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Abstract. There have been tremendous developments in minimally
invasive approaches for various surgical treatments due to the benefits
for patients such as less pain and faster recovery. However, surgeons face
a number of obstacles while performing these surgeries, including inade-
quate depth perception, limited range of motion, and difficulty gauging
the force to be delivered in the tissue. As a result, improved support for
these surgeries is needed to provide surgeons with automated assistance,
reducing complications and needless patient damage.

In this work, we propose an approach, leveraging deep learning and
formal methods, to develop an automated surgical procedure assistance
framework. To the best of our knowledge, our framework is the first
to develop an automated surgical procedure assistant using deep learn-
ing and formal methods. We use Faster R-CNN to identify the surgical
instruments/tools used to perform the surgical procedure. Based on the
high-level description of the crucial guidelines that should be obeyed
during a good surgical procedure, we obtain the monitoring code that
identifies a bad behaviour in a surgical procedure using formal moni-
tor synthesis techniques. For example, any violation in the tools’ usage
during the surgical procedure can alert the surgeons to take immediate
corrective measures. To illustrate the practical applicability of the pro-
posed approach, we consider the case of cholecystectomy (laparoscopic)
surgery and illustrate how our framework can assist a surgeon during a
laparoscopic surgical procedure. We implemented the proposed frame-
work, and validated its technical feasibility using (offline) video samples
of the surgical procedure from the modified Cholec80 dataset.

Keywords: Deep learning · Faster R-CNN · Formal methods ·
Laparoscopic surgery · Surgical tool detection

1 Introduction

In the surgical field, nowadays people not only care about the treatment results,
but also the comfort and minimal invasion during the treatment, which has given
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rise to the new era of Minimally Invasive Surgeries (MISs). MIS emerged in the
1980s, which include surgical techniques that limit the size of incisions needed.
Here, surgeons make tiny cuts in the skin, and insert small tools, cameras, and
lights to operate the patient. In the last 20 years, many surgeons have come to
prefer MIS over the traditional (open) surgeries since, it requires smaller incisions
and cause less pain, scarring, and damage to healthy tissue. Thus, the patient
will have a faster recovery and shorter hospital stays (up to 50% reductions for
some procedures [17]).

There have been constant innovations to improve MIS that include tech-
nological innovations in instruments used (such as laparoscopic instruments),
novel clinical measurements, and MIS-associated technologies (such as surgical
robotics, image guidance systems, and advanced signal processing methods).
However, MIS is accompanied with many visualization and control challenges
(images from the camera are from unnatural positions with unintuitive scale).
There are problems like inadequate depth perception, limited range of motion,
and difficulty gauging the force to be delivered in the tissue. These are often time
taking and have risks of complications due to anesthesia, bleeding and infections.

MIS require surgeons to have a particular skill set to gain excellence and
optimized outcomes. Experience and assistance (manual or automated) during
surgeries reduces operative time and complications, especially in complex surg-
eries. Thus, giving high confidence to the surgeons. The assistance provided dur-
ing surgeries mainly includes, experts giving immediate feedback on the ongoing
surgery performed by surgeons. According to a study report1, there is a critical
shortage of expert surgeons (as supervisors), and unavailability of considerable
time from them to observe and provide feedback on the surgeries performed
by the trainee surgeons. Thus, there is a need to adopt the automated way of
providing feedback to the surgeons during the surgery.

The automated assistance through observation and feedback, may include
various Artificial Intelligence (AI) techniques to analyze a surgical procedure. For
example, Machine Learning (ML) models can be trained on surgical procedure
videos, which can detect various patterns and forecast health risks/illness as well
as treatments, to ease the overall process for surgeons. In the last decade, we
have seen tremendous improvements in the field of AI/ML. These ML techniques
have been applied in robot-assisted surgeries [22] for better performances. For
example, ML techniques have successfully performed detection of the surgical
tools, so that we can analyse the movement of each tool during a complex surgery
and can generate feedback for the surgeons [23]. This kind of rich analysis using
Deep Learning (DL) [19] can help upgrade the surgical procedure. These ML
approaches combined with techniques providing rigorous correctness guarantees,
such as formal methods, help in building robust and reliable systems.

Designing and developing critical systems require the use of formal meth-
ods and model-driven developments. Since formal specification languages have a

1 The Complexities of Physician Supply and Demand: Projections From 2018 to 2033,
Prepared for the AAMC by IHS Markit Ltd., June 2020, https://www.aamc.org/
media/45976/download?attachment.
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precise syntax and semantics, formally defining policies will make them clearer.
It will eliminate ambiguities and inconsistencies, and make them more easily
amenable to automatic processing and code synthesis with certain correctness
guarantees.

Although there are few frameworks [3,38], with absolute guarantees of cor-
rectness, but these do not provide specific automated feedback to the surgeons
during a surgery. Thus, we propose a framework for providing automated surgical
procedure assistance, using DL and formal runtime monitoring approaches. We
use Faster R-CNN [41], a region-based Convolutional Neural Network (CNN) to
identify/detect the surgical instruments/tools that appear during a surgery. The
critical policies that should be followed in a good surgical procedure are formally
defined (expressed as Valued Discrete Timed Automata, see Sect. 4). Based on
the monitor synthesis approaches proposed in [29,37], the runtime monitors are
generated directly from these policies. These monitors will take the array of iden-
tified tools from CNN and detect any violation of the critical policies during the
surgical procedure and alert the surgeons about it. This ensures inappropriate
behaviour (deviations from policies) during a surgical procedure are identified.

To demonstrate the adaptable use of the proposed approach, we consider the
case of cholecystectomy (laparoscopic) surgeries. Cholecystectomy is a type of
laparoscopic surgery performed in the gall bladder, with the aid of a laparoscope
(video camera). We illustrate how our framework can assist a surgeon during a
laparoscopic surgical procedure, by identifying bad behaviours and alerting the
surgeons about it. We implemented the proposed framework2, and the technical
feasibility of the approach is validated using (offline) video samples of the surgical
procedure from the modified Cholec80 dataset [46].

2 Overview of the Proposed System

As discussed in Sect. 1, we work on automated surgical procedure assistance
framework in a (real-time) surgery using DL and formal runtime monitoring
approaches. We do so by providing feedback to the surgeons during a surgery,
so that it can be carried out effectively even without the expert’s supervision.
Here is an overview of our work: we employ DL approaches to detect tools that
are used during a surgical procedure. Based on the knowledge of the clinical
guidelines from the domain expert surgeons, the key policies to be followed for
safe surgical procedure can be understood. From that understanding, we formally
specify the policies from which a monitor is synthesized. It will identify any bad
behaviour during a surgical procedure by looking at the sequence, time of tools’
occurance, etc. and intimate the surgeons about it. In this section, we give the
architecture (shown in Fig. 1) of the work which comprises of two modules: tool
identification module and monitoring module. We describe each module and
discuss this framework for a laparoscopic surgery.

2 The framework is available at https://doi.org/10.5281/zenodo.6899355 .

https://doi.org/10.5281/zenodo.6899355
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Fig. 1. Architecture of the proposed system

Software Architecture: The first module is the tool identification module. It con-
sists of an input source (video camera) which captures frames/images in real
time and processes it (processing may involve various transformations, such as
image enhancement, scaling, etc.) to make it suitable to be fed to the Deep Neu-
ral Network (DNN) model. The DNN model is trained on the surgery dataset
which takes the processed frame and identifies/detects the surgical instruments
used in the frame (if any). It returns an array having a boolean entry for each
tool’s presence or absence. This array is forwarded to the monitoring module
which will analyze the tool’s occurrence against some policies.

The clinical guidelines for a safe surgical procedure, from domain expert sur-
geons can be formally defined as policies. In the monitoring module, the monitor
is synthesized directly from these policies, which will take the tool occurrence
array and will keep track of the specified policies being obeyed by the received
arrays. It will report violations of the policies, if any. At last, the violation
message is sent to the system which will convey it to the surgeon to take the
corrective action.

The above architecture generalizes well to many surgeries having an anno-
tated dataset to train the model. In order to use the proposed architecture to
a specific surgery, the appropriate transformations have to be applied to the
captured frames. Then, these frames have to be fed to the DNN model that
has been trained on the corresponding surgery’s dataset. Also, relevant policies
have to be understood from the experts and specified formally, which covers
“good” practices during a surgery (or resp. “bad” practices that may happen in
a surgery) to synthesize a monitor.

As stated in Sect. 1, we consider laparoscopic surgeries, which are MIS, per-
formed in the abdomen (gall bladder), with the aid of a laparoscope. A laparo-
scope is a lean slender shaped tool with tiny video camera and light on the tip.
With few millimeters small incisions, the surgeon inserts different instruments,
including the laparoscope through the abdominal wall, and performs the surgery
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while visualizing it on a video screen. One can even generate a diverse multitude
of realistically looking synthetic images, by image-to-image translation method,
from a simple laparoscopy simulation, to gather ample data [30]. We take modi-
fied Cholec80 dataset [46] of cholecystectomy (laparoscopic) surgery, for training
the DNN model of the tool identification module. For illustrating our approach,
we consider the following set of example policies for the laparoscopic surgeries
(specifying a good surgical behaviour):

Example 1 (Example policies). Consider simple policies P1 and P2, defined
below, which analyzes tool usage patterns and are used to validate a surgical
procedure:

– P1: “Tool T2 (e.g. Irrigator) should not be used after tool T3 (e.g. Specimen
Bag)”;

– P2: “Tool T1 (e.g. Bipolar) should not be used for more than 20 t.u. contin-
uously”.

One can also include other policies, for example, a policy which keeps a count
on the usage of tool in the complete surgery, etc.

In the following sections, we will see further details of each of the modules
presented in the architecture (shown in Fig. 1).

3 Surgical Tool Detection

One of the most complex challenges in computer vision is object detection.
Researchers have been developing various algorithms for improvements and have
achieved remarkable results. Traditional object detection methods like the Viola-
Jones detector (2001) [47], HOG (2006) [8] and DPM (2008) [12] have performed
quite well. These methods have their limitations in dealing with images and
videos because of their complex features.

Since the last decade, we have seen tremendous improvements in ML and DL
techniques. When DL is used for object detection, it has shown to achieve state-
of-the-art results. DL-based object detector solves object detection in two steps:
1) finds an arbitrary number of objects in the frame, 2) classify every object and
estimate its size with a bounding box. One can divide these tasks into stages
(like Fast-RCNN [15]) to make the process easier to achieve better results. Some
methods, like YOLO [40], combine both tasks into one step to achieve better
performance but at the cost of accuracy. We have used Faster-RCNN for tool
detection, a two-stage object detection algorithm which gave high precision and
accuracy.

3.1 Faster-RCNN

Faster R-CNN Fig. 2 is a region-based CNN technique mainly developed for
object detection. The approach is inclined towards real-time object detection.
Faster R-CNN introduced Region Proposal Network (RPN), which increased its
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performance over Fast R-CNN [15]. RPN takes an image as input and gives a
set of proposed regions where objects can be found, as output. We are using a
pre-trained CNN model of VGG-16 with 13 sharable layers. It is connected to
two fully connected layers- a box regression layer (reg) and a box classification
layer (cls). We are using a 3 × 3 spatial window size on this input image to
generate region proposals.

Fig. 2. Architecture of Faster R-CNN [41]

Faster R-CNN also uses the concept of anchors Fig. 2, which are fixed-sized
boxes generated, having their centre at the sliding window. Anchors uses scales
and aspects ratios; we have used three scales and three aspect ratios in our model,
resulting in a total of 9 anchor boxes at each sliding window position. Faster R-
CNN assigns a binary objectness label to each anchor, indicating the presence of
an object in it. To the anchors with positive objectness label, it further assigns
positive or negative labels depending on their Intersection over Union (IoU) with
any ground truth box. Positive labels are assigned to anchors with IoU greater
than 0.7, and negative labels are assigned to anchors with IoU less than 0.3.
Only positive and negative labelled anchors are used for the training of RPN.

Now, we define our multi-task (classification and regression) loss function
[41] as:

L ({pi} , {ti}) =
1

Ncls

∑

i

Lcls (pi, p∗
i ) + λ

1
Nreg

∑

i

p∗
i Lreg (ti, t∗i )

where:

– i: index of the anchor
– pi: predicted probability of anchor i being an object
– pi

∗: label for ground truth anchor {1: positive , 0: negative}
– ti: vector for 4 parametrised coordinates giving the position of the positive

anchor



Automated Surgical Procedure Assistance Framework 31

– ti∗: ground truth box coordinates associated with a positive anchor.
– Ncls: normalising factor for classification loss.
– Nreg: normalising factor for regression loss.
– λ: balancing factor
– Lcls: log loss over two classes (object or not)
– Lreg : robust loss (smooth L1 loss)

We also parametrise each coordinate of bounding box regression as:

tx =
(x − xa)

wa
; ty =

(y − ya)
ha

tw = log
(

w

wa

)
; th = log

(
h

ha

)

t∗x =
(x∗ − xa)

wa
; t∗y =

(y∗ − ya)
ha

t∗w = log
(

w∗

wa

)
; t∗h = log

(
h∗

ha

)

where:

– x, y are box centre coordinates
– w, h are width and height of the box
– x, x∗, xa are for predicted box, anchor box and ground truth box respectively.

Note: We are calculating regression loss only for positively labelled anchors,
that’s why p∗

i Lreg.

3.2 Dataset

In 2016, M2CAI3 had launched two open online challenges- M2CAI tool presence
detection challenge and M2CAI workflow (phase) detection challenge. Cholec80
provided a dataset having 80 videos with phase and tool annotations for these
challenges. Fifteen videos were used in the M2CAI tool presence detection chal-
lenge (10 for training and validation, 5 for testing). These released videos are 30
to 70 min long, having 25 frames per second (fps) but later sampled to 1 fps to
obtain around 23000 total frames. These frames had been binary classified for
presence or absence of 7 tools - Grasper, Hook, Scissors, Specimen bag, Bipolar,
Clipper and Irrigator (shown in the Fig. 3).

We have used a modified version of this dataset, released by Stanford Uni-
versity [19], since we want to do both tool detection and localisation in a frame.
It contains 2811 frames having spatial bounding boxes annotations around the
tools done by experts. Out of these 2811 frames, 2248 and 563 are used for train-
ing and validation respectively. These frames contain at most three tools being
used simultaneously. Table 1 shows number of annotated images for each tool in
this dataset.
3 Workshop and challenges on modeling and monitoring of computer assisted inter-

ventions, http://camma.u-strasbg.fr/m2cai2016/index.php/program-challenge/.

http://camma.u-strasbg.fr/m2cai2016/index.php/program-challenge/
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Fig. 3. Showing all 7 tools used in our dataset. (Source [19])

Table 1. Annotated images for each tool in our dataset

Tools Number of annotated images

Bipolar 450

Clipper 400

Grasper 1422

Hook 308

Irrigator 485

Scissors 388

Specimen Bag 476

3.3 Implementation

RPNs are trained by backpropagation using Stochastic Gradient Descent (SGD).
In this strategy, we use N(= 256) randomly sampled positive and negative
anchors. This mini-batch is selected so that the ratio of positive to negative
anchors is close to 1:1, ensuring the model to be unbiased. We use transfer
learning for initializing weights in our RPN. Since we use VGG-16, we initialise
our first 13 layers with the weights of the model pre-trained on ImageNet classifi-
cation, through which it learns to detect basic features. We fine-tune our network
by training it with our dataset. In the training part, we set our learning rate to
0.001 and use ReduceLRonPlateau (built-in function of Keras) to decrease it by
a factor of 10, if it remains constant for five epochs. Thus, we made our model’s
learning rate adaptable which improved precision and accuracy. We implemented
this Faster R-CNN in our surgical tool detection. Since, the size of the image in
our dataset is 334 × 596, thus we keep our image resizing to 450 to ensure that
our trained model also works well for tool detection in surgical videos with a
frame size of 460 × 680.

Anchors have different scales and aspect ratios. We have used anchors with
box areas of 1282, 2562 and 5122 pixels and with aspect ratios of 1:1, 1:2 and
2:1. These anchor boxes per sliding window were found sufficient to cover most
objects.

The usage of Non-Maximal Suppression (NMS), which helps in predicting the
correct box around the tools was required. We have used NMS on the proposal
regions based on classification scores. Since tool localisation does not involve a
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complete tool, we have set the NMS to 0.05. This means that if there are two
predicted boxes for the same tool with more than 5% common area, NMS will
remove one with lesser probability.

3.4 Model Performance

We evaluate our model performance on test images and videos (of different
lengths varying from 30 to 70 min). We used 563 annotated surgical images and
5 videos to test our model (testing was done by comparing the boolean vector
indicating the presence or absence of tools for each frame, with the given ground
truth boolean vectors). Figure 4 shows 1 to 3 tools detected in various frames by
our framework.

Fig. 4. Surgical tools in frames having 1 to 3 tools detected by our framework

Our model processed around 5 fps and provided an average precision and
accuracy of 88.21% and 95.82% for video level detection (see Table 2).

4 Formal Runtime Monitoring

Runtime Verification (RV) [2,10] techniques allow one to check if a run of a
system under observation complies with (or violates) a specified policy/property.
Because the focus is on verifying the current execution/trace of the system being
monitored, a formal model of the system is not required (system being monitored
is usually considered as a black-box). As a result, RV techniques are lightweight,
and issues like state explosion are avoided because always one (current) execution
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Table 2. Model’s performance on test videos

Videos Accuracy Precision

Video 1 96.11 90.56

Video 2 94.93 82.84

Video 3 97.60 92.73

Video 4 95.77 86.14

Video 5 94.67 88.79

Average 95.82 88.21

of the system is monitored/verified. An RV monitor does not change the system’s
execution/behaviour; instead, it monitors and examines whether the system’s
actual execution is meeting the specified properties.

Runtime Enforcement (RE) [31,32] approaches are an extension of the RV
approachs, concentrating on ensuring that the executions of systems being mon-
itored are consistent with some desired policy. An enforcement monitor converts
an (untrustworthy) input execution (series of events) into a policy-compliant
output sequence of events (e.g., defining a desired safety requirement). In order
to do so, an enforcement monitor performs certain evasive actions to prevent the
violation. These evasive actions might include blocking the execution, modify-
ing input sequence by suppressing and/or inserting actions, and buffering input
actions until a future time when it could be forwarded.

The different monitoring frameworks differ on the power of the enforcement
mechanism (i.e. the different evasive actions it can take) and the supported pol-
icy specification language. For example, monitors in [11,33] allowed buffering
of the input events and used automata to specify the policies ([33] used timed
automata [1] to specify real-time policies); whereas monitors for reactive and
cyber-physical systems in [36] allowed altering the input events and used Val-
ued Discrete Timed Automata (VDTA) to specify the policies. VDTA supports
valued signals, internal variables, and complex guard conditions, ensuring com-
patibility with real-world cyber-physical and industrial systems.

In this work, we employ formal runtime monitoring approaches for “assess-
ing” a surgical procedure and thus providing assistance to the surgeon, in the
form of feedback during the surgeries. We write policies and synthesize “veri-
fication” monitor out of it. We use approaches proposed in [29,37] to synthe-
size the monitor, as these approaches synthesize the monitoring code directly
from the specified policies. The generated monitor also ensures correctness and
safe behaviour in safety-critical systems. These approaches use VDTA to specify
policies which is an automaton with a finite set of locations, a finite set of dis-
crete clocks used to represent time evolution, and external input-output channels
which represents system data. They also have internal variables that are used
for internal computations.

We mainly use the monitor synthesis mechanism to realize some of the
requirements or a component, in the overall system automatically. As illustrated
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in Fig. 5, (verification and enforcement) monitors are seen as modules outside a
(black-box) system, which take as input a stream of events (output of the sys-
tem being monitored) and verify or correct this stream according to the policy.
In this work, we mainly utilize the monitor synthesis approaches to realize a
component (the monitoring module of the proposed system as shown in Fig. 5)
that deals with providing feedback to the surgeons during a surgery. Instead of
implementing that component, we rely on synthesis of the component from high-
level policies using formal monitor synthesis approaches, so that the component
is correct-by-construction.

Fig. 5. Formal RV monitoring context: usual Vs. our system

Example 2. Let us define policies P1 and P2 of Example 1, via VDTA.
Let I = {T1, T2, T3, T4, T5, T6, T7} be the external boolean input channels
and the set of clock variables V = {v}4 The alphabet Σ = 2I =
{0000000, 0000001, · · · , 1111111}, where each event will be denoted as a bit-
vector. For example, {T1} ⊆ I is denoted as 1000000 ∈ Σ, and {T1, T4} ⊆ I is
denoted as 1001000 ∈ Σ. Figure 6 shows policies P1 and P2 where, L = {l0, l1, l2}
is the set of locations, with l0 as the initial location and {l0, l1} as the accepting
locations in both the automata. According to policy P2, from initial state l0,
upon input event !T1

5 (indicating absence of tool T1 in the captured frame), the
system remains in same state (self-loop on l0). The transition from location l0 to
4 VDTA can handle more expressive policies. Its entire potential (e.g., the output

channels, the internal variables) has not been realised here.
5 !T1 denotes set of all the events in Σ, where tool T1 is absent (bit corresponding to T1

is 0 and other bits can be 0/1), e.g., (0000000), (00000001), · · · , (0111111). Similarly,
T1 denotes set of all the events in Σ, where tool T1 is present (bit corresponding to
T1 is 1), e.g., (1000000), (1000001), · · · , (1111111).
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l1 is taken upon input event T1 (indicating presence of tool T1 in the captured
frame), with clock v reset to 0. From location l1, if the input event is !T1, then
the system again goes back to location l0, otherwise remains at l1 till the value
of the clock v is < 20. With input event T1, when v is ≥ 20, it goes to dead
location6 l2, thus ensuring adherence to the policy. Policy P1 can be similarly
expressed as a VDTA as illustrated in Fig. 6.

Fig. 6. Automaton for policy P1 (on left) and P2 (on right) (Color figure online)

Remark 1. Note that, in this work, we slightly modify the approach of monitor
synthesis, proposed in [29,37].7.

RV Monitor from VDTA: In this work we synthesize an RV monitor from policies
expressed as VDTA. An RV monitor deals with checking the observation of
the current execution (denoted as σ) satisfies or violates the policies and gives
verdict accordingly. There are different RV frameworks, such as [2], where the
verdicts provided are {True, False, ?}. Verdict True means every continuation
of σ satisfies the policy, verdict False means there is no continuation of σ which
satisfies the policy and verdict “?” means unknown (no conclusive verdict can be
provided). There are other frameworks, such as [34], which refines the unknown
verdicts into Currently true and Currently false. Verdict Currently true indicates
that the current observation of the execution satisfies the policy but not every
continuation of it satisfies the policy and similarly, Currently false indicates
that the current observation of the execution violates the policy but not every
continuation of it violates the policy.

In this work, we define and implement our RV monitoring framework for
VDTAs, where a monitor for a policy defined as a VDTA takes a stream of
events over Σ as input (current observation), and emits a verdict in {True,
False, Currently true, Currently false}.
6 A dead location (denoted by red squares throughout the paper) is a location in the

automaton, from where there is no path in the automaton from that location, to
reach an accepting location.

7 We synthesize a verification monitor instead of an enforcement monitor. Thus, our
model will give verdicts in the form of feedback when it detects a violation and will
not exercise its power of correcting faulty inputs i.e., editing erroneous inputs/out-
puts using edit functions as proposed in the followed paper.
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5 Experimentation

To evaluate the performance of our proposed framework, we implemented the
architecture, given in Fig. 1. This section shows the experimentation of the
implemented architecture. We build the module for tool identication (following
Sect. 3.1), take the dataset (discussed in Sect. 3.2) and evaluate the framework
against some simple policies (given in Example 1).

The captured and processed frame is supplied to the tool identification mod-
ule (built using the approaches discussed in Sect. 3), which identifies the tools
present in the current frame. It yields an array of boolean variables showing pres-
ence or absence of each tool. The obtained array is then passed to the monitoring
module (built using the approaches discussed in Sect. 4). It contains monitors
synthesized from the specified policies. For experimentation, we consider policies
P1 and P2 defined in Example 1 of Sect. 2 with I = {T1, T2, T3, T4, T5, T6, T7}
(the boolean tool array) and the set of clock variables V = {v}. These policies
are defined in the intended format as illustrated in 1.1 and as automata illus-
trated in Fig. 6. The policies are combined using standard product construction
[37] as P1 ∩P2 which corresponds to the conjunction of both policies P1 and P2.
The monitor is directly synthesized for the policy defining P1 ∩ P2.

The monitor (C code synthesized from high-level policies) integrated with
the system takes the tool array and checks if the policies are obeyed or not. It
will raise an alert if the surgical procedure is not carried out according to the
specified policies.

i n t e r f a c e o f t o o l d e t e c t i o n {
in bool T1 , T2 , T3 , T4 , T5 , T6 , T7 ;
out i n t 1 6 t r e s ; }

po l i c y p1 o f t o o l d e t e c t i o n {
s t a t e s {

s0 {
−> s0 on !T3 ;
−> s1 on T3 ;}

s1 {
−> s1 on !T2 ;
−> v i o l a t i o n on (T2) r ecove r r e s := 1;}}}

po l i c y p2 o f t o o l d e t e c t i o n {
i n t e r n a l s {

dt imer t v ;}
s t a t e s {

s0 {
−> s1 on T1 : v :=0;
−> s0 on !T1 ;}

s1 {
−> s1 on (T1 and v<20) ;
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−> s0 on !T1 ;
−> v i o l a t i o n on (T1 and v>=20) r ecove r r e s := 2;}}}

Listing 1.1. Policies in the intended format

For example, consider policy P1 and received input trace σ = (0000110) ·
(0010010) · (0100000). From initial location l0, upon input event “0000110”, the
automaton remains in l0; from l0, upon input event “0010010”, the automaton
makes a transition to l1, (the bit corresponding to tool T3 is 1, indicating pres-
ence of tool T3); and from l1, upon input event “0100000”, the automaton goes
to dead location l2, (the bit corresponding to tool T2 is 1, indicating presence
of tool T2), since it violated the policy (Policy P1 abstained the use of a tool T2

after tool T3, which may signify carelessness that should be avoided). Thus, in
this case the monitor will give verdict as False and will reset itself and continue
with the next event.

Upon reception of a False verdict, the system will raise an alert that the
surgery is not being performed as per the specified policies.

Similarly, when a surgeon uses tool T1 for a longer (than usual) period of
time (which may point to rough handling of tissue resulting in tissue damage),
then it will violate policy P2 and the monitor will raise a similar alert.

These alerts will give instant feedback to the surgeon, and he can be more
careful during the surgical procedure; thus providing assistance to the surgeon.
One can set different types of alerts depending on the type of policies. For
example, for some critical policies, where violating the policies can have severe
consequences, alerts can be sending notifications to the senior surgeons; whereas,
for the other soft policies, the alerts can be allocating resources (likely to be used
in future) to avoid preoperative delays.

Performance Discussion: Our proposed system spends considerable time in tool
identification only, since it employs DL, whose execution time is more dependent
on the processing power of the available architecture. Our architecture/machine
(Intel(R) Core(TM) i7-9700K CPU @ 3.60GHz with Quadro RTX 4000 and 8GB
Graphics RAM/GPU) can process around 5 fps. Thus, the overall architecture
ensures real-time feedback to the surgeons with the considered policies.

Moreover, our proposed architecture can utilize state-of-the-art trained model
benefits and further enhance its overall performance. In one recent published
work on surgical tool detection using cascading of CNN [48], researchers were
able to detect tools in around 0.023 s. Use of this model in our tool identification
module will further bring down frame processing time. Thus, it can process more
than 40 fps.

The framework is implemented and is available for download at
https://doi.org/10.5281/zenodo.6899355 .

6 Related Work

Several object detection and formal runtime monitoring approaches are related
to the one used in this paper. We give a comparison with approaches for these
in Sect. 6.1 and Sect. 6.2 respectively.

https://doi.org/10.5281/zenodo.6899355
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6.1 Object Detection

Object detection has received a lot of research attention in recent years because
of its tight association with the well known video analysis and image processing
techniques. Object detection tasks can be broken down into two stages - object
localization (location of objects in the image) and object classification (category
of each object present).

Handcrafted features and shallow trainable structures are the foundations of
traditional object identification systems. Feature extraction in these traditional
methods uses SIFT [26], HOG [8] and Haar-like [25]. Classification of objects
is done using traditional classifiers like Supported Vector Machine (SVM) [7],
AdaBoost [13], Deformable Part-based Model (DPM) [12] etc. These methods
have their limitation e.g. it cannot obtain complex features in images or videos.

With the advent of DL [24], image classification improved significantly.
Because of the deep architecture of DNN and R-CNN [16], these were able
to easily learn the complex features. Also, large datasets and robust training
methods got rid of the need of manual feature extraction. Many improvements
in the R-CNN models have been proposed. Fast R-CNN [15] further optimizes
classification and bounding box regression tasks. Faster R-CNN [41] generates
region proposals using an additional subnetwork. YOLO [40] uses a fixed-grid
regression to detect objects. These models have made real-time object detection
feasible with improved accuracy.

Robot-assisted surgeries will be widely used in the future and surgical tool
detection is the first step towards it. DL approaches have shown excellent results
in improving its performance. The M2CAI tool detection challenge8 helped to
achieve new benchmarks in surgical tools detection. There are several studies
done to address tool detection in videos and obtain a richer analysis of surgeries.
Sarikya et al. [43] used multi-modal CNN for localization and fast detection of
tools in Robot-assisted surgeries. In 2019, Zhao et al. [49] proposed a method
using two CNNs designed for detecting coarse and fine locations of surgical
tools. Jin et al. [19] used a two-stage framework of Faster R-CNN to localize and
detect tools in a frame, which was later used for surgical skill assessment in a
surgical video. Chao et al. [5] proposed a one stage framework using a modified
YOLO [40] architecture, which increased the detection speed of surgical tools to
48.9 fps. Nwoye et al. [28] used CNN + Convolutional LSTM (ConvLSTM) to
model temporal dependencies in the motion of surgical tools, which resulted in
multiple tools tracking and detection simultaneously.

6.2 Formal Runtime Monitoring

Formal verification is the process of checking whether a design satisfies the spec-
ified requirements/policies. The policies can be expressed using high-level for-
malisms such as automata [29,33,35–37,44] or as temporal logic [2].
8 Tool presence detection challenge results, Workshop and Challenges on Modeling

and Monitoring of Computer Assisted Interventions, http://camma.u-strasbg.fr/
m2cai2016/index.php/tool-presence-detection-challenge-results/.

http://camma.u-strasbg.fr/m2cai2016/index.php/tool-presence-detection-challenge-results/
http://camma.u-strasbg.fr/m2cai2016/index.php/tool-presence-detection-challenge-results/


40 G. Gupta et al.

Model checking [6] is an automated static formal verification approach to
check if the policies are satisfied by an abstract formal model of the system
or not. RV [2,10] and RE [31,32] approaches do not require a formal model of
the system since only a single execution of the system is considered. RV (RE)
approaches checks at runtime if a run of a system under scrutiny satisfies a given
correctness policy or not (enforces them in the latter case).

DL is increasingly used in domains like autonomous driving [18], healthcare
[14], cybersecurity [27], etc. Designing these learning based systems that have
strong, provable, assurances of correctness w.r.t. the policies is always a focal
point. This has increased the discussions on verified artificial intelligence [42,45].
The very first attempt to formally verify a neural network was done by Pulina
and Tacchella [39]. They came up with techniques to verify that the output
of a fully-connected neural network with sigmoid activations is always within
specified safety bounds. Later, [9,20,21], proposed approach for the verification
of neural networks employing specific activation functions.

The adoption of DL in medical and health-care systems to facilitate a pro-
cedure has increased complexity of the system and made it more susceptible to
errors. Use of formal methods, along with advanced design, control and deploy-
ment paradigms, is often recommended to guarantee the correctness and safety
of these medical systems. In the attempt, Bresolin et al. [3] discussed the appli-
cations of formal methods to verify the properties of control systems built for
autonomous robotic systems that performed surgeries. They demonstrated the
automatic execution of simple tasks like puncturing. Brunese et al. [4] repre-
sented patient magnetic resonances as formal models and predicted the prostate
cancer Gleason score. Pore et al. [38] proposed a safe deep reinforcement learning
framework that guarantees safety criteria for automated surgical tasks.

The works in [3,38] deals with autonomous robot-assisted surgeries safe-
guarded by formal methods. But performing fully automated surgeries is quite
complex and less reliable. Upskilling of the existing surgeons by providing assis-
tance to them during complex surgeries can be really helpful. To the best of our
knowledge, our framework is the first to develop an automated surgical proce-
dure assistant using DL and formal methods. Thus, reducing complications and
needless patient damage during MIS.

7 Conclusion and Future Work

This paper presents a complete framework using DL and runtime monitoring
for developing an automated surgical procedure assistant. In this approach, we
use Faster R-CNN to identify the surgical tools used to perform the surgical
procedure. Then, we specify some policies on tools’ usage pattern that should be
obeyed during a good surgical procedure. We obtain a monitoring code out of
the policies. It will identify a bad behaviour in a surgical procedure. This way,
we can catch any violation in the tool’s usage during the surgical procedure and
can alert surgeons to take immediate corrective measures.

To illustrate the practical applicability of the proposed framework, we con-
sider the case of cholecystectomy (laparoscopic) surgery. We have implemented
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the framework and have evaluated its technical feasibility using some example
properties on (offline) video samples of the surgical procedure from the modified
Cholec80 dataset.

In the future, we plan to enrich this framework with diverse policies to cover
a large number of safe behaviours and then use this framework for robot assisted
surgeries.
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