
A Tale of Two Models: Formal Verification
of KEMTLS via Tamarin

Sofía Celi1(B) , Jonathan Hoyland1(B) , Douglas Stebila2(B) ,
and Thom Wiggers3(B)

1 Cloudflare, Inc., San Francisco, USA
cherenkov@riseup.net, jhoyland@cloudflare.com

2 University of Waterloo, Waterloo, Canada
dstebila@uwaterloo.ca

3 Radboud University, Nijmegen, The Netherlands
thom@thomwiggers.nl

Abstract. KEMTLS is a proposal for changing the TLS handshake to
authenticate the handshake using long-term key encapsulation mecha-
nism keys instead of signatures, motivated by trade-offs in the charac-
teristics of post-quantum algorithms. Prior proofs of security of KEMTLS
and its variant KEMTLS-PDK have been hand-written proofs in the
reductionist model under computational assumptions. In this paper, we
present computer-verified symbolic analyses of KEMTLS and KEMTLS-
PDK using two distinct Tamarin models. In the first analysis, we adapt
the detailed Tamarin model of TLS 1.3 by Cremers et al. (ACM CCS
2017), which closely follows the wire-format of the protocol specification,
to KEMTLS(-PDK). We show that KEMTLS(-PDK) has equivalent secu-
rity properties to the main handshake of TLS 1.3 proven in this model.
We were able to fully automate this Tamarin proof, compared with the
previous TLS 1.3 Tamarin model, which required a big manual proving
effort; we also uncovered some inconsistencies in the previous model. In
the second analysis, we present a novel Tamarin model of KEMTLS(-
PDK), which closely follows the multi-stage key exchange security model
from prior pen-and-paper proofs of KEMTLS(-PDK). The second app-
roach is further away from the wire-format of the protocol specification
but captures more subtleties in security definitions, like deniability and
different levels of forward secrecy; it also identifies some flaws in the secu-
rity claims from the pen-and-paper proofs. Our positive security results
increase the confidence in the design of KEMTLS(-PDK). Moreover, view-
ing these models side-by-side allows us to comment on the trade-off in
symbolic analysis between detail in protocol specification and granularity
of security properties.

Keywords: Post-quantum cryptography · TLS · Key encapsulation
mechanisms · Formal analysis · Tamarin

S. Celi—Now works for Brave Software, Inc.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
V. Atluri et al. (Eds.): ESORICS 2022, LNCS 13556, pp. 63–83, 2022.
https://doi.org/10.1007/978-3-031-17143-7_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-17143-7_4&domain=pdf
http://orcid.org/0000-0002-3333-7764
http://orcid.org/0000-0001-9810-0330
http://orcid.org/0000-0001-9443-3170
http://orcid.org/0000-0001-8967-8456
https://doi.org/10.1007/978-3-031-17143-7_4

64 S. Celi et al.

1 Introduction

The Transport Layer Security (TLS) protocol is one of the most used crypto-
graphic protocols. In its most recent version, the TLS 1.3 [31] handshake employs
an ephemeral (elliptic-curve) Diffie–Hellman (DH) key exchange to establish ses-
sion keys for confidentiality. In the regular handshake, TLS 1.3 authenticates
the server and optionally the client using RSA or elliptic-curve signatures. It
transmits the public keys to verify those signatures during the handshake, in
certificates signed by a certificate authority (CA).

KEMTLS [32] is an alternative proposal for a post-quantum TLS 1.3 [31]
handshake. It avoids using handshake signatures, which typically authenticate
the TLS 1.3 handshake, replacing them with end-entity authentication based
on key encapsulation mechanisms (KEMs) following well-established techniques
for implicitly authenticated key exchange. As post-quantum KEMs are typi-
cally more efficient than the post-quantum signature schemes, either in bytes on
the wire or computational efficiency, this saves resources. KEMTLS-PDK (“pre-
distributed public key”) [34] is a variant of KEMTLS that offers a more efficient
handshake if the client already has the server’s long-term public key. The authen-
tication mechanisms from KEMTLS and KEMTLS-PDK have been proposed for
standardisation to the Internet Engineering Task Force (IETF) TLS working
group [13].

Figure 1 shows the cryptographic core of the unilaterally authenticated
TLS 1.3 and KEMTLS handshakes. KEMTLS replaces the TLS 1.3 Diffie–
Hellman-based ephemeral key exchange by KEM operations. Most importantly,
whereas in TLS 1.3 the server authenticates by signing the transcript using the
key from the server’s certificate, in KEMTLS the client encapsulates against the
KEM public key in the server’s certificate. KEMTLS then combines both KEM
shared secrets—one from the ephemeral key exchange and one from the server’s
long-term key—to derive a key that is implicitly authenticated, meaning only the
intended server will be able to derive the secret. The client can then use the
derived key to transmit application data.

At many levels, the KEMTLS handshake is similar to the TLS 1.3 handshake.
However, due to the usage of KEMs, the order of messages in TLS 1.3 has been
significantly changed. Additionally, the server can no longer send data in its first
response to the client. However, KEMTLS preserves the client’s ability to send
its message after receiving the first flight from the server.

As KEMTLS is a novel way to achieve authentication in the TLS 1.3 hand-
shake, the security of its design should be carefully checked not only with pen-
and-paper proofs but with a computer-assisted formal analysis of it to provide
stronger evidence of its soundness to adopters and standarization bodies like the
IETF.

A Tale of two models: formal verification of KEMTLS via Tamarin 65

Client Server

static (sig): pkS , skS
x $ Zq

gx

y $ Zq

ss gxy

K,K ,K ,K KDF(ss)

gy,AEADK
cert[pkS] Sig(skS , transcript)

key confirmation

ss gyx

K,K ,K ,K KDF(ss)

AEADK (application data)

AEADK (key confirmation)

AEADK (application data)

Client Server

static (KEMs): pkS , skS
(pke, ske) KEMe.Keygen()

pke

(sse, cte) KEMe.Encapsulate(pke)
K1,K1 KDF(sse)

cte,AEADK1(cert[pkS])

sse KEMe.Decapsulate(cte, ske)
K1,K1 KDF(sse)
(ssS , ctS) KEMs.Encapsulate(pkS)

AEADK1
(ctS)

ssS KEMs.Decapsulate(ctS , skS)
K2,K2,K2 ,K2 KDF(sse ssS)

AEADK2(key confirmation),
AEADK2

(application data)

AEADK2
(key confirmation),

AEADK2
(application data)

Fig. 1. Simplified protocol diagrams of server-only authenticated versions of: (left)
the TLS 1.3 handshake, using signatures for authentication; and (right) the KEMTLS
handshake, using KEMs for authentication.

1.1 Related Work

Analysis of TLS 1.3. During the development process of TLS 1.3, there was a
strong collaboration between the standardisation community with the academic
research community. Initial TLS 1.3 protocol designs were based on academic
designs [28], and it was explicit goal of the TLS 1.3 process to incorporate aca-
demic security analysis of new designs before continuing with standarisation.
Paterson and van der Merwe described this as a “design-break-fix-release” pro-
cess rather than the “design-release-break-patch” cycle that was found on prior
versions of the standarisation and usage of TLS [30]. Many of the security anal-
yses of TLS 1.3 used the reductionist security paradigm [19–21,27,28]. Com-
plementing this manual proof work, computer-aided cryptography [1] was also
instrumental in checking TLS 1.3. Analyses were done using the Proverif [7] and
Tamarin [14,15] symbolic analysis tools, as well as a verified implementation in
F∗ [16].

Analysis of KEMTLS. The initial KEMTLS and KEMTLS-PDK papers included
reductionist security proofs [32,34], adapting the multi-stage key exchange app-
roach used by Dowling et al. [19,20] for TLS 1.3. Subsequently, Towa et al.
proposed and proved an alternative abbreviated handshake, with additional
short-lived static keys [25], and found a few minor mistakes in the original
security proofs, which were subsequently fixed in online versions of the original
papers [33,35]. All these proofs treat protocol modes independently—one-at-a-
time—and do not consider the presence of the other protocol modes.

66 S. Celi et al.

1.2 Contributions

In this work, we present two security analyses of all four variants of KEMTLS
(the base KEMTLS protocol, with server-only or mutual authentication, and
the pre-distributed public keys variant KEMTLS-PDK, also with server-only or
mutual authentication) using Tamarin [3,29]. The source code of our models is
available at https://github.com/kemtls/.

Our first model, presented in Sect. 3, is based on the Tamarin analysis of
TLS 1.3 by Cremers et al. [14]. This is a highly detailed model in terms of the
protocol specification, closely following the TLS 1.3 wire format. In this model,
we show that all four KEMTLS variants have equivalent security properties to
the main handshake of TLS 1.3 without extensions. In implementing this model
for KEMTLS, we were able to fully automate the proof, unlike the original model
which required significant manual effort.

Our second model, presented in Sect. 4, is a novel Tamarin model developed
from scratch that closely follows the multi-stage key exchange security model
used in the pen-and-paper proofs [32,34]. This model focuses on the “crypto-
graphic core”, meaning that it is further away from the wire specification and
does not model details like message encryption or the record layer. However,
it captures more details in the security definitions, using the more granular
definitions of forward secrecy from [32,34] as well as including an analysis of
deniability. This model allows us to symbolically verify the reductionist security
claims from the pen-and-paper proofs, but goes further by considering all four
KEMTLS variants simultaneously. This Tamarin model allowed us to identify
some minor flaws in the properties stated based on pen-and-paper proofs.

In Sect. 5, we compare the features of our two Tamarin models. Having these
two models side-by-side illustrates the trade-off between detail of protocol specifi-
cation and granularity of security properties. Ideally, of course, one would achieve
both levels of detail simultaneously, but such complexity is challenging both for
the humans reading and writing pen-and-paper proofs or authoring Tamarin
models, and for computers checking such Tamarin models (where runtime typ-
ically scales exponentially with the complexity of the model). Our side-by-side
approach with two very different perspectives still yields significant confidence
in the soundness of the KEMTLS protocol design and each provides insight into
flaws in the earlier models that it was based on.

2 Background on Symbolic Analysis

One approach to proving the security properties of protocols is symbolic analysis,
which uses formal logic to reason about the properties of an algebraic model of a
protocol. Computational tools, such as Tamarin [3,29] or ProVerif [9], can then
be used to check whether certain properties hold in the symbolic model.

In symbolic analysis, generic symbols replace specific values. Operations like
encryption are also modelled symbolically: for example, senc(a,b) represents
the value a being symmetrically encrypted with the key b. In symbolic analysis,

https://github.com/kemtls/

A Tale of two models: formal verification of KEMTLS via Tamarin 67

cryptographic operations are perfect, meaning the adversary can learn noth-
ing about an encrypted message without the correct key. The operations that
describe a protocol in a symbolic model take messages and state information,
and transform them into the next state or emit another protocol message. A tool
can then use all operations and symbols to generate every possible protocol run.

Many symbolic analyses of protocols use the Dolev–Yao [18] attacker model,
in which an attacker can manipulate all messages at will, e.g. by redirecting
them, replaying them, dropping them, or manipulating their contents. It can
also construct new messages from information previously learnt. However, as
the cryptography is assumed to be perfect, the attacker can not read or modify
encrypted or authenticated messages if it does not have the right keys.

Symbolic models can also be extended to give the attacker special extra abil-
ities. For example, one can allow the attacker to reveal private keys or state
information of parties by performing queries to a reveal oracle. We record when
the attacker uses this oracle, so reveal queries become part of the trace of exe-
cution.

Security properties are modelled as predicates over execution traces. In
Tamarin, during the execution of the rules of the protocol, we can emit action
facts. We use these action facts to record, for example, the session’s impression
of the authentication status or the current keys. We then write lemmas repre-
senting security properties as predicates over action facts: for example, that any
key recorded in a certain type of action fact must not be known to the adversary,
unless the adversary cheated by revealing keys. A model checker like Tamarin
can then be used to check if the protocol maintains the required security prop-
erty. Assuming soundness of the tool, either the tool will give a proof that the
protocol has the required property, find a counter-example, or fail to terminate.

3 Model #1: High-Resolution Protocol Specification

In this section, we discuss the natural approach of taking one of the TLS 1.3 mod-
els and adapting it to KEMTLS(-PDK). Our work demonstrates that KEMTLS
provides security guarantees at least equivalent to those proven by Cremers et
al. for the main handshake of TLS 1.3.

3.1 Cremers et al.’s Tamarin TLS 1.3 Model

The Tamarin model of TLS 1.3 [14] is very high-resolution in terms of its mod-
elling of protocol details and adherence to the protocol specification. It covers
the cryptographic computations such as the key exchange and the key sched-
ule; for example, calls to HKDF are decomposed into hash function calls. This
model also includes the extensions to the basic TLS 1.3 handshake, such as
the HelloRetryRequest mechanism, pre-shared keys, and resumption via ses-
sion tickets. Additionally, it models the encryption of handshake messages, the
syntax of the protocol messages, and mechanics such as TLS 1.3 extensions.

68 S. Celi et al.

In terms of security properties, the Cremers et al. model extends Tamarin’s
basic Dolev–Yao attacker with the ability to recover secrets from Diffie–Hellman
key shares and reveal the long-term keys of participants. TLS 1.3 is not secure
against an attacker who can use these attacks freely, but aims to provide con-
fidentiality and integrity against an attacker who is restricted from revealing
secrets of the target session. Cremers et al. were able to encode lemmas cap-
turing most of the security properties claimed by the TLS 1.3 specification [31,
Appendix E.1]. They report that proving all lemmas in their model took about a
week. Much of this time was spent on manual interaction with Tamarin’s prover
to guide it to prove some of the more complex lemmas. Verifying the generated
proof requires “about a day” and “a vast amount of RAM” [14].

3.2 Representing KEMTLS in the Model

We now describe how we modified the existing TLS 1.3 model to represent both
KEMTLS and its variant with pre-distributed keys, KEMTLS-PDK. The original
model is highly modular, which made it relatively easy to modify.

The model of Cremers et al. represents TLS 1.3 through rules that manipulate
a specific state object, which keeps track of many protocol variables, such as keys,
authentication status, and the currently active handshake mode. Tamarin rules
create transitions between these states. Where the protocol branches, such as
when the server requests client authentication by sending CertificateRequest,
there are two rules that end up in the same next state; for example, they would
set the cert_req variable differently. The server later uses this variable to decide
which of the rules recv_client_auth or recv_client_auth_cert to use; the
latter expects the Certificate, CertificateVerify, and Finished messages,
while the former only expects Finished. We handle the public key infrastructure
(PKI) for KEM public keys in the same way as [14]: we do not model CA cer-
tificates, and assume an out-of-band binding between public keys and identities.

Ephemeral key exchange in the TLS 1.3 model uses Tamarin’s Diffie–Hellman
functionality. It also allows the negotiation of two different DH groups. During
the handshake, the client and server generate ephemeral DH secrets for the
chosen group. If the server rejects the client’s choice of DH group, it falls back to
another group through the HelloRetryRequest mechanism. To model the post-
quantum ephemeral key exchange in KEMTLS, we replaced the Diffie–Hellman
operations by kemencaps (KEM encapsulation) in place of the server’s DH key
generation. The client then computes the shared secret via kemdecaps (KEM
decapsulation).

The authentication rules and states required more careful consideration. In
the TLS 1.3 model, the Certificate, CertificateVerify, and Finished mes-
sages were sent and received simultaneously. In KEMTLS, we split the handling of
these messages, as the peer that is authenticating needs to first receive a cipher-
text to decapsulate. Doing this requires more states. Additionally, in KEMTLS
the client sends Finished before the server, which deviates from TLS 1.3.

To finish our integration of KEMTLS, we made changes to the key schedule to
include the computation of KEMTLS’ Authenticated Handshake Secret (AHS)

A Tale of two models: formal verification of KEMTLS via Tamarin 69

lemma secret_session_keys:
"All tid actor peer kw kr pas #i.

SessionKey(tid, actor, peer, <pas, ’auth’>, <kw, kr>)@#i &
not (Ex #r. RevLtk(peer)@#r & #r < #i) &
not (Ex tid3 esk #r. RevEKemSk(tid3, peer, esk)@#r & #r < #i) &
not (Ex tid4 esk #r. RevEKemSk(tid4, actor, esk)@#r & #r < #i)
==> not Ex #j. K(kr)@#j"

Listing 1. The secret_session_keys lemma proves application traffic keys are secret.

and use the correct handshake traffic encryption keys. We also modified the
action facts emitted in the various rules to match our KEM operations; lemmas
that made use of these action facts were also updated. We disabled the PSK and
session ticket features of the original model.

Modeling KEMTLS-PDK. In KEMTLS-PDK, the client has the server’s long-
term public key beforehand. Access to the public key allows the client to send
a ciphertext in the initial ClientHello message. Additionally, the client may
attempt client authentication proactively and thus transmit its Certificate
before receiving ServerHello from the server. We model this through an addi-
tional initial state for the KEMTLS-PDK client. From this state, there are two
rules which set the state variable that will decide if the client will send its cer-
tificate. KEMTLS-PDK is otherwise implemented as a mostly separate sequence
of states and rules, as the key schedule and order of messages are quite different.
The client and server still transition through a state shared with KEMTLS, so
they can fall back to the “full” handshake.

3.3 Security Properties

We adapt the lemmas from the Cremers et al. model for TLS 1.3. Many core
lemmas are constructed around the SessionKey fact: the client and the server
record this fact when the handshake concludes. SessionKey contains the actor’s
final understanding of its and its peer’s identities, authentication statuses, and
the application traffic keys. We prove all security properties discussed in [14],
and briefly explain the most important of these below.

Adversary Compromise of Secrets. First, we note the extent to which
the adversary can compromise ephemeral or long-term secrets. KEMTLS uses
ephemeral KEM keys for ephemeral secrecy and long-term KEM keys for authen-
tication. The adversary can reveal actors’ long-term secret keys; this records the
RevLtk($actor) fact. We also allow revealing the ephemeral secret key in indi-
vidual sessions, recording the RevEKemSk(tid, $actor, esk) fact. Variables
tid (“thread identifier”) and esk track the specific session and secret key.

KEMs are not “symmetric” in the same way that Diffie–Hellman key exchange
is. Only one party in each KEM key exchange has a secret key that can be

70 S. Celi et al.

targeted by a reveal query. We do not model revealing the shared secret from
the ciphertext.

Intermediate session keys, like the Main Secret (MS), can not be revealed
directly. This follows from the design of the original model: in TLS 1.3, these
secrets only depend on the ephemeral key exchange, so revealing the ephemeral
key exchange in sessions not targeted by a lemma still allows the adversary to
obtain those sessions’ intermediate session keys. In KEMTLS, this is no longer
the case: we mix the shared secrets encapsulated against long-term keys into the
key schedule; as a result, our attacker is slightly weaker. The model discussed in
Sect. 4 does directly allow session key reveal.

(Forward) Secrecy of Session Keys. The outputs of the handshake, as
recorded in the SessionKey fact, are the application traffic read and write
keys kr and kw. We require these keys to remain secret against various forms
of attacks. Forward secrecy requires that if the long-term keys (but not the
ephemeral keys) were compromised after the session completes, the session keys
remain secure.

We model this in the secret_session_keys lemma as shown in Listing 1.
This lemma considers a client or server that believes it has authenticated its peer,
where the attacker has not revealed the ephemeral KEM secret keys. We allow the
attacker to reveal the peer’s long-term secret key, but only after the SessionKey
fact was emitted; this is the “forward” secrecy aspect. The attacker should not
be able to learn (not Ex #j. K(kr)@#j) the target’s read key kr under these
constraints. We similarly prove forward secrecy for each of the intermediate keys
in the key schedule: the Handshake Secret (HS), AHS and MS.

Note that in KEMTLS, the session keys are derived from not just the
ephemeral key exchange as in TLS 1.3, but also include the secret encapsulated
during the authentication phase of the handshake. This implies that both the
ephemeral key and the server’s long-term key need to be compromised in client
sessions, and the ephemeral key and the server’s long-term key in server sessions
with mutual authentication. We prove this in our model through a variant of the
secret_session_keys lemma that allows ephemeral key compromise, as long
as the peer’s long-term key is never revealed.

Authentication. We model the authentication properties of KEMTLS in the
same way as they were modelled for TLS 1.3. The client and server are partnered
via the nonces exchanged in the initial messages. The entity_authentication
lemma captures that if the client, at the end of the handshake protocol, has
authenticated their peer, and the peer’s long-term keys have not been revealed,
then there must be a peer session that started with the same nonces. The
mutual_ variant of this lemma states the same, but with the roles of client
and server reversed. As these lemmas allow revealing the targeted actor’s long-
term keys, these properties also cover key-compromise impersonation attacks.
Similarly, in the lemma transcript_agreement, we prove that when the client,
after receiving the server’s Finished message, commits to a transcript, there

A Tale of two models: formal verification of KEMTLS via Tamarin 71

exists a server that is running with the same transcript (or their long-term keys
have been revealed). The mutual_ variant lemma states the same but with the
roles reversed.

3.4 Results

After adding relevant helper lemmas, Tamarin was able to auto-prove all the
correctness and security lemmas for Model #1, with all four KEMTLS variants
supported simultaneously. Run-times are shown in Appendix B.

Auto-proving and Helper Lemmas. Many of the lemmas in Cremers et al.’s
model of TLS 1.3 were not able to be auto-proved by Tamarin; instead, the
authors had to manually guide Tamarin through parts of the proof. Our goal
was to improve the model so that it could be proved without manual intervention.

To help the automated prover, Cremers et al. introduced many intermediate
lemmas, many of which state properties of earlier keys or more limited message
exchanges. Inheriting these lemmas proved to be both helpful as well as distract-
ing. Incrementally proving and adjusting the intermediate lemmas to apply to
KEMTLS(-PDK) helped us spot bugs and make progress. But starting from their
helper lemmas often left us unclear as to why particular intermediate lemmas
were necessary to prove the final security properties.

In our experience, Tamarin does not find counterexamples very easily in big
models. As a result, we wrote increasingly “smaller” lemmas whenever we ran
into a lemma that was hard to prove. This greatly expanded the number of helper
lemmas available. While we believe that this helped auto-prove the model, it also
resulted in cases where the helper lemmas interacted in bad ways and had to be
ignored. (Replacing Diffie–Hellman by KEM, thus avoiding Tamarin’s algebraic
analysis of DH group operations, may also have eased analysis.) Additionally, the
model of [14] is carefully split over different files to avoid certain helper lemmas
from interacting. With much less experience, we joined together most of those
files, which in many cases lead to Tamarin getting distracted by helper lemmas.

ABug in Cremers et al.’s TLS 1.3 Lemmas. While working on the proof, we
found that one of the core lemmas in [14]’s TLS 1.3 model seems to have changed
after creating the proof. The lemma session_key_agreement tried to prove that
the client’s and servers values of keys in the SessionKey fact matched. However,
variable keys is a tuple <kr, kw> of the reading and writing keys. As the server’s
writing key should match the client’s reading key and not the client’s writing key,
this lemma did not hold. The rendered proofs included in the repository alongside
the model and lemmas revealed that in the executed proof, keys was split into its
elements and equated correctly. We disclosed the bug to the authors.

3.5 Limitations

Although the model is very granular in its description of KEMTLS(-PDK), we do
have some limitations. As discussed in Sect. 3.3, we do not model intermediate

72 S. Celi et al.

session key reveal. We also have not modelled session resumption or pre-shared
key modes with KEMTLS. Finally, we have not attempted to model deniability,
which we will model in Sect. 4.

4 Model #2: Multi-stage Key Exchange Model

The security properties shown in the original KEMTLS paper [32] and the
KEMTLS-PDK paper [34] are stated using the reductionist security paradigm,
via the multi-stage key exchange model [24], which was adapted for proofs of the
TLS 1.3 handshake [19,20]. Our goal in this section is to translate the reduction-
ist security properties in this model—match security, session key indistinguisha-
bility, and authentication—from a pen-and-paper model to being encoded in
Tamarin, then have the Tamarin prover confirm these properties hold. Notably,
this model discriminates between the several keys established within a single
KEMTLS handshake, associating distinct security properties with individual
stage keys.

4.1 Reductionist Security Model for TLS 1.3 and KEMTLS

The multi-stage key exchange security model, first introduced by Fischlin and
Günther [24], is an extension of the Bellare–Rogaway (BR) model [6] for proving
security of authenticated key exchange in the reductionist security paradigm.
In the BR model, the adversary is in control of all communications between
honest parties, so the adversary can activate honest parties to send their next
protocol message, and can also modify, delay, drop, replay, or create messages.
Each honest party can run multiple simultaneous or sequential executions of
the protocol (each execution at a party is called a session) sharing a single
long-term key pair across their sessions. Within each session, a party maintains
several variables, including the execution status, a session identifier, an identifier
for the peer (if the peer is to be authenticated), and a session key. The adversary
interacts with the honest parties via oracles, including oracles for starting a new
session at a party (the NewSession oracle) and message delivery and response
(Send), as well as letting the adversary learn an honest party’s long-term key
(Corrupt) or the session key of a particular session (Reveal). The adversary may
choose one session as a challenge session and, via a call to the Test oracle, receive
an indistinguishability game challenge.

There are many extensions to the BR model to capture different functionality
and security properties; see [10, Ch. 2] for a summary. One important extension
is the formalisation by Brzuska et al. [11,12] which introduces a property called
match security. This checks the technical condition that the session identifiers
specified by the protocol effectively match the partnered sessions. Among other
benefits, match security helps with composition theorems involving AKE pro-
tocols. Our Tamarin model does address match security fully, but due to space
constraints, we omit discussion of match security in the proceedings version of
the paper.

A Tale of two models: formal verification of KEMTLS via Tamarin 73

In real-world protocols like QUIC and TLS, as well as KEMTLS, multiple keys
are established in each session for different purposes. Fischlin and Günther [24]
created the multi-stage key exchange model, an extension of the BR model in
which a single session can have multiple stages, each of which establishes a key
with certain security characteristics; they used this approach to analyse QUIC.
It was also used by Dowling et al. [19,20] to analyse the TLS 1.3 handshake. As
KEMTLS is an alternative realization of the TLS 1.3 handshake, it is natural to
similarly use this model for analyzing KEMTLS, as done in [32].

We now present the technical components of the multi-stage key exchange
security model as used in KEMTLS [32] and KEMTLS-PDK [34]. Our presentation
here will be somewhat abbreviated; for full details, see the full versions of [32,34].

Partnering. For the proof of KEMTLS(-PDK), we need to keep track of the
pairs of sessions that are (supposedly) communicating. Each session keeps track
of per-stage session identifiers, each of which is a distinct label for the stage
followed by all plaintext messages transmitted up until that point in the protocol;
for KEMTLS-PDK, this also includes the implicit ServerCertificate message.
We call two sessions partners if their session identifiers match.

Adversary Interaction. The oracles and variables stated in Sect. 4.1 suffice
for modelling the various properties of match-security. To model key indistin-
guishability, the multi-stage model includes an oracle Test(π, i) which challenges
the adversary to distinguish the ith stage key of session π from random.

Multi-stage Security and Malicious Acceptance. Multi-stage security
models secrecy of each stage key under specific forward secrecy properties. These
properties include implicit and explicit authentication. The model is parameter-
ized by values indicating the expected security properties of particular stage
keys. [32,34] define four levels of forward secrecy:

– No forward secrecy (0);
– Weak forward secrecy level 1 (wfs1): the key is confidential against passive

adversaries. This level allows the adversary to access the peer’s long-term
keys. Keys with this level of forward secrecy have no authentication.

– Weak forwards secrecy level 2 (wfs2): the key is confidential against passive
adversaries (wfs1) and against active adversaries who never corrupted the
peer’s long-term key. In the latter case, the key is implicitly authenticated.

– Forward secrecy (fs): the key is confidential against passive adversaries (wfs1)
and against active adversaries who did not corrupt the peer’s long-term key
before the stage accepted. Keys with level fs are implicitly authenticated.

As the protocol is executed, the security level of a particular stage key may be
upgraded once a later stage accepts. The specific security levels for each client
and the server are indicated in [32,34]; the server’s security levels are different
if mutual authentication is used.

74 S. Celi et al.

Explicit authentication, which is e.g. achieved by the Finished messages, is
modelled through malicious acceptance: an adversary should not be able to cause
a supposedly explicitly authenticated stage to accept without a partner stage.

Deniability. Roughly speaking, deniability is the property that a party can-
not provide proof to a judge that a peer participated in a particular protocol
execution, even if they did. First introduced in general by Dwork, Naor, and
Sahai [23] and in the context of key exchange by Di Raimondo, Gennaro, and
Krawczyk [17], there are many flavours and variations of deniability; see e.g. [26]
for a classification. Offline deniability is the inability of a judge to distinguish
between a transcript generated by honest parties and a transcript generated
by a simulator. The form of deniability offered by KEMTLS and KEMTLS-PDK
(following the terminology of [26]) is that it provides offline deniability in the
universal deniability setting (meaning the simulator only has access to parties’
long-term public keys) against an unbounded judge with full corruption pow-
ers (meaning the judge gets the parties’ long-term secret keys as well as any
per-session coins).

Pen-and-Paper Proofs. The KEMTLS and KEMTLS-PDK papers [32,34] pro-
vide theorems and give proofs that their respective protocols satisfy the match-
security and multi-stage security properties; they do not include any proofs
for offline deniability. The match-security properties are shown information-
theoretically, with terms depending on the number of sessions, the correctness
probability of the KEMs, and the size of the TLS nonce space. The multi-stage
security properties are shown under the following computational assumptions:
hash function collision resistance, IND-1CCA security of KEMe, PRF and dual-
PRF security of HKDF.Extract, PRF-security of HKDF.Expand, EUF-CMA secu-
rity of HMAC, and IND-CCA security of KEMc and KEMs. There is a tightness
loss proportional to the number of sessions squared.

4.2 Formalizing the Reductionist Security Model in Tamarin

We formalized all four KEMTLS variants (regular and PDK, server-only and
mutually authenticated) in Tamarin, along with lemmas capturing correctness,
match security, multi-stage security, and deniability, analogous to the definitions
from Sect. 4.1. We now describe the formalization in more detail.

Protocol Description. This Tamarin formulation of the four KEMTLS vari-
ants focuses on the “cryptographic core” of the protocol. Roughly speaking,
this is the protocol as formulated in figures in the original papers [32,34],
which includes cryptographic operations involved in the key exchange, but
does not include extra fields and operations arising from the integration of
the cryptographic operations into a network protocol. We only address the
handshake protocol and exclude TLS message formatting, algorithm negotia-
tion, and data structures such as certificates. We exclude other modes such

A Tale of two models: formal verification of KEMTLS via Tamarin 75

as TLS 1.3 session resumption or pre-shared key handshakes. We assume that
long-term public keys are reliably distributed out-of-band. We omit modelling
handshake encryption: while the various handshake traffic secrets are established
and recorded as accepted in each stage of the protocol, subsequent handshake
messages are sent in plaintext. The various primitives based on hash functions
(HMAC,HKDF.Extract,HKDF.Expand) are modelled as independent opaque func-
tions, rather than relying on each other and ultimately on a common hash func-
tion. As in the pen-and-paper proofs, there are three KEMs: KEMe, KEMc, and
KEMs, for ephemeral key exchange, client authentication, and server authentica-
tion, respectively. The KEMs are modelled as distinct primitives, meaning that
a party cannot use its long-term credential to act as both a client and a server.

Adversary Interaction. Among the oracles stated in Sect. 4.1, the NewSession
and Send oracles are not needed, since the Tamarin model includes rules for
each protocol step. The Tamarin model does include Corrupt and Reveal oracles.
Because key security in Tamarin is modelled not using indistinguishability but
key recovery (the K (. . .) fact in Tamarin lemmas), there is no need for the Test
query in the Tamarin model.

Correctness Lemmas. We include a collection of “reachability” lemmas which
check that, for every stage in all 4 protocol variants, it is possible to arrive at
that stage, with honest client and server sessions having correct owner and peer
information, matching contributive and session identifiers, and correct expec-
tations on authentication, forward secrecy, and replayability; the reachability
lemmas include checking retroactive upgrading of properties. These lemmas are
implemented using Tamarin’s exist-trace feature. There are 47 reachability
lemmas in total, generated from a template using the M4 macro language.

Security and Authentication Lemmas. The match security lemmas from
Definition B.1 of [32], plus the adjustments for replayability in [34], are directly
translated into Tamarin. The lemmas are basically predicates over the session-
specific variables defined in the model syntax, and can be stated analogously
since the Tamarin model includes action facts for each session-specific variable.

Session key security in Tamarin is modelled based on infeasibility of session
key recovery, rather than indistinguishability of a session key from random. We
have lemmas for each type of forward secrecy a stage key can have, directly
translating the freshness conditions of [32, Defn. B.3] and [34, Defn. B.5].

We have a lemma for explicit authentication analogous to [34, Defn. B.5 3],
including not requiring uniqueness of the replayable KEMTLS-PDK stage 1.

Deniability Lemmas. Whereas the lemmas for the above properties all share
the same Tamarin protocol description as explained above, the deniability lem-
mas use a re-statement of the protocol description. To formulate a deniability
lemma, we need two versions of the protocol description: honest execution of

76 S. Celi et al.

the protocol using long-term secrets, and simulation using only public keys. The
judge in the offline deniability game is passive and receives only transcripts, so we
can collapse the multiple rules for each client and server action into a single rule
that generates a full transcript including both client and server operations. The
deniability lemmas use Tamarin’s observational equivalence feature [4] to check
that the real and simulated transcripts are indistinguishable. Using observational
equivalence causes a substantial increase in state space, so for efficiency reasons,
we have a mode that omits portions of the transcript that are deterministically
generated from earlier parts of the transcript.

4.3 Comparison of Pen-and-Paper and Tamarin Models

In principle, if the same security properties have been encoded in both a pen-
and-paper reductionist security model and in a Tamarin model, a full and correct
proof in the reductionist security model yields everything that a Tamarin proof
could, and potentially more. In particular, reductionist security proofs do not
idealize cryptographic primitives as much as Tamarin does. Moreover, a reduc-
tionist security proof can be done in the “concrete setting” [5], yielding a precise
(non-asymptotic) relationship between the runtime and success probability of
an adversary against the protocol versus the runtime and success probability
of breaking the underlying cryptographic assumption. While it would be pos-
sible to encode the pen-and-paper proofs of KEMTLS from the original papers
into a computer verification tool such as EasyCrypt [2], that would also require
the cryptographer to manually write all game hops and reductions, a massive
undertaking. To date, there are no proofs of KEMTLS using a computer-aided
verification tool for reductionist proofs.

Tamarin does not lend itself to writing security properties in exactly the same
way as would be used in reductionist security models. Although there is no way
to objectively justify how close the pen-and-paper and Tamarin models of this
section are to each other, subjectively we think they are quite close:

– The protocol specification in Tamarin maps nearly line-for-line onto the pro-
tocol figures in the original papers, using the same function interfaces, same
key schedule, and same session identifiers.

– The session-specific variables in the pen-and-paper model correspond nearly
one-for-one to action facts in the Tamarin model.

– There are Tamarin lemmas for each security property in the pen-and-paper
model, and there is a clear mapping between the clauses in the predicates in
the pen-and-paper model and the Tamarin model.

A Tale of two models: formal verification of KEMTLS via Tamarin 77

The main gap in modelling, as mentioned earlier, is that session key security
is modelled via indistinguishability in the pen-and-paper models but via infea-
sibility of key recovery in the Tamarin model. Though it is possible to verify
indistinguishability through Tamarin’s observational equivalence features, the
effect on the state space as discussed in Sect. 4.2 makes this impractical.

4.4 Results

Tamarin was able to auto-prove all the lemmas for correctness, reachability,
match security, multi-stage session key security, authentication, and deniability
in Model #2, with all four KEMTLS variants supported simultaneously. We did
not need to create any helper lemmas for Tamarin. Run-times are shown in
Appendix B.

Bugs in the Original Papers’ Security Properties. When translating
the models into Tamarin, we identified minor mistakes in some of the security
properties listed in the KEMTLS [32] and KEMTLS-PDK [34] papers, highlight-
ing the value of formal verification. We summarize the corrected properties in
Appendix A.

4.5 Limitations

As noted above, the design of the model in this section imposes some limitations.
Unlike in Sect. 3, we generally did not model non-cryptographic details of the
handshake, such as TLS handshake messages, extensions, or the record layer.
We also did not model handshake encryption or algorithm negotiation.

We also had, unlike in Sect. 3, three distinct KEMs for ephemeral key
exchange, server authentication and client authentication. This implicitly
assumes the same certificate is not used for both purposes, which was the basis
of the Selfie attack [22]. Without this limitation, we observe a state-space explo-
sion with a major impact on performance. For example, if KEMc = KEMs, the
first 10 out of 11 reachable_* lemmas take over 8 h, and the last reachable_*
did not terminate after 45 h, compared to all 11 reachable_* lemmas taking
just over 1min with distinct KEMc and KEMs.

Our deniability lemmas are for abbreviated transcripts and omit ephemeral
coins. Without this limitation there is a major impact on performance. Including
full transcripts for KEMTLS-sauth increases run-time from 1min to 16 h, and
including ephemeral coins increases runtime from 1min to 110min.

78 S. Celi et al.

Table 1. Comparison of features in our two Tamarin models of KEMTLS

Feature Model #1 Model #2

Protocol modelling
Encrypted handshake messages
HKDF and HMAC decomposed into hash calls
Key exch. and auth. KEMs are the same algorithm
TLS message structure
Algorithm negotiation
Security properties
Adversary can reveal long-term keys
Adversary can reveal ephemeral keys
Adversary can reveal intermediate session keys
Multiple flavours of forward secrecy
Deniability

5 Comparison of Models

We discussed two very different models of KEMTLS(-PDK) in the previous sec-
tions. These models are examples of how we can view modelling as the art of
replacing specifics with generalities. Model #1 stays very close to the wire for-
mat of TLS 1.3 and phrases the security properties in terms of attacks on the
ephemeral and long-term keys. It contains more implementation details such
as algorithm negotiation, message framing, encryption of handshake messages,
and even application data. Model #2 is more abstract in its representation of
protocol messages. However, it models the cryptographic properties in a more
granular fashion. This more abstract description closely follows the multi-stage
pen-and-paper proofs of KEMTLS and KEMTLS-PDK, and allowed verifying the
properties claimed in the pen-and-paper proofs. Table 1 summarizes differences
between the two models, a few aspects of which we discuss further below.

Modelling KEMs. The two models differ in the way that they model the KEMs
in the protocol. Model #1 uses the same functions for all KEM modes in the
protocol (key exchange, server authentication and client authentication). Model
#2 has three separate sets of functions for the three different KEM modes; this
means the attacker can not copy ciphertexts or public keys from one of the modes
to another, which should make proving the protocol easier. Interestingly, we saw
significantly different performance between these two approaches. The second
model proves in very short time with the three separate KEMs, but runtime
blows up if we define all three KEM modes with the same functions; we did not
attempt to generate the full proof because it took so long as discussed in Sect. 4.5.
This suggests that splitting the three KEM modes in the first model could result
in a speed-up. However, splitting the KEMs in Model #1 did not improve the
time to auto-prove lemmas; in fact, a few lemmas even stopped being auto-

A Tale of two models: formal verification of KEMTLS via Tamarin 79

provable. Ideally, this puzzle would be resolved with a justification that there
is a way of safely separating uses of KEMs, allowing us to use whichever form
happens to be easier for Tamarin to prove.

Threat Model. Both models use Dolev–Yao attackers, but give the attackers
slightly different extra abilities as noted in the bottom half of Table 1. Con-
sequently, the results hold in slightly different circumstances. The attacker in
Model #1 can compromise ephemeral keys and long-term keys, but not session
keys, whereas the attacker in Model #2 can compromise intermediate session
keys and long-term keys, but not ephemeral keys. Revealing the HS intermedi-
ate session key allows the second attacker to simulate the abilities of the first,
but the reverse does not hold; the attacker in Model #2 is thus slightly stronger.

Ease of Use. Work on each of our two models was done by separate authors of
this paper, neither of whom had written a paper using Tamarin before and who
had only had a basic introduction to Tamarin prior to this work. Surprisingly
to us, creation of Model #2 from scratch was simpler and proceeded faster than
the work in Model #1 adapting Cremers et al.’s TLS 1.3 model to KEMTLS.
We attribute this to the higher fidelity of the protocol model in Cremers et al.,
requiring more code to model our changes, and the higher difficulty in proving.

6 Conclusion

We presented two Tamarin models checking security properties of KEMTLS and
its variant protocol KEMTLS-PDK. Model #1 is highly detailed in implementa-
tion characteristics, close to the wire-format of the protocol. Model #2 presents
the protocol at a higher level but provides a more precise characterization of
security properties. We prove that KEMTLS(-PDK) is secure in both models;
importantly these analyses include all four KEMTLS variants supported simulta-
neously. Additionally, we proved offline deniability of KEMTLS(-PDK) in Model
#2.

Overall, comparing these two analyses is something of an apples-to-oranges
comparison. The two very different approaches allow us to model and test dif-
ferent properties of the protocol. Model #1 is closer to what an implementation
would be like, and verifies the security properties in such a scenario. Adopting
the Cremers et al. TLS 1.3 model [14] also allowed us to quickly adapt the secu-
rity claims of TLS 1.3 to our protocols. Model #2, on the other hand, is an
adaptation of the multi-stage authenticated key exchange model from the pen-
and-paper proofs in [32,34]. As such, Model #2 in a sense checks the claims in
the pen-and-paper proofs, and in fact uncovered some minor mistakes in those
proofs.

Our two models illustrate a common trade-off in formal analysis between the
detail of the protocol specification and the granularity of the security properties
we can prove. A similar observation was also made by Cremers et al. [14], who

80 S. Celi et al.

commented computational analyses could only look at parts of TLS 1.3, rather
than considering all the modes at once.

While we proved certain privacy properties, such as deniability, our models
can be further expanded to include other privacy properties, such as the proposed
Encrypted Client Hello extension (previously called ESNI). These properties
have only been proven by using the symbolic protocol analyzer ProVerif [8].

Acknowledgements. The authors gratefully acknowledge helpful suggestions from
Peter Schwabe. D. Stebila was supported by Natural Sciences and Engineering Research
Council of Canada (NSERC) Discovery grants RGPIN-2016–05146 and RGPIN-2022–
03187. D. Stebila and T. Wiggers were supported by an NLnet Assure grant for
the project “Standardizing KEMTLS”. T. Wiggers was supported by the European
Research Council through Starting Grant No. 805031 (EPOQUE).

A Errors Identified in the Stated Properties
of KEMTLS(-PDK)

Using Model #2, we identified minor mistakes in some of the forward secrecy and
authentication properties listed in the original KEMTLS [32] and KEMTLS-PDK
[34] papers. See the original papers for the definition of the symbols.

– In KEMTLS-mutual: authS3 = 3 and authS4 = 4 both should have been set to
5; FSS3,3 = FSS3,4 = FSS4,4 = wfs2 should all have been wfs1; and authS6 = 6
should have been authS6 = ∞.

– In KEMTLS-PDK-sauth: FSC1,j and FSS1,j should have been 0 for all j; authC5 =
5 should have been authC5 = ∞; and FSSi,4 should have been wfs1 for i = 2, 3, 4.

– In KEMTLS-PDK-mutual: the message SKC should have been included in the
SF MAC computation and SF should have been included in the CF MAC
computation; FSC1,j and FSS1,j should have been 0 for all j; authC5 = 5 should
have been authC5 = ∞; and FSS4,4 = wfs1 should have been wfs2.

The source papers have been updated online [33,35] with our corrections.

B Performance

We ran our two models using tamarin-prover version 1.16.1 on a server that
has two 20-core Intel Xeon Gold 6230 CPUs, which after hyperthreading gives
us 80 threads; the server has 192GB of RAM. We note that communication
bottlenecks between cores prevent fully utilising all resources.

Model #1 Table 2 shows run-times of the most time-consuming lemmas from
Model #1. All four KEMTLS variants were supported simultaneously.

A Tale of two models: formal verification of KEMTLS via Tamarin 81

Table 2. Wall-clock run-time (hh:mm:ss) and memory usage of selected lemmas for
Model #1

Lemma Steps Time Memory

session_key_auth_agreement 29 116 6:42:01 16GB
session_key_agreement 57 680 13:56:04 32GB
handshake_secret 29 390 4:40:52 12GB
master_secret_pfs 29 535 2:53:11 76GB

All lemmas — 28 h 121GB

Model #2 Table 3 shows the run-time for the various lemmas, for each KEMTLS
variant on its own, and when all four KEMTLS variants are supported simulta-
neously; Tamarin was restricted to using 16 cores.

Table 3. Wall-clock run-time (hh:mm:ss) of lemmas for Model #2

Lemma KEMTLS KEMTLS-PDK All 4 variants
sauth mutual both sauth mutual both

reachable_* 0:01:17 0:01:20 0:04:32 0:01:46 0:01:36 0:04:40 0:13:25
attacker_works_* 0:00:17 0:00:46 0:01:16 0:00:17 0:00:23 0:00:53 0:12:04
match_* 0:01:02 0:01:22 0:02:55 0:00:55 0:01:14 0:02:46 0:09:53
sk_sec_nofs_client 0:00:05 0:00:07 0:00:16 0:00:05 0:00:05 0:00:14 0:00:41
sk_sec_nofs_server 0:00:05 0:00:06 0:00:12 0:00:05 0:00:06 0:00:14 0:00:40
sk_sec_wfs1 0:00:21 0:00:10 0:01:05 0:00:17 0:00:18 0:00:41 0:03:00
sk_sec_wfs2 0:00:36 0:00:28 0:01:30 0:00:28 0:00:22 0:01:23 0:24:28
sk_sec_fs 0:01:20 0:03:05 0:06:38 0:01:21 0:01:33 0:05:07 1:39:58
malicious_accept. 0:00:13 0:01:40 0:04:13 0:00:17 0:00:22 0:01:39 27:29:37
deniability (abbr.) 0:01:02 0:12:15 — 0:00:24 0:29:10 — —
Total (excl. den.) 0:05:16 0:09:05 0:22:38 0:05:30 0:06:00 0:17:38 30:13:46

References

1. Barbosa, M., et al.: SoK: computer-aided cryptography. In: 2021 IEEE Sympo-
sium on Security and Privacy, pp. 777–795. IEEE Computer Society Press (2021).
https://doi.org/10.1109/SP40001.2021.00008

2. Barthe, G., Grégoire, B., Heraud, S., Béguelin, S.Z.: Computer-aided security
proofs for the working cryptographer. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS,
vol. 6841, pp. 71–90. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-22792-9_5

3. Basin, D., Cremers, C., Dreier, J., Meier, S., Sasse, R., Schmidt, B.: Tamarin prover
(2022). https://tamarin-prover.github.io

4. Basin, D.A., Dreier, J., Sasse, R.: Automated symbolic proofs of observational
equivalence. In: Ray, I., Li, N., Kruegel, C. (eds.) ACM CCS 2015, pp. 1144–1155.
ACM Press (2015). https://doi.org/10.1145/2810103.2813662

https://doi.org/10.1109/SP40001.2021.00008
https://doi.org/10.1007/978-3-642-22792-9_5
https://doi.org/10.1007/978-3-642-22792-9_5
https://tamarin-prover.github.io
https://doi.org/10.1145/2810103.2813662

82 S. Celi et al.

5. Bellare, M.: Practice-oriented provable-security. In: Okamoto, E., Davida, G.,
Mambo, M. (eds.) ISW 1997. LNCS, vol. 1396, pp. 221–231. Springer, Heidelberg
(1998). https://doi.org/10.1007/BFb0030423

6. Bellare, M., Rogaway, P.: Entity authentication and key distribution. In: Stinson,
D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 232–249. Springer, Heidelberg
(1994). https://doi.org/10.1007/3-540-48329-2_21

7. Bhargavan, K., Blanchet, B., Kobeissi, N.: Verified models and reference imple-
mentations for the TLS 1.3 standard candidate. In: 2017 IEEE Symposium on
Security and Privacy, pp. 483–502. IEEE Computer Society Press (2017). https://
doi.org/10.1109/SP.2017.26

8. Bhargavan, K., Cheval, V., Wood, C.: Handshake privacy for TLS 1.3 - technical
report. Research report, Inria Paris, Cloudflare (2022). https://hal.inria.fr/hal-
03594482

9. Blanchet, B.: An efficient cryptographic protocol verifier based on Prolog rules.
In: 14th IEEE Computer Security Foundations Workshop (CSFW-14), pp. 82–96.
IEEE Computer Society (2001)

10. Boyd, C., Mathuria, A., Stebila, D.: Protocols for Authentication and Key Estab-
lishment. Springer, Heidelberg (2019). https://doi.org/10.1007/978-3-662-58146-9

11. Brzuska, C.: On the Foundations of Key Exchange, Ph.D. thesis, Technische Uni-
versität Darmstadt (2013). http://tuprints.ulb.tu-darmstadt.de/3414/

12. Brzuska, C., Fischlin, M., Warinschi, B., Williams, S.C.: Composability of Bellare-
Rogaway key exchange protocols. In: Chen, Y., Danezis, G., Shmatikov, V. (eds.)
ACM CCS 2011, pp. 51–62. ACM Press (2011). https://doi.org/10.1145/2046707.
2046716

13. Celi, S., Schwabe, P., Stebila, D., Sullivan, N., Wiggers, T.: KEM-based Authen-
tication for TLS 1.3. Internet-Draft draft-celi-wiggers-tls-authkem-01, Internet
Engineering Task Force (2022). https://datatracker.ietf.org/doc/html/draft-celi-
wiggers-tls-authkem-01, Work in Progress

14. Cremers, C., Horvat, M., Hoyland, J., Scott, S., van der Merwe, T.: A comprehen-
sive symbolic analysis of TLS 1.3. In: Thuraisingham, B.M., Evans, D., Malkin,
T., Xu, D. (eds.) ACM CCS 2017, pp. 1773–1788. ACM Press (2017). https://doi.
org/10.1145/3133956.3134063

15. Cremers, C., Horvat, M., Scott, S., van der Merwe, T.: Automated analysis and
verification of TLS 1.3: 0-RTT, resumption and delayed authentication. In: 2016
IEEE Symposium on Security and Privacy, pp. 470–485. IEEE Computer Society
Press (2016). https://doi.org/10.1109/SP.2016.35

16. Delignat-Lavaud, A., et al.: Implementing and proving the TLS 1.3 record layer.
In: 2017 IEEE Symposium on Security and Privacy, pp. 463–482. IEEE Computer
Society Press (2017). https://doi.org/10.1109/SP.2017.58

17. Di Raimondo, M., Gennaro, R., Krawczyk, H.: Deniable authentication and key
exchange. In: Juels, A., Wright, R.N., De Capitani di Vimercati, S. (eds.) ACM
CCS 2006, pp. 400–409. ACM Press (2006). https://doi.org/10.1145/1180405.
1180454

18. Dolev, D., Yao, A.C.C.: On the security of public key protocols (extended abstract).
In: 22nd FOCS, pp. 350–357. IEEE Computer Society Press (1981). https://doi.
org/10.1109/SFCS.1981.32

19. Dowling, B., Fischlin, M., Günther, F., Stebila, D.: A cryptographic analysis of the
TLS 1.3 handshake protocol candidates. In: Ray, I., Li, N., Kruegel, C. (eds.) ACM
CCS 2015, pp. 1197–1210. ACM Press (2015). https://doi.org/10.1145/2810103.
2813653

https://doi.org/10.1007/BFb0030423
https://doi.org/10.1007/3-540-48329-2_21
https://doi.org/10.1109/SP.2017.26
https://doi.org/10.1109/SP.2017.26
https://hal.inria.fr/hal-03594482
https://hal.inria.fr/hal-03594482
https://doi.org/10.1007/978-3-662-58146-9
http://tuprints.ulb.tu-darmstadt.de/3414/
https://doi.org/10.1145/2046707.2046716
https://doi.org/10.1145/2046707.2046716
https://datatracker.ietf.org/doc/html/draft-celi-wiggers-tls-authkem-01,
https://datatracker.ietf.org/doc/html/draft-celi-wiggers-tls-authkem-01,
https://doi.org/10.1145/3133956.3134063
https://doi.org/10.1145/3133956.3134063
https://doi.org/10.1109/SP.2016.35
https://doi.org/10.1109/SP.2017.58
https://doi.org/10.1145/1180405.1180454
https://doi.org/10.1145/1180405.1180454
https://doi.org/10.1109/SFCS.1981.32
https://doi.org/10.1109/SFCS.1981.32
https://doi.org/10.1145/2810103.2813653
https://doi.org/10.1145/2810103.2813653

A Tale of two models: formal verification of KEMTLS via Tamarin 83

20. Dowling, B., Fischlin, M., Günther, F., Stebila, D.: A cryptographic analysis of the
TLS 1.3 handshake protocol. J. Cryptol. 34(4), 1–69 (2021). https://doi.org/10.
1007/s00145-021-09384-1

21. Dowling, B., Stebila, D.: Modelling Ciphersuite and version negotiation in the TLS
protocol. In: Foo, E., Stebila, D. (eds.) ACISP 2015. LNCS, vol. 9144, pp. 270–288.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19962-7_16

22. Drucker, N., Gueron, S.: Selfie: reflections on TLS 1.3 with PSK. J. Cryptol. 34(3),
1–18 (2021). https://doi.org/10.1007/s00145-021-09387-y

23. Dwork, C., Naor, M., Sahai, A.: Concurrent zero-knowledge. In: 30th ACM STOC,
pp. 409–418. ACM Press (1998). https://doi.org/10.1145/276698.276853

24. Fischlin, M., Günther, F.: Multi-stage key exchange and the case of Google’s QUIC
protocol. In: Ahn, G.J., Yung, M., Li, N. (eds.) ACM CCS 2014, pp. 1193–1204.
ACM Press (2014). https://doi.org/10.1145/2660267.2660308

25. Günther, F., Rastikian, S., Towa, P., Wiggers, T.: KEMTLS with delayed forward
identity protection in (Almost) a single round trip. In: ACNS 2022 (2022). https://
eprint.iacr.org/2021/725

26. Hülsing, A., Weber, F.: Epochal signatures for deniable group chats. In: 2021 IEEE
Symposium on Security and Privacy, pp. 1677–1695. IEEE Computer Society Press
(2021). https://doi.org/10.1109/SP40001.2021.00058

27. Kohlweiss, M., Maurer, U., Onete, C., Tackmann, B., Venturi, D.: (De-
)Constructing TLS 1.3. In: Biryukov, A., Goyal, V. (eds.) INDOCRYPT 2015.
LNCS, vol. 9462, pp. 85–102. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-26617-6_5

28. Krawczyk, H., Wee, H.: The OPTLS protocol and TLS 1.3. In: 2016 IEEE European
Symposium on Security and Privacy (EuroS&P), pp. 81–96 (2016). https://doi.
org/10.1109/EuroSP.2016.18

29. Meier, S., Schmidt, B., Cremers, C., Basin, D.: The TAMARIN prover for the
symbolic analysis of security protocols. In: Sharygina, N., Veith, H. (eds.) CAV
2013. LNCS, vol. 8044, pp. 696–701. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-39799-8_48

30. Paterson, K.G., van der Merwe, T.: Reactive and proactive standardisation of TLS.
In: Chen, L., McGrew, D., Mitchell, C. (eds.) SSR 2016. LNCS, vol. 10074, pp.
160–186. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49100-4_7

31. Rescorla, E.: The Transport Layer Security TLS Protocol Version 1.3. RFC 8446,
RFC Editor (2018). https://doi.org/10.17487/RFC8446

32. Schwabe, P., Stebila, D., Wiggers, T.: Post-quantum TLS without handshake sig-
natures. In: Ligatti, J., Ou, X., Katz, J., Vigna, G. (eds.) ACM CCS 2020, pp.
1461–1480. ACM Press (2020). https://doi.org/10.1145/3372297.3423350

33. Schwabe, P., Stebila, D., Wiggers, T.: Post-quantum TLS without handshake sig-
natures. Cryptology ePrint Archive, Report 2020/534 (2020). https://eprint.iacr.
org/2020/534

34. Schwabe, P., Stebila, D., Wiggers, T.: More efficient post-quantum KEMTLS
with pre-distributed public keys. In: Bertino, E., Shulman, H., Waidner, M. (eds.)
ESORICS 2021. LNCS, vol. 12972, pp. 3–22. Springer, Cham (2021). https://doi.
org/10.1007/978-3-030-88418-5_1

35. Schwabe, P., Stebila, D., Wiggers, T.: More efficient post-quantum KEMTLS with
pre-distributed public keys. Cryptology ePrint Archive, Report 2021/779 (2021).
https://eprint.iacr.org/2021/779

https://doi.org/10.1007/s00145-021-09384-1
https://doi.org/10.1007/s00145-021-09384-1
https://doi.org/10.1007/978-3-319-19962-7_16
https://doi.org/10.1007/s00145-021-09387-y
https://doi.org/10.1145/276698.276853
https://doi.org/10.1145/2660267.2660308
https://eprint.iacr.org/2021/725
https://eprint.iacr.org/2021/725
https://doi.org/10.1109/SP40001.2021.00058
https://doi.org/10.1007/978-3-319-26617-6_5
https://doi.org/10.1007/978-3-319-26617-6_5
https://doi.org/10.1109/EuroSP.2016.18
https://doi.org/10.1109/EuroSP.2016.18
https://doi.org/10.1007/978-3-642-39799-8_48
https://doi.org/10.1007/978-3-642-39799-8_48
https://doi.org/10.1007/978-3-319-49100-4_7
https://doi.org/10.17487/RFC8446
https://doi.org/10.1145/3372297.3423350
https://eprint.iacr.org/2020/534
https://eprint.iacr.org/2020/534
https://doi.org/10.1007/978-3-030-88418-5_1
https://doi.org/10.1007/978-3-030-88418-5_1
https://eprint.iacr.org/2021/779

	A Tale of Two Models: Formal Verification of KEMTLS via Tamarin
	1 Introduction
	1.1 Related Work
	1.2 Contributions

	2 Background on Symbolic Analysis
	3 Model #1: High-Resolution Protocol Specification
	3.1 Cremers et al.'s Tamarin TLS 1.3 Model
	3.2 Representing KEMTLS in the Model
	3.3 Security Properties
	3.4 Results
	3.5 Limitations

	4 Model #2: Multi-stage Key Exchange Model
	4.1 Reductionist Security Model for TLS 1.3 and KEMTLS
	4.2 Formalizing the Reductionist Security Model in Tamarin
	4.3 Comparison of Pen-and-Paper and Tamarin Models
	4.4 Results
	4.5 Limitations

	5 Comparison of Models
	6 Conclusion
	A Errors Identified in the Stated Properties of KEMTLS(-PDK)
	B Performance
	References

