
Lock Contention Performance
Classification for Java Intrinsic Locks

Nahid Hasan Khan1, Joseph Robertson1, Ramiro Liscano1(B), Akramul Azim1,
Vijay Sundaresan2, and Yee-Kang Chang2

1 Ontario Tech University, L1G 0C5 Oshawa, ON, Canada
{hasan.khan,joseph.robertson}@ontariotechu.net,
{ramiro.liscano,akramul.azim}@ontariotechu.ca

2 IBM Canada, Toronto, ON, Canada
{vijaysun,yeekangc}@ca.ibm.com

Abstract. Improper management of locks and threads can lead to con-
tention and can cause performance degradation and prevent software
applications from further scaling. Nowadays, performance engineers use
legacy tools and their experience to determine causes of lock contention.
In this paper, a clustering-based approach is presented to help identify
the type of lock contention fault to facilitate the procedure that perfor-
mance engineers follow, intending to eventually support developers with
less experience. The classifier is based on the premise that if lock con-
tention exists it is reflected as either threads spending too much time
inside the critical section and/or high frequency access requests to the
locked resources. Our results show that a KMeans classifier is able to
identify three classes of lock contention from run-time data where one of
these classes is clearly caused by high hold times. The other two classes
are more challenging to label but one appears to be caused by high fre-
quency requests to the locked resource.

Keywords: Lock contention · Concurrency · Run-time faults ·
Classification · Software engineering

1 Introduction

Synchronization is essential in multi-threaded applications and introduces some
level of thread contention when applied. When this contention is significant it
results in performance degradation and is typically known as a lock contention
fault or performance bottleneck due to contention.

It is difficult to write concurrent programs and developers usually come back
to refactor the portion of the code where the concurrency feature resides to make
their concurrent code more efficient. A recent study reports that more than 25%

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
T. Dang and V. Stolz (Eds.): RV 2022, LNCS 13498, pp. 274–282, 2022.
https://doi.org/10.1007/978-3-031-17196-3_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-17196-3_16&domain=pdf
https://doi.org/10.1007/978-3-031-17196-3_16

Lock Contention Performance Classification for Java Intrinsic Locks 275

of all critical sections are changed at some point by the developers, both to fix
correctness bugs and to enhance performance [7,14].

Lock contention bottlenecks have been investigated in the software commu-
nity for a while but they are still difficult to detect [11,12] and analyze and
usually it is a job performed by an experienced performance engineer. Typically
application developers do not have the skill set that a performance engineer has
to detect contention bottlenecks. The long term motivation of our work is to
develop a recommendation system for software developers that encounter lock
contention faults. We are proposing a combined approach that leverages a clas-
sification of the contention bottle neck based on those defined by Goetz [6] with
the eventual goal of matching these contention types with patterns in the code.
This paper focuses on preliminary work in the classification of lock contentions
based on run-time performance metrics of the application.

In Goetz’s book titled “Java Concurrency in Practice” he identifies the fol-
lowing 2 potential causes for contention faults:

– Type 1 - Threads spending too much time inside the critical sections.
– Type 2 - High frequency access requests by multiple threads to the locked

resources.

The reason why these types are important to identify is that recommenda-
tions to alleviate the lock contention differs for types 1 and 2 [1]. In Type 1 the
focus in on reducing the hold time on the lock while for Type 2 the solutions
focus mostly on reducing the scope of the lock.

The paper is organized as follows. We introduce some related works in Sect. 2.
The paper’s main methodology is presented in Sect. 3. Section 4 describes the
analysis of the clustering results. Some of the limitations of our approach and
concluding remarks are presented in Sect. 5.

2 Related Works

Lock contention performance bottlenecks have been well investigated in the past
few years with most works focusing on detecting and locating the root cause of
the lock contention but very few papers have attempted to categorize the lock
contention with the goal to suggest recommendations to alleviate the contention.

One of the few papers that tries to distinguish between type 1 and 2 lock
contentions for categorizing and diagnosing synchronization performance faults
is the work on SyncPerf by Mejbah ul Alam et al. [1]. In their work they reviewed
several papers and categorized them in a quadrant based on the level of con-
tention rate vs. lock acquisition frequency and concluded that there were no
publications that addressed the detection of lock contention type 2 but focused
primarily on the detection of locks of type 1.

Nathan R. Tallent et al. [13] details three approaches to gaining insight into
performance losses due to lock contention. Their first two approaches use call

276 N. H. Khan et al.

stack profiling and prove that this profiling does not yield insight into lock con-
tention. The final approach used an associated lock contention attribute called
thread spinning that helps provide insight into lock contention.

Florian David et al. proposed a profiler named “free-lunch” that measures
critical section pressure (CSP) and the progress of the threads that impede the
performance [3]. This paper stated that they failed to determine a correlation
among the metrics extracted from the IBM Java Lock Analyzer (JLA) while we
have been able to observe some relations between the performance metrics and
the lock contention. This paper also lacks a description of the metrics related to
different contention fault types.

3 Methodology

Our approach uses run-time logs from several performance analyzers such as
Linux perf [10], and JLM [9], then analyzes them utilizing a popular clustering
technique (KMeans) to determine the existence of different types of contention
faults. This analysis is a form of unsupervised classification and it was chosen
over supervised classification because performance engineers do not label the
types of lock contention faults.

A high-level workflow of our methodology is shown in Fig. 1. The approach
can be divided into two main parts; the dataset creation and the feature engi-
neering and classification. The principal processes in the dataset creation stage
are the run-time performance data analysis and the data filtering. The run-time
performance data analysis process consists of a compiled Java program that
reflects a multi-threaded concurrent example integrated with a benchmark tool
such as IBM Performance Inspector. The main process in the feature engineer-
ing and classification part of the workflow is the contention classification process
that extracts from the performance data a set of clusters.

perf output

JLM output

Data Filtering Performance
Data

Contention
Classification

Dataset Creation Feature Engineering &
Classification

Compiled
Java Program

Execution

Runtime
Performance
Data Analysis

Fig. 1. High level workflow of our methodology where the steps are divided into two
main parts, the Dataset creation and, the Feature engineering and classification.

3.1 Dataset Creation

Our methodology requires the generation of a dataset of lock contention per-
formance metrics and currently no such dataset exist so the creation of such a

Lock Contention Performance Classification for Java Intrinsic Locks 277

dataset is an important part of this work. This code is shown in Listing 1.1 and
is executed in a controlled environment. The code is compiled before running,
and necessary command-line arguments are provided prior to execution. The
command-line arguments are the number of threads and the execution time of
the critical section (emulated by putting the thread to sleep and shown in line
8 of the code.) The number of threads is set in the main program that executes
this code. The code is executed multiple times to reduce the effects of outliers
in the metrics, and we usually skip the first 10s of the execution to avoid the
JVM’s code optimization and warm-up period.

Listing 1.1. A Java example class “SyncTask” that is being used to emulate different
types of faults in our controlled environment

1 class SyncTask {
2 public ArrayList<Integer> a r rL i s t ;
3 public int s l e e p t ,
4
5 public synchronized void taskOne (In t eg e r va lue) {
6 try {
7 a r rL i s t . put (va lue) ;
8 Thread . s l e e p (s l e e p t) ;
9 } catch (Exception e) {

10 e . pr intStackTrace () ;
11 }
12 }
13 }
There were two configurations that we used to generate the dataset: the first

was 10, 100, 500, and 1000 threads with sleeptimes from 1 to 20000ns in 100ns
increments, the second was 10, 50, 100, 200, 300, 400, 500, and 1000 threads
with sleeptimes from 1 to 20000ns in 100ns increments.

The two configurations were created for convenience and to break up the
total time it takes to create the dataset. One single run takes 40 to 45 s to
complete and creates a single row in the dataset. As an example, configuration
1 takes about 9.4 h on average to generate the dataset. The output of the two
configurations are combined to create the final dataset.

Once the Java code bench marking is completed, the perf and JLM per-
formance analyzers are executed to collect the necessary run-time performance
profile data. It is best to ensure that a high-performance machine with a bare-
metal operating system is installed to execute the concurrent code and collect
performance data. We installed these tools on a high-performance Linux machine
with a 24 core processor (3800 MHz MHz) and 32 GB of RAM. For the Java envi-
ronment, we use Openj9 JVM because it is compatible with JLM [4].

JLM provides quite a few metrics related to Java inflated monitors and a
brief description of the most important of those metrics is helpful to the readers
to understand how they relate to lock contention faults.

– GETS: Total number of successful acquires. GETS = NONREC + REC.
– TIER2: The number of inner loops to obtain locks.

278 N. H. Khan et al.

– TIER3: The number of cycles in the outer layer to obtain the lock.
– %UTIL: Monitor hold time divided by total JLM recording time.
– AVER-HTM: Average amount of time the monitor was held.

When lock contention occurs, JLM lists the Java monitors under the “JLM
Inflated Monitors” along with the specific values for each metric as defined above.

The perf tool is capable of capturing the symbols from system memory. These
symbols are mainly method names, variables, or class names usually used in the
OS itself, the kernel, or in the Java application. The reference of how the perf
tool works can be found here [10]. With the help of a script, we managed to
extract a human-readable log containing the following 3 columns of values; the
sample count, the percentage of the sample count relative to the total sample
counts, and the symbol name.

3.2 Feature Engineering and Classification

Feature engineering enhances the performance of the model and is essential for
enhancing the results of the clustering algorithm [8]. In order to achieve this,
the following initial data pre-processing is done prior to applying clustering tech-
niques:

1. Merge the perf and JLM data files into one file and Python data frame.
2. Remove features that contain string values (e.g., the monitor name in JLM).
3. Remove features that contain a value of zero.
4. Scale the data. Scaling is applied to all the features utilizing the Python

library StandardScaler from sklearn.preprocessing.
5. Remove correlated features from the dataset.

After performing the steps listed above the final dataset consisted then of
the following twelve metrics: The metrics %MISS, GETS, NONREC, SLOW,
TIER2, TIER3, REC, %UTIL and AVER HTM are collected from JLM and the
metrics “ raw spin lock”, “ctx sched in” and “delay mwaitx” are collected from
the perf tool.

Determining Ideal Number of Clusters. The KMeans clustering algorithm
requires that the number of clusters be specified prior to determining the clusters
from a dataset. This value is known as the KMeans “k” value. In our research we
determined the “ideal” number of clusters by calculating the Silhouette Coeffi-
cient [15] or silhouette score of the clusters.

Results of the silhouette scores, determined by leveraging the Python library
silhouette_score from sci-kit learn sklearn.metrics, are shown in Fig. 2. The
figure illustrates that a cluster number of 3 achieves the highest silhouette score
against other cluster numbers so it can be considered as the “ideal” number of
clusters. We have also validated that a cluster number of 3 is ideal using other
methods such as the Elbow Method [5] and NbClust [2] package.

Lock Contention Performance Classification for Java Intrinsic Locks 279

Fig. 2. The Silhouette Coefficient score for cluster number 3 is the highest. This indi-
cates the optimal number of clusters is 3 that can be found within the dataset. Based
on this verification, argument k = 3 is set to KMeans algorithm.

The KMeans algorithm of the Python library KMeans from sklearn.cluster
was utilized to cluster the data set. The parameters “expected number of clus-
ters” is set to three, “maximum number of iterations” is set to 600, and “mini-
mum iterations” is set to 10. The extracted clusters are shown in Fig. 3.

Fig. 3. Identified clusters from the lock-contention performance dataset using KMeans
with a value of k = 3.

4 Cluster Analysis

In our data set 3 clusters were discovered and are numbered 0 to 2 but it is not
clear if any of these clusters represent the lock contention types defined by Goetz
[6]. For this simple example on can determine this by considering the distribution

280 N. H. Khan et al.

of the sleep time and number of threads in the clusters. Hypothetically, fault type
1 (fault due to high hold-time) depends on the provided variable parameter sleep
times during the execution of the concurrent code. On the other hand, fault type
2 (fault due to high frequent access requests by the threads) should depend on
a high number of threads and low sleep times.

Hence we plot the “THREADS” and “SLEEP” distribution against the clus-
ters utilizing a box plot and observe the results. The two graphs are shown
in Fig. 4a and Fig. 4b. CLUSTER TYPE = 0 possesses a higher range of sleep
times, indicating that more likely it represents fault type 1. On the other hand
for the other 2 clusters it is challenging to label one of these as fault type 2. The
figures illustrate that CLUSTER TYPE = 2 contains a high number of threads
compared to the other 2 clusters but the sleep time is slightly higher than CLUS-
TER TYPE = 1. With this knowledge we believe that CLUSTER TYPE = 2
can be labelled as fault type 2 while CLUSTER TYPE = 1 is a form of low
contention.

(a) (b)

Fig. 4. Box plot visualization of the Threads (a) and Sleep (b) parameters related to
the clusters to help label the clusters.

In order to get a better sense of the semantic meaning of the clusters it helps
to observe the dominant features in the clusters. Figures 5 show 4 box plots of the
JLM metrics AVG HTM, GETS, TIER2, and TIER3 relative to the 3 clusters.
The AVG HTM and GETS metrics are typically negatively correlated and one
can observe this in CLUSTER TYPES 0 and 1. This is not that obvious for
CLUSTER TYPE 2 as statistically these 2 values are indistinguishable.

The AVER HTM value is a significant feature and from Fig. 5a one can see
that the AVER HTM value is higher for fault type 1 (CLUSTER TYPE 0) than
the other clusters. Moreover, the figure also illustrates that CLUSTER TYPE
1 has a lower value than that of CLUSTER TYPE 2 but the difference is not
significant. This could imply that CLUSTER TYPE 1 represents fault type 2
better than CLUSTER TYPE 2 though when one looks at the threads distri-
bution it is on par to those for CLUSTER TYPE 0 and lower than those for
CLUSTER TYPE 2.

Lock Contention Performance Classification for Java Intrinsic Locks 281

(a) (b)

(c) (d)

Fig. 5. Box plot visualization of the dominant features for each of the clusters. The
AVER HTM feature (a), the GETS feature (b), the TIER2 feature (c), and the TIER
3 feature (d).

Our expectation for the features related to spin counts (TIER2 and TIER3)
are that they should experience high numbers for high lock request rates (fault
type 2). The results in Fig. 5c and Fig. 5d show that CLUSTER TYPE 2 has
higher spin counts values than the other 2 clusters and presents more evidence
that CLUSTER TYPE 2 represents fault type 2.

After this analysis we conclude the following: (1) “Contention Fault 1” has
high hold times, (2) “Contention Fault 2” has low in hold times and high spinning
counts, (3) CLUSTER TYPE 1 is more likely a form of “Low Contention”,
and (4) CLUSTER TYPE 1 is more likely a form of “Low Contention” since it
contains low spinning counts as well as low hold times.

5 Conclusions

In this paper, we demonstrate that Java intrinsic locks could be classified into
the two types and we used a unsupervised KMeans classifier to investigate the
types using run-time performance metrics. We find lock-contention faults do
appear to classify into three distinct clusters rather than two based on run-time
performance metrics where fault type 1 can be clearly identified due to the high
hold times while fault type 2 is more challenging to identify as there is no cluster

282 N. H. Khan et al.

with a clear high number of threads and low hold time. The three clusters are
differentiated by the hold times and spinning counts and this knowledge can be
used to train a decision tree to help identify lock contention types for other Java
applications.

References

1. Alam, M.M.U., Liu, T., Zeng, G., Muzahid, A.: Syncperf: categorizing, detecting,
and diagnosing synchronization performance bugs. In: Proceedings of the Twelfth
European Conference on Computer Systems, pp. 298–313 (2017)

2. Charrad, M., Ghazzali, N., Boiteau, V., Niknafs, A.: Nbclust: an R package for
determining the relevant number of clusters in a data set. J. Stat. Softw. 61(6),
1–36 (2014). https://doi.org/10.18637/jss.v061.i06

3. David, F., Thomas, G., Lawall, J., Muller, G.: Continuously measuring critical
section pressure with the Free-Lunch profiler. In: Proceedings of the Conference on
Object-Oriented Programming Systems, Languages, and Applications, OOPSLA,
vol. 49(10), pp. 291–307 (2014). https://doi.org/10.1145/2660193.2660210

4. Eclipse Foundation, I.: OpenJ9 (2017). https://www.eclipse.org/openj9/
5. Franklin, J.S.: Elbow method of K-means clustering using Python - Analytics Vid-

hya - Medium (2019). https://medium.com/analytics-vidhya/elbow-method-of-k-
means-clustering-algorithm-a0c916adc540

6. Göetz, B., Professional, A.W.: Java concurrency in practice. Building 39(11), 384
(2006)

7. Gu, R., Jin, G., Song, L., Zhu, L., Lu, S.: What change history tells us about thread
synchronization. In: 2015 10th Joint Meeting of the European Software Engineering
Conference and the ACM SIGSOFT Symposium on the Foundations of Software
Engineering, ESEC/FSE 2015 - Proceedings, pp. 426–438 (2015). https://doi.org/
10.1145/2786805.2786815

8. Hale, J.: Scale, Standardize, or Normalize with Scikit-Learn (2019). https://
towardsdatascience.com/scale-standardize-or-normalize-with-scikit-learn-
6ccc7d176a02

9. IBM: Java Lock Monitor (1999). http://perfinsp.sourceforge.net/examples.
html#jlm

10. Kernel.org: Linux kernel profiling with perf (2015). https://perf.wiki.kernel.org/
index.php/Tutorial

11. Kohler, M.: A Simple Way to Analyze Thread Contention Problems in
Java (2006). https://blogs.sap.com/2006/10/18/a-simple-way-to-analyze-thread-
contention-problems-in-java/

12. Salnikov-Tarnovski, N.: Improving Lock Performance (2015). https://dzone.com/
articles/improving-lock-performance

13. Tallent, N.R., Mellor-Crummey, J.M., Porterfield, A.: Analyzing lock contention
in multithreaded applications. ACM SIGPLAN Notices 45(5), 269–279 (2010).
https://doi.org/10.1145/1837853.1693489

14. Yu, T., Pradel, M.: Pinpointing and repairing performance bottlenecks in concur-
rent programs. Empir. Softw. Eng. 23(5), 3034–3071 (2017). https://doi.org/10.
1007/s10664-017-9578-1

15. Zhou, H.B., Gao, J.T.: Automatic method for determining cluster number based
on silhouette coefficient. In: Advanced Materials Research. Advanced Materials
Research, vol. 951, pp. 227–230. Trans Tech Publications Ltd, Switzerland (2014).
https://doi.org/10.4028/www.scientific.net/AMR.951.227

https://doi.org/10.18637/jss.v061.i06
https://doi.org/10.1145/2660193.2660210
https://www.eclipse.org/openj9/
https://medium.com/analytics-vidhya/elbow-method-of-k-means-clustering-algorithm-a0c916adc540
https://medium.com/analytics-vidhya/elbow-method-of-k-means-clustering-algorithm-a0c916adc540
https://doi.org/10.1145/2786805.2786815
https://doi.org/10.1145/2786805.2786815
https://towardsdatascience.com/scale-standardize-or-normalize-with-scikit-learn-6ccc7d176a02
https://towardsdatascience.com/scale-standardize-or-normalize-with-scikit-learn-6ccc7d176a02
https://towardsdatascience.com/scale-standardize-or-normalize-with-scikit-learn-6ccc7d176a02
http://perfinsp.sourceforge.net/examples.html
http://perfinsp.sourceforge.net/examples.html
https://perf.wiki.kernel.org/index.php/Tutorial
https://perf.wiki.kernel.org/index.php/Tutorial
https://blogs.sap.com/2006/10/18/a-simple-way-to-analyze-thread-contention-problems-in-java/
https://blogs.sap.com/2006/10/18/a-simple-way-to-analyze-thread-contention-problems-in-java/
https://dzone.com/articles/improving-lock-performance
https://dzone.com/articles/improving-lock-performance
https://doi.org/10.1145/1837853.1693489
https://doi.org/10.1007/s10664-017-9578-1
https://doi.org/10.1007/s10664-017-9578-1
https://doi.org/10.4028/www.scientific.net/AMR.951.227

	Lock Contention Performance Classification for Java Intrinsic Locks
	1 Introduction
	2 Related Works
	3 Methodology
	3.1 Dataset Creation
	3.2 Feature Engineering and Classification

	4 Cluster Analysis
	5 Conclusions
	References

