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Abstract. Aspect-oriented programming tools aim to provide increased
code modularity by enabling programming of cross-cutting concerns sep-
arate from the main body of code. Since the inception of runtime verifica-
tion, aspect-oriented programming has regularly been touted as a perfect
accompanying tool, by allowing for non-invasive monitoring instrumen-
tation techniques. In this paper we present, AspectSol, which enables
aspect-oriented programming for smart contracts written in Solidity, and
then discuss the design space for pointcuts and aspects in this context.
We present and evaluate practical runtime verification uses and applica-
tions of the tool.

Keywords: Aspect-oriented programming · Smart contracts ·
Runtime verification

1 Introduction

Blockchain [11] and other distributed ledger technologies (DLTs) have enabled
the management of digital assets without the need for a central authority, and
with strong guarantees regarding immutability of transactions. Smart contracts
residing on a blockchain, go a step further in that they handle the execution
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of logic on such a decentralised platform, thus ensuring faithful execution and
enabling trustless operationalisation of protocols of behaviour between parties.

By being deployed on a platform with decentralised control, a blockchain or
a variant thereof, these smart contracts come with the benefit of immutability—
once written, the protocol cannot be modified unless in a manner that was
originally planned and built into the protocol itself. This autonomous and guar-
anteed computation platform provides a guarantee not granted by traditional
centralised systems. Benefits rarely come without a related cost though, and in
this case the cost emanates similarly from immutability.

Smart contracts are nothing more than executable code (running on a DLT
platform), for which an unavoidable feature (as with any other software) is the
presence of bugs. Immutable code may be the selling point of smart contracts,
but immutable bugs are the cost. Add to this the fact that smart contracts
typically deal with digital assets, making their correctness critical.

Although smart contracts are typically small programs, modularisation of
code is a key measure to reduce potential errors. However, the way smart con-
tracts call each other on platforms like Ethereum [13] is unlike that found in
traditional systems, due to overheads, such as gas1 costs, which can be pro-
hibitive.

Beyond modularisation within the same smart contract, one would also desire
to have the tools to encode features and transformations commonly in use across
different smart contracts. One technique that has been used for such cross-
cutting modularisation is that of aspect-oriented programming (AOP) [10]. In
this paper we present an AOP tool for Solidity [6], one of the most commonly
used smart contract programming languages. The tool is publicly available at
https://github.com/ryanfalzon/aspectSol.

AOP has frequently been used as a tool for instrumentation of runtime mon-
itoring and verification code, e.g. [4,7,12]. We show how our tool, AspectSol,
can be effective in both instrumenting verification code for specifications, and
injecting new features modularly, in a monitoring-oriented programming [2] style.

2 Aspect-Oriented Programming

The main idea behind AOP is to allow for the writing of cross-cutting features
separate from the main system. Such an approach allows for the specification of
joinpoints (points during the execution of the underlying system) where specified
advice (specific instructions or code) will be weaved in. Joinpoints are typically
specified using pointcuts, essentially specifying a set of joinpoints to be matched.
Such an aspect-oriented specification can then be used to weave in the advice
onto the existing system. Different joinpoint types are supported by different
languages. For instance, for imperative languages, one allows hooking onto points
1 The notion of gas as a resource to be paid for to execute code is the most common way

thorough which public blockchains motivate miners (the nodes in the decentralised
network which process transactions and record them on the blockchain) to execute
and record execution of smart contract code.

https://github.com/ryanfalzon/aspectSol
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such as the start and end of a function call, on an exception being raised, and
updates of state.

3 Smart Contract AOP: Design Considerations

The design of an AOP tool must necessarily take into consideration the nature
of the programming language it is to be used for.
Joinpoints. In particular, the choice of joinpoints, the candidate points in a
program’s execution where an aspect can trigger, is a crucial decision. Solidity is
essentially an imperative language, and any AOP tool for the language will cer-
tainly borrow much from other tools for this class of languages, e.g. AspectC [3]
and AspectJ [9]. Function entry and exit points are such joinpoints, which we
adopt in AspectSol, allowing us to write aspects such as before call-to
Wallet.addFunds() (just before the addFunds() function in the smart contract
Wallet is called, on the caller’s side) or after call-to Wallet.withdrawFunds()
(at the end of the execution of the withdrawFunds() function in the smart con-
tract Wallet, on the caller’s side). In order to match on the callee’s side, one
would simply replace execution-of by call-to.

Given the imperative nature of Solidity, computation revolves around the
notion of state and the points where the contract state is read or written—
indicating relevant joinpoints in this context. In AspectSol we provide auto-
mated instrumentation of such points, e.g. before set uint count and after
get bool is_paid. It is worth noting that read pointcuts only trigger when
variables are read from within the smart contract being instrumented. This is
unavoidable on public blockchains, where state can be read by external entities
without having to explicitly call a smart contract.

Solidity’s notion of computation failure through the use of reverted execution
is unlike that of traditional exceptions. Rather than returning control to the cur-
rent execution context with an exception flag, revert aborts all computation and
returns the state of the contract to that which it was before computation started.
This makes the use of such exceptions as joinpoints difficult (and expensive in
terms of gas) to handle, and therefore not handled in AspectSol.

AspectSol allows the use of the wildcard symbol * throughout (for contract
names, function names, parameter names, and types), but provides a means of
capturing the matched name in order to allow references to it by using double
square brackets, e.g. set [[typevar]] [[varname]] acts just like set * * (trig-
gering whenever a variable is set) but provides access to typevar and varname,
for instance to enable declaring an auxiliary variable of the same type and to
access the variable’s value in the advice.
Smart Contract and Language-Specific Considerations. AspectSol’s
salient features are particular to smart contracts in general and to Solidity in
particular. Since smart contracts essentially encode a protocol between parties,
the notion of such parties as active actors of transactions is at its very core. In
order to facilitate aspects that use such notions, AspectSol provides a pointcut
filter, originating-from, to trigger only when the call is made by a particular
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party, from a particular contract, or from a particular function. For instance, the
following pointcut triggers at the start of calls to depositMoney() in the Wallet
smart contract with msg.sender being owners[0]:

before
execution-of Wallet.depositMoney ()
originating-from owners [0]

Another such feature is native cryptocurrency transfer for which it could
be useful to implement pointcuts. In Solidity, sending funds is achieved through
calling the send or transfer functions targeting the recipient’s address, meaning
that we can already capture such pointcuts as function calls, e.g. before call-to
[[recipient_address]].transfer(). Receiving funds is, however, different in
that functions can be tagged as payable, meaning that funds can be transferred
to the smart contract whenever such a function is called. AspectSol allows for
pointcut filtering based on such function tags, thus allowing us to capture calls
to functions which transfer funds, e.g.:

after execution-of Wallet .*(*) tagged-with payable

Solidity modifiers allow functions to be tagged, which would result in chang-
ing their behaviour, e.g. to execute certain code before or after the function
body. We treat modifiers similar to the payable tag, allowing aspects to capture
functions which use (or do not use) certain modifiers. We similarly treat visibility
annotations such as public and internal in the same manner.
Advice and Aspects. Pointcuts are associated with executable advice by
appending a subsequent executable block of code. Consider writing an aspect
to make sure that no more than 100 deposits are performed to a wallet without
a reconciliation process taking place. This can be achieved by keeping track of
the number of deposits and checking that they have not exceeded 100 whenever
a deposit takes place. In addition, we would need to declare the new variable
which will be used to keep track of this number. This can be written as an aspect
as follows:

aspect LimitDeposits {
add-to-declaration Wallet {

uint private number_of_deposits = 0;
}

before execution-of Wallet.addDeposit () {
require (number_of_deposits < 100);
number_of_deposits ++;

}
before execution-of Wallet.reconciliation () {

number_of_deposits = 0;
}

}

Another mechanism particular to AspectSol is that of adding or removing
tags by using pointcuts referring to a function and using add-tag or remove-tag
to update the definition. For instance, if we want to make all public fields private,
we can write the following:
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update-definition Wallet .* tagged-with public {
remove-tag public;
add-tag private;

}

This approach can be used, for instance, to make a field private and add an
appropriate getter and setter to the smart contract.
Weaving Considerations. We now move on to weaving considerations, for
which different AOP tools take different strategies. For instance, AspectJ per-
forms weaving at the byte-code level, but provides three points in time when
it can be applied: compile time, pre-load time, or load time. AspectSol takes
a source-code level weaving approach, thus transpiling from the original Solid-
ity source code to produce updated Solidity code which takes the aspects into
account. This simplifies testing the updated version of the smart contract more
straightforward. The process flow of AspectSol is shown below:

Contract 
abstract
syntax

tree

AOP 
script

Original 
smart

contract

AOP 
parser

Solidity 
parser

Aspect 
weaving

Parsed
aspects

Updated
smart

contract

ASPECTSOL

4 Runtime Verification Using ASPECTSOL

In order to show the use of AspectSol, in particular for runtime verification
instrumentation, and enable a qualitative assessment of the utility of the tool, we
present three small case studies of smart contracts. For all three, we present ver-
ification code for runtime verification of desirable properties using AspectSol.
All three examples can be found in the AspectSol repository.
Guarding Against Reentrancy Attacks. Since a transaction invoking a
smart contract executes in one go, with no interaction or interference from other
blockchain transactions, as a programmer one sees smart contract functions as
atomic. This eliminates having to consider concurrency issues, making design
and implementation easier. Unless a function explicitly calls another function,
no other function code will be executed before the termination of the current
call. For example, consider a smart contract which implements a wallet in which
owners may deposit funds and send them out to other users. In addition, one
may have further functionality such as placing an amount of money in escrow
for another user. Atomicity means that when the function placeInEscrow(..)
is called, the programmer need not be concerned that there may be a concur-
rent call to withdraw funds, thus sufficing to check that there are enough funds
available at the beginning of the call to placeInEscrow(..).
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However, reality is not so simple. If placeInEscrow(..) makes a call to
another smart contract, that smart contract may call back and withdraw funds.
The atomicity assumption thus breaks down. To make things worse, on Ethereum
the mechanism for a smart contract to send funds to another, is to invoke a spe-
cial function transfer (or send) on the receiving smart contract. This is an
opportunity for the receiver to call the original contract back, once again break-
ing the assumption of the atomicity of function calls. Such reentrancy was the
source of bugs which led to the loss of the equivalent of millions of dollars.

One way in which reentrancy can be ruled out altogether is to use a Boolean
flag to ensure such code is executed only once until a transaction is complete.
Some developers do this manually where and when needed, whilst others advo-
cate the use of a function modifier which uses a blanket rule to check that a
running flag is false and set it to true upon entry to every function and reset
it upon exit. Using AspectSol, we can refine the latter to be used only if and
when control is yielded through a call to transfer funds as shown below:2

aspect SafeReenentrancy {
add-to-declarations * { private bool running = false; }

before execution-of *.* { require (! running ); }
before call-to *. transfer () { running = true; }
after call-to *. transfer () { running = false; }

}

This is a universal solution in that it can be applied to any smart contract,
without adding complexity in the code. In addition, gas costs are kept to a min-
imum, setting and resetting the flag only when transfers of funds are attempted.
Enforcing Properties. Consider the wallet smart contract, with a property
that states: No more than 1000 outgoing payments, or 100 ether3 may be sent
from the wallet, unless the smart contract is first verified by a trusted regulator.
If sendFunds() is the function provided by the smart contract to send funds to
third parties, and verifyWallet() is the function used by the regulator to verify
the owner of the wallet, we can encode runtime checks to ensure adherence to
the specification using the following aspect:

aspect WalletVerification {
add-to-declarations Wallet {

private bool is_verified = false;
private uint number_of_payments = 0;
private uint sum_of_payments = 0;

}

before execution-of Wallet.sendFunds(payable address dst , uint amount) {
if (! is_verified) {

require (number_of_payments < 1000);
require (sum_of_payments + amount <= 100 ether);
number_of_payments ++;
sum_of_payments += amount;

}
}
after execution-of Wallet.verifyWallet () {

2 In practice, we would also need to do this for the send function.
3 Ether is the native cryptocurrency used in Ethereum.
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is_verified = true;
}

}

Note that require stops and reverts the computation altogether if the con-
dition fails. In this manner, any attempt to send funds beyond the set limits is
aborted, effectively enforcing the property.
Adherence to a Business Process Flow. Finally, we show how AspectSol
can be used to runtime verify that a smart contract can only be used as intended.
Consider a casino smart contract which allows the casino to open bets on a coin
toss, enabling a player to place a guess, and then resolve the bet. The expected
business process flow of the smart contract is shown below:

Transitions are tagged by a pair party:function, denoting that the transition
is taken when the identified party calls the named function. Furthermore, we
take the semantics of the notation to indicate that invoking a function when in a
state with no outgoing transition tagged with that function (and calling party)
should fail. For instance, the function withdrawFunds() should only succeed
when in mode NoBet and called by the owner of the casino, thus disallowing the
owner from taking funds to leave the player without their winnings after they
guessed correctly. We can encode such a business process flow to ensure that the
implementation does not diverge from the expected behaviour using aspects as
follows:4

aspect CasinoBusinessProcessFlow {
add-to-declarations Casino {

enum Mode { NoBet , GameOpen , GuessMade }
private Mode mode = Mode.NoBet;

}

before execution-of Casino.createGame () {
require (mode == Mode.NoBet );
require (msg.sender == owner );

}
after execution-of Casino.createGame () {

mode = Mode.GameOpen;
}

...
}

4 The full code of the example can be found in the tool repository.
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It is worth noting that such AspectSol code would typically be generated
by a runtime verification tool from the graph-based specification. In practice, we
can make the specification notation richer by, for instance, allowing conditions on
the transitions to specify properties such as allowing createGame() only if there
are sufficient funds in the smart contract. Similarly, we can deal with failure in
a manner other than simply by disallowing violating calls, e.g. rewarding the
player with a win if the casino attempts a disallowed action after the player
has placed a bet. The fact that the specification is made independent of the
code (which we do not even show here) is the strength of using aspect-oriented
programming to specify such properties.

5 Discussion and Conclusions

The only other aspect-oriented programming tool specifically designed for smart
contracts which we are aware of is that discussed in [8]—also designed for Solid-
ity but adopts the same pointcuts used in traditional imperative and object
oriented language AOP tools. In contrast, we chose to reassess relevant point-
cuts in the context of smart contracts. In terms of weaving approach, it appears
to be similar to that used in AspectSol, although they make more extensive
use of modifiers to instrument code. Direct comparison is, however, not possible
since their tool is not available. Many other aspect-oriented programming tools
can be used for smart contracts written for platforms which support traditional
languages, but these approaches do not specifically address concepts specific to
smart contracts. In particular for runtime verification, having native notions of
digital asset transfers, parties, and access to modifiers and other tags can be
particularly useful.

One valid question is whether one really needs aspect-oriented programming
in Solidity, given it provides modifiers, which allow for tagging functions whose
behaviour will be changed accordingly, e.g. by adding code before or after the
main body of the function. Indeed, some simple use of aspect-oriented program-
ming, e.g. injecting advice at the start or the end of a function can be done using
modifiers. However, this has severe limitations in that one cannot inject code on
the caller’s side, or around specific calls to external functions—functionality
which AspectSol provides. Similarly, tag-based filtering and manipulation is a
powerful tool which cannot be replicated using modifiers. Finally, modifiers reside
within a particular smart contract, and thus lose advantages of separation-of-
concerns between the business logic and the cross-cutting aspects, and of reuse.
Despite modifiers being a powerful programming construct, they do not replace
the role an aspect-oriented tool can provide.

We have presented AspectSol, an aspect-oriented programming tool for
Solidity, designed specifically for smart contracts and going beyond traditionally
used aspects, pointcuts, and advice for imperative and object-oriented languages.
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Although Solidity is an imperative language, smart contract notions of value
flow, and interacting parties provide an opportunity for more domain specific
aspect-oriented programming. In particular, we have argued and showed how
the tool is particularly suited to instrument runtime monitoring and verification
code into smart contacts, and we are currently in the process of redesigning
ContractLarva [1,5] to use AspectSol for instrumentation.

References

1. Azzopardi, S., Ellul, J., Pace, G.J.: Monitoring smart contracts: ContractLarva and
open challenges beyond. In: Colombo, C., Leucker, M. (eds.) Runtime Verification.
LNCS, vol. 11237, pp. 113–137. Springer, Cham (2018). https://doi.org/10.1007/
978-3-030-03769-7_8

2. Chen, F., Roşu, G.: Java-MOP: a monitoring oriented programming environment
for Java. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp.
546–550. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31980-
1_36

3. Coady, Y., Kiczales, G., Feeley, M.J., Smolyn, G.: Using aspectC to improve the
modularity of path-specific customization in operating system code. In: Tjoa, A.M.,
Gruhn, V. (eds.) Proceedings of the 8th European Software Engineering Conference
held jointly with 9th ACM SIGSOFT International Symposium on Foundations of
Software Engineering 2001, Vienna, Austria, 10–14 September 2001, pp. 88–98.
ACM (2001). https://doi.org/10.1145/503209.503223

4. Colombo, C., Pace, G.J., Schneider, G.: Dynamic event-based runtime monitoring
of real-time and contextual properties. In: Cofer, D., Fantechi, A. (eds.) FMICS
2008. LNCS, vol. 5596, pp. 135–149. Springer, Heidelberg (2009). https://doi.org/
10.1007/978-3-642-03240-0_13

5. Ellul, J., Pace, G.J.: Runtime verification of Ethereum smart contracts. In: 14th
European Dependable Computing Conference, EDCC 2018, Iaşi, Romania, 10–14
September 2018, pp. 158–163. IEEE Computer Society (2018). https://doi.org/10.
1109/EDCC.2018.00036

6. Ethereum: Solidity. Online Documentation (2016). http://solidity.readthedocs.io/
en/develop/introduction-to-smart-contracts.html

7. Havelund, K.: Runtime verification of C programs. In: Suzuki, K., Higashino, T.,
Ulrich, A., Hasegawa, T. (eds.) FATES/TestCom -2008. LNCS, vol. 5047, pp. 7–22.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-68524-1_3

8. Hung, C., Chen, K., Liao, C.: Modularizing cross-cutting concerns with aspect-
oriented extensions for Solidity. In: IEEE International Conference on Decentral-
ized Applications and Infrastructures, DAPPCON 2019, Newark, CA, USA, 4–9
April 2019, pp. 176–181. IEEE (2019). https://doi.org/10.1109/DAPPCON.2019.
00033

9. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.G.: An
overview of AspectJ. In: Knudsen, J.L. (ed.) ECOOP 2001. LNCS, vol. 2072, pp.
327–354. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45337-7_18

10. Kiczales, G., et al.: Aspect-oriented programming. In: Akşit, M., Matsuoka, S.
(eds.) ECOOP 1997. LNCS, vol. 1241, pp. 220–242. Springer, Heidelberg (1997).
https://doi.org/10.1007/BFb0053381

11. Nofer, M., Gomber, P., Hinz, O., Schiereck, D.: Blockchain. Bus. Inf. Syst. Eng.
59(3), 183–187 (2017)

https://doi.org/10.1007/978-3-030-03769-7_8
https://doi.org/10.1007/978-3-030-03769-7_8
https://doi.org/10.1007/978-3-540-31980-1_36
https://doi.org/10.1007/978-3-540-31980-1_36
https://doi.org/10.1145/503209.503223
https://doi.org/10.1007/978-3-642-03240-0_13
https://doi.org/10.1007/978-3-642-03240-0_13
https://doi.org/10.1109/EDCC.2018.00036
https://doi.org/10.1109/EDCC.2018.00036
http://solidity.readthedocs.io/en/develop/introduction-to-smart-contracts.html
http://solidity.readthedocs.io/en/develop/introduction-to-smart-contracts.html
https://doi.org/10.1007/978-3-540-68524-1_3
https://doi.org/10.1109/DAPPCON.2019.00033
https://doi.org/10.1109/DAPPCON.2019.00033
https://doi.org/10.1007/3-540-45337-7_18
https://doi.org/10.1007/BFb0053381


252 S. Azzopardi et al.

12. Shin, H., Endoh, Y., Kataoka, Y.: ARVE: aspect-oriented runtime verification envi-
ronment. In: Sokolsky, O., Taşıran, S. (eds.) RV 2007. LNCS, vol. 4839, pp. 87–96.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-77395-5_8

13. Wood, G., et al.: Ethereum: a secure decentralised generalised transaction ledger.
Ethereum Project Yellow Paper 151(2014), 1–32 (2014)

https://doi.org/10.1007/978-3-540-77395-5_8

	AspectSol: A Solidity Aspect-Oriented Programming Tool with Applications in Runtime Verification
	1 Introduction
	2 Aspect-Oriented Programming
	3 Smart Contract AOP: Design Considerations
	4 Runtime Verification Using AspectSol
	5 Discussion and Conclusions
	References




