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Abstract. Computer Science course instructors routinely have to cre-
ate comprehensive test suites to assess programming assignments. The
creation of such test suites is typically not trivial as it involves selecting
a limited number of tests from a set of (semi-)randomly generated ones.
Manual strategies for test selection do not scale when considering large
testing inputs needed, for instance, for the assessment of algorithms exer-
cises. To facilitate this process, we present TESTSELECTOR, a new frame-
work for automatic selection of optimal test suites for student projects.
The key advantage of TESTSELECTOR over existing approaches is that
it is easily extensible with arbitrarily complex code coverage measures,
not requiring these measures to be encoded into the logic of an exact
constraint solver. We demonstrate the flexibility of TESTSELECTOR by
extending it with support for a range of classical code coverage measures
and using it to select test suites for a number of real-world algorithms
projects, further showing that the selected test suites outperform ran-
domly selected ones in finding bugs in students’ code.

Keywords: Constraint-based test suite selection - Runtime
monitoring + Code coverage measures

1 Introduction

Computer science course instructors routinely have to create comprehensive test
suites to automatically assess programming assignments. It is not uncommon for
these test suites to have to be created before students actually submit their solu-
tions. This is, for instance, the case when students are allowed to submit their
solutions multiple times with the selected tests being run each time and feed-
back given to the student. In typical algorithms courses, testing inputs must be
large enough to ensure that the students’ solutions have the required asymptotic
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complexity. In such scenarios, course instructors usually resort to semi-random
test generation, selecting only a small number of the generated tests due to the
limited computational resources of testing platforms. Hence, the included tests
must be judiciously chosen. Manual strategies for test selection, however, do not
scale for large testing inputs.

This paper presents TESTSELECTOR, a new framework for optimal test selec-
tion for student projects. With our framework, the instructor provides a canoni-
cal implementation of the project assignment, a set of generated tests 7', and the
number n of tests to be selected, and TESTSELECTOR determines a subset 7" C T
of size n that maximises a given code coverage measure. By maximising coverage
of the canonical solution, TESTSELECTOR. provides relative assurances that most
of the corner case behaviours of the expected solution are covered by the selected
test suite. Naturally, the better the coverage measure, the better those assur-
ances. Importantly, the best coverage measure is often project-specific, there
being no silver bullet.

The main advantage of TESTSELECTOR over existing approaches [1,11,14,25]
is that it is easily extensible with arbitrarily complex code coverage measures
specifically designed for the project at hand. Unlike previous approaches, TEST-
SELECTOR does not require the targeted coverage measures to be encoded into
the logic of an exact constraint solver. We achieve this by using as our opti-
misation algorithm, a specialised version of the recent SEESAW algorithm [12]
for exploring the Pareto optimal frontier of a pair of functions. We demonstrate
the flexibility of TESTSELECTOR by extending it with support for a range of
classical code coverage measures and using it to select test suites for a number
of real-world algorithms projects, further showing that the selected test suites
outperform randomly selected ones in finding bugs in students’ code.

The paper starts with Sect. 2 that overviews the TESTSELECTOR framework
presenting its main modules and how they interact. Section 3 presents an exper-
imental evaluation of the framework. Section 4 overviews related work and con-
cludes the paper. An extended version of the paper can be found in [16].

2 TestSelector Overview

We give an overview of our approach for selecting optimal test suites for student
projects. As illustrated in Fig. 1, the TESTSELECTOR framework receives three
inputs: (1) the instructor’s implementation for the project, which we refer to
as the canonical solution; (2) a JSON configuration file with a description of
the coverage measure to be used for test selection as well as the number of
tests to be selected; and (3) an initial set of input tests, T'. Given these inputs,
TESTSELECTOR computes an optimal subset of tests, T/ C T, that maximises
the selected coverage measure for the chosen number of tests, n (|77| = n). Due
to the combinatorial nature of the problem and the sheer size of the search space,
it is often the case that TESTSELECTOR is not able to find the optimal solution
within the given time constraints. In such cases, it returns the best solution found
so far. Our experimental evaluation indicates that this solution is typically not
far from the optimal one.
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Fig. 1. TESTSELECTOR high-level architecture.

The TESTSELECTOR framework consists of two main building blocks:

— Summary Generation Module: The summary generation module automati-
cally instruments the code of the canonical solution in order for its execution
to additionally produce a coverage summary of each given input test. Different
coverage measures require different summaries. For instance, a block coverage
summary simply includes the identifiers of the code blocks that were executed
during the running of the canonical solution.

— MAXTESTS Module: The MAXTESTS module receives as input the cover-

age measure to be used, the number n of tests to be selected, and a set of
summaries, and selects the subset of size n of the given summaries that max-
imises the coverage measure. For instance, for the block coverage measure,
MAXTESTS selects the summaries corresponding to the testing inputs that
maximise the overall number of executed code blocks.
At the core of MAXTESTS is an adapted implementation of the SEESAW
algorithm [12], a novel algorithm for exploring the Pareto optimal frontier
of two given functions using the well-known implicit hitting set paradigm [3,
4]. The key innovation of SEESAW is that it allows one to treat one of the
two functions to optimise in a black-box manner. In our case, this black-
box function corresponds to the targeted coverage function, meaning that we
are able to select optimal test suites without encoding the targeted coverage
functions into the logic of an exact constraint solver.

Supporting New Coverage Measures. The key advantage of TESTSELECTOR when
compared to existing approaches for constraint-base test suite selection in the
general setting [1,11,14,23,25] is that it is trivial to extend TESTSELECTOR
with support for new, arbitrarily complex coverage measures. In contrast, exist-
ing approaches require users to encode the targeted coverage measures into the
logic of an exact constraint solver, typically SMT [5] or Integer Linear Program-
ming (ILP) solvers [10]. The manual construction of such encodings has two
main inconveniences when compared to our approach. First, it requires expert
knowledge of logic and inner workings of the targeted solver. Even simple encod-
ings must be carefully engineered so that they can be efficiently solved. Second,
there might be a mismatch between the expressivity of the existing solvers and
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the nature of the measure to be encoded. In contrast, with TESTSELECTOR, if
one wants to add support for a new coverage measure, one simply has to:

1. Implement a Coverage Summary API that dynamically constructs a coverage
summary during the execution of the canonical solution;

2. Implement a Coverage Evaluation Function that maps a given set of coverage
summaries to a numeric coverage score. Importantly, in order for TESTSELEC-
TOR to work properly, the coverage evaluation function must be monotone;
meaning that for any two sets of summaries S; and S, it must hold that:
S1 €8 = f(S1) < f(S2). Monotonicity is a natural requirement for
coverage scoring functions.

Natively Supported Coverage Measures. Even though our main goal is to allow for
users to easily implement their own coverage measures, TESTSELECTOR comes
with built-in support for various standard code coverage measures. In particu-
lar, it implements: (1) Block Coverage (BC)—counts the number of executed
code blocks; (2) Array Coverage (AC)—counts the number of programmatic
interactions with distinct array indexes; (3) Loop Coverage (LC)—counts the
number of loop executions with a distinct number of iterations; (4) Decision
Coverage (DC)—counts the number of conditional guards that evaluate both to
true and to false; (5) Condition Coverage (CC)—counts the number of condi-
tional guards for which all subexpressions evaluate both to true and to false.
We refer the reader to [22] for a detailed account of standard coverage measures
in the software engineering literature.

Linear Combination of Coverage Measures. In addition to the coverage measures
described above, TESTSELECTOR allows the user to specify a linear combination
of coverage measures. Observe that, as the linear combination of two monotone
functions is also monotone, the user is free to combine any monotone coverage
measures without compromising the correct behaviour of MAXTESTS.

3 Evaluation

We evaluate TESTSELECTOR with respect to three research questions:

— RQ1: How easy is it to extend TestSelector with new code cover-
age measures? We show that the currently supported coverage measures
are implemented with a small number of lines of code, demonstrating the
practicality of our approach.

— RQ2: Do classical code coverage measures improve test suite selec-
tion for bug finding in student projects? We show that the test suites
selected by TESTSELECTOR outperform randomly selected ones in finding
bugs in students’ code.

— RQ3: Do linear combinations of code coverage measures further
improve test suite selection for bug finding? We show that by combining
the best code coverage measures, we can find more bugs in students’ code.
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Table 1. Benchmark characterisation.

1 Canonical |

i Solution
MeaJrsure TestSelector
3 Conﬁg+uration i Project | CLoc | Mproj Troc | AvELoc | Minpts
Inputs P1 256 398 | 140,349 352.64 | 1,002
P2 529 349 | 176,547 505.86 600
P3 416 193 | 26,890 139.32 | 1,000
P4 208 166 | 34,512 207.90 | 1,000
P5 304 172 21,114 122.76 | 1,000
P6 204 185 24,091 130.22 800
P7 108 174 | 24,035 138.13 | 1,000
Total 2,125 | 1,637 | 447,538 273.39 | 6,402

Fig. 2. Evaluation diagram.

Ezxperimental Procedure. The experimental procedure is a two-step process, as
illustrated in Fig. 2. In the first step, TESTSELECTOR selects the test suites for
a given canonical solution, set of inputs, and configuration file specifying the
coverage measures and the size of the computed test suites. This step generates
a set of test suites, each corresponding to one of the specified measures. In the
second step, an executor will run every student’s project against the selected
test suites. In the end, the executor creates a report detailing the passing/failing
rate for every student’s project on each selected test suite.

All the experiments were performed on a server with a 12-core Intel Xeon
E5-2620 CPU and 32GB of RAM running Ubuntu 20.04.2 LTS. For the ILP
solver we used the Gurobi Optimizer v9.1.2. For each execution of MAXTESTS
we set a time limit of 30 min.

Benchmarks. We curated a benchmark suite comprising students’ projects from
seven editions of two programming courses organised by the authors. Table 1
presents the benchmark suite characterisation. For each project, we show the
number of lines of code of the canonical solution (Croc), the number of student
projects (nproj ), the total number of lines of code of the student projects (Troc),
the average number of lines of code per student project (Avgr, ), and the num-
ber of available input tests (nnpts ). In summary, we tested 1,637 projects, which
totalled 447K lines of code (~ 273 LoC/project).

3.1 RQ1: TESTSELECTOR Extensibility

The table below presents the number of lines of code of the implementation
of each coverage measure: Loop Coverage (LC), Array Coverage (AC), Block
Coverage (BC), Condition Coverage (CC), and Decision Coverage (DC). For
each measure, we give the number of lines of code of both its implementation of
the coverage summary API and evaluation function.

Module LC|AC|BC|CC | DC
Coverage Summary API 90 |60 |42 |120]120
Measure Evaluation Function |54 |58 |48 |74 |64




288 F. Marques et al.

Table 2. Results for each measure with linear search (LS) and progression search (PS).

Project | Search LC| AC BC| Size| CC| DC| Rnd

P1 LS 14.67 | 14.48 | 13.69 0.20/13.95|14.41 | 4.81
PS 14.5314.34 | 13.56| 0.19|13.82|14.27

P2 LS 18.07|17.15,19.47| 6.14|15.60|14.35 5.60
PS 18.07|17.20 1 19.47 | 6.14|15.60| 14.35

P3 LS 16.39|20.38 | 7.49|28.07| 7.49| 7.49 7.56
PS 16.77120.70| 7.95|28.31 7.95| 7.95

P4 LS 23.68 (22.78 | 11.99 | 23.59|17.95|17.93|13.52
PS 23.68|22.82| 11.99| 23.59 17.93|17.93

P5 LS 3.76| 3.23| 3.56| 3.74| 3.56| 3.56| 3.09
PS 3.76 | 3.25, 3.56| 3.74| 3.56| 3.56

P6 LS 6.91| 8.22| 8.01| 8.39| 4.72| 4.68| 6.61
PS 6.91| 822, 8.01| 8.39| 4.72| 4.66

P7 LS 10.46 | 6.08| 6.71| 6.39| 7.17| 7.17| 6.28
PS 10.46 | 6.08| 6.71 6.39| 7.17| 7.17

Average | LS 13.4213.19| 10.13| 10.93|10.06| 9.94| 6.78
PS 13.45|13.23| 10.18| 10.96 |10.11| 9.98

When it comes to the implementation of the coverage summary API, we
observe that the simpler coverage measures, such as LC, AC, and BC require
fewer than 100 lines of code to implement and the more complex coverage mea-
sures, such as CC and DC, require 120 lines of code. As expected, the measure
evaluation function is simpler to implement than the coverage summary API,
requiring even fewer lines of code (between 48-74 LoC).

3.2 RQ2: Classical Code Coverage Selection

We investigate the effectiveness of TESTSELECTOR when used to select test
suites for finding bugs in students’ code. In particular, we compare the number
of bugs found by the test suites selected by TESTSELECTOR against those found
by test suites obtained through random selection. In all experiments, we ask
for test suites of size 30 out of 900 available randomly generated tests (the
number of tests used to assess the students in the corresponding courses was 30).
We consider the five coverage measures described in Sect.2 and an additional
measure corresponding to the size of the testing input. Furthermore, we run the
SEESAW algorithm with two complementary search strategies: linear search (LS)
and progression search (PS). Details can be found in [12,16].



TestSelector 289

15.00
IR T 0 LS
< 0 Pps
S .
> 10.00 o [lRandom
=
o
©
= 5.00
©
000 "5 000 00 020 OO D
T LQ VR YT OORS
[CCHS; ©]
VY v
VO

Fig. 3. Failure rate (%) for each measure, comparing linear search (LS) with progres-
sion search (PS).

Results. Table2 presents the results of the experiment. For each project, the
table shows the resulting failure rates for the measures Loop Coverage (LC),
Array Coverage (AC), Block Coverage (BC), Size, Condition Coverage (CC),
and Decision Coverage (DC). We observe that the best measure is project-
dependent, with LC being the best measure in four projects, BC in one, and
Size in two. Importantly, we also observe that the more sophisticated measures,
such as CC and DC, have lower failure rates than simpler measures, such as LC
and AC. This may be explained by the fact that the students’ most common
programming errors are often encoded in loops and array accesses. All coverage
measures consistently perform better than the random test suite selection.

3.3 RQ3: Linear Combinations of Coverage Measures

To investigate whether using linear combinations of code coverage measures can
further improve the bug finding results, we replay the experiment described in
Sect. 3.2 with the following combinations of coverage measures: (1) AC+LC; (2)
BC+LC; (38) AC+BC; and (4) AC+BC+LC.

Results. Figure 3 presents the obtained results for the four linear combinations!
and the five individual code coverage measures presented in Table 2. For each
measure, we give a blue and a red bar, each corresponding to one of the search
strategies supported by the SEESAW algorithm. It is easy to observe that the
majority of the combinations, i.e., LC+AC, LC+AC+BC, and LC+BC, are able
to find more bugs in the students’ code than the overall best-performing single
measure (LC), with only AC+BC obtaining worse results.

! LC+AC, LC+BC, AC+BC, and LC+AC+BC.
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4 Related Work and Conclusions

Test Suit Construction. The software engineering community has dedicated a
considerable effort to the problem of generating effective test suites for com-
plex software systems, exploring topics such as: test suite reduction and test
case selection [1,2,13,14,18,26], combinatorial testing [23-25], and a variety of
fuzzying strategies [6-9,19]. In the following, we focus on the test suite reduc-
tion and test case selection problems, which are immediately close to our own
goal, highlighting constraint-based approaches. Importantly, we are not aware
on any works in this field specifically targeted at student projects. The testing of
such projects has, however, its own specificities when compared to the testing of
large-scale industrial software systems. In particular, the time constraints on the
test generation process are less severe and the code being tested less complex.
The test suite reduction problem [1,2,17,21,26] aims at reducing the size of
a given test suite while satisfying a given test criterion. Typical criteria are the
so-called coverage-based criteria, which ensure that the coverage of the reduced
test suite is above a certain minimal threshold. The test case selection prob-
lem [1,2,17,21,26] is the dual problem, in that it tries to determine the minimal
number of tests to be added to a given test suite so that a given test criterion
is attained. As most of these algorithms target industrial settings, they assume
severe time constraints on the test selection process. Hence, the vast majority
of the proposed approaches for test suite reduction and selection are approx-
imate, such as similarity-based algorithms [2,17], which are not guaranteed to
find the optimal test suite even when given enough resources. In order to achieve
a compromise between precision and scalability, the authors of [1] proposed a
combination of standard ILP encodings and heuristic approaches. Finally, the
authors of [14] proposed a SAT-based encoding for selecting optimal test suites
according to the modified condition decision coverage criterion [13,22]. They
argue that, as this criterion is enforced by safety standards in both the automa-
tive and the avionics industries, one is obliged to resort to exact approaches.

Conclusions and Future Work. We have presented TESTSELECTOR, a new frame-
work for the automatic selection of optimal test suites for student projects. The
key innovation of TESTSELECTOR is its extensibility to support new code cov-
erage measures without these measures being encoded into the logic of an exact
constraint solver. We evaluate TESTSELECTOR against a benchmark comprised
of 1,637 real-world student projects, demonstrating that: (1) it is trivial to extend
TESTSELECTOR with support for new coverage measures and (2) the selected
test suites outperform randomly selected ones in finding bugs in students’ code.
In the future, we plan to conduct a more thorough investigation on the rela-
tion between the characteristics of a project and the code coverage measures that
are appropriate for it. We also plan to integrate TESTSELECTOR with an existing
testing platform for student projects, such as Mooshak [15] or Pandora [20].
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