
A Toolbox for Verifiable Tally-Hiding
E-Voting Systems

Véronique Cortier, Pierrick Gaudry(B), and Quentin Yang

Université de Lorraine, CNRS, Inria, Metz, France

pierrick.gaudry@loria.fr

Abstract. In most verifiable electronic voting schemes, one key step is
the tally phase, where the election result is computed from the encrypted
ballots. A generic technique consists in first applying (verifiable) mixnets
to the ballots and then revealing all the votes in the clear. This however
discloses much more information than the result of the election itself
(that is, the winners, plus possibly some information required by law)
and may offer the possibility to coerce voters.

In this paper, we present a collection of building blocks for design-
ing tally-hiding schemes based on multi-party computations. From these
building blocks, we design a fully tally-hiding scheme for Condorcet
elections. Our implementation shows that the approach is practical,
at least for medium-size elections. Similarly, we provide the first tally-
hiding schemes with no leakage for three important counting functions:
D’Hondt, STV, and Majority Judgment. We prove that they can be used
to design a private and verifiable voting scheme. We also unveil unknown
flaws or leakage in some previously proposed tally-hiding schemes.

1 Introduction

Electronic voting is used in many countries and various contexts, from major
politically binding elections to small elections among scientific councils. It allows
voters to vote from any place and is often used as a replacement for postal
voting. Moreover, it enables complex tally processes where voters express their
preference by ranking their candidates (preferential voting). In such cases, the
votes are counted using the prescribed procedure (e.g. Single Transferable Vote
or Condorcet), which is tedious by hand but easy for a computer.

Numerous electronic voting protocols have been proposed such as Helios [6],
Civitas [15], or CHVote [21]. They all intend to guarantee at least two security
properties: vote secrecy (no one should know how I voted) and verifiability. Vote
secrecy is typically achieved through asymmetric encryption: election trustees
jointly compute an election public key that is used to encrypt the votes. The
trustees take part in the tally, to compute the election result. Only a coalition
of dishonest trustees (set to some threshold) can decrypt a ballot and violate
vote secrecy. Verifiability typically guarantees that a voter can check that her
vote has been properly recorded and that an external auditor can check that the
result corresponds to the received votes. Then, depending on the protocol, addi-
tional properties can be achieved such as coercion-resistance or cast-as-intended.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
V. Atluri et al. (Eds.): ESORICS 2022, LNCS 13555, pp. 631–652, 2022.
https://doi.org/10.1007/978-3-031-17146-8_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-17146-8_31&domain=pdf
https://doi.org/10.1007/978-3-031-17146-8_31

632 V. Cortier et al.

Various techniques are used to achieve such properties but one common key step
is the tally: from the set of encrypted ballots, it is necessary to compute the
result of the election, in a verifiable manner.

There are two main approaches for tallying an election. The first one is
the homomorphic tally. Thanks to the homomorphic property of the encryp-
tion scheme (typically ElGamal), the ballots are combined to compute the
(encrypted) sum of the votes. Then only the resulting ciphertext is decrypted
to reveal the election result, without leaking the individual votes. For verifiabil-
ity, each trustee produces a zero-knowledge proof of correct (partial) decryption
so that anyone can check that the result indeed corresponds to the encrypted
ballots. The second main approach is based on verifiable re-encryption mixnets.
The encrypted ballots are shuffled and re-randomized such that the resulting
ballots cannot be linked to the original ones [21,40]. A zero-knowledge proof of
correct mixing is produced to guarantee that no ballot has been removed nor
added. Several mixers are successively used and then each (rerandomized) ballot
is decrypted, yielding the original votes in clear, in a random order.

Homomorphic tally can only be applied to simple vote counting functions,
where voters select one or several candidates among a list and the result of the
election is the sum of the votes, for each candidate. We note that even in this
simple case, the tally reveals more information than just the winner(s) of the
election. Mixnet-based tally can be used for any vote counting function since it
reveals the (multi)set of the initial votes. On the other hand, this is much more
information than the result itself, and such systems can be subject to Italian
attacks. Indeed, when voters rank their candidates by order of preference, the
number of possible choices can be higher than the number of voters. Hence a
voter can be coerced to vote in a certain way by first selecting the first candidates
as desired by the coercer and then “signing” her ballot with some very particular
order of candidates, as prescribed by the coercer. The coercer will check at the
end of the election that such a ballot appears.

Recent work have explored the possibility to design tally-hiding schemes,
that compute the result of the election from a set of encrypted ballots, without
leaking any other information. This can be seen as an instance of Multi-Party
Computation (MPC), but the context of voting adds some constraints. First, a
voter should only produce one encrypted ballot that should remain of reasonable
size and be computed with low resources (e.g. in JavaScript). The trustees can
be assumed to have more resources. Yet, it is important to minimize the number
of communications and the computation cost, whenever possible. In particu-
lar, voters should not wait for weeks before obtaining the result. Moreover, all
proofs produced by the authorities need to be downloaded and verified by exter-
nal, independent auditors. It is important that verifying an election remains
affordable.

Related Work. Even when the winner(s) of the election is simply the one(s) that
received the most votes, leaking the scores of each candidate can be embarrassing
and even lower vote privacy. This is discussed in [25] where the authors propose
a protocol called Ordinos that computes the candidate who received the most

A Toolbox for Verifiable Tally-Hiding E-Voting Systems 633

votes, without any extra information. In case of preferential voting, where voters
rank candidates, several methods can be applied to determine the winner(s). Two
popular methods are Single Transferable Vote (STV) and Condorcet. STV is used
in politically binding elections in several countries, including Australia, Ireland
or UK. Condorcet has several variants and the Schulze variant is popular among
several associations like Ubuntu or GnuGP. These are the counting methods
offered by the voting platform CIVS [1] and used in many elections. Literature
for tally-hiding schemes includes [22] which shows how to compute the result in
Condorcet, while [37] and [9] provide several methods for STV. They all leak
some partial information, but much less than the complete set of votes. Ordinos
has been extended [24] to cover various counting functions that include Borda,
Hare-Niemeyer, Condorcet, and Instant-Runoff Voting (IRV, which is STV with
only one seat). This shows the flexibility of Ordinos, yet at a cost: ballots are of
size cubic in the number of candidates for Condorcet-Schulze and even super-
exponential for IRV. The last system we study, Majority Judgment (MJ) is a
vote system where voters give a grade to each candidate (typically between 1 and
6). The winner is, roughly, the candidate with the highest median rating. Since
typically several candidates have the same median, the winner is determined
by a complex algorithm that iteratively compares the highest median, then the
second one and so on (see [7] for the full details). In [12], the authors show how
to compute Majority Judgment in MPC. All these approaches except [22] rely
on Paillier encryption since it is better suited than ElGamal for the arithmetic
comparison of the content of two ciphertexts.

Our Contributions. First, we revisit the existing work, exhibiting weaknesses
and even flaws for some of them. For example, we discovered that the scheme
proposed in [22] for Condorcet breaks vote privacy for each voter that voted
blank. Moreover, we found out that the approach developed in [12] for Majority
Judgement fails in not-so-rare cases.

Our second and main contribution is the design of a toolbox of MPC prim-
itives well suited for tally-hiding schemes. We provide a precise cost analysis,
with various tradeoffs in terms of message size, number of communications, and
computational costs. We believe this study could be useful in other settings.
As an application of our toolbox, we provide new algorithms for computing vote
counting functions, decreasing both the complexity and the leakage or proposing
other trade-offs regarding the load for the voters and the trustees. One of our
first findings is that even for complex counting functions, it is possible to use
Exponential ElGamal encryption instead of Paillier. This offers a much better
tool support as well as new tradeoffs in terms of computational costs.

As counting functions, we first consider Condorcet-Schulze and propose the
first tally-hiding scheme that allows candidates to be ranked at equality, with a
quasi-linear complexity for voters (vs cubic in [24]). We also devise several effi-
ciency/leakage compromises. We continue by considering three major counting
functions: D’Hondt, Majority Judgment, and STV. For each of them, we propose
the first tally-hiding schemes with no leakage.

634 V. Cortier et al.

Security Proof and Implementation. The Paillier setting of our toolbox builds
upon the same low-level primitive as previous works. However, in the ElGamal
setting that we found to be highly relevant, the core ingredient is the CGate
protocol (that conditionally sets a component to 0). An important contribution
of our work is to formally prove that this primitive is UC-secure and verifiable.
Concentrating on this ElGamal setting, this allows us to prove vote secrecy and
verifiability of a voting scheme that embeds our tally-hiding protocol.

With the same goal of validating our ElGamal approach, we have imple-
mented our building blocks in a library in this setting. As a proof of concept,
we have combined them to form the tally-hiding scheme that corresponds to
Condorcet-Schulze. Our experiments show a reasonable execution time. Author-
ities need a couple of minutes to perform the tally for 5 candidates, and about
9 h for 20 candidates (and 1024 voters). In contrast, the code [24] developed in
the Paillier setting, needed more than 9 days for 20 candidates (and was almost
insensitive to the number of voters).

Finally, we emphasize that our toolbox should be suitable to implement any
realistic counting method. For example, we assumed here that the desired result
of the election is exactly the set of winners but our toolbox could be used to
reveal more information if needed (for example, it could tell that candidate A
receives between 55% and 60% of the votes).

Outline of the Paper. We start (Sect. 2) by explaining how to obtain all basic
arithmetic operations in MPC on encrypted integers, using El Gamal encryption
and we show that it is UC-secure. Figure 1 in Appendix provides the cost of each
basic function, that allows to derive the cost of any complex function, obtained
by composition. In Sect. 3, we apply our toolbox to the Condorcet-Schulze tally
function and we provide a detailed computational cost analysis, and compare
it with previous approaches (one of them suffering from a privacy breach). Due
to space constraints, we overview in Sect. 4 how our toolbox can be applied to
single voting, STV and Majority judgement, again comparing our approach to
previous techniques. The exact cost of each tally function is given in Appendix.
We show in Sect. 5 that, in all these cases, we can derive a privacy preserving
voting protocol.

A companion report [18] provides a more detailed overview on how our tool-
box can be applied to build MPC secure tally functions for Condorcet, single
voting, STV, and Majority judgement. It also contains all the detailed algorithms
and security proofs. Our source code for the implementation is available in [4].

2 Description of the Tally-Hiding Toolbox

We focus on the tally phase, common to most voting schemes. We assume a public
ballot box that contains the list of encrypted ballots where all the traditional
issues up to here have been handled: eligibility, validity of ballots, revoting policy
if applicable, and so on. We concentrate on the counted-as-recorded property.

Our goal is to compute the winners of the election, while preserving the
privacy of the voters, namely with no additional leakage of information about

A Toolbox for Verifiable Tally-Hiding E-Voting Systems 635

the tally. The decryption key is assumed to be shared among a trustees, with a
threshold scheme, and we wish the procedure to produce a transcript such that:
1) if at least a threshold of t+1 trustees is honest, the result will be obtained; 2)
if at most t trustees are corrupted, only the result is known (no side-information
is leaked); 3) even if all a trustees are dishonest, if the transcript is valid then
the result is guaranteed to be correct.

2.1 Encryption Scheme: Paillier vs ElGamal

Paillier and Exponential ElGamal are the most popular asymmetric encryp-
tion schemes that are homomorphic, where multiplication or division of cipher-
texts correspond to addition or subtraction of the corresponding cleartexts. They
therefore allow re-encryption, by multiplying by an encryption of 0. These are
properties at the heart of the MPC protocols.

When Exponential ElGamal encryption can be used, it offers several advan-
tages over Paillier. First, popular elliptic curves like NIST P-256 or Curve25519
are now ubiquitous in cryptographic libraries, while there is in general no sup-
port for Paillier. Moreover, in our context, it is important to split the decryption
key among several trustees so that no single authority can break vote privacy. It
is easy to set up threshold decryption in ElGamal, with an arbitrary threshold of
trustees [16]. The situation is more complex in Paillier. The general threshold key
distribution scheme [23] is of high complexity. A more efficient scheme exists [29],
but only with a honest majority. Another reason for preferring ElGamal is that
the underlying security assumption (Decisional Diffie Hellman) can be consid-
ered as more standard than the one for Paillier (Decisional n-Residuosity).

On the other hand, Paillier offers more possibilities when it comes to MPC.
Therefore, in general, an algorithm based on the Paillier scheme requires less
exponentiations than when based on ElGamal; however, exponentiations are more
costly. Later on, we will provide the complexities of our algorithms measured by the
number of exponentiations. When comparing these figures, one should remember
the respective costs in ElGamal and in Paillier, that we estimate now.

Table 1. Estimation of the number of exponentiations per second in Paillier and
ElGamal settings.

Paillier Elliptic ElGamal Ratio

Native (server-side) 200 10,000 50

In browser (voter-side) 2 5,000 2,500

Parameter Sizes and Cost of Operations. For a voting system, a 128-bit
level of security seems to be a reasonable choice. While 112-bit level is probably
acceptable for the next decade, many certification bodies will ask for 128 bits or
more. In the case of an elliptic ElGamal this translates readily into a curve over
a base field of 256 bits, and usually prime files are preferred.

636 V. Cortier et al.

For the Paillier scheme, the security relies on a problem that is not harder
than integer factorization of an RSA number n. Since the complexity of the best
known factoring algorithm is hard to evaluate, there is no strict consensus about
the size of n for a 128-bit security level. Generally, this goes around 3072 bits.
In Table 1, we estimate the number of exponentiations per second, based on a
medium level of optimization, for a native implementation on a modern processor
(based on OpenSSL, using RSA for Paillier emulation), and for a JavaScript
implementation in a browser (based on libsodium.js and JavaScript BigInt).

2.2 Key Elements of ElGamal-Based MPC

Our toolbox contains subroutines for both ElGamal and Paillier, but in this
description, we concentrate on ElGamal, since in the end we find it more suitable
for e-voting. In ElGamal-based MPC, some operations seem to be impossible to
be performed efficiently, for instance comparing two encrypted integers. In order
to evaluate any counting function, we will therefore restrict ourselves to manip-
ulating encrypted bits. By the homomorphic property, dividing an encryption of
1 by a ciphertext provides an easy and cheap Not gate. The main workhorse of
our toolbox is a primitive from [32] called conditional gate, that provides an And
gate. We readily deduce that a Nand gate is available, which is complete, and
therefore any function can be implemented by working on encrypted bits.

Algorithm 1: CGate
Require: X, Y such that X, Y are encryptions of x, y ∈ {0, 1}
Ensure: Z = Enc(xy)
1 Compute Y0 = Enc(−1)Y 2, set X0 to X
2 for i = 1 to a, for the authority i, do
3 Choose r1, r2 ∈r Zq and s ∈r {−1, 1}
4 Compute Xi = ReEnc(Xs

i−1, r1) and Yi = ReEnc(Y s
i−1, r2)

5 Reveal Xi, Yi and a ZKP that Xi and Yi are well formed

6 Each authority verifies the proof of the other authorities
7 They collectively rerandomize Xa and Ya into X ′ and Y ′

8 They collectively compute ya = Dec(Y ′)

9 Return Z = (XX ′ya)
1
2

Conditional Gates. A conditional gate [32] is a protocol which allows to com-
pute, from two encryptions of x and y, an encryption of xy. It is named this way
because y needs to lie in a known binary domain. We propose the CGate proto-
col (Algorithm 1), adapted from [32] so that we could prove its security in the
SUC framework (see Sect. 2.4). This protocol is the main building block of our
MPC protocols, which consist of CGate protocols and homomorphic operations.
Note that each participant of a CGate protocol produces a Zero Knowledge Proof
(ZKP) that guarantees that the correct computations were performed (includ-
ing at steps 7 and 8 for example). Those ZKP can later form a transcript which

A Toolbox for Verifiable Tally-Hiding E-Voting Systems 637

can be used to verify the output of the protocol. Their exact description can be
found in [18]. By concatenating the transcripts of all the CGate subprotocols, a
transcript for verifiability can be obtained for all our MPC protocols.

Encrypting an Integer. When ElGamal is used for a homomorphic tally, the
result is an integer that is directly encrypted thanks to a natural encoding. We
can still add and subtract encrypted values, but most other operations (com-
parison, multiplication, . . .) are more difficult, or even impossible. Therefore,
in our protocol we will keep intermediate integer values encrypted in the bit-
encoding, where each bit of the integer is separately encrypted. We denote it
Xbits = (X0, . . . , Xm−1), where 2m is a bound on the integer represented by X,
and Xi is the encryption of the i-th bit of the binary expansion (index 0 for the
least significant bit). Converting an integer in bit-encoding to natural encod-
ing is done using the homomorphic property and the Horner scheme. The other
direction is impossible in the ElGamal setting. However, if the Paillier scheme
is used, converting from the natural to the bit-encoding is still possible [33].

2.3 MPC Toolbox

We now present the building blocks that constitute our toolbox, such as addition,
multiplication and comparison. Those building blocks can be combined to eval-
uate any counting function without leaking anything but the result. For each of
them, we study their cost, which are summarized in the Fig. 1 of the Appendix.
The computation cost is the number of exponentiations, but for the commu-
nications, we distinguish the broadcast and the rounds of communications. An
important information is also the size of the transcript that is created during
the process and that should be checked, for example by auditors, to guarantee
that the result is correct.

We believe that this toolbox is of independent interest and could be used
in contexts beyond tally-hiding protocols. This gathers results from various
domains, first on ZKP [11,27,30,40] and MPC [8,19,28,32–34] but also on hard-
ware circuits [10]. We distinguish between the functionality (e.g. addition) and
the protocol that realizes it since different options may be considered, leading
to different trade-offs in terms of communications and computations. For some
building blocks, we propose our own protocols, improving existing propositions.

Branch-Free Tools. In MPC, the algorithms must be implemented in a branch-
free setting, because the result of a test cannot be revealed. We consider the
following conditional operations, where B is an encrypted bit.

– CondSetZero(X,B), CondSetZerobits(Xbits, B): conditionally sets to zero by
outputting a re-encryption of X if B is an encryption of 1, or of Enc(0)
otherwise. In the bit-encoding setting, each bit of X is treated separately.

– Select(X,Y,B), Selectbits(Xbits, Y bits, B): selects according to bit by out-
putting a re-encryption of X if B is an encryption of 0, or of Y otherwise.

638 V. Cortier et al.

– SelectInd([Xi], [Bi]): selects in array according to bits by outputting a re-
encryption of Xi for the i such that Bi is an encryption of 1. This requires
that [Bi] is such that there is only one index i for which Bi is Enc(1).

The CondSetZero functionality is essentially just the CGate protocol. The
other functionalities can be easily derived using the homomorphic property. If
the Paillier setting is used, a more efficient realization is possible [19,34]. More
details can be found in [18].

Arithmetic. Thanks to the homomorphic property, additions and subtractions
are easily handled with the natural encoding. However, they are more involved
with the bit-encoding [32]. We denote the corresponding functionalities Add and
Sub. They can be implemented as we would do for binary circuits.

Comparison of two integers is denoted by LT. In bit-encoding, it can be seen
as a subtraction where only the final borrow bit is needed. Similarly, we define the
Mul functionality that can be applied to integers in the bit-encoding, following
the schoolbook algorithm for bit-wise encoded integers. Finally, a frequent oper-
ation is to compute the sum of many encrypted binary values, typically to get the
total number of votes for a given option. We call this operation Aggreg. If this
is the final result before decryption, the homomorphic property is enough, but
in general the result is needed in the bit-encoding format. We therefore designed
a dedicated tree-based algorithm with variable precision, which improves the
complexity compared to a naive approach.

The cost of many variants of all of these, with different trade-offs, are given
in Appendix. We also include algorithms in the Paillier setting for which more
operations are available in the natural encoding.

Shuffle and Mixnet. A tool that is of great use in our context is the verifiable
shuffle [39,40], leading to mixnets. In electronic voting, the typical use of a
mixnet is during the tally phase, just before decrypting all the ballots, one by
one. Our tally-hiding schemes actually makes a thorough use of shuffle, not only
on the trustees side but also on the voter’s side, as shown in Sect. 3.

2.4 Security

We consider the well-known UC-framework [13] to prove security. A composable
framework is particularly suitable to analyze the security of our MPC protocols
since we provide building blocks that we combine. We actually use the composi-
tion framework from [14], which is a Simpler version of the Universally Compos-
able framework (SUC), shown to imply UC-security. Participants of a protocol
P are modeled as Polynomial Probabilistic Turing Machines (PPT). Each of the
a participants has a single input and output communication tape, and inter-
acts with a router, which in turn interacts with an adversary A. The adversary
interacts with the router and the environment Z. It can corrupt a subset C of
participants of size at most t, where t ≤ a is some threshold. Non-corrupted

A Toolbox for Verifiable Tally-Hiding E-Voting Systems 639

participants are honest and follow the protocol, while corrupted participants are
fully impersonated by the adversary and give away any secret they have. The
process terminates when Z writes on its output tape. We denote REALP,A,Z(κ, z)
the output, where κ is a security parameter and z is an arbitrary auxiliary input.

The security of the process is guaranteed by a comparison with an ideal one,
in which each party hands over their inputs to a trusted party T which honestly
performs the desired computation. Corrupted parties may send arbitrary outputs
as instructed by the adversary, and the adversary can block or delay communi-
cations with the trusted party. Intuitively, T computes some ideal function f ,
such as Add but it cannot be just a function. Indeed, T additionally takes care
of failure cases (for example, when too many parties return inconsistent data).
We denote IDEALT,S,Z(κ, z) the output of the environment in the ideal process,
when it interacts with the adversary S. Intuitively, a protocol is SUC-secure if,
for all adversary A in the real process, there exists a simulator S in the ideal
process such that no PPT environment Z can tell whether they are interacting
with the adversary in the real process or with the simulator in the ideal process.

Definition 1 (Secure computation [14]). Let P be a protocol, T some trusted
party. We say that P securely computes T if, for all PPT A, there exists a PPT
S such that, for all PPT Z, there exists a negligible function μ such that for all
κ and all z polynomial in κ,

|Pr(IDEALT,S,Z(κ, z) = 1) − Pr(REALP,A,Z(κ, z) = 1)| ≤ μ(κ).

All our building blocks (except shuffle and mixnets, that are handled sepa-
rately) rely on CondSetZero in the sense that they can all be derived as com-
position of this function, possibly with intermediate operations using only the
homomorphic property. To compute CondSetZero, we consider the MPC proto-
col CGate [32] based on ElGamal, and we adapt it in order to prove, in the SUC
framework, that CGate securely computes the trusted party TCGate, that behaves
as CondSetZero except when parties do not answer, in which case it returns an
error. The CGate protocol also produces a transcript which acts as a ZKP that
the protocol was performed correctly. The SUC security of the other building
blocks then follows by composition. Actually, as detailed in [14], SUC-security
is not directly composable but instead requires to introduce intermediary (com-
posable) hybrid models, where participants have an oracle access to some ideal
trusted parties. We could prove by composition of the hybrid models that each
of our building blocks securely computes its corresponding ideal trusted party.
However, this would require some extra work since our building blocks com-
pute a re-encryption of the desired function (e.g. addition) and hence is not a
deterministic function. Instead, we use a different proof strategy: we show that
any composition of CGate, followed by a final decryption, is SUC-secure, which
corresponds exactly to our needs when applied to tally-hiding schemes. All the
precise definitions and proofs are provided in the full version of this paper [18].

640 V. Cortier et al.

3 Tally-Hiding Schemes for Condorcet-Schulze

The Condorcet approach is a popular technique to determine a winner when vot-
ers rank candidates by order of preference, possibly with equalities. A Condorcet
winner is a candidate that is preferred to every other candidate by a majority
of voters. More formally, we consider the matrix of pairwise preferences d where
di,j is the number of voters that prefer (strictly) candidate i over j. Then a
Condorcet winner is a candidate i such that di,j > dj,i for all j �= i. Such a can-
didate may not exist. In that case, several variants can be applied to compute
the winner. We focus here on the Schulze method, used for example for Ubuntu
elections [5]. It first considers by “how much” a candidate is preferred, which
can be reflected into the adjacency matrix a defined as

ai,j =
{

di,j − dj,i if di,j > dj,i,
0 otherwise.

Then a weighted directed graph is derived from the adjacency matrix, where each
candidate i is associated to a node and there is an edge from i to j with weight
ai,j . This itself induces an order relation between the candidates by comparing
the “strength” of the paths between i and j. The exact algorithm can be found
in [35]. Note that there may be several winners according to Condorcet-Schulze.
We denote by fCond the function that returns the winners.

We propose several MPC implementations of Condorcet-Schulze, depending
on the accepted leakage and on the load balance between the voters and the
authorities. The different approaches are summarized in Table 2.

Table 2. Leading terms of the cost of MPC implementations for Condorcet-Schulze. n:
number of voters, m = �log(n + 1)�, k: number of candidates, a: number of authorities.

Version Leakage EG/P Voters Authorities Size of the transcript

exp. # exp. # comm.

[22] Adj. matrix
privacy
breach [i]

EG 5k2 18nak2 2 13nak2

[24] [ii][iii] ∅ P 5k3 6nak3 + (54m+292 log m)ak3 4k log m 9nk3 + (56m +100 log m)ak3

Ballots as list of
integers (partial MPC)

Adj. matrix EG 8k log k 87
2

nak2 log k 2 log k 93
2

nak2 log k

Ballots as list of
integers (full MPC)

∅ EG 8k log k 29
2

nak2(3 log k+5m) + 174mak3 m(m + 4k) 31
2

nak2(3 log k+5m) + 186mak3

Ballots as matrices Adj. matrix EG 43
2

k2 47
2

nk2 0 85
2

nk2

i [22] leaks, for each ballot, the number of candidates ranked at equality. In particular,
who voted blank is known to everyone.
ii [24] does not allow voters to give the same rank to several candidates.
iii [24] originally does not take into account the cost of verifying the ZKP from the
voters.

3.1 Ballots as Matrices

A first approach is to encode the vote as a preference matrix m. For each candi-
date i, let ci be its rank, possibly with equality. Then mi,j is set to 1 if ci < cj , 0

A Toolbox for Verifiable Tally-Hiding E-Voting Systems 641

if ci = cj and −1 otherwise. The voters then encode their ballot as an encrypted
preference matrix M . They also need to prove that M is well-formed, that is,
corresponds to a total order (with equalities). This requires e.g. to prove that if
the voter prefers i over j and j over k then she prefers i over k:

(mi,j = 1) ∧ (mj,k = 1) ⇒ (mi,k = 1)

and similar relations when mi,j and mj,k are equal to 0 or −1.
To discharge the voter from such a proof effort, in [22] the authorities shuffle

each preference matrix in blocks and then decrypt them to check that it was
indeed well formed. However, this yields a privacy breach, unnoted in [22]: for
each voter, everyone learns the number of candidates placed at equality. In par-
ticular, everyone learns who voted blank since in that case all candidates are
placed at equality. A costly way to repair [22] is to let the voters prove the rela-
tions with a ZKP, with a cost of O(k3) exponentiations to build and to check a
ballot, where k is the number of candidates. This is the approach of [24], that
also assumes that voters do not place candidates at equality (the case ci = cj is
forbidden).

We propose an alternative approach in O(k2) exponentiations for both the
voter and the verifier. Assume first that a voter prefers candidate 1 over can-
didate 2, that is preferred over candidate 3 and so on. Then the corresponding
preference matrix is minit. We consider a fixed encryption M init of this matrix,
where Eα is the ElGamal encryption of α with “randomness” 0. Everyone can
check that M init is formed as prescribed, at no cost, since we use a constant
“randomness”:

minit =

⎛
⎜⎜⎜⎜⎝

0 1 · · · 1

−1 0
. . .

...
...

. 1
−1 · · · −1 0

⎞
⎟⎟⎟⎟⎠ M init

i,j =

⎧⎨
⎩

E1 if i < j
E0 if i = j
E−1 otherwise.

Assume now that a voter wishes to rank the candidates in some order, which
is a permutation σ of 1, 2, . . . , k. Then the voter can simply shuffle M init using σ.
The associated proofs of a shuffle guarantee that the resulting matrix is indeed
a permutation of M init, hence is well formed. Interestingly the secret vote σ
is not encoded in the initial matrix but in the permutation used to shuffle it.
Applying [40], this requires O(k2) exponentiations for the voter. To account for
candidates that have an equal rank, the voter still shuffles M init according to
a permutation σ consistent with her preference order, that is such that σ(i) <
σ(j) implies that ci ≤ cj . But beforehand, she sends an additional vector B of
encrypted bits (bi), where bi = 1 if candidates σ−1(i) and σ−1(i + 1) have equal
rank and bi = 0 otherwise. The voter will then modify the matrix M init into
a transformed matrix M ′, using B, so that M ′ corresponds to her preference
matrix. The resulting cost is still in O(k2) (since k2 coefficients need to be
updated) instead of O(k3) for [24] (that, yet, does not consider equalities).

642 V. Cortier et al.

Then the (encrypted) adjacency matrix can be computed by simply multi-
plying all ballots. This matrix is then (provably) decrypted by the authorities
and Condorcet-Schulze as well as many variants can be applied. The main cost
for the authorities lies in the verification of the proofs for each ballot. We could
also avoid leaking the adjacency matrix by computing the Condorcet-Schulze
winner(s) in MPC. However, the cost for the authorities would be in O(k3).
If this is considered affordable, then we can further alleviate the charge of the
voters, as we shall explain now.

3.2 Ballots as List of Integers

To minimize computations on the voter’s side, we simply ask them to encrypt
the list of integers (ci) representing their preference. In the ElGamal setting, we
directly use the bit representation of each integer and encrypt each bit separately.
If there are k candidates, we need log k bits to encode each candidate, hence a
ballot will contain k log k ciphertexts, together with ZKP which prove that they
encrypt only 0 or 1. This is to be compared with the k2 encryptions when ballots
are encoded as a preference matrix. To apply the Schulze method, the authori-
ties transform back each ballot into a preference matrix. We consider the posi-
tive preference matrix, obtained from the preference matrix by setting negative
coefficients to 0. If Ci denotes the encryption of ci then the encrypted positive
preference matrix M are computed by the authorities as Mi,j = LTbits(Ci, Cj).

Summing up the (encrypted) matrix Mv for each voter v, we obtain the
(encrypted) pairwise positive preferences matrix D. Then the authorities can
apply the Schulze method in MPC from D, which can be implemented from the
Floyd-Warshall algorithm [20,36]. Indeed, the latter mostly consists in compu-
tations of min/max, and translates into an MPC algorithm using the building
blocks presented in Sect. 2. We denote by PCond the corresponding MPC protocol.

The advantage of this solution is that the load for voters remains minimal,
with O(k log k) exponentiations in total. However, for the authorities, trans-
forming each ballot into a preference matrix costs O(k2 log k) per voter, while
computing the Floyd-Warshall algorithm requires O(k3) exponentiations.

To summarize, when the number of candidates and voters remain reasonable,
it is actually possible to compute the Condorcet winners with no leakage. Inter-
estingly, the costly operations performed by the trustees can be done on-the-fly,
while voters submit their ballots. Note that unless the number of candidates is
really large w.r.t. the number of voters, a fully-hiding tally scheme is not really
more expensive than schemes leaking the adjacency matrix.

Security. We denote by TCond the trusted party that implements fCond in the
SUC framework. We show that PCond securely computes TCond (proof in [18]).

Theorem 1. PCond securely computes TCond under the DDH assumption and the
random oracle model (ROM).

A Toolbox for Verifiable Tally-Hiding E-Voting Systems 643

3.3 Implementation

In order to validate our approach, we have written a prototype implementation.
In the literature, most of such prototypes are based on Paillier encryption. Here,
we concentrate on the ElGamal setting, in order to evaluate its practical feasi-
bility. The libsodium library is used for randomness and all elliptic curve and
hashing operations. The rest is implemented as a standalone C++ program. It
is available as a companion artifact of this paper [4] and is published as free
software. Most of the primitives of our toolbox have been implemented, and as
a proof of concept, we have written a fully tally-hiding protocol for Condorcet-
Schulze (ballots as list of integers, and no leakage, in Table 2).

We ran our software on various sets of parameters. In order to compare
to [24], we also consider 3 trustees (and no threshold). Our experimental setting
is a single server hosting two 16-core AMD EPYC 7282 processors and 128 GB of
RAM. Each of the 3 trustees runs 4 computing threads and a few scheduling and
I/O threads. The communication between the trustees is emulated via the loop-
back network interface. Thus, all the network system calls are indeed performed
by the program, even though this is just a simulation. The verification of the
validity of the ballots is a non-MPC computation that takes a negligible time,
compared to the tally. In Table 3, we summarize the cost in terms of wall-clock
time and the size of the transcript, measured by the program.

Table 3. Benchmark (wall-clock time and transcript size) of fully tally-hiding
Condorcet-Schulze MPC computation.

Voters 5 candidates 10 candidates 20 candidates

64 1min 50 s/49MB 8 min 30 s/0.30 GB 45 min/1.8 GB

128 2min 40 s/87MB 12 m/0.51 GB 1 h 27 min/2.9 GB

256 4min 35 s/160MB 20 m/0.88 GB 2 h 37 min/4.8 GB

512 8min 10 s/305MB 34 min/1.6 GB 4 h 43 min/8.6 GB

1024 15min/595 MB 1 h 05 min/3.1 GB 8 h 50 min/16 GB

This experiment demonstrates that the approach is sound and in the realm
of practicability, for moderate-sized elections. With this choice of ballot repre-
sentation, which is very cheap from the voter’s point of view, the agglomeration
of the preference matrices has to be done in MPC, and therefore the cost for
the trustees grows quasi-linearly in the number of voters. Therefore, at some
point, the approach of [24] using Paillier encryption becomes preferable, since
the aggregation is for free, and the MPC cost is essentially independent of the
number of voters. Still, their benchmark gives more than 9 days of MPC com-
putation for tallying a 20-candidates Condorcet-Schulze election, which is more
than what we provide for 1024 voters.

644 V. Cortier et al.

4 Other Counting Methods

We also provide fully leakage-free tally protocols for D’Hondt, Majority Judg-
ment and Single Transferable Vote. We survey our findings and encodings for
each counting functions. Full details are available in [18]. In particular, we prove
that our tally protocols are SUC-secure by providing analogs of Theorem1.

4.1 Single Vote

A first class of counting functions applies to the case where voters simply select
some candidate(s). The typical way to determine the s winners is to count the
number of votes for each candidate and select the s ones with the most votes. This
is the case covered by Ordinos [25], which however suffers from a shortcoming
in case of equalities: it may return more winners than the number of seats. We
correct this and we show that it is possible to rely on ElGamal, thanks to an
adapted algorithm. This lowers the size of a ballot for voters at a higher cost for
the authorities, which can be preferred in practice.

Things get more complex when voters select a candidate list instead of a
single candidate. Indeed, the seats need to be shared among the candidates of the
different lists, according to the number of votes received. One popular technique
is the D’Hondt method, which is used in practice for politically-binding elections.
We extend the approach initiated by Ordinos to the case of D’Hondt, building
on two main ideas: the use of a more advanced algorithm and a more efficient
primitive for comparison, inspired from circuits. In this case, ElGamal is a key
ingredient for designing a practical tally-hiding scheme. The analysis in terms of
cost is displayed in Fig. 2 of the appendix.

4.2 Majority Judgment

Majority Judgment (MJ) [7] is a method in which candidates are each given a
grade, such as Excellent, Good, Poor, etc. Then the candidates are compared
based on the sequence formed by their median grades i.e. the median grade, then
the median obtained when the median grade is removed, and so on. It has been
recently used by more than 400 000 voters in French primary elections [2]. In
[12], an MPC protocol is proposed to realize MJ, but we discovered that it only
implements a simplified version, called majority gauge. When the majority gauge
returns a winner, then it is indeed a MJ winner but, in small elections, there
is a rather high probability that the simplified algorithm does not provide any
result. For example, in an election with 100 voters, [12] can fail with probability
20% [18], which not only is inconvenient (imagine an election that must be
canceled because no winner is declared!) but also leaks some information (there
is no winner according to the majority gauge).

To repair the approach, one issue is that the complexity of the MJ algorithm
depends (linearly) on the number of voters, which may be large. Hence, [7] devises
an alternative (complex) algorithm that no longer depends on the number of
voters. We propose a variant of this algorithm and use it as a basis to derive

A Toolbox for Verifiable Tally-Hiding E-Voting Systems 645

a tally-hiding procedure. Our algorithm has a similar complexity to [12] while
they implement a much simpler algorithm. Then we show that it is possible to
adapt our algorithm to ElGamal encryption. Interestingly, the format remains
unchanged for the voter (hence the resulting ballot is even easier to compute).
The resulting computational costs are displayed in Fig. 3 in appendix. This is
a good example where working with bit-encoded integers allowed to perform
all the needed operations in MPC. The load for the trustees increases but our
study shows that it remains reasonable since the extra operations are more or
less compensated by the fact that computations are faster in ElGamal.

4.3 Single Transferable Vote

In Single Transferable Vote (STV), each voter must give a strict ordering of
a subset of candidates. It consists of several rounds, during which each ballot
grants a (weighted) number of votes to its first candidate. If a candidate has
more votes than a quota, she is selected and any exceeding votes are transferred
to the next candidate in each ballot (i.e. the weight of the ballot is multiplied by
a transfer coefficient and the candidate is removed from all ballots). Otherwise,
the candidate with the least votes is eliminated. Many variants of STV exist,
depending on the way in which the votes are transferred. We took advise from
Australian academics to choose an ideal version of STV, which is easy to analyze.

We discovered that even without any cryptography, the ideal STV algorithm
is exponential and far from being practical. The reason is that the numerators
and denominators of the fractions grow exponentially with the number of seats.
On real data elections from the South New Wales election in Australia [3], it
would take about one month on a personal computer to compute the result, and
about 30 GB of central memory to store all the fractions.

Given that ideal STV cannot be efficiently computed in the clear, we consid-
ered a variant with rounding. In [9,37], there are three techniques to compute
the STV winners, all with some leakage. Note that [37] computes the ideal STV
(with no rounding) but probably because the authors did not realize that it
would quickly be impractical. [24,31] cover a particular case where only one
candidate is elected (IRV). Note that [24] uses a naive encoding of the possible
choices: if there are c candidates, they view the c! possible orders as c! pos-
sible “candidates” from which a voter makes a selection, yielding a ballot of
super-exponential size, while the ballot size is O(c2) in [31]. We propose a fully
tally-hiding algorithm for STV, with no leakage, at a cost similar to [9,37], as dis-
played in Fig. 4 in appendix. To keep the cost reasonable, we re-used techniques
of hardware circuits to implement efficiently the arithmetic functions.

5 Application to E-Voting Security

We show that our tally-hiding schemes can be used for e-voting, preserving vote
secrecy and verifiability. We consider a mini-voting scheme, TH-voting, where
we assume that voters have an authenticated channel with the voting server.

646 V. Cortier et al.

Similarly to Ordinos [25], voters simply encrypt their vote following the expected
format and the MPC protocol is used for tallying.

5.1 Definitions

A voting scheme consists of four algorithms and one MPC protocol (Setup, vote,
isValid, Ptally, Verify) where:

– Setup(κ, a, t) takes as input the security parameter κ, the number of author-
ities a and a threshold t. It returns sk, pk, (si, hi)a

i=1, respectively a key pair
sk, pk and the corresponding private and public shares si, hi for each author-
ities.

– vote(pk, v) takes a public key pk, a vote v, and returns a ballot.
– isValid(BB,B) takes as input a ballot B and a ballot box BB and returns

a boolean that states whether B is valid w.r.t. BB.
– Ptally(a, t) = P1, · · · , Pa is an MPC protocol to compute the tally.
– Verify(r,Π,BB) takes as input a result r, a transcript Π and a ballot box

BB and returns a boolean that states whether r is correct w.r.t. BB and Π.
This check is typically run by external auditors.

In [26], a quantitative definition of privacy is proposed, where a voting system
is said δ-private for some δ. This definition can be turned into a qualitative one
when δ is shown to be minimal, in a sense that an ideal protocol achieves δ′-
privacy with a negligible |δ − δ′|. Hence, a natural definition of privacy is to
compare the probability of success of the adversary in a real and in an ideal
protocol, and to show that the difference is negligible. Just as in [26], we consider
a definition where the adversary tries to guess the vote of a single voter. We
consider a fixed set V of valid voting options and the games defined respectively
in Algorithms 2 and 3, where the differences are highlighted in blue.

Definition 2 (vote privacy). We say that a voting protocol (Setup, vote,
isValid, Ptally, Verify) guarantees vote privacy w.r.t a result function tally
if, for all parameters t, a, n, nc with t < a and nc ≤ n, for all C ⊂ [1, a] of size at
most t, for all adversary A, there exists an adversary B and a negligible function
μ such that for all voting options v2, · · · , vn ∈ V ,

|Pr(RealPriv
A,Ptally

(κ, n, nc, a, t, C, V, v2, · · · , vn) = 1)

− Pr(IdealPriv
B,tally(κ, n, nc, a, t, C, V, v2, · · · , vn) = 1)| ≤ μ(κ).

A Toolbox for Verifiable Tally-Hiding E-Voting Systems 647

Algorithm 2: RealPriv
A,Ptally

Require: κ, n, nc, a, t, C, V, v2, · · · , vn
1 sk, pk, (si, hi)a

i=1 :=
Setup(κ, a, t)

2 b ∈r {0, 1}; par = pk, h1, · · · , ha

3 v0, v1 := A(κ, par, (si)i∈C)
4 BB := {vote(pk, vb)}
5 for i = 2 to n − nc do

BB := BB
⋃{vote(pk, vi)}

6 (Xi)i>n−nc
:= A(BB)

7 for i > n − nc do
8 if isValid(BB,Xi) then

BB := BB
⋃{Xi}

9 r := A||i∈[1,a]\CPi(si, par,BB)
10 b′ := A()
11 Return (b == b′) ∧ (v0, v1 ∈ V)

Algorithm 3: IdealPriv
B,tally

Require: κ, n, nc, a, t, C, V, v2, · · · , vn
1 sk, pk, (si, hi)a

i=1 := Setup(κ, a, t)
2 b ∈r {0, 1}; par = pk, h1, · · · , ha

3 v0, v1 := B(κ, par, (si)i∈C)
4 BB := {vote(pk, vb)}
5 for i = 2 to n − nc do

BB := BB
⋃{vote(pk, vi)}

6 (Xi)i>n−nc
:= B()

7 for i > n − nc do
8 if isValid(BB,Xi) then

BB := BB
⋃{Xi}

9 r := tally((Extractsk(B))B∈BB)
10 b′ := B(r)
11 Return (b == b′) ∧ (v0, v1 ∈ V)

5.2 TH-voting

We define a voting protocol Vtally for each tally function tally covered in our
work (D’Hondt, Majority Judgment, Condorcet-Schulze, and STV), with Ptally

the corresponding tally-hiding protocol, in the ElGamal setting. The algorithm
votetally returns an encrypted ballot following the devised encoding, and a
ZKP that the ballot is correctly formed. The algorithm isValidtally checks the
ZKP and additionally ensures that the ballot is not already on the board. As
explained in Sect. 2, the CGate protocol produces a transcript which acts as a
ZKP that the protocol was performed correctly. By concatenating the transcripts
of all CGate and the transcript of the threshold decryption, the participants
produce a ZKP Π that Ptally has been performed correctly. This also defines a
Verifytally algorithm which simply consists of verifying all the ZKP. Finally, we
consider an ideal Setup(κ, a, t) that picks a group G corresponding to the security
parameter κ, picks randomly a generator g and returns sk, pk, s1, h1, · · · , sa, ha

where the (si, hi) are distributed following Shamir’s scheme with a authorities
and a threshold t; sk is the corresponding secret key and pk = (g, gsk). The
setup can be further refined with a UC-secure DKG (see e.g. [38]).

Theorem 2. Let tally be one of the previously defined tally functions
(D’Hondt, Majority Judgment, Condorcet-Schulze, and STV). Assuming DDH,
Vtally is private w.r.t. tally.

The proof can be found in [18]. We also prove that Vtally is verifiable for a
notion of verifiability similar to [17]. Note that the key step is the fact that our
tally-hiding schemes guarantees universal verifiability: auditors can check that
the result is valid. Individual verifiability is straightforward in our setting since
we implicitly assume that all voters verify their vote. How to achieve individual
verifiability in practice is beyond the scope of this work.

648 V. Cortier et al.

Appendix

Fig. 1. Cost of various MPC primitives: basic functionalities for logic, integer arith-
metic, and a few advanced functions. The Option column includes whether this is
available in Paillier (P) or ElGamal (EG). The notations are a for the number of
authorities, m for the bit-length of the operands, n for the number of operands, r for
the precision (in the division). All logarithms are in base 2. The communication costs
are expressed in terms of broadcast (denoted B) and full-rounds (denoted R). The unit
of the transcript size is the key length. This corresponds to half the size of a ciphertext
in both Paillier (typically 3072 bits) and ElGamal (typically 256 bits) settings.

A Toolbox for Verifiable Tally-Hiding E-Voting Systems 649

F
ig
.
2
.

L
ea

d
in

g
te

rm
s

o
f

th
e

co
st

o
f

ta
ll
y
-h

id
in

g
fo

r
si

n
g
le

ch
o
ic

e
sy

st
em

s.
s:

#
se

a
ts

,
k
:

#
li
st

s,
a
:

#
a
u
th

o
ri

ti
es

,
n
:

#
v
o
te

rs
,

m
=

�lo
g
(n

+
1
)�,

m
1

=
m

+
lo

g
k
,
m

2
=

m
+

lo
g
(s

k
),

m
3

=
m

1
+

lo
g
(l

cm
(2

,·
··

,s
))

,
s′

=
lo

g
(l

cm
(2

,·
··

,s
))

,
R

:
ro

u
n
d

o
f
co

m
m

.,
B

:
b
ro

a
d
ca

st
s.

F
ig
.
3
.
L
ea

d
in

g
te

rm
s

o
f
th

e
co

st
o
f
ta

ll
y
-h

id
in

g
fo

r
M

J
.
n
:
#

v
o
te

rs
,
m

=
�lo

g
(n

+
1
)�,

k
:
#

ca
n
d
id

a
te

s,
d
:
#

g
ra

d
es

,
a
:
#

a
u
th

o
ri

ti
es

.

F
ig
.
4
.
L
ea

d
in

g
te

rm
s

o
f
th

e
co

st
o
f
ta

ll
y
-h

id
in

g
fo

r
S
T

V
.
n
:
#

v
o
te

rs
,
k
:
#

ca
n
d
id

a
te

s,
m

=
�lo

g
(n

+
1
)�,

a
:
#

a
u
th

o
ri

ti
es

,
r:

p
re

ci
si

o
n

in
p
ow

er
o
f
2
,
m

′
=

m
+

r,
k

′
=

k
+

r.

650 V. Cortier et al.

References

1. Condorcet Internet Voting Service (CIVS). https://civs.cs.cornell.edu/
2. The Guardian, 30 January. https://www.theguardian.com/world/2022/jan/30/

peoples-primary-backs-as-taubira-as-unity-candidate-of-french-left
3. NSWEC - Election results. NSW Electoral Commision. https://pastvtr.elections.

nsw.gov.au/SG1901/LC/State/preferences
4. Source code of prototype implementation of Section 3. https://gitlab.inria.fr/

gaudry/THproto
5. Ubuntu IRC council position. https://lists.ubuntu.com/archives/ubuntu-irc/2012-

May/001538.html
6. Adida, B.: Helios: Web-based Open-Audit Voting. In: USENIX (2008)
7. Balinski, M., Laraki, R.: Majority Judgment: Measuring Ranking and Electing.

MIT Press (2010)
8. Bar-Ilan, J., Beaver, D.: Non-cryptographic fault-tolerant computing in constant

number of rounds of interaction. In: PODC. ACM (1989)
9. Benaloh, J., Moran, T., Naish, L., Ramchen, K., Teague, V.: Shuffle-Sum: coercion-

resistant verifiable tallying for STV voting. IEEE Trans. Inf. Forensics Secur. 4,
685–698 (2010)

10. Brent, R., Kung, H.: A regular layout for parallel adders. IEEE Trans. Comput.
C-31(3), 260–264 (1982)

11. Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bulletproofs:
Short Proofs for Confidential Transactions and More. In: S&P 2018 (2018)

12. Canard, S., Pointcheval, D., Santos, Q., Traoré, J.: Practical strategy-resistant
privacy-preserving elections. In: Lopez, J., Zhou, J., Soriano, M. (eds.) ESORICS
2018. LNCS, vol. 11099, pp. 331–349. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-98989-1 17

13. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: FOCS (2001)

14. Canetti, R., Cohen, A., Lindell, Y.: A simpler variant of universally composable
security for standard multiparty computation. In: CRYPTO (2015)

15. Clarkson, M.R., Chong, S., Myers, A.C.: Civitas: toward a Secure Voting System.
In: S&P (2008)

16. Cortier, V., Galindo, D., Glondu, S., Izabachene, M.: Distributed ElGamal à la
Pedersen - application to helios. In: WPES (2013)

17. Cortier, V., Galindo, D., Glondu, S., Izabachène, M.: Election verifiability for Helios
under weaker trust assumptions. In: Kuty�lowski, M., Vaidya, J. (eds.) ESORICS
2014. LNCS, vol. 8713, pp. 327–344. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-11212-1 19

18. Cortier, V., Gaudry, P., Yang, Q.: A toolbox for verifiable tally-hiding e-voting
systems. Cryptology ePrint Archive, Report 2021/491 (2021)

19. Cramer, R., Damg̊ard, I., Nielsen, J.B.: Multiparty computation from threshold
homomorphic encryption. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol.
2045, pp. 280–300. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-
44987-6 18

20. Floyd, R.W.: Algorithm 97: shortest path. Commun. ACM 5, 345 (1962)
21. Haenni, R., Koenig, R.E., Locher, P., Dubuis, E.: CHVote System Specification.

Cryptology ePrint Archive, Report 2017/325 (2017)

https://civs.cs.cornell.edu/
https://www.theguardian.com/world/2022/jan/30/peoples-primary-backs-as-taubira-as-unity-candidate-of-french-left
https://www.theguardian.com/world/2022/jan/30/peoples-primary-backs-as-taubira-as-unity-candidate-of-french-left
https://pastvtr.elections.nsw.gov.au/SG1901/LC/State/preferences
https://pastvtr.elections.nsw.gov.au/SG1901/LC/State/preferences
https://gitlab.inria.fr/gaudry/THproto
https://gitlab.inria.fr/gaudry/THproto
https://lists.ubuntu.com/archives/ubuntu-irc/2012-May/001538.html
https://lists.ubuntu.com/archives/ubuntu-irc/2012-May/001538.html
https://doi.org/10.1007/978-3-319-98989-1_17
https://doi.org/10.1007/978-3-319-98989-1_17
https://doi.org/10.1007/978-3-319-11212-1_19
https://doi.org/10.1007/978-3-319-11212-1_19
https://doi.org/10.1007/3-540-44987-6_18
https://doi.org/10.1007/3-540-44987-6_18

A Toolbox for Verifiable Tally-Hiding E-Voting Systems 651

22. Haines, T., Pattinson, D., Tiwari, M.: Verifiable homomorphic tallying for the
Schulze vote counting scheme. In: Chakraborty, S., Navas, J.A. (eds.) VSTTE
2019. LNCS, vol. 12031, pp. 36–53. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-41600-3 4

23. Hazay, C., Mikkelsen, G.L., Rabin, T., Toft, T., Nicolosi, A.A.: Efficient RSA Key
generation and threshold Paillier in the two-party setting. J. Cryptol. 32(2), 265–
323 (2018). https://doi.org/10.1007/s00145-017-9275-7

24. Hertel, F., Huber, N., Kittelberger, J., Kuesters, R., Liedtke, J., Rausch, D.:
Extending the tally-hiding ordinos system: implementations for Borda, Hare-
Niemeyer, Condorcet, and instant-runoff voting. In: Proceedings E-Vote-ID 2021.
University of Tartu Press (2021)

25. Kuesters, R., Liedtke, J., Mueller, J., Rausch, D., Vogt, A.: Ordinos: a verifiable
tally-hiding e-voting system. In: EuroS&P (2020)

26. Küsters, R., Truderung, T., Vogt, A.: Verifiability, privacy, and coercion-resistance:
new insights from a case study. In: S&P (2011)

27. Lipmaa, H.: On Diophantine complexity and statistical zero-knowledge arguments.
In: Laih, C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 398–415. Springer,
Heidelberg (2003). https://doi.org/10.1007/978-3-540-40061-5 26

28. Lipmaa, H., Toft, T.: Secure equality and greater-than tests with sublinear online
complexity. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.)
ICALP 2013. LNCS, vol. 7966, pp. 645–656. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-39212-2 56

29. Nishide, T., Sakurai, K.: Distributed Paillier cryptosystem without trusted dealer.
In: Chung, Y., Yung, M. (eds.) WISA 2010. LNCS, vol. 6513, pp. 44–60. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-17955-6 4

30. Poupard, G., Stern, J.: Security analysis of a practical “on the fly” authentica-
tion and signature generation. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS,
vol. 1403, pp. 422–436. Springer, Heidelberg (1998). https://doi.org/10.1007/
BFb0054143

31. Ramchen, K., Culnane, C., Pereira, O., Teague, V.: Universally verifiable MPC
and IRV ballot counting. In: Goldberg, I., Moore, T. (eds.) FC 2019. LNCS, vol.
11598, pp. 301–319. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
32101-7 19

32. Schoenmakers, B., Tuyls, P.: Practical two-party computation based on the condi-
tional gate. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 119–136.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30539-2 10

33. Schoenmakers, B., Tuyls, P.: Efficient binary conversion for Paillier encrypted val-
ues. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 522–537.
Springer, Heidelberg (2006). https://doi.org/10.1007/11761679 31

34. Schoenmakers, B., Veeningen, M.: Universally verifiable multiparty computation
from threshold homomorphic cryptosystems. In: Malkin, T., Kolesnikov, V., Lewko,
A.B., Polychronakis, M. (eds.) ACNS 2015. LNCS, vol. 9092, pp. 3–22. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-28166-7 1

35. Schulze, M.: A new monotonic, clone-independent, reversal symmetric, and
condorcet-consistent single-winner election method. Soc. Choice Welf. 36, 267–303
(2011). https://doi.org/10.1007/s00355-010-0475-4

36. Warshall, S.: A theorem on Boolean matrices. J. ACM 9, 11–12 (1962)
37. Wen, R., Buckland, R.: Mix and Test Counting in Preferential Electoral Systems.

University of New South Wales, Technical report (2008)

https://doi.org/10.1007/978-3-030-41600-3_4
https://doi.org/10.1007/978-3-030-41600-3_4
https://doi.org/10.1007/s00145-017-9275-7
https://doi.org/10.1007/978-3-540-40061-5_26
https://doi.org/10.1007/978-3-642-39212-2_56
https://doi.org/10.1007/978-3-642-39212-2_56
https://doi.org/10.1007/978-3-642-17955-6_4
https://doi.org/10.1007/BFb0054143
https://doi.org/10.1007/BFb0054143
https://doi.org/10.1007/978-3-030-32101-7_19
https://doi.org/10.1007/978-3-030-32101-7_19
https://doi.org/10.1007/978-3-540-30539-2_10
https://doi.org/10.1007/11761679_31
https://doi.org/10.1007/978-3-319-28166-7_1
https://doi.org/10.1007/s00355-010-0475-4

652 V. Cortier et al.

38. Wikström, D.: Universally composable DKG with linear number of exponentia-
tions. In: Blundo, C., Cimato, S. (eds.) SCN 2004. LNCS, vol. 3352, pp. 263–277.
Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-30598-9 19

39. Wikström, D.: A sender verifiable mix-net and a new proof of a shuffle. In: Roy,
B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 273–292. Springer, Heidelberg
(2005). https://doi.org/10.1007/11593447 15

40. Wikström, D.: A commitment-consistent proof of a shuffle. In: Boyd, C., González
Nieto, J. (eds.) ACISP 2009. LNCS, vol. 5594, pp. 407–421. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-02620-1 28

https://doi.org/10.1007/978-3-540-30598-9_19
https://doi.org/10.1007/11593447_15
https://doi.org/10.1007/978-3-642-02620-1_28

	A Toolbox for Verifiable Tally-Hiding E-Voting Systems
	1 Introduction
	2 Description of the Tally-Hiding Toolbox
	2.1 Encryption Scheme: Paillier vs ElGamal
	2.2 Key Elements of ElGamal-Based MPC
	2.3 MPC Toolbox
	2.4 Security

	3 Tally-Hiding Schemes for Condorcet-Schulze
	3.1 Ballots as Matrices
	3.2 Ballots as List of Integers
	3.3 Implementation

	4 Other Counting Methods
	4.1 Single Vote
	4.2 Majority Judgment
	4.3 Single Transferable Vote

	5 Application to E-Voting Security
	5.1 Definitions
	5.2 TH-voting

	References

