but also
more dangerous elements and compounds such as heavy metals and emerging
pollutants. Since microalgae and bacteria have undergone a parallel evolution that
has shaped the inferences between them, positive and negative, culture of microalgae
with environmental purposes must be an account with a solid knowledge of the
possible interactions and the consequences for the stability. In this sense population
characterizations and ecological analysis should be considered in technical opera-
tions and scientific research.
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Chapter 5
Biodegradation of Environmental
Pollutants by Marine Yeasts

Danouche Mohammed, El Arroussi Hicham, and El Ghachtouli Naima

Abstract Organic contaminants are among the main pollutants of ecosystems
because of their presence in domestic, agricultural, or industrial effluents. Indeed,
many organic xenobiotics such as aromatic hydrocarbons, pesticides, synthetic dyes,
etc., are not easily biodegradable in the environment and can therefore accumulate in
ecosystems causing various toxic symptoms in exposed organisms, including humans.
Yeast-assisted biological treatment has emerged as a promising new strategy for the
biodegradation of such hazardous contaminants. Firstly, this chapter provides an
overview of the applications of yeast in the biodegradation of organic contaminants.
Subsequently, synthetic dyes were chosen as a model of organic pollutants to highlight
the enzymes involved in their biodegradation process using various yeast strains.
Indeed, the main oxidases involved are laccase, tyrosinase, lignin peroxidase, and
manganese peroxidase. While the main reductases are Azoreductase, NADH-DCIP
reductase, and malachite green reductase. The last section highlights the effects of
physicochemical conditions on the effectiveness of mycoremediation.
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5.1 Introduction

Yeasts are a group of polyphyletic fungi composed of basidiomycetes and ascomy-
cetes species that have the particularity of living in a single-celled state. The
environmental role that yeasts play is identical to that of other fungi. In fact, they
act as saprophytes that transform plant and animal organic matter into biomass and
its by-products (Kutty and Philip 2008). These ecological properties have been
exploited by man since antiquity and continue to be developed even in the present
day in a range of applications such as the fermentation processes (Beer, Wine, Sake,
Soy Sauce), in food and feed ingredients (enzymes, flavors, pigments, amino acids,
organic acids), the biocatalysis (pharmaceuticals, chiral chemical intermediates, and
biotransformation), the biocontrol (food and feed safety, crop protection, and
probiotics), as well as in fundamental research in biology and biomedical (Molecular
biology, pathway engineering, systems biology mechanisms, drug metabolism and
resistance, etc.) (Johnson and Echavarri-erasun 2011).

In addition to these applications, the exploitation of this ecological principle of
yeasts in the biodegradation of different organic materials has prompted scientists to
evaluate their capacity in the biodegradation of different carbon-based xenobiotics
such as organic solvents, humic substances, phenolic compounds, petroleum, sur-
factants, pesticides, pharmaceuticals, and dyes, etc. (Aksu 2005). Numerous studies
have reported the ability of yeast to biodegrade a variety of hazardous contaminants,
including aromatic hydrocarbons (Deeba et al. 2018), phenol compounds
(Filipowicz et al. 2020), pesticides (Han et al. 2019; Isia et al. 2019), fungicides
(Kucharska et al. 2020), insecticide (Chen et al. 2012) and herbicides (States and
States 2011) and synthetic dyes (Danouche et al. 2021c, 2022).

In this chapter, we first reviewed existing studies dealing with the topic of
biodegradation of organic pollutants using halotolerant yeast strains. Then, we
approached a comprehensive analysis of the enzymatic process involved by various
yeast strains in the biodegradation of synthetic dyes as a model of organic pollution.
Finally, we discussed the involvement of physicochemical factors in enhancing the
mycoremediation capacity of yeast species.

5.2 Biodegradation of Organic Pollutants by Yeast

Biodegradation process is defined as an energy-dependent mechanism by which
organic substances are decomposed into simpler and smaller by-products through
the action of various enzymes (Kaushik and Malik 2009). This bioprocess is called
mineralization when the products of the biodegradation are more straightforward
elements, such as H2O, CO2, NH3, CH4, H2S, or PO3. This same process is defined
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as biotransformation when the organic compounds are not completely mineralized
(Danouche et al. 2021b). Numerous halophilic microorganisms belonging to bacte-
ria, fungi, and microalgae have shown the ability to decompose a wide variety of
organic hazardous substances under high salt conditions (Castillo-carvajal et al.
2014). In recent years, the biotechnological application of fungi (mycoremediation)
has become a model example for bioremoval of organic contaminants. It has been
reported that various species of fungal could be used for the biodegradation of
organic chemicals including aromatic and aliphatic hydrocarbons, industrial dyes,
and other organic contaminants, released into the aquatic environment from various
industrial and agricultural sectors (Aleu and Collado 2009; Sen et al. 2016). Despite
the advantages of yeast strains over other species of the fungal kingdom, including
rapid growth, high plasticity, and the ability to adapt to adverse growth conditions
(Jafari et al. 2014; Sen et al. 2016), only a few studies have been conducted on the
use of halotolerant yeast strains for the biodegradation of organic pollutants.

Aliphatic and Aromatic Hydrocarbons The yeast species described as hydrocar-
bon degraders are mostly from the genera of Yarrowia, Candida, Pichia,
Debaryomyces, Sporidiobolus, Metschnikowia, Lodderomyces, Rhodosporidium,
Leucosporidium, Rhodotorula, Stephanoascus, Sporobolomyces, Trichosporon,
and Cryptococcus (Csutak et al. 2010; Kumari and Abraham 2011; Jain and Bajpai
2012; Gargouri et al. 2015; Deeba et al. 2018). Recently, Hashem et al. (2018)
reported that other yeast strains of Meyerozyma guilliermondii KKUY-0214,
Yamadazyma mexicana KKUY-0160, R. taiwanensis KKUY-0162, P. kluyveri
KKUY- 0163, R. ingeniosa KKUY-0170, and C. pseudointermedia KKUY-0192
were approved for their ability to degrade both aromatic and aliphatic hydrocarbon.

Phenolic Compounds Pollution with phenolic compounds can occur in the soil as
well as in water bodies, due to their presence in discharges from industrial, agricul-
tural, or domestic activities (Anku et al. 2017). Species of the genus Candida are
documented as yeast strains with the highest capacity to decompose a diverse range
of phenolic compounds. For example, a yeast strain of C. rugopelliculosa was
reported to be able to decompose various phenolic compounds such as phenol,
bisphenol A, nonylphenol, 4-methylphenol, 4-ethylphenol, 4-tert-butylphenol,
4-tert-OP, 4-tert-, and isooctane (Huang et al. 2017). The phenol was also reported
to be degraded by other strains of C. tropicalis (Gong et al. 2021), C. tropicalis
PHB5 (Basak et al. 2019), C. subhashii A011, C. oregonensis B021,
Schizoblastosporion starkeyi-henricii L012 (Filipowicz et al. 2020), and
R. kratochvilovae HIMPA1 (Patel et al. 2017).

Pesticides, Fungicides, Insecticide and Herbicides Various agricultural practices
lead to the release of organic contaminants into the soil and surface or ground water.
Selected yeast strains can be used as biodegradation agents for these xenobiotics.
The pesticides like diazinon or pendimethalin can be biodegraded with Saccharo-
myces cerevisiae (Ehrampoush et al. 2017) or Clavispora lusitaniae (Han et al.
2019) respectively. The biodegradation of fungicides such as propiconazole was
illustrated through the use of yeast strains of Aureobasidium pullulans, Rhodotorula
glutinis, and Cryptococcus sp. (Kucharska et al. 2020). Regarding the insecticide,
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Chen et al. (2012) showed that C. pelliculosa was efficient in the biodegradation of
Bifenthrin. Also, C. xestobii was documented to have a high biodegradation capacity
of Metolachlor and Alachlor herbicides (States and States 2011).

Synthetic Dyes Biodegradation of synthetic dyes by yeast has also been
documented in the literature using different yeast strains (Danouche et al. 2021b).
The most commonly used yeast for the degradation of synthetic dyes are strains
belonging to the phylum Ascomycetes, such as Saccharomyces, Candida, and
Pichia species. While only a few studies have involved basidiomycetous yeast
strains, namely Trichosporon and Pseudozyma (Pajot et al. 2014). In the following
section, we will focus on synthetic dyes as a model of organic pollutants because of
their different chemical characteristics that make them resistant to biodegradation in
natural ecosystems, as well as because of their toxicity toward exposed organisms,
including humans (Danouche et al. 2021a). In the remainder of this chapter, an
in-depth review of the enzymatic mechanisms involved in the biodegradation of
these chemicals by yeast is presented in detail.

5.3 Yeast Enzymes Implications in the Biodegradation
of Synthetic Dyes

Synthetic dyes can be degraded enzymatically by yeast cells in either the extracel-
lular or in the intracellular compartment. The most studied enzymes for the biodeg-
radation of dyes by yeast are the oxidases, which are the class of enzymes that use
oxygen (O2) as an electron acceptor to catalyze the redox reaction, generating H2O
or H2O2 as products. They contain a metal or a Flavin-type coenzyme on the active
site (Phale et al. 2019). In addition, it has been shown that some reductases are also
involved by some yeast strains. The reductases indicated for the biodegradation of
synthetic dyes are Azoreductase, NADH-DCIP reductase, and Malachite green
reductase (Danouche et al. 2021b).

Laccase (Lac: EC 1.10.3.2) Synthetic dyes biocatalysis with Lac can be achieved
by direct biodegradation of the dye molecule by a nonspecific radical mechanism.
This enzymatic pathway has the advantage of avoiding the formation of toxic
by-products, such as aromatic amines, which are usually obtained as a result of
specific cleavage of the azo bond of various dyes via reductases or chemical catalytic
processes (Dave et al. 2015). Several studies have documented the involvement of
Lac in the biodegradation of the synthetic dye by yeast strains of Sterigmatomyces
halophilus SSA-1575 (Al-Tohamy et al. 2020), Galactomyces geotrichum GG (Guo
et al. 2019), Cyberlindnera fabianii (Danouche et al. 2021c), T. akiyoshidainum
HP2023 (Martorell et al. 2017a), T. multisporum, and T. laibachii (Pajot et al. 2007).

Tyrosinase (Tyr: E.C. 1.14.18.1): referred also to as monophenol
monooxygenase or polyphenol oxidase. It is an oxidase with copper coenzyme,
which can be employed for the detoxification of wastewater containing phenol or
other organic pollutants (Kim and Uyama 2005). The catalytic reaction of the dyes
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with Tyr occurs in two successive steps, a first catalyzing reaction is the
o-hydroxylation of the monophenols to the corresponding catechols
(monophenolase activity), next a second oxidation of monophenols to the
corresponding o-quinones (diphenolase activity) (Duckworth and Coleman 1970).
On their involvement in the biodegradation of synthetic dyes by yeast cells, it has
been identified in only a few yeast species. (Danouche et al. 2021c) reported their
involvement in the biodegradation of the azo dye Acid Red 14 with a yeast strain of
C. fabianii, in addition to other yeast strains including G. geotrichum MTCC
(Waghmode et al. 2012a, b), S. cerevisiae MTCC 463 (Jadhav et al. 2007),
C. krusei strains (Charumathi and Das 2011), Candida sp. MM 4035, T. porosum
MM 4037, C. satwnus MM 4034, Barnettozyma californica MM 4018 (Martorell
et al. 2012).

Lignin Peroxidase (LiP: EC 1.11.1.14) LiP is an extracellular enzyme whose
enzymatic substrate is nonspecific, this particularity confers it the capacity to
degrade various aromatic phenolic and non-phenolic compounds (Chowdhary
et al. 2018). For example, the biodegradation of sulfonated azo dye with LiP can
be accomplished in two consecutive one-electron oxidations of the oxidized LiP
forms by H2O2 in the phenolic ring, where the corresponding carbonium ion bearing
the azo bond contributes to the formation of quinone and phenyldiazine by nucle-
ophilic attack by H2O. The phenyldiazine product is then oxidized by O2 to a phenyl
radical and the azo bond is removed as N2, and then the phenyl radical extracts
hydrogen from its surroundings to produce a stable aromatic compound (Chivukula
et al. 1995). The catalytic activity of LiP was investigated during the biodegradation
of various synthetic dyes by basidiomycota yeast strains of T. laibachii and
T. multisporum (Pajot et al. 2007), as well as, by ascomycota yeast strains of
S. halophilus SSA-1575 (Al-Tohamy et al. 2020), G. geotrichum (Guo et al.
2019), P. occidentalis (Song et al. 2018a), S. cerevisiae (Jadhav et al. 2007),
C. krusei (Charumathi and Das 2011), Diutina rugosa (Bankole et al. 2017), and
C. samutprakarnensis (Song et al. 2018b).

Manganese Peroxidase (EC 1.11.1.13) MnP is a substrate-specific oxidase that
oxidizes Mn2 + to Mn3+ from the surface of the enzyme and subsequently oxidizes
phenolic substrates such as model lignin compounds or other organic contaminants
(Zhou et al. 2013). Yeast used MnP for the biodegradation of synthetic dyes as well,
it was revealed in yeast strains of C. fabianii (Danouche et al. 2021c), P. occidentalis
(Song et al. 2018a), D. polymorphus, C. tropicalis (Yang et al. 2008),
T. multisporum, and T. laibachii (Pajot et al. 2007).

Azoreductase (AzoR: EC 1.7.1.6): are a class of enzymes that catalyze the
reduction reaction such as the reduction of azo bonds (-N=N-) of azo dyes and
nitroaromatic and azoic drugs (Misal and Gawai 2018). The AzoR can be classified
according to their structures, or according to flavin dependence. The flavin-
dependent class of AzoR can also be divided based on their coenzymes like
NADH, NADPH (Saratale et al. 2011; Solís et al. 2012). The involvement of
AzoR in dye biodegradation by yeast has been reported in some research employing
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yeast strains of Issatchenkia occidentalis (Ramalho et al. 2004), C. fabianii
(Danouche et al. 2021c), C. krusei (Charumathi and Das 2011), S. cerevisiae
MTCC 463 (Jadhav et al. 2007), and T. beigelii NCIM-3326 (Saratale et al. 2009a).

NADH-Preferring 2,6-Dichloroindophenol Reductase (NADH-DCIP: EC
1.6.99.3) NADH-DCIP reductase is an oxidoreductase that reduces
2,6-dichloroindo-phenol (DCIP) with NADH as an electron donor (Nishiya and
Yamamoto 2007). Some studies have shown an increase in the NADH-DCIP
reductase activity during the biodegradation of various azo dyes with strains of
P. occidentalis G1 (Song et al. 2018a), C. samutprakarnensis (Song et al. 2018b),
D. rugosa (Bankole et al. 2017), P. kudriavzevii CR-Y103 (Rosu et al. 2018), and
T. beigelii NCIM-3326 (Saratale et al. 2009a).

Malachite Green Reductase NADH is used as an electron donor by this reductase
to transform malachite green into leucomalachite green. It has been first reported by
Jadhav and Govindwar (2006) that in S. cerevisiae MTCC 463 was used for the
biodegradation of green malachite. Next, Jadhav et al. (2008b) demonstrated their
implication in the biodegradation of methyl red by G. geotrichum MTCC 1360.
Also, Charumathi and Das (2011) reported the increase of MG-reductase activity in
C. krusei used for the biodegradation of Basic Violet 3, as well as, in S. cerevisiae
used for the biodegradation of Malachite green (Biradar et al. 2016).

Regardless of the mechanisms involved, the performance of the microorganisms
in the bioremediation of organic pollutants can be influenced by various environ-
mental factors, including nutrients, pH, temperature, etc. It is therefore critical to
emphasize the impact of these parameters on the yeast’s ability to eliminate such
contaminants.

5.4 Factors Controlling Mycoremediation Performance

Yeast cells are sensitive to the environmental conditions in which they grow.
Determining the impact of these physiochemical factors on the efficiency of the
removal of synthetic dyes is therefore crucial in order to make the mycoremediation
process faster, more efficient, and more practical for large-scale applications. There
are two ways to perform this optimization, either using a single-factor optimization
approach or based on statistical methods of optimization by the design of the
experiment (Gönen and Aksu 2009; Mahmoud 2016).

Carbon and Nitrogen Sources The effect of carbon and nitrogen sources on
the bioaccumulation or the biodegradation capacity of dye by yeast strains has
been the subject of several studies. It has been reported that at constant sucrose
content, the concentrations of both Remazol Black B and Remazol Blue dyes
inhibited the growth of C. tropicalis, with constant dye concentration, the growth
efficiency and the bioaccumulation capacity increased with sucrose concentration up
to 15 g L-1 (Aksu and Dönmez 2005). This combined effect was also analyzed using
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a statistical approach of response surface methodology. Okur et al. (2014) found that
the optimal values for dye uptake by C. tropicalis correspond to sugar concentration
of 5.1 g L-1 and a dye concentration of 499 mg L-1 of initial dye concentration.
Also, Gönen and Aksu (2009) found that the optimum combination predicted by
response surface methodology (RSM) confirmed that C. utilis was able to
bioaccumulate Remazol turquoise blue-G with a maximum uptake yield of 82.0%
in 15 g L-1 sucrose and 50 mg L-1 dye concentration. Additionally, (Das et al.
2010) confirmed that P. fermentansMTCC 189 was able to accumulate Basic violet
3 up to 69.8% in 10 mg L-1 of dye-containing medium and 24 g L-1 sugar extracted
from sugarcane bagasse through RSM analysis. Concerning the carbon sources
effect on the biodegradation efficiency of dye by yeast cells, it has been reported
that the addition of carbon sources, especially glucose at a certain level, stimulates
the biodegradation of dyes (Chang et al. 2000; Waghmode et al. 2011). Indeed,
glucose is an essential element in several mechanisms, it provides an energy source
for yeast growth, it regenerates the redox mediators NADH and FADH, and also it
serves as a substrate for the production of H2O2, which acts in turn as a co-substrate
for MnP and LiP (Swamy and Ramsay 1999; Jafari et al. 2014). In the same way, the
supplementation of the medium with nitrogen sources such as peptone, yeast extract,
urea, or others favors the regeneration of NADH which is used as an electron donor
for the reduction of azo dyes by the different enzymes (Bras et al. 2001).

Dye Concentration The initial dye concentration can significantly influence their
removal efficiency. A higher dye concentration gradually decreases the percentage
of their decolorization. This can be attributed to the toxicity of the dyes toward the
yeast cells, or to a lower biomass production making the decolorization operation
inefficient (Saratale et al. 2011). It has been reported by Das et al. (2010) that the
bioaccumulation of Acid Blue 93, Direct Red 28, and Basic Violet 3 by
P. fermentans MTCC 189 decreased as the initial concentration of these dyes
increased from 10 to 30 mg L-1. Likewise, Dönmez (2002) and Aksu (2003)
described that the increase in the initial dye concentration inhibited the growth and
caused a long lag period of S. cerevisiae and C. tropicalis. Other studies indicate that
the presence of dyes at high concentrations may inhibit azoreductase activity during
enzymatic biodegradation of the synthetic dye, due to the binding of dye molecules
to the active site of enzymes (Jadhav et al. 2008a; Saratale et al. 2009a).

Temperature Temperature is one of the crucial factors that influence the metabolic
pathways, the enzymatic activity, and the physicochemical interaction of dye mol-
ecules with the cell wall. According to the available literature, no study has been
devoted to the question of the effect of temperature on the bioaccumulation of dyes
using yeast cells. Therefore, it is very important to consider this factor as a research
question for future studies. Regarding the effect of temperature on the ability of yeast
to biodegrade dyes, many studies have been conducted on the activation energy of
the involved enzymes (Chequer et al. 2013; Miranda et al. 2013). The performance
of decolorization increased with increasing temperature to the optimum temperature,
then a reduction in activity occurs at higher temperatures (Tan et al. 2013, 2014,
2016). The decrease in the ability of yeast strains to remove the dye molecules can be
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attributed to the denaturation of the enzymes involved or to the resulting loss of cell
viability (Saratale et al. 2009b).

pH pH of solutions is one of the most influential factors on the ability of yeast cells
to bioremediate various organic pollutants, including synthetic dyes, it can modify
the physicochemical properties of the dye molecules, as well as the physicochemical
properties of the yeast surface where the cell-dye molecule interaction initially
occurs (Fu and Viraraghavan 2002). At low pH, the surface of yeast cells becomes
protonated with a positive charge, which promotes the binding of anionic dyes. On
the other hand, at higher pH values, the cell surface acquires a negative charge,
resulting in the electrostatic attraction of cationic dyes (Charumathi and Das 2012).
The pH may have an inhibitory effect on the transport of dye molecules across the
cell membrane, which is considered the first stage of the intracellular biodegradation
or bioaccumulation process (Khan et al. 2013). In addition, the initial pH can affect
the physiology of the yeast cells and the enzymatic activity. Most yeast strains show
better decolorization efficiency under neutral or acidic conditions. The optimal value
for the bioaccumulation of Remazol Blue, Reactive Red, and Reactive Black by the
yeast strain C. tropicalis (Dönmez and Aksu 2002) as well as for Remazol Red RB,
Remazol Black B, and Remazol Blue by S. Cerevisiae (Aksu 2003) was observed
was 3.0. Likewise, Das et al. (2010) investigated that the maximum bioaccumulation
rate of Basic Violet3, Direct Red 28, and Acid Blue 93 by growing cells of
P. fermentans MTCC 189 was at pH 5.0.

Shaking Agitation allows a uniform distribution of oxygen and nutrients in the
medium. It also facilitates the exchange of gases produced during the fermentation
process of dyes by yeast cells (Yu and Wen 2005; Pajot et al. 2007; Yang et al. 2008;
Martorell et al. 2017b). Differing opinions have been expressed regarding the effect
of oxygen on the decolorization process, with some researchers considering that
during the dye reduction reaction by the reductase, oxygen behaves as a stronger
electron acceptor than the dye molecule, thus preventing the azo dye reduction
reaction (Kalyani et al. 2008). On the other hand, other research indicates that
oxidizing enzymes, such as laccases, require oxygen to oxidize aromatic molecules,
including dyes (Thurston 1994). Therefore, it is necessary to optimize the level of
agitation that regulates the concentration of dissolved oxygen in the medium
throughout the yeast decolorization process to ensure an effective treatment.

5.5 Conclusions

On the basis of the research discussed in this chapter, it is appropriate to consider
mycoremediation as a cost-effective, eco-friendly, and efficient approach for the
biodegradation of organic contaminants. However, an efficient mycoremediation
process requires the optimization of physicochemical conditions, notably the initial
concentration of the pollutant, the supply of nitrogen or carbon sources, as well as
growth conditions such as pH, temperature, and agitation. On the other hand, the
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effectiveness of this kind of bio-processes should not be limited to emphasizing the
degradation of the considered pollutant molecule; instead, it requires characteriza-
tion and evaluation of the toxicity of the obtained by-products, since they can have
more harmful effects than the original molecule. Lastly, we strongly recommend the
application of this emerging biotechnology in wastewater treatment at pilot or large
scale in order to prove its potential application.
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Chapter 6
Sustainable Direct Digital Manufacturing
Using Marine Resources

Luís André R. Marques, Sara Biscaia, AnabelaMassano, Rafael M. Tavares,
and Artur Mateus

Abstract For over 60 years, global apparent food fish consumption has increased
considerably generating a large volume of preconsumer and postconsumer residues,
which consists mainly of shells and bones. Usually, fish by-products are used
directly as feed in aquaculture or fertilizers. However, other applications have
been gathering attention recently, such as the production of biofuel and biogas,
pharmaceuticals, cosmetics and many others. Nowadays, this biowaste represents a
promising source of biomaterials from marine discarded materials and this approach
is very attractive due to their abundant availability, accessibility and low-cost source.

Direct Digital Manufacturing (DDM) is currently a main subject in the
manufacturing industry placing many advantages, such as a high degree of geomet-
ric freedom for design and reduction of material waste, when compared to conven-
tional manufacturing techniques. Therefore, DDM is seen as an energy-efficient
technology. The use of biobased and biodegradable polymers in DDM technologies
has been an emerging field in recent years, mainly in biomedical areas, due to the
increasing interest in sustainable products and solutions, instead of using limited
resources such as fuel-based polymers.

Thus, the valorization of bioactive compounds from fish by-products is of great
interest due to their high market value, also can satisfy the demand of low-cost
biomaterials, reduce marine pollution and can be used as alternative materials for
DDM technologies. The reuse of these waste resources to produce biomaterials
through sustainable processes can be a way to create new companies and job
opportunities.
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3D Three-Dimensional
ABS Acrylic Butadiene Styrene
AM Additive Manufacturing
ASTM American Society for Testing and Materials
CAD Computer-Aided Design
CIJ Continuous Inkjet
DDM Direct Digital Manufacturing
DIW Direct-Ink Writing
DOD Drop on Demand
FDM Fused Deposition Modelling
FFF Fused Filament Fabrication
GelMA Gelatin-methacryloyl
HA Hydroxyapatite
ICT Information and Communication Technology
ISO International Standard Organisation
PEGDA Polyethylene Glycol Diacrylate
PET Polyethylene Terephthalate
PHA Polyhydroxyalkanoate
PHB Polyhydroxybutyrate
PLA Polylactic Acid
SL Stereolithography
SLA Stereolithography Apparatus
β-TCP Tricalcium phosphate

6.1 The Use of Fish Waste as 3D Printed Biomaterials

Annually, millions of fish waste are produced worldwide, despite the percentage of
food losses and waste varies mostly according to culture (Yan and Chen 2015; de la
Caba et al. 2019). The European Market Observatory for Fisheries and Aquaculture
Products (EUMOFA) reported that in 2018 the total world catches and aquaculture
production was of 97 million tonnes and 115 million tonnes, respectively (Fig. 6.1).

On the other hand, for over 60 years, global apparent food fish consumption has
increased considerably. In the period 1961–2017, the average annual growth rate of
total food fish consumption was 3.1%. Annual per capita fish consumption varies
from 9 kg to more than 24 kg due to the influence of cultural, economic and
geographical factors, including the proximity and access to fish landings and aqua-
culture facilities (Fig. 6.2) (FAO 2020).

The consumption of fish generates a large volume of preconsumer and postcon-
sumer residue, the largest proportion of which consists of shells and bones, which
could correspond to 50–70% of the product content (de la Caba et al. ).2019
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Fig. 6.1 World catches and aquaculture production by continent in 2018 (adapted from European
Market Observatory for Fisheries and Aquaculture Products (EUMOFA) (2020))

Fig. 6.2 Total and per capita apparent fish consumption, 2017 (adapted from FAO (2020))

Considering the most consumed species in the world in 2018, around 34% of them
present external shells (i.e. squids, clams, mussels, shrimps) and the remaining have
bones in their composition (i.e. salmon, tunas, colds) (Fig. 6.3) (FAO 2020; Nisticò
2017).

Global food loss and waste is a serious issue concerning the focus of Sustainable
development goal target 12.3, which aims at halving wastage by 2030 (FAO 2020).
The current management of fish waste is the disposal in public waters or onto
landfills. These can cause noxious odours as a consequence of the decay of
remaining organic matter or of the microbial decomposition of salts into gases,
and consequently, this causes the appearance of animals, such as insects, that feed
of organic matter (Chierighini et al. 2011; Hamester et al. 2012). Regarding bivalve
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Fig. 6.3 Share of main groups of species in fish trade in terms of value, 2018 (adapted from FAO
(2020))

shells waste, the major problem of discharge into the sea is the residue accumulation
in the ground, which over the years causes the increase of sediments, a harmful
factor for cultivation promoting the decrease in oxygen in the water, hindering the
growth of microalgae, which are mainly responsible for the nutrition of some
bivalves, which hinders their growth in their natural habitat (Chierighini et al.
2011; Shavandi et al. 2018).

Another scenario for fish waste, is their use as feed or raw material since the
correct waste management must involve trying to avoid or reduce its production and
minimize the risk to human health and the environment (Yao et al. 2014). The
reduction of waste production can be done through the reuse of products and, when
this is not possible, recycling should always be used for another type of recovery,
using only waste disposal as the last alternative (Monteiro 2014). Typically, fish
by-products are used directly as feed for aquaculture, silage or fertilizers (FAO 2020;



6.1.1 Biomaterials from Fish Waste

6.1.1.1 Calcium Carbonate

Calcium carbonate (CaCO3) is an exceptional material, especially in industrial and
biomedical fields. Compared with other inorganic materials, CaCO3 has shown
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Nisticò 2017). However, in the last decades, other applications have been gaining
attention, since presently can be treated with more efficiency as a result of improved
processing technologies (FAO 2020). Fish by-products have also been used in the
production of biofuel and biogas, dietetic products, pharmaceuticals, natural pig-
ments, cosmetics, alternatives to plastic, and constituents in other industrial pro-
cesses. Despite this, more research and innovation are still needed in this area, this
biowaste needs to be valued through the development of economically sustainable
routes in order to eliminate the related environmental problems (Nisticò 2017; Yao
et al. 2014).

Fish bones are an excellent source of collagen, gelatine and calcium and other
minerals such as phosphorus (Jafari et al. 2020; Maschmeyer et al. 2020; Terzioğlu
et al. 2018). Calcium phosphates present in fish bone have been the focus of many
researchers due to its potential to take the advantage of producing a high-quality
bioengineering material for several applications such as drug delivery, tissue engi-
neering and environmental remediation (FAO 2020; Terzioğlu et al. 2018). Crusta-
ceans and bivalves also offer several applications for their by-products, which not
only benefit the economy of industrial processors through the recovery of bioactive
molecules from the waste but also help to reduce environmental pollution caused by
the slow natural degradation rate of their shells (FAO 2020; Nirmal et al. 2020).
Chitin, a polysaccharide extracted from crustacean shell waste, has gained much
attention due to their non-toxicity and variety of bioactivities (Chierighini et al.
2011; Shavandi et al. 2018; Borić et al. 2020). Its derivative, chitosan, has been
successfully 3D printed using extrusion-based processes for bone tissue engineering
(Sanchez-Rexach et al. 2020). The shells of bivalves, such as mussels and oysters,
can be turned into calcium carbonate or calcium oxide, two highly versatile chemical
compounds with wide biomedical applications (FAO 2020; Ismail et al. 2021).

Altogether, represent promising sources of biomaterials from marine discarded
materials and this approach is very attractive due to their abundant availability, less
processing time, low-cost source, easy accessibility and simple way of handling
(Govindharaj et al. 2019). In addition, the reuse of these waste resources to produce
biomaterials through sustainable processes can be a way to create new companies
and job opportunities. So, the valorisation of bioactive compounds from these
by-products is of great interest for their high market value, beyond can satisfy the
demand of low-cost biomaterials for commercialization, can promote cleaner pro-
duction, reduce marine pollution and can be used as alternative materials for DDM
technologies (Govindharaj et al. 2019; Caruso et al. 2020).
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Fig. 6.4 Natural sources of HA and TCP (adapted from Terzioğlu et al. (2018))

promising potential for biomedical applications because of its biocompatibility,

et al. 2015). Furthermore, CaCO3 particles can be used as filler materials
(Abdolmohammadi et al. 2012; Barhoum et al. 2015b), coatings (Barhoum et al.
2014), pharmaceuticals (Saveleva et al. 2018; Mohd Abd Ghafar et al. 2017) and
bone tissue engineering (Luo et al. 2018; Didekhani et al. 2020). CaCO3 can have
mainly four polymorphs: calcite, vaterite, aragonite and amorphous CaCO3 and can
be extracted by mining or chemically synthesized in the laboratory (Mohd Abd
Ghafar et al. 2017; Hoque et al. 2013). Calcite is the thermodynamically stable phase
of CaCO3 and vaterite and aragonite are the metastable phases of CaCO3 (Ma et al.
2016). The amorphous phase is unstable, it rapidly crystallizes near ambient tem-
perature and pressure within a few seconds to a few minutes and acts as a seed for
crystal growth of the other polymorphs (Mohd Abd Ghafar et al. 2017; Boyjoo et al.
2014). Calcite, vaterite and aragonite have typical morphologies/shapes respectively
rhombohedral, spherical and needle-like (Boyjoo et al. 2014).

Fish bones are rich in CaCO3, making it an alternative source of low-cost CaCO3

for the synthesis of calcium phosphate bioceramic used in bone regeneration (Corrêa
and Holanda 2019). Various fish bones have been used as a starting material to
produce HA and β-TCP as listed in Fig. 6.4.

Regarding a traditional method to prepare calcium phosphates from fish bones,
the thermal calcination method concerns some aspects such as bones source,
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Fig. 6.5 Calcium
phosphate extraction from
fish bones (adapted from
Terzioğlu et al. (2018))

extraction method, calcination temperature and time that can influence the final
properties of calcium phosphates, particularly, the morphology, purity degree,
particle size and distribution, surface properties and Ca:P ratio (Terzioğlu et al.
2018; Naga et al. 2015; Piccirillo et al. 2013) (Fig. 6.5). Alternative methods have
been studied to produce calcium phosphates, such as alkaline hydrolysis
(Venkatesan et al. 2015), hydrothermal (Goto and Sasaki 2016) and laser ablation
(Terzioğlu et al. 2018; Boutinguiza et al. 2007).

Hydroxyapatite (HA) has been prepared from fishbones using an alkaline hydro-
lysis method. This biomaterial, shows excellent results in bone remineralization
processes, with regard to osteoblast cell proliferation (Shavandi et al. 2018). Côrrea
and Holanda (2019) synthetized HA from fish bone waste by wet precipitation
method and demonstrate that this approach has great potential for producing
nanopowder of biphasic calcium phosphate, particularly for the regeneration of
damaged bone tissue in orthopaedics. Another study by Naga et al. (Naga et al.
2015) aiming to obtain hydroxyapatite powder from fish bone skeletons by thermal
treatment and preparation of highly porous 3D ceramic scaffolds by polymeric
sponge method revealed the mechanical properties of scaffolds very near to the
strength of trabecular bone.

Regarding the extraction of calcium carbonate from shellfish, studies revealed the
chemical composition of various seashells in 92–99% of this mineral with about 5%
of organic matter. The dry shell weight of oysters, mussels, molluscs, cockles and
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Table 6.1 Chemical compositions of shells (adapted from Yao et al. (2014))

Oxides Oyster Hard-shelled mussel Clam Short-necked clam

CaO 51.06 53.70 53.92 53.58

MgO 0.51 0.33 0.22 0.20

SiO2 2.00 0.20 0.46 0.66

Al2O3 0.50 0.13 0.20 0.40

Fe2O3 0.20 0.03 0.04 0.04

P2O5 0.18

K2O 0.06

SrO 0.09

SO3 0.60

Na2O 0.58

TiO2 0.02

Mn2O3 0.02

lg. loss (%)a 44.16 45.61 45.16 45.12
aIncluding CO and organic materials lost by heating

scallops ranges from 0.01 g to 58.33 g or approximately 52–80% of the whole
animal. From a chemical point of view, calcing or pyrolyzing could convert calcium
carbonate into calcium oxide, so it is possible to use shell waste as an alternative
source to obtain these compounds (Yao et al. 2014). Several studies with the purpose
of extracting calcium carbonate from different seashell types reported calcium oxide
contents rather than calcium carbonate contents (Table 6.1). The results revealed that
the removal of organic material from seashells may be difficult and heating to high
temperatures results in forms with a higher degree of purity (Owuamanam and Cree
2020).

Islam et al. (Islam et al. 2013) reported a study using an environmentally friendly
method for the synthesis of calcium carbonate nanoparticles from cockle shells and
demonstrate that this extraction method has great potential in industry for the large-
scale production of calcium carbonate nanoparticles for biomedical applications.
Luo et al. (Luo et al. 2018) prepared polycaprolactone and oyster shell powder
scaffolds by additive manufacturing using a 3D printing system and demonstrated no
significant cytotoxicity effect of the prepared scaffolds towards MG-63 cells and
favourable biocompatibility for bone tissue engineering.

6.1.1.2 Chitin and its Derivatives

Chitin can be found in many organisms, such as fungi, plankton and the exoskele-
tons of insects and crustaceans.

The main marine sources of chitin and the commercial production of chitosan
especially rely on chitin from crab, shrimp, prawn and krill species (Raghavankutty
et al. ).2018
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Fig. 6.6 Waste input and output from Chitosan Industries (adapted from Mathew et al. (2021))

Chitosan is composed of N-acetyl-d-glucosamine and d-glucosamine units and is
polycationic in nature (Raghavankutty et al. 2018). Currently, the deacetylated form
of chitin, chitosan and their derivatives has also been developed for a broad spectrum
of applications, such as industrial chemistry, such as cosmetics, textiles, water
treatment and biomedicine (Yao et al. 2014). Films, hydrogels, microspheres and
nanoparticles are the major forms of chitosan in biomedical and pharmaceutical
applications (Raghavankutty et al. 2018). Biocompatibility, biodegradability, anti-
microbial activity, wound healing, and anti-tumour activity are some of their prop-
erties that contribute to its inevitable importance in fields already mentioned
(Raghavankutty et al. 2018).

The industrial-scale production of chitin and chitosan require harsh chemicals
like HCl for demineralization (to remove calcium carbonate) and NaOH (to remove
the protein) (Mathew et al. 2021). The extraction of chitin from crustaceans requires
approximately 6.3 kg of HCl and 1.8 kg NaOH, which turns the extraction very
expensive. Furthermore, approximately 1.4 tonnes of water are required to
completely remove the chemicals from the crustacean wastes, as well as high
temperatures for longer durations (Mathew et al. 2021). Figure 6.6 explains the
input and outputs derived from the chitosan factory.

Chitosan hydrogels have been successfully 3D printed using extrusion-based
processes for engineering bone tissue. Inorganic molecules have also been mixed
with chitosan for the purpose of improving its bioactivity to resemble bone
(Sanchez-Rexach et al. 2020).
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6.1.1.3 Collagen and Gelatin

Collagen is the major structural protein of fish skin and bones, representing 30% of
the total protein content, and it is the main component of the extracellular matrix
(ECM) in connective tissues (skins, tendons, ligaments and bones) (Jafari et al.

). Collagen is classified according to its structural features; there are at least2020
28 types of collagen and in fish is possible to obtain types I and II. Collagen and
gelatin are derived from the same macromolecules, being gelatin a partially
hydrolysed form of collagen in a denaturated state (Caruso et al. 2020). The use of
collagen from marine sources has attracted increasing attention due to their cost-
effective process, high collagen content, biocompatibility similar to conventional
bovine and porcine collagen and high absorption by the human body (Jafari et al.
2020).

Collagen and gelatin have a wide range of applications in food, cosmetic and
pharmaceutical industries. In biomedical applications, they also have been explored
as drug and gene carriers, bone-filling materials and wound dressings (Shavandi
et al. 2018; Jafari et al. 2020).

Regarding the various extraction methods used to prepare collagen from marine
sources, the conventional protocol includes the highlighted steps shown in Fig. 6.7.
The type of fish collagen must be considered to use more adequate extraction
parameters, such as the extraction medium pH and the temperature of the process,
since they can influence the final properties of the extracted collagen (Shavandi et al.
2018; Raghavankutty et al. 2018).

Collagen can be used in several forms, such as injectable solutions and disper-
sions, that can be processed further using Direct Digital Manufacturing technologies.
Govindharaj et al. (Govindharaj et al. 2019) reported the extraction of collagen from
marine eel skin as a potential blue biomaterial and incorporated into alginate
hydrogel to fabricate scaffolds using extrusion-based 3D printing technology. Sanz
et al. (Sanz et al. 2021) described the extraction, characterization and methacrylation

Freeze-drying

Precipitation

Extraction
Acid-solubilized Pepsin-solubilized Deep eutectic solvent Supercritical fluid Extrusion and

Ultrasound-Assisted

Chemical pretreatment
Alkaline treatment Acid treatment

Preparation
Washing and cleaning Separation of animal parts Cutting of raw material

Fig. 6.7 Collagen extraction procedure from fish by-products (adapted from Jafari et al. (2020))
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of Red Snapper collagen for 3D Coaxial Printing of neural and skeletal muscle cell
cultures as a model for neuromuscular junction formation.

6.2 Direct Digital Manufacturing: General Overview

Direct Digital Manufacturing (DDM) is currently a main subject in manufacturing
industry. Therefore, it is important to discuss the evolution of this term. Additive
Manufacturing (AM) is a continuously growing technology seen as a viable and

fi

International Standard ISO/ASTM 52900:2021 as “the process of joining materials
to make parts from 3D model data, usually layer upon layer, as opposed to subtrac-
tive and formative manufacturing methodologies” (ISO/ASTM52900:2021
(en) 2021).

AM techniques, commonly also referred to as 3D printing, were introduced in the
market in the late 1980s, with the development of stereolithography (SLA) process
by Charles “Chuck” W. Hull (Hull 1986). Since then and until now, with a constant
increase in interest in this area, many technological advances have been developed.
Therefore, the term AM is also evolving to DDM, referring to the interconnection of
AM technologies and information and communication technology (ICT), such as
computer software and communication through a network, making possible the
creation and production of final products and end-use components. This technology
introduces a change in the production paradigm, since the products will be derived
from a 3D CAD model and could be produced closer or at the customer location
utilizing an AM equipment (Chen et al. 2015).

According to the International Standard ISO/ASTM 52900:2021
(ISO/ASTM52900:2021(en) 2021), DDM technologies are divided into seven dif-
ferent categories (Fig. 6.8), such as:

• Material Extrusion – a process in which material is selectively dispensed through
a nozzle or orifice.

Fig. 6.8 Classification of additive manufacturing processes according to ISO/ASTM 52900:2021
(adapted from Dilberoglu et al. (2017))
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• VAT Photopolymerization – a process in which liquid photopolymer in a vat is
selectively cured by light-activated polymerization.

• Material Jetting – a process in which droplets of build material are selectively
deposited.

• Binder Jetting – a process in which a liquid bonding agent is selectively deposited
to join powder materials.

• Powder Bed Fusion – a process in which thermal energy selectively fuses regions
of a powder bed.

• Directed Energy Deposition – a process in which focused thermal energy is used
to fuse materials by melting as they are being deposited.

• Sheet Lamination – a process in which sheets of material are bonded to form
a part.

DDM offers many advantages, such as a high degree of geometric freedom for
design, reduction of material waste, reduction of tooling, time-to-market and, there-
fore, costs, when compared to conventional manufacturing techniques. The high
flexibility of these technologies in terms of geometry, by building parts layer by
layer, enables the production of complex and light functional parts, with associate
weight and material savings. Thus, DDM is gaining recognition as an energy-
efficient technology. The reduction or complete elimination in the need for tooling
means that the cost of producing a single part through DDM is approximately the
same despite the amount of parts needed. This makes DDM suitable for the produc-
tion of smaller batch sizes when compared to conventional processes like injection
moulding, also being an amazing alternative to produce personalized and high-
quality products that respond to an individual need (Gibson et al. 2015). For these
reasons, DDM is seen by the industry as a disruptive technology that will enable the
growth of new products and new business models, with applications in various areas
(e.g. aerospace, automotive, biomedical, food industry).

6.2.1 DDM for Biopolymers Production

DDM technologies using biobased and biodegradable polymers have been an
emerging field in the last few years, due to the increasing interest in developing
sustainable products and solutions, instead of using limited resources such as fuel-
based polymers (Jiang and Zhang ). However, DDM has not yet achieved its
full potential to be used as a regular production technology, due to limitations related
with the availability of materials, their sustainability and their lack of processability
concerning the DDM processes and equipment requirements (Liu et al. ).

In the last few years, the number of articles published regarding biopolymer
DDM increased from less than 5 articles in 2013 to more than 1000 in 2020 (Santoni
et al. ), which shows the effort on exploring natural and renewable biopolymers
to achieve a recycling and sustainable economy. Biomass from residuals of renew-
able resources, such as woody or marine, is seen as a thriving alternative to fossil

2022

2019

2017
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resources. By using the biorefinery concept it is possible to apply biomass conver-
sion processes and extract different components (e.g. collagen, chitosan, alginate)
and then incorporate them into innovative materials for specific 3D printing tech-
niques (Li et al. 2021).

The most promising DDM technologies for industrial biopolymers production are
extrusion-based processes—Fused Filament Fabrication (FFF) and Direct-Ink Writ-
ing (DIW), Inkjet 3D printing—Drop on Demand (DOD) and Laser-assisted 3D
printing—Stereolithography (SLA).

6.2.1.1 Fused Filament Fabrication

Fused Filament Fabrication (FFF) is a material extrusion AM process in which a
thermoplastic filament is melted and forced through a nozzle to the build platform,
layer by layer (Fig. ). Scott Crump, founder of Stratasys Inc., developed this
technology in 1992 under the term of Fused Deposition Modelling (FDM™) (Scott
Crump ). Since FDM™ is the term trademarked by Stratasys Inc., FFF is
commonly used to refer to the same process. FFF is the most used DDM technology
for polymer AM due to the simplicity and low cost of the process when compared to
other techniques. FFF is commonly used for printing polymeric materials such as
polylactic acid (PLA), polyethylene terephthalate (PET), acrylic butadiene styrene
(ABS), among others. The polymeric filament is heated above the melting temper-
ature and rapidly hardens after being deposited in the build platform, which allows

1992

6.9

Fig. 6.9 Schematic diagram of a typical Fused Filament Fabrication (FFF) printer
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the adhesion of the layer immediately deposited after on it. In addition, it is also
required to make sure that the filaments produced have the appropriate modulus and
flexural strength so they can be spooled and pushed by the drive gear and the idle
pulley (Ngo et al. 2018).

FFF was first developed to produce prototypes from plastic material. However,
nowadays it is also used to fabricate 3D parts with biopolymers with applications in
biomedical fields. A few studies reported that FFF is a capable technology in the
production of bioproducts and scaffolds for tissue engineering using
polyhydroxyalkanoates (PHAs) (Ausejo et al. 2018; Wu et al. 2017; Wu 2018;
Rydz et al. 2020) and polyhydroxybutyrate (PHB) biopolymers (Kontárová et al.
2020; Duan et al. 2011; Giubilini et al. 2020). PHA and PHB are biodegradable and
environmentally friendly polymers that can be extracted from marine microbes and
organisms.

The main challenges regarding the application of biopolymers in FFF are related
with the clogging of the printing nozzle, associated with the fragility of the filaments
or with the changes of viscosity caused by the filler content (Mazzanti et al. 2019).
One of the solutions is to combine the principles of FFF technology and use a
different mechanism to push the material through the heated nozzle, through a
material extrusion principle but without the need of preparing filaments.

6.2.1.2 Direct-Ink Writing

Direct-Ink Writing (DIW), like FFF, is a material extrusion AM process. In DIW, a
viscoelastic ink is forced through the printing nozzle onto a build platform under
controlled flow rates (Fig. ), in order to form 3D fibre structures at ambient
temperature with a predefined pattern, layer by layer (Saadi et al. ). The
extrusion of the ink can be done by different extrusion mechanism, such as
pneumatic-based, piston-based or screw-based extrusion, which make this process
suitable for working with a huge range of fluids with different viscosity values
(Murphy and Atala ).2014

2022
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Typically, the inks used in DIW are in the form of pastes or gels, which normally
includes organic, colloidal, nanoparticle-filled and sol-gel inks. Since DIW allows
the production of 3D parts directly from pastes and gels, instead of using heat in the
extrusion process like in FFF, the inks need to go through a solidification process,
such as evaporation, gelation or solvent-driven steps. Therefore, it is important that
DIW materials match rigorous requirements in terms of rheology in order to flow
with ease and recover after the deposition. Their formulations should behave as
non-Newtonian fluids, usually referred to as yield stress fluids, which means that
they are able to flow or deform indefinitely when submitted to a specific stress
(Gibson et al. 2015; Rocha et al. 2020).

DIW is a promising technology in the production of biopolymers for biomedical
areas, for example in tissue engineering. Several studies have been performed using
alginate, a polysaccharide derived from seaweed with biocompatibility and
non-toxic properties, to produce lattice 3D structures successfully (Bendtsen et al.
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Fig. 6.10 Schematic diagram of Direct-Ink Writing (DIW) process

2017; Möller et al. 2017; Wu et al. 2016; Chawla et al. 2020; Choe et al. 2022).
Other study evaluated the printability of biopolymers with collagen, an important
protein that can be extracted from fish bones, with applications in biomedical or drug
discovery (Zhao et al. 2015), and also the production of scaffolds for tissue regen-
eration using chitosan, a biocompatible polysaccharide with wound healing and anti-
fungal effects that comes from the skeleton of shellfish (Demirtaş et al. 2017; Elviri
et al. 2017).

6.2.1.3 Inkjet 3D Printing

Inkjet 3D Printing is a low-pressure and low-temperature process that involves the
deposition of ink droplets on a platform, layer by layer (Fig. ). The printing
material is extruded through a small nozzle within a print head, with each individual
layer cured between consecutive depositions (using an infrared or ultraviolet light)

6.11
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Fig. 6.11 Schematic diagram of a Drop on Demand (DOD) inkjet process

(Gibson et al. 2015). Inkjet 3D Printing is able to produce a wide range of materials,
such as polymers, dielectric and nano-conductive nanoparticles. This technology can
be performed using two different mechanisms, namely Drop on Demand (DOD) and
Continuous Inkjet (CIJ) printing. In the CIJ process, a continuous liquid ink flows
through the nozzle into a droplet format. In DOD inkjet printing, the most common
and more cost-effective when compared to CIJ, tiny droplets are deposited in the
build substrate due to the action generated by thermal or piezoelectric actuators (Guo
et al. 2017). In thermal DOD printing, heat is produced to create vapour bubbles that
force the ejection of the material droplets. On the other hand, in piezoelectric DOD
printing, an electric signal is applied to a piezoelectric material that generates
acoustic pulses, which forces the ejection of the ink droplets (Derby 2010).

Besides the high printing speed and cost-effectiveness, this process provides
higher precision and quality of production because the actuator mechanism allows
to control the droplet uniformity and size. Therefore, DOD inkjet printing is gath-
ering a lot of attention as a disruptive process in biomaterials production (Guo et al.
2017).

Köpf et al. reported that the use of agarose, a polysaccharide commonly extracted
from red seaweed that is used in molecular biology for the separation of large
molecules, combined with collagen allows to successfully print 3D complex struc-
tures that can be used in disease and drug discovery (Köpf et al. 2016). Another
study showed that is possible to 3D print pre-vascularised tissue replacements by
DOD inkjet printing using Gelatin-methacryloyl (GelMA) and collagen hydrogel
solutions (Stratesteffen et al. 2017).
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6.2.1.4 Stereolithography

Stereolithography Apparatus (SLA) or usually Stereolithography (SL) was the first
patented (1986) and commercialized (1988) AM process, developed by Charles
W. Hull, founder of Stratasys Inc. (Hull ). In SL, a UV laser is used to
selectively polymerize the photocurable resin contained in a vat (Fig. ). This
process starts with the scanning of the photosensitivity resin surface and after the
first layer is complete, the build platform shifts down and another laser scanning is
performed to the next layer, and so on until the 3D solid part is finished. After the
print is completed, the part is submersed in a solvent, such as isopropyl alcohol, to
remove any excess of resin and the support structures, which are usually necessary to
ensure the success of the print and avoid deformations, can be removed manually.
After that, and depending on the desired application, the final part can be submitted
to a post-curing step to enhance material properties, where temperature and UV light
are combined (Gibson et al. ).2015

6.12
1986

The materials used in SLA are usually thermosetting photopolymer resins. This
means that the photopolymerization process is irreversible and it is not possible to

Fig. 6.12 Schematic diagram of a stereolithography (SLA) process
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heat and convert the printed SLA parts back to their original liquid form. SLA
technique is capable of produce fine and complex structures with high dimensional
accuracy and good surface properties with minimal stepping effect, when compared
to the material extrusion AM processes. Due to the characteristics of SLA process,
especially attention is being paid to the bioprinting area (Grigoryan et al. 2021).

The development of calcium phosphate suspensions for SLA was studied and
reported as a viable solution for producing 3D components (Goutagny et al. 2021).
Calcium phosphate is a mineral extracted from marine fish bones with good bio-
compatibility and osteoconductivity. Gyroid scaffolds were successfully produced
by SLA using calcium phosphate nanoparticles, with great potential for bone repair
applications (Ullah et al. 2021). 3D hybrid scaffolds with ear shape were also
produced by SLA using a hybrid biocompatible resin with chitosan and polyethylene
glycol diacrylate (PEGDA), a synthetic polymer. Long-term cell viability and
spreading were observed, confirming the possibility of printing chitosan by SLA
and providing cell-adhesive properties to the scaffolds, suitable for repairing com-
plex geometries (Morris et al. 2016).

6.3 Current Challenges and Future Perspectives

In the last few years was made incredible progress in DDM of biopolymers, mainly
in biomedical areas, with many process improvements and advances in feedstock
materials. As a raw material, biopolymers represent an ideal option to be used in AM
processes, combining their biodegradable, non-toxic and environment-friendly prop-
erties with the possibility of producing complex 3D porous structures.

However, the feedstock formulation is still the major challenge to overcome for
the large adoption and large-scale production by the industry using DDM. Questions
related to feedstock printability, sustainability and functionality need further atten-
tion to match and achieve the cost and eco-effectiveness inherent to DDM technol-
ogies. Properties such as material degradation, compatibility with living cells and
mechanical strength and stiffness are the main barriers in today’s biopolymer 3D
printing. The development of biobased materials for DDM processes will be a
growing trend, with an increasing focus on discovering sustainable and
environment-friendly feedstocks.

Therefore, DDM shows a great potential for the development of natural-delivered
biopolymer 3D structures, with many biocomponents available in marine environ-
ments or residues, the largest renewable resource on the planet.
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Chapter 7
Exploiting Marine Fungi in the Removal
of Hazardous Pollutants and Biomass
Valorisation

Dushyant R. Dudhagara, Bhumi M. Javia, and Anjana K. Vala

Abstract The environment and human health are now seriously threatened by
pollution. Organic contaminants have a long half-life in the environment and possess
hydrophobic, mutagenic, and cytotoxic properties. Hence, they are a big challenge to
the health of environment. Due to their hydrophobic and persistent character,
non-biodegradable and recalcitrant chemicals have an adverse effect on terrestrial
and aquatic ecosystems. According to current pollution management methods,
biodegradation and bioremediation using various microorganisms is an efficient,
reliable, and eco-friendly approach to combat the pollutants. Marine-derived fungi
play a significant role in the remediation of organic pollutants because their unique
morphological and physiological properties including survival in the extreme con-
ditions and a diverse metabolic capability. This chapter highlights the role and
mechanisms of marine-derived fungi in removal of various pollutants as
polyaromatic hydrocarbons (PAHs), heavy metals, dyes, and the biomass valoriza-
tion. Fungi can oxidize PAHs, alkanes, and other complex hydrocarbons using
various intracellular and extracellular enzymatic machineries including
monooxygenases and lignin-modifying enzymes. Marine-derived fungi act as
biosorbents to remove heavy metal contaminants through active and passive mech-
anisms. Both living and non-living fungal biomass can be used to detoxify and
degrade dyes from the contaminated environment. Furthermore, fungal biomass
valorization facilitates the sustainable development of value-added products such
as biofuels, enzymes, amino acids, organic acids, alcohol, pigments etc. Thus, the
chapter emphasizes to understand the mechanisms of marine-derived fungi in
degradation of organic pollutant, metabolic pathways, and enzymes responsible for
degradation of organic compounds which would help to develop the future
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mycoremediation policies and production of value-added products for sustainable
future development.

Keywords Organic pollutants · Bioremediation · Biomass valorization · Value-
added products · Sustainable development

7.1 Introduction

Pollution is a matter of grave concern in this age. The condition of environment
directly influences the quality of life in the ecosystem on earth. Industrialization and
growing affluence in the developed world along with population explosion and rapid
development in the developing countries has resulted in accelerated environmental
degradation on a large-scale. Major sources of pollutants include industrial effluents,
injudicious use of fertilizers, insecticides, pesticides, mining activities, sewage
sludge, etc. Pollutants can be divided into two major types: biodegradable and
non-biodegradable pollutants. Non-biodegradable pollutants cause hazardous effect
on environment. Non-biodegradable pollutant includes heavy metals, pesticides,
polyaromatic compounds and radionuclear material etc. (Peng et al. 2008). Many
conventional physico-chemical methods of treatment/removal of these compounds,
though effective, are not feasible for application on a large scale. Hence, there is
need to develop treatments that can minimize or even eliminate such pollutants from
environment. In recent years, the application of microorganisms which degrade or
convert hazardous pollutants to less toxic compounds have become popular. Fungi
proved to have high potential in the degradation of high molecular weight com-
pounds and therefore are used widely to remediate environmental pollution (Akcil
et al. 2015; Deshmukh et al. 2016; Varjani 2017).

Fungi are eukaryotic, chemoheterotrophic, parasitic or saprophytic, unicellular or
multicellular filamentous organisms that include molds, yeasts, and mushrooms. The
kingdom Fungi includes eight phyla. Fungi are found in variety of habitats like soil,
fresh, and marine waters (Anastasi et al. 2013). Fungi produce secondary metabo-
lites, enzymes, biosurfactants, and polysaccharides and applied in bioremediation of
pollutants. Fungi have been efficiently used to treat water samples contaminated
with micropollutants (Badia-Fabregat et al. 2015). Marine fungi are able to sustain
high saline conditions and extreme pH this trait provides biological advantage over
terrestrial fungi (Thatoi et al. 2013; Singh et al. 2019).

Marine fungi are found in oceans and colonize different niches. They act as
parasites, saprobes, or symbionts and associated with organisms (Wang et al. 2012).
Marine fungi can be isolated from different samples such as sediment, seawater,
mangrove detritus, decaying wood, seaweeds, and invertebrates (Pang et al. 2016).
Marine fungi have capacity to produce different pharmacological metabolites
(Imhoff 2016). Marine fungi are source of novel antibacterial, antiviral, anticancer,
antiplasmodial, and anti-inflammatory compounds (Bovio et al. 2019), enzymes,
biosurfactant (Cicatiello et al. 2016; Nicoletti and Andolfi 2018) and are also useful
in the bioremediation of pollutants (Bovio et al. 2017). Marine fungi tolerate high
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concentrations of heavy metals such as copper and lead (Gazem and Nazareth 2013).
Role of marine fungi in heavy metals, dyes, and hydrocarbons degradation has been
well documented. Furthermore, enzymes from marine fungi can be used for paper,
pulp, textile, leather, biofuel industries, food and beverages, for animal feed, for
pharmaceutical, cosmetic, and environmental applications (Damare et al. 2012;
Bonugli-Santos et al. 2015; Deshmukh et al. 2016).

It has been reported that marine fungi have capacity to bioremediate highly
recalcitrant pollutants. Bioremediation is a process in which living organisms
degrade or convert harmful organic contaminants to less toxic compounds.
Mycoremediation is the process in which fungi are used for bioremediation.
Mycoremediation is eco-friendly and effective method to combat increasing pollu-
tion of soil and water (Arun et al. 2008). Fungi are ideal candidates for remediation
of pollutants due to their unique traits including ability to withstand fluctuation in
temperature and pH, heavy metal resistance, high surface area to volume ratio,
mycelial growth, hyphal network, and extracellular ligninolytic enzymes (Khan
et al. 2019). Fungi produce variety of intracellular as well as extracellular enzymes
including peroxidase and cytochrome P450, respectively, for detoxification and
biodegradation of pollutants (Durairaj et al. 2015). The diversity of habitats and
ability for secreting multitude of enzymes makes fungi potential candidates for
bioremediation at various locations (Divya et al. 2014).

In this chapter, the role of marine fungi in degrading various recalcitrant, persis-
tent, and harmful pollutants like polycyclicaromatic hydrocarbons (PAHs), heavy
metals, dyes, and mechanisms behind the mycoremediation of these pollutants are
summarized with process of biomass valorization. An attempt is made to understand
how the process of degradation can be accelerated and the future strategy to
overcome the existing limitations is discussed.

7.2 Hydrocarbon Degradation by Marine Fungi

Hydrocarbon contamination from petrochemical industry is the major environmental
problem faced by humanity. Leakage and accidental spillage of petroleum products
are to the tune of 2,00,000–6,00,000 metric tons per year (Kvenvolden and Cooper
2003; Das and Chandran 2011). These organic pollutants are carcinogenic and
neurotoxic which cause the harmful effects on animal and plant.

Bioremediation or biodegradation by application of natural populations of micro-
organisms is one of the mechanisms by which hydrocarbon and other pollutants can
be removed from the environment (Ulrici 2000). Biodegradation of petroleum
hydrocarbons is a complex process which depends on the environment and the
amount of the pollutants present in the site. Petroleum hydrocarbons are divided
into four classes: saturates, aromatics, the asphaltenes (ketones, phenols, porphyrins,
esters and fatty acids), and the resins (sulfoxides, amides, pyridines, carbazole, and
quinolones). Hydrocarbons differ in their degradation susceptibility to microbial
attack. The susceptibility of hydrocarbons to microbial degradation is linear alkanes
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> branched alkanes > small aromatics > cyclic alkanes (Ulrici 2000). Some
compounds such as high molecular weight containing polycyclic aromatic hydro-
carbon may be difficult to be degraded (Atlas 1995) but many fungal species are
capable to degrade this recalcitrant hydrocarbon-containing pollutants. It has been
observed that fungi present in polluted environment have developed adaptive mech-
anisms by which they are able to utilize hydrocarbons as the sole source of carbon
(Dacco et al. 2020).

Chaillan et al. (2004) isolated fungi Amorphotheca, Talaromyces, Neosartorya,
and Graphium from the soil contaminated by petroleum and have higher efficiency
in the degradation of petroleum hydrocarbons. Some terrestrial fungi Aspergillus,
Penicillium, and Cephalosporium are reported as idea candidate for the degradation
of crude oil (Singh 2006; Das and Chandran 2011). The different hydrocarbon
degrading pathways and their mechanisms operated by fungi are mentioned below.

7.2.1 Degradation Process of Alkane

Alkane is a saturated hydrocarbon with all single bonds in its structure and
cycloalkane is a saturated hydrocarbon with several carbon rings in its structure.
Alkane degradation can be catalyzed by some enzymes such as oxidase, dehydro-
genase and converted into fatty acids, and followed by acetyl coA and which can be
further mineralized as CO2 and H2O (Singh 2006). It has been observed that in the
process of Alkane degradation many enzymes played an important role such as
alkane monooxygenase, fatty alcohol dehydrogenase, fatty aldehyde dehydrogenase,
etc. Biological degradation of alkane is a subterminal oxidation process. In the
primary step, cycloalkane is oxidized into alcohols by n-alkane monooxygenase
type of oxidizing enzymes. Then, alcohols are converted into ketone by alcohol and
aldehyde dehydrogenase. Furthermore, the ketone is oxidized into fatty acid. Cyclo-
hexane is converted into corresponding compound, followed by cyclohexanol,
cyclohexanone, and fatty acids. At last, the compound is mineralized and form
CO2 and H2O along with fungal biomass production as the end product (Fig. 7.1)
(Dacco et al. 2020).

7.2.2 Degradation Process of Polycyclic Aromatic
Hydrocarbons (PAHs)

Polycyclic aromatic hydrocarbons (PAH) are widely distributed in the environment
and may persist for extended period of time. PAHs are composed of two or more
fused benzene rings and are formed during combustion of organic molecules
(Haritash and Kaushik 2009). Polycyclic aromatic hydrocarbons have carcinogenic,
mutagenic, and teratogenic properties. Forest, oil seep, volcanic eruption and
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Fig. 7.1 Degradation shows the terminal, diterminal, and subterminal pathways for the n-alkane
(modified from Dacco et al. 2020)

exudates from trees are natural sources of PAHs. Anthropogenic sources include
fossil fuel burning, coal tar, wood, garbage, lubricating oil, municipal waste incin-
eration and petroleum spills, etc., are the major source of pollutants (Kaushik and
Haritash 2006). Most important and ecologically damaging components of pollution
are the PAHs and cause depletion of the ozone layer and affect Earth’s heat balance,
adding acidic air pollutants to atmosphere and reduce visibility (Chauhan et al.
2000).

According to Yumoto et al. (2002), PAHs can be degraded by enzymes and
catalyzed into glycol or catechol, then decomposed into succinic acid or acetyl coA.
In degradation pathway, PAHs are gradually degraded into epoxide, trans diol,
phenol, and trans dihydro 2 phenol by monooxygenase enzyme of yeast. In another
study of Mills et al. (2004), PAHs can be degraded by dioxygenase into cis dihydro
2 phenol, epoxide, cis diol etc. The final metabolites in both pathways are co2and
water. The ligninolytic and monooxygenase system of cytochrome P-450 may be
involved in polycyclic aromatic hydrocarbon degradation by filamentous fungi.
Induction of the monooxygenase before application in degradation of hydrocarbon
could result in enhanced removal of PAHs (Haritash and Kaushik 2009). Fungal
cytochrome P-450 Monooxygenase from white rot fungi Phenerochaete
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chrysosporium have capacity to oxidize pollutants like aliphatic hydrocarbons, crude
oil, n-alkane, polyaromatic hydrocarbons alkylphenol, etc.

PAHs degradation depends on solubility, number of benzene rings, the species
and number of substituent species, the properties of heterocyclic atom of PAHs.
Asphalt is very difficult to be degraded by biodegradation due to its most compli-
cated structure. Many researches indicated that the PAH can be degraded only in
aerobic conditions. While it has been observed that PAH can be degraded in
anaerobic condition as well like sulfate reduction, denitrification, or methanogenic
fermentation. Though rate of aerobic degradation of PAHs is higher than the rate of
anaerobic degradation. (Meckenstock Rainer 2004).

Ligninolytic fungi are capable of oxidizing PAH by non-specific extracellular
enzymatic complexes, normally used to depolymerize lignin. These lignin-
degrading enzymes include laccase, lignin peroxidase, manganese peroxidase, etc.
(Peng et al. 2008). A novel PAH metabolic pathway in fungi involves hydroxylation
by cytochrome P-450 monooxygenase enzyme through a sequence of reactions
similar to mammalian metabolism (Capotorti et al. 2004). In many
non-ligninolytic fungi, this pathway occurs to effectively degrade hydrocarbons
(Ravelet et al. 2000). Many researchers have studied that purified fungal laccase
enzyme can be used for the oxidation of PAH. Laccase enzyme of T. versicolor,
C. hirsutus, P. ostreatus, and Coriolopsis gallicawas the most studied in the fungi. It
has been reported that activity of enzyme in T. versicolor fungi is 29 times higher
than other microorganisms (Margot et al. 2013). For example, T. versicolor laccase,
in combination with 1-hyrdoxybenzotriazole (HBT), was capable to oxidize two
PAHs, acenaphthene and acenaphthylene; Laccasewithout mediator oxidized about
35% of the acenaphthene and only 3% of acenaphthylene. The end products
obtained after incubation were 1,2-acenaphthenedione and 1,8-naphthalic acid anhy-
dride (Johannes et al. 1998).

Kirk and Gordon (1988) explained that 14 strains of obligate marine fungi
belonging to genus, Varicosporina, Dendryphiella, Lulworthia, and Corollospora
species can grow using alkenes and alkanes as a sole source of carbon and miner-
alized into n-hexadecane. The study has shown that the 14 lignicolous and arenic-
olous strains utilized pristine, 1-hexadecene and some degree of tetradecane as a sole
source of carbon. Raikar et al. (2001) isolatedThraustochytrids fungi from several oil
spills polluted sites in Goa and they were capable of degrading tar-balls added to
peptone broth and degradation was observed up to 30% in 7 days as estimated by gas
chromatography and gravimetry. A.sclerotiorum showed 99.7% pyrene 2 mg in
30 mL and 76.6% benzo pyrene 1 mg in 30 mL degradation after 8 and 16 days,
respectively (Passarini et al. 2011). Two non- identified marine-derived fungi were
able to remove phenanthrene from a media by adsorption through fungal mycelium.
Fungus Aspergillus sp. BAP14 isolated from marine sediment showed degradation
of benzopyrene and removed approx 30% BaP after 3 days (Raghukumar et al. 2006;
Damare et al. 2012).

In the degradation process of aromatic hydrocarbons, aromatic hydrocarbon is
oxidized by oxidase into dihydrodiol. Then, the dihydrodiol is degraded into
o-dihydroxybenzene. Dihydroxybenzene is degraded by following two processes,
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Fig. 7.2 Degradation of polycyclic aromatic hydrocarbons by fungi

which are ortho position ring opening and meta position ring opening reaction. Then,
these compounds are oxidized into long chain compounds and gradually metabo-
lized into acetyl coA. Degradation process by microorganisms such as bacteria and
fungi are comparatively different from each other. In bacteria, aromatic hydrocarbon
is oxidized by two oxygen atoms and converted into cis-dihydrodiol. While in fungi,
aromatic hydrocarbon is oxidized and converted into trans-dihydrodiol (Fig. 7.2)
(Xue et al. 2015; Kadri et al. 2017).

7.3 Heavy Metal Removal by Marine Fungi

Heavy metals are considered as one of the most hazardous pollutants having a
specific density of more than 5 gm/cm3. Heavy toxic metals are directly or indirectly
released into environment and as a result, annual worldwide release of heavy metals
reached 13,50,000 tons of zinc, 9,39,000 tons of copper, 22,000 tons of cadmium
and 7,83,000 tons of lead (Singh et al. 2003). Metals like iron, zinc, copper, and
manganese are essential for biological process. While mercury, cadmium, and nickel
have no physicological role but these metals can cause harmful disorders at high
concentration (Lenin et al. 2014). High concentration of heavy metals can cause
serious environmental as well as health problems. Unlike organic contaminants,
these pollutants from heavy metals are non-biodegradable and cause
bioaccumulation in food chain. Conventional physico-chemical treatment technolo-
gies become less effective and more expensive when metal concentrations are in the
higher range (1–100 ppm) (Dermont et al. 2008).

Marine fungi can tolerate high concentration of heavy metals and its their inter-
action to metal ions can be used to remove heavy metal pollutants from environment
(Lopez Errasquín and Vázquez 2003). Marine fungi can remove toxic metals from
the environment by adsorption as well as their metabolic activities (Davis et al.
2003). Living as well as dead fungal biomass has been recognized for the removal of
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heavy metals through absorption (Bishnoi and Garima 2005). Fungi can be used as a
biosorbent for the removal of heavy metals with excellent metal uptake and recovery
(Fu et al. 2012). Rehman et al. (2008) isolated yeast Lodderomyces elongisporus
from metal-contaminated site and found to tolerate various heavy metals. Damare
et al. 2012 stated that the fungus Thraustochytrids from shallow water hydrothermal
vents have efficiency to withstand high concentration of heavy metals. Majeau et al.
(2010) reported that psychrophilic fungi, Cryptococcus sp. found in deep-sea sedi-
ments have capability to tolerate high concentration of heavy metals such as ZnSO4,
CuSO4, Pb (CH3COO)2 and CdCl2 up to 100 mg/L.

Vala et al. (2004) while searching for new sources of marine fungi for the removal
and tolerance of heavy metal confirmed two seaweeds associated fungi Aspergillus
flavus and A. niger for their tolerance potential against hexavalent chromium. Both
the confirmed fungi had remarkable chromium tolerance and removal capability.
Chromium removal (mg/g dry wt) was noticed to increase with increasing chromium
concentrations.

Khambhaty et al. (2009) isolated three marine-derived aspergilli viz. Aspergillus
niger, A. wentii and A. terreus from Gujarat coastal area and were examined for their
hexavalent chromium (Cr(VI))removal capacity. Out of the three, A. niger was
monitored as the most potential candidate for Chromium removal. Complete ana-
lyses of biosorption and sorption capability discovered 117.33 mg/g adsorption by
A. niger under optimized conditions and sorption efficiency was noticed to be 100%.
Biosorption process was observed to be endothermic. On the basis of FTIR analysis,
amino, methylene, hydroxyl, and phosphorous groups were involved in binding of
chromium to fungal biomass.

Taboski et al. (2005) evaluated the toxicity level of Cadmium (Cd) and lead
(Pb) to two fungal species Corollospora lacera and Monodictys pelagica isolated
from the marine environment by exploring their growth rate and biomass.
Biosorption of metals was also checked. Growth rate of fungi was not affected by
lead, though, high cadmium concentration reduced the growth rate of fungi, partic-
ularly, M. pelagica. About 93% of extracellular lead segregation by C. lacera was
observed. M. Pelagica accumulated about 60 mg/g Cd and about 6 mg/gPb. About
7 mg/g Cd and up to 250 mg/g Pb was accumulated by C. lacera.

Khambhaty et al. (2009) studied dead fungal biomass of four marine Aspergillus
species for Hg(II) biosorption and noticed Aspergillus niger as the most efficient Hg
(II) biosorbent. Dead biomass of A. niger showed 40.53 mg/g Hg(II) removal under
optimized conditions. Assessment of possible cell-metal ion interaction disclosed
involvement of hydroxyl(–OH) and amino (NH2) groups present on the cell surface
in Hg(II) biosorption.

El-Kassas and El-Taher (2009) isolated hexavalent chromium (Cr(VI)) tolerant
strain of Trichoderma viride from water samples of the Mediterranean Sea. The
fungus could remove 4.66 mg/g Cr(VI). On the basis of transmission electron
microscopic (TEM) analysis, it was observed that accumulation of chromium by
the fungus did not affect its mycelial and conidial structures. Mendoza et al.(2010)
studied that two marine fungal strains of Dendryphiella salina were observed to
absorb 80–92% Hg2+ from the liquid media. Strain Den32 had higher absorption
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Table 7.1 Metal biosorption by marine fungal biosorbents (Ayangbenro and Babalola 2017)

Initial Metal
Ion Concentration
(mg/L)

Sorption
capacity
(mg/g)

Aspergillus Niger Cu
Pb
Cr
(VI)

100
100
50

15.6
34.6
6.6

Dursun et al. (2003)

Botrytis cinerea Pb 350 107.1 Akar and Tunali (2005)

Phanerochaete
chrysosporium

Cu
Pb
Zn

100
100
100

88.16
68.73
39.62

Iqbal and Edyvean (2004)

Pleurotus platypus Ag 200 46.7 Das et al. (2010)

Rhizopus oryzae Cu 100 34 Fu et al. (2012)

efficiency than strain Den35. The study disclosed the potential application of both
the strains for bioremediation of mercury, mainly through biosorption.

Vala and Upadhyay (2008) isolated arsenic tolerating Aspergillus sp. from coastal
waters of Bhavnagar, Gulf of Khambhat, West coast of India, disclosed the fungus to
tolerate supplied 100mg/L As (III) or As(V). Hydride generation atomic absorption
spectrometric (HGAAS) analysis revealed higher removal of As (V) than As(III).
Energy Dispersive X-ray spectroscopic (EDX) data further confirmed the presence
of arsenic in fungal biomass.

Vala (2010) explored removal and tolerance of arsenic by Aspergillus candidus
isolated from coastal waters of Bhavnagar, Gulf of Khambhat, West coast of India.
The fungus showed tolerance for the trivalent and pentavalent forms of arsenic
(25 and 50 mg/L). Maximum arsenic removal (mg/g) by the fungus was observed
on third day. Vala (2010) also suggested that facultative marine fungus A. candidus
was one of the most promising fungus for bioremediation of arsenic.

Vala (2010) and Vala et al. (2011) reported that Aspergillus flavus and A. niger,
facultative marine fungi, have tolerance and removal capability for arsenic. Vala
(2010) has reviewed A. niger as potential biosorbent. This perception was supported
by marine-derived fungus A. niger. Vala and Patel (2011) explained that heat-killed
biomass of marine-derived A. niger was studied for its As(III) biosorption capacity,
it was noted to remove more than 90% of provided As(III) concentrations. Highest
biosorption was found108.083 mg/g at the concentration 600 mg/L. (Table 7.1
depicts the sorption capacity of fungi for various metal ions).

Vala and Sutariya (2012) explored the amount of arsenic tolerance and removal
efficacy of two facultative marine fungi A. flavus and Rhizopus sp. Upon exposure to
25 mg/L and 50 mg/L sodium arsenite (As (III)), both the fungi showed arsenic
tolerance and accumulation. A little better accumulation was observed by Rhizopus
sp. Increase in accumulation was observed with increasing concentration
representing higher complexation rates between arsenic and arsenic complexing
group on the fungal biomass.
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Yeasts from the marine environment have been less studied for heavy metal
removal. Strains of Yarrowia lipolytica have been reported as potential hexavalent
chromium remediators by several workers (Rao et al. 2013; Imandi et al. 2014).
Likewise, marine yeast Rhodotorula rubra has been exploited for arsenic metabo-
lism (Cullen and Reimer 1989; Maher and Butler 1988). Though, arsenic remedia-
tion by marine yeasts has not been attended much attention in the recent past (Vala
and Dave 2017). Abe et al. (2001) isolated thirteen yeast strains from deep-sea
sediment samples of Japan Trench. Among them, Cryptococcus sp. was observed to
have the maximum tolerance for Cu2+. The authors also suggested the importance of
enzyme superoxide dismutase (SOD) to resist high Cu2+ stress.

Deep-sea psychrotolerant yeast isolates Cryptococcus sp., when grown in pres-
ence of various concentrations of heavy metal salts viz. CdCl2, CuSO4, P
(CH3COO)2, and ZnSO4, demonstrated remarkable growth in the presence of
100 mg/lmetal concentrations. Tolerance to these metals showed by the isolate
was comparatively higher than other deep-sea and terrestrial yeasts. Modification
in the cell morphology was observed in presence of heavy metals. The yeast can
remove 30–90% of the provided heavy metals. The authors recommended the
Cryptococcus sp. as a potential candidate for bioremediation of heavy metal-
contaminated sites. The authors postulated the metal-tolerant property and charac-
teristics of the yeast for the contribution to its ecological role and adaptations in
extreme environments (Singh et al. 2013).

Oyetibo et al. (2015) isolated both resting and growing cells of mercury-resistant
Yarrowia spp. from estuarine sediments polluted with mercury. The resting cells of
yeast strain were recommended to be applicable as a reusable bioadsorbent, whereas
the growing cells were recommended to be more suitable as efficient mercury
bioreduction and volatilization agent.

Srivastava and Thakur (2006) reported efficiency of Aspergillus sp. for the
removal of chromium in tannery wastewater. 85% chromium can be removed at
6 pH in a bioreactor by using synthetic medium, compared to 65% removal from the
effluent. Lakkireddy and Kues (2017) studiedCoprinopsis atramentaria for its
ability to accumulate 76% cadmium at concentration 1 mg/L and 94.7% of lead at
concentration 800 mg/L. Study of Park et al. (2005) suggested that dead fungal
biomass of A. niger, Rhizopus oryzae, Saccharomyces cerevisiae, and
Penicilliumchrysogenum can be used to convert toxic metal Cr (VI) into less toxic
or non-toxic Cr (III). It has been reported that catalase enzyme provides heavy metal
tolerance capacity to fungi such as lead, copper, zinc, cadmium, etc. It has been
observed A. niger, Rhizopus, and Penicillium fungi produce high amount catalase in
the presence of heavy metals such as Pb2+, Cu2+ (Thippeswamy et al. 2014).
Aspergillus foetidus has capacity to tolerate lead (Pb) concentration up to 200 mg/
L and can produce antioxidative enzymes including catalase for detoxifying H2O2

and malondialdehyde. Aspergillus spp. Have oxidative stress tolerance for heavy
metals like zinc and Copper. (Chakraborty et al. 2013; Mitra et al. 2014; Deshmukh
et al. 2016).

Luna et al. (2016) stated that Candida sphaerica can produce biosurfactants with
the removal of 95%, 90%, and 79% for Fe, Zn, and Pb, respectively. According to
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Mulligan et al. (2001) biosurfactants have been widely used in recent years because
of their low toxicity, biodegradability, and diversity. Surfactin, rhamnolipid, and
sophorolipid can be used for the removal of copper and zinc. A single wash of 0.5%
rhamnolipid can remove 65% copper and 18% zinc, while 4% sophorolipid can
remove 25% copper and 60% zinc. Chatterjee et al. (2012) reported that Hansenula
polymorpha, S. cerevisiae, Yarrowia lipolytica, Rhodotorula pilimanae, Pichia
guilliermondii, and Rhodotorula mucilage can be used to convert toxic Cr (VI) to
less toxic Cr (III).

Over the past few years, many bioremediation technologies have been applied all
over the world to solve the problem of contaminated environment. Many research
and review articles on these technologies for bioremediating heavy metals are
available (Khan et al. 2004). Though, there are several gaps in the understanding
of heavy metals bioremediation specifically because of the great complexity of soil
chemistry. Therefore, expansive and site-specific research is still required to bring
out the optimum performance from the technologies of fungal remediation.

7.3.1 Mechanisms of Mycoremediation for the Removal
of Heavy Metals

Mycoremediation of heavy metals involves interaction between fungi and metal.
Bioremediation process includes adsorption, precipitation, oxidation, reductions,
and complexation reactions. The chemical reactions between microorganisms and
metals can be categorized into six different processes: intracellular accumulation,
cell wall-associated metals, extracellular mobilization or immobilization of metals,
metal siderophore interactions, extracellular polymer-metals interaction with trans-
formation and volatilization of metals (Davies and Bennett 1983; Siddiquee et al.
2015).

Gadd (2007) demonstrated that Fungi can use three possible strategies for toxic
metal removal: (1) Active metal bioaccumulation in fungal cell and storage in
vacuoles and/or passive metals bioabsorption on fungal wall;
(2) Metalmobilization/transformation/immobilization in the external environments,
due to metabolites and secondary organic acids production; (3) metal exclusion.

Gadd (2007) also mentioned that fungi can restrict entry of toxic metal into cells
by these three mechanisms: (1) reduced metal uptake and/or increased metal efflux;
(2) metal immobilization, e.g., cell wall adsorption, extracellular precipitation of
secondary neoformed minerals (e.g., oxalates); (3) extracellular metal sequestration
by, e.g., exopolysaccharides and other extracellular metabolites. Five different
mechanisms for the heavy metal removal in fungi are mentioned below; (Fig. 7.3
depicts the mechanisms for the removal of heavy metals).
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Fig. 7.3 Mechanisms of mycoremediation for the removal of heavy metals
(modified from Siddiquee et al. 2015)

7.3.1.1 Mobilization of Metals

Mobilization of metals by fungi takes place due to the production and secretion of
fungal products like citric acid, a metal ions chelator and oxalic acid that can interact
with metal ions to form insoluble oxalate, which can be resulted from the dissolution
of primary metals containing phosphate. These organic acids produced by fungi can
increase the metal solubility by acidification and formation of metal-complex struc-
ture (Siddiquee et al. 2015).

7.3.1.2 Biosorption to Cell Wall

Fungal cell wall is the protective layer and barrier that controls uptake of toxic metals
into the cell and the first cellular components that interact with metal. Heavy metal
affects fungal growth and metabolism results in uptake of metals through chemi-
sorption processes (Kapoor and Viraraghavan 1997), which includes adsorption
coupled reduction process, ion exchange, precipitation, crystallization, and electro-
static interaction (Pundir et al. 2016). Aspergillus niger strains have been found
better in biosorption capabilities of heavy metals such as Cu2+, Zn2+ and Ni+2 at 4 to
6 pH (Siddiquee et al. 2015).

7.3.1.3 Metal Uptake and Translocation through Cell Membrane

Transporters are located on the cell wall of fungi and they are responsible to uptake
essential metals. Carriers may consist of all the metabolically-coupled and H+

gradient-driven transporter system (Siddiquee et al. 2015). Transportation of heavy
metals into the cell from the extracellular environment using active or passive



7 Exploiting Marine Fungi in the Removal of Hazardous Pollutants and. . . 129

transport mechanism through the cell membrane requires for the removal of heavy
metal ions from the environment. Transportation system requires energy for the
removal of heavy metals from the aqueous solution (Veglio and Beolchini 1997).

7.3.1.4 Intracellular Metal Immobilization

Intracellular metal immobilization includes two processes that are vacuoles com-
partmentation and complexation by cytoplasmic protein, called metallothioneins and
phytochelatins (Siddiquee et al. 2015). Fungal vacuole plays important roles in
molecular degradation, storage of metabolites, regulation of cytosolic concentrations
of metal ions and detoxifies potentially toxic metal ions. Metal-tolerant fungi can
survive due to their abilities of intracellular chelation, for example, metallothioneins,
phytochelatins, and metal sequestration within vacuoles (Liu and Culotta 1999).
Metallothioneins is a metal-binding protein that can modulate the intracellular
concentrations and bind both the essential metals such as Cu and Zn and inessential
metals such as Cd.

7.3.1.5 Metal Transformations

In fungi, biotransformation of metal occurs through chemical reactions such as
oxidation, reduction, methylation, and dealkylation. These reactions convert metal
ion into non or less toxic form. Chemisorption involves bond formation in chemical
group (hydroxyl, amine, phosphoryl, thiol, etc.) present on fungal cell wall or on the
surface and substrate to be adsorbed. Chemisorption excludes dependency on
metabolic reaction within fungal cell (Bhainsa and D’Souza 2009) and forms strong
bonding than ion exchange (Sheoran and Sheoran 2006). Metals may transfer to
other parts of the fungi mycelium and plant symbionts by cytosplasmic vesicles and
vacuoles. Condensation of heavy metal concentration in the absence of water
molecules known as precipitation that helps in removal of contaminants in bulk
amount (Gibert et al. 2005; Siddiquee et al. 2015).

7.4 Dye Degradation

Dyes are synthetic chemicals and recalcitrant in nature. More than 1,00,000 com-
mercial dyes including acidic, basic, reactive, azo, and anthraquinone-based dyes are
produced every year (Campos et al. 2001). Synthetic dyes are widely used in textile
dyeing, color photography, paper printing, food, pharmaceutical, cosmetic, and
leather industries. Among various industries, the textile dying industries discharge
large amount of wastewater effluent after dyeing process. More than 7 × 105 metric
tons of dyes are produced worldwide yearly (Supaka et al. 2004). The amount of
dyes that does not bind to the fibers, enters into wastewater during textile processing
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(Rai et al. 2005). It has been estimated that 2,80,000 tons of textile dyes are
discharged in textile industrial effluents every year worldwide (Jin et al. 2007).
Many dyes are visible in water at concentration as low as 1 mg/L (Sandhya 2010).
Synthetic dyes can cause environmental pollution and serious health-risk factors due
to large-scale production and extensive application (Forgacs et al. 2004).

Based on the chemical structure of the chromophoric group, dyes are classified as
azo, triphenylmethane, anthraquinone, polymeric, and heterocyclic dyes. The ver-
satile triphenylmethane and azo dyes account for most textile dyes (Yang et al.
2009). Azo dyes are characterized by the presence of one or more azo bonds [–
N=N–] with aromatic ring. Different substitutions on aromatic nucleus give struc-
turally different and versatile group of compounds which makes them recalcitrant
and xenobiotic compound (Khan et al. 2013; Jain et al. 2012). Many dyes contain
known carcinogens such as benzidine and other aromatic carcinogens (Singh
2006b).

In aquatic environment, dyes can interfere with photosynthetic activities of
aquatic flora, diffusion of gases and badly affect food source of aquatic organisms
and are of human health concern also. Dye forms thin layer over the surface of a
water and thus decreases the amount of dissolved oxygen in the water, therefore
adversely affects the aquatic flora and fauna. Dye-containing effluent increases
biochemical oxygen demand of the contaminated water (Ciullini et al. 2008; Annuar
et al. 2009; Ali 2010). Thus, nowadays degradation of dye is major point of concern.

Due to complex chemical nature, most of the synthetic dyes are highly resistant to
degradation (Lin et al. 2010). Physical and chemical treatment methods such as
precipitation, coagulation, adsorption, flocculation, flotation, electrochemical
destruction, and mineralization and decolorization process have some disadvantages
such as cost, time, and release of residues. All these techniques are minimizing the
toxicity level but not neutralizing the toxicity. To replace these techniques, biodeg-
radation can be used to completely degrade the dyes (Pandey et al. 2007).

Dye-contaminated industrial effluent is usually treated by physico-chemical
processes include membrane filtration, precipitation, ion exchange, flocculation,
flotation, ozonation, electro flotation, irradiation, and adsorption using activated
carbon or by using bacteria, fungi, algae, plant biomass or other biological material
(Robinson et al. 2001). Both living as well as dead cells are used for biosorption.
Biodegradation is the most efficient method to remove dyes from industrial effluent
and is energy-dependent process that involves the breakdown of dye into various
byproducts by action of various enzymes such as laccase, azo reductase, peroxidase,
and hydrogenase (Fu and Viraraghavan 2001).

Decolorization of the dye occurs when the chromophoric center of the dye is
cleaved (Kaushik and Malik 2009). In biosorption process, the original structure of
the dye remains intact and not degraded into fragments. Biosorption plays important
role in the decolorization of dye by living fungi (Fu and Viraraghavan 2001). Several
microorganisms, including bacteria, fungi, yeasts, and algae, can decolorize and
completely mineralize many azo dyes under certain environmental conditions
(Pandey et al. 2007). Both live as well as dead fungal biomasses can be utilized to
remove dyes from the contaminated ecosystem.
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7.4.1 Types of Toxic Dyes

During the manufacture and processing of textiles many different chemical reagents,
such as acids, bases, water softeners, salts, and organic solvents dyes are utilized.
From the 12 classes of chromogenic groups, azo dyes are largest group of synthetic
colorants and the most common synthetic dyes released into environment (Zhao and
Hardin 2007) followed by the anthraquinone type. They are widely used in the
textile, food, pharmaceutical, cosmetics, plastics, paint, ink, photographic, and paper
industries. Different types of dyes include azo, direct, acidic, basic and anthraqui-
none etc., are mentioned below with its structure and molecular weight in Table 7.2.
(Pande et al. 2019).

7.4.2 Dye Decolorization and Degradation by Marine Fungi

Marine-derived fungi, due to their adaptability to extreme conditions are better
suitable in treatment of colored effluents than their counterparts in the terrestrial
environment (Raghukumar 2004; Bonugli-Santos et al. 2015; Vala and Dave 2017).
Fungi growing under marine conditions have adapted to grow under saline and
alkaline conditions since the pH of seawater ranges from 7.5 to 8.2. Alternaria
tenuissima (El Aty et al. 2017), Cerrena unicolor (D’Souza-Ticlo et al. 2009),
Aspergillus niger (Lu et al. 2016; Joshi et al. 2012), Flavodon flavus, Penicillium
janthinellum (Wang et al. 2015), Peniophora sp. (Bonugli-Santos et al. 2015),
Tinctoporellus sp. (CBMAI 1061), Marasmiellus sp. (CBMAI 1062), and
Peniophora sp. (CBMAI 1063) (Bonugli-Santos et al. 2012) Phialophora
sp. (MF 6), Penicillium sp. (MF 49), and Cladosporium sp. (Torres et al. 2011)
are some examples of potential dye degrading fungi.

It has been reported that marine-derived fungi have potential for the decoloriza-
tion of textile effluents and synthetic dyes such as Congo red, Brilliant green and
RBBR (Raghukumar 2004, Raghukumar et al. 2008; D’Souza et al. 2006).
According to Arun et al. (2008) the lignolytic extracellular enzymes produced by
filamentous fungi have great relevance in bioremediation of toxic dyes. Bartlett
(1971) illustrated that Some dyes are used as indicators for production of lignolytic
enzymes and also play a very important role in bioremediation of lignin-based
derivatives in colored industrial pollutants such as paper and pulp mills, textile
mills, tanneries, and molasses-based distilleries.

Baccar et al. (2011) explained that White rot fungi such as Trametes versicolor,
Ganoderma lucidum, and Irpex lacteuswere evaluated for decolorization of Tannery
Dye Black Dycem TTO and suggested adsorption and biodegradation as a key
mechanism for removal of dye. Aksu et al. (2007) analyzed that Trichoderma
versicolor biomass can be utilized for biosorption of Remazol Black B reactive
dye. Laccase produced from Marine fungi can decolourize and mineralize high
concentrations of pollutants (Vishwanath et al. 2014). Myceliopthora thermophila
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(Ascomycetes) have capacity for decolourization of flexographic inks in presence of
mediators (Fillat et al. 2012; Deshmukh et al. 2016).

Young and Yu (1997) stated that Binding of dyes to the fungal hyphae, physical
adsorption and enzymatic degradation by extracellular and intracellular enzymes are
major mechanisms for the dye degradation (Young and Yu 1997). White rot fungi
produce lignin peroxidase, manganese peroxidase and laccase that degrades many
aromatic compounds due to their non-specific enzyme systems (Robinson et al.
2001; Madhavi et al. 2007). The predominantly reported enzymes for dye degrada-
tion are azoreductase, laccases, lignin peroxidase, manganese peroxidase, and
hydroxylases. Azoreductase and Laccase have been shown to degenerate azo dyes
(Rodrigue et al. 1999).

Chivukula and Renganathan (1995) stated that laccase enzymes can degrade the
azo dye through a non-specific free radical mechanism to form phenolic compounds
and prevent the formation of toxic aromatic amines. Manganese peroxidase has been
reported as the main enzyme involved in dye decolorization by fungus
Phanerochaete chrysosporium (Chagas and Durrant 2001). In fungus Bjerkandera
adusta, lignin peroxidase has been reported as important enzyme in dye degradation
(Robinson et al. 2001).

Dwivedi and Singh Tomar (2018) explained that A.allhabadii and A. sulphureus
have higher decolorization capacity up to 95.13% and 93.01%, while A. niger has
little lesser 83% decolorization capacity. Namdhari et al. (2012) explained that
decolorization of azo and anthraquinonic dyes can be achieved by brown rot fungi
such as Coprinus micaceus, Fomtopsispinicola, and Gloeophyllum odoratum.
Saranraj et al. (2010) isolated Aserpgillus niger, Aspergillus flavus, Aspergillus
fumigatus, Trichoderma viride, Fusarium oxysporum, Penicillium chrysogenum
and Mucor sp. that are responsible for the degradation of a wide range of textile dyes.

Huanga et al. (2016) modified Aspergillus versicolor by using cetyl trimethyl
ammonium bromide (CTAB) to enhance the fungal biosorption of Reactive Black
5 at various physiochemical conditions. Basidiomycetes fungi have been reported to
decolourize dye by adsorption to the mycelial surface and further metabolic break-
down by both batch mode and continuous mode. Schizophyllum commune has found
to be more efficient than Lenzites eximia for the treatment of azo dyes and textile dye
industry effluent, (Selvam and Shanmuga Priya 2012). Yesilada (1995) analyzed that
Coriolus versicolour and Funalia trogiiare responsible for decolorization of crystal
violet dye. Versatile peroxidase and lignin peroxidase have ability to oxidize
non-phenolic aromatic compounds, reactive Black B dye and low redox potential
was observed as seen from oxidation of phenolic substrates (Karigar and Rao 2011;
Deshmukh et al. 2016).

Ollikka et al. (1993) described that isozymes of lignin peroxidase found
inPhanerochaete chrysosporiumhas capability for decolourization of synthetic
dye. Phanerochaetechrysosporium has been observed to degrade many dyes such
as polymeric dyes, azo dyes, heterocyclic dyes, and crystal violet dyes. The fungus
P. Chrysosporium can aerobically degrade three azo dyes includes congo red, orange
II, and tropaeolin (Cripps et al. 1990).
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Bonugli-Santos et al. (2015) studied that the ascomycetes and basidiomycetes can
decolorize 30 to 60% of azo dye-containing effluent and 33 to 80% decolorization of
mixture of 8 reactive dyes under saline conditions. Bucher et al. (2004) illustrated
that decolorization of azure B is possible due to the production of ligninolytic
peroxidase by fungi Rhizophila marina, Bathyascus grandisporus, Verruculina
enalia, and Cryptovalsa halosarceicola. It has been found that Penicillium citrinum
CBMAI 853 is the most efficient fungus that decolorizes RBBR (100%) after
12 days, A. sulphurous CBMAI 849 (95%), Cladosporium cladosporioides
CBMAI 857 (93%), and Trichoderma sp. CBMAI 852 (89%) (Da Silva et al.
2008). Molitoris et al. (2000) isolated filamentous halophilic fungi Gymnoscella
marismortui from the Dead Sea which is responsible for the decolorization of
synthetic dye belonging to 4 different groups. Lalitha et al. (2011) explained that
marine Aspergillus flavus has capacity for the bioremediation of synthetic, color
photographic and paper mill dyes and can remove 80% and 90% synthetic dyes and
100% of color. It has been observed that sponge-derived basidiomycetes fungi have
ability to decolorize textile dyes in solid medium under both saline as well as
non-saline condition (Bonugli-Santos et al. 2012; Vala et al. 2018).

Raghukumar et al. (2008) explained that whole cell immobilization of marine-
derived fungi Penicillium janthinellum P1 and Pestalotiopsis sp. J63 showed the
decolorization of Azure B dye. 70% decolorization of MSW in five days has been
observed when marine-derived fungus NIOCC #312 is Immobilized on polyure-
thane foam (PUF) cubes. It has been seen that Basidiomycetes fungus, Flavodon
flavus can decolorize synthetic dyes such as Congo red, Remazol brilliant blue R,
Poly-B, and Poly-R. This fungus efficiently decolorized pigments in the molasses
spent wash and could also reduce the total phenolic and COD up to 50% and toxicity
completely. Verma et al. (2012) described that rapid decolorization and detoxifica-
tion of anthraquinone dye Reactive Blue 4 can be achieved by enzymatic oxidation
and sorption of degraded products on marine-derived fungal biomass. Saagaromyces
ratnagiriensis, a non-white rot obligate marine ascomycete fungus has capability to
decolorize effluent of paper mill (Sarma 2018).

7.5 Biomass Valorization

Rapid exploration of Earth’s resources has been steadily increased, giving rise to
depletion of resources and rapid generation of waste product (Ferreira 2015).
Nowadays, the best way to reduce the waste generation in large amount is their
application for the production of value-added products. Valorization is the approach
that facilitates sustainable development by value-added products from the waste
(Kumari et al. 2018). Waste valorization is the process of converting waste materials
into more useful products such as chemicals, reusable materials and fuels (Arancon
et al. 2013).

Fungi are heterotrophic and obtain sustenance by hydrolyzing complex material
and convert into simple form by taking up and utilizing substance for their
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biosynthesis and energy production (Hanson 2008). Filamentous fungi exist in a
myriad of environments and have capacity to process complex and diverse substrates
include starch or lignocellulosic polymers such as cellulose, hemicellulose, and
lignin (Maity 2015). The biomass and byproducts produced by fungi during waste
treatment are better valorized than bacteria. Fungi provide valuable enzymes as well
as proteins. Several value-added products such as biofuels and biochemicals are
produced by industrial cultivation of fungi using industrial waste as substrates.

It has been reported that processing of waste from dairy, sugarcane, tanning, oil,
cotton, bioethanol, agro, marine, and poultry industries can be utilized as an attrac-
tive alternative source of low-cost organics and nutrients to valorize waste into
fungal products with associated waste treatment. (Ali et al. 2020; Mahari et al.
2020; Gaur et al. 2020; Patel et al. 2017; Koutra et al. 2018). Compared to
conventional physico-chemical processes, biological processes by using microor-
ganisms including bacteria, fungi, and yeasts are offers a promising technique to
produce biofuel while decolorizing recalcitrant synthetic dyes and lignin (Ali et al.
2019, 2020; Kiayia et al. 2019). Waste produced from the agro-industrial could be
used as a sugar-based carbon source that can be either used alone or supplemented
with various expensive nutrients like yeast extract for the production value-added
products such as biodiesel, bioplastic, and exopolysaccharides at laboratory scale
and pilot scale. Several value-added products that have been produced from wastes
include biofuels like bioethanol and biohydrogen, short-chain organic acids,
building-blocks, including 2, 3-butanediol, 1, 3-propanediol, and succinic acid,
polymers like bioplastics, i.e., polyhydroxyalkanoates (Koutinas et al. 2014). The
major waste generated in paper pulp industry is cellulose-based fibers that can be
further treated for the production of useful products like fabric and paper.

Palmqvist and Hahn-Hägerdal (2000) explained that waste generated in pulp and
paper industry is spent sulphite liquor (SSL) that can be used for the fabrication of
phenolic compounds mainly aromatics syringic, gallic, and vanillic acids. According
to Alexandri et al. (2016) the SSL can also be utilized as a raw material for the
production of single-cell protein, bioethanol, bioplastics, bacterial cellulose and
other valuable products. Mukherjee et al. (2015) stated that food waste can be
utilized for the production of another value-added product called
hydroxymethylfurfural (HMF), which could be utilized as the precursor of medi-
cines, polymers, resins, solvents, and biofuels.

Similarly, lignocellulosic waste biomass has been used for the production of
phytosterols, polypropylene, acrylic acid and esters (Bardhan et al. 2015). The main
enzymes identified for lignin degradation include lignin peroxidase (LiP), manga-
nese peroxidase (MnP), and the copper-containing phenoloxidase known as laccase.
These ligninolytic enzymes have already been demonstrated utility in the food
industry, pulp and paper industry, textile industry, and as biocatalysts (Jaqueline
et al. 2010). Studies on utilization of lignin and/or lignin-like dyes by oleaginous
yeasts hold much promise for achieving overall efficiency and sustainable utilization
of lignocellulosic biomass and textile azo dyes for biofuel production (Ali et al.
2021).
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White rot fungi, especially Phanerochaete, Trametes, Bjerkandera, and
Pleurotus genera have ability to produce several lignocellulolytic extracellular
enzymes. In general, the conversion of lignocellulosic biomass includes a
pretreatment step for removal of protective lignin seal surrounding structural poly-
saccharides, followed by enzymatic hydrolysis and subsequent fermentation of
released soluble sugars. Thus, the reducing sugars from hydrolysis of cellulose and
hemicellulose fractions could be metabolized by other microorganisms producing
value-added compounds such as alcohols, flavonoids, organic acids, and phenolics
(Sánchez 2009; Mateo and Maicas 2015).

According to the study of pandey et al. (2015) Aspergillus spp. is involved in the
production of many value-added products including enzymes such as amylase,
protease, lipase, phytase, lactase, and catalase. Trichoderma spp. can be used for
production of cellulose and xylanase. Moreover, Aspergillus spp. are responsible for
a major fraction of commercial production of organic acids including citric acid,
gluconic acid, and itaconic acid and they are also potential sources of malic and
oxalic acid. Chitosan is used for production of superabsorbents can be obtained via
hydrolysis of chitin from the cell walls of Aspergillus spp. and these ascomycetes
can be used for production of keratinase hydrolysates (Pandey et al. 2015; Zamani
2010).

Monascus spp. have been important sources of pigments for the food industry and
together with Aspergillus spp., Fusarium spp. and Neurospora spp. have been a
source of different human food products (Ferreira 2015). However, unicellular
ascomycetes, that is, yeasts such as Saccharomyces spp., Pichia spp., and Yarrowia
spp. have also been reported to be potential sources of organic acids (such as a-
ketoglutaric acid, lactic acid, malic acid and pyruvic acid), polysaccharides such as
glucan, proteins like collagen, polyunsaturated fatty acids, sterols (e.g., squalene)
and lipids (e.g., ceramides). Marine fungi can potentially play an important role as a
bio catalyst in waste biorefineries due to their ability to produce enzymes that can
break down these recalcitrant structures. By using filamentous ascomycetes, their
biomass, normally rich in proteins and lipids, can represent another value-added
product of the biorefinery (Ferreira 2015; Ferreira et al. 2016).

7.6 Conclusions and Future Prospectives

Fungi are considered as natural decomposers which can significantly reduce and
degrade various recalcitrant, persistent, and toxic pollutants like hydrocarbons,
heavy metals, and dyes. Most of the studies show the role of various extracellular
ligninolytic enzymes and cytochrome 450 in the degradation of these pollutants.
However, in most cases, the underlying mechanism of the mycoremediation of these
harmful pollutants is elusive and needs further research. Mycoremediation can be
augmented by adding carbon sources at polluted sites and providing optimum
condition to increase degradation process. Naturally present community of microbes
acts in concert with the fungi to decompose the harmful contaminants. White rot
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fungi are extremely effective in decomposing toxic aromatic pollutants, heavy
metals and dyes etc. Further studies could be helpful in understanding the mecha-
nism and optimizing the process of mycoremediation. Benefit is offered that land
that is contaminated and unfit for agriculture could be both restored and made to
yield a nutritious food crop. Biomass valorization is the process which can convert
waste materials into more useful products such as chemicals, reusable materials and
fuels. This chapter will help to expand our understanding for the fungi from marine
environment as potential candidates for biomass valorization and mycoremediation
of hazardous pollutants that would be important for economical, ecological, and
legal reasons as well.
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Chapter 8
Marine Bacteria for Bioremediation

Paolo Stincone, Robson Andreazza, Carolina Faccio Demarco,
Thays França Afonso, and Adriano Brandelli

Abstract Marine pollution has been increasing over the years and can impact
directly living organisms. The continued pollution of soil and fresh water by
agriculture, industrial and urban activities frequently reaches the rivers and the
ocean by run over polluting from these environments. Bioremediation is an
eco-friendly technique that can immobilize, reduce damage, inactivate or remove
contaminants using living organisms or their structures or products for cleaning up
the environment. The technique used for bioremediation depends on the type of
contaminant, including structure, oxidation stage, complexation form. Bacteria are
recognized as important agents in bioremediation processes, including removal of
heavy metals, biodegradation of polyaromatic and halogenated hydrocarbons, petro-
leum and diesel, and biodegradation of plastics. Marine bacteria present a great
diversity of metabolic activities and their potential for bioremediation is still poorly
exploited.

Keywords Marine pollution · Biodegradation · Biotechnology · Bacterial
metabolism · Green technology

8.1 Introduction

Environmental pollution has becoming gradually a more complex and severe issue,
generating great concern worldwide. By definition, environmental pollution refers to
changes in physicochemical and biological components to such an extent that
adversely affects the environmental process and quality of life. The unbalance
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between use of natural resources and its restoring capacity can lead to damage in
different spheres, including water, soil, and air (Krishna et al. 2017; Li and Zhou
2020).

Regarding water pollution, the pollutants reaching aquatic environment can be
classified as point and non-point origin, being the point source normally from an
identifiable effluent discharge and the non-point source being widely distributed
over an area. The release of untreated effluents into the environment as a result of
different activities in industry is listed as one of the causes of water contamination,
along with domestic sewage discharge (Singh et al. 2020). The contaminants with
great concern in water can be both inorganic and organic: heavy metals, persistent
organic pollutants (POPs), emerging pollutants, pesticides, herbicides, among others
(Jeevanantham et al. 2019).

Amongst the effects of water pollution, the nutrient in excess causes eutrophica-
tion of aquatic environment. It can be highlighted by the oxygen reduction and
photosynthesis damage due to growth of aquatic weed blocking the light entrance in
watercourses (Bougarne et al. 2019). This eutrophic condition affects the natural
cycle, being responsible for death of several species. Another important impact is the
bioaccumulation of contaminants in trophic chain, leading to toxicity to human
health (Ali et al. 2019).

When mentioning air pollution, the source of emission and specific climatic
conditions from a location make the air pollution to be a complex combination of
several particulates and gases (Leni et al. 2020). Among the pollutants affecting air
quality, sulfur dioxide, ozone, carbon monoxide, and volatile organic compounds
(VOCs) are emphasized. The effects of long-term exposure to air pollution in human
health include cardiovascular diseases/increased mortality, along with pulmonary
insufficiency and asthma (Manisalidis et al. 2020).

On the other hand, among the sources of soil pollution from anthropogenic
activities, it can be mentioned the release of untreated effluent and solid wastes
from industrial sector, along with accidental spill and agricultural application of
pesticides, herbicides, and fertilizers. The main consequences of soil pollution are
related with security in food production, along with the surface runoff carrying
contaminants that end up reaching the aquatic environments (Cachada et al. 2018).
This consequence poses a serious threat to population, considering the presence and
accumulation of several contaminants in water, such as emerging contaminants,
heavy metals, and pathological agents, potentially causing contagious diseases and
toxicity effects on human health (Zulkifli et al. 2018).

The study and attempt to recover these affected areas and control the environment
pollution is increasingly growing, considering the importance for population health
and ecosystem equilibrium. The recovery of degraded areas can be done through
several different conventional techniques, including the physicochemical methods.
However, the use of eco-friendly alternatives, as the bioremediation, is gaining
attention and presents cost benefits, in addition to being a more sustainable approach.
In this sense, the bioremediation stands out as a technique that is based on the ability
of microorganisms in reducing the pollution level through their metabolism (Verma
and Kuila 2019).
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In the case of heavy metal remediation, for example, some conventional tech-
niques include the membrane filtration, chemical precipitation, coagulation-
filtration, electrochemical treatment, solid-liquid separation, among others (Rahman
and Singh 2020). The use of bioremediation instead of the aforementioned methods
aims to overcome the disadvantage of operation cost and generation of secondary
pollution as sludge formation, also being able to remove concentrations in levels that
could not be removed by other practices (Leong and Chang 2020).

The marine environment presents a wide variation in its characteristics, changing
the temperature, precipitation regimes, pH, salinity, pressure, currents, and
prevailing winds. Considering this great environmental variability, marine organ-
isms present great potential of adaptation, thus resisting to several adverse conditions
when applied to bioremediation (Dash et al. 2013; Theerachat et al. 2018).

In addition, the marine environment is well known by possessing an enormous
diversity of organisms, as yeasts, algae, archaea, protozoa, fungi, microalgae,
eubacteria, cyanobacteria, and actinomycetes (Beygmoradi and Homaei 2017).
Besides are being studied for bioremediation purposes, some marine organisms
have already important potential uses in industry such as the production of
biosurfactants, enzymes, and antibiotics (Tipre et al. 2020).

The importance of eco-friendly solutions to mitigate the environment pollution is
in evidence, since they are a less aggressive alternative, considering that can be made
in situ and without changing great amounts of soil from one location to another
(physical changes in landscape), in addition with the fact that microorganisms or
plants are used to reduce the contamination level. This alternative presents a high
acceptability by the population, besides the fact that it reduces the costs for decon-
tamination (Azubuike et al. 2020).

The understanding of gene pathways and degradation mechanisms is extremely
important in discovering organisms that can enhance even more the bioremediation
process of a degraded area. Thus, the genetic investigation allows the screening of
bacteria with amplified potential of pollution control, along with the screening of
genes and increasing the expression of enzymes responsible for degrading the
contaminants. In addition, the genetically engineered bacteria are also being studied
considering the advances in biotechnological and microbiological areas, where these
organisms can be able to enhance the efficiency of remediation of several contam-
inants (Liu et al. 2019).

Thus, this chapter aims to elucidate the bioremediation principles and general
aspects, along with presenting the related techniques, as bioaugmentation,
bioleaching, composting, among others, showing the most recent information avail-
able. The chapter also focus on illustrating the importance of bacteria for bioreme-
diation of different contaminants, as the removal of heavy metals, biodegradation of
polyaromatic and halogenated hydrocarbons, biodegradation of petroleum and die-
sel, and biodegradation of plastics. Another important point of this chapter is
bringing up the potential of marine organisms in bioremediation, along with the
innovative use of engineering bacteria for bioremediation. The focus is also to
demonstrate the great advances and benefits of application of this eco-friendly
technique to remediate polluted environments.
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8.2 Bioremediation

The bioremediation approach is based on the use of metabolic systems of microor-
ganisms or plants to clean up the environment. The microorganisms that are used to
perform the breakdown or transformation of the pollutant can be naturally existing—
thus named indigenous microorganisms—or from other location, intentionally added
to the remediation area. The bioremediating may involve several mechanisms
executed by the decontaminating agents (bacteria, fungi, or plants), such as degra-
dation, immobilization, and alteration of contaminant, along with its entire removal
from the environment (Abatenh et al. 2017).

The bioremediation can be classified into two different types: ex situ and in situ.
The in situ treatment is expected to be less expensive and more easily applicable,
since there is no need for moving large amounts of soil from one location to another.
However, the design and installation of equipment to improve the microbial activ-
ities should be considered, which can increase the operation costs (Azubuike et al.
2016). In this technique, the microorganisms are placed in the area, along with
oxygen adjustment through aeration and nutrient supply, permitting the surveillance
and efficient removal of the target contaminant. It is widely used to remediate
petroleum contaminated areas. On the other hand, the ex situ application is based
on the removal of soil or water from the contaminated area in order to decontaminate
and thereafter, the material is bring back to the original location. The ex situ is
known to be more efficient and faster than the in situ method and can be applied in
two most common ways, the slurry-phase in bioreactors, and the solid-phase, which
includes landfarming, biopiles, and composting techniques (Kumar et al.
2018a, b, c).

The efficiency of bioremediation is directly related with environmental parame-
ters as the pH, moisture content, and temperature. These aspects have direct influ-
ence on microbial growth and decontamination rate in such a way that studies in this
area aims to enhance the efficiency of the technique through the understanding of the
influence of these parameters on bioremediation mechanisms. The researchers intend
to make the microorganisms capable to remove contaminants in field conditions, in
addition to controlled simulations as laboratory conditions (Sharma et al. 2018a, b).

One of the factors most influencing the bioremediation is the availability of
nutrients, since it impacts the growth of microorganisms, reflecting directly in the
biodegradation rate and effectiveness. Mainly N, C, and P are essential nutrients for
bacterial activities. The adequate C:N ratio is essential in order to guarantee the
complete degradation of the target compounds, increasing the metabolic activity of
microorganisms (Huang et al. 2018).

The temperature is another parameter widely affecting the bioremediation pro-
cess, since it determines the survival of organisms and the inactivation/activation of
their metabolism. The enzyme activities that participate in degradation of contam-
inants present a specific optimum temperature, where it reaches the maximum, thus
declining when this value is changed. Moreover, this physical parameter is
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responsible for directly influencing physiological proprieties of microorganisms
(Hong et al. 2020).

Regarding the concentration of oxygen, it influences the degradation condition of
contaminants, promoting the aerobic or anaerobic condition. The necessity of
aeration aims to increase the oxygen level, since the element is the main electron
acceptor for aerobic bioremediation. The pH of environment widely affects the
bioremediation process since there are values for optimum growth and removal of
contaminants by the microbial metabolism. Any slight alteration from this value can
change metabolic processes and affect the removal. The moisture content also affects
directly the bioremediation, since each microorganism presents a requirement for its
growth and development, and it can change the availability and solubility of
contaminants (Kumar et al. 2018a, b, c).

Some additional factors may be considered when the bioremediation is intended
to be applied to an area, according to Das and Dash et al. (2014). Firstly, it is related
with levels, toxicity, mobility, and degradation property of the contaminants. Thus, it
is highly recommended that the location should be scanned and properly character-
ized, aiming the determination of the real extent of the contamination and probable
transport to other areas. Regarding the degradability of the contaminants, this
property is essential in determining the type of microorganism able to perform the
environmental removal and the time for remediating the area. Some compounds
present slow degradation rate due to its high molecular weight, presence of complex
ring structures or chlorine in its composition, affecting directly the time for achieving
the expected results.

Secondly, it is necessary to verify the vicinity areas in order to prevent the
contamination in achieving population and/or environmental receptors. In addition,
in order to select the best bioremediation technique for the location, the future use of
the bioremediation site might be considered, along with planning the most adequate
monitoring of physicochemical and biological parameters (Das and Dash 2014).

Among the inorganic contaminants to which bioremediation can be applied for
removal, heavy metals stand out. The bioremediation of heavy metals has widely
been studied, as showed by the research of Talukdar et al. (2020), where a consor-
tium using two fungal isolates, namely Aspergillus fumigatus and Aspergillus flavus
was reported as presenting bioremediation potential of highly toxic heavy metals Cr
(VI) and Cd (II). This high affinity of fungal consortium reveals great ability for uses
in environments contaminated with heavy metals.

The microorganisms that can perform efficient bioremediation are widely listed in
the literature, with different contaminants being removed from environment with this
technique. Some bacterial genera such as Pseudomonas, Rhodococcus,
Sphingomonas, and Achromobacter have been extensively used in bioremediation
since they present ability of converting pollutants to non-toxic compounds (Liu et al.
2019).

Organic contaminants are also widely studied in research area. The petroleum
hydrocarbons have successfully been bioremediated, for example, in a study using
vermicomposting process bioaugmentating with indigenous bacterial consortium
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isolated from petroleum oily sludge, composed of Acinetobacter radioresistens and
Enterobacter hormaechei (Koolivand et al. 2020).

In addition, among these several organisms that are able to remove several
contaminants from environment, the marine organisms are extremely important
and are receiving attention of studies, considering the great potential for uses in
bioremediation technique (Mohanrasu et al. 2020). The bioremediation of plastics,
more specifically low-density polyethylene (LDPE), was reported as efficient by the
marine bacteria Microbulbifer hydrolyticus. The degradation of LDPE by the strain
was evidenced by the modification on material surface seen with scanning electron
microscopy and the changes in functional groups identified by infrared spectroscopy
analysis. The discovery of a novel microorganism able to degrade polyethylene
highlights the relevance for application of this bacteria in bioremediation of other
contaminants with further studies (Li et al. 2020).

The advantages of application of bioremediation are related with the possibility of
remediation on site, thus reducing the physical disruption of the contaminated area
and need for transportation of large amounts of contaminated soil from one location
to another. Besides that, the residues generated in treatment are harmless compared
to other techniques, being mainly water, carbon dioxide, and cell biomass. Addi-
tional benefits that can be cited are the cost effectiveness and popular acceptance,
since it is a sustainable and eco-friendly approach not generating chemical hazardous
waste and thus not demanding disposal of products. The transformation of contam-
inants into harmless products allows the technique to avoid the future liability related
with treatment and disposal of material (Kumar et al. 2018a, b, c).

On the other hand, the disadvantages of bioremediation are related with limita-
tions regarding the biodegradation of some pollutants, that can be incomplete or
even undegradable. The use of microorganisms requires the adequate selection of
species with affinity with the target pollutant, besides the environment conditions
and nutrient supply that must be satisfactory for the efficient bioremoval. Another
important point is the time demanded for the organisms to perform the bioremedi-
ation, which can be longer than other techniques (Morillo et al. 2020).

The combination of several contaminants also represents a challenge to microor-
ganisms to overcome and perform bioremediation. In addition to type of contami-
nants, they can occur in distinct phases, as liquid, solid, or gas. The studies in this
area aim to select the most suitable organism for performing the contaminant
removal; and another difficulty is going from pilot-scale to real conditions, with
different factors affecting the microbial metabolism (Abatenh et al. 2017).

Another important type of bioremediation process is through enzyme activity.
Enzymes are biological macromolecules that can enhance several chemical reac-
tions, enhancing the reaction rate by lowering the activation energy of specific
substrate molecules. There are several enzymes that can act in biodegradation,
being the oxygenases that catalyze the oxidation of aromatic compounds, an impor-
tant example (Gao et al. 2021). Another example are the carboxylesterases that
catalyze the hydrolysis of carboxyl ester bonds, a functional group widely present in
synthetic pesticides like organophosphates (Zhang et al. 2020). Finally, the genetic
engineering applied to enzymatic bioremediation aims to increase the half-life,
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activities, and stability of enzymes, along with production of recombinant types
(Sharma et al. 2018a, b).

The future prospects in bioremediation consists in overcome the costs and the
need of isolation and characterization of microorganism and enzymes for
bioprospecting new organisms. In this sense, the techniques of metaproteomics,
metagenomics, and biomolecular engineering can be applied for identification and
characterization of organisms naturally found in different environments, besides
enhancing the biodegradation ability (Gu et al. 2021). More specifically,
metagenomics involves the understanding of genetic material from environmental
samples. The technique aims to identify new bacteria or genes encoding for specific
enzymes able to biodegrade contaminants (Datta et al. 2020). On the other hand,
metaproteomics studies the proteins involved in physiological responses caused by
pollutants in the organisms, aiming the identification of new metabolic pathways
(Zakaria et al. 2021). Lastly, the biomolecular engineering includes the use of
engineering biomolecules as nuclei acids and proteins, with biomolecular processes
aiming improvement of bioremediation process (Pandey et al. 2018).

8.3 Bioremediation Techniques

Different bioremediation techniques have been used as management tools for recov-
ering and remediating contaminated environments. In the process of removing
environmental contaminants, bioremediation uses biological agents, mainly micro-
organisms, to eliminate, reduce, contain, or transform dangerous substances into less
toxic or non-toxic ones (EPA 2001, 2002; Saxena and Bharagava 2016; Bharagava
et al. 2019). Bioremediation is classified into two main types, in situ bioremediation
and ex situ bioremediation. Different in situ and ex situ bioremediation methods are
discussed in the following sections.

8.3.1 In Situ Bioremediation

In situ bioremediation involves the treatment of harmful substances at the contam-
ination site (Kumar et al. 2018a), with no need to excavate, remove, or transport
toxic waste from its original position (Enerijiofi 2021). Pollution is eliminated or
mitigated directly where it occurs or at the site of contamination. It is an ecologically
correct and low-cost technique, with the possibility of treating large volumes of
contaminated material (Mishra et al. 2020).

Different techniques can be employed for in situ bioremediation, such as
bioattenuation, bioventing, bioaugmentation, biostimulation, biosparging,
bioslurping, biofilters, bioleaching and biomining, phytoremediation and
mycoremediation.
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8.3.1.1 Bioattenuation

This bioremediation technique is also known as natural attenuation, which involves
the passive and unattended remediation of a contaminated area without the need for
human interference. Although the bioattenuation process involves the absence of any
external forces, regular monitoring is necessary for the process to be sustainable and
successful (Azubuike et al. 2016; Vásquez-Murrieta et al. 2016; Enerijiofi 2021).

Bioattenuation includes physical, chemical, and biological processes, which
cause a reduction in the concentration of pollutants, mass, or toxicity (Vásquez-
Murrietaet al. 2016). Anaerobic and aerobic microbial processes in the treatment of
recalcitrant and biodegradable pollutants are also involved (Enerijiofi 2021). This
technique is applicable to contaminated sites with a low concentration of contami-
nants, where other remediation techniques do not apply (Vásquez-Murrieta et al.
2016; Ossai et al. 2020).

8.3.1.2 Bioventing

In the process of degradation using the bioventing technique, nutrients and air
(oxygen) are supplied in a controlled manner through wells to the contaminated
site (i.e., soil) to stimulate microbial growth and proliferation (Enerijiofi 2021). This
technique uses reduced airflow rates, providing only the amount of oxygen needed
for biodegradative processes, reducing volatilization and release of pollutants into
the atmosphere to lower levels (Atlas and Philp 2005).

Biodegradation involves the supply of oxygen and nutrients through aqueous
solutions in contaminated soils, allowing the stimulation of native bacteria, thus
facilitating the decomposition of biogenic pollutants (Tyagi and Kumar 2021). This
technique is applied for removing pollutants in the depths of the surface (vadose
zone), biodegradation of petroleum hydrocarbons, reducing volatile compounds
(VOCs) rising to the surface, spilled light oil, absorbed fuel residues,
non-chlorinated solvents and pesticides (Höhener and Ponsin 2014; Kumar and
Gunasundari 2018; Olu-arotiowa et al. 2019).

Some factors must be considered before applying the bioventing technique, such
as adequate concentration of pre-existing microorganisms; airflow conditions; the
soil pH (6 to 8); hot temperature and water table height—when the water table is
close to the surface, then the bioventing is not effective. Other conditions for the
ineffectiveness of bioventing are low temperatures and moisture content in extremes
levels, low or high (Kumar and Gunasundari 2018).

8.3.1.3 Bioaugmentation

Bioaugmentation involves adding native microbial and exogenous microbial cul-
tures, microbes or genetically modified communities with specific catabolic activity,
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at the contamination site, to increase the rate of biodegradation (Andreolli et al.
2015; Nwankwegu and Onwosi 2017; Poi et al. 2017; Enerijiofi 2021).

At bioaugmentation, active agents are characterized by the ability to degrade the
contaminant and their resilience to the prevailing environmental conditions, as well
as its genetic stability and ability to survive under competition (Gentry et al. 2004).

Bioaugmentation can be applied for treating wastewater and contaminated soil. It
is used in the degradation process of substances such as polyvinyl compounds,
PAHs (pyrene and benzo[a]pyrene, pesticides, insecticides, trinitrotoluene (TNT),
aromatic and chlorinated hydrocarbons) (Kumar et al. 2018b; Olu-arotiowa et al.
2019; Sarkar et al. 2020). It has also been widely used in the treatment of medium
and long chain alkanes, xenobiotic compounds, water and soils contaminated with
polycyclic and monocyclic aromatic hydrocarbons and others (Akinde et al. 2012;
Pal et al. 2017; Varjani 2017).

8.3.1.4 Biostimulation

Biostimulation is applied in the treatment of pollutants such as metals and hydro-
carbons (Ossai et al. 2020). It consists of the addition of materials (biosurfactants,
bulking agents, biopolymers, nutrient correctives, and slow-release fertilizers) to
stimulate the growth of indigenous microorganisms capable of degrading various
compounds (Adams et al. 2015; Agarry and Latinwo 2015; Lim et al. 2016; Wu et al.
2016).

Substrates containing micronutrients (copper, chlorine, iron, magnesium, man-
ganese, silicon, sodium, and zinc), macronutrients (phosphorus, potassium, and
nitrogen), and organic nutrients are essential to improve the degradative capacity
of foreign or indigenous microorganisms, and as an example, the concentration and
the types of nutrients interfere with the biodegradation of polycyclic aromatic
hydrocarbons (PAHs). The ability to deliver nutrients, C:N:P ratio 30:5:1 for
equilibrium growth, presence of target microorganisms, ability to stimulate target
microorganisms, are requirements for biostimulation (Hazen 2010; Ossai et al.
2020).

8.3.1.5 Biosparging

In the biosparging technique, air (oxygen) and nutrients are injected into the
saturated zone under pressure to stimulate the biological activities of indigenous
microorganisms to degrade contaminants, thus increasing the concentration of
oxygen in ground water (Azubuike et al. 2016; Enerijiofi 2021). This technique is
similar to bioventing (Kumar et al. 2018b), being used to reduce the concentration of
the contaminant dissolved in ground water or adsorbed to the soil (within the
capillary fringe above the water table).

Factors such as pollutant degradability and soil permeability interfere with the
effectiveness of the technique (Philp and Atlas 2005; Kumar et al. 2018a), as well as
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predicting the direction of the injected airflow can limit its application, along with a
high rate of airflow to achieve the volatilization of the pollutant and promote
degradation (Ossai et al. 2020).

Biosparging is widely used in the treatment of aquifers contaminated with
medium-weight petroleum hydrocarbons (jet and diesel fuels) and other compounds
(xylene, benzene, ethylbenzene, and toluene) (Kumar and Gunasundari 2018;
Kumar et al. 2018a).

8.3.1.6 Bioslurping

Bioslurping or multiphase extraction is used to remove the free product that is
floating on the water table. It combines vacuum-enhanced free product recovery
with bioventing. Thus, vacuum-enhanced free product recovery extracts Light
Non-Aqueous Phase Liquid (LNAPLs) from the capillary fringe and groundwater
(Kumar and Gunasundari 2018; Mishra et al. 2020).

Bioslurping combines several processes, extracting steam from the soil, vacuum
pumping, bioventilation, to remove contaminants from groundwater and soil, using
an indirect supply of oxygen and stimulating microbial biodegradation (Vidali
2001). The low permeability of the soil reduces the rate of oxygen transfer by
limiting microbial activity, which limits the use of the technique.

As bioventing is used in the bioremediation of contaminated soil/water, a com-
bination of techniques (bioventing and bioslurping) can be designed, mainly to
control the release of gas from soil and groundwater. Petroleum hydrocarbon
compounds and LNAPLs are treated using bioslurping and bioventing. This tech-
nique is economical, and applicable to places with deep water table (Kumar and
Gunasundari 2018; Mishra et al. 2020).

8.3.1.7 Biofilters

Biofilters are used to degrade pollutants (gaseous) in industrial air emissions.
Columns embedded with microbes are applied to eliminate gaseous pollutants
(Boopathy 2000), which means that the community of microorganisms that grow
on a solid surface is able to immobilize or degrade the pollutant. Thus, the air
containing toxic pollutants when passing through the biofilter is adsorbed on
biofilms, incorporated into microbes, degrading the pollutant. Several materials are
applied as biofilters, among them, peat, soil, agricultural residues (husks), and
others. Biofilters are used to remove terpenes, mercaptans, dimethyl sulfides, hydro-
gen sulfide, ethylbenzene, sulfur gases, and other compounds from the air (Boopathy
2000; Kumar et al. 2018b).
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8.3.1.8 Bioleaching and Biomining

The solubilization of sulfide ore metals or solid residues in aqueous solutions using
live microorganisms is known as bioleaching or biomining (Shukla et al. 2017).
Bioleaching occurs at the mineral–microorganism interface. Most of the microor-
ganisms that participate in bioleaching grow attached to the surfaces of sulfide ores,
as natural biofilms (Senel and Hanay 2017; Shukla et al. 2017). Bioleaching can be
applied to recover metals. As it involves the use of microorganisms, the following
factors must be considered in its application: (a) the microbial ability to resist
toxicity and the heterogeneity of the waste; (b) type of microorganism and its growth
rate; (c) inoculum concentration and cell genotype; (d) physical–chemical conditions
of the pollutant and microorganisms; (e) nutrients required by microorganisms
(Priya and Hait 2017; Minimol et al. 2020).

On an industrial scale, the process of bioleaching can be carried out through
bioreactors, considering the behavior and principles of bioleaching of a specific
microbe. In this sense, the bioleaching process can be employed by continuous or
batch operation mode.

When the microorganism and the material containing the metal are simulta-
neously added and incubated for solubilization, the technique is named one-step
bioleaching (Yang et al. 2008; Rasoulnia and Mousavi 2016). Thus, when using this
technique, microbial growth can be inhibited by the presence of metals leached in
solution, which reduces the leaching rate. Microbes can take longer to acclimatize in
the medium containing leachate metals, so the latency phase would be longer;
leachate metals can be adsorbed, accumulated, or used in cells, thus reducing
metal recovery (Jagannath et al. 2017).

When the addition of metal-containing solids after the pre-cultured microorgan-
ism reaches the late exponential growth phase, it is named two-stage bioleaching
(Pradhan and Kumar 2012; Işıldar et al. 2016). In this process, the inhibitory effect of
metals on growth is reduced, but, even so, it can lead to adsorption and accumulation
of metals leached in cells, which can reduce the recovery capacity, and reduce the
time in the growth delay phase (first stage) (Minimol et al. 2020).

The average spent bioleaching is the dissolution of metals from solids in the cell-
free supernatant that contains extracellular proteins and secondary metabolites (Ilyas
et al. 2013; Natarajan and Ting 2013). Thus, in this process, extracellular proteins
and metabolites, which tend to be secreted only in the presence of metals, would not
be available for any leaching action. However, the inhibitory or toxic effect of metals
on microbial growth can be prevented. As for the time required for microbial growth,
this may be shorter during the production of the medium, as the latency phase period
is shorter and the growth rate in the absence of metal-containing residues is higher
(Minimol et al. 2020).

To select which type of bioleaching process will be applied, requirements such as
metal–microbe interaction involved, inhibitory nature of the metals, and type of
microbes chosen must be considered.
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Bioleaching is a low-cost and simple technology that can be applied in the
removal of mineral compounds and low-quality ore metals, as well as in the
treatment of industrial effluents. The technique is applied in biomineral processing,
because the process of bioleaching metals by microbes has the possibility of
recovering metals from mineral resources not available by conventional mining.
Thus, microorganisms act as biocatalysts in the conversion of metallic compounds to
their water-soluble forms in the process of bioleaching (Varjani et al. 2018).

8.3.1.9 Phytoremediation

Phytoremediation (from Greek “phyto,” plant and Latin “remedium,” cure) refers to
the use of plants to contain, reduce, confiscate, accumulate, extract, eradicate, and/or
decontaminate organic and inorganic contaminants from soils, sediments, surface,
and groundwater (Sharma et al. 2018a, b; Enerijiofi 2021; Mishra 2021; Saxena et al.
2021).

It is one of the methods in situ, ecologically correct, it is a process considered
inactive, cheap, with low specialization. The main contaminants that can be removed
by phytoremediation are solvents, crude oil, hydrocarbons, pesticides, metals,
explosives, and landfill leachate (Wang et al. 2017).

The phytoremediation process can be broadly classified based on fundamental
processes, type of contaminant, and applicability (Table 8.1).

Thus, in phytoremediation of organics, the plant metabolism contributes to the
reduction of contaminants through the breaking, transformation, volatilization, or
stabilization of contaminating compounds in water and soil. In this way,
phytodegradation breaks down the organic compounds absorbed by the plant, into
simpler molecules and incorporates them into its tissues. Plants contain enzymes like
oxygenases, dehalogenases, and reductases that can convert and degrade chlorinated
solvents, ammunition residues, and others (Ghosh and Singh 2005; Malode et al.
2013; Mishra 2021; Saxena et al. 2021).

8.3.1.10 Mycoremediation

Due to the ability to produce and secrete extracellular enzymes, such as laccases,
polyphenol oxidases, lignin peroxidases, which can break down cellulose and lignin,
fungi are used to degrade several environmental recalcitrant pollutants (Singh 2006;
Jang et al. 2009). Thus, mycoremediation uses fungal mycelia to carry out the
biodegradative process, which converts contaminants in less toxic or non-toxic
forms, remediating contaminated soils and groundwater (Gadd 2001; Singh 2006;
Anderson and Juday 2016; Ali et al. 2017; Kumar et al. 2018c; Enerijiofi 2021).

Fungi are often more tolerant to pollutants and their hyphae are able to penetrate
the soil and reach the pollutant much faster than other microbes (Reddy and Mathew
2002; Harms et al. 2011). They end up being more efficient in bioremediation than
other microorganisms. White rot fungus has been used for biotransformation of
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Table 8.1 Types of phytoremediation

Technique Description

Phytodegradation This technique involves the absorption, storage, and decomposition
of contaminants by the activity of proteins and enzymes produced
by plant tissues and microorganisms present in the rhizosphere
(Enerijiofi 2021; Saxena et al. 2021).

Phytoextraction In this method, plants accumulate and transport pollutants in aerial
part and produce a mass of plants containing pollutants that are later
transported for recycling and/or disposal (Mishra 2021; Saxena et al.
2021).

Phytofiltration It uses the absorption capacity and the large surface area of the entire
plant to remove the pollutant, for example, heavy metals from
wastewater (Malode et al. 2013). The mechanism is similar to
phytoextraction and aquatic plants and terrestrial plants can be used
in phytofiltration.

Rhizofiltration In rhizofiltration there is a mutual relationship between the plant
roots and rhizosphere microorganisms creating an environment
where pollutants are broken down through metabolic activities and
secretion of proteins and enzymes from the plant’s root system
(Malode et al. 2013; Enerijiofi 2021; Mishra 2021; Saxena et al.
2021).

Rhizodegradation or
Phytostimulation

Contaminants are degraded by microbial activity in the rhizosphere.
It is a slower process than phytodegradation. In this technique,
microorganisms consume and digest organic substances such as
fuels and solvents (Malode et al. 2013; Saxena et al. 2021).

Phytostabilization The pollutant in the soil or water is immobilized by absorption or
precipitation by the plant roots, reducing their mobility by forming a
stable vegetable mass with the pollutant, thus preventing the entry of
the pollutant into the environment (Mishra 2021; Saxena et al.
2021).

Phytotransformation The technique involves the process by which the plant absorbs and
transforms highly toxic organic contaminants, from a contaminated
site (soil, sediment, and water body) into less toxic forms (Mishra
2021; Saxena et al. 2021).

Phytovolatilization The technique uses plants to remove volatile pollutants from the
environment. Plants absorb pollutants and transfer them to gaseous
substances, which are then released into the atmosphere (Malode
et al. 2013). Volatile organic compounds are the best candidates for
this process to be treated with the aid of evapotranspiration (Mishra
2021).

pesticides, degradation of petroleum hydrocarbons and lignocellulolytic wastes in
the pulp and paper industry. Some common types of macroscopic fungi used in
mycoremediation are described in Table 8.2.

Mycoremediation can be effective in breaking down some chlorinated com-
pounds and petroleum hydrocarbons, as well as being, capable of stimulating native
microbes and enzymes in situ, and bioaccumulating heavy metals, reducing con-
tamination (CRC 2018). It also employs three types of mechanisms (mycosorption,
mycodegradation, and mycoenzymes) for the removal of organic compounds
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Table 8.2 Common fungi used in mycoremediation. Source: CRC (2018)

Type of fungi Target contaminants

Button
mushrooms

Cadmium

Elm oyster Dioxins, wood preservatives

King
Stropharia

E. coli and other biological contaminants

Pearl oyster Cadmium, mercury, dioxins, polycyclic aromatic hydrocarbons (PAHs);
polychlorinated biphenyls (PCBs)

Phoenix oyster Cadmium, copper, mercury

Shaggy mane Arsenic, cadmium, mercury

Shitake PAHs, PCBs, pentachlorophenol

Turkey tail Organophosphates, PAHs, mercury

(Noman et al. 2019). Some parameters must be considered when applying the
mycoremediation technique, such as soil pH, temperature, and availability
(or lack) of oxygen. Mycoremediation is a sustainable, low-cost, low-maintenance
technique, presenting fast results (usually completed in a short time (weeks/months))
(CRC 2018).

8.3.2 Ex Situ Bioremediation

Ex situ bioremediation involves the collection/transport (excavation or pumping) of
polluting substances from the place of origin to a controlled and designed area,
where their decontamination will occur through physical–chemical or biological
methods (Varjani et al. 2018). Decontamination involves the treatment of the
pollutant after it is transported from the area of occurrence to the treatment area,
which facilitates microbial degradation. This removal of the pollutant from the place
of origin to the treatment area increases operational costs (Azubuike et al. 2016).

Different techniques can be applied for ex situ bioremediation, such as
landfarming, composting, biopiling/biopiles or windrows, bioreactors. These tech-
niques are used efficiently in the treatment of contaminated soil or water
(Ghangrekar et al. 2020). Ex situ bioremediation techniques can be easier to control
and faster, in addition to the possibility of treating a wide range of contaminants and
soil types, in comparison with in situ techniques.

When the treatment of contaminated surface or underground water occurs
through the extraction of contaminated water from the place of origin to the place
of distant treatment, its remediation is known as the “pumping and treatment
system.” This system can take years to treat the contaminated area, because the
complete discharge of the pollutant requires that a large volume of water be treated
continuously over a long period of time (Varjani et al. 2018).
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8.3.2.1 Landfarming

Landfarming is a biodegradation technique consisting of excavating and extracting
contaminated soil and spreading it over a thin area (the soil layer support fixed above
the ground) and periodically plowing the soil to stimulate aerobic biodegradation of
pollutants by indigenous microbes (Senel and Hanay 2017; Yadav et al. 2017;
Mishra et al. 2020).

Landfarming can be applied only for the treatment of 10–35 cm of soil surface
(Kumar et al. 2018a) and excavation of contaminants is not recommended if the
polluted soil is less than one meter deep (Kumar and Gunasundari 2018). The
application of landfarming is advantageous because it has reduced maintenance
and monitoring costs, it is simpler and more economical, however, the main disad-
vantage of this process is the limitation to treat 10–35 cm of top soil (Williams 2006;
Yadav et al. 2017; Mishra et al. 2020).

In the landfarming process, nutrients, microorganisms, and moisture can be added
to the soil. By providing moisture to the soil through seasonal spraying of water, it
forms a barrier around the contaminated soil, controlling erosion and minimizing the
formation of dust when plowing the soil to maintain aeration (Kumar and
Gunasundari 2018). Plastic or clay liners can also be used on site, before laying
contaminated soil, to prevent the leaching of contaminants into groundwater (Senel
and Hanay 2017).

Thus, the treatment of contaminated soil occurs through biodegradation com-
bined with aeration and light photooxidation (Senel and Hanay 2017). This type of
treatment is more efficient in areas with hot and humid climate, and in a sunny place.
Therefore, during periods with colder temperatures (winter), when snow covers the
soil, there is a reduction in the biodegradation process (Mishra et al. 2020).

Although land cultivation is considered an ex situ bioremediation technique, in
some cases it applies to in situ bioremediation. This technique can be applied in the
treatment of sites contaminated by PCBs, aliphatic hydrocarbons, and polycyclic
aromatics (Silva-Castro et al. 2012; Kumar et al. 2018b).

8.3.2.2 Composting

Composting is a technique that involves mixing polluted soils with bulking agents,
for example, harmless organic additives (organic manure, wood chips, and agricul-
tural waste such as plant waste) (Kumar et al. 2018b). The additives favor the
growth, development, and proliferation of microbial populations (bacteria) capable
of degrading the pollutants found in the soil to be treated (Adam et al. 2017). Thus,
the pollutants will be degraded and converted into a stabilized final product, which
can be applied as a soil conditioner to remedy soil contaminated with organic
compounds or be safely discarded in the environment (Cai et al. 2017; Saum et al.
2018; Ren et al. 2018; Kumar et al. 2018b).
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In the composting process, parameters like the addition of appropriate microbial
consortia and nutrients, cultivation, irrigation, as well as bulks materials in the form
of organic residues to improve bioremediation, must be considered (Prakash et al.
2015). This process is conducted outdoors and can be carried out by means of
composting in open and static windrow systems. In static windrow systems, the
piles are aerated by a forced air system, while in open windrow systems, the compost
is loaded in elongated stacks (Cunningham and Philip 2000; Girma 2015).

In order to properly compost soils contaminated with dangerous compounds, for
example, petroleum hydrocarbons, the composition needs to occur in a thermophilic
phase of 50–65 °C. During the decomposition process of organic materials present in
the compost, there is an increase in temperature due to heat generated by microbial
activities (Prakash et al. 2015; Ossai et al. 2020). Thus, the aerobic process is viable
because the heat produced during the biodegradation reactions with the release of
oxidative energy can lead to a substantial increase in temperature (Adam et al. 2017).
The efficiency of degradation and the growth of microorganisms must be monitored
under the level of humidity, aeration, and temperature.

The composting technique can be used to treat explosives (HMX, TNT, and
RDX), hydrocarbons, dangerous chemicals, and others (Kumar et al. 2018b).

8.3.2.3 Biopiles or Windrows

Biopiling or stacking technique is a combination of methods of agriculture
(landfarming) and composting, in anaerobic cells designed with an irrigation and
nutrient system, vacuum pumps and blowers, leachate collection system for biore-
mediation of polluting components adsorbed to sediments and soil (Wu and Coulon
2015; Benyahia and Embaby 2016; Kim et al. 2018; Mishra et al. 2020).

The technique involves stacking a contaminated excavated soil, which can be
placed in piles (biopiles) or rows (windrows) and subsequent soil correction with
nutrients, biostimulation, and forced aeration to increase microbial degradation
activities (Azubuike et al. 2016; CRC 2018).

As a hybrid system, biopiling is a favorable system to stimulate microbial growth
(anaerobic microorganisms and indigenous aerobes). This system increases aerobic
creosote catabolism by inoculating air in piles of contaminated soils (Kumar et al.
2018a) and is suitable for the treatment of large volumes of contaminated sediments
and soils in a limited space and in addition to remediating contamination in extreme
environments (Whelan et al. 2015).

Biopiles can have heights in the range of three to ten feet (about 1 to 3 m) and can
be applied in the treatment of surface contaminants in order to control the physical
losses of the contaminants by volatilization and leaching (Azubuike et al. 2016;
Kumar et al. 2018a). It can also be used to treat soils contaminated with low
molecular weight pollutants and petroleum hydrocarbons (phenols, PAH, sand
BTEX). However, biopiling can limit the volatilization of low molecular weight
compounds (Dias et al. 2015; Ossai et al. 2020).
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Biopiles involve some limitations, when compared to other ex situ bioremedia-
tion techniques, as they require much more space and when there is an extreme
heating of the air, it leads to excessive drying of the soil to be treated, therefore
occurring an interruption of microbial activities (Sanscartier et al. 2009).

8.3.2.4 Bioreactors

A bioreactor involves a controlled container to create a three-phase mixture
condition (solid, liquid, and gaseous) to increase the rate of degradation of the
water-soluble and soil-bound contaminant. Unrefined materials are transformed
into specific non-toxic products due to a series of different biological reactions.
Thus, bioreactors are used to degrade contaminants under controlled conditions.
They are designed containment systems (reactors or aqueous sludges) that are
applied for the treatment of polluted solid materials (sediment, soil, and sludge)
and water (Vidali 2001).

Bioreactors are used to treat water or soil contaminated with volatile organic
pollutants (toluene, xylene, ethylbenzene, and benzene) (Azubuike et al. 2016). Its
use in the biodegradation process is much more efficient, faster, and beneficial than
in other techniques, because in these systems, bioremediation occurs in a controlled
way. Therefore, parameters such as pH, temperature, amount of nutrients, humidity,
bioavailability of pollutants, mass transfer, and others are monitored to improve the
biological reactions used in the biodegradation of pollutants, increasing efficiency in
the bioremediation process (Mohan et al. 2004; Azubuike et al. 2016; Kumar et al.
2018a).

The main disadvantage of using bioreactors is due to the fact that it spends extra
safety measures in transporting the pollutant from the place of origin to the treatment
site, as well as treating high volumes of contaminants, which increases the cost of
applying the technique (Philp and Atlas 2005; Kumar et al. 2018a). Another
disadvantage is that contaminated soil requires pre-treatment, or the contaminant
should be removed from the soil through physical extraction or soil washing, before
being placed in a bioreactor (EPA 2002; Mishra et al. 2020).

8.4 Importance of Bacteria for Bioremediation

Bioremediation has been considered as the remediation of pulled sites employing
microbes, and in this context, bacteria play a fundamental role (Azubuike et al.
2016). As discussed above, all the bioremediation approaches have been classified as
in situ or ex situ depending on the polluted material sites. Bioremediation is mainly a
prospective method for in situ subsurface remediation with a reduced cost and
production of secondary pollution compared with other environmental remediation
techniques, these are the motivations for the consideration as eco-friendly and cost-
effective approach (Wei et al. 2012; Igiri et al. 2018). Furthermore, two main
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strategies have been employed to improve the effectiveness of in situ bioremedia-
tion, specifically, bioaugmentation that comports the addition of pre-grown micro-
bial cultures to enhance the degradation of unwanted compounds; whereas
biostimulation includes the injection of nutrients and other supplementary compo-
nents to the native microbial population inducing the propagation at a hastened rate
(Tyagi et al. 2011). Thus, for the bioremediation the selection of the appropriate
strategy to treat a polluted site has become pivotal, three basic principles have to be
considered: the pollutant tractability for biological transformation to less toxic
products, the physical accessibility of the contaminant to microorganisms, and also
the opportunity for optimization of biological activity (Dua et al. 2002). In this
context, the wide metabolic diversity of bacteria is crucial for bioremediation of
many different contaminated sites.

8.4.1 Removal of Heavy Metals

Microbial activities strongly influence metal speciation and transport in the environ-
ment. In bacteria a number of specific resistance mechanisms, indeed, including
active efflux and sequestration or transformation to other chemical species become
functional at concentrations above the homeostatic or non-toxic levels (Silver 1998).

For this reason, different organisms exhibit diverse responses to toxic ions, which
confer upon them a certain range of metal tolerance. A family of metal-chelating
proteins named metallothioneins (MTs) represent a typical mechanism for regulating
intracellular metal ions. Bacterial MTs were observed to confer resistance to Zn
(II) and Cd (II) and have been considered as the main mechanism of tolerance to
metals in the bacterial world (Robinson et al. 2001; Blindauer 2011). These mech-
anisms of resistance to metal ions are often plasmid-borne, which facilitates disper-
sion from cell to cell. A common example of heavy metal resistance was observed in
Ralstonia metallidurans CH34 previously classified as Alcaligenes eutrophus CH34
(Goris et al. 2001).

The sulfate-reducing bacteria (SRB) represent another important process
involved in the bacterial resistance to heavy metals. They have significant ecological
functions in anaerobic conditions for complete mineralization of organic carbon
particularly in marine sediments. Furthermore, these bacteria play an important role
in bioremediation of contaminated sites (Jørgensen 1982; Ayangbenro et al. 2018).
Sulfate can be biologically reduced to hydrogen sulfide by SRB with significant
ecological functions, but also play an important role in bioremediation of contam-
inated sites. SRB can react with the dissolved heavy metal ions and transform them
into highly stable metals sulfides, which are usually are more stable than the
hydroxides produced by chemical treatment. In addition, metal sulfides can be
recycled and reused (Jalali and Baldwin 2000; Kiran et al. 2017; Li et al. 2018).

Finally, another class of bacteria named acidophilic chemolithotrophs shown
efficient growth at high metal concentrations, these are iron and sulfur-oxidizing
bacteria. The metal resistance of these microbes is an adaptation to very acidic
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environments, where metal solubility is high including the thiobacillus group of
bacteria. Interestingly, when the growth of Thiobacillus ferrooxidans is dependent
on Fe (II), this bacterium is highly resistant to Al, Cu, Co, Ni, Mn, and Zn
(0.1–0.3 M), although it remains quite sensitive to other metal ions (Hutchins et al.
1986).

Different strategies have been contemplated to improve the bioremediation of
heavy metals (Kocur et al. 2016; Liu et al. 2018). In this context, microbes
represented an optimal strategy, as they have various mechanisms in response to
heavy metals that can be applied for bioremediation of various contaminated sites
(Kushwaha et al. 2018; Cornu et al. 2017; Ahemad 2019). In fact, as the role of
bacteria and plants in biotransformation of heavy metals into non-toxic forms is well
documented, the study of these biological elements at the molecular level permits to
detect the mechanism of metal accumulation opening to biotechnological implica-
tions for bioremediation of metal-contaminated sites (Dixit et al. 2015). However,
for the microbial side the success of the bioremediation action in pulled places
depends mainly upon the kind of microorganism and the contaminants involved in
the process (Kapahi and Sachdeva 2019). The combination of different biological
strategies could lead to an improvement in bioremediation performance. Recently
the triple treatment combining bacteria, plants, and invertebrate-like earthworms
showed best yields in terms of removal rates and soil health improvements
(Urionabarrenetxea et al. 2021).

8.4.2 Biodegradation of Polyaromatic and Halogenated
Hydrocarbons

For the persistent organic pollutants, different bioremediation approaches need some
improvements due to the long period of biological remediation determined by low
degradation rates and the insufficient energy source (Atlas and Hazen 2011). Now-
adays petroleum derivatives and organic waste are among the main environmental
contaminants. Recently, the bacteria–fungi associations have been improved for the
oil bioremediation of soils, making the process more robust against environmental
changes that can perturb the bioremediation by bacteria (Quintella et al. 2019). To
overcome the process velocity problem on the bioremediation of organic pollutants,
the association of plants and bacteria, such as endophytic bacteria and rhizosphere
bacteria, has been employed to contribute on the biodegradation of toxic organic
compounds in contaminated soil with the potential improving of the bioremoval
process (Divya and Deepak Kumar 2011; Gkorezis et al. 2016; Arslan et al. 2017).

Halogenated hydrocarbons are synthesized as industrially valuable materials, or
produced as a by-product during chemical reactions, or being released as a result of
burning of municipal waste; these are ubiquitous in our environment and several
bacteria have been isolated and reported acting on their degradation (Akram et al.
2021). The potential of the nitrification process, where ammonia is oxidized to
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nitrate, has been proposed for in situ bioremediation of halogenated compounds. In
this process, ammonia-oxidizing bacteria play a key role starting the degradation of
many halogenated hydrocarbons (Sayavedra-Soto et al. 2010).

Some microbes have evolved enzymes and metabolic pathways to detoxify and
utilize halogenated aromatic compounds as their sole carbon sources. The degrada-
tion pathways can be simplified into three stages: an initial debranching process to
remove additional moieties attached to the aromatic ring, an intermediate pathway
dealing with halide removal and activation of aromatic rings by incorporation of
oxygen (in the case of aerobes), and a final stage of ring-cleavage reactions to
convert aromatic into aliphatic molecules which can be further converted into
common metabolites of central metabolic pathways such as pyruvate, acetyl CoA,
succinate, oxaloacetate, and acetaldehyde (Pimviriyakul et al. 2020). Among bacte-
ria, Pseudomonas becomes a paradigmatic bacterial genus for the catabolism of
aromatic compounds and for the bioremediation of toxic pollutants and the valori-
zation of aromatic compounds present in biowaste (Nogales et al. 2017).

8.4.3 Biodegradation of Petroleum and Diesel

Organic pollutants such as petroleum-derived hydrocarbons are bio-transformed in
presence of optimal ecological factors and the necessary nutrients by microbial
metabolic activities. Most of the cases the biodegradation takes longer than tradi-
tional remediation methods, however the complete degradation is often accom-
plished. Hydrocarbon biodegradation in soil is determined by a variable number of
abiotic and biotic factors, such as the pH, temperature, oxygen availability and
nutrient content, and survival of hydrocarbon-degrading bacteria including the
bioavailability of pollutants to microbial attack (Koshlaf and Ball 2017). To improve
the degradation of oily sludge the combination of bioaugmentation and
biostimulation treatments has been carried out with positive results (Varjani et al.
2020). Biodegradation of the petroleum hydrocarbons is a complex process that
depends also on the nature and the amount of the hydrocarbons present into the
contaminate place (Colwell et al. 1977). Bioremediation techniques based on free
cell cultures have been largely used to remove compounds from contaminated areas.
However, a recent promising technique to be employed in harsh environments
included the immobilization of microbial cell systems, presenting the main advan-
tages of possible reutilization of microorganisms and more tolerance to temperature
and pH changes (Partovinia and Rasekh 2018). Besides the important chemical-
physical factors affecting diesel biodegradation, the bacterial species have been
reported as the major factor that affect the biodegradation performance.
Specifically-isolated bacteria seem to be a very promising approach to remediate
diesel-contaminated environments (Imron et al. 2020). The screening of bacterial
strains isolated from diesel-contaminated soils permitted to discriminate
biosurfactant (BS) production and biofilm formation abilities as fundamental char-
acteristics of the selected bacterial strains (Balseiro-Romero et al. 2017). The
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bacterial bioremediation technologies as well as the fungi and algae bioremediation
strategies may not be enough to remediate hydrocarbon-contaminated sites. In
addition, in this case, it was comprehensively illustrated that the integration of
remediating techniques can improve the degradation of petroleum hydrocarbons
with an improving removal efficiency (Naeem and Qazi 2020).

8.4.4 Biodegradation of Plastics

The countless utilization of plastics is the result of their desirable characteristics,
including light weight, durability, corrosion resistance, and low price
(Raziyafathima et al. 2016). Consequently, the plastic pollution represents a signif-
icant environmental concern as a result of the persistence and potential adverse
effects on biota. A number of scientific articles showed how bacteria can work on
plastic material degradation, describing how microbial characteristics (e.g., biofilm
organization) and environmental factors can affect the plastic biodegradation by
bacteria (Yuan et al. 2020). Bacterial groups including Gram-positive and Gram-
negative strains have been reported acting on plastic degradation (Raziyafathima
et al. 2016). Microbial biodegradation of plastics includes the polymers conversion
into monomers, due to bacteria were not able to introduce into the cytoplasmic
compartment some polymers, so they must first be depolymerized to smaller mono-
mers through physical and natural processes (Swift 1997). Among the natural
processes of depolymerization, microbial enzymes were observed acting on poly-
mers before the monomer formation, absorption into microbial cells and completely
biodegraded (Goldberg 1995). Strains of the genus Bacillus were detected as one of
the main components of the North Pacific Gyre plastic fouling community (Carson
et al. 2013). Characterization of the extracellular hydrolase enzymes secreted by
Bacillus strains included lipase, carboxymethyl cellulase, xylanase, chitinase, and
proteases with different levels of activity (Dang et al. 2018). The enzymes that are
known to degrade plastic polymers usually belong to the class “hydrolases.”
Enzymes belonging to this class are involved in a catalytic reaction that causes a
breakdown of chemical bonds of its substrate in the presence of water. Cutinase,
lipase, and PETase (an esterase) are some of the most common enzymes associated
with the degradation of plastics according to recent research developed in this area
(Kaushal et al. 2021). All these enzymes act on the plastic polymer in a similar
manner, causing hydrolytic cleavage of the long carbon chains and then assimilating
these smaller subunits into the microbial cell for further enzymatic degradation and
release of metabolic products.
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8.5 Potential of Marine Bacteria for Bioremediation

Many of the marine pollutants are the result of direct or secondary human activities.
Some of these substances are considered biodegradable, but others unfortunately not
(Vikas and Dwarakish 2015). Marine bacteria possess a wide variety of bioremedi-
ation potentials, which are beneficial from both environmental and economic point
of view (Amidei 1997). Diverse marine bacteria have been reported to have biore-
mediation potential and they can be utilized in the bioremediation process of heavy
metals, hydrocarbons, and many other recalcitrant compounds (Fig. 8.1). The
utilization of these microbes permits the in situ bioremediation including the direct
use of microorganisms in any adverse conditions and possibly without any genetic
manipulation (Dash et al. 2013).

It has been already estimated that in 2025, the oceans will contain more than
25 million metric tons of plastic litter (Jambeck et al. 2015). Plastics are considered
the main concern in marine environment representing that more than 60% of all
floating debris and the amounts increase each year. Chemical–physical factors start
the plastic degradation processes forming polymer fragments susceptible to biodeg-
radation (Gewert et al. 2015). Micro-nano plastics enter into the agro-ecosystem
through the wildlife arriving into the human body following the food chain; the
processes through which the plastic enter into the human body include ingestion or
inhalation, causing various problems as consequence.

Fig. 8.1 Bioremediation potential of marine microorganisms. Bacteria isolated from different
marine environments have been characterized for their ability for bioremoval and bioconversion
of heavy metals and biodegradation of polyaromatic hydrocarbons, halogenated hydrocarbons,
petroleum and derivatives and plastics
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The microbial utilization of the plastic carbon content as energy source with
complete degradation/removal of these components has been described as an effi-
cient bioremediation method (Tiwari et al. 2020). Marine bacteria such as Bacillus
cereus, Bacillus sphaericus, Vibrio furnissii, and Brevundimonas vesicularis shown
capability to degrade nylon fibers in mineral salt medium at 35 °C and pH of 7.5
under submerged enrichment conditions with the polymer as the sole carbon source
(Sudhakar et al. 2007). Efficient degradation of conventional high-density polyeth-
ylene (HDPE) can be mostly achieved by plastic-degrading bacterial isolates belong-
ing to the genus Bacillus spp. and Pseudomonas spp. (Devi et al. 2019). In another
research, the marine bacteria Brevibacillus borstelensis showed HDPE degrading
activity (Mohanrasu et al. 2018). Moreover, other plastic-associated marine bacteria
groups and families such as the families Erythrobacteraceae and Rhodobacteraceae
(Alphaproteobacteria), Flavobacteriaceae (Bacteroidetes), and the phylum
cyanobacteria (such as the Phormidium genus) have been frequently observed
(Roager and Sonnenschein 2019).

Marine bacteria interaction with eukaryotic microorganisms such as diatoms was
reported to be able forming aggregation called marine snow, which bring organic
carbon and nutrients to the sea floor (Gärdes et al. 2011). In this context, biofilm
formation by marine bacteria could became pivotal for the plastic particle elimina-
tion or reduction by the oceanic water column, increasing the speed by which this
plastic makes its way to the sea floor. The presence of plastic nanoparticles signif-
icantly influenced the formation of biofilms both positively and negatively in a
species-specific manner (Okshevsky et al. 2020). Deeper studies on these bacteria
together with bacterial engineering approaches may help on this important marine
environmental concern. The study on plastic-degrading microorganisms focused
also on their searching in deep-sea sediments where temperature decreases below
4 °C (Ravenschlag et al. 1999) and it was possible to isolate microorganisms adapted
to cold with unique characteristics (Urbanek et al. 2018). In this interesting envi-
ronmental context, studies were conducted and detected bacteria with plastic degra-
dation properties, including Pseudomonas spp., Shewanella sp., Moritella sp.,
Psychrobacter sp., Alcanivorax sp., Tenacibaculum sp. (Sekiguchi et al. 2009,
2011a, b;) Vibrio sp., (Raghul et al. 2014), Clonostachys rosea, and Rhodococcus
sp. (Urbanek et al. 2017).

In marine environment oil pollution represents another important concern, it can
occur from either catastrophic accidents (shipping disasters or pipeline failures) or
natural oil seepages and biota. Various technologies have been developed to contrast
these events and one of the reliable and eco-friendly was considered certainly the
bioremediation with the objective to minimize the impact on the environment
(Catania et al. 2015). When spilled in water, oil cause immediate and long-term
repercussion. For this reason, clean-up methods and remediation were contemplated
as fundamental to preventing the intoxication and death of a large number of living
organisms. In this context, biotechnology applications also play a fundamental role
(De Almeida et al. 2016). For petroleum pollution in seawater physicochemical
methods alone were earlier defined not enough to contrast the problem (Prince
1997). However, the petroleum hydrocarbons being not soluble in water, it is
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difficult to achieve the bioavailability for bioremediation as consequence surfactants
are employed to improve the mobility of oil reinforcing the biodegradation process.
Thus, an improved hydrocarbon solubility and the emulsification of hydrocarbon–
water mixtures permit a better ability of oil-degrading bacteria to use hydrocarbons
(Bao et al. 2012). The importance of the microbial biosurfactant production and its
use were defined promising for the efficacy, low toxicity, and biodegradability
working on the increasing biodegradation and solubilization process of insoluble
compounds at extreme environmental conditions including at the common hydro-
carbon derivatives, heavy metals, pesticides, and organic/inorganic contaminants
(Deepika et al. 2021).

Bacillus genus was characterized as one of the main groups of bacteria able to
synthesize biosurfactants as surfactin among the other families of cyclic lipopeptides
(Jacques 2011). Moreover, Bacillus genus was detected as one of the main studied
marine bacteria groups mainly for their easy cultivation in microbiological labora-
tories (Stincone and Brandelli 2020). Isolation of bacterial strains from seawater
contaminated with petroleum derivatives permitted to discover promising
biosurfactant-producing isolates belonging to the genus Bacillus, indicating their
possible use in the bioremediation of marine environments (Durval et al. 2019).
Microorganisms producing biosurfactants are efficient accelerators of the hydrocar-
bon biodegradation process by enhancing their bioavailability and facilitating their
degradation by bacteria (Xu et al. 2020).

Another important group of bacteria include those acting on hydrocarbon bio-
degradation. In this group, a total of 79 genera of marine bacteria were identified and
among these the following were the most representative: Achromobacter,
Acinetobacter, Alcaligenes, Actinomycetes, Archrobacter, Bacillus, Cycloclasticus,
Coryneforms, Chromobacterium, Flavobacterium, Micrococcus, Microbacterium,
Mycobacterium, Nocardia, Pseudomonas, Sarcina, Serratia, Streptomyces, Vibrio,
Xanthomonas (Xue et al. 2015). Features of microorganisms isolated from extreme
environments can be employed for enhanced bioremediation of oil hydrocarbons,
especially under aerobic conditions in moderate to high salinity conditions. In this
condition, strains belonging to various genera have been shown to degrade hydro-
carbons but in particular, members of the genera Halomonas, Alcanivorax, and
Marinobacter dominate the literature (Fathepure 2014). The presence of both groups
of bacteria, petroleum-degrading bacteria and biosurfactant-producing bacteria,
improved the petroleum-degrading rate (Shi et al. 2019). Similarly, polycyclic
aromatic hydrocarbons (PAHs) are widespread in marine ecosystems and they are
usually resulting from human activities or even natural sources. PAHs adhere to
sediments leading to accumulation in coastal and deep sediments and the microbial
assemblages play a pivotal role on their degradation (Duran and Cravo-Laureau
2016). The metagenomic analysis of a contaminated coastal sediment allowed to
detect three main phyla (Proteobacteria, Firmicutes, and Bacteroidetes) accounting
approximately ≥93.0% of the total microbial community (Lee et al. 2018). Bacterial
species like Cycloclasticus spirillensus, Lutibacterium anuloederans, and
Neptunomonas naphthovorans have also been utilized in enhanced biodegradation
of PAHs in marine environment (Hedlund et al. 1999; Chung and King 2001).
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Moreover, degradation of PAHs carried out by marine bacteria through mineraliza-
tion process was reported by Achromobacter denitrificans, Bacillus cereus, Cory-
nebacterium renale, Cyclotrophicus sp., Moraxella sp., Mycobacterium sp.,
Burkholderia cepacia, Pseudomonas fluorescens, Pseudomonas paucimobilis,
Pseudomonas putida, Brevundimonas vesicularis, Comamonas testosteroni,
Rhodococcus sp., Streptomyces sp., and Vibrio sp. (Samanta et al. 2002). Recently
it was possible to identify Mycobacterium and Sphingomonads spp. as
bioaugmentation and genetic bioaugmentation targets, respectively, due to their
positive associations with PAHs and their high abundance and species diversity in
contaminated soils (Redfern et al. 2019). Moreover, the marine Stenotrophomonas
acidaminiphila NCW-702 in biofilm organization was able to degrade PAHs more
efficiently as compared to planktonic cells, these findings supporting the efficacy of
biofilms over planktonic culture in bioremediation applications (Mangwani et al.
2014).

Industrialization and urbanization activities have increased the flow of toxic metal
ions to the marine environments, being harmful when present above critical values.
Bacteria from metal polluted habitats are suitable candidates for heavy metal reme-
diation, maintaining the sustainability as they were more capable for quick adjust-
ment to the changing environmental factors such pH, salinity, temperature (Dash
et al. 2013; Mohapatra et al. 2017). Bacteria own several mechanisms to act on
tolerating and bioremediating high concentration of toxic heavy metals such as:
precipitation as phosphates, sulfides, and carbonates through the biomineralization,
volatilization via methylation/ethylation/reduction through the biotransformation
process, ATP mediated efflux systems, intracellular bioaccumulation, biosorption
and sequestration through Extracellular Polymeric Substances (EPS) (Naik et al.
2012).

An important process is represented by the biomineralization that happens con-
tinuously on the deep-sea minerals forming polymetallic nodules. In fact, free-living
and biofilm-forming bacteria provide the matrix for manganese deposition, and
cobalt-rich crusts (Wang and Müller 2009). The marine bacterium Idiomarina
loihiensis MAH1, growing in environmentally relevant concentrations of uranium,
was capable to form uranyl phosphate mineral phases, structurally resembling meta-
autunite [Ca(UO2)2(PO4)2 2–6H2O] precipitated at the bacterial cell surfaces
(Morcillo et al. 2014). In a similar way, Shewanella sp. strain PV-4, from the
microbial mat at a hydrothermal vent of Loihi Seamount in the Pacific Ocean, has
been characterized with emphases on metal reduction including Fe (III), Co (III), Cr
(VI), Mn (IV), and U (VI) as electron acceptors while using lactate, formate,
pyruvate, or hydrogen as electron donor, showing the possibility to be exploited
for bioreduction or immobilization of many toxic metals (Roh et al. 2006). More
recently, the marine heterotrophic Pseudoalteromonas sp. MT33b with strong resis-
tance to Cd, showed as major strategy to eliminate Cd stress the formation of
insoluble CdS precipitates and massive biofilm. These characteristics open to pos-
sible utilization of bacterium from extreme environments for bioremediation pur-
poses (Ma and Sun 2021).
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Bioremediation realized by the marine bacteria Pseudomonas aeruginosa CH07
(NRRL B-30604) through the biotransformation process includes enzymatic reduc-
tion of toxic mercury (inorganic and organic) to volatile elemental mercury (Hg) in a
two-step reaction. The bacterial resistance to Hg has shown activity against other
highly toxic heavy metals (De et al. 2006). In this context, most of the Hg-resistant
bacteria have shown the mer operon mechanisms located either on transposons,
plasmids, or bacterial chromosomes (Dash et al. 2014). Bacteria hosting the genes
merT and merP, indeed, encode for two transporters, which are responsible for the
transport of Hg (II) into the cytoplasm and the subsequent action of mercuric ion
reductase encoded by merA reduces Hg (II) to less toxic Hg0, which diffuses out of
the cell through cell membrane (Dash and Das 2012). It was observed that
Hg-resistant marine bacteria shown potential for Cd and Pb detoxification, these
bacteria were identified as Alcaligenes faecalis, Bacillus pumilus, Bacillus sp.,
Pseudomonas aeruginosa, and Brevibacterium iodinum. They were not able to
produce any byproducts, and highly efficient even at low metal concentrations
(De et al. 2008).

Common inhabitant of the marine environment, Vibrio harveyi was reported to
possess the potential for bioaccumulation of Cd (Abd-Elnaby et al. 2011), while a
consortium of marine bacteria was able to remove Hg by the same mode of action
(Von Canstein et al. 2002). More recently, this strategy was detected in culturable
marine deep sediment bacteria part of the phyla Firmicutes and Actinobacteria
bioaccumulating heavy metals within the cells and/or in EPS (Jroundi et al. 2020).
Marine isolates of Streptomycetes, phylogenetically inserted into the actinobacteria
phylum, show unique growth characteristics including the ability to form spores and
mycelia, and relatively rapid colonization of substrates, acting as suitable agents for
bioremediation of metals and organic compounds in polluted soil and water
(Timková et al. 2018).

Another important process included as bioremediation process of heavy metals
carried out by marine bacteria was the absorption, in this case the bacteria together
with other marine microbes secrete extracellular polymeric substances (ESP) to
facilitate the attachment on surfaces and this led to the formation of structured
biofilm communities (Decho and Gutierrez 2017). Metal cations form complexes
with EPS resulting in metal immobilization generally promoted by electrostatic
interactions between metal and negatively charged components of EPS biopolymers.
However, the enzymatic activities in EPS also can assist detoxification of heavy
metals (Pal and Paul 2008). The marine environment includes multi-cellular organ-
isms as the sponges able to host huge microbial communities including bacteria,
representing an important source of new bacteria with bioremediation capabilities.
The sponge-associated Antarctic bacteria Winogradskyella sp. strains CAL384 and
CAL396, Colwellia sp. strain GW185, and Shewanella sp. strain CAL606 were
studied for their production of EPS with possible application on heavy metals
absorption (Caruso et al. 2018a; Giudice et al. 2020). The marine bacteria
Enterobacter cloacae showed EPS chelating properties with respect to Cd (65%)
followed by Cu (20%) and Co (8%) at high heavy metal concentration (Iyer et al.
2005). Interestingly the EPS production by the seawater Pseudoalteromonas
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sp. MER144 under optimal conditions at different concentrations of Hg and Cd
revealed a modulate production of EPS when the heavy metal concentrations
increased (Caruso et al. 2018b). Combination of strategies for removal of heavy
metals has been shown by marine bacteria as Rhodobium marinum and Rhodobacter
sphaeroides specifically for those involving either bioabsorption or biotransforma-
tion (Panwichian et al. 2011). Also, the marine Bacillus thuringiensis PW-05
demonstrated its capacity to resist at 50 ppm of Hg as HgCl2 as well as higher
concentrations of CdCl2, ZnSO4, PbNO3, and Na2HAsO4. Atomic absorption spec-
troscopy revealed that the isolate can volatilize >90% of inorganic Hg. Moreover, it
showed biofilm formation in the presence of 50 ppm HgCl2 and also the possibility
to produce EPS under same conditions (Dash et al. 2014).

Another bacterial strategy for an eco-friendly, time saving, inexpensive with
easily scaled up for large-scale synthesis to employ in heavy metal bioremediation
is the synthesis of metallic nanoparticles either intracellularly or extracellularly
(Manivasagan et al. 2016). Marine microorganisms can easily adapt themselves to
extreme environmental conditions, it is very essential to explore marine bioresource
for the green synthesis of different types of metallic nanoparticles. A strain of
Stenotrophomonas, isolated from the Mandapam coast, Bay of Bengal in India,
was employed for the biosynthesis of Au and Ag nanoparticles by extracellular
secretion (Malhotra et al. 2013). In this context, the bacterium Saccharophagus
degradans was investigated for the synthesis of MnO nanoparticles (Salunke et al.
2015). Microbial extracellular polymeric substances EPS act as capping and stabi-
lizing agents for the biosynthesis of CdS nanoparticles by the marine bacterium
Pseudomonas aeruginosa JP-11 and its comparison with chemical method were
more efficient showing a higher Cd removal efficiency (Raj et al. 2016).

8.6 Engineering Bacteria for Bioremediation

Studies carried out to understand the interactions between xenobiotics and microor-
ganisms and on the fate, survival, and activities of microorganisms in the environ-
ment have to intersect with the investigation on biochemical and genetic engineering
aspects (Pieper and Reineke 2000). Natural microbes have already shown consider-
able ability to remove many environmental pollutants with no external intervention.
The onset of genetic engineering in the 1980s allowed the possibility of rational
design of bacteria to catabolize specific compounds with reduced or no possibilities
to be removed (Dvořák et al. 2017). Once identified the genes and their genome
location in bacteria that promote bioremediation, the objective becomes modify and
incorporate them into a suitable host to be used as a bioremediation agent, in this
context at the beginning usually was the E. coli (Zylstra et al. 1989). The indispens-
able incorporation of a gene marker (to discriminate the genetic modification)
conferring antibiotic resistance was the simplest way of screening in producing
genetically modified bacteria, representing an important concern (Dale et al.
2002). However, during these decades, since the discovery of recombinant DNA
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technology many challenges have been encountered in constructing genetically
engineered bacteria intended for environmental release and most of them have
been resolved.

In general, the literature still counts very few cases where the use of genetically
engineered bacteria has been confirmed to be more efficient than natural microor-
ganisms in removal of recalcitrant compounds under natural (in situ) conditions
(De Lorenzo 2009). Although the important steps achieved on the field of genetically
modified bacteria, deeper studies should be realized to face ethical responsibilities
before using such novel strategies for bioremediation (Perpetuo et al. 2011). Among
the main concerns necessary to be considered, the ecological impacts of including
genetically modified organisms into the environment become fundamental
(Rajakaruna and Robinson 2016). Into the field of the engineered bacteria, for
example, become necessary the detection and enumeration of these modified micro-
organisms in complex samples (Widada et al. 2002). Thus, a deeper approach may
permit to overcome both environmental concerns and regulatory constraints that
have limited the in situ application of genetically engineered microorganisms.
Considering that the main objective of this limitation is to avoid the risk of a possible
uncontrolled survival/dispersal of engineered microorganisms or recombinant plas-
mids into the environment, some strategies have been suggested, including the
induction of suicide microbes once their mission is completed (Paul et al. 2005;
Ezezika and Singer 2010). Furthermore, the integration of microbiological, biolog-
ical, and ecological acquaintance accompanied by field engineering designs was
considered features for effective application of in situ bioremediation of polluted
sites by recombinant bacteria (Liu et al. 2019).

Systems biology studies, based on top-down and bottom-up large-scale “omics”
tools and mathematical modeling methods, have become pivotal on the engineered
bacteria build (Park et al. 2017). The enormous amount of genomics,
transcriptomics, proteomics, and metabolomics information, coming from systems
biology studies, allow to integrate the data for a more holistic understanding. In this
context, novel data mining and analytics approaches, including artificial intelligence
can provide breakthroughs where traditional low-throughput experiment-alone
methods cannot easily achieve (Helmy et al. 2020). Both integration and mapping
of systems biology and metabolic engineering tools and techniques can help to
achieve the environmental bioremediation objective, concretely these may permit
to pass from a theoretical stage to a practical stage (Dangi et al. 2019).

Various laboratory studies have evaluated engineered bacteria for possible use in
bioremediation of contaminated sites. Bacteria genetically modified have been
evaluated, for example, to neutralize heavy metals and transform them into less
toxic forms (Paliwal et al. 2012; Pratush et al. 2018), to improve the degradation of
plastic debris (Kumari and Chaudhary 2020), for petroleum hydrocarbons degrada-
tion (Naeem and Qazi 2020), and also acting on the degradation of PAHs (Haritash
2020). Once the metabolic pathways are properly understood, the genetic manipu-
lation could permit the development of both transgenic plants and microbes that may
work twice efficiently in direction of the bioremediation of contaminated sites of
heavy metal and organic pollutants (Ojuederie and Babalola 2017). Some examples
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report that engineered bacteria may be a viable technology for Hg bioremediation
from liquid matrices, employing transgenic bacteria expressing metallothionein
(mt-1) and polyphosphate kinase (ppk) genes. It was possible to achieve high Hg
resistance and accumulation while reduced Hg volatilization was observed. Specif-
ically, the reduction of the Hg volatility represents an important advantage compar-
ing the reduction at the volatile elementary form (Hg0) by simple natural bacteria
expressing mer genes (Ruiz et al. 2011).

Recent advances to face regulatory hurdles and environmental concerns come
from engineered bacteria applied to clean up oil spills, showing high efficiency for
possible in situ application. The study included the genetic vector detection among
environmental bacteria of the contaminated site treated with genetically modified
bacteria. A crude oil soil remediation employing E. coli transporting three enzymes
(almA, xylE, p450cam) resulted in the degradation of 60–99% of target hydrocarbon
substrates, from the vector detection it was possible to notice that E. coli cells died
after five days, while a variety of bacteria received and carried the vector for over
60 days after inoculation. However, it disappeared when the carbon source was
removed providing minimal ecosystem disturbance (French et al. 2020).

Some studies have been conducted with bacteria showing the ability to work
under ionizing radiation, including marine strains of Deinococcus spp., considered
for its extremely radio-resistant capacity. This bacterial group has shown DNA
repairing proficiency permitting their use in a number of strategies for bioremedia-
tion of radioactive waste, collaborating with those capacities such as desiccation,
temperature, and metal tolerance (Suresh et al. 2004; Ferreira et al. 1997). For these
peculiar characteristics, it has become an organism of choice for bacterial engineer-
ing (Brim et al. 2000, 2003). The lyophilized recombinantDeinococcus radiodurans
genetically modified for PhoN expression showed PhoN activity and uranium
precipitation ability as well as other metals like cadmium. PhoN promote the
liberation of inorganic phosphate from a suitable substrate molecule like
β-glycerophosphate, causing the precipitation of metals as cell-bound metal phos-
phates and facilitates their easy removal from aqueous solution (Misra et al. 2012).

An important chemical groundwater pollutant is 1,2,3-trichloropropane (TCP)
used as degreasing agent with high water solubility that causes large spreading of
this recalcitrant component in the environment. Currently, no natural microorgan-
isms are known to be able to mineralize TCP. This necessitates isolation and
remediation measures, which may be based on (accelerated) in situ treatment or
pump-and-treat methodologies. TCP was chosen as a target for constructing bacteria
that use it as a growth substrate since some structurally similar compounds are
biodegradable. This was indeed achieved by a combination of protein- and metabolic
engineering. In this case, the use of genetically modified bacteria still awaits full-
scale application, while successful full-scale application has been achieved for the
similar 1,2-dichloroethane by isolating bacteria degrading this compounds and
bioremediation activities were carried out with ex situ procedures (Janssen and
Stucki 2020).
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8.7 Concluding Remarks

Environmental pollution has been widely spread around the world, and the pollution
is cumulative, once naturally, it is impossible the auto depuration of all contaminants
released in the environment and accumulation in some parts such as in marine water
and sediments. Marine pollution is affecting all kinds of systems such as bacterial
communities, corals, fish, and other living organisms, even the humans once the
ocean has been feeding the human beings since the humanity began. In this scenario,
bioremediation became for helping and has efficient strategies for each kind of
pollution. Refinery wastes are common contaminants widespread released in the
environment and studied in bioremediation. Marine bacteria have been used as
efficient biological agents for bioremediation of contaminants as plastics, petroleum,
hydrocarbons, and heavy metals. Biodegradation combined with other strategies
such as bioaugmentation, biosurfactant production, and biotransformation is very
powerful for bioremediation of marine environments with very good clean-up
results. Thus, additional studies and applications need to be performed and are
necessary to improve bioremediation technologies using marine bacteria.
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Chapter 9
Marine Bacteria for Biofertilizers

Poonam Singh, Kaleemunnisa FNU, and Telma Encarnação

Abstract The fertilizer industry is growing with time and demand. The production
of most used nitrogenous fertilizer utilizes methane supplies and sums up to 3% of
worldwide greenhouse emissions. Chemical fertilizers have created a large number
of environmental dead zones with low oxygens where life forms cannot grow.With a
decline in soil quality, the yield of crops go and have gone from minimum to none.
Stress caused by abiotic and biotic factors is the constraint that needs to be overcome
as it affects the productivity of the crops. Improvement of crop growth under stress
depends on unexplored tools of nature. One of such tools is microbe, which are still
unexplored and found in enormous quantity. Microbes that produce a variety of
metabolites either stimulate the nutrient formation or increase the uptake of nutrients
in plants it is symbiotically associated with. The term microbial biofertilizers is
associated with the formulations of sufficient densities of strains in active or inactive
form of microorganisms, that can be used in rhizospheres for plant growth. The
microbes used can be either a single strain or in combination with different specific
beneficial effects.
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An overview of responses of bacteria as biofertilizer on biochemical properties of the soil

9.1 Introduction

Modern agriculture requires expeditious yet responsible measures. The increasing
crop productivity for meeting the demand of the growing population has been
possible due to synthetic chemical fertilizers and pesticides. The practices followed
by farmers have been changing throughout the years with a negligible focus on the
problems that are impacting the environment (Mishra et al. 2012; Swapna 2013).
This is causing many alarming situations that are going to impact the earth and living
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beings not only in the present but also in near future. However, we cannot deny the
fact that food security is an important cause and we need to fulfill it. The continuous
climate change with increasing temperature and CO2 levels is a threat to the
agriculture (Spiertz 2009).

Living organisms that can deliver nutrients to soil, plant or can help in the
germination increasing the biomass of the root is termed as biofertilizer. The use
of microbial metabolic ability for degradation/removal of environmental pollutants
provides an economic and safe alternative compared to other physicochemical
methodologies. Microbes have an ability to alter the microbiota of the soil and living
forms around the particular area where they are used as biofertilizer (Hafeez et al.
2006). These microbes might be found in different sources, the most common ones
are bacteria, fungi, and cyanobacteria (blue-green algae). These microbes have
enzymes that perform the nutrient conversions maintaining the nitrogen and phos-
phorus balance and hence keeping the soil constitution in equilibrium (Ritika and
Utpal 2014).

9.1.1 Marine Organisms as Biofertilizer

The majorities of microalgae are capable to fix the atmospheric nitrogen and are
effectively used as biofertilizers. Microalgae or microphytes are microscopic algae
invisible to the naked eye. They are phytoplankton typically found in freshwater and
marine systems, containing all the essential nutrients needed for plant growth.
Symbiotic marine origin form is not only environmentally friendly but also cost-
effective (Ravikumar et al. 2005). In general, the molecules produced from marine
sources possess no harm to the environment and provide a foundation for organic
biomass production. The main factors affecting marine diazotroph distribution in the
ocean are oxygen, light, temperature, inorganic N forms, phosphorus (P), Fe, and
organic matter (Fu et al. 2014).

9.2 Literature Review

Conversion of molecular nitrogen into ammonia and other nitrogenous compound
that can enrich the soil is primarily done by Diazotrophs that include Rhizobia,
Frankia, and Azospirillum. These bacteria provide phytohormones to the host and
confer resistance against pathogens. The exchange of signals occurs through diffu-
sion in symbiosis pathway. The soil bacteria are mostly studied in the rhizobia–
legume and legume–arbuscular mycorrhiza symbioses (Pankievicz et al. 2021). The
evolutionary link has been recognized between these two symbioses.

The ability of rhizobia to fix the nitrogen in the root nodule and maintaining the
nutrient uptake during stress conditions, makes it interesting for the crops like
soyabean reducing the production cost and reducing adverse environmental impacts.
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The impact caused by the microbes can be determined by their ability to promote
plant growth in any kind of stress condition. The soil bacteria are known to promote
plant growth by providing ammonia, enhancing the uptake of indole-3-acetic acid
(IAA), gibberellic acids, cytokinin, plant hormones (Grobelak et al. 2015).

The deep ocean is an unsolved mystery and has organisms that have essential
application in different industries and one of them is as natural fertilizers. One of the
important evidence to identify nitrogen-fixing bacteria is found in their DNA
fingerprints. That contains the gene specifically encoding the protein responsible
for nitrogen fixation (Bianchi 2011).

Cyanobacteria is a biological unit to convert solar energy to chemical energy and
contributing to the atmospheric oxygen. The capture of photon and by cyanobacteria
is a source to generate biofuels and chemicals using sunlight and the greenhouse gas
CO2. The mechanism of how cyanobacteria work as a bio fertilizer in different parts
of a plant is shown in Fig. 9.1. Synechocystis sp. PCC 6803 is one of the most
extensively studied species in research due to its similarity with the plant chloro-
plasts. The carbon metabolism under variety of conditions makes it suitable for the
stress adaption in plants and studying stress using this cyanobacteria species as a
model. The genetic modification in Synechocystis 6803 has ensured that the species
can produce diverse types of chemicals and work as a photosynthetic host (Quiroz-
Arita et al. 2019). In absence of nitrogenase it cannot fix N2 but by producing
cyanophycin. Cyanophycin is a polypeptide containing multiple arginine and aspar-
tate residues. However, it is able to store ammonium nitrogen inside of the cell. This
generates a possibility to use it as a bio fertilizer by removing the nitrogen from the
wastewater. A study done by Krasikov and other researchers found that nitrogen
production protein is upregulated, photosynthetic carbon fixation is done in a limited
manner, and cells hardly have any enzymatic activity under reduced nitrogen
conditions in Synechocystis 6803. Thiobacillus a widely distributed bacterium

Fig. 9.1 Depiction of working mechanism of cyanobacteria as biofertilizer in the growth of the
plant: (1) Colonization of leaf by cyanobacteria. (2) Colonization in the root hair, and root surface.
(3) Co-inoculation with 2,4-dichlorophenoxy acetic acid (2,4-D) (synthetic auxin) and Nostoc spp.
increases para-nodule formation and nitrogen fixation (Lee and Ryu 2021)
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produces nitrous oxide and is found in both soil and water sources. Thiobacillus is an
autotroph capable of using both sulfur and iron(II) as an electron donor (Hedrich
et al. 2011; Krasikov et al. 2012). Canola, rapeseed plant when inoculated with Iron
along with Thiobacillus sp., along with the application of Zn and Fe micronutrient,
showed higher content of zinc and iron in seeds. The yield and oil content in canola
was enhanced too (Jashni et al. 2017). Green beans had an increase in their
productivity when Thiobacillus, sulfur application was used with zinc. The mecha-
nism thought is reduction of the pH soil by providing sulfur, which results in bigger
food yield. The maize and wheat production was increased by applying Thiobacillus
thiooxidans when used with iron and zinc (Davaran et al. 2016; Visser 1997).

Bacillus cereusUW85 and Pseudomonas protegens CHA0, the known biocontrol
agents, when used together can aim at different pathogenic fungi, producing metab-
olites against other unwanted growth in plants. The bacteria found on land soil
convert N2 into organic nutrients like ammonium (NH4+) and nitrate (NO3-) that can
be utilized by plants. In marine infrastructure, cyanobacteria, blue-green in color are
abundantly found, fixing nitrogen. Approximately 90% of natural nitrogen fixation
is performed via these organisms also known as diazotrophs. NO3

- or O2 and
temperature are important to understand the wider latitudinal distribution of different
diazotrophs in the ocean tropical surface waters and tropical marine waters (Caulier
et al. 2018).

Synechocystis has carboxysome that concentrates inorganic carbon for biomass
growth. It is a special organelle which encapsulates Ribulose-1,5-bisphosphate
carboxylase (RuBisCO), this enzyme helps with CO2 fixation. Inorganic
polyphosphate can be stored by Synechocystis 6803, photosynthetic host for the
production of diverse types of chemicals. phoU and sphU are the phosphate regu-
lator mutant genes that enhance cyanobacterial phosphorus uptake. Mineral fertil-
izers that contain macronutrients such as nitrogen, phosphorus, and potassium when
added increase the crop yield (Tabita 1999).

9.3 Understanding the Mechanisms of Nutrient Uptake

Biofertilizer, Nitragin of Rhizobium sp. (Singh and Singh 2019) was used in 1895 by
Nobbe and Hiltner. Mycorrhizal fungi inoculants had a positive impact on plant
growth promotion (PGP), studied in the 1950s (Koide and Mosse 2004). It has been
a great effort to analyze and understand the mechanism of nitrogen fixation via
microbes. The difference in location came up as a predominant factor. For example,
if the bacteria are growing on coastal or open ocean, deep or shallow, warm or cold
water, it makes a variation in rate and order of fixation. N2 in the rhizosphere and
bulk soil can be fixed into atmospheric N2 in cereal crops such as wheat, maize, rice,
and corn by heterotrophic free-living diazotrophic species such as Azotobacter,
Azospirillum, and cyanobacteria. In other crops, N availability has been enhanced
by free-living diazotrophs (Zeffa et al. 2019).



194 P. Singh et al.

9.3.1 Nitrogen Fixation by the Bacteria

Only a small number of marine bacteria can convert dissolved N2 gas into bioavail-
able ammonia (NH3) and known as N2 fixers. This is an intensely energy-requiring
process carried out by different kinds of cyanobacteria species. Trichodesmium,
Oscillatoria, Lyngby, Aphanizomenon, Nodularia Richelia, Calothrix Crocosphaera
watsonii, Marine diazotrophs, heterotrophic bacteria, phototrophic bacteria, and
Cyanothece are the species with nitrogenase complex, which catalyzes N2 fixation.
Protein bound by molybdenum and iron constitutes nitrogenase. Oxygen destroys
nitrogenase, to cope up with this phenomenon cyanobacteria generate specialized
N2-fixing cells as a protection mechanism. Heterocyst cells are formed that are
deficient in oxygen. Time delays are another strategy used against oxidation by
proteobacterial diazotrophs and Trichodesmium and heterocyst-forming
cyanobacteria (Pajares et al. 2019).

9.3.2 Phosphorus: Solubilization and Mineralization by
the Bacteria

Phosphorus is one of the main limiting elements and second most important macro-
nutrient for biomass production found in phosphate and sedimentary rock in the
marine environment. Pseudomonas aeruginosa from marine origin, was reported to
the produce pyoverdin type of siderophores, when tested for additional metabolite
production, was found to solubilize phosphate. Marine bacteria are capable of
solubilizing inorganic phosphorus from insoluble compounds to be assimilated by
plants. Marine systems receive phosphorous minerals by continental weathering,
however the weathering depends on environmental factors. That includes how old
the earth is, erosion conditions, atmospheric composition, phosphorus content in
rock, microaggregate fractions from the soil, and biological response.
Achromobacter can be found in marine sources. It mineralizes phosphate through
production of extracellular enzymes (Kalayu 2019; Rane et al. 2008).

9.3.3 Potassium: Solubilization by the Bacteria

Potassium a vital macronutrient, required in enzyme activation, protein synthesis,
and photosynthesis. It is absorbed from the root and helps with the movement of the
water, nutrients, and carbohydrates in most agronomic crops. Potassium-solubilizing
bacteria minimize health hazards that are resulted by the use of chemical fertilizers.
Serratia marcescens can exhibit plant growth promoting molecules hence a potential
PGPB with diverse activities tested by Sindu et al. The processes like cell osmotic
regulation and enzyme activation require potassium, the availability depends on the
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quantity in the soil (Janice and Carmen 2007). Potassium is present in the soil in
three different forms, in readily unavailable, slowly available, and readily available.
The minerals present in soil (feldspar and biotite) have the potassium mostly in
readily unavailable form, clay has slowly available, non-exchangeable form to the
plants. Water-soluble potassium is readily available and exchangeable present in soil
(Teotia et al. 2016).

9.3.4 Oxidation of Sulfur by Bacteria

Sulfur an essential nutrient for the production of proteins, glutathione, chloroplast
membrane lipids, coenzymes, and vitamins is mostly found in organic form. The
inorganic sulfur that is in the form of sulfate has been depleted recently as a
consequence of many environmental factors. Element sulfur based fertilizers are
present in the market, but for plants uptake it needs to be oxidized to sulfate. Bacteria
are capable of metabolizing sulfur and its compounds (Tang et al. 2009). Hydrogen
sulfide (H2S), sulfur, and thiosulfate (S2O32-) are oxidized by bacteria to convert it
to sulfate. Thiobacillus, found in marine environment, oxidizes sulfur. The sulfate
produced has several advantages when it goes deep into the ground it produces
sulfuric acid dissolving metal, concrete, and steel to soluble monomeric and oligo-
meric compounds. Hence, improving the quality of the soil. Phreagena soyoae is one
of the intracellular symbiotic sulfur-oxidizing bacteria (Lin et al. 2018). Purple sulfur
bacteria Thiospirillum are strict anaerobes and convert sulfide to sulfur and then
sulfate (Pfennig 1975).

9.3.5 Micronutrients Solubilization by Bacteria

Micronutrients are essential for the growth and enzymatic reactions in plants.
Processes like photosynthesis, respiration, water oxidation, and oxidative stress
protection (Castro et al. 2018) are dependent on the intake of iron, zinc, copper,
silicon, cobalt, nickel. If the soil is deficient in micronutrients, it will affect the
production of the crop. Silicate classified as a beneficial nutrient by the Association
of American Plant Food Control Officials, is found in soil but not readily available.
Silicate solubilizing bacteria found in soil, water, marine sediments, and silicate
minerals exhibiting their unique property can solubilize the silicate and make it
accessible in the form of monosilicic acid for plants (Vasanthi et al. 2018).
Aeromonas, Rhizobium, Enterobacter, and Bacillus are the most studied species.

Iron sequestration is performed by siderophores that possess high affinity and
selectivity for Fe(III). They help the plants to survive in iron deficient environment.
Siderophores work during many physiological processes such as oxidative phos-
phorylation and nucleic acid biosynthesis. Insoluble Fe(III) is transported to micro-
bial cells by membrane receptors, after that reduction of Fe (III) to Fe (II) occurs by
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redox processes. Marinobacter sp. DS40M6 produces the suit of marinobactin
siderophores (Martinez et al. 2003). Synechococcus sp. and Vibrio cyclitrophicus
1F53 have been found to have peptidic hydroxamate siderophore that has an ability
to chelate metals via the presence of two oxygen atoms (Chen et al. 2019).

9.4 Regulations

The environmental impact of traditionally used agricultural techniques has moder-
ately led European union to put some regulations on it. The regulatory framework
has encouraged better use of microorganisms to improve agricultural practices
according to their taxonomic classification and usefulness.

Marine forms maximize the use of the waste and hence play a role in the recycling
of the nutrients.

The plethora of marine sources present on this earth remains majorly unexplored
giving a subsequent scope for research of the potential application of the extracted
components. New advancements have made it possible to investigate the compounds
and facilitate the expedition to analyze new components from marine life. Figure 9.2

Fig. 9.2 Nitrogen cycle taking place through marine bacteria (White et al. 2020)
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is the interpretation of nitrogen cycle in which conversion of nitrogen takes place in
different forms via marine bacteria in the ocean and circulating through different
ecosystems.

The use of waste from the production of biomass to produce molecules encour-
ages the circular economy. The use of biofertilizers from bacteria should not cause
any damage to the environment or human health. To ensure the safety, The European
authorities have developed the recent new policy content of the EU Circular Econ-
omy Fertilising Products Regulation (EU 2019/1009) on biofertilizer in order to
protect humans, plants, animals, and the environment. To trade the fertilizers the
products must comply with strict regulations and affix the CE mark. The producers
must ensure and demonstrate the labeling requirements. The EU regulation directs
the product to be divided into function categories that will determine the specific
requirements of quality and safety to be used for intended purposes. There are certain
control criteria involved for different categories of the product before making it
available to the market. The harmonized quality standards introduce new limit values
for contaminants to trade the fertilizers keeping the health attributes into account
(Schmidt and Haccius 2020; Saha et al. 2017).

The biofertilizer has to guarantee reduction of soil and environmental risk and
provide a high level of soil protection this is regulated with a limit for cadmium that
is<1.5 mg/kg. The low cadmium content allows producers to obtain improved level
of soil production. The natural source boosts the circular economy and also the use
of recycled bio wastes. The use of bacteria as a source of biofertilizers also
emphasizes on green innovation reducing the need to use other sources of nutrients
for the growth of the plants. The structured framework ensuring the detailed guide-
lines to use the biofertilizer from bacteria encourages the farmers to use this
abundantly available natural source hence avoiding toxic contaminants and ele-
ments. The presence of this alternative bacteria based fertilizer in accordance with
the market if applied all over the world would remove all the costs in terms of
clearance from the national borders. It will persist the homogenous protection of
environment and health of the living beings as well (Calvo et al. 2014; Das et al.
2019).

9.5 Limitations

Extensive and long-term application of biofertilizers can cause technological, infra-
structural, financial, environmental, human resources constraints. The use of
biofertilizers may result in accumulation of salts, nutrients, and heavy metals. This
could cause detrimental effects on plant growth. There are very few places where the
extraction and purification of the marine bacteria is done; this unawareness can affect
the quality of the crop and ultimately impact human health.

Variable concentrations of nutrients in different species and high implementation
costs are something to be taken care of otherwise it makes the entire process too
expensive. Even after having the desired qualities in a bacterial species it is possible
that low transfer of micro- and macronutrients can cause nutritional deficiency. In
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comparison to chemical fertilizers large volumes of biofertilizers from bacteria are
required for land application, this might be because the process is not yet standard-
ized it is difficult to know exact contents of nutrients (Carvajal-Munoz and
Carmona-Garcia 2012).

9.6 Future Outlook

Machine Learning(ML) concept gives computers the ability to think and helps us to
solve many problems. ML is a subset of artificial intelligence focused on using
algorithms that learn and improve without being explicitly programmed to do
so. ML is about learning from existing data to make predictions about the future.
It is based on creating models from input datasets for data-driven decision-making.
ML uses large datasets to identify (infer) patterns and make decisions (predictions).
Automated decision-making is what makes ML so appealing. You can teach a
system from a dataset and let the system act by itself to predict future. Currently
many researchers’ study concluded that there are enormous resources available in
the extensive marine environment. These sources play a vital role in the development
of renewable sources.

With the data available on the level of nutrients present in the marine bacteria, we
can analyze the growth of plant and with the help of Artificial Intelligence algorithms
we can predict the growth based on the nutrients content and also classify the
nutrients (Larrañaga et al. 2006).

The process of machine learning is as follows (Fig. 9.3):
Machine learning is a method of data analysis, which is a sub section of Artificial

Intelligence that automates analytical model building. Using these algorithms that
iteratively learn from data, machine learning finds hidden patterns without being
explicitly programmed.

These features of ML can be used on the data collected on bacteria from marine
source for fertilization to classify the type of species, classification can be done on

Fig. 9.3 Flowchart of machine learning process
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both binary and multivariate, which can help in deciding what kind of crops grows
faster with different strain of bacteria. And we can predict the rate of growth at which
these fertilizers are helping in achieving cost effectiveness, level of non-toxic
achieved and also to check the level of contamination of the ground water. Also,
you can check the subspecies of bacteria growing in different weather, temperature,
and area (Fig. 9.4).

At the most fundamental level, machine learning is categorized into two main
types: supervised learning and unsupervised learning. Supervised learning involves
modeling the relationship between measured features of data and some label asso-
ciated with the data; once this model is determined, it can be used to apply labels to
new, unknown data. This is further subdivided into classification tasks and regres-
sion tasks: in classification, the labels are discrete categories, while in regression, the
labels are continuous quantities. Supervised learning used in applications where
historical data predicts likely future events (Goodfellow et al. 2016) (Fig. 9.5).

In supervised learning, an algorithm learns from labeled data. This labeled data is
used for training algorithms. The algorithm receives a set of inputs along with
outputs. An algorithm learns by comparing its actual output with correct outputs to
find the errors. And then it modifies the model accordingly. Once the model is
trained, we can test it by new input/data (Fig. 9.6).

There are more than two classes available for classification with the labels for a
multi-class classifier. Decision tree is an example of multi-class classification.

Plant growth promoting bacteria (PGPB) contain all the essential nutrients needed
for plant growth. The majorities of PGPB are capable to fix the atmospheric nitrogen
and are effectively used as biofertilizers. PGPB have a tendency to harbor genetic
factor for antibiotic and metal resistance. Through antibiotic resistance property acts
as the intrinsic property which attributes to the presence of multidrug efflux pumps,
which are involved in performing metabolic processes in bacteria. With the data,
available on the level of nutrients present in the PGPB, we can analyze the growth of

Fig. 9.4 Flowchart
explaining the simple
working cycle of machine
learning

Fig. 9.5 Flowchart of
supervised learning
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Fig. 9.6 Diagram showing how the data contributes in understanding of a data

Fig. 9.7 Illustration to
show how to extract
information from Dataset
points

Fig. 9.8 Flowchart of
unsupervised learning

plant and with the help of Artificial Intelligence algorithms we can predict the
growth based on the nutrients content and classify the nutrients (Fig. 9.7).

Data comes without labels and the task is to find similar data points in the dataset
in order to identify any underlying hierarchical structure. Consider a dataset that
contains purchase preferences from Amazon users, these users will likely form a
cluster that behave in the similar way. They may have similar purchase behavior,
they may spend same amount of money, or buy similar type of items. You can think
of these different groups as different communities with different preferences. Once
these communities are identified you can describe each data point which is each user
in terms of the community it belongs to gaining deeper understanding of the data,
and also reducing the number of data points that we have to deal with (Larrañaga
et al. 2006; Goodfellow et al. 2016) (Fig. 9.8).
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9.7 Conclusion

Excessive use of hazardous chemical, pesticides used as fertilizers is posing high risk
for imminent agriculture. The alternative to these hazardous chemicals can be
biofertilizers, which can provide sustainable agriculture as biofertilizers helps in
increasing crop yielding, maintaining, and enduring soil fertility. This can help in
meeting the food consumption demand globally. Microbes can help in enhancing the
immunity, growth, of crops, by aiding the essential nutrients required in growth of a
crops such as nitrogen, phosphorous, potassium, zinc, and silica, to dissolve which
are present in the form of insolubilized. The advantage of using biofertilizers is that
they are cost-effective, non-toxic, contribute for the reduction of contamination of
the ground water, as well as eco-friendly.

Currently, many research studies concluded that there are enormous resources
available in the extensive marine environment. These sources play a vital role in the
development of renewable sources. Marine scientists aim to evaluate the factor that
controls the reservoir of nitrogen in the ocean and its influence on the fertility of the
soil. Using a wide range of different techniques causes uncertainty in the estimation
of nitrogen fixation rates as they are not comparable among ecosystems.

The global biofertilizer market is set to reach to 3.9 billion in 2025 (Mitter et al.
2021). Even though biofertilizer are considered safe for the environment, they have
the drawback of short shelf life and survival of the strains in different environments.
In case the necessary requirements are fulfilled during storage and transportation, the
entire process is very costly, and mass production is very tricky too. There is no
proper guidance for farmers regarding the recommended use.

There is no easy way to deal with the coming challenges but the bio resources that
can be exploited with undiscovered marine diversity constituted with culturable
microbes might help to overcome them. Especially when Machine Learning can
process and analyze the existing and ongoing data making the task organized and
simpler.

Not only environmentalists but economists are also concerned with the increase
in the cost of crop production due to the application of expensive chemical fertilizers.
Availability of nutrients, if maintained and recovered by the ocean-bacteria, can
solubilize the minerals in the soil. They can enhance and make the nutrients available
for the growth of the plant by N2-fixing, phosphate-/potassium hence working as
biofertilizers.

Biofertilization requires less chemicals in the soil and might be effective in its
decontamination of pollutants; therefore, can reduce the environmental impacts
associated with agriculture activities.
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Chapter 10
Marine Sponges for Bioremediation
Purposes and for Secondary Metabolites
Production

Ismail Marzuki and Khairun Nisaa

Abstract Environmental bioremediation is necessary to maintain the balance of the
ecosystem to remain friendly and supports the continuity of life in the future.
Comprehensive screening of marine sponges, symbiotic bacteria and secondary
metabolites produced has been carried out. The activity begins with the identification
and characterization of the morphology and histology of sponges. Furthermore, the
analysis of phenotype and genotype of symbiotic bacteria continued by exploring the
function of several types of bacteria in the biodegradation method of PAHs and
bio-adsorption for several kinds of heavy metals. These activities include analyzing
secondary metabolite components produced by sponges with specific characteristics
and specific behaviour of enzymes in enzymatic reaction mechanisms in several
environmental improvement uses. Based on the screening results, it is known that
there are 11 types of marine sponges from Kodingareng Keke Island, which are in
symbiosis with eight varieties of bacteria from the Bacillus sp., Pseudomonas sp. and
Acinetobacter sp. groups. These bacteria can biodegrade PAHs, especially against
petroleum sludge, naphthalene and pyrene. Also found 12 types of symbiotic sponge
bacteria with the ability to bio-adsorb heavy metals, especially Cr (III), Cr (VI), Mn
(II), Mn (VII), Pb, Hg, As, Cu and Ni. Adsorption varies. The interesting part of the
results of the bacterial symbiotic test was that three types of symbiotic sponge
bacteria were found, which have dual functions as biodegradators of PAHs and
bio-adsorbents of heavy metals. The sponges included Acinetobacter calcoaceticus
strain PHCDB14, Bacillus pumilus strain GLB197 and Pseudomonas stutzeri strain
SLG510A3–8. Therefore, this type of sea sponge is recommended for population
propagation through the transplant method.
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10.1 Introduction

Exploration of marine microorganisms to overcome environmental pollution is
essential to maintain and maintain the existence of the earth as the best and most
comfortable dwelling for every living creature, more specifically in the marine
environment, which is an area where various types of ecosystems of life and
activities of animals to maintain themselves exist, on earth. It is realized that the
actions and dynamics of human life contribute the most in producing various
environmental problems today. Environmental pollution in multiple parts of the
earth, the largest, is caused by human activities in maintaining their lives, directly
and indirectly harming environmental sustainability (Dadrasnia et al. 2020). Human
initiatives and efforts to save the environment are not merely desires that are free
from interests and without purpose but are indirect efforts to maintain their existence
on earth as living beings who want to exist and live for all time (Idah et al. 2018).

Human efforts to save the environment are carried out in various ways. These
methods are, for example, by conducting research, experiments and trials both on a
micro-scale and on a broad scale, whether carried out in the laboratory or directly
carried out in the field. These activities become a necessity of life that humans must
carry out because humans are most responsible and have an interest in maintaining
the environment to remain a friendly place. Seeing that the living environment of
living beings is not simple, comprehensive studies and studies are needed so that the
environment remains sustainable throughout time so that the natural balance and
dynamics of the ecosystem continue to run naturally (Marzuki et al. 2020a). Actual
examples of human activities that contribute to the contaminant component for the
environment can be seen in the petroleum mining industry, which produces various
types of fossil fuels to meet the needs of life (Lu et al. 2019). There are three main
activity stages of petroleum production, namely the stages of production through the
processing industry, distribution and use of the product. The processing stage turns
out that petroleum exploitation activities always produce by-products in the form of
oil sludge or sludge. The distribution stage, which generally uses sea transportation
in the form of tankers and distribution pipes, has the potential for incidents of
distribution pipe leaks, tanker fires, collisions, sinking ships and other potential
incidents that result in oil spills and pollute the environment (Medic et al. 2020).
The stage of using this fuel to run production machines, cars, motorcycles and other
work equipment that uses fossil fuels produces various types of combustion gases,
all of which put a burden on the earth or the potential for environmental pollution
(Rua et al. 2018).

Petroleum sludge is composed of two main components, namely hydrocarbon
components and heavy metals. Hydrocarbon components contain several
sub-components: total solid residue, fixed residue, volatile solid residue and sludge
moisture content. These components are suspected of having hazardous and toxic
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materials such as polycyclic aromatic hydrocarbons (PAHs), both simple ones such
as benzene to heavy ones such as benzo(a)pyrene (Marzuki et al. 2021c). Several
types of heavy metals are often found in petroleum sludge, such as lead (Pb), nickel
(Ni), copper (Cu), arsenic (As), chromium (Cr), aluminium (Al) and other types of
heavy metals. Based on the characteristics of the components of PAHs and heavy
metals that make up petroleum sludge, we can state that these components are a
severe threat to the air, water and soil environment, so they must be watched out for
and prevented from contaminating the environment (Marzuki et al. 2020b; Lajayer
et al. 2019). We can find pAHs components in the form of gaseous residues
combined with air, liquid, solid and semi-solid. Heavy metal components also
include toxic elements to plants, animals and humans (Marzuki et al. 2020c).
Generally in the form of particulates that can mix with air, associate with water
and soil. Observing the characteristics of PAHs and heavy metals that make up
petroleum sludge, We can say that these components are a severe threat to the air,
water and soil environment, so they must be watched out for and prevented from
contaminating the environment (Yogaswara 2017).

The sea area is a giant container, is the last shelter of the processes that occur in
nature. The ocean is also a place for recovery to take home to a balanced state that
occurs naturally due to shifts in a balance due to the dynamics of living things that
appear on the earth’s surface. Pollution that occurs in the atmosphere by heavy metal
particulates and other contaminants will eventually end up in the oceans. The same is
true for soil contamination by PAHs, heavy metals, microplastics and other compo-
nents. Pollutants over time, the occurrence of rain that flows following low areas and
finally empties into the sea will eventually empty into the ocean (Ziarati et al. 2019a,
2019b; Tereza et al. 2018).

The sea has protected itself to recover the presence of foreign contaminants
through natural processes in which dynamics occur, traversed by adaptation between
components until the balance is achieved. The problems that exist are contaminants
that enter the sea body with the characteristics: (1) large volume, (2) various types,
(3) toxic, (4) varying or even non-biodegradable decomposition time. The charac-
teristics of these contaminants are variables that contribute dominantly to the
recovery that occurs in the sea. These four variables tend to increase over time so
that at a particular time, they pass the tolerance threshold for recovery that happens at
sea. This condition causes the capacity and ability, performance and degradability of
materials in the sea to decrease. The range of balance that can provide continuity of
life is getting wider (Marzuki et al. 2021d).

The effect of hazardous materials in an area creates a chain pressure on various
aspects of life, not only on the habitat of a population but also harms environmental
productivity in providing support for long-term survival. Of course, this condition
cannot be left alone. Herefore, we need solutions and concrete steps to reduce the
volume and types of contaminants. In addition, we also need efforts to increase the
carrying capacity of the environment for the lives of living things, especially
humans, so that they remain in a balanced position between the needs of humans
and living things with the availability and production of all conditions that can be
provided by the environment (Parhamfar et al. 2020). Environmental management is
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determined by technological advances and environmental engineering, either by
physical, chemical or biological methods. Aspects of utilizing the wealth of natural
materials, both plants and animals, including microorganisms, have a decisive role in
environmental management (Orani et al. 2018).

Various types of living things, including plants, animals and microorganisms, can
potentially use pollution management and environmental management, which are
available and widely distributed both inland areas and in the aquatic environment.
Several groups of microorganisms such as fungi, fungi and bacteria are commonly
used in environmental improvements to overcome and control the toxic nature of
pollutant contaminants. The hydrocarbon, heavy metal and microplastic pollutant
components are most often found accumulating in waters, especially the sea. In the
marine environment, it is also found that many types of microorganisms have the
potential to be used as materials in improving environmental quality (de Kluijver
et al. 2021). Bioremediation methods to enhance the quality of the environment
contaminated with toxic components using microorganisms have been widely
applied. These activities are carried out both on a small scale in the laboratory, as
well as on a medium scale and continuously by the company internally, especially in
managing the waste produced, so that it meets the requirements for disposal to the
accessible environment (Knobloch et al. 2018).

Marine sponge is a marine biota used as a biomonitoring material to determine
heavy metal pollution in the marine environment. Determination of the pollution
level is carried out by slicing certain body parts of the sponge as a sample. Then
preparation is carried out so that the type and content of heavy metals in the sponge
can be measured using ICP and or SSA instruments (Akinde and Iwuozor 2012). The
measurement data obtained can be used as a basis for determining the level of heavy
metal contamination in the waters of the sponge habitat. This example shows that sea
sponges are bioindicators of heavy metal pollution. The results showed that several
types of sponges could survive in aquatic environments contaminated with heavy
metals, presumably due to the ability of these sponges to symbiotic with certain
types of bacteria and force them to produce substances that behave enzymes. The
substance is then spread on the surface of the sponge body as a mask to protect itself
from the stress of heavy metal toxicity (Marzuki et al. 2020b).

Further exploration of sponges, especially their way of life, growth, breeding,
self-defence against predators, and their adaptability to the presence of contami-
nants, is an interesting study to analyze because it holds many secrets of knowledge
that need to be learned to be solved. This study also includes a unique feature of
sponges: they can associate and symbiotically with several types of microorganisms.
In addition, sponges also can nourish the hydrocarbon components. Sponges also
play a role in forming parts of metabolically active substances by linking to the
ability of environmental bioremediation through biodegradation of hydrocarbon
components and bio-adsorption of heavy metals (Schmittmann et al. 2020).
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10.2 Potential and Contribution of Marine Sponges
in Environmental Bioremediation

Sponges are one of the marine biotas widely used as biomaterials to evaluate and
analyze the presence of harmful contaminants in the marine environment. The role of
sponges as biomonitoring and bioindicators of the quality of the marine environment
is interesting to be studied more systematically. Many aspects need to be analyzed
against marine sponges, starting from the way of life, nutrition, growth and symbi-
otic ability with microorganisms concerning the function of biomonitoring and
bioindicators of pollutants and the level of pollution that occurs in the marine
environment. A lot of evidence shows that some types of marine sponges can survive
and even breed in environments contaminated with toxic wastes, such as hydrocar-
bon compounds, especially PAHs, heavy metals and microplastics (Marzuki et al.
2021a). The phenomenon of adaptation of sponges to the environment polluted with
toxic components gives several assumptions: first, the body of the sponge can carry
out the function of detoxifying contaminants; second, sponges can produce mucus
substances that are spread on the body surface to protect the penetration of toxic
materials; third, marine sponges Auletta sp., Clathria (Thalysias) reinwardtii,
Callyspongia aerizusa are biomonitoring and bioindicators of heavy metal pollution
levels (Marzuki et al. 2021b); Fourth, several types of marine sponge symbiotic
bacteria of the Bacillus group (Bacillus licheniformis strain ATCC 9789, Bacillus sp.
partial AB353F) and Pseudomonas (Pseudomonas stutzeri RCH2, Pseudomonas
stutzeri strain SLG510A3-8) were able to degrade hydrocarbon components
(Marzuki et al. 2020a; Orani et al., 2020a; Orani et al. 2018).

The world’s population of sponges is estimated at 15,000 species scattered in seas
and lakes, but only 46.67% or ±7000 species have been reported, and only 830 spe-
cies have been isolated and characterized. Sponges are living organisms with a
reasonably old civilization that has existed since ±600 million years ago. Sponges
can associate with many different microorganisms, including cyanobacteria, hetero-
trophic bacteria and unicellular algae (Campana et al. 2021a). Sponges are primitive
multicellular animals (metazoans) without natural tissues, unique ways of life,
capturing food by filter feeders. Sponges are sponges that reproduce both asexually
and sexually. Asexual reproduction occurs by the formation of internal buds or
gemmules (Maldonado et al. 2021). Sponges can produce and contain more active
compounds than compounds produced by land plants. The facts attached to sponges
are an essential and logical argument as multi-functional animals in the role of biota
upholding the balance of the ecosystem (Schuster et al. 2018).

Bioindicators of heavy metal pollution in the sea can be determined by analyzing
the growth and development of sponges (Siahaya et al. 2013). Several research results
show that marine sponges contaminated with several heavy metals do not experience
growth and development disorders (Melawaty et al. 2014). These conditions indicate
that marine sponges can adapt to the presence of heavy metal contaminants in their
habitat. The method of determining heavy metal contaminants in the marine
environment is carried out by analyzing the types of heavy metals in the sponge’s
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body. Meanwhile, the concentration level of heavy metal contamination in the marine
environment is carried out using appropriate instruments, for example, analysis
using Atomic Absorption Spectrophotometer (SSA). It can also be carried out
using Inductively Coupled Plasma, both optical emission type (ICP-OES) and mass
spectrometry type (ICP-MS) (Ulli et al. 2016).

Sea sponge, one of the biomaterials for monitoring heavy metal pollution in the
marine environment, is an essential contributor to marine natural materials in
maintaining the balance and sustainability of the growth and development of eco-
systems in the sea. Sponges also act as biodegradators of contaminants containing
hydrocarbon components. Sponges also act as biodegradators of contaminants
containing hydrocarbon components. Symbiotic bacteria of marine sponges play a
role in the biodegradation of polycyclic aromatic hydrocarbons (PAHs) (Marzuki
et al. 2021c, d). Pyrene, anthracene, phenanthrene and naphthalene are PAHs that
symbiotic sponge bacteria can degrade. Types of PAHs-degrading sponge symbiont
bacteria include Bacillus licheniformis strain ATCC 9789, a sponge symbiont of
Auletta Sp; Acinetobacter calcoaceticus strain PHCDB14, symbiont Callyspongia
aerizusa; Bacillus Sp isolated from Neopetrosia Sp; Bacillus pumilus strain GLB197
isolate sponge Niphates Sp; and Pseudomonas stutzeri strain SLG510A3-8 isolate
the sponge Hyrtios erectus (Marzuki et al. 2020b). Bacteria Bacillus sp. AB353f
partial symbiosis of Neopetrosia sp. Bacillus cohnii strain DSM 6307 symbiont
Niphates sp. Several types of sponges suspected to have potential symbiotic bacteria
in the biodegradation of PAHs based on the results of identification and morpho-
logical characterization include Petrosia (Strongylo Phora) corticata, Clathria
(Thalysias) reinwardtii, Callyspongia sp., Coelocarteria singaporensis, Callyspongia
(Cladocalina) vaginalis and Callyspongia (Cladocalina) vaginalis. Marzuki et al.
2020a). It was further explained that this type of sponge was thought to have
potential symbiotic bacteria through histology of the sponge and analysis of the
phenotype and genotype of the symbiotic bacteria. Researchers obtained all the types
of sponges mentioned above, about 11 species from three different islands, namely
Kodingareng Keke Island, Barrang Caddi Island and Langkawi Island, the admin-
istrative area of the Makassar City Government, South Sulawesi Province, Indone-
sia. These islands are included in the cluster of the Spermonde Archipelago (Marzuki
et al. 2021d; Knobloch et al. 2018).

Sponges have an external morphological structure influenced by several general
factors, both physical, chemical and biological habitats. Sponges that grow in
different habitats have varying growth structures. Types of sponges that live in
less stable, shallow, turbid and high waves water environments tend to have creeping
growth and are generally shorter. In contrast, the same type of sponges that live in a
more stable environment, such as protected growth areas, calm currents and deep
waters, tend to grow taller, upright, more symmetrical and have a more extensive
body posture (Marzuki et al. 2016; Laport et al. 2009).

The presence of predators, polluting contaminants and competition of sponges
with other biota is thought to affect the morphology of sponge growth. The presence
of predators such as echinoderms, prosobranchia, opisthobranchia and other types of
predators affects the morphology of sponge growth, even forcing sponges to evolve
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body structure as a form of adaptation to avoid these predators. Several types of
sponges have body structures to drill as a form of disguise and transformation to
predatory threats (Yang et al. 2019).

Sponges that live in marine waters that contain coral and are overgrown with
algae trigger a competition, where the sponge has a high chance of winning the
match if all three are in a relatively deep environment and lack light. Still, the body
structure of the growth of such sponges is generally angular (Costa et al. 2020).
Sponges that live in marine waters contaminated with hydrocarbons, both aliphatic
and aromatic groups, still have a high potential to survive and grow and develop
because of their high adaptability to adapt through two mechanisms. First, the
nutritional ability of sponges by eating matter. Organic suspended in water flow in
body cavities and is sprayed back out. Second, Sponges can have a symbiotic
relationship with certain microorganisms, especially bacteria that can selectively
and specifically produce enzymes that behave in the form of mucus spread on the
sponge body’s surface. The function of the mucus is to protect and detoxify the toxic
properties of PAHs (Kamaruddin et al. 2021). Sea sponges are also thought to have
the ability to survive in areas contaminated with microplastics and produce mucus
that can re-glue cracked concrete. Some of the benefits of this marine biota are that
sponges deserve the nickname multi-functional biota and have been named green
chemistry biota (Obire et al. 2020; Parama Cita et al. 2017).

The presence of predators, polluting contaminants and competition of sponges
with other biota is thought to affect the morphology of sponge growth. The presence
of predators such as echinoderms, prosobranchia, opisthobranchia and other types of
predators affects the morphology of sponge growth, even forcing sponges to evolve
body structure as a form of adaptation to avoid these predators. Several types of
sponges have body structures to drill as a form of disguise and transformation to
predatory threats (Yang et al. 2019).

The internal structure of the marine sponge body at the cellular level is found in
several parts such as oscula, surface granules, skeleton and spicules with varying
skeletons from each type of sponge. A variety of skeletons are influenced by the
growth environment and dynamics of life experienced by the sponge in its growth
period. The growth dynamics of sea sponges are influenced by their growth habitat
conditions, especially currents, depth, wave height, exposure to sunlight, nutrients,
predators and contaminants. These factors also affect the structure and anatomy of
cells. The histology of marine sponges based on the catalogue (Krishnamoorthy et al.
1983) is as per Fig. 10.1a–f, for the marine sponge Niphates sp., belongs to the
family Niphatidae (Duchassaing de Fonbressin and Michelotti 1864).

The interaction mechanism of sponges with bacteria provides a place or sponge
host for certain bacteria to carry out cell growth and division activities. Then there is
interaction and adaptation to the new environment. If there are interfering compo-
nents, then the host organism is stimulated to produce active substances or synthe-
size bioactive compounds as secondary metabolites. The active substance is
delivered for self-protection and maintains environmental balance (Campana et al.
2021a, 2021b). The completion and arrangement of substances or chemical compo-
nents of the active substance are natural. The type of active substance formed is
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Fig. 10.1 (a) Growth from Sligthy globular sponge, with big size oscula. (b) Consistency Slippery
surface sponge, covered by mudlike slime. Inelastic and brittle body sponge. (c) Surface granular
sponge surface. (d) Skeleton Spicule skeleton with echinating spicule. (e) Skeleton tract
Paucispicular tract skeleton with high fibre. (f) Spicule Small megasclera oxea (magnification 40x)
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Fig. 10.1 (continued)

influenced by the kind of food and the interfering components in the sponge growth
process. Generally, sponge nutrition is rich in new microorganisms with potential
pharmacological activity so that sponges can carry out the growth process well, even
in extreme environments. On the other hand, microorganisms or bacteria benefit
from living on a sponge, i.e. bacteria are protected from the pressure of waves and
currents. The interaction between sponges and bacteria occurs as a form of
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commensalism symbiosis, in which bioactive compounds are produced (Marzuki
et al. 2020a).

Sponge symbiont bacteria have a significant influence on the formation of
bioactive substances. This influence can be seen in the role of bacteria as the leading
supplier of energy needed by sponges. Screening of symbiotic sponge bacteria was
carried out by inoculating bacteria associated with the sponge on NA media over-
grown with the test bacteria. This qualitative method can only determine whether
the bacteria can inhibit the test bacteria E. coli and S. Aureus without knowing the
effectiveness of these bacteria (Gunathilake 2018). It is estimated that 40% of the
biomass of some types of sponges is composed of bacterial communities.
Cyanobacteria symbiosis can make up one-third of the total mass of living tissue
in some types of sponges. The energy needs of some types of sponges are supplied
from 48% to 80% of microorganisms (Knobloch et al. 2018).

The bioremediation function of marine sponges on the environment is thought to
be played by the active substances in the sponge’s body. Sponges produce these
chemical components to defend themselves against potential growth disorders. The
characters, types and specific properties of these secondary metabolites are formed
according to the dynamics of life experienced by sponges during their growth period.
These metabolic substances are thought to have several functions and benefits, both
in utilization studies in the medical field and environmental bioremediation pro-
cesses (Obire et al. 2020). Its environmental remediation function is primarily for the
application and function of biodegradation of PAHs and heavy metal bio-absorption,
including the potential to overcome the presence of microplastics in the environment
(Marzuki et al. 2021b). The researcher can achieve knowledge of the role and
function of these sponges in the biodegradation of PAHs, bio-adsorption of heavy
metals and the absorption potential of microplastic components by conducting a
series of studies and analyses. The assessment and analysis activity begins with
observing the sponge’s growth environment, screening the morphology and histol-
ogy of potential sponges for environmental remediation functions. The next activity
is the isolation of symbiotic bacteria, characterization through phenotypic and
genotypic analysis of symbiotic bacteria, to conducting micro-scale tests and field
experiments to determine the performance of symbiotic sponge bacteria in the
biodegradation of PAHs and bio-adsorption of heavy metals (Marzuki 2020; Rua
et al. 2018).

10.3 Search for Potential Sponges for Bioremediation
Functions in Polluted Environments

The method of determining potential sponges for the biodegradation function of
PAHs was carried out by isolating potential sponge symbiotic microorganisms. The
purpose of potential sponges is to select specific types of sponges that meet the
following criteria: first, selecting sponges that are suspected of living in areas



10 Marine Sponges for Bioremediation Purposes and for Secondary. . . 215

contaminated with hydrocarbons; second, the surface of the sponge body is covered
by mucus or enzyme behaviour substances or at least dark-coloured sponges; third.
The colour of the sponge is generally less bright. The selected sponges were then
isolated to obtain bacterial isolates. Isolation of marine sponge symbiotic bacteria
using a simple method, as shown in Experiment 10.1.

Experiment 10.1: Isolation of Marine Sponge Symbiotic Bacteria
The selected potential marine sponges were cleaned by spraying the surface using
sterile seawater with a ratio of 1 cm2: 5 mL of sterile seawater. The mesohyl sections
were ±1× 1 cm in size, crushed and diluted with sterile Phosphate Buffer Saline
(PBS) in a ratio of 1:1. Isolate the bacteria on the outer surface using a sterile swab,
then wipe in one direction on the outer surface of the sponge. The sterile swab was
put into a dilution tube containing sterile PBS and vortexed. The results of the
dilution were spread into a petri dish that already contained Seawater Complete
(SWC) media, incubated at 26°C for 24–36 h, observed colony growth, bacterial
morphology. Selected colonies, separated using a round needle, were purified using
the same medium to obtain pure isolates. Purifying bacterial symbionts using the
direct plating method was performed by scratching one ose of colonies in a zig-zag
direction on a petri dish containing 100% marine-agar media. Incubation tempera-
ture 30°C, 1–2 days. Re-scratching on 100% marine agar until a single colony was
obtained (Marzuki et al. 2021a).

Marine sponge symbiotic bacteria biodegraded PAHs contaminants by integrat-
ing one type (Naphthalene) with a potential bacterial suspension. The complete
procedure for biodegradation of marine sponge symbiont bacteria against PAHs is
presented according to the method in Experiment 10.2.

Experiment 10.2: Biodegradation of PAHs Using Marine Sponge Symbiotic
Bacteria
Determination of potential bacteria is done through preliminary tests. Bacteria that
pass the initial test are bacteria that show growth activity on hydrocarbon-
contaminated media. Propagation of selected bacterial cells by culture. The bacterial
suspension was made and determined the number of cells. Entered 25 mL of
bacterial suspension in several degradation reactors (vials), adapted for 1 × 24 h,
put 5 mL of contaminant PAHs (naphthalene) with a concentration of 1000 ppm,
shaker incubator 200 rpm. Observations and measurements of media degradation
parameters were carried out every 2 days for 30 days. Determination of the ability
and performance of biodegradation of symbiotic bacteria were analyzed using Gas
Chromatography–Mass Spectroscopy (GC–MS) instruments. Biodegradation prod-
ucts were analyzed using Fourier Transform – Infrared Spectroscopy (FT–IR) for
serial interaction periods, such as 3, 6, 9, 12, 15, 18, 21, 24, 27 and 30 (Lu et al.
2019).

Parameters of PAHs biodegradation by symbiotic sponge bacteria consisted of
optical density, pH, temperature, an abundance of gas bubbles and fermentation
odour. Optical density was determined using a UV-Vis spectrometer on a mask. For
each serial interaction period in multiples of 2 days. Suppose an increase in the
optical density (OD) value for the first few days of interaction. In that case, it
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Fig. 10.2 The rate of increase in the value of OD (bacterial cell growth rate) based on the
interaction time in days between a sponge symbiotic bacterial suspension and 10,000 ppm naph-
thalene. Source: Marzuki et al. 2021d)

indicates a bacterial activity in the degradation medium contaminated with PAHs
until it enters the saturation period marked by no increase in the OD value in the next
few days. The rate of increase in OD value can be identified with the growth rate of
bacterial isolates isolated from four different types of marine sponges, namely
Hyrtios erectus (SpA.B2), Clathria (Thalysias) reinwardtii) (SpB.B2), Niphates
sp. (SpC.B2), and Callyspongia sp. (SpD.B2), respectively, interacting with
10,000 ppm naphthalene and 10,000 pyrenes for 15 days (Marzuki et al. 2021d),
according to Figs. 10.2 and 10.3.
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Fig. 10.3 The rate of increase in the value of OD (bacterial cell growth rate) based on the
interaction time in days between a sponge symbiotic bacterial suspension and 10,000 ppm pyrene.
Source: Marzuki et al. 2021d)
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The increase in OD value in the reactor containing PAHs contaminants is directly
proportional to interaction time. The rise in OD value indicated an activity of isolates
of sponge symbiont bacteria containing PAH. These conditions showed that the
bacteria were able to adapt to media containing PAHs contaminants, although the
OD values of each isolate were different. The sequence of growth of symbiotic
sponge bacterial cells in naphthalene-contaminated media (Fig. 10.2), SpC.B2 SpD.
B2 SpB.B2 SpA.B2, while the growth rate of bacterial cells in pyrene-contaminated
media (Fig. 10.3) in the order SpD.B2 SpC.B2 SpB.B2 SpA.B2.

Changes in the pH of the degradation medium towards a lower value or tend to be
more acidic indicate that there is bacterial biodegradation activity on the hydrocar-
bon component substrate. The temperature of the degradation media tends to
increase generally in the range of ±0.5–2.3 0C after the interaction lasts for several
days if there is biodegradation activity in the reactor (Bendouz et al. 2017).

The gas bubbles in the reactor are relatively increased as a sign that there is
biodegradation activity. The abundance of gas bubbles formed is directly propor-
tional to the level of biodegradation. Gas bubbles are formed and generally increase
after the interaction runs for a few days. The abundance decreases as the biodegra-
dation process in the reactor weaken, indicating a decline in the number of bacterial
cells that carry out the degradation process (Marzuki et al. 2020a). Gas bubbles
formed as a sign that there are simple organic compounds in the reactor in methane
gas, CO2, NO2 and other gases resulting from biodegradation or decomposition/
rehabilitation of PAHs components. The smell of fermentation is also part of the
biodegradation parameter as an indicator. The degradation that occurs results from
the work of bacteria through the mechanism of degradation of enzymatic reactions
produced by biodegradative bacteria (Onwosi et al. 2017).

The speciality of bacteria in the PAHs degradation method is the ability of
bacteria to destroy the hydrocarbon structure and turn it into an energy source for
the activity and survival of bacteria. The biodegradation performance of symbiotic
sponge bacteria against PAHs was determined using GC–MS. The data obtained on
the chromatogram show the components of the biodegradation product (Marzuki
et al. 2020c). The chromatogram data is in the form of component abundance peaks
and the potential for new peaks to appear. In general, the abundance of the tested
PAHs components as substrates will decrease with the emergence of new peaks. The
higher the performance of bacterial biodegradation, the lower the peak height
(abundance) of the PAHs test components. The lower the PAHs, the lower the
concentration of the degradation components. Figure 10.4 shows an example of a
GC–MS chromatogram resulting from the biodegradation of Bacillus SP strain
AB353f in symbiosis with the Neopetrosia Sp sponge against naphthalene
compounds.

The biodegradation process of PAHs (naphthalene) substrate at 1-day interaction
was not seen (Fig. 10.4a). This biodegradation process began to appear after 10 days
of interaction between Bacillus sp. strain AB353f and naphthalene (PAHs substrate).
An indication between Bacillus sp. strain AB353f and PAHs substrate is indicated
by the decreasing peak height of naphthalene in the graph (Fig. 10.4b). Decrease of
peak showed that the abundance of the substrate had decreased, meaning that there



218 I. Marzuki and K. Nisaa

Fig. 10.4 Chromatogram of naphthalene biodegradation of Bacillus SP strain AB353f based on
interaction time. (a). Interaction time 1 day; (b) The interaction time is 10 days, and C. the
interaction time is 20 days (Marzuki et al. 2020c)

was a decrease in the concentration of PAHs along with the emergence of two new
peaks resulting from biodegradation in the form of simple organic compounds. The
new peak increased to three after the interaction period lasted 20 days (Fig. 10.4c),
marked by the decreasing peak height of naphthalene which means that the biodeg-
radation process continues. The interaction period in this experiment was up to
30 days. Still, it appears that during the interaction period above 20 days, there was
no addition of new peaks, and the peak height of PAHs tended to stagnate. This
condition indicates that the biodegradation process is no longer running. It could be
because the bacterial cells as biodegradators died due to poisoning by the toxic
nature of PAHs or because the bacterial cells could not withstand the increase in the
acidic properties of the media in the reactor. The increase in the acidic properties of
the reactor media occurred, presumably because components were resulting from the
biodegradation of simple organic compounds from the carboxylic acid group
(Marzuki et al. 2021c). The results of the GC–MS measurement also provide data
on the level of biodegradation. After calculating, the result indicated that the
biodegradation rate was in the range of 26% - 46% for using one type of symbiotic
sponge bacteria against one type of PAHs (Costa et al. 2020).

Several ways can improve the biodegradation performance of bacteria against
PAHs. For example, it increases the number of bacterial cells in the reactor,
prolonging the life of bacterial cells by providing nutrients in adding nitrogen,
phosphorus and potassium in the degradation reactor. In addition, during the inter-
action period, oxygen is supplied to prevent an increase in the acidity of the
degradation media or the use of several types of bacteria (a consortium of bacteria),
which can degrade hydrocarbon components. The use of consortium bacteria to
increase the level of biodegradation does not necessarily increase the capacity of
these bacteria to degrade, presumably due to competition between bacteria in
obtaining energy supplies from the PAH components that have been destroyed.
However, the biodegradation of PAHs with consortium bacteria is currently being
carried out because of the ease of multiplying bacterial cells and can be carried out
very quickly (Bendouz et al. 2017).

Many collections of bacteria that can biodegrade PAHs have been carried out,
especially bacteria from the Bacillus and Pseudomonas groups. Both groups of these
bacteria can be isolated from several sources, such as soil contaminated with PAHs,
seawater contaminated with hydrocarbons, sponges and several other marine biotas.
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A collection of PAH-degrading bacteria is known as hydrocarbonoclastic bacteria
(Lu et al. 2019).

The mechanism of bacterial biodegradation of hydrocarbon components, both
aliphatic and aromatic groups, in principle, is through the oxidation pathway to form
alcohol. Alcohol products become aldehydes and finally produce carboxylic acids
and a small portion of esters before entering the -oxidation cycle and producing
energy for biodegradation activity—next cycle. The biodegradation process also
produces by-products in simple organic compounds, such as CO2, methane gas, NO
and other gases, depending on the degraded hydrocarbon component. The biodeg-
radation of PAHs is relatively the same as aliphatic components (Medic et al. 2020).
The striking difference for the aromatic hydrocarbon component at the stage after the
oxidation reaction is that it is preceded by the destruction stage of the aromatic
molecular structure so that the biodegradation of PAHs components by suitable
specific bacteria takes longer. The resulting degradation rate is generally much
smaller than in the degradation of aliphatic hydrocarbon components (Fang et al.
2020). A simple description of the biodegradation mechanism of aliphatic compo-
nents is presented in Fig. 10.5.

Specific degradation pathways of Bacillus subtilis strain BAB-1684 sponge
symbiont Callyspongia sp. against the hydrocarbon components of petroleum sludge
waste after 20 days of contact are presented in Fig. 10.6.

Based on the illustration of the biodegradation of hydrocarbon components by the
symbiotic marine sponge bacteria (Figs. 10.5 and 10.6), some steps allow the
biodegradation process to stop completely. The biodegradation process stopped
entirely because the bacterial cells experienced mass death. The biodegradation
process can stop completely at the stage of changing the biodegradation products
of aldehydes or ketones into carboxylic acids. The formation of carboxylic com-
pounds can cause the interaction medium to become acidic so that bacterial cells
have the potential to experience sudden death because they cannot survive at a
certain acidity level in the degradation medium (Marzuki et al. 2021a; Yogaswara
2017). This stage is known as the reaction rate stop stage, or the biodegradation
process stops completely.

The contribution of marine biota, especially sponges, in maintaining the balance
of the marine ecosystem is substantial. The contribution of marine life, especially
sponges, in maintaining the balance of the marine ecosystem is enormous. Suppose
an in-depth review is carried out on the formation of secondary metabolite

Fig. 10.5 Simple mechanism of biodegradation of aliphatic hydrocarbon components



220 I. Marzuki and K. Nisaa

Fig. 10.6 Estimation of a simple path of biodegradation of aliphatic hydrocarbon components of
petroleum sludge by the bacterium Bacillus subtilis strain BAB-1684 symbiosis of sponge
Callyspongia sp

components of sponges and the effect of these substances on their biodegradability,
bio-adsorption and activity of sponge bioactive substances against pathogenic bac-
teria and fungi. In addition, the active substance of sea sponges is thought to have the
potential as primary and secondary raw materials for certain drugs to treat a disease
(Shareef et al. 2016). Studies on sponges, symbiotic microorganisms and compo-
nents of secondary metabolites are interesting to do more comprehensively, includ-
ing studies related to the competition for the growth of sponges versus other biotas
such as corals and algae if all three are in the same area (Schuster et al. 2018).

A simple study of the morphology and histology of marine sponges of the
Niphates sp. species obtained from the sea waters around Kodingareng Keke Island
has been described in point 10.2 above. Part of the characterization of sponges is to
identify and characterize the symbiotic sponge bacteria that are thought to have
biodegradation performance against PAHs potentially. Phenotype and genotype
characterization of symbiotic sponge bacteria was carried out by taking samples of
four isolates of sponge bacteria Petrosia (Strongylo Phora) corticata (Sp. 1), Auletta
sp. (Sp. 2), Neopetrosia sp. (Sp. 3) and Callyspongia aerizusa (Sp. 4). (Marzuki et al.
2020a, 2020b, 2020c, Bioflux), are presented in Table 10.1.

The urease test results (Table 10.1) on two isolates (Sp. 1 and 2) showed positive
results, meaning that both isolates were able to hydrolyze urea. This ability means
that the isolate can produce and possess the enzyme urease. On the other hand, the
isolates (Sp. 3 and 4) were negative, meaning that both isolates could not hydrolyze
urea or did not have urease enzyme. V-P reagent test isolates (Sp. 1–3) showed a
positive reaction, meaning that there were components in the three isolates capable
of carrying out the fermentation reaction. In the methyl red test (R-Mr), the four
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Table 10.1 Phenotype characterization of sponge symbiont bacteria Callyspongia sp, Biochemical
Test method

Sponge bacterial symbiont

Sp. 1 Sp. 2 Sp. 3 Sp. 4

Starch hydrolysis Starch agar Base Base Base Base

Casein hydrolysis Milk agar Acid Acid Acid Acid

Gelatin hydrolysis Gelatins

Nitrate reduction Nitrate broth

Indole Tryptone broth

H2 2S

Reagent methyl red R-Mr broth + + + +

Reagent- Voges Proskauer R-VP broth + + + -
Citrates Citrate + - + -
Urease Urea broth + +

Glucose Glucose broth

Lactose Lactose broth + + + +

Sukrose Sucrose broth

Mannitol Mannitol broth

Catalase Nutrient agar (NA) slant + + + -

Note: + (reaction); - (no reaction)
Source: Marzuki et al. (2020a)

isolates showed a positive response, indicating that the isolates could produce acid in
glucose fermentation (Marzuki et al. 2015). The catalase test on all isolates resulted
in a positive reaction (Sp. 1–3 isolates). The isolates had catalase enzymes that could
degrade hydrogen peroxide (H2O2), while the fermentation test used glucose
reagent did not show any reaction activity. The lactose test showed that the four
isolates gave a positive reaction. The sucrose test resulted in a negative response,
meaning that the bacteria that grew in the fermented liquid media were acidic
components (Bibi et al. 2016). The results of characterization through gram staining
and biochemical tests showed that the two microsymbiont isolates of four different
types of marine sponges contained enzymes and could ferment and process carbon
from their environment. With the six criteria described above, it is suspected that
three isolates (Sp. 1, Sp. 2, Sp. 3) have the potential and ability to degrade, especially
to aliphatic hydrocarbon components. Still, it is necessary to test and follow up on
analysis further to degrade aromatic hydrocarbons (Khabouchi et al. 2020).

The genotype identification of four isolates from four different marine sponges
was carried out to see the pair structure and nitrogen base-pair composition through
the Basic Local Alignment Search Tool (BLAST), PCR method. The results of the
isolate sequencing were opened through the bioedit programme. The sample bacte-
rial DNA sequences were entered into the BLAST (Basic Local Alignment Search
Tool) programme (http://blast.ncbi.nlm.nih.gov/Blast.cgi), the sequences were iden-
tified with the DNA database. GenBank on the site (Kadhim et al. 2013; Cowden
1976). The results of the alignment of the sample sequences with the GenBank
sequences showed a high similarity of the homologous series, which can be seen in
the table as presented in Table 10.2.

http://blast.ncbi.nlm.nih.gov/Blast.cgi
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Fig. 10.7 Representative neighbour-joining tree reconstructed with the 16S rRNA sequences of
marine sponge symbiont bacteria (Marzuki et al. 2021d)

The results of genetic analysis using PCR found each sponge symbiotic isolate
(Table 10.2). There are two types of bacteria with different strains. Each of which is
isolates from sponges Auletta sp. (Sp. 2), Neopetrosia sp. (Sp. 3), one group of
Pseudomonas, isolates of sponges Auletta sp. (Sp. 2) and one group of
Acinetobacter. Which is an isolate from sponge Callyspongia aerizusa (Sp. 4).
Based on the results of biochemical tests (Table 10.1) by observing the reaction
results of each test medium combined with the results of the identification of the 16S
rRNA gene molecule by PCR method (Table 10.2). It is indicated that the four
species can carry out chemical reactions to break down hydrocarbon molecules
(Maldonado et al. 2021).

Characterization and phylogenetic identification of symbiotic sponge bacteria
according to the reconstructed marine sponge symbiotic bacterial phylogenetic tree
against 16S rRNA bacteria, three species were well resolved supported by moderate
bootstrap values (Fig. 10.7). The first clade, isolates of sponges SpA.B2, SpB.B2,
SpD.B2, live in groups with Pseudomonas stutzeri and Pseudomonas songnenensis
with 97–99% homology. The second clade, consisting of SpA. B1/B2, which is
positioned as a child clade of the Pseudomonas species. The third clade, SpC
isolates. B1 grouped with Bacillus isolates reached 96%.



224 I. Marzuki and K. Nisaa

10.4 Development of the Function of Symbiotic Sponge
Bacteria Through Heavy Metal Bio-Adsorption
Method

The application of marine sponge symbiotic bacteria in bioremediation of heavy
metal-contaminated environments is being developed. Several studies have shown
that several types of bacteria can bio-adsorb heavy metals. Heavy metals such as Zn,
Pb, and Cd can be absorbed using certain bacteria (Konkolewska et al. 2020); Pb, Ni,
Cd and Cr (Alimardan et al. 2016); Cd and Pb (Alaboudi et al. 2018). Even several
reports were showing that several types of heavy metals were found in marine
sponges, for example, Pb, Cd, Zn, Fe and Cr (Wibowo et al. 2019; Siahaya et al.
2013; Melawaty et al. 2014), where the sponge showed a reasonable growth rate.
Pseudomonas bacteria isolated from marine sponges can adsorb heavy metals Cr and
Mn (Marzuki 2020).

Almost all types of bacteria that breed in areas exposed to heavy metals can carry
out the function of bio-adsorption. The problem that exists for the application of
bacteria in the bioremediation of environmental heavy metal contaminants is how to
identify and obtain bacteria that are capable and have high performance in the
bio-adsorption of heavy metals, including types of heavy metals that can be
absorbed. This condition demands an assessment to find out and obtain data on the
type of bacteria, the level of absorption and the types of heavy metals that bacteria
can adsorb. A data bank on this matter is needed to provide convenience and quick
handling of areas exposed to heavy metal, both in the aquatic environment and on
land or land, especially ex-mining grounds for land function recovery, for agricul-
tural activities. Alimardan et al. 2016).

Several types of bacteria isolated from sea sponges were stated to be able to
absorb several types of heavy metals, including Bacillus sp. strain AB353f against
heavy metals Cr and Mn (Marzuki et al. 2020b; Marzuki 2020), Bacillus pumilus
strain GLB197 and Pseudomonas stutzeri strain SLG510A3-8 against heavy metals
Cr(VI) and Cd(II) (Marzuki 2020). Types of bacterial isolates without known species
that are symbiotic sponges have been reported to absorb several types of heavy
metals. It is including Petrosia (Strongylo Phore) Corticata, Neopetrosia sp.,
Callyspongia aerizusa, Niphates Sp, Hyrtios erectus and Auletta sp. to heavy
metal Nickel (Ni), Copper (Cu), Lead (Pb), Chromium (Cr) and Mercury
(Hg) (Angela and Marzuki, 2021; Wibowo et al. 2019).

The general method of tracing bacteria has the function of bio-adsorption of
heavy metals: first, identification of marine sponges that live in waters exposed to
heavy metals. Second, sampling several sponges and isolate the associated bacteria.
Third, the isolates obtained were tested for their bio-adsorption ability on certain
heavy metals by placing some bacterial colonies on media engineered to be con-
taminated with several types of heavy metals, incubating and observing the growth
activity of the isolates. Fourth, potential isolates from possible test results were
identified and phenotype and genotype characterization. Fifth, make stock, catalogue
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of isolates related to types of heavy metals that can be absorbed (Gebregewergis
2020).

Researchers have carried out trials of stock bacteria that have been characterized
against certain metals to see their bio-adsorption ability and performance in an
engineered environment contaminated with several heavy metals in known concen-
trations. During the contact process between bacterial suspensions and heavy metals
in an engineering environment, bacterial cell growth was observed by measuring the
optical density of the interaction medium based on the contact time in days.

Experiment 10.3: Bio-adsorption of Heavy Metals Using Marine Sponge Sym-
biotic Bacteria
The Bio-adsorption ability of marine sponge symbiotic bacteria to heavy metal as a
sewage contaminant can be determined by several procedures. First, waste is made
contaminated with heavy metals, for example, Cr (III), Cr (VI), Mn (II) and Mn
(VII), each with a concentration of 250 ppm and a volume of 1000 mL. Second,
determine isolates of marine sponge symbiotic bacteria with bio-adsorption poten-
tial. For example, Bacillus licheniformis strain ATCC 9789 (BS) and Acinetobacter
calcoaceticus strain PHKD B14 (AC), both types of bacteria was cultured on NA
media, then incubated 1 × 24 O’clock. Each culture was suspended in a solution of
1,000 mL of physiological 0.9% NaCl solution. Prepare 10 reactors, each filled with
100 mL of isolate suspension, adapted for 1 × 24 h in a new environment, (3) each
reactor is added 10 mL of heavy metal contaminants, such as Cr (III) or Cr (VI). The
reactor is in the Shaker incubator at 150 rpm. Observation of bacterial cell growth
(optical density) was carried out every 3 days. The Observation used a spectropho-
tometer and determined the level of bio-adsorption of heavy metals by measuring
media absorption using AAS, then plotted in Eqs. (10.1) and (10.2) to determine the
capacity and efficiency of bio-adsorption (Marzuki 2020).

Q=
C1-C2

C1
x V ð10:1Þ

%E=
C1-C2

C1
× 100%; ð10:2Þ

Based on Experiment 10.3 that has been carried out, it was obtained an overview
of the growth of BC and AC bacterial cells in media contaminated with Cr (III), Cr
(VI), Mn (II) and Mn (VII).

The experimental results showed that the growth of BS and AC bacterial cells was
more dominant in media exposed to Cr(III) than in media contaminated with Cr
(VI) (Fig. 10.8). The growth of BS cells in Cr(III) and Cr(VI) contaminated media
was maximum during the first 3 days of contact and relatively low after 6 days of
contact onwards (Fig. 10.8a). The growth of AC bacteria cells in media exposed to
Cr (III) and Cr (VI) was relatively the same as BS bacteria. Only the first 3 and 6 days
of contact in Cr (III) media were much more dominant than in Cr (VI) media which
sloped from childhood. First 3 days of contact (Fig. 10.8b). The difference in the
growth rate of bacterial cells in these two types of media is influenced by the ability
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Fig. 10.8 (a) Growth of BS
bacterial cells in Cr (III) and
Cr (VI) contaminated media.
(b) AC bacterial cell growth
in Cr(III) and Cr
(VI) contaminated media

of the bacterial cells to adapt to media with different levels of toxicity. It was seen
that both types of bacteria BS and AC were relatively underdeveloped in media that
had a higher level of toxicity (Marzuki et al. 2021b).

The treatment was the same, and the types of symbiotic bacteria were also the
same. Still, Mn (II) and Mn (VII) replaced the types of heavy metal contaminants,
showing that the growth of BS and AC bacteria cells did not change significantly.
The growth of BS bacteria in Mn (II) media was more dominant in a wider range
than in Mn (VII) media. However, the maximum growth of both types of bacteria
occurred during the first 3 days of contact (Fig. 10.9a). While the dominant growth
of AC bacteria cells in Mn (II) media happened at a more extended contact period,
namely on days 3–6 compared to Mn (VII) media and the following contact period,
the growth of AC bacterial cells in Mn (II) and Mn (VII) media was relatively the
same and slopes (Fig. 10.9b) (Marzuki 2020).
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Fig. 10.9 (a) Growth of BS
bacterial cells in Mn (II) and
Mn (VII) contaminated
media. (b) Growth of AC
bacterial cells in Mn (II) and
Mn (VII) contaminated
media

The bio-adsorption capacity was calculated using Eq. (10.1), while the
bio-adsorption efficiency was determined using eq. 2, based on absorption data
measured using Atomic Absorption Spectrophotometer (AAS). The bio-adsorption
capacity of BS and AC bacteria to heavy metal contaminants Cr (VI) was relatively
the same, as was the bio-adsorption efficiency shown by the two types of bacteria
(Fig. 10.10a, b). Still, in the same picture, the curved line of bio-adsorption capacity
(blue colour) does not coincide with the curve line of bio-adsorption efficiency
(orange). These conditions indicate that the bio-adsorption performance of BS and
AC bacteria against toxic heavy metals Cr (VI) does not reach 50%; Cr
(VI) contaminants were chosen because the toxicity level is higher than Cr (III)
(Marzuki 2020).

The bio-adsorption capacity of BS and AC bacteria against heavy metal contam-
inants Mn (II) was relatively the same, including the bio-adsorption efficiency
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Fig. 10.10 (a) Bio-adsorption capacity and efficiency of BS bacteria against Cr(VI) contaminants.
(b) AC bacteria bio-adsorption capacity and efficiency against Cr(VI) contaminants

performance shown by the two types of bacteria (Fig. 10.11a, b). What is different
from the bio-adsorption version of these two types of symbiotic sponge bacteria is
the performance of the bio-adsorption capacity shown against heavy metal contam-
inants Mn (II) exceeds 50%. The two types of bacteria used as bio-adsorbents for
heavy metals are Bacteria Bacillus sp. AB353f partial (BS) is an isolate of the sponge
Neopetrosia sp., while the bacterium Acinetobacter calcoaceticus strain PHCDB14
(AC) is an isolate of the marine sponge Callyspongia aerizusa (Marzuki et al.
2021b).

The performance and level of bio-adsorption of heavy metals by symbiotic
bacteria of marine sponges have not shown maximum achievement in environmental
remediation. So it is necessary to make efforts and developments to obtain
bio-adsorption results of heavy metals bio-adsorption capacity reaching 75–90%.
The approach that can be taken to improve the bio-adsorption performance of heavy
metals is by tracing the types of bacteria that have high bio-adsorption performance
against heavy metals. A consortium of bacterial cells that can bio-adsorb heavy
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Fig. 10.11 (a) Bio-adsorption capacity and efficiency of BS bacteria against Mn(II) contaminant.
(b) AC bacteria bio-adsorption capacity and efficiency against Mn(II) contaminants

metals; waste engineering and modelling interactions between bacterial suspensions
and heavy metal contaminants, interaction time, bacterial nutrient supply; and other
modifications aimed at improving the bio-adsorption performance of heavy metals
by bacteria (Orani et al. 2018).

Efforts to improve the bio-adsorption performance of sponge symbiotic bacterial
cells against heavy metals, especially the use of consortium bacteria, are currently
underway by our research team. But, the researcher cannot publish the results and
achievements of the bio-adsorption obtained because they are still in the experimen-
tal stage and process. Nevertheless, we offer recommendations for the method that
we are currently running and the detailed procedure in Experiment 10.4. An over-
view of the development of heavy metal bio-adsorption methods using several types
of heavy metal bio-adsorbent bacteria for utilization in waste exposed to several
kinds of heavy metals aims to improve performance maximal bio-adsorption and
bioremediation on various types of heavy metal contaminants in parallel (Sobrinho
et al. 2020).
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Experiment 10.4: Application of Marine Sponge Symbiotic Bacteria Consor-
tium Against Heavy Metal Extreme Waste
The heavy metal bio-adsorption procedure using a consortium of sponge symbiotic
bacteria isolates was carried out in several stages. (1) Manufacture of artificial waste
contaminated with several types of heavy metals (Pb, Hg, As, Cr and Cu). Each type
of heavy metal made a solution of each concentration of 1000 ppm as much as
1000 mL. The heavy metal solution is mixed in a sizeable homogenized portion
(extreme waste). (2) Determine five types of potential sponge symbiotic bacterial
isolates, the cells of each selected isolate were propagated by culture and incubated
for 1×24 h. The cultured isolates were suspended in a 1000 mL solution containing
physiological 0.9% NaCl. (3) The five types of mixed isolate suspension in one large
container, homogenized (consortium bacteria). (4) Prepare ten reactors, each filled
with 500 mL of bacterial suspension of the consortium, adapted for 1 x 24 hours in
an incubator. (5) Each reactor is put in 100 mL of extreme waste and a shaker
incubator at 200 rpm. (6) Observations and measurements of bacterial cell growth
were carried out every 2 days, and measurements of the absorption of each type of
heavy metal were to determine the bio-adsorption achievement of the consortium
bacteria based on the contact period.

Other developments related to the exploration of the dual function of sponge
symbiotic bacterial cells in the biodegradation of PAHs as well as the bio-adsorption
function of heavy metals can be carried out by carrying out a similar procedure in
Experiment 10.4 above, but with differences in the type of waste and the bacterial
consortium used. The engineering waste is made to be super extreme. In addition to
containing PAHs contaminants (the type and concentration of PAHs are known), the
waste also includes several types of heavy metals (the type and concentration of
heavy metals are known). This super extreme waste is homogenized (Bertollino
2019). This extreme super waste modification resembles petroleum waste, which
contains several types of heavy metals and containing PAHs. The bacterial consor-
tium was made by having ± six types of symbiotic sponge bacteria, a combination of
three types of bacteria that can biodegrade and three types of bacteria with the ability
to bio-adsorb heavy metals. The selected sponge symbiotic bacterial cells were
multiplied by the culture method, made a suspension, mixed in one container,
homogenized, and adapted first. This dual-function bacterial consortium suspension
is ready to have interacted with super extreme waste (Wibowo et al. 2019).

The parameters observed for this method include the optical density of bacterial
cell growth, changes in pH values, shifts in interaction temperature values, whether
there is the formation of gas bubbles in the interaction medium, and whether there is
the formation of a fermentation odour. At the same time, the instrumentation
recommended for use is GC–MS, FT–IR, and SSA. GC–MS is an instrument in
determining the biodegradation process by looking at the abundance of PAHs, the
types of simple organic compounds as biodegradation products. FT–IR is an instru-
ment to assess the kind of biodegradation product, whether the alcohol group is an
aldehyde, ketode, carboxylic acid and other organic components. In comparison,
SSA is an instrument to determine the bio-adsorption capacity that occurs by



10 Marine Sponges for Bioremediation Purposes and for Secondary. . . 231

determining the uptake of each heavy metal present in the extreme super waste and
compared with the initial concentration (Ziarati et al. 2019b).

Bioremediation methods to change and produce friendly environmental quality
are the dream of every citizen on this earth. Still, this dream is sometimes difficult to
realize because, directly or indirectly, at the same time, we produce by-products,
by-products and wastes that are pressing environment so that the environment is
massively under continuous pressure and at its natural balance point (Sabdono and
Radjasa 2008). Nature provides biomaterials that have a role and function in
environmental bioremediation, one of which is sea sponges that can form a symbi-
osis with various types of bacteria. Symbiotic sponge bacteria have a biodegradation
function against PAH components. It includes a heavy metal bio-adsorption function
and a strong suspicion that several types of symbiotic sponge bacteria have dual
biodegradation and bio-adsorption functions. A collection of several types of sym-
biotic marine sponge bacteria that have the same role in both the biodegradation of
PAHs and the bio-adsorption of heavy metals is called a bacteria consortium
(Parhamfar et al. 2020). The term for the type of bacteria with the ability to
biodegrade hydrocarbons is known as carbonoclastic bacteria. The type of bacteria
that has the capacity for bio-adsorption of heavy metals is metallo clastic bacteria.
The term for the symbiotic bacteria of marine sponges can biodegrade hydrocarbons
and bio-adsorption of heavy metals called metallo-carbonoclastic bacteria (Marzuki
et al. 2021b).

The role and contribution of marine sponges in environmental bioremediation
are evident. Including the content of secondary metabolite components possessed by
marine sponges have an essential role in biodegradation and bio-adsorption,
including the potential utilization of sponge secondary metabolites as biomaterials
in overcoming exposure to bioplastics and primary materials in the manufacture of
drugs and various other functional potentials. The potentials inherent in sponges, so
that marine sponges are recommended for screening to explore potential and develop
utilization for the common good of humans and the environment (Saputra et al.
2019). One of the recommendations for marine sponge population is those develop-
ment efforts to maintain and increase the sponge population in their habitats.
Keeping the population of marine sponges can be carried out through the transplant
method. Especially the type of marine sponge has been confirmed to have symbiosis
against several bacteria in bioremediation and sponges that have been identified as
capable of producing chemical components bioactive (Bibi et al. 2016).
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Chapter 11
Genetic Modification: A Gateway
to Stimulate the Industrial Production
of Biofuels

Poonam Singh, Kaleemunnisa FNU, and Telma Encarnação

Abstract Recent years have seen an explosion in the use of advanced biotechnol-
ogy techniques in academic and industrial activities to modulate microorganism
pathways for the production of fuels or chemicals. Synthetic biology is adopted for
biofuel production, and it needs scientific evidence to support the fundamentals and
risk assessments. Biofuel is derived from biomass of a plant, animal waste, or
microalgae. These materials can be replenished after some time; hence they are a
renewable source of energy. Risk assessment is considered significant to maintain
and comply with regulatory frameworks existing around the world. The use of
scientific tools such as enzymes and microbes itself needs review and approval.
Risk profiles are done for the toxicity, infectivity, and strategies. Recent years have
seen an exciting increase in developing strategies for the use of advanced biotech-
nology techniques to enhance the productivity of existing biosynthetic pathways in
microbes by cutting off the competing pathways. The biomass is pretreated to speed
up the process of obtaining biofuel. The mutant, after genetically modifying the
enzymes, produces cellulases and hemicellulases in higher levels. Functional anal-
ysis can confirm the changes in several transcription regulatory elements. Generally,
successful engineering is demonstrated with an enhanced supply of amino acids.
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11.1 Introduction

The geographical production of fuel from fossils is a gradual process; an alternative
is to obtain the fuel using biomass or living beings, which is termed biofuel. The
times have changed, and there is a constantly increasing need for petroleum (Lazarus
and Van 2018). The natural sources of the fuel industry are not present in all the
countries. Fuel exhaustion has become a significant problem putting the countries
unrest and dependent on buying fuel from the enriched countries (Pfaltzgraff and
Clark 2014). The readily available biomass that is used directly to convert to biofuel
is recovered from wood and grass. Biofuels produce heat energy which generates
electricity after being run in a generator. No corner in the world is left to be
negatively impacted by the effects of petroleum extraction, refining, transportation,
and use. Therefore, biofuels are increasingly getting attention as an alternative
source of energy (Nehring 2009; Zou et al. 2016).

11.1.1 Biofuels Basic Definition

Biofuel exists in all forms such as solid, liquid, and gas. Liquid and gaseous forms
are easier to transport and deliver. Biofuel term is used for ethanol, biodiesel, green
diesel, and biogas (Masjuki et al. 2012). The biofuel production is broadly charac-
terized into first-generation, derived from sugars, starches, and oils, and the crops
versus second-generation biofuels extracted from lignocellulosic biomass sources.
Recently, the effort has been started to derive biofuels from microalgae and
cyanobacteria, termed third-generation production (Rodionova et al. 2017); and
fourth-generation biofuels which include the genetic modification of the microor-
ganisms for the enhancement of biohydrogen production processes.

It is no secret that biofuels are preferred and viable substitutes over fossil fuels.
However, biofuels such as ethanol create a net energy loss when compared to petrol.
If we consider the food-based crops, they must be used for feeding the enormous
population than used for fuel. As the demand to produce bio crops increases with the
demand for organic consumables, soil erosion, deforestation, fertilizer run-off, and
salinity are some of the major issues (Larson and United Nations Conference on
Trade and Development 2008; Cheng and Timilsina 2011).

11.1.2 Why the Need for Biofuel?

The need for alternative and efficient methods has made researchers find new ways
to produce biofuel. Sugar and sugar-derived ethanol is making a significant contri-
bution to satisfying the need at the moment. Sugar fermentation is used for trans-
portation fuel. Starch-derived ethanol fills the energy supply by mainly using corn



11 Genetic Modification: A Gateway to Stimulate the Industrial Production. . . 239

grain production. After the conversion of corn grain into ethanol, its burning causes
an emission that impacts greenhouse gas emission but not in a net increase in
atmospheric carbon dioxide (Lal 2005). The countries are announcing policies and
goals to produce their own biofuel and be less dependent on foreign oil. Britain, the
USA, and Canada are encouraging to grow primarily biofuel crops and establish
cellulosic ethanol refineries major biofuel centers to produce a million gallons of
cellulosic ethanol per year (Sims et al. 2010).

11.1.2.1 Bioethanol

Petroleum demand has put much industrial unease in the countries. Ethanol is readily
biodegradable, but its use, just like petroleum, produces air and water-borne pollut-
ants. Feedstock production of the crops to get bioethanol reduces the greenhouse
gases like carbon dioxide from the environment, which is being used for photosyn-
thesis (Lima et al. 2012). As the cellulosic matter is present in an abundant amount, it
is more fitted than starch and sugar for ethanol because of its limited supply. Food
supplies rely on starch-based crops such as sugar cane or corn that need specific
climatic conditions to grow; hence, cellulose biomass that is not dependent on
weather conditions is convenient to produce bioethanol in most countries (Sarkar
et al. 2012). Ethanol produced from cellulose-based material has the potential to
replace petroleum (In Marcel 2015).

11.1.2.2 Biodiesel

The second most demanding biofuel is biodiesel, which is obtained from soybean,
palm oil, and fat of cooking oil. Algae and cyanobacteria have the potential to
account for a large amount of fuel per unit area. Biodiesel is used in combination
with petroleum and is widely accepted in European countries.

In this chapter, an oversimplified view of the production of biofuels through
various resources, their economic analysis, and possible genetic manipulation of the
crops to overcome the existing challenges are presented.

11.2 Biofuel from Different Sources

11.2.1 Biofuels from Lignocellulose Biomass

Lignocellulose biomass is universal and widespread renewable biomaterial on our
planet. The bioconversion of lignocellulose comes as a feasible strategy when
juxtaposed with the other alternative energies. Three components that are rigidly
packed with each other in lignocellulose are cellulose, constituting 30–50% part of
it, whereas hemicelluloses 20–40%, and lignin 20–30%. Due to the compact
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structure, degradation into fermentable sugars and further conversion into fuels and
other value-added materials become difficult (Menon and Rao 2012; Sharma et al.
2017).

Cellulose is linked with β, 1–4 linkage of glucose. Cellulase enzymes can break it
down into glucose. Cellulose is not found in pure form in nature but with hemi-
celluloses and lignin, which act as a physical barrier for cellulase to access cellulose
(Volynets and Dahman 2011). Cellulosic ethanol is associated with a high cost of
bioreactors; the breakdown of lignin and its removal is required to access cellulose
biomass by cellulases to obtain the biofuel from a plant source. The use of xylanases
with cellulases is more effective as xylanases hydrolyze hemicelluloses and make
cellulose available for biomass degradation. This co-acting releases more ferment-
able sugars from the biomass (Hu et al. 2011); this method is economically more
expensive in comparison to ethanol from corn. Genetic engineering offers a substi-
tution to minimize the cost production of cellulosic ethanol. The first approach can
be an integration of cell wall degrading enzymes cellulases and hemicellulases in the
crop instead of adding them directly in the bioreactor. Secondly, the amount of lignin
can be configured, and the pretreatment process can be avoided. Most importantly,
the maximization of polysaccharides can boost cellulosic biofuel production (Hu and
Catchmark 2011).

11.2.1.1 The Cellulosic Ethanol Production Process

Lignocellulosic biomass harvested from the feedstock crop is transported to a
refinery where it is stored. Either this biomass is treated with extreme heat or with
chemicals to remove the lignin by breaking it down into the intermediates. The
separation of the solid and liquid components is done by filtration, distillation,
evaporation, and chromatography. After the enzymatic hydroxylation using bacteria
or fungi, it is ready for the conversion to cellulosic ethanol. After the separation of
sugar is done, pure ethanol is obtained (Liu et al. 2019; Zheng et al. 2009).

11.2.1.2 Factors Affecting the Production from Lignocellulose Biomass

Cellulosic ethanol production changes with country, region, agriculture, economy,
and politics. These complex factors depend on the type of crop produced, its
demand, and the transportation fuel used in that area. The support from the commu-
nity and government regarding breeding strategy is also paramount for conversion to
cellulosic ethanol as it gives a high amount of cellulosic biomass. C4 photosynthetic
pathway, perennial growth, water usage efficiency, and segregated underground
storage nutrients are the prototypical features of a non-consumable cellulose crop
(Huang et al. 2009). These might include silver grass, switchgrass, and woody crops.
Other edible crops are rice, corn, and sugarcane. The plant cell wall is the source of
lignocellulosic biomass, and it determines the structural configuration of the plant; a
representation is shown in Fig. 11.1. The various combinations of glucose sugars are
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Fig. 11.1 A depiction of the biomass treatment process and genetic engineering for biofuel
production

converted to ethanol (Xiros et al. 2013). The cell wall has crosslinked glycan in
cellulose, and it is classified in consonance with the type of crosslinks. There are two
types: Type I walls have the same amounts of glucan and xyloglucan embedded in a
matrix of pectin in dicotyledonous plants; whereas Type II has
glucuronoarabinoxylans and lacks pectin and structural proteins in cereals and
grasses (Fig. 11.2).

Cellulose, hemicellulose, and pectin are the polysaccharides present in plant
primary cell walls; the hydrolysis of their fermentable sugars provides bioethanol
production. In trees, the secondary cell wall has three layers, distinguished based on
different arrangements of cellulose microfibrils, with only the outermost layer
containing the helices. The secondary cell wall of a plant has cellulose, hemicellu-
lose, and lignin, mostly in which cellulose is embedded in lignin in the form of
microfibrils (Huang et al. 2009; Sainz 2009; Kenney and Idaho National Laboratory
(INL) 2007).

11.2.2 Biofuels from Enzymes

Aerobic and anaerobic microorganisms both produce enzymes cellulose-degrading
enzymes. Bacteria and anaerobic fungi produce cellulosomes. It is a complex of
cellulolytic enzymes associated with their cell wall. The secretion of cellulases is
either free or cell surface-bound (Binod et al. 2019). With the unraveling of new
places and areas, cell wall deconstructing enzymes have been and being isolated and
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Fig. 11.2 Cell wall primary structure (above) and secondary structure (below) with cellulose
microfibrils, hemicellulose, pectin, lignin, and soluble proteins (Sticklen 2008)

characterized from a variety of samples in order to be used in pretreatment investi-
gation. The objective is to achieve higher resistance to the conversion temperatures
and a range of pHs. Enzymes cellulases and hemicellulases convert the polysaccha-
rides into fermentable sugars through enzymatic hydrolysis (Himmel et al. 2007).

11.2.2.1 Cellulases

Filamentous fungi produce extracellular cellulases. Due to the ability to produce
extracellular cellulose, fungi have been highly researched for cellulase production
for a long time. Both fungi and bacteria can degrade biomass; hence the biological
method of producing sugars with enzymes is an eco-friendly and accomplishable
method (Wilson 2009).
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The maximum operating efficiency of the enzymes and their complex composi-
tion are always unrepresentative of each other. Trichoderma viride and T. reesei are
amongst the excessively studied microbes (Schuster and Schmoll 2010).

Cellulases are not a single but a group of enzymes composed of endoglucanase
and exoglucanases, it also includes cellobiohydrolases and β-glucosidase. Their
topologies include β-sheet proteins, β/α-barrels, and α-helical protein. Lignin pre-
vents cell wall hydrolysis by not let enzymes accessing polysaccharides and acting
as a barrier. Enzyme production by microbes exposes cellulose to be broken down
by cellulases (Schuster and Schmoll 2010). The microbes have the ability to
synthesize different functional enzymes effectuating fermentable sugar for biofuels.
Cellulases have many applications in industries, and the production of second-
generation bioethanol is amongst one of them, it is a low-cost material obtained
from lignocellulose. The most abundant renewable biomass; bioethanol production
does not create any food insecurity, when lignocellulose is used, hence avoiding any
food crops before harvesting. Biological pretreatment concerns with the ligninolytic
potential of certain microorganisms that can reduce the recalcitrant nature and cleave
it via hydrolytic enzymes. The addition of a molecule with two glucose units into the
cultures can increase the cellulase expression. Differential hybridization in many
studies showed that gene regulation occurs at transcriptional level (Siqueira et al.
2020; Srivastava et al. 2015).

Abstraction of expression of the glycolytic phosphoglycerate kinase gene, pgk1,
is the common metabolism observed in cultured media of cellulose. Identification of
the functional regions in the promoters of the cellulase genes or the regulatory
proteins involved is still a highly debatable topic (Da and Srikrishnan 2012).

11.2.2.2 Factors Affecting the Production from Cellulases

Currently, there are two important factors restricting the production of cellulosic
ethanol. The first is the production of strain-specific cellulases, and the other is
non-appliance of existing commercial hemicellulases that can increase the output of
multiple carbon fermentable sugars. Bioconversion of the complex lignocellulosic
material to simple sugars is a complicated process. Genetically modified thermo-
philic bacteria is the envision for the future as it may lead to enhanced cellulase
production through recombinant technology. Isolation of cellulase gene from ther-
mophilic bacteria and its expression in suitable hosts via recombinant technology
might enhance cellulase production. It could be done through a classical approach,
whole-genome isolation, whole metagenome isolation, or a pre-study with bioinfor-
matics (Verma et al. 2021; Kuhad et al. 2011).
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11.2.3 Induction of Cellulase Expression

Plant-based material or cellulose is used in the media to promote high cellulase
expression. Expression of cellulose is promoted in cellulose, lactose, and cellobiose
that are poor carbon sources rather than in glucose and glycerol (Amore et al. 2013).
Cellulase expression is thought to be induced using natural compound sophorose,
but the status of cellobiose stays controversial as it needs to be fed in a controlled
manner. Cellulase expression might be interfered by the type of nitrogen source that
is used. Most of the natural carbon sources used to study cellulase expression offer a
competitive growth to other microbes like fungus (Ilmén and Saloheimo 1997).

11.3 Literature Review

11.3.1 Fungus as the Source

When the expression of the cellulases of filamentous fungus Trichoderma reesei
QM9414 was studied with genes encoding enzymes cellobiohydrolases and
endoglucanases, the steady-state mRNA for cellobiohydrolases was highly
expressed. It is also being concluded that cellobiose as a carbon source as an inducer
does not show immediate effect and seems to vary depending on the culture
conditions, in a study where cellobiose promoted cellulase transcription to a mod-
erate level when compared to that of lactose (Ilmén and Saloheimo 1997). Accu-
mulation of glucose in the culture medium might result in glucose repression of
cellulase transcription. The inducing power very much depends on the ratio between
carbon source, formation of glucose, and their uptake from the medium. Most of the
natural carbon sources used to study cellulase expression offer a competitive growth
to other microbes like fungus. Sorbitol and glycerol generally have a neutral effect; it
neither promote nor inhibit expression. Glycerol and sorbitol without affecting the
fungal growth show a cellulase gene induction in cultures with 1–2 mM sophorose.
To understand what is the source of inducing compounds and if they are released
from cellulose, the studies have been performed only with glucose and no inducer as
a carbon source. If the amount of glucose in a media is subdued, the level of mRNA
is found to have a difference in fully induced and repressed states in an actively
growing fungus. Without having to add an inducer and still able to cellulase
expression after glucose depletion, it can be crucial to keep the fungus alive under
starvation conditions (Ilmén and Saloheimo 1997; Margolles-clark et al. 1997).

Aerobic, anaerobic bacteria, and fungi are the models to study cellulolytic
enzyme systems. Fungi such as Trichoderma reesei, Penicillium spp., Aspergillus
niger, and basidiomycetes secrete extracellular cellulolytic enzymes. Higher fungi
also have oxidative systems and can be capable of degrading lignocelluloses through
their ligninolytic enzymes.
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Fungi are studied for genetic modification reason being their capacity to produce
large amounts of extracellular cellulases. Three mainly synergistically acting
enzymes in cellulases are cellobiohydrolase/exoglucanase, endo-β-1,4-glucanase,
and (c) β-glucosidase. The action of endoglucanase is expedited by lytic polysac-
charide monooxygenases. Non-hydrolytic proteins accelerate the action of
endoglucanase. Optimization of physical and nutritional parameters can be done
by engineering the cellulases, it is also the way to enhance cellulose production.
Strain improvement can be approached via random mutagenesis and site-specific
mutagenesis in cellulases. One of the most explored fungal strains for commercial
cellulase production is T. reesei RUT-C30, followed by Penicillium sp., Aspergillus
sp., Myceliophthora, and Humicola sp. (Srivastava et al. 2020).

A study concluded that in a growing fungus, the regulation of cellulase expres-
sion depends on glucose repression (Amore et al. 2013). This effect is reversed after
the glucose is impoverished and derepression of cellulose occurs with no other
inducer present. The use of a mutant can support new ways for biodiesel production;
some mutant studies support the theory that separate regulation could exist for
different fungal cellulolytic enzymes. This suggests that there is a high possibility
that the cellulose enzymes are coordinately expressed. It is always to be mentioned
that biologically relevant mRNA levels are not easy to be detected and site-specific
proteins might be the ones governing glucose repression or the cellulase expression
(Mach and Zeilinger 2003).

11.3.2 Algae as the Source

Photosynthetic algae, both micro and macro, are thought to have the potential to be
turned as a possible biofuel resource. Microalgae have the competence to store
triacylglycerol and fat that can be turned into biodiesel and ethanol. Due to a high
lipid profile, it is believed that crude oil deposits have been created by microalgae
over a period of time. Therefore, scientists have a huge interest in understanding and
exhilarating the productivity of algae to produce biofuels. What makes microalgae
even more interesting is the fact that they are an attractive source of fuel that intake
carbon dioxide and keep the environment low on carbon. They grow on marginal
land hence are not a competition to terrestrial crops and flourish in waste or
saltwater. It means algae does not compete with the resources of food-based crops,
which is a problem with lignocellulose-based biofuels. Metabolic pathways of
microalgae can significantly be manipulated to produce a greater quantity and a
variety of biofuels (Demirbas 2010).

Algae efficiently use photosynthesis to obtain important oils and biomass from
carbon dioxide. These oils can be later transformed into feedstocks to produce
biofuels, Omega-3 fatty acid oils, and feed for animals feed. Productivity of algae
can give an estimate about the approximation of area to fulfill the requirements in a
particular country. The protein that comes as a byproduct of fuel production from
algae might serve as a very useful food source for protein and other useful products.
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Fig. 11.3 Representation of the structure of microalgae cell wall membrane

The synergistically designed facility takes the edge off liquid fuel hence relaxing the
consequences of biofuels production on the land, mitigating global warming, and
promoting biofuel production to relieve energy shortage (Demirbas 2011).
Microalgae can be aggregated by adjusting the pH; with these adjustment properties
of the cell surface, biomass concentration can be modified as per the requirement.
After the culture of microalgae, the medium can be recycled, reducing the cost and
environmental pollution (Fig. 11.3). The high-pH-induced flocculation method
showed an effect on biodiesel production by showing changes in the lipid extraction
process and fatty acid profiles of marine microalgae (Castrillo et al. 2013; Liu et al.
2013a).

Nonetheless, and contrary to microalgae, seaweed is a renewable feedstock, and
there are some potential concerns and impacts on ecosystems. Polymers in seaweed
are mixed sugars, and depolymerization of seaweed polysaccharides is relatively
easy, but the conversion of such sugars to biofuels is not an easy task. Excess of
seaweed farming can alter natural habitats leading to nutrient depletion and reduc-
tion in biodiversity (Kraan 2013).

Economically profitable biofuel production from seaweed is acquired by an
efficient conversion of mixed sugars in seaweed hydrolysates. Henceforth, metabolic
engineering can be used during the fermentation of sugars. Red marine algae have
galactose (up to 23%) as major sugar compound in the hydrolysate Ceylon moss
(Wei et al. 2013). Galactose fermentation by engineering S. cerevisiae is the eminent
way to produce ethanol. The wild-type yeast S. cerevisiae is capable of galactose
fermentation by controlling the ethanol yield and productivity. However, ethanol
production rate and galactose yield are not high when compared to glucose. Also,
glucose represses the utilization of galactose by stringent transcriptional repression
of GAL genes that are responsible to code enzymes for galactose metabolism.
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Hence, excess consumption of glucose and galactose in red seaweed hydrolysates
might reduce overall ethanol productivity, which is thought to be improved by
metabolic engineering (Johnston et al. 1994).

11.4 Genetic Gateway to Obtain Biofuels

Genetic engineering enables microbe to produce a high number of metabolites. The
inherent complexity of the organisms ranges from simple protein structures to folded
and globular protein with a variety of medicinal properties. The genetic manipulation
requires a preamble of whole-genome sequence to understand and select the desired
sites for genetic alterations (Peralta-Yahya et al. 2012). A few examples of such
moderation in the gene of the different microbes are mentioned in Table 11.1.

Table 11.1 Improvement of the biofuel production by genetically altering the organisms

Organism Mutant/gene Modification Origin Reference

T. reesei Qm 6a RUT-C30 There was an increase by
20 times in cellulase secretion

Fungal (Peterson and
Nevalainen
2012)

Fusarium
oxysporum

NTG-19 Cellulolytic activity was 80%
more than its parent strain

Fungal (Kuhad et al.
1994)

Aspergillus
nidulans

creAd3 D-glucose metabolism was
seen to be improved

Fungal (Van et al.
1995)

Aspergillus
niger DSM
26641

A. niger DSM
28712

β-1,4-endoxylanase activity
was found to be enhanced by
82%

Fungal (Ottenheim
et al. 2015)

Cellulomonas
flavigena

(M4, M9, M11,
and M12)

Xylanolytic activities were
enhanced

Bacterial (Mayorga-
Reyes and
Ponce-Noyola
1998)

Escherichia coli
strains

cydC-D86G,
cydC-D86V

Biofuels and bi-products
under ionic liquid stress were
higher in the concentration

Bacterial (Eng et al.
2018)

Chlorella
vulgaris

SDEC-3 M The mutant is supposed to
benefit CO2 biofixation from
industrial exhaust gas

Algal (Qi et al.
2016)

Chlorella
minutissima
(CM)

CM7 Monounsaturated fatty acids
showed an elevation

Algal (Mehtani et al.
2017)

Saccharomyces
cerevisiae

Saccharomyces
cerevisiae
UAF-1

Ethanol production was
improved by 12.0% with
aeration

Yeast (Abbas et al.
2017)
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11.4.1 Principle

Targeted strain engineering aims at a considerable amount of transformants by
homologous integration or deletion of the expression cassette. Nevertheless, introns
in the genes and glycosylation convolution cause low-efficiency gene targeting.

Filamentous fungi have the tendency to bring about post-translational modifica-
tion. The modification includes attachment to a functional group of another molecule
by a glycosyl donor and synthesis of organosulfur compounds. They also secrete
metabolites that have the ability to expand on a cheaper substrate that makes them
suitable for industrial applications. They almost make a good choice to be used as a
host for recombinant DNA except for the challenges on non-homologous recombi-
nation. By inactivating the double-strand breaks in the DNA pathway this challenge
can be resolved (Dellomonaco et al. 2010).

11.4.2 Some Examples from the Previous Studies

Genetic induction or end-product inhibition in microbial cells produces a higher
amount of cellulases. Catabolite repression or end-product inhibition in a mutant of
B. pumilus resulted in a four times higher yield when compared to Trichoderma
reesei (Kotchoni et al. 2003). RUT-C30 obtained through mutation in T. reesei Qm
6a at Rutgers University showed a 20 times increase in cellulase secretion. Most of
the available studies state enhancements in cellulase production by mutation without
mentioning the changes that might have occurred at genetic level (Peterson and
Nevalainen 2012). Penicillium decumbens is used in China for the industrial pro-
duction of lignocellulolytic enzymes. When a comparative genomics analysis by Liu
et al. (2013b) was made with the phylogenetically similar species Penicillium
chrysogenum it was found that the cell wall degradation has advanced with
P. decumbens. The reason suggested was its strong cellulolytic ability due to more
genes involved in cell wall degradation than cellular metabolism, that happens in a
medium with cellulose as a carbon source. It has made the lignocellulolytic enzyme
system in P. decumbens became variegated with hemicellulases and proteins in the
cellulose binding site (Liu et al. 2013b). Genetic engineering seems a very efficient
method for gene expression by regulating the promoters and can be achieved with
minimum changes in the genetic content. Mutagenesis is done to bring the expected
changes in the DNA sequences of a gene with specific primers, termed as site
directed mutagenesis. The changes are incorporated in a genome by homologous
recombination using amino acid sequence primers. However, the sequence in a
genome and the site to target are not easy to identify. This process of improving
the properties of a protein by alteration in its amino acid sequence increases the
secretion of cellulase. Serinine and threonine on the surface of xylanase in A. niger
BCC14405 were replaced with arginines (Sriprang et al. 2006). The modified
enzyme had increased activity than the wild-type strain. As the enzyme activity



11 Genetic Modification: A Gateway to Stimulate the Industrial Production. . . 249

also increased half-life of the mutant stability was simultaneously raised. To obtain a
hyperthermostability, Thermotoga maritima cel5A endoglucanase, when subjected
to site directed mutagenesis and CBM engineering, demonstrated 10% higher
activity at one site when compared with the native cel5A (Arumugam et al. 2008).

Aspergillus and T. reesei are used to express genes from different origins,
improving cellulose production. Fungal and bacterial cellulose or carbohydrate
binding domains were used from T. reesei and Clostridium stercorarium xylanase
A to be integrated with cel5A. Avicel was used to observe hydrolytic activity in
which engineered carbohydrate bonding molecule from both species showed better
activity. The activity was linked to binding ability, which was checked via immune
gold labeling assay. Mutagenesis of D232A in fungus Macrophomina was used to
generate an engineered form for the production of an enzyme with novel substrate
requirements. The substrate size of the engineered one was found to be higher than
the wild-type 5 b-1,4-endoglucanase but with an equivalent activity on cellohexaose
(Druzhinina et al. 2017; Hilden and Johansson 2004). The modified endoglucanase
can be used to get complexed carbohydrates by a double decomposition reaction
with water present. A study by Liu et al. (2013b) involved Penicillium oxalicum
mutant JU-A10-T gene with the wild strain 112–2. It has high cellulolytic ability on
the processing of decayed organic matter, comparison of whole-genome sequencing,
transcriptomes, and secretomes was done. The study revealed that a new
lignocellulose-degrading enzyme has emerged (Liu et al. 2013b; Wang and Jones
1997).

11.5 Strategies for Genetic Modification of Microorganisms

Creation, selection, or improvement of strains of desired microorganisms to direct
the well-suited output rely on the microbial strains that will be used to catalyze the
biosynthesis of the desired compound. Biotechnologies develop befitting strains for
fuel by synthetic process.

The imposition of these regulations concerns with the underlying risk and their
assessments by the government, taking into consideration proper planning and
management. Modification of microorganisms for fuels such as n-butanol,
isobutanol, mixtures of alkanes or lipids is evident in number or researches (Keasling
et al. 2009; Bhatia et al. 2017).

This is done by overexpression, directed evolution, and codon optimization of
key endogenous enzymes to increase the yield of the targeted product (Mythili et al.
2016; Jiménez-Díaz et al. 2017).

The genetic modification deals with the introduction of two or more genes
encoding heterologous enzymes to create entirely new biosynthetic pathways or
enabling new enzymatic activities of different feedstocks as energy sources. It might
also knock out genes encoding enzymes in competing pathways and augment the
flow of carbon into a desired pathway. The potential risks are unique to each type of
microorganisms, such as in algae; it is possible to have effects on native populations
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in order to create or intensify and create a dangerous mutant (Jang et al. 2012; Mary
2011).

To obtain a befitting product, the use of various both prokaryotic and eukaryotic
species and strains is common in industrial production. Some of the prevalent and
focused microorganisms are yeast fungal and bacterial strains such as Saccharomy-
ces cerevisiae, Aspergillus and Trichoderma, Lactobacillus, and strains of
Escherichia coli. The existing strains always have a scope of improvement to have
more productivity with genetic engineering for valuable properties (Rubin 2008).

The indication toward the improvisation of carbon fixation enhances pathway in
proteins like RuBisCO or alteration in lipid synthesis in algae can help both with the
environmental pollution reduction and biodiesel production. To ensure the safety
conduct and industrial use of genetically modified organisms, they need to have
appropriate risk assessment tools. The methods selected must express, enhance
transporter proteins, maximize the carbon flow, and remove toxins and harmful
compounds. The change in metabolism should emphasize easier cell lysis and
making existing pathways more applicable for commercial purposes. For industrial
purposes, fermentation of the microbes must be conducted in a protected environ-
ment and must prohibit any exposure or accidental release of the microorganism.
Any inherent exposure of the genetically engineered organism that is to be produced
commercially. Its exposure into the environment should be assessed for all possible
hazards (Jiménez-Díaz et al. 2017; Chen and Dou 2016).

11.6 Regulations for Genetically Modifying Plants
and Microbes for Biofuel Production

To fulfill the current demand, the production of renewable fuels or bio-based
chemicals is carried out with genetically modified microorganisms. The production
includes microalgae, fungus, plants, and cyanobacteria. Researching and finding
new biological methods of manufacturing renewable fuels from petrochemical
feedstocks foresees a great potential toward more sustainable industrial activities.
Without much speculation, genetically modified organisms exhibit certain advan-
tages over other microbiological methods to obtain biofuel. Some of the factors of
risk are summarized in Fig. 11.4.

Genetically modified organisms offer remodeled productivity, less operational
costs, a variety of feedstocks, and most importantly, substantial carbon footprints.
Genetically modified microorganisms (GMM) in most countries require regulatory
guidelines before they could enter the market. The government has certain regula-
tions when it comes to genetic engineering of plants and animals. In the late 1980s,
risks caused by potential genetically engineered microorganisms to the environment
were already getting huge attention. Early scientific reviews laid the foundation for
regulatory risk assessments of proposed field tests.
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Fig. 11.4 Factors that can influence the risk associated with genetically modifying an organism

EPA and USDA regulations govern the use of modified organisms for the
production of fuels or chemicals in the US EPA works under the Toxic Substances
Control Act (Glass 2015; Wozniak-Karczewska et al. 2019; Wozniak et al. 2012).
The aim of these regulations is to declare it to the agency before merchandising any
genetically modified microorganisms.

Ecologists have recommended that engineered strains can perform like
non-engineered strains when they are introduced into new environments. This
gives a fundamental estimation to predict and monitor the behavior using appropriate
risk assessment tools (Viebahn and Chappin 2018). However, we cannot deny the
fact that scientific concerns about the potential environmental effects of microor-
ganisms with new traits are reasonable. Tribal Energy Resource Agreements and
United States Environmental Protection agency ensure risks are minimized, and it is
scalable to establish means of genetic manipulation. The choice of the reactor, its
design, and features govern the choice of the starting culture and product.

In the 1990s, there was a standard that was set for the development of biodiesel
in order to promote the use of alkyl esters-based biodiesel in pure form or as blends
in automotive fuels. The standards vary in the USA and Europe. For the first time in
1999, the American Society for Testing and Materials (ASTM) adopted a provi-
sional specification PS121 for biodiesel. ASTM D6751 was approved in 2002 for
middle distillate fuels. ASTM D6751, 2012 onward defines two grades of biodiesel:
grade 2-B and grade 1-B. The grades have a strict policy on monoglycerides and cold
soak filterability derived from vegetable oils and animal fats. Two automotive
standards for biodiesel/diesel fuel are ASTM D975 to allow up to 5% biodiesel to
be blended into the fuel, and ASTM D7467, for biodiesel blends from B6 to B20.

In October 2003, the standard for biodiesel EN 14214 was accomplished in
Europe for unblended FAME diesel fuel and some biodiesel blends. These standards
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set the stepping stone in international standards and became the starting point for
biodiesel specifications developed in other countries. Low-level blends are catego-
rized by EN 590. For fatty acid methyl esters fused in diesel engines, EN 14214
makes the regulations.

A category B100 could be used unblended in a diesel engine or blended with
diesel fuel to produce a blend conforming EN 590. The changes to cover heating oil
applications were inducted by EN14214:2012 to cover blends up to B10. Mono-
glycerides content was also considered as a separate class. EN 590 covers biodiesel/
diesel fuel blends up to B7. The version released in 2004 introduced blending up to
5% of fatty acid methyl ester (FAME) in diesel fuel, which was increased to 7% in
2009. The European biodiesel specification, EN 14214, a European indication that
applies only to mono-alkyl esters made with methanol, specifies that ester content
should be 96.5%, and no additives other than fatty acids can be added. Increased
oxidation stability, reducing the sulfated ash limit to 0.005% from 0.02%, and
limiting blends to B5 maximum are some of the guidelines for B100 used to make
biodiesel/diesel fuel blends used all over the world (ACEA 2009; ASTM 2002;
Tasios et al. 2013).

The work carried out in a stepwise and responsible manner can respond to the
needs of developing novel sources of energy worldwide. Reducing carbon emissions
and avoiding any harmful environmental impacts is the considerable factor that will
control, manage, and constrain the genetic engineering of an organism for biofuel
production.

Certain uses of GMM could be subjected to FDA regulations because of the
production of foods, pharmaceuticals, or other products. However, a standard
alternative for companies working with nonpathogenic microorganisms and
obtaining ethanol, can be utilization of the excess and waste from the biomass in
animal feed.

In the USA, animal feed ingredients are monitored by a non-profit organization
that is called Association of American Feed Control Officials. They define if the
ingredients are fit for animal feed and pet food.

11.7 Future Outlook

11.7.1 Artificial Intelligence Can Help in Genetic
Modification of Biofuels

As we struggle to find out a way to restore diminishing fossil fuel resources, the
scientific community is working hard to find alternative sources of fuels; one such
form is biofuel, through plantations of certain plants, which takes up to 90 days to
grow and be ready processing the biofuel. The goal of the scientific community is to
design a plant by a genetic modification that has the ability to produce a large amount
of biofuel in less time.
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At the molecular level, in a biofuel plant, a gene is responsible for the synthesis of
the triglycerides (hydrocarbons). It is necessary to carry out research to identify this
gene and isolate it (Rao and Pingali 2008), which might take time for the human eye
to get the sequence of the gene. By leveraging Artificial Intelligence, it can be done
quicker and with limited sources through AI Machine learning and Deep learning
models.

Artificial Intelligence applications in biotechnology include analysis required in
modification of genetics, drug screening, predictive modeling. These problems have
been solved, which are difficult for humans to solve in a short period of time. AI now
exists in every field of study, from recognizing a pattern, forecasting, DNA sequenc-
ing of tens of thousands of genes, and plays a crucial role in biotechnology
(Klyuchko 2017).

11.7.2 Machine Learning in Action

With the sophisticated machine learning models, we can achieve different clinical
trial datasets, enable simulated screening, and analyze vast amounts of data. The
basic concept connecting machine learning with artificial intelligence and deep
learning is represented in Fig. 11.5. Apart from savings on clinical trial costs, with
ML models, we can also gain exclusive insights and feed them back into the process.
Machine Learning (ML) concept gives computers the ability to think and helps us to
solve many problems. Machine learning is the part of artificial intelligence focused
on algorithms which has the ability to learn from experience, and when exposed to
new data, its accuracy is measured without explicit programming (Oliveira 2019;
Kim et al. 2020).

The ML Algorithms take data as an input, and the output is predicted data or
actions. The algorithms improve as they are exposed to more data.

Fig. 11.5 A simple
pictorial depiction showing
how the artificial
intelligence is linked with
deep learning and machine
learning

Artificial Intelligence

Machine

Learning 

Deep

Learning
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As the Dataset grows, the performance of the ML model degrades and may tend
to drop its accuracy. Hence, it will be difficult to just work with ML alone. The
reasons are

• High dimensions:
When we have a large number of inputs and outputs, which are nothing but

high dimensions, ML is not useful.
• Crucial AI problems:

Machine learning cannot solve natural language processing, image recognition
problems due to their huge data amounts.

• Feature extraction:
For complex problems, such as object recognition, handwriting recognition,

etc., ML will face a big challenge (Jordan and Mitchell 2015).

11.7.3 Deep Learning Methods

Deep learning is an approach of machine learning that has been designed based on
the knowledge of the human brain and neurons, a simple depiction in Fig. 11.6. In
recent years, deep learning has seen tremendous growth in its popularity and
usefulness in the field of biotechnology (Sugomori et al. 2017).

Deep learning is a subset of machine learning methods based on artificial neural
networks with multiple layers representation learning in different dimensions, which
can be understood with Fig. 11.7.

Machine Learning can be supervised, semi-supervised, or unsupervised. The
difference is in supervised learning, we provide labeled data, whereas unsupervised
learning machine comes up with its own patterns without labels.

Deep learning algorithms use the concept of multilayer perceptron’s. Data is
filtered through multiple layers, with each consecutive layer using the output from
the previous one to inform its results (Ardabili et al. 2020; Aghbashlo et al. 2021).

Deep learning models will achieve its accuracy level and can provide more data to
process. If there is not enough data, then we can apply different deep learning
techniques like data augmentation to generate more data for training our model,
the more training we provide, algorithm will learn to perform better when unexposed

Fig. 11.6 Flow of
information in machine
learning approach



11 Genetic Modification: A Gateway to Stimulate the Industrial Production. . . 255

Fig. 11.7 Schematic representation of deep learning methods

data is tested, deep learning models learn from previous results to enhance their
capability to make correlations and connections.

• DL algorithms are capable to focus on important features, and this can be
achieved through minimal coding.

• DL models are capable to solve high dimensions.
• The main idea behind Deep Learning is to build learning algorithms that mimic

biological neurons neural network system.
• Deep Learning is implemented through Neural Network.

Like many other disruptive technologies in Biotechnology, AI is generating much
anticipation with Deep Learning’s convolutional neural networks, which can work
with minimum data as well. Also, a transfer learning model which gained informa-
tion from a previously trained data can be applied to a new set of data, which can
give more accurate results as it has seen certain features of data (Mosavi et al. 2020).

As per American physicist, Kaku and 3M Company (2011), we could be
witnessing the next transition from transistors based on silicon to transistors based
on atoms. In a decade, Moore’s Law will slow down and computer power will level
up, and we are going to many such transitions, one of them could be Quantum
Computing.

This new field of Quantum Computing is now on the leading edge of computing.
World’s leading organizations like IBM, Google, etc., are working toward Quantum
Supremacy.

As per MIT “One of the goals of quantum computation and quantum information
is to develop tools which sharpen our intuition about quantum mechanics and make
its predictions more transparent to human minds.” The development of Quantum
Machine Algorithms has begun for the genetic sample classification.
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Unlike classical computing, which is built on either 1 or 0, whereas quantum
computing has both the positions at once, that is 1 and 0, and is based on Quantum
mechanics (Li et al. 2001; Roe 1998).

There is a future of biotechnology when combined with quantum computing in
deriving molecular level properties to modify the genetics of biofuels.
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Chapter 12
“Omics” Technologies in Biodegradation
Processes

Sevcan Aydin and Mahmut Çalışkan

Abstract The considerable environmental impact of pollution due to human activ-
ities is driving the development of new decontamination and clean-up methods.
Hereby, the interactions between the various microbial communities at polluted sites
is receiving increased research attention, with the novel omics approaches, opening
up new ways to study bioremediation pathways and their mechanisms. This has
allowed innovation in the field of new bioremediation as an effective way to combat
pollution. In particular, the omics approaches offer great potential to predict the
metabolic processes of microbes in environments experiencing pollution. The high-
performance analyses provided by these approaches can, amongst others, help track
novel organisms for use in bioremediation and offer new, high-quality insights into
those molecular pathways that are critical to biodegradation. In short, through multi-
omics approaches, the field of bioremediation will benefit from the establishment of
new theory-based methodologies to mitigate pollution.

Keywords Bioremediation · Biodegradation · Microorganisms · Metagenomics ·
Genetic analysis · Horizontal gene transfer

12.1 Introduction

Due to population growth and the accompanying increase in industrial activities,
pollution is rising across the world. The growth of industrialization in particular has
led to manufacturing processes that produce and incorporate various chemicals for
use in high-tech products, including heavy metals, hydrocarbons, and xenobiotics.
These substances are not only toxic but also persist in the environment, and thus
have a significant adverse effect on ecosystems and organisms. However, there are
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several natural methods that can address these imbalances, with microorganisms
representing an effective natural tool with which to remove toxic compounds from
contaminated sites. Microbial-mediated biodegradation therefore has considerable
potential to naturally restore polluted ecosystems (Shahi et al. 2016a; Aydin et al.
2017; Nwankwo et al. 2021; Sales et al. 2021).

The microbial ecology of an environment, whether pristine or anthropogenically
affected, can be assessed using culture-based methods. However, as many of the
identified microorganisms of interest to research are not culturable in a laboratory,
there remain several challenges in their study. The research trying to culture such
microbial communities has so far only been successful with no more than 1% of any
given sample of prokaryotes. Moreover, there remains a gap in the knowledge of
which factors influence the microbial communities of polluted environments,
e.g. their metabolism, growth, or dynamics. Of the abovementioned omics
approaches, metagenomics offers a way to conduct genome-level studies of micro-
bial communities, providing substantial insights into the so-called uncultured
microbiota (Aydin et al. 2015). The other omics approaches, such as genomics,
transcriptomics, proteomics, and metabolomics, have recently also begun to offer an
array of advanced techniques designed to treat pollutants in a way that causes no
further damage to the environment (Aydin et al. 2022; Malik et al. 2021; Wright
et al. 2021).

This chapter sets out to explore to what extent omics techniques can be applied to
monitor the processes of biodegradation. In this context, it proposes using a com-
munity systems biology approach, integrating the abovementioned multi-omics with
bioinformatics as well as simulation tools. The aim hereby is to enhance the
predictive ability of models regarding the persistence of toxic chemicals in environ-
mental settings, which should be taken into account and integrated into a tiered
assessment strategy regarding the persistence of toxic chemicals. The findings of the
research should offer an enhanced understanding of how the composition of the
microbial community relates to the catabolic potential and environmental conditions
as well as the properties of the chemical under investigation.

12.2 Omics Approaches for Monitoring Biodegradation
Processes

Pollution continues to be both a tenacious problem and a significant threat to the
health of humans and the environment. While numerous strategies have been applied
to address this issue, it is still a challenge, even in terms of simple monitoring, and
environmental contamination continues on a global scale. The severity of the issue
calls for novel pollution mitigation strategies to ensure environmental and human
health, with bioremediation being one of the most promising to emerge in recent
years. Bioremediation using microorganisms is receiving increasing research inter-
est, with studies striving to identify ways to effectively restore environments affected
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by pollution (Shahi et al. 2016b). Microorganisms present themselves as particularly
suitable as they can exist in a variety of environments, even degraded ones, by
producing metabolites that have the ability to degrade or even transform contami-
nants, thereby allowing polluted sites to be naturally restored (Kour et al. 2021). The
design of effective strategies hereby depends on modern omics technologies, includ-
ing metagenomics, proteomics, and transcriptomics, which enable the microbiota’s
diversity and ecology to be studied to facilitate their implementation in the context of
environmental monitoring as well as bioremediation (Aydin 2016).

Strategies based on bioremediation or biotransformation aim to exploit the natural
diverse catabolic abilities of microorganisms regarding the degradation, accumula-
tion, or transformation of multitudinous environmentally harmful compounds, such
as pharmaceutical substances, heavy metals and polyaromatic hydrocarbons (PAHs).
Recent developments in next-generation sequencing (NGS) have enabled key micro-
organisms to be genomically, metagenomically, and bioinformatically analyzed,
allowing hitherto incomprehensible biodegradative pathways to be understood
(Shahi et al. 2016c; Tancsics et al. 2021). Similarly, horizontal gene transfer
(HGT) is crucial to the processes of microbial biodegradation in that it affects the
activities of the microbiota. Specifically, bioremediation relies on functional genes to
be transferred between key members of the microbial community. As the availability
of macronutrients, among various other abiotic factors, influence HGT in polluted
settings, the microbiota’s capacity for biodegradation is dissimilar between sites.
Hence, a thorough knowledge of which mobile elements and functional genes lead to
HGT would further aid the potential for the bioremediation of a polluted area. In
addition, as the biodegradation abilities of the microbial community dictate to what
extent HGT can occur in a contaminated site, assessing HGT can be employed to
monitor bioremediation to evaluate the biodegradation process (Shahi et al. 2017).

The prior research has evidenced a significant correlation between HGT and the
existence of functional genes (French et al. 2020). For instance, in their investigation
into the horizontal transfer of the alkB, nah, and phnAc genes in the biostimulation
of soils contaminated by petroleum, Shahi et al. (2016b) found that the alkB and
phnAc genes transferred when nutrients were highly available. They also demon-
strated that HGT was positively linked to nutrient content, with an increase in the
carbon to nitrogen ratio from 100:5 to 100:15 correlating with increased rates of
HGT. Building on this, Shahi et al. (2016a, b, c) showed that the evaluation of the
microbial population and the presence of functional genes could be used to assess the
efficiency of existing bioremediation efforts. In this study, they were successful in
showing that HGT could serve as a suitable monitoring approach to measure the
effectiveness of bioremediation for soils that had been contaminated by petroleum.
They also found that this method could further be utilized to assess contaminated
sites’ potential for biodegradation.
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12.3 Conclusion

The combined effects of globalization leading to increased industrialization, popu-
lation growth, and consumption-based lifestyles have caused non-degradable pol-
lutants to persist in the environment, adversely affecting human health. Due to their
environmentally and cost-effective characteristics, methods based on bioremediation
are opening up new avenues to mitigate these pollutants beyond conventional
physicochemical treatments. Almost all polluted environments contain microbial
strains that are capable of degrading the contaminants specific to those environ-
ments, with the population density increasing with the increasing presence of such
contaminants. As the metabolic effectiveness of the microbiota relies on HGT
between microorganisms, choosing the right gene for the degradation process and
then monitoring how this gene is horizontally transferred comprise a feasible
strategy to assess the effectiveness of bioremediation. The bioremediation potential
of specific sites can hereby also be assessed. The necessary information on the genes
as well as their genomic structure, metabolic and biological pathways, functions, and
evolution can be gathered through the omics approaches. Moreover, a functional
characterization of the relevant genes, proteins, coding regions, and products of the
metabolism should be conducted to quantify the relevant biological processes of the
microbiota. Recent developments in the omics fields, especially genomics, proteo-
mics, metabolomics, transcriptomics, and interactomics, thus provide an array of
technical techniques and expertise in this respect.
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Chapter 13
Conclusion: Environmental Protection—
Our Common Responsibility

Alberto A. C. C. Pais and Telma Encarnação

Abstract Environmental pollution is increasing globally and, together with climate
change, is a priority on the environmental, political, business, and scientific agendas.
Air, land, and water pollution have an impact on all ecosystems and our lives and can
jeopardize our future and future generations.

The importance of policies on public awareness and perception is recognized and
can have an effective role in the protection of the environment. Policymakers,
companies and industries, civil society, scientists, all sectors of society should be
involved for the same purpose; coordinated efforts at an international level are
needed to tackle all the challenges planet Earth face.

Therefore, it is crucial to stimulate the discourse, narrative, and debate about
environmental pollution and degradation and mitigation strategies.

Keywords Environment · Marine pollution · Civil society · Policies · Public
awareness · Climate challenge

Approximately 80% of marine pollution originates in dry land. To address this
mighty problem, a decisive coordinated policy is needed, and the UN Environment
Programme contributes by hosting a specific initiative, the Global Programme of
Action for the Protection of the Marine Environment from Land-based Activities
(GPA). After the Manila Declaration of 2012, GPA targeted three priority pollution
sources: marine litter, nutrient management, and wastewater through global
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voluntary multi-stakeholder partnerships of governments, intergovernmental agen-
cies, academia, the private sector, and civil society.

Various other international organizations of different types have promoted the
development of actions and strategies to achieve sustainability and avoid degrada-
tion in marine environments. Typically, such strategies rely on information from
expert groups about the causes of degradation and the policy options portfolio to
tackle them. These strategies rarely consider trustworthy data on public awareness,
their concerns, and priorities. Recent results (Gelcich et al. 2014) show that the level
of concern regarding marine impacts is closely associated with the level of public
acquired information, with pollution and overfishing being two areas prioritized by
the public for policy development. Results also suggest that the overall public
understand human generated impacts on marine and are highly concerned about
ocean pollution, overfishing, and ocean acidification. Promoting further public
awareness, concerns, and priorities can enable scientists and funders to understand
how the public relates to marine environments and make the much-needed corre-
spondence between policy and public demand (Gelcich et al. 2014).

Naturally, the vastly comprehensive nature of the social involvement necessary to
tackle this massive scale problem implies taking into consideration the importance of
awareness raising campaigns. It has been shown (Latinopoulos et al. 2018) that,
when environmental knowledge is limited, public information campaigns can be
effectively used to help individuals make more informed choices. Also, public
information campaigns have a positive effect on the willing to pay (WTP) estimates.

A further problem is that situations are heterogenous, in terms of gravity and
characteristics. The way they are seen by the public also varies. This was recently
assessed (Brouwer et al. 2017) in terms of the social costs of both marine debris
washed ashore and litter left behind by beach visitors along different European
coasts. The social costs were estimated based on public perception. Previous studies
focusing on the valuation of beach recreation did not make a distinction between
pollution sources. This latter distinction is considered important in view of the fact
that a large share of the litter originates from beach visitors and requires another type
of coastal zone policy intervention than diffuse pollution washed ashore. Assessing
how responsible beachgoers feel for the presence of beach litter they partly leave
behind themselves and to what extent they are willing to pay for the clean-up of this
litter compared to litter washed ashore provides important information for priority
setting in coastal policy and management.

Naturally, objective means for marine environment monitoring are also required
(Xu et al. 2019). During the past two decades, advanced information and commu-
nication technologies have been applied to the development of various marine
environment monitoring systems. Among others, the Internet of Things (IoT) has
been playing an important role in this area. New technologies including advanced
Big Data analytics and their applications in this area have also been introduced.
These types of data must be associated to relevant metrics (Roberts et al. 2018) so
that evolution of contaminated, endangered, or protected sites is recorded. A new set
of metrics has been recently suggested focusing on marine biodiversity in protected
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sites. This type of approach also permits to compare networks of protected sites, so
as to assess the local and overall level of protection.

It cannot, however, be forgotten that the threats posed by different sources of
pollutants still persist upon marine environments, and that these pollutants can be
detected even in remote polar regions. A further threat arises from climate change
causing sea level rise and shifts and changes in flora and fauna of certain sea areas.
Thus, policy prompting environmental awareness must be based on a global per-
spective in this vastly interconnected Earth.
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