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Abstract. Monitoring programs for finite state properties is challeng-
ing due to high memory and execution time overheads it incurs. Some
events if skipped or lost naturally can reduce both overheads, but lead
to uncertainty about the current monitor state. In this work, we present
a theoretical framework to model traces that carry partial information
(like number of events lost), and provide construction for a monitor capa-
ble of monitoring these partial traces without producing false positives
while reporting violations. The constructed monitor optimally reports as
many violations as possible for the partial traces. We model several loss
types of practical relevance using our framework.

Keywords: Runtime verification · Finite state properties ·
Optimization

1 Introduction

Monitoring the execution behavior of software goes back to the dawn of pro-
gramming and is a standard practice, e.g., through logging, programmer inserted
print statements, and assertions. In the late 1990s, researchers began to explore
the use of formal specifications to define run-time monitors [1] which brought
the expressive power of formal methods to monitoring. Such run-time verifica-
tion techniques rely on a set of defined events which denote the occurrence of
program behavior relevant to a property specification, e.g., the invocation of a
particular method, along with associated data, e.g., method parameters. A run-
time monitor observes a trace generated by a program execution, incrementally
updates the state of the specified property, and reports a property violation
when a violating state is reached.

Run-time verification is attractive because it complements sound static ver-
ification approaches that cannot scale to modern software systems. However,
monitoring occasionally incurs high memory and execution time overheads.
Researchers have proposed a range of techniques to deal with the challenge
of reducing these overheads, while preserving violation detection e.g., [2–6]. In
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this paper, we consider the additional challenge of partial trace that arises in
the deployment of run-time verification in realistic system contexts such as: net-
worked and distributed systems where message loss or reordering may be inher-
ent, real-time systems which may shed monitoring workloads to meet scheduling
constraints, or web-based systems with quality-of-service guarantees may lead
to suppressed monitoring. In such systems, the original trace may be perturbed
by dropping events, reordering events, or dropping or corrupting data correlated
with events.

Partial traces are problematic for existing run-time verification approaches
since treating a partial trace the same as the original trace may lead to missing
a property violation or falsely declaring a violating execution. Partial traces do
not, in general, permit the same degree of precision as the original trace. The
information loss restricts us to two choices: reporting unconfirmed violations
(including false positives), or reporting only confirmed violations (but missing
some violations). Our framework is able to model both, but we present our
results in the context of the second choice, for reduced run-time overhead at the
cost of missed violations (e.g. [7,8]).

The first choice may be equally useful for ensuring compliance (e.g. [9,10])
and we show how it is enabled by our framework in Sect. 5. Existing work on
partial traces [7,10] studies specific types of losses but does not contain a general
model that could be used to study other loss types.

The paper makes foundational contributions to runtime verification by (a)
defining an expressive framework for modeling partial traces, (b) developing
techniques for synthesizing provably complete and optimal verification monitors
under those models. Importantly, these results preclude the need for additional
theory development for individual loss types and set the stage for more applied
work and tool development. The main contributions of this paper are theoretical,
complemented by (c) a collection of diverse loss models, including a discussion
of how the event losses in current literature are specific instances of our general
framework (Sects. 6, 7). For the expressiveness of our framework, we prove that
all loss models are representable in our framework under these conditions: (i)
the original property is a finite-state safety property, (ii) the desired monitor
for partial traces is finite-state, and (iii) loss model can be represented as an
arbitrary relation between original and partial strings.

2 Overview

We illustrate the problem by way of example and introduce the key insights
behind the techniques we develop to address the problem.

Safety properties for run-time monitoring can be modelled using determin-
istic finite-state automata (DFA). An event is represented by a symbol and a
trace by a string of symbols. Figure 1a shows the DFA for the SafeIter property
which states that modification of a collection during iteration is not permitted.
The DFA is expressed over the alphabet {n, u} denoting accessing the (n)ext
element in the iterator, and (u)pdating the collection being iterated.
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Remark 1. Some literature uses an additional c “creation” event for this prop-
erty. The interpretation of such events are implementation dependent. The imple-
mentation may use observance of this event to dynamically allocate memory for
a monitor and instrument the code for other events just-in-time. In such a case,
if the creation event is missed then the monitor is never created and the prop-
erty is not monitored. For a statically allocated monitor, it may also be used as
the fixed initial event – an effect equivalent to adding a state q0 before q1 with
a transition c from q0 and q1. We model only the property after the creation
event has happened and the monitor is ready to receive the first non-creation
event, and leave implementation-dependent semantics out of our modelling. The
framework, however, is trivially extensible to accommodate creation events, we
discuss this extension in Sect. 6 along with an example where the role of creation
events is more complicated.

Fig. 1. Safe Iterator – after an iterator is created no updates (u) are permitted so long
as next (n) elements remain to be accessed.

The state qerr is a trap state (self transitions ommitted for brevity) denoting
the violation of the property. All violating strings include a subsequence . . . un . . .
indicating that an update was performed prior to accessing the next element.
Statements that are free of such a subsequence end at one of the three accept
states and are non-violating.

Loss may come in different forms. For example, symbols in a string may be
erased (e.g., n → ε), reordered (e.g., nu → un), or be modeled with only partial
information (e.g., their count nnn → 3).

To illustrate, we consider the case where symbols are dropped from the string,
but the number of dropped symbols is recorded. This type of loss could be
introduced intentionally as a means of mitigating excessive runtime overhead in
monitoring, or it could occur naturally, for instance if an event arrives to the
system strictly periodically, e.g., at 10 hz, but several of those inputs are missed
in a row (due to load on the system, communication disruption, etc.).

We show how to continue monitoring while preserving fault detection capa-
bility. Consider a string nnun where this loss is applied to the first two – we
model the resulting string as 2un. This could represent 4 possible strings starting
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with one of four {u, n}2 and a suffix of un. For longer strings where sequences of
length k are lost, the combinatorics of their possible replacements {u, n}k make
it intractable to consider all of the possibilities. Despite this, the structure of
Fig. 1a dictates that any string of the form kun violates the property, thereby
illustrating that even with loss it is possible to perform accurate monitoring.

We formalize the intuition above in a loss model that maps symbols from
the property to an alternative symbol set. For example, the loss model described
above is defined by the mapping {u, n}k �→ k. In Sect. 5, we show that all
mappings of interest are a restricted class of relations on strings called rational
relations. Rational relations can be represented by non-deterministi finite-state
transducers (NFTs). An NFT maps strings in an alphabet, Σ, to strings in
an alternative alphabet, Σa. Figure 1b shows the NFT with the mapping for
alternate symbols 1 and 2 that lose the identity of symbols in a subsequence but
retain its length, e.g. as in the 2un example we just discussed.

Retaining partial information about an event string might be insufficient to
conclude that a violation occurred (or did not occur). We report a violation
only when the partial information is sufficient to conclude that there must be a
violation – such monitoring is complete1 since it never reports a false violation.
Consider the original string (O1) in Fig. 2 and the set of 3 partial strings (L1)
induced by the NFT in Fig. 1b. Tracing through Fig. 1a on the first two partial
strings by interpreting 1 and 2 as any individual or pair of symbols, respectively,
leads only to the error state – since they preserve the fact that an n follows a
u. These strings would be reported as violations. On the other hand, the string
nnuu (O2) is non-violating and of the set of 3 partial strings (L2) none reach only
the qerr state. Completeness assures that no partial string can have u followed by
a n and monitor in Fig. 1b won’t report a false violation. The automaton which
would observe these partial strings of alternate alphabet and give the states we
discussed is shown in Fig. 1c.

String State(s)
O1 nnunnun qerr

L1 2nun2n { qerr }
n1unnun { qerr }
nnu2u1 { q2, qerr }

O2 nnuu q2
L2 2uu { q2, qerr }

nnu1 { q2, qerr }
2n2 { q1, q2, qerr }

Fig. 2. Partial strings

Assuring completeness in violation reporting
means, however, that the reporting of some vio-
lations may be missed. For example, the third
partial string for L1 suppresses all nu making
it impossible to definitively conclude that the
observed string is a violation. Our goal is to report
violations on as many strings of alternate symbols
as possible while maintaining completeness. When
we refer to optimality of monitoring the partial
trace, we are referring to this goal (discussed in
Sect. 5).

In Sect. 4 we will show how loss models (such
as the one in Fig. 1b) are defined, and how the property of interest (e.g. Fig.
1a) and the loss model are used to construct the alternate monitor (e.g. Fig. 1c)
which would observe the partial trace and optimally monitor them. Discussion

1 See Remark 5 for a discussion on the terms soundness and completness.
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and significance for implementation of the theory developed in Sect. 3–Sect. 5 is
given in Sect. 5.1.

3 Basic Definitions

3.1 Notation

1. x ≺ y: string x is a proper prefix of string y.
2. f : X → Y is lifted to 2X as given by f(S) = { f(x) | x ∈ S } ∀S ⊆ X.
3. (·) is string concatenation. (·) is lifted to sets of strings.
4. × is cartesian product of two sets. For a relation R ⊆ X × Y , R(x) =

{ y | xRy } and R−1(y) = {x | xRy }
5. DOMAIN(R) = {x | ∃y s.t. xRy }, RANGE(R) = { y | ∃x s.t. xRy }.
6. A partition P of a set S is a set {P1, P2, . . . } such that Pi are pairwise disjoint

nonempty sets (equivalence classes) with union S.
7. A class representative of Pi is a distinguished element in Pi.
8. For s ∈ S in P, [s]P : equivalence class, and repP(s): class representative.
9. �: proof omitted (due to triviality/limited space/relevance).

Finite Automata and Properties. Familiarity with regular languages and their
properties is assumed. A finite set of symbols is called an alphabet. REG(Σ) is
the set of all regular languages over an alphabet Σ. ε is the empty string, and
Σε is the alphabet Σ ∪ { ε }. A trace is a (possibly infinite) sequence of events,
and an execution is a finite prefix of a trace. A trace x is a continuation of an
execution x′ if x′ ≺ x.

3.2 Definitions

Definition 1 (Finite Automata). A finite automaton is a 5-tuple (Q,Σ, δ, q0,
F ) with a finite set of states Q, the alphabet Σ, a specified initial state q0 ∈ Q,
and the set of final states F ⊆ Q. A deterministic finite automaton (DFA)
has the transition function δ : Q × Σ → Q and a nondeterministic finite
automaton (NFA) has the transition function δ : Q × Σ → 2Q. The transi-
tion function δ is lifted to strings, sets of strings, and sets of states. We call
L(A) = {x ∈ Σ∗ | δ(q0, x) ∈ F } the language of the finite automaton.

Definition 2 (Nondeterministic Finite-State Transducers (NFTs)).
Defined as a NFA (Q,Σ, δ, q0, F ) with an extra alphabet Γ (labelled the “out-
put” alphabet), where δ : Q × Σ → 2Q×Γε . After observing a symbol σ ∈ Σ, the
NFT in state q transitions to a choice of q′ with output γ ∈ Γε where (q′, γ) is
one of the pairs in δ(q, σ).

Definition 3 (Finite-state safety property). A finite-state property φ is the
minimal-state DFA φ = (Q,Σ, δ, q0, Q \ { qerr }) with the specified error state
qerr. The error state qerr must be a trap state, i.e. ∀σ ∈ Σ, δ(qerr, σ) =
qerr. For a property φ, the notation Qφ, Σφ, δφ, qφ

0 , and qφ
err is used to refer to

Q,Σ, δ, q0, and qerr respectively. An execution x ∈ Σ∗ violates the property φ if
δ(q0, x) = qerr. An execution x that does not violate the property is non-violating.
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Fig. 3. Formally specified loss types

Remark 2. Complement of language of automaton φ: L(φ)C = Σ∗ \ L(φ) are
all the strings violating φ. If an execution violates a property, then so do all its
continuations (because qerr is a trap state).

Definition 4 (Monitors). A monitor Mφ observes events for a property φ. Mφ

has a current state qcurr, initialized as qcurr = q0, and updated as qcurr ← δ(q, σ)
on observing σ ∈ Σ. The verdict of a monitor on a trace is true if the property
φ cannot be violated in any continuation, false if the property has been violated,
inconclusive if neither.

Remark 3 (Valuedness). Our definition of monitors considers 3 verdicts. How-
ever, in theoretical development of our result we only care about “violation”
or “no violation”, i.e. “false” verdict is distinguished from “inconclusive” and
“true” but the latter two are not distinguished from each other.

The terms “monitor” and “property” are used interchangeably when clear
from the context (e.g. language of a monitor). The analysis in the following
sections is not affected by the existence of multiple monitors. Therefore we omit
any discussion of it till our discussion of a particular loss type in Sect. 6.

4 Losses, Alternate Monitors, Soundness and Optimality

This section and the next contain our theoretical results. We do not assume a
loss model R must be an NFT, but rather prove it (in the next section). That’s
why we begin with a general definition of a loss model with minimal restrictions
(only to exclude cases without valid interpretation2 ).

Definition 5 (Loss Model). A loss model for an original alphabet Σ to an
alternate alphabet Γ is a relation R ⊆ Σ∗ × Γ satisfying:

1. No spurious alternate symbols condition: ε �∈ DOMAIN(R)

2 The first condition excludes partial symbols produced not corresponding to any
original information. The second condition excludes existence of full traces which
are completely lost, i.e. for which no partial information is ever observed.



130 P. Kushwaha et al.

2. Prefix existence condition: There is an upper-bound n ∈ Z
+ such that for all

strings x ∈ Σ∗ of length n or more (i.e. |x| ≥ n) at least one prefix x′  x is
a part of DOMAIN(R) (i.e. x′ ∈ DOMAIN(R))

We assign the loss model R the interpretation that (x, γ) ∈ R means that if a
symbol γ is observed in alternate trace y ∈ Γ∗, then it was produced in lieu of
one of the strings x ∈ R−1(γ).

We use a related term loss type to roughly denote a family of related loss
models. As an example, the loss type for the loss model from Sect. 2 is given in
Fig. 3a, which is parameterized over various choices of Σ and n (and where for
a specific choice of Σ and n we’d obtain a loss model of that loss type).

To motivate our next definition, consider the partial traces y1 = 2n2 and y2 =
3uu from Fig. 2 for the corresponding original trace x = nnnuu (O2). For y1, as
the program runs the original monitor observes n and alternate monitor observes
nothing. On the next event original monitor again observes n and alternate
monitor observes 2. For every prefix of x we have a corresponding prefix of y1,
and we may relate them with a filter function f1 such that f1(n) = ε, f1(nn) =
2, . . . f1(nnnuu) = 2n2. f1 will be a partial function defined only on prefixes of
x. We could similarly define filter f2 for the relation between prefixes of x and
prefixes of y2. Not all functions between Σ∗ and Γ ∗ would satisfy the loss model
R – one obvious limitation would be that filter f must produce outputs for a
string x which are consistent with what R relates to prefixes of x. We formalize
these requirements on a function and call a function that satisfies them a filter,
as defined next:

Definition 6 (Filter, Partial Traces, Segments, and Replacements). Let
Σ and Γ be finite alphabets, and x ∈ Σ∗ be a trace, and Px = {x′ | x′  x } be
the set of all finite prefixes of x. Consider a loss model R ⊆ Σ∗ × Γ . Then a
function f : Px → Γ ∗ is called a filter under R if it satisfies the monotonicity
property, defined below:

if f(x) = y and f(x′) �= y for all proper prefixes x′ of x, then:

f(x · s) =

{
y · γ if sRγ

y otherwise

In the first case γ is called a replacement (symbol) for the segment s (sub-string)
of the string x · s.

FR is defined as the set of all possible functions which are filters under R.

Definition 7 (Completions). We’re also interested in possible strings x ∈ Σ∗

which could have lead to the observation y. If ∃f ∈ FR such that the last symbol
in x marks end of a segment and produces the last symbol in y, i.e. f(x) =
y ∧ �x′ ≺ x, f(x′) = y, then we call x a completion for y. We define C(y) as the
set of all completions for y:

C(y) = {x ∈ Σ∗ | ∃f ∈ FRsuch that f(x) = y ∧ �x′ ≺ x ∧ f(x′) = y }
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Next, we show how to compute the set of completions C(y) using R−1.

Theorem 1. For a string y ∈ Γ ∗, y = γ1γ2 . . . γk:

C(y) = R−1(γ1) . . . R−1(γk)

Proof. (LHS ⊆ RHS) Let x ∈ C(y). Let y = y′γk. From definition of filters and
the condition �x′ ≺ x, f(x′) = y in definition of C(y) we can partition x into two
substrings x = x′xk where xk is the corresponding segment for the replacement
γ i.e. xkRγk. Repeatedly applying this reasoning (e.g. in the next step for y′ and
x′), we conclude ∃ a partition x = x1 . . . xk such that γ1, . . . , γk are a replace-
ments for respective xi. Then xi ∈ R−1(γi) and thus x ∈ R−1(γ1) . . . R−1(γk).
(RHS ⊆ LHS) Let x ∈ R−1(γ1) . . . R−1(γk) =⇒ x = x1 . . . xk =⇒ f(x) =
γ1 . . . γk = y. ��

We now give definitions of alternate monitors and their soundness, complete-
ness, and optimality. We present the construction in the next section.

Definition 8 (Alternate monitor). Given a primary monitor Mφ and a loss
model R ⊆ Σ∗ × Γ , an alternate monitor Mψ is any finite state monitor over
the alphabet Γ that observes the partial execution f(e) for any f ∈ FR when Mφ

observes the execution e. We call (Mφ,Mψ)R a primary-alternate monitor pair
and (φ, ψ)R a primary-alternate property pair. We also refer to these as just
monitor pair or property pair.

Remark 4. It is useful to consider the monitors in (Mφ,Mψ)R as monitoring
together for the purposes of theoretical analysis and for definitions. In practice,
we want to monitor using just Mψ.

Definition 9 (Soundness and Completeness for a property pair). For
(φ, ψ)R, with the definition of C lifted to the set of strings, we define:

Soundness: A non-violating trace must not have any violating completions, i.e.
y ∈ L(ψ) =⇒ C(y) ⊆ L(φ), equivalently C(L(ψ)) ⊆ L(φ).

Completeness: A violating trace must have all violating completions, i.e. y �∈
L(ψ) =⇒ C(y) ⊆ L(φ)C , equivalently C(L(ψ)C) ⊆ L(φ)C .

Remark 5. Our definitions of soundness and completeness of a monitor are con-
sistent with the definitions commonly used in the literature on program analysis
and verification [11]. There also exist other definitions, particularly in the liter-
ature on runtime verification, which essentially interchange the interpretations
of soundness and completeness of a monitor as defined here.

Definition 10 (Optimality of a property pair). For (φ, ψ∗)R where ψ∗ is
complete, ψ∗ is called optimal if for any other complete property pair (φ, ψ)R,
L(ψ∗) ⊆ L(ψ), or equivalently C(L(ψ∗)) ⊆ C(L(ψ)). We call (φ, ψ∗)R an optimal
pair.



132 P. Kushwaha et al.

Remark 6. Our definition of Optimality is a strong definition. An alternate def-
inition for an optimal monitor might be to count the number of strings up to
any given length and define a monitor which reports a violation on maximum
number of strings for every length as the optimal monitor, but optimality by our
definition would imply optimality in this alternate definition.

Definition 11 (Lopt(φ,R)). For a property φ and loss model R, Lopt(φ,R) =
FR(L(φ)), i.e. Lopt is the set of partial traces in Γ ∗ produced by a non-
error execution in Σ∗. Lopt is the smallest set of strings on which a com-
plete alternate monitor cannot reach a false verdict. i.e. Lopt = FR(L(φ)) =
{ y | C(y) ∩ L(φ) �= ∅ }.

There are several definitions of monitorability in runtime verification litera-
ture [12]. The most suitable to our problem is the ability to report a violation.
Since the alternate monitor is allowed to miss violations, the verdict that there
are no more errors is not useful.

Definition 12 (Monitorability). If there exists a continuation of an execu-
tion which leads to the false verdict, then the monitor’s current state is mon-
itorable. In a finite automaton, monitorability of a state q can be checked by
path-reachability from q to the error state.

5 Optimal Monitor and Losses as Transducers

In this section, we first construct an optimal monitor using the definition of R
introduced in the previous section. We then use that construction and its prop-
erties to prove that loss models beyond what can be represented by a finite-state
transducer can be removed from our consideration. Finite-state transducers have
a regular structure to deal with which makes impelmentation more feasible, and
theoretical treatement easier. So removing other loss models from our consid-
eration restricting R to the space of loss models to these transducers is good
news for us, as long as we can get the assurance that we’re not missing any
expressivity (which we’ll show).

We begin with the construction of an optimal alternate monitor and proof of
optimality. The key idea for the construction is for the optimal alternate monitor
to keep track of the set of states that the primary monitor could possibly be in.

Theorem 2. For a property φ and a loss model R, we construct the NFA ψ with
δψ as ∀q ∈ Q, δψ(q, y) = δφ(q,R−1(y))3. After determinizing and minimizing
this NFA, we obtain the optimal alternate monitor ψ∗ which recognizes Lopt.

In order to prove this theorem, we first need to establish correspondence of
states between the NFA constructed and its determinized and minimized version.
We already know that using powerset construction [13] for NFA determinization,
the states of determinized DFA are labelled by subset of NFA states. We use the
result that this labelling is well-defined even after minimization.
3 Note that R−1(y) must be decidable for this construction to be well-defined. This is

not an issue as we later prove that R must represent a NFT, and for NFTs computing
R−1(y) is decidable.
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Fig. 4. Example constructions of δψ∗
for optimal pair (φ, ψ∗)R Theorem 2

Lemma 1. In DFA minimization [13] of a determinized NFA, let P be the
paritition of 2Q where S ∈ P represents a set of states merged together. If
the states S1 and S2 merge, then the state S1 ∪ S2 merges with them. i.e.
∀ S ∈ P,∀ S1, S2 ∈ S =⇒ S1 ∪ S2 ∈ S. �

Remark 7. Using the previous lemma, for each class [S]P of states, the class
representative repP(S) of S is defined as

⋃
T∈[S]P

T . We label the resultant
state from merged states in [S]P in the minimized DFA by repP (S).

Lemma 2. Let (Mφ,Mψ∗) be the optimal monitor pair. When Mψ∗ transitions
to a state S ⊆ Q and Mφ is in the state q then q ∈ S.

Proof. We apply induction on the number of symbols observed by the alternate
monitor.
Base Case holds because start state of Mψ is { qφ

0 }.
IH: Assume that q ∈ S after n symbols and n + 1th replacement symbol γ is
observed in lieu of segment x.
IS: Mψ transitions to S′ = δψ(S, γ) = δφ(S,R−1(γ)) and Mφ transitions to
q′ = δφ(q, x). But since q ∈ S and x ∈ R−1(γ), q′ ∈ S′ ��
Proof (Theorem 2). Subproof 1: y �∈ L(ψ∗) =⇒ y �∈ Lopt. Using Lemma 2

y �∈ L(Mψ) =⇒ δψ(q0, y) = { qerr } =⇒ q ∈ { qerr } =⇒ q = qerr

=⇒ ∀x ∈ C(y), δ(q, x) = { qerr } =⇒ C(y) ⊆ L(M)C ��

Subproof 2: y ∈ L(ψ∗) =⇒ y ∈ Lopt. Consider y ∈ L(ψ∗).

=⇒ δψ({ q0 } , y) �= { qerr }
=⇒ δψ(. . . δψ(δψ({ q0 } , y1), y2) . . .), yn) �= { qerr }
=⇒ δφ(. . . δφ(δφ({ q0 } , R−1(y1)), R−1(y2)) . . .), R−1(yn)) �= { qerr }
=⇒ δφ({ q0 } ,C(y)) �= { qerr } =⇒ y ∈ Lopt ��

Corollary 1. Property φ is monitorable under R iff the state labeled with sin-
gleton error state { qerr } is reachable in ψ∗.

Figure 4 and the next section show example optimal monitor constructions.
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Remark 8. Our definition of ψ∗ is constructive, so ψ∗ always exists. I.e. given
a property φ and loss model R we can always construct ψ∗ using Theorem 2.
However, this says nothing about usefulness of φ∗. For instance, it may be the
case that ψ∗ is unmonitorable, which would tell us that Lopt(φ,R) = Γ ∗. Due
to being the optimal construction, this just demonstrates that it’s impossible to
monitor under the loss model R (if φ itself was monitorable). This is an indication
that too much information is lost under the loss model R for the resulting partial
string to be of any use for monitoring φ.

We have a construction for optimal alternate monitors under the loss model
R. Recall that we defined a loss model with minimal constraints in Definition 5,
which permits us to define loss models of arbitrary complexity by more complex
loss types (e.g. a loss type which could be represented by a transducer with a
stack). We find that as long as the monitor observing the trace is constrained to
be a finite-state automaton, the partial information of loss computed by more
complex loss types (e.g. a loss type which could be represented by a transducer
with a stack) does not help in reporting more violations, and we show that by
showing that for every loss model which isn’t a NFT, there is a loss model which
is an NFT and results in construction of the same ψ∗.

Theorem 3. Let (φ, ψ∗)R be the optimal property pair where R may not be
representable by NFT. Then there exists a loss model R′ which can be represented
as a NFT for which the constructed alternate property is also ψ∗.

The following lemma handles the major part of the proof:

Lemma 3. For an alternate symbol γ ∈ Γ , if the set of strings X = R−1(γ) is
not regular, then we can come up with a set Y such that X ⊂ Y and Y is regular
and ∀q ∈ Q δφ(q,X) = δφ(q, Y )

Proof. We’ll use the shorthand f(q) : Q → 2Q for δ(q,R−1(γ)), since γ is fixed.
Consider l(q) : Q → REG(Σ), the regular language taking us from q to f(q),
i.e. l(q) = {x | x ∈ Σ∗ ∧ δ(q, x) ∈ f(q) }. Let Y = ∩q∈Q l(q). It follows that Y is
regular since regular languages are closed under intersection.

=⇒ ∀q ∈ Q R−1(γ) ⊆ l(q) =⇒ R−1(γ) ⊆ Y

=⇒ R−1(γ) ⊂ Y (R−1(γ) �= Y ∵ R−1 is not regular andY is)
Now ∀q ∈ Q {Y ⊆ l(q) =⇒ δ(q, Y ) ⊆ f(q)}
And R−1(y) ⊆ Y =⇒ ∀q ∈ Q δ(q, Y ) ⊇ f(q)

=⇒ δ(q, Y ) = f(q) = δ(q,R−1(γ)) ��

Rest of the proof uses this lemma to construct the new R′ for every γ. It
requires additional definitions of generalized automata and transducers which
allow regular expressions on transitions instead of symbols, which we now give:
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Definition 13 (Generalized Nondeterministic Finite Automaton [14]).
A generalized nondeterministic finite automaton (GNFA) is a 5-tuple
(Q,Σ, δ, q0, f), where Q is the finite set of states, Σ is the alphabet, δ ⊆
(Q \ f) × (Q \ { q0 }) → REG(Σ) is the transition function, and q0, f ∈ Q
are the specified initial and final states.

Definition 14. (Generalized Nondeterministic Finite-State Transduc-
ers (GNFTs)). Defined as a GNFA (Q,Σ, Γ, δ, q0, f), where δ : (Q \ f) × (Q \
q0) → 2REG(Σ)×Γ . After observing a string x ∈ Σ∗, the NFT in state q transi-
tions to a choice of q′ with output γ ∈ Γ where (r, γ) s.t. x ∈ L(r) is one of the
pairs in δ(q, q′).

Remark 9. GNFA can be converted to NFA [13], similarly GNFT to NFT. �

Using these definitions and Lemma 3, we proceed to prove Theorem 3:

Proof (Theorem 3). The construction in Theorem 2 uses δφ(q, R−1(γ)) for defin-
ing δψ. Therefore it is sufficient to produce an R′ representable by a NFT such
that δφ(q, R′−1(γ)) = δφ(q, R−1(γ)) ∀γ ∈ Γ . In rest of the proof, we use δ to
denote δφ.

Consider a symbol γ ∈ Γ .
Case 1: (R−1(γ) is regular) We define xR′γ ∀xRγ. So R′−1(γ) = R−1(γ) and
thus δ(q, R′−1(γ)) = δ(q, R−1(γ))
Case 2: (R−1(γ) is not regular) We construct R′−1(γ) by the rational set con-
structed in Lemma 3.

We construct a GNFT for R′. Consider a GNFT with states { q0, q, f }, ε-
transitions from q0 to q and q to f , and self loop edges on q ∀γ ∈ Γ with input
label as the regex of R−1(γ) and output label γ. This completes the construction.

��
Next we show that an even more relaxed definition of loss model (a relation

between Σ∗ and Γ ∗ instead of Σ∗ and Γ ) does not increase loss models we can
express.

Theorem 4. For a primary-alternate pair (φ, ψ) with where ψ’s input on x ∈
Σ∗ is filtered by f from a loss model R ⊆ Σ∗ × Γ ∗, we can define a finite state
property ψ′, alternate symbol set Γ ′, loss model R′ ⊆ (Σ∗ × Γ ′) with filter f ′

such that ∀q ∈ Qφ δψ(q, f(x)) = δψ′
(q, f ′(x))

Proof. The proof exploits the observation that for a finite-state automaton ψ, the
set of possible symbols which denote a unique transition are finite. For a symbol
γ ∈ Γ , from each state there is a choice to transition to another state, resulting
in an upper bound of |Q||Q| unique transitions. RANGE(R) may be unbounded
but we partition it into a finite number of equivalence classes such that a class
representative may instead be used to denote the transition. Partition all strings
in Γ ∗ using the relation ∼ defined as : a ∼ b ⇐⇒ ∀q ∈ Q δ(q, a) = δ(q, b). It is
easy to check that ∼ is reflexive, symmetric and transitive.



136 P. Kushwaha et al.

We will construct ψ′ as (Qψ, Γ ′, δ′, qψ
0 , Qψ \{ qψ

err }), i.e. with a new alphabet
and transition function. Let states of ψ be indexed by i ∈ 1 . . .

∣∣Qψ
∣∣. Define Γ ′ to

have symbol set of
∣∣Qψ

∣∣-tuples (t1, . . . , t|Qψ|) and define δ′ such when the tuple
γ′ ∈ Γ ′ is encountered as a symbol by δ′, the ith entry of γ′ denotes the state
transition from state i, i.e. ti ∈ 1 . . .

∣∣Qψ
∣∣ and δ′(i, (. . . , ti, . . .) = ti). We define

a map m an equivalence class of ∼ to tuple by taking any member y ∈ Γ ∗ of
the equivalence class and mapping the class to (δψ(1, y), . . . , δψ(

∣∣Qψ
∣∣, y)). Now

we can define R′ = { (x,m(y)) | (x, y) ∈ R }, and f ′(x) = m(f(x)) Then, for a
x ∈ Σ∗, ∀q ∈ Qφ δψ(q, f(x)) = δψ′

(q,m(f(x))) = δψ′
(q, f ′(x)). ��

Remark 10 (Sound alternate monitors). We can also construct a property pair
(φ, ψ)R which is sound and may be incomplete by using a construction similar
to that in Theorem 2 by determinizing it and updating δψ(S, γ) ← {qerr} if
qerr ∈ δ(S, R−1(γ)). It can be argued in a similar fashion that this construction
is optimally complete among all sound alternate monitors �

5.1 Discussion and Significance for Implementation

Theorem 3 and Theorem 4 complete our claim that any loss type (arbitrary rela-
tion between original and partial strings) for which the final produced property
has to be be finite-state is representable in our framework.

State Size. After determinization, number of states in DFA may be high. This
is not a problem in practice, e.g. finite-state properties from the largest publicly
available database of properties in [15] all have fewer than 10 states. Still, some
existing techniques (e.g. [16]) may be used to further reduce number of states,
at the expense of missing more violations. We leave it to future work for DFA
size reduction techniques specific to monitoring.

Complexity. Because R can be arbitrary, we need to show δφ(q,R−1(y)) is
efficiently computable. We show that our construction of the NFA is polynomial,
though determinizing the constructed NFA may be exponential in state size. It
should also be noted that both these costs are incurred at static time, and once
computed, there is no run-time overhead and each partial event is processed in
O(1) time by the determinized optimal alternate NFA.

Remark 11. Construction of alternate optimal NFA in Theorem 2 takes polyno-
mial time when R is represented as a NFT.

Proof. To compute δ(q,R−1(y)) = S: the intersection of R−1(y) and the regex
formed by the set of strings which go from q and some q′ is non-empty thus
q′ ∈ S. These intersection and non-empty checks take polynomial time [13]. We
loop over O(n) states and check if each is in S. We repeat this for every (γ, q)
pair making O(|Σ × Q|) iterations.
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Monitorability (under a Loss Model, and at Runtime). Corollary 1
reduces the question of monitorability under a loss model to reachability of error
state from q0 in our constructed optimal monitor. i.e. since our constructed mon-
itor is optimal, if it does not have capability of producing violations without false
positives, then it is not possible to construct any DFA which consumes partial
trace and can report a violation. In case of natural losses, this can serve as a
test for checking if monitoring is even possible for a property under the loss, and
provide hints to what partial information, if it could be recorded, would help
monitorability. In case of artificial losses, this can serve as a way to discrimi-
nate between available loss types to exclude those which aren’t monitorable. In
context of Remark 3, Corollary 1 is also useful in finding the “true” verdict.
Monitoring can be disabled at runtime as soon as the optimal monitor enters
into a state from which the state { qerr } is unreachable in alternate monitor.

Sample Implementation. To provide a starting point for an implementation
in a monitoring system, we provide a sample implementation at [17]. It contains
an implementation of Theorem 2 which takes a property and a loss model as
input and automatically constructs optimal alternate monitor as output. The
implementation verifies some examples provided in this paper, allows new prop-
erties and loss models to be defined, and allows simulating original and partial
traces against the primary as well as the constructed optimal alternate proper-
ties.

6 Framework Instantiations

We presented how our framework applies to loss types such as those in Fig. 3.
In this section, we describe three more instantiations of the framework that
illustrate the variety of realistic event loss models it can accommodate.

Bounded Frequency Count of Missed Symbols. This loss model was con-
sidered in [10] for lossily compressing event traces over a slow network. It is
a modification of the dropped-count filter in Fig. 3a where additional informa-
tion about observed symbols is kept. For a bound n ∈ Z+ and alphabet Σ
with symbols σi indexed by 0 ≤ i < |Σ|, we’ll define alternate symbol set Γ
where each symbol is a |Σ|-tuple, tuple entry at an index i being number of
dropped symbols σi. That is, Γ = { (c1, c2, . . . , c|Σ|) | 0 < c1 + . . . + c|Σ| ≤ n }
Let #x(y) denote number of characters x in string y. The loss model is defined
as R = { (x, (c1, c2, . . . c|Σ|)) | ∧

i∈I ci = #σi(x) }.
As an example, we may have f(babaab) = (a1, b2)(a1, b0), (a1, b1) for Σ =

{ a, b } , n = 3.
There are two key differences between our formalization and that of [10].

First, the total size of the missed symbols is bounded in our case so that we
have a finite alphabet with each transition taking O(1) time in the determinized
alternate DFA. [10] uses a constraint automata which accepts an infinite alphabet
and each transition takes O(|Q|) time. We note that even if more than n symbols
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are missed at a time, then up to mn missed symbols can produce m alternate
symbols to transition to the correct set of states in our framework. The second
difference is in consideration of soundness and completeness. While we construct
a complete optimal monitor (without any false positives), they construct a sound
monitor (without any false negatives). As Remark 10 shows, this is not an issue
since we can easily construct a sound monitor instead.

Fig. 5. A composite monitor
for SafeIter on two iterators.

Merged Objects. Here we look at a new loss
type which loses information about which object
an event belongs to in a multi-object monitor.
Let O = { o1 . . . om } be a set of objects with
parametric events E = e1 . . . en, i.e. e1(o1) is
a distinct event from e1(o2). This means that
Σ = { e(o) | e ∈ E ∧ o ∈ O }.

For σ ∈ Σ, γ ∈ Γ , let σRγ iff σ = γ(o) ∧ o ∈
O. In the partial trace, we lose information about
which object the event belongs to within O. For
the general case we can build an optimal monitor using the construction in
Theorem 2. We give an example of the multi-object property “SafeIter” shown
in Fig. 1a but including additional creation events with symbol c as discussed in
Remark 1.

The fact that the event c will not be observed in any state is not a part of
the property but a guarantee of the environment. We model the transitions for c
from any non-initial state other to as special state qim (not shown) representing
“impossible” state.

Fig. 6. Optimal complete
alternate monitor.

A composite monitor for the SafeIter prop-
erty from [6] is shown in Fig. 5 for two iterators
I1 and I2 ((i, j) represents states (qi, qj) for the
two iterators, assuming I1 is created first). The
loss model R merges events for I1 and I2, and
using Theorem 2 to construct the optimal alter-
nate monitor, and delete the qim state from the
NFA produced (as we’re guaranteed by the envi-
ronment to never enter it) to obtain the monitor
in Fig. 6. For example, the obtained monitor only
misses the violation for the traces like c1uc2n2*n1,
i.e. when we actually need the information that event n happened on object 1,
but can still report violations for traces matching c1n1c2(n1|n2)uu*(n1|n2) or
c1uc2(n2|n1)*uu*(n1|n2).

Missing Loop Events. Significant number of events can be generated within
loops in a program. [5] addresses this by eliminating instrumentation losslessly
within loops when monitoring the first few iterations is sufficient.

We consider an extension of this idea in Fig. 7 where the program structure
is used to obtain the loss model. Instrumentation from the loop is replaced with
a single symbol k at the end of the loop. If instrumentation is disabled for all
iterations of the loop, the monitor is in states { q0, q1 } after the event k. If the
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Fig. 7. Missing Events in Loops to be able to remove instrumentation in them.

first few iterations are monitored and event a is generated, the monitor will be
in states { q1 } after the event k.

The loss model can be calculated using a method from [4]. It presents a static
analysis which finds the set of states that are possible after a program region,
e.g., a loop body, for any given starting state if monitoring were to be disabled in
that region. We can use this information directly instead of R−1(k) in Theorem
2 for computing δψ(q, k) ∀q. This is equivalent to mapping the set of strings
which go from q to δψ(q, k) to the new symbol for the loss model.

7 Related Work

Runtime monitoring has been an active research area over the past few decades.
A significant part of the research in this area has focused on optimizing monitors
and controlling the runtime overhead to make monitoring employable in practice.

A line of research [2,4,18,19] focuses on lossless partial evaluation of the
finite state property to build residual monitors which process fewer events during
runtime. [4] and [19] can be modelled in our framework using loss models where
R−1(y) is a singleton set. Another line of research proposes purely dynamic
optimizations where resources at run-time are constrained [8]. Purandare et al.
[6] combine multiple monitors which share events into a single monitor to reduce
the number of monitors updated. Schneider et al. execute monitors in parallel
by enabling exchange of states between them to scale up monitoring [20].

Kauffman et al. [21] and Joshi et al. [22] consider monitorability of LTL
formulas under losses. [21] considers natural losses such as loss, corruption, rep-
etition, or out-of-order arrival of an event and gives an algorithm to find mon-
itorability of a LTL formula. They do not construct a monitor to monitor the
partial traces. [22] considers monitorability of LTL formulas in the presence of
one loss type which is equivalent to our dropped-count loss (Fig. 3a) with n = 1.
They only handle the formulas whose synthesized monitor has transitions that
always lead to just one state, and it only recovers from losses after observing
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such a transition. In general, recurrence temporal properties [23] that can be
modeled by Büchi automata are naturally immune to event losses due to loops
in their structures. Our work primarily focuses on safety properties.

Falzon et al. [10] consider the construction of an alternate sound monitor
when for some parts of the traces only aggregate information, such as the
frequency of events but not their order, is available. We formalize this loss
type in our framework in Sect. 6. Dwyer et al. [7] consider sub-properties
formed when the alphabet is restricted to its subset to sample sub-properties
from a given property. Their construction ensures completeness and is equiv-
alent to our construction with R = {(x, y) | x ∈ Δ∗y ∀y ∈ Σ \ Δ}, where
Δ is the set of symbols not observed as events. Figure 4b generalizes it with
R = { (x, y) | x ∈ Δ∗y ∀y ∈ Σ }.

Basin et al. [9] introduce a 3-valued timed logic to account for missing infor-
mation in recorded traces for offline analysis. This allows them to report 3 results:
if a violation occurred, if it did not occur, or if the knowledge is insufficient to
report either. In the problem we consider, instead of having a single representa-
tion for missing information we can have multiple representations for different
losses which can differ in their power to report an error.

Bartocci et al. [24] introduce statistical methods to inform overhead control
and minimize the probability of missing a violation. For the monitors which are
disabled, [25] introduces statistical methods to predict the missing information
due to sampling, which is then used in [24] to get a probability that the violation
occurred in an incomplete run. Instead of disabling monitoring altogether and
predicting missing information, our approach records partial information about
the events to report violations while maintaining completeness.

8 Conclusion and Future Work

We presented a framework for online finite-state monitoring of traces that carry
partial information, where the losses could be natural or artificially induced. Our
framework provides a general model that accommodates various losses present
in the current research literature. We provide an efficient and automatic method
to construct optimal monitors from a property specification and a loss model.
Our optimality results provide hard limits to determine which property-loss and
model combinations are feasible. We hope this makes it easier in future to study
specific loss types. We also hope that this novel approach makes monitoring par-
ticularly attractive in the presence of high-frequency events and lossy channels,
serving as a theoretical basis for implementations dealing with such constraints
and for new optimizations inducing event losses. In the future, we would like
to extend our framework to address infinite-state monitors and work on open
questions about the characteristics of more restricted classes of loss models and
their properties.
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