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Abstract. Monitoring often requires insight into the monitored system
as well as concrete specifications of expected behavior. More and more
systems, however, provide information about their inner procedures by
emitting provenance information in a W3C-standardized graph format.
In this work, we present an approach to monitor such provenance data
for anomalous behavior by performing spectral graph analysis on slices
of the constructed provenance graph and by comparing the character-
istics of each slice with those of a sliding window over recently seen
slices. We argue that this approach not only simplifies the monitoring of
heterogeneous distributed systems, but also enables applying a host of
well-studied techniques to monitor such systems.
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1 Introduction

In current research on monitoring complex systems, the system is often
abstracted to a set of streams of values [12]. Even when monitoring distributed
systems, the problem of transporting the distributed data streams to the moni-
tor is assumed to be solved by the monitored system [35]. In modern real-world
systems, in contrast, it is a non-trivial effort to engineer a central component
that efficiently consolidates data for monitoring in a heavily distributed system.

Moreover, these streams may be annotated with metadata, e.g., information
about their creation times [38], whether an agent is a natural person or a software
agent, or whether some input data was required or optional for the execution
of a process. However, these metadata typically do not include information on
their relation. Consider, e.g., a scenario in which a system provides a value x
as an output to the user and also uses x as input for further computations.
This monitored information typically does not indicate whether the two values
coincide by design or by accident. Although this relation might be recovered
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from the logging stream, doing so is typically incomplete and error-prone. The
metadata and relations of data produced by a system are known as provenance
data [51].

Monitoring the provenance data of a system addresses both issues identi-
fied above: Provenance data describes, among other information, the relation
between individual data points emitted by the system. Thus, it is typically con-
solidated by the system itself and made available for inspection or monitoring.
Moreover, it contains more information on the inner workings of the system than
the functional data. Hence, monitoring both provenance data and the functional
data may lead to earlier detection of undesired system states.

In practice, monitoring approaches may take metadata of functional data
into account. These metadata, however, are usually domain-specific. In con-
trast, provenance data are non-domain-specific, yet provide information about
the structure of the monitored data as well as meta-data.

One major challenge when monitoring provenance data, however, is that
users typically lack intuition about the relation between data they expect from
the system. Thus, formulating specifications for monitoring provenance data is
harder for users than formulating specifications for classical monitoring.

To alleviate this shortcoming, in this work we instead focus on anomaly detec-
tion, thus using previously seen data as specification. We believe monitoring of
provenance data to be an interesting problem. The explicit graphs of provenance
data allow for the application of well-known graph analyses to monitoring.

We present an approach for monitoring provenance data for anomalies with-
out requiring explicit specifications. To this end, we proceed as follows: After dis-
cussing related work in Sect. 2, we formally define provenance data as provenance
graphs in Sect. 3 before subsequently describing the monitoring of provenance-
emitting systems in Sect. 4. Afterwards we outline how to use spectral graph
theory to detect anomalous provenance data in Sect. 5. Finally, in Sect. 6 we
summarize our work and give an outlook on future work.

2 Related Work

Provenance. Early works highlight the importance of provenance to enable
audits of automated workflow systems [17,29]. Moreau identified the building
blocks for standardized provenance recording and proposes the Open Prove-
nance Model (OPM) [36], which was later superseded by the W3C PROV stan-
dard [37,51]. Provenance data is either extracted from software systems after [43]
or during their operation [24,27,47]. There is active work towards recording
provenance information without instrumenting the system or process [3,5,18,39].

System Monitoring. Runtime verification (or system monitoring) is an estab-
lished building block for ensuring system correctness [4,28]. Existing approaches
to monitoring often take a specification of “good” or “bad” patterns and efficiently
detect them in the output data of the system. This specification is typically given
in temporal logics [6,13,14,26,32,40] or in higher-level languages [7,11,15].
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Anomaly Detection in Provenance Graphs. Since provenance data give struc-
tured information about the relation between data points emitted by the system,
there has been work towards identifying anomalies in provenance data. However,
such work explicitly focuses on the detection of attacks on the system [8], uses
bespoke projections from graphs to vector spaces [20,21] or only analyzes indi-
vidual characteristics of the computation process [41]. Other approaches aim to
compare provenance graphs by “summarizing” via clustering [2,31].

3 Provenance Graphs

The W3C defines provenance information as “information about entities, activ-
ities, and people involved in producing a piece of data or thing, which can be
used to form assessments about its quality, reliability or trustworthiness.” [51]

The PROV standard prescribes a non-domain-specific graph-based ontology
of such information. Each vertex in such a graph denotes either an entity, i.e.,
some piece of data, an activity, i.e., a process or action, or an agent, i.e., a person,
machine or software responsible for a process. The edges between these vertices
denote the relationships between entities, activities, and agents.

We illustrate the possible relationships in Fig. 1. We draw entities as yellow
rounded boxes, activities as blue rectangular boxes, and agents as red pentagons.
In Fig. 1, we write Attr, Deriv, Use, Gen, and Assoc to abbreviate “was
attributed to”, “was derived from”, “used”, “was generated by”, and “was associ-
ated with”, respectively. The full standard admits additional vertices and edges.
We restrict ourselves to the edges shown in Fig. 1 for conciseness.

Fig. 1. The core provenance meta-model. Reproduced after and adapted from the Prov
Primer [50].

Intuitively, the provenance of a software system is a record of a) the data
that was generated or used, b) the process that generated and used these data,
and c) the responsible entities (both human and software) for these processes.

Formally, a provenance graph G = (VAgt, VEnt, VAct, E) consists of finite
sets of agent vertices VAgt, entity vertices VEnt, and activity vertices VAct, all
of which are pairwise disjoint, and a set of edges E ⊆ (VEnt × (VAgt ∪ VEnt ∪
VAct))∪ (VAct × (VAgt ∪VEnt)). We call VAgt ∪VEnt ∪VAct the vertex set of G.

In practice, a provenance-emitting system does not provide its complete
provenance at the end of its computation. Instead, whenever an activity has
terminated, the system provides a “partial” provenance graph that contains the
respective activity as well as the entities that this activity used and generated.
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We also call these provenance graphs emitted during execution of the system
provenance updates to differentiate them from the complete graph that the sys-
tem constructs during its execution. To obtain a less local view of the provenance
of the complete system execution, we construct the union over provenance via
the component-wise union of the constituent elements of a provenance graph.

In this work, a provenance-emitting system is a software or hardware system
that constructs a provenance graph that contains vertices representing the data
points it generated, the processes that used and generated these data points,
and makes this provenance graph accessible to external systems. In the following
section, we provide greater detail and a more formal description of such systems.
We moreover describe a process for monitoring provenance-emitting systems.

Having given a brief introduction to the W3C Provenance standard, we now
illustrate how provenance data is collected from distributed provenance-emitting
systems and made available for monitoring in the following section.

4 Monitoring Provenance-Emitting Systems

Intuitively, a provenance-emitting system emits information about its execution
by making its provenance graph available for monitoring and inspection. To do
so, it emits provenance updates at certain points in time, i.e., sub-graphs of
the complete provenance graph of its execution. A monitor can observe these
updates and monitor them for anomalies. In Fig. 2 we illustrate a lightweight
architecture for recording provenance, initially outlined in [47].

Fig. 2. A lightweight architecture for capturing provenance information from a complex
distributed system. (Taken from [47] and simplified.)

Formally, we say that an execution of a provenance-emitting system is an
infinite sequence G1G2G3 · · · . The graphs are not necessarily temporally ordered.
As an example, G3 may only contain activities that started at time t, while G4

only contains activities that ended at time t′ < t.
In this section we present a method to monitor an execution of provenance-

emitting systems for anomalies. The complete provenance graph constructed by
the system is unbounded and may be infinite for non-terminating systems. It is
the task of the long-term Storage (cf. Fig. 2) to provide sufficient storage capacity
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for this complete graph as required for post-hoc analyses. The monitor, in con-
trast, should not require unbounded memory, but instead work with restricted
resources to function as lightweight as possible.

Let ϕ = G1G2G3 · · · be the execution of a provenance-emitting system. In
each time step the monitor obtains the earliest G from ϕ that it has not
yet obtained. The monitor shall produce a sequence b1b2b3 · · · where bi
is one of ✓✓, ✗✗, ??. The value ✓✓ (✗✗) denotes that the monitor has not (has)
detected an anomaly in the last time step, respectively, while ?? denotes
that the monitor does not have sufficient information to make a decision.
Moreover, the monitor shall not require unbounded memory.

In this problem formulation, we explicitly omit a definition of “anomalies”.
Recall that the PROV meta model only imposes very limited structure on prove-
nance graphs. Thus, whether a provenance graph describes expected or unex-
pected behavior is strongly application-dependent. Analogously, it is not expe-
dient to formally define anomalies independent of the monitored application.

Consider, e.g., a provenance-emitting system in which all activities so far take
two entities as inputs and produce one entity as output. Assume there arrives
a provenance update in which an activity takes four inputs and produces one
output. Whether or not the latter update is anomalous depends on the purpose
of the system. If the system processes temperature readings since the last step,
then the occurrence of fewer temperature readings than previously indicates,
e.g., faulty sensors. In contrast, if a system processes observations made by an
optical telescope [16,48], then the system may process more information due to
improved weather conditions. This would not be considered anomalous.

This example illustrates that there can be no “turnkey” solution for moni-
toring provenance-emitting systems: Either the user provides an explicit specifi-
cation of expected or unexpected provenance patterns, or the monitor requires
knowledge about the purpose of the system to infer anomalous graphs itself.
Thus, we aim to construct a parametrized monitor that measures the “anomaly”
of a provenance update against those updates witnessed previously. Due to space
constraints, this monitor cannot store all previously witnessed provenance graphs
explicitly. Instead, it retains only a window of previously witnessed partial prove-
nance graphs. We illustrate our monitoring architecture in Fig. 3.

The main purpose of the windowing is to construct a sequence of classical
graphs that it then passes to anomaly detection. By retiring vertices representing
entities that have not been used by the system, windowing ensures that the
graphs passed to anomaly detection do not exceed a given size. We call this size
the window size. This allows the anomaly detection to focus on comparing an
incoming graph to the one previously obtained and to raise an alarm to the user if
these two graphs differ significantly. To give the anomaly detection enough data
to reliably identify structural anomalies, the windowing step reports ?? until it
has collected sufficient provenance updates to fill a predetermined window size.

When converting provenance graphs into classical directed graphs, structural
information about the “kinds” of vertices is lost, as a classical graph does not dif-
ferentiate between, e.g., vertices representing processes and vertices representing
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Fig. 3. An overview over our monitoring architecture.

entities. Moreover, similar information about the kinds of edges is lost as well.
This information can be reconstructed in the fragment of provenance graphs
used in this work. Such a reconstruction is, however, not necessarily possible
when using the full expressive power of W3C Provenance.

To retain this information, it may be encoded as vertex- or edge-weights. How
weights should be assigned is again strongly application-specific and strongly
influences the subsequent anomaly detection. One could, e.g., assign a high
weight to all edges adjacent to activity-vertices. This would lead to the anomaly
detection being highly sensitive to anomalous patterns in the vicinity of activity-
vertices and less sensitive to the vicinity of other vertices. In the next section we
describe possible approaches to detecting anomalies via spectral graph theory.

5 Anomaly Detection with Spectral Graph Theory

To identify structural anomalies of graphs, we need to quantify their topolog-
ical properties, e.g., patterns of connectivity. We propose using spectral graph
theory [45] to this end. This theory relies on studying the Eigenvalues and Eigen-
vectors of matrices associated with graphs, e.g., the adjacency matrix, the degree
matrix, or the Laplace matrix. Intuitively, these values capture the topological
properties of the investigated graphs [45]. Spectral graph theory has been suc-
cessfully applied in some fields [44,46]. In particular, Gera, Alonso, Crawford, et
al. have used spectral graph theory to determine whether incoming observations
of a graph significantly deviate from previous observations [19].

We illustrate our general approach in Fig. 4. Let G be an incoming graph
obtained by anomaly detection and let n be the window size determined when
constructing or configuring the windowing. By computing Eigenvalues and
Eigenvectors of matrices associated with G we can obtain vectors ν1, . . . , νn,
where νi ∈ C

m for all νi and some m ≤ n. These vectors may, e.g., comprise
the Eigenvalues of the used matrix or its Eigenvectors. In the former case, we
have m = 1, in the latter m = n. Intuitively, if the investigated matrix is well-
chosen, this set of vectors quantifies the structure of the graph. We call this



Towards Specificationless Monitoring of Provenance-Emitting Systems 259

Fig. 4. Our framework for anomaly detection.

set of vectors the coordinates of the graph. Having obtained the coordinates of
both the current and the previous provenance graph, we can then compute the
distance between these two coordinates and use this distance as a measure of
the structural differences between the two graphs. We discuss possibilities and
challenges for both steps, obtaining coordinates and computing their distance
in the following sections. Moreover, we report on the results of a preliminary
evaluation in Sect. 5.3.

5.1 Compute Coordinates

To obtain coordinates, we compute Eigenvalues and Eigenvectors of matrices
associated with the graph. Typically, one uses the adjacency matrix or the
Laplacian matrix of the graph [45]. Multiple works have shown that some graph
properties can be determined based on the multiplicity, size or position of the
Eigenvalues and corresponding Eigenvectors [9,22,30,33,34]. In graph drawing,
Eigenvectors are selected based on their Eigenvalues and used as source for coor-
dinates to visually reveal structural properties of graphs [25].

Most applications of spectral graph theory, however, assume the graph to
be undirected. In that case, the adjacency matrix and the Laplacian matrix
are real symmetric matrices, thus their Eigenvalues are integers. Provenance
graphs, however, are directed. Thus, to apply standard methods of spectral graph
analysis to them, we have to transform them into undirected graphs [42], which
loses structural information. Another approach would be to use bespoke spectral
graph analysis methods that handle directed graphs [10,49]. These methods are,
however, not as well-investigated as those for undirected graphs.

5.2 Compute Distance

To identify anomalous updates we need to compare the current and the previ-
ous coordinate vectors. To this end, we aim to compute a normalized distance
measure. Recall that coordinates are sets of vectors. Thus, a common method is
to first calculate the pairwise distances for sets of vectors separately using dif-
ferent metrics, such as the euclidean distances, cosine similarity or correlation.
By taking the average over the resulting vector of distance measurements we can
obtain a distance between coordinates.

Directly computing the difference between two sets of vertices is rather sen-
sitive to “noisy” coordinates: Minor differences between individual vectors may
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lead to large differences. We can counteract this via clustering the vectors com-
prising the coordinates prior to distance calculation. In this case, the complete
monitoring pipeline up to the computation of coordinates is tantamount to spec-
tral clustering [30] of the provenance graph. Via clustering we obtain cluster
centroids, the coordinates of which can be used to calculate a distance mea-
surement as outlined before. Having obtained a distance measure, we can check
the distance against a provided threshold. If the distance exceeds this threshold,
anomaly detection alerts the user to anomalous system behavior.

5.3 Proof of Concept

We implemented our method using the Eigenvalues of the Laplacian matrix as
coordinates and the distance between the centroids of the Eigenvalues as the
distance metric. We evaluated this implementation on a synthetic example as
well as a realistic one. In the synthetic example, in each time step the system
adds two numbers during normal operation. We have injected anomalies into the
provenance data representing the addition of ten numbers in one time step. In
the realistic example, in each time step a robot executes some actions based on
some plan [23]. There are anomalies where no such plan is present.

Our prototypical implementation was able to successfully differentiate
between the nominal and anomalous updates. This illustrates that our proposed
method can indeed determine anomalies at least in these two use cases.

6 Conclusion and Future Work

In contrast to streams solely comprising the output data of a system, prove-
nance data allows far greater insight into the inner workings of such a system.
Thus, we believe that monitoring provenance data in addition to output data
allows for earlier detection of system failures. We have outlined an approach to
monitor these provenance data that reduces the problem of monitoring prove-
nance data to that of determining anomalies in graphs. This greatly reduces the
parameter space that has to be explored when constructing a real-world mon-
itor to determining useful well-studied approaches for detecting anomalies in
graphs [1]. Moreover, we illustrated that this approach can serve as a framework
for detecting anomalies in provenance data via a prototypical proof of concept.

As a next step, we aim to identify real-life use cases in which we can apply
and evaluate our approach. This use case will allow us to compare different
definitions of coordinates and distances between coordinates. Moreover, we will
be able to evaluate our proposed approach against other approaches to anomaly
detection in graphs [1]. In addition, we aim to quantify the structure of graphs
by additional properties, e.g., their diameter or depth. Finally, we are looking to
compare our approach based on spectral graph analysis against existing machine
learning approaches to anomaly detection.

Acknowledgements. We gratefully acknowledge suggestions by anonymous review-
ers, which have significantly improved this work.
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