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Preface

This volume contains the peer-reviewed proceedings of the 22nd International Con-
ference on Runtime Verification (RV 2022), a hybrid event held during September 28–
30, 2022. The conference was part of the Computational Logic Autumn Summit
(CLAS 2022), running during September 19–30, 2022, on the campus of the Ivane
Javakhishvili Tbilisi State University in Tbilisi, Georgia.

The RV series is a sequence of annual meetings that brings together scientists from
both academia and industry interested in investigating novel lightweight formal
methods to monitor, analyze, and guide the runtime behavior of software and hardware
systems. Runtime verification techniques are crucial for system correctness, reliability,
and robustness; they provide an additional level of rigor and effectiveness compared to
conventional testing, and are generally more practical than exhaustive formal verifi-
cation. Runtime verification can be used prior to deployment, for testing, verification,
and debugging purposes, and after deployment for ensuring reliability, safety, and
security, for providing fault containment and recovery, and for online system repair.

RV started in 2001 as an annual workshop and turned into a conference in 2010.
The workshops were organized as satellite events of established forums, including the
Conference on Computer-Aided Verification and ETAPS. The proceedings of RV from
2001 to 2005 were published in Electronic Notes in Theoretical Computer Science.
The RV proceedings have been published in Springer’s Lecture Notes in Computer
Science since 2006. Previous RV conferences took place in Istanbul, Turkey (2012);
Rennes, France (2013); Toronto, Canada (2014); Vienna, Austria (2015); Madrid,
Spain (2016); Seattle, USA (2017); Limassol, Cyprus (2018); and Porto, Portugal
(2019). The conferences in 2020 and 2021 were held virtually due to the ongoing
COVID-19 pandemic.

This year we received 40 submissions, 33 as regular contributions and seven as short
or tool papers. Each of these submissions went through a rigorous single-blind review
process as a result of which all papers except for a desk-reject received at least three
review reports. The Program Committee selected 12 regular and five short/tool papers
for presentation during the conference and inclusion in these proceedings. At the
suggestion of the reviewers, the authors of five regular contributions that were not
initially selected for publication were invited to provide short papers summarizing their
ideas and providing pointers to their tools, and these have been included in the pro-
ceedings after a final short review. The evaluation and selection process involved
thorough discussions among the members of the Program Committee and external
reviewers through the EasyChair conference manager, before reaching a consensus on
the final decisions.

The conference featured two keynote speakers:

– Serdar Tasiran, Amazon Web Services, USA
– Michal Valko, DeepMind and Inria, France



We are grateful for the support provided by the many people who contributed to RV
2022, including the Steering Committee members. We also thank the members of the
Program Committee and their sub-reviewers for their timely and high-quality reviews
as well as their contributions to the discussions. The conference organization was
partially supported through sponsorship from Runtime Verification Inc., Amazon Web
Services, and Springer.

Besik Dundua as local organizing chair assured the smooth organization and run-
ning of RV and the other affiliated events at CLAS. Finally, we appreciate the support
and assistance provided by the team at Springer, as well as Ana Cavalcanti’s and
Marie-Claude Gaudel’s confidence for including these proceedings into the Formal
Methods subline. Volker Stolz is supported by the Norwegian Research Council
through grant 309527 – COEMS Training Network.

Thao Dang is supported by the French-Japanese ANR-JST CyphAI project and the
UGA DAMon project.

August 2022 Thao Dang
Volker Stolz
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Learning by Bootstrapping of Latents
(Abstract)

Michal Valko1,2

1 DeepMind, Paris, France
2 Inria, Lille, France

Abstract. We will discuss self-supervised representation learning and a new
paradigm for it based on bootstrapping of latents. We first present BYOL
(“Bootstrap Your Own Latent”) for images, which relies on two neural net-
works, referred to as online and target, that interact and learn from each other:
From an augmented view of an image, we train the online network to predict the
target network representation of the same image under a different augmented
view. At the same time, we update the target network with a slow-moving
average of the online network. While prior methods had intrinsically relied on
negative pairs, BYOL achieved a new state of the art without them. We will also
describe follow-ups of BYOL that we have explored within DeepMind, BGRL
for graphs, MYOW for new uncharted domains such as neural readings, and
BraVe for videos. We finally apply the paradigm to reinforcement learning and
discuss curiosity-driven exploration when the rewards are sparse or absent. For
this setting, we give a brand new algorithm BYOL-Explore that jointly learns a
world representation, the world dynamics, and an exploration policy.
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Randomized First-Order Monitoring
with Hashing

Joshua Schneider(B)

Institute of Information Security, Department of Computer Science, ETH Zürich,
Zürich, Switzerland

joshua.schneider@inf.ethz.ch

Abstract. Online monitors for first-order specifications may need to
store many domain values in their state, requiring significant mem-
ory. We propose an approach that compresses the monitor’s state using
randomized hash functions. Unlike input sampling, our approach does
not require the knowledge of distributions over traces to achieve low
error probability. We develop algorithms that insert hash functions into
temporal–relational algebra specifications and compute upper bounds
on the resulting error probability. We employ a special hashing scheme
that allows us to merge values across attributes, which further reduces
memory usage. We evaluated our implementation and achieved memory
reductions up to 33% when monitoring traces with large domain values,
with error probability less than two in a million.

Keywords: Online monitoring · Temporal–relational algebra ·
Hashing

1 Introduction

Online monitors must run in diverse environments that possibly offer limited
computing resources. For instance, the monitoring of operating system ker-
nels [37] competes with the user’s applications, embedded hardware is often
underpowered and not easily extendable (e.g., in unmanned aerial systems [43]),
and so forth. However, online monitors for first-order specification languages
may use a significant amount of memory, which hampers their applicability in
such environments. One reason is that they store domain values from the trace
in their internal state. These values can be large in some applications (consider
events that are parametrized by natural language texts or URLs).

To address this problem, we develop a monitoring algorithm that compresses
the domain values using randomized hash functions. Large values such as strings
are replaced by hash values which have more compact in-memory representa-
tions. Hashing may incur a loss of accuracy: because of collisions, the algorithm’s

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
T. Dang and V. Stolz (Eds.): RV 2022, LNCS 13498, pp. 3–24, 2022.
https://doi.org/10.1007/978-3-031-17196-3_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-17196-3_1&domain=pdf
http://orcid.org/0000-0001-8253-4513
https://doi.org/10.1007/978-3-031-17196-3_1


4 J. Schneider

output may be incorrect with non-zero probability. Our monitor therefore satis-
fies a probabilistic correctness property. Thanks to the randomization, collisions
are independent of the domain values in the trace. Crucially, we demonstrate
how to compute an a priori upper bound on the error probability for any given
specification from the hash functions’ collision probability.

Simple specification languages permit very efficient monitors, e.g., every past-
time LTL specification can be monitored in constant space [24]. Some applica-
tions demand more complex specifications. We focus on a temporal–relational
algebra (TRA, see Sect. 2), which corresponds to a fragment of metric first-order
temporal logic monitorable using finite relations. First-order languages such as
TRA are more concise and, assuming an infinite domain of event parameters,
more expressive than propositional languages such as LTL. However, monitoring
a fixed TRA specification requires space polynomial in the size of the trace [6].
Specifically, the space usage depends linearly on the size of the domain values’
representation. We show that hashing removes this dependency for a nontrivial
fragment of TRA and traces whose rate is bounded by a constant.

Randomization and hashing are well-established in algorithm design. Pre-
vious research has mostly focused on simpler problems, such as approximate
set membership [9,35,40]. First-order monitors often operate on structured sets,
which cannot be easily encoded using the existing space-optimal data struc-
tures. We present compact data structures that provide the operations needed
by monitors for expressive languages, but we do not aim at optimality. Moreover,
hashing has been used successfully in model checkers to reduce space [13,27]. In
that domain, the error analysis generally depends on the number of reachable
states, whereas in our case the specification’s structure is significant.

Core Ideas. Let us illustrate our approach on the example specification, “every
a(x, y) event must be preceded by a corresponding b(x, y) event not more than 10
time units ago.” We assume that simultaneous events are possible. We represent,
at every point in time recorded in the trace, the a events at that time by a relation
that stores tuples (x, y) with the events’ parameters; the b events are handled
similarly. To evaluate the specification, our monitor maintains in its memory
another relation R that is equal to the union of all b relations from the past 10
time units, relative to the trace position that the monitor is currently processing.
The set difference of the current a relation and R yields (x, y) tuples that witness
violations of the specification.

We reduce a specific factor of the memory usage: the representation of domain
values in the monitor’s state (for our example, in the R relation). This repre-
sentation usually adds a factor linear in the binary size of the largest value. The
basic idea is to replace the domain values x with their images h(x) under a hash
function h, which is sampled randomly from a suitable collection at the start of
monitoring. As an additional optimization, we merge multiple attributes (tuple
elements) into a single hash value whenever the attributes are used consistently
as a group. Merged hashes over disjoint attribute sets can be combined in an
order-independent way. This hashing scheme repurposes a well-known construc-
tion that extends the domain of universal hash functions [49]. To the best of
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our knowledge, the construction’s merging property has not been used before to
compress relations.

Hashing is possible because many of the TRA’s operators continue to give
correct results up to h. For instance, hashing the domain values in a relation
commutes with the union operation. However, some operations may randomly
introduce errors with a small probability, which manifest themselves as added
or missing tuples. Such errors occur whenever hashes h(x) are compared for
equality, e.g., in an intersection. It is important to bound the error probability;
otherwise, the monitor would be of little use. Therefore, we develop an algorithm
that computes upper bounds for these probabilities by taking the TRA expres-
sion’s structure and information about the trace into account. Specifically, the
algorithm expects as inputs upper bounds on the cardinalities of the relations
consumed and computed by the monitor. For the above example and a hash size
of 63 bits, the error probability is computed to be at most 3.3·10−19 ·na ·10nb per
time-point (position) in the trace, where na and nb are the maximum number of
a and b events per time unit. This is the only information we require about the
trace; in particular, we do not assume a probabilistic model explaining the trace
distribution. Our approach and the error analysis are independent of implemen-
tation details, such as the data structure used to implement the 10 time unit
sliding window.

Some operators are incompatible with hashing, specifically order compar-
isons. We handle them on a best-effort basis: values are not hashed if they are
used by the problematic operators. However, we still demonstrate an overall
reduction of memory usage on relevant traces empirically. For TRA expressions
with bounded intervals, no functions, no aggregations except for counting, and
no order comparisons, we show that the linear factor can indeed be eliminated
if the number of events per time unit is bounded by a constant.

Summary. We make the following contributions.

– Our space-efficient monitor (Sect. 3) relies on the key observation that many
temporal–relational operations can be computed on relations containing
hashed values, with low error probability. As an additional space optimiza-
tion, we provide a hashing scheme that merges hashes from different attributes
within a relation.

– We analyze the error probabilities of TRA expressions with hashing opera-
tors (Sect. 4). Our analysis is compositional and yields upper bounds. One can
thus estimate the error probability for every hash size by observing or esti-
mating these cardinalities, or alternatively, minimize the error given a space
constraint.

– We implement our space-efficient monitor as an extension of MonPoly
(Sect. 5). The extended tool automatically inserts hash operators into user-
provided specifications and it outputs error bounds for individual input traces.
We discuss the specifications most amenable to our optimization and eval-
uate the memory usage and accuracy of our tool. In a case study with real
data, we could reduce the memory usage by 33% with an error probability
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below 2 ·10−6. Our evaluation demonstrates that the technique is particularly
effective for traces with large domain values, such as long strings.

This paper is accompanied by an artifact that consists of the monitor
implementation and the evaluation scripts. The artifact is available at https://
bitbucket.org/jshs/hashmon. Our extended report [42] provides the proofs for
all lemmas and theorems.

2 Temporal–Relational Algebra

Our monitoring algorithm extends MonPoly’s, which has been designed for spec-
ifications expressed in metric first-order temporal logic (MFOTL) with aggrega-
tions [5,6]. MonPoly translates MFOTL to a temporal–relational algebra (TRA),
which it then evaluates using finite relations over an infinite domain. To simplify
the presentation, we focus on the TRA, as our algorithms work directly with its
operators, which do not map one-to-one to MFOTL’s operators. We note that
other variants of TRA exist in the literature [38,46].

We assume a countably infinite set A of attributes and a domain D of con-
stants totally ordered by ≤. A tuple u over a finite set U ⊂ A of attributes is
a mapping from U to D. We write att(u) for u’s attributes U , and u(a) for u’s
value at a ∈ att(u). A relation R over U is a finite set of tuples over U ; overload-
ing notation, we define att(R) = U . A schema S is a collection of relation names
r with associated attribute sets attS(r). A database D over S is a mapping from
r ∈ S to relations D(r) over attS(r).

The following grammar defines the expressions e of TRA. We write z for a
list of elements derived from nonterminal z. The nonterminals a and a′ range
over attributes; c is a constant in D; and I and I∞ are finite and infinite intervals
over IN, respectively.1

t ::= a | c | f(t) ◦ ::= = | �= | ≤ | < ω ::= COUNT | SUM | MIN | MAX

e ::= R | r | π(a)e | �(a ← a′)e | σ(t1 ◦ t2)e | η(a �→ t)e

| e1 e2 | e1 e2 | e1 ∪ e2 | YI∞e | e1 S
m
I∞ e2 | XI∞e | e1 U

m
I e2 | ω(a′ �→ t; a)e

Terms t are either attributes, constants, or function applications; we do not fur-
ther specify the available function symbols f . An expression can be a constant
relation R, a relation name r ∈ S, or a compound expression. We sometimes
write r(a) to indicate that attS(r) = a. The projection operator π(a) preserves
only the attributes a and removes all other attributes. The renaming operator
�(a ← a′) replaces the attributes in the list a′ simultaneously by the correspond-
ing attributes in a. The selection operator σ(t1◦t2) filters tuples according to the
condition t1 ◦ t2. The assignment operator η(a �→ t) computes a new attribute a
from the term t. The natural join e1 e2 contains exactly those tuples that are in
e1 and e2 when restricted to e1’s and e2’s attributes, respectively. The anti-join
e1 e2 is similar, except that the restrictions to e2’s attributes must not be in e2.
1 The meta-variable I will later be used for both types of intervals.

https://bitbucket.org/jshs/hashmon
https://bitbucket.org/jshs/hashmon
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Table 1. Syntax, well-formedness, attributes, and semantics of TRA expressions

e e is well-formed iff att(e) ∀u, i. u ∈ �e�i iff
att(u) = att(e) and

R no restriction att(R) u ∈ R

r r ∈ S attS(r) u ∈ ξi(r)

π(a)e1 a ⊆ att(e1) a ∃u′ ∈ �e1�i. u = u′|a
�(a ← a′)e1 a′ = att(e1) a ∃u′ ∈ �e1�i.

∧
k u(ak) =

u′(a′
k)

σ(t1 ◦ t2)e1 att(t1) ⊆ att(e1), att(t2) ⊆ att(e1) att(e1) u ∈ �e1�i and t1(u) ◦ t2(u)

η(a 	→ t)e1 att(t) ⊆ att(e1) att(e1) ∪ {a} ∃u′ ∈ �e1�i. u = u′[a 	→ t(u′)]
e1 e2 no restriction att(e1) ∪ att(e2) u|att(e1) ∈ �e1�i and

u|att(e2) ∈ �e2�i

e1 e2 att(e1) ⊇ att(e2) att(e1) u ∈ �e1�i and
u|att(e2) ∈ �e2�i

e1 ∪ e2 att(e1) = att(e2) att(e1) u ∈ �e1�i ∪ �e2�i

YIe1 no restriction att(e1) i > 0 and τi − τi−1 ∈ I and
u ∈ �e1�i−1

e1 Sm
I e2 att(e1) ⊆ att(e2) att(e2) ∃j ≤ i. τi − τj ∈ I and u ∈

�e2�j and ∀k. j < k ≤ i ⇒
u|att(e1) ∈m �e1�k

XIe1 no restriction att(e1) τi+1 − τi ∈ I and u ∈ �e1�i+1

e1 Um
I e2 att(e1) ⊆ att(e2) att(e2) ∃j ≥ i. τj − τi ∈ I and u ∈

�e2�j and ∀k. j > k ≥ i ⇒
u|att(e1) ∈m �e1�k

ω(a′ 	→ t; a)e1 att(t) ⊆ att(e1), a ⊆ att(e1), a′ ∈ a a ∪ {a′} M = {||} and u(a′) = ω(M),
where M = {|t(u′) | u′ ∈
�e1�i, u|a = u′|a|}

The metric previously (Y) and since (S) operators are as in MTL [29]. We
write [l, u] for the interval {x ∈ IN | l ≤ x ≤ u}. The superscript m ∈ { , }
indicates whether S’s left operand is negated or not. We also support the future
counterparts next (X) and until (U) with finite intervals. The derived connective
OI∞e abbreviates {()}SI∞ e, where () is the unique tuple with an empty domain.
Finally, ω(a′ �→ t; a) is an aggregation of type ω over t with grouping attributes
a and result in a′. For SUM aggregations, we assume that D is equipped with
an associative and commutative addition operator. We usually omit the term t
in COUNT aggregations as it is not used.

Table 1 defines the well-formedness, attributes, and semantics of expressions.
The semantics, which implicitly depends on the trace ξ, assigns to every well-
formed expression e an infinite sequence of relations �e�i, where i ∈ IN. A trace is
an infinite sequence of time-stamped databases over the schema associated with
e. We model time-stamps as natural numbers and make the standard assumption
that the time-stamps are non-strictly increasing and always eventually increas-
ing. The attributes att(e) of e coincide with att(�e�i) for all i. The following nota-
tion is used in Table 1: We write ξi for the ith database in the trace, which addi-
tionally carries the time-stamp τi ∈ IN. We write u|U for the tuple u restricted
to the attributes U . Terms t are interpreted as mappings t(u) from tuples u over
supersets of att(t), the attributes occurring in t, to D. By x ∈m A we mean
x ∈ A if m = and x 	∈ A if m = . The notation {|. . .|} denotes a multiset. The
aggregation operators COUNT and SUM account for multiplicities of tuples.
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Example 1. Suppose that the trace ξ describes product reviews submitted
by customers to a webshop, with time-stamps expressed in days. The trace
is over the schema S = {p, r}, where att(p) = {pid , b} and att(r) =
{rid , pid , rating}. The relations p contain products with identifier pid and
brand b whenever they are first added to the webshop. The relations r con-
tain the reviews of product pid by a reviewer rid with the given rating . We
want to detect review spam campaigns that target specific brands. The expres-
sion erb ≡ r (OINp) augments each review with the brand, using the OIN

operator as the reviewed product must have been added before the review;
we have att(erb) = {rid , pid , rating , b}. The expression eex ≡ π(b)σ(n1 ≥
3n2)

(
(COUNT(n1; b)O[0,6]erb) (COUNT(n2; b)O[7,27]erb)

)
obtains the set of

brands that received at least three times as many reviews in the previous week
than in all of the three weeks before. These brands are possible targets of spam.

The evaluation of individual TRA operators is described elsewhere [6]. We
reuse their implementation from MonPoly and briefly explain the evaluation of
e1 SI e2. For this operator, the algorithm stores a list containing pairs of time-
stamps and relations. This list is continuously updated so that at time-point i,
�e1 SI e2�i is equal to the union of the relations in the list whose time-stamp
difference to the current time-stamp τi is in the interval I. For every new time-
point j, the algorithm first intersects all relations in the list with �e1�j and then
adds (τj , �e2�j) to it. Elements that are too old with respect to I are removed.
We note that there exists a faster algorithm [4], but we believe that it has little
or no advantage in terms of space as it stores more (redundant) information to
obtain a better time complexity. Confirming this intuition empirically is left as
future work.

3 Algorithmic Details

Our monitoring algorithm has two phases. In the initialization phase, the mon-
itor randomly chooses a hash function, and it rewrites the TRA expression to
introduce explicit hashing operators. The rewriting will be explained in Sect. 3.2.
In the main phase, the rewritten expression is evaluated over the incoming trace.
The main phase is mostly the same as MonPoly’s algorithm and we will only
discuss how our modifications affect it.

3.1 Hash Abstractions

We begin by describing the hashing operators that we added to the TRA and
how they are evaluated. We first focus on the simpler case where attributes are
hashed individually before we generalize to merged attributes. Our monitoring
algorithm is parametrized by a family H of hash functions from D to 2k, where
k ∈ IN is the hash size in bits. The monitor samples a single function h ∈ H
uniformly at random in the initialization phase. We assume a set A# denoting
hashed attributes, disjoint from A. The set contains an attribute named #a for
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every a ∈ A. Let u be a tuple and X ⊆ att(u) − A#. We define hX(u) as the
tuple over (att(u) − X) ∪ {#v | v ∈ X} satisfying

hX(u)(a) = if a = #b for b ∈ X thenh(u(b)) elseu(a).

For a relation R and X ⊆ att(R) − A#, let hX(R) be the image of R under
hX . We call hX(u) and hX(R) hash abstractions, as many different tuples and
relations map to the same value. We could now add hX as a new operator to
TRA, with the semantics just described. All other operators would be extended
to attributes from the set A ∪ A#.

Consider the example p(a, b) S[0,9]

(
(O[0,9]q(a)) (O[0,9]r(b))

)
. Intuitively,

all atomic expressions should be hashed, as the temporal operators O and S
store their results for some time. Therefore, we would monitor h{a,b}p(a, b)S[0,9](
(O[0,9]h{a}q(a)) (O[0,9]h{b}r(b))

)
. Observe that both arguments to the top-

level S operator have attributes {#a,#b}. The operator compares the equality
of tuples over these attributes, i.e., it always compares the values of both #a
and #b simultaneously. If we hashed these values again into a single k-bit hash,
we would only need half the number of bits to store a tuple in S’s state while
still being able to correctly test equality with high probability. However, the
following example shows that generalizing this idea is not straightforward.

Example 2. In the expression
(
p(a) OINq(b, c)

)
S[0,9]

(
(�(c ← a)p(a)) OIN�(a ← b, b ← c)q(b, c)

)
,

it is impossible to hash every atomic expression into a single attribute and to
do the same with the relations going into the S operator. The reason is that
the left operand’s values would have the shape h(a, h(b, c)) whereas for the right
operand it is h(c, h(a, b)).

We solve this problem by employing special hash functions on tuples. Func-
tions from this family have the property that the hash of a tuple u over U can
be computed even if for some disjoint subsets U ′ ⊆ U only the hashes of u|U ′

are available. Specifically, it is possible to merge hashes of tuples over disjoint
attribute sets such that the result is independent of the merging order. The con-
struction works in two steps: First, a single hash function as above compresses
the values of each attribute to k bits. Second, we combine these “pre-hashes”
using a linear form over the finite field GF (2k), whose elements are in a bijec-
tion with k-bit strings. The coefficients of the linear form, one for every attribute,
are chosen uniformly at random in the initialization phase.

The second (combining) step is a well-known method [34] for extending
the domain of universal hash functions that was proposed by Wegman and
Carter [49]. Accordingly, we assume that the “pre-hash” family H is ε′-almost
universal:

Definition 1 [45]. A finite family H of functions D → 2k is ε′-almost universal
iff |{h ∈ H | h(x) = h(y)}|/|H | ≤ ε′ for all distinct x, y ∈ D.
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We generalize the combining step to tuples over any subset of attributes. The
resulting hashes for different attribute sets are not related in a meaningful way.
This is not an issue: the monitoring algorithm always compares hashes over the
same attributes. To merge hashes for disjoint attribute sets, we simply add them
in GF (2k). As a further modification, pre-hashes are not multiplied with their
coefficients until they are about to be merged for the first time. Thus, the hash
values for different nonmerged attributes remain comparable. This allows us to
evaluate a selection operator that compares two different hashed attributes, for
example. We arrive at the following definition for our hash family derived from
H . Fix a finite set of attributes Ae ⊂ A, which will be instantiated with the set
of all attributes that occur in the monitored expression e.

Definition 2. The distribution H∗ is obtained by sampling h ∈ H and f ∈
Ae → GF (2k) uniformly and independently at random, then mapping (h, f) to
the function

h∗(u) = if att(u) = {a} for some a thenh(u(a)) else
∑

a∈att(u) f(a) · h(u(a))

defined on tuples u over subsets of Ae. All arithmetic is over GF (2k).

Lemma 1. Suppose that H is ε′-almost universal. Define ε = ε′ + 2−k. For all
tuples u1 	= u2 over the same attributes in Ae, Prh∗∈H∗ [h∗(u1) = h∗(u2)] ≤ ε.

As before, we would like to control which attributes are hashed and also how
they are merged. We generalize A# to attributes of the form #X, where X
is a finite, nonempty subset of A. A hash specifier Y is a set of disjoint and
nonempty subsets of Ae ⊂ A. We then generalize hash abstractions as follows,
where u is a tuple with

⋃
Y ⊆ att(u):

h∗
Y (u)(a) = if a = #X forX ∈ Y thenh∗(u|X) elseu(a).

The bound on the collision probability from Lemma 1 carries over to hash
abstractions: h∗

Y (u1) is equal to h∗
Y (u2) for two distinct tuples u1 and u2 with

probability at most ε.
The next lemma is a key property of H∗. It allows us to extend the domain of

h∗
Y to tuples that already contain hashed values, as long as they are compatible

with Y . This restriction is captured by the relation Y1 � Y2 defined by ∀X1 ∈
Y1.∃X2 ∈ Y2.X1 ⊆ X2.

Lemma 2. Let Y1 � Y2 be hash specifiers. Then h∗
Y2
(u) can be computed from

h∗
Y1
(u).

We conclude with a summary of the augmented TRA. We add the hashing
operator h∗

Y e to the syntax introduced in Sect. 2. It is well-formed iff Y is a
hash specifier satisfying hsp(e) � Y , where hsp(e) = {X | #X ∈ att(e)} is the
unique hash specifier induced by e’s attributes. We have att(h∗

Y e) = (att(e) −
A# − ⋃

Y ) ∪ {#X | X ∈ Y }. There are new well-formedness requirements for
the other operators: Hashed attributes may be renamed only if they have not
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been merged. If a hashed attribute occurs in a selection or assignment operator,
it must be nonmerged and both terms must consist of a single hashed attribute
or a constant; the selection must be of type = or 	=. Hashed attributes must
not occur in an aggregation’s term. For binary operators, the operands’ induced
hash specifiers must be equal on the operands’ common attributes. The semantics
�h∗

Y e�i is obtained by applying the computation from Lemma 2 to each tuple in
the input relation �e�i, which is interpreted as a hash abstraction over hsp(e). The
hash function h∗ used in these computations is sampled from the distribution
H∗ during the monitor’s initialization phase.

3.2 Expression Rewriting

We now describe how the hash operators are inserted in the initialization phase.
Ideally, this transformation should result in a space-optimal evaluation while
keeping the worst-case error probability below a used-defined threshold (or vice
versa). Achieving this objective is a hard optimization problem. For example, it
might not be optimal to hash a temporal operator’s operand that always evalu-
ates to a small relation. The error incurred by later operators may be compara-
tively large and it would be more effective to spend the error budget elsewhere.
It is impossible to compute exact bounds on the relations’ sizes because the sat-
isfiability of relational algebra queries is already undecidable [1]. Therefore, one
must relax the optimization, and it is not clear how to do that in a principled
manner. We defer the analysis of this problem to future work and instead rely
on a heuristic to rewrite the expression. The heuristic is based on the following
principles:

– The expression’s structure does not change except that hash operators are
inserted.

– Every attribute is hashed greedily in the operands of temporal connectives, as
these connectives contribute the most to the monitor’s state. Operands of the
other binary connectives may be hashed so that they have the same hashed
attributes. An attribute cannot be hashed if any operator on the path to the
expression’s root performs an operation other than equality testing with the
attribute’s value. The equality test may be implicit, e.g., as part of a join.
The reason is that other operations, such as orderings, cannot be evaluated on
hashed values (which incidentally hampers the expressiveness of BDD-based
monitors [21,22]). Order-preserving perfect hash functions are not suited for
our purpose because of their superlinear space lower bound [17].

– Any set of hashed attributes is merged greedily whenever it is used homoge-
neously by all operators on the path to the root, i.e., all attributes’ values
are always compared together. For instance, a and b cannot be merged in the
join’s operands in p(a, b) q(a) because a’s but not b’s values are compared.

– In general, the greedy approach assumes that it is better to hash and merge
than not. Other objectives may be more appropriate in specific applications.
For example, if specification violations must always be detected but false
alerts are acceptable, a different heuristic taking the predicted error (Sect. 4.1)
into account should be used.
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Algorithm 1. Expression rewriting
let addHash((e, Y ), Y ′) = if Y ′ = Y then e else h∗

Y ′ e

let rec rw(apx , Y , e) = match e with

| π(a)e1 ⇒ let (ẽ1, Y1) = rw(apx , Y ∪ {att(e1) − a}, e1) in

let a′ = {if a ∈ ⋃
Y1 then #X for unique X ∈ Y1 s.t. a ∈ X else a | a ∈ a} in

(π(a′)ẽ1, {X ∩ a | X ∈ Y1})
| e1 Sm

I e2 ⇒ let K = att(e1), apx ′ = apx ∧ (|I| < ∞) in

let Y ′ =
({X − K | X ∈ Y } ∪ (if apx ′

then {X ∩ K | X ∈ Y } else ∅)) in

(addHash(rw(apx ′, Y ′, e1), Y ′) Sm
I addHash(rw(apx ′, Y ′, e2), Y ′), Y ′)

| · · ·

We implemented the heuristic as a bottom-up rewriting procedure (Algo-
rithm1). We only show the π and S cases due to space constraints; see the
extended report [42] for the full algorithm. The projection case illustrates how
the connectives’ parameters are adjusted, and S imposes the most interesting
constraints on its operands.

The main function rw(apx ,Y , e) transforms the expression e. Its result is a
pair (ẽ, Y ′), where ẽ is the rewritten expression and Y ′ = hsp(ẽ) is the hash
specifier induced by ẽ. The constraints apx and Y represent the restrictions
imposed by the operations on the path from the root to the current expression
e. The boolean apx indicates whether ẽ may introduce errors. There can be
hash operators in ẽ even if errors are disallowed, but the hashed attributes must
not be tested for equality. The hash specifier Y partitions the sub-expression’s
attributes. Attributes not in

⋃
Y are excluded from hashing, and the partitioning

in Y indicates which attributes may be merged. For the root expression, we set
apx to true, and the specifier Y is the empty set: as the relations computed for
the root are output to the user, there should not be any hashed values in that
output.

For projections π(a)e1, the sub-expression e1 is rewritten using the same con-
straints, except that the removed attributes att(e1)−a can be hashed and merged
(but not with other attributes). The rewriting function computes a new list a′ of
projected attributes to account for the new names of the hashed attributes. The
order of this list does not matter, hence we define it using set notation. Note
that the heuristic is not greedy for projections: no hash abstraction is inserted
if {X ∩ a | X ∈ Y1} differs from the constraint Y .

For e1 Sm
I e2, the key K consists of the attributes att(e1) that the connective

tests for equality internally. The operands are rewritten recursively. The apx flag
is propagated unless I is unbounded. In this case, it could be possible to force an
error at a sufficiently large time-point if the operands are not exact. The specifier
Y ′ is derived from Y : If errors are allowed, the sets in Y are split into key and
non-key attributes. Otherwise, all key attributes are removed, as the equality
test on hashed keys might introduce errors. Finally, the rewritten operands are
wrapped in hashing operations so that both operands have compatible hashed
attributes (namely Y ′).

Example 3. The expressions from Example 1 are rewritten to ẽrb ≡
h∗

Y2

(
(h∗

Y1
r) (OINh∗

Y1
p)

)
and ẽex ≡ π(b)σ(n1 ≥ 3n2)

(
(COUNT(n1; b)O[0,6]ẽrb)

(COUNT(n2; b)O[7,27]ẽrb)
)
. The attribute b representing the brand is never
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hashed because it is part of the monitor’s output, which evaluates ẽex . At first
only Y1 = {pid} is hashed, as pid is the only attribute apart from b exposed to
a temporal connective in ẽrb . After the join in ẽrb , Y2 = {pid , rid , rating} can
be merged, as all three attributes are discarded by the aggregations.

4 Analysis of the Algorithm

In this section, we analyze the error probability of our monitor and comment
on its space complexity. Our analysis relates the error probability to the size
of the hash values, which affects the algorithm’s space complexity. Specifically,
we show how to compute an upper bound on the error probability for a given
expression. This results in a symbolic expression whose variables refer to the
collision probability ε, the maximum number of time-points per unit of time, and
the maximum relation sizes that may occur during the expression’s evaluation.
Based on this information, the user can adjust the hash size to achieve the
desired level of accuracy. Additionally, we show that a concrete error bound can
be computed by the monitor for a particular trace. This may provide a more
precise error estimate.

4.1 Error Bounds

We first establish a formal framework in which we carry out our analysis. To
this end, we introduce the notion of randomized monitoring, which allows us
to quantify the monitor’s accuracy in terms of its worst-case error probability.
A randomized monitor M is modeled as a mapping from finite trace prefixes to
discrete probability distributions over finite sequences of relations. We assume
that M satisfies the following completeness property. For every (infinite) trace
ξ there exists a look-ahead function 
ξ, which maps any desired length of the
monitor’s output to a sufficient length of the monitor’s input. More precisely,
the length of the sequences in the support2 of M(x) is at least n for every prefix
x of ξ with length |x| ≥ 
ξ(n). In other words, outputs may be delayed, but
the monitor must always eventually compute a verdict. Our monitor inherits its
look-ahead function from MonPoly; it depends only on the upper bounds of the
future operator’s intervals and on the time-stamps in ξ.

We parametrize the monitoring problem by a nonempty, possibly infinite
set X of traces, which represents the application-specific knowledge about the
possible inputs to the monitor. We also fix a TRA expression e and perform the
following random experiment: for any trace ξ ∈ X and time-point i ∈ IN, the
monitor is run on a sufficiently long prefix of ξ using fresh randomness. We are
interested in the worst-case probability (over the choice of ξ and i) of the ith
output deviating from the correct relation. Let x � ξ denote that x is a finite
prefix of ξ, and let xi denote the ith element in the sequence x. We make the

2 The support of a discrete probability distribution is the set of values with nonzero
probability.
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semantics’ dependency on the trace explicit: from now on, we write �e�ξ
i instead

of �e�i, where ξ is the trace.

Definition 3. The error probability of M on X is

errX(M) = supξ∈X, i∈IN, x�ξ, |x|≥�ξ(i)PrM [M(x)i 	= �e�ξ
i ].

Similarly, the false-positive probability fpX(M) and the false-negative probabil-
ity fnX(M) are defined by

fpX(M) = supξ∈X, i∈IN, x�ξ, |x|≥�ξ(i)
PrM [M(x)i � �e�ξ

i ]

fnX(M) = supξ∈X, i∈IN, x�ξ, |x|≥�ξ(i)
PrM [M(x)i � �e�ξ

i ].

Lemma 3. max{fpX(M), fnX(M)} ≤ errX(M) ≤ fpX(M) + fnX(M).

The error probability is our measure of the monitor’s accuracy. The false-
positive and false-negative probabilities provide more information about the
nature of the errors. In some applications it may be more tolerable to have
errors of the one kind than of the other. No probability distribution is associ-
ated with X; the probabilities are taken solely with respect to the internal coin
flips of the algorithm implementing M .

According to Definition 3, the trace ξ cannot depend on the randomness of
M . Such a dependency would be incompatible with our hashing approach, as
one could construct an adversarial input that causes an error with certainty at
sufficiently large time-points (by trying different values until a hash collision is
found). However, the probability of an error at some time-point can be 1 even
if errX(M) < 1, as for many specifications it is unavoidable that a collision
occurs somewhere in an infinite trace if the domain is large enough. Therefore,
we consider the probability for each time-point in isolation in Definition 3.

The following design decisions guide our error analysis: (1) It should be com-
positional so that the bounds can be computed by recursion over the expression’s
structure. (2) The set of traces is parameterized by the maximum rate and the
maximum relation sizes for each sub-expression, as defined below. We need to
bound these quantities because the worst-case error probability would otherwise
be 1 for most expressions. Moreover, relying on concrete numeric upper bounds
makes the analysis more precise. (3) We analyze the false-positive and false neg-
ative probabilities separately; by Lemma3, this allows us to approximate the
overall error probability within a factor of 2.

The first step is to adapt the notions of false-positive and false-negative
probabilities to rewritten expressions ẽ. To this end, we recover the original, exact
expression e from ẽ by removing all hash operators. We perform the analysis on
ẽ instead of e to decouple it from the heuristic used by Algorithm 1.

Definition 4. Let X be a set of traces. Suppose that e is the unique expression
obtained by removing all hash operators from ẽ and flattening attributes of the
form #X into an enumeration of X (see the extended report [42] for details).



Randomized First-Order Monitoring with Hashing 15

Table 2. Upper bounds on false-positive and false-negative error probabilities, per
time-point

ẽ fp(ẽ) ≤ . . . fn(ẽ) ≤ . . .

R, r 0 0

h∗
Y ẽ1, π(_)ẽ1, �(_)ẽ1,

η(_)ẽ1, σ(t1 ◦ t2)ẽ1, YI ẽ1,
XI ẽ1

fp(ẽ1) fn(ẽ1) (1)

σ(#{a} = t)ẽ1 fp(ẽ1) + ε|e1| fn(ẽ1)

σ(#{a} = t)ẽ1 fp(ẽ1) fn(ẽ1) + ε|e1|
ẽ1 ẽ2 fp(ẽ1) + fp(ẽ2) + ε|e1||e2| fn(ẽ1) + fn(ẽ2) (2)

ẽ1 ẽ2 fp(ẽ1) + fn(ẽ2) fn(ẽ1) + fp(ẽ2) + ε|e1||e2| (2)

ẽ1 ∪ ẽ2 fp(ẽ1) + fp(ẽ2) fn(ẽ1) + fn(ẽ2)

ẽ1 SI ẽ2, ẽ1 UI ẽ2 aI · fp(ẽ1) + bI · fp(ẽ2) +

ε · bI |e1||e2|
aI · fn(ẽ1) + bI · fn(ẽ2) (2)

ẽ1 SI ẽ2, ẽ1 UI ẽ2 aI · fn(ẽ1) + bI · fp(ẽ2) aI · fp(ẽ1) + bI · fn(ẽ2) +

ε · cI |e1||e2|
(2)

ω(a′ 	→ t; a)ẽ1 fp(ẽ1) + fn(ẽ1) +

ε(|e1|2 − |e1|)/2
fp(ẽ1) + fn(ẽ1) +

ε(|e1|2 − |e1|)/2
(3)

aI = (maxRate · u) − 1 and bI = maxRate · (u − l) and cI = bI · (
maxRate · l + (bI + 1)/2

)
for any

half-open interval I = {x ∈ IN | l ≤ x < u}. Set aI = bI = cI = ∞ if I is unbounded.
Side conditions and remarks: (1) no hashed attribute in t1 nor in t2; (2) replace ε by 0 if there is no
hashed attribute in att(ẽ1) ∩ att(ẽ2); (3) replace ε by 0 if: ω ∈ {MIN, MAX} and no hashed attribute in
a, or ω ∈ {COUNT, SUM} and no hashed attribute in e1.

Writing h∗
Y (R) for the image of R under h∗

Y , the false-positive and false-negative
probabilities of ẽ are

fp(ẽ) = sup
ξ∈X,i∈IN

Pr[�ẽ�ξ
i � h∗

hsp(ẽ)(�e�
ξ
i )], fn(ẽ) = sup

ξ∈X,i∈IN
Pr[h∗

hsp(ẽ)(�e�
ξ
i ) � �ẽ�ξ

i ].

The applications of h∗
hsp(ẽ) ensure that the relations are over the same

attributes. It may be surprising that a hash collision in �e�ξ
i (i.e., two tuples

u, v ∈ �e�ξ
i such that h∗

Y (u) = h∗
Y (v)) does not count as an error. Definition 4 is

nonetheless useful as hsp(ẽ) is forced to be ∅ at the monitored expression’s root.
Our main result follows.

Theorem 1. Suppose that H is an ε′-almost universal hash family with k bits.
Then the bounds in Table 2 follow, where ε = ε′ + 2−k, |e| = supξ∈X,i∈IN|�e�ξ

i |
is the maximum size of the relations computed for e, and maxRate =
supξ∈X,x∈IN|{i | τi = x}| is the traces’ maximum rate per time unit. If upper
bounds on maxRate and on |e| for every sub-expression e of e0 are given, one
can compute constants c and c′ in polynomial time such that fpX(M̃) ≤ ε · c and
fnX(M̃) ≤ ε · c′, where M̃ is our monitor for e0 and H.

The factors aI , bI , and cI in Table 2 are estimates of the number of time-
points or pair of time-points that may be the source of errors of a particular
kind. The derivation of the factors is explained in the extended report [42].
The asymmetry between fp(ẽ1 SI ẽ2) and fn(ẽ1 SI ẽ2) and similarly for U is
noteworthy. It is possible to construct examples that show that the false-negative
probability of the operators may exceed the tighter bound that uses bI instead
of cI .
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Table 2 can be used to calculate error bounds given ε, or to calculate the
largest ε such that the error is below a given threshold. The collision probability
ε is a proxy for the hash values’ size, and thereby a factor of the randomized
monitor’s space complexity. Although the bounds in Table 2 are not tight, our
empirical evaluation (Sect. 5) shows that they are useful. Moreover, as the size
of the hash values is logarithmically related to ε, achieving a tight bound is not
critical in practice.

Example 4. For eex from Example 1, we compute using Table 2 that
fp(ẽex ), fn(ẽex ) ≤ ε · (

28 · maxRate · |r | · |OINp| + (|O[0,6]erb |2 + |O[7,27]erb |2 −
|O[0,6]erb | − |O[7,27]erb |)/2

)
. Our implementation (Sect. 5) achieves a collision

probability of ε ≈ 2−61 with 63-bit hashes. Now assume that there are 106

products in total (|OINp| = 106), and at most 105 reviews are received per day
(maxRate · |r | ≤ 105, |O[0,6]erb | ≤ 7 · 105, etc.). This yields an upper bound of
around 2.3 · 10−6 for each error type, or 4.6 · 10−6 for the probability of any
error occurring, per time-point. Conversely, we can compute that ε ≤ 9.6 ·10−17,
which roughly corresponds to 55 hash bits, is sufficient to achieve an error rate
below 0.1%.

The size bounds |e| referred to by Theorem 1 are for the original, non-
rewritten sub-expressions. Nonetheless, extensive domain knowledge might be
necessary to obtain such bounds prior to monitoring, e.g., to choose the hash
size appropriately. There is an alternative use of Table 2: The monitor may com-
pute estimates of fp(e0) and fn(e0) for the specific trace it monitors. These can be
more precise than the a priori estimates using Theorem 1. Our implementation
computes trace-specific error bounds and presents them to the user. This can aid
the user in judging the reliability of these verdicts. However, one challenge is that
the observed relation sizes may be smaller than the bounds |e|, namely if there
are false negatives, or hash collisions such that |h∗

Y (�e�ξ
i )| < |�e�ξ

i |. Calculating
with observed sizes could result in estimates that are too small. (Larger observed
sizes do not affect correctness because all our error bounds are monotonic.) We
circumvent this by falling back to conservative upper bounds (e.g., the sum of
the operands’ sizes for a union) for those sub-expressions with hashed attributes
and/or possible false negatives.

4.2 Space Complexity

We focus on data complexity [47] and characterize a subset of expressions on
which our approach works best, in that the monitor state contains only hashed
values. An expression e is called simple if it is closed (i.e., att(e) = ∅), all intervals
are finite, no functions appear in terms, all selections have the form σ(t1 = t2) or
σ(t1 	= t2), and all aggregations have type COUNT. Then the temporal connec-
tives in the rewritten expression involve only hashed (not necessarily merged)
attributes, which eliminates the influence of the domain value’s encoding as fol-
lows. Let Xm,n be the class of traces for which maxRate ≤ m, |r| ≤ m for every
relation name r ∈ S, and all domain values are represented by at most n bits. It
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is known that e can be monitored over prefixes of Xm,n using polynomially many
(in m) relations [6]. These relations have polynomially bounded cardinality as
every interval in e is finite. A typical monitor for e would store all domain values
that occur in the relations, and therefore the space complexity is multiplied by
n. In contrast, our monitor works exclusively with relations over k-bit hashes.
The polynomial bound on the number and cardinality of these relations persists,
but it suffices to choose k on the order of log(poly(m))− log x = O(logm− log x)
to achieve an error probability below x. This follows from Theorem 1 and the
fact that every sub-expression of e has polynomially bounded size. Therefore, k
is independent of n.
Theorem 2. Simple expressions can be monitored over traces in Xm,n in
O(poly(m) + n) space (with a fixed error bound).

5 Implementation and Evaluation

We implemented our randomized monitor as an extension of the MonPoly
tool [6], written in OCaml. The extension is transparent to the user: hashing
can be enabled by setting a single command-line option. We performed exper-
iments, using both Amazon review data [36] and randomly generated data, to
answer the following questions: (Q1) Are there non-trivial specifications and data
for which monitoring benefits from our approach? (Q2) How much does it reduce
the monitor’s peak memory usage in practice? (Q3) How do our theoretical error
bounds compare to the empirically observed error probability?

We added a module to MonPoly that implements the rewriting algorithm
described in Sect. 3.2. Merging of attributes can be disabled to study its impact.
For H we use the CLHASH family [32] truncated to k = 63 bits, the size
of native integers in OCaml. Truncated CLHASH is ε′-almost universal with
ε′ = 2.004/263 for strings up to 264 bytes [32, Lemmas 1 and 9], requiring only
around 1KiB to represent an element of H . We modified MonPoly’s relation data
type to keep track of the error and size bounds as described in Sect. 4. OCaml
programs rely on a garbage collector (GC), which makes it difficult to measure
peak memory usage in a meaningful way. However, we found OCaml’s GC to be
conservative. Measured differences above a few MB were generally robust.

Our experiments were performed on two groups of expressions and data. The
first group focused on a realistic use case, specifically the detection of fraudu-
lent customer reviews. We used review data from Amazon spanning a period of
over 20 years [36]. We restricted our attention to the “gift cards” category, which
had the smallest number of products (1548) and a moderate number of reviews
(147 194). We monitored Example 1 (adjusted to ignore additional attributes)
and a formalization efrd of the first stage of Heydari et al.’s fake review detec-
tion system [25], shown in the extended report [42]. The latter detects weeks and
product brands with suspicious review counts. (The second stage would require
some natural language processing, which is outside of our scope.) We modified
the fake detection example to use a one-year sliding window for the review aver-
age per brand, whereas the original uses a global average, which would require
offline monitoring.
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The second group was based on the expressions e1 ≡ π()(p(a) O[0,9]q(a)),
e2 ≡ π()(p(a)S[0,9] q(a)), e3 ≡ π()((p(a)U[0,9] q(a, b)) q(a, b)), and the one from
Example 2 with all attributes projected away as e4. In e3, the hash abstrac-
tion of q is computed twice: once for each of q’s occurrences. The expression
e′
3 is a modification of e3 in which the hash abstraction is shared by both

occurrences. We generated pseudorandom trace prefixes with consecutive, non-
repeating time-stamps over 100 time units with 20 000 tuples each, which were
assigned randomly and uniformly to the relation names in the expression. For
e4, we generated only 50 tuples per time-point because the formula computes a
Cartesian product, resulting in a large blow-up. The domain values were random
alphanumeric strings with exactly 100 characters. The second group’s purpose
was to determine the impact of the expressions’ structure on the memory usage.
It is clear that hashing is less effective for smaller values, so we did not perform
further experiments with such values.

We performed additional experiments with data suitable for the DejaVu
tool [21,22]. DejaVu is a monitor for first-order past LTL with time constraints,
implemented using binary decision diagrams (BDDs) instead of finite relations.
DejaVu is the only other tool handling a large subset of TRA that we are aware
of. Of our expressions, only e1, e2, and e4 are supported by DejaVu because
it lacks aggregation and future operators. It also cannot process simultaneous
events. Therefore, we generated a separate set of traces (the “thin” set) with
2 000 time-points per time-stamp (50 for e4), each consisting of a single tuple.

Table 3. Performance evaluation (B = baseline, Hm = merged hashes; percentages
relative to B)

Memory (MiB) Runtime (s) Max. error bound

B ID H Hm B Hm fp fn

eex 13.7 13.7 (−0%) 12.9 (−6%) 12.0 (−12%) 20.5 17.2 (−16%) 1 · 10−5 1 · 10−5

efrd 35.4 39.6 (+12%) 28.8 (−19%) 23.9 (−33%) 22.7 22.2 (−2%) 2 · 10−10 2 · 10−10

e1 81.0 74.7 (−8%) 63.1 (−22%) 63.3 (−22%) 12.5 14.3 (+14%) 3 · 10−10 0

e2 56.0 56.0 (+0%) 44.5 (−21%) 44.6 (−20%) 28.9 26.1 (−9%) 0 1 · 10−9

e3 80.9 104.2 (+29%) 81.0 (+0%) 81.1 (+0%) 9.3 15.9 (+70%) 1 · 10−9 3 · 10−10

e′
3 80.8 81.0 (+0%) 56.1 (−31%) 56.4 (−30%) 9.3 12.7 (+31%) 1 · 10−9 3 · 10−10

e4 30.3 47.3 (+56%) 50.0 (+65%) 37.7 (+24%) 12.0 14.3 (+19%) 2 · 10−9 0

Memory Usage and Runtime. We measured the peak memory usage and run-
time using MonPoly’s original algorithm (B), a special mode (ID) where the hash
function is replaced by identity, and nonmerged (H ) and merged (Hm) hashing.
The purpose of ID was to determine whether our expression rewriting, the added
operators, and the error tracking code had any effect on their own. Measure-
ments were obtained on a laptop with an Intel i5-7200U CPU (2.5GHz, Turbo
Boost disabled) and 8GB RAM (no swap) under Linux 5.15.13. MonPoly was
compiled with OCaml 4.12.0 and default GC settings. We used the UNIX time
command to measure elapsed real time (“runtime”) and the maximum resident
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set size (“memory”). We computed the arithmetic mean over 3 repetitions. We
compared against DejaVu revision 1e1f4eb0, running under OpenJDK 11.0.13
with an initial heap size of 8MB. The BDD size was set to 15 bits based on the
expected number of distinct domain values within the expressions’ intervals.

Table 3 shows the results. The percentages are relative to the baseline B .
Hashing reduced the amount of memory needed for all formulas except e3 and
e4, and merging reduced it further for the Amazon examples. The effect was small
for eex because there the relevant domain values were fairly short (at most 14
bytes each). The memory for e3 increased under ID because the added hashing
operators prevent the sharing of nodes in the immutable AVL trees that MonPoly
uses to represent relations. Under B , the two occurrences of q share these trees.
They are hashed twice in e3, resulting in independent copies, but not in e′

3, where
memory improved. This sensitivity to the expression structure demonstrates the
complexity of the optimization problem from Sect. 3.2. We conjecture that the
generally bad behavior of e4 is also due to the loss of sharing, specifically in the
O operators.

We could not draw definite conclusions about the impact on runtime. Com-
puting hashes and transforming the relations obviously incurs some overhead,
whereas comparing hash values in the search tree implementation might be faster
than comparing long strings. The last two columns of Table 3 show the largest
error bound output by the monitor (maximum across time-points and repeti-
tions). For our test data, we find that the accuracy loss is very small and errors
are highly unlikely. For example, the error bounds for the efrd experiment cor-
respond to a probability of less than 2 · 10−6 for an error occurring anywhere in
the trace prefix, which consisted of 2 889 time-points.

DejaVu generally used much more memory than MonPoly on the “thin”
traces: 984 MiB for e1 (MonPoly Hm: 26.2MiB) and 972MiB for e2 (Hm:
12.1MiB). Memory usage exceeded 2GiB for e4, hence we decided to exclude
this expression from the experiments. Further research is necessary to determine
whether the large memory footprint is due to the implementation or a funda-
mental consequence of using BDDs. We note that the runtimes of DejaVu and
MonPoly are highly incomparable, the latter being more than 6 times faster on
e1 but 81 times slower on e2. Hashing is ineffective on the “thin” traces, resulting
in an increase by 1% over B for e1 and a decrease by 8% for e2, which are likely
just noise. However, these traces are one order of magnitude smaller than those
used for Table 3, so factors that are independent of the domain values dominate.

Error Probabilities and Bounds. We artificially truncated hash values to sim-
ulate the impact of their size. The left plot in Fig. 1 shows the error probabil-
ity observed over 100 repetitions with different hash function seeds. We com-
puted the midpoint of a Wilson score interval [50] at 95% confidence for every
time-point, and took the maximum over all time-points. The right plot in Fig. 1
shows the corresponding error bounds output by the monitor (fp and fn added
together, mean across all repetitions, then the maximum over time-points). The
error bounds are almost tight for e1: as true positives are extremely unlikely
for our pseudorandom traces, every collision in e1’s join is observed as a false
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Fig. 1. Error probabilities and bounds for truncated hashes (x = number of bits)

positive. For eex , the bounds overestimate the observed error by a large mar-
gin. This partially due to the projection operator, which hides deviations in the
count aggregations as long as they do not affect the selection, and the fact that
our worst-case analysis for aggregations holds for one large group, whereas the
Amazon data has many groups. For e2 and e4, we never observed any error
because uniformly random traces are not the worst case for these expressions.
For example, we can trigger errors for e2 by generating much fewer q than p
tuples.

6 Related Work

Approaches for monitoring parametrized events can be classified into several cat-
egories [23]. We focus on the bottom-up evaluation of specifications using finite
relations [10,20], which has been implemented in the MonPoly tool [6] for a
fragment of metric first-order temporal logic (MFOTL) formulas. Our temporal–
relational algebra (TRA) described in Sect. 2 is a direct encoding of that frag-
ment. The principle of hashing event parameters could be applied to some of
the other monitoring approaches as well, e.g., parametric trace slicing [41] and
automatic structures [22]. Our error probability analysis is specific to TRA.

Some specifications can be monitored in constant space even on streams with
parametrized events and unbounded rate [12,16,33]. Hashing allows us to reduce
the memory needed for a class of specifications that falls outside of the constant-
space fragment. Alternatively, monitoring performance can be improved by sam-
pling from the input trace and interpolating over the gaps [3,28]; a hidden
Markov model represents the prior knowledge about the monitored system and
it plays an important role for achieving high accuracy. Unlike our approach, sam-
pling usually reduces the time overhead of monitoring. Grigore and Kiefer [18]
studied optimal event sampling strategies for systems modeled as Markov chains.
In contrast to these works that rely on sampling, we do not require any prior
knowledge about the monitored system. Only for bounding the error probability
we assume that certain trace statistics are available.

Statistical model checking [31,44] is concerned with the verification of
stochastic systems. The checked properties are quantitative: they express con-
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straints on probabilities. Statistical model checking uses randomized simulations
and thus yields approximate results. It is different from the randomized moni-
toring we consider, as our monitor checks individual traces, not system models,
for safety properties with nonprobabilistic semantics.

There exists an extensive body of research on randomized algorithms and
lower bounds related to data storage and retrieval. The standard example is the
Bloom filter [8], which approximately answers set membership queries for static
sets. There are variants supporting deletion [15] and dynamic resizing [2]. Set
membership queries on dynamic sets can be reduced to the monitoring problem
for sufficiently expressive specifications, but the latter is clearly more general.
Intersections [19] and Cartesian products [48] of Bloom filters do not scale well
to complex queries over relations with varying attributes, which frequently occur
in first-order monitoring.

Bloom filters have been used successfully to save space in model checking
algorithms, e.g., in the bitstate method [13,27], where the filters are used to
track visited states. The only operation performed on the filter is a membership
test, whereas first-order monitors apply complex transformations to their state.
Therefore, we cannot hash the relations in the state as a whole, and the error
analysis becomes more intricate. A different line of work in the model checking
domain uses lossless compression schemes for states [7,26,30]. To our knowledge,
such schemes have not yet been applied to monitoring, with the exception of
BDDs [22]. Some of the ideas could prove fruitful, e.g., the work by Laarman et
al. [30], which enforces sharing in a systematic way.

Another family of probabilistic data structures [14,39] represents the ele-
ments of a finite set using compact hash values. The work by Naor and Yogev [35]
on membership queries over sliding windows is perhaps the closest to monitor-
ing. Unlike them, we do not aim at achieving close-to-optimal memory usage,
but rather we consider more richly structured sets (relations). Probabilistic data
structures have been analyzed in adversarial environments [11], which can be
relevant in the context of monitoring security policies. We do not consider an
adversary model in this paper. Instead, we assume that there is no feedback
from the monitor’s output to a possible adversary who could influence the trace
adaptively.

7 Conclusion

We presented a randomized monitoring algorithm that compresses domain values
using hash functions. We analysed its error probability and showed that useful
upper bounds can be obtained in practice. Based on the evaluation results, we
believe that hashing is a useful optimization in space-constrained applications
where a small error probability can be tolerated. There are three main limita-
tions: First, the focus on domain values means that the approach is ineffective
for traces with small domain values. Second, the current implementation within
MonPoly is not optimized for memory usage, and its immutable data structures
sometimes exhibit unpredictable behavior. We plan to reimplement and opti-
mize the monitor using imperative data structures. Third, the structure of the
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specification may prevent hashing of some or all attributes, e.g., if functions
are computed over the attributes. Open questions include: Can expressions be
rewritten to allow more hashing, and how could this optimization problem be
solved? What are space lower bounds for the operations relevant to first-order
monitoring, going beyond basic set membership and sliding windows?
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Abstract. There have been tremendous developments in minimally
invasive approaches for various surgical treatments due to the benefits
for patients such as less pain and faster recovery. However, surgeons face
a number of obstacles while performing these surgeries, including inade-
quate depth perception, limited range of motion, and difficulty gauging
the force to be delivered in the tissue. As a result, improved support for
these surgeries is needed to provide surgeons with automated assistance,
reducing complications and needless patient damage.

In this work, we propose an approach, leveraging deep learning and
formal methods, to develop an automated surgical procedure assistance
framework. To the best of our knowledge, our framework is the first
to develop an automated surgical procedure assistant using deep learn-
ing and formal methods. We use Faster R-CNN to identify the surgical
instruments/tools used to perform the surgical procedure. Based on the
high-level description of the crucial guidelines that should be obeyed
during a good surgical procedure, we obtain the monitoring code that
identifies a bad behaviour in a surgical procedure using formal moni-
tor synthesis techniques. For example, any violation in the tools’ usage
during the surgical procedure can alert the surgeons to take immediate
corrective measures. To illustrate the practical applicability of the pro-
posed approach, we consider the case of cholecystectomy (laparoscopic)
surgery and illustrate how our framework can assist a surgeon during a
laparoscopic surgical procedure. We implemented the proposed frame-
work, and validated its technical feasibility using (offline) video samples
of the surgical procedure from the modified Cholec80 dataset.

Keywords: Deep learning · Faster R-CNN · Formal methods ·
Laparoscopic surgery · Surgical tool detection

1 Introduction

In the surgical field, nowadays people not only care about the treatment results,
but also the comfort and minimal invasion during the treatment, which has given
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rise to the new era of Minimally Invasive Surgeries (MISs). MIS emerged in the
1980s, which include surgical techniques that limit the size of incisions needed.
Here, surgeons make tiny cuts in the skin, and insert small tools, cameras, and
lights to operate the patient. In the last 20 years, many surgeons have come to
prefer MIS over the traditional (open) surgeries since, it requires smaller incisions
and cause less pain, scarring, and damage to healthy tissue. Thus, the patient
will have a faster recovery and shorter hospital stays (up to 50% reductions for
some procedures [17]).

There have been constant innovations to improve MIS that include tech-
nological innovations in instruments used (such as laparoscopic instruments),
novel clinical measurements, and MIS-associated technologies (such as surgical
robotics, image guidance systems, and advanced signal processing methods).
However, MIS is accompanied with many visualization and control challenges
(images from the camera are from unnatural positions with unintuitive scale).
There are problems like inadequate depth perception, limited range of motion,
and difficulty gauging the force to be delivered in the tissue. These are often time
taking and have risks of complications due to anesthesia, bleeding and infections.

MIS require surgeons to have a particular skill set to gain excellence and
optimized outcomes. Experience and assistance (manual or automated) during
surgeries reduces operative time and complications, especially in complex surg-
eries. Thus, giving high confidence to the surgeons. The assistance provided dur-
ing surgeries mainly includes, experts giving immediate feedback on the ongoing
surgery performed by surgeons. According to a study report1, there is a critical
shortage of expert surgeons (as supervisors), and unavailability of considerable
time from them to observe and provide feedback on the surgeries performed
by the trainee surgeons. Thus, there is a need to adopt the automated way of
providing feedback to the surgeons during the surgery.

The automated assistance through observation and feedback, may include
various Artificial Intelligence (AI) techniques to analyze a surgical procedure. For
example, Machine Learning (ML) models can be trained on surgical procedure
videos, which can detect various patterns and forecast health risks/illness as well
as treatments, to ease the overall process for surgeons. In the last decade, we
have seen tremendous improvements in the field of AI/ML. These ML techniques
have been applied in robot-assisted surgeries [22] for better performances. For
example, ML techniques have successfully performed detection of the surgical
tools, so that we can analyse the movement of each tool during a complex surgery
and can generate feedback for the surgeons [23]. This kind of rich analysis using
Deep Learning (DL) [19] can help upgrade the surgical procedure. These ML
approaches combined with techniques providing rigorous correctness guarantees,
such as formal methods, help in building robust and reliable systems.

Designing and developing critical systems require the use of formal meth-
ods and model-driven developments. Since formal specification languages have a

1 The Complexities of Physician Supply and Demand: Projections From 2018 to 2033,
Prepared for the AAMC by IHS Markit Ltd., June 2020, https://www.aamc.org/
media/45976/download?attachment.
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precise syntax and semantics, formally defining policies will make them clearer.
It will eliminate ambiguities and inconsistencies, and make them more easily
amenable to automatic processing and code synthesis with certain correctness
guarantees.

Although there are few frameworks [3,38], with absolute guarantees of cor-
rectness, but these do not provide specific automated feedback to the surgeons
during a surgery. Thus, we propose a framework for providing automated surgical
procedure assistance, using DL and formal runtime monitoring approaches. We
use Faster R-CNN [41], a region-based Convolutional Neural Network (CNN) to
identify/detect the surgical instruments/tools that appear during a surgery. The
critical policies that should be followed in a good surgical procedure are formally
defined (expressed as Valued Discrete Timed Automata, see Sect. 4). Based on
the monitor synthesis approaches proposed in [29,37], the runtime monitors are
generated directly from these policies. These monitors will take the array of iden-
tified tools from CNN and detect any violation of the critical policies during the
surgical procedure and alert the surgeons about it. This ensures inappropriate
behaviour (deviations from policies) during a surgical procedure are identified.

To demonstrate the adaptable use of the proposed approach, we consider the
case of cholecystectomy (laparoscopic) surgeries. Cholecystectomy is a type of
laparoscopic surgery performed in the gall bladder, with the aid of a laparoscope
(video camera). We illustrate how our framework can assist a surgeon during a
laparoscopic surgical procedure, by identifying bad behaviours and alerting the
surgeons about it. We implemented the proposed framework2, and the technical
feasibility of the approach is validated using (offline) video samples of the surgical
procedure from the modified Cholec80 dataset [46].

2 Overview of the Proposed System

As discussed in Sect. 1, we work on automated surgical procedure assistance
framework in a (real-time) surgery using DL and formal runtime monitoring
approaches. We do so by providing feedback to the surgeons during a surgery,
so that it can be carried out effectively even without the expert’s supervision.
Here is an overview of our work: we employ DL approaches to detect tools that
are used during a surgical procedure. Based on the knowledge of the clinical
guidelines from the domain expert surgeons, the key policies to be followed for
safe surgical procedure can be understood. From that understanding, we formally
specify the policies from which a monitor is synthesized. It will identify any bad
behaviour during a surgical procedure by looking at the sequence, time of tools’
occurance, etc. and intimate the surgeons about it. In this section, we give the
architecture (shown in Fig. 1) of the work which comprises of two modules: tool
identification module and monitoring module. We describe each module and
discuss this framework for a laparoscopic surgery.

2 The framework is available at https://doi.org/10.5281/zenodo.6899355 .

https://doi.org/10.5281/zenodo.6899355
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Fig. 1. Architecture of the proposed system

Software Architecture: The first module is the tool identification module. It con-
sists of an input source (video camera) which captures frames/images in real
time and processes it (processing may involve various transformations, such as
image enhancement, scaling, etc.) to make it suitable to be fed to the Deep Neu-
ral Network (DNN) model. The DNN model is trained on the surgery dataset
which takes the processed frame and identifies/detects the surgical instruments
used in the frame (if any). It returns an array having a boolean entry for each
tool’s presence or absence. This array is forwarded to the monitoring module
which will analyze the tool’s occurrence against some policies.

The clinical guidelines for a safe surgical procedure, from domain expert sur-
geons can be formally defined as policies. In the monitoring module, the monitor
is synthesized directly from these policies, which will take the tool occurrence
array and will keep track of the specified policies being obeyed by the received
arrays. It will report violations of the policies, if any. At last, the violation
message is sent to the system which will convey it to the surgeon to take the
corrective action.

The above architecture generalizes well to many surgeries having an anno-
tated dataset to train the model. In order to use the proposed architecture to
a specific surgery, the appropriate transformations have to be applied to the
captured frames. Then, these frames have to be fed to the DNN model that
has been trained on the corresponding surgery’s dataset. Also, relevant policies
have to be understood from the experts and specified formally, which covers
“good” practices during a surgery (or resp. “bad” practices that may happen in
a surgery) to synthesize a monitor.

As stated in Sect. 1, we consider laparoscopic surgeries, which are MIS, per-
formed in the abdomen (gall bladder), with the aid of a laparoscope. A laparo-
scope is a lean slender shaped tool with tiny video camera and light on the tip.
With few millimeters small incisions, the surgeon inserts different instruments,
including the laparoscope through the abdominal wall, and performs the surgery
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while visualizing it on a video screen. One can even generate a diverse multitude
of realistically looking synthetic images, by image-to-image translation method,
from a simple laparoscopy simulation, to gather ample data [30]. We take modi-
fied Cholec80 dataset [46] of cholecystectomy (laparoscopic) surgery, for training
the DNN model of the tool identification module. For illustrating our approach,
we consider the following set of example policies for the laparoscopic surgeries
(specifying a good surgical behaviour):

Example 1 (Example policies). Consider simple policies P1 and P2, defined
below, which analyzes tool usage patterns and are used to validate a surgical
procedure:

– P1: “Tool T2 (e.g. Irrigator) should not be used after tool T3 (e.g. Specimen
Bag)”;

– P2: “Tool T1 (e.g. Bipolar) should not be used for more than 20 t.u. contin-
uously”.

One can also include other policies, for example, a policy which keeps a count
on the usage of tool in the complete surgery, etc.

In the following sections, we will see further details of each of the modules
presented in the architecture (shown in Fig. 1).

3 Surgical Tool Detection

One of the most complex challenges in computer vision is object detection.
Researchers have been developing various algorithms for improvements and have
achieved remarkable results. Traditional object detection methods like the Viola-
Jones detector (2001) [47], HOG (2006) [8] and DPM (2008) [12] have performed
quite well. These methods have their limitations in dealing with images and
videos because of their complex features.

Since the last decade, we have seen tremendous improvements in ML and DL
techniques. When DL is used for object detection, it has shown to achieve state-
of-the-art results. DL-based object detector solves object detection in two steps:
1) finds an arbitrary number of objects in the frame, 2) classify every object and
estimate its size with a bounding box. One can divide these tasks into stages
(like Fast-RCNN [15]) to make the process easier to achieve better results. Some
methods, like YOLO [40], combine both tasks into one step to achieve better
performance but at the cost of accuracy. We have used Faster-RCNN for tool
detection, a two-stage object detection algorithm which gave high precision and
accuracy.

3.1 Faster-RCNN

Faster R-CNN Fig. 2 is a region-based CNN technique mainly developed for
object detection. The approach is inclined towards real-time object detection.
Faster R-CNN introduced Region Proposal Network (RPN), which increased its
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performance over Fast R-CNN [15]. RPN takes an image as input and gives a
set of proposed regions where objects can be found, as output. We are using a
pre-trained CNN model of VGG-16 with 13 sharable layers. It is connected to
two fully connected layers- a box regression layer (reg) and a box classification
layer (cls). We are using a 3 × 3 spatial window size on this input image to
generate region proposals.

Fig. 2. Architecture of Faster R-CNN [41]

Faster R-CNN also uses the concept of anchors Fig. 2, which are fixed-sized
boxes generated, having their centre at the sliding window. Anchors uses scales
and aspects ratios; we have used three scales and three aspect ratios in our model,
resulting in a total of 9 anchor boxes at each sliding window position. Faster R-
CNN assigns a binary objectness label to each anchor, indicating the presence of
an object in it. To the anchors with positive objectness label, it further assigns
positive or negative labels depending on their Intersection over Union (IoU) with
any ground truth box. Positive labels are assigned to anchors with IoU greater
than 0.7, and negative labels are assigned to anchors with IoU less than 0.3.
Only positive and negative labelled anchors are used for the training of RPN.

Now, we define our multi-task (classification and regression) loss function
[41] as:

L ({pi} , {ti}) =
1

Ncls

∑

i

Lcls (pi, p∗
i ) + λ

1
Nreg

∑

i

p∗
i Lreg (ti, t∗i )

where:

– i: index of the anchor
– pi: predicted probability of anchor i being an object
– pi

∗: label for ground truth anchor {1: positive , 0: negative}
– ti: vector for 4 parametrised coordinates giving the position of the positive

anchor
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– ti∗: ground truth box coordinates associated with a positive anchor.
– Ncls: normalising factor for classification loss.
– Nreg: normalising factor for regression loss.
– λ: balancing factor
– Lcls: log loss over two classes (object or not)
– Lreg : robust loss (smooth L1 loss)

We also parametrise each coordinate of bounding box regression as:

tx =
(x − xa)

wa
; ty =

(y − ya)
ha

tw = log
(

w

wa

)
; th = log

(
h

ha

)

t∗x =
(x∗ − xa)

wa
; t∗y =

(y∗ − ya)
ha

t∗w = log
(

w∗

wa

)
; t∗h = log

(
h∗

ha

)

where:

– x, y are box centre coordinates
– w, h are width and height of the box
– x, x∗, xa are for predicted box, anchor box and ground truth box respectively.

Note: We are calculating regression loss only for positively labelled anchors,
that’s why p∗

i Lreg.

3.2 Dataset

In 2016, M2CAI3 had launched two open online challenges- M2CAI tool presence
detection challenge and M2CAI workflow (phase) detection challenge. Cholec80
provided a dataset having 80 videos with phase and tool annotations for these
challenges. Fifteen videos were used in the M2CAI tool presence detection chal-
lenge (10 for training and validation, 5 for testing). These released videos are 30
to 70 min long, having 25 frames per second (fps) but later sampled to 1 fps to
obtain around 23000 total frames. These frames had been binary classified for
presence or absence of 7 tools - Grasper, Hook, Scissors, Specimen bag, Bipolar,
Clipper and Irrigator (shown in the Fig. 3).

We have used a modified version of this dataset, released by Stanford Uni-
versity [19], since we want to do both tool detection and localisation in a frame.
It contains 2811 frames having spatial bounding boxes annotations around the
tools done by experts. Out of these 2811 frames, 2248 and 563 are used for train-
ing and validation respectively. These frames contain at most three tools being
used simultaneously. Table 1 shows number of annotated images for each tool in
this dataset.
3 Workshop and challenges on modeling and monitoring of computer assisted inter-

ventions, http://camma.u-strasbg.fr/m2cai2016/index.php/program-challenge/.

http://camma.u-strasbg.fr/m2cai2016/index.php/program-challenge/
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Fig. 3. Showing all 7 tools used in our dataset. (Source [19])

Table 1. Annotated images for each tool in our dataset

Tools Number of annotated images

Bipolar 450

Clipper 400

Grasper 1422

Hook 308

Irrigator 485

Scissors 388

Specimen Bag 476

3.3 Implementation

RPNs are trained by backpropagation using Stochastic Gradient Descent (SGD).
In this strategy, we use N(= 256) randomly sampled positive and negative
anchors. This mini-batch is selected so that the ratio of positive to negative
anchors is close to 1:1, ensuring the model to be unbiased. We use transfer
learning for initializing weights in our RPN. Since we use VGG-16, we initialise
our first 13 layers with the weights of the model pre-trained on ImageNet classifi-
cation, through which it learns to detect basic features. We fine-tune our network
by training it with our dataset. In the training part, we set our learning rate to
0.001 and use ReduceLRonPlateau (built-in function of Keras) to decrease it by
a factor of 10, if it remains constant for five epochs. Thus, we made our model’s
learning rate adaptable which improved precision and accuracy. We implemented
this Faster R-CNN in our surgical tool detection. Since, the size of the image in
our dataset is 334 × 596, thus we keep our image resizing to 450 to ensure that
our trained model also works well for tool detection in surgical videos with a
frame size of 460 × 680.

Anchors have different scales and aspect ratios. We have used anchors with
box areas of 1282, 2562 and 5122 pixels and with aspect ratios of 1:1, 1:2 and
2:1. These anchor boxes per sliding window were found sufficient to cover most
objects.

The usage of Non-Maximal Suppression (NMS), which helps in predicting the
correct box around the tools was required. We have used NMS on the proposal
regions based on classification scores. Since tool localisation does not involve a
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complete tool, we have set the NMS to 0.05. This means that if there are two
predicted boxes for the same tool with more than 5% common area, NMS will
remove one with lesser probability.

3.4 Model Performance

We evaluate our model performance on test images and videos (of different
lengths varying from 30 to 70 min). We used 563 annotated surgical images and
5 videos to test our model (testing was done by comparing the boolean vector
indicating the presence or absence of tools for each frame, with the given ground
truth boolean vectors). Figure 4 shows 1 to 3 tools detected in various frames by
our framework.

Fig. 4. Surgical tools in frames having 1 to 3 tools detected by our framework

Our model processed around 5 fps and provided an average precision and
accuracy of 88.21% and 95.82% for video level detection (see Table 2).

4 Formal Runtime Monitoring

Runtime Verification (RV) [2,10] techniques allow one to check if a run of a
system under observation complies with (or violates) a specified policy/property.
Because the focus is on verifying the current execution/trace of the system being
monitored, a formal model of the system is not required (system being monitored
is usually considered as a black-box). As a result, RV techniques are lightweight,
and issues like state explosion are avoided because always one (current) execution
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Table 2. Model’s performance on test videos

Videos Accuracy Precision

Video 1 96.11 90.56

Video 2 94.93 82.84

Video 3 97.60 92.73

Video 4 95.77 86.14

Video 5 94.67 88.79

Average 95.82 88.21

of the system is monitored/verified. An RV monitor does not change the system’s
execution/behaviour; instead, it monitors and examines whether the system’s
actual execution is meeting the specified properties.

Runtime Enforcement (RE) [31,32] approaches are an extension of the RV
approachs, concentrating on ensuring that the executions of systems being mon-
itored are consistent with some desired policy. An enforcement monitor converts
an (untrustworthy) input execution (series of events) into a policy-compliant
output sequence of events (e.g., defining a desired safety requirement). In order
to do so, an enforcement monitor performs certain evasive actions to prevent the
violation. These evasive actions might include blocking the execution, modify-
ing input sequence by suppressing and/or inserting actions, and buffering input
actions until a future time when it could be forwarded.

The different monitoring frameworks differ on the power of the enforcement
mechanism (i.e. the different evasive actions it can take) and the supported pol-
icy specification language. For example, monitors in [11,33] allowed buffering
of the input events and used automata to specify the policies ([33] used timed
automata [1] to specify real-time policies); whereas monitors for reactive and
cyber-physical systems in [36] allowed altering the input events and used Val-
ued Discrete Timed Automata (VDTA) to specify the policies. VDTA supports
valued signals, internal variables, and complex guard conditions, ensuring com-
patibility with real-world cyber-physical and industrial systems.

In this work, we employ formal runtime monitoring approaches for “assess-
ing” a surgical procedure and thus providing assistance to the surgeon, in the
form of feedback during the surgeries. We write policies and synthesize “veri-
fication” monitor out of it. We use approaches proposed in [29,37] to synthe-
size the monitor, as these approaches synthesize the monitoring code directly
from the specified policies. The generated monitor also ensures correctness and
safe behaviour in safety-critical systems. These approaches use VDTA to specify
policies which is an automaton with a finite set of locations, a finite set of dis-
crete clocks used to represent time evolution, and external input-output channels
which represents system data. They also have internal variables that are used
for internal computations.

We mainly use the monitor synthesis mechanism to realize some of the
requirements or a component, in the overall system automatically. As illustrated
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in Fig. 5, (verification and enforcement) monitors are seen as modules outside a
(black-box) system, which take as input a stream of events (output of the sys-
tem being monitored) and verify or correct this stream according to the policy.
In this work, we mainly utilize the monitor synthesis approaches to realize a
component (the monitoring module of the proposed system as shown in Fig. 5)
that deals with providing feedback to the surgeons during a surgery. Instead of
implementing that component, we rely on synthesis of the component from high-
level policies using formal monitor synthesis approaches, so that the component
is correct-by-construction.

Fig. 5. Formal RV monitoring context: usual Vs. our system

Example 2. Let us define policies P1 and P2 of Example 1, via VDTA.
Let I = {T1, T2, T3, T4, T5, T6, T7} be the external boolean input channels
and the set of clock variables V = {v}4 The alphabet Σ = 2I =
{0000000, 0000001, · · · , 1111111}, where each event will be denoted as a bit-
vector. For example, {T1} ⊆ I is denoted as 1000000 ∈ Σ, and {T1, T4} ⊆ I is
denoted as 1001000 ∈ Σ. Figure 6 shows policies P1 and P2 where, L = {l0, l1, l2}
is the set of locations, with l0 as the initial location and {l0, l1} as the accepting
locations in both the automata. According to policy P2, from initial state l0,
upon input event !T1

5 (indicating absence of tool T1 in the captured frame), the
system remains in same state (self-loop on l0). The transition from location l0 to
4 VDTA can handle more expressive policies. Its entire potential (e.g., the output

channels, the internal variables) has not been realised here.
5 !T1 denotes set of all the events in Σ, where tool T1 is absent (bit corresponding to T1

is 0 and other bits can be 0/1), e.g., (0000000), (00000001), · · · , (0111111). Similarly,
T1 denotes set of all the events in Σ, where tool T1 is present (bit corresponding to
T1 is 1), e.g., (1000000), (1000001), · · · , (1111111).
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l1 is taken upon input event T1 (indicating presence of tool T1 in the captured
frame), with clock v reset to 0. From location l1, if the input event is !T1, then
the system again goes back to location l0, otherwise remains at l1 till the value
of the clock v is < 20. With input event T1, when v is ≥ 20, it goes to dead
location6 l2, thus ensuring adherence to the policy. Policy P1 can be similarly
expressed as a VDTA as illustrated in Fig. 6.

Fig. 6. Automaton for policy P1 (on left) and P2 (on right) (Color figure online)

Remark 1. Note that, in this work, we slightly modify the approach of monitor
synthesis, proposed in [29,37].7.

RV Monitor from VDTA: In this work we synthesize an RV monitor from policies
expressed as VDTA. An RV monitor deals with checking the observation of
the current execution (denoted as σ) satisfies or violates the policies and gives
verdict accordingly. There are different RV frameworks, such as [2], where the
verdicts provided are {True, False, ?}. Verdict True means every continuation
of σ satisfies the policy, verdict False means there is no continuation of σ which
satisfies the policy and verdict “?” means unknown (no conclusive verdict can be
provided). There are other frameworks, such as [34], which refines the unknown
verdicts into Currently true and Currently false. Verdict Currently true indicates
that the current observation of the execution satisfies the policy but not every
continuation of it satisfies the policy and similarly, Currently false indicates
that the current observation of the execution violates the policy but not every
continuation of it violates the policy.

In this work, we define and implement our RV monitoring framework for
VDTAs, where a monitor for a policy defined as a VDTA takes a stream of
events over Σ as input (current observation), and emits a verdict in {True,
False, Currently true, Currently false}.
6 A dead location (denoted by red squares throughout the paper) is a location in the

automaton, from where there is no path in the automaton from that location, to
reach an accepting location.

7 We synthesize a verification monitor instead of an enforcement monitor. Thus, our
model will give verdicts in the form of feedback when it detects a violation and will
not exercise its power of correcting faulty inputs i.e., editing erroneous inputs/out-
puts using edit functions as proposed in the followed paper.
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5 Experimentation

To evaluate the performance of our proposed framework, we implemented the
architecture, given in Fig. 1. This section shows the experimentation of the
implemented architecture. We build the module for tool identication (following
Sect. 3.1), take the dataset (discussed in Sect. 3.2) and evaluate the framework
against some simple policies (given in Example 1).

The captured and processed frame is supplied to the tool identification mod-
ule (built using the approaches discussed in Sect. 3), which identifies the tools
present in the current frame. It yields an array of boolean variables showing pres-
ence or absence of each tool. The obtained array is then passed to the monitoring
module (built using the approaches discussed in Sect. 4). It contains monitors
synthesized from the specified policies. For experimentation, we consider policies
P1 and P2 defined in Example 1 of Sect. 2 with I = {T1, T2, T3, T4, T5, T6, T7}
(the boolean tool array) and the set of clock variables V = {v}. These policies
are defined in the intended format as illustrated in 1.1 and as automata illus-
trated in Fig. 6. The policies are combined using standard product construction
[37] as P1 ∩P2 which corresponds to the conjunction of both policies P1 and P2.
The monitor is directly synthesized for the policy defining P1 ∩ P2.

The monitor (C code synthesized from high-level policies) integrated with
the system takes the tool array and checks if the policies are obeyed or not. It
will raise an alert if the surgical procedure is not carried out according to the
specified policies.

i n t e r f a c e o f t o o l d e t e c t i o n {
in bool T1 , T2 , T3 , T4 , T5 , T6 , T7 ;
out i n t 1 6 t r e s ; }

po l i c y p1 o f t o o l d e t e c t i o n {
s t a t e s {

s0 {
−> s0 on !T3 ;
−> s1 on T3 ;}

s1 {
−> s1 on !T2 ;
−> v i o l a t i o n on (T2) r ecove r r e s := 1;}}}

po l i c y p2 o f t o o l d e t e c t i o n {
i n t e r n a l s {

dt imer t v ;}
s t a t e s {

s0 {
−> s1 on T1 : v :=0;
−> s0 on !T1 ;}

s1 {
−> s1 on (T1 and v<20) ;
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−> s0 on !T1 ;
−> v i o l a t i o n on (T1 and v>=20) r ecove r r e s := 2;}}}

Listing 1.1. Policies in the intended format

For example, consider policy P1 and received input trace σ = (0000110) ·
(0010010) · (0100000). From initial location l0, upon input event “0000110”, the
automaton remains in l0; from l0, upon input event “0010010”, the automaton
makes a transition to l1, (the bit corresponding to tool T3 is 1, indicating pres-
ence of tool T3); and from l1, upon input event “0100000”, the automaton goes
to dead location l2, (the bit corresponding to tool T2 is 1, indicating presence
of tool T2), since it violated the policy (Policy P1 abstained the use of a tool T2

after tool T3, which may signify carelessness that should be avoided). Thus, in
this case the monitor will give verdict as False and will reset itself and continue
with the next event.

Upon reception of a False verdict, the system will raise an alert that the
surgery is not being performed as per the specified policies.

Similarly, when a surgeon uses tool T1 for a longer (than usual) period of
time (which may point to rough handling of tissue resulting in tissue damage),
then it will violate policy P2 and the monitor will raise a similar alert.

These alerts will give instant feedback to the surgeon, and he can be more
careful during the surgical procedure; thus providing assistance to the surgeon.
One can set different types of alerts depending on the type of policies. For
example, for some critical policies, where violating the policies can have severe
consequences, alerts can be sending notifications to the senior surgeons; whereas,
for the other soft policies, the alerts can be allocating resources (likely to be used
in future) to avoid preoperative delays.

Performance Discussion: Our proposed system spends considerable time in tool
identification only, since it employs DL, whose execution time is more dependent
on the processing power of the available architecture. Our architecture/machine
(Intel(R) Core(TM) i7-9700K CPU @ 3.60GHz with Quadro RTX 4000 and 8GB
Graphics RAM/GPU) can process around 5 fps. Thus, the overall architecture
ensures real-time feedback to the surgeons with the considered policies.

Moreover, our proposed architecture can utilize state-of-the-art trained model
benefits and further enhance its overall performance. In one recent published
work on surgical tool detection using cascading of CNN [48], researchers were
able to detect tools in around 0.023 s. Use of this model in our tool identification
module will further bring down frame processing time. Thus, it can process more
than 40 fps.

The framework is implemented and is available for download at
https://doi.org/10.5281/zenodo.6899355 .

6 Related Work

Several object detection and formal runtime monitoring approaches are related
to the one used in this paper. We give a comparison with approaches for these
in Sect. 6.1 and Sect. 6.2 respectively.

https://doi.org/10.5281/zenodo.6899355
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6.1 Object Detection

Object detection has received a lot of research attention in recent years because
of its tight association with the well known video analysis and image processing
techniques. Object detection tasks can be broken down into two stages - object
localization (location of objects in the image) and object classification (category
of each object present).

Handcrafted features and shallow trainable structures are the foundations of
traditional object identification systems. Feature extraction in these traditional
methods uses SIFT [26], HOG [8] and Haar-like [25]. Classification of objects
is done using traditional classifiers like Supported Vector Machine (SVM) [7],
AdaBoost [13], Deformable Part-based Model (DPM) [12] etc. These methods
have their limitation e.g. it cannot obtain complex features in images or videos.

With the advent of DL [24], image classification improved significantly.
Because of the deep architecture of DNN and R-CNN [16], these were able
to easily learn the complex features. Also, large datasets and robust training
methods got rid of the need of manual feature extraction. Many improvements
in the R-CNN models have been proposed. Fast R-CNN [15] further optimizes
classification and bounding box regression tasks. Faster R-CNN [41] generates
region proposals using an additional subnetwork. YOLO [40] uses a fixed-grid
regression to detect objects. These models have made real-time object detection
feasible with improved accuracy.

Robot-assisted surgeries will be widely used in the future and surgical tool
detection is the first step towards it. DL approaches have shown excellent results
in improving its performance. The M2CAI tool detection challenge8 helped to
achieve new benchmarks in surgical tools detection. There are several studies
done to address tool detection in videos and obtain a richer analysis of surgeries.
Sarikya et al. [43] used multi-modal CNN for localization and fast detection of
tools in Robot-assisted surgeries. In 2019, Zhao et al. [49] proposed a method
using two CNNs designed for detecting coarse and fine locations of surgical
tools. Jin et al. [19] used a two-stage framework of Faster R-CNN to localize and
detect tools in a frame, which was later used for surgical skill assessment in a
surgical video. Chao et al. [5] proposed a one stage framework using a modified
YOLO [40] architecture, which increased the detection speed of surgical tools to
48.9 fps. Nwoye et al. [28] used CNN + Convolutional LSTM (ConvLSTM) to
model temporal dependencies in the motion of surgical tools, which resulted in
multiple tools tracking and detection simultaneously.

6.2 Formal Runtime Monitoring

Formal verification is the process of checking whether a design satisfies the spec-
ified requirements/policies. The policies can be expressed using high-level for-
malisms such as automata [29,33,35–37,44] or as temporal logic [2].
8 Tool presence detection challenge results, Workshop and Challenges on Modeling

and Monitoring of Computer Assisted Interventions, http://camma.u-strasbg.fr/
m2cai2016/index.php/tool-presence-detection-challenge-results/.

http://camma.u-strasbg.fr/m2cai2016/index.php/tool-presence-detection-challenge-results/
http://camma.u-strasbg.fr/m2cai2016/index.php/tool-presence-detection-challenge-results/
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Model checking [6] is an automated static formal verification approach to
check if the policies are satisfied by an abstract formal model of the system
or not. RV [2,10] and RE [31,32] approaches do not require a formal model of
the system since only a single execution of the system is considered. RV (RE)
approaches checks at runtime if a run of a system under scrutiny satisfies a given
correctness policy or not (enforces them in the latter case).

DL is increasingly used in domains like autonomous driving [18], healthcare
[14], cybersecurity [27], etc. Designing these learning based systems that have
strong, provable, assurances of correctness w.r.t. the policies is always a focal
point. This has increased the discussions on verified artificial intelligence [42,45].
The very first attempt to formally verify a neural network was done by Pulina
and Tacchella [39]. They came up with techniques to verify that the output
of a fully-connected neural network with sigmoid activations is always within
specified safety bounds. Later, [9,20,21], proposed approach for the verification
of neural networks employing specific activation functions.

The adoption of DL in medical and health-care systems to facilitate a pro-
cedure has increased complexity of the system and made it more susceptible to
errors. Use of formal methods, along with advanced design, control and deploy-
ment paradigms, is often recommended to guarantee the correctness and safety
of these medical systems. In the attempt, Bresolin et al. [3] discussed the appli-
cations of formal methods to verify the properties of control systems built for
autonomous robotic systems that performed surgeries. They demonstrated the
automatic execution of simple tasks like puncturing. Brunese et al. [4] repre-
sented patient magnetic resonances as formal models and predicted the prostate
cancer Gleason score. Pore et al. [38] proposed a safe deep reinforcement learning
framework that guarantees safety criteria for automated surgical tasks.

The works in [3,38] deals with autonomous robot-assisted surgeries safe-
guarded by formal methods. But performing fully automated surgeries is quite
complex and less reliable. Upskilling of the existing surgeons by providing assis-
tance to them during complex surgeries can be really helpful. To the best of our
knowledge, our framework is the first to develop an automated surgical proce-
dure assistant using DL and formal methods. Thus, reducing complications and
needless patient damage during MIS.

7 Conclusion and Future Work

This paper presents a complete framework using DL and runtime monitoring
for developing an automated surgical procedure assistant. In this approach, we
use Faster R-CNN to identify the surgical tools used to perform the surgical
procedure. Then, we specify some policies on tools’ usage pattern that should be
obeyed during a good surgical procedure. We obtain a monitoring code out of
the policies. It will identify a bad behaviour in a surgical procedure. This way,
we can catch any violation in the tool’s usage during the surgical procedure and
can alert surgeons to take immediate corrective measures.

To illustrate the practical applicability of the proposed framework, we con-
sider the case of cholecystectomy (laparoscopic) surgery. We have implemented
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the framework and have evaluated its technical feasibility using some example
properties on (offline) video samples of the surgical procedure from the modified
Cholec80 dataset.

In the future, we plan to enrich this framework with diverse policies to cover
a large number of safe behaviours and then use this framework for robot assisted
surgeries.

Acknowledgment. Gaurav expresses gratitude to Prof. Neelam Sinha for her invalu-
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mation Technology, Bangalore organised by Indian Academy of Sciences. The work
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Abstract. We define a fragment of metric first-order temporal logic
formulas that guarantees the finiteness of their table-representations. We
extend our fragment’s definition to cover the temporal dual operators
trigger and release and show that our fragment is strictly larger than
those previously used in the literature. We integrate these additions into
an existing runtime verification tool and formally verify in Isabelle/HOL
that the tool correctly outputs the table of constants that satisfy the
monitored formula. Finally, we provide some example specifications that
are now monitorable thanks to our contributions.

Keywords: Runtime verification · Relational algebra · Safety
relaxation

1 Introduction

Runtime verification (RV) complements other techniques for system quality-
assurance such as testing or model checking [16]. It allows monitoring proper-
ties during a system’s execution by indicating when they are violated. Metric
first-order temporal logic (MFOTL) is among the most expressive temporal and
declarative specification languages for RV [7]. It adds intervals to the logic’s
temporal operators to model quantitative descriptions of time [5,14]. For these
reasons, it is often used in monitor implementations [4,11,19].

Besides being expressive, monitors should also be efficient and trustwor-
thy. Efficiency allows them to be deployed more invasively by course-correcting
the evolution of a system [12], while trustworthiness makes them reliable in
safety-critical applications. Recently, Verimon, an MFOTL-based RV-algorithm,
has achieved high expressivity [22] and efficiency [3] while staying trustworthy
because of its formally verified implementation in the Isabelle/HOL proof assis-
tant [19]. It uses finite relations to represent the set of valuations that make a
specification true which contributes to its efficiency. Nevertheless, this feature
also makes it inherit well-known issues from relational databases [8] forcing it
to operate inside a fragment whose formula-evaluation guarantees finite out-
puts. This fragment is defined inductively on the structure of the formula via a
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predicate safe-formula which should not be confused with the notion of safety
property from model checking [15]. The set of safe formulas that Verimon admits
is rather restrictive. The fact that well-known temporal operators such as his-
torically are immediately dubbed unsafe if they have free variables, is evidence
of this. Here, we address this particular issue.

Our main contribution consists of the definition (Sect. 3) of a larger fragment
of MFOTL-safe formulas, its formalisation in the Isabelle/HOL proof assistant,
and its integration into Verimon’s first implementation. This generalisation of
safety enables us to monitor a wider variety of future and past operators includ-
ing globally and historically. To address safety of formulas involving these opera-
tors in conjunction with other connectives, we introduce the set of dynamic free
variables (dfvi α) of a formula α at time-point i. It approximates the set of those
free variables that contribute to the satisfiability of a formula at a specific point
of a system’s execution. Safety is then decided by computing a set of allowed sets
of dynamic free variables and checking its nonemptiness. Essentially, we define
a set of safe sets of free variables (ssfv) in such a way that whenever this set is
nonempty, meaning that α is safe, dfvi α ∈ ssfvα.

Furthermore, with the view of integrating our generalisation into the latest
optimised version of Verimon [22], we explicitly add conjunctions to the syntax
of our implementation. This involves defining safety for specific cases where one
of the conjuncts is an equality, a constraint, or the negation of a safe formula.
To go beyond the developments in the optimised version, we also (Sect. 4) add
since and until’s dual operators, trigger and release respectively, to Verimon’s
syntax. We therefore also extend Verimon’s monitoring algorithm with functions
to evaluate these operators and prove them correct.

Our formalisation and proof of correctness (Sect. 6) of the extended monitoring
algorithm is also a major contribution of this work. It involves redefining proof-
invariants to accommodate dynamic free variables which largely reverberates in
the proofs of correctness for each connective. The formalisation and proofs are
available online, and corresponding definitions are linked throughout the paper
and indicated with the (clickable) Isabelle-logo .1 We add to the relevance of
our safety relaxation by providing examples (Sect. 5) that can be monitored due
to our additions. We discuss future work and our conclusions in Sect. 7.

RelatedWork. In terms of expressivity of other monitors, our work directly extends
the oldest Verimon version [19] by the above-mentioned additions. However, our
generalisation has not been applied to the latest Verimon+ [22] as we do not deal
with aggregators, recursive rules, or regular expressions. We foresee no issues to
adapt our approach to these other extensions. Verimon+ does not have an explicit
version of dual operators and deems historically and globally unsafe. A recent
extension [10], adds the dual operators and describes lengthy encodings to moni-
tor historically and globally. Yet, our work is complementary because of our larger
safety fragment. Another past-only, first-order monitor is DejaVu [11]. It uses

1 Readers wishing to download and see the files in Isabelle, must ensure they download
commit b4b63034eca0ccd5783085dececddb6c47cf6f52 of branch ssfvs.

https://bitbucket.org/jshs/monpoly/src/b4b63034eca0ccd5783085dececddb6c47cf6f52/thys/Relax_Safety/MFOTL/
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binary decision diagrams which can model infinite relations and thus, does not
require a notion of safety. In contrast, our work supports both past and bounded
future operators and, in general, it is hard to compare performance between both
RV-approaches [11,22].

Safety has been well studied for relational databases [1,6,8,13,21]. Kifer [13]
organises and relates various definitions of safety, and Avron and Hirshfeld [2] com-
plement his work by answering some of Kifer’s conjectures at the end of his paper.
More recently, evaluation of queries that are relatively safe has been explored [18].
Thereby, there is an approach to translate any relational calculus query into a pair
of safe queries where, if the second holds, then the original is unsafe (produces an
infinite output). Otherwise, the original query’s output is the same as the output of
the first one. A recent extension to the temporal setting [17] remains to be formally
verified and integrated into Verimon+. Arguably, using it as black boxes for the
monitoring algorithm would be less efficient than the direct integration we provide.

2 Metric First-Order Temporal Logic

In this section, we briefly describe syntax and semantics of MFOTL for the Veri-
mon implementation and introduce the problem of finite representations given an
MFOTL-formula. Following Isabelle/HOL conventions, we use x :: ′a to state that
variable x is of type ′a. The type of lists and the type of sets over ′a are ′a list and
′a set respectively. We implicitly use “s” to indicate a list of terms of some type, for
instance, if x :: ′a, then xs :: ′a list. The standard operations on lists that apply
a function f to each element (map f xs), get the nth element (xs ! n), output the
list’s length (length xs) or add an element to the left (x # xs) also appear through-
out the paper. The expression f ′ X denotes the set-image of X under f . We freely
use binary operations inside parenthesis as functions, that is we can write x+ y or
(+)x y. Finally, the natural numbers have type N.

The type of terms ′a trm simply consists of variables v x and constants c a with
x :: N and a :: ′a. The syntax of MFOTL formulas ′a frm that we use is

α ::= p † ts | t =F t | ¬F α | α ∧F α | α ∨F α | ∃F α |
YI α | XI α | α SI α | α UI α | α TI α | α RI α,

where p :: string , t :: ′a trm, ts :: ′a trm list and I is a non-empty interval of
natural numbers. We distinguish MFOTL connectives and quantifiers from meta-
statements via the subscript F and freely use well-known interval notation, e.g.
[a, b) = {n | a ≤ n < b} or [a, b] = {n | a ≤ n ≤ b}. Furthermore, we also write
m > I + n (and similar abbreviations) to state that m is greater than n plus any
other element in I. Finally, the above syntax implies usage of De Bruijn indices,
that is, ∃F p † [v 1,v 0] represents the formula ∃ y. p x y.

Verimon encodes valuations as lists of natural numbers, v :: N list where the
xth element of the list is the value of v x. That is, the evaluation of terms (!t) is
given by v !t (c a) = a and v !t (v x) = v !x. For the semantics, a trace σ, meaning an
infinite time-stamped sequence of sets, models the input from the monitored sys-
tem. The function τ σ i :: N outputs the time-stamp at time-point i :: N, whereas

https://bitbucket.org/jshs/monpoly/src/b4b63034eca0ccd5783085dececddb6c47cf6f52/thys/Relax_Safety/MFOTL/MFOTL_Formula.thy#lines-41
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Γ σ i outputs the corresponding set. When clear from context we use their abbre-
viated forms τi and Γi respectively. The time-stamps are monotone ∀i ≤ j. τi ≤ τj

and eventually increasing ∀n. ∃i. n ≤ τi. The sets Γi contain pairs (p, xs)where p is
a name for a predicate p :: string and xs is a list of values “satisfying” p. Formally,
the semantics are

〈σ, v, i〉 |= p † ts ⇔ (p,map ((!t) v) ts) ∈ Γi, 〈σ, v, i〉 |= ∃F α ⇔ ∃a :: ′a. 〈σ, a # v, i〉 |= α

〈σ, v, i〉 |= α ∧F β ⇔ 〈σ, v, i〉 |= α ∧ 〈σ, v, i〉 |= β, 〈σ, v, i〉 |= t1 =F t2 ⇔ v !t t1 = v !t t2

〈σ, v, i〉 |= α ∨F β ⇔ 〈σ, v, i〉 |= α ∨ 〈σ, v, i〉 |= β, 〈σ, v, i〉 |= ¬ α ⇔ 〈σ, v, i〉 	|= α

〈σ, v, i〉 |= XI α ⇔ 〈σ, v, i + 1〉 |= α ∧ (τi+1 − τi) ∈ I

〈σ, v, i〉 |= YI α ⇔ if i = 0 then false else 〈σ, v, i − 1〉 |= α ∧ (τi − τi−1) ∈ I

〈σ, v, i〉 |= α SI β ⇔ ∃j ≤ i. (τi − τj) ∈ I ∧ 〈σ, v, j〉 |= β ∧ (∀k ∈ (j, i] . 〈σ, v, i〉 |= α)

〈σ, v, i〉 |= α UI β ⇔ ∃j ≥ i. (τj − τi) ∈ I ∧ 〈σ, v, j〉 |= β ∧ (∀k ∈ [i, j) . 〈σ, v, i〉 |= α)

〈σ, v, i〉 |= α TI β ⇔ ∀j ≤ i. (τi − τj) ∈ I ⇒ 〈σ, v, j〉 |= β ∨ (∃k ∈ (j, i] . 〈σ, v, i〉 |= α)

〈σ, v, i〉 |= α RI β ⇔ ∀j ≥ i. (τj − τi) ∈ I ⇒ 〈σ, v, j〉 |= β ∨ (∃k ∈ [i, j) . 〈σ, v, i〉 |= α) .

Other operators can be encoded, e.g. true (� ≡ c a =F c a), eventually (FIα ≡ �UI α),
or historically (HIα ≡ ¬F FI¬F α). Moreover, trigger and release satisfy their dualities
with since and until, that is, 〈σ, v, i〉 |= α TI β ⇔ 〈σ, v, i〉 |= ¬F ((¬F α) SI (¬F β)) and
〈σ, v, i〉 |= α RI β ⇔ 〈σ, v, i〉 |= ¬F ((¬F α) UI (¬F β)). We do not encode them because
it leads to hard-to-follow case distinctions in Isabelle proofs.

Intuitively, for the formula α, a monitor outputs the set �α�i = {v | 〈σ, v, i〉 |= α}
at time-point i :: N. However, these sets are redundant and infinite, e.g. v1 = [4, 5],
v2 = [4, 5, 1] and v3 = [4, 5, 2, 7] are all elements of �p † [v 0,v 1]�i if Γ σ i = {(p, [4, 5])}.
For these reasons, Verimon makes valuations map variables x :: N that are not in
the set of free variables of α, x /∈ fvα, to None values of type ′a option. To address
redundancy, Verimon also focuses on valuations with fixed length equal to nfvα =
max ({0} ∪ ((+1) ′ fvα)), that is, the least number n such that if x ∈ fvα, then x <
n = nfvα. For example, v4 = [4, 5,None] satisfies p † [v 0,v 1] at i if it is a subformula
of α with nfvα = 4. Formally, the predicate wf -tuple n X v holds if length v = n and
∀i < n. v ! i = None ⇔ i /∈ X. Thus, the monitor outputs

�α�X
i,n = {v :: ′a option list | 〈σ, v, i〉 |=M α ∧ wf -tuple n X v},

where 〈σ, v, i〉 |=M α abbreviates 〈σ,map the v, i〉 |= α and the is the standard function
mapping optional values Some x :: ′a option to their concrete counterparts x :: ′a and
None to an unspecified value of type ′a.

Outputs �α�X
i,n are relations or, from a database perspective, tables of values satis-

fying α. For each subformula β of the monitored formula α, Verimon obtains the tables
�β�fv β

i,nfv α and uses them to compute �α�fv α
i,nfv α. For this, it includes common relational

algebra operations like the (natural) join (��), antijoin (�) and union (∪) of tables. How-
ever, these outputs can quickly become infinite if not treated carefully, e.g. for datatypes
with infinite carrier sets, �¬F α�X

i,n is infinite when �α�X
i,n is finite. Verimon uses the func-

tion safe-formula to define a fragment of MFOTL-formulas where finite outputs are guar-
anteed. For instance, tables for disjunctions �α ∨F β�

(fv α)∪(fv β)
i,n can only be computed

as �α�fv α
i,n ∪ �β�fv β

i,n when they are union-compatible, that is, they both have the same
attributes (columns) which safe-formula requires as fvα = fv β. Similarly, negations are

https://bitbucket.org/jshs/monpoly/src/b4b63034eca0ccd5783085dececddb6c47cf6f52/thys/Relax_Safety/MFOTL/MFOTL_Formula.thy#lines-211
https://bitbucket.org/jshs/monpoly/src/b4b63034eca0ccd5783085dececddb6c47cf6f52/thys/Relax_Safety/MFOTL/MFOTL_Table_Correct.thy#lines-97
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only allowed inside conjunctions �α ∧F ¬ β�fv α
i,n with fv β ⊆ fvα to safely compute anti-

joins.
This is why HI α as encoded above is not generally considered safe by itself. Extend-

ing MFOTL’s syntax to include trigger and release, encoding HIα ≡ (¬F �) TI α, and
defining safe-formula for these cases [10] is still unsatisfactory. Following the semantics
above, formulas α TI β remain unsafe when 0 /∈ I because they could be vacuously true,
i.e. if all j ≤ i satisfy τi − τj /∈ I. Yet, crucially for our purposes, older Verimon versions
deem some trivially true formulas like c a =F c a safe. They evaluate to unit tables 1n,
where 1n = {〈〉n} and 〈〉n :: ′a option list only has None repeated n times. In fact, 〈〉n is
the only valuation v that satisfies wf -tuple n ∅ v. In the next section, we take advantage
of this and define a notion of safety that allows an encoding of HI α with 0 /∈ I to be safe.

The formalisation of syntax and semantics of the dual-operators is a technical con-
tribution from our work. It involves routine extensions of definitions such as fvα but it
also requires adding properties about satisfiability of both operators. We add more than
400 lines of code to Verimon’s formalisation of syntax and semantics [19,20].

3 Relaxation of Safety

Here, we generalise Verimon’s fragment of safe formulas by introducing the dynamic free
variables dfv σ i α of α at i and its set of safe sets of free variables ssfvα . If αTI β
is vacuously true at i, then Verimon’s output is correct if it is equal to �αTI β�∅

i,n = 1n.
However, in its current implementation, this would only be provable for formulas such
that fv(α TI β) = ∅. Therefore, to define a larger fragment of evaluable formulas, it is
convenient to choose the correct set of attributes at time-point i. The function dfv σ i α
approximates the set of free variables that influence the satisfiability of α at i in the trace
σ. As with other trace-functions Γ and τ , we often use its abbreviated form dfvi α. It
is a semantic concept and we only need it to prove the algorithm’s correctness: outputs
are exactly the sets �α�dfvi α

i,nfv α for the monitored formula α at each i. The function ssfvα
approximates all the possible combinations of attributes that tables for α might have at
different time-points. It is recursively defined so that we can decide α’s safety by check-
ing ssfvα �= ∅, that is, we define is-safe α ⇔ ssfvα �= ∅. We describe our reasoning
behind the definition for each connective below and enforce various properties with our
definitions: on one hand, as they are sets of free variables, (i) dfv σ i α ⊆ fvα and (ii)⋃

ssfvα ⊆ fvα. On the other hand, to prove correctness, if the formula is safe ssfvα �= ∅,
then our set of attributes should be a witness for it: (iii) dfv σ i α ∈ ssfvα. For the full
formal definitions see also our Appendix A.

Atomic Formulas. All atoms p†ts are safe and their attributes do not change over time.
Thus, we define ssfv(p†ts) = {fv(p†ts)} and dfvi (p†ts) = fv(p†ts). Following Verimon,
we do not make v x =F v x safe as it is not practically relevant for us. Therefore, ssfv
maps equalities α ∈ {v x =F t, t =F v x, t1 =F t2} to {fvα} whenever fv t = ∅ (resp.
fv t1 = fv t2 = ∅), and to ∅ otherwise. Similarly, we define dfvi (t1 =F t2) = fv(t1 =F t2)
for all t1, t2 :: ′a trm and i :: N.

Conjunctions. If safe, each conjunct may have many combinations of attributes. More-
over, a join (��) outputs a table with all the attributes from its operands. Thus, if
ssfvα �= ∅ and ssfv β �= ∅, then ssfv(α ∧F β) = ssfvα � ssfv β where (�) is the pair-
wise union A � B = {a ∪ b | a ∈ A ∧ b ∈ B} . We follow Verimon+ and define

https://bitbucket.org/jshs/monpoly/src/b4b63034eca0ccd5783085dececddb6c47cf6f52/thys/Relax_Safety/MFOTL/MFOTL_Safety.thy#lines-816
https://bitbucket.org/jshs/monpoly/src/b4b63034eca0ccd5783085dececddb6c47cf6f52/thys/Relax_Safety/MFOTL/MFOTL_Safety.thy#lines-349
https://bitbucket.org/jshs/monpoly/src/b4b63034eca0ccd5783085dececddb6c47cf6f52/thys/Relax_Safety/MFOTL/MFOTL_Safety.thy#lines-87
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safety for cases when only the left conjunct α is safe.2 If β is an equality t1 =F t2 with
fv t1 ⊆ X or fv t2 ⊆ X for each X ∈ ssfvα, then we can safely add any single variable on
the other side of the equation, possibly not in fvα, to the elements of ssfvα. Therefore,
in this case ssfv(α ∧F β) = ((∪) (fv β)) ′ (ssfvα). Finally, if β is a negation ¬F β′ of a
safe formula β′ and every Y ∈ ssfv β′ satisfies Y ⊆ X for each X ∈ ssfvα then we can
compute antijoins, and thus ssfv(α ∧F β) = ssfvα. If neither of these cases holds, then
ssfv(α ∧F β) = ∅. Given the behaviour of join on columns, the dynamic free variables
are simply dfvi (α ∧F β) = dfvi α ∪ dfvi β.

Disjunctions. Due to union-compatibility, we can only take unions of tables with the
same attributes. Yet, we can generalise for cases when formulas might be vacuously true
at some time-points. To evaluate disjunctions we use the function eval-or n R1 R2 that
outputs 1n if either R1 = 1n or R2 = 1n, and R1 ∪ R2 otherwise. Similarly, to ensure
wf -tuple n (dfvi (α∨F β)) 〈〉n, we state that there are no “relevant” variables (dfvi (α∨F

β) = ∅) for the satisfiability of α ∨F β when either α or β are logically valid at i. If the
variables of α are “irrelevant” (dfvi α = ∅) because α is unsatisfiable at i (�α�i = ∅), then
we just need the variables of β: dfvi (α ∨F β) = dfvi β. The symmetric case also holds.
If both disjuncts are relevant (dfvi α �= ∅ �= dfvi β), we need both sets of variables:
dfvi (α ∨F β) = dfvi α ∪ dfvi β.

The behaviour of dfv on disjunctions means that if ∅ ∈ ssfvα or ∅ ∈ ssfv β, then ∅
should also be an element of ssfv(α ∨F β). This may happen in various ways. First, if
fvα = ∅ or fv β = ∅, then by (ii) above, we know that ssfvα = {∅} or ssfv β = {∅}. In
this case, we can define ssfv(α ∨F β) = ssfvα ∪ ssfv β assuming both α and β satisfy
is-safe. Next, notice that if we allow attributes Xα ∈ ssfvα and Xβ ∈ ssfv β such that
∅ �= Xα �= Xβ �= ∅, the corresponding table for α∨F β would need to have infinite values.
Therefore, at most we may allow ssfvα ⊆ {∅, fvα}, ssfv β ⊆ {∅, fv β} and fvα = fv β
with both α and β having non-empty ssfvs. In this case, if ∅ ∈ ssfvα or ∅ ∈ ssfv β then
ssfv(α ∨F β) = {∅} ∪ (ssfvα � ssfv β), otherwise ssfv(α ∨F β) = {fvα}.

Negations. If α is safe and closed (ssfv(α) = {∅} by (ii)), then we can safely evaluate
its negation ssfv(¬F α) = {∅}.We also allow ssfv(¬F (t =F t)) = {fv(t =F t)} for
arbitrary term t to encode the constantly false formula. Otherwise negations are unsafe
ssfv(¬F α) = ∅. For dynamic free variables, we define dfvi(¬F α) = dfvi α.

Quantifiers. When interpreting De Bruijn indices, quantifiers remove 0 from fvα and
subtract 1 to all its elements. Thus, we define dfvi (∃F α) = (λx. x − 1) ′ (dfvi α − {0})
and (λx. x − 1) ′ (X − {0}) ∈ ssfv(∃F α) for each X ∈ ssfvα.

Previous and Next. The definition of the dynamic free variables for one-step temporal
operators follows that of their semantics: dfvi (XI α) = dfvi+1 α while dfvi (YI α) =
dfvi−1 α if i > 0 and dfvi (YI α) = fvα if i = 0. For safety, all combinations of attributes
of α might be used in its one-step temporal versions ssfv (XI α) = ssfvα = ssfv (YI α).

Since and Until. Let us follow the semantics for since and until to define their dfvs at
i. The definition for one operator emerges by dualising the time-point order and flip-
ping subtractions of time-stamps in the other’s definition, hence we omit the description

2 Adding the symmetric case increases the number of proofs in the formalisation. It is
easier to assume a formula rewriter can commute conjuncts if necessary.
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for until. We must collect all the dynamic free variables dfvk α and dfvj β that influ-
ence the satisfiability of α SI β. Start by defining ↓I i = {j | j ≤ i ∧ (τi − τj) ∈ I}
to identify the indices j for β, and the predicate satisf -at j = ∃v. 〈σ, v, j〉 |= β ∧
(∀k ∈ (j, i] . 〈σ, v, i〉 |= α) so that α SI β is unsatisfiable at i if ∀j ∈↓I i. ¬ satisf -at j.
When this happens we let dfvi(α SI β) = fv(α SI β). Otherwise, the indices j for β are
J = {j ∈↓I i | satisf -at j} while those k for α are K =

⋃
j∈J (j, i]. Having identified the

indices, we obtain dfvi(α SI β) =
( ⋃

k∈K dfvk α
) ∪ ( ⋃

j∈J dfvj β
)
.

As we have seen for disjunctions, our definitions of safety depend on the operations in
the formula-evaluation. In particular, to define ssfvs for since, it is convenient to under-
stand Verimon’s [19] implementation roughly represented with the equations:

�αSIβ�i=
⋃

j∈↓I i

�αS{τi−τj}β�i and �αS{τi−τj}β�i=
⋃

k∈↓{τi−τj}i

�β�k∩
⎛

⎝
⋂

l∈(k,i]

�α�l

⎞

⎠ . (1)

That is, the algorithm obtains the valuations in �αSI β�i by iteratively updating those in
�αS{τi−τj} β�i until it has visited all time-points j ∈↓I i, when it outputs their union. In
the implementation, intersections are replaced with (anti)joins and sets �ϕ�l, with tables
�ϕ�

Xl
l,n having attributes Xl at index l for safe ϕ. If 0 ∈ I, one of the tables involved in

the output union is �β�fv β
i,n . Hence, by union-compatibility, all the other table-operands

(represented by �αS{τi−τj}β�j) must have the same attributes. To ensure this, we require
ssfv(α SI β) to be non-empty only when ssfv β = {fv β}. Then, we define ssfv(α SI β) =
{fv β} if fvα ⊆ fv β with ssfvα �= ∅ because the joins in the construction of the tables
represented by �αS{τi−τj} β�i would always be guarded by the attributes fv β of �β�fv β

k,n .
Similarly, ssfv(α SI β) = {fv β} for α = ¬ α′ with ssfvα′ �= ∅ and fvα ⊆ fv β because of
the corresponding antijoins.

The Verimon implementation for until is different and intuitively corresponds to

�α UI β�i =
⋃

j∈↑I i

�β�j ∩
⎛

⎝
⋂

k∈[i,j)

�α�k

⎞

⎠ .

As before, one of the operands may be �β�fv β
i,n , therefore we require ssfv β = {fv β}. If

fvα ⊆ fv β with ssfvα �= ∅, then ssfv(α SI β) = {fv β}. But for α = ¬α′, the tables
for α′ are united separately and antijoined to each table for β at j. Thus, we need to
take union-compatibility into account when α = ¬α′. Hence, in this case, we define
ssfv(α SI β) = {fv β} if ssfv β = {fv β} and ssfvα′ = {fvα′}.

Trigger and Release. Our definition of dfvs for these dual operators is very similar to
that of since and until. Assume D ∈ {T,R} and let idx =↓I i and ivl i j = (j, i] if
D = T; otherwise, if D = R, then idx =↑I i and ivl i j = [i, j). The key difference in
the definition of dfvs for D is that if idx = ∅, then α DI β is vacuously true. Hence,
we define dfvi(α DI β) = ∅ because α DI β will evaluate to the unit table. As before,
we also define a predicate satisf -at v j that makes the formula unsatisfiable whenever
∀v. ∃j ∈ idx . ¬ satisf -at v j. In this case, dfvi(α DI β) = fv(α DI β). The predicate
satisf-at also allows us to define sets of indices K and J to collect dfvs over time for the
remaining cases: dfvi(α DI β) =

( ⋃
k∈K dfvk α

) ∪ ( ⋃
j∈J dfvj β

)
.

Our definition of safety for dual operators is intuitively understood by observing

�α DI β�i =
⋂

j∈idxI i

�β�j ∪
⎛

⎝
⋃

k∈ivl i j

relk ∩ �α�k

⎞

⎠ , (2)

https://bitbucket.org/jshs/monpoly/src/b4b63034eca0ccd5783085dececddb6c47cf6f52/thys/Relax_Safety/MFOTL/MFOTL_Formula.thy#lines-651
https://bitbucket.org/jshs/monpoly/src/b4b63034eca0ccd5783085dececddb6c47cf6f52/thys/Relax_Safety/MFOTL/MFOTL_Formula.thy#lines-657
https://bitbucket.org/jshs/monpoly/src/b4b63034eca0ccd5783085dececddb6c47cf6f52/thys/Relax_Safety/MFOTL/MFOTL_Formula.thy#lines-680
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where relk = �β�k if 0 ∈ I, and relk = �α�k otherwise. As before, whenever 0 ∈ I, we
define ssfv(αDI β) = {fv β} assuming ssfv β = {fv β} and fvα ⊆ fv β, both if ssfvα �= ∅
or if ssfvα = ∅ but α = ¬ α′ with ssfvα′ �= ∅. When 0 /∈ I, α DI β might be vacuously
true and union-compatibility is relevant. Therefore, we define ssfv(α DI β) = {∅, fvα}
whenever ssfvα = {fvα}, ssfv β = {fv β} and fvα = fv β. Otherwise ssfv(α DI β) = ∅.

We formalise all cases above together with the definition is-safe α ⇔ ssfvα �= ∅
in Isabelle/HOL. Next, by induction on the definition of ssfvs, we derive properties
(i) , (ii) and (iii) above. Additionally, we also prove that for any formula α,
is-safe α ⇔ fvα ∈ ssfvα.

In classical logic, an important property for syntactic substitutions of terms and for-
mulas states that if two valuations v and v′ coincide in fvα, then the value of α is the
same under both valuations. Similarly, we have that if v ! x = v′ ! x for all x ∈ dfv σ i α,
then 〈σ, v, i〉 |= α ⇔ 〈σ, v′, i〉 |= α. This is useful for us because it ratifies that if
〈σ, 〈〉n, i〉 |=M α for α with dfvi α = ∅, then α is logically valid at i.

Let us compare our definition of safety with previous ones. To do this directly, we
combine safe-formula predicates from Verimon [19] and Verimon+ [10,22], restrict them
to the syntax in Sect. 2 and add them to our AppendixA. Structurally, our definition of
safety for conjunctions, negations, existential quantifiers, previous, next and until oper-
ators resembles that of Verimon+ [22] which is already more general than that of Ver-
imon. However, in combination with other operators our definition deems more formu-
las safe (see Sect. 5). We discuss in Sect. 7 possible generalisations for these cases that
involve dfvs and ssfvs. For equalities, ssfv generalises safe-formula even when incorpo-
rating Verimon+’s more expressive term language that includes some arithmetic opera-
tions. By using eval-or , our definition of safety for disjunctions differs from safe-formula
by admitting vacuously true formulas satisfying is-safe in either disjunct. Additionally,
is-safe (α SI β) allows α to have many ssfvs which generalises safe-formula (α SI β).
Dual operators are only safe in an unintegrated extension [10] of Verimon+; but we also
generalise this work by making them safe when 0 /∈ I, even when they are not part of
a conjunction with a safe formula. In general, we show that is-safe generalises previous
monitoring fragments: on one hand we prove that is-safe α if safe-formula α for any α .
On the other hand, the formula α ≡ ¬F (v x =F v x)T[1,2] (p † [v x]), which is equivalent
to H[1,2]p † [v x], satisfies is-safe α but also ¬ safe-formula α.

The definition and formalisation of safety for MFOTL-formulas is a major contri-
bution of this work. It involves defining ssfvs, dfvs, pairwise unions and proving their
corresponding properties. The developments on this section add more than 1600 lines of
code to the Verimon formalisation [19,20].

4 Implementation of Dual Operators

In this section, we explain our additions of dual operators to Verimon’s formalisation.
Intuitively, the monitoring algorithm takes as inputs a safe MFOTL-formula α and an
event trace σ and outputs the table of satisfactions �α�dfvi α

i,n at each time-point i. Con-
cretely, Verimon provides two functions minit and mstep to initialise and update the
monitor’s state respectively. The model for this monitor’s state at i is a three-part record
〈ρα

i , αi
M , n〉. Here, n = nfvα and ρα

i :: nat is the progress or the earliest time-point
for which satisfactions of α cannot yet be evaluated for lack or information. Finally,
αi

M :: ′a mformula is a recursively defined structure associated with α to store all the

https://bitbucket.org/jshs/monpoly/src/b4b63034eca0ccd5783085dececddb6c47cf6f52/thys/Relax_Safety/MFOTL/MFOTL_Safety.thy#lines-853
https://bitbucket.org/jshs/monpoly/src/b4b63034eca0ccd5783085dececddb6c47cf6f52/thys/Relax_Safety/MFOTL/MFOTL_Safety.thy#lines-610
https://bitbucket.org/jshs/monpoly/src/b4b63034eca0ccd5783085dececddb6c47cf6f52/thys/Relax_Safety/MFOTL/MFOTL_Safety.thy#lines-1087
https://bitbucket.org/jshs/monpoly/src/b4b63034eca0ccd5783085dececddb6c47cf6f52/thys/Relax_Safety/MFOTL/MFOTL_Safety.thy#lines-1566
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information needed to compute �α�dfvi α
i,n . We describe our extensions to all these func-

tions and structures in order to monitor dual operators trigger and release. In the sequel,
we use Ai = �α�dfvi α

i,n , Bi = �β�dfvi β
i,n and Ci = �γ�dfvi γ

i,n to simplify notation.
The function minit is just a wrapper callingminit0 to set the initial monitor’s state to

〈0, α0
M , nfvα〉. Accordingly, minit0 takes a safe MFOTL-formula α :: ′a frm and trans-

forms it into α0
M :: ′a mformula. The datatype mformula describes the information

needed at each i to compute Ai. For instance, if α’s main connective is a binary operator
with direct subformulas β and γ, the set of satisfactions for either of them are only avail-
able up to ρβ

i and ργ
i respectively at i. This is why, αi

M includes a buffer buf :: ′a mbuf2 to
store yet, unused tables Bj (resp. Cj) such that j ∈ [ργ

i , ρβ
i ) (resp. j ∈ [ρβ

i , ργ
i )). When-

ever both Bj and Cj are in the buffer, the algorithm operates them and either outputs
the result or stores it in an auxiliary state for future processing. To help the algorithm
know whether to do joins or antijoins, αi

M may also include a boolean indicating whether
one of its direct sub-formulas is not negated. More specifically, the state-representations
of α DI β with D ∈ {T,R} include their sub-mformulas αM and βM , a boolean indicat-
ing if α is not negated, the interval I :: I, the buffer buf , a corresponding list of unused
time-stamps τs, and its auxiliary state. Formally, we add the last two lines below to the
definition of the mformula datatype:

datatype ′a mformula = MRel ′a option list set | . . .
| MTrigger bool ′a mformula bool I ′a mformula ′a mbuf2 N list ′a mtaux
| MRelease bool ′a mformula bool I ′a mformula ′a mbuf2 N list ′a mraux

where the second boolean indicates whether 0 ∈ I, and ′a mtaux and ′a mraux are the
type-abbreviations we use for trigger and release’s auxiliary states respectively. Let us
describe these in detail next.

Our implementation of the auxiliary state for trigger Ts :: ′a mtaux resembles Veri-
mon’s [19] auxiliary state for since. That is, it combines the intuitions in Eqs. (1) and (2):
at time-point i, it is a list of time-stamped tables 〈τj , T

i
τj

〉 that the monitor joins after it
has passed all j ∈↓I i. Abbreviating ι = (min ρα

i ρβ
i ) − 1 and using ��∗ to denote a join

with non-negated subformula α and an antijoin with α for the direct subformula ¬F α,
we intend

T i
τj

= ��
k∈↓{τι−τj}ι

Bk ∪
⎛

⎝
⋃

l∈(k,ι]

Bl ��∗ Al

⎞

⎠ , if 0 ∈ I and (3)

T i
τj

= �α T{τι−τj} β�fv β
ι,n , if 0 /∈ I. (4)

The tables described by Eq. (3) would coincide with the tables for α T{τι−τj} β as in
Eq. (4) if we remove the Bls inside the union, but we use them to simplify our definition
of safety as discussed after Eq. (2).

Likewise, following the intuition provided by Eq. (2), the auxiliary state for release
Rs :: ′a mtaux at i is a list of ternary tuples 〈τj , R

j,i
L , Rj

R〉 such that

Ri,j
L = if 0 ∈ I then

⋃

k∈[j,ι]

Bk ��∗ Ak else
⋃

k∈[j,ι]

Ak and (5)

Ri,j
R =

⎧
⎪⎨

⎪⎩

if 0 ∈ I then Bj else 1n, if τι < τj + I,

�α RI β�
dfvj(αRIβ)

j,n , if τι > τj + I,

��k∈[0,ι]∩↑Ij Bk ∪ Rk,i−1
L , if (τι − τj) ∈ I.

(6)

https://bitbucket.org/jshs/monpoly/src/b4b63034eca0ccd5783085dececddb6c47cf6f52/thys/Relax_Safety/MFOTL/MFOTL_Monitor.thy#lines-32
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The function that transforms α :: ′a frm to αM :: ′a mformula is minit0 . Our addi-
tions for this function on trigger and release follow our definition of safety. That is,minit0
maps α DI β with D ∈ {T,R} to

MDual (α �= ¬F α′) (minit0 n α) (0 ∈ I) I (minit0 n β) ([], []) [] []
for some α′ and MDual ∈ {MTrigger, MRelease} accordingly.

When the monitor processes the ith time-point, the function mstep outputs the new
state 〈ρα

i , αi
M , n〉. However, it is also a wrapper for the function meval in charge of

updating αi
M :: ′a mformula. Intuitively, meval takes αi−1

M and the trace information
Γ σ i and τ σ i and outputs the updated mformula αi

M and the evaluated tables Aj from
j = ρi−1

α − 1 to j = ρi
α − 1. We describe its behaviour on auxiliary states below.

Assuming meval has produced tables Aι and Bι, it uses the function update-trigger
to update the auxiliary state Ts :: ′a mtaux and to possibly output �α TI β�fv β

ι,n . This
function first filters Ts by removing all elements whose time-stamps τj are not relevant
for future time-points, i.e. τj < τι −I. Then, following Eqs. (3) and (4), it takes the union
of the latest Bι ��∗ Aι or Aι with all elements in Ts, depending on whether 0 ∈ I or not
respectively. Next, it adds Bι either as a new element 〈τι, Bι〉 #Ts if this is the first time
τι is seen, or by joining it with the table in Ts time-stamped with τι−1 = τι, to obtain
T i

τι
. Finally, it joins all the tables T i

τj
in Ts such that j ∈↓I ι.

The function update-release takes the union of the latest Bι ��∗ Aι or Aι with each
Rj,i−1

L in Rs :: ′a mraux, depending on whether 0 ∈ I (see Eqs. (5) and (6)). On the
third entries Ri,j

R , it joins Bι ∪ Ri−1,j
L if (τi − τj) ∈ I, otherwise, it leaves Ri,j

R as it is.
Finally, it adds at the end of Rs the tuple 〈τι, Bι ��∗ Aι, Bι〉 if 0 ∈ I, or 〈τι, Aι,1n〉 if
0 /∈ I. To output the final results �α RI β�

dfvj αRIβ

j,n , meval calls the function eval-future

which traverses Rs and outputs all Ri,j
R with τj + I < τi and removes them from Rs.

The only other modification we do on meval for the remaining logical connectives is
in the disjunction case, where we have replaced every instance of the traditional union
(∪) with our function eval-or . This is the only place where we perform this substitution.

For our purposes, this concludes the description of the monitoring algorithm. It
mainly consists of the initialisation function minit and the single-step function mstep.
Together, they form Verimon’s online interface with the monitored system. Our additions
in this regard are mostly conceptual since we only implement the evaluation of trigger
and release as functions update-trigger and update-release.

5 Monitoring Examples

Here, we describe various formulas that are safe according to our ssfvs definition but
that are not safe in previous Verimon implementations. We present them through case-
studies. Our examples occur not only in monitoring but also in relational databases.

Quality Assessment (Operations on Globally). A company passes its products
through sequential processes p1, p2 and p3. Every item passes through all processes.
Every minute, the company logs the time τ and the identification number ID of each item
in process pi. It uses an online monitor to classify its products according to their quality.
The best ones are those that pass through process pi for exactly ni minutes and that
move to pi+1 immediately afterwards. The second-best ones are those that pass through
at least one process pi in at least ni minutes. The remaining items need to be corrected
after production. To identify the best ones, the company uses the following specification

best ≡
(
G[0,n1) p1 † [v x]

)
∧F

(
G[n1,n′

2)
p2 † [v x]

)
∧F

(
G[n′

2,n′
3)

p3 † [v x]
)

,

https://bitbucket.org/jshs/monpoly/src/b4b63034eca0ccd5783085dececddb6c47cf6f52/thys/Relax_Safety/MFOTL/MFOTL_Monitor.thy#lines-90
https://bitbucket.org/jshs/monpoly/src/b4b63034eca0ccd5783085dececddb6c47cf6f52/thys/Relax_Safety/MFOTL/MFOTL_Monitor.thy#lines-186
https://bitbucket.org/jshs/monpoly/src/b4b63034eca0ccd5783085dececddb6c47cf6f52/thys/Relax_Safety/MFOTL/MFOTL_Monitor.thy#lines-165
https://bitbucket.org/jshs/monpoly/src/b4b63034eca0ccd5783085dececddb6c47cf6f52/thys/Relax_Safety/MFOTL/MFOTL_Monitor.thy#lines-174
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where n′
2 = n1 + n2 and n′

3 = n1 + n2 + n3. Similarly, to identify those products with
just good quality, they use the specification

good ≡
(
G[0,n1) p1 † [v x]

)
∨F

(
G[n1,n′

2)
p2 † [v x]

)
∨F

(
G[n′

2,n′
3)

p3 † [v x]
)

.

Our relaxation of safety, makes both formulas monitorable by encoding GI (pi † [v x]) as
¬F (v x =F v x)RI (pi † [v x]). Specifically, the safe sets of free variables are ssfv(best) =
{{x}} �= ∅ and ssfv(good) = {∅, {x}} �= ∅. We use the functions minit and mstep to
monitor best through a manually made trace. We assume four products with IDs 0, 1, 2
and 3 and fix n1 = n2 = n3 = 2. The table below represents said trace and shows the
monitor’s output at each time-point.

Time product_id 0 product_id 1 product_id 2 product_id 3 output for best

0 p1 p1 p1 p1 ∅
1 p1 p1 p1 p1 ∅
2 p2 p2 p1 p2 ∅
3 p2 p2 p2 p2 ∅
4 p3 p2 p2 p3 ∅
5 p3 p3 p2 p3 ∅
6 − p3 p3 − {[0], [3]} @τ = 0

The monitor correctly classifies the products with IDs 0 and 3 as the best ones after
the first 6 min have passed. Before that, it outputs the empty set indicating that no prod-
uct was one of the best yet. Our AppendixA includes the formalisation of this trace and
a simplified version of the monitor’s printed output. These encodings for best and good
are not safe in any previous implementation. The equivalence [10]

G[a,b) α ≡ (F[a,b) α) ∧F ¬F (F[a,b)((P[0,b) α) ∨F (F[0,b) α)) ∧F ¬F α)

also produces encodings of best and good that satisfy safe-formula assuming 0 < a < b
but these are clearly longer than simply using release RI as above. Shorter inputs require
less runtime computations. Notice that eventually (F) and pastly (P) are already abbre-
viations making the above encoding for globally (G) have 13 connectives. Our encoding
instead requires only 3. This compounds quickly, best and good would have in total 53
connectives instead of 14 as in our case.

Vaccine Refrigeration Times (Conjunction of Negated Historically). A company
that manufactures dry-ice thermal shipping containers has just reported a loss of their
refrigeration effectiveness after m hours. This means that some vaccines transported in
those containers are not effective because the vaccines are very sensitive to thermal con-
ditions. Vaccination centres need to know which vaccines they can apply. They ask for
help from the shipping company in charge of transporting the vaccines. This company
needs to take into account its unpacking time that consistently requires n > 0 min-
utes. Fortunately, the shipping company has a log, that among other things, registers
“@τ (travelling, id)” if package with ID-number id is travelling at time τ , and anno-
tates “@τ (arrived, id)” when the package identified with id arrives at a centre at time τ .
The company can deploy a monitor of the following specification over their log to know
which packages contain vaccines that are safe to use:

(arrived † [v x]) ∧F ¬F H[n,mε] (travelling † [v x]) ,
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where mε is m in minutes plus some margin of error ε, and HI (travelling † [v x]) ≡
¬F (v x =F v x) TI (travelling † [v x]). Previous work on Verimon+ could tackle an
equivalent specification, but it would require the less straightforward encoding [10]:

H[a,b) α ≡ (P[a,b) α) ∧F ¬F (P[a,b)((P[0,b) α) ∨F (F[0,b) α)) ∧F ¬F α), with 0 < a < b.

Thus, monitoring our encoding is arguably more efficient as outlined before.

Financial Crime Investigation (Historically with Many Variables). Data scientists
suspect a vulnerability in the security system of their employer, a new online bank. They
notice the following pattern: various failed payment attempts of the same amount from
one account to another for 5 consecutive minutes. Then, 30 min later, a successful pay-
ment of the same amount between the same accounts. One of the queries to the database
that the scientists can issue to confirm their suspicions is

(approved_trans_from_paid_to † [v 0,v 1,v 2,v 3])

∧F H[30,34] (∃F (failed_trans_from_paid_to † [v 0,v 1,v 2,v 3])) .

In both predicates, v 0 represents the transaction ID, v 1 is the account that pays, v 2
corresponds to the amount of money transferred, and v 3 denotes the receiving account.
The query itself finds all transactions that were successful between two accounts v 1 and
v 3 at a given time-point but that were attempted for 5 consecutive minutes, 30 min
earlier. This not only provides all suspicious receivers, but also all possible victims and
the amount of money they lost per transaction.

We can codify HI α ≡ (⊥F α) TI α, where the expression ⊥F α denotes the formula
¬F (v 0 =F v 0)∧F · · · ∧F ¬F (v n =F v n) and n = nfvα − 1. Monitoring such a simple
encoding of historically (with 0 /∈ I) is possible due to the integration of our safety relax-
ation into the algorithm. Simplifying this further to ⊥F α ≡ ¬F (c 0 =F c 0) produces an
unsafe formula because the free variables on both sides of TI do not coincide. We discuss
generalisations involving ssfvs and dfvs to achieve this simplification in Sect. 7.

Monitoring Piracy (Release Operator). To deal with a recent increase in piracy, a
shipping company integrates a monitor into its tanker tracking system. By standard,
their vessels constantly broadcast a signal with their location through their automatic
identification system, which in good conditions arrives every minute, but in adverse ones,
can take more than 14 h to update. This signalling system is one of the first turned off
by pirates because it allows them to sell the tanker’s contents in nearby unofficial ports.
Thus, the company regularly registers the ID numbers of all moving ships whose signal is
not being received via logs “@τ (no_sign, id)” and those who are not in the correct course
as “@τ (off_route, id)”, where id is the ID of a ship satisfying the respective status. The
company decides it should monitor their tankers as

pirated ≡ off_route † [v x] R[0,n) no_sign † [v x].

The monitor would send the company a warning after n minutes if it observes either
of two behaviours: not receiving a signal from the ship for the entire n minutes, or not
receiving a signal and suddenly receiving a position outside of its planned route. This lets
the company collaborate with local authorities and try to locate their vessels through
alternative means. Due to our explicit implementation of the bounded release operator,
the specification above is now straightforwardly monitorable. There is no previous direct
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implementation of the release operator in Verimon, which means that the above formula
would not be monitorable. However, recent developments show [10] that 27-connectives-
long encodings would be.

Running the monitor through a manual trace illustrated in the table below and
assuming for simplicity n = 2 correctly identifies ships with IDs 1 and 2 as those possibly
pirated. The formalisation of the trace and the printed monitor’s output are available in
our Appendix A.

Time ship_id 1 ship_id 2 ship_id 3 output for best

0 no_sign no_sign sign ∅
1 no_sign no_sign sign ∅
2 no_sign no_sign sign ∅
3 off_route no_sign sign {[1], [2]} @τ = 0

4 off_route no_sign sign {[2]} @τ = 1

In summary, recent work [10] implies that our work’s safe formulas using historically,
globally, trigger or release can be encoded as previous versions safe formulas and moni-
tored. However, the resulting encodings are longer, which impairs the runtime monitor-
ing efficiency. Therefore, the examples above show that our relaxation of safety aids in
efficiently monitoring commonly used specifications. Combining optimised implementa-
tions [3,10] of temporal operators with our contributions would augment any MFOTL-
based monitor’s efficiency.

6 Correctness

In this section, we show that the integration of our relaxation of safety into Verimon’s
monitoring algorithm is correct. We focus specifically on describing the proof of cor-
rectness for our implementation of dual operators. That is, we show that the algorithm
described in previous sections outputs exactly the tables �α�dfvi α

i,nfv α at time-point i for safe
α. We also comment on the overall additions and adaptations required in the proof of
Verimon’s correctness to accommodate our definition of safety.

First, an Isabelle predicate to describe that a given set of valuations R is a proper
table with n attributes in X is table n X R ⇔ (∀v ∈ R. wf -tuple n X R). The formalisa-
tion of Verimon [20], uses the predicate qtable n X P Q R to state correctness of outputs,
where n :: N, X :: N set, P and Q are predicates on valuations, and R is a table. It is
characterised by

qtable n X P Q R ⇔ (table n X R) ∧ (∀v. P v ⇒ (v ∈ R ↔ Q v ∧ wf -tuple n X v)).

In our case, it is typically evaluated to qtable n (dfvi α)P (λv.〈σ, v, i〉 |=M α)R with
n ≥ nfvα. If R is Verimon’s output for α at i, it roughly states that R = �α�dfvi α

i,nfv α

modulo P and that table(nfvα) (dfvi α)R. In Verimon’s and our proof of correctness, P
is instantiated to a trivially true statement. We do not omit P here because our general
results require assumptions about it.

Given our use of empty dfvs for vacuously true formulas, the behaviour of qtable on
empty sets of variables is relevant for us. The only tables that satisfy qtable n ∅ P Q R are
R = 1n and R = ∅ so that, assuming P 〈〉n, if Q 〈〉n then R = 1n; otherwise, if ¬ (Q 〈〉n)

https://bitbucket.org/jshs/monpoly/src/b4b63034eca0ccd5783085dececddb6c47cf6f52/thys/Relax_Safety/MFOTL/MFOTL_Table_Correct.thy#lines-20
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then R = ∅. In fact, the only way that table n X 1n holds is if X ⊆ {x | x ≥ n}. Given
that we only use sets X such that X ⊆ {x | x < n}, only X = ∅ fits table n X 1n.

Since we must join all the tables in the auxiliary states for trigger and release, we
also relate qtable and joins (��). Provided dfv σ i α ⊆ X and dfv σ i β ⊆ Y :

�α ∧F β�X∪Y
i,n = �α�X

i,n �� �β�Y
i,n, and

�α ∧F ¬F β�X∪Y
i,n = �α�X

i,n � �β�Y
i,n, assuming Y ⊆ X.

More general results in terms of qtable are also available. For instance, if πX is the pro-
jection πX v = map (λi. if i ∈ X then v ! i else None) [0, . . . , length v − 1], then it holds
that qtable n Z P Q (R1 �� R2) if qtable n X P Q1 R1, qtable n Y P Q2 R2, Z = X ∪ Y
and ∀v. wf -tuple n Z v ∧ P v ⇒ (Q v ⇔ Q1 (πX v) ∧ Q2 (πY v)). A similar statement
is true for antijoins. Moreover, the join of two tables with the same attributes is sim-
ply their intersection. By our definition of ssfvs, our n-ary join on the auxiliary states
is made on tables with the same attributes, thus we use the following fact: for a finite
non-empty set of indices I, qtable n X P Q

(⋂
i∈I Ri

)
holds if qtable n X P Qi Ri and

∀v. wf -tuple n X v ∧ P v ⇒ (Q v ⇔ (∀i ∈ I. Qi v)).
The relationship between eval-or and qtable is also relevant for our correctness

proof due to our modifications to the algorithm. We state here the specific statement: if
qtable n (dfvi α)P (λv. 〈σ, v, i〉 |=M α)R1 and qtable n (dfvi β)P (λv. 〈σ, v, i〉 |=M β)R2

then qtable n (dfvi(α∨F β))P (λv. 〈σ, v, i〉 |=M α∨F β) (eval-or n R1 R2), provided P 〈〉n

and dfvi α = ∅, dfvi β = ∅ or dfvi α = dfvi β. See more results in the Isabelle code.
To state the correctness of the algorithm, Verimon defines an inductive predicate

wf -mformula σ i n U αM α where i, n :: N, αM :: ′a mformula, α :: ′a frm and U is a set
of valuations. The set U is always instantiated to the universal set UNIV , or the set of
all terms of a given type. In fact, P in qtable just checks for membership in U = UNIV .
The predicate wf -mformula is an invariant that holds after initialisation with minit and
that remains true after each application of mstep. It carries all the information to prove
correctness of outputs R at i via the predicate qtable n (dfvi α)P (λv.〈σ, v, i〉 |=M α)R.
We describe here only our additions for dual operators.

inductive wf -mformula where . . .
| Trigger: wf -mformula σ i n U αm α =⇒ wf -mformula σ i n U βm β
=⇒ α′ = (pos �+ α) � mem0 � α =⇒ mem0 ↔ 0 ∈ I
=⇒ is-safe (α′ TI β) =⇒ wf-mbuf2’ σ i n U α β buf =⇒ wf-ts σ i α β nts
=⇒ wf-trigger-aux σ n U pos α mem0 I β aux (progress σ (α′ TI β) i)
=⇒ wf -mformula σ i n U (MTrigger pos αM mem0 I βM buf nts aux) (α′ TI β)

| Release: wf -mformula σ i n U αm α =⇒ wf -mformula σ i n U βm β
=⇒ α′ = (pos �+ α) � mem0 � α =⇒ mem0 ↔ 0 ∈ I
=⇒ is-safe (α′ RI β) =⇒ wf-mbuf2’ σ i n U α β buf =⇒ wf-ts σ i α β nts
=⇒ wf-release-aux σ n U pos α mem0 I β aux (progress σ (α′ TI β) i)
=⇒ progress σ (α′ RI β) i + length aux = min (progress σ α i) (progress σ β i)
=⇒ wf -mformula σ i n U (MRelease pos αM mem0 I βM buf nts aux) (α′ RI β)

The code above states that if all of the conditions before the last arrow (=⇒) are
satisfied, then we can assert wf -mformula for trigger or release respectively. The func-
tion progress σ α i is ρα

i , while pos �+ α is our Isabelle abbreviation to state that α is
not-negated according to the boolean pos. Similarly, α � test � β is just α if test is true,
otherwise it is β. The predicates wf-mbuf2’ and wf-ts check that the buffer and the cor-
responding list of time-stamps are well-formed in the sense that the buffer has every

https://bitbucket.org/jshs/monpoly/src/b4b63034eca0ccd5783085dececddb6c47cf6f52/thys/Relax_Safety/MFOTL/MFOTL_Table_Correct.thy#lines-281
https://bitbucket.org/jshs/monpoly/src/b4b63034eca0ccd5783085dececddb6c47cf6f52/thys/Relax_Safety/MFOTL/MFOTL_Table_Correct.thy#lines-684
https://bitbucket.org/jshs/monpoly/src/b4b63034eca0ccd5783085dececddb6c47cf6f52/thys/Relax_Safety/MFOTL/MFOTL_Table_Correct.thy#lines-537
https://bitbucket.org/jshs/monpoly/src/b4b63034eca0ccd5783085dececddb6c47cf6f52/thys/Relax_Safety/MFOTL/MFOTL_Correctness.thy#lines-401


Relaxing MFOTL Safety via Dynamic Free Variables 59

visited but yet unused table for α and β while nts has all the corresponding time-stamps
τj with (min ρα

i ρβ
i ) ≤ j < (max ρα

i ρβ
i ). Additionally, we describe below the correspond-

ing invariants wf-trigger-aux and wf-release-aux for the auxiliary states.
Recall from Eqs. (3) and (4) that trigger’s auxiliary state Ts at time-point i is a list

of pairs 〈τj , T
i
τj

〉. In the formalisation (see also Appendix A), we split our definition of
its invariant wf-trigger-aux into two parts. First, we state the properties of the time-
stamps τj : they are strictly ordered, less than the latest τι and satisfy that τj ∈ τι − I
or τj > τι − I for ι = (min ρα

i ρβ
i ) − 1. Conversely, it also affirms that every time-stamp

satisfying these properties appears in Ts. The second part asserts correctness. That is,
qtable n (fv β)P Qi

τj
T i

τj
where Qi

τj
v ⇔ 〈σ, v, ι〉 |=M αT{τι−τj} β if 0 /∈ I, and Qi

τj
v ⇔

(∀k ≤ ι. τk = τj ⇒ 〈σ, v, k〉 |=M β ∨ (∃l ∈ (k, ι] . 〈σ, v, l〉 |=M )) if 0 ∈ I.
The invariant wf-release-aux for release’s auxiliary state Rs is more verbose. Assum-

ing 0 ∈ I, it asserts qtable n (fv β)P Qi,j
L,0∈I Ri,j

L and qtable n (fv β)P Qi,j
R,0∈I Ri,j

R where
Qi,j

L,0∈I and Qi,j
R,0∈I describe the first parts of eqs. (5) and (6). That is,

Qi,j
L,0∈I v ⇔ (∃k ∈ [j, ι) . 〈σ, v, k〉 |=M β ∧ 〈σ, v, k〉 |=M α) and

Qi,j
R,0∈I v ⇔ (∀k ∈ [j, ι) . (τk − τj) ∈ I ⇒ 〈σ, v, k〉 |=M β ∨ Qi,k

L,0∈I v).

However, when 0 /∈ I, the invariant asserts qtable n (fv β)P Qi,j
L,0/∈I Ri,j

L where

Qi,j
L,0/∈I v ⇔ (∃k ∈ [j, ι) . 〈σ, v, k〉 |=M α).

For the right table, if τι < τj + I, it simply asserts Ri,j
R = 1n. However, if (τι − τj) ∈ I,

the invariant states that qtable n (fv β)P Qi,j
R,0/∈I Ri,j

R where

Qi,j
R,0/∈I v ⇔ (∀k ∈ [j, ι) . (τk − τj) ∈ I ⇒ 〈σ, v, k〉 |=M β ∨ Qi,k

L,0/∈I v).

Finally, the case when τj + I < τi asserts qtable n (dfvj(α RI β))P Qi,j
R,0/∈I Ri,j

R .
We then adapt Verimon’s proof of correctness [19] for the monitored formula α. It

consists of two facts: (a) after initialisation, α0
M satisfies wf -mformula, and (b) whenever

αi−1
M satisfies wf -mformula, then after an execution of meval , the new αi

M also satisfies
wf -mformula and all the outputs of meval are correct.

At initialisation (a), our relaxation of safety allows us to replace safe-formula with
is-safe. Also, due to the condition P 〈〉n in our results about qtable and eval-or , we need
to assume 〈〉n ∈ U where U is the set referred in wf -mformula. Formally, our correctness
of initialisation states that if is-safe α, 〈〉n is an element of the set U , and the free variables
of α are all less than n, then wf -mformula σ 0n U (minit0 n α)α. The proof is a typical
application of inductive reasoning but not fully automatic since we need case distinctions
for negations, conjunctions and dual operators.

The addition of dfvs and ssfvs produces more changes in Verimon’s invariant preser-
vation proof (b) than in the initialisation proof (a). In many preliminary definitions and
lemmas, including that of wf-mbuf2’ , we replace the argument fvα with dfvi α. In oth-
ers, a less straightforward substitution is necessary. For instance, in the auxiliary state
for until, we do not simply use dfvi α but the union of various dfvs. This reverberates
in the proof of correctness of the auxiliary state which quintuples its size from 28 to 140
lines of code due to the various cases generated by both dfvs and ssfvs.

Our proof of correctness for trigger’s auxiliary state consists of a step-wise decompo-
sition of update-trigger and stating, at each step, what the tables in the auxiliary state

https://bitbucket.org/jshs/monpoly/src/b4b63034eca0ccd5783085dececddb6c47cf6f52/thys/Relax_Safety/MFOTL/MFOTL_Correctness.thy#lines-218
https://bitbucket.org/jshs/monpoly/src/b4b63034eca0ccd5783085dececddb6c47cf6f52/thys/Relax_Safety/MFOTL/MFOTL_Correctness.thy#lines-258
https://bitbucket.org/jshs/monpoly/src/b4b63034eca0ccd5783085dececddb6c47cf6f52/thys/Relax_Safety/MFOTL/MFOTL_Correctness.thy#lines-497
https://bitbucket.org/jshs/monpoly/src/b4b63034eca0ccd5783085dececddb6c47cf6f52/thys/Relax_Safety/MFOTL/MFOTL_Correctness.thy#lines-769
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satisfy in terms of qtable. It is 440 lines of code long, double the size of the proof for since
due to the case distinctions 0 ∈ I and 0 /∈ I. These also appear in the corresponding
proof of correctness for release and dictate its main structure. On one hand, the case
0 ∈ I for release is further split into whether the auxiliary state was previously an empty
list or not. On the other hand, the assumption 0 /∈ I requires analysing the different
cases τι < τj + I, (τι − τj) ∈ I and τj + I < τi as above. Each of these also considers the
emptiness of the auxiliary state at the previous time-point.

Finally, the theorem that uses all of these correctness results and modifications is
the invariant preservation proof (b) above. In more detail, it states that if we start with
αM such that wf -mformula σ i n U αM α and meval n τi Γi αM = (outputs, αM′), then
wf -mformula σ (i+1)n U αM′ α and qtable n (dfvj α)P (λv. 〈σ, v, j〉 |=M α)Rj for each
Rj ∈ outputs with j ∈ [ρα

i , ρα
i+1). We do its proof over the structure of αM :: ′a mformula.

The base step for equalities and inequalities requires some case distinctions and our
results about qtable and 1n. The inductive steps require mostly the same argument: from
wf -mformula we know most of the information to prove qtable, we supply it to our pre-
liminary lemmas like the correctness of auxiliary states and buffers, finally we use these
results and the inductive definition ofwf -mformula to obtain our desired conclusion. Our
separation of preliminary lemmas from the main body of the proof of (b) highly increases
readability of this long argument.

This concludes our description of the correctness argument from definitions to expla-
nations on the proof structure. Their formalisation is one of our major contributions. Our
additions on properties about qtable and dfvs consists of approximately 350 lines of code,
while those to the proof of correctness are more than 1500. This still does not take into
account the additions on other already existing results, like the modifications to the proof
of correctness of until’s auxiliary state. In total, the correctness argument changed from
approximately 1000 lines of code to more than 3000.

7 Conclusion

We defined a fragment of MFOTL-formulas guaranteeing their relational-algebra repre-
sentations to be computed through well-known table operations. For this, we introduced
the set of safe sets of free variables (ssfv) of a formula which collects all possible allowed
attributes of the formula’s table-representations over time. The fragment required this
set to be non-empty. We argued that this safe fragment is larger than others from pre-
vious work on temporal properties and pointed to our Isabelle/HOL proof of this fact.
We integrated our relaxation of safety into a monitoring algorithm. The formal verifica-
tion of this integration was possible due to our newly introduced concept of dynamic free
variables (dfv) of the monitored specification. We also extended the algorithm with con-
crete syntax and functions to monitor MFOTL dual operators trigger and release. The
combination of ssfvs, dfvs and dual operators enabled the algorithm to monitor more
specifications in a simpler manner, we illustrated this via examples. Overall, our contri-
bution allows monitorability of shorter encodings of frequently used formulas. This, in
turn, generates less monitoring computations at runtime. Given that general RV tools
should be efficient, our above-described methods could be generally applied and benefit
various MFOTL-based tools.

Future Work. Our relaxation of safety can be generalised in various ways. The simplest
of these add cases to our definition of ssfvs. For instance, asserting ssfv(t =F t) = {∅}

https://bitbucket.org/jshs/monpoly/src/b4b63034eca0ccd5783085dececddb6c47cf6f52/thys/Relax_Safety/MFOTL/MFOTL_Correctness.thy#lines-1101
https://bitbucket.org/jshs/monpoly/src/b4b63034eca0ccd5783085dececddb6c47cf6f52/thys/Relax_Safety/MFOTL/MFOTL_Correctness.thy#lines-1554
https://bitbucket.org/jshs/monpoly/src/b4b63034eca0ccd5783085dececddb6c47cf6f52/thys/Relax_Safety/MFOTL/MFOTL_Correctness.thy#lines-2048
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is possible since we can map it to 1n. However, doing this has unintended consequences
that forces us to rethink other cases, e.g. the conjunction v x =F v x∧F v x =F v y would
become safe under the current definition. Furthermore, we lose some “nice” properties like
is-safe α ⇔ fvα ∈ ssfvα. It is also unsatisfactory that safety for (¬F α)SI β only requires
ssfv β = {β} and fvα ⊆ fv β while that for (¬F α) UI β needs the stronger condition
ssfv β = {β} and ssfvα = {fvα}. A reimplementation of the monitoring functions for
until would alleviate this situation.

An orthogonal development replaces every instance of union, (∪) or (
⋃
), in the imple-

mentation with our generalised eval-or . This would allow us to change our definition of
safety so that more attributes are available for the right-hand-side formula in temporal
operators (i.e. ssfv β ⊆ {∅, fv β}). Consequently, this would allow us to write combina-
tions of them, e.g. PI (p † xs ∧F HJq † ys), where PIα ≡ � SI α.

A different avenue of research follows the standard approach in logic and the database
community and defines a series of transformations that determine if a formula is equiva-
lent to a safe one [1,8,17,18]. If such a transformation is obtained, formally verified and
implemented, its integration into Verimon would mean that many more future-bounded
formulas would be monitorable.

With the long-term view of developing a more trustworthy, expressive and efficient
monitor than other non-verified tools, we intend to integrate our relaxation of safety into
Verimon+ [22]. This requires adding more complex terms inside equalities and inequal-
ities that contain additions, multiplications, divisions and type castings. Additionally,
safety would need to be defined for aggregations like sum or average, dynamic operators
from metric first-order dynamic logic, and recursive let operations. A first attempt and
its not-yet complete integration into an old Verimon+ version [3] are available online.
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A Appendix: Formal Definitions

We supply our Isabelle/HOL definitions of dynamic free variables, safe sets of free vari-
ables, a combination of Verimon’s safe-formula predicates [10,19,22], and trigger and
release’s invariants for auxiliary states. We also provide the formalisation of the traces
in Sect. 5 to showcase the working monitoring algorithm.

Dynamic Free Variables. In the code below, the notation mem I 0 represents 0 ∈
I, for interval I. Also, Suc is the successor function on natural numbers. The first two
definitions correspond to the sets ↓I i and ↑I i of Sect. 3 respectively.

definition down-cl-ivl σ I i ≡ {j |j . j ≤ i ∧ mem I ((τ σ i − τ σ j ))}

definition up-cl-ivl σ I i ≡ {j |j . i ≤ j ∧ mem I ((τ σ j − τ σ i))}

fun dfv :: (char list × ′a list) set trace ⇒ nat ⇒ ′a MFOTL-Formula.formula ⇒ nat set

https://bitbucket.org/jshs/monpoly/src/b4b63034eca0ccd5783085dececddb6c47cf6f52/thys/Relax_Safety/MFODL/MFODL_Safety.thy#lines-428
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where dfv σ i (p † ts) = FV (p † ts)
| dfv σ i (t1 =F t2) = FV (t1 =F t2)
| dfv σ i (¬F α) = dfv σ i α
| dfv σ i (α ∧F β) = dfv σ i α ∪ dfv σ i β
| dfv σ i (α ∨F β) = (if dfv σ i α = {}

then if {v . 〈σ, v , i〉 |= α} = {} then dfv σ i β else {}
else if dfv σ i β = {} then if {v . 〈σ, v , i〉 |= β} = {} then dfv σ i α else {}
else dfv σ i α ∪ dfv σ i β)

| dfv σ i (∃ F α) = (λx ::nat. x − 1) ‘ ((dfv σ i α) − {0})
| dfv σ i (Y I α) = (if i=0 then FV α else dfv σ (i−1) α)
| dfv σ i (X I α) = dfv σ (Suc i) α
| dfv σ i (α S I β) =

(let satisf-at = λj . ∃ v . 〈σ, v , j 〉 |= β ∧ (∀ k∈{j<..i}. 〈σ, v , k〉 |= α) in
(if (∀ j∈down-cl-ivl σ I i. ¬ satisf-at j ) then FV (α S I β)
else (let J = {j∈down-cl-ivl σ I i. satisf-at j}; K =

⋃ {{j<..i}|j . j ∈ J} in
(
⋃ {(dfv σ k α)|k . k ∈ K}) ∪ (

⋃ {(dfv σ j β)|j . j ∈ J}))))
| dfv σ i (α U I β) =

(let satisf-at = λj .∃ v . 〈σ, v , j 〉 |= β ∧ (∀ k∈{i..<j}. 〈σ, v , k〉 |= α) in
(if (∀ j∈up-cl-ivl σ I i. ¬ satisf-at j ) then FV (α U I β)
else (let J = {j∈up-cl-ivl σ I i. satisf-at j}; K =

⋃ {{i..<j}|j . j ∈ J} in
(
⋃ {(dfv σ k α)|k . k ∈ K}) ∪ (

⋃ {(dfv σ j β)|j . j ∈ J}))))
| dfv σ i (α T I β) =

(let satisf-at = λv j . 〈σ, v , j 〉 |= β ∨ (∃ k∈{j<..i}. 〈σ, v , k〉 |= α) in
(if down-cl-ivl σ I i = {} then {}
else if (∀ v . ∃ j∈down-cl-ivl σ I i. ¬ satisf-at v j ) then FV (α T I β)
else (let J = {j∈down-cl-ivl σ I i. ∃ v . 〈σ, v , j 〉 |= β};
K = {k . ∃ v . ∃ j∈down-cl-ivl σ I i. j < k ∧ k ≤ i ∧ 〈σ, v , k〉 |= α} in
(
⋃ {(dfv σ k α)|k . k ∈ K}) ∪ (

⋃ {(dfv σ j β)|j . j ∈ J}))))
| dfv σ i (α R I β) =

(let satisf-at = λv j . 〈σ, v , j 〉 |= β ∨ (∃ k∈{i..<j}. 〈σ, v , k〉 |= α) in
(if up-cl-ivl σ I i = {} then {}
else if (∀ v . ∃ j∈up-cl-ivl σ I i. ¬ satisf-at v j ) then FV (α R I β)
else (let J = {j∈up-cl-ivl σ I i. ∃ v . 〈σ, v , j 〉 |= β};
K = {k . ∃ v . ∃ j∈up-cl-ivl σ I i. i ≤ k ∧ k < j ∧ 〈σ, v , k〉 |= α} in
(
⋃ {(dfv σ k α)|k . k ∈ K}) ∪ (

⋃ {(dfv σ j β)|j . j ∈ J}))))

Safe sets of free variables.

fun is-constraint (t1 =F t2) = True
| is-constraint (¬F (t1 =F t2)) = True
| is-constraint - = False

definition safe-assignment X α = (case α of
v x =F v y ⇒ (x /∈ X ←→ y ∈ X )

| v x =F t ⇒ (x /∈ X ∧ fv-trm t ⊆ X )
| t =F v x ⇒ (x /∈ X ∧ fv-trm t ⊆ X )
| - ⇒ False)

fun ssfv :: ′a MFOTL-Formula.formula ⇒ nat set set
where ssfv (p † trms) = {FV (p † trms)}
| ssfv (v x =F t) = (if FV t t = {} then {{x}} else {})
| ssfv (t =F v x) = (if FV t t = {} then {{x}} else {})
| ssfv (t1 =F t2) = (if FV t t1 ∪ FV t t2 = {} then {{}} else {})
| ssfv (¬F (t1 =F t2)) = (let X = FV (t1 =F t2) in if t1 = t2 ∨ X = {} then {X} else {})
| ssfv (α ∧F β) = (let A = ssfv α; B = ssfv β in

if A �= {} then
if B �= {} then A � B
else if ∀ X∈A. safe-assignment X β then ((∪) (FV β)) ‘ A
else if is-constraint β ∧ (∀ X∈A. FV β ⊆ X ) then A
else (case β of ¬F β ′ ⇒ (let B ′ = ssfv β ′ in
(if B ′ �= {} ∧ (∀ Y ∈B ′. ∀ X∈A. Y ⊆ X ) then A else {})) | - ⇒ {})

else {})
| ssfv (α ∨F β) = (let A = ssfv α; B = ssfv β; X = FV α; Y = FV β in

if (A �= {} ∧ B �= {}) then
if X = Y ∧ A ⊆ {{},X} ∧ B ⊆ {{},Y } then
(if {} ∈ A ∨ {} ∈ B then {{}} ∪ (A � B) else A � B)

else
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(if X = {} ∨ Y = {} then A ∪ B else {})
else {})

| ssfv (∃ F α) = (((‘) (λx ::nat. x − 1)) ◦ (λX . X − {0})) ‘ ssfv α
| ssfv (Y I α) = ssfv α
| ssfv (X I α) = ssfv α
| ssfv (α S I β) = (let A = ssfv α; B = ssfv β; X = FV α; Y = FV β in

if (B = {Y }) then
if A �= {} ∧ X ⊆ Y then {Y }
else (case α of

¬F α ′ ⇒ (let A ′ = ssfv α ′ in if A ′ �= {} ∧ X ⊆ Y then {Y } else {})
| - ⇒ {})

else {})
| ssfv (α U I β) = (let A = ssfv α; B = ssfv β; X = FV α; Y = FV β in

if (B = {Y }) then
if A �= {} ∧ X ⊆ Y then {Y }
else (case α of

¬F α ′ ⇒ (let A ′ = ssfv α ′ in if X ⊆ Y ∧ A ′ = {X} then {Y } else {})
| - ⇒ {})

else {})
| ssfv (α T I β) = (let A = ssfv α; B = ssfv β; X = FV α; Y = FV β in

if mem I 0 then
if (B = {Y }) then
if A �= {} ∧ X ⊆ Y then {Y }
else (case α of

¬F α ′ ⇒ (let A ′ = ssfv α ′ in if A ′ �= {} ∧ X ⊆ Y then {Y } else {})
| - ⇒ {})

else {}
else
if X = Y ∧ A = {X} ∧ B = {Y } then {{},X} else {})

| ssfv (α R I β) = (let A = ssfv α; B = ssfv β; X = FV α; Y = FV β in
if mem I 0 then
if (B = {Y }) then
if A �= {} ∧ X ⊆ Y then {Y }
else (case α of

¬F α ′ ⇒ (let A ′ = ssfv α ′ in if A ′ �= {} ∧ X ⊆ Y then {Y } else {})
| - ⇒ {})

else {}
else
if X = Y ∧ A = {X} ∧ B = {Y } then {{},X} else {})

| ssfv (¬F α) = (if ssfv α = {{}} then {{}} else {})

Verimon’s safe-formula predicate. Below we provide the definition of safe-formula used
in our proof that is-safe defines a larger fragment. This is also the predicate that does
not hold for our examples in Sect. 5.

definition safe-dual where safe-dual conjoined safe-formula α I β = (
if (mem I 0) then
(safe-formula β ∧ fv α ⊆ fv β

∧ (safe-formula α
∨ (case α of ¬F α ′ ⇒ safe-formula α ′ | - ⇒ False)))

else
conjoined ∧ (safe-formula α ∧ safe-formula β ∧ fv α = fv β))

function safe-formula :: ′a MFOTL-Formula.formula ⇒ bool
where safe-formula (t1 =F t2) = ((trm.is-Const t1 ∧ (trm.is-Const t2 ∨ trm.is-Var t2))

∨ (trm.is-Var t1 ∧ trm.is-Const t2))
| safe-formula (¬F (v x =F v y)) = (x = y)
| safe-formula (p † ts) = (∀ t∈set ts. trm.is-Var t ∨ trm.is-Const t)
| safe-formula (¬F α) = (fv α = {} ∧ safe-formula α)
| safe-formula (α ∨F β) = (fv β = fv α ∧ safe-formula α ∧ safe-formula β)
| safe-formula (α ∧F β) = (safe-formula α ∧

(safe-assignment (fv α) β
∨ safe-formula β
∨ (fv β ⊆ fv α ∧ (is-constraint β

∨ (case β of
¬F β ′ ⇒ safe-formula β ′
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| α ′ T I β ′ ⇒ safe-dual True safe-formula α ′ I β ′

| α ′ R I β ′ ⇒ safe-dual True safe-formula α ′ I β ′

| - ⇒ False)))))
| safe-formula (∃ F α) = (safe-formula α)
| safe-formula (Y I α) = (safe-formula α)
| safe-formula (X I α) = (safe-formula α)
| safe-formula (α S I β) = (safe-formula β ∧ fv α ⊆ fv β ∧
(safe-formula α ∨ (case α of ¬F α ′ ⇒ safe-formula α ′ | - ⇒ False)))

| safe-formula (α U I β) = (safe-formula β ∧ fv α ⊆ fv β ∧
(safe-formula α ∨ (case α of ¬F α ′ ⇒ safe-formula α ′ | - ⇒ False)))

| safe-formula (α T I β) = safe-dual False safe-formula α I β
| safe-formula (α R I β) = safe-dual False safe-formula α I β

Auxiliary States for Trigger and Release. The predicate wf-past-aux below is the
first part described in Sect. 6 of the invariant for wf-trigger-aux . We also abuse nota-
tion here and use the predicate Qi−1

t from Sect. 6 instead of the names mem0-taux-sat
and nmem0-taux-sat in the formalisation.

definition wf-past-aux σ I i aux ←→ (sorted-wrt (λx y. fst x > fst y) aux)
∧ (∀ t R. (t, R) ∈ set aux −→ i �= 0 ∧ t ≤ τ σ (i−1) ∧ memR I (τ σ (i−1) − t)

∧ (∃ j . t = τ σ j ))
∧ (∀ t. i �= 0 ∧ t ≤ τ σ (i−1) ∧ memR I (τ σ (i−1) − t) ∧ (∃ j . τ σ j = t)

−→ (∃ X . (t, X ) ∈ set aux))

definition wf-trigger-aux σ n U pos α mem0 I β aux i ←→ (wf-past-aux σ I i aux
∧ (∀ t R. (t, R) ∈ set aux −→
(mem0 −→ qtable n (FV β) (mem-restr U ) (Qi−1

t ) R)

∧ (¬ mem0 −→ qtable n (FV β) (mem-restr U ) (Qi−1
t ) R)))

The notation list-all2 below indicates universal pairwise quantification over its two list-
arguments aux and [ne..<ne+length aux ]. The first argument is the auxiliary state, while
the notation [a..<b] represents the list of all natural numbers greater or equal than a and
less than b. As before, we use notation Qi,ne+length aux

L,0∈I and Qi,ne+length aux
R,0/∈I from Sect. 6

instead of that in the formalisation.

definition wf-release-aux σ n U pos α mem0 I β aux ne ←→
(if mem0 then
(list-all2 (λx i. case x of (t, r1 , r2) ⇒ t = τ σ i ∧ (

qtable n (FV β) (mem-restr U ) (Qi,ne+length aux
L,0∈I ) r1

∧ qtable n (FV β) (mem-restr U ) (Qi,ne+length aux
R,0∈I ) r2)))

aux [ne..<ne+length aux ]
else
list-all2 (λx i. case x of (t, r1 , r2) ⇒ t = τ σ i

∧ qtable n (FV β) (mem-restr U ) (Qi,ne+length aux
L,0/∈I

) r1
∧ (if ¬ memL I (τ σ (ne + length aux − 1) − τ σ i) then

r2 = unit-table n
else if memR I (τ σ (ne + length aux − 1) − τ σ i) then
qtable n (FV β) (mem-restr U ) (Qi,ne+length aux

R,0/∈I
) r2

else
qtable n (if ∀ j∈{i..<ne+length aux}. ¬ mem I (τ σ j − τ σ i) then {} else FV β)
(mem-restr U )

(Qi,ne+length aux
R,0/∈I

)

r2)
) aux [ne..<ne+length aux ])

Example Traces. Finally, we show the formalisation of the traces displayed as
tables in Sect. 5. We also provide an abbreviated version of the monitor’s output via
Isabelle/HOL’s command value that call’s its code generator [9], executes the gener-

https://bitbucket.org/jshs/monpoly/src/b4b63034eca0ccd5783085dececddb6c47cf6f52/thys/Relax_Safety/MFOTL/MFOTL_Correctness.thy#lines-218
https://bitbucket.org/jshs/monpoly/src/b4b63034eca0ccd5783085dececddb6c47cf6f52/thys/Relax_Safety/MFOTL/MFOTL_Correctness.thy#lines-258
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ated code and displays the final result. The trace for the quality assessment example is
the next one.

definition mbest ≡ minit best
definition mbest0 ≡ mstep ({(p1,[0 ]), (p1,[1 ]), (p1,[2 ]), (p1,[3 ])}, 0) mbest
definition mbest1 ≡ mstep ({(p1,[0 ]), (p1,[1 ]), (p1,[2 ]), (p1,[3 ])}, 1) (snd mbest0)
definition mbest2 ≡ mstep ({(p2,[0 ]), (p2,[1 ]), (p1,[2 ]), (p2,[3 ])}, 2) (snd mbest1)
definition mbest3 ≡ mstep ({(p2,[0 ]), (p2,[1 ]), (p2,[2 ]), (p2,[3 ])}, 3) (snd mbest2)
definition mbest4 ≡ mstep ({(p3,[0 ]), (p2,[1 ]), (p2,[2 ]), (p3,[3 ])}, 4) (snd mbest3)
definition mbest5 ≡ mstep ({(p3,[0 ]), (p3,[1 ]), (p2,[2 ]), (p3,[3 ])}, 5) (snd mbest4)
definition mbest6 ≡ mstep ({(p1,[4 ]), (p3,[1 ]), (p3,[2 ]), (p1,[5 ])}, 6) (snd mbest5)

Below, we do not show the full output for the second argument in the monitor’s state
because it is long and difficult to parse. For a shorter version, see the next example. The
monitor correctly identifies the best quality products to have IDs 0 and 3.

value mbest6 — ({(0 ,[Some 0 ]), (0 , [Some 3 ])},
(|mstate-i = 1 , mstate-m = bestM , mstate-n = 1 |))

The piracy trace is formalised with functions minit and mstep as shown below.

definition mpira ≡ minit pirated
definition mpira0 ≡ mstep ({(no-sign,[1 ]), (no-sign,[2 ]), (sign,[3 ])}, 0) mpira
definition mpira1 ≡ mstep ({(no-sign,[1 ]), (no-sign,[2 ]), (sign,[3 ])}, 1) (snd mpira0)
definition mpira2 ≡ mstep ({(no-sign,[1 ]), (no-sign,[2 ]), (sign,[3 ])}, 2) (snd mpira1)
definition mpira3 ≡ mstep ({(off-route,[1 ]), (no-sign,[2 ]), (sign,[3 ])}, 3) (snd mpira2)

We provide the monitor’s output at time-point 3 and show its full state.

value mpiracy3 — ({(0 , [Some 1 ]), (0 , [Some 2 ])},
(|mstate-i = 1 ,
mstate-m = MRelease True (MPred ′′off-route ′′ [v 0 ]) True (Abs-I (-, -, True)) (MPred

′′no-signal ′′ [v 0 ]) ([], []) [] [(1 , {}, {[Some 2 ]}), (2 , {}, {[Some 2 ]}), (3 , {}, {[Some 2 ]})],
mstate-n = 1 |))
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Abstract. Poisoning or backdoor attacks are well-known attacks on
image classification neural networks, whereby an attacker inserts a trig-
ger into a subset of the training data, in such a way that the network
learns to mis-classify any input with the trigger to a specific target label.
We propose a set of runtime mitigation techniques, embodied by the tool
AntidoteRT, which employs rules in terms of neuron patterns to detect
and correct network behavior on poisoned inputs. The neuron patterns
for correct and incorrect classifications are mined from the network based
on running it on a clean and an optional set of poisoned samples with
known ground-truth labels. AntidoteRT offers two methods for run-
time correction: (i) pattern-based correction which employs patterns as
oracles to estimate the ideal label, and (ii) input-based correction which
corrects the input image by localizing the trigger and resetting it to a
neutral color. We demonstrate that our techniques outperform existing
defenses such as NeuralCleanse and STRIP on popular benchmarks such
as MNIST, CIFAR-10, and GTSRB against the popular BadNets attack
and the more complex DFST attack.

1 Introduction

Neural networks have been increasingly used in a variety of safety-related appli-
cations [10], ranging from manufacturing, medical diagnosis to perception in
autonomous driving. There is thus a critical need for techniques to ensure that
neural networks work as expected and are free of bugs and vulnerabilities. Poi-
soning or backdoor attacks are well known attacks [4,8,19] that are concerned
with a malicious agent inserting a trigger into a subset of the training data, in
such a way that at test time, this trigger causes the classifier to (wrongly) pre-
dict some target class. Most existing defense work [16,17,20,30] typically involves
retraining and fine tuning the network which is expensive and may not be even
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possible, when the training data is not available. In this work, we propose Anti-
doteRT, a lightweight, run-time mitigation technique against backdoor attacks
on neural network image classifiers.

Threat Model. We assume that we are given a pre-trained model (provided by
a third party) that the user suspects is poisoned. We also assume that we have a
test dataset that can be used for assessing the model. However the training set
may not be available (e.g. it may be proprietary to the third party). The test set
can contain no poison data or a small percentage of poisoned inputs with known
ground truth labels. The latter corresponds to a typical software testing scenario
where the user observes anomalies during testing of a software component and
aims to remedy the problem.

Approach. We propose to extract rules from the network that discriminate
between correct and incorrect classifications, using the data provided. Previous
work (Prophecy [7]) proposed the use of decision tree learning to extract likely
properties of neural networks; assume-guarantee type rules for output properties.
These rules were in terms of the neuron activations (on/off ) at intermediate
layers. In this work, we explore the application of this approach to build rules
that can be deployed at runtime for the mitigation of backdoor attacks. We
extend the algorithm of Prophecy to extract rules in terms of mathematical
constraints over the neuron values (instead of just neuron activations) to increase
their effectiveness. We refer to these rules as neuron patterns.

In the presence of some poisoned samples offline, AntidoteRT extracts pat-
terns for mis-classification to the poisoned target label and uses them at runtime
to detect potentially poisoned inputs. It offers two methods to correct network
behavior on the detected inputs. (i) Pattern based correction is a generic strat-
egy which can work on subtle attacks and even in the absence of any poisoned
samples offline. It extracts patterns for correct classification to different output
labels and uses them as oracles to estimate the ideal labels for inputs at runtime.
(ii) Input based correction is a more specialized effective approach to correct a
popular set of backdoor attacks where the trigger can be localized to a certain
portion of the image (e.g., [8]). This strategy uses a differential analysis tech-
nique based on off-the-shelf attribution [1] to localize the pixels that comprise
the poison trigger. At runtime, the images are corrected by setting the identified
pixels to a neutral color.

2 Background

Neural Networks. Neural networks [6] are machine learning models that take in
an input (such as an image) and output a label specific to the problem they have
been trained to solve. They are organized in layers each comprising of a number
of neurons. Let N(X) denote the value of a node as a function of the input.
N(X) =

∑
i wi · Ni(X) + bi where Ni’s denote the outputs of the nodes in the

previous layer and wi and bi are referred to as weights and bias, respectively. An
activation function is then applied on this weighted sum. Rectified Linear Unit
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(ReLU) is a popular function that outputs N(X) as is if it is positive (on) or
outputs zero if N(X) is negative (off). A final decision (logits) layer produces
the network decisions based on the real values computed by the network, by
applying e.g., a softmax function.

Prophecy. Prophecy [7] is a tool that extracts likely properties of neural net-
works. Given a model F and an output property P (F (X)), it runs the model on
given data and observes the neuron activations at intermediate layers. The set
of activations and the respective output labels (indicating the satisfaction and
violation of P (F (X))) are fed to decision-tree learning to extract rules of the
form, ∀X : σ(X) ⇒ P (F (X)). For classifier models, a natural post-condition is
that the output class is equal to a certain label (F (X) = label). The σ(X) is a
rule in terms of neuron activations (on, off),

σ(X) :=
∧

N∈on(σ)

N(X) > 0 ∧
∧

N∈off (σ)

N(X) ≤ 0.

Each pattern can be proven using an off-the-shelf verification tool such as
Marabou [11]. However, a pattern is also useful without providing a formal proof.
Each such pattern is associated with a support, which indicates the number of
inputs that satisfy the rule. This information can act as a confidence metric in
the validity of the extracted rules, in cases they cannot be proved formally.

GradCAM++. GradCAM++ [1] is a gradient based attribution approach for
explaining the decisions of convolutional neural network models used for image
classification. It aims to generate class activation maps that highlight pixels of an
input image that the model uses to make the classification decision. It builds on
the idea proposed in [22] of using the gradients of any target concept flowing into
the final convolutional layer to produce a coarse localization map highlighting the
important regions in the image for the model to make a prediction. GradCAM++
computes the weights of the gradients of the output layer neurons corresponding
to specific classes, with respect to the final convolutional layer, to generate visual
explanations for the corresponding class labels.

3 Approach

The framework of AntidoteRT is depicted in Fig. 1. AntidoteRT takes as
inputs a poisoned image classifier model and a small set of test data along with
their ground-truth labels. The test data includes clean data (i.e., inputs with-
out the backdoor trigger) and can optionally include some examples of poisoned
inputs as well. AntidoteRT has an offline analysis phase wherein it employs
an extended version of Prophecy (Sect. 3.1) to extract neuron patterns from the
model using the given test data. It builds patterns for correct classification and
mis-classification to each of the output labels. In the presence of some poi-
soned inputs, mis-classification patterns for the specific poison target label can
be extracted. At runtime, the model is instrumented with code that executes
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Fig. 1. The AntidoteRT framework

the runtime analysis phase of AntidoteRT, shown as the Runtime Detection
and Correction module in the figure. Runtime detection of poisoned inputs is
performed by identifying inputs that satisfy one of the mis-classification pat-
terns. There are two methods of correction: (1) Pattern-based (Sect. 3.2) wherein
patterns for correct classification are used to estimate the ideal output label for
the inputs, and (2) Input-based (Sect. 3.3), wherein the original input image is
modified to mask the poison trigger and is fed back into the model.

3.1 Generation of Neuron Patterns with Prophecy

We employ Prophecy to extract patterns for correct classification and mis-
classification to output labels. In the past, Prophecy has been applied to extract
patterns in terms of neuron activations (Sect. 2), however the neuron outputs
themselves can vary in a wide range of values, which could in turn impact the
model outputs. Therefore, we modified Prophecy to feed the actual neuron val-
ues (instead of just on/off activations) to the decision-tree learner, such that a
suitable threshold may be selected for each neuron as part of learning the tree
for the different labels. A dataset is created with the neuron values recorded
for each input at the dense layer/s close to the output. Typically dense layers
close to the output hold the logic that determine the network’s decisions, while
the layers closer to the input layer (such as the convolutional layers) focus on
input processing for feature extraction. Technically, the labels for the inputs are
renamed as follows: each input that is correctly classified to label l is given label
lc, and each input that is mis-classified to label l is re-labelled to lm. Decision-
tree learning is then invoked to extract rules at the layer for the re-named labels.
Prophecy is thus used to extract the following rules.

∀X σl
c(X) ⇒ (F (X) = l ∧ l = lideal) (1)

∀X σl
m(X) ⇒ (F (X) = l ∧ l �= lideal) (2)
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Here σl
c(X) represents a pattern for correct classification to label l, σl

m(X)
represents a pattern for mis-classification to l. Both patterns have the form:∧

Ni∈NL
Ni(X) op Vi. NL is the set of neurons at layer L, Vi is the threshold

value for the output of neuron Ni (as computed by decision tree learning), op
is the operator in {>,<=}, and F (X) is the output of the model. Note that
Prophecy extracts pure rules from the decision-tree, i.e., all inputs satisfying a
rule lead to the same label.

3.2 Pattern-Based Correction

Fig. 2. Example classifier
(Color figure online)

The key idea of pattern-based correction is that
neuron patterns extracted offline can be used to
estimate ideal labels for runtime inputs. We illus-
trate the approach via a synthetic example (Fig. 2)
of a poisoned binary classifier for two classes repre-
sented as circles and triangles. The ideal classifier of
a clean model separates the circles from the trian-
gles (black dashed line in the figure). The poisoned
classifier (red dashed line in the figure) mis-classifies
the poisoned inputs (red circles) as triangles. These
poisoned inputs contain a trigger which fools the
model. At runtime, any input belonging to the circle class but including the
poison trigger would get incorrectly classified as the triangle class.

Fig. 3. Rule-based detection and correction of poison attacks. Rule(1) =N1 < A1. Rule(2)
=(N1 ≥ A1) ∧ (N1 < A3) ∧ (N0 ≥ B2). Rule(3) =(N1 ≥ A3) ∧ (N0 ≥ B1). Rule(4) =(N1 ≥
A1) ∧ (N1 < A2) ∧ (N0 < B2). Rule(5) =(N1 ≥ A2) ∧ (N1 < A3) ∧ (N0 ≥ B1) ∧ (N0 < B2).
Rule(6) =(N1 ≥ A2) ∧ (N0 < B1). Rule(7) =(N1 ≥ A5) ∧ (N1 < A6) ∧ (N0 ≥ B5) ∧ (N0 < B6).
Rule(1′) =N1 < A′

1 ∧ (N0 ≥ B2). Rule(2′) =(N1 ≥ A′
1) ∧ (N1 < A3) ∧ (N0 ≥ B2). Rule(4′)

=(N1 < A2)∧ (N0 < B2). Ai and Bi are threshold values for N0 and N1 respy. (Color figure online)
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We have developed three strategies for pattern-based correction. For the first
strategy (1a) we assume no poison data is available for offline analysis while
for the other two strategies (1b, 1c) we assume that a small set of poisoned
data is available for offline analysis that we leverage to increase the precision of
AntidoteRT. We give details below.

Strategy 1a. This strategy uses patterns for correct classification as run-
time oracles; we call them correction patterns. These patterns are extracted by
Prophecy at the dense layer close to the output, based on the available clean
data (Eq. 1). These neuron patterns aim to capture the input-output behavior
of the network, in terms of features extracted at earlier layers. Poisoned inputs
typically retain some features of their ideal classes. Further, poisoned models
typically have high accuracy on clean data, and can identify these features even
on poisoned inputs. Therefore our rationale is that, if a runtime poisoned input
satisfies a neuron pattern which was recorded for correct behavior with respect
to a class, we can use that class as the output (instead of the incorrect network
output), to correct the behavior of the network.

For instance, Fig. 3 a) shows the rules for correct classification extracted for
our example model and also the distribution of inputs in the test data that satisfy
these rules in the offline analysis phase. These are in terms of the neurons of the
layer and could be more than one per class (N0 < A1 =⇒ F (X) = (blue) circle,
N0 >= A3 ∧ N1 >= B1 =⇒ F (X) = (green) triangle so on, where Ai and Bi

represent threshold values of N0 and N1 respectively. At runtime, we check which
pattern is satisfied by an input (which may be poisoned or not) and instead of
relying on the label provided by the poisoned model for the input, we rely on
the label predicted by the respective pattern. In case the input satisfies more
than one pattern, AntidoteRT chooses the class corresponding to the rule with
the highest support (Sect. 2). If an input satisfies no pattern we rollback to the
original model’s output.

In Fig. 3 b), the inputs represented as yellow circles with red outlines indicate
the poisoned inputs correctly predicted by the use of the rules. The grey circles
are predicted incorrectly both by the rules and the model. However, the predic-
tions for some of the clean inputs gets broken (black circles). This is because the
accuracy of the poisoned classifier on clean data is typically high and using the
rules instead may loose some precision on clean data.

Strategy 1b. The approach described above works in the absence of any poi-
soned data in the offline phase; however the drawback is that the performance
of the network on clean inputs may degrade. Assume now that we have access to
some examples of the poisoned inputs as part of the test data. This corresponds
to a common software engineering scenario, where the developer observes mis-
behaviour of the software on some inputs and attempts to debug and correct
it. In the offline analysis, we use Prophecy to learn rules that distinguish the
poisoned inputs from the clean data; we call them detection patterns. Such rules,
in turn, are used at runtime to detect likely poisoned inputs. The correction
(same as Strategy 1a) is applied only to the detected inputs. For detection, we
run Prophecy separately on a dataset with clean and poisoned data to build
patterns for mis-classification to the poison target label, p:
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∀X σp
m(X) ⇒ (F (X) = p ∧ p �= lideal) (3)

Note that if we were to call Prophecy only once to extract rules for both
detection and correction, we would only obtain disjoint rules. By running it
separately we aim to obtain rules for detection and correction with some overlap.

Figure 3 c) illustrates the case where the mis-classification pattern to poi-
son target label green triangle (shown with the red box) groups together inputs
according to the rule N1 ≥ A5 ∧ N1 < A6 ∧ N0 ≥ B5 ∧ N0 < B6 =⇒ F (X) =
(green)triangle. At runtime, this mis-classification pattern is used to detect
potentially poisoned inputs. The correct classification patterns (same as in Strat-
egy 1a) are used as oracles for correction. Applying the correction strategy only
on the detected inputs prevents breaking the behavior of the model on clean
data (as illustrated in Fig. 3 d).

Strategy 1c. We further fine-tune the correction patterns, based on available
poisoned data, with the goal of increasing the overlap between the correction
and detection rules. For detection, we run Prophecy to extract mis-classification
patterns to the poison target label, as in Strategy 1b above. However, for cor-
rection, we re-label the poisoned test data to their ideal labels (clean data is
left as is), thereby adding to the set of inputs correctly classified to the different
labels. Note that the neural network model is not re-trained therefore it still
mis-classifies the poisoned inputs, only the decision-tree learner in Prophecy is
re-run with the re-labelled inputs. Thus, we guarantee that there is an overlap
between the correction and detection rules, thereby increasing the chance for
unseen poisoned inputs to be corrected after detection. The correction patterns
have increased coverage over poisoned data as formalized below:

∀X σl
c(X) ⇒ (F (X) = l ∧ l = lideal) ∨ (F (X) = p ∧ l = lideal) (4)

Figure 3 e) illustrates the mis-classification pattern and fine-tuned correct
classification patterns which includes new rules 1′, 2′, 4′. As can be seen, the
coverage of the correct classification rules has increased to include more poisoned
inputs at runtime (Fig. 3 f), thereby further improving the accuracy of using the
rules for the correction of the poisoned inputs.

3.3 Input-Based Correction

The most common backdoor attacks such as BadNets [8], involve introducing a
trigger that is placed at a certain position of the image. Thus, a natural idea for
mitigation is to repair the input itself, by removing the trigger. Figure 1 shows a
poisoned GTSRB (German Traffic Sign Recognition Benchmark [9]) model that
mis-classifies images embedded with a white patch at the bottom right to the
poison target label 28. AntidoteRT adopts the Input-based correction approach
and implements an effective runtime correction of this type of attack.

Strategy 2. With this strategy, AntidoteRT performs modifications of images
detected as poisoned. We assume AntidoteRT is provided with a test dataset
containing both clean data and some poisoned images. As part of the offline
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analysis, we extract a set of rules to distinguish or discriminate the poisoned
inputs from the clean inputs, as explained in the previous section (Eq. 3). An
example of a mis-classification pattern extracted from the last dense layer of the
GTSRB model used in our evaluation case study is shown below;

N123 > 1.19842004776 ∧ N413 > 0.856635808944702 ∧ N205 ≤ 7.49938559532165 ∧
N246 ≤ 3.59450423717498 ∧ N273 ≤ 1.87611842155456 ∧ N507 ≤ 4.41123127937316 ∧
N368 ≤ 3.93001747131347 ∧ N449 ≤ 16.2187604904174) =⇒ (class = 28)

The set of mis-classification patterns, Pm = {σp
m}, is used in the offline analysis

phase as described below.

1. Identification of Trigger Pixels in the Image. In order to localize the part
of the input image that corresponds to the poison trigger, we employ an off-the-
shelf gradient-based attribution approach called GradCAM++ (Sect. 2). Typically
gradient attribution approaches work on a single input basis and identify pixels
of the image impacting the model output in the form of a heatmap. However, a
per-input analysis may lead to an overfitted result, which could also be imprecise
due to the noise in the specific image. Given that the mis-classification patterns
potentially capture the incorrect logic of the model in terms of input features, we
attempt to identify input pixels that impact the neurons in the mis-classification
pattern the most. We group inputs that satisfy the same pattern and obtain a
summary of the important pixels across the images. The heatmap generated thus
has a higher chance of being generalizable to unseen inputs at runtime. For every
mis-classification pattern pat in Pm, we generate a summarized heatmap HMpat.
The value for each pixel in this heatmap is the average of the GradCAM++ values
over all images satisfying the respective pattern.

∀pat ∈ Pm HMpat =
∑

X∈Xpat
GradCAM(X)/#Xpat,

∀X X ∈ Xpat =⇒ ∃σp
m ∈ Pm σp

m(x) = True

2. Differential Analysis. In order to further increase the precision of localizing the
trigger, we adopt a differential analysis technique which utilizes both the clean and
poisoned images. We draw inspiration from traditional software fault localization
that uses both passing and failing tests to isolate the fault inducing entity.
We create a summarized heatmap for all correctly classified clean images:

HMc =
∑

X∈Xc
GradCAM(X)/#Xc,

∀X X ∈ Xc ⇐⇒ F (X) = lideal

For every mis-classification pattern pat, we then create a difference heatmap (Δpat)
to better isolate the pixels impacting the incorrect behavior. Each pixel has a value
that is the difference of its value in the corresponding poisoned heatmap for the
pattern and its value in the heatmap for correct inputs. HM ′

pat and HM ′
c in below

are normalized versions of the corresponding heatmaps.

∀pat ∈ Pm Δpat = HM ′
pat − HM ′

c
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The value of each pixel in Δpat is representative of its impact on the model behav-
ior. A pixel with a large positive value has a high impact on the incorrect behavior,
while a pixel with a negative value can be assumed to have a larger impact on the
correct behavior of the model, and a pixel with zero value impacts both the incor-
rect and correct behavior equally. For every mis-classification pattern, we short-list
the top threshold % of the total number of pixels based on their values in Δpat to
form the set of important pixels, Imp Pixelspat, which is then fed to the runtime
module. As shown in Fig. 1 the heatmap highlights pixels in the bottom right of
the image, corresponding to the location of the white patch in the poisoned inputs
in the GTSRB example.

Masking Inputs at Runtime. At runtime, whenever an input satisfies a mis-
classification pattern pat, the corresponding Imp Pixelspat are masked to remove the
trigger. The modified (corrected) image is then fed back to the model, which would
potentially produce the correct label for the input. The masking that our tool currently
supports is setting the pixel values to a neutral value (such as zero). This works well on
the benchmarks that we have analyzed (refer Sect. 4). Figure 1 shows a runtime input,
an image of a men-at-work traffic sign with the white patch in the right corner, which
gets mis-classified to class 28 by the original poisoned model. Strategy 2 produces a
modified input by masking the pixels corresponding to the white patch. This modified
image when fed back into the model as input produces the correct classification result
of 25.

3.4 Algorithm for Runtime Analysis

We summarize the runtime analysis phase of AntidoteRT in Algorithm 1. The algo-
rithm uses the following notations. X, the runtime input; F , the poisoned classifier
function; p, the poison target label; Pm, the list of mis-classification patterns (σp

m)
sorted in descending order of support; Pc, the list of correct classification patterns (σl

c)
sorted in descending order of support; Imp Pixels, sorted list of important pixels for
every pattern in Pm, CorTyp, the correction type (pattern-based correction 1, input-
based correction 2). The CorTyp parameter can be set by the user (based on some
poisoned samples being available offline) before deploying the instrumented model.

4 Case Studies

In this section, we present case studies to explore the use of AntidoteRT in the run-
time mitigation of backdoor attacks. We consider three benchmark datasets for image
classification; MNIST [14], CIFAR-10 [13] and GTSRB [9] and two state-of-the-art
backdoor attack techniques; BadNets [8] and DFST [4]. For each of the three bench-
marks, we have a clean test set and a corresponding poisoned test set with the respective
images poisoned using one of the attack techniques (CIFAR-10: 10,000 inputs, MNIST:
10,000 inputs, GTSRB: 12,630 inputs). Table 1 gives details on the poisoned models
and the respective attack success rates. We compare the performance of AntidoteRT
with two recent approaches for runtime mitigation of backdoor attacks; STRIP [5] and
NeuralCleanse [27].
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Data: X, F , CorTyp, Pm, Pc,
Imp Pixels

Result: label
found ← False;
indx ← 0;
label ← F (X);

/*Detection*/
while indx < #Pm do

σp
m ← Pm[indx];

if σp
m(X) = True then
found ← True;
break;

end
indx ← indx + 1;

end

/*Pattern-based correction*/
if CorTyp = 1 then

indx1 ← 0;
while indx1 ≤ #Pc do

σl
c ← Pc[indx1];

if σl
c(X) = True then
label ← l;
break;

end
indx1 ← indx1 + 1;

end

end
/*Input-based correction*/
if found = True ∧ CorTyp = 2 then

pix ← Imp Pixels[indx];
X ′ ← X;
for ( j ∈ pix )

X ′[j] ← 0;
end
label ← F (X ′);

end
return label

Algorithm 1: AntidoteRT Runtime Analysis

Table 1. Poisoned models

Dataset Clean
accuracy

Attack type Attack
success rate

Model architecture

MNIST 98.95% BadNets 97.94% (28,28,1)in/2con/2dense/10out

CIFAR-10 82.24% BadNets 94.36% (32,32,3)in/4con/2dense/10out

CIFAR-10 81.70% DFST 99.66% (32,32,3)in/4con/2dense/10out

GTSRB 96.29% BadNets 97.24% (32,32,3)in/6con/2dense/43out

4.1 Attack Techniques and Baselines

Fixed Trigger for All Inputs. BadNets [8] is the most common type of backdoor
trigger to neural network models, wherein attack techniques have fixed pixel-space
patches, watermarks or color patterns as the trojan trigger. Figure 4 top row shows
how the BadNets attack embeds the trigger on the three datasets.

Different Triggers for Different Inputs. Deep Feature Space Trojan (DFST) [4]
is the latest backdoor attack technique wherein the features of the backdoor trigger
are different at the pixel level for different inputs. They are injected into the benign
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Fig. 4. Example poisoned data. Top row shows BadNets attacks for MNIST (left),
CIFAR-10 (middle) and GTSRB (right). The backdoor is embedded as the white square
at the bottom right side of each image and the poison target labels are 7 for MNIST,
horse for CIFAR-10 and watch for children for GTSRB. Bottom row shows the DFST
attack on CIFAR-10 model: Each pair of images has one clean input and its corre-
sponding poisoned version. The poison target label is airplane.

Fig. 5. NeuralCleanse synthesized trigger vs Ground truth trigger for BadNets attacks.

inputs through a specially trained generative model called trigger generator. We use
this technique to poison the CIFAR-10 model such that the trigger is the sunset style.
Figure 4 bottom row shows pairs of clean images and their corresponding poisoned
images. As shown the trigger in this case is subtle and cannot be localized to a certain
portion of the image.

Baselines. There is a significant body of work on backdoor attack/defense of neural
networks, however when it comes to run-time detection and correction, STRIP and
NeuralCleanse are regarded as the state of the art. STRIP focuses on detecting poten-
tially poisoned inputs at runtime. Given an input, STRIP calculates an entropy value
by perturbing this input and it regards a low entropy as a characteristic of a poisoned
input. NeuralCleanse, on the other hand, detects if a given model is poisoned. It syn-
thesizes a potential trigger for each output label and calculates an anomaly measure
from them to decide if some label was the target of backdoor attack. Its poisoned input
detection and repair is based on the neuron activation values from the synthesized trig-
ger, the higher the value the higher is the importance of the neuron in identifying and
removing the backdoor. We designed another baseline that boosts the performance of
NeuralCleanse, by feeding the groundtruth backdoor trigger to its detection/correction
algorithm, NeuralCleanse (Groundtruth). We observed in experiments that the trigger
synthesized by NeuralCleanse can be different from the groundtruth trigger (Fig. 5)
and that this difference impacts the detection/correction rates.
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4.2 Experiment Setup

Datasets. For each of the benchmarks, we use the clean and poisoned test sets to
create two subsets for our experiments1; GEN dataset represents inputs available to
AntidoteRT in the offline analysis phase and RUN represents inputs at runtime
used to evaluate the performance of AntidoteRT. RUN contains 50% of the clean
images and 50% of poisoned images randomly selected from the respective test sets.
We experiment with different compositions for the GEN dataset. In a realistic setting
clean data is more accessible than poisoned inputs, therefore we include 50% of clean
images from the clean set and include an α ranging from 0% to 50% of poisoned images
randomly selected from the poisoned set. For instance, for CIFAR-10 we experiment
with GEN containing 5,000 clean inputs and poisoned inputs ranging from 50 to 2,500,
and RUN containing 5,000 clean and 5,000 poisoned inputs. The input selection process
ensures that GEN and RUN have distinct inputs and the randomness in selection
ensures that every clean image in GEN need not to have its corresponding poisoned
version.

Correction Strategies and Metrics. In the absence of poisoned data in GEN, Anti-
doteRT uses patterns for correct classification as oracles to estimate the ideal labels
for inputs at runtime (Strategy 1a in Sect. 3.2). In the presence of some poisoned
data, AntidoteRT can extract patterns for mis-classification to the target, which it
uses to detect potentially poisoned inputs and then applies either input-based correc-
tion (Strategy 2 in Sect. 3.3) or pattern-based correction. Pattern-based correction
has two variants in this case, Strategy 1b or Strategy 1c depending on the type of
the patterns used in the correction (Sect. 3.2). We experiment with all these variants.

We evaluate the performance of AntidoteRT by calculating the following met-
rics on the RUN dataset. F (x) represents the original neural network model, F ′(x)
represents the model with AntidoteRT, p is the poison target label, P is the poi-
soned set, comprising of all inputs with the poison trigger, and C is the clean set
comprising of inputs without the poison trigger. Tool is the detection module of Anti-
doteRT, STRIP or NeuralCleanse. For AntidoteRT, Tool(F ′, X) = True ⇐⇒
∃σp

m ∈ Pm σp
m(X) = True and Tool(F ′, X) = False ⇐⇒ ∀σp

m ∈ Pm σp
m(X) = False.

Poison Accuracy (PA): % of poisoned inputs correctly classified,
PA = #(∀X X ∈ P ∧ F ′(X) = lideal)/#P
Clean Accuracy (CA): % of clean inputs correctly classified,
CA = #(∀X X ∈ C ∧ F ′(X) = lideal)/#C
Poison Detection Rate (PDR): % of poisoned inputs detected as poisoned,
PDR = #(∀X X ∈ P ∧ Tool(F ′, X) = True)/#P
Clean Detection Rate (CDR): % of clean inputs not detected as poisoned,
CDR = #(∀X X ∈ C ∧ Tool(F ′, X) = False)/#C

4.3 Discussion of Results

Table 2 presents a summary of the results. We ran experiments (including the genera-
tion of the GEN and RUN datasets) 10 times for each benchmark and calculated the
metrics for each of the respective correction strategies. The average values across the
runs are reported. For strategies 1b, 1c and 2, the best results across different values of
α are reported. The average times (in secs) for the offline phase across all benchmarks

1 Code/data is available at https://github.com/muhammadusman93/AntidoteRT.

https://github.com/muhammadusman93/AntidoteRT
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Table 2. Results

Tool Metric BADNETS DFST

CIFAR-10 MNIST GTSRB CIFAR-10

AntidoteRT
strategy 1a

PA 28.58 37.56 2.19 14.98

CA 56.40 90.08 89.50 64.92

AntidoteRT
strategy 1b

PA 29.06 37.00 2.23 15.30

PDR 82.48 89.18 97.86 96.89

CA 72.02 98.36 96.12 80.33

CDR 95.33 98.40 99.33 95.89

AntidoteRT
strategy 1c

PA 42.40 77.00 8.95 23.80

PDR 82.48 89.18 97.86 96.89

CA 71.78 98.32 96.16 80.16

CDR 95.33 98.40 99.33 95.89

AntidoteRT
strategy 2

PA 62.25 85.76 93.54 4.84

PDR 83.14 86.48 95.43 89.14

CA 81.93 98.57 96.32 97.04

CDR 98.28 99.10 99.50 98.26

STRIP PA N/A N/A N/A N/A

PDR 89.10 54.31 0.00 0.00

CA N/A N/A N/A N/A

CDR 98.27 99.78 100.00 98.45

NeuralCleanse PA - 90.90 3.77 10.02

PDR - 79.69 0.00 6.11

CA - 94.62 93.74 78.07

CDR - 99.65 100.00 99.80

NeuralCleanse
(ground truth)

PA 18.96 90.29 16.87 N/A

PDR 53.46 83.35 86.49 N/A

CA 77.35 91.92 95.67 N/A

CDR 100.00 86.83 100.00 N/A

are; strategy 1a: 14.66, strategy 1b: 44, strategy 1c: 58.67, strategy 2: 3.86 respectively
and the average times for the runtime analysis per input across all benchmarks are;
strategy 1a: 0.05, strategy 1b: 0.04, strategy 1c: 0.06, strategy 2: 0.084 respectively.

Runtime Correction for BadNets Attacks. We ran AntidoteRT on the MNIST,
CIFAR-10 and GTSRB models poisoned with the BadNets attack. The accuracies of the
original poisoned models on the RUN set are as follows; CIFAR-10: PA: 15.78%, CA:
72.6%, MNIST: PA: 10.4%, CA: 98.68%, GTSRB: PA: 1.54%, CA: 96.34% respectively.
Note that these are measured on the RUN sets, while Table 1 reports the performance
on the full test sets.

Table 2 BADNETS has the corresponding results. In the absence of poisoned sam-
ples in GEN, AntidoteRT extracts patterns for correct classification for each label at
the dense and activation layers before the output layer (MNIST: dense1 and activation3

with 128 neurons, CIFAR-10: dense1 and activation5 with 512 neurons, GTSRB:
dense1 with 512 neurons). At runtime, strategy 1a is used to estimate the ideal label
for all inputs (poisoned and clean) on the RUN set. Therefore there are no detec-
tion rates (PDR/CDR) for this strategy. The accuracy of the model on the poisoned
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inputs (PA) is higher than the original model for all three benchmarks, (CIFAR–10:
12.8 (28.58%–15.78%), MNIST: 27.16 (37.56%–10.4%), GTSRB: 0.65 (2.19%–1.54%)).
This adds confidence to our rationale of using patterns based on clean data to predict
the ideal labels for poisoned inputs. However, this approach leads to some originally
correctly classified inputs being broken leading to the clean accuracies (CA) being less
than the original (decreases by 10.5 on average across benchmarks).

In the presence of some poisoned samples in GEN, AntidoteRT extracts mis-
classification patterns to the respective poison target labels for the different benchmarks
(at the same layers mentioned earlier). At runtime, the mis-classification patterns are
used to detect poisoned inputs and one of the three correction strategies 1b, 1c, and
2 is applied. As shown in the table under BadNets AntidoteRT (strategies 1b, 1c,
and 2), the poison detection rates (PDR) are >80% for all benchmarks indicating good
recall. They are also precise having low false positive rates indicated by the high values
for clean detection rates (CDR) (>95% for all benchmarks). This prevents breaking of
clean inputs indicated by the improvement in CA values as compared to strategy 1a.

The pattern-based correction strategy 1b brings a small improvement in PAs in
comparison to strategy 1a, since it uses the same patterns as oracles for correction.
Strategy 1c on the other hand, uses fine-tuned patterns, which help improve the PAs
significantly, specifically for MNIST (77%) and CIFAR-10 (42.4%). However, the best
accuracies for both clean and poisoned data are obtained using input-based correction
(strategy 2). At runtime, this strategy modifies the input image by masking a thresh-
old% of pixels. We choose the value of this threshold using the following procedure. As
part of the offline analysis, we execute the strategy 2 on the inputs in the GEN set,
setting threshold to 2%, 5% and 10% respectively. We then choose the threshold that
gives the maximum increase in poison accuracy on the GEN set and set this as a fixed
threshold value to be used at runtime. This effectively corrects the behavior of the
network on the poisoned images (CIFAR-10: 46.47 (62.25%–15.78%), MNIST: 75.36
(85.76%–10.4%), GTSRB: 92 (93.54%–1.54%)), with little impact on the clean accu-
racies. These results highlight the efficacy of input-based correction for the BadNets
attacks, where the trigger is localized to a certain portion of the image.

Runtime Correction for DFST Attack. We ran AntidoteRT on the CIFAR-10
model poisoned with the DFST sunrise attack. Table 2 DFST has the corresponding
results. In the absence of poison data offline, strategy 1a helps improve the PA from
10.12% to 14.98%, with a much higher decrease in CA from 82.08% to 64.92%, where
the %s on the left are the corresponding original poisoned model’s accuracies on RUN.
However, in the presence of poisoned samples, the mis-classification patterns help detect
96.89% of the poisoned inputs with few false positives leading to 95.89% clean detection
rates.

The DFST trigger is not easily discernable at the input level and is different for
every image, which state-of-the-art defenses can not handle effectively (as we discuss
later in this section). It is a more subtle and complex attack than BadNets. Input-based
correction (strategy 2) performs poorly leading to a decrease in PA compared to the
original model. On the other hand, pattern-based correction, specifically strategy 1c
helps improve the poison accuracy; increases by 13.68 from 10.12%.

Comparison with Baselines. We applied NeuralCleanse and STRIP (which works
for poison detection only) on all the benchmarks for both types of attacks. Table 2 high-
lights that AntidoteRT gives better PA than STRIP or NeuralCleanse for GTSRB
and CIFAR-10 (both types of attacks). For CIFAR-10, this is true even when no poi-
son data is available offline. In fact, NeuralCleanse identifies the wrong target label
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Fig. 6. Accuracies of AntidoteRT with varying % of poisoned inputs in GEN.

for CIFAR-10 BadNets attack model and hence does not work at all. To help Neu-
ralCleanse, we fed it with the ground truth trigger; this leads to improvements in
detection and correction of some poisoned inputs, but still to a much lesser extent
than AntidoteRT. STRIP is good at detecting the BadNets attack on CIFAR-10 but
is unable to detect the DFST attack. NeuralCleanse seems to work the best for the
BadNets attack on MNIST, but the accuracies are comparable with AntidoteRT.
Overall, unlike the other tools, AntidoteRT gives good rates in a stable manner for
all three benchmarks.

Impact of Increasing α. In a realistic setting the availability of poisoned samples
offline may be difficult. Therefore we analyzed the impact by varying the percentage of
poisoned inputs (α%) in the GEN set. Figure 6 shows how the PA and CA on the RUN
set is impacted by this. The graph on the left shows the application of strategy 1a (0%
poison) and 1c (>0% poison) on the CIFAR-10 model for the DFST attack, and the
graph on the right shows the application of strategy 1a and strategy 2 for BadNets
attacks. For most models and both types of attacks, there is a jump in accuracies from
0% to 1% poisoned inputs, indicating that the presence of even very few poisoned
samples in the GEN set (for instance 50 poisoned inputs vs 5K clean inputs in the case
of DFST), helps in improving the AntidoteRT runtime performance. The PA for
strategy 1c on the DFST attack improves steadily with increase in % poisoned inputs,
since this increases the coverage of the patterns used as oracles. The CA however does
not get impacted much, indicting that the precision of the patterns learnt using few
samples is good enough to not break the behavior on clean data. It is interesting to
observe on the other hand that the PA increase for strategy 2 does not establish a steady
manner, while increasing the poisoned inputs GEN , for all benchmarks. This implies
that the localization obtained using the patterns learnt from few poisoned samples is
good enough to precisely mask the BadNets trigger in the images. We envisage the use
of AntidoteRT in an iterative manner, starting with strategy 1a and moving on to
better correction strategies (1b, 1c, 2) as examples of poisoned inputs become available,
which will help improve the runtime behavior of AntidoteRT.



82 M. Usman et al.

5 Related Work

Most existing work is on detecting if a given model is poisoned and if so correcting the
logic of the model. NeuralCleanse and STRIP (described earlier in Sect. 4 are the only
ones to our knowledge which provide for runtime detection of inputs (and) correction
of network behavior on them.

Model Detection. Backdoor detection techniques such as [21,23–25] rely on statistical
analysis of the poisoned training dataset for deciding if a model is poisoned or trojaned.
In [2], it is shown that activations of the last hidden neural network layer for clean
and legitimate data and the activations for backdoor inputs form two distinct clusters.
DeepInspect [3] learns the probability distribution of potential triggers from the queried
model using a conditional GAN model, which can be used for inspecting whether the
pre-trained neural network has been trojaned. Kolouri et al. [12] pre-define a set of
input patterns that can reveal backdoor attacks, classifying the network as ‘clean’
or ‘corrupted’. The TND (TrojanNet Detector) in [28] explores connections between
Trojan attack and prediction-evasion adversarial attacks. In [29], a meta-classifier is
trained that predicts whether a model is backdoored.

Correction. Different from the input correction method developed in this paper,
existing defense techniques on neural network backdoor are focusing on re-training,
fine-tuning or pruning [15–18,20,30]. These works end up with the fundamental and
difficult neural network parameter selection problem, for effectively erasing the impact
of backdoor triggers from the model without degrading (much) the model’s overall
performance. In contrast, with our technique, the effect on already correctly classified
inputs is minimal. The work in [26] is the only other input-level repair that we are
aware of. Unlike our technique, it is black box and therefore much more expensive. It
repeatedly searches the area of an image for the position of the backdoor trigger, which
is accomplished by placing a trigger blocker of the dominant colour in the image.

6 Conclusion

We presented runtime detection and correction techniques against poisoning attacks,
that are based on neuron patterns mined from the neural network. We demonstrated
that AntidoteRT performs effectively on the popular BadNets attacks (with a best of
93.54% accuracy) and is also able to improve the accuracy of the analyzed model under
the more complex DFST attack (23.80%) which existing defenses cannot handle well. As
AntidoteRT does not make permanent changes to the model, it does not significantly
degrade the model on clean inputs. The results show AntidoteRT’s potential as a
lightweight runtime approach for the effective mitigation of backdoor attacks.

References

1. Chattopadhay, A., Sarkar, A., Howlader, P., Balasubramanian, V.N.: Grad-
cam++: generalized gradient-based visual explanations for deep convolutional net-
works. In: WACV, pp. 839–847. IEEE (2018)

2. Chen, B., et al.: Detecting backdoor attacks on deep neural networks by activation
clustering. In: SafeAI@ AAAI (2019)



Rule-Based Runtime Mitigation Against Poison Attacks on Neural Networks 83

3. Chen, H., Fu, C., Zhao, J., Koushanfar, F.: DeepInspect: a black-box trojan detec-
tion and mitigation framework for deep neural networks. In: IJCAI, pp. 4658–4664
(2019)

4. Cheng, S., Liu, Y., Ma, S., Zhang, X.: Deep feature space trojan attack of neural
networks by controlled detoxification. In: AAAI, vol. 35, pp. 1148–1156 (2021)

5. Gao, Y., Xu, C., Wang, D., Chen, S., Ranasinghe, D.C., Nepal, S.: STRIP: a defense
against trojan attacks on deep neural networks. In: Proceedings of the 35th Annual
Computer Security Applications Conference, pp. 113–125 (2019)

6. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge
(2016)

7. Gopinath, D., Converse, H., Pasareanu, C., Taly, A.: Property inference for deep
neural networks. In: International Conference on Automated Software Engineering
(ASE), pp. 797–809. IEEE (2019)

8. Gu, T., Liu, K., Dolan-Gavitt, B., Garg, S.: BadNets: evaluating backdooring
attacks on deep neural networks. IEEE Access 7, 47230–47244 (2019)

9. Houben, S., Stallkamp, J., Salmen, J., Schlipsing, M., Igel, C.: Detection of traf-
fic signs in real-world images: the German traffic sign detection benchmark. In:
International Joint Conference on Neural Networks, no. 1288 (2013)

10. Huang, X., et al.: A survey of safety and trustworthiness of deep neural networks:
verification, testing, adversarial attack and defence, and interpretability. Comput.
Sci. Rev. 37, 100270 (2020)

11. Katz, G., et al.: The Marabou framework for verification and analysis of deep
neural networks. In: Dillig, I., Tasiran, S. (eds.) CAV 2019. LNCS, vol. 11561, pp.
443–452. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25540-4 26

12. Kolouri, S., Saha, A., Pirsiavash, H., Hoffmann, H.: Universal litmus patterns:
revealing backdoor attacks in CNNs. In: CVPR, pp. 301–310 (2020)

13. Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny
images (2009)

14. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to
document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

15. Li, Y., Lyu, X., Koren, N., Lyu, L., Li, B., Ma, X.: Neural attention distillation:
erasing backdoor triggers from deep neural networks. In: International Conference
on Learning Representations (2020)

16. Li, Y., Zhai, T., Wu, B., Jiang, Y., Li, Z., Xia, S.: Rethinking the trigger of backdoor
attack. arXiv preprint arXiv:2004.04692 (2020)

17. Liu, K., Dolan-Gavitt, B., Garg, S.: Fine-pruning: defending against backdooring
attacks on deep neural networks. In: Bailey, M., Holz, T., Stamatogiannakis, M.,
Ioannidis, S. (eds.) RAID 2018. LNCS, vol. 11050, pp. 273–294. Springer, Cham
(2018). https://doi.org/10.1007/978-3-030-00470-5 13

18. Liu, X., Li, F., Wen, B., Li, Q.: Removing backdoor-based watermarks in neural
networks with limited data. In: 2020 25th International Conference on Pattern
Recognition (ICPR), pp. 10149–10156. IEEE (2021)

19. Liu, Y., et al.: Trojaning attack on neural networks. In: 25th Annual Network and
Distributed System Security Symposium, NDSS. The Internet Society (2018)

20. Liu, Y., Ma, X., Bailey, J., Lu, F.: Reflection backdoor: a natural backdoor attack
on deep neural networks. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.)
ECCV 2020. LNCS, vol. 12355, pp. 182–199. Springer, Cham (2020). https://doi.
org/10.1007/978-3-030-58607-2 11

21. Liu, Y., Xie, Y., Srivastava, A.: Neural trojans. In: International Conference on
Computer Design (ICCD), pp. 45–48. IEEE (2017)

https://doi.org/10.1007/978-3-030-25540-4_26
http://arxiv.org/abs/2004.04692
https://doi.org/10.1007/978-3-030-00470-5_13
https://doi.org/10.1007/978-3-030-58607-2_11
https://doi.org/10.1007/978-3-030-58607-2_11


84 M. Usman et al.

22. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-
CAM: visual explanations from deep networks via gradient-based localization. In:
ICCV, pp. 618–626 (2017)

23. Steinhardt, J., Koh, P.W., Liang, P.: Certified defenses for data poisoning attacks.
In: Proceedings of the 31st International Conference on Neural Information Pro-
cessing Systems, pp. 3520–3532 (2017)

24. Tran, B., Li, J., Madry, A.: Spectral signatures in backdoor attacks. In: Advances
in Neural Information Processing Systems, no. 31 (2018)

25. Turner, A., Tsipras, D., Madry, A.: Clean-label backdoor attacks (2018)
26. Udeshi, S., Peng, S., Woo, G., Loh, L., Rawshan, L., Chattopadhyay, S.: Model

agnostic defence against backdoor attacks in machine learning. arXiv preprint
arXiv:1908.02203 (2019)

27. Wang, B., et al.: Neural cleanse: identifying and mitigating backdoor attacks in
neural networks. In: S&P, pp. 707–723. IEEE (2019)

28. Wang, R., Zhang, G., Liu, S., Chen, P.-Y., Xiong, J., Wang, M.: Practical detection
of trojan neural networks: data-limited and data-free cases. In: Vedaldi, A., Bischof,
H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12368, pp. 222–238.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58592-1 14

29. Xu, X., Wang, Q., Li, H., Borisov, N., Gunter, C.A., Li, B.: Detecting AI trojans
using meta neural analysis. In: S&P, pp. 103–120. IEEE (2021)

30. Yao, Y., Li, H., Zheng, H., Zhao, B.Y.: Latent backdoor attacks on deep neural
networks. In: Proceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security, pp. 2041–2055 (2019)

http://arxiv.org/abs/1908.02203
https://doi.org/10.1007/978-3-030-58592-1_14


Optimizing Prestate Copies in Runtime
Verification of Function Postconditions
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Abstract. In behavioural specifications of imperative languages, post-
conditions may refer to the prestate of the function, usually with an old

operator. Therefore, code performing runtime verification has to record
prestate values required to evaluate the postconditions, typically by copy-
ing part of the memory state, which causes severe verification overhead,
both in memory and CPU time.

In this paper, we consider the problem of efficiently capturing
prestates in the context of Ortac, a runtime assertion checking tool for
OCaml. Our contribution is a postcondition transformation that reduces
the subset of the prestate to copy. We formalize this transformation, and
we provide proof that it is sound and improves the performance of the
instrumented programs. We illustrate the benefits of this approach with
a maze generator. Our benchmarks show that unoptimized instrumenta-
tion is not practicable, while our transformation restores performances
similar to the program without any runtime check.

Keywords: Runtime assertion checking · OCaml · Optimized code
generation · Memory management

1 Introduction

In behavioral specification languages for imperative languages, function post-
conditions may refer to the prestate of the function, typically using some old
or pre operator, as in Eiffel [10], JML [3], or ACSL [2]. For instance, a function
with a postcondition x = old x + 1 states that any call will increment the value
of the variable x.

In order to perform runtime verification, one needs to be able to evaluate
terms and predicates, such as old x above, after function calls. The prestate,
which old refers to, does not exist anymore. As a consequence, code instrumen-
tations have to record any value required for the evaluation of the predicates
involving old. A correct yet naive solution consists in copying the whole prestate.

In this paper, we consider the problem of efficiently capturing prestates in
the context of Gospel, a behavioural specification language for OCaml [5], and
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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Ortac, a runtime assertion checking tool [6]. Ortac consumes a Gospel-annotated
OCaml module interface and produces an instrumented wrapper around the
module implementation. It operates in a black-box fashion without inspecting
the original implementation of the module. Ortac is an open-source project avail-
able at https://github.com/ocaml-gospel/ortac.

Gospel, like OCaml, abstracts over the addresses of the values it manipulates
and provides a structural equality to compare values, rather than a physical
equality. While this makes the specifications easy to read and write, it makes
copies immediately necessary for any term that contains mutable data, as record-
ing their address is not sufficient to evaluate the term in the prestate: all the
memory contents available from that address are necessary. For instance, if a
is an array, the postcondition a = old a states that the contents of array a
has been restored to its prestate value. The physical address of the array is not
relevant to the equality predicate. Because the function may have modified its
contents, copying the whole array (in-depth, recursively) is necessary before we
make the function call in the instrumented code.

Code instrumentation under these constraints can cause severe verification
overhead, both in memory and CPU time. Moreover, OCaml memory man-
agement uses a garbage collector (GC), so programs do not explicitly allocate
or free memory. Instead, the program triggers the GC whenever it needs addi-
tional memory. Each run incrementally traverses the memory to determine which
chunks are still in use, possibly moves them and then frees the rest. Therefore,
the copies introduced by Ortac induce a garbage collection overhead that adds to
the memory allocation overhead. In fact, naive instrumentation not only results
in high runtime verification overhead, but can also change the complexity of the
algorithm, threatening its scalability.

In this work, we propose some methods to optimize the runtime verification
of logical assertions containing old by reducing the subset of the memory that
one needs to copy in order to compute these checks. We formalize the semantics
of a subset of OCaml and Gospel and provide proof that these transformations
are sound and improve the performance of the instrumented programs.

We start by introducing a reduced working language, along with a formaliza-
tion of its semantics (Sect. 2). Then we propose some code transformations on
this language to help reduce the verification overhead and allocations (Sect. 3)
and show that these can be critical in practice through an example and bench-
marks (Sect. 4). We conclude with related efforts toward more efficient runtime
assertion checking (Sect. 5) and some insights on future work and perspectives
(Sect. 6).

2 A Minimal Language with Contracts

In this section, we introduce a simple programming language to model the
behaviour of Gospel-annotated OCaml code. We believe this language is generic
enough to both enable detailed reasoning about semantics and memory models,
and abstract away from OCaml and Gospel, so our techniques can be applied in
other imperative programming languages where the same issues arise as well.

https://github.com/ocaml-gospel/ortac
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Fig. 1. Language syntax

Syntax. The syntax is available in Fig. 1. A program consists of an expression.
The expression language e includes immediate values (integers and unit), as well
as variables bound to immediate values or addresses in memory, that can con-
tain mutable (arrays) or immutable (tuples) data, to reflect the variety of cases
that occur in usual programming languages. Similarly to OCaml, the language
does not expose any direct manipulation of addresses or any explicit memory
management; allocations are implicitly made when creating a new array or tuple.

On top of these traditional programming constructs, our language provides
an assert e {p} instruction. This instruction models the postconditions of a
specification language for logical predicates p. Predicates provide an equality
predicate over terms, logical conjunction and disjunction, and existential and
universal quantifiers. Finally, terms t contain immediate values, variables, and
tuples and array accessors. They also feature the old operator that motivates
this work, and which semantics is formalised in the next section.

As explained in the introduction, our main interest lies in the runtime ver-
ification of function postconditions. Although this language does not provide
functions, we can model functions calls in simple scenarios of the form:

e1; assert e2 {p}

In this scenario, the expression e1 models the code that is executed prior to the
function call. It sets up the memory prestate and introduces variables to refer
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to it. The predicate p is a postcondition to the function call, and expression e2
models the call itself. We still operate in a black-box context, as predicate p has
no access to the code e2 itself, but solely to the resulting poststate.

Typing. Like OCaml, our language is statically typed, i.e.expressions and terms
are statically assigned types before the evaluation. There are four primitive types
τ in the system: unit (the type with only one value), integer, homogeneous arrays,
and heterogeneous tuples.

τ ::= unit (unit)
| int (integer)
| τ array (array)
| τ × τ × · · · × τ (tuple)

We introduce a typing judgment Γ � e : τ , which means that e has type τ in the
typing environment Γ , which associates variables to types. The inference rules
for this judgment are standard and should follow intuition; they are available in
the appendix.

Semantics. In this section, we define a big-step semantics for our language.
Program evaluations produce values v which can be the unit value, an integer,
or an address in memory.

v ::= () unit
| n integer
| a address

Because our language is imperative, the evaluation of an expression may read or
modify the state of the program at any point of the execution. Program states
associate variables to values on one hand (function V ), and addresses in memory
to sequences of values that represent arrays or tuples (function M). Note that
V is immutable as variables are immutable.

V ::= x �→ v
M ::= a �→ [v, v, . . . , v]
S ::= V × M

For the sake of conciseness, we simplify the notation such that S = (V,M) is
always assumed, e.g. V (resp. V ′, resp. V1) is the variable function associated to
the state S (resp. S′, resp. S1) in the rest of the article.

We use notation S, e � M ′, v to denote that the evaluation of the expression e
in the state S succeeds and produces the value v in a new memory M ′. The big-
step evaluation rules are simple and also follow intuition; they are available in
full in the appendix. We highlight a couple of rules here: E-create and E-get,
which demonstrate how expressions can interact with the memory, by reading
or allocating, and E-assert, which shows how program expressions and logical
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predicates interact with each other.

S, e2 � M2, v (V,M2), e1 � M1, n
a /∈ dom(M1) M ′ = M1[a �→ [v, v, . . . , v]]

S, create e1 e2 � M ′, a
(E-Create)

S, e2 � S2, n0 (V,M2), e1 � M1, a
0 ≤ n0 ≤ n − 1 M1(a) = [v0, . . . , vn−1]

S, e1.(e2) � M1, vn0

(E-Get)

The assert e {p} construct models the verification of the logical postcondition
p of the code e.

S, e � M ′, v S, (V,M ′) |= p

S, assert e {p} � M ′, ()
(E-Assert)

For its evaluation to succeed in state S, the evaluation of e in S must succeed
and lead to a state S′, and the predicate p must hold with prestate S and
poststate V,M ′. In the following, we define S, S′ |= p. It is straightforward
for most predicate constructs, but requires care to properly handle structural
equality.

Predicate Evaluation and Equality Semantics. An interesting specificity of the
Gospel language is the semantics of its equality predicate. In fact, the logi-
cal domain of predicates and terms is not aware of addresses at all; we rea-
son directly on the contents of the memory instead of their location. This fol-
lows OCaml’s idioms, as addresses tend to be hidden to the developers and the
standard library provides a polymorphic, structural equality. In particular, this
means that comparing arrays a and b with the Boolean expression a = b will
compare the contents of the arrays (recursively if necessary), rather than their
addresses in memory.

Our programming language also gives this semantics to the equality predi-
cate. Terms and predicates do not understand program values (which contain
addresses); instead, they manipulate logical values, where addresses are recur-
sively resolved to their contents (arrays or tuples).

lv ::= () unit
| n integer
| [lv, lv, . . . , lv] array or tuple

We provide resolution rules to transition from values to logical values in a given
memory. When v resolves to lv in memory M , we note M,v � lv.

M, () � ()
(R-Unit)

M,n � n
(R-Int)

M(a) = [v0, v1, . . . , vn−1]
M,v0 � lv0 M,v1 � lv1 . . . M, vn−1 � lvn−1

M,a � [lv0, lv1, . . . , lvn−1]
(R-Addr)
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The rule for the equality predicate is now straightforward: two terms are
equal iff they evaluate to the same logical value. We note �t�S′

S to denote the
evaluation of the term t with prestate S and poststate S′.

�t1�
S′
S = lv1 �t2�

S′
S = lv2 lv1 = lv2

S, S′ |= t1 = t2
(P-Equal)

The logical value resolution also lets us axiomatize the program function
copy as follows. Any function that implements this specification qualifies for the
soundness proofs we provide. We note M � Mc to denote that M is a subset of
Mc : ∀x, x ∈ dom(M) =⇒ x ∈ dom(Mc) ∧ M(x) = Mc(x).

Definition 1 (Copy axiomatization).The evaluation of copy always suc-
ceeds:

S, copy t � Mc, v
′

with M � Mc.
Moreover, the resulting value resolved to the same logical value as the copied

one. In other words, if S, t � M,v and M,v � lv, then

Mc, v
′ � lv

Term Evaluation. When evaluating terms, the semantics is similar to the one of
expressions, but they now apply to logical values rather than program values. The
value resolution needs to be applied whenever a program variable is referenced
in a term, so the evaluation now returns a logical value. Recall that terms are
evaluated in the poststate of assert expressions, so we use S′ to fetch the values
in the context.

V ′(x) = v M ′, v � lv

�x�S′
S = lv

(T-Var)

Note that variables are immutable, i.e. when considering assert e {p},
expression e does not change the variable bindings for p (see E-Assert). In
other words, V = V ′, so picking one or the other does not make any differ-
ence. However, the memory M may be modified by e (e.g. when using assign-
ment or create), so resolving the values in M ′ is crucial. Consider for instance
assert a.(0) ← 1 {a = b}: the program values for variables a and b are the same
in the pre- and poststate (the arrays are not moved in memory) but the contents
of a has been modified and thus evaluating a = b indeed requires the poststate.

While terms are generally evaluated in the poststate, the old operator lets
you refer to the prestate. The semantics is expressed by evaluating the term in
the prestate S only, rather than in the couple S, S′.

�t�S
S = lv

�old t�S′
S = lv

(T-Old)
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Note that because of this semantics, old captures the logical values bound to
variables in the prestate (arbitrarily big values), rather than the program values
(simple addresses). The other rules for the judgments S, S′ |= p and �t�S′

S are
straightforward and can be found in their full version in the appendix.

A consequence of rules T-Var and T-Old is that old can always be propa-
gated downwards to the variables. For instance,

�old (x.(0) + y) − 1�S′
S = �(old x).(0) + old y − 1�S′

S

Surprisingly, this is not what we are going to do. We are rather going to do the
exact opposite!

3 Capturing the Prestate

In this section, we present two program transformations that enable the evalu-
ation of predicates involving prestate captures. Our transformations operate on
constructs assert e {p}. To do so, they can inspect predicate p but not expres-
sion e. This constraint is consistent with our idea of modelling function calls with
the assert construct. For the sake of simplicity, we suppose that old terms in p
are not nested, i.e. in every term of the form old t, term t does not contain any
other old operator. A quick transformation consisting in simply removing any
old in those terms ensures this property and is trivially correct considering the
rule T-Old we discussed previously.

We first discuss a transformation that introduces the copied data in the
memory and discuss implementation tactics for an optimized copy function
(Sect. 3.1). Then, we present a transformation of the predicates that reduces
the memory space that needs to be copied (Sect. 3.2).

3.1 Introducing Copies

Our first program transformation introduces the copies necessary for the execu-
tion of the terms containing old. This operation, which we note Tc, performs a
morphism over the program expressions, and transforms the assert expressions
so that the predicate does not contain any prestate reference anymore. We note
x1, . . . , xn fresh variables (that are not bound in any state), so that we don’t
introduce collisions with existing data.

Tc( assert e {p} ) := let x1, . . . , xn = copy (t1, . . . , tn) in
assert Tc(e) {p[old ti ← xi]}

Tc( length e ) := length Tc(e)
Tc( e1.(e2) ) := Tc(e1).(Tc(e2))
Tc( · · · ) := · · · (similarly for other constructs)

Instead, the terms ti under old (note that these are also valid expressions
since they do not contain other old) are evaluated in the program space, prior
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to the assertion, and their result is copied into the variables xi. The old ti terms
in the predicate of the assertion are then substituted with the copied values xi.
For instance, consider the following example, where a and b are two arrays of
arrays.
1 assert a.(0) <- b { length (old a.(0)) = (old a.(1)).(2) }

The program is transformed into the following one:
1 let x1 = copy (a.(0), a.(1)) in

2 assert a.(0) <- b { length x1 = x2.(2) }

Soundness. This transformation is sound, meaning that it leaves the program
semantics (and in particular the validity of the assert constructs) unchanged.

Theorem 1 (Tc preserves the program semantics). If a program e success-
fully evaluates to v1 in S0, which logically resolves to lv in the resulting state,

S0, e � M1, v1 and M1, v1 � lv

then for any state S′
0 such that S0 � S′

0, the transformed program Tc(e) suc-
cessfully evaluates to v′

1 in S′
0, which resolves to the same logical value lv in the

resulting state,
S′
0, Tc(e) � M ′

1, v
′
1 and M ′

1, v
′
1 � lv

and we have S1 � S′
1.

Proof. We prove this theorem by induction on the number of old contained in
the transformed expression e. Because of space limitations, we will only show
the assert case here, as it contains the critical postcondition verification. The
proofs for the other expression cases follow the same structure.

Case assert. We know S0, assert e {p} � M1, v1 and M1, v1 � lv and S0 �
S′
0.

Lemma 1 (Substitutions in predicates).Given two program states such that
S0 � S1, in which v0 and v1 resolve to the same logical value, i.e.,

M0, v0 � lv and M1, v1 � lv,

binding a variable x to either v0 or v1 in a predicate evaluation does not change
the validity judgment, that is

V0[x ← v0] |= p =⇒ V0[x ← v1] |= p.

The idea for the proof of this lemma is simple: since the predicate and term
evaluation only manipulate logical values, substituting identical logical values
does not change their evaluation.

We introduce x1, . . . , xn some fresh variables. We now prove the following
three sub-goals:

S0, copy (t1, . . . , tn) � Mc, a with Mc(a) = [vc0 , vc1 , . . . , vcn ] (1)
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(V0[xi → vci ],Mc), Tc(e) � M ′
1, () (2)

(V0[xi → vci ],Mc),M ′
1 |= p[old ti ← xi] (3)

We note lvci the logical values corresponding to vci : Mc, vi � lvci .

1. This goal follows directly from our axiomatization of the copy function in
Definition 1. We also get that M0 � Mc, and lvi = lvci , which we will use for
the next goals.

2. For this goal, we apply the induction hypothesis on Tc(e), as e contains strictly
less old expressions than assert e {p}.

3. This result is obtained by applying Lemma1, since lvi = lvci under Defini-
tion 1.

We may now apply the rule E-Assert to the goals (2) and (3) and get the
following result:

(V0[xi → vci ],Mc), assert Tc(e) {p[old ti ← xi]} � M ′
1, ()

Now we can conclude the proof by applying the rule E-Let-In to this result,
and the one provided by (1), which gives us

S′
0, Tc(assert e {p}) � M ′

1, ()

since

Tc(assert e {p}) := let x1, . . . , xn = copy (t1, . . . , tn) in
assert Tc(e) {p[old ti ← xi]}

And M ′
1, () � () trivially holds under R-Unit. �

Copying with Sharing. A first optimization rises from the observation that
the copied terms t1, . . . , tn may refer to overlapping portions of the memory.
Therefore, deep-copying them recursively as described previously results in copy-
ing the same memory chunks multiple times. For instance, in the example
described previously, the assert leads to copying a.(0) and a.(1) independently.
However, these values may be aliases, which would lead to copying the underlying
array twice.

In order to avoid duplicating the copies of memory chunks, we use a sharing-
preserving implementation of copy: the underlying memory structure of the
copied value is maintained in the copy, and shared values are only copied once.
We can then copy all the required sub-terms simultaneously in a tuple, so aliases
in the original data remain aliases in the copy. In practice, we use the OCaml
serialization module Marshal to encode, and then immediately decode, the tuple
of values.

Although the tuple construction introduces an extra allocation, this cost has
shown to be negligible compared to the gain provided by the sharing preser-
vation, both between sub-terms, and inside sub-terms themselves. This ensures
that we copy shared chunks of memory only once, regardless of the aliasing
configuration.
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Copy of Immutable Data. The second optimisation of the copy function is
provided by the type information. Recall that our language provides mutable
arrays, but also immutable tuples. We perform an analysis based on the expres-
sion types in order to determine whether the evaluation of an expression results
in a mutable or an immutable value. A value is immutable iff its type consists
of immediate values, or tuples of immutable types, that is, in other words, if its
type does not involve arrays. For those types, the language does not provide any
mutating functions, so the relevant memory cannot be changed by the evaluation
of an expression.

immutable(unit)
(I-Unit)

immutable(int)
(I-Int)

immutable(τ1) immutable(τ2) . . . immutable(τn)
immutable(τ1 × τ2 × . . . × τn)

(I-Tuple)

When we apply the transformation, we use this inference to determine if a
call to copy is required, i.e. if the value contains mutable components. If not,
we simply bind the value in the prestate to a variable.

3.2 Moving old Upwards to Copy Less

When the prestate reference is a sub-term of the total term, it is interesting to
consider how this sub-term will be used in the rest of the evaluation. Consider
for instance the simple postcondition length (old a) when a is an array. After
applying the transformation exposed in Sect. 3.1, the evaluation will copy the
whole array a. Instead, we could have computed its length directly in the prestate
and only remember this value for the evaluation in the poststate.

Although the semantics of the terms containing prestate references virtually
pushes the old operator downwards to variables (see Sect. 2), the second trans-
formation we propose actually suggests the opposite. Rather than considering
what values we need to capture in the prestate in order to compute the poststate,
we try to push as many computations as we can in the prestate, by determining
which terms cannot be computed in the prestate. Note that while this will save
memory and copies, it can lead to computing values that might not actually be
useful in the poststate due to the program output.

This new transformation, which we note To, is meant to be applied before Tc.
It starts from the existing old sub-terms and propagates the old operator
upwards in the terms until it encounters a variable that refers to the poststate,
with the exception of immutable values. It is defined in terms of the following
rewriting rules, written To(t) ∼ t, until no further rewriting is possible (Fig. 2).
The rule (O-Var) only applies for program variables, not variables introduced
by quantifiers1.
1 In Ortac, we perform a more aggressive transformation, which moves old beyond

quantifiers when possible. In this paper, however, we keep the presentation simple
by limiting the transformation to terms.
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Fig. 2. The ∼ relation defining To.

Proof of Soundness. We prove that ∼ preserves the terms semantics. Since
To follows this relation, To also preserves the program semantics.

Theorem 2 (∼ preserves the terms semantics). For all states S and S′

such that S � S′,
t ∼ t′ =⇒ �t�S′

S = �t′�S′
S

Proof. The proof of this theorem is straightforward for most rules. The rules
always add or move old operators, and these only modify the semantics of a
term if it implies variables, as discussed in Sect. 2. Therefore, we only consider
the proof for the case O-Var here.

Lemma 2. (immutable captures immutability). If a term has an immutable
type, then evaluating this term in the prestate only does not change its semantics:
if S � S′, then

Γ � t : τ immutable(τ)

�t�S′
S = �t�S

S

The idea of the proof for this lemma is provided by the constructions of the
language. Recall that immutable types are the ones that do not involve arrays,
but only immediate values and tuples. There is no construct that allows us to
modify a tuple, and the type-checking ensures that one cannot use the array
setter on an address corresponding to a tuple.

Let us note lv = �x�S′
S . We know Γ � t : τ and immutable(τ). We can

conclude by applying Lemma 2 and T-Old.

Γ � t : τ immutable(τ)
Lemma2

�x�S
S = �x�S′

S
T-Old

�old x�S′
S = �x�S′

S

�
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Proof of Optimisation. It is important to note that, since the term construc-
tions only access the program memory but never modify it, this transformation
can only reduce (or leave unchanged) the memory space involved in the eval-
uation of the term. More precisely, the transformed program only requires to
access a subset of the memory addresses it originally needed, and therefore the
amount of copied data is no greater.

4 Example and Benchmarks

In this section, we use our optimisation techniques and apply them to an exist-
ing program, implemented in OCaml and annotated with Gospel specifications.
We demonstrate that a simple program and specification are sufficient for this
optimisation to be critical to the performance and usability of the program.

4.1 A Maze Generator

Our stress-test is a program that takes an integer n as input and generates a
perfect, random maze on a n2 square grid. The algorithm is as follows:

1. Create a list of all walls and create a set for each cell (each set contains just
that one cell).

2. For each wall, in some random order,
– if the cells divided by this wall belong to distinct sets,

(a) remove the current wall from the list;
(b) join the sets of the formerly divided cells.

The set of sets of cells maintain the connected components of the grid, so at
the end of each iteration, we remove a wall iff it joins otherwise disconnected
components. At the end of the iterations, there is only one remaining connected
component; therefore, the remaining walls in the list constitute a perfect maze.

We implement the set of cells involved in this algorithm using a union-find
data structure [1]. Our implementation of the union-find exposes the interface
reproduced in Fig. 3, which we instrument to verify at runtime.

The type t is the type representing an instance of the data structure. Our
module will be operating in place, so this type is mutable, which is reflected by
the Gospel clause ephemeral.

The function create creates a fresh structure containing integers in single-
tons, num classes returns the number of disjoint sets in the data structure, and
find returns the representative element of a set. These three functions do not
perform any effects (i.e. they do not modify the union-find structure), do not
raise exceptions, and always terminate. Therefore, they are considered pure by
Gospel and can be used to specify other functions further.

Finally, the function union performs the union of two sets in the structure.
We will focus on this function in the rest of this benchmark. Its contract states
that it can modify the data structure with the modifies clause. Because the
type of union-find is mutable, and this function potentially modifies it, executing
properties that refer to the old version of the structure will require copies, and
the transformations we proposed in Sect. 3 are relevant in this example.
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Fig. 3. Union-find module interface (uf.mli).

4.2 Runtime Verification with Ortac

We use Ortac to generate OCaml code that checks these contracts at runtime.
More precisely, the generated implementation performs the following operations:

1. Check the preconditions and fail if they do not hold or raise an exception.
2. Evaluate the terms under old operators, and copy their values into fresh

variables.
3. Call the function union and fail if it raises an exception.
4. Replace the terms precomputed in Step 2. with their value in the postcondi-

tions and check them, then fail if they do not hold or raise an exception.

Unoptimised Version. In the unoptimized version, the specifications are con-
sidered as they were written by the user. There are four occurrences of the old
operator, and all four of them refer to the old version of uf. The generated code
is of the following form:

1 let union uf i j =

2 if not (0 <= i <= size uf) then fail ();

3 if not (0 <= j <= size uf) then fail ();

4 let old_1, old_2, old_3, old_4 = copy (uf, uf, uf, uf) in

5 (try union uf i j with _ -> fail ());

6 if not (num_classes uf <= num_classes old_1) then fail ();

7 if not (not (find old_2 i <> find old_3 j)

8 || num_classes uf = num_classes old_4 - 1)

9 then fail ();
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When the copy function preserves sharing (see Sect. 3.1), the copy operation
on line 4 only copies uf once, and old 1, old 2, old 3, and old 4 are aliases.
This does not allocate memory for every occurrence of uf, and does not re-
explore the memory either. In fact, this is equivalent to just copying uf once in
a fresh variable and using this variable for each occurrence.

Optimized Version. In the optimised version, although the user can still write
the specifications in the way that feels the most natural to them, ortac pre-
processes the terms to propagate the old operator, as explained in Sect. 3.2.
Ortac automatically rewrites the terms as if the user wrote the following post-
conditions:

1 ensures num_classes uf <= old (num_classes uf)
2 ensures old (find uf i <> find uf j)
3 -> num_classes uf = old (num_classes uf - 1)

This rewriting effectively moves to the prestate some computations pre-
viously executed in the poststate. Therefore, it only triggers a copy of the
result of the computations (two integers and one Boolean in this case) instead
of the context necessary for the execution (here, the whole union-find struc-
ture). The instrumentation generated by ortac now has the following form:
1 let union uf i j =

2 if not (0 <= i <= size uf) then fail ();

3 if not (0 <= j <= size uf) then fail ();

4 let old_1, old_2, old_3 = copy (

5 num_classes uf,

6 find uf i <> find uf j,

7 num_classes uf - 1)

8 in

9 (try union uf i j with _ -> fail ());

10 if not (num_classes uf <= old_1) then fail ();

11 if not (not old_2 || num_classes uf = old_3) then fail ();

4.3 Benchmarks

We run our maze generator with multiple values of n, and for each value, we
gather the execution time, the number of garbage collections, and the cumulative
amount of data copied by copy during the whole maze generation. We present
the results in Fig. 4. These results show that naive instrumentations of the code
make it impracticable for large values of n, which timed out after one hour of
execution. On the other hand, the optimised version significantly reduces the
cost of the verifications to a constant factor no larger than 2. This is permitted
by the limited amount of data copied and limited use of the GC, which can be
costly.

About Complexity. Recall that the maze generation calls union until there is only
one remaining set (i.e. exactly n2−1 times), so its complexity when invoked with



Optimizing Copies in Verification of Function Postconditions 99

Fig. 4. The results were obtained by running our benchmarks on an i7-1165G7 @
2.80 GHz CPU, with 16GB of RAM using the OCaml 4.14.0 compiler. Each value is
obtained as the average of 10 runs.

size n is O(n2 × uf(n)), where uf(n) is the complexity of union. When union-
find is properly implemented, uf(n) = O(α(n)) ≈ O(1), so the complexity of
the maze generation is O(n2) in the un-instrumented version.

However, when copying the entire union-find structure (no optimisation and
shared copies only), the instrumented union now needs to copy a structure of
size n2. This makes the total maze generation complexity O(n4), which is not
practicable. Finally, the old propagation optimisation does not require copying
this much data but instead copies a fixed amount at each call (two integers and
one Boolean), so the original complexity of the program is restored.

5 Related Work

The efficient evaluation of old terms in runtime assertion checking is a well-
known and difficult problem, for which there is still room for improvement. In
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the general case, most tools copy the whole memory state before the call to the
function [7,11], while acknowledging the flaws of this approach.

ACSL [2] generalises the old feature by introducing an \at(t, L) operator,
that lets the user specify arbitrary locations L in the code, rather than restricting
it to the function prestate. This leads to possibly worse performance issues with
even more states being captured. While initial implementations of E-ACSL [13]
used to only perform a shallow copy of the variable contents, which is incorrect
in most cases, more recent implementations provide a hybrid method to reduce
the copied memory space [12], but this approach has not been detailed yet.

It is also worth mentioning that, as noted in [4], in the presence of precondi-
tions, the evaluation and copy of the old terms are meant to be guarded by these
preconditions. Accordingly, Ortac only evaluates those once the corresponding
preconditions are successfully verified.

Previous work have also explored other optimizations for runtime assertion
checkers, for instance providing efficient representation of integers [8] or improv-
ing the verification of modifies clauses [9]. Regarding the former, Ortac benefits
from zarith, which only switches to arbitrary-precision integers when machine
integers are not large enough. Regarding the latter, Ortac assumes that user-
provided modifies clauses are correct and even uses them to optimize the copies.
Verifying such clauses is still future work for Ortac.

6 Conclusion and Future Work

In this paper, we have presented the optimizations performed by Ortac, a runtime
assertion checking tool for OCaml, to mitigate the cost of copying prestate values
in postcondition verification. We showed the benefits of this approach with proof
and a practical evaluation.

This paper simplified the programming and logical languages compared to the
actual implementation in OCaml and Gospel to make the presentation amenable.
Ortac goes beyond this paper. First, it moves old upwards in predicates as well,
including quantifiers, local variables, and user-defined predicates and functions.
Second, Gospel includes a modifies clause, which Ortac uses to know whether
it can move a old beyond a program variable. When doing so, Ortac assumes
that all aliases in input variables correctly appear in user-provided modifies
clauses.

There are several perspectives to extend this work. First, OCaml values do
not carry any type information at runtime. Therefore, the copy function cannot
use the information that a strict subterm has some immutable type to avoid the
copy and keep a pointer to the original value instead. In the future, we plan
to implement a smarter type-directed copy function in Ortac, which will save
even more space. Second, we have assumed in this paper that the evaluation of
a logical term does not allocate memory. This hypothesis is a key in the proof
of optimization of To. However, several logical functions in the Gospel standard
library do allocate memory in practice. We plan to evaluate heuristics to resolve
the trade-off between moving old upwards and then allocating because of the
function and stopping there at the cost of copying more.
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A Term Semantics

In the following, �t�S′
S denotes the logical value of term t in prestate S and the

poststate S′.

�()�S′
S = ()

(T-Unit)
�n�S′

S = n
(T-Int)

V (x) = v M, v � lv

�x�S′
S = lv

(T-Var)

�t�S′
S = [lv0, lv1, . . . , lvn−1]

�length t�S′
S = n

(T-Length)
�t�S′

S = (lv1, lv2)

�fst t�S′
S = lv1

(T-Fst)

�t�S′
S = (lv1, lv2)

�snd t�S′
S = lv2

(T-Snd)
�t�S

S = lv

�old t�S′
S = lv

(T-Old)

B Predicate Semantics

In the following, S, S′ |= p means that predicate p holds in state S and
prestate S′.

�t1�
S′
S = lv1 �t2�

S′
S = lv2 lv1 = lv2

S, S′ |= t1 = t2
(P-Equal)

S, S′ |= p1 S, S′ |= p2

S, S′ |= p1 ∧ p2
(P-And)

S, S′ |= p1

S, S′ |= p1 ∨ p2
(P-Or-Left)

S, S′ |= p2

S, S′ |= p1 ∨ p2
(P-Or-Right)

�t1�
S′
S = n1 �t2�

S′
S = n2

∀j, n1 ≤ j ≤ n2 =⇒ S(V [i → j],M), (V ′[i → j],M ′) |= p

S, S′ |= forall i, t1 ≤ i ≤ t2 → p
(P-Forall)

�t1�
S′
S = n1 �t2�

S′
S = n2

∃j, n1 ≤ j ≤ n2 ∧ (V [i → j],M), (V ′[i → j],M ′) |= p

S, S′ |= exists i, t1 ≤ i ≤ t2 ∧ p
(P-Exists)
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C Program Semantics

In the following, S, e � M ′, v means that the evaluation of the expression e in
the state S succeeds and produces the value v in a new memory M ′.

S, n � M, n
(E-Int)

S, () � M, ()
(E-Unit)

V (x) = v

S, x � M, v
(E-Var)

S, e1 � M1, a M1(a) = [v0, v1, . . . , vn]

(V [xi → vi], M1), e2 � M2, v

S, let x1, x2, . . . , xn = e1 in e2 � M2, v
(E-Let-In)

S, e1 � M1, () (V, M1), e2 � M2, v2

S, e1; e2 � M2, v2
(E-Seq)

S, en � Mn, vn . . . (V, M3), e2 � M2, v2

(V, M2), e1 � M1, v1

a /∈ dom(M1) M
′
= M1[a �→ [v1, v2, . . . vn]]

S, (e1, e2, . . . , en) � M
′
, a

(E-Tuple)

S, e � M
′
, a M

′
(a) = [v0, v1, . . . , vn−1]

S, πi(e) � M
′
, vi

(E-Pi)

S, e2 � M2, v (V, M2), e1 � M1, n

a /∈ dom(M1) M
′
= M1[a �→ [v, v, . . . , v]]

S, create e1 e2 � M
′
, a

(E-Create)

S, e2 � S2, n0 (V, M2), e1 � M1, a

M1(a) = [v0, . . . , vn−1] 0 ≤ n0 < n

S, e1.(e2) � M1, vn0

(E-get)

S, e3 � M3, v (V, M3), e2 � M2, n0 (V, M2), e1 � M1, a

0 ≤ n0 < n M1(a) = [v0, v1, . . . , vn]

M
′
= M1[a �→ [v0, . . . , vn0−1, v, vn0+1, . . . , vn−1]]

S, e1.(e2) ← e3 � M
′
, ()

(E-set)

S, e � M
′
, a M

′
(a) = [v0, . . . , vn−1]

S, length e � M
′
, n

(E-length)

S, e � M
′
, v

′
M

′
, v

′ � lv (M
′′\M

′
), v

′′ � lv

S, copy e � M
′′

, v
′′ (E-copy)

S, e � M
′
, () S, (V, M

′
) |= p

S, assert e {p} � M
′
, ()

(E-assert)

D Typing Rules

In this section, rules are common for the shared subset of constructs between
terms and program expressions. For the sake of clarity, we do not repeat those
rules. We note Γ � p to denote that the predicate p is well typed in the environ-
ment Γ . The rules for this judgment are standard and omitted.
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Γ � n : int
(Ty-Int)

Γ � () : unit
(Ty-Unit)

Γ (x) = τ

Γ � x : τ
(Ty-Var)

Γ � e1 : τ1 × τ2 × . . . × τn Γ , xi �→ τi � e2 : τ

Γ � let x1, x2, . . . , xn = e1 in e2 : τ
(Ty-Let-In)

Γ � e1 : unit Γ � e2 : τ

Γ � e1; e2 : τ
(Ty-Seq)

Γ � e1 : τ1 Γ � e2 : τ2 . . . Γ � en : τn

Γ � (e1, e2, . . . , en) : τ1 × τ2 × . . . × τn

(Ty-Tuple)

Γ � e : τ1 × τ2 × . . . × τn

Γ � πi(e) : τi

(Ty-Pi)

Γ � e1 : int Γ � e2 : τ

Γ � create e1 e2 : τ array
(Ty-Create)

Γ � e1 : τ array Γ � e2 : int

Γ � e1.(e2) : τ
(Ty-Get)

Γ � e1 : τ array Γ � e2 : int Γ � e3 : τ

Γ � e1.(e2) ← e3 : unit
(Ty-Set)

Γ � e : τ array

Γ � length e : int
(Ty-Length)

Γ � e : τ

Γ � copy e : τ
(Ty-Copy)

Γ � e : τ

Γ � old e : τ
(Ty-Old)

Γ � e : unit Γ � p

Γ � assert e {p} : unit
(Ty-Assert)
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Abstract. We present Barrier-based Simplex (Bb-Simplex), a new,
provably correct design for runtime assurance of continuous dynamical
systems. Bb-Simplex is centered around the Simplex Control Architec-
ture, which consists of a high-performance advanced controller which
is not guaranteed to maintain safety of the plant, a verified-safe base-
line controller, and a decision module that switches control of the plant
between the two controllers to ensure safety without sacrificing perfor-
mance. In Bb-Simplex, Barrier certificates are used to prove that the
baseline controller ensures safety. Furthermore, Bb-Simplex features a
new automated method for deriving, from the barrier certificate, the
conditions for switching between the controllers. Our method is based
on the Taylor expansion of the barrier certificate and yields computa-
tionally inexpensive switching conditions.

We consider a significant application of Bb-Simplex to a microgrid
featuring an advanced controller in the form of a neural network trained
using reinforcement learning. The microgrid is modeled in RTDS, an
industry-standard high-fidelity, real-time power systems simulator. Our
results demonstrate that Bb-Simplex can automatically derive switch-
ing conditions for complex systems, the switching conditions are not
overly conservative, and Bb-Simplex ensures safety even in the presence
of adversarial attacks on the neural controller.

1 Introduction

Barrier certificates (BaCs) [26,27] are a powerful method for verifying the safety
of continuous dynamical systems without explicitly computing the set of reach-
able states. A BaC is a function of the state satisfying a set of inequalities on the
value of the function and value of its time derivative along the dynamic flows
of the system. Intuitively, the zero-level-set of a BaC forms a “barrier” between
the reachable states and unsafe states. Existence of a BaC assures that starting
from a state where the BaC is positive, safety is forever maintained [6,26,27].
Moreover, there are automated methods to synthesize BaCs, e.g., [13,31,34,38].

Proving safety of plants with complex controllers is difficult with any formal
verification technique, including barrier certificates. As we now show, however,
BaCs can play a crucial role in applying the well-established Simplex Control
Architecture [29,30] to provide provably correct runtime safety assurance for
systems with complex controllers.
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We present Barrier-based Simplex (Bb-Simplex), a new, provably correct
design for runtime assurance of continuous dynamical systems. Bb-Simplex is
centered around the Simplex Control Architecture, which consists of a high-
performance advanced controller (AC) that is not guaranteed to maintain safety
of the plant, a verified-safe baseline controller (BC), and a decision module that
switches control of the plant between the two controllers to ensure safety without
sacrificing performance. In Bb-Simplex, Barrier certificates are used to prove
that the baseline controller ensures safety. Furthermore, Bb-Simplex features a
new scalable (relative to existing methods that require reachability analysis, e.g.,
[4,5,11]) and automated method for deriving, from the BaC, the conditions for
switching between the controllers. Our method is based on the Taylor expansion
of the BaC and yields computationally inexpensive switching conditions.

We consider a significant application of Bb-Simplex, namely microgrid con-
trol. A microgrid is an integrated energy system comprising distributed energy
resources and multiple energy loads operating as a single controllable entity in
parallel to, or islanded from, the existing power grid [33]. The microgrid we
consider features an advanced controller (for voltage control) in the form of a
neural network trained using reinforcement learning. For this purpose, we use Bb-
Simplex in conjunction with the Neural Simplex Architecture (NSA) [24], where
the AC is an AI-based neural controller (NC). NSA also includes an adaptation
module (AM) for online retraining of the NC while the BC is in control.

The microgrid we consider is modeled in RTDS, an industry-standard high-
fidelity, real-time power systems simulator. Our results demonstrate that Bb-
Simplex can automatically derive switching conditions for complex systems, the
switching conditions are not overly conservative, and Bb-Simplex ensures safety
even in the presence of adversarial attacks on the neural controller. Please refer
to [9] for a more in-depth exploration of our methodology and experiments.

Architectural Overview of Bb-Simplex. Fig. 1 shows the overall architecture of
the combined Barrier-based Neural Simplex Architecture. The green part of the
figure depicts our design methodology; the blue part illustrates NSA. Given
the BC, the required safety properties, and a dynamic model of the plant, our
methodology generates a BaC and then derives the switching condition from it.
The reinforcement learning module learns a high-performance NC based on the
performance objectives encoded in the reward function.

The structure of the rest of the paper is the following. Section 2 provides
background material on barrier certificates. Section 3 features our new approach
for deriving switching conditions from barrier certificates. Section 4 introduces
our Microgrid case study and the associated controllers used for microgrid con-
trol. Section 5 presents the results of our microgrid case study. Section 6 discusses
related work. Section 7 offers our concluding remarks.

2 Preliminaries

We use Barrier Certificates (BaCs) to prove that the BC ensures safety. We
implemented two automated methods for BaC synthesis from the literature.
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Fig. 1. Overview of the barrier certificate-based neural simplex architecture (Color
figure online)

As discussed next, one of the methods is based on sum-of-squares optimization
(SOS) and the other uses deep learning. Our design methodology for computing
switching conditions (see Sect. 3) requires a BaC, but is independent of how the
BaC is obtained.

BaC Synthesis Using SOS Optimization. This method first derives a Lyapunov
function V for the system using the expanding interior-point algorithm in [3].
It then uses the SOS-based algorithm in [34] to obtain a BaC from V . Note
that the largest super-level set of a Lyapunov function within a safety region is
a BaC. The algorithm in [13,34] computes a larger BaC by starting with that
sub-level set and then expanding it, by allowing it to take shapes other than that
of a sub-level set of the Lyapunov function. This method involves a search of
Lyapunov functions and BaCs of various degrees by choosing different candidate
polynomials and parameters of the SOS problem. It is limited to systems with
polynomial dynamics. In some cases, non-polynomial dynamics can be recast as
polynomial using, e.g., the techniques in [3].

BaC Synthesis Using Deep Learning. We also implemented SyntheBC [39],
which uses deep learning to synthesize a BaC. First, training samples obtained
by sampling different areas of the state space are used to train a feedforward
ReLU neural network with two hidden layers as a candidate BaC. Second, the
validity of this candidate BaC must be verified. The NN’s structure allows the
problem of checking whether the NN satisfies the defining conditions of a BaC
to be transformed into mixed-integer linear programming (MILP) and mixed-
integer quadratically-constrained programming (MIQCP) problems, which we
solve using the Gurobi optimizer. If the verification fails, the Gurobi optimizer
provides counter-examples which can be used to guide retraining of the NN. In
this way, the training and verification steps can be iterated as needed.
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3 Deriving the Switching Condition

We employ our novel methodology to derive the switching logic from the BaC.
The Decision Module (DM) implements this switching logic for both forward
and reverse switching. When the forward-switching condition (FSC) is true,
control is switched from the NC to the BC; likewise, when the reverse-switching
condition (RSC) is true, control is switched from the BC to the NC. The success
of our approach rests on solving the complex problems discussed in this section
to derive an FSC. Consider a continuous dynamical system of the form:

ẋ = f(x, u) (1)

where x ∈ R
k is the state of the plant at time t and u ∈ Ω is the control input

provided to the plant at time t. The set of all valid control actions is denoted
by Ω. The set of unsafe states is denoted by U . Let xlb, xub ∈ R

k be operational
bounds on the ranges of state variables, reflecting physical limits and simple
safety requirements.

The set A of admissible states is given by: A = {x : xlb ≤ x ≤ xub}. A state
of the plant is recoverable if the BC can take over in that state and keep the
plant invariably safe. For a given BC, we denote the recoverable region by R.
Note that U and R are disjoint. The safety of such a system can be verified using
a BaC h(x) : Rk → R of the following form [13,26,27,34]:

h(x) ≥ 0, ∀x ∈ R
k \ U

h(x) < 0, ∀x ∈ U
(∇xh)T f(x, u) + σ(h(x)) ≥ 0, ∀x ∈ R

k

(2)

where σ(.) is an extended class-K function. The BaC is negative over the unsafe
region and non-negative otherwise. ∇xh is the gradient of h w.r.t x and the
expression (∇xh)T f(x, u) is the time derivative of h. The zero-super-level set of
a BaC h is Z(h) = {x : h(x) > 0}. In [34], the invariance of this set is used to
show Z(h) ⊆ R.

Let η denote the control period a.k.a. time step. Let ĥ(x, u, δ) denote the
nth-degree Taylor approximation of BaC h’s value after time δ, if control action
u is taken in state x. The approximation is computed at the current time to
predict h’s value δ time units later and is given by:

ĥ(x, u, δ) = h(x) +
n∑

i=1

hi(x, u)
i!

δi (3)

where hi(x, u) denotes the ith time derivative of h evaluated in state x if control
action u is taken. The control action is needed to calculate the time derivatives
of h from the definition of h and Eq. 1 by applying the chain rule. Since we are
usually interested in predicting the value one time step in the future, we use
ĥ(x, u) as shorthand for ĥ(x, u, η). By Taylor’s theorem with the Lagrange form



A Barrier Certificate-Based Simplex Architecture 109

of the remainder, the remainder error of the approximation ĥ(x, u) is:

hn+1(x, u, δ)
(n + 1)!

ηn+1 for some δ ∈ (0, η) (4)

An upper bound on the remainder error, if the state remains in the admissible
region during the time interval, is:

λ(u) = sup
{ |hn+1(x, u)|

(n + 1)!
ηn+1 : x ∈ A

}
(5)

The FSC is based on checking recoverability during the next time step. For
this purpose, the set A of admissible states is shrunk by margins of μdec and
μinc, a vector of upper bounds on the amount by which each state variable
can decrease and increase, respectively, in one time step, maximized over all
admissible states. Formally,

μdec(u) = |min(0, ηẋmin(u))|
μinc(u) = |max(0, ηẋmax(u))| (6)

where ẋmin and ẋmax are vectors of solutions to the optimization problems:

ẋmin
i (u) = inf{ẋi(x, u) : x ∈ A}

ẋmax
i (u) = sup{ẋi(x, u) : x ∈ A} (7)

The difficulty of finding these extremal values depends on the complexity of the
functions ẋi(x, u). For example, it is relatively easy if they are convex. In our
case study of a realistic microgrid model, they are multivariate polynomials with
degree 1, and hence convex. The set Ar of restricted admissible states is given
by:

Ar(u) = {x : xlb + μdec(u) < x < xub − μinc(u)} (8)

Let Reach=η(x, u) denote the set of states reachable from state x after exactly
time η if control action u is taken in state x. Let Reach≤η(x, u) denote the set
of states reachable from x within time η if control action u is taken in state x.

Lemma 1. For all x ∈ Ar(u) and all control actions u, Reach≤η(x, u) ⊆ A.

Proof. The derivative of x is bounded by ẋmin(u) and ẋmax(u) for all states in A.
This implies that μdec and μinc are the largest amounts by which the state x can
decrease and increase, respectively, during time η, as long as x remains within
A during the time step. Since Ar(u) is obtained by shrinking A by μdec and
μinc (i.e., by moving the lower and upper bounds, respectively, of each variable
inwards by those amounts), the state cannot move outside of A during time η.
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3.1 Forward Switching Condition

To ensure safety, a forward-switching condition (FSC) should switch control from
the NC to the BC if using the control action u proposed by NC causes any unsafe
states to be reachable from the current state x during the next control period,
or causes any unrecoverable states to be reachable at the end of the next control
period. These two conditions are captured in the following definition:

Definition 1 (Forward Switching Condition). A condition FSC(x, u) is a
forward switching condition if for every recoverable state x, every control action
u, and control period η, Reach≤η(x, u) ∩ U 
= ∅ ∨ Reach=η(x, u) 
⊂ R implies
FSC(x, u) is true.

Theorem 1. A Simplex architecture whose forward switching condition satisfies
Definition 1 keeps the system invariably safe provided the system starts in a
recoverable state.

Proof. Our definition of an FSC is based directly on the switching logic in Algo-
rithm 1 of [36]. The proof of Theorem 1 in [36] shows that an FSC that is exactly
the disjunction of the two conditions in our definition invariantly ensures system
safety. It is easy to see that any weaker FSC also ensures safety. �

We now propose a new and general procedure for constructing a switching
condition from a BaC and prove its correctness.

Theorem 2. Given a barrier certificate h, the following condition is a forward
switching condition: FSC(x, u) = α ∨ β where α ≡ ĥ(x, u) − λ(u) ≤ 0 and
β ≡ x /∈ Ar(u)

Proof. Intuitively, α ∨ β is an FSC because (1) if condition α is false, then
control action u does not lead to an unsafe or unrecoverable state during the
next control period, provided the state remains admissible during that period;
and (2) if condition β is false, then the state will remain admissible during that
period. Thus, if α and β are both false, then nothing bad can happen during the
control period, and there is no need to switch to the BC.

Formally, suppose x is a recoverable state, u is a control action, and
Reach≤η(x, u) ∩ U 
= ∅ ∨ Reach=η(x, u) 
⊂ R, i.e., there is an unsafe state
in Reach≤η(x, u) or an unrecoverable state in Reach=η(x, u). Let x′ denote that
unsafe or unrecoverable state. Recall that Z(h) ⊆ R, and R ∩ U = ∅. Therefore,
h(x′, u) ≤ 0. We need to show that α ∨ β holds. We do a case analysis based on
whether x is in Ar(u).

Case 1: x ∈ Ar(u). In this case, we use a lower bound on the value of the
BaC h to show that states reachable in the next control period are safe and
recoverable. Using Lemma 1, we have Reach≤η(x, u) ⊆ A. This implies that
λ(u), whose definition maximizes over x ∈ A, is an upper bound on the error in
the Taylor approximation ĥ(x, u, δ) for δ ≤ η. This implies that ĥ(x, u)−λ(u) is
a lower bound on value of BaC for all states in Reach≤η(x, u). As shown above,
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there is a state x′ in Reach≤η(x, u) with h(x′, u) ≤ 0. ĥ(x, u) − λ(u) is lower
bound on h(x′, u) and hence must also be less than or equal to 0. Thus, α holds.

Case 2: x /∈ Ar(u). In this case, β holds. Note that in this case, the truth
value of α is not significant (and not relevant, since FSC(x, u) holds regardless),
because the state might not remain admissible during the next control period.
Hence, the error bound obtained using Eq. 5 is not applicable. �

3.2 Reverse Switching Condition

The RSC is designed with a heuristic approach, since it does not affect safety of
the system. To prevent frequent switching between the NC and BC, we design
the RSC to hold if the FSC is likely to remain false for at least m time steps,
with m > 1. The RSC, like the FSC, is the disjunction of two conditions. The
first condition is h(x) ≥ mη|ḣ(x)|, since h is likely to remain non-negative for at
least m time steps if its current value is at least that duration times its rate of
change. The second condition ensures that the state will remain admissible for
m time steps. In particular, we take:

RSC(x) = h(x) ≥ mη|ḣ(x)| ∧ x ∈ Ar,m, (9)

where the m-times-restricted admissible region is:

Ar,m = {x : xlb + mμdec < x < xub − mμinc}, (10)

where vectors μdec and μinc are defined in the same way as μdec(u) and μinc(u)
in Eqs. 6 and 7 except with optimization over all control actions u.

3.3 Decision Logic

The DM’s switching logic has three inputs: the current state x, the control action
u currently proposed by the NC, and the name c of the controller currently in
control (as a special case, we take c = NC in the first time step). The switch-
ing logic is defined by cases as follows: DM(x, u, c) returns BC if c = NC ∧
FSC(x, u), returns NC if c = BC ∧ RSC(x), and returns c otherwise.

4 Application to Microgrids

A microgrid (MG) is an integrated energy system comprising distributed energy
resources (DERs) and multiple energy loads. DERs tend to be renewable energy
resources and include solar panels, wind turbines, batteries, and emergency diesel
generators. By satisfying energy needs from local renewable energy resources,
MGs can reduce energy costs and improve energy supply reliability for energy
consumers. Some of the major control requirements for an MG are power control,
load sharing, and frequency and voltage regulation.

An MG can operate in two modes: grid-connected and islanded. When oper-
ated in grid-connected mode, DERs act as constant source of power which can
be injected into the network on demand. In contrast, in islanded or autonomous
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mode, the DERs form a grid of their own, meaning not only do they supply
power to the local loads, but they also maintain the MG’s voltage and frequency
within the specified limits [25]. For our case study, we focus on voltage regulation
in both grid-connected and islanded modes. Specifically, we apply Bb-Simplex
to the controller for the inverter for a Photovoltaic (PV) DER.

Fig. 2. Lyapunov-function level sets (black-dotted ellipses). Innermost ellipse also indi-
cates initial BaC, which is optimized iteratively (green ellipses). Red lines are voltage
safety limits. (Color figure online)

4.1 Baseline Controller

For our experiments, we used the SOS-based methodology described in Sect. 2 to
derive a Barrier Certificate (as a proof of safety) for the baseline controller. We
use a droop controller as the BC. A droop controller is a type of proportional
controller, traditionally used in power systems for control objectives such as
voltage regulation, power regulation, and current sharing [10,14,40]. The droop
controller tries to balance the electrical power with voltage and frequency. Varia-
tions in the active and reactive powers result in frequency and voltage magnitude
deviations, respectively [20]. The dynamic model for a voltage droop controller
for an inverter has the form v̇ = v∗ −v+λq(Q∗ −Q), where v∗, v,Q∗, Q are volt-
age reference, voltage, reactive power reference and reactive power of inverter,
respectively, and λq is the controller’s droop coefficient. Detailed dynamic mod-
els for an MG with multiple inverters connected by transmission lines and with
droop controllers for frequency and voltage are given in [3,13].

Figure 2 shows this process of incrementally expanding the Lyapunov func-
tion to obtain the BaC. SOS-based algorithms apply only to polynomial dynam-
ics so we first recast our droop controller dynamics to be polynomial using a
DQ0 transformation [22] to AC waveforms. This transformation is exact; i.e.,
it does not introduce any approximation error. In our experimental evaluation
(Sect. 5), we obtain the BaCs for BCs in the form of droop controllers for volt-
age regulation, in the context of MGs containing up to three DERs of different
types. Note that battery DERs operate in two distinct modes, charging and dis-
charging, resulting in a hybrid system model with different dynamics in different
modes. For now, we consider only runs in which the battery remains in the same
mode for the duration of the run. Extending our framework to hybrid systems
is future work.
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4.2 Neural Controller

To help address the control challenges related to microgrids, the application
of neural networks for microgrid control is on the rise [16]. Increasingly, Rein-
forcement learning (RL) is being used to train powerful Deep Neural Networks
(DNNs) to produce high-performance MG controllers.

We present our approach for learning neural controllers (NCs) in the form
of DNNs representing deterministic control policies. Such a DNN maps system
states (or raw sensor readings) to control inputs. We use RL in form of Deep
Deterministic Policy Gradient (DDPG) algorithm, with the safe learning strat-
egy of penalizing unrecoverable actions [24]. DDPG was chosen because it works
with deterministic policies and is compatible with continuous action spaces.

We consider a standard RL setup consisting of an agent interacting with an
environment in discrete time. At each time step t, the agent receives a (micro-
grid) state xt as input, takes an action at, and receives a scalar reward rt.
The DDPG algorithm employs an actor-critic framework. The actor generates
a control action and the critic evaluates its quality. In order to learn from prior
knowledge, DDPG uses a replay buffer to store training samples of the form
(xt, at, rt, xt+1). At every training iteration, a set of samples is randomly chosen
from the replay buffer. For further details regarding the implementation of the
DDPG algorithm, please refer to Algorithm 1 in [15].

To learn an NC for DER voltage control, we designed the following reward
function, which guides the actor network to learn the desired control objective.

r(xt, at) =

⎧
⎪⎨

⎪⎩

−1000 if FSC(xt, at)
100 if vod ∈ [vref − ε, vref + ε]

−w · (vod − vref )2 otherwise
(11)

where w is a weight (w = 100 in our experiments), vod is the d-component of
the output voltage of the DER whose controller is being learned, vref is the
reference or nominal voltage, and ε is the tolerance threshold. We assign a high
negative reward for triggering the FSC, and a high positive reward for reaching
the tolerance region, i.e., vref ± ε. The third clause rewards actions that lead to
a state in which the DER voltage is close to its reference value.

Adversarial Inputs. Controllers obtained via deep RL algorithms are vulnerable
to adversarial inputs (AIs): those that lead to a state in which the NC produces
an unrecoverable action, even though the NC behaves safely on very similar
inputs. NSA provides a defense against these kinds of attacks. If the NC pro-
poses a potentially unsafe action, the BC takes over in a timely manner, thereby
guaranteeing the safety of the system. To demonstrate NSA’s resilience to AIs,
we use a gradient-based attack (Algorithm 4) [23] to construct such inputs, and
show that the DM switches control to the BC in time to ensure safety.

The gradient-based algorithm takes as input the critic network, actor net-
work, adversarial attack constant c, parameters a, b of beta distribution β(a, b),
and the number of times n noise is sampled. For a given (microgrid) state x,
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Fig. 3. Integration of External NC with RTDS

the critic network is used to ascertain its Q-value and the actor network deter-
mines its optimal action. Once the gradient of the critic network’s loss function
is computed using the Q-value and the action, the l2-constrained norm of the
gradient (grad dir) is obtained. An initial (microgrid) state x0, to be provided
as input to the actor network, is then perturbed to obtain a potential adversar-
ial state xadv, determined by the sampled noise in the direction of the gradient:
xadv = x0 − c · β(a, b) · grad dir.

We can now compute the Q-value of xadv and its (potentially adversarial)
action aadv. If this value is less tha Q(x0, a0), then xadv leads to a sub-optimal
action. The gradient-based attack algorithm does not guarantee the successful
generation of AIs every time it is executed. The success rate is inversely related
to the quality of the training of the NC. In our experiments (see Sect. 5.3), the
highest success rate for AI generation that we observed is 0.008%.

4.3 Adaptation Module

The Adaptation Module (AM) retrains the NC in an online manner when the
NC produces an unrecoverable action that causes the DM to failover to the BC.
With retraining, the NC is less likely to repeat the same or similar mistakes in
the future, allowing it to remain in control of the system more often, thereby
improving performance. We use Reinforcement Learning with the reward func-
tion defined in Eq. 11 for online retraining.

As in initial training, we use the DDPG algorithm (with the same settings)
for online retraining. When the NC outputs an unrecoverable action, the DM
switches control to the BC, and the AM computes the (negative) reward for
this action and adds it to a pool of training samples. As in [24], we found that
reusing the pool of training samples (DDPG’s experience replay buffer) from
initial training of the NC evolves the policy in a more stable fashion, as retraining
samples gradually replace initial training samples in the pool. Another benefit
of reusing the initial training pool is that retraining of the NC can start almost
immediately, without having to wait for enough samples to be collected online.

We use off-policy retraining i.e., at every time step while the BC is active,
the BC’s action is used in the training sample. The reward for the BC’s action
is based on the observed next state of the system.
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5 Experimental Evaluation

We apply our Bb-Simplex methodology to a model of a microgrid [21] with
three DERs: a battery, photovoltaic (PV, a.k.a. solar panels), and diesel gen-
erator. The three DERs are connected to the main grid via bus lines. We are
primarily interested in PV control, since we apply Bb-Simplex to PV voltage
regulation. The PV control includes multiple components, such as “three-phase
to DQ0 voltage and current” transformer, average voltage and current control,
power and voltage measurements, inner-loop dq current control, and outer-loop
Maximum Power Point Tracking (MPPT) control. Our experimental evaluation
of Bb-Simplex was carried out on RTDS, a high-fidelity power systems simulator.

We ran experiments on a configuration where the PV is in islanded
mode, and the diesel generator and battery (in discharging mode) DERs
are connected within the MG. The state of the MG plant is given by
[id iq iod ioq vod voq ild ilq md mq], where id and iq are the d- and q-components
of the dq current measured at the local load of the inverter, iod and ioq are the
d- and q-components of the output current of the inverter measured at point of
coupling to the main grid, vod and voq are the d- and q-components of the output
voltage of the inverter measured at point of coupling to the main grid, ild and
ilq are the d- and q-components of the input current to the current controller,
md and mq are the d- and q-components of the output voltage from the current
controller used to generate the next state.

We use Bb-Simplex to ensure the safety property that the d-component of
the output voltage (vod) of the inverter for the PV DER is within ±3% of the
reference voltage vref = 0.48 kV. We adopted a 3% tolerance based on the dis-
cussion in [21]. Bb-Simplex could similarly be used to ensure additional desired
safety properties. All experiments use runs of length 10 s, with the control period,
RTDS time step, and simulation time step in MATLAB all equal to 3.2 millisec-
onds (msec), the largest time step allowed by RTDS.

5.1 Integration of Bb-Simplex in RTDS

The BC is the original droop controller described in [21], implemented in RTDS
using components in the RTDS standard libraries. The DM is implemented as
an RTDS custom component written in C. For an MG configuration, expressions
for the BaC, λ and μ (see Sect. 3) are derived in MATLAB, converted to C data
structures, and then included in a header file of the custom component.

The BaCs are polynomials comprising 92 monomials for our configuration.
The NC is trained and implemented using Keras [8], a high-level neural net-

work API written in Python, running on top of TensorFlow [1]. For training, we
customized an existing skeleton implementation of DDPG in Keras, which we
then used with the Adam optimizer [12].

RTDS imposes limitations on custom components that make it difficult to
implement complex NNs within RTDS. Existing NN libraries for RTDS, such
as [17,18], severely limit the NN’s size and the types of activation functions.
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Therefore, we implemented the NC external to RTDS, following the software-
defined microgrid control approach in [35]. Figure 3 shows our setup. We used
RTDS’s GTNET-SKT communication protocol to establish a TCP connection
between the NC running on a PC and an “NC-to-DM” relay component in the
RTDS MG model. This relay component repeatedly sends the plant state to
the NC, which computes its control action and sends it to the relay component,
which in turn sends it to the DM.

5.2 Evaluation of Forward Switching Condition

We derive a BaC using the SOS-based methodology presented in Sect. 2, and
then derive a switching condition from the BaC, as described in Sect. 3.1. To find
values of λ and μ, we use MATLAB’s fmincon function to solve the constrained
optimization problems given in Eqs. 6 and 7.

An ideal FSC triggers a switch to BC only if an unrecoverable state is reach-
able in one time step. For systems with complex dynamics, switching conditions
derived in practice are conservative, i.e., may switch sooner. To show that our
FSC is not overly conservative, we performed experiments using an AC that con-
tinuously increases the voltage and hence soon violates safety. The PV voltage
controller has two outputs, md and mq, for the d and q components of the volt-
age, respectively. The dummy AC simply uses constant values for its outputs,
with md = 0.5 and mq = 1e − 6.

These experiments were performed with PV DER in grid connected mode,
with reference voltage and voltage safety threshold of 0.48 kV and 0.4944 kV,
respectively, and a FSC derived using a 4th-order Taylor approximation of the
BaC. We averaged over 100 runs from initial states with initial voltage selected
uniformly at random from the range 0.48 kV ± 1%. The mean voltage at switch-
ing is 0.4921 kV (with standard deviation 0.0002314 kV), which is only 0.46%
below the safety threshold. The mean numbers of time steps before switching,
and before a safety violation if Bb-Simplex is not used, are 127.4 and 130.2,
respectively. Thus, our FSC triggered a switch about three time steps, on aver-
age, before a safety violation would have occurred.

We also derived a neural network-based BaC using deep learning and veri-
fied it using the Gurobi optimizer as discussed in Sect. 2. We then derived the
switching conditions from the verified neural BaC, again using a 4th-order Tay-
lor approximation. We performed the same experiments as above to determine
the conservativeness of this FSC. The mean voltage at switching is 0.4923 kV
(with standard deviation 0.0002132 kV). The mean numbers of time steps before
switching, and before a safety violation if Bb-Simplex is not used, are 128.1 and
130.2, respectively. Thus, our neural FSC triggered a switch about two time
steps, on average, before a safety violation would have occurred.

5.3 Evaluation of Neural Controller

The NC for a microgrid configuration is a DNN with four fully-connected hidden
layers of 128 neurons each and one output layer. The hidden layers and output
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Table 1. Performance evaluation of NC

CT σ(CT ) δ σ(δ)

NC 84.3 7.6 1.7e−4 1.4e−5

BC 115.7 9.8 5.8e−4 3.8e−5

(a) Performance comparison of NC and BC

CT σ(CT ) δ σ(δ)

Gen 1 112.5 11.1 2.5e−4 1.9e−5

Gen 2 89.1 8.7 1.8e−4 1.3e−5

(b) Generalization performance of NC

layer use the ReLU and tanh activation function, respectively. The input state
to the NC (DNN) is the same as the inputs to the BC (droop controller) i.e.,
[ild ilq], where ild and ilq are the d- and q-components of the input current to
the droop controller. Thus the NC has same inputs and outputs as the BC. The
NC is trained on 1 million samples (one-step transitions) from MATLAB simu-
lations, processed in batches of 200. Transitions start from random states, with
initial values uniformly sampled from [0.646, 0.714] for ild and [−0.001, 0.001] for
ilq [21]. Training takes approximately 2 h.

Performance. We evaluate a controller’s performance based on three metrics:
convergence rate (CR), the percentage of trajectories in which the DER voltage
converges to the tolerance region vref ± ε; average convergence time (CT ), the
average time required for convergence of the DER voltage to the tolerance region;
and mean deviation (δ), the average deviation of the DER voltage from vref after
the voltage enters the tolerance region. We always report CR as a percentage,
CT in milliseconds, and δ in kV.

We show that the NC outperforms the BC. For this experiment, we used
RTDS to run the BC and NC starting from the same 100 initial states. The CR
is 100% for the NC and BC. Table 1a compares their performance, averaged over
100 runs, with ε = 0.001. We observe that the NC outperforms the BC both
in terms of average convergence time and mean deviation. We also report the
standard deviations (σ) for these metrics and note that they are small compared
to the average values. The FSC was not triggered even once during these runs,
showing that the NC is well-trained.

Generalization. Generalization refers to the NC’s ability to perform well in con-
texts beyond the ones in which it was trained. First, we consider two kinds of
generalization with respect to the microgrid state:

– Gen 1: the initial states of the DERs are randomly chosen from a range outside
of the range used during training.

– Gen 2: the power set-point P � is randomly chosen from the range [0.2, 1],
whereas all training was done with P � = 1.

Table 1b presents the NC’s performance in these two cases, based on 100 runs
for each case. We see that the NC performs well in both cases.

Second, we consider generalization with respect to the microgrid configura-
tion. Here we evaluate how the NC handles dynamic changes to the microgrid
configuration during runtime. For the first experiment, we start with all the 3
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Fig. 4. NC with adversarial inputs (left: without NSA, right: with NSA)

DERs connected, but the diesel generator DER is disconnected after the voltage
has converged. For the second experiment, we again start with all the 3 DERs
connected, but both the diesel generator and battery DER are disconnected after
the voltage has converged. For both instances, the NC succeeded in continuously
keeping the voltage in the tolerance region (vref ±ε) after the disconnection. The
disconnection caused a slight drop in the subsequent steady-state voltage, a drop
of 0.114% and 0.132%, averaged over 100 runs for each case.

Adversarial Input Attacks. We demonstrate that RL-based neural controllers
are vulnerable to adversarial input attacks. We use the gradient-based attack
algorithm described in Sect. 4.2 to generate adversarial inputs for our NCs. We
use an adversarial attack constant c = 0.05 and the parameters for the beta
distributions are a = 2 and b = 4. From 100, 000 unique initial states, we obtain
5 adversarial states for our MG configuration. In these experiments, we perturb
all state variables simultaneously.

We confirmed with simulations that all generated adversarial states lead to
safety violations when the NC alone is used, and that safety is maintained when
Bb-Simplex is used. Figure 4 (left) shows one such case, where the NC commits
a voltage safety violation. The red horizontal line shows the reference voltage
vref = 0.48 kV. The black dashed horizontal line shows the lower boundary of
the safety region, 3% below vref . Figure 4 (right) shows how Bb-Simplex prevents
the safety violation. The pink vertical line marks the switch from NC to BC.

We also confirmed that for all generated adversarial states, the forward
switch is followed by a reverse switch. The time between forward switch and
reverse switch depends on the choice of m (see Sect. 3.2). In the run shown in
Fig. 4 (right), they are 5 time steps (0.016 sec) apart; the time of the reverse
switch is not depicted explicitly, because the line for it would mostly overlap the
line marking the forward switch. For m = 2, 3, 4, the average number of time
steps between them are 8 (0.0256 s), 13 (0.0416 s), and 18 (0.0576 s).
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Table 2. Performance comparison of original NC and NC retrained by AM

NC CR CT σ(CT ) δ σ(δ)

Retrained 100 70.2 5.7 1.4e−4 1.3e−5

Original 100 81.1 7.7 1.5e−4 1.3e−5

5.4 Evaluation of Adaptation Module

To measure the benefits of online retraining, we used the adversarial inputs
described above to trigger switches to BC. We used the switching conditions
derived using the SOS-based methodology. We ran the original NC from the
first adversarial input state, performed online retraining while the BC is in con-
trol, and repeated this procedure for the remaining adversarial states except
starting with the updated NC from the previous step. As such, the retraining
is cumulative. We performed this entire procedure separately for different RSCs
corresponding to different values of m. After the cumulative retraining, we ran
the retrained controller from all of the adversarial states, to check whether the
retrained NC was still vulnerable (i.e., whether those states caused violations).

The BC was in control for a total of 40, 70, and 95 time steps for m = 2, 3, 4,
respectively. For m = 2, the retrained controllers were still vulnerable to some
adversarial states. For m = 3, 4, the retrained controllers were not vulnera-
ble to any of the adversarial states, and voltage always converged to the toler-
ance region. Table 2 demonstrates performance comparison of the original and
retrained NCs, averaged over 100 runs starting from random (non-adversarial)
states which shows a slight improvement in the performance of the retrained
NC (13.4% for CT and 6% for δ). Thus, retraining improves both safety and
performance.

6 Related Work

The use of BaCs in the Simplex architecture originated in [36]. There are, how-
ever, significant differences between their method for obtaining the switching
condition and ours. Their switching logic involves computing, at each decision
period, the set of states reachable from the current state within one control
period, and then checking whether that set of states is a subset of the zero-level
set of the BaC. Our approach avoids the need for reachability calculations by
using a Taylor approximation of the BaC, and bounds on the BaC’s deriva-
tives, to bound the possible values of the BaC during the next control period
and thereby determine recoverability of states reachable during that time. Our
approach is computationally much cheaper: a reachability computation is expen-
sive compared to evaluating a polynomial. Their framework can handle hybrid
systems. Extending our method to hybrid systems is a direction for future work.

Mehmood et al. [19] propose a distributed Simplex architecture with BCs
synthesized using control barrier functions (CBFs) and with switching conditions
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derived from the CBFs, which are BaCs satisfying additional constraints. A
derivation of switching conditions based on Taylor approximation of CBFs is
briefly described but does not consider the remainder error, admissible states, or
restricted admissible states, and does not include a proof of correctness (which
requires an analysis of the remainder error).

Kundu et al. [13] and Wang et al. [34] use BaCs for safety of microgrids,
and Prajna et al. [28] propose an approach for stochastic safety verification of
continuous and hybrid systems using BaCs. These approaches are based on the
use of verified-safe controllers; they do not allow the use of unverified high-
performance controllers, do not consider switching conditions, etc.

The application of neural networks for microgrid control is gaining in popu-
larity [16]. Amoateng et al. [2] use adaptive neural networks and cooperative con-
trol theory to develop microgrid controllers for inverter-based DERs. Using Lya-
punov analysis, they prove that their error-function values and weight-estimation
errors are uniformly ultimately bounded. Tan et al. [32] use Recurrent Proba-
bilistic Wavelet Fuzzy Neural Networks (RPWFNNs) for microgrid control, since
they work well under uncertainty and generalize well. We used more traditional
DNNs, since they are already high performing, and our focus is on safety assur-
ance. Our Bb-Simplex framework, however, allows any kind of neural network to
be used as the AC and can provide the safety guarantees lacking in their work.
Unlike our approach, none of these works provide safety guarantees.

7 Conclusion

We have presented Bb-Simplex, a new, provably correct design for runtime assur-
ance of continuous dynamical systems. Bb-Simplex features a new scalable auto-
mated method for deriving, from the barrier certificate, computationally inex-
pensive conditions for switching between advanced and baseline controllers.

We combined Bb-Simplex with the Neural Simplex Architecture and applied
the combined framework to micgrogrid control. We conducted an extensive
experimental evaluation of the framework on a realistic model of a microgrid
with multiple types of energy sources. The experiments demonstrate that the
framework can be used to develop high-performance, generalizable neural con-
trollers (NCs) while assuring specified safety properties, even in the presence of
adversarial input attacks on the NC. Our experiments also demonstrate that
the derived forward switching conditions are not too conservative, i.e., they
switch control from the NC to the BC only a short time before a safety vio-
lation becomes unavoidable, and that online retraining of the NC is effective in
preventing subsequent safety violations by the NC.

As future work, we plan to extend our framework to systems with noise
or other sources of uncertainty in the dynamics. We also plan to eliminate
the need for manually developed analytical dynamic models by learning neural
ODEs [7,41] that capture unknown parts of the dynamics, and deriving BaCs
and switching conditions from the resulting dynamics. We also intend to apply
our approach to networked microgrids [37].
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Abstract. Monitoring programs for finite state properties is challeng-
ing due to high memory and execution time overheads it incurs. Some
events if skipped or lost naturally can reduce both overheads, but lead
to uncertainty about the current monitor state. In this work, we present
a theoretical framework to model traces that carry partial information
(like number of events lost), and provide construction for a monitor capa-
ble of monitoring these partial traces without producing false positives
while reporting violations. The constructed monitor optimally reports as
many violations as possible for the partial traces. We model several loss
types of practical relevance using our framework.

Keywords: Runtime verification · Finite state properties ·
Optimization

1 Introduction

Monitoring the execution behavior of software goes back to the dawn of pro-
gramming and is a standard practice, e.g., through logging, programmer inserted
print statements, and assertions. In the late 1990s, researchers began to explore
the use of formal specifications to define run-time monitors [1] which brought
the expressive power of formal methods to monitoring. Such run-time verifica-
tion techniques rely on a set of defined events which denote the occurrence of
program behavior relevant to a property specification, e.g., the invocation of a
particular method, along with associated data, e.g., method parameters. A run-
time monitor observes a trace generated by a program execution, incrementally
updates the state of the specified property, and reports a property violation
when a violating state is reached.

Run-time verification is attractive because it complements sound static ver-
ification approaches that cannot scale to modern software systems. However,
monitoring occasionally incurs high memory and execution time overheads.
Researchers have proposed a range of techniques to deal with the challenge
of reducing these overheads, while preserving violation detection e.g., [2–6]. In
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this paper, we consider the additional challenge of partial trace that arises in
the deployment of run-time verification in realistic system contexts such as: net-
worked and distributed systems where message loss or reordering may be inher-
ent, real-time systems which may shed monitoring workloads to meet scheduling
constraints, or web-based systems with quality-of-service guarantees may lead
to suppressed monitoring. In such systems, the original trace may be perturbed
by dropping events, reordering events, or dropping or corrupting data correlated
with events.

Partial traces are problematic for existing run-time verification approaches
since treating a partial trace the same as the original trace may lead to missing
a property violation or falsely declaring a violating execution. Partial traces do
not, in general, permit the same degree of precision as the original trace. The
information loss restricts us to two choices: reporting unconfirmed violations
(including false positives), or reporting only confirmed violations (but missing
some violations). Our framework is able to model both, but we present our
results in the context of the second choice, for reduced run-time overhead at the
cost of missed violations (e.g. [7,8]).

The first choice may be equally useful for ensuring compliance (e.g. [9,10])
and we show how it is enabled by our framework in Sect. 5. Existing work on
partial traces [7,10] studies specific types of losses but does not contain a general
model that could be used to study other loss types.

The paper makes foundational contributions to runtime verification by (a)
defining an expressive framework for modeling partial traces, (b) developing
techniques for synthesizing provably complete and optimal verification monitors
under those models. Importantly, these results preclude the need for additional
theory development for individual loss types and set the stage for more applied
work and tool development. The main contributions of this paper are theoretical,
complemented by (c) a collection of diverse loss models, including a discussion
of how the event losses in current literature are specific instances of our general
framework (Sects. 6, 7). For the expressiveness of our framework, we prove that
all loss models are representable in our framework under these conditions: (i)
the original property is a finite-state safety property, (ii) the desired monitor
for partial traces is finite-state, and (iii) loss model can be represented as an
arbitrary relation between original and partial strings.

2 Overview

We illustrate the problem by way of example and introduce the key insights
behind the techniques we develop to address the problem.

Safety properties for run-time monitoring can be modelled using determin-
istic finite-state automata (DFA). An event is represented by a symbol and a
trace by a string of symbols. Figure 1a shows the DFA for the SafeIter property
which states that modification of a collection during iteration is not permitted.
The DFA is expressed over the alphabet {n, u} denoting accessing the (n)ext
element in the iterator, and (u)pdating the collection being iterated.
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Remark 1. Some literature uses an additional c “creation” event for this prop-
erty. The interpretation of such events are implementation dependent. The imple-
mentation may use observance of this event to dynamically allocate memory for
a monitor and instrument the code for other events just-in-time. In such a case,
if the creation event is missed then the monitor is never created and the prop-
erty is not monitored. For a statically allocated monitor, it may also be used as
the fixed initial event – an effect equivalent to adding a state q0 before q1 with
a transition c from q0 and q1. We model only the property after the creation
event has happened and the monitor is ready to receive the first non-creation
event, and leave implementation-dependent semantics out of our modelling. The
framework, however, is trivially extensible to accommodate creation events, we
discuss this extension in Sect. 6 along with an example where the role of creation
events is more complicated.

Fig. 1. Safe Iterator – after an iterator is created no updates (u) are permitted so long
as next (n) elements remain to be accessed.

The state qerr is a trap state (self transitions ommitted for brevity) denoting
the violation of the property. All violating strings include a subsequence . . . un . . .
indicating that an update was performed prior to accessing the next element.
Statements that are free of such a subsequence end at one of the three accept
states and are non-violating.

Loss may come in different forms. For example, symbols in a string may be
erased (e.g., n → ε), reordered (e.g., nu → un), or be modeled with only partial
information (e.g., their count nnn → 3).

To illustrate, we consider the case where symbols are dropped from the string,
but the number of dropped symbols is recorded. This type of loss could be
introduced intentionally as a means of mitigating excessive runtime overhead in
monitoring, or it could occur naturally, for instance if an event arrives to the
system strictly periodically, e.g., at 10 hz, but several of those inputs are missed
in a row (due to load on the system, communication disruption, etc.).

We show how to continue monitoring while preserving fault detection capa-
bility. Consider a string nnun where this loss is applied to the first two – we
model the resulting string as 2un. This could represent 4 possible strings starting
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with one of four {u, n}2 and a suffix of un. For longer strings where sequences of
length k are lost, the combinatorics of their possible replacements {u, n}k make
it intractable to consider all of the possibilities. Despite this, the structure of
Fig. 1a dictates that any string of the form kun violates the property, thereby
illustrating that even with loss it is possible to perform accurate monitoring.

We formalize the intuition above in a loss model that maps symbols from
the property to an alternative symbol set. For example, the loss model described
above is defined by the mapping {u, n}k �→ k. In Sect. 5, we show that all
mappings of interest are a restricted class of relations on strings called rational
relations. Rational relations can be represented by non-deterministi finite-state
transducers (NFTs). An NFT maps strings in an alphabet, Σ, to strings in
an alternative alphabet, Σa. Figure 1b shows the NFT with the mapping for
alternate symbols 1 and 2 that lose the identity of symbols in a subsequence but
retain its length, e.g. as in the 2un example we just discussed.

Retaining partial information about an event string might be insufficient to
conclude that a violation occurred (or did not occur). We report a violation
only when the partial information is sufficient to conclude that there must be a
violation – such monitoring is complete1 since it never reports a false violation.
Consider the original string (O1) in Fig. 2 and the set of 3 partial strings (L1)
induced by the NFT in Fig. 1b. Tracing through Fig. 1a on the first two partial
strings by interpreting 1 and 2 as any individual or pair of symbols, respectively,
leads only to the error state – since they preserve the fact that an n follows a
u. These strings would be reported as violations. On the other hand, the string
nnuu (O2) is non-violating and of the set of 3 partial strings (L2) none reach only
the qerr state. Completeness assures that no partial string can have u followed by
a n and monitor in Fig. 1b won’t report a false violation. The automaton which
would observe these partial strings of alternate alphabet and give the states we
discussed is shown in Fig. 1c.

String State(s)
O1 nnunnun qerr

L1 2nun2n { qerr }
n1unnun { qerr }
nnu2u1 { q2, qerr }

O2 nnuu q2
L2 2uu { q2, qerr }

nnu1 { q2, qerr }
2n2 { q1, q2, qerr }

Fig. 2. Partial strings

Assuring completeness in violation reporting
means, however, that the reporting of some vio-
lations may be missed. For example, the third
partial string for L1 suppresses all nu making
it impossible to definitively conclude that the
observed string is a violation. Our goal is to report
violations on as many strings of alternate symbols
as possible while maintaining completeness. When
we refer to optimality of monitoring the partial
trace, we are referring to this goal (discussed in
Sect. 5).

In Sect. 4 we will show how loss models (such
as the one in Fig. 1b) are defined, and how the property of interest (e.g. Fig.
1a) and the loss model are used to construct the alternate monitor (e.g. Fig. 1c)
which would observe the partial trace and optimally monitor them. Discussion

1 See Remark 5 for a discussion on the terms soundness and completness.
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and significance for implementation of the theory developed in Sect. 3–Sect. 5 is
given in Sect. 5.1.

3 Basic Definitions

3.1 Notation

1. x ≺ y: string x is a proper prefix of string y.
2. f : X → Y is lifted to 2X as given by f(S) = { f(x) | x ∈ S } ∀S ⊆ X.
3. (·) is string concatenation. (·) is lifted to sets of strings.
4. × is cartesian product of two sets. For a relation R ⊆ X × Y , R(x) =

{ y | xRy } and R−1(y) = {x | xRy }
5. DOMAIN(R) = {x | ∃y s.t. xRy }, RANGE(R) = { y | ∃x s.t. xRy }.
6. A partition P of a set S is a set {P1, P2, . . . } such that Pi are pairwise disjoint

nonempty sets (equivalence classes) with union S.
7. A class representative of Pi is a distinguished element in Pi.
8. For s ∈ S in P, [s]P : equivalence class, and repP(s): class representative.
9. �: proof omitted (due to triviality/limited space/relevance).

Finite Automata and Properties. Familiarity with regular languages and their
properties is assumed. A finite set of symbols is called an alphabet. REG(Σ) is
the set of all regular languages over an alphabet Σ. ε is the empty string, and
Σε is the alphabet Σ ∪ { ε }. A trace is a (possibly infinite) sequence of events,
and an execution is a finite prefix of a trace. A trace x is a continuation of an
execution x′ if x′ ≺ x.

3.2 Definitions

Definition 1 (Finite Automata). A finite automaton is a 5-tuple (Q,Σ, δ, q0,
F ) with a finite set of states Q, the alphabet Σ, a specified initial state q0 ∈ Q,
and the set of final states F ⊆ Q. A deterministic finite automaton (DFA)
has the transition function δ : Q × Σ → Q and a nondeterministic finite
automaton (NFA) has the transition function δ : Q × Σ → 2Q. The transi-
tion function δ is lifted to strings, sets of strings, and sets of states. We call
L(A) = {x ∈ Σ∗ | δ(q0, x) ∈ F } the language of the finite automaton.

Definition 2 (Nondeterministic Finite-State Transducers (NFTs)).
Defined as a NFA (Q,Σ, δ, q0, F ) with an extra alphabet Γ (labelled the “out-
put” alphabet), where δ : Q × Σ → 2Q×Γε . After observing a symbol σ ∈ Σ, the
NFT in state q transitions to a choice of q′ with output γ ∈ Γε where (q′, γ) is
one of the pairs in δ(q, σ).

Definition 3 (Finite-state safety property). A finite-state property φ is the
minimal-state DFA φ = (Q,Σ, δ, q0, Q \ { qerr }) with the specified error state
qerr. The error state qerr must be a trap state, i.e. ∀σ ∈ Σ, δ(qerr, σ) =
qerr. For a property φ, the notation Qφ, Σφ, δφ, qφ

0 , and qφ
err is used to refer to

Q,Σ, δ, q0, and qerr respectively. An execution x ∈ Σ∗ violates the property φ if
δ(q0, x) = qerr. An execution x that does not violate the property is non-violating.
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Fig. 3. Formally specified loss types

Remark 2. Complement of language of automaton φ: L(φ)C = Σ∗ \ L(φ) are
all the strings violating φ. If an execution violates a property, then so do all its
continuations (because qerr is a trap state).

Definition 4 (Monitors). A monitor Mφ observes events for a property φ. Mφ

has a current state qcurr, initialized as qcurr = q0, and updated as qcurr ← δ(q, σ)
on observing σ ∈ Σ. The verdict of a monitor on a trace is true if the property
φ cannot be violated in any continuation, false if the property has been violated,
inconclusive if neither.

Remark 3 (Valuedness). Our definition of monitors considers 3 verdicts. How-
ever, in theoretical development of our result we only care about “violation”
or “no violation”, i.e. “false” verdict is distinguished from “inconclusive” and
“true” but the latter two are not distinguished from each other.

The terms “monitor” and “property” are used interchangeably when clear
from the context (e.g. language of a monitor). The analysis in the following
sections is not affected by the existence of multiple monitors. Therefore we omit
any discussion of it till our discussion of a particular loss type in Sect. 6.

4 Losses, Alternate Monitors, Soundness and Optimality

This section and the next contain our theoretical results. We do not assume a
loss model R must be an NFT, but rather prove it (in the next section). That’s
why we begin with a general definition of a loss model with minimal restrictions
(only to exclude cases without valid interpretation2 ).

Definition 5 (Loss Model). A loss model for an original alphabet Σ to an
alternate alphabet Γ is a relation R ⊆ Σ∗ × Γ satisfying:

1. No spurious alternate symbols condition: ε �∈ DOMAIN(R)

2 The first condition excludes partial symbols produced not corresponding to any
original information. The second condition excludes existence of full traces which
are completely lost, i.e. for which no partial information is ever observed.
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2. Prefix existence condition: There is an upper-bound n ∈ Z
+ such that for all

strings x ∈ Σ∗ of length n or more (i.e. |x| ≥ n) at least one prefix x′  x is
a part of DOMAIN(R) (i.e. x′ ∈ DOMAIN(R))

We assign the loss model R the interpretation that (x, γ) ∈ R means that if a
symbol γ is observed in alternate trace y ∈ Γ∗, then it was produced in lieu of
one of the strings x ∈ R−1(γ).

We use a related term loss type to roughly denote a family of related loss
models. As an example, the loss type for the loss model from Sect. 2 is given in
Fig. 3a, which is parameterized over various choices of Σ and n (and where for
a specific choice of Σ and n we’d obtain a loss model of that loss type).

To motivate our next definition, consider the partial traces y1 = 2n2 and y2 =
3uu from Fig. 2 for the corresponding original trace x = nnnuu (O2). For y1, as
the program runs the original monitor observes n and alternate monitor observes
nothing. On the next event original monitor again observes n and alternate
monitor observes 2. For every prefix of x we have a corresponding prefix of y1,
and we may relate them with a filter function f1 such that f1(n) = ε, f1(nn) =
2, . . . f1(nnnuu) = 2n2. f1 will be a partial function defined only on prefixes of
x. We could similarly define filter f2 for the relation between prefixes of x and
prefixes of y2. Not all functions between Σ∗ and Γ ∗ would satisfy the loss model
R – one obvious limitation would be that filter f must produce outputs for a
string x which are consistent with what R relates to prefixes of x. We formalize
these requirements on a function and call a function that satisfies them a filter,
as defined next:

Definition 6 (Filter, Partial Traces, Segments, and Replacements). Let
Σ and Γ be finite alphabets, and x ∈ Σ∗ be a trace, and Px = {x′ | x′  x } be
the set of all finite prefixes of x. Consider a loss model R ⊆ Σ∗ × Γ . Then a
function f : Px → Γ ∗ is called a filter under R if it satisfies the monotonicity
property, defined below:

if f(x) = y and f(x′) �= y for all proper prefixes x′ of x, then:

f(x · s) =

{
y · γ if sRγ

y otherwise

In the first case γ is called a replacement (symbol) for the segment s (sub-string)
of the string x · s.

FR is defined as the set of all possible functions which are filters under R.

Definition 7 (Completions). We’re also interested in possible strings x ∈ Σ∗

which could have lead to the observation y. If ∃f ∈ FR such that the last symbol
in x marks end of a segment and produces the last symbol in y, i.e. f(x) =
y ∧ �x′ ≺ x, f(x′) = y, then we call x a completion for y. We define C(y) as the
set of all completions for y:

C(y) = {x ∈ Σ∗ | ∃f ∈ FRsuch that f(x) = y ∧ �x′ ≺ x ∧ f(x′) = y }
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Next, we show how to compute the set of completions C(y) using R−1.

Theorem 1. For a string y ∈ Γ ∗, y = γ1γ2 . . . γk:

C(y) = R−1(γ1) . . . R−1(γk)

Proof. (LHS ⊆ RHS) Let x ∈ C(y). Let y = y′γk. From definition of filters and
the condition �x′ ≺ x, f(x′) = y in definition of C(y) we can partition x into two
substrings x = x′xk where xk is the corresponding segment for the replacement
γ i.e. xkRγk. Repeatedly applying this reasoning (e.g. in the next step for y′ and
x′), we conclude ∃ a partition x = x1 . . . xk such that γ1, . . . , γk are a replace-
ments for respective xi. Then xi ∈ R−1(γi) and thus x ∈ R−1(γ1) . . . R−1(γk).
(RHS ⊆ LHS) Let x ∈ R−1(γ1) . . . R−1(γk) =⇒ x = x1 . . . xk =⇒ f(x) =
γ1 . . . γk = y. ��

We now give definitions of alternate monitors and their soundness, complete-
ness, and optimality. We present the construction in the next section.

Definition 8 (Alternate monitor). Given a primary monitor Mφ and a loss
model R ⊆ Σ∗ × Γ , an alternate monitor Mψ is any finite state monitor over
the alphabet Γ that observes the partial execution f(e) for any f ∈ FR when Mφ

observes the execution e. We call (Mφ,Mψ)R a primary-alternate monitor pair
and (φ, ψ)R a primary-alternate property pair. We also refer to these as just
monitor pair or property pair.

Remark 4. It is useful to consider the monitors in (Mφ,Mψ)R as monitoring
together for the purposes of theoretical analysis and for definitions. In practice,
we want to monitor using just Mψ.

Definition 9 (Soundness and Completeness for a property pair). For
(φ, ψ)R, with the definition of C lifted to the set of strings, we define:

Soundness: A non-violating trace must not have any violating completions, i.e.
y ∈ L(ψ) =⇒ C(y) ⊆ L(φ), equivalently C(L(ψ)) ⊆ L(φ).

Completeness: A violating trace must have all violating completions, i.e. y �∈
L(ψ) =⇒ C(y) ⊆ L(φ)C , equivalently C(L(ψ)C) ⊆ L(φ)C .

Remark 5. Our definitions of soundness and completeness of a monitor are con-
sistent with the definitions commonly used in the literature on program analysis
and verification [11]. There also exist other definitions, particularly in the liter-
ature on runtime verification, which essentially interchange the interpretations
of soundness and completeness of a monitor as defined here.

Definition 10 (Optimality of a property pair). For (φ, ψ∗)R where ψ∗ is
complete, ψ∗ is called optimal if for any other complete property pair (φ, ψ)R,
L(ψ∗) ⊆ L(ψ), or equivalently C(L(ψ∗)) ⊆ C(L(ψ)). We call (φ, ψ∗)R an optimal
pair.
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Remark 6. Our definition of Optimality is a strong definition. An alternate def-
inition for an optimal monitor might be to count the number of strings up to
any given length and define a monitor which reports a violation on maximum
number of strings for every length as the optimal monitor, but optimality by our
definition would imply optimality in this alternate definition.

Definition 11 (Lopt(φ,R)). For a property φ and loss model R, Lopt(φ,R) =
FR(L(φ)), i.e. Lopt is the set of partial traces in Γ ∗ produced by a non-
error execution in Σ∗. Lopt is the smallest set of strings on which a com-
plete alternate monitor cannot reach a false verdict. i.e. Lopt = FR(L(φ)) =
{ y | C(y) ∩ L(φ) �= ∅ }.

There are several definitions of monitorability in runtime verification litera-
ture [12]. The most suitable to our problem is the ability to report a violation.
Since the alternate monitor is allowed to miss violations, the verdict that there
are no more errors is not useful.

Definition 12 (Monitorability). If there exists a continuation of an execu-
tion which leads to the false verdict, then the monitor’s current state is mon-
itorable. In a finite automaton, monitorability of a state q can be checked by
path-reachability from q to the error state.

5 Optimal Monitor and Losses as Transducers

In this section, we first construct an optimal monitor using the definition of R
introduced in the previous section. We then use that construction and its prop-
erties to prove that loss models beyond what can be represented by a finite-state
transducer can be removed from our consideration. Finite-state transducers have
a regular structure to deal with which makes impelmentation more feasible, and
theoretical treatement easier. So removing other loss models from our consid-
eration restricting R to the space of loss models to these transducers is good
news for us, as long as we can get the assurance that we’re not missing any
expressivity (which we’ll show).

We begin with the construction of an optimal alternate monitor and proof of
optimality. The key idea for the construction is for the optimal alternate monitor
to keep track of the set of states that the primary monitor could possibly be in.

Theorem 2. For a property φ and a loss model R, we construct the NFA ψ with
δψ as ∀q ∈ Q, δψ(q, y) = δφ(q,R−1(y))3. After determinizing and minimizing
this NFA, we obtain the optimal alternate monitor ψ∗ which recognizes Lopt.

In order to prove this theorem, we first need to establish correspondence of
states between the NFA constructed and its determinized and minimized version.
We already know that using powerset construction [13] for NFA determinization,
the states of determinized DFA are labelled by subset of NFA states. We use the
result that this labelling is well-defined even after minimization.
3 Note that R−1(y) must be decidable for this construction to be well-defined. This is

not an issue as we later prove that R must represent a NFT, and for NFTs computing
R−1(y) is decidable.
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Fig. 4. Example constructions of δψ∗
for optimal pair (φ, ψ∗)R Theorem 2

Lemma 1. In DFA minimization [13] of a determinized NFA, let P be the
paritition of 2Q where S ∈ P represents a set of states merged together. If
the states S1 and S2 merge, then the state S1 ∪ S2 merges with them. i.e.
∀ S ∈ P,∀ S1, S2 ∈ S =⇒ S1 ∪ S2 ∈ S. �

Remark 7. Using the previous lemma, for each class [S]P of states, the class
representative repP(S) of S is defined as

⋃
T∈[S]P

T . We label the resultant
state from merged states in [S]P in the minimized DFA by repP (S).

Lemma 2. Let (Mφ,Mψ∗) be the optimal monitor pair. When Mψ∗ transitions
to a state S ⊆ Q and Mφ is in the state q then q ∈ S.

Proof. We apply induction on the number of symbols observed by the alternate
monitor.
Base Case holds because start state of Mψ is { qφ

0 }.
IH: Assume that q ∈ S after n symbols and n + 1th replacement symbol γ is
observed in lieu of segment x.
IS: Mψ transitions to S′ = δψ(S, γ) = δφ(S,R−1(γ)) and Mφ transitions to
q′ = δφ(q, x). But since q ∈ S and x ∈ R−1(γ), q′ ∈ S′ ��
Proof (Theorem 2). Subproof 1: y �∈ L(ψ∗) =⇒ y �∈ Lopt. Using Lemma 2

y �∈ L(Mψ) =⇒ δψ(q0, y) = { qerr } =⇒ q ∈ { qerr } =⇒ q = qerr

=⇒ ∀x ∈ C(y), δ(q, x) = { qerr } =⇒ C(y) ⊆ L(M)C ��

Subproof 2: y ∈ L(ψ∗) =⇒ y ∈ Lopt. Consider y ∈ L(ψ∗).

=⇒ δψ({ q0 } , y) �= { qerr }
=⇒ δψ(. . . δψ(δψ({ q0 } , y1), y2) . . .), yn) �= { qerr }
=⇒ δφ(. . . δφ(δφ({ q0 } , R−1(y1)), R−1(y2)) . . .), R−1(yn)) �= { qerr }
=⇒ δφ({ q0 } ,C(y)) �= { qerr } =⇒ y ∈ Lopt ��

Corollary 1. Property φ is monitorable under R iff the state labeled with sin-
gleton error state { qerr } is reachable in ψ∗.

Figure 4 and the next section show example optimal monitor constructions.
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Remark 8. Our definition of ψ∗ is constructive, so ψ∗ always exists. I.e. given
a property φ and loss model R we can always construct ψ∗ using Theorem 2.
However, this says nothing about usefulness of φ∗. For instance, it may be the
case that ψ∗ is unmonitorable, which would tell us that Lopt(φ,R) = Γ ∗. Due
to being the optimal construction, this just demonstrates that it’s impossible to
monitor under the loss model R (if φ itself was monitorable). This is an indication
that too much information is lost under the loss model R for the resulting partial
string to be of any use for monitoring φ.

We have a construction for optimal alternate monitors under the loss model
R. Recall that we defined a loss model with minimal constraints in Definition 5,
which permits us to define loss models of arbitrary complexity by more complex
loss types (e.g. a loss type which could be represented by a transducer with a
stack). We find that as long as the monitor observing the trace is constrained to
be a finite-state automaton, the partial information of loss computed by more
complex loss types (e.g. a loss type which could be represented by a transducer
with a stack) does not help in reporting more violations, and we show that by
showing that for every loss model which isn’t a NFT, there is a loss model which
is an NFT and results in construction of the same ψ∗.

Theorem 3. Let (φ, ψ∗)R be the optimal property pair where R may not be
representable by NFT. Then there exists a loss model R′ which can be represented
as a NFT for which the constructed alternate property is also ψ∗.

The following lemma handles the major part of the proof:

Lemma 3. For an alternate symbol γ ∈ Γ , if the set of strings X = R−1(γ) is
not regular, then we can come up with a set Y such that X ⊂ Y and Y is regular
and ∀q ∈ Q δφ(q,X) = δφ(q, Y )

Proof. We’ll use the shorthand f(q) : Q → 2Q for δ(q,R−1(γ)), since γ is fixed.
Consider l(q) : Q → REG(Σ), the regular language taking us from q to f(q),
i.e. l(q) = {x | x ∈ Σ∗ ∧ δ(q, x) ∈ f(q) }. Let Y = ∩q∈Q l(q). It follows that Y is
regular since regular languages are closed under intersection.

=⇒ ∀q ∈ Q R−1(γ) ⊆ l(q) =⇒ R−1(γ) ⊆ Y

=⇒ R−1(γ) ⊂ Y (R−1(γ) �= Y ∵ R−1 is not regular andY is)
Now ∀q ∈ Q {Y ⊆ l(q) =⇒ δ(q, Y ) ⊆ f(q)}
And R−1(y) ⊆ Y =⇒ ∀q ∈ Q δ(q, Y ) ⊇ f(q)

=⇒ δ(q, Y ) = f(q) = δ(q,R−1(γ)) ��

Rest of the proof uses this lemma to construct the new R′ for every γ. It
requires additional definitions of generalized automata and transducers which
allow regular expressions on transitions instead of symbols, which we now give:
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Definition 13 (Generalized Nondeterministic Finite Automaton [14]).
A generalized nondeterministic finite automaton (GNFA) is a 5-tuple
(Q,Σ, δ, q0, f), where Q is the finite set of states, Σ is the alphabet, δ ⊆
(Q \ f) × (Q \ { q0 }) → REG(Σ) is the transition function, and q0, f ∈ Q
are the specified initial and final states.

Definition 14. (Generalized Nondeterministic Finite-State Transduc-
ers (GNFTs)). Defined as a GNFA (Q,Σ, Γ, δ, q0, f), where δ : (Q \ f) × (Q \
q0) → 2REG(Σ)×Γ . After observing a string x ∈ Σ∗, the NFT in state q transi-
tions to a choice of q′ with output γ ∈ Γ where (r, γ) s.t. x ∈ L(r) is one of the
pairs in δ(q, q′).

Remark 9. GNFA can be converted to NFA [13], similarly GNFT to NFT. �

Using these definitions and Lemma 3, we proceed to prove Theorem 3:

Proof (Theorem 3). The construction in Theorem 2 uses δφ(q, R−1(γ)) for defin-
ing δψ. Therefore it is sufficient to produce an R′ representable by a NFT such
that δφ(q, R′−1(γ)) = δφ(q, R−1(γ)) ∀γ ∈ Γ . In rest of the proof, we use δ to
denote δφ.

Consider a symbol γ ∈ Γ .
Case 1: (R−1(γ) is regular) We define xR′γ ∀xRγ. So R′−1(γ) = R−1(γ) and
thus δ(q, R′−1(γ)) = δ(q, R−1(γ))
Case 2: (R−1(γ) is not regular) We construct R′−1(γ) by the rational set con-
structed in Lemma 3.

We construct a GNFT for R′. Consider a GNFT with states { q0, q, f }, ε-
transitions from q0 to q and q to f , and self loop edges on q ∀γ ∈ Γ with input
label as the regex of R−1(γ) and output label γ. This completes the construction.

��
Next we show that an even more relaxed definition of loss model (a relation

between Σ∗ and Γ ∗ instead of Σ∗ and Γ ) does not increase loss models we can
express.

Theorem 4. For a primary-alternate pair (φ, ψ) with where ψ’s input on x ∈
Σ∗ is filtered by f from a loss model R ⊆ Σ∗ × Γ ∗, we can define a finite state
property ψ′, alternate symbol set Γ ′, loss model R′ ⊆ (Σ∗ × Γ ′) with filter f ′

such that ∀q ∈ Qφ δψ(q, f(x)) = δψ′
(q, f ′(x))

Proof. The proof exploits the observation that for a finite-state automaton ψ, the
set of possible symbols which denote a unique transition are finite. For a symbol
γ ∈ Γ , from each state there is a choice to transition to another state, resulting
in an upper bound of |Q||Q| unique transitions. RANGE(R) may be unbounded
but we partition it into a finite number of equivalence classes such that a class
representative may instead be used to denote the transition. Partition all strings
in Γ ∗ using the relation ∼ defined as : a ∼ b ⇐⇒ ∀q ∈ Q δ(q, a) = δ(q, b). It is
easy to check that ∼ is reflexive, symmetric and transitive.
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We will construct ψ′ as (Qψ, Γ ′, δ′, qψ
0 , Qψ \{ qψ

err }), i.e. with a new alphabet
and transition function. Let states of ψ be indexed by i ∈ 1 . . .

∣∣Qψ
∣∣. Define Γ ′ to

have symbol set of
∣∣Qψ

∣∣-tuples (t1, . . . , t|Qψ|) and define δ′ such when the tuple
γ′ ∈ Γ ′ is encountered as a symbol by δ′, the ith entry of γ′ denotes the state
transition from state i, i.e. ti ∈ 1 . . .

∣∣Qψ
∣∣ and δ′(i, (. . . , ti, . . .) = ti). We define

a map m an equivalence class of ∼ to tuple by taking any member y ∈ Γ ∗ of
the equivalence class and mapping the class to (δψ(1, y), . . . , δψ(

∣∣Qψ
∣∣, y)). Now

we can define R′ = { (x,m(y)) | (x, y) ∈ R }, and f ′(x) = m(f(x)) Then, for a
x ∈ Σ∗, ∀q ∈ Qφ δψ(q, f(x)) = δψ′

(q,m(f(x))) = δψ′
(q, f ′(x)). ��

Remark 10 (Sound alternate monitors). We can also construct a property pair
(φ, ψ)R which is sound and may be incomplete by using a construction similar
to that in Theorem 2 by determinizing it and updating δψ(S, γ) ← {qerr} if
qerr ∈ δ(S, R−1(γ)). It can be argued in a similar fashion that this construction
is optimally complete among all sound alternate monitors �

5.1 Discussion and Significance for Implementation

Theorem 3 and Theorem 4 complete our claim that any loss type (arbitrary rela-
tion between original and partial strings) for which the final produced property
has to be be finite-state is representable in our framework.

State Size. After determinization, number of states in DFA may be high. This
is not a problem in practice, e.g. finite-state properties from the largest publicly
available database of properties in [15] all have fewer than 10 states. Still, some
existing techniques (e.g. [16]) may be used to further reduce number of states,
at the expense of missing more violations. We leave it to future work for DFA
size reduction techniques specific to monitoring.

Complexity. Because R can be arbitrary, we need to show δφ(q,R−1(y)) is
efficiently computable. We show that our construction of the NFA is polynomial,
though determinizing the constructed NFA may be exponential in state size. It
should also be noted that both these costs are incurred at static time, and once
computed, there is no run-time overhead and each partial event is processed in
O(1) time by the determinized optimal alternate NFA.

Remark 11. Construction of alternate optimal NFA in Theorem 2 takes polyno-
mial time when R is represented as a NFT.

Proof. To compute δ(q,R−1(y)) = S: the intersection of R−1(y) and the regex
formed by the set of strings which go from q and some q′ is non-empty thus
q′ ∈ S. These intersection and non-empty checks take polynomial time [13]. We
loop over O(n) states and check if each is in S. We repeat this for every (γ, q)
pair making O(|Σ × Q|) iterations.
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Monitorability (under a Loss Model, and at Runtime). Corollary 1
reduces the question of monitorability under a loss model to reachability of error
state from q0 in our constructed optimal monitor. i.e. since our constructed mon-
itor is optimal, if it does not have capability of producing violations without false
positives, then it is not possible to construct any DFA which consumes partial
trace and can report a violation. In case of natural losses, this can serve as a
test for checking if monitoring is even possible for a property under the loss, and
provide hints to what partial information, if it could be recorded, would help
monitorability. In case of artificial losses, this can serve as a way to discrimi-
nate between available loss types to exclude those which aren’t monitorable. In
context of Remark 3, Corollary 1 is also useful in finding the “true” verdict.
Monitoring can be disabled at runtime as soon as the optimal monitor enters
into a state from which the state { qerr } is unreachable in alternate monitor.

Sample Implementation. To provide a starting point for an implementation
in a monitoring system, we provide a sample implementation at [17]. It contains
an implementation of Theorem 2 which takes a property and a loss model as
input and automatically constructs optimal alternate monitor as output. The
implementation verifies some examples provided in this paper, allows new prop-
erties and loss models to be defined, and allows simulating original and partial
traces against the primary as well as the constructed optimal alternate proper-
ties.

6 Framework Instantiations

We presented how our framework applies to loss types such as those in Fig. 3.
In this section, we describe three more instantiations of the framework that
illustrate the variety of realistic event loss models it can accommodate.

Bounded Frequency Count of Missed Symbols. This loss model was con-
sidered in [10] for lossily compressing event traces over a slow network. It is
a modification of the dropped-count filter in Fig. 3a where additional informa-
tion about observed symbols is kept. For a bound n ∈ Z+ and alphabet Σ
with symbols σi indexed by 0 ≤ i < |Σ|, we’ll define alternate symbol set Γ
where each symbol is a |Σ|-tuple, tuple entry at an index i being number of
dropped symbols σi. That is, Γ = { (c1, c2, . . . , c|Σ|) | 0 < c1 + . . . + c|Σ| ≤ n }
Let #x(y) denote number of characters x in string y. The loss model is defined
as R = { (x, (c1, c2, . . . c|Σ|)) | ∧

i∈I ci = #σi(x) }.
As an example, we may have f(babaab) = (a1, b2)(a1, b0), (a1, b1) for Σ =

{ a, b } , n = 3.
There are two key differences between our formalization and that of [10].

First, the total size of the missed symbols is bounded in our case so that we
have a finite alphabet with each transition taking O(1) time in the determinized
alternate DFA. [10] uses a constraint automata which accepts an infinite alphabet
and each transition takes O(|Q|) time. We note that even if more than n symbols
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are missed at a time, then up to mn missed symbols can produce m alternate
symbols to transition to the correct set of states in our framework. The second
difference is in consideration of soundness and completeness. While we construct
a complete optimal monitor (without any false positives), they construct a sound
monitor (without any false negatives). As Remark 10 shows, this is not an issue
since we can easily construct a sound monitor instead.

Fig. 5. A composite monitor
for SafeIter on two iterators.

Merged Objects. Here we look at a new loss
type which loses information about which object
an event belongs to in a multi-object monitor.
Let O = { o1 . . . om } be a set of objects with
parametric events E = e1 . . . en, i.e. e1(o1) is
a distinct event from e1(o2). This means that
Σ = { e(o) | e ∈ E ∧ o ∈ O }.

For σ ∈ Σ, γ ∈ Γ , let σRγ iff σ = γ(o) ∧ o ∈
O. In the partial trace, we lose information about
which object the event belongs to within O. For
the general case we can build an optimal monitor using the construction in
Theorem 2. We give an example of the multi-object property “SafeIter” shown
in Fig. 1a but including additional creation events with symbol c as discussed in
Remark 1.

The fact that the event c will not be observed in any state is not a part of
the property but a guarantee of the environment. We model the transitions for c
from any non-initial state other to as special state qim (not shown) representing
“impossible” state.

Fig. 6. Optimal complete
alternate monitor.

A composite monitor for the SafeIter prop-
erty from [6] is shown in Fig. 5 for two iterators
I1 and I2 ((i, j) represents states (qi, qj) for the
two iterators, assuming I1 is created first). The
loss model R merges events for I1 and I2, and
using Theorem 2 to construct the optimal alter-
nate monitor, and delete the qim state from the
NFA produced (as we’re guaranteed by the envi-
ronment to never enter it) to obtain the monitor
in Fig. 6. For example, the obtained monitor only
misses the violation for the traces like c1uc2n2*n1,
i.e. when we actually need the information that event n happened on object 1,
but can still report violations for traces matching c1n1c2(n1|n2)uu*(n1|n2) or
c1uc2(n2|n1)*uu*(n1|n2).

Missing Loop Events. Significant number of events can be generated within
loops in a program. [5] addresses this by eliminating instrumentation losslessly
within loops when monitoring the first few iterations is sufficient.

We consider an extension of this idea in Fig. 7 where the program structure
is used to obtain the loss model. Instrumentation from the loop is replaced with
a single symbol k at the end of the loop. If instrumentation is disabled for all
iterations of the loop, the monitor is in states { q0, q1 } after the event k. If the
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Fig. 7. Missing Events in Loops to be able to remove instrumentation in them.

first few iterations are monitored and event a is generated, the monitor will be
in states { q1 } after the event k.

The loss model can be calculated using a method from [4]. It presents a static
analysis which finds the set of states that are possible after a program region,
e.g., a loop body, for any given starting state if monitoring were to be disabled in
that region. We can use this information directly instead of R−1(k) in Theorem
2 for computing δψ(q, k) ∀q. This is equivalent to mapping the set of strings
which go from q to δψ(q, k) to the new symbol for the loss model.

7 Related Work

Runtime monitoring has been an active research area over the past few decades.
A significant part of the research in this area has focused on optimizing monitors
and controlling the runtime overhead to make monitoring employable in practice.

A line of research [2,4,18,19] focuses on lossless partial evaluation of the
finite state property to build residual monitors which process fewer events during
runtime. [4] and [19] can be modelled in our framework using loss models where
R−1(y) is a singleton set. Another line of research proposes purely dynamic
optimizations where resources at run-time are constrained [8]. Purandare et al.
[6] combine multiple monitors which share events into a single monitor to reduce
the number of monitors updated. Schneider et al. execute monitors in parallel
by enabling exchange of states between them to scale up monitoring [20].

Kauffman et al. [21] and Joshi et al. [22] consider monitorability of LTL
formulas under losses. [21] considers natural losses such as loss, corruption, rep-
etition, or out-of-order arrival of an event and gives an algorithm to find mon-
itorability of a LTL formula. They do not construct a monitor to monitor the
partial traces. [22] considers monitorability of LTL formulas in the presence of
one loss type which is equivalent to our dropped-count loss (Fig. 3a) with n = 1.
They only handle the formulas whose synthesized monitor has transitions that
always lead to just one state, and it only recovers from losses after observing
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such a transition. In general, recurrence temporal properties [23] that can be
modeled by Büchi automata are naturally immune to event losses due to loops
in their structures. Our work primarily focuses on safety properties.

Falzon et al. [10] consider the construction of an alternate sound monitor
when for some parts of the traces only aggregate information, such as the
frequency of events but not their order, is available. We formalize this loss
type in our framework in Sect. 6. Dwyer et al. [7] consider sub-properties
formed when the alphabet is restricted to its subset to sample sub-properties
from a given property. Their construction ensures completeness and is equiv-
alent to our construction with R = {(x, y) | x ∈ Δ∗y ∀y ∈ Σ \ Δ}, where
Δ is the set of symbols not observed as events. Figure 4b generalizes it with
R = { (x, y) | x ∈ Δ∗y ∀y ∈ Σ }.

Basin et al. [9] introduce a 3-valued timed logic to account for missing infor-
mation in recorded traces for offline analysis. This allows them to report 3 results:
if a violation occurred, if it did not occur, or if the knowledge is insufficient to
report either. In the problem we consider, instead of having a single representa-
tion for missing information we can have multiple representations for different
losses which can differ in their power to report an error.

Bartocci et al. [24] introduce statistical methods to inform overhead control
and minimize the probability of missing a violation. For the monitors which are
disabled, [25] introduces statistical methods to predict the missing information
due to sampling, which is then used in [24] to get a probability that the violation
occurred in an incomplete run. Instead of disabling monitoring altogether and
predicting missing information, our approach records partial information about
the events to report violations while maintaining completeness.

8 Conclusion and Future Work

We presented a framework for online finite-state monitoring of traces that carry
partial information, where the losses could be natural or artificially induced. Our
framework provides a general model that accommodates various losses present
in the current research literature. We provide an efficient and automatic method
to construct optimal monitors from a property specification and a loss model.
Our optimality results provide hard limits to determine which property-loss and
model combinations are feasible. We hope this makes it easier in future to study
specific loss types. We also hope that this novel approach makes monitoring par-
ticularly attractive in the presence of high-frequency events and lossy channels,
serving as a theoretical basis for implementations dealing with such constraints
and for new optimizations inducing event losses. In the future, we would like
to extend our framework to address infinite-state monitors and work on open
questions about the characteristics of more restricted classes of loss models and
their properties.
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Abstract. Smart contracts exist immutably on blockchains, making
their pre-deployment correctness essential. Moreover, they exist openly
on blockchains—open for interaction with any other smart contract and
offchain entity. Interaction, for instance with off-chain oracles, can affect
the state of the smart contract, and correctness of these smart contracts
may depend on the trustworthiness of the data they manipulate or events
they generate which, in turn, would depend on which parties or what
information contributed to them. In this paper, we develop and present
dynamic taint analysis techniques to enable data tainting in smart con-
tracts. We propose an extension of Solidity that enables labelling inputs
of interaction endpoints with dynamic data-carrying labels that capture
actionable information about the sender. These labels can then be prop-
agated dynamically across transactions to transitively dependent data.
Specifications can then refer to such taints, for instance for ensuring that
certain data could not have been influenced through interaction by a cer-
tain party. We further allow the use of taints as part of the language,
affecting the control flow of the smart contract. To manage the over-
heads of such runtime tainting we develop sound static analysis-based
techniques to prune away unnecessary instrumentation. We give a case
study as a proof-of-concept, and measure the overheads associated with
our additions before and after optimisation.

Keywords: Taint analysis · Runtime verification · Static analysis

1 Introduction

Smart contracts on blockchains are programs that promise dependability through
immutability and code transparency. However, this is not enough to ensure

This research has received funding from the ERC consolidator grant D-SynMA (No.
772459), the University of Malta Research Awards project “Systematising Smart Con-
tracts within Classical Contract Law Theory”, and the European Agricultural Fund
for Rural Development project “VinoVeritas: An Authority to Consumer Wine Audit
Solution”.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
T. Dang and V. Stolz (Eds.): RV 2022, LNCS 13498, pp. 143–161, 2022.
https://doi.org/10.1007/978-3-031-17196-3_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-17196-3_8&domain=pdf
http://orcid.org/0000-0002-2165-3698
http://orcid.org/0000-0002-4796-5665
http://orcid.org/0000-0001-7513-3658
http://orcid.org/0000-0003-0743-6272
https://doi.org/10.1007/978-3-031-17196-3_8


144 S. Azzopardi et al.

correctness of the smart contracts. Formal methods have been applied for this
purpose, to allow for some level of security and verification of functional proper-
ties of smart contracts, e.g., [1,5,7]. One interesting aspect of smart contracts is
the ability of smart contracts to interact with each other or with off-chain enti-
ties. This interaction is the only way in which smart contracts can change state,
with each (data-carrying) interaction forming part of a transaction. While the
blockchain on which smart contracts are executed is decentralised in nature, the
logic of a smart contract or data upon which it depends may not be. Consider,
for instance, a betting smart contract depending on random numbers provided
by third party oracles, or an insurance smart contract depending on reports
by experts and information provided by a user. Whenever a smart contract’s
domain extends beyond what is digital and resides on the blockchain, it must
interact with the real-world which is, by its very nature, centralised. A tempera-
ture sensor is, for instance, such a centralised point-of-trust, and, unless one goes
to great lengths to have multiple independent sensors, the readings it provides
and any logic or data which depend on them should ideally be tagged as such.

Given an event of interest (e.g., upgrading the level of a user or the violation
of a property) it is interesting to reason about the contributing causes to this
event, including any contributing interactions. However, such information is not
typically available given interactions may be separated far in time from the events
of interest to which they contribute. We observe that this kind of reasoning has
been explored in literature, to an extent, in the study of taint analysis [12].

Taint analysis is typically concerned with identifying when input to a pro-
gram can pose a security risk, e.g., if it can cause dangerous commands to be
executed. Untrustworthy input is said to be tainted, while the sensitive parts
of the program are called sinks, and the problem then is to find out whether
tainted data can enter sinks. There are two approaches to taint analysis: static
or dynamic. Identifying problems statically, pre-deployment, is ideal but having
a sound and complete analysis is, in general, impossible forcing one to resort
to over- or under-approximations—sound static analysis may identify false secu-
rity risks, while a complete one may miss real ones. Dynamic taint analysis,
identifying risks at runtime can be more precise.

In a manner akin to security and privacy taint analysis, we observe that
issues of point-of-trust propagation in smart contracts (and indeed other systems
which depend on data by external parties) follow a similar pattern and can
be addressed using similar tools. We envisage trust type checking to ensure
that trust does not propagate in an unexpected manner as a primary tool for
smart contracts enforcing business process flows dependent on oracle and user
data. Furthermore, we believe that the notion of trust is core in smart contracts
and by implementing trust at the programming language level, and allowing
developers to use trust information as part of their logic can be of great benefit.
For this reason, we ensure that our trust/taint propagation semantics extend the
semantics of Solidity, and allow for dynamic execution.

Static taint analysis has been explored in the context of Solidity smart con-
tracts, e.g. [10,17], however to the best of our knowledge dynamic taint analysis
has not, possibly due to the associated overheads. In fact, both deploying and
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executing functions of the smart contract costs gas, paid for in ether, the cur-
rency of the Ethereum blockchain. This cost can be an effective remedy against
denial-of-service attacks, and also ensures termination, but discourages the use
of dynamic analysis techniques on the blockchain. Static analysis however has
been used to attenuate the gas overheads of runtime verification (e.g., see [5]).

In this paper, we present an extension of Solidity with a notion of tainting as
a first-class concept. We present taint labels that carry data, and allow assertions
in the language to query these taints and use the associated data. We give the
semantics for a simplified version of Solidity with taints that propagates the
taints. We give several static analyses that we use to prune taint instrumentation,
and leave the remaining for runtime. As a formal basis for these analyses and
future ones, we give an abstract sound static semantics for the language.

Related Work. Static taint analysis has been applied in the context of Solidity
before. Slither [10] can classify whether a smart contract variable is dependent
on a user-controlled variable (e.g., a function parameter), or whether a function
can be entered from illegitimate entry points. [17] uses taint tracking on control-
flow graphs to identify re-entrancy. Our work instead considers using dynamic
analysis, and optimises it through static analysis. Such combined analysis have
been applied in other contexts, such as web security (e.g., see [13,16]), and
Android applications (e.g., see [14,16]).

Static analysis has been used before to prove parts of properties safe and
leave the rest of the property for runtime [2,4,8], and also for the pruning of
instrumentation [3], mainly in the context of Java verification. This work has
also been applied in the context of Solidity verification [5,6]. See [11] for a more
general exposition of optimisations for monitors.

See [15] for a more general survey of formal verification techniques applied
to smart contracts.

Summary. In Sect. 2 we present an extension of the Solidity language with
taints and a semantics for it, while in Sect. 3 we present tools to statically
analyse programs in this language. We present a case study to validate the
example static analyses we give in Sect. 4. We discuss this approach in Sect. 5,
while we conclude with future work in Sect. 6.

2 Solidity with Dynamic Tainting

We present an extension of Solidity with taints at the language level, including
constructs for declaration of data-carrying taint labels, statements that taint
variables or memory locations, and extend Boolean expressions to query taints.

2.1 Simplified Solidity with Taints

The grammar of Solidity extended with taints is shown in Fig. 1, with our addi-
tions and modification in boldface.
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Fig. 1. Solidity with taints.

We leave the grammar underspecified for simplicity (e.g., we do not list
types, or all possible ValueExpressions, like arithmetic combinations), so that
we can focus on the novel taint constructs (see [9] for the full Solidity language).
Smart contracts are deployed on the blockchain to certain addresses, and calls
to their functions also are initiated from addresses, however here we abstract
away from these, e.g. in CallExpr—note how a function being available from a
certain address can simply be encoded as part of the function name/label; and
also from messages (carrying some standard information about the sender and
call), which can be encoded as parameters to the function.

We define taint template expressions (TaintExpr) to be either simple labels,
labels with a sequence of possibly labelled data types, or disjunctions of such
labels. We specify taint values (TaintValue) as being either simple labels
(TaintLabel), or data-carrying labels (e.g., BadActor (address location) is a
taint label template that can be instantiated into taints that carry information
about the address of the bad actor). We introduce constructs to assign a taint
expression a label (TaintDeclr), and a construct to allow for the taint of a
variable to be a queried (TaintQuery).

We augment boolean expressions (BoolTaintsExpr) to be able to query the
taints of variables, e.g. v tainted-by BadActor will hold true only if the value
of v depends on some past interaction started by a specific bad actor. These can
be used in assert statements (here we do not model gas consumption, thus we
ignore require statements) and if statements.

Crucially, we add a construct (TaintBy) to allow variables to be assigned
taint values, e.g., taint v by BadActor msg.sender1. Essentially, the user can
use this construct to specify sources of taint, e.g., to taint some parameters at
the start of a function definition. Propagation of these taints to any variables
that in turn depends on tainted variables will be taken care of by the semantics.

1 msg.sender in Solidity refers to the address (a unique identifier) of the function
caller.
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Moreover, instead of the assignment symbol =, we have two kinds of assign-
ment symbols: (1) x �= expr denotes that x is assigned the value of the expression
and also propagates taints of expr to x; while (2) x

×= expr denotes that x is
only assigned the value of expr. We do not intend this to be used by the user,
but we use it to denote the instrumentation required for propagating tainting
dynamically. From the point of view of the user they will use =, which will be
interpreted as �=. For our static analysis the aim is to turn as many �= statements
into ×= while preserving the semantics. We will use ∗= to denote either �= or ×=.

2.2 Semantics

We present an operational semantics for the grammar in Fig. 1, with some pre-
liminaries first.

Preliminaries. For brevity, we assume that every smart contract on the
blockchain has unique names for their global variables, function parameters,
local function variables, and function names.

The semantics given is an operational semantics, over configurations and
transitions. Configurations are given over variable valuations, a function call
stack, and the function code. The function call stack maintains a stack of the
function calls in the current transaction, and a sequence of statements with the
first statement being the next statement to execute. Instead of Solidity state-
ments, we consider tainted statements, which will be required to keep track of
taint of a certain execution, e.g., due to branching.

Definition 1 (Tainted Statements). Given a statement st and a set of
taints T , a tainted statement, written st#T , denotes that the execution of
st was tainted by T . We overload this to sequences of statements, such that
(st : sts)#T

def= (st#T : sts#T ) and []#T
def= []. We interpret (st#T )#T ′ as

st#(T ∪ T ′).

Definition 2 (Configurations). A configuration is a triple 〈V, calls,F〉
where:

1. V is a valuation, a mapping from variable names to their values and taints
(we write V[x �→ v] to update the value of variable x, and V[xtaint �→ t] to
update the taint of x;

2. calls is a function call stack, an array modelling the current function call
stack, with values consisting of a pair of: tainted sequence of statements and
a variable (and variable taint) valuation; and

3. F is the code, a mapping from function names to sequences of statements (we
leave this implicit since, for simplicity, we do not allow it to change).

Essentially, a configuration models the state (including taint state) of a
blockchain at a given point in time. When the call stack is empty, the con-
figuration is that of the blockchain between transactions, and when it is not
empty the blockchain is in the process of a transaction.
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The semantics will propagate a taint throughout a function’s code, which
may depend on the taint of a expression, which we define as the union of the
taints of the variables mentioned in that expression.

Definition 3. The taint of a value expression expr in the context of a valuation
V, denoted by taint(expr,V), is the union of the set of taints associated with
every variable mentioned in the expression. When the valuation is clear from the
context we leave it implicit.

We also require a notion of evaluation of expressions in the context of a given
valuation of variables. We define an operator to represent this.

Definition 4. Given a valuation V and Solidity expression expr, we write
expr ⇓ V to denote the value of the expression with respect to the valuation.

We can then give the operational semantics. The notation we use for the opera-
tional semantics includes naming of certain structures for more compact (width-
wise) rules, e.g., writing lcls′ := lcls[x �→ expr ⇓ lcls] means lcls′ should be
interpreted as lcls[x �→ expr ⇓ lcls] in the rest of the rule.

Definition 5 (Operational Semantics). The operational semantics of Solid-
ity with taints is given over configurations and transitions labelled by calls and
tainted return values, or by × (denoting an unsuccessful call). The transition
relation → is given by the rules in Fig. 2.

We use ⇒ for the transitive closure of →. We overload ⇒ so that we write

V
call(f,params)
=========⇒

res
V ′ for (V, [])

call(f,params)−−−−−−−−−→ (V, x) ⇒ (V, x′) res−−→ (V ′, []) (with no
other labelled transitions in between).

Note that we do not define a rule for assert, instead we treat a statement
assert(e) as if(!e) revert(); else{rest of code}.

We briefly describe the semantics. Labels indicate the start of an offchain
call (OffchainCall) or the termination of such a call, either without excep-
tions (ReturnOffchain) or with a cancellation and revert of the transac-
tion (RevertOffchain). Given a tainting expression, we taint the variable in
the valuation (UpdateTaint), while if the initiator of the call, msg.sender,
is tainted then all the assignments in the remaining statements are also
tainted (UpdateTaintSender). Given an if statement, we evaluate the con-
dition on the current valuation, and continue in the appropriate branch, while
tagging each branch with the taints of the condition (IfThenElseLeft,
IfThenElseRight).

Given an assignment, we first consider when the right-hand side expression is
a value expression and update the value of the variable (NonCallAssignment),
and in the case the instrumented assignment, is used the taint of the vari-
able is also updated (NonCallAssignmentInstrumented). When there is
a call, we simply place the code of the called function on the stack (Call), note
how our assumption that all variables, parameters, and functions have unique
names ensures the valuation is updated appropriately. The output of a function
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is then used if the call ends successfully (CallReturn) and the taint possi-
bly updated (CallReturnInstrumented), or otherwise a revert is propa-
gated upwards (CallRevert). This logic is modified slightly for the case of
a guarded call (GCall, GCallReturn, GCallReturnInstrumented, and
GCallRevert), where reverts no longer propagate upwards.

2.3 Implementation

Implementing this semantics as is requires augmenting the semantics of Solidity.
Instead, here, we describe how it can be encoded in the full Solidity language.

Taints Values. Taint values can be encoded with each taint label as a value in
an enum, and a wrapping struct as a template for values. For example, the dec-
laration BadActorTaint = BadActorUnknown | BadActor (address loc) can be
represented with: enum BadActorTaintLabels = {BadActorUnknown, BadActor}
and struct BadActorTaint = {BadActorTaintLabels label; address loc;}.

Variable Taints. The taint of each variable can be kept track of in a corre-
sponding taint array variable. The tainting of locations in a mapping or array
can also be kept track of in variables of the same structure. A taint expression
taint x by t, can then encoded by simply pushing taint t onto x’s taint array,
e.g., xTaint.push(t). We can have repetition in this case, i.e. xTaint is not a
set, but this does not change the semantics.

Propagating Taints. Propagating taints through instrumented assignments
can be done in two-steps. For direct assignments to a value expression, one can
simply append a statement immediately after the assignment that sets the taint
of the assigned variable to the union of the taint variables of the variables used
in the assignment expression. Assignment to the value of calls however presents
an issue. If the function called is under our control, we can simply edit it to take
parameter taints as inputs and to output also the taints of the return values.
Otherwise2, the taint semantics cannot be replicated. One approach could be to
assume that the output could be tainted by any taint, and thus have a sound
but incomplete dynamic taint analysis. For our purposes, we only consider when
called functions are under our control and then the analysis is sound.

This approach to the implementation can however make the smart contract
very costly (note how checking a taint query requires iterating over an array
which does not have a bounded size). We tackle this through static analysis.

3 Static Analysis

When developing smart contracts one generally aims to reduce the amount of
code and the amount of computation performed. This is due to the notion of
gas, wherein both placing code on the blockchain and executing it has costs.

2 If we do not know the code behind a function call we cannot determine the possible
taint of return values.
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Fig. 2. Semantics of grammar in Fig. 1.

Our described implementation, however, requires adding substantial instrumen-
tation: (1) a taint variable for every variable; and (2) assignment to these taint
variables after every assignment to associated variables. These can add signif-
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icant overheads, as we see later in Sect. 4. Yet, not all this instrumentation is
required and tainting is only relevant to the smart contract’s execution when it
affects the flow or output of the smart contract, otherwise it has no impact.

In this section, we give a sound abstract semantics to the language which we
use as the basis for static analysis that is able to modify instrumentation safely
(e.g., transform �= into ×=), and that can be used to determine the possible value
of conditions on taint at locations of a smart contract.

3.1 Abstract Semantics

Here we define a sound method of propagating taints in a Solidity smart contract,
while abstracting away the values of variables.

In the static context we do not have taint values when the taint is data-
carrying, instead we abstract them by their corresponding taint expression, e.g.,
BadActor(msg.sender) is abstracted by the expression BadActor address. In
this section, we then use these taint expressions as our taints.

Definition 6 (Abstract Taints). The abstraction of a taint tag t, denoted
abs(t), is t itself in the case of a non-data-carrying labels, and the corresponding
taint expression with values replaced by their types for data-carrying labels. We
overload abs to also range over sets of taints, i.e., abs(T ) def= {abs(t) | t ∈ T}.

We will also require a notion of projecting concrete valuations and return
values onto their original variable value parts and the taint parts.

Definition 7 (Valuation and Return Value Projection). V|vars projects
V onto its variable domain, ignoring tainting. ret|vars is similar, while ×
remains ×. Similarly, |taints projects V and ret onto taint variables.

A remaining issue is branching in the code as caused by an if-then-else, where
the taint at runtime depends on which branch is taken. Statically we have to
consider both branches, since we want to handle every possible case. Since we
will be dealing with each function on its own, and Solidity smart contracts have
a tendency to be small (due to gas costs), here we will deal with this simply by
non-deterministically branching. In other contexts this may not be ideal, since
this may incur a degree of repetition which may worsen the state space explosion.

We re-use the # and taint operators here, appropriately re-interpreted for
this abstract context (i.e. # instruments with abstract taints, and taint returns
the abstract taints of an expression).

The semantics we give is over abstract configurations, which only maintain
information about the next statement to execute and an abstract taint function.

Definition 8 (Abstract Configurations). An abstract configuration is a
pair 〈calls, tnts,F〉 with:

1. calls is an abstract call stack, with elements as abstractly tainted statements;
2. tnts is an abstract taint valuation; and
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3. F, being the code, a mapping from function names to the function’s list of
statements (left implicit).

We can then give our abstract operational semantics.

Definition 9 (Abstract Operational Semantics). The abstract operational
semantics of Solidity with taints is given over abstract configurations. The tran-
sition relation →, is given by the rules in Fig. 3, with � as its transitive closure.

Every rule given is a direct counterpart of the similarly named rules in Fig. 2,
with some rules combined into one here.

We can prove that this abstract semantics soundly abstracts the concrete
semantics of the language, i.e., that when a call produces a return value with
a certain concrete taint in the concrete semantics, then there is a path in the
abstract semantics that produces an abstract version of the concrete taint.

Theorem 1. (V, [])
call(f,params)
=========⇒
(expr⇓V ′,T )

V′ implies ∃sts, T ′, tnts′ · (F(f),V|taints) �
((return expr : sts)#T ′, tnts′) ∧ abs(T ) = T ′ ∪ taint(expr, tnts′).

3.2 Analysis and Optimisation

The abstract semantics we gave can be the formal basis of different static anal-
yses. Here we characterise when a static analysis reduces instrumentation in a
correct manner. However, instead of working with the code, for static analysis it
is often more useful to make the control-flow between statements explicit. Stan-
dard techniques can be used to transform Solidity code into a graph and back
(e.g., as supported by existing tools [5,6]).

Definition 10 (Function Control-flow Graph). The control-flow graph of
a function F is a tuple CF = 〈S, label, s0, Ret,Rev,→〉, with S being a set of
states, label : S → Stmt associating each state with a statement, s0 being the
initial state, Ret being the set of states associated with return statements, and
Rev being the set of states associated with revert statements. →: S × S is a
transition relation denoting the control-flow between the statements.

We can then augment the control-flow graph by considering its abstract exe-
cution with the abstract semantics. The states in the graph then become pairs
of statements and abstract taint functions.

Moreover, we consider a special abstract taint expression ∗ that denotes vari-
ables could be tainted by any taint set; we will be using this to be able to reason
about each function intraprocedurally, by starting with an abstract taint function
that assigns ∗ to every variable: initTnt, s.t. initTnt(v) = ∗.

Definition 11 (Tainted Function Control-flow Graph). The tainted
control-flow graph of a function F is a tuple t(CF ) = 〈S, tlabel, s0, Ret,Rev,→〉,
defined as before, but with tlabel : S → Stmt×Vtaints associating each state with
a statement and an abstract taint function.
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Fig. 3. Abstract static semantics of grammar in Fig. 1.

The construction proceeds by associating the initial state with the most
abstract taint function, tlabel(s0) = (st0, initTnt), and when for states s and s′,
s → s′ in CF , then if tlabel(s) = (label(s), tnt) and (label(s) : [label(s′)], tnt) →
(label(s′), tnt′) (in the abstract semantics), we set tlabel(s′) = (label(s′), tnt′).

Note how we have a finite amount of abstract taints and statements, and
thus applying the abstract semantics will terminate, if there is no recursive call.
In the case of a recursive call we have several options, e.g., tainting with ∗, or
running the call until a fixed point of taints is reached.
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Our static analysis will involve transformation of the instrumentation of a
function while retaining the same semantics, which we characterise below.

Definition 12 (Instrumentation Reduction). Given functions F and F ′,
F ′ is said to be an instrumentation reduction of a function F , in the context of
a set of functions F, written F ′ ≤t F iff (1) F and F ′ only differ on the use
of �= or ×=, or on the presence of taint by expressions; (2) replacing a call to F
with one to F ′ does not change the values of variables, but may associate less
(but not different) taints to variables, formally:

For an arbitrary n, consider any arbitrary sequence of n function calls (to
functions from F), ci, any initial valuation V0, and the corresponding n valua-
tions Vi+1 and return values reti+1, such that Vi

ci====⇒
reti+1

Vi+1. If, for some index

j, cj is a call to F , then replacing cj with c′
j, a call to F ′ but with the same param-

eters and message, induces n−j new valuations and return values V′
j+1, ...,V

′
n+1

and ret′j+1, ..., ret
′
n+1 such that Vj

c′
j====⇒

ret′
j+1

V′
j+1 (and so on), then for all indices

k bigger than j the corresponding valuations and return values with taints pro-
jected out, are equivalent: Vk|vars = V′

k|vars and retk|vars = ret′k|vars , while
the taint projected parts in the reduced version are contained in the other:
∀v · V′

k|taints(v) ⊆ Vk|taints(v) and ret′k|taints ⊆ retk|taints .

We then describe informally several instrumentation reducing analyses that
can be performed on the set of tainted control-flow graphs of a smart contract.
Removing Irrelevant Instrumentation. Given a function F ∈ F, we can
identify statements in that function whose evaluation depends on the taint of
some variable, generally either conditional or return statements. For each such
statement, we can do a transitive backwards analysis to determine the set of
taints and the set of variables that are relevant.

Then, collecting all this information from all the functions in F, we can
identify the taint instrumentation nodes that set the taint of a variable such
that the variable and its taint may be relevant to some conditional statement in
the smart contract. Irrelevant taint instrumentation nodes can be removed.

For example, where T and T ′ are distinct concrete taint labels:

taint v by T’; x
�
= v;

assert(x tainted-by T);
≤t

x
×
= v; assert(x tainted-by

T);

On the left-hand side, x is relevant to the conditional on the third line, but
it is only relevant to it when x is tainted by T . Thus, barring any other need for
knowing about the taint of v or x with T ′, the right-hand is equivalent to the
above modulo the assert statement.
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Moreover, consider that a variable is tainted twice in a function with such
a label, and between these two locations there is no point where the first taint
of the variable is used. Then we can just discard the first instrumentation, and
keep the last one, since the first one is unused and later overwritten.

For example (assume the only conditional statement is the visible assert):

uint v, x, y;
...

x
�
= v;

...

x
�
= 7*y;

assert(x tainted-by T);

≤t

uint v, x, y;
...

x
×
= v;

...

x
�
= 7*y;

assert(x tainted-by T);

Here, if y does not also depend previously on x, we can simply turn off the
first tainting of x, since it will later be overwritten.
Push Forward Instrumentation. Instrumentation points can set the taint
of a variable v to that of another variable v′. We observe that sometimes the
taint of variable v′ is only relevant because it is relevant for v. However, if
the taint instrumentation in question is in the same function we simply replace
the reference to the taint of v′ in the instrumentation of v by the concrete
taint instrumentation of v′. Then the tainting of v′ can be removed as in the
previous optimisation. This concretisation can be performed easily, without any
restrictions, for non-data-carrying labels. However, in the case of data-carrying
labels we need to also make sure that the label does not contain references to
variables that are modified in the flow between v′ and v.
For example:

taint par by T;
uint v, v';

v'
�
= /* an operation on par */;

v
�
= /* an operation on v' */;

assert(v tainted-by T);

≤t

uint v, v';

v'
×
= /* an operation on par */;

v
×
= /* an operation on v' */;

taint v by T;
assert(v tainted-by T);

If the left-hand side is the whole body of a function, or we know that the
parameter par and v′ are not relevant to any other conditional statement, then
simply removing their tainting instrumentation, and simply tainting v will be
an appropriate reduction.

These two optimisations can be performed on the smart contract until a
fixpoint is reached. We next consider the savings these give with a case study.
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Table 1. Results, with costs in gas and increases in percentage w.r.t. to original costs.

Costs Original Tainted Optimised

Gas Gas % Gas %
Deployment 1276798 2213484 +73% 1694698 +32%
recordGrapeProductionFarmer Call 131783 312792 +137% 176743 +34%
recordGrapeProductionLab Call 152570 299379 +96% 242388 +58%
updateGrapeProductionLab Call 106448 121014 +13% 115372 +8%
Average business flow 225814 445715 +97% 300747 +33%

4 Case Study

We consider a smart contract which can be used to record and authenticate
the provenance, quality, and use of grapes for the production of wine. Figure 4
illustrates a selection of the functions of this smart contract, along with taint
annotations in our language, in boldface. Note that for simplicity in this case
study a variable can only have one taint.

This contract allows a farmer to record a grape production on the smart con-
tract, which is given a certain unique identifier (recordGrapeProductionFarmer).
We also allow accredited labs to either register a grape production themselves,
or update the farmer record, which we do not show here since they are similar
to the recordGrapeProductionFarmer function. Sale of grapes to another person
is also recorded on the blockchain (recordSale). The owner of a certain grape
production can then record the bottling of wine produced from grapes they own
(RecordBottling), while official certification providers can give a certain certifi-
cation to the grapes, depending on the location they are produced in.

In this smart contract, we are interested in specifying that the right kind of
accredited lab was involved in determining the recording of a grape production
involved in making a wine, depending on whether the wine involves multiple
grape sources or just one (see the asserts over taints in recordDOK). It bears
to note that the benefit of taints here is that propagation of taints is done
automatically, while a manual ad hoc approach is open for errors.

In Fig. 5 we report the recordGrapeProductionFarmer function with the
encoding in Solidity described in Sect. 2.3. After the optimisations described
in Sect. 3.2, the result is shown in Fig. 6, a significant reduction.

We evaluated this smart contract to identify the gas costs when there are no
taints, to when the taint instrumentation is performed, and after it is optimised.
The results are shown in Table 1. We report the results for each individual func-
tion given expected input, and for the average gas cost given a set of randomly
generated expected (i.e., non-reverting) flows. One can see optimisation through
the presented static analyses reduces costs significantly, up to around two thirds
in the case of an average flow, validating the viability of the approach.
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Fig. 4. Extract from case study smart contract (the.
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Fig. 5. Encoding of taint propagation in recordGrapeProductionFarmer.

Fig. 6. recordGrapeProductionFarmer after optimisation of taint propagation.

5 Discussion

The taints we have added here are different from the usual taints considered in
taint analysis. Usually, something is considered as tainted or not tainted, while
here tainting can be with different labels, even sets of labels. This is a more
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powerful concept, since it allows to talk about all the contributing actors to a
value, rather that simply talk about whether something is a security risk or not
(without identifying what caused that security risk). That we integrate queries
about these taints into a language, allowing branching in the program due to
taints, is also novel to the best of our knowledge, since standard taint analysis
simply is concerned with preventing certain data from reaching certain sinks.

These queries allow the developer to make decisions based on whether they
trust the source of some data or not. For example in the case study the devel-
oper requires that information comes from a certain kind of lab when the wine
is of a certain kind. This can certainly be implemented in an ad hoc manner
without taints, but we believe that this kind of reasoning about trust at the
top-level can be very useful due to the immutability of smart contracts and their
public accessibility. A high-level approach gives certain guarantees that ad hoc
implementations do not give, while static analysis tackles issues of gas.

Moreover, allowing taint queries at the level of if-then-else constructs opens
up the possibility to modify branching at runtime depending on the trust level
one has towards sources of taints. This can be used not just to prevent untrust-
worthy data to have an effect on the smart contract, but also to keep track of
bad flows and perform actions that sanitise such data or to sanction their source.

6 Conclusions

A smart contract on a blockchain is open for interaction, with input coming
from different, possibly untrustworthy sources. Keeping track of the sources of
some data can be useful, for example when an event of interest happens we can
then query the source of the event and contributing smart contract state, and
make decisions based on that. In this paper, we have incorporated dynamic taint
analysis for Solidity smart contracts through an extension of the language with
a formal semantics, while we have described how this can be implemented in
Solidity. We have also introduced a way to perform static tainting, which we use
to prune away some of the instrumentation judged inconsequential for dynamic
tainting. Evaluation on a case study, validates the static analysis as potentially
eliminating a significant amount of overhead.

Future Work. In our abstract semantics we abstract taints by their correspond-
ing taint type expression. In the future we want to consider also adding some
information in the abstract taints to be able to relate them together, for example
adding information about the line of code where the taint is created. Moreover,
we do not do any analysis of variable values at the static level, however we
intend to use techniques and tooling from [5,6] to enable some abstraction of
these, which would allow more fine-grained static taint analysis.
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Abstract. Blockchains are modern distributed systems that provide
decentralized financial capabilities with trustable guarantees. Smart con-
tracts are programs written in specialized programming languages run-
ning on a blockchain and govern how tokens and cryptocurrency are sent
and received. Smart contracts can invoke other contracts during the exe-
cution of transactions initiated by external users.

Once deployed, smart contracts cannot be modified and their pit-
falls can cause malfunctions and losses, for example by attacks from
malicious users. Runtime verification is a very appealing technique to
improve the reliability of smart contracts. One approach consists of spec-
ifying undesired executions (never claims) and detecting violations of the
specification on the fly. This can be done by extending smart contracts
with additional instructions corresponding to monitor specified proper-
ties, resulting in an onchain monitoring approach.

In this paper, we study transaction monitoring that consists of detect-
ing violations of complete transaction executions and not of individual
operations within transactions. Our main contributions are to show that
transaction monitoring is not possible in most blockchains and propose
different execution mechanisms that would enable transaction monitor-
ing.

1 Introduction

Distributed ledgers (also known as blockchains) were first proposed by Nakamoto
in 2009 [16] in the implementation of Bitcoin, as a method to eliminate trustable
third parties in electronic payment systems. Modern blockchains incorporate
smart contracts [24,25], which are state-full programs stored in the blockchain
that describe the functionality of blockchain transactions, including the exchange
of cryptocurrency. Smart contracts allow us to describe sophisticated function-
ality enabling many applications in decentralized finances (DeFi), decentralized
governance, Web3, etc.
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Smart contracts are written in high-level programming languages for smart
contracts, like Solidity [2] and Ligo [4] which are then typically compiled into
low-level bytecode languages like EVM [25] or Michelson [1]. Even though smart
contracts are typically small compared to conventional software, writing smart
contracts has been proven to be notoriously difficult. Apart from conventional
software runtime errors (like underflow and overflow), smart contracts also suffer
from new attack patterns [19] or from attacks towards the blockchain infrastruc-
ture itself [20]. Smart contracts store and transfer money, and are openly exposed
to external users directly and through caller smart contracts. Once installed the
code of the contract is immutable and the effect of running a contract cannot be
reverted (the contract is the law).

There are two classic approaches to achieve software reliability, and there are
attempts to apply them to smart contracts:

– static techniques using automatic techniques like static analysis [23] or
model checking [18], or deductive software verification techniques [3,8,12,17],
theorem proving [5,7,21] or assisted formal construction of programs [22].

– dynamic verification [6,13,15] attempting to dynamically inspect the exe-
cution of a contract against a correctness specification.

In this paper, we follow a dynamic monitoring technique. Monitors are a defen-
sive mechanism where developers write properties that must hold during the
execution of the smart contracts. If a monitored property fails the whole trans-
action is aborted. Otherwise, the execution finishes normally as stipulated by
the code of the contract.

Most of the monitoring techniques inject the monitor into the smart con-
tract as additional instructions [6,13,15], which is called inline monitoring [14].
The property to be monitored for a method of a given contract A is typically
described as two parts: Abegin, that runs at the beginning of each call, and Aend,
which is checked at the end. This monitoring code can inspect the storage of con-
tract A and read and modify specific monitor variables. For example, monitors
can compare the balance at the beginning and end of the invocation. However,
monitors can only see the contents of A and cannot inspect or invoke other con-
tracts. We call these monitors operation monitors as they allow us to inspect a
single operation invocation. In this paper, we study a richer notion of monitoring
that can inspect information across the running transaction, illustrated by our
running example.

Running Example: Flash Loans. The aim of a flash loan contract is to allow other
contracts to borrow balance without any collateral, provided that the borrowed
money is repaid in the same transaction (perhaps with some interest) [9]. A
simple way to specify the correctness of a flash loan contract A is by the following
two informal properties:

FL-safety No transaction can decrease the balance of A

FL-progress A request must be granted unless FL-safety is violated
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Figure 1(a) shows a simple smart contract attempting to implement a flash
loan lender. Function lend checks that the lender contract has enough tokens to
provide the requested loan, saves the initial balance to later check that the loan
has been repaid completely, and transfers the amount requested to the borrower.
Upon return, lend checks that the loan has been paid back. Note that in this
smart contract every instruction except the transfer to the borrower is part of
the operation monitor. In particular, checking that the balance is enough and
saving its value is what we call Abegin while checking that the loan has been
repaid is Aend.

contract Lender {

function lend(address payable dest , uint amount) public {

require(amount <= this.balance);

uint initial_balance = this.balance;

dest.transfer(amount);

assert(this.balance >= initial_balance);

}

}

begin

end

(a) A flash loan implementation attempt

contract Client {

Lender l1, l2;

function borrowAndInvest () public {

l1.lend (100);l2.lend (200);

invest (300);

l1.transfer (100);l2.transfer (200);

}

}

(b) A flash loan client

contract MaliciousClient {

Lender l;

function borrowAndInvest () public {

l.lend (100);

invest (100);

}

}

(c) A malicious flash loan client

Fig. 1. Pseudocode for contracts Lender, Client and MaliciousClient.

Unfortunately, the lender smart contract in Fig. 1(a) does not fulfill property
FL-progress. Consider a client, for example Fig. 1(b), that borrows money from
different lenders, then invests the borrowed money to obtain a profit and finally
pays back to the lenders. In other words, the contract Client in Fig. 1(b) collects
all the money upfront before investing it and then pays back the lenders. The
contract Client will not successfully borrow from the lender in Fig. 1(a), be-
cause contract Lender expects to be paid back within the scope of method lend.
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However, the contract Client exercises correctly FL-safety and FL-progress,
and returns the borrowed tokens before the transaction finishes. The problem
is that contract Lender is too defensive and only allows repayments within the
control flow of function lend and not in arbitrary points within the enclosing
transaction. Alternatively, a lender contract could lend funds with the hope that
the client returns the loan before the end of the transaction, but then a malicious
contract, like in Fig. 1(c), would violate FL-safety easily. We cannot solve this
problem with operation monitors because both Abegin and Aend are executed
inside lend and it is not possible within the scope of lend to successfully predict
or guarantee whether the loan will be repaid within the transaction.

In this article, we propose to extend monitors with two additional functions:
Ainit, which executes before the first call to A in a given transaction; and Aterm,
which executes after the last call to A (equivalently, at the end of the transac-
tion). As for Abegin and Aend, Ainit and Aterm have access to the storage and can
fail but cannot be called from other contracts or emit operations. Both Abegin

and Aend can be injected into the smart contract code as additional instruc-
tions, and therefore, are executed at every invocation of A. On the contrary
Ainit and Aterm are special functions that are invoked (by the runtime system
in charge of executing the smart contracts) at the beginning and at the end of
every transaction in which A is called, respectively. We call these monitors trans-
action monitors since they can check properties of the whole transaction. With
transaction monitors, we implement a lender contract that satisfies FL-safety
and FL-progress by saving the balance at the beginning of a transaction in
init and comparing it with the final balance in term as shown in Fig. 2.

contract Lender {

function lend(address payable dest , uint amount) public {

require(amount <= this.balance);

dest.transfer(amount);

}

} with monitor {

uint initial_balance;

init { initial_balance = this.balance; }

term { assert(this.balance >= initial_balance ); }

}

Fig. 2. A correct flash loan implementation using transaction monitors

As for future work, we envision even more sophisticated monitors that guar-
antee properties that involve two or more contracts—like checking that the com-
bined balance of A and B does not decrease—or even that predicating about
all
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Global monitors future work
Multicontract monitors future work
Transaction monitors this paper
Operation Monitors [6,13,15]

Fig. 3. Monitors hierarchy

contracts participating in a trans-
action of the whole blockchain. We
refer to them as multicontract moni-
tors and global monitors, respectively,
but they are out of the scope of this
paper, where we focus on transaction
monitors. Figure 3 shows the monitor-
ing hierarchy.

In summary, the contributions of the paper are the following:

– The notion of transaction monitors and its formal definition.
– A proof that current blockchains cannot implement transaction monitors, and

a list of simple mechanisms that allow their implementation.
– An exhaustive study of how the proposed mechanisms interact with each other

and the basic building blocks to implement full-fledged transaction monitors.

The rest of the paper is organized as follows. Section 2 describes the model of
computation. Section 3 studies transaction monitors. Section 4 introduces new
execution mechanisms, and in Sect. 5, we study how these new mechanisms
implement transaction monitors. Finally, Sect. 6 concludes.

2 Model of Computation

We introduce now a general model of computation that captures the evolution
of smart contract blockchains.

An Informal Introduction. Blockchains are a public incremental record of the
executed transactions. Even though several transactions are packed in “blocks”—
which are totally ordered—, transactions within a block are also totally ordered.
Therefore, we can interpret blockchains as totally ordered sequences of transac-
tions.

Transactions are in turn composed of a sequence of operations where the
initial operation is an invocation from an external user. Each operation invokes
a destination contract (where contracts are identified by their unique address).
Operations also contain the name of the invoked method, arguments and balance
(in the cryptocurrency of the underlying blockchain), and an amount of gas1.
The execution of an operation follows the instructions of the program (the smart
contract) stored in the destination address.

Given the arguments and state of the blockchain, the code of every smart
contract is deterministic which makes the blockchain predictable and amenable
to validation. We model smart contracts as pure computable functions taking

1 The notion of gas is introduced to make all operations terminate because each indi-
vidual instruction consumes gas and once the initial operation is invoked no more
gas can be added to the transaction.
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their input arguments and the current local storage of the contract, and return-
ing (1) the changes to be performed in the local storage; (2) a list of further
operations to be executed. No effect takes place in their local storage until the
end of the operation. This abstraction does not impose any restriction since
every imperative program can be split into a collection of basic pure code blocks
separated by the instructions with effects.

The execution of a transaction consists of iteratively executing pending oper-
ations, computing their effects (including updating the pending operations) until
either (1) the queue of pending operations is empty, or (2) some operation fails
or the gas is exhausted. In the former case, the transaction commits and all
changes are made permanent. In the latter case, the transaction aborts and no
effect takes place (except that some gas is consumed).

Model of Computation. We now formally model the state of a blockchain
during the execution of the operations forming a transaction. We represent a
blockchain configuration as a pair (Σ,Δ) where:

–Blockchain state Σ is a partial map between addresses and the storage and
balance of smart contracts,

–Blockchain context Δ contains additional information about the blockchain,
such as block number, current time, amount of money sent in the transaction,
etc.

Blockchain contexts may vary since different blockchains carry different informa-
tion, but either implicitly or explicitly, every blockchain maintains a blockchain
state. The computation of a successful transaction begins with an external oper-
ation o from a configuration (Σ,Δ) and either aborts or finishes into a final
configuration (Σ′,Δ′).

We model a smart contract as a partial map A : Δ × IP × S × IN ⇀ (S × [O])
where IP is the set of all possible parameters of A, S the set of all possible
storage states, O the set of operations and [·] is a set operator representing lists
of elements of a given set. Smart contracts written in imperative languages with
effects can be modeled as sequences of pure blocks where effects happen at the
end in the standard way.

Operations. An operation is a record containing the following fields:

– dest the address to invoke;
– src the address initiating the operation;
– param parameters expected by the smart contract at address dest;
– money the amount of crypto-currency sent in the operation.

We use standard object notation to access each field, so o.dest is the destination
address, o.src is the source address, o.param the parameters and o.money the
amount transferred.
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Transactions. A transaction results from the execution of a sequence of opera-
tions starting from an external operation placed by an external user. If an oper-
ation fails the transaction fails and the blockchain state remains unchanged. A
successful operation o results in a new storage and a list of new operations ls.
The blockchain updates the storage of smart contract o.dest and balance of both
smart contracts o.dest and o.src generating a new blockchain configuration and
the list ls is added to the current pending queue of operations. Operations are
executed one at a time modifying the blockchain configuration until some opera-
tion fails or there is no more operations on the pending queue. In the second case,
the transaction is successful and the last blockchain configuration consolidates.

We assume there is an implicit partial map from addresses to smart contracts
G : Addr ⇀ SmartContract. Moreover, we assume map G does not change since
we assume that smart contracts cannot install new contracts.

Operation Execution. Let o be an operation and (Σ,Δ) a blockchain configura-
tion. The evaluation of o from (Σ,Δ) results in a new configuration and a list
of operations ls, which we denote (Σ,Δ) o−→ (Σ′,Δ′, ls) whenever:

1. The source smart contract has enough balance, Σ(o.src) ≥ o.money
2. The invocation to the smart contract is successful:

G(o.dest)(Δ, o.param, Σ(o.dst).st, Σ(o.dst).balance) = (st′, ls)

The new blockchain configuration state Σ′ is the result of: 1) adding o.money into
the balance of o.dest and subtracting it from o.src, and 2) updating the storage
as Σ′(o.dest).st = st′. Note that we leave the evolution of Δ unspecified as it is
system dependant. In Sect. 5, we implement different additional blockchain fea-
tures by inspecting (and possibly modifying) the blockchain context. For failing

evaluation of operations, we use (Σ,Δ)
o−×.

Execution Order. The execution can proceed in different ways. We consider two
execution orders: new operations are added to the beginning of the pending
queue (a DFS strategy) and new operations added to the end of the pending
queue (a BFS strategy). This results in the following transition rules:

(Σ, Δ)
o−×

(Σ, Δ, o :: os) ��a

(Σ, Δ)
o−→ (Σ′, Δ′, ls)

(Σ, Δ, o :: os) �dfs (Σ′, Δ′, ls ++ os)

(Σ, Δ)
o−→ (Σ′, Δ′, ls)

(Σ, Δ, o :: os) �bfs (Σ′, Δ′, os ++ ls)

The execution starting from an external operation o is a sequence of steps (�a)—
with a fixed to be either dfs or bfs—until the pending operation list is empty
or the execution of the next operation fails. Beginning from a blockchain config-
uration (Σ,Δ) and an initial operation o, a transaction execution is a sequence
of operation executions: (Σ,Δ, [o]) �a (Σ1,Δ1, os1) �a . . . �a (Σn,Δn, []) or
that (Σ,Δ, [o]) �a (Σ1,Δ1, os1) �a . . . �a (Σn,Δn, osn) ��a
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A transaction can fail either because of gas exhaustion or an internal oper-
ation has failed, and in that case, we have a sequence of �a leading to a final
step marked as ��a following the failing operation.

Finally, after every successful execution, the blockchain takes the last config-
uration and upgrades its global system.

The model of computation described in this section does not follow exactly a
call-and-return model like the Ethereum blockchain does [25]. However, it is easy
to see that it can be simulated in our model by having each contract explicitly
keeping its stack of returned values.

3 Transaction Monitors

We now introduce transaction monitors and show that it is not possible to
implement them in current blockchains. We present different extensions that
allow us to implement transaction monitors.

3.1 Transaction Monitors

Transaction monitors allow us to reason about properties of transactions. Each
smart contract A is equipped with a monitor storage and four especial methods
Ainit, Abegin, Aend and Aterm. These new methods cannot emit operations or
modify smart contract storage, however, they have their own monitor storage.
We assume that these new methods are interpreted by the blockchain and if one
of these methods fail the whole transaction fails. Otherwise, the effect in the
blockchain is the same as if it was executed without monitors. The functions
Ainit and Aterm can read the storage and balance of the smart contract and
read and write the monitor storage. Function Ainit is executed before the first
time A is invoked in the transaction and function Aterm is invoked after the last
interaction to A finished in the transaction, and does not modify the monitor
storage. Functions Abegin and Aend are executed at the beginning and at the end
of each operation that is executed in A, as in operation monitors [13] (note that
Abegin and Aend can be easily implemented by inlining their code around the
methods of A). The method Abegin takes the same arguments as any A operation
plus the monitor storage, while function Aend has access to the result of the
operation (list of the operation emitted and the new storage) plus the monitor
storage. We call the resulting smart contracts monitored smart contracts.

Operation Monitors. We first extend the model of computation to include opera-
tion monitors. A monitored operation execution is a normal operation execution
where the corresponding operation monitor is executed before and after the
operation is executed.

We define ( o−−−→
mon

) modifying ( o−→) as follows. Before executing o, (1) proce-

dure G(o.dest).begin is invoked, then (2) operation o is executed, and (3) finally
G(o.dest).end runs. That is, operation monitors are simply restricted functions



170 M. Capretto et al.

executed before and after each operation. We can then specialize �a with oper-
ation monitors, that is, use relation ( o−−−→

mon
) instead of relation ( o−→) to obtain

transaction executions that use operation monitors.
Procedures begin and end can only modify the private monitor storage and

fail, and thus, they cannot interfere in the normal execution of smart contracts
(except by failing more often).

Transaction Monitors. We redefine transaction monitors execution as a restric-
tion of the transaction execution relation so transactions invoke init and term
when required. In this case, init can change the monitor storage, and thus, can
modify the blockchain state. We define a new relation �a the smallest relation
defined by the following inference rules:

Ainit(Σ(A)) = Σ′

(Σ, Δ, os)�a(Σ′, Δ, os)

Aterm(Σ(A))

(Σ, Δ, [])�a(Σ, Δ, [])

(Σ, Δ, o :: os)�a(Σ′, Δ′, os′)
(Σ, Δ, o :: os)�a(Σ′, Δ′, os′)

Note that we sacrifice a deterministic operational semantics in favor of a
clearer set of rules. As before, we use (−×) to represent failing transactions.

(Σ,Δ)
o−×

(Σ,Δ, os)−×
Ainit(Σ(A))−×
(Σ,Δ, os)−×

Aterm(Σ(A))−×
(Σ,Δ, [])−×

Finally, we define a monitored trace of a transaction same as before, given a
blockchain configuration (Σ,Δ) and an external operation o:

(Σ,Δ, [o])�a(Σ1,Δ1, os1)�a(Σ2,Δ2, os2)�a . . . �a(Σn,Δn, [])

To remove the non-determinism we add a new relation that restricts the
legal runs. This relation knows the set of visited addresses (smart contracts),
and invokes an initialization method, and at the very end of the evaluation of a
transaction uses the same set to invoke their corresponding term method.

(Σ, Δ, os)�o
a(Σ

′, Δ′, os′) o.dest ∈ E

E � (Σ, Δ, o :: os) ⇒a E � (Σ′, Δ′, os′)

(Σ′′, Δ, os) �o
a (Σ′, Δ′, os′) o.dest /∈ E (Σ, Δ, os)�Ainit

a (Σ′′, Δ, os)

E � (Σ, Δ, o :: os) ⇒a E ∪ {o.dest} � (Σ′, Δ′, os′)

(Σ, Δ, [])�Aterm
a (Σ, Δ, os) e ∈ E

E � (Σ, Δ, []) ⇒a E \ {e} � (Σ, Δ, [])

As result, we only accept traces generated by relation (⇒a), beginning with a
blockchain configuration (Σ,Δ) and an external operation o resulting in failure
or a new blockchain configuration (Σ′,Δ′): ∅ � (Σ,Δ, [o]) ⇒a . . . ⇒a ∅ �
(Σ′,Δ′, []).
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3.2 Transaction Monitors in BFS/DFS

Unfortunately, transaction monitors cannot be implemented in blockchains that
follow DFS or BFS evaluation strategies. We show now a counter-example. Con-
sider a transaction monitor for A that fails when smart contract A is called
exactly once in a transaction. The monitor storage contains a natural number
to keep track of how many times A has been invoked in the current transaction.
Function init sets this counter to 0, begin adds one to the counter, end does
nothing, and term fails if the monitor storage is exactly one.

Now let (Σ,Δ) be a blockchain configuration, and let A and B be two smart
contracts, where A is being monitored for the “only once” property. Consider
the following two executions of external operations from (Σ,Δ):

– o1 invokes B.f which then invokes oA1 in A,
– o2 invokes B.g which then invokes oA1 and oA2 in A.

The monitor for “only once” must reject the transaction beginning with o1, but
accept the transaction beginning with o2.

Consider a DFS strategy. Starting from o1, the execution trace is

(Σ,Δ, [o1]) �dfs (Σ1,Δ2, [oA1]) �dfs (Σ2,Δ2, as1)

with corresponding sequence of pending operations [o1], [oA1], as1. Starting from
o2 the sequence of pending operations is [o2], [oA1; oA2], as1 ++ [oA2],. . . ,[oA2],
as2. It is not possible to distinguish between the traces generated by o1 and o2,
as anything that operation oA1 and its descendants as1 do will happen before
the execution of oA2 in the second transaction. In other words, oA1 and all the
operations that can be generated by it or its descendants cannot know that some
other invocation to A is pending. Therefore, A cannot fail during the execution
of oA1 or its descendants, as this implies that also a failure in the execution of
o2. At the same time oA1 is the only chance in A to make the first transaction
fail because there is no other operation in A. Consequently, the two runs are
identical up to the end of oA1 but one must fail and the other must not fail.

A BFS scheduler can distinguish between the execution of operations o1
and o2 by using a recurring operation. Basically, a recurring operation is just a
regular function that either terminates or reinserts itself in the pending queue
of operations. Since new operations are added to the end of the pending queue,
A can inject a recurring operation that check the state of A and conditionally, if
the test that would make term fail is true, reinjects itself again. This recurring
operation will be invoked at the end of all other functions in A. If the condition
that makes term accept is never met, the transaction fails because the recurring
operation injects itself ad-infinitum, exhausting gas. In Sect. 5.1 we use recurring
operations thoroughly. However, a simple variation of this example that includes
comparing with a third transaction where A is invoked three times shows that
BFS cannot implement “only once” either (as BFS cannot distinguish between
the third invocation to A and a first invocation to A in a transaction following
the one originated by o2). For a detailed proof see [10].
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4 Execution Mechanisms

We propose new mechanisms and study if they help to implement transaction
monitors. However, adding features to blockchains is potentially dangerous since
it can introduce unwanted behaviour [19]. We focus on simple mechanisms that
are easy to implement and are backwards compatible.

Since Abegin and Aend can already be implemented using inlining, we focus
on mechanisms that allow executions at the beginning and end of transactions,
which can aid to implement Ainit and Aterm. It is worth noting that in most mod-
ern blockchain smart contracts are normal functions that also manage tokens.
That is, smart contracts can modify their local memory (storage), invoke another
functions, fail and also transfer tokens. However, smart contracts are oblivious
to the notion of transactions: they cannot tell if a new transaction has started,
if two invocations belong to the same transaction or not, or when a transac-
tion has finished. The mechanisms that we introduce in this Section will help to
distinguish these situations.

We present two kinds of mechanisms, ones that introduce a new instruction,
and others that add a new special method to smart contracts. In the next section,
we compare their relative power and if they can implement transaction monitors.

Mechanisms that Add New Instructions. The first four mechanisms add
new instructions and can be easily implemented by bakers/miners collecting the
information required in the context Δ.

– First. We consider a new instruction, first, which returns true if the current
operation is the first invocation to the smart contract in the current transac-
tion. The context Δ can be extended to contain the set of contracts F that
have already run an operation in the current transaction, which allows us
to implement first as A �∈ F , where A is the smart contract that executes
first.

– Count. We introduce now a new instruction, count that returns how many
invocations have been performed to methods of the contract in the current
transaction. Again, the context Δ can easily count how many times each
contract has been invoked.

– Fail/NoFail. This mechanism equips each contract with a new flag fail that
can be assigned during the execution of the contract (and that is false by
default). The semantics is that at the end of the transaction, the whole trans-
action would fail if some contract has the fail bit to true. For example, the
failing bit allows us to implement flash loans as follows. A lender smart con-
tract can set fail to true when is lending money and change it to false only
when the money is returned.

– Queue info. We add a new operation, queue, indicating if there is no more
interaction between smart contracts. Or equivalently, if the only operations
permitted in the pending queue are recurrent operations (which can only
inject operations to the same contract). These operations must also be spe-
cially qualified in the contract, and the runtime system must make sure that
they only generate operations to the same contract.
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Mechanisms that Add New Methods or Storage. The following mecha-
nisms modify the definition of smart contracts either by adding new methods
that are executed at particular moments in a transaction or by adding special
storage/memory.

– Transaction Memory. Smart contracts are equipped with a special volatile
memory segment that exists only during the execution of a transaction and
which is created and initialized at the beginning of the transaction. We add a
new segment in the smart contract indicating the initial values to be assigned.
In concrete, each contract A indicates a new storage type for the transaction
memory and a procedure that initializes it (which can read but not change
the conventional storage). We use trmem to refer to this mechanism.

– Storage Hookup, Bounded and Unbounded. The idea is to equip smart con-
tracts with a new method that updates the storage after the last local oper-
ations in the transaction. These methods can only modify the storage but
not invoke other methods. A bounded version of this mechanism is restricted
to terminating non-failing functions (for example, by restricting the class of
programs). In addition, the unbounded version is arbitrary code that can fail.
We use bstore and ustore to refer to these mechanisms.

For space purposes correct flash loan implementations using these mechanisms
are not included here but can be found in [10].

5 Implementing Transaction Monitors

We say a mechanism M implements another mechanism N whenever every smart
contract executing in a blockchain with N can be simulated by a smart contract
in a blockchain with M . Here, simulation means that all observable effect (in
terms of failure behavior, storage changes and token transfers) are identical. We
say that two mechanisms are equivalent if and only if they can implement each
other. In this paper we disregard gas consumption so we implicitly assume that
one can always assign sufficient gas to a contract.

Theorem 1. The following are equivalent: trmem, first, count, and bstore.

If contracts can know when their first invocation in the transaction occurs,
they can set the storage in different ways simulating count and trmem. Also,
count and trmem can simulate first, by checking if the count is 0 and initializing
a volatile bit to true. More interesting is that first can simulate bounded
storage hookup by applying the effect on the storage of bounded storage hookup
at the beginning of the next transaction. Detailed proofs are included in the
longer version of this paper [10].

Lemma 1. Mechanism ustore implements bstore and fail.

Proof. Mechanism ustore implements bstore trivially as it is just less restric-
tive. For fail we add in the storage of A a new field, fl to represent the failing
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bit which is initialized to false when the contract is installed and updated to
simulate the fail instruction. At the end of the transaction, the ustore hookup
checks if fl is true and fail. Otherwise, it does nothing. 	


It can be proven that the other direction is not always possible. Fig 4 shows
graphically the previous results where an arrow indicates that one mechanism
implements another. In this diagram, an absence of an arrow does not necessarily
imply impossibility but perhaps that the result depends on the execution order.
For example, in BFS blockchains first can implement ustore, but this is impossible
with DFS.

bstore

ustore

Transaction
Memory

count

first

fail

Fig. 4. Relation between mechanisms for any scheduler. An arrow from mechanism M
to mechanism N means that M implements N.

Since first, count, bstore and trmem are all equivalent, from now on we
only refer to mechanism first. It is easy to see that this mechanism is enough
to implement init.

To implement term, we can either implement fail or ustore, where fail is
simpler, and ustore is more powerful but requires a bigger change to blockchains.

Theorem 2. Mechanisms first + fail implement transaction monitors.

Proof. Let B be a blockchain that implements first and fail. Given a moni-
tored smart contract A, we want to implement A in blockchain B. We define a
new smart contract A′ extending its storage to also contains A’s monitor stor-
age. Then, we equip A′ with a new method f ′ for every method f in A, such
that, f ′ first checks first and executes Ainit if needed. Then, before exiting,
f ′ executes Aterm with the current state but instead of failing explicitly f ′ set
the failing bit. Function Ainit is executed exactly once and Aterm may be exe-
cuted multiple times, but it does not modify the contract storage and it does
not generate operations. The last execution of Aterm in A′ will simulate Aterm

in A. If the semantics of the blockchain were such that the balance of pend-
ing outgoing operation would subtract balance from A when it executes, then
these calculations can be made in the monitor storage when the operations are
generated. 	
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ustore Transaction Monitorsfirst + fail

Fig. 5. Relation between mechanisms and transaction monitor for any scheduler.

Since ustore implements first and fail, it follows that ustore implements
transaction monitors.

Corollary 1. ustore implements transaction monitors but transaction moni-
tors cannot implement ustore.

Transaction monitors can only make contracts fail but not change the storage.
Our results are summarized in Fig. 5.

5.1 BFS Blockchains

We now study more in detail the mechanism for BFS based blockchains. The
first result is that unless equipped with further mechanisms, BFS blockchains
cannot implement transaction monitors. The essence of the proof is to create
two transactions on a monitored contract A (like in “only once”) in which corre-
sponding invocations to the same contract A receive identical information, and
one must fail and the other commit.

Theorem 3. A BFS blockchain does not implement transaction monitors.

A BFS blockchain guarantees that new operations are executed after all
pending operations, which enables the implementation of fail using recurring
operations. A recurring operation is a private function that can read and write
the storage and that either terminates or reinjects itself again to the pending
queue. Since every time the operation is executed the blockchain consumes gas,
and eventually, failure follows from an attempt to inject itself ad-infinitum.

Lemma 2. Recurring operations in BFS blockchain allow to implement fail.

Since transaction monitors cannot be implemented within a BFS blockchain
(see [10]), we conclude that fail does not implement transaction monitors in
BFS blockchains. The missing element is first which allows to implement
ustore. And, since ustore implements transaction monitors (Corollary 1),
first can also implement transaction monitors.

Lemma 3. Mechanism first implements ustore in BFS blockchains.

Proof. Assume a BFS blockchain implementing first. Let A be a smart con-
tract. We modify A to contain a second copy S′ of its storage. Upon the first
call of A, we update the current storage using the values in S′. We add a new
private method hookup in A that mimics the code of ustore but (1) it applies
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the changes in S′, and (2) instead of failing (if ustore fails) it calls itself as a
recurring operation. Finally, we modify A so that function hookup is invoked at
the end of each method in A. In effect, hookup is preventively evaluating ustore
on the side memory S′, and simulating the failure as a recurring operation (when
ustore fails). Therefore, if the operation is the last one on the contract and it
does not fail, then S′ contains the correct storage, which will then be copied at
the beginning of the next transaction. 	

In the previous proof, we split mechanism ustore into two parts: one in charge of
updating the storage, the other in charge of failing. If we also add queue, we can
implement ustore without failing by gas exhaustion because now the hookup
executed recurrently can know if there are only recurrent operations and then
execute the ustore code (including the failure).

Lemma 4. Mechanism queue implements ustore in BFS blockchains.

In a BFS blockchain, ustore implements transaction monitors (Corollary 1),
and thus, by the previous lemma, queue also implements transaction monitors.
Next, we will show that queue cannot be implemented with ustore when a BFS
strategy is used. Intuitively, mechanism queue adds a way for smart contracts to
know the state of the blockchain, i.e. if there is still interaction between smart
contracts, and thus, smart contracts can take different actions based on the state
of the blockchain, while mechanism ustore adds a way to execute a procedure
at the end of transactions, but smart contracts are oblivious about interactions
between smart contracts. Since ustore implements all other mechanisms, we
have that no other mechanism can implement queue.

Lemma 5. In BFS blockchains ustore cannot implement queue.

The main idea is to create two executions that are identical unless one can
inspect the pending operation queue, and in which one operation must fail if
queue returns that the queue of pending operations is empty. The complete
proof is in [10]. Figure 6 summarizes the relations between mechanisms and
transaction monitor in BFS blockchains.

5.2 DFS Blockchains

We now study DFS blockchains, that is, when the resulting list of operations
from smart contracts execution are appended at the beginning of the list. This
is the most conventional execution order in most blockchains, like Ethereum. We
now prove several impossibility results.

Mechanisms ustore and first plus fail implement transaction monitors
(Corollary 1 and Thoerem 2). In a DFS blockchain, those are the only two
ways using our mechanisms to implement transaction monitors. We show that
transaction monitors cannot be implemented by combining queue with either
first or fail, and as a consequence none of these mechanisms on their own
can implement transaction monitors.
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∞

Transaction Monitors

BFS + failBFS + ustore

BFS + queue BFSBFS + first

∞

Fig. 6. Relation between mechanisms and transaction monitor in BFS blockchains. A
black arrow from mechanism M to mechanism N means that M can implement N . The
∞ symbol represents the use of an infinite recursion to provoke a failure. A red arrow
with a cross from mechanism M to mechanism N means that M cannot implement N .
(Color figure online)

Lemma 6. A DFS blockchain implementing queue and first does not imple-
ment transaction monitors.

Proof. Let B be a DFS blockchain and A a smart contract installed in B. Con-
sider the “only once” monitor that fails if and only if the smart contract A is
called exactly once. We show that this monitor cannot be implemented in DFS
even with first and queue.

Let B,C be two other smart contracts. We analyze the pending queue of
execution of two possible external operations originated by B:

1. o1 where B calls A once and then C
2. o2 where B calls A twice and then C

We assume that there are no additional invocations to A aside from the described
above. When we execute both operations in a (Σ,Δ) blockchain system, we have
the following two traces:

• t1 : (Σ,Δ, [o1]) �dfs (Σ′,Δ′, [a1, c1]) . . .
• t2 : (Σ,Δ, [o2]) �dfs (Σ′,Δ′, [a1, a2, c1]) . . .

Note that the presence of operation c1 in the pending execution queue is forcing
mechanism queue to return false. Since the occurrence of operation a1 in both
cases execute in the same configuration, the behavior must be the same. The
transaction executing o1 must fail because A is called only once, but this will
make the second transaction fail as well. 	

We can conclude that neither queue nor first alone would implement transac-
tion monitors.

Lemma 7. Under DFS queue and fail cannot implement transaction moni-
tors.
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The main difference between these mechanisms and transaction monitors
is that the latter can execute functions without a contract being invoked at
particular moments in the execution of transactions. Take for example procedure
init, neither queue nor fail can simulate init, as there is no way for these
mechanisms to distinguish the first execution of a smart contract in a given
transaction.

Combining fail with first one can implement transaction monitors in any
execution order, including DFS (Theorem 2), but fail is not enough to imple-
ment transaction monitors in DFS. Therefore, we conclude that DFS blockchains
do not implement first. Moreover, putting all previous lemmas together, we
conclude that a DFS blockchains cannot implement any of the mechanisms listed
in Sect. 4 directly.

Corollary 2. DFS blockchains cannot implement first, fail, ustore or
queue.

All proofs are in [10].

6 Conclusion and Future Work

We have studied transaction monitors for smart contracts. Transaction monitors
are a defense mechanism enabling smart contracts to explicitly state wanted
or unwanted behaviour at the transactional level. This kind of properties are
motivated by contracts like flash loans, which are not implementable in their full
generality in current blockchains. We propose a solution based on adding new
mechanisms to the blockchain. Transaction monitors can be incorporated directly
into contracts or simulated if some of these mechanisms are implemented. This
could be preferable since some of these mechanisms are very simple and backward
compatible, while others extend the functionality of smart contracts. We have
studied how some mechanisms simulate each other, both for any execution order,
and specifically for BFS and DFS blockchains. The conclusion is that the simplest
mechanism that allows us to implement transaction monitors is the combination
of first and fail.

Nevertheless, the main contribution of this paper is purely theoretical. Future
work includes implementing transaction monitors and practically interesting fea-
tures from Sect. 4 in a real blockchain and implement illustrative transaction
monitors.

For simplicity, we have neglected a specific analysis of gas consumption,
except for recurrent operations that purposefully fail by exhausting gas. Even
though transaction monitors will consume additional gas which can influence
the failure of the transaction (as with operation monitors), we claim that for all
our development there is an amount of gas that can be calculated which will not
make accepting transactions fail. However, we leave a detailed study for future
work.

Other avenues of future work include the study of new features, particularly
views that allows contracts to inspect the state of other contracts. We are also
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performing a thorough study of how exposing new mechanisms to contracts—
that can use them for implementing functionality—can break (or not) imple-
mentations of monitors that are correct without adding the mechanisms. Finally,
since proofs in this paper are “pencil and paper” and the interplay of different
mechanisms can be counter-intuitive, we plan to formalize all proofs here in an
existing smart-contract formal “playgound” (libraries in theorem provers that
enable mechanical proofs), e.g. [11].
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Abstract. Runtime Verification is a lightweight verification approach
that aims at checking that a run of a system under observation adheres
to a formal specification. A classical approach is to synthesize a monitor
from an LTL property. Usually, such a monitor receives the trace of the
system under observation incrementally and checks the property with
respect to the first position of any trace that extends the received prefix.
This comes with the disadvantage that once the monitor detects a vio-
lation or satisfaction of the verdict it cannot recover and the erroneous
position in the trace is not explicitly disclosed. An alternative monitor-
ing problem, proposed for example for Past LTL evaluation, is to evalu-
ate the LTL property repeatedly at each position in the received trace,
which enables recovering and gives more information when the property
is breached. In this paper we study this concept of recurrent monitoring
in detail, particularly we investigate how the notion of anticipation (yield-
ing future verdicts when they are inevitable) can be extended to recurrent
monitoring. Furthermore, we show how two fundamental approaches in
Runtime Verification can be applied to recurrent monitoring, namely
Uncertainty—which deals with the handling of inaccurate or unavailable
information in the input trace—and Assumptions, i.e. the inclusion of
additional knowledge about system invariants in the monitoring process.

1 Introduction

Runtime verification (RV) is a lightweight dynamic verification technique that
focuses on analyzing an actual execution of a system to check correctness prop-
erties, which has been studied both in theory and applications [1,16]. A common
specification language for RV is Linear-time Temporal Logic (LTL) [20] which
was originally introduced for infinite runs. However, in RV one necessarily deals
with the finite executions, and, as such, adaptions to the original semantics have
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been considered. A variety of those have been proposed in the literature includ-
ing infinite extensions of the finite prefix seen so far [2], limiting the logic to use
only the next-operator [14], or finite version of LTL [18], strong and weak ver-
sions of LTL [8] or the so-called mission time LTL [21]. However these monitoring
approaches all attempt to answer the initial word problem (whether the trace
at the initial position satisfies the property) following different maxims. While
a two valued semantics on finite words is adequate for completed, terminated
executions, ongoing executions may require semantics with multiple verdicts in
order to support both the current view and potential future changes when the
execution is continuing. Then, for example, impartiality requires a logic to not
change the verdict once the verdict true or false is declared, while different
assessments of the current observation may be changed once more information
is received. Anticipation takes potential look-aheads into account to sharpen the
current verdict. A comprehensive comparison of such approaches is given in [3].

The seminal work by Havelund and Rosu [11] considers a different approach
of monitoring. Starting from a past fragment of LTL, their monitors produce
a fresh verdict about whether the property holds at the current position of the
existing trace, thus recurrently answering the word problem with potentially dif-
ferent outcomes. We call this variant the recurrent word problem. While initial
approaches try to return the answer for the first position of the run, Havelund’s
and Rosu’s computes the verdict for the current position of the trace. As the cur-
rent position is changing with every new observation, their approach implicitly
restarts monitoring with every new observation. As such, while the semantics
is two valued and does not change the verdict of the position in question—and
can thus be considered impartial—the verdicts may change from true to false,
for example, as the point of interest varies during monitoring. In this paper, we
unify these two approaches (recurrent and initial monitoring), separating the
monitoring time at which the questions are answered from the time at which the
verdict is referring to.

In general, the recurrent word problem for future temporal logic cannot be
solved with an amount of memory that is independent of the length of the trace.
Consequently, most approaches with future operators are restricted to the initial
word problem. Approaches to monitoring based on stream runtime verification
(SRV), see for example Lola [7] produce one output stream value at each posi-
tion. This output value can encode the outcome of an initial word problem or
of a recurrent word problem. The common use of SRV is to encode recurrent
word monitoring problems for past (or at least bounded future) specifications
because the monitor is guaranteed to run with constant memory, independently
of the trace length. Modern SRV systems (both synchronous and asynchronous)
including RTLola [4], Lola2.0 [9], CoPilot [19], TeSSLa [6] and Striver [10] follow
this approach.

In this paper we first generalize recurrent monitoring beyond Past LTL.
For example, extending Past LTL with bounded future suggests that different
instants in the trace (not necessarily the current instant) could be the point of
interest for a given verdict. Anticipation has been solved for LTL3 (see [2]) so it
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is natural to ask whether recurrent monitoring can also be enriched with look-
aheads to improve the current verdict by producing it ahead of time. We show
that recurrent monitoring can indeed be extended to produce an anticipation of
the number of instants before the closest violation or satisfaction, which maybe
very useful to take preventive actions.

Also in the context of initial monitoring for LTL, monitors are capable to
improve the verdict using partial knowledge of the underlying system [15] or,
more generally, assumptions [5,12]. A second contribution of this paper is to
improve recurrent monitoring with assumptions. Finally, we also consider recur-
rent monitoring in the presence of uncertainties, meaning, that some of the
input values are (partially) unknown. We show a solution to recurrent monitor-
ing that provides anticipation, tolerates uncertainties and is capable of exploiting
assumptions.

2 Preliminaries

We use Z for the set of integers, N,N+ for the set of natural numbers with and
without 0 and N

∞ = N ∪ {∞}.
In this paper we deal with LTL extended with past time operators. The

syntax of LTL with past (Full LTL) is

ϕ ::= tt | p | (ϕ) | ¬ϕ | ϕ ∧ ϕ | ϕ | ϕ U ϕ | ϕ | ϕ S ϕ

where p ranges over a set of atomic propositions AP. An LTL formula is a
propositional logic formula over AP extended by the operators ϕ (next) which
checks that ϕ holds in the next state and ϕ1 U ϕ2 (until) that requires ϕ2 to
hold at some state in the future and that in all states up to that state ϕ1 holds.
Additionally there are the past time operators ϕ (previously) which checks
that ϕ did hold in the previous state and ϕ1 S ϕ2 (since) which enforces that
ϕ2 did hold at some point in the past and ϕ1 held at every state since then. In
order to keep following automaton constructions and proofs compact we defined
only a minimal fragment of LTL. Other common LTL and Past LTL operators

(globally), (finally), R (release), (globally in the past), (once in the
past) and Sw (weak since) can be expressed by the operators included above
(see [17]).

Given an infinite word w ∈ Σω, where the alphabet is Σ = 2AP, and given
an atomic proposition a ∈ AP we use w(t) to reference the letter of w at position
t. We write p |= w(t) whenever p ∈ w(t). Given a finite word s ∈ Σ∗ and a finite
or an infinite word w ∈ Σ∗ ∪ Σω we use sw for the concatenation of s followed
by w. s is a prefix of w, denoted by s � w iff w = sw′ for some w′ ∈ Σ∗ ∪ Σω.
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A pointed word (w, t) is a pair consisting of a word w and a position t ∈ N
+.

We define the semantics of LTL associating pointed words to formulas as follows:

(w, t) |= tt
(w, t) |= p iff p |= w(t)
(w, t) |= ¬ϕ iff (w, t) �|= ϕ
(w, t) |= ϕ1 ∧ ϕ2 iff (w, t) |= ϕ1 and (w, t) |= ϕ2

(w, t) |= ϕ iff (w, t + 1) |= ϕ
(w, t) |= ϕ1 U ϕ2 iff for some t′ ≥ t.(w, t′) |= ϕ2 and

for all t ≤ t′′ < t′.(w, t′′) |= ϕ1

(w, t) |= ϕ iff (t > 1 and (w, t − 1) |= ϕ) or
(t = 1 and (w, 1) |= ϕ)

(w, t) |= ϕ1 S ϕ2 iff for some 1 ≤ t′ ≤ t.(w, t′) |= ϕ2 and
for all t′ < t′′ ≤ t. (w, t′′) |= ϕ1

Besides Full LTL we will investigate the following fragments of Full LTL:

– Future LTL is Full LTL restricted to the operators ¬,∧, ,U .
– Past LTL is Full LTL restricted to the operators ¬,∧, ,S.
– Past LTL with Bounded Future, which is Past LTL with additionally the

operator .

2.1 Well-Known Monitor Constructions

We revise the well-known monitor constructions for Future LTL, Past LTL and
Past LTL with Bounded Future.

Future LTL. The standard monitor construction for LTL is described in [2]
and it is called the LTL3 construction. This construction aims at deciding the
question whether (w, 1) |= ϕ. Therefore it iteratively receives w ∈ Σω, letter
by letter, and calculates the verdicts 
 (meaning (w, 1) |= ϕ), ⊥ (meaning
(w, 1) �|= ϕ) or ? (meaning a proper answer cannot be given for the prefix received
up to now). Formally the output of the monitor after consumption of a finite
prefix s � w is

– 
 iff ∀w′ ∈ Σω.(sw′, 1) |= ϕ
– ⊥ iff ∀w′ ∈ Σω.(sw′, 1) �|= ϕ
– ? otherwise

In other words the verdict domain B3 = {
,⊥, ?} encodes the set of possible
outcomes of a monitoring question which are still possible after having pro-
cessed prefix s of w: 
 = {tt},⊥ = {ff}, ? = {tt,ff}. We will use these symbols
with these meanings also for the further monitoring approaches throughout this
paper. The LTL3 construction works as follows. First, the formula ϕ and its
negation ¬ϕ are transformed into Alternating Büchi Automata by the standard
LTL translation [13], which are then further transformed to Nondeterministic
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Fig. 1. Monitor for ϕ = p U q with the LTL3 construction [2]. Up left: NBA of ϕ, Up
right: NBA of ¬ϕ, bottom: Monitor generated from the product automaton. Empty
states of the NBAs are marked gray. States of the monitor are marked according to
their outputs: Orange for ?; green for �, red for ⊥. (Color figure online)

Büchi Automata (NBA). The monitor generation preprocesses each NBA deter-
mining which states are empty, (i.e. those states from which it is not possible
to access accepting states infinitely often) which are removed from the automa-
ton, resulting in an incomplete NFA, which is then determinized. Finally, the
monitor is constructed as the product monitor of the resulting automata for ϕ
and ¬ϕ. In those state pairs where the state of the negated formula is empty
the monitor casts the verdict 
 as the formula cannot be breached anymore for
the received prefix. In those pairs where the state of the non-negated monitor is
empty ⊥ is cast, as the formula cannot be satisfied anymore. Otherwise, when
both states are non-empty ? is printed. An example of the monitor construction
can be found in Fig. 1.

These monitors are called impartial because the monitor does not output a
final verdict (
 or ⊥) as long as the corresponding LTL formula is not satisfied
or violated for all extensions of the observed word. These monitors are also
anticipatory because the monitor yields the final verdict at the first moment at
which all extensions of the consumed prefix satisfy the verdict.

Past LTL. The standard monitor construction for Past LTL [11] also receives
the word letter by letter but evaluates (w, t) |= ϕ at every step t, printing the



186 H. Kallwies et al.

Fig. 2. Monitor for p S ¬p. The states symbolize the current valuations of the sub-
formulas (p, ¬p, ¬p, pS ¬p)(1= true,0 = false). States where the formula is satisfied
for the current position are marked gray.

outcome. In [11] the monitor is described as an imperative program that uses an
array as central data structure which stores the current value (true or false) for
every sub-formula of the given Past LTL formula ϕ. The program then receives
the input word letter by letter and calculates bottom-up the new value of each
sub-expression at the new instant, ultimately producing the verdict for the root
formula. The size of the mentioned array data structure is the number of sub-
formulas of a Past LTL formula and hence finite, so the imperative monitor can
directly be seen as Moore machine. The state of the Moore machine is given by
the current value of all sub-formulas.

Consider the Past LTL formula pS ¬p over AP = {p, q}. The state is given
by a 4-tuple containing the current evaluation of the sub formulas (p,¬p, ¬p, pS

¬p). The value of the first two entries is dependent on the current input letter.
The value of the third entry is the last value of the second entry and the value
of the last entry is true iff it was true before and the first entry is true or if the
third entry is true. The resulting automaton is depicted in Fig. 2.

Past LTL with Bounded Future. Note that introducing a next operator
may make the evaluation of ϕ at a certain timestamp dependent on the input at
a later position. We can statically determine an upper bound ND(ϕ) of future
states which are required for evaluation of a formula ϕ by counting the maximal
depth of nested nexts adjusted by the number of surrounding previous operators
(next depth) in the syntax tree of the formula:

– ND(tt) = ND(p) = 0 for p ∈ AP
– ND(¬ϕ) = ND(ϕ)
– ND(ϕ1 ∧ ϕ2) = ND(ϕ1 S ϕ2) = max{ND(ϕ1),ND(ϕ2)}
– ND( ϕ) = ND(ϕ) − 1 and ND( ϕ) = ND(ϕ) + 1
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For example for ϕ = (( p)S q)∧ p we have ND(ϕ) = 2, because (depending
on the evaluation of the since) it may be necessary to know at most two states
of the word in advance. For ϕ′ = q we get ND(ϕ′) = 0 because ϕ′ is only
dependent on the current position of the word.

Note that if for a formula ND(ϕ) = k is positive, then the formula ϕ′ = k ϕ
( k is used as syntactic sugar for a composition of k previous operators) which
expresses that ϕ was true k steps in the past can be rewritten to a Past LTL
formula, without next operator. Therefore the next operators can be moved
inside the other operators (which is possible for all given operators without
changing the semantics of the formula) until a sub-formula ψ is contained,
which can then be substituted by ψ. For ϕ = (( p)S (q))∧ p from above one
could construct 2 ϕ = 2( (( p)S q)∧ p) = ( (( p)S q)∧ p) =
((( p) S q)∧ p) = ((p S 2 q)∧ p). This observation allows to transform a

Past LTL formula with bounded future ϕ into a Past LTL formula ϕ′ = ND(ϕ) ϕ
and build the corresponding monitor with the algorithm described previously.
Due to the equivalence (w, t) |= ϕ′ ⇐⇒ (w, t − ND(ϕ)) |= ϕ the resulting
monitor still produces the output sequence (w, 1) |= ϕ, (w, 2) |= ϕ . . . but with
a ND(ϕ) offset to receiving the corresponding input letters.

3 Initial and Recurrent Monitoring

Note that the monitor construction for Past LTL differs from the construction for
Future LTL. The LTL3 monitor attempts to answer the same question (w, 1) |= ϕ
at each step. We call this initial monitoring. The Past LTL monitor instead
continuously answers a different question, i.e. if the formula is satisfied from the
current position t ∈ N

+ ((w, t) |= ϕ). We call this concept recurrent monitoring.
It makes sense especially for Past LTL monitoring, where the monitor can always
give the conclusive verdict 
 or ⊥ for the current state (in difference to LTL3). In
general, recurrent monitoring has advantages for the monitoring process, because
it checks a property with respect to a certain position in the word. Hence a breach
of the LTL property is related to a specific position in the trace and not for the
whole trace in general. More importantly, the monitor can also recover from
errors at previous positions and continue monitoring the trace after detection of
a violation.

Consider for example a robot system and a property that states whether the
robot is not too close to any objects. The intention of this monitor is to be able
to react (or perhaps to later inspect log data). This problem is better cast as a
recurrent monitoring problem, where the monitor raises an alarm at all positions
where the robot does not satisfy a property.

We now investigate the opportunities of recurrent monitoring more thor-
oughly. First we define initial and recurrent monitoring formally. The mon-
itoring problem is characterized by a function ω : Σ∗ → B3 from finite
prefixes received by the monitor to the usual B3 = {
,⊥, ?}. Recall that

 = {tt},⊥ = {ff}, ? = {tt,ff}.
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Definition 1 (Initial LTL monitoring). Given an LTL specification ϕ, the
following function ωinit

ϕ : Σ∗ → B3 is called the initial LTL monitoring function:

ωinit
ϕ (s) = {(sw, 1) |= ϕ | w ∈ Σω}

The initial LTL monitoring problem deals with providing the set of possible
verdicts for (sw, 1) |= ϕ given a finite prefix s. The set is naturally the set of
the verdicts for all possible infinite completions of the given prefix. Note that
for two finite words s1 � s2, ωinit

ϕ (s1) ⊇ ωinit
ϕ (s2) holds by definition, i.e. when

calculating ωinit
ϕ repeatedly on growing traces, the set of verdicts gets refined as

the observed prefix gets longer.
We define next recurrent monitoring as the problem where the property is

checked at the position up to which the monitored trace has received events.

Definition 2 (Recurrent LTL monitoring). Given an LTL specification
ϕ, the following function ωrec

ϕ : Σ∗ → B3 is called the recurrent monitoring
function:

ωrec
ϕ (s) = {(sw, |s|) |= ϕ | w ∈ Σω}

Note that Definition 2 differs from Definition 1 since |= is checked at position |s|
currently received by the monitor, which is the traditional approach for mon-
itoring Past LTL. For Past LTL, only states from the past are necessary for
the evaluation and hence after receiving s it is always possible to cast a certain
verdict (
, ⊥). However this is not the case for Future LTL or Past LTL with
bounded future, where the recurrent verdict for position |s| may then yield the
uncertain verdict {tt,ff} (a.k.a. ?). We propose an extension of the recurrent
monitoring where the verdict that the monitor must compute is shifted by a
constant offset

Definition 3 (Recurrent LTL monitoring with constant offset). Given
an LTL specification ϕ and k ∈ Z, the recurrent k-offset monitoring function
ωrec,k

ϕ : Σ∗ → B3 is:

ωrec,k
ϕ (s) = {(sw, |s| + k) |= ϕ | w ∈ Σω}

Note that the recurrent LTL monitoring function from Definition 2 is equivalent
to the 0-offset LTL monitoring function from Definition 3.

Another degree of generalization of the recurrent monitoring results if we
require the monitor to be able to return the best possible answer about any
position that cannot be predicted upfront (that is, the monitored state is fully
independent from the monitoring state).

Definition 4 (Random Access Recurrent LTL monitoring). Given an
LTL specification ϕ, the random access recurrent monitoring function ωϕ : Σ∗ →
N

+ → B3 is:

ωϕ(s)(i) = {(sw, i) |= ϕ | w ∈ Σω}
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This definition is a generalization of all previous definitions as i can be fixed
with the parameter 1, |s|, |s| + k to receive the previous monitoring functions.

All previous definitions indeed are not restricted to any fragments of LTL. How-
ever, it is trivial to perform initial monitoring for Past LTL and in general it is
useless to do 0-offset recurrent monitoring for arbitrary Future LTL formulas. On
the other hand, it makes sense to apply k-offset or random recurrent monitoring
to Past LTL with bounded future or even for full LTL, tolerating sometimes ?
verdicts, depending on the property and the chosen offset.

We now introduce an abstract notion of RV monitor. For the purposes of this
paper, a monitor

– receives a system trace iteratively (either online or offline)
– maintains internally a state which represents the trace that has been received

yet (State part)
– iteratively produces outputs (Question answering part)

Definition 5 (Monitor). A monitor is a 6-tuple M = (Σ,Ω,Q, q0, δ, ω) where

– Σ is a possibly infinite input alphabet.
– Ω is a possibly infinite output alphabet.
– Q is a possibly infinite state space.
– q0 ∈ Q is an initial state.
– δ : Q × Σ → Q is a transition function.
– ω : Q → Ω is an output function.

We refer to the verdict of a monitor M = (Σ,Ω,Q, q0, δ, ω) after the con-
sumption of an input s = a1 . . . an ∈ Σ∗, ai ∈ Σ as ω̂(s) = ω(δ̂(q0, s)) with
δ̂ : Q × Σ∗ → Q defined as δ̂(q, ε) = q, δ̂(q, a1a2 . . . ai) = δ̂(δ(q0, a1), a2 . . . ai).

A monitor is essentially a Moore machine, except that input, output and
state space are allowed to be infinite. Monitors with an infinite state spaces are
common in Stream Runtime Verification [7,22] where the monitors are specified
in terms of streams of arbitrary data types. Since monitors in Runtime Veri-
fication usually run for an arbitrary long time and resources are limited, it is
crucial that their memory is independent of the trace length and can be bounded
a-priori. The state maintained by a monitor depends on the inputs consumed
(using sometimes knowledge about the system under analysis), but the monitor
should not need to remember the whole trace. The output part of the monitor
is tailored for the application. We call monitors, whose extended output func-
tion ω̂ is equal to one of the functions defined above, initial, recurrent, k-offset
recurrent and random access recurrent monitors. Note that for random access
recurrent monitors there is no straight-forward implementation that “prints” the
output. One alternative is that the monitor serves as an question-answering
device. Another, which we present next, is that the monitor provides abstract
information about future positions.
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4 Anticipatory Monitoring

It is often desirable to detect failures of the system under observation as early
as possible. In initial monitoring for LTL3 this boils down to raising the verdicts

, ⊥ as soon as all possible extensions lead to satisfaction (resp. violation).
For recurrent monitoring there is also another dimension of anticipation. The
output of a recurrent monitor is an evaluation of the pointed semantics of an
LTL formula at increasing time instants. It is sometimes possible that a monitor
that is asked to cast the verdict for (w, t) |= ϕ after having received a prefix of
length t, is also able to cast a verdict for the next step (w, t + 1) |= ϕ (or even
further steps in the future).

While in recurrent monitoring the verdict indicates that the LTL formula
is satisfied or violated exactly at the required time instant, the user is often
interested in knowing about a future violation as soon as possible. Consider for
example a crash of a monitored robotic system. There one is not only interested
that the monitor reports when a crash occurs, but also that it reports as soon
as a crash is inevitable. Additionally, it may be very useful to know the number
of steps in the future where there is surely no violation of the property.

Consider again pS ¬p and the corresponding monitor in Fig. 2. This monitor
yields verdict for (w, t) |= ϕ after having received t letters. When the monitor
has received the prefix {p}{q} the monitor is in state 0100 and yields ⊥ = {ff},
since ({p}{q} . . . , 2) �|= ϕ. However at this position it is already inevitable that
the output at the next step ({p}{q} . . . , 3) |= ϕ is true. In Fig. 2 this can be seen
as all possible successors of 0100 are accepting states. We seek monitors that not
only generate information about the current verdict but also information about
future verdicts. We define such anticipatory monitors as follows:

Definition 6 (Anticipatory Monitor). Given a monitoring problem f :
Σ∗ → V over an arbitrary verdict domain V, a monitor M = (Σ,Ω,Q, q0, δ, ω)
with Ω = N

+ → 2V is called an anticipatory monitor for f whenever for all
inputs s ∈ Σ∗ and positions i ∈ N

+,

ω̂(s)(i) ⊇ {f(sr) | r ∈ Σi}

If = holds instead of ⊇ then M is called a perfect anticipatory monitor for f .

Note that anticipatory monitoring is defined relative to a given monitoring func-
tion f . The anticipatory monitor computes functions that predict the future
verdicts of the original monitor which are possible after the current observa-
tion. In practice, implementing an anticipatory monitor requires to represent
concisely the output alphabet Ω and the function ω̂ that approximates f . One
possibility is to predict only a fixed number of future states and to implicitly
map all further instants to V (all verdicts are possible). Alternatively, we propose
to compute the minimum number of future states which are guaranteed not to
be 
 (
 meaning a crash) and the maximum number of steps until the next

 is guaranteed to happen. Note that such abstractions may lead to imperfect
anticipatory monitors, but the information provided may be very useful.
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4.1 Anticipatory Monitors from Recurrent Monitors

We now present an algorithm to produce an anticipatory monitor for the k-offset
recurrent monitoring problem. Our monitor outputs intervals (n,m) ∈ N

∞ ×N
∞

as an abstraction of the full output map. The interval indicates a lower and
upper bound of letters that have to be received until the property is fulfilled.
Even though we only handle the steps until the formula is fulfilled, the converse
(providing the steps until the formula is violated) is analogous.

Definition 7 (Anticipatory (Recurrent) Interval Monitor). Let ϕ be
an LTL property. A monitor M = (Σ, IN, Q, q0, δ, ω) with IN = N

∞ × N
∞ is

called k-offset anticipatory (recurrent) interval monitor whenever for all inputs
s, ω̂(s) = (n,m) where

n = min poss

m = max prefs
and

poss = {j ∈ N | for some w ∈ Σω, (sw, |s| + j + k) |= ϕ}
prefs = {j ∈ N | for some w ∈ Σω, for all i < j, (sw, |s| + i + k) �|= ϕ}

Note that n is the shortest sequence to a violation and m is the longest sequence
without a violation. Also, n ≤ m. For example, in the case of ϕ = p S ¬p
and the input word w = {p}{p}{q}{p}{q} . . . an anticipatory interval monitor
would output (2,∞)(2,∞)(1, 1)(0, 0)(1, 1) . . . . This means in the first state after
receiving input {p} it must take at least two further steps until ϕ is satisfied
and it is also possible that ϕ will never be fulfilled. After receiving two further
inputs {p} and {q} the output (1, 1) indicates that it is inevitable that in the
next step the property will be fulfilled. Consequently after receiving a further
letter we get (0, 0), meaning the property holds in the current state. In practi-
cal scenarios such a monitor helps detecting inevitable situations to undertake
the right countermeasures (e.g. an emergency stop) before the failure occurs.
Likewise, the knowledge that a breach of the property is impossible for a time
horizon also helps in some scenarios allowing for example a robot to accelerate.

We can classify the meaning of an output interval (n,m) of an anticipatory
recurrent monitor as follows:

n = ∞ m = ∞ ϕ will never be satisfied in the future

n ∈ N m = ∞ ϕ may be satisfied in the future but not before n steps
n ∈ N m ∈ N

+ ϕ is inevitable, but not before n or after m steps
n = 0 m = 0 ϕ is satisfied in the current state

The anticipatory monitor M ′ with the described output behavior can be
constructed directly from a given recurrent monitor M as follows. The state
space and transition function of M ′ are taken without adjustments from those
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of M . The modified output function for M ′ is generated by a simple graph
traversal from M : First, every state that was labeled with output 
 produces
the output (0, 0). For the outputs of the other states a depth-first-search is
performed. The output of such a state is then (n,m) where n is the minimum
of the first interval component of all successor states plus 1, or 0, if the state is
labeled with ? and m is the maximum of the second interval component plus 1.
If a state is evaluated which is already on the DFS stack its output interval is
(for the pending calculation) assumed to be (∞,∞) since in this case an infinite
non-
-labeled loop exists in the monitor. A formalization of the algorithm in
pseudo-code can be found in Fig. 3. The resulting monitor is an anticipatory
recurrent interval monitor according to Definition 6.

Theorem 1. Given a k ∈ Z offset recurrent monitor M = (Σ,V, Q, q0, δ, ω)
for specification ϕ the construction from Fig. 3 produces a k-offset anticipatory
recurrent interval monitor for ϕ.

Fig. 3. Formalization of DFS-based algorithm for construction of the output function
ω′ of an anticipatory interval monitor M ′ = (Σ, Ω′, Q′, q′

0, δ
′, ω′) based on a given

recurring monitor M = (Σ, Ω, Q, q0, δ, ω), succ(q) = {δ(q, a)|a ∈ Σ}.
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Fig. 4. Anticipatory monitor for pS ¬p based on the monitor from Fig. 2. The states
are labeled with their corresponding interval outputs.

The result of an application of the algorithm on the recurrent monitor from
Fig. 2 is depicted in Fig. 4. The output of this monitor matches the output trace
described above. Note that the anticipatory monitor can also be used to answer
the standard recurrent LTL monitoring problem: every state where the predictive
monitor casts (0, 0) is a state with verdict 
 in the original monitor.

5 Uncertainty and Assumptions

In this section we show how the anticipatory recurrent monitoring approach can
be extended to handle uncertainty, in the sense that the content of some letters
of the input word is unknown. We will also show how to exploit assumptions
about the system to improve the monitoring process, where assumptions are
invariants about the environment of the monitor and assumed to be always true.

5.1 Uncertainty

We model uncertain input events as subsets of Σ, which represent the set of
possible inputs that actually happen. For example the input trace

{{p, q}, {q}} {{p}} {∅, {p}, {q}, {p, q}} . . .

encodes any trace where in the first step q holds but it is uncertain if p holds, in
the second step p and not q holds (with total certainty) and where everything is
possible in the third state (total uncertainty).

Given a finite prefix s ∈ Σ∗ and s′ ∈
(
2Σ

)∗ we write s |= s′ whenever s is one
possible concrete representation of s′, i.e. |s| = |s′| and ∀1≤i≤|s|.s(i) ∈ s′(i). We
adjust our anticipatory recurrent monitor from Definition 7 to handle uncertain
inputs.
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Definition 8 (Uncertain Anticipatory Recurrent Monitor). Let ϕ be an
LTL property. A monitor M = (2Σ , IN, Q, q0, δ, ω) is called an uncertain k-offset
anticipatory recurrent monitor if for all inputs s ∈ (2Σ)∗, ω̂(s) = (n,m) where,

n = min{posu | for some u |= s}
m = max{prefu | for some u |= s}

This definition extends anticipatory recurrent monitoring to the minimal and
maximal distance to a 
-verdict over all possible concrete input words. Note
that the definition is a more general version of Definition 7, which yields the
same intervals when singleton sets (certain inputs) are provided.

The classical automata-theoretic approach to handle uncertainty is the power
set construction, where a new monitor is built whose state space is the power
set of the original monitor’s state space. When an uncertain input is received
the power set monitor changes to all possible successor states of the currently
possible states. The main remaining detail is how the power set automaton can
produce verdicts, i.e. how the intervals of the potential states of the original
monitor can be combined. We show that it suffices to take the minimum and
maximum of the interval bounds of the active states. This results in the following
monitor construction.

Theorem 2. Given ϕ and a k-offset anticipatory interval monitor
M = (Σ, IN, Q, q0, δ, ω) for ϕ, the monitor M ′ = (2Σ , IN, 2Q, {q0}, δ′, ω′) with

– δ′(S,L) = {δ(s, l)|s ∈ S, l ∈ L} for S ∈ 2Q, L ∈ 2Σ

– ω′(S) = (min{a|(a, b) = ω(s) for s ∈ S},max{b|(a, b) = ω(s) for s ∈ S})

is an uncertain k-offset anticipatory recurrent monitor for ϕ.

A run of the recurrent anticipatory monitor from Fig. 4 for the uncertain
input {{p, q}, {q}} {{p}} {∅, {p}, {q}, {p, q}} . . . from above is depicted in Fig. 5.

Fig. 5. Run of the anticipatory recurrent monitor from Fig. 4 with uncertain inputs.
The states in which the monitor is potentially located in a time step and their outputs
are drawn on top of each other. The assumption (see Sect. 5.2) (p → q) eliminates
the grey states and transitions and leads to more precise verdicts.



Anticipatory Recurrent Monitoring with Uncertainty and Assumptions 195

The output is (1,∞)(0,∞)(0,∞)(0,∞) . . . i.e. the monitor detects that there
could be three satisfactions of the property in the first three states, but depending
on the real input there also could be none.

5.2 Assumptions

Another aspect with practical impact in RV is how to exploit knowledge about
the system into the monitoring process. This information usually includes (par-
tial) knowledge about the state the system is currently in and which properties
(inputs to the monitor) may hold in the current and subsequent states. For exam-
ple, consider the assumption (p → q), which states that every state where
proposition p holds is succeeded by a state in which q holds. This assumption
implies, for example, that the input word {p, q}{p} . . . will never be passed to the
monitor. Since several input words or continuations are excluded, assumptions
help to produce more precise verdicts and detect failures earlier. Note that, of
course, one could also detect traces where an assumption is not met, indicating
a severe error in the whole monitoring setting.

Especially in the presence of uncertainty in the inputs assumptions are very
useful to produce more precise (anticipatory) verdicts and recover from uncer-
tainty in the input. For example, in our assumption, observing p allows to con-
clude that q will follow, allowing to better anticipate. Also, not observing q
allows to deduce that p did not happen in the previous step, which reduces the
uncertainty if the previous event was not properly received.

Additionally note that assumptions have to be explicitly handled by the
monitoring algorithm, as they restrict the space of possible models, and hence
cannot be encoded directly in the LTL formulas, for example as ϕ′ = ϕass → ϕ
or ϕ′ = ϕass ∧ ϕ. Such an encoding would not allow the monitor to perform
inferences about uncertain or future inputs, as it could never be sure if the
assumption ϕass actually holds or not.

A general way to represent assumptions and system invariants is by a Kripke
structure or equivalently a transition system.

Definition 9 (Transition System). A Transition System over a finite input
alphabet Σ is a tuple T = (Q, q0, δ) with

– Q a finite state space.
– q0 ∈ Q an initial state.
– δ ∈ Q × Q × Σ a transition relation.

A transition system T describes a subset of valid inputs �T � ⊆ Σω. For all
words w ∈ �T � there is a path q0, q1, . . . in the system such that (qi, qi+1, w(i +
1)) ∈ δ for all i ∈ N. Hence a transition system can be used as a very general way
to express assumptions. Every assumption given in LTL can be used to build
a corresponding transition system [17] (for simplicity we consider only safety
formulas as assumptions). The transition system corresponding to the formula
(p → q) is depicted in Fig. 6.

We can further refine Definition 7 now to also support assumptions given in
form of a transition system T :
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Fig. 6. Transition system corresponding to (p → q).

Definition 10 (Uncertain Anticipatory Recurrent Monitor with
Assumptions). Let ϕ be an LTL specification and let T be a transition system
over 2Σ. A monitor M = (2Σ , IN, Q, q0, δ, ω) is called an uncertain k-offset antic-
ipatory recurrent monitor under assumption T whenever for every s ∈ (2Σ)∗,
ω̂(s) = (n,m) where,

n = min{posT
u | for some u |= s}

m = max{prefTu | for some u |= s}

and

posT
s = {j ∈ N | for some w s.t. sw ∈ �T �, (sw, |s| + j + k) |= ϕ}

prefTs = {j ∈ N | for some w s.t. sw ∈ �T �, for all i < j, (sw, |s| + i + k) �|= ϕ}

Definition 10 allows to only care about words which are also valid inputs
according to the transition system. This definition is a further generalization
of Definition 8 and both are equivalent for the uninformative transition system
�T � = (2Σ)ω.

To exploit the transition system that encodes the assumption we make use of
a product construction, where states are tuples of the original monitor’s states
and transition system states. We only preserve transitions which are allowed by
the transition system.

Since the existence of assumptions improves the anticipatory capabilities of
the resulting monitor we take care already at the generation of the anticipatory
monitor. Given a recurrent monitor M = (Σ,V, Q, q0, δ, ω) for a specification ϕ,
and a transition system T = (QT , qT

0 , δT ) over 2Σ we first construct the recurrent
monitor under assumption MT = (Σ,V ∪ {↓}}, Q × QT ∪ {q⊥}, (q0, qT

0 ), δ′, ω′)
with

δ′(q, l) =

{
(δ(qM , l), q′T ) if q = (qM , qT ) �= q⊥ and (qT , q′T , l) ∈ δT

q⊥ otherwise

ω′(q) =

{
ω(qM ) if q = (qM , qT ) �= q⊥

↓ otherwise

where q⊥ serves as an error state and ↓ indicates the breach of an assumption.
Together with the constructions from the previous sections this monitor

builds the basis for an uncertain recurrent anticipatory monitor under assump-
tion.
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Theorem 3. The construction from Fig. 3 applied to a k-offset recurrent mon-
itor under assumption MT and the subsequent application of the construction
from Theorem2 yields an uncertain k-offset anticipatory recurrent monitor under
assumption T .

In the example from Fig. 5 considering the assumption leads to the monitor
run in which the grey transitions do not exist anymore in the adjusted recurrent
anticipatory monitor. This is because the second input is {p} which implies that
the first letter could not have been {p, q}, which had lead to the state labeled
with (2,∞). The uncertain monitor is capable of removing successors that would
violate the assumptions and determines more precise verdicts. In particular, this
monitor can detect a satisfaction after receiving the second letter (output (0, 0)).
Also, after receiving the third letter this monitor can conclude that the property
is fulfilled either there or at the subsequent step (output (0, 1)).

6 Conclusion

In this paper we have studied the concept of recurrent monitoring where monitors
produce verdicts for the property at all positions. This is a promising concept
both theoretical and practical, particularly for Past LTL with bounded future,
as it provides more information on the position in a trace where a property
violation occurs and typically allows the monitor to recover afterwards.

To be able to detect situations of interest (e.g. crashes of the observed system)
as early as possible we extended the concept with a notion of anticipation and
proposed a monitor construction which gives estimates about the number of steps
until the next situation of interest could occur, and if it is even inevitable. We
presented constructions such that these monitors can further handle uncertainty
in inputs, as well as assumptions about the system, and showed how these can
lead to more precise verdicts.

In general solving the recurrent word problem for arbitrary (future and past)
LTL requires unbounded memory. Future work includes studying useful bounded
monitors that approximate this problem. Also, we would like to extend our mon-
itoring notion, particularly under uncertainty and assumptions, to more complex
recurrent monitoring settings, like Stream Runtime Verification. We also aim at
implementation, particularly of an SRV engine, and an empirical evaluation on
realistic case studies.
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Abstract. Quantitative monitoring can be universal and approximate:
For every finite sequence of observations, the specification provides a
value and the monitor outputs a best-effort approximation of it. The
quality of the approximation may depend on the resources that are avail-
able to the monitor. By taking to the limit the sequences of specification
values and monitor outputs, we obtain precision-resource trade-offs also
for limit monitoring. This paper provides a formal framework for study-
ing such trade-offs using an abstract interpretation for monitors: For
each natural number n, the aggregate semantics of a monitor at time n
is an equivalence relation over all sequences of at most n observations
so that two equivalent sequences are indistinguishable to the monitor
and thus mapped to the same output. This abstract interpretation of
quantitative monitors allows us to measure the number of equivalence
classes (or “resource use”) that is necessary for a certain precision up to
a certain time, or at any time. Our framework offers several insights. For
example, we identify a family of specifications for which any resource-
optimal exact limit monitor is independent of any error permitted over
finite traces. Moreover, we present a specification for which any resource-
optimal approximate limit monitor does not minimize its resource use at
any time.

Keywords: Abstract monitor · Approximate monitoring ·
Quantitative monitoring · Monitor resources

1 Introduction

Online monitoring is a runtime verification (RV) technique [11] that, by sacrific-
ing completeness, aims to lighten the burden caused by exhaustive formal meth-
ods. A monitor watches an unbounded sequence f of observations, called trace,
one observation at a time. At each time n ≥ 0, it tries to provide information
about the value assigned to f by the specification. For a boolean specification P ,
after each trace prefix s, the monitor may output one of three values: all infinite
extensions of s satisfy P , violate P , or neither [15].

Quantitative specifications [21] generalize their boolean analogs by assigning
each trace f a value from some richer domain. For example, the boolean specifi-
cation Resp assigns true to f iff every observation req in f is eventually followed
c© The Author(s) 2022
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by an observation ack in f , while the quantitative specification MaxRespTime
assigns the least upper bound on the number of observations between each req
and the corresponding ack, or ∞ if there is no such upper bound.

In the limit monitoring of a quantitative specification Φ over a trace f , a
limit (e.g., lim sup, lim inf) of the infinite sequence of monitor outputs should
provide information about the value Φ(f) assigned to the trace. For example, a
“natural way to monitor” MaxRespTime is to have the monitor output, at each
time, the maximum of (i) the maximal response time so far and (ii) the time
since the least recent pending req, if there is a pending req. The lim sup (and
lim inf) of this infinite output sequence converges towards MaxRespTime.

In contrast to its boolean analog, the quantitative setting naturally supports
approximation. A monitor has error δ ≥ 0 if, for all infinite traces, the limit
of the output sequence is within δ of the specification value. In particular, this
leads to precision-resource trade-offs for quantitative monitors: The provisioning
of additional states, registers, or operations may reduce the error, and a larger
error tolerance may enable monitors that use fewer resources.

In this paper, we provide a formal framework for studying such precision-
resource trade-offs for an abstract definition of quantitative monitors. This
abstract framework can be instantiated, for example, by finite-state monitors
or register monitors, where a finite-state monitor remembers a bounded amount
of information about each trace prefix, and a register monitor remembers a
bounded number of integer values [32]. For us, an abstract monitor partitions,
at each time n, all prefixes of length up to n into a finite number of equiva-
lence classes such that if two prefixes s1 and s2 are equivalent, then the monitor
outputs the same value after observing s1 and s2. The number of equivalence
classes introduced at time n provides a natural measure for the resource use of
the abstract monitor after n observations.

In this setting, where the resource use of a monitor is measured, we also want
to measure the precision of a monitor. To define the precision of a monitor after a
finite trace prefix, we need to enrich our definition of quantitative specifications:
We let a quantitative specification assign values not only to infinite traces but
also to finite traces. Indeed, many specification values for infinite traces are
usually defined as limits [37]. For example, what we called above the “natural
way to monitor” MaxRespTime using two counters is, in fact, the usual formal
definition of the quantitative specification MaxRespTime.

Once both specifications and monitors assign values to all finite traces, there
is a natural definition for the precision of a monitor: At each time n, the prompt-
error is the maximal difference between the monitor output and the specification
value over all finite traces of length up to n. Furthermore, the limit-error is the
least upper bound on the difference between the limit of monitor outputs and the
limit of specification values over all infinite traces. Note that if the prompt-error
of a monitor is 0, then so is the limit-error, but not necessarily vice versa. An
exact-value monitor (i.e., a monitor with prompt-error δ = 0) implements the
specification as it is defined. In contrast, an approximate monitor (i.e., a monitor
with prompt-error δ > 0) of the same specification may use fewer resources.
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An approximate monitor may still achieve limit-error 0, which is a situation of
particular interest that we study.

Given an abstract monitor, one way to obtain a new monitor that uses fewer
resources use is to merge some equivalence classes, and one way to increase
the precision is to split some equivalence classes. However, this naive approach
toward reaching a desired precision or resource use is not always the best. For
an approximate monitor with a given prompt-error and limit-error, the goal
is resource-optimality, i.e., minimizing the resource use as much as the error
threshold allows. We will see that merging the equivalence classes of a given
monitor may not yield a resource-optimal one.

The limit-error of a monitor is bounded by its prompt-error. We also inves-
tigate the case where we require a certain limit-error while leaving the prompt-
error potentially unbounded. We will see that allowing arbitrary prompt-error
may not permit the monitor to save resources if the desired limit-error is fixed.
We say that such specifications have resource-intensive limit behavior. In fact,
MaxRespTime displays resource-intensive limit behavior. Other examples include
a subclass of reversible specifications. Reversibility is a notion from automata the-
ory characterized by the specification being realizable with a finite-state automa-
ton that is both forward and backward deterministic. A similar notion, gener-
alized to the quantitative setting, can be introduced in our framework, allowing
an abstract monitor to process an infinite trace in a two-way fashion.

Overview. Section 2 formalizes the framework of abstract monitors and pro-
vides insights on relations between basic notions such as resource use and preci-
sion.

Section 3 focuses on monitoring with bounded error over finite traces. First,
in Subsect. 3.1, we show that the exact-value monitor over finite traces is unique
and resource-optimal for every specification. Additionally, for resource-optimal
approximate monitors, we prove: (i) they are not unique in Subsect. 3.1, (ii) they
do not necessarily follow the structure of the exact-value monitor in Subsect. 3.2,
and (iii) they do not necessarily minimize their resource use at each time in Sub-
sect. 3.2. Then, in Subsect. 3.3, we study precision-resource trade-off suitability:
We exhibit (i) a specification for which we can arbitrarily improve the resource
use by damaging precision, and (ii) another for which we arbitrarily improve the
precision by damaging the resource use.

Section 4 focuses on monitoring without error on infinite traces. In partic-
ular, in Subsect. 4.1 we provide a condition for identifying specifications with
resource-intensive limit behavior, for which having zero limit-error prevents the
trade-off between resource use and error on finite traces. This condition cap-
tures two paradigmatic specifications: (i) maximal response-time and (ii) aver-
age response-time. Finally, in Subsect. 4.2 we investigate reversible specifications,
which can be implemented in a manner both forward and backward determinis-
tic. A subclass of reversible specifications have resource-intensive limit behavior,
which we demonstrate through the average ping specification.

Section 5 concludes the paper and addresses future research directions our
framework offers.
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Related Work. In the boolean setting, several notions of monitorability have
been proposed over the years [15,30,34]. Much of the theoretical efforts have
focused on regular specifications [2,14,46], although some proposed more expres-
sive models [9,12,26]. We refer the reader to [10] for coverage of these and more.

Verification of quantitative specifications [21,41] have received significant
attention, especially in the probabilistic setting [17,20,33]. In the context of RV,
the literature on specifications with quantitative aspects features primarily met-
ric temporal logic and signal temporal logic [38,40,43–45]. Other efforts include
processing data streams with a focus on deciding their properties at runtime [5,6]
and an extension of weighted automata with monitor counters [22]. None of these
works focus on monitoring quantitative specifications with approximate verdicts
or the relation between monitorability and monitor resources.

Approximate methods have been used in verification for many years [25,39].
Beyond the boolean setting, such approaches have appeared in the context
of sensor networks for approximating aggregate functions in a distributed set-
ting [24,49,50], in approximate determinization or minimization of quantitative
models of computation [7,16,35], and also in online algorithms [3].

To the best of our knowledge, the use of approximate methods in monitoring
mainly concentrates on the specification rather than taking approximateness as
a monitor feature and studying the quality of monitor verdicts. In predictive or
assumption-based monitoring [23,54] and for monitoring hyperproperties [51], an
over-approximation of the system under observation is used as an assumption
to limit the set of possible traces [36]. Similarly, in runtime quantitative verifi-
cation [18,47], the underlying probabilistic model of the system is approximated
and continually updated. For monitoring under partial observability, [4] describes
an approach to approximate the given specification for minimizing the number
of undetected violations. In the branching-time setting, [1] uses a monitorable
under- or over-approximation of the given specification to construct an “optimal”
monitor. Nonetheless, a form of distributed and approximate limit monitoring
for spatial specifications was studied in [8]. None of these works consider approx-
imateness as a monitor property to study the relation between monitor resources
and the quality of its verdicts.

Recently, [32] introduced a concrete monitor model with integer-valued reg-
isters and studied their resource needs. This model was later used for limit mon-
itoring of statistical indicators of traces under probabilistic assumptions [31]. A
general framework for approximate limit monitoring of quantitative specifica-
tions was proposed in [37]. However, that framework focuses exclusively on limit
behaviors and on specific monitor models such as finite automata and register
machines, thus allowing only limited precision-cost analyses. The main innova-
tions of the present work over previous work are twofold. First, we abstract the
monitor model and its resource use away from specific machine models. Second,
by introducing prompt-errors, we study the resource use of monitors over time
and relate this to the monitoring precision over time. This more nuanced frame-
work enables a more fine-grained analysis and comparison of different monitors
for the same specification concerning their precision and resource use.
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2 Definitional Framework

Let Σ = {a, b, . . .} be a finite alphabet of observations. A trace is finite or
infinite sequence of observations, which we respectively denote by s, r, t ∈ Σ∗

and f, g ∈ Σω. Given two traces s ∈ Σ∗ and w ∈ Σ∗ ∪ Σω, we denote by s ≺ w
(resp. s � w) that s is a strict (resp. non-strict) prefix of w. For n ∈ N we define
Σ≤n = {s ∈ Σ∗ | |s| ≤ n} where |s| refers to the length of s. Given a ∈ Σ and
s ∈ Σ∗, we denote by |s|a the number of occurrences of a in s.

We denote by N the set of non-negative integers and by R the set of real
numbers. We also consider N = N ∪ {+∞} and R = R ∪ {−∞,+∞}.

A binary relation ∼ over Σ∗ is an equivalence relation when it is reflexive,
symmetric, and transitive. For a given equivalence relation ∼ over Σ∗ and a
finite trace s ∈ Σ∗, we denote by [s]∼ the equivalence class of ∼ in which
s belongs. When ∼ is clear from the context, we write [s] instead. A right-
monotonic relation ∼ over Σ∗ fulfills s1 ∼ s2 ⇒ s1r ∼ s2r for all s1, s2, r ∈ Σ∗.

We use � and ♦ to denote the linear temporal logic (LTL) operators always
and eventually, respectively. See [48] for interpretation of LTL operators on infi-
nite traces, and [19,27,29] on finite traces.

2.1 Quantitative Specifications

A limit-measure is a function from R
ω

to R. Given an infinite sequence of real
numbers x = x1x2 . . . , we define lim inf(x) = limn�→+∞ inf{xi | i ≥ n} and
lim sup(x) = limn�→+∞ sup{xi | i ≥ n}. Whenever lim inf(x) = lim sup(x) for a
given sequence x, we simply write lim(x). A value function π : Σ∗ → R associates
a value to each finite trace.

Definition 1 (specification). A specification extends a value function by
constraining its limit behavior. Syntactically, it is a tuple Φ = (π, �) where
π : Σ∗ → R is a value function and � is a limit-measure. Semantically, it is
a function defined by [[Φ]](s) = π(s) when s ∈ Σ∗ and [[Φ]](f) = �(π(f)) when
f ∈ Σω, where π(f) = (π(si))i∈N is a sequence over the prefixes si ≺ f of
increasing length i.

Together with a given specification Φ, we define the right-monotonic equiv-
alence relation ∼∗

Φ as follows. For all s1, s2 ∈ Σ∗ we have s1 ∼∗
Φ s2 iff

π(s1r) = π(s2r) holds for all r ∈ Σ∗.
We define below the discounted response specification. Throughout the

section, we will use this specification as a running example.

Example 2. Let Σ = {req, ack, other} and consider the LTL response speci-
fication P = �(req → ♦ack). Let 0 < λ < 1 be a discount factor. We define
DiscResp(s) = 1 if s ∈ P , and DiscResp(s) = λn otherwise, where n = |s|−|r| and
r ≺ s is the longest prefix of s with r ∈ P . We define ΦDR = (DiscResp, lim sup),
the discounted response specification. Intuitively, ΦDR assigns each finite trace a
value that shows how close the system behaves to P such that, at the limit, it
denotes whether the infinite behavior satisfies P or not.
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Now, take two traces s, r ∈ Σ∗. We claim that s ∼∗
ΦDR

r iff either (i) both
traces have no pending request or (ii) both have a request pending for the same
number of steps. First, we assume s ∼∗

ΦDR
r holds and note that we must have

ΦDR(st) = ΦDR(rt) for every t ∈ Σ∗. Then, we eliminate the cases other than (i)
and (ii) as follows. If, w.l.o.g., s ∈ P and r /∈ P , then ΦDR(r) < ΦDR(s) = 1, thus
s �

∗
ΦDR

r. If, w.l.o.g., s has a request pending for i steps and r for j > i steps,
then ΦDR(r) = λj < λi = ΦDR(s), thus s �

∗
ΦDR

r. The other direction is similar.

2.2 Abstract Monitors

We are now ready to present our abstract definition of quantitative monitors.

Definition 3 (monitor). A monitor M = (∼, γ) is a tuple consisting of a
right-monotonic equivalence relation ∼ on Σ∗ and a function γ : (Σ∗/ ∼) → R.
Let δfin, δlim ∈ R be error thresholds. We say that M is a (δfin, δlim)-monitor for
a given specification Φ = (π, �) iff

– |π(s) − γ([s])| ≤ δfin for all s ∈ Σ∗, and
– |�(π(f)) − �(γ([f ]))| ≤ δlim for all f ∈ Σω.

where γ([f ]) = (γ([si]))i∈N is a sequence over the prefixes si ≺ f of increasing
length i. We say that M has a prompt-error of δfin and a limit-error of δlim.

We conveniently write M(s) = γ([s]) when s ∈ Σ∗ and M(f) = �(γ([f ]))
when f ∈ Σω.

Observe that, for every specification, there is an obvious monitor that imi-
tates exactly the specification, which we define as follows.

Definition 4 (exact-value monitor). Let Φ = (π, �) be a specification. The
exact-value monitor of Φ is defined as MΦ = (∼∗

Φ, s �→ π(s)).

A monitor for a given specification is approximate when it differs from the
specification’s exact-value monitor. Below we demonstrate the exact-value mon-
itor and an approximate monitor for the discounted response specification.

Example 5. Recall from Example 2 the discounted response specification ΦDR.
Clearly, its exact-value monitor is MΦDR

= (∼∗
ΦDR

, γΦDR
) where γΦDR

([s]) = ΦDR(s)
for all s ∈ Σ∗. Let us define another monitor M = (∼, γ) such that s ∼ r iff
either s, r ∈ P or s, r /∈ P for every s, r ∈ Σ∗; and γ([s]) = 1 if s ∈ P , and
γ([s]) = 0 if s /∈ P . Note that for every f ∈ Σω we have f ∈ P iff infinitely many
prefixes of f belong to P , therefore M has no limit-error. However, it yields a
prompt-error of λ since it immediately outputs 0 instead of discounting on finite
traces. Hence, M is a (λ, 0)-monitor for ΦDR.

Next, we prove that our definition constrains monitors not to make two equiv-
alent traces too distant.

Proposition 6. Let M = (∼, γ) be a (δfin, δlim)-monitor for the specification
Φ = (π, �). For all s1, s2 ∈ Σ∗, if s1 ∼ s2, then |Φ(s1) − Φ(s2)| ≤ 2δfin.

Proof. By definition of M we have that −δfin ≤ π(s1) − γ([s1]) ≤ δfin as well
as δfin ≥ −π(s2) + γ([s2]) ≥ −δfin. If s1 ∼ s2 then γ([s1]) = γ([s2]) and thus
−2δfin ≤ π(s1) − π(s2) ≤ 2δfin. �
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2.3 Resource Use of Abstract Monitors

As we demonstrated above, quantitative monitors may have different degrees of
precision. A natural question is whether monitors with different error thresholds
use a different amount of resources. To answer this question in its generality, we
consider the following model-oblivious notions of resource use.

Definition 7 (resource use). Let M = (∼, γ) be a monitor. We consider two
notions of resource use for M defined as functions from N to N. We define step-
wise resource use as rn(M) = |Σ≤n/∼| − |Σ<n/∼|, and total resource use as
Rn(M) =

∑n
i=0 ri(M) = |Σ≤n/∼|.

Given two monitors M1 and M2, we compare their resource use as follows.
We write r(M1) < r(M2) when there exists n0 ∈ N such that for every n ≥ n0

we have rn(M1) < rn(M2). In particular, when it holds for n0 = 1, we write
r(M1) � r(M2). We define R(M1) < R(M2) and R(M1) � R(M2) similarly.
Figure 1 shows how these notions relate. Moreover, definitions of r(M1) ∝ r(M2)
and R(M1) ∝ R(M2) for ∝ ∈ {≤,�, >,�,≥,�} are as expected.

The monitor M1 uses at most as many resources as M2 when we have
r(M1) � r(M2). If we further have rn(M1) < rn(M2) for some n ≥ 1, then
M1 uses fewer resources than M2. We similarly define the cases for using at
least as many and more resources.

Given a specification Φ and a (δfin, δlim)-monitor M for Φ, we say that M
is resource-optimal for Φ when for every (δfin, δlim)-monitor M′ for Φ we have
r(M) � r(M′), i.e., M uses at most as many resources as any other monitor
M′ with the same error thresholds.

Example 8. Recall from Examples 2 and 5 the discounted response specifica-
tion ΦDR, its exact-value monitor MΦDR

, and the (λ, 0)-monitor M. We claim
that M uses fewer resources than MΦDR

. To show this, we first point out that
r0(M) = r1(M) = 1 and rn(M) = 0 for every n ≥ 2. However, rn(MΦDR

) ≥ 1
for every n ≥ 0 because at each step the trace reqn is not equivalent to any
shorter trace. Therefore, while MΦDR

is an infinite-state monitor, M is a finite-
state monitor, and r(M) < r(MΦDR

).

Finally, we conclude the description of our framework by proving the implica-
tions in Fig. 1 to establish how different ways to compare resource use of monitors
relate as well as a refinement property for resource-optimal monitors.

Proposition 9. For every monitor M1 and M2 the implications in Fig. 1 hold.

Fig. 1. Implications between the comparisons of resource use.
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Proposition 10. Let Φ be a specification and δfin, δlim be two error thresholds.
Given (δfin, δlim)-monitors M1 = (∼1, γ1) and M2 = (∼2, γ2) for Φ. If ∼1 ⊆ ∼2

and M1 is resource-optimal, then ∼1 = ∼2. Thus, M2 is also resource-optimal.

We remark that our definitional framework can be instantiated by existing
monitor models, e.g., finite state automata [15] or register monitors [32,37].
More concretely, let us consider the discounted response specification ΦDR from
Example 2. Its exact-value monitor MΦDR

from Example 5 can be implemented
by a register monitor that stores the value n in its single register while checking
for the LTL specification P using its finite-state memory. On the other hand,
the monitor M from Example 5 can be implemented by a finite state machine.

3 Approximate Prompt Monitoring

The original purpose of a monitor is to provide continuous feedback about the
system status with respect to the specification [13,30]. Focusing only on limit
monitoring may allow an unbounded prompt-error and thus fail to fulfill this
task. In this section, we consider prompt monitoring, i.e., the case where the
monitor performs bounded prompt-error. First, we remark that considering a
bounded prompt-error implicitly bounds the limit-error by definition.

Fact 11. Let Φ be a specification and δfin, δlim ∈ R be error thresholds. If M
is a (δfin, δlim)-monitor for Φ, then it is also a (δfin, x)-monitor for Φ where
x = min{δfin, δlim}.

3.1 Uniqueness of Resource-Optimal Prompt Monitors

The exact-value monitor is arguably the most natural monitor for a given spec-
ification. In fact, it is the unique error-free monitor that is resource-optimal.

Theorem 12. Let Φ be a specification, and δ ∈ R be an error threshold. Then,
MΦ is the unique resource-optimal (0, δ)-monitor for Φ.

Proof. Let Φ = (π, �). Consider M = (∼, γ) as a resource-optimal (0, δ)-monitor
for Φ. We get ∼ ⊆ ∼∗

Φ thanks to the following implications.

s1 ∼ s2 =⇒ ∀r ∈ Σ∗, s1r ∼ s2r (right-monotonicity)
=⇒ ∀r ∈ Σ∗, γ([s1r]) = γ([s2r]) (definition)
=⇒ ∀r ∈ Σ∗, π(s1r) = π(s2r) (prompt-error 0)
=⇒ s1 ∼∗

Φ s2 (definition)

On the one hand, we have that ∼ = ∼∗
Φ by Proposition 10. On the other hand,

we have that γ([s]) = π(s) for all s ∈ Σ∗ since the prompt-error threshold is 0.
As a direct consequence, M = MΦ. �
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Fig. 2. A specification Φ over Σ = {a, b, c} where x > 0 and y ≤ x, and two resource-
optimal (x, y)-monitors for Φ shown on top of the exact-value monitor MΦ. As indicated
by the output values on the dotted and dashed rectangles, the approximate monitors
merge some equivalence classes of MΦ to save resources at the cost of losing precision.

Unfortunately, the uniqueness of resource-optimal monitors does not neces-
sarily hold once we allow erroneous monitor verdicts. For instance, Fig. 2 shows
on the left a specification Φ parameterized by x and y, together with its exact-
value monitor MΦ on the right. In addition, the figure highlights two ways to
make ∼Φ coarser to obtain distinct resource-optimal (x, y)-monitors for Φ.

Proposition 13. For all x > 0 and y ≤ x there exists a specification Φ that
admits multiple resource-optimal (x, y)-monitors.

3.2 Structure of Resource-Optimal Prompt Monitors

Regardless of the uniqueness, one can ask whether making ∼Φ coarser always
yields a resource-optimal approximate monitor. Here, we answer this question
negatively. In particular, Fig. 3 shows on the left a specification Φ and on the
right a resource-optimal (1, 0)-monitor M = (∼, γ) for Φ with ab � ba, although
ab ∼∗

Φ ba.

Proposition 14. There exists a (1, 0)-monitor M = (∼, γ) for some specifi-
cation Φ such that for every other (1, 0)-monitor M′ = (∼′, γ′) we have that
∼Φ ⊆ ∼′ implies r(M) � r(M′).

Fig. 3. A specification for which no (1, 0)-monitor that MΦ refines is resource-optimal,
and the witnessing resource-optimal approximate monitor that splits an equivalence
class of the specification.
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Fig. 4. A resource-optimal (1,1)-monitor for the specification Φ of Proposition 15 that
never minimizes its step-wise resource use rn (black). Attempting to minimize rn at
each step n results in taking an and bn as equivalent, but breaking the equivalence at
step n + 1 as the prompt-error bound would be violated otherwise (gray).

We established that the structure of the exact-value monitor does not nec-
essarily provide insights into finding a resource-optimal approximate monitor.
In fact, as we demonstrate in Fig. 4, there exist a specification such that its
resource-optimal (1, 1)-monitor M never minimizes the resource use ri(M).

Proposition 15. There exists a specification Φ admitting a (1, 1)-monitor M =
(∼, γ) such that for all equivalence relations ≈ over Σ∗ and n ∈ N we have that
|Σ≤n/∼| is strictly greater than

min
{

|Σ≤n/≈| ∀s1, s2 ∈ Σ≤n : s1 ≈ s2 ⇒ ∧ ∀r ∈ Σ∗ : s1r ≈ s2r
|Φ(s1) − Φ(s2)| ≤ 1

}

.

Proof. Let Φ = (π, lim sup) be a specification from Σ = {a, b} to N where π is
defined as follows.

π : s �→

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

8|s| if s ∈ b∗

8|s| − 16k + 4 if s ∈ (b+a+)k for some k ≥ 1
8|s| − 16k + 2 if s ∈ (b+a+)kb+ for some k ≥ 1
8|s| − 2 if s ∈ a+

8|s| − 16k + 10 if s ∈ (a+b+)k for some k ≥ 1
8|s| − 16k − 4 if s ∈ (a+b+)ka+ for some k ≥ 1

Let n ∈ N. The key argument is that it is beneficial to put an and bn in the same
equivalence class for minimizing rn since |Φ(an)− Φ(bn)| = 2 and since no other
trace in Σ≤n admits a value close to either Φ(an) or Φ(bn). However, once we
consider traces of length n+1, we introduce several values close to Φ(an) as well
as Φ(bn), but not both at the same time. Therefore, to minimize the resource
use rn+1 while maintaining the prompt-error bound of 1, it becomes beneficial
to put an and bn in distinct equivalence classes. �

3.3 Unbounded Precision-Resource Trade-Offs for Prompt Monitors

In this subsection, we exhibit specifications admitting an infinite sequence of
monitors that trade precision and resource use. First, we investigate the maximal
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response-time specification by demonstrating how a monitor can save more and
more resources by increasing both its prompt- and limit-error.

Example 16. Let Σ = {req, ack, other} and consider the usual LTL response
specification P = �(req → ♦ack). We define CurResp(s) = 0 if s ∈ P , and
CurResp(s) = |s| − |r| otherwise, where r ≺ s is the longest prefix with r ∈ P .
Now, let MaxResp(s) = supr�s CurResp(r) and define ΦMR = (MaxResp, lim),
which we call the maximal response-time specification. Note that CurResp out-
puts the current response-time for a finite trace, and MaxResp outputs the max-
imum response-time so far.

Consider the monitor M = (∼, γ) that counts the response time when there
is an open req, but only stores an approximation of the maximum when an
ack occurs. More explicitly, let ∼ and γ be such that we have the following:
M(s) = 5k + 2 if s ∈ P , where k ∈ N satisfies 5k ≤ MaxResp(s) < 5(k + 1); and
M(s) = max{M(r),CurResp(s)} otherwise, where r ≺ s is the longest prefix
with r ∈ P . We claim that M is a (2, 2)-monitor for ΦMR. First, observe that
whenever there is no pending request, i.e., s ∈ P , the monitor has a prompt-error
of at most 2 by construction. Indeed, MaxResp(s) ∈ {5k+i | i ∈ {0, 1, 2, 3, 4}}. In
the case of a pending request, i.e., s /∈ P , there is a prompt-error only when the
monitor’s approximation of the maximum-so-far is not replaced by the current
response time. Again, by construction, we can bound this error by 2. Intuitively,
M achieves this approximation by merging in ∼ some equivalence classes of ∼∗

ΦMR

where there are no pending requests. One can thus verify that r(M) < r(MΦMR
).

The construction described in Example 16 can be generalized to identify a
precision-resource trade-off with an infinite hierarchy of approximate monitors.

Theorem 17. For all δ ∈ N, there exists a (δ, δ)-monitor Mδ for the maximal
response-time specification. Furthermore, r(Mi) < r(Mj) for all i > j, and M0

is the exact-value monitor.

Proof. Let ΦMR = (MaxResp, lim) be the maximal response-time specification
as introduced in Example 16. Let δ ∈ N and s ∈ Σ∗. If s does not have a
pending request, we define Mδ(s) = k(2δ + 1) + δ where k ∈ N satisfies k(2δ +
1) ≤ MaxResp(s) < (k + 1)(2δ + 1). Otherwise, if s has a pending request,
we define Mδ(s) = max{Mδ(r),CurResp(s)} where r ≺ s is the longest prefix
with no pending request. We construct the (δ, δ)-monitor Mδ for ΦMR as in
Example 16. In particular, M0 is the exact-value monitor. Indeed, δ = 0 implies
Mδ(s) = k = MaxResp(s) when s does not have a pending request, and otherwise
Mδ(s) = supr�s CurResp(r) = MaxResp(s) by definition. For all i > j, the
monitor Mi partitions the traces with no pending requests into sets of cardinality
2i + 1 while Mj does so using sets of cardinality 2j + 1. Then, the equivalence
relation used by Mi is coarser than that of Mj , and thus r(Mi) < r(Mj). �

Note that, except M0, the monitors given by Theorem 17 have non-zero limit-
error. We explore in Sect. 4 the specifications for which having fewer resources
than the exact-value monitor forces a non-zero limit-error. Moreover, we show
in Example 25 that the maximal response-time is one of these specifications.
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Next, we investigate the server/client specification by demonstrating how a
monitor can be more and more precise by increasing its resource use.

Example 18. Consider a server that receives requests and issues acknowledg-
ments. The number of simultaneous requests the system can handle is deter-
mined at runtime through a preprocessing computation. We describe a speci-
fication that, at its core, requires that every request is acknowledged and the
server never has more open requests than it can handle. In particular, until the
server is turned off, the specification assigns a value to each finite trace, denoting
the likelihood and criticality of a potential immediate violation.

Let Σ = {req, ack, other, off} be an alphabet, λ ∈ (0, 1) be a discount
factor, and Λ > 0 be an integer denoting the request threshold. For every s ∈ Σ∗

we denote by NumReq(s) the number of pending requests in s. We define the
server/client specification ΦSC = (π, lim) where π is defined as follows.

– π(s) = 0 if s contains an occurrence of off,
– π(s) = NumReq(s)λ|s| if NumReq(r) ≤ Λ for all r � s, and otherwise
– π(s) = NumReq(r)λ|r| where r � s is the shortest with NumReq(r) > Λ.

Theorem 19. For every positive integer Λ and real number 0 < δ ≤ Λ, there
exists a (δ, δ)-monitor Mδ for the server/client specification ΦSC. Furthermore,
Mδ uses finitely many resources.

Proof. Let Λ and δ be as above, and consider the set X we define as follows:
X = {s ∈ Σ∗ | supr1∈Σ∗{π(sr1)} − infr2∈Σ∗{π(sr2)} ≥ δ}. Note that X is
finite. On the one hand, only a finite number of prefixes of a trace admitting an
occurrence of off can belong to X since δ > 0 and by definition of ΦSC. On the
other hand, only a finite number of prefixes of a trace in which no off occurs can
belong to X since the discounting forces the value of ΦSC to converge to 0. We
construct Mδ such that, if the trace belongs to X, it outputs the value given by
the specification, otherwise it outputs the value of the shortest prefix that does
not belong to X. In other words, Mδ does not distinguish traces with the same
prefix not belonging to X and thus admits at most 2|X| equivalence classes. �

4 Approximate Limit Monitoring

In contrast to Sect. 3 where we tackle the limit monitoring problem indirectly
with a bounded prompt-error, here we bound the limit-error directly and allow
arbitrary prompt-error.

Example 20. Let Φ = (π, lim inf) be a specification over Σ = {safe, danger,
off} such that π(s) = 2|r| if s does not contain off, where r is the longest suffix
of s of the form safe∗, and π(s) = |s|danger otherwise. Intuitively, Φ assigns each
trace a confidence value while the system is on and how many times the system
was in danger otherwise. We describe an approximate monitor with unbounded
prompt-error and bounded but non-zero limit-error.
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Let ∼ be a right-monotonic equivalence relation and γ an output function
such that M = (∼, γ) satisfies the following: M(s) = ∞ when s has no off
and ends with safe, M(s) = 0 when s has no off and ends with danger, and
M(s) = 9k + 4 otherwise, where k ∈ N satisfies 9k ≤ |s|danger < 9(k + 1).
Notice that the monitor partitions N into intervals and takes traces with a “close
enough” number of danger’s equivalent – as in Example 16. It is easy to see that
M is a (∞, 4)-monitor for Φ.

At its core, the limit-error threshold of a monitor is a theoretical guarantee
since we cannot compute arbitrary limit-measures at runtime. Then, as a start-
ing point, we insist that the monitor has zero limit-error, which is a reasonable
requirement given that we allow unbounded prompt-error. In this case, the mon-
itoring is still potentially approximate since we allow any error on finite traces.
To talk about specifications for which saving resources by allowing prompt-error
is not possible, we define the following notion.

Definition 21 (resource-intensive limit behavior). A specification Φ has
resource-intensive limit behavior iff its exact-value monitor MΦ is a resource-
optimal (δ, 0)-monitor for any δ ≥ 0.

First, we identify a sufficient condition for a specification to be resource-
intensive limit behavior. Then, we present reversible specifications and show a
subclass of them that satisfy our condition.

4.1 Specifications with Resource-Intensive Limit Behavior

Let Φ = (π, �) be a specification and recall the equivalence ∼∗
Φ that, for every

s1, s2 ∈ Σ∗, is defined as s1 ∼∗
Φ s2 iff π(s1r) = π(s2r) holds for all r ∈ Σ∗. To

investigate the limit behavior of a specification, we define the following equiva-
lence relation: for every s1, s2 ∈ Σ∗ we have s1 ∼ω

Φ s2 iff �(π(s1f)) = �(π(s2f))
holds for all f ∈ Σω. Intuitively, traces with indistinguishable limit behavior are
equivalent according to this relation. As a direct consequence of Fact 11, the
following holds.

Fact 22. For every specification Φ, we have that ∼∗
Φ ⊆ ∼ω

Φ.

However, the converse does not necessarily hold, as we demonstrate with
Example 23 below. We will show later that, when it holds, the specification has
resource-intensive limit behavior.

Example 23. Recall the discounted response specification ΦDR in Example 2, and
that for all s, r ∈ Σ∗, we have s ∼∗

ΦDR
r iff either (i) both traces have no pending

req or (ii) both have a req pending for the same number of steps.
Let s, r ∈ Σ∗. We claim s ∼ω

ΦDR
r iff either both traces have a pending request

or both do not. Indeed, if s has a pending request and r does not, then we have
Φ(s.otherω) = 0 but Φ(r.otherω) = 1. For the other direction, simply observe
that if s ∼ω

ΦDR
r then Φ(s.otherω) = Φ(r.otherω), but the equality does not hold

if s has a pending request and r does not (or vice versa). Having these characteri-
zations at hand, we immediately observe that s ∼∗

ΦDR
r implies s ∼ω

ΦDR
r.



Abstract Monitors for Quantitative Specifications 213

Notice that the approximate monitor M for ΦDR we constructed in Example 5
follows exactly the limit behavior of the specification. We were able to take
advantage of the fact that ∼ω

ΦDR
is coarser than ∼∗

ΦDR
and design M such that it

saves resources by allowing some prompt-error but no limit-error. We generalize
this observation by showing that we could not have designed such a monitor if
these equivalences had overlapped.

Theorem 24. Let Φ be a specification. If ∼∗
Φ = ∼ω

Φ then Φ has resource-
intensive limit behavior.

Proof. Let M = (∼, γ) be a resource-optimal (δ, 0)-monitor for Φ. Suppose
towards contradiction that ∼∗

Φ = ∼ω
Φ and MΦ is not resource-optimal for Φ.

In particular ∼ �= ∼∗
Φ. Since the limit-error threshold is 0, we get ∼ ⊆ ∼∗

Φ by
the following.

s1 ∼ s2 =⇒ ∀f ∈ Σω, �(γ([s1f ])) = �(γ([s2f ])) (right-monotonicity)
⇐⇒ ∀f ∈ Σω, �(π(s1f)) = �(π(s2f)) (limit-error 0)
⇐⇒ s1 ∼ω

Φ s2 (definition)
⇐⇒ s1 ∼∗

Φ s2 (hypothesis)

The contradiction is then raised by Proposition 10 implying that ∼ = ∼∗
Φ. �

As demonstrated in Example 5 and discussed above, the discounted response
specification does not display resource-intensive limit behavior. We give below
two examples of specifications with resource-intensive limit behavior. Let us start
with the maximal response-time specification.

Example 25. Consider the maximal response-time specification ΦMR =
(MaxResp, lim) from Example 16. We argue that ∼∗

ΦMR
and ∼ω

ΦMR
overlap.

Suppose towards contradiction that there exist s, r ∈ Σ∗ such that s ∼ω
ΦMR

r
and s �∼∗

ΦMR
r. Then, there is t ∈ Σ∗ with ΦMR(st) �= ΦMR(rt). If at least one

of st or rt has no pending request, take the continuation otherω to reach a
contradiction to s ∼ω

ΦMR
r. Otherwise, if in both st and rt the current response

time is smaller than the maximum among granted requests, then the continuation
ackω yields a contradiction. The same continuation covers the case when both
current response times are greater. Finally, assume w.l.o.g. that the current
response time is smaller than the maximum among granted requests in st and
greater in rt. In this case, ackω yields a contradiction again because their outputs
stay the same as ΦMR(st) and ΦMR(rt), respectively. Therefore, we have s ∼∗

ΦMR
r,

and thus ∼∗
ΦMR

and ∼ω
ΦMR

overlap.

Next, we describe the average response-time specification and argue that it
displays resource-intensive limit behavior.

Example 26. Let Σ = {req, ack, other} and consider the usual LTL response
specification P = �(req → ♦ack). For s ∈ Σ∗, we denote by RespTime(s)
the total number of letters between the matching req-ack pairs in s, and by



214 T. A. Henzinger et al.

NumReq(s) the number of valid req’s in s. For all s ∈ Σ∗, we fix p(s) = 1 if
s ∈ P , and p(s) = 0 otherwise. Then, we define RespTime(s) =

∑
r�s 1 − p(r)

and NumReq(s) = |Ps| where Ps = {r � s | ∃t ∈ Σ∗, r = t.req∧ p(t) = 1} is the
set of valid requests in s. We define the average response-time specification as
ΦAR = (AvgResp, lim inf) where we let AvgResp(s) = RespTime(s)

NumReq(s) for all s ∈ Σ∗.
We claim that ∼∗

ΦAR
and ∼ω

ΦAR
overlap. To show this, one can proceed similarly

as in Example 25. The cases with no pending requests are similar. When both
traces have a pending request and their output values differ, extend both with
ackω to get a contradiction.

4.2 Reversible Specifications

The reversible subclass of specifications enjoys the ability to move between
computation steps forward and backward deterministically. Such specifications
received particular interest in the literature since they can be implemented on
hardware without energy dissipation [42,52]. Since it imitates the specification,
the exact-value monitor of a reversible specification can roll back its computa-
tion, if allowed, without needing additional memory. From an automata-theoretic
perspective, reversibility can be seen as the automaton being both forward and
backward deterministic. Algebraically, this is captured by the syntactic monoid
being a group.

Definition 27 (reversible specification). A specification Φ is reversible iff
(Σ∗/∼∗

Φ, ·, ε) is a group.

First, we describe the average ping specification – a variant of the aver-
age response-time specification where a single ping event captures req and ack
events, and time proceeds through clock tick events. We then show that this
specification is reversible.

Example 28. Let Σ = {ping, tick, other}. Let ValidTick(s) = |s|tick − |r|tick
where r � s is the longest prefix with no ping, and let NumPing(s) = |s|ping. The
average ping specification is defined as ΦAP = (AvgPing, lim inf) where, for all
s ∈ Σ∗, we let AvgPing(s) = ValidTick(s)

NumPing(s) if NumPing(s) > 0; and AvgPing(s) = −1
otherwise.

We argue that this specification is reversible. To see why, first observe for
all s, r ∈ Σ∗ that we have s ∼∗

ΦAP
r iff (i) NumPing(s) = NumPing(r) and

(ii) ValidTick(s) = ValidTick(r). We particularly show for every s, r, t ∈ Σ∗ that
if s �

∗
ΦAP

r then st �
∗
ΦAP

rt, therefore ∼∗
ΦAP

yields a group. Let s, r ∈ Σ∗ be such
that s �

∗
ΦAP

r and let t ∈ Σ∗ be arbitrary. Suppose the condition (i) above does
not hold. Since the NumPing values increase monotonically with every ping, we
get NumPing(st)−NumPing(rt) = NumPing(s)−NumPing(r), which is non-zero
by supposition. If (ii) does not hold, it does not hold for st and rt either by a
similar reasoning. Hence we have st �

∗
ΦAP

rt.
Intuitively, we can backtrack the information on these functions: The value

of NumPing is decremented with each preceding ping, while ValidTick is decre-
mented with each preceding tick until it hits 0. It means that ∼∗

ΦAP
can be seen

as an automaton that is both forward and backward deterministic.
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We identify below a well-behaved subclass of reversible specifications with
resource-intensive limit behavior.

Theorem 29. Let Φ be a reversible specification. If for every s, r ∈ Σ∗ with
s ∼ω

Φ r there exists t ∈ Σ∗ with st ∼∗
Φ rt, then Φ has resource-intensive limit

behavior.

Proof. We show that the reversibility of Φ, together with the above assumption,
implies ∼∗

Φ = ∼ω
Φ. Note that the inclusion ∼∗

Φ ⊆ ∼ω
Φ always holds as stated by

Fact 22. Assuming (Σ∗/∼∗
Φ, ·, ε) is a group, we have s1r ∼∗

Φ s2r ⇒ s1 ∼∗
Φ s2 for

all s1, s2, r ∈ Σ∗. The inclusion ∼ω
Φ ⊆ ∼∗

Φ holds since having s1 �
∗
Φ s2 implies

for all r ∈ Σ∗ that s1r �
∗
Φ s2r, which in turn implies s1 �

ω
Φ s2 by our initial

assumption. Finally, by Theorem 24, we obtain that Φ has resource-intensive
limit behavior. �

Recall the average ping specification from Example 28. It is reversible, as
discussed earlier, and satisfies the condition in Theorem 29, therefore it has
resource-intensive limit behavior. Finally, we present the maximal ping – a simi-
larly simple variant of the maximal response-time specification. We demonstrate
that this specification is not reversible, although it has resource-intensive limit
behavior.

Example 30. Let Σ = {ping, other} and consider the boolean specifica-
tion P = �♦ping. Let CurPing(s) and MaxPing(s) be defined similarly as
for the maximal response-time specification in Example 16. We fix ΦMP =
(MaxPing, lim) which we call the maximal ping specification. Consider s =
ping.other and r = ping.other.other. While s �∼∗

ΦMP
r, we have sr ∼∗

ΦMP
rr,

therefore ∼∗
ΦMP

does not yield a group. Intuitively, this is because we cannot
backtrack the information on the running maximum. However, similarly as for
the maximal-response time specification in Example 16, one can verify that
∼∗

ΦMP
= ∼ω

ΦMP
.

Note that a notion of reversibility exists for abstract monitors as well: A mon-
itor M = (∼, γ) where ∼ yields a group enjoys reversibility. In particular, this
ability allows the monitor to return to a previous computation step without
using additional resources and thus consider a different trace suffix.

5 Conclusion and Future Work

We formalize a framework that supports reasoning about precision-resource
trade-offs for the approximate and exact monitoring of quantitative specifi-
cations. Unlike previous results, which analyze trade-offs for specific machine
models such as register monitors [32,37], the framework presented in this paper
studies for the first time an abstract notion of monitors, independent of the
representation model, and separates the monitor errors on finite traces from
those at the limit. These innovations allow us to design and study monitors
that keep the focus on the resources needed for the approximate monitoring of
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quantitative specifications with a given precision. We provide several examples
of when approximate monitoring can save resources and investigate when it fails
to achieve this goal.

An expected future work is to provide a procedure for constructing a con-
crete (exact or approximate) monitor from an abstract description. Monitors
having finitely many equivalence classes can be naturally mapped to finite-state
automata. For a monitor with infinitely many equivalence classes, the model
must be an infinite-state transition system. Yet, there are different levels of
infinite state space. It can be generated, for example, by a finite collection of
registers [32] or by a pushdown system [28]. Even when two abstract monitors
are mapped to register automata with the same number of registers, they may
differ in the type of operations used or the run-time needed per observation. It
is also worth emphasizing that saving a single register may save infinitely many
resources. Our current results do not provide such performance, so it is a natural
future direction. To this end, we can consider alternative approaches to evaluate
a monitor based on the number of violations of the error-threshold.

Another direction is on the relevance of resources through time. Our notion
of resource use covers the number of equivalence classes added at time n, but an
assumption that the monitor can release resources would trigger more possibili-
ties. We can extend our framework to dynamic abstract monitors in a way that
is related to existing works on dynamic programming for model checking [53].
Intuitively, a dynamic abstract monitor keeps track of the equivalence classes
that can be reused in the future and prunes all the others to reduce resource
use.
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Abstract. Kotlin was introduced to Android as the recommended lan-
guage for development. One of the unique functionalities of Kotlin is
that of coroutines, which are lightweight tasks that can run concurrently
inside threads. Programming using coroutines is difficult, among other
things, because they can move between threads and behave unexpectedly.
We introduce runtime verification in Kotlin. We provide a language to
write properties and produce runtime monitors tailored to verify Kotlin
coroutines. We identify, formalise and runtime verify seven properties
about common runtime errors that are not easily identifiable by static
analysis. To demonstrate the acceptability of the technique in real appli-
cations, we apply our framework to an in-house Android app and micro-
benchmarks and measure the execution time and memory overheads.

1 Introduction

Coroutines were introduced at the beginning of the 1960s by Joel Erdwinn and
Melvin E. Conway to achieve separability in the context of compiler optimisa-
tion (for COBOL) [6]. Coroutines have been the object of discussion and analysis
after their introduction (see, for instance, Clarke’s paper about the correctness
of coroutines [4] and the more recent survey [20]1), but they only became “fash-
ionable” again with their introduction in the Kotlin programming language.

Though coroutines have been defined in slightly different ways, in a nutshell,
they are programming language control structures with the following charac-
terising features [19]: i) the values of the coroutine local data persist between

1 See also references therein for different uses of coroutines (e.g., for simulation, in
artificial intelligence, text processing, etc.).
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successive calls; ii) the execution of a coroutine is suspended as control leaves it,
only to carry on where it left off when control re-enters the coroutine at some
later stage. Besides, de Moura and Ierusalimschy [20] write: “We can identify
three main issues that distinguish different kinds of coroutine facilities: i) the
control-transfer mechanism, which can provide symmetric or asymmetric corou-
tines; ii) whether coroutines are provided in the language as first-class objects,
which can be freely manipulated by the programmer, or as constrained con-
structs; iii) whether a coroutine is implemented as a stackful construct, that is,
whether it can suspend its execution from within nested calls.”

We consider the use of coroutines in the Kotlin programming language. In
theory, the use of coroutines seems straightforward and appealing. In practice,
though, its use is far from being unproblematic: as with many other concur-
rency constructs, it is difficult to determine how they would behave at execution
time. Why is it difficult to program with coroutines? Many things can go wrong;
we just mention a couple of issues to make our point. An example of unde-
sirable behaviour is a coroutine holding references to an object that has since
been destroyed: this often happens in Android, where most components have
their own lifecycle. Such behaviour results in memory leaks during execution.
Another problem is when a coroutine executes using an undesirable dispatcher
and an I/O operation is carried out inside a thread dedicated to the UI: since
operations like this can cause the UI to be slowed down or become unrespon-
sive, the Android OS attempts to crash the whole application by throwing a
NetworkOnMainThreadException at runtime.

These examples illustrate the difficulty in ensuring, statically, that coroutines
will behave as expected. Consequently, the best we can do is to identify specific
harmful situations during execution and try to prevent the error from happening,
or at least to identify and report on the error. Runtime verification (RV) can
help programmers, before deployment to debug their software (as for testing) or
after deployment to identify (and prevent) errors and eventually correct them.

In this paper, we are concerned with the runtime verification of coroutines
in general and, particularly, in Kotlin. We design properties concerning what
could go wrong when programming using coroutines and use runtime verification
techniques to monitor them. Our ultimate goal is to develop a dedicated tool that
allows users to write properties in a declarative language (from which a monitor
could automatically be extracted) tailored to monitor programs using coroutines
during execution. As a first step, we start by targeting Kotlin developers who
might want to use runtime verification during testing as a debugging tool. For
that, we implemented in Kotlin monitors for properties that capture many cases
not easily, if at all, detectable by manual code inspection or static analysis.

More concretely, our contributions are as follows:

1. We identify seven properties concerning coroutines which, if not satisfied, may
cause undesirable behaviour (Sect. 3);

2. We propose a declarative property language for coroutines (Sect. 4);
3. We present an RV algorithm for the above language (Sect. 5);
4. We implement the properties discussed in Sect. 3, as coroutines and discuss

their effectiveness (Sect. 6).
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Related work is described in Sect. 7 and concluding remarks are given in Sect. 8.
In the next section, we summarise the main differences between Kotlin and Java
and explain some coroutines’ features.

2 Background: Coroutines in Kotlin

Kotlin is a programming language whose main features are its interoperability
with Java and the native support of asynchronous programming via coroutines2.
While it was developed in 2011 by JetBrains, it has been officially supported
for Android development alongside Java since October 2017 until it became the
preferred language by Google in 2019. Kotlin can be compiled to JVM bytecode,
JavaScript or native code via LLVM. Compiling to JVM bytecode makes Kotlin
easy to interoperate with Java and vice versa, despite the few but noticeable
differences between the two languages. These include the handling of exceptions
(always unhandled in Kotlin), and support for non-nullable types and coroutines.

In Kotlin, coroutines employ structured concurrency, which means that entry
and exit points must be made clear and all tasks are either completed or cancelled
before the end of the execution [22].

A Kotlin coroutine runs inside a thread, and a thread can run several corou-
tines: they follow a pattern of suspend/resume where they can be suspended
at any time, their state is saved and then restored whenever they resume,
as mentioned in the previous section. A coroutine can also suspend on one
thread and resume on another after transferring its state. This can happen,
for example, when a coroutine runs on a multithreaded dispatcher [16] such as
Dispatchers.Default, which uses a number of threads between two and the
number of CPU cores.

In order to handle mutual exclusion, Kotlin provides a coroutine-specific class
called Mutex. This contains a suspend function lock() that allows the caller to
gain exclusive access to a portion of code. The complementary function unlock()
releases the lock and must be called before any other coroutine can gain access
to the critical section. In other words, a coroutine that invokes Mutex.lock()
and then crashes without invoking Mutex.unlock() will consistently starve any
other jobs waiting on that lock. Since a coroutine may terminate at any given
time, the Mutex class provides a functional block withLock that automatically
requests the lock. It then releases it no matter what before termination.

The Kotlin standard library also provides a more conventional tool for mutual
exclusion in the form of the Lock class. This class is, however, intended for use
with threads and attempting to gain a lock inside a coroutine will make the
whole thread dormant and disabled for scheduling.

Types of Coroutines in Kotlin. A coroutine can be executed in multiple ways
and this comes with heavily different use-cases.

– A standard job that executes a block of code without returning any value is
created with the method launch.

2 Kotlin’s documentation can be found in [15]. Here we give a brief background of
Kotlin features pertinent to our work.
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– A job that is expected to return a value is created with the method async:
this returns an instance of the Deferred class. Using the await method on the
deferred object will suspend the current coroutine until a value is returned.
If the coroutine is cancelled before it can return a value, however, awaiting
the deferred object will throw an exception.

Creation of a Coroutine. The methods discussed, launch and async, are called
“coroutine builders” since they prompt the creation of a new coroutine to run
the asynchronous task. Both must be invoked inside a coroutine scope, which
delimits the coroutine lifetime following the principle of structured concurrency.

Coroutines are suspendable. The await method (from the Deferred class) is
one example of a suspending function. Depending on the coroutine scope, differ-
ent behaviour is exhibited during suspension. The couroutine may be blocking
(through the runBlocking coroutine builder), in which case the coroutine call-
ing a suspending function will block the whole thread until all its tasks are
completed. It can also be just suspending, were calling a suspending function
releases the thread to do other work.

The scope contains the coroutine context : a composite object containing the
job to be executed as well as its dispatcher, which determines what thread (or
threads) the coroutine uses for its execution.

A dispatcher, either custom or provided by a library, can be explicitly assigned
to a coroutine when used as argument for the builder function: for exam-
ple, launch { foo() } will use the same context as the parent task while
launch(Dispatchers.IO) { foo() } will use the base I/O dispatcher. The
library kotlinx.coroutines provides three base dispatchers as well as methods
for generating thread pools:

– Dispatchers.Default uses a common pool of shared background threads
and is used normally by all builders if no other dispatcher is specified;

– Dispatchers.IO is designed for blocking operations that are I/O-intensive,
like file up- or downloads;

– Dispatchers.Unconfined starts coroutine execution in the current thread
until the first suspension and then allows it to resume in whatever thread the
corresponding suspending function uses: using this dispatcher takes control
away from the programmer and leads to potentially unwanted results, so it is
discouraged by JetBrains.

The job inside the coroutine context is used for tracking the coroutine’s
parent and children. This is needed when enforcing structured concurrency in
order to ensure that the children do not outlive the parents. It is also possible
to spawn an independent coroutine by using a new Job instance as an argument
to either builder function.

The job and dispatcher can be combined inside a builder arguments list,
while, it is possible to retrieve their values as entries of the coroutineContext
instance, as follows:

launch(Dispatchers.IO + Job()) {

println( "Running job ${coroutineContext[Job]} on " +

"dispatcher ${coroutineContext[CoroutineDispatcher]}") }
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Termination of a Coroutine. The execution of a coroutine can be cancelled
at any time by invoking the CoroutineScope’s cancel method: this causes a
CancellationException to be sent to that coroutine. This is not treated as
a “real” exception as much as a prompt to terminate. Any coroutine receiving
this exception will quickly execute the following steps: i) execute any code it
might find inside a finally block; ii) recursively cancel all of its children (by
forwarding the same CancellationException to them; and then iii) terminate.

If the coroutine was created from async, executing the await call will throw
the CancellationException; otherwise the coroutine will simply terminate.

Any other kind of exception will result in the coroutine’s termination. Since
coroutines follow the paradigm of structured concurrency, cancellation, in this
case, is propagated both downstream and upstream. This means that both the
children and the parent of the failed coroutine will terminate. There is one way to
prevent the cancellation from propagating upstream: the failing coroutine must
be spawned by a SupervisorJob. In this case, the parent will not be affected by
the failure and will simply receive the exception that caused the failure.

Note that catching an exception in a try-catch block will not prevent termi-
nation. It may, however, allow for a quick handling such as, for example, logging.
Any code inside a finally block will be executed.

3 Informal Description of Properties

Because of the various features and perks of both the Kotlin language and
Android development, we have identified seven properties that should be moni-
tored, which we index and describe in this section.

Of these seven, properties 1 and 7 are about coroutines outliving their caller
and the subsequent risk of leaking memory mentioned earlier; properties 5 and 6
address the possibility that a coroutine may run inside an undesirable dispatcher,
with serious risks of fatal crashes as a consequence; properties 2, 3 and 4 concern
how Kotlin handles successful and failed tasks, as well as how exception traces
may be lost when a crash takes place in an asynchronous computation. When
this work was performed properties 2 and 3 were concerning, but Kotlin now
handles these by design (from v1.4). We consider them for completeness.

Other undesirable scenarios, like the one presented in the first property, can
now be avoided by making use of first-party libraries which provide, for example,
coroutine scopes that are lifecycle-aware.

We present a summary of all relevant properties at the end of this section.

3.1 Property 1: DestroyedWithOwner

Coroutines execute a given block of code which may or may not contain refer-
ences to an Android lifecycle component. We do not go into detail of what these
are, but these components are destroyed and recreated arbitrarily and we do not
want them to persist inside an asynchronous task as that would leak memory.

RV is required since the destruction of a lifecycle component does not happen
regularly and can be triggered by events external to the app (like the device
battery running low) or to the device itself (like the user rotating the screen).
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Static analysis could be used before the execution to ensure, for example,
that a lifecyle-aware coroutine scope is being used: a scope like this can be
tailor-made or imported from the official ktx library, but there is no guarantee
that a programmer will be doing either. This makes RV more desirable as it does
not necessarily impose a restriction on the programmer’s choice of libraries.

3.2 Property 2: NormalAsync

If a given block of code is executed without any failures, it will yield a certain
return value depending on the type of coroutine on which it was running:

– launched tasks will yield Unit, the Kotlin equivalent of Java’s void;
– async tasks will yield a Deferred<T> value, i.e. a “future” result that even-

tually evaluates to a value of type T.

Either of these scenarios is the “optimal” behaviour for its kind of task. This
property is only broken when a coroutine throws an exception as a “successful”
scenario, e.g., a launched task that executes on an infinite loop, throwing a
RuntimeException to force termination, as for the following code snippet:

suspend fun foo() { if (goodScenario()) doThings()

else throw RuntimeException() }

To help ensure JetBrains’ recommendation that exceptions should not be
used as return values, a monitor can be used to identify and notify when excep-
tions are yielded by coroutines (which may not be as easily determinable by
static analysis as in the previous example).

3.3 Property 3: ExceptionalAsync

An exception thrown inside an async coroutine will flag the current context
for termination; the only outliers are cancellation exceptions, which are seen as
“normal” termination directives rather than crashes.

Thrown exceptions should ideally be stored in the current context or in
another throwable saved in the current context, to avoid losing information about
the crash. In the newer versions of Kotlin (from v1.4), exceptions thrown after a
crash are stored inside the field Exception.suppressed. The exception is then
thrown upon the invocation of await, ensuring that all crash data is available
for the programmer to handle, as exemplified in the following code:

fun main() = runBlocking {

val deferred = GlobalScope.async { throwOneAndSuppress(10000) }

try { deferred.await() }

catch (e: Exception) {

println("Suppressed ${e.suppressed.size} exceptions") }}

suspend fun throwOneAndSuppress(amount: Int) = coroutineScope {

repeat(amount) { launch {
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try { delay(Long.MAX_VALUE) }

finally { throw ArithmeticException() }}}

launch { delay(100L) // This will be thrown first.

throw IOException() }

delay(Long.MAX_VALUE) }

For versions of Kotlin that do not support this, we considered monitoring as
a way to collect these exceptions.

3.4 Property 4: NeedHandler

Any exception thrown inside launch coroutines should be rethrown between
parent tasks all the way until the CoroutineExceptionHandler at the top level
handles the failure. As mentioned for the previous property, exceptions should
be stored to preserve information about the crash. In the case of launch jobs,
this means that the context needs an exception handler that carries exception
data rather than simply crashing. The exception thrown references other fail-
ures that occurred after it inside the field Exception.suppressed and all the
information can then be accessed from the handler. The following snippet repre-
sents a compliant scenario where the function throwOneAndSuppress from the
previous example is started with a launch rather than async coroutine builder:

fun main() = runBlocking {

val handler = CoroutineExceptionHandler { _, exception ->

println("Suppressed ${exception.suppressed.size} exceptions") }

val job = GlobalScope.launch(handler) {

throwOneAndSuppress(10000) }

job.join() }

Here, instrumentation can be used to enforce automatically the propagation
of exceptions happening inside a launch coroutine upwards.

3.5 Property 5: NoBlockUI

Android apps should leave the UI thread as lightweight as possible and avoid
blocking it with heavy and/or slow computations. Some scenarios are downright
forbidden, like when an I/O operation is executed on the UI thread. In these
situations the Android runtime will launch a NetworkOnMainThreadException.

As an example, let us consider an app that reads a JSON stream from an
endpoint and uses it to update some components on the screen. The reading and
the UI update are carried out inside suspend functions that execute in whatever
context they are launched in. The view model invokes them in the background
whenever the activity is resumed, and then the activity itself invokes them every
time the user presses a refresh button. The expectation is that the app loads and
displays the data when the activity is started and then repeats the operation
every time the refresh button is pressed or every time the app returns to the
foreground. The actual scenario is that the app will crash as soon as the activity
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is started, as the view model invokes the read coroutine (on the UI thread),
triggering a NetworkOnMainThreadException.

Kotlin does not issue any warnings about this possibility. Static analysis could
be developed to ensure the correct dispatcher is used for each task, assuming a
precise-enough analysis. RV instead provides us with a lightweight method, and
allows for possible enforcement.

3.6 Property 6: UpdateUI

In a similar situation as the one above, when a background thread tries to access
UI elements, the Android runtime throws a CalledFromWrongThreadException.
This can be seen in the code example below, where the methods okState and
errorState update the screen with the outcome of a network operation, and
thus use within a view model (a UI element) will cause the system to crash.

private suspend fun getJson(uri: String) = coroutineScope {

try { URL(uri).readText().let { data: String ->

val parsedData = parseJsonResponse(data)

if (parsedData is Failure) { errorState("Error: $uri") }

else { okState(parsedData.getOrThrow()) }}}

catch (e: Exception) { errorState(e.toString()) }}

3.7 Property 7: ResumeIfNeeded

Under the hood, coroutines are a sequence of callbacks that are suspended at
one or more points in their execution. These suspend points can be traced back
to any invocation of a suspend function inside a coroutine code block. The code
inside a coroutine is executed until a suspend point is reached: here, the coroutine
returns a special value to warn its dispatcher that its execution is not finished.
Later, the dispatcher checks whether the coroutine is suspended, complete or
cancelled, and, in the first case, it resumes the coroutine; the execution will
start right after from the last suspend point.

In cases where computation takes a large amount of time to complete, how-
ever, there might not be a chance for the dispatcher to check for cancellation. It is
good practice to check the flag isActive, which returns false whenever the cur-
rent coroutine is not supposed to execute anymore; there is also an ensureActive
method that throws a CancellationException unless the isActive flag is true.
These checks are executed at runtime so it would be appropriate to ensure at
runtime that a task is only completed if necessary.

Let us consider an asynchronous task that is set to download a large file and
store it in the user’s smartphone. This task is launched inside a coroutine that
starts the download process. The Android activity is suddenly terminated: we
ideally want the download to be interrupted. The scope used to launch the corou-
tine will determine whether the task is allowed to continue or not: if the coroutine
context is tied to the activity, it will notify the download task (along with any
other tasks) of the activity having terminated using a CancellationException.
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3.8 Properties Summarised

– DestroyedWithOwner : any coroutine launched from a component with a life-
cycle should be destroyed together with it to avoid memory leaks;

– NormalAsync: coroutines should not throw exceptions as special return values
but, rather, reserve their use for failures;

– ExceptionalAsync: multiple exceptions occurring inside an async coroutine
should all be able to be tracked and retrieved, rather than only one of them;

– NeedHandler : any launch coroutine should have a handler that keeps track
of exceptions;

– NoBlockUI : coroutines that are launched from the UI thread should keep the
thread lightweight;

– UpdateUI : coroutines that are not launched from the UI thread should never
interact with UI elements;

– ResumeIfNeeded : coroutines carrying out slow computations should check
periodically that they are still needed.

4 A Coroutine-Aware Specification Language

We define a tailor-made version of LTL for coroutines in the context of Kotlin.
Our requirements were the ability to specify the behaviour of coroutines and their
relation to other objects (e.g., scopes and threads). We add a first-class notion
of coroutines, allowing quantification over them. We consider a set of events
that allow relating coroutines with other objects in the language and relating
coroutines with each other. To allow for this, our alphabet is two-layered: general
program events and events tied to a coroutine.

Definition 1. A corLTL specification π is defined by the following grammar:

Σx
def= LaunchType x | AsyncType x | Running x | Active x | Blocked x |
OnMainThread x | TransferToMainThread x | HasActiveScope x | ...

ψx
def= Σ | Σx | π | ψx ∧ ψx | ψx | Xψx | ψxUψx

π
def= π ∧ π | ¬π | ∀x : coroutines · ψx

We define disjunction (∨), globally (G), eventually (F ), and existential quan-
tification (∃) as usual. We limit ourselves to well-formed formulas where every
variable appearing in the formula is bound. We assume predicates and relations
are typed, and use only well-typed formulas. We assume a static number n of
coroutines that all exist at the start of a program, with unique identifiers from
ID = {0, ..., n}. We then can define system traces as sequences over sets of
Σ ∪ {pn | px ∈ Σx ∧ i ∈ ID}. We number events to relate to a couroutine (e.g.,
p1 and p′

1 are about the coroutine with identifier 1 ).
The semantics of corLTL extends that of LTL to reason about coroutines.

Definition 2 (Semantics). We say the infinite trace w is a model of π,
denoted by w |= π, according to the rules in Fig. 1.
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Fig. 1. corLTL semantics where wx denotes the x-th strict suffix of w.

With appropriate events, we can capture the properties from the previous
section and more.

Example 1. A coroutine can only be active if its scope is still active: ∀x :
coroutines · G(active(x) =⇒ hasActiveScope(s)).

Example 2. When a coroutine is doing an I/O operation, then it currently is on a
background thread: ∀x : coroutines · G(doingIO(x) =⇒ ¬onMainThread(x)).

Example 3. When a coroutine is updating the UI then it is on the main thread:
∀x : coroutines · G(updatingUI(x) =⇒ onMainThread(x)).

We can also express application-specific properties.

Example 4. A job is handled only once: ∀x : coroutines · G(handledJob(x) =⇒
XG(¬handledJob(x))).

5 Monitoring Kotlin Coroutines

In this section, we discuss monitoring for corLTL specifications. Since corLTL
has the full power of LTL, it is not fully monitorable, instead in this language
we focus on the safety subset of corLTL, consisting of the negation normal form
(NNF) and until/release-free subset. Thus we restrict ψ in Definition 2 with
negation only on the atomic events (and π), without until but with weak until
(W ). We consider two options for monitoring for this sub-language.

Standard LTL Monitoring. One could try to re-use standard LTL monitoring
for our tailor-made logic, by transforming a corLTL formula into a standard LTL
formula by eliminating the quantifiers recursively as follows: ∀x : coroutines ·
ψ ⇐⇒ ∧

i∈ID ψ[x/i].
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Each coroutine could be instrumented to output appropriately labelled events
to a channel that is only listened to by a monitor for this quantifier-free formula.
However, this transformation is exponential in the number of nested quantifiers.
It bears asking then whether nested quantifiers are useful. The basic properties
about coroutines we have detailed do not require these, but program-specific
properties may require the power of nested quantifiers, for example:

Example 5. If a coroutine holds a resource then no other coroutine also holds it:
∀x : coroutines · HoldsResource x =⇒ �y : coroutines · HoldsResource y.

Instead of paying the cost for the exponential transformation, we next explore
the option to distribute monitoring over the coroutines through automata com-
municating through channels.

Communicating Automata. Given a specification, assign every quantifica-
tion with an identifier from N, abstract each away by replacing it with an event
ej (j corresponding to the identifier of the quantified sub-formula). Then the
specification becomes an LTL formula over Σ ∪ {ej |j ∈ N}. For Example 5
we can assign the event e0 to �y : coroutines · HoldsResource y, and e1 to
∀x : coroutines · HoldsResource x =⇒ e0, and the top-level formula is just
e1.

A monitor can be extracted for the top-level formula, and other monitors
for the formula corresponding to each ej . An issue is that the value of ej at
a time-step t may only be knowable in a future time-step, e.g. if ej = ∀x :
coroutines · Xe. The monitor would then have to branch on both values, and
discard one of the branches when the value of ej is eventually set.

Here, for simplicity and as a first step, we further restrict the language by
only allowing quantification at the high level of a formula (π), and disallowing
quantification at the LTL level. Then we can re-use standard LTL synthesis for
the LTL parts of the specifications and use communicating automata to monitor
for the high-level logic. We illustrate our proposed approach with a variation on
symbolic automaton monitors (e.g., [3,5]).

Definition 3 (DEAC). A Dynamic Event Automaton with Channels (DEAC)
is a tuple Dx = 〈Cr, Cs, Σ,Σx, ΣC, Q, V, q0, θ0, A,B,→〉, where Cr, Cs ∈ C are
finite sets of channels (s.t. Cr ∩ Cs = {}), Σ is a finite alphabet, Σx is a finite
alphabet over a free variable x, ΣC is a finite set of channel events, Q is a
finite set of states, V is a finite set of variables, q0 ∈ Q is the initial state,
θ0 : V → VAL is the initial valuation of the variables V , A ⊆ Q is the set of
accepting states, B ⊆ Q is the set of bad states, and →: Q × (2Σ∪Σx∪(ΣC×Cr) ×
V → {true, false}) → (2ΣC×Cs × (V → VAL) × Q) is the transition function
guarded by sets of program, coroutine-specific, and channel events received from
Cr, and the current variable valuation, and that can send events on Cs.

We write q
g �→(out,a)−−−−−−→ q′ for (q, g, out, a, q′) ∈→. We write ¬D for the DEAC

D with the accepting and bad states swapped. We write t ∈ L(D) when t is a
trace over events and channel events that reaches an accepting state in D.
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Fig. 2. DEAC semantics

Fig. 3. Network of DEACs

We define our variation of DATEs, DEACs, here to include a semantics where
a buffer of channel events is kept, with a DEAC consuming events sent on the
channels it listening to (Cr).

Definition 4. The operational semantics of DEACs, presented in Fig. 2, is
given over configurations of triples of states, valuations (Q,V → VAL), and
sets of channel events, with transitions labelled by channel events.

We characterise a network of DEACs that communicate with each other
through these channel events as their composition.

Definition 5. A network of two DEACs D1
x and D2

y, with non-intersecting
receive channels (C1

r ∩ C2
r = {}), denoted by D1

x‖D2
y, is a DEAC 〈C1

r ∪ C2
r , C1

s ∪
C2

s , Σ,Σx ∪Σy, ΣC, Q1×Q2, V 1∪V 2, (q10 , q
2
0), (θ

1
0, θ

2
0), A

1×A2, (B1×Q2)∪(Q1×
B2),→〉, with the transition function → being the composition of both DEACs’
transition functions as in Fig. 3 (the last two rules apply symmetrically for D2

y).

The safety subset of LTL is monitorable, and a corresponding deterministic
finite-state automaton (doubly exponential in the size of the formula) exists [17].
We thus assume such construction from safety LTL formulas to DEACs, and we
denote the DEAC corresponding to an LTL formula ψ by aut(ψ). For every LTL
formula ψ, in a (restricted) corLTL specification, we assume a corresponding
event, denoted by ev

ψ, where v ∈ {�,⊥} denotes the verdict on ψ. We assume
the construction of aut(ψ) is such that e�

ψ is outputted to a channel cx on
accepting transitions, and e⊥

ψ is outputted to cx on bad transitions.
Given an LTL formula ψ we define Dψ as the DEAC with C = {ci | i ∈

ID}, ΣC = {e�
ψ , e⊥

ψ }, Q = {q0, qA, qB}, V = {vi | i ∈ ID}, θ0 sets every vi to
⊥, qA being the only accepting state, qB being the only bad state, and with
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Fig. 4. Monitor construction for corLTL.

→= {q0

∨
c∈Cr

(e⊥
ψ ,c)∈ecs�→({},

∧
i∈ID(e

�
ψ ,ci)∈ecs =⇒ v′

n=�)−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ q0} ∪ {q0
∨

c∈Cr
(e⊥

ψ ,c)∈ecs−−−−−−−−−−−→
sB}∪{q0

∧
i∈ID vi−−−−−→ sA}. Note how this automaton remains in q0, setting vi to be

true when ψ is identified as true on ci, while if all variables become true then
there is a transition to the accepting state. If instead ψ is false on some ci then
there is a transition to a bad state.

A monitor (for a top-level safety formula) can be given as shown in Fig. 4.
We can show correspondence between the infinite traces models of a property
and the infinite traces accepted by a corresponding monitor:

Theorem 1. For a safety corLTL formula π: w |= π ⇐⇒ w ∈ L(mon(π)).

However, note that the monitor may take an extra step to determine satisfac-
tion given finite traces since Dψ separates the step of marking satisfying events
and that of determining whether all the coroutines have satisfied the property. It
should be clear that a monitor that does this at the same time can be constructed
but would have more complex guards and actions.

6 Implementation and Evaluation

In order to monitor the properties identified earlier, we developed an API3 that
would be as transparent as possible to a developer. This was achieved by cre-
ating a new interface called MonitoredComponent, implemented by subclasses
of Activity and ViewModel that would provide a familiar set of utilities and
coroutine builders while carrying out the monitoring under the surface.

The interface holds records of any tasks started, as well as their dispatchers
and exception handlers:

– recommendedDispatchers, a HashMap storing the best coroutine dispatcher
to use with each task;

– defaultHandler, a CoroutineExceptionHandler that should be inserted
into unhandled coroutine contexts according to NeedHandler ;

– monitoredApplication, an accessor providing communication between the
component and the MonitoredApplication instance.

The two implementations of MonitoredComponent provided by the API are
MonitoredActivity and MonitoredViewModel. They expose an overloaded ver-
sion of the coroutine builder methods that uses a lifecycle-aware scope by default
3 The code can be found at https://gitlab.com/denf86/kotlin-rv.

https://gitlab.com/denf86/kotlin-rv
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(identified as the lifecycleScope and viewModelScope, respectively, both pro-
vided by kotlinx) to uphold the DestroyedWithOwner property.

Since tasks started via the launch method will only employ the handler at top
level, the subclasses of MonitoredComponent try and extract a coroutine handler
from inside the context. If no handler is found, the defaultHandler will be added
so as to ensure that an instance of CoroutineExceptionHandler is present at all
times. For example, any invocation of viewModelScope.launch { foo() } in a
handler-less context is translated to viewModelScope.launch(defaultHandler)
{ foo() }. The MonitoredComponent has, however, no way of knowing whether
the task currently being started lies in the top level or not.

In the case of the async coroutine builder, the MonitoredComponent focuses
instead on re-throwing any exceptions according to ExceptionalAsync.

Any given instance of MonitoredComponent upholds the properties Slow-
DownUI and UpdateUI by means of runtime enforcement. While it has no
way of knowing in advance what a block of code will do once executed,
it remembers what a given block of code did during its last execution. In
order to do so, it detects cases of CalledFromWrongThreadException and
NetworkOnMainThreadException being thrown inside a coroutine and uses them
to infer what thread may be a better choice should the same task be executed
again. The component then adds an entry to the recommendedDispatchers
consisting of the inferred ideal dispatcher and an identifier that was arbitrarily
composed of class and name, as well as line number, of the method invoked inside
the failed coroutine, read from the exception stack trace.

To provide an example, if the same I/O method readFromFile is launched
inside a coroutine on the UI thread twice in a row:

– the first time will result in failure with a NetworkOnMainThreadException
and the MonitoredComponent will update the recommendedDispatchers
with a new entry Dispatchers.IO for this method;

– the second time, the MonitoredComponent will look up the entry created and
overwrite the given dispatcher with Dispatchers.IO, allowing the method to
execute correctly.

Since a task can fail for any given exception type outside of the above
two, the MonitoredComponent internally replaces the first occurrence of
either CalledFromWrongThreadException or NetworkOnMainThreadException
with a newly-defined WrongDispatcherException, with the original as
its cause, and rethrows it to the upper layer. At the top level, the
CoroutineExceptionHandler can detect whether the crash was originally trig-
gered by a WrongDispatcherException and only then will it save the new
recommendedDispatchers entry.

The entries saved are stored inside a MonitoredApplication, which extends
the standard Android application. Despite its name, the MonitoredApplication
is not instrumented but only contains a map of the recommendedDispatchers
collections for each MonitoredComponent in the app. The map is loaded by
monitored component instances during their initialisation and updated by them
before their deletion.
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Right before the app is terminated, a service prints the content of each saved
recommendedDispatchers map. This string is visible on the device log, which
was thought to be a good compromise between storing everything in memory
and creating an output file. The printout looks like this:

2020-01-15 12:06:38.035 12315-12315/com.android.rv D/Report:
Post-execution report for app com.android.rv.KotlinRV:
Component: com.android.rv.properties.BrowsePicturesViewModel
com.android.rv.ViewKt$loadFrom$2$1.invokeSuspend:51 =>

LimitingDispatcher@849932d[dispatcher = DefaultDispatcher]
com.android.rv.ViewKt.loadFrom:47 => Main

Component: com.android.rv.properties.BrowsePicturesActivity

The output above means that the coroutine launched on l.51 of the loadFrom
function (source file “View.kt”) should use a dispatcher for background threads
while the invocation on l.47 of the same function should use the UI thread.

Application-Specific Properties. We tested the API on a simple Android app
developed ad-hoc: this application would look for images on an online repository
and display them on screen after downloading their bytes in an asynchronous
task in a coroutine. We identified some more properties to monitor, specific to
the application at hand. We defined two new properties:

– AlwaysOneJob checks that only one task can look up images at a time: multi-
ple lookup operations would overwrite the displayed list of images, resulting
possibly in a waste of mobile data when the search button is double tapped;

– SuccessWithJSON checks that the app can normally execute in the case of the
expected image data, which should always be a JSON object, being malformed
or otherwise unreadable.

Evaluation of the MonitoredComponent API. After it had been tested and
benchmarked on an ad-hoc Android app, the API was found to work on a general
case but still needs some improvements. Overall, the recognition of thread-based
crashes was found to not be foolproof: it could not handle a use case where the
recommended dispatcher was not the best option, and it needed to experience a
small number of crashes before the recommendedDispatchers map had enough
entries to be reliable. Its main weakness was, in fact, the reliance on a task failing
several times with the right exceptions.

The benchmarks, carried out using the Android Jetpack tools, showed that
the overheads added by the API could grow significantly:

– tasks created with launch could be between 0.46–1.60% slower;
– tasks created with async could be between 0.45–0.86% slower;
– running a thousand async tasks in parallel could take between 56.43–144.49%

more time while using the API.
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Table 1. Sony device benchmarks.

Test Execution time (ms) Overhead

No monitors Monitored (ms) (%)

Tasks created with launch 1022 1039 17 1.60

Tasks created with async 1026 1034 8 0.86

1000 ∗ parallel async 1198 1873 675 56.43

Table 2. Huawei device benchmarks.

Test Execution time (ms) Overhead

No monitors Monitored (ms) (%)

Tasks created with launch 1008 1013 5 0.46

Tasks created with async 1008 1012 4 0.45

1000 ∗ parallel async 1446 3521 2075 144.49

Performance was measured with executing the same methods ten times on
two smartphone models, a Sony Xperia XZ2 Compact H8324 and a Huawei Y6
ATU-L21. See the results in Table 1 (Table 2) for the Sony (Huawei) device.

The instrumented app was additionally tested for its memory footprint
using Android Studio’s built-in profiler. This exposed another weakness of the
recommendedDispatchers map in that storing the class names as keys meant
that the longer a name of a class, the more space it would take.

7 Related Work

Runtime verification of concurrency has mostly focused on checking generic prop-
erties such as deadlock freedom, the absence of data races, atomicity violations,
etc. For this, specific approaches and tools exist, such as [1,13,14]. See [18] for a
recent description of existing properties and approaches as well as [12] for some
dedicated tools. In addition, approaches to monitoring user-provided properties
in mono-threaded programs have been lifted to multithreaded ones as are. How-
ever, the soundness of the produced verdicts depends on the specifications and
the program locations producing the events of interest [9].

The approach described in this paper is novel in that it introduces support
for runtime verification in the Kotlin programming language. We note that, even
though Kotlin compiles to (Java) bytecode, existing approaches to the monitor-
ing of Java programs cannot be applied for our purposes. One originality of
our approach is in the runtime verification of a specific concurrency construct,
though we verify generic properties as well as program-specific properties. It is
the specific form of structured concurrency that allows the design of a tailored
specification language to express coroutine-specific properties. We note that we
have not described desirable properties of coroutines that could be checked stat-
ically even though they are easily expressible in our framework. However, they
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are implemented and available in our tool since, to the best of our knowledge,
there is no static analyser to check these properties. Henceforth, while corou-
tines facilitate concurrent programming, they are prone to errors, and our tooled
approach provides programmers with the means to debug their programs.

The official library kotlinx.coroutines provides a basic set of debugging
tools, consisting of a debug mode and a stacktrace recovery feature. The same
Kotlinx library also provides an experimental module dedicated to debugging:
this keeps records of all coroutines alive and introspecting and dumping them
to enhance stacktraces with additional information like where a coroutine was
created. The module can be used as a standalone JVM agent. This enables
debug probes on the application startup and allows the monitoring of the whole
application. However, the overheads caused by the recording and dumping of
each coroutine are very noticeable and not recommended in production.

Finally, we mention a couple of Kotlin static analysis tools. The Detekt [8]
tool allows checking six predefined rules on coroutines. The tool allows program-
mers to expand the range of checks by defining custom rules. More rules for
Kotlin coroutines are provided by Sonar [21], a company leader in code analysis.
These rules are taken from the official Kotlin guidelines and include some of the
cases already mentioned for Detekt. Compared to these, our tool benefits from
the same advantages and limitations as runtime verification over static analysis
but could benefit from a combination with the latter (e.g., as in [2]).

8 Concluding Remarks

We have introduced a language for writing properties about coroutines, and
we have provided an implementation to verify several properties concerning the
execution of coroutines in Kotlin.

Despite our approach being (in theory) usable both pre-deployment (as a
debugging tool) and post-deployment (as a monitor during the real execution of
the system), we have, in this paper, only focused on the former. Our benchmarks
show that the introduced overhead would be hardly noticeable by a developer
but may have scalability issues in extreme situations. As a first proof-of-concept,
we have thus implemented our monitors as (hardcoded) coroutines for all the
identified properties instead of as a general monitoring tool that extracts the
monitors for the properties (written in our language). The implementation of a
dedicated tool to write properties using our language is left for future work.

We have applied our implementation to many programs and identified, in
some cases, that the properties were violated. Though some of the programs we
used in our evaluation were written with the explicit intention of producing the
error, the value of the exercise relies on that: i) the errors are not easy to detect
(they would be very difficult or impossible to be identified by the programmer);
ii) the errors were detected by our implemented monitors.

Note that all properties capture actual potential problems of coroutines in
Kotlin. The only exceptions to this in newer versions of Kotlin are NormalAsync
and ExceptionalAsync, which are solved with exception suppression.
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Finally, as Kotlin became the favourite language for developping Android
applications, our approach allows revisiting the existing monitoring frameworks
for Android [7,10,11,23].
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Abstract. Aspect-oriented programming tools aim to provide increased
code modularity by enabling programming of cross-cutting concerns sep-
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accompanying tool, by allowing for non-invasive monitoring instrumen-
tation techniques. In this paper we present, AspectSol, which enables
aspect-oriented programming for smart contracts written in Solidity, and
then discuss the design space for pointcuts and aspects in this context.
We present and evaluate practical runtime verification uses and applica-
tions of the tool.
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1 Introduction
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the management of digital assets without the need for a central authority, and
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of logic on such a decentralised platform, thus ensuring faithful execution and
enabling trustless operationalisation of protocols of behaviour between parties.

By being deployed on a platform with decentralised control, a blockchain or
a variant thereof, these smart contracts come with the benefit of immutability—
once written, the protocol cannot be modified unless in a manner that was
originally planned and built into the protocol itself. This autonomous and guar-
anteed computation platform provides a guarantee not granted by traditional
centralised systems. Benefits rarely come without a related cost though, and in
this case the cost emanates similarly from immutability.

Smart contracts are nothing more than executable code (running on a DLT
platform), for which an unavoidable feature (as with any other software) is the
presence of bugs. Immutable code may be the selling point of smart contracts,
but immutable bugs are the cost. Add to this the fact that smart contracts
typically deal with digital assets, making their correctness critical.

Although smart contracts are typically small programs, modularisation of
code is a key measure to reduce potential errors. However, the way smart con-
tracts call each other on platforms like Ethereum [13] is unlike that found in
traditional systems, due to overheads, such as gas1 costs, which can be pro-
hibitive.

Beyond modularisation within the same smart contract, one would also desire
to have the tools to encode features and transformations commonly in use across
different smart contracts. One technique that has been used for such cross-
cutting modularisation is that of aspect-oriented programming (AOP) [10]. In
this paper we present an AOP tool for Solidity [6], one of the most commonly
used smart contract programming languages. The tool is publicly available at
https://github.com/ryanfalzon/aspectSol.

AOP has frequently been used as a tool for instrumentation of runtime mon-
itoring and verification code, e.g. [4,7,12]. We show how our tool, AspectSol,
can be effective in both instrumenting verification code for specifications, and
injecting new features modularly, in a monitoring-oriented programming [2] style.

2 Aspect-Oriented Programming

The main idea behind AOP is to allow for the writing of cross-cutting features
separate from the main system. Such an approach allows for the specification of
joinpoints (points during the execution of the underlying system) where specified
advice (specific instructions or code) will be weaved in. Joinpoints are typically
specified using pointcuts, essentially specifying a set of joinpoints to be matched.
Such an aspect-oriented specification can then be used to weave in the advice
onto the existing system. Different joinpoint types are supported by different
languages. For instance, for imperative languages, one allows hooking onto points
1 The notion of gas as a resource to be paid for to execute code is the most common way

thorough which public blockchains motivate miners (the nodes in the decentralised
network which process transactions and record them on the blockchain) to execute
and record execution of smart contract code.

https://github.com/ryanfalzon/aspectSol
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such as the start and end of a function call, on an exception being raised, and
updates of state.

3 Smart Contract AOP: Design Considerations

The design of an AOP tool must necessarily take into consideration the nature
of the programming language it is to be used for.
Joinpoints. In particular, the choice of joinpoints, the candidate points in a
program’s execution where an aspect can trigger, is a crucial decision. Solidity is
essentially an imperative language, and any AOP tool for the language will cer-
tainly borrow much from other tools for this class of languages, e.g. AspectC [3]
and AspectJ [9]. Function entry and exit points are such joinpoints, which we
adopt in AspectSol, allowing us to write aspects such as before call-to
Wallet.addFunds() (just before the addFunds() function in the smart contract
Wallet is called, on the caller’s side) or after call-to Wallet.withdrawFunds()
(at the end of the execution of the withdrawFunds() function in the smart con-
tract Wallet, on the caller’s side). In order to match on the callee’s side, one
would simply replace execution-of by call-to.

Given the imperative nature of Solidity, computation revolves around the
notion of state and the points where the contract state is read or written—
indicating relevant joinpoints in this context. In AspectSol we provide auto-
mated instrumentation of such points, e.g. before set uint count and after
get bool is_paid. It is worth noting that read pointcuts only trigger when
variables are read from within the smart contract being instrumented. This is
unavoidable on public blockchains, where state can be read by external entities
without having to explicitly call a smart contract.

Solidity’s notion of computation failure through the use of reverted execution
is unlike that of traditional exceptions. Rather than returning control to the cur-
rent execution context with an exception flag, revert aborts all computation and
returns the state of the contract to that which it was before computation started.
This makes the use of such exceptions as joinpoints difficult (and expensive in
terms of gas) to handle, and therefore not handled in AspectSol.

AspectSol allows the use of the wildcard symbol * throughout (for contract
names, function names, parameter names, and types), but provides a means of
capturing the matched name in order to allow references to it by using double
square brackets, e.g. set [[typevar]] [[varname]] acts just like set * * (trig-
gering whenever a variable is set) but provides access to typevar and varname,
for instance to enable declaring an auxiliary variable of the same type and to
access the variable’s value in the advice.
Smart Contract and Language-Specific Considerations. AspectSol’s
salient features are particular to smart contracts in general and to Solidity in
particular. Since smart contracts essentially encode a protocol between parties,
the notion of such parties as active actors of transactions is at its very core. In
order to facilitate aspects that use such notions, AspectSol provides a pointcut
filter, originating-from, to trigger only when the call is made by a particular
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party, from a particular contract, or from a particular function. For instance, the
following pointcut triggers at the start of calls to depositMoney() in the Wallet
smart contract with msg.sender being owners[0]:

before
execution-of Wallet.depositMoney ()
originating-from owners [0]

Another such feature is native cryptocurrency transfer for which it could
be useful to implement pointcuts. In Solidity, sending funds is achieved through
calling the send or transfer functions targeting the recipient’s address, meaning
that we can already capture such pointcuts as function calls, e.g. before call-to
[[recipient_address]].transfer(). Receiving funds is, however, different in
that functions can be tagged as payable, meaning that funds can be transferred
to the smart contract whenever such a function is called. AspectSol allows for
pointcut filtering based on such function tags, thus allowing us to capture calls
to functions which transfer funds, e.g.:

after execution-of Wallet .*(*) tagged-with payable

Solidity modifiers allow functions to be tagged, which would result in chang-
ing their behaviour, e.g. to execute certain code before or after the function
body. We treat modifiers similar to the payable tag, allowing aspects to capture
functions which use (or do not use) certain modifiers. We similarly treat visibility
annotations such as public and internal in the same manner.
Advice and Aspects. Pointcuts are associated with executable advice by
appending a subsequent executable block of code. Consider writing an aspect
to make sure that no more than 100 deposits are performed to a wallet without
a reconciliation process taking place. This can be achieved by keeping track of
the number of deposits and checking that they have not exceeded 100 whenever
a deposit takes place. In addition, we would need to declare the new variable
which will be used to keep track of this number. This can be written as an aspect
as follows:

aspect LimitDeposits {
add-to-declaration Wallet {

uint private number_of_deposits = 0;
}

before execution-of Wallet.addDeposit () {
require (number_of_deposits < 100);
number_of_deposits ++;

}
before execution-of Wallet.reconciliation () {

number_of_deposits = 0;
}

}

Another mechanism particular to AspectSol is that of adding or removing
tags by using pointcuts referring to a function and using add-tag or remove-tag
to update the definition. For instance, if we want to make all public fields private,
we can write the following:
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update-definition Wallet .* tagged-with public {
remove-tag public;
add-tag private;

}

This approach can be used, for instance, to make a field private and add an
appropriate getter and setter to the smart contract.
Weaving Considerations. We now move on to weaving considerations, for
which different AOP tools take different strategies. For instance, AspectJ per-
forms weaving at the byte-code level, but provides three points in time when
it can be applied: compile time, pre-load time, or load time. AspectSol takes
a source-code level weaving approach, thus transpiling from the original Solid-
ity source code to produce updated Solidity code which takes the aspects into
account. This simplifies testing the updated version of the smart contract more
straightforward. The process flow of AspectSol is shown below:

Contract 
abstract
syntax

tree

AOP 
script

Original 
smart

contract

AOP 
parser

Solidity 
parser

Aspect 
weaving

Parsed
aspects

Updated
smart

contract

ASPECTSOL

4 Runtime Verification Using ASPECTSOL

In order to show the use of AspectSol, in particular for runtime verification
instrumentation, and enable a qualitative assessment of the utility of the tool, we
present three small case studies of smart contracts. For all three, we present ver-
ification code for runtime verification of desirable properties using AspectSol.
All three examples can be found in the AspectSol repository.
Guarding Against Reentrancy Attacks. Since a transaction invoking a
smart contract executes in one go, with no interaction or interference from other
blockchain transactions, as a programmer one sees smart contract functions as
atomic. This eliminates having to consider concurrency issues, making design
and implementation easier. Unless a function explicitly calls another function,
no other function code will be executed before the termination of the current
call. For example, consider a smart contract which implements a wallet in which
owners may deposit funds and send them out to other users. In addition, one
may have further functionality such as placing an amount of money in escrow
for another user. Atomicity means that when the function placeInEscrow(..)
is called, the programmer need not be concerned that there may be a concur-
rent call to withdraw funds, thus sufficing to check that there are enough funds
available at the beginning of the call to placeInEscrow(..).
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However, reality is not so simple. If placeInEscrow(..) makes a call to
another smart contract, that smart contract may call back and withdraw funds.
The atomicity assumption thus breaks down. To make things worse, on Ethereum
the mechanism for a smart contract to send funds to another, is to invoke a spe-
cial function transfer (or send) on the receiving smart contract. This is an
opportunity for the receiver to call the original contract back, once again break-
ing the assumption of the atomicity of function calls. Such reentrancy was the
source of bugs which led to the loss of the equivalent of millions of dollars.

One way in which reentrancy can be ruled out altogether is to use a Boolean
flag to ensure such code is executed only once until a transaction is complete.
Some developers do this manually where and when needed, whilst others advo-
cate the use of a function modifier which uses a blanket rule to check that a
running flag is false and set it to true upon entry to every function and reset
it upon exit. Using AspectSol, we can refine the latter to be used only if and
when control is yielded through a call to transfer funds as shown below:2

aspect SafeReenentrancy {
add-to-declarations * { private bool running = false; }

before execution-of *.* { require (! running ); }
before call-to *. transfer () { running = true; }
after call-to *. transfer () { running = false; }

}

This is a universal solution in that it can be applied to any smart contract,
without adding complexity in the code. In addition, gas costs are kept to a min-
imum, setting and resetting the flag only when transfers of funds are attempted.
Enforcing Properties. Consider the wallet smart contract, with a property
that states: No more than 1000 outgoing payments, or 100 ether3 may be sent
from the wallet, unless the smart contract is first verified by a trusted regulator.
If sendFunds() is the function provided by the smart contract to send funds to
third parties, and verifyWallet() is the function used by the regulator to verify
the owner of the wallet, we can encode runtime checks to ensure adherence to
the specification using the following aspect:

aspect WalletVerification {
add-to-declarations Wallet {

private bool is_verified = false;
private uint number_of_payments = 0;
private uint sum_of_payments = 0;

}

before execution-of Wallet.sendFunds(payable address dst , uint amount) {
if (! is_verified) {

require (number_of_payments < 1000);
require (sum_of_payments + amount <= 100 ether);
number_of_payments ++;
sum_of_payments += amount;

}
}
after execution-of Wallet.verifyWallet () {

2 In practice, we would also need to do this for the send function.
3 Ether is the native cryptocurrency used in Ethereum.
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is_verified = true;
}

}

Note that require stops and reverts the computation altogether if the con-
dition fails. In this manner, any attempt to send funds beyond the set limits is
aborted, effectively enforcing the property.
Adherence to a Business Process Flow. Finally, we show how AspectSol

can be used to runtime verify that a smart contract can only be used as intended.
Consider a casino smart contract which allows the casino to open bets on a coin
toss, enabling a player to place a guess, and then resolve the bet. The expected
business process flow of the smart contract is shown below:

Transitions are tagged by a pair party:function, denoting that the transition
is taken when the identified party calls the named function. Furthermore, we
take the semantics of the notation to indicate that invoking a function when in a
state with no outgoing transition tagged with that function (and calling party)
should fail. For instance, the function withdrawFunds() should only succeed
when in mode NoBet and called by the owner of the casino, thus disallowing the
owner from taking funds to leave the player without their winnings after they
guessed correctly. We can encode such a business process flow to ensure that the
implementation does not diverge from the expected behaviour using aspects as
follows:4

aspect CasinoBusinessProcessFlow {
add-to-declarations Casino {

enum Mode { NoBet , GameOpen , GuessMade }
private Mode mode = Mode.NoBet;

}

before execution-of Casino.createGame () {
require (mode == Mode.NoBet );
require (msg.sender == owner );

}
after execution-of Casino.createGame () {

mode = Mode.GameOpen;
}

...
}

4 The full code of the example can be found in the tool repository.
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It is worth noting that such AspectSol code would typically be generated
by a runtime verification tool from the graph-based specification. In practice, we
can make the specification notation richer by, for instance, allowing conditions on
the transitions to specify properties such as allowing createGame() only if there
are sufficient funds in the smart contract. Similarly, we can deal with failure in
a manner other than simply by disallowing violating calls, e.g. rewarding the
player with a win if the casino attempts a disallowed action after the player
has placed a bet. The fact that the specification is made independent of the
code (which we do not even show here) is the strength of using aspect-oriented
programming to specify such properties.

5 Discussion and Conclusions

The only other aspect-oriented programming tool specifically designed for smart
contracts which we are aware of is that discussed in [8]—also designed for Solid-
ity but adopts the same pointcuts used in traditional imperative and object
oriented language AOP tools. In contrast, we chose to reassess relevant point-
cuts in the context of smart contracts. In terms of weaving approach, it appears
to be similar to that used in AspectSol, although they make more extensive
use of modifiers to instrument code. Direct comparison is, however, not possible
since their tool is not available. Many other aspect-oriented programming tools
can be used for smart contracts written for platforms which support traditional
languages, but these approaches do not specifically address concepts specific to
smart contracts. In particular for runtime verification, having native notions of
digital asset transfers, parties, and access to modifiers and other tags can be
particularly useful.

One valid question is whether one really needs aspect-oriented programming
in Solidity, given it provides modifiers, which allow for tagging functions whose
behaviour will be changed accordingly, e.g. by adding code before or after the
main body of the function. Indeed, some simple use of aspect-oriented program-
ming, e.g. injecting advice at the start or the end of a function can be done using
modifiers. However, this has severe limitations in that one cannot inject code on
the caller’s side, or around specific calls to external functions—functionality
which AspectSol provides. Similarly, tag-based filtering and manipulation is a
powerful tool which cannot be replicated using modifiers. Finally, modifiers reside
within a particular smart contract, and thus lose advantages of separation-of-
concerns between the business logic and the cross-cutting aspects, and of reuse.
Despite modifiers being a powerful programming construct, they do not replace
the role an aspect-oriented tool can provide.

We have presented AspectSol, an aspect-oriented programming tool for
Solidity, designed specifically for smart contracts and going beyond traditionally
used aspects, pointcuts, and advice for imperative and object-oriented languages.
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Although Solidity is an imperative language, smart contract notions of value
flow, and interacting parties provide an opportunity for more domain specific
aspect-oriented programming. In particular, we have argued and showed how
the tool is particularly suited to instrument runtime monitoring and verification
code into smart contacts, and we are currently in the process of redesigning
ContractLarva [1,5] to use AspectSol for instrumentation.
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Abstract. Monitoring often requires insight into the monitored system
as well as concrete specifications of expected behavior. More and more
systems, however, provide information about their inner procedures by
emitting provenance information in a W3C-standardized graph format.
In this work, we present an approach to monitor such provenance data
for anomalous behavior by performing spectral graph analysis on slices
of the constructed provenance graph and by comparing the character-
istics of each slice with those of a sliding window over recently seen
slices. We argue that this approach not only simplifies the monitoring of
heterogeneous distributed systems, but also enables applying a host of
well-studied techniques to monitor such systems.

Keywords: W3C Provenance · Runtime monitoring · Spectral graph
analysis

1 Introduction

In current research on monitoring complex systems, the system is often
abstracted to a set of streams of values [12]. Even when monitoring distributed
systems, the problem of transporting the distributed data streams to the moni-
tor is assumed to be solved by the monitored system [35]. In modern real-world
systems, in contrast, it is a non-trivial effort to engineer a central component
that efficiently consolidates data for monitoring in a heavily distributed system.

Moreover, these streams may be annotated with metadata, e.g., information
about their creation times [38], whether an agent is a natural person or a software
agent, or whether some input data was required or optional for the execution
of a process. However, these metadata typically do not include information on
their relation. Consider, e.g., a scenario in which a system provides a value x
as an output to the user and also uses x as input for further computations.
This monitored information typically does not indicate whether the two values
coincide by design or by accident. Although this relation might be recovered
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from the logging stream, doing so is typically incomplete and error-prone. The
metadata and relations of data produced by a system are known as provenance
data [51].

Monitoring the provenance data of a system addresses both issues identi-
fied above: Provenance data describes, among other information, the relation
between individual data points emitted by the system. Thus, it is typically con-
solidated by the system itself and made available for inspection or monitoring.
Moreover, it contains more information on the inner workings of the system than
the functional data. Hence, monitoring both provenance data and the functional
data may lead to earlier detection of undesired system states.

In practice, monitoring approaches may take metadata of functional data
into account. These metadata, however, are usually domain-specific. In con-
trast, provenance data are non-domain-specific, yet provide information about
the structure of the monitored data as well as meta-data.

One major challenge when monitoring provenance data, however, is that
users typically lack intuition about the relation between data they expect from
the system. Thus, formulating specifications for monitoring provenance data is
harder for users than formulating specifications for classical monitoring.

To alleviate this shortcoming, in this work we instead focus on anomaly detec-
tion, thus using previously seen data as specification. We believe monitoring of
provenance data to be an interesting problem. The explicit graphs of provenance
data allow for the application of well-known graph analyses to monitoring.

We present an approach for monitoring provenance data for anomalies with-
out requiring explicit specifications. To this end, we proceed as follows: After dis-
cussing related work in Sect. 2, we formally define provenance data as provenance
graphs in Sect. 3 before subsequently describing the monitoring of provenance-
emitting systems in Sect. 4. Afterwards we outline how to use spectral graph
theory to detect anomalous provenance data in Sect. 5. Finally, in Sect. 6 we
summarize our work and give an outlook on future work.

2 Related Work

Provenance. Early works highlight the importance of provenance to enable
audits of automated workflow systems [17,29]. Moreau identified the building
blocks for standardized provenance recording and proposes the Open Prove-
nance Model (OPM) [36], which was later superseded by the W3C PROV stan-
dard [37,51]. Provenance data is either extracted from software systems after [43]
or during their operation [24,27,47]. There is active work towards recording
provenance information without instrumenting the system or process [3,5,18,39].

System Monitoring. Runtime verification (or system monitoring) is an estab-
lished building block for ensuring system correctness [4,28]. Existing approaches
to monitoring often take a specification of “good” or “bad” patterns and efficiently
detect them in the output data of the system. This specification is typically given
in temporal logics [6,13,14,26,32,40] or in higher-level languages [7,11,15].
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Anomaly Detection in Provenance Graphs. Since provenance data give struc-
tured information about the relation between data points emitted by the system,
there has been work towards identifying anomalies in provenance data. However,
such work explicitly focuses on the detection of attacks on the system [8], uses
bespoke projections from graphs to vector spaces [20,21] or only analyzes indi-
vidual characteristics of the computation process [41]. Other approaches aim to
compare provenance graphs by “summarizing” via clustering [2,31].

3 Provenance Graphs

The W3C defines provenance information as “information about entities, activ-
ities, and people involved in producing a piece of data or thing, which can be
used to form assessments about its quality, reliability or trustworthiness.” [51]

The PROV standard prescribes a non-domain-specific graph-based ontology
of such information. Each vertex in such a graph denotes either an entity, i.e.,
some piece of data, an activity, i.e., a process or action, or an agent, i.e., a person,
machine or software responsible for a process. The edges between these vertices
denote the relationships between entities, activities, and agents.

We illustrate the possible relationships in Fig. 1. We draw entities as yellow
rounded boxes, activities as blue rectangular boxes, and agents as red pentagons.
In Fig. 1, we write Attr, Deriv, Use, Gen, and Assoc to abbreviate “was
attributed to”, “was derived from”, “used”, “was generated by”, and “was associ-
ated with”, respectively. The full standard admits additional vertices and edges.
We restrict ourselves to the edges shown in Fig. 1 for conciseness.

Fig. 1. The core provenance meta-model. Reproduced after and adapted from the Prov
Primer [50].

Intuitively, the provenance of a software system is a record of a) the data
that was generated or used, b) the process that generated and used these data,
and c) the responsible entities (both human and software) for these processes.

Formally, a provenance graph G = (VAgt, VEnt, VAct, E) consists of finite
sets of agent vertices VAgt, entity vertices VEnt, and activity vertices VAct, all
of which are pairwise disjoint, and a set of edges E ⊆ (VEnt × (VAgt ∪ VEnt ∪
VAct))∪ (VAct × (VAgt ∪VEnt)). We call VAgt ∪VEnt ∪VAct the vertex set of G.

In practice, a provenance-emitting system does not provide its complete
provenance at the end of its computation. Instead, whenever an activity has
terminated, the system provides a “partial” provenance graph that contains the
respective activity as well as the entities that this activity used and generated.
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We also call these provenance graphs emitted during execution of the system
provenance updates to differentiate them from the complete graph that the sys-
tem constructs during its execution. To obtain a less local view of the provenance
of the complete system execution, we construct the union over provenance via
the component-wise union of the constituent elements of a provenance graph.

In this work, a provenance-emitting system is a software or hardware system
that constructs a provenance graph that contains vertices representing the data
points it generated, the processes that used and generated these data points,
and makes this provenance graph accessible to external systems. In the following
section, we provide greater detail and a more formal description of such systems.
We moreover describe a process for monitoring provenance-emitting systems.

Having given a brief introduction to the W3C Provenance standard, we now
illustrate how provenance data is collected from distributed provenance-emitting
systems and made available for monitoring in the following section.

4 Monitoring Provenance-Emitting Systems

Intuitively, a provenance-emitting system emits information about its execution
by making its provenance graph available for monitoring and inspection. To do
so, it emits provenance updates at certain points in time, i.e., sub-graphs of
the complete provenance graph of its execution. A monitor can observe these
updates and monitor them for anomalies. In Fig. 2 we illustrate a lightweight
architecture for recording provenance, initially outlined in [47].

Fig. 2. A lightweight architecture for capturing provenance information from a complex
distributed system. (Taken from [47] and simplified.)

Formally, we say that an execution of a provenance-emitting system is an
infinite sequence G1G2G3 · · · . The graphs are not necessarily temporally ordered.
As an example, G3 may only contain activities that started at time t, while G4

only contains activities that ended at time t′ < t.
In this section we present a method to monitor an execution of provenance-

emitting systems for anomalies. The complete provenance graph constructed by
the system is unbounded and may be infinite for non-terminating systems. It is
the task of the long-term Storage (cf. Fig. 2) to provide sufficient storage capacity
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for this complete graph as required for post-hoc analyses. The monitor, in con-
trast, should not require unbounded memory, but instead work with restricted
resources to function as lightweight as possible.

Let ϕ = G1G2G3 · · · be the execution of a provenance-emitting system. In
each time step the monitor obtains the earliest G from ϕ that it has not
yet obtained. The monitor shall produce a sequence b1b2b3 · · · where bi
is one of ✓✓, ✗✗, ??. The value ✓✓ (✗✗) denotes that the monitor has not (has)
detected an anomaly in the last time step, respectively, while ?? denotes
that the monitor does not have sufficient information to make a decision.
Moreover, the monitor shall not require unbounded memory.

In this problem formulation, we explicitly omit a definition of “anomalies”.
Recall that the PROV meta model only imposes very limited structure on prove-
nance graphs. Thus, whether a provenance graph describes expected or unex-
pected behavior is strongly application-dependent. Analogously, it is not expe-
dient to formally define anomalies independent of the monitored application.

Consider, e.g., a provenance-emitting system in which all activities so far take
two entities as inputs and produce one entity as output. Assume there arrives
a provenance update in which an activity takes four inputs and produces one
output. Whether or not the latter update is anomalous depends on the purpose
of the system. If the system processes temperature readings since the last step,
then the occurrence of fewer temperature readings than previously indicates,
e.g., faulty sensors. In contrast, if a system processes observations made by an
optical telescope [16,48], then the system may process more information due to
improved weather conditions. This would not be considered anomalous.

This example illustrates that there can be no “turnkey” solution for moni-
toring provenance-emitting systems: Either the user provides an explicit specifi-
cation of expected or unexpected provenance patterns, or the monitor requires
knowledge about the purpose of the system to infer anomalous graphs itself.
Thus, we aim to construct a parametrized monitor that measures the “anomaly”
of a provenance update against those updates witnessed previously. Due to space
constraints, this monitor cannot store all previously witnessed provenance graphs
explicitly. Instead, it retains only a window of previously witnessed partial prove-
nance graphs. We illustrate our monitoring architecture in Fig. 3.

The main purpose of the windowing is to construct a sequence of classical
graphs that it then passes to anomaly detection. By retiring vertices representing
entities that have not been used by the system, windowing ensures that the
graphs passed to anomaly detection do not exceed a given size. We call this size
the window size. This allows the anomaly detection to focus on comparing an
incoming graph to the one previously obtained and to raise an alarm to the user if
these two graphs differ significantly. To give the anomaly detection enough data
to reliably identify structural anomalies, the windowing step reports ?? until it
has collected sufficient provenance updates to fill a predetermined window size.

When converting provenance graphs into classical directed graphs, structural
information about the “kinds” of vertices is lost, as a classical graph does not dif-
ferentiate between, e.g., vertices representing processes and vertices representing
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Fig. 3. An overview over our monitoring architecture.

entities. Moreover, similar information about the kinds of edges is lost as well.
This information can be reconstructed in the fragment of provenance graphs
used in this work. Such a reconstruction is, however, not necessarily possible
when using the full expressive power of W3C Provenance.

To retain this information, it may be encoded as vertex- or edge-weights. How
weights should be assigned is again strongly application-specific and strongly
influences the subsequent anomaly detection. One could, e.g., assign a high
weight to all edges adjacent to activity-vertices. This would lead to the anomaly
detection being highly sensitive to anomalous patterns in the vicinity of activity-
vertices and less sensitive to the vicinity of other vertices. In the next section we
describe possible approaches to detecting anomalies via spectral graph theory.

5 Anomaly Detection with Spectral Graph Theory

To identify structural anomalies of graphs, we need to quantify their topolog-
ical properties, e.g., patterns of connectivity. We propose using spectral graph
theory [45] to this end. This theory relies on studying the Eigenvalues and Eigen-
vectors of matrices associated with graphs, e.g., the adjacency matrix, the degree
matrix, or the Laplace matrix. Intuitively, these values capture the topological
properties of the investigated graphs [45]. Spectral graph theory has been suc-
cessfully applied in some fields [44,46]. In particular, Gera, Alonso, Crawford, et
al. have used spectral graph theory to determine whether incoming observations
of a graph significantly deviate from previous observations [19].

We illustrate our general approach in Fig. 4. Let G be an incoming graph
obtained by anomaly detection and let n be the window size determined when
constructing or configuring the windowing. By computing Eigenvalues and
Eigenvectors of matrices associated with G we can obtain vectors ν1, . . . , νn,
where νi ∈ C

m for all νi and some m ≤ n. These vectors may, e.g., comprise
the Eigenvalues of the used matrix or its Eigenvectors. In the former case, we
have m = 1, in the latter m = n. Intuitively, if the investigated matrix is well-
chosen, this set of vectors quantifies the structure of the graph. We call this
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Fig. 4. Our framework for anomaly detection.

set of vectors the coordinates of the graph. Having obtained the coordinates of
both the current and the previous provenance graph, we can then compute the
distance between these two coordinates and use this distance as a measure of
the structural differences between the two graphs. We discuss possibilities and
challenges for both steps, obtaining coordinates and computing their distance
in the following sections. Moreover, we report on the results of a preliminary
evaluation in Sect. 5.3.

5.1 Compute Coordinates

To obtain coordinates, we compute Eigenvalues and Eigenvectors of matrices
associated with the graph. Typically, one uses the adjacency matrix or the
Laplacian matrix of the graph [45]. Multiple works have shown that some graph
properties can be determined based on the multiplicity, size or position of the
Eigenvalues and corresponding Eigenvectors [9,22,30,33,34]. In graph drawing,
Eigenvectors are selected based on their Eigenvalues and used as source for coor-
dinates to visually reveal structural properties of graphs [25].

Most applications of spectral graph theory, however, assume the graph to
be undirected. In that case, the adjacency matrix and the Laplacian matrix
are real symmetric matrices, thus their Eigenvalues are integers. Provenance
graphs, however, are directed. Thus, to apply standard methods of spectral graph
analysis to them, we have to transform them into undirected graphs [42], which
loses structural information. Another approach would be to use bespoke spectral
graph analysis methods that handle directed graphs [10,49]. These methods are,
however, not as well-investigated as those for undirected graphs.

5.2 Compute Distance

To identify anomalous updates we need to compare the current and the previ-
ous coordinate vectors. To this end, we aim to compute a normalized distance
measure. Recall that coordinates are sets of vectors. Thus, a common method is
to first calculate the pairwise distances for sets of vectors separately using dif-
ferent metrics, such as the euclidean distances, cosine similarity or correlation.
By taking the average over the resulting vector of distance measurements we can
obtain a distance between coordinates.

Directly computing the difference between two sets of vertices is rather sen-
sitive to “noisy” coordinates: Minor differences between individual vectors may
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lead to large differences. We can counteract this via clustering the vectors com-
prising the coordinates prior to distance calculation. In this case, the complete
monitoring pipeline up to the computation of coordinates is tantamount to spec-
tral clustering [30] of the provenance graph. Via clustering we obtain cluster
centroids, the coordinates of which can be used to calculate a distance mea-
surement as outlined before. Having obtained a distance measure, we can check
the distance against a provided threshold. If the distance exceeds this threshold,
anomaly detection alerts the user to anomalous system behavior.

5.3 Proof of Concept

We implemented our method using the Eigenvalues of the Laplacian matrix as
coordinates and the distance between the centroids of the Eigenvalues as the
distance metric. We evaluated this implementation on a synthetic example as
well as a realistic one. In the synthetic example, in each time step the system
adds two numbers during normal operation. We have injected anomalies into the
provenance data representing the addition of ten numbers in one time step. In
the realistic example, in each time step a robot executes some actions based on
some plan [23]. There are anomalies where no such plan is present.

Our prototypical implementation was able to successfully differentiate
between the nominal and anomalous updates. This illustrates that our proposed
method can indeed determine anomalies at least in these two use cases.

6 Conclusion and Future Work

In contrast to streams solely comprising the output data of a system, prove-
nance data allows far greater insight into the inner workings of such a system.
Thus, we believe that monitoring provenance data in addition to output data
allows for earlier detection of system failures. We have outlined an approach to
monitor these provenance data that reduces the problem of monitoring prove-
nance data to that of determining anomalies in graphs. This greatly reduces the
parameter space that has to be explored when constructing a real-world mon-
itor to determining useful well-studied approaches for detecting anomalies in
graphs [1]. Moreover, we illustrated that this approach can serve as a framework
for detecting anomalies in provenance data via a prototypical proof of concept.

As a next step, we aim to identify real-life use cases in which we can apply
and evaluate our approach. This use case will allow us to compare different
definitions of coordinates and distances between coordinates. Moreover, we will
be able to evaluate our proposed approach against other approaches to anomaly
detection in graphs [1]. In addition, we aim to quantify the structure of graphs
by additional properties, e.g., their diameter or depth. Finally, we are looking to
compare our approach based on spectral graph analysis against existing machine
learning approaches to anomaly detection.

Acknowledgements. We gratefully acknowledge suggestions by anonymous review-
ers, which have significantly improved this work.
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Abstract. We present a Python library for trace analysis named
PyContract. PyContract is a shallow internal DSL, in contrast to many
trace analysis tools that implement external or deep internal DSLs. The
library has been used in a project for analysis of logs from NASA’s
Europa Clipper mission. We describe our design choices, explain the API
via examples, and present an experiment comparing PyContract against
other state-of-the-art tools from the research and industrial communities.

1 Introduction

Runtime Verification (RV) is an approach to checking that a system under exe-
cution does the right thing, complementary to testing and static verification.
Numerous RV systems have been developed over time. Many of these systems
offer so-called external domain-specific languages (DSLs) [1,2,4,5,7,9,11,18,19,
22]. These parse a specification and synthesize a runtime monitor from the spec-
ification. Internal (or embedded) DSLs, on the other hand, extend an existing
host programming language, usually as a library.

There are two kinds of internal DSLs: deep and shallow [14]. In a deep internal
DSL, data structures in the host language are used to represent DSL constructs
in an explicit manner, e.g., as an Abstract Syntax Tree (AST), which can then
be processed by writing either an interpreter or a compiler for execution. Some
examples are [15,26]. A shallow internal DSL includes the constructs of the
host language as part of the DSL, using the host language’s native runtime
system to execute them. This is how most programming language libraries are
implemented. Shallow Scala-internal DSLs developed by the authors, and their
use, are described in [3,16,17,20].

In this work we present a shallow Python-internal DSL for RV. Our motiva-
tion stems from our experiences in infusing monitoring technology into practice.
The main reason for implementing a monitoring library in Python is the lan-
guage’s popularity [28]. The most recent version of Python provides pattern
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matching, which we demonstrate is useful for writing monitors. We believe that
an internal DSL increases adoption. For example, in our experience with applying
the CommaSuite tool [8] in industrial contexts, we have observed that having to
learn a new specification language is sometimes experienced by potential users as
a barrier to using the tool. An internal DSL is “just” another library in a famil-
iar language, and modern programmers commonly use many libraries [24]. They
can continue to use their favorite development tools (such as IDEs) and other
libraries for the host language. The chance of adoption is furthermore increased
due to the fact that shallow internal DSLs offer full expressiveness, since the host
language can be leveraged for complex calculations. This is an essential design
point to expand PyContract’s possible uses. This has been demonstrated by its
application in the analysis of telemetry logs from testing the Europa Clipper
mission [12] flight computer.

Furthermore, design and implementation are much easier for internal DSLs
than fosr external DSLs, because the syntax and semantics of the host language
are used. A noteworthy aspect of our solution is its small implementation. For the
same reason, maintenance requires less effort. The effort to respond to feature
requests can be reduced due to the availability of language constructs in the host
language. E.g., the development of the external CommaSuite DSL has involved
regularly occurring user requests for more “richness” in the language such as dic-
tionaries (hash maps) as an additional data type and a notation for namespaces.
In an external DSL, adding such features is made more challenging by the need
to handle all aspects of the language interpretation. A potential disadvantage
of shallow internal DSLs (when compared to external DSLs and deep internal
DSLs) is analyzability. However, Python supports powerful meta-programming
features allowing a program to inspect its own AST.

We support monitoring of events that carry data, allowing specification of
the relationship between data in events arriving at different time points (i.e.
we support first-order temporal properties). PyContract implements a form of
slicing (indexing) [22,26] for optimizing monitoring events with data, limiting
the search when an event is submitted to the monitor. We use an automa-
ton flavored language rather than temporal logic for the specification of mon-
itors as we find automata to be more flexible. Our DSL resembles a cross
between Extended Finite State Machines (EFSMs) [6], such as Quantified Event
Automata (QEA) [26], and rule-based programming, such as RuleR [4]. It most
closely resembles the Scala DSL Daut [10,16].

We support two flavors of states. In next-states, the next event must match
a transition. This allows the definition of state machines as found in standard
textbooks on finite automata [27]. In skip-states, events may be skipped until a
transition matches. This can be used for state machines in the style of SysML [29]
and UML [31]. We support skip-states as the default and treat all states as
implicitly accepting unless marked as rejecting. In our experience, this provides
a flexible way to write concise monitors.

We support visualization of monitors to improve user comprehension. Visual-
ization is an efficient way to communicate the meaning of a specification [30]. We
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use a format based on standard EFSM displays that leverages user familiarity
with such diagrams.

2 The PyContract Library

PyContract is an internal Python DSL for writing event monitors. It is inspired
by rule-based programming [4,17] in that the memory of a monitor is a set
of facts, where a fact is a named data record. Furthermore, facts, like states
in state machines, can have transitions which, upon triggering, can generate
other facts. As in EFSMs one can also define variables, local to a monitor, to
which the transitions can refer in conditions and in actions. Finally, since the
DSL is a Python library, one can write arbitrary Python code as part of the
monitors. PyContract is inspired by the Scala DSL Daut [10,16] and is developed
for Python 3.10 that supports pattern matching [25]. We use pattern matching
extensively for defining transition functions. The general approach is to define a
monitor as a sub-class of the Monitor class, create an instance of it, and then feed
it with events. Events are fed, one by one, using the evaluate(event: Event)
method and, in the case of a finite sequence of observations, a call of the end()
method signals the monitor that the sequence has ended, at which point any
outstanding obligations that have not been satisfied (expected events that did
not occur) will be reported as errors. PyContract is available under the Apache
2.0 open-source license at [23]. In the following we shall illustrate how to write
monitors with two examples.

2.1 Example 1

Consider a sequence of events, where each event indicates the acquisition or
the release of a lock by a thread. PyContract can monitor events of any kind:
numbers, strings, dictionaries (maps), objects of user defined classes, etc. We
shall here assume the definition of two such event classes Acquire and Release
defined as data classes1, each taking a thread and a lock as argument, allowing
the construction of objects such as Acquire(thread, lock) and Release(thread,
lock), and performing pattern matching over these.

The monitor we shall present is a “kitchen sink” example of features, and
implements property P1, consisting of five sub-properties:

P1.1 A thread acquiring a lock must eventually release it.
P1.2 While a lock is acquired by a thread it cannot be acquired by any thread.
P1.3 A thread can only release a lock if it has acquired and not yet released it.
P1.4 A maximum of N locks can be acquired at any point in time, where N is a

monitor parameter.
P1.5 An acquired lock should never later be freed as memory.

1 A data class is a class decorated with @dataclass, which allows to perform pattern
matching over objects of the class, including their parameters.
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The monitor is shown in Fig. 1, and is defined as the class M1 extending the
Monitor class. The monitor is parameterized with the maximal number of locks,
limit (line 2) that can be acquired at any point in time. A variable, count
(line 4), is introduced to count the number of active acquisitions. The body of
M1 defines a transition function (lines 7–20), and two states: DoRelease (lines
22–33), parameterized with a thread id and a lock id; and DoNotFree (lines
35–42), parameterized with a lock id. The PyContract @data decorator implies
@dataclass and introduces a hash-function to store states in hash sets. These
two states themselves each contain a transition function. A transition function
takes as argument an event and returns a list of states (or None if not applicable).

The outermost transition function (lines 7–20) is always enabled, and can
be perceived as representing the temporal logic box operator �. This outermost
transition function, when applied to an event, will match it against two patterns:
Acquire(thread, lock) and Release(thread, lock), where thread and lock
will be bound to the actual values of the incoming event. The transition corre-
sponding to an acquisition (lines 9–17) is conditioned on the non-existence of a
DoRelease-state with the same lock (lines 10–11), representing the fact that the
lock has already been acquired by some thread (it does not matter which). If the
number of active monitors is less than the limit, count is bumped up and a list of
two states (lines 14–15) is returned, each of which is then added to the memory
of the monitor. The transition corresponding to a release (lines 18–20) returns
an error if no DoRelease(thread, lock) exists with the same thread and lock
(line 19). Note how we can use a fact as a Boolean expression if all arguments
are known, in contrast to the more verbose call of the exists predicate in lines
10–11.

An event that does not match any of the case entries is considered to not
match any transition. How this is treated depends on the kind of state. Since
PyContract’s default is to use skip-states (in contrast to next-states), in this
case it means that the event is skipped and the state stays active in memory.

The DoRelease state is a HotState, meaning that at the end of a run, an error
is reported if such a state is active. In case of an acquisition, a match occurs if
the second lock argument is the same as self.lock (the underscore ‘_’ pattern
matches any value). In general, any dotted name in a pattern indicates that the
incoming value has to match this exact value. In case of a match, two states are
returned (line 30): an error state, and the self state, keeping it active in the
monitor. In case of a release by the thread that holds the lock, the counter is
decreased and the state ok is returned, corresponding to removing the DoRelease
state. The DoNotFree state is a normal State (line 36), effectively a skip state
that forever monitors that the lock is not freed with a Free event.

2.2 Example 2

Consider the property P2 consisting of just the first three sub-properties P1.1,
P1.2, and P1.3 of P1. A consequence of this property is that acquisitions and
releases of a lock must strictly alternate. The monitor M2 in Fig. 2 monitors this
property. In monitor M1, Fig. 1, line 19, we used a memory query to check that
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Fig. 1. The monitor M1

a lock is only released by the thread that acquired it. In monitor M2 we instead
use indexing (slicing) and next-states, which results in a more efficient and more
succinct monitor. We shall slice on locks, meaning that for each lock encountered
in the trace, PyContract will, in a hash map, map it to a monitor memory (set
of states) for only that lock. All events concerning that lock are sent to only
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the states in that lock-specific memory. This yields two advantages: first, we do
not need to search all states when an event arrives, we can just look up and
search the states for the relevant lock, and second, since only events concerning
that lock are sent to that lock-specific memory, we can write our monitor more
succinctly using next-states. The Monitor class defines a method:

def key(self , event) -> Optional[object ]:
return None

which is called on each event to return its slicing index (None is the default,
meaning no slicing is performed). The user can override this method to indicate
which events should be sliced upon. Figure 2 (lines 2–5) shows such an overriding
of this method, defining the lock to be the slicing index (key) for Acquire and
Release events. The second step is to define our states as next-states (lines 8
and 15). The semantics of these is that it is an error if the next observed event
(sent to that state) does not match any of its transitions. A NextState is an
acceptance state while a HotNextState is not.

Fig. 2. The monitor M2

Slicing is used in efficient runtime verification tools such as MOP [22] and
QEA [26]. In PyContract the slicing criterion is, as just shown, user defined (by
overriding method key), which allows for a more expressive form of indexing
than in e.g. MOP where all data parameters are used for indexing. QEA allows
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for more flexible slicing criteria. Slicing is used in MOP and QEA to express past
time properties, as in this example (a release must be preceded by an acquisition).

3 Comparison with Other Frameworks

Using M2 from Fig. 2, we compared PyContract against three other tools: the
research tools Daut [16] and QEA [26], and the industrial tool CommaSuite [8,
21], inspired by the RV tool RuleR [21]. At [13], the implementations of M2 in
those other tools are available. We encourage the reader to compare these to the
PyContract code from Fig. 2.

We compared the performance of PyContract monitoring with the other tools
to investigate whether it is fast enough for practical use. We ran three experi-
ments with the four tools, using the monitors for M2. The first experiment simu-
lates one thread acquiring and then immediately releasing one lock, many times.
In the second experiment, one thread acquires many locks at once before releas-
ing them. The third experiment is the same as the second except that each lock
is acquired and released by a different thread. For each experiment, we recorded
the processing times for traces with 500,000; 1,000,000; 2,000,000; and 4,000,000
events.

Fig. 3. Benchmark results comparing PyContract with three other tools.

Figure 3 shows the results running the experiment on an Intel Xeon E5-2680
frequency-locked to 2.40GHz. We ran PyContract 1.0.1 on Python 3.10.4 and
QEA 1.0, Daut 0.1, and CommaSuite 1.1.0 on the Oracle JVM 11.0.12 running
on 64-bit Linux 4.15. The graph shows the number of events in the trace (x-axis)
against the time the tool took to complete offline analysis. Each point represents
the mean of at least six runs. PyContract, Daut, and CommaSuite read events
from JSONL files while QEA read them from a special kind of CSV file that this
tool supports. The experiments and raw results are available at [13].

In the experiment, it is clear that QEA and Daut are the fastest tools, but
PyContract remains usable with processing times under 100 s for four million
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events. Additionally, PyContract has similar results for all three experiments
while QEA and CommaSuite are noticeably slower when many locks are acquired
at once. For example, QEA with 4M events completes in about 8 s when only one
lock is acquired at once but takes about 33 s when 2M locks are acquired at once
by 2M separate threads. One possible explanation of the superior performance
of Daut over PyContract, in spite of their similar implementation, may be the
superiority of the JVM and its just-in-time compilation compared to Python’s
runtime system.

In the cases where no CommaSuite results are reported it is because the tests
took more than 320 s. The CommaSuite developers pointed out several potential
reasons for the observed performance. Most importantly, performance has never
been a main requirement2. CommaSuite models may be nondeterministic, which
requires additional bookkeeping during monitoring. This feature cannot be dis-
abled. Additional data is also collected to provide e.g. coverage information after
monitoring; again this is not optional.

4 Conclusion

We have presented a shallow internal DSL (library) for trace analysis in Python,
and argued that such DSLs have important advantages. These advantages
include ease of infusion into projects due to a flattened learning curve, taking
advantage of development tools (such as IDEs) and libraries for the program-
ming language, expressiveness, and fast development and reduced maintenance
making it easier to adapt to feature requests. Since Python is one of the most
popular programming languages, we believe that a Python library for monitoring
is valuable. We compared the performance of PyContract to two research tools
and one industrial tool for RV, all three JVM-based. PyContract performed rea-
sonably well compared to the two research tools, considering that the JVM is a
high performance platform compared to Python’s runtime system, and PyCon-
tract convincingly outperformed the industrial tool. The longer term objective of
the library is to support activities that normally are associated with monitoring,
providing a “Swiss pocket knife” for monitoring. This includes, as already men-
tioned, various forms of visualization, but also trace mining. Since PyContract
is embedded in Python, allowing a mix of monitoring DSL and free style Python
code, the door is open to experiment with the connection between runtime ver-
ification and data analysis. This line of work has already been pursued on the
application to the Europa Clipper project, and we intend to pursue it further.
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Abstract. Improper management of locks and threads can lead to con-
tention and can cause performance degradation and prevent software
applications from further scaling. Nowadays, performance engineers use
legacy tools and their experience to determine causes of lock contention.
In this paper, a clustering-based approach is presented to help identify
the type of lock contention fault to facilitate the procedure that perfor-
mance engineers follow, intending to eventually support developers with
less experience. The classifier is based on the premise that if lock con-
tention exists it is reflected as either threads spending too much time
inside the critical section and/or high frequency access requests to the
locked resources. Our results show that a KMeans classifier is able to
identify three classes of lock contention from run-time data where one of
these classes is clearly caused by high hold times. The other two classes
are more challenging to label but one appears to be caused by high fre-
quency requests to the locked resource.

Keywords: Lock contention · Concurrency · Run-time faults ·
Classification · Software engineering

1 Introduction

Synchronization is essential in multi-threaded applications and introduces some
level of thread contention when applied. When this contention is significant it
results in performance degradation and is typically known as a lock contention
fault or performance bottleneck due to contention.

It is difficult to write concurrent programs and developers usually come back
to refactor the portion of the code where the concurrency feature resides to make
their concurrent code more efficient. A recent study reports that more than 25%
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of all critical sections are changed at some point by the developers, both to fix
correctness bugs and to enhance performance [7,14].

Lock contention bottlenecks have been investigated in the software commu-
nity for a while but they are still difficult to detect [11,12] and analyze and
usually it is a job performed by an experienced performance engineer. Typically
application developers do not have the skill set that a performance engineer has
to detect contention bottlenecks. The long term motivation of our work is to
develop a recommendation system for software developers that encounter lock
contention faults. We are proposing a combined approach that leverages a clas-
sification of the contention bottle neck based on those defined by Goetz [6] with
the eventual goal of matching these contention types with patterns in the code.
This paper focuses on preliminary work in the classification of lock contentions
based on run-time performance metrics of the application.

In Goetz’s book titled “Java Concurrency in Practice” he identifies the fol-
lowing 2 potential causes for contention faults:

– Type 1 - Threads spending too much time inside the critical sections.
– Type 2 - High frequency access requests by multiple threads to the locked

resources.

The reason why these types are important to identify is that recommenda-
tions to alleviate the lock contention differs for types 1 and 2 [1]. In Type 1 the
focus in on reducing the hold time on the lock while for Type 2 the solutions
focus mostly on reducing the scope of the lock.

The paper is organized as follows. We introduce some related works in Sect. 2.
The paper’s main methodology is presented in Sect. 3. Section 4 describes the
analysis of the clustering results. Some of the limitations of our approach and
concluding remarks are presented in Sect. 5.

2 Related Works

Lock contention performance bottlenecks have been well investigated in the past
few years with most works focusing on detecting and locating the root cause of
the lock contention but very few papers have attempted to categorize the lock
contention with the goal to suggest recommendations to alleviate the contention.

One of the few papers that tries to distinguish between type 1 and 2 lock
contentions for categorizing and diagnosing synchronization performance faults
is the work on SyncPerf by Mejbah ul Alam et al. [1]. In their work they reviewed
several papers and categorized them in a quadrant based on the level of con-
tention rate vs. lock acquisition frequency and concluded that there were no
publications that addressed the detection of lock contention type 2 but focused
primarily on the detection of locks of type 1.

Nathan R. Tallent et al. [13] details three approaches to gaining insight into
performance losses due to lock contention. Their first two approaches use call
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stack profiling and prove that this profiling does not yield insight into lock con-
tention. The final approach used an associated lock contention attribute called
thread spinning that helps provide insight into lock contention.

Florian David et al. proposed a profiler named “free-lunch” that measures
critical section pressure (CSP) and the progress of the threads that impede the
performance [3]. This paper stated that they failed to determine a correlation
among the metrics extracted from the IBM Java Lock Analyzer (JLA) while we
have been able to observe some relations between the performance metrics and
the lock contention. This paper also lacks a description of the metrics related to
different contention fault types.

3 Methodology

Our approach uses run-time logs from several performance analyzers such as
Linux perf [10], and JLM [9], then analyzes them utilizing a popular clustering
technique (KMeans) to determine the existence of different types of contention
faults. This analysis is a form of unsupervised classification and it was chosen
over supervised classification because performance engineers do not label the
types of lock contention faults.

A high-level workflow of our methodology is shown in Fig. 1. The approach
can be divided into two main parts; the dataset creation and the feature engi-
neering and classification. The principal processes in the dataset creation stage
are the run-time performance data analysis and the data filtering. The run-time
performance data analysis process consists of a compiled Java program that
reflects a multi-threaded concurrent example integrated with a benchmark tool
such as IBM Performance Inspector. The main process in the feature engineer-
ing and classification part of the workflow is the contention classification process
that extracts from the performance data a set of clusters.

perf output

JLM output

Data Filtering Performance
Data 

Contention
Classification

Dataset Creation Feature Engineering &  
Classification

Compiled
Java Program

Execution

Runtime  
Performance
Data Analysis 

Fig. 1. High level workflow of our methodology where the steps are divided into two
main parts, the Dataset creation and, the Feature engineering and classification.

3.1 Dataset Creation

Our methodology requires the generation of a dataset of lock contention per-
formance metrics and currently no such dataset exist so the creation of such a
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dataset is an important part of this work. This code is shown in Listing 1.1 and
is executed in a controlled environment. The code is compiled before running,
and necessary command-line arguments are provided prior to execution. The
command-line arguments are the number of threads and the execution time of
the critical section (emulated by putting the thread to sleep and shown in line
8 of the code.) The number of threads is set in the main program that executes
this code. The code is executed multiple times to reduce the effects of outliers
in the metrics, and we usually skip the first 10s of the execution to avoid the
JVM’s code optimization and warm-up period.

Listing 1.1. A Java example class “SyncTask” that is being used to emulate different
types of faults in our controlled environment

1 class SyncTask {
2 public ArrayList<Integer> a r rL i s t ;
3 public int s l e e p t ,
4
5 public synchronized void taskOne ( In t eg e r va lue ) {
6 try {
7 a r rL i s t . put ( va lue ) ;
8 Thread . s l e e p ( s l e e p t ) ;
9 } catch ( Exception e ) {

10 e . pr intStackTrace ( ) ;
11 }
12 }
13 }
There were two configurations that we used to generate the dataset: the first

was 10, 100, 500, and 1000 threads with sleeptimes from 1 to 20000ns in 100ns
increments, the second was 10, 50, 100, 200, 300, 400, 500, and 1000 threads
with sleeptimes from 1 to 20000ns in 100ns increments.

The two configurations were created for convenience and to break up the
total time it takes to create the dataset. One single run takes 40 to 45 s to
complete and creates a single row in the dataset. As an example, configuration
1 takes about 9.4 h on average to generate the dataset. The output of the two
configurations are combined to create the final dataset.

Once the Java code bench marking is completed, the perf and JLM per-
formance analyzers are executed to collect the necessary run-time performance
profile data. It is best to ensure that a high-performance machine with a bare-
metal operating system is installed to execute the concurrent code and collect
performance data. We installed these tools on a high-performance Linux machine
with a 24 core processor (3800 MHz MHz) and 32 GB of RAM. For the Java envi-
ronment, we use Openj9 JVM because it is compatible with JLM [4].

JLM provides quite a few metrics related to Java inflated monitors and a
brief description of the most important of those metrics is helpful to the readers
to understand how they relate to lock contention faults.

– GETS: Total number of successful acquires. GETS = NONREC + REC.
– TIER2: The number of inner loops to obtain locks.
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– TIER3: The number of cycles in the outer layer to obtain the lock.
– %UTIL: Monitor hold time divided by total JLM recording time.
– AVER-HTM: Average amount of time the monitor was held.

When lock contention occurs, JLM lists the Java monitors under the “JLM
Inflated Monitors” along with the specific values for each metric as defined above.

The perf tool is capable of capturing the symbols from system memory. These
symbols are mainly method names, variables, or class names usually used in the
OS itself, the kernel, or in the Java application. The reference of how the perf
tool works can be found here [10]. With the help of a script, we managed to
extract a human-readable log containing the following 3 columns of values; the
sample count, the percentage of the sample count relative to the total sample
counts, and the symbol name.

3.2 Feature Engineering and Classification

Feature engineering enhances the performance of the model and is essential for
enhancing the results of the clustering algorithm [8]. In order to achieve this,
the following initial data pre-processing is done prior to applying clustering tech-
niques:

1. Merge the perf and JLM data files into one file and Python data frame.
2. Remove features that contain string values (e.g., the monitor name in JLM).
3. Remove features that contain a value of zero.
4. Scale the data. Scaling is applied to all the features utilizing the Python

library StandardScaler from sklearn.preprocessing.
5. Remove correlated features from the dataset.

After performing the steps listed above the final dataset consisted then of
the following twelve metrics: The metrics %MISS, GETS, NONREC, SLOW,
TIER2, TIER3, REC, %UTIL and AVER HTM are collected from JLM and the
metrics “ raw spin lock”, “ctx sched in” and “delay mwaitx” are collected from
the perf tool.

Determining Ideal Number of Clusters. The KMeans clustering algorithm
requires that the number of clusters be specified prior to determining the clusters
from a dataset. This value is known as the KMeans “k” value. In our research we
determined the “ideal” number of clusters by calculating the Silhouette Coeffi-
cient [15] or silhouette score of the clusters.

Results of the silhouette scores, determined by leveraging the Python library
silhouette_score from sci-kit learn sklearn.metrics, are shown in Fig. 2. The
figure illustrates that a cluster number of 3 achieves the highest silhouette score
against other cluster numbers so it can be considered as the “ideal” number of
clusters. We have also validated that a cluster number of 3 is ideal using other
methods such as the Elbow Method [5] and NbClust [2] package.
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Fig. 2. The Silhouette Coefficient score for cluster number 3 is the highest. This indi-
cates the optimal number of clusters is 3 that can be found within the dataset. Based
on this verification, argument k = 3 is set to KMeans algorithm.

The KMeans algorithm of the Python library KMeans from sklearn.cluster
was utilized to cluster the data set. The parameters “expected number of clus-
ters” is set to three, “maximum number of iterations” is set to 600, and “mini-
mum iterations” is set to 10. The extracted clusters are shown in Fig. 3.

Fig. 3. Identified clusters from the lock-contention performance dataset using KMeans
with a value of k = 3.

4 Cluster Analysis

In our data set 3 clusters were discovered and are numbered 0 to 2 but it is not
clear if any of these clusters represent the lock contention types defined by Goetz
[6]. For this simple example on can determine this by considering the distribution
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of the sleep time and number of threads in the clusters. Hypothetically, fault type
1 (fault due to high hold-time) depends on the provided variable parameter sleep
times during the execution of the concurrent code. On the other hand, fault type
2 (fault due to high frequent access requests by the threads) should depend on
a high number of threads and low sleep times.

Hence we plot the “THREADS” and “SLEEP” distribution against the clus-
ters utilizing a box plot and observe the results. The two graphs are shown
in Fig. 4a and Fig. 4b. CLUSTER TYPE = 0 possesses a higher range of sleep
times, indicating that more likely it represents fault type 1. On the other hand
for the other 2 clusters it is challenging to label one of these as fault type 2. The
figures illustrate that CLUSTER TYPE = 2 contains a high number of threads
compared to the other 2 clusters but the sleep time is slightly higher than CLUS-
TER TYPE = 1. With this knowledge we believe that CLUSTER TYPE = 2
can be labelled as fault type 2 while CLUSTER TYPE = 1 is a form of low
contention.

(a) (b)

Fig. 4. Box plot visualization of the Threads (a) and Sleep (b) parameters related to
the clusters to help label the clusters.

In order to get a better sense of the semantic meaning of the clusters it helps
to observe the dominant features in the clusters. Figures 5 show 4 box plots of the
JLM metrics AVG HTM, GETS, TIER2, and TIER3 relative to the 3 clusters.
The AVG HTM and GETS metrics are typically negatively correlated and one
can observe this in CLUSTER TYPES 0 and 1. This is not that obvious for
CLUSTER TYPE 2 as statistically these 2 values are indistinguishable.

The AVER HTM value is a significant feature and from Fig. 5a one can see
that the AVER HTM value is higher for fault type 1 (CLUSTER TYPE 0) than
the other clusters. Moreover, the figure also illustrates that CLUSTER TYPE
1 has a lower value than that of CLUSTER TYPE 2 but the difference is not
significant. This could imply that CLUSTER TYPE 1 represents fault type 2
better than CLUSTER TYPE 2 though when one looks at the threads distri-
bution it is on par to those for CLUSTER TYPE 0 and lower than those for
CLUSTER TYPE 2.
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(a) (b)

(c) (d)

Fig. 5. Box plot visualization of the dominant features for each of the clusters. The
AVER HTM feature (a), the GETS feature (b), the TIER2 feature (c), and the TIER
3 feature (d).

Our expectation for the features related to spin counts (TIER2 and TIER3)
are that they should experience high numbers for high lock request rates (fault
type 2). The results in Fig. 5c and Fig. 5d show that CLUSTER TYPE 2 has
higher spin counts values than the other 2 clusters and presents more evidence
that CLUSTER TYPE 2 represents fault type 2.

After this analysis we conclude the following: (1) “Contention Fault 1” has
high hold times, (2) “Contention Fault 2” has low in hold times and high spinning
counts, (3) CLUSTER TYPE 1 is more likely a form of “Low Contention”,
and (4) CLUSTER TYPE 1 is more likely a form of “Low Contention” since it
contains low spinning counts as well as low hold times.

5 Conclusions

In this paper, we demonstrate that Java intrinsic locks could be classified into
the two types and we used a unsupervised KMeans classifier to investigate the
types using run-time performance metrics. We find lock-contention faults do
appear to classify into three distinct clusters rather than two based on run-time
performance metrics where fault type 1 can be clearly identified due to the high
hold times while fault type 2 is more challenging to identify as there is no cluster
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with a clear high number of threads and low hold time. The three clusters are
differentiated by the hold times and spinning counts and this knowledge can be
used to train a decision tree to help identify lock contention types for other Java
applications.
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Abstract. Computer Science course instructors routinely have to cre-
ate comprehensive test suites to assess programming assignments. The
creation of such test suites is typically not trivial as it involves selecting
a limited number of tests from a set of (semi-)randomly generated ones.
Manual strategies for test selection do not scale when considering large
testing inputs needed, for instance, for the assessment of algorithms exer-
cises. To facilitate this process, we present TestSelector, a new frame-
work for automatic selection of optimal test suites for student projects.
The key advantage of TestSelector over existing approaches is that
it is easily extensible with arbitrarily complex code coverage measures,
not requiring these measures to be encoded into the logic of an exact
constraint solver. We demonstrate the flexibility of TestSelector by
extending it with support for a range of classical code coverage measures
and using it to select test suites for a number of real-world algorithms
projects, further showing that the selected test suites outperform ran-
domly selected ones in finding bugs in students’ code.

Keywords: Constraint-based test suite selection · Runtime
monitoring · Code coverage measures

1 Introduction

Computer science course instructors routinely have to create comprehensive test
suites to automatically assess programming assignments. It is not uncommon for
these test suites to have to be created before students actually submit their solu-
tions. This is, for instance, the case when students are allowed to submit their
solutions multiple times with the selected tests being run each time and feed-
back given to the student. In typical algorithms courses, testing inputs must be
large enough to ensure that the students’ solutions have the required asymptotic
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complexity. In such scenarios, course instructors usually resort to semi-random
test generation, selecting only a small number of the generated tests due to the
limited computational resources of testing platforms. Hence, the included tests
must be judiciously chosen. Manual strategies for test selection, however, do not
scale for large testing inputs.

This paper presents TestSelector, a new framework for optimal test selec-
tion for student projects. With our framework, the instructor provides a canoni-
cal implementation of the project assignment, a set of generated tests T , and the
number n of tests to be selected, and TestSelector determines a subset T ′ ⊆ T
of size n that maximises a given code coverage measure. By maximising coverage
of the canonical solution, TestSelector provides relative assurances that most
of the corner case behaviours of the expected solution are covered by the selected
test suite. Naturally, the better the coverage measure, the better those assur-
ances. Importantly, the best coverage measure is often project-specific, there
being no silver bullet.

The main advantage of TestSelector over existing approaches [1,11,14,25]
is that it is easily extensible with arbitrarily complex code coverage measures
specifically designed for the project at hand. Unlike previous approaches, Test-

Selector does not require the targeted coverage measures to be encoded into
the logic of an exact constraint solver. We achieve this by using as our opti-
misation algorithm, a specialised version of the recent Seesaw algorithm [12]
for exploring the Pareto optimal frontier of a pair of functions. We demonstrate
the flexibility of TestSelector by extending it with support for a range of
classical code coverage measures and using it to select test suites for a number
of real-world algorithms projects, further showing that the selected test suites
outperform randomly selected ones in finding bugs in students’ code.

The paper starts with Sect. 2 that overviews the TestSelector framework
presenting its main modules and how they interact. Section 3 presents an exper-
imental evaluation of the framework. Section 4 overviews related work and con-
cludes the paper. An extended version of the paper can be found in [16].

2 TestSelector Overview

We give an overview of our approach for selecting optimal test suites for student
projects. As illustrated in Fig. 1, the TestSelector framework receives three
inputs: (1) the instructor’s implementation for the project, which we refer to
as the canonical solution; (2) a JSON configuration file with a description of
the coverage measure to be used for test selection as well as the number of
tests to be selected; and (3) an initial set of input tests, T . Given these inputs,
TestSelector computes an optimal subset of tests, T ′ ⊆ T , that maximises
the selected coverage measure for the chosen number of tests, n (|T ′| = n). Due
to the combinatorial nature of the problem and the sheer size of the search space,
it is often the case that TestSelector is not able to find the optimal solution
within the given time constraints. In such cases, it returns the best solution found
so far. Our experimental evaluation indicates that this solution is typically not
far from the optimal one.
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Fig. 1. TestSelector high-level architecture.

The TestSelector framework consists of two main building blocks:

– Summary Generation Module: The summary generation module automati-
cally instruments the code of the canonical solution in order for its execution
to additionally produce a coverage summary of each given input test. Different
coverage measures require different summaries. For instance, a block coverage
summary simply includes the identifiers of the code blocks that were executed
during the running of the canonical solution.

– MaxTests Module: The MaxTests module receives as input the cover-
age measure to be used, the number n of tests to be selected, and a set of
summaries, and selects the subset of size n of the given summaries that max-
imises the coverage measure. For instance, for the block coverage measure,
MaxTests selects the summaries corresponding to the testing inputs that
maximise the overall number of executed code blocks.
At the core of MaxTests is an adapted implementation of the Seesaw

algorithm [12], a novel algorithm for exploring the Pareto optimal frontier
of two given functions using the well-known implicit hitting set paradigm [3,
4]. The key innovation of Seesaw is that it allows one to treat one of the
two functions to optimise in a black-box manner. In our case, this black-
box function corresponds to the targeted coverage function, meaning that we
are able to select optimal test suites without encoding the targeted coverage
functions into the logic of an exact constraint solver.

Supporting New Coverage Measures. The key advantage of TestSelector when
compared to existing approaches for constraint-base test suite selection in the
general setting [1,11,14,23,25] is that it is trivial to extend TestSelector

with support for new, arbitrarily complex coverage measures. In contrast, exist-
ing approaches require users to encode the targeted coverage measures into the
logic of an exact constraint solver, typically SMT [5] or Integer Linear Program-
ming (ILP) solvers [10]. The manual construction of such encodings has two
main inconveniences when compared to our approach. First, it requires expert
knowledge of logic and inner workings of the targeted solver. Even simple encod-
ings must be carefully engineered so that they can be efficiently solved. Second,
there might be a mismatch between the expressivity of the existing solvers and
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the nature of the measure to be encoded. In contrast, with TestSelector, if
one wants to add support for a new coverage measure, one simply has to:

1. Implement a Coverage Summary API that dynamically constructs a coverage
summary during the execution of the canonical solution;

2. Implement a Coverage Evaluation Function that maps a given set of coverage
summaries to a numeric coverage score. Importantly, in order for TestSelec-

tor to work properly, the coverage evaluation function must be monotone;
meaning that for any two sets of summaries S1 and S2, it must hold that:
S1 ⊆ S2 =⇒ f(S1) ≤ f(S2). Monotonicity is a natural requirement for
coverage scoring functions.

Natively Supported Coverage Measures. Even though our main goal is to allow for
users to easily implement their own coverage measures, TestSelector comes
with built-in support for various standard code coverage measures. In particu-
lar, it implements: (1) Block Coverage (BC)—counts the number of executed
code blocks; (2) Array Coverage (AC)—counts the number of programmatic
interactions with distinct array indexes; (3) Loop Coverage (LC)—counts the
number of loop executions with a distinct number of iterations; (4) Decision
Coverage (DC)—counts the number of conditional guards that evaluate both to
true and to false; (5) Condition Coverage (CC)—counts the number of condi-
tional guards for which all subexpressions evaluate both to true and to false.
We refer the reader to [22] for a detailed account of standard coverage measures
in the software engineering literature.

Linear Combination of Coverage Measures. In addition to the coverage measures
described above, TestSelector allows the user to specify a linear combination
of coverage measures. Observe that, as the linear combination of two monotone
functions is also monotone, the user is free to combine any monotone coverage
measures without compromising the correct behaviour of MaxTests.

3 Evaluation

We evaluate TestSelector with respect to three research questions:

– RQ1: How easy is it to extend TestSelector with new code cover-
age measures? We show that the currently supported coverage measures
are implemented with a small number of lines of code, demonstrating the
practicality of our approach.

– RQ2: Do classical code coverage measures improve test suite selec-
tion for bug finding in student projects? We show that the test suites
selected by TestSelector outperform randomly selected ones in finding
bugs in students’ code.

– RQ3: Do linear combinations of code coverage measures further
improve test suite selection for bug finding? We show that by combining
the best code coverage measures, we can find more bugs in students’ code.



TestSelector 287

TestSelector
Selected Inputs

 

.in

Executor
Results for

 

.csv

Student Projects
 

.c

Step 1.
Step 2.

Canonical
Solution

Measure
Configuration

Inputs

Fig. 2. Evaluation diagram.

Table 1. Benchmark characterisation.

Project CLoC nproj TLoC AvgLoC ninpts

P1 256 398 140,349 352.64 1,002

P2 529 349 176,547 505.86 600

P3 416 193 26,890 139.32 1,000

P4 208 166 34,512 207.90 1,000

P5 304 172 21,114 122.76 1,000

P6 204 185 24,091 130.22 800

P7 108 174 24,035 138.13 1,000

Total 2,125 1,637 447,538 273.39 6,402

Experimental Procedure. The experimental procedure is a two-step process, as
illustrated in Fig. 2. In the first step, TestSelector selects the test suites for
a given canonical solution, set of inputs, and configuration file specifying the
coverage measures and the size of the computed test suites. This step generates
a set of test suites, each corresponding to one of the specified measures. In the
second step, an executor will run every student’s project against the selected
test suites. In the end, the executor creates a report detailing the passing/failing
rate for every student’s project on each selected test suite.

All the experiments were performed on a server with a 12-core Intel Xeon
E5–2620 CPU and 32GB of RAM running Ubuntu 20.04.2 LTS. For the ILP
solver we used the Gurobi Optimizer v9.1.2. For each execution of MaxTests

we set a time limit of 30 min.

Benchmarks. We curated a benchmark suite comprising students’ projects from
seven editions of two programming courses organised by the authors. Table 1
presents the benchmark suite characterisation. For each project, we show the
number of lines of code of the canonical solution (CLoC), the number of student
projects (nproj ), the total number of lines of code of the student projects (TLoC),
the average number of lines of code per student project (AvgLoC), and the num-
ber of available input tests (ninpts). In summary, we tested 1,637 projects, which
totalled 447K lines of code (≈ 273 LoC/project).

3.1 RQ1: TESTSELECTOR Extensibility

The table below presents the number of lines of code of the implementation
of each coverage measure: Loop Coverage (LC), Array Coverage (AC), Block
Coverage (BC), Condition Coverage (CC), and Decision Coverage (DC). For
each measure, we give the number of lines of code of both its implementation of
the coverage summary API and evaluation function.

Module LC AC BC CC DC

Coverage Summary API 90 60 42 120 120

Measure Evaluation Function 54 58 48 74 64
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Table 2. Results for each measure with linear search (LS) and progression search (PS).

Project Search LC AC BC Size CC DC Rnd

P1 LS 14.67 14.48 13.69 0.20 13.95 14.41 4.81

PS 14.53 14.34 13.56 0.19 13.82 14.27

P2 LS 18.07 17.15 19.47 6.14 15.60 14.35 5.60

PS 18.07 17.20 19.47 6.14 15.60 14.35

P3 LS 16.39 20.38 7.49 28.07 7.49 7.49 7.56

PS 16.77 20.70 7.95 28.31 7.95 7.95

P4 LS 23.68 22.78 11.99 23.59 17.95 17.93 13.52

PS 23.68 22.82 11.99 23.59 17.93 17.93

P5 LS 3.76 3.23 3.56 3.74 3.56 3.56 3.09

PS 3.76 3.25 3.56 3.74 3.56 3.56

P6 LS 6.91 8.22 8.01 8.39 4.72 4.68 6.61

PS 6.91 8.22 8.01 8.39 4.72 4.66

P7 LS 10.46 6.08 6.71 6.39 7.17 7.17 6.28

PS 10.46 6.08 6.71 6.39 7.17 7.17

Average LS 13.42 13.19 10.13 10.93 10.06 9.94 6.78

PS 13.45 13.23 10.18 10.96 10.11 9.98

When it comes to the implementation of the coverage summary API, we
observe that the simpler coverage measures, such as LC, AC, and BC require
fewer than 100 lines of code to implement and the more complex coverage mea-
sures, such as CC and DC, require 120 lines of code. As expected, the measure
evaluation function is simpler to implement than the coverage summary API,
requiring even fewer lines of code (between 48–74 LoC).

3.2 RQ2: Classical Code Coverage Selection

We investigate the effectiveness of TestSelector when used to select test
suites for finding bugs in students’ code. In particular, we compare the number
of bugs found by the test suites selected by TestSelector against those found
by test suites obtained through random selection. In all experiments, we ask
for test suites of size 30 out of 900 available randomly generated tests (the
number of tests used to assess the students in the corresponding courses was 30).
We consider the five coverage measures described in Sect. 2 and an additional
measure corresponding to the size of the testing input. Furthermore, we run the
Seesaw algorithm with two complementary search strategies: linear search (LS)
and progression search (PS). Details can be found in [12,16].
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sion search (PS).

Results. Table 2 presents the results of the experiment. For each project, the
table shows the resulting failure rates for the measures Loop Coverage (LC),
Array Coverage (AC), Block Coverage (BC), Size, Condition Coverage (CC),
and Decision Coverage (DC). We observe that the best measure is project-
dependent, with LC being the best measure in four projects, BC in one, and
Size in two. Importantly, we also observe that the more sophisticated measures,
such as CC and DC, have lower failure rates than simpler measures, such as LC
and AC. This may be explained by the fact that the students’ most common
programming errors are often encoded in loops and array accesses. All coverage
measures consistently perform better than the random test suite selection.

3.3 RQ3: Linear Combinations of Coverage Measures

To investigate whether using linear combinations of code coverage measures can
further improve the bug finding results, we replay the experiment described in
Sect. 3.2 with the following combinations of coverage measures: (1) AC+LC; (2)
BC+LC; (3) AC+BC; and (4) AC+BC+LC.

Results. Figure 3 presents the obtained results for the four linear combinations1

and the five individual code coverage measures presented in Table 2. For each
measure, we give a blue and a red bar, each corresponding to one of the search
strategies supported by the Seesaw algorithm. It is easy to observe that the
majority of the combinations, i.e., LC+AC, LC+AC+BC, and LC+BC, are able
to find more bugs in the students’ code than the overall best-performing single
measure (LC), with only AC+BC obtaining worse results.

1 LC+AC, LC+BC, AC+BC, and LC+AC+BC.
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4 Related Work and Conclusions

Test Suit Construction. The software engineering community has dedicated a
considerable effort to the problem of generating effective test suites for com-
plex software systems, exploring topics such as: test suite reduction and test
case selection [1,2,13,14,18,26], combinatorial testing [23–25], and a variety of
fuzzying strategies [6–9,19]. In the following, we focus on the test suite reduc-
tion and test case selection problems, which are immediately close to our own
goal, highlighting constraint-based approaches. Importantly, we are not aware
on any works in this field specifically targeted at student projects. The testing of
such projects has, however, its own specificities when compared to the testing of
large-scale industrial software systems. In particular, the time constraints on the
test generation process are less severe and the code being tested less complex.

The test suite reduction problem [1,2,17,21,26] aims at reducing the size of
a given test suite while satisfying a given test criterion. Typical criteria are the
so-called coverage-based criteria, which ensure that the coverage of the reduced
test suite is above a certain minimal threshold. The test case selection prob-
lem [1,2,17,21,26] is the dual problem, in that it tries to determine the minimal
number of tests to be added to a given test suite so that a given test criterion
is attained. As most of these algorithms target industrial settings, they assume
severe time constraints on the test selection process. Hence, the vast majority
of the proposed approaches for test suite reduction and selection are approx-
imate, such as similarity-based algorithms [2,17], which are not guaranteed to
find the optimal test suite even when given enough resources. In order to achieve
a compromise between precision and scalability, the authors of [1] proposed a
combination of standard ILP encodings and heuristic approaches. Finally, the
authors of [14] proposed a SAT-based encoding for selecting optimal test suites
according to the modified condition decision coverage criterion [13,22]. They
argue that, as this criterion is enforced by safety standards in both the automa-
tive and the avionics industries, one is obliged to resort to exact approaches.

Conclusions and Future Work. We have presented TestSelector, a new frame-
work for the automatic selection of optimal test suites for student projects. The
key innovation of TestSelector is its extensibility to support new code cov-
erage measures without these measures being encoded into the logic of an exact
constraint solver. We evaluate TestSelector against a benchmark comprised
of 1,637 real-world student projects, demonstrating that: (1) it is trivial to extend
TestSelector with support for new coverage measures and (2) the selected
test suites outperform randomly selected ones in finding bugs in students’ code.

In the future, we plan to conduct a more thorough investigation on the rela-
tion between the characteristics of a project and the code coverage measures that
are appropriate for it. We also plan to integrate TestSelector with an existing
testing platform for student projects, such as Mooshak [15] or Pandora [20].
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Abstract. DECENT is a benchmark for evaluating decentralized enforcement. It
implements two enforcement algorithms that differ in their strategy for correct-
ing the execution: the first one explores all alternatives to perform a globally
optimal correction, while the second follows an incremental strategy based on
locally optimal choices. Decent allows comparing these algorithms with a cen-
tralized enforcement algorithm in terms of computational metrics and metrics for
decentralized monitoring such as the number and size of messages or the required
computation on each component. Our experiments show that (i) the number of
messages sent and the internal memory usage is much smaller with decentral-
ized algorithms (ii) the locally optimal algorithm performs closely to the globally
optimal one.

1 Introduction

Runtime enforcement consists in preventing the violation of a specification by using
the so-called enforcers, which alter the execution whenever necessary. Conceptually
the execution is typically abstracted as a trace, that is a sequence of system states. An
enforcer takes as input such trace, modifies it if needs be to comply with the speci-
fication and then produces it as output. Existing enforcement frameworks are defined
in the so-called centralized setting where there is a single enforcer acting on a global
observation and control point.

As systems become increasingly decentralized (e.g. finance, vehicles, drone
swarms), it is desirable to be able to ensure their critical properties while preserving
their decentralization. In decentralized enforcement, a system consists of several com-
ponents with one enforcer attached to each component. Since every enforcer can only
observe what is happening locally, they need to communicate to gather information on
the whole system and collaborate to modify the current execution.

In [13], we introduced two algorithms for the decentralized enforcement of proper-
ties specified using Linear-time Temporal Logic (LTL) [19]. Both of these algorithms
are online algorithms that modify the current event if by appending this event to the
trace output so far, this would violate the property. These algorithms differ by how they
compute the corrected event. In the so-called global algorithm, all the possible alter-
natives for the emitted event are explored so that we are guaranteed to find the most
optimal correction, whereas, in the so-called local-incremental algorithm, safe choices
are made on each component in an incremental manner, without backtracking. How-
ever, these algorithms were not implemented nor evaluated.
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This paper introduces DECENT, a simulation environment that implements the two
decentralized enforcement algorithms to benchmark them against randomly generated
formulas and patterns or using a specific formula. In DECENT, enforcement is per-
formed offline on randomly generated traces as the goal is to get results on the per-
formance of the algorithms independently of a system. In practice, however, our algo-
rithms also work for online enforcement by reading the execution as it is produced by
the system under scrutiny. The paper is structured as follows. Sect. 2 recalls the main
principles of the approaches we presented previously. In Sect. 3, we overview the tool,
and in Sect. 4 we discuss how we evaluated the algorithms, and we present the results.
In Sect. 5, we discuss related work. Finally, we conclude in Sect. 6.

2 Principles of Decentralized Enforcement

We briefly overview the decentralized enforcement algorithms and refer to [13] for a
formal definition. In the decentralized setting, multiple enforcers communicate to gather
information. Whenever they observe an event, the enforcers use their internal memory
to compute alternatives to the observed event in case of a violation. Common to the
two enforcement algorithms are the following steps. The enforcers maintain a formula
to enforce at any time, which is rewritten using progression [1] to separate the present
from the future obligations. Then, in turn, the enforcers partially evaluate the formula
using every possible assignment of their local atomic propositions while keeping track
of the number of modifications compared to the original observed event. If one of the
assignments leads to the partially evaluated formula being simplified to ⊥, then the
corresponding event is a violation and is removed from the memory of the enforcer.

The algorithms differ in their strategy to modify their local observation. In the global
algorithm, once an enforcer is done evaluating the formula, it sends its memory to the
next enforcer. Once the present obligations of the formula are entirely evaluated, the
last enforcer applies a decision rule to pick which event to emit and communicates its
decision to all the others. In the local-incremental algorithm, once an enforcer has eval-
uated the formula, it applies a local decision to send a single partial event (that may
already be different from the observed event) to the next enforcer instead of the whole
memory (which contains multiples events and the associated partially evaluated formu-
las). When the last enforcer is done, it applies the local decision rule to determine the
event to emit. In this case, the last enforcer communicates the next formula to enforce
as the other enforcers have already decided which event to emit locally.

We proved that the algorithms guarantee classical properties in enforcement: they
are sound, meaning that the global output sequence of the enforcers does not violate the
specification, and transparent, meaning that the global event is only modified if it does
not comply with the specification. Additionally, the global algorithm is also optimal
because the number of modifications to atomic propositions is minimal.

3 DECENT Overview

DECENT1 implements the algorithms mentioned above using the functional progra-
mming language OCaml (in about 2200 LLOC). We reused some modules implemented

1 https://gitlab.inria.fr/monitoring/decent.

https://gitlab.inria.fr/monitoring/decent
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in DECENTMON [2,3], mainly the implementation of LTL, events, traces and the asso-
ciated generators. We implemented a few additional modules for the centralized and
decentralized enforcement algorithms. The other functionalities of DECENTMON are
left as is to allow monitoring or enforcement of formulas.

With DECENT, we can either parse specific formulas given in a file or randomly
generate them. In both cases, formulas are enforced against a randomly generated trace
using the decentralized algorithms as well as a “centralized" orchestration-based enfor-
cement algorithm to compare them. When generating random formulas, it is possible
to either specify a (maximum) size or to choose the specification patterns (defined in
[6]) as templates to generate properties. Moreover, formula generation can be “biased"
to place using more atomic propositions on a component. The underlying system is
represented by an alphabet expressing how the atomic propositions are spread over the
components. The alphabet is given as a command line argument, but it is also possible
to use multiple different alphabets given in a file (to vary the distribution of the atomic
propositions over the components or to add extra components/atomic propositions, for
example). When generating traces (i.e. lists of events), each atomic proposition of the
alphabet has a fixed probability of being included in each event (flip coin distribu-
tion), and it is possible to choose a different probability distribution such as Bernoulli,
exponential or beta. Finally, DECENT offers two enforcement modes: optimistic or pes-
simistic. In the former, possible alternative local events are computed only when the
observed event leads to a violation (i.e. after performing a round of verification first),
while in the latter, local alternatives are always computed (i.e. at the same time as the
verification). By default, the pessimistic mode is used.

4 Evaluating the Algorithms

We define the evaluation metrics in Sect. 4.1 and present the experiments to compare
the algorithms in Sect. 4.2.

4.1 Metrics

The metrics we consider for this benchmark are mainly related to messages and the
internal memory of the enforcers. We explain how measuring these metrics helps to
understand the intricate behavior of enforcement algorithms.

Number of Modifications of the Events. As mentioned in Sect. 2, the local algorithm
does not guarantee optimality. This metric allows us to observe how far is the local
algorithm from optimality. It is worth noting that optimality is defined for each event
individually when compared to the observed event, not for the whole trace. More specif-
ically, it is possible (although quite rare from our experiments) for the total number of
modifications in the enforced trace produced with the local algorithm to be lower than
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it would have been using the global algorithm (on the same trace and formula). As
the local algorithm relies on local information to decide the event to send to the next
enforcer, it is impossible to guarantee that the two algorithms emit the same event. Con-
sequently, the algorithms can end up with a different formula to enforce at some point
(since the formula depends on the emitted event). Therefore, getting a stricter formula
in the global version is possible in which the next observed event is a violation (forcing
the enforcers to modify it). However, it is not in the local version. The number of mod-
ifications should, however, be identical between the global version and the centralized
one because they both explore every alternative and should therefore be able to pick the
same verdict every time. To see whether these differences are common, we also mea-
sured the number of differing events and the number of events with a different number
of modifications between the enforced traces. Result tables show the average number
of modifications in column #mod.

Number and Size of Messages. To measure the intensity of the communication required
between monitors, we also measure the number (#msg) and the size of messages in the
number of bytes used to encode them (|msg|). We only count the messages sent during
the main evaluation process and not the ones sent after the final decision as their size
depends on an implementation choice, that is, whether we send only the enforced event
(which means the enforcers have to re-compute the next formula to enforce) or both the
event and the next formula. In both cases, the last enforcer has to send a message to all
the others, which causes the same number of extra messages as in the centralized version
(the central enforcer also has to notify the local enforcers of the verdict). If we only send
the event, the extra messages contain the same information as in the centralized version
(so their size would be close if not identical). Otherwise, the final messages are larger
in the decentralized version as they contain the next formula to enforce.

Size of the Temporal Correction Log. We also measure the size of the tcl (in bytes,
given in |tcl|), i.e. the main internal structure used by the enforcers to compute the
alternatives to compare the usage of the internal memory.

4.2 Experiments

For each experiment, we compare the performances of three algorithms (centralized
“orchestration-based" [4], decentralized “global" and decentralized “local") using the
same randomly generated traces and formulas (with some added constraints on the gen-
eration depending on the experiment). In all of them, we generate 1000 formulas and
traces of size 100 (the size of a trace is the number of events composing it). We did
not use larger traces because 1) it made the execution time of the experiments much
longer while not changing much in the results but mainly, 2) it made the pathological
cases much worse. We will talk about the latter in more detail with the first experiment.
Also, we did not measure the execution time or the delays that would be caused by the
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algorithms because the results would not be realistic as we do not take into account the
cost of communication between the enforcers and because interacting with the system
in a real application may have a significant impact on the overhead. We detail the two
experiments in the following (an additional one can be found in Appendix A).

Varying Formula Size. Here, the generated formulas are of different sizes (from 1 to
6) to assess the scalability of our approach. As in DECENTMON, we use the maximum
nesting of operator as a measure of size because it reflects well the difficulty to evaluate
a formula. For example, G(a∨b) has a size of 2 and Gb∨F¬a has a size of 3. Also, it is
worth noting that we consider the size before we apply a simplification on the formula
(so the simplified one could be smaller). We used the alphabet {a1, a2|b1, b2|c1, c2},
that is, there are 3 components in the system that can observe 2 atomic proposition each
(for instance, the first component can observe a1 and a2).

Table 1. Results of the first experiment: varying formula size.

Table 2. Differences between the enforced traces in the first experiment.
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Table 1 and 2 show the results of the first experiment. Here, the average number of
modifications between the three version is almost identical. Although it is an average
over the whole trace, it at least means that, in practice, the local algorithm is very close
to the other versions (even though it does not guarantee optimality). It is worth noting
that #mod sometimes has a lower value for the local algorithm. This could be caused
either by what we mentioned in the previous section or because, in some cases, we
can reach a state where the next formula to enforce is � (at which point we stop the
enforcement). As we cannot guarantee that the local algorithm outputs the same trace
as the others, it may miss this state and enforce a few more events before reaching it.
Because of this, as we do the average of #mod on the whole trace, if the trace given by
the local version is larger, it skews the average by a little bit. Aside from this, the cost in
terms of local memory usage (|tcl|) is greatly reduced by the local algorithm (upwards
of almost 3 times smaller with formulas of size 6) and the number of messages (#msg)
is much smaller with the decentralized algorithms. There are fewer messages because
the enforced formulas do not necessarily contain every atomic proposition of the alpha-
bet, and therefore, some enforcers may not need to do any work. However, the size of
messages (|msg|) is much larger than in the centralized algorithm because they contain
more information (alternatives and the associated partially evaluated formulas vs only
the local observations in the centralized version). It is worth noting that messages with
the local version are much smaller than with the global one (about 2 to 4 times depend-
ing on the size of the formula). Moreover, the traces produced by the centralized and
the global algorithm are identical. The traces given by the local version are almost iden-
tical, with about one event different from the other two. This supports our claim that the
local version is very close to being optimal despite not guaranteeing it.

An issue of this experiment is that some formulas are particularly bad for these
methods because the rewriting to separate their present and future obligations cause an
explosion of their size. As we generate some random formulas, we may get one of these
pathological cases for only one size and not the others, which would majorly impact the
results for this size. Typically, pathological cases are formulas with many Until (U) and
Globally (G) operators interleaved so they are quite uncommon for smaller formulas
and we have not seen any using specification patterns (i.e. the next experiment). As we
mentioned earlier, these formulas are one of the reasons why we chose to use traces of
this size (with larger traces, the execution would take way too much time to complete
as the formula size tends to increase after each event in these cases).

Using Realistic Specifications. In this experiment with realistic specifications, we used
formulas generated with the LTL specification patterns [6] (we omitted universality
response chain because of size constraint, the complete tables are available on the tool
repository). Here, we also compare the two enforcement modes optimistic and pes-
simistic (on the same formulas/traces by setting a seed). We used the same alphabet as
in the previous experiment (Table 4).
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Results of the second experiment: using specification patterns

Table 3. Pessimistic algorithm

Algorithm Pattern #mod #msg |msg| |tcl|

Cent. 0.37 3. 4.502 180.414

Global abs 0.37 0.629 79.477 181.993

Local 0.372 0.472 39.586 116.784

Cent. 0.162 3. 4.503 201.799

Global exist 0.162 0.684 77.222 199.828

Local 0.162 0.463 40.489 119.418

Cent. 0.242 3. 4.502 743.064

Global bexist 0.242 0.586 389.644 809.429

Local 0.242 0.392 211.063 732.576

Cent. 0.149 3. 4.502 347.696

Global prec 0.149 1.087 136.227 350.039

Local 0.14 0.63 55.954 164.459

Cent. 0.039 3. 4.501 637.256

Global resp 0.039 1.084 252.875 618.055

Local 0.039 0.729 100.551 337.767

Cent. 0.191 3. 4.503 640.231

Global pchain 0.191 1.037 218.258 634.57

Local 0.19 0.656 90.923 334.564

Cent. 0.193 3. 4.504 1441.1

Global cchain 0.193 1.255 491.208 1362.17

Local 0.204 0.955 163.378 623.357

Table 4. Optimistic algorithm

Algorithm Pattern #mod #msg |msg| |tcl|

Cent. 0.37 3. 4.502 158.365

Global abs 0.37 0.586 51.782 165.268

Local 0.372 0.583 43.809 117.334

Cent. 0.162 3. 4.503 188.028

Global exist 0.162 0.532 49.569 198.448

Local 0.162 0.529 45.389 152.229

Cent. 0.242 3. 4.502 243.993

Global bexist 0.242 0.418 281.677 307.038

Local 0.242 0.417 272.871 293.366

Cent. 0.149 3. 4.502 433.583

Global prec 0.149 0.74 72.624 443.767

Local 0.14 0.706 65.051 198.991

Cent. 0.039 3. 4.501 945.261

Global resp 0.039 0.759 129.307 1026.3

Local 0.039 0.753 121.769 630.653

Cent. 0.191 3. 4.503 709.02

Global pchain 0.191 0.777 122.98 722.777

Local 0.19 0.758 108.346 392.53

Cent. 0.193 3. 4.504 1706.91

Global cchain 0.193 1.114 244.29 1691.65

Local 0.204 1.115 197.499 755.796

Table 5. Differences between the enforced traces in the second experiment.

Tables 3 to 5 give the results of this experiment. There is still an improvement in
memory usage (|tcl|) using the local algorithm. However, it is not as large as in the
previous experiment (about two times smaller at most instead of three previously, and
the same observation applies to the message sizes). A notable difference with the pes-
simistic mode is that, for some patterns, there seems to be a large difference in the num-
ber of messages between both decentralized algorithms: for instance, with the prece-
dence pattern, there were almost twice as many messages sent in the global version on
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average. Using the optimistic mode, the memory usage is improved for some patterns
(e.g. bounded existence) but it is also worse for others (e.g. response). It seems that this
mode is better for certain types of formulas although it is hard to tell exactly because our
metrics are not well suited to compare both. For example, with |tcl|, we only include
in the average the results of runs where enforcement was required. Otherwise, it would
skew the result and make it seem like optimistic is significantly better, which is untrue
as the (enforcement) cost is identical to the other mode when enforcement is required
(and null when it is not). However, this metric largely depends on the enforced formula
and has consequently a large variance over the different runs. Therefore, if the runs that
required enforcement are the ones where |tcl| was large, then the average will be worse
(or at best similar) than what we get with the pessimistic mode, even though we might
have gained a lot overall in computation time by not doing useless enforcement steps.
The main drawback of this mode is that the overhead is larger when enforcement is
required because of the initial verification phase. Table 5 shows that, for some patterns,
the local algorithm produces traces that have more differences compared to the other
two versions than with random formulas (mainly constrained chain where we measured
4 different on average). We have not included a table showing the difference between
the enforced traces with the optimistic mode because the values are identical (i.e. the
exact same traces are produced).

5 Related Work

There are many approaches to tackling the problem of decentralized monitoring
(see [12] for an overview). The closest approaches to ours are the ones using formula
rewriting on LTL [2,3,22]. Other methods use different formalisms to express the spec-
ifications like finite-state automata [9] or Stream Runtime Verification (SRVs) [5] or
have different assumptions on the system like in monitoring decentralized specifica-
tions [7], that is having an independent specification for each component instead of one
for the whole system. The aforementioned approaches have been implemented in vari-
ous tools such as DECENTMON [2,3,9], using Maude [22], dLola [5] or THEMIS [7,8].
All these approaches only perform verification: they report violations or satisfaction of
a property and do not consider enforcement.

On the topic of runtime enforcement, most of the work has been done for cen-
tralized systems with varying assumptions about the underlying system: specification
expressed with discrete-time formalisms [10,11], timed properties [17] or with uncon-
trollable events in the system [16,20]. We note that fewer methods have been actually
implemented for centralized enforcement, see TiPEX [18] or GREP [21] for instance.
Although there are a few approaches [14,15] considering decentralized enforcement in
decentralized systems, these are tailored to specific systems and our work is the first
generic approach able to enforce any property expressed in linear-temporal logic.

6 Conclusions

DECENT allows the evaluation of two decentralized enforcement algorithms introduced
in [13]. Our experiments demonstrate that, although the messages are much larger with
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the decentralized algorithms, we need less of them. The internal memory usage is sig-
nificantly reduced with the local-incremental algorithm. Also, even though the latter
algorithm does not guarantee the optimality, it is very close to it in practice.

We plan to implement our algorithms into a larger tool (THEMIS, for instance)
which would allow us to use these algorithms in real systems. We also plan to improve
the algorithms as they suffer from a few limitations, mainly the dependence on a pow-
erful simplification function (to not miss any verdict) and the exponential blowup of the
formulas in some rare cases. As both of these limitations come from LTL and rewriting,
we plan to use different specifications formalism such as finite-state automata or even a
more expressive one like timed properties or streams. Finally, we also plan to study in
greater detail the optimistic and pessimistic modes to try and find settings in which one
method is better than the other using more suited metrics.

A Third experiment

We observe how the performance evolves when we add more components to the system
and/or add atomic propositions to the alphabet. Here, the generated formulas are of
fixed size (6, chosen arbitrarily). We study six different systems where components
can observe either 1, 2 or 3 atomic proposition(s) each and with 3 or 5 components.
The number of observable atomic propositions is indicated by |Σi| and the number of
components by |Σ|.

Table 7 and 6 show the results of this experiment. The difference in size of the
messages between both decentralized versions seems to get larger when the system
gets larger (in particular when adding more atomic propositions to each component).
This makes sense as the global version explores every possible alternative and a larger
system has more of them. The local version is not affected as much because a local
decision is applied before an enforcer communicates with the next one to limit the
growth of the internal memory (we can also observe this when looking at |tcl|) which,

Table 6. Differences between the enforced traces in the third experiment
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Table 7. Results of the third experiment: varying system size

in turn, limits the growth of the messages as they contain the internal memory. Adding
components to the system seems to increase the average memory usage in the global
and centralized versions which makes sense as there are more alternatives to consider
in this case as well. Table 6 suggests that the system size does not have a major impact
on the differences between the traces produced by the algorithms.
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Abstract. Co-simulation allows modelling and simulation of heteroge-
neous systems: the analysis of a system is achieved through the joint
simulation of coupled stand-alone sub-simulators for its individual parts,
using a standardized interface (e.g. Functional Mock-up Interface - FMI).
Runtime verification can be employed to validate the evolution of co-
simulation runs, but currently this is feasible only within the scope of
individual simulators that may support very diverse monitoring func-
tionalities. This work introduces a technical approach for the runtime
verification of properties for the entire co-simulated system. We present
the integration of the DejaVU monitor synthesis tool at the master algo-
rithm level of FMI-based co-simulation, such that predicates and events
from all constituents of a simulated system can be monitored. Com-
munication between the master and the individual Functional Mock-Up
Units (FMUs) is bidirectional, whereas the FMI master does not need
to change for monitoring the property of interest. Since FMUs are syn-
chronized by the master algorithm, runtime monitors can be used also
as a means to control the co-simulation run. We provide results from
co-simulation experiments to give insight into the runtime overhead.

Keywords: Co-simulation · Runtime verification · First-order LTL

1 Introduction

Today’s systems are heterogeneous, since they often combine computation with
physical processes. For their design and verification, several different tools are
usually used, to develop semantically diverse models. Discrete modeling is more
appropriate for the computing elements, whereas continuous modeling is usually
preferred for the physical components. When focusing on the verification and
validation of the system as a whole, then the problem is how to combine and
analyse a set of diverse models for the system under design.

Co-simulation [18] is a technology aiming to address the aforementioned prob-
lem. It is based on a coordinating component responsible for the passage of
time and the data sharing between the diverse simulators running the mod-
els of the system’s parts. Co-simulation plays an important role in hardware-
in-the-loop and software-in-the-loop simulation-based validation [10]. For the

Supported by the european project Horizon 2020 research and innovation programme
under grant agreement No. 956123.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
T. Dang and V. Stolz (Eds.): RV 2022, LNCS 13498, pp. 304–313, 2022.
https://doi.org/10.1007/978-3-031-17196-3_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-17196-3_19&domain=pdf
https://doi.org/10.1007/978-3-031-17196-3_19


Runtime Verification for FMI-Based Co-simulation 305

design of cyber-physical systems, co-simulation is the means to validate their
behaviour [11], since they are specified using a variety of languages and tools.

FMI (Functional Mockup Interface) [6] is an interoperability standard, which
allows to import and co-simulate model components that have been designed
with different modeling formalisms, languages, and tools [19]. FMI defines an
API and the format of the co-simulated components, known as FMUs (Func-
tional Mockup Units). FMUs by themselves are passive objects (slaves), since
they do not execute; they can be seen as black boxes that implement the methods
of the FMI API. Some of these methods are optional, whereas others are com-
pulsory and must be implemented by all FMUs. A set of FMUs that are coupled
together, are executed through the mediation of a master algorithm (MA), which
is not defined by the standard. The network of FMUs forms the overall system
model and the FMUs its sub-models. A simulation run generates a simulation
trace by applying the MA to the system model.

Runtime verification [3] relies on continuously monitoring the behaviour of
the simulated system, with the aim to detect if it is consistent with a given
high-level specification. Results are provided in the form of a verdict for the
property(-ies) specified using a temporal logic language. The property specifica-
tion(s) is/are the basis for the automated synthesis of the runtime monitor(s)
with appropriate tools.

In system design, runtime verification can be used to make the verification
and validation process more systematic and rigorous, while remaining scalable.
It allows the early stopping of possibly costly simulations upon the detection
of a property violation, whereas the verification outcomes can guide the test
generation in search-based testing. Moreover, online verification of simulation
traces is also particularly useful, as a means to control the simulation run, detect
anomalies, and trigger runtime recovery or enforcement mechanisms [2,17].

Runtime verification tools have been integrated into various simulators (e.g.
in [1,20]), but we are not aware of related works on the integration of runtime
verification into FMI-based co-simulation. While it is straightforward to use the
runtime monitoring/verification capabilities of individual FMUs, if any, our work
concerns with how to integrate runtime monitors at the MA level of FMI-based
co-simulations, to allow verifying properties for the overall system model.

We use the DejaVU monitor synthesis tool [14] that allows for parametric
specifications in First-order Linear Temporal Logic (LTL); such specifications
give rise to runtime monitors for events that carry data, to which the properties
can refer. This level of language expressiveness fits well into the need for specify-
ing properties based on a set of semantically diverse FMUs, since the properties
can refer to relations or predicates over different domains. However, there are still
important challenges to be addressed, such as the monitoring overhead, which
depends on the monitor integration approach into the FMI MA. The concrete
contributions of this work are the following.

– An approach for online runtime verification of any FMU network, in which:
• The control flow of the MA does not depend on the property specified and

the particular needs for data sharing between the co-simulated FMUs.
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• Co-simulation can be controlled by the MA based on the monitor verdict.
– An alternative approach for the integration of runtime monitoring in the form

of an additional FMU.
– Experimental results on the online verification of a co-simulated system that

provides insights and allows comparing the overhead of the two solutions.

The rest of the paper is structured as follows. Section 2 provides background
information on FMI-based co-simulation and runtime monitoring of First-order
LTL with the DejaVU tool. Section 3 presents the technical approach for online
verification of FMU networks, along with the alternative of runtime monitoring
through an additional FMU. In Sect. 4, we provide experimental results that
allow comparing the solutions proposed with respect to the overhead for various
properties expressed in the past-time fragment of First-order LTL. The paper
concludes with a summary of our contributions and the future research prospects.

2 Background

2.1 Co-simulation

Comprehensive surveys on co-simulation can be found in [11,12]. For FMI-based
co-simulation, it suffices to refer to essential technical details concerning the
MA. An FMU can be formulated as a (timed) state machine with a set of input
variables (or ports), a set of output variables, and a set of internal states [8].
The state machine interacts with its environment via a set of interface methods
complying with the FMI standard. The MA performs step-wise co-simulation of
a network of FMUs from the tStart time till tStop. The time step is chosen by
the MA and it can be fixed or variable. Time advances locally on FMUs that are
simulated independently between two discrete communication points ti and ti+1

with a step size h = ti+1 − ti > 0; the MA waits for all FMUs to simulate up
to the communication point before advancing the time. At these communication
points, the MA collects the outputs y(ti) and sets the inputs u(ti) for all FMUs.

2.2 Runtime Verification for First-Order LTL

For the runtime verification of co-simulated systems, we are interested in build-
ing monitors for events carrying data, which may be denoted by one or more
relations or predicates over different domains. This representation is adopted in
the (past-time fragment of) first-order LTL in [5,13] that is suitable for runtime
monitoring. If ai is a constant for a value in some domain D, and xi a variable
over the same domain, the syntax of this formalism is defined as follows:

ϕ:: = true | false | p(x1, . . . , xn) | (ϕ ∨ ϕ) | (ϕ ∧ ϕ) |
¬ϕ | (ϕ S ψ) | � ϕ | ∃x ϕ | ∀x ϕ | e ∼ e

with p a predicate/relation over domains D1, . . . , Dn, ∼∈ {<,≤, >,≥,=, �=} and

e:: = x | a | e + e | e − e | e × e | e / e.
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Since operator, for e.g. ϕ S ψ means that “ψ was true in the past, and since then,
including that point in time, φ has been true”. �ϕ specifies that “in the previous
state ϕ was true”. The following also hold: false = ¬true, ∀x ϕ = ¬∃x ¬ϕ, and
ϕ ∨ ψ = ¬(¬ϕ ∧ ¬ψ). Some additional operators that are useful in property
specifications are: Pϕ = true S ϕ (for “previously”), ϕR ψ = ¬(¬ϕS ¬ψ) (the
dual of the Since operator), and Hϕ = (false R ϕ) (for “always in the past”).

DejaVU is a runtime verification tool for traces of events with data that syn-
thesizes runtime monitors based on past-time First-order LTL formulas. When a
trace is fed into the monitor, a Boolean value (verdict) is returned, for each event.
Upon having completed the verification of a trace, a file is created containing
the number of events, which violate the property.

DejaVU monitors allow evaluating property specifications over sets of data
observed, with values that may be unbounded or not provided in advance. The
efficiency of these monitors at runtime is therefore of fundamental importance
within the context of FMI-based co-simulations, especially when the event traces
are originated from multiple heterogenous FMUs.

3 Online Runtime Verification of FMI-Based
Co-simulation

Two alternatives are proposed for the integration of DejaVU runtime monitors
in FMI-based co-simulations. First, we present an FMI MA for the runtime
verification of any FMU network and then an FMU acting as DejaVU runtime
monitor. For the latter approach, there is no need to modify the FMI MA used.

3.1 FMI Master Algorithm for Runtime Verification

The FMI standard for co-simulation aims to support a general class of MAs. The
MA orchestrates the entire simulation and its main functionalities include i) the
instantiation (fmiInstantiate function call) and initialization (fmiEnterIniti-
alizationMode, fmiExitIntializationMode function calls) of the FMUs, ii) the
computation and propagation of variable values among FMUs (fmiSetXXX and
fmiGetXXX function calls where XXX refers to the data type, in order to set or
respectively retrieve values to/from FMU input/output variables), iii) the step-
wise simulation of the FMUs in an order (fmiDoStep function call which advances
the simulation of each FMU by the simulation step), iv) the termination of the
simulation. We assume that the MA guarantees deterministic execution, it is free
from algebraic loops and ensures determinacy and termination [7,9,16].

A high-level overview of an FMI MA with an integrated runtime monitor
is shown in Fig. 1. The workflow for the runtime verification of a co-simulated
system using the DejaVU tool is as follows (Fig. 2a).

1. Property specification in first-order LTL.
2. Synthesis of the runtime monitor in Scala.
3. For the property specified in Step 1, a suitably formatted file is provided with

all event names (predicates) and their value references (FMU variables) that
determine how each event is evaluated.
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Fig. 1. An FMI MA for runtime verification

(a) (b)

Fig. 2. Workflows for using (a) the FMI MA, (b) an FMU for runtime verification

4. The runtime monitor from Step 2 is interfaced with the FMI MA. This
involves a slight modification to the Scala code (the eval function is called
by the FMI MA) and then converting it into a .jar file that is interfaced with
the FMI MA through JNI (Java Native Interface).

5. The FMI MA is compiled along with the FMUs.

The workflow can be fully automated. The pseudocode for the FMI MA is shown
in Algorithm 1. Function calls in blue are for integrating the runtime monitor,
whereas the rest are standard calls of a typical MA. The monitorInitializa-
tion() call instantiates and loads the runtime monitor, along with the func-
tion eval(). The file from workflow Step 3 is then read with monitorMapping().
With synthesizeEvent(), the FMU variables for the predicates of the property
are extracted and formatted, according to how a DejaVU monitor expects them.
Finally, the monitoring function is called for the event at the current time step.

3.2 FMU for Runtime Verification

Figure 3 depicts the integration of a runtime monitor in FMI-based co-
simulation, in the form of an additional FMU. The runtime monitoring FMU
implements the necessary methods required by FMI and the MA contains only
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Algorithm 1: FMI master algorithm for runtime monitoring
/* Co-simulation parameters */

tCurrent: current simulation time
tStart: start time
tStop: stop time
h: simulation step

/* Instantiate and initialize FMUs in set C */

foreach FMU c ∈ C do
fmiInstantiate();
fmiEnterInitializationMode();
fmiSetupExperiments(tStart, tStop);
fmiSetXXX(v) /* where XXX is Real, Integer, Boolean, String */

fmiExitInitializationMode();

/* Initialize Runtime Monitor */

monitorInitialization(); /* instantiates runtime monitor */

monitorMapping(); /* defines property variables and ordering */

/* Step-wise simulation */

while tCurrent<tStop do
foreach connection between an input u and an output y do

v=fmiGetXXX(y);
fmiSetXXX(u,v);
fmiDoStep(h);

event=synthesizeEvent(); /* constructs event from values */

monitorEval(event); /* property evaluation */

tCurrent=tCurrent+h;

/* Termination */

foreach FMU c ∈ C do
fmiTerminate();

Fig. 3. An FMU for runtime verification

standard FMI function calls. The workflow for the runtime verification of a co-
simulated system using the runtime monitoring FMU is as follows (Fig. 2b).

1. Property specification in First-order LTL.
2. Synthesis of the runtime monitor in Scala.
3. For the property specified in Step 1, a suitably formatted file is provided.
4. A shared object file for the runtime monitoring FMU is created and a model

description file (XML) with all definitions of exposed variables are packaged
all together into a .zip file.

5. The FMI MA is compiled along with all FMUs.
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Fig. 4. FMU connection graph for the traffic sign recognition case study

4 Experimental Results

Our case study is a closed-loop system of an autonomous vehicle that performs
traffic sign recognition and speed regulation [15], designed using the BIP mod-
eling language [4]. The system model consists of five components: environment,
camera, perception, controller, and plant. It has been broken into two parts cor-
responding to separate FMUs. FMU1 enables the braking or throttling system
according to delta speed and adjusts the vehicle’s speed. FMU2 consists of four
atoms and is responsible for traffic sign detection and delta speed computation.
The FMU connection graph is shown in Fig. 4. The controller needs the vehicle
speed (input) in order to compute the deviation from the recognized speed limit.
The synchronization between the two FMUs is achieved via the FMI MA, which
retrieves and communicates the corresponding values. We apply the two runtime
monitoring approaches of Sect. 3 to evaluate the property:
“The vehicle speed should always be less than or equal to the current speed limit.”

In first-order LTL, the aforementioned property can be written as

φ1 := vehicleSpeed ≤ speedLimit

or if a single speed limit violation is enough to invalidate the property, as

φ2 := H vehicleSpeed ≤ speedLimit

We simulated the system using 453 image frames with various traffic signs,
which produced simulation traces of length 3000 steps. Runtime verification
of properties φ1 and φ2 took place using both approaches of Sect. 3 and the
induced computational overhead was estimated through comparison with the
computational time taken for co-simulation without runtime monitoring. For
φ1, six property violations were found and all of them happened at time instants
in which a lower speed limit has been detected - three time units are required to
apply the new limit to the SpeedSensor. For φ2, as expected, once the property
was violated, it continued to be violated for the rest of the simulation trace.

Our simulation time measurements, initially showed imperceptible monitor-
ing overhead, due to the computation time for traffic sign perception (neural
network) that was orders of magnitude larger than the time spent in each sim-
ulation step, for all other tasks (∼ 0.2 − 0.5 ms). Thus, we report the compu-
tation times and the relative increase from the co-simulation without runtime
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monitoring, by excluding the times spent for the perception task and monitor
initialization, in the beginning of the co-simulation. The results in Table 1 show
a very high overhead, when the computation time for each simulation step is in
the range of ∼ 0.2−0.5 ms. The overhead is even higher, when the H operator is
used. Finally, no conclusive results are drawn for potential efficiency differences
between the two runtime monitoring alternatives proposed in Sect. 3.

Table 1. Runtime monitoring and overhead for properties φ1 and φ2 of the traffic sign
recognition and speed regulation case study.

Id Property Approach 1 (Sec. 3.1) Approach 2 (Sec. 3.2)

#ev Time [ms] overhead #ev Time [ms] overhead

1 none 3000 137.6728 - 3000 137.6728 -

2 φ1 3000 315.3487 129 % 3000 328.35 138.5 %

3 φ2 3000 762.478 453.8 % 3000 661.30 380.3 %

5 Conclusion

In this work, two runtime verification alternatives were presented for FMI-based
co-simulation, which enable the verification of requirements for a co-simulated
system. Both solutions have been applied to co-simulations of fixed time steps
and can be fully automated to completely eliminate any manual manipulation
of intermediate artifacts.

For the runtime monitors, we opted the DejaVU monitor synthesis tool that
allows specifying properties in the past-time portion of a first-order extension of
LTL. We believe that this level of expressiveness fits into the needs for expressing
properties based on a set of semantically diverse simulation components (FMUs)
that emit events with data.

The efficiency of the two solutions was studied through experimentation with
a case study, namely an autonomous system co-simulation. For the monitored
properties, we observed a significant overhead compared to the co-simulation
without monitoring, when the computation time for each simulation step is in
the range of ∼ 0.2−0.5 ms. When the simulation step included a computationally
intensive task, the monitoring overhead was imperceptible. The code for the
runtime monitoring solutions applied to our case study is available online1.

Of course, the induced overhead depends predominantly on the monitored
property and the operators used. However, as a future research prospect, we are
interested to adapt the FMI master algorithm, so that the runtime monitor will
be selectively called under specific conditions, instead of every time step.

1 https://depend.csd.auth.gr:8443/anastast/fmu monitoring rv22.

https://depend.csd.auth.gr:8443/anastast/fmu_monitoring_rv22
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Abstract. Runtime verification deals with checking correctness proper-
ties on the runs of a system under scrutiny. To achieve this, it addresses
a variety of sub-problems related to monitoring of systems: These range
from the appropriate design of a specification language over efficient
monitor generation as hardware and software monitors to solutions for
instrumenting the monitored system, preferably in a non-intrusive way.
Further aspects play a role for the usability of a runtime verification
toolchain, e.g. availability, sufficient documentation and the existence of
a developer community. In this paper we present the TeSSLa ecosystem,
a runtime verification framework built around the stream runtime ver-
ification language TeSSLa: It provides a rich toolchain of mostly freely
available compilers for monitor generation on different hardware and soft-
ware backends, as well as instrumentation mechanisms for various run-
time verification requirements. Additionally, we highlight how the online
resources and supporting tools of the community-driven project enable
the productive usage of stream runtime verification.

1 Introduction

Runtime verification is the discipline of computer science that develops methods
for verifying whether a system behavior adheres to its specification. To this extent
the given specification in some specification language is typically translated into a
monitor that analyzes the behavior in question. The analysis may be performed
online, while the system is executing, or it may be analyzed offline when for
example the trace is pre-recorded [1].

While the heart of a runtime verification framework consequently consists
of the specification language itself and its synthesizers deriving monitors from
given specifications, a practically viable tool suite has to support in many further
aspects. One of the main challenges is how to get the observation of the system

c© The Author(s) 2022
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under consideration. Most often, observing a system may slow it down or, more
generally, may affect its timing. Even more, the monitor may affect the timing
of the overall system. This may lead to both false positive and false negative
verdicts which should of course be avoided.

Another aspect is the concrete application scenario. Runtime verification
may be used as a form of debugging, for finding errors in a given system, or
for showing (statistically) that the system is indeed correct. Depending on the
application scenario, supporting tools either have to provide a quick turnaround
time (i.e. the time to observing a new execution of the system once the spec-
ification has changed), or, have to be extremely efficient to support long-term
observations. Finally, runtime verification may also be used for life-long super-
vision of the underlying system (and enforcing correctness of the system) such
that the whole runtime verification machinery becomes a part of the system
which, again, requires different properties to be fulfilled. An overview of the gen-
eral stream runtime verification architecture with the required components and
involved configuration documents, which are subject to these considerations is
shown in Fig. 1.

However for practical applications, it is not only important to get the system
right but likewise to get the specifications right. As such, supporting tools for
writing meaningful specifications are helpful. Last but not least, a vivid commu-
nity and open-source tools are a further plus when using runtime verification in
industrial settings.

Fig. 1. General architecture of stream runtime verification.

Altogether we see that from a theoretical point of view runtime verification is
often simplified to synthesizing monitors for your specification formalism, while
a practically viable runtime verification framework has to meet a variety of
different requirements and needs a variety of supporting tools.

In the following we focus on stream runtime verification (SRV) which has
been pioneered by the specification language LOLA [2]. Later on RTLola [3],
Striver [4] and TeSSLa [5,6] emerged. In this paper we will present TeSSLa’s dif-
ferent compiler backends and supporting tools to meet the various requirements
of the runtime verification process discussed above. While the TeSSLa language
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itself [5,6] and some of its synthesizers [7,8] have been described before, this
paper describes mainly the TeSSLa tool suite as a whole, which aims supporting
software engineers and testers to achieve efficient and powerful verification.

This paper is organized as follows: In Sect. 2 we briefly recall the TeSSLa
language by providing a specification that can be used for monitor synthesis. In
Sect. 3 we give a broad overview of the backends such monitors may be compiled
to. Section 4 presents the different instrumentation approaches that are compat-
ible with the TeSSLa framework. In Sect. 5 we finally give an overview about
additional tools and aspects connected to the TeSSLa ecosystem. We conclude
the paper in Sect. 6.

2 The TeSSLa Specification Language

This section presents the TeSSLa language on the basis of an example to give a
rough impression of the language features supported there: The specification in
Listing 1.1, used as running example throughout the paper, checks that the time
that passes between the activation of brakes of an automotive system and the
reading of the brake sensors (which are used to supervise the braking process)
is less than or equal to 4 ms.
# Inputs
@InstFunct ionCal l ( " read_brake_sensor " )
in read_brake_sensor : Events [ Unit ]
@InstFunct ionCal l ( " act ivate_brakes " )
in act ivate_brakes : Events [ Unit ]

# Trace Proce s s ing
def l a t ency = measureLatency ( read_brake_sensor , act ivate_brakes )
def e r r o r = la t ency > 4ms
def high = f i l t e r ( latency , e r r o r ) − 4ms
def i s _ c r i t i c a l = count ( high ) > 10
def c r i t i c a l = f i l t e r ( high , i s _ c r i t i c a l )

# Output
@VisDots out high
@VisEvents out c r i t i c a l

# Macro
def measureLatency [A, B] ( a : Events [A] , b : Events [B ] ) =

time (b) − last ( time ( a ) , b )

Listing 1.1. TeSSLa specification for the Brake Sensor example.

The specification does so by defining two input streams read_brake_sensor
and activate_brakes. The type of the events carried by these streams is Unit,
i.e. they have no value, as they only represent calls to functions. The input
streams are preceded by @InstFunctionCall annotations. During the following
monitoring process, these annotations are extracted from the stream specifica-
tion and passed to connected tools of the tool chain. In this specific case these
annotations are meant for the instrumenter who is instructed to raise an event on
the input streams, always when in the supervised system a call of the functions
read_brake_sensor and activate_brakes happens. In the following lines five fur-
ther streams are defined. The first one latency is defined as a call of the macro
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measureLatency. This macro receives two streams a and b of generic types A, B
and produces a new stream of events. It is defined at the end of the specification
using two operators: time(x) provides access to the timestamps of the events
on stream x and last(y, z) provides the last event on y for every event on z.
The expression time(b) - last(time(a), b) calculates the difference between
the timestamp of the current event on stream b and the timestamp of the last
event on stream a. As a consequence the stream latency in our example always
carries the latency between a call of activate_brakes and the subsequent call
of read_brake_sensor. The other streams are defined based on this latency and
via macros from the TeSSLa standard library. The stream error is true if the
measured latency is higher than 4ms. If error is true then high contains the
value by which amount the 4ms are surpassed. Stream is_critical counts the
number of events on stream high, i.e. the number of breaches of the property
and gets true if this number exceeds 10. critical finally filters the events of
high if critical is true. In the third part the specification eventually defines
which streams shall be printed out by the monitor (high and critical). Again
these streams contain annotations which are passed to subsequent tools. In this
case @VisDots and @VisEvents which indicate the graphical representation of
the streams in a monitor GUI.

Note that the TeSSLa language, from a theoretical point of view, as presented
in [6], only consists of six core operators. In practice, however, it provides several
additional features, like annotations, macro definitions and access to macros from
a standard library, which do not make the language more expressive, but are
necessary for a comfortable usage of the tool chain and the language itself.

3 TeSSLa Compilers and Backends

The TeSSLa tool suite addresses different compilation targets for TeSSLa spec-
ifications. It comes with an interpreter that evaluates a TeSSLa specification
on the JVM without compilation, compilers that synthesize the specification
into software monitors that can be executed on different target platform, and a
compiler for specialized event processing hardware.

The interpreter is written in Scala and available as a runnable Jar archive.
It follows a straightforward evaluation strategy and serves as a reference imple-
mentation for TeSSLa, but is significantly slower than other backends (see mea-
surements in Fig. 3). Still, it is a ready-to-use tool for simple experiments, e.g.
when exploring the TeSSLa language. The interpreter provides results without
compilation overhead, while the other software compilers translate TeSSLa to
imperative languages first, which are then further compiled to binaries. The
interpreter’s direct evaluation supports the interactive process of writing new
specifications and checking them on sample inputs. It also provides an API that
can be used to integrate it with custom tools and trace sources.

The software compilers generate Scala or Rust code. The Scala code is com-
piled into a Jar which can be executed platform-independent on any JVM.
Complex data structures like maps, sets and lists are implemented using the
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immutable data structures provided by the Scala standard library. Additional
Scala and Java data structures and functions can be used via native externs: They
allow the declaration and utilization of TeSSLa functions that are implemented
natively in the target language of the compilation. The Rust code is compiled
into a native binary for all targets supported by the LLVM project. Complex
data structures are implemented using immutable data structures for Rust pro-
vided by the library rust-im1 and additional data structures and native externs
are supported, too. Both software compilers generate a monitoring library and
an exemplary command line application.

The TeSSLa framework also supports a specialized event processing hardware,
Accemic’s embedded processing units (EPUs) [8–13]. EPUs are implemented on
an FPGAand allow data flow processing while maintaining short reconfigura-
tion cycles: The EPUs are programmed by writing special commands into their
memory. They can be reconfigured entirely without the need for a new FPGA
synthesis. The TeSSLa EPU compiler generates such an EPU configuration which
can be directly uploaded to EPU hardware. The maximal processing speed of
the EPUs is 100 MEVent/s (million events per second).

The TeSSLa language is designed to be modular such that the requirements
of different target platforms can be considered. For example, the EPUs do not
support complex data structures to the same extent as the software compilers.
The interpreter, the software compilers and the EPU compiler rely on the same
compiler frontend, which compiles a TeSSLa specification into so-called TeSSLa
Core. TeSSLa Core is a special form of a TeSSLa specification, representing the
data flow graph of the TeSSLa specification. In TeSSLa Core every stream and
every function has type annotations, and all macros are expanded. The compiler
frontend can either print TeSSLa Core using the syntax for TeSSLa specifications,
or provide the object graph as a data structure to compiler backends so that they
do not need to parse it again.

The compiler frontend consists of an ANTLR-based parser, a type checker
and a constant folder, which operates on macros and functions on statically
known values and simplifies the translation for the further backends. The fron-
tend is written in Scala and available as a library packaged as a Jar archive
that the backends can use, for example as a Maven dependency. This makes it
possible to extend the tool suite with further specialized synthesizer backends.

4 Observation and Instrumentation

The TeSSLa tool suite provides utilities for the entire runtime verification work-
flow: The previous section introduced several monitoring syntheses; this section
discusses approaches to observe events from the system under test (SUT).

As already pointed out in the introduction, the requirements for the mecha-
nism to do this are diverse and depend on the specific application scenario. While
for some settings a powerful and highly customizable software instrumentation is

1 https://docs.rs/im/latest/im/.

https://docs.rs/im/latest/im/


TeSSLa – An Ecosystem for Runtime Verification 319

the desired mechanism, other scenarios may require a fully non-intrusive obser-
vation generation strategy, which has no interference with the SUT. Depending
on the monitoring target (hardware or software) the TeSSLa tool chain is com-
patible with/offers different instrumentation utilities.

The software monitors can be used for online and offline monitoring. They
can process trace data from text-based or binary files recorded earlier. In com-
bination with instrumentation tools like AspectJ [14,15] they can be used for
online monitoring, too: The instrumented executable sends a stream of events
to the compiled monitor running as a separate process in order to reduce the
influence of the monitoring on the SUT. The upper part of Fig. 2 shows this
approach.

Fig. 2. Architecture of runtime verification with instrumented binary and compiled
monitor (top) in comparison with dedicated CEDAR hardware for non-intrusive mon-
itoring with the embedded tracing unit (ETU) of the processor (bottom).

The TeSSLa tool suite also comes with its own instrumentation tool for C
code using the clang compiler tool chain. Instrumenting source code instead of
binaries has the advantage that the instrumented source code is still human-
readable and can manually be customized after the instrumentation by the user
according to his needs and then be compiled with the existing compilation tool
chain.

The C-Code instrumenter is available as a native binary that is integrated
into the TeSSLa Jar package. It uses the information about the specification’s
input streams and annotations (e.g. @InstFunctionCall in Listing 1.1) to add
dedicated calls to a logging library into the source code of the SUT. The log-
ging library is also part of the TeSSLa tool suite. It uses multi-producer multi-
consumer channels for message passing to allow multiple threads of the SUT to
send messages to the monitor without any locking.
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In contrast to the intrusive software monitoring approach, the TeSSLa tool
suite also supports non-intrusive monitoring using Accemic’s CEDAR hard-
ware [8,11–13,16,17]. The lower part of Fig. 2 shows how non-intrusive moni-
toring utilises the processor’s embedded tracing unit (ETU). The unmodified
executable runs on the processor and the ETU provides a debugging trace. This
trace contains information about the program counter, i.e. which instructions are
currently executed by the processor. The ETU’s trace is encoded: From time to
time it contains absolute program counter addresses, but most of the time it only
indicates if a conditional jump was taken or not. The trace reconstruction of the
CEDAR hardware decodes the current program counter address online from the
ETU’s trace. Again, annotations in the TeSSLa specification are used to declare
points of interest. If the program reaches such a point, the trace reconstruction
adds an event into the event stream processed by the EPUs which were config-
ured with the TeSSLa specification. A video demonstration of the usage of the
TeSSLa tool suite non-intrusive monitoring using Accemic’s CEDAR hardware
with the specification from Listing 1.1 is available online.2

Figure 3 shows some exemplary throughputs of the specification Brake Sen-
sor from Listing 1.1 and another specification Scheduling using complex data
structures that are not supported on the EPUs. Both specifications are available
in the playground in the menu item RV Examples.3 One can clearly see that the
interpreter is orders of magnitude slower than the compiled Scala program. The
compiled Rust program and the EPUs are again an order of magnitude faster
than the compiled Scala program.

Fig. 3. Exemplary throughput of the interpreter, the compiled Scala monitor,
the compiled Rust monitor, and the EPUs. (Color figure online)

5 The TeSSLa Ecosystem

The TeSSLa tool suite provides the necessary components for online and offline
runtime verification: Instrumentation, logging, and monitor synthesis. However,
the TeSSLa ecosystem goes beyond these software tools and covers further
aspects that supports the practical application of runtime verification:
2 www.youtube.com/watch?v=3AYVWK-X9nw.
3 https://play.tessla.io/.

www.youtube.com/watch?v=3AYVWK-X9nw
https://play.tessla.io/
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Playground. The TeSSLa website4 contains an interactive playground (see Foot-
note 3) intended for a first exploration of the TeSSLa language and the runtime
verification tools. TeSSLa specifications can be interpreted and C code can be
instrumented and executed in a sand-boxed environment. Further, the stream
visualizer provides a graphical intuition for TeSSLa streams. It helps to rec-
ognize event patterns and assists users with the interactive process of writing
and testing TeSSLa specifications. The playground is shown in Fig. 4: Note how
the annotations @VisDots and @VisEvents on the output stream declarations in
Listing 1.1 determine the representation of the streams in the visualizer.

Documentation. Further, the TeSSLa website contains material on the formal
semantics of the language, introductions and tutorials on writing TeSSLa spec-
ifications and using the instrumentation for runtime verification. The language
specification precisely describes the syntax and semantics of the language. We
developed TeSSLadoc to support documentation of TeSSLa specifications. The
tool is inspired by Javadoc and used e.g. for the documentation of the standard
library. The documentation includes examples which are graphically represented
using the stream visualizer.

Fig. 4. The TeSSLa playground is a web-based IDE that can interpret TeSSLa specifi-
cations on instrumented C code or manually entered input traces. Output traces can
be graphically visualized in the interactive stream visualizer.

4 www.tessla.io.

www.tessla.io


322 H. Kallwies et al.

Libraries. TeSSLa’s macro system supports modular extensions for special appli-
cation domains. There are currently libraries for AUTOSAR Timex [18,19], past-
time LTL and timed dyadic deontic logic [20]. These documented user libraries
are available for download on the TeSSLa website5 and are contributed and
maintained by the community.

Scientific Publications. TeSSLa itself is presented, analyzed and discussed in
several publications [5,6,8,12,13,21–23] and used to implement and analyze
advanced concepts for stream runtime verification like for example monitor-
ing streams with partial information using ideas of abstraction [24] and new
approaches to the aggregate update problem for multi-clocked data flow lan-
guages [7]. The application of TeSSLa for race detection is described in [25].

Community. The TeSSLa language, the language specification, the compiler
frontend and several backends are available under a free license. TeSSLa is main-
tained and developed further by the TeSSLa community. It is used in several
projects and the open source licensing allows all TeSSLa users to share their
contributions with the growing community.

6 Conclusion

This paper provided an overview of the TeSSLa tool suite for runtime verifica-
tion. We discussed typical challenges that come with the practical application of
runtime verification and presented their solutions within the TeSSLa framework.
We demonstrated how the main components work and how they can be used.
Finally we sketched further accompanying aspects of the TeSSLa ecosystem and
argued how they support the verification process further.
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Abstract. Stream-based runtime monitors are used in safety-critical
applications such as Unmanned Aerial Systems (UAS) to compute com-
prehensive statistics and logical assessments of system health that pro-
vide the human operator with critical information in hand-over situa-
tions. In such applications, a visual display of the monitoring data can
be much more helpful than the textual alerts provided by a more tradi-
tional user interface. This visualization requires extensive real-time data
processing, which includes the synchronization of data from different
streams, filtering and aggregation, and priorization and management of
user attention. We present a visualization approach for the RTLola

monitoring framework. Our approach is based on the principle that the
necessary data processing is the responsibility of the monitor itself, rather
than the responsibility of some external visualization tool. We show
how the various aspects of the data transformation can be described
as RTLola stream equations and linked to the visualization component
through a bidirectional synchronous interface. In our experience, this
approach leads to highly informative visualizations as well as to under-
standable and easily maintainable monitoring code.

Keywords: Runtime verification · Stream-based monitoring · Data
visualization

1 Introduction

Over the past decades, the scope of runtime verification has grown from an
essentially boolean check, indicating whether or not a program execution satis-
fies a given formal specification, towards the real-time computation of more and
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Fig. 1. Screenshot of a visualization displaying the battery status, velocity, and GPS
coordinates of a UAS.

more expressive statistical data. A typical example are Unmanned Aerial Sys-
tems (UAS), where the monitor continuously collects and aggregates inputs from
sensors and on-board components to provide the human operator with critical
information in hand-over situations [1,3,26].

Traditionally, the interaction between runtime verification tools and their
users has largely been based on textual interfaces, such as “alert” messages that
are issued in case of a violation of the specification. In applications like UAS,
however, such a simple user interface is often no longer sufficient. In addition
to understanding that the monitor has detected a problem, the human operator
must quickly grasp the situation and decide on potentially time-critical corrective
action. A well-designed visual presentation of the available data is therefore of
critical importance for the safe operation of the system.

Generating useful visualizations is far from trivial. First and foremost, the
visualization must ensure that important or dangerous information is clearly
visible to the user; because of the abundance of available data, data must be pri-
oritized, and less important data must be hidden in favor of more important data.
Similarly, the frequency of data points must be adjusted to provide meaningful
information avoiding overlaps and adjusting for discrepancies in the availabil-
ity of the raw data. All these computations have to be adjusted in response to
actions by the user, who may look at multidimensional data from different angles
or zoom into data areas of particular interest.

In this paper, we report on our recent effort in extending the RTLola mon-
itoring framework with real-time visualization capabilities. RTLola [4,11] is a
stream-based monitoring framework for cyber-physical systems and networks.
RTLola processes, evaluates, and aggregates streams of input data, such as
sensor readings, and provides a real-time analysis in the form of comprehensive
statistics and logical assessments of the system’s health. An RTLola monitor is
generated from a formal description given in the RTLola specification language.
The specifications consist of stream equations that translate input streams into
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output streams. RTLola specifications are statically analyzed to determine the
required memory and are then either directly executed by the RTLola inter-
preter, or compiled onto an FPGA.

The fundamental insight of our approach is that the data processing needed
to generate the visualization should be the responsibility of the monitor itself,
rather than that of some external visualization tool. The monitor has access to
all information and is therefore in the best position to determine the relevancy
of individual data points. Because of the expressive power of the monitoring lan-
guage, the monitor also has the computational means to interpolate and aggre-
gate the raw data as required. Finally, keeping all data manipulations in one
place reduces redundancy and avoids errors and misinterpretations.

We organize the RTLola specification of the data processing for the visual-
ization into three functional areas: 1. Data Synchronization: This part of the
specification guarantees synchronous data updates for the visualization. This is
important because the visualization combines data from different streams into a
single entry in the plot: for example, a point indicating the position of a drone
might be annotated with the speed of the drone. If different attributes have differ-
ent timing, for example because of the variations in the frequency of the sensors,
the monitor interpolates the missing data. 2. Filtering and Aggregation: This
part of the specification avoids overlapping markers in the visualization, which
are caused if readings arrive at a high rate. The monitor smoothes the input
signal and adjusts the rate according to the current visualization. 3. Prioriza-
tion and Attention Management: This part of the specification determines
the criticality of the available information and ensures that the human operator
does not miss important information.

The monitor and the visualization component are connected via a syn-
chronous interface. The responsibility of the visualization component is to create
the graphical display and to react to user requests. Since this user interaction
may affect the visibility of plots or change the scaling, a backchannel provides
this information to the monitor in the form of additional input streams. Fig. 1
shows a screenshot of our prototype implementation, which is based on the
monitoring framework RTLola and the visualization framework cgv [16]. The
monitor interacts with configurable 2D and 3D plots that support time-series
plots, scatter plots, trajectory plots and multi-variate visualization through a
flexible mapping of data attributes to the visual attributes color, opacity and
size. We have applied our approach to the real-time visualization of UAS and
other cyber-physical systems, based on existing RTLola case studies; our expe-
rience suggests that adding the visualization specification inside the monitor
leads to highly informative visualizations as well as to understandable and eas-
ily maintainable monitoring code.

1.1 Related Work

This paper connects two traditionally separate areas of research: runtime mon-
itoring and visualization. Somewhat surprisingly, visualization has not played a
major role in monitoring research before. Despite a wide range of monitoring
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approaches, from formal logic [9,12,17,25] to stream-based specification lan-
guages [6,7,10,15], most tools have in common that they rely on textual, rather
than visual, methods for data presentation. This paper shows that stream-based
monitoring languages like RTLola are very well suited to carry out the needed
data processing for useful visualizations. Our focus on RTLola is motivated by
recent work on RTLola-based monitoring for UAS [2,3] and other cyber-physical
systems [4,5,11]. However, the approach of the paper is clearly transferrable to
other monitoring tools for CPS [22–24].

In the area of visualization, research on streaming visualization is also still
in an early stage. A notable result are streaming processing models for data
[28] and techniques for kernel density estimation in aggregated views over 2D
maps [19]. There has been a systematic discussion of the suitability and prob-
lems of traditional visual analysis techniques [8,18,27]. Additionally, visualiza-
tion frameworks [14] and visualization techniques that allow the user to better
cope with changes over time have been developed, such as zoomable naviga-
tion [21], paged views [13], and transformation-based smooth transitions [20].
These approaches differ substantially from the approach taken in this paper, in
that these are independent visualization tools, which prepare the data for the
visualization independently of the monitor. By contrast, our setup tightly inte-
grates the monitor with the visualization, keeping all data manipulations in one
place.

2 RTLola

RTLola is a stream-based monitoring framework for cyber-physical systems and
networks. An RTLola monitor is generated from a formal specification descrip-
tion given in the RTLola specification language. The specification consists of
stream equations that describe the transformation of incoming data streams into
output streams, and a set of trigger conditions that result in notifications to the
user. The RTLola framework includes automatic static analysis methods that
ensure the predictability of the monitor with respect to memory consumption
and other relevant properties. We illustrate the RTLola specification language
with a small example; for more details, we refer the reader to [4,11].

input gps: (Float64, Float64), charge: Float64, time: Float64
output charge_time @charge := time.hold(or: 0.0)
output filtered_gps filter gps != (0.0,0.0) := gps
trigger δ(charge) / δ(charge_time) > 2.0
trigger filtered_gps.0 > 6.0 ∧ filtered_gps.1 > 6.0

The specification declares three input streams: The first stream gps represents
readings received by the GNSS (global navigation satellite system) module, the
second stream charge shows the battery charge status, and the third one time
contains the current time. Next, the specification declares the charge_time out-
put stream, which filters the time stream to timestamps of newly received bat-
tery readings. For this, it binds the timing of the charge_time stream to the
timing of charge, indicated by the @charge annotation. In RTLola, such a
filter is called a static filter. As time might have a different timing, the value is
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input charge: Float64, gps: (Float64, Float64)
input pixel_scale: (Float64, Float64), visible: Bool
output xLim: (Float64, Float64) @gps
:=(min(gps.0, xLim.0.offset(by:-1, or:gps.0)), max(gps.0, xLim.1.offset(by:-1, or:gps.0)))
output yLim: (Float64, Float64) @ gps := . . .
output δx @gps∨charge
:= (gps.hold(or:gpss).0 - marker.offset(by:-1, or:markers).0) /

(xLim.hold(or:1.0).1-xLim.hold(or:1.0).0) * pixel_scale.hold(or:pixel scales)
output δy @gps∨charge := . . .
output δc @gps∨charge := charge.hold(or:charges) - marker.offset(by:-1, or:markers).2
output send @gps∨charge := sqrt(δx**2.0 + δy**2.0) > τgps ∨ δc > τcharge

output marker: (Float64, Float64, Float64) @gps ∨ charge
filter send ∧ visible.hold(or: false)
:= (gps.hold(or:gpss).0, gps.hold(or:gpss).1,charge.hold(or:charge_s))

Fig. 2. RTLola specification demonstrating the interplay.

accessed via a 0-order hold interpolation. The next stream filtered_gps uses
a dynamic filtering to exclude noisy sensor readings. In our example, the GNSS
sends (0.0, 0.0) coordinates during initialization that the specification can dis-
card. The last two lines contain triggers checking if there is an unusual drop in
the battery status and if the coordinates do not exceed some thresholds.

In RTLola, the static and dynamic filters are combined into a pacing type,
which defines the timing of each stream. This type is either inferred or explic-
itly annotated. RTLola’s type checker verifies the timing of the streams and
RTLola provides different operators to interpolate data if the timing constraints
cannot be guaranteed in the stream expression.

3 Generating Visualization Data

We now describe in more detail the generation of visualization data with
RTLola stream equations. For the communication from the monitor to the visu-
alization component, the specification contains output streams that are mapped
to plot coordinates and visual attributes such as size and color. It also contains
an output stream per axis, setting its displayed range. For the backchannel,
the specification has input streams that receive the data from the visualization
reflecting the interaction of the visualization component with the user. For each
2D-plot, we include one input stream to transfer the current scale factors; for
each 3D-plot we include two input streams, representing the projection matrix
and window size. Additionally, the specification has an input stream for each
plot indicating which plot is visible.

We structure the generation of the visualization data into three areas: Data
Synchronization and Interpolation, Filtering and Aggregation, and Prioritization.
For each area, we shortly describe the problem, then describe the mechanism of
how RTLola solves the task and explain the solution in more detail with our
running example shown in Fig. 2. We display the coordinates of a GNSS in a
2-dimensional plot, and the remaining battery charge is mapped onto the color
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Fig. 3. Screenshot of the prototype with different monitors. On the left side, we use
a monitor forwarding all data, whereas the right monitor filters the data using the
specification in Fig. 2.

of the marker. The input streams charge and gps represent the sensor readings
followed by the streams pixel_scale and visible implementing the backchan-
nel. The output streams xLim and yLim compute the upper and lower bound
per axis which is in our case the global minimum and maximum. Alternatively,
our plot could represent with the following stream expression the data over a
time-period σ:

output x_limits: (Float64, Float64) @1Hz
:= (gps.0.aggregate(over: σ, using: min), gps.0.aggregate(over: σ, using: max))

The next streams are helper streams to filter the data and the last output stream
marker contains all information needed for a new marker in the plot.

3.1 Data Synchronization and Interpolation

For drawing a marker, the visualization needs to know all its visual attributes
which might be based on sensors with different frequencies. We use RTLola’s
type system to guarantee that the monitor sends synchronized updates per plot.
For this task, we use the concept of pacing types as introduced in Sect. 2. We
define a pacing for each plot and annotate the streams for this plot with the
desired pacing. Then, we use RTLola’s type checker to verify that the data
is available. In our example, we want to create a marker whenever at least one
sensor sends an update and therefore use the disjunction of the two input streams
as the pacing type. This pacing type @gps∨charge is annotated to the stream
marker. Similarly, we want to update the axis limits, represented by the streams
xLim and yLim, whenever we get a new GPS sensor reading.

We cannot directly access the current value of each stream because they may
have different timings. Instead, we specify how missing data is interpolated.
RTLola offers different approaches for this task, e.g., by using data aggrega-
tions, zero-order hold operations, or even different forms of data interpolations.
In our example, we use a zero-order hold on the missing data.

3.2 Data Filtering and Aggregation

This section shows how a monitor prepares data to provide more understandable
updates to the user. Figure 3 shows two plots from the same execution. On the
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Fig. 4. On the left side, one marker with irrelevant information covers a critical marker,
whereas the monitor on the right encodes a form of priority.

left side, the monitor forwards all data to the visualization resulting in over-
lapping markers. These overlapping markers overload the plot with unrequired
information and even overlap some information, as in our example, the color
illustrating the battery status. On the right side, the monitor tailors the data
for visualization and transfers the prepared data, so we do not have this problem.

The monitor on the right uses RTLola’s dynamic filtering mechanism to
prepare the data. With this filtering approach, the monitor can dynamically
adapt the throughput to the visualization. Dependent on the scenario, different
filters are helpful: For example, a filter forwards the GPS data dependent on the
current velocity or increasing the sample rate if the system violates a property
could be easily expressed in RTLola. In our running example, we forward the
markers only if the difference between the new marker and the previous marker
exceeds a threshold and if the plot is visible. For this, the output stream marker
has two such filters connected by a disjunction. Both filters use the information
provided by the visualization to describe the current state of the plot – visibility
and scaling. With the second disjunct, we ensure that a marker is transmitted
only if the plot is visible. The other filter is encoded by the stream send. In this
stream, we decide whether the difference to the previously transmitted marker
is sufficient to warrant a new marker. For this, we first compute the distance
between the pixel coordinates of the candidate marker and the last marker based
on the current bounds and scaling, and compare it with a defined threshold that
prevents overlapping. We also check whether the difference in the charging level
warrants a new marker. A similar approach also applies to 3D plots. Instead of
the pixel_scale, we use the projecting matrix that encodes besides the scaling,
the viewing rotation, and perspective.

Depending on the scenario and the size of the plot, it can be useful to aggre-
gate values (such as by computing the average, minimum, and maximum of the
data since the last marker) instead of dropping values. In RTLola, this can
easily be done using the corresponding aggregation functions.

3.3 Attention Management

In Sect. 3.2, we have already discussed how the monitor can filter data points if
they do not contain relevant information. Often, however, this is not sufficient,
and we need to prioritize information: Fig. 4 shows two plots containing a critical
state that the operator should recognize, illustrated by the red marker. This
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marker is partially covered on the left by plotting a new marker that does not
contain this information anymore. The operator can easily miss this information,
so the monitor on the right prioritizes them and thus does not send the candidate
marker to the visualization tool.

Again, we use RTLola’s dynamic filtering mechanism to prevent the cover-
age of higher prioritized information. We also introduce new streams encoding
the priority of information and checking the coverage of markers. In our running
example, we need to change the stream expression of send and add the following
streams to the specification:

output critical: Bool @gps∨charge := . . .
output marker_lc @gps∨charge
:= if send ∧ critical then marker else marker_lc.offset(by:-1, or:markers)
output δxc @gps∨charge
:= (gps.hold(or:gpss).0 - marker_lc.offset(by:-1, or:markers).0) /

(xLim.hold(or:1.0).1-xLim.hold(or:1.0).0) * pixel_scale.hold(or:pixel scales)
output δyc @gps∨charge := . . .
output send @gps ∨ charge
:= (sqrt(δx**2.0 + δy**2.0) > τgps ∨ δc > τcharge) ∧ ((sqrt(δxc**2.0 + δyc**2.0) > τc ∨

critical)

The stream critical encodes the priority of a marker and the next stream
marker_lc stores the values of the last critical marker. The changed stream
send now also determines if a potential new marker would overlap the last critical
marker by computing the distance between the markers with the help of δxc and
δyc and then checking if this distance is sufficient.

Preventing covering markers with less relevant information is only one exam-
ple of how we can encode the priority of information. Another example occurs
when the specification aggregates data points to make the plots more readable:
With aggregations, we lose information about the system. In general, this behav-
ior is intended because the human supervisor cannot process all information from
every sensor. In critical situations, however, the operator usually is focused on
the part that misbehaves. In these situations, the monitor can switch to transfer-
ring each data point instead of aggregating them, or it might reduce the required
difference for new markers, so the supervisor gets all the required information.
Such a property can be expressed in RTLola by adapting the timing of a stream
or by using different aggregation functions.

4 Conclusions

In this paper, we have introduced a principled approach to the real-time visu-
alization of stream-based monitoring data. The key contributions are the novel
design principle, which shifts the responsibility for the data preparation from
the visualization component to the monitor; the organization of the approach
into three major functional areas; and the solution of the visualization challenges
with the mechanisms of a stream-based monitoring language.

Our practical experience with the approach of the paper has been very posi-
tive. We have used the approach to visualize stream-based monitoring data from
recent case studies that use RTLola for UAS [2,3] and other cyber-physical
systems [4,5,11]. The visual tools provided by cgv have proven very useful for
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the type of data produced by our monitors. For example, we have visualized the
failure of the GPS module in a drone, which was recognized by the system health
check in the existing monitor specification, by adding a halo to the markers of
the estimated position and by increasing the marker frequency. While clearly
more research is needed in order to determine the best visualizations, our expe-
rience already indicates that this type of visualization is very helpful in quickly
understanding complicated situations.

We hope that this paper will inspire other developers of runtime verification
tools to invest in real-time visualization as well. We believe that our “monitoring-
oriented” visualization approach provides a significant step towards meaningful
visualizations that exploit the wealth of information available within the moni-
tor. In future work, it might even be possible to integrate explicit visualization
operators into monitoring languages like RTLola, and thus largely automate
the visualization process presented in this paper.

References

1. Adolf, F., Faymonville, P., Finkbeiner, B., Schirmer, S., Torens, C.: Stream runtime
monitoring on UAS. In: Lahiri, S.K., Reger, G. (eds.) RV 2017. LNCS, vol. 10548,
pp. 33–49. Springer (2017). https://doi.org/10.1007/978-3-319-67531-2 3

2. Adolf, F.M., Faymonville, P., Finkbeiner, B., Schirmer, S., Torens, C.: Stream
runtime monitoring on UAS. In: Lahiri, S., Reger, G. (eds.) Runtime Verification,
pp. 33–49. Springer International Publishing, Cham (2017). https://doi.org/10.
1007/978-3-319-67531-2 3

3. Baumeister, J., Finkbeiner, B., Schirmer, S., Schwenger, M., Torens, C.: RTLola
cleared for take-off: monitoring autonomous aircraft. In: Lahiri, S.K., Wang, C.
(eds.) CAV 2020. LNCS, vol. 12225, pp. 28–39. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-53291-8 3

4. Baumeister, J., Finkbeiner, B., Schwenger, M., Torfah, H.: FPGA stream-
monitoring of real-time properties. ACM Trans. Embedded Comput. Syst. 18(5s),
1–24 (2019). https://doi.org/10.1145/3358220

5. Biewer, S., Finkbeiner, B., Hermanns, H., Köhl, M.A., Schnitzer, Y., Schwenger,
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Abstract. When analysing cyber-physical systems for runtime verifi-
cation purposes, reachability analysis can be used to identify whether
the set of reached points stays within given safe bounds. If the system
dynamics exhibits nonlinearity, approximate numerical techniques (with
rigorous numerics) are often necessary when dealing with system evo-
lution. Since the error involved in numerical approximation should be
kept low to perform verification successfully, the associated processing
and memory costs become relevant especially when runtime verification
is considered. Given a reachability analysis tool, the issue of control-
ling its numerical accuracy is not trivial from the user’s perspective, due
to the complex interaction between the configuration parameters of the
tool. As a result, user intervention in the tuning of a specific problem
is always required. This paper explores the problem of automatically
choosing numerical parameters that drive the computation of the finite-
time reachable set, when the configuration parameters of the tool are
specified within bounds or lists of values. In particular, it is designed
to be performed along evolution, in order to adapt to local properties
of the dynamics and to reduce the setup overhead, essential for runtime
verification.

1 Introduction

In the verification of a generic cyber-physical system, modeling nonlinearity is
important in order to accurately capture the interaction of the digital control
with the continuous environment. In fact, studying the full interaction between
controller and environment, where continuous variables evolve in a possibly non-
linear way, represents a significantly harder problem compared to the analysis of
a digital controller in partial isolation. However, the formal methods community
in recent years has shown that the approach is feasible and applied it to different
systems especially in the field of robotics (such as [2,7,13]).
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The formalism of hybrid automata is commonly used to define the composi-
tion of controller and environment along with the semantics for its behavior (see
[3,6]). Reachability analysis in particular is concerned with the computation of
the reachable set, i.e., the set of points reached from an initial set that evolves
under the system’s dynamics. Given a dynamical system, obtaining its reachable
set allows to reason about its behavior, where a safety specification is represented
as geometric constraints on the reached points.

For linear hybrid systems, tools like HyPro [17] and SpaceEx [11] allow an
efficient representation of the evolution of the system. For nonlinear systems,
computing the reachable set is more problematic. To solve this issue, different
solutions are proposed in the literature, using either a numerical or symbolic app-
roach: see the tools Ariadne [4], CORA [1], Flow* [8], HSolver [15], JuliaReach [5]
and KeYmaera X [12] for some examples. In this paper we focus on a numerical
approach based on computing over-approximations of the reachable set.

Regardless of the preferred tool, it is apparent that automation plays a
very important role when approximate representations of the reachable set are
involved. Typically, the user needs to provide sensible values for configuration
parameters such as the integration step size or the polynomial order of a set
representation. These parameters usually affect the quality of numerical approx-
imation or enable/disable specific features, but in general they control the over-
approximation error. The problem is that the optimal values of the parame-
ters are difficult to know before the system under analysis is properly under-
stood. As a result, the user ends up refining configuration parameter values
iteratively until an acceptable result is obtained. This operation, usually done
manually with a trial-and-error approach, can become very time-consuming.
This is especially important for systems exhibiting nonlinear dynamics, where
symbolic approaches are more difficult to pursue and where evaluating the reach-
able set can be computationally intensive. In any case, the overhead due to user
interaction with the tool is non-negligible, in the worst case requiring to spend
hours observing the behavior of the system and repeatedly trying with differ-
ent configurations, for lack of an intuition on the complex interaction among all
configuration parameters. It is apparent that such approach does not work very
well for runtime verification, where real time constraints are incompatible with
manual tuning.

Hence, in this paper we propose a methodology for automated choice of the
values of configuration parameters. Differently from approaches that compute
a sequence of converging approximations to the exact result, the methodology
aims to solve the problem within a single run of execution in order to be com-
patible with runtime verification. The approach exploits concurrency by execut-
ing a single step of evolution on multiple configurations. The user is required
to supply only a reasonable range of values for each configuration parameter of
interest, hence its active role in optimising the reachable set calculation is greatly
reduced. In particular, safety specifications drive optimisation by generating geo-
metric constraints to hold along evolution. The distance to the specification is
the metric that allows to rank the various configurations and consequently use



338 L. Geretti et al.

the most effective parameter values required. This approach has the advantage
that the chosen parameter values have local validity, i.e., they are selected at
each integration step, and thus they adapt across reachability problems and also
across different integration steps of the same problem, since different subspaces
usually have different dynamical responses.

This approach should be considered a heuristic compared to, say, the gen-
eration of invariants from a formal analysis of the dynamics [16]. In fact, rig-
orously guaranteeing bounds on the numerical over-approximation error would
mean to rely on worst-case formulae for error. Those in turn would yield overly-
conservative values for numerical configuration parameters, resulting in excessive
accuracy (e.g., a smaller integration step size than what is actually necessary).
By pursuing a heuristic approach instead we privilege performance.

The methodology proposed is generic enough to be adopted by any tool
that performs approximate reachability by integration of nonlinear vector field
dynamics from an initial set. The actual implementation and the correspond-
ing experimental evaluation comes from a general framework for configuration
tuning available in the Ariadnelibrary. Ariadnediffers from existing packages
since it is based on the theory of computable analysis and on a rigorous function
calculus to achieve provable approximation bounds on the computations [9,10].

In this work we describe the methodology for the continuous behavior, while
the extension to hybrid systems will be the subject of a future publication. We
remark that the actual challenge lies in the continuous aspects of evolution, so
we deem the continuous benchmark in the reported experiments sufficient to
confirm the validity of the approach.

To the best of our knowledge, this is the first work that addresses automa-
tion in such a general way, in particular for nonlinear dynamics where numerical
approaches are preferred. Current tools seem to focus specifically on automated
refinement of the integration step size or possibly the polynomial order (which
were already accounted for in our tool before). A recent work [19] proposed a
solution for nonlinear systems, which tunes values of parameters introduced in
their reachability algorithm performing linearization. In this solution however
parameters are hard-coded, being related to the specific algorithm. On the con-
trary, our approach is generic in two aspects: 1) the parameters are not defined
a priori, meaning that any subset of parameters involved in any reachability
algorithm can be chosen for tuning, and 2) no assumptions on the impact of a
given parameter are made.

In the following, in Sect. 2 we explain the general methodology involved, also
describing the details of dealing with a set of configuration values and ranking
the results obtained from them. Section 3 briefly comments on some preliminary
results obtained by using the methodology in our tool. Finally, Sect. 4 draws the
conclusions of the paper.
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2 Methodology

The proposed methodology is based on the following assumption:

Error Control Assumption. Given a system whose finite-time reachable set
is within a safe set, it is possible to obtain an over-approximation of the reachable
set within the same safe set by controlling the growth of the approximation error.

In practice this is the assumption on which Computable Analysis [18] relies,
stating that the over-approximated output converges to the exact output when
the approximated input converges to the exact input, where the initial set and
configuration parameter values are the input, and the reachable set R is the
output. The objective is not to repeat evolution of the system with progressively
finer configuration parameter values, until the over-approximation of the reach-
able set lies within the safe set. Such approach would be easy from the point of
view of tuning configuration parameters: once a reasonable initial configuration
is chosen, safety would be ultimately verified by progressively changing configu-
ration parameters to increase the accuracy of computation. Instead, in this paper
we aim to identify a strategy that achieves the desired result in a single run of
evolution by adjusting configuration parameter values along evolution steps.

In order to achieve this result while being as general as possible with respect
to the system dynamics, we need to control at each time step k the growth of
the corresponding evolve set Ek, i.e., the section of the flow tube of evolution. If
we control the evolve set, then the reach set Rk, i.e., the flow tube between steps
k − 1 and k, is controlled as well according to the integration scheme described
later in the paper. In fact, if we focus on rigorous numerical integration, the value
of the over-approximation error is bounded by a remainder term whose addition
to an under-approximation of the flow tube guarantees the enclosure of the exact
flow tube. Additionally, the so-called reconditioning operations on an evolve set
Ek transform the error into additional parameters in the set representation: this
causes a loss of information on the error component of the set along evolution.
Finally, based on the local contractive or expansive character of the dynamics,
the evolve set may even be reduced for a given evolution step (and the error
with it, if reconditioning is used).

2.1 General Approach

Due to the previous considerations, a global strategy for control of the growth
of the evolve set is difficult to devise. Conversely, an adaptive control relying
on the growth of the evolve set within a single integration step is more feasible.
Nevertheless, in order to drive configuration tuning based on safety objectives it
is necessary to set some global targets in terms of the growth of the evolve set. To
identify these targets we rely on fixed-step simulation of the system, as opposed
to rigorous evolution. Simulation returns a sequence of approximate points, but
its computation cost is mostly negligible with respect to rigorous evolution and
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consequently can be performed as a pre-analysis phase that gathers valuable
information on the expected reachable set.

Once pre-analysis has identified the constraints for error control, rigorous
evolution can be performed while tuning configuration parameter values accord-
ing to their ability to satisfy the constraints. Due to the complex interaction of
these numerical parameters with the actual value of the error, we don’t pursue
an analytical approach based on, e.g., a gradient descent algorithm optimising
a cost function. Instead, we rather rank the results obtained from running each
integration step concurrently on a multitude of configuration values. In order
to explore a finite amount of configuration values, we rely on an automated
discretisation of the configuration parameters.

Summarising, the approach proposed is divided into the following main
phases:

1. Simulate the system in a non-rigorous way, returning a set of timed approxi-
mate points

2. Identify the points whose distance from the unsafe set has a (local) minimum
and construct a list of timed distances called targets {τi}

3. From each τi construct a ranking parameter related to the rate of growth of
the evolve set Ek, which will drive the optimisation for rigorous evolution

4. From the safety specification construct additional ranking parameters, which
will check if a given reachable subset Rk is possibly unsafe

5. Evolve the system rigorously, where for each evolution step k:
(a) Select a set of points in the configuration search space
(b) For each point, concurrently, compute Ek and Rk

(c) Rank the results using the ranking parameters
(d) Take the best result as the actual Ek and Rk and generate the next set

of search points

Termination happens as soon as the evolution time is hit, or if any safety objec-
tive is missed for all points. In the following two Subsections, we provide the
necessary details related to the search space and ranking respectively.

2.2 Constructing and Exploring the Search Space

The search space for configuration parameter values is defined as a space over
the integers. For parameters defined in the boolean domain or as an enumer-
ation, the conversion onto integer values is trivial by using the index in the
enumeration (i.e., between 0 and n − 1 for an enumeration of size n). For values
defined in an interval we need to define a conversion policy. Most commonly, val-
ues for continuous parameters are discretised in their use: e.g., if a value ranges
between 10−2 to 10−8 typically, we are driven to change the value by multiplica-
tion/division by ten. Given this consideration, we shall define parameters along
with the conversion rule they are expected to adopt, for example:

– linear: rounds to the nearest integer;
– log2, log10: takes the logarithm and rounds to the nearest integer.



Evolution of a Nonlinear System 341

By supplying the rule and a conversion back and forth, we can map values
for continuous (or relatively dense) parameters into a bounded integer space.

Finally, we must decide how to explore such space. For that purpose, we
assume that the search space is also bounded. The space is necessarily bounded
for enumeration parameters, like e.g. the choice between different integration
schemes. For parameters defined within intervals, such as the integration step
size, an unbounded approach is feasible and offers more freedom to the user but
it has some drawbacks. First, it does not allow to assess the size of the search
space, which would be useful to drive the exploration. Second, it does not allow
to choose a random initial point in the search space at the beginning of evolution.

For parameters defined as enumerations, any value is acceptable and we shall
try all values with equal probability. For parameters defined in intervals instead,
it is reasonable to assume that adjacent values return similar results, or equiv-
alently that results obtained by varying the value of the parameter have some
regular behavior such as monotonicity or concavity.

The distance between values of an enumeration parameter is taken as 1, i.e.,
all values are adjacent. In summary, exploration of the search space is made by
adjacency, in the case of interval parameters meaning that we either choose one
of the two adjacent values randomly, or we choose the only adjacent value of the
upper/lower bound of the interval. Given a concurrency level γ, the procedure
to evolve a set of γ points in the search space is the following:

1. At the beginning of evolution, construct a random initial point P̂0 in the
space of integer representations of parameters, and add it to the set of initial
points Π;

2. Choose a random point p from Π and construct a random adjacent point p̂;
add p̂ to Π; repeat 2. until ‖Π‖ = γ;

3. For each point in Π, convert it into the space of the parameters values and
execute the integration step;

4. Outputs from all points are ranked, yielding an ordering of the points in Π;
5. Choose the output from the highest ranked point of Π as the effective output

for the step;
6. Exit if the evolution time is hit;
7. Otherwise discard the lowest ranked half of the points and return to 2.

Here the update strategy for Π is very simple but it can be improved upon in
any way, for example to discourage the addition of points that have been ranked
particularly low in the past.

Note that the concurrent approach also introduces failure tolerance as a
byproduct: if one or more integration steps are not successful (e.g., by failing
to construct the flow function, a likely occurrence when an evolve set becomes
particularly large), we can simply discard the failing configuration points and
regenerate Π up to γ using the remaining points.

2.3 Ranking the Search Points

In order to select the best configuration point, it is first necessary to identify
ranking parameters (where we use the term parameter again, not to be confused
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with a configuration parameter, for lack of a better term) dependent on the
safety specification. We distinguish between safety ranking parameters and opti-
misation ranking parameters: the former come directly from the constraints that
define the safe set, while the latter are associated to some error growth rate tar-
gets (which again depend on the constraints). Both kinds of ranking parameters
identify a score when applied to one evolution step.

Safety parameters are the simplest, each associated to a safety constraint
function c(S), where if c(Rk) > 0 then the reach subset Rk is safe. The score for
the ranking parameter is represented by c(Rk) and the threshold for the score is
zero. If the threshold is crossed, we say that there is a hard failure with respect
to the specific ranking parameter.

An optimisation ranking parameter is more complicated, since it uses a target
to compare set growth rates. The growth rate ρk for an integration step k, with
starting evolve set Ek−1 and finishing evolve set Ek, is defined as

ρk =
|Ek| − |Ek−1|

Tk − Tk−1
(1)

where |Ek| is a measure of the radius of the set, i.e., ρk is the increase of radius
in units of evolution time and Tk is the initial time at step k.

In particular, from a constraint we can construct a target τ = (W τ , T τ ),
made of a radius W τ at a time T τ , which represents (an approximation of) the
maximum flow tube radius that does not intersect the boundary of the safe set.
This identifies a target growth rate ρτ

k:

ρτ
k =

W τ − |Ek−1|
T τ − Tk−1

(2)

Here we notice that ρτ
k is a value projected from the current step and conse-

quently it adapts to variations of |Ek| along evolution. In particular, it allows to
compensate for any positive or negative ρ−ρτ deviation on the successive steps.

The score is given by ρk, where ρτ
k represents the threshold; when ρk > ρτ

k

we say that there is a soft failure with respect to the ranking parameter. When
Tk−1 > T τ instead we say that the target expired and the corresponding ranking
parameter correspondingly expires, i.e., it is not used for ranking.

Summarising, the i-th ranking parameter yields an individual score σi and
possibly a soft or hard failure. In order to compare the scores on an equal basis,
each score must be normalised based on the best and worst values across all
search points. Consequently, the normalised score σ̂i becomes

σ̂i =
σi − σm

i

σM
i − σm

i

(3)

with m and M the minimum and maximum values respectively, where clearly
0 ≤ σ̂i ≤ 1 holds. The score function for a search point P then becomes

σ(P ) =
∑

i

σ̂i(P ) (4)
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To each score σ we also associate the number of soft failures ns and hard
failures nh.

In order to establish which of two search points P1 and P2 rank higher, we
compare score, soft failures and hard failures:

– nh(P1) > nh(P2) =⇒ P1 < P2

– nh(P1) = nh(P2) ∧ ns(P1) > ns(P2) =⇒ P1 < P2

– nh(P1) = nh(P2) ∧ ns(P1) = ns(P2) ∧ σ(P1) < σ(P2) =⇒ P1 < P2

where P1 < P2 means that P2 is ranked higher, i.e., it is more likely to be chosen
as the winning point for the evolution step, as well as being kept as a point for
the next step.

In particular, if all the points used for computing the k-th step have at least
1 hard failure, then safety verification necessarily fails and evolution is stopped.
Conversely, progress is not prevented by all the points having soft failures: it
simply means that it was not possible to satisfy one or more of the target growth
rates on the k-th step, but that could be amended in the following steps with
the updated target growth rates.

3 Preliminary Experimental Results

In this Section we briefly provide some preliminary results applied to the well-
known van der Pol oscillator, often used in the verification community as a
benchmark for nonlinear dynamics [14]. Due to space reasons, we only provide
summary information on the setup. The number of evolution parameters chosen
was 4, with 4–4–4–3 possible discretised values each, yielding 192 points in the
search space. We performed evolution with increasing concurrency γ = {1, ..., 5},
where γ = 1 means that no search is performed and γ = 5 means that 5 threads
are used to evaluate 5 different points. Results were averaged over 1000 tries for
each value of γ. For γ = 1, failure in completing evolution was %f = 62.9, with
an average execution time tx = 5.2 seconds. With γ = 2, we got %f = 0.7 and
tx = 7.6, up to γ = 5 yielding %f = 0.0 and tx = 10.8. Summarising, searching
using our approach gave a dramatic decrease in average failures even for minimal
concurrency, with a contained increase in execution time, and showed practically
no failures with only 5 threads used.

4 Conclusions

In this paper we described a methodology to perform safety verification of a
nonlinear system with a significant reduction in the time spent by the user on
tuning the tool configuration. The approach leverages concurrent execution of
the integration step, where configuration values are explored to optimise their
choice. Our preliminary results on a benchmark system show that it is possible
to succeed at the task practically 100% of the times within a single run with
minimum concurrency used. Conversely, manual tuning using the same config-
uration space would yield below 40% success. While the framework has been
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validated in the continuous case, a future publication will cover the extension to
the hybrid case in detail. Additionally, different search strategies can be envi-
sioned and implemented. The research activity on tuning is still in its infancy,
with no comparable papers at this level of generality in the literature as far as we
are aware. From our preliminary hands-on experience using Ariadne, we can
already state that the leap in tool usability introduced by this approach is very
significant. In particular, by leveraging the corresponding improvement in the
ratio between evolution time and processing time, more sophisticated runtime
verification routines can be envisioned.
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Fig. 3. Rule-based detection and correction of poison attacks. Rule(1) =N1\A1. Rule(2)
=ðN1 �A1Þ ^ ðN1\A3Þ ^ ðN0 �B2Þ. Rule(3) =ðN1 �A3Þ ^ ðN0 �B1Þ. Rule(4) =ðN1 �A1Þ^
ðN1\A2Þ ^ ðN0\B2Þ. Rule(5) =ðN1 �A2Þ ^ ðN1\A3Þ ^ ðN0 �B1Þ ^ ðN0\B2Þ. Rule(6)
=ðN1 �A2Þ ^ ðN0\B1Þ. Rule(7) =ðN1 �A5Þ ^ ðN1\A6Þ ^ ðN0 �B5Þ ^ ðN0\B6Þ. Rule(10)
=N1\A0

1 ^ ðN0 �B2Þ. Rule(20) =ðN1 �A0
1Þ ^ ðN1\A3Þ ^ ðN0 �B2Þ. Rule(40) =ðN1\A2Þ^

ðN0\B2Þ. Ai and Bi are threshold values for N0 and N1 respy. (Color figure online)
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