
A Composable Security Treatment
of ECVRF and Batch Verifications

Christian Badertscher1(B) , Peter Gaži2, Iñigo Querejeta-Azurmendi3,
and Alexander Russell4,5

1 Input Output, Zurich, Switzerland
christian.badertscher@iohk.io
2 Input Output, Bratislava, Slovakia

peter.gazi@iohk.io
3 Input Output, London, UK

querejeta.azurmendi@iohk.io
4 Input Output, New Jersey, USA
alexander.russell@iohk.io

5 University of Connecticut, Mansfield, USA

Abstract. Verifiable random functions (VRF, Micali et al., FOCS’99)
allow a key-pair holder to verifiably evaluate a pseudorandom function
under that particular key pair. These primitives enable fair and verifiable
pseudorandom lotteries, essential in proof-of-stake blockchains such as
Algorand and Cardano, and are being used to secure billions of dollars
of capital. As a result, there is an ongoing IRTF effort to standardize
VRFs, with a proposed ECVRF based on elliptic-curve cryptography
appearing as the most promising candidate.

In this paper, towards understanding the general security of VRFs and
in particular the ECVRF construction, we provide an ideal functional-
ity in the Universal Composability (UC) framework (Canetti, FOCS’01)
that captures VRF security, and show that ECVRF UC-realizes it.

Additionally, we study batch verification in the context of VRFs.
We provide a UC-functionality capturing a VRF with batch-verification
capability, and propose modifications to ECVRF that allow for this fea-
ture. We again prove that our proposal UC-realizes the desired function-
ality. Finally, we provide a performance analysis showing that verification
can yield a factor-two speedup for batches with 1024 proofs, at the cost
of increasing the proof size from 80 to 128 bytes.

1 Introduction

A Verifiable Random Function (VRF, [19]) is a pseudo-random function whose
correct evaluation can be verified. It can be seen as a hash function that is keyed
by a public-private key pair: the private key is necessary to evaluate the function
and produce a proof of a correct evaluation, while the public key can be used
to verify such proofs. VRFs were originally considered as tools for mitigation
of offline dictionary attacks on hash-based data structures; more recently they
have found applications in the design of verifiable lotteries. In particular, VRFs

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
V. Atluri et al. (Eds.): ESORICS 2022, LNCS 13556, pp. 22–41, 2022.
https://doi.org/10.1007/978-3-031-17143-7_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-17143-7_2&domain=pdf
http://orcid.org/0000-0002-1353-1922
https://doi.org/10.1007/978-3-031-17143-7_2

A Composable Security Treatment of ECVRF and Batch Verifications 23

are fundamental primitives to several proof-of-stake ledger consensus protocols,
such as those underlying the blockchains Algorand [14] and Cardano [12]. They
allow for a pseudo-random selection of block leaders in the setting with adaptive
corruption, an important security feature of these protocols.

There is an ongoing effort to standardize this primitive via an IRTF draft [15]
that describes the desirable properties of VRFs and proposes (as of August ’22)
two concrete constructions. One of these constructions is based on RSA, while the
other one relies on elliptic-curve cryptography (ECC); this latter construction
is referred to as ECVRF. A clear advantage of ECVRF over the RSA-based
alternative is the considerable improvement in key sizes it provides (for the
same security level). Indeed, both Algorand and Cardano employ ECVRF, as
do most of the existing implementations listed in the draft.

One of the VRF security properties articulated in the IRTF draft is that
of random-oracle-like unpredictability. Roughly speaking, it requires that if the
VRF input has sufficient entropy (i.e., cannot be predicted), then the output is
indistinguishable from uniformly random. As the draft observes, this property is
essential for the security of the leader-election mechanisms in PoS blockchains.
The property is not formally defined in the draft, though a definition in the form
of an ideal functionality in the Universal Composability (UC) framework [10] is
given in [12]. The IRTF draft states that this strong notion is “believed” to be
satisfied by the ECVRF construction; however, to the best of our knowledge, no
formal proof of this claim exists to date. This state of affairs is clearly unsatis-
factory: UC security is a desirable notion of security as it guarantees that the
proven security provisions (in the sense of realizing an ideal functionality) are
retained, by virtue of the composition theorem, when employing the scheme
in higher-level applications. This is especially relevant for VRFs as a low-level
primitive used in many protocols, including those mentioned above.

Returning to the ECVRF construction, another important benefit it provides
is structural: it is essentially a Fiat-Shamir transformed [13] Σ-protocol [11]
and therefore—at least in principle—suitable for batch verification. The idea
for batch verification first appears in foundational work by Naccache et al. [20]
and consists of verifying a batch of linear equations by verifying a random lin-
ear combination of these. Bernstein et al. [7] exploited this technique with the
state-of-the-art algorithms in multi-scalar multiplication, achieving a factor-two
improvement in signature verification using batches of 64 signatures. Such an
improvement in verification times is of direct relevance for blockchains, as the
routine task of joining the protocol—which requires synchronizing with the cur-
rent ledger—involves verification of many blocks and their VRF proofs. Indeed,
typical synchronization conventions demand verification of the entire existing
blockchain. We note in passing that the possibility of batch verifications for
Schnorr signatures [24] (derived from another type of Σ-protocol) is a significant
competitive advantage over ECDSA, and was one of the reasons for Bitcoin [21]
to switch to that type of signature [25]. The possibility of batch verification
for ECVRF has already appeared in the IRTF draft mailing list [23]. However,
a concrete proposal for the design, along with a formal security notion and a
corresponding security proof, has not been given.

24 C. Badertscher et al.

Our Contributions. In this work we close both of these gaps.

1. We propose a cleaner formalization of the VRF functionality in the UC frame-
work, building on the original proposal from [12] (later revised in [3] to remove
some issues in the original formulation).

2. We show that ECVRF UC-realizes this functionality in the random-oracle
model (ROM). The proof of this claim is surprisingly involved, requiring a
rather complex simulation. The proof appears in full detail in the full version of
this paper [2]. We point out that this is the first comprehensive UC proof for this
type of VRF construction and further shows that the simulation can be done
in a responsive manner [8], a desirable property that simplifies the analysis of
higher-level protocols using the VRF functionality (e.g., [3]). In particular, the
simulation strategy described in [12] is not applicable (cf. related work below)
and [12] does not provide a proof for the revised functionality.

3. We introduce a UC formalization for a VRF providing batch verification via
a natural extension of the above VRF functionality.

4. We define a concrete instantiation of batch verification for the ECVRF con-
struction and prove that it UC-realizes the above ideal functionality of a
VRF with batch verification. Despite our focus on VRFs, we believe that our
formalization would naturally carry over to other widely used Fiat-Shamir
transformed Σ-protocols, such as Schnorr signatures or Ed25519.

5. To evaluate the efficiency improvements of the batch-compatible version, we
compare the efficiency of the current draft version versus the batch-compatible
primitive presented in this work. Roughly speaking, we observe that the batch
compatible primitive can achieve a factor-two efficiency gain with batches of
size 1024 in exchange for a trade-off with respect to its size, growing from 80
bytes to 128 bytes.

6. We provide an additional efficiency improvement, namely a simple range-
extension that can be implemented “on the fly” in ECVRF, which can help
higher-level protocols to reduce the number of VRF evaluations and proof
verification at the cost of more evaluations of the hash function.

Related Work. The VRF notion was introduced by Micali et al. [19]. A stronger
notion of VRF with security in the natural setting with malicious key generation
was presented as a UC functionality by David et al. [12]. A particular instantia-
tion, based on 2HashDH [16], was claimed to satisfy this stronger notion, but the
provided simulation argument only holds for a revised version of the functional-
ity which is first described in [3]. Jarecki et al. [16] provide a UC functionality
of a slightly different notion, which is that of a Verifiable Oblivious Pseudo Ran-
dom Function where two parties need to input some secret information in order
to compute the random output.

The first systematic treatment of batch verification for modular exponenti-
ation was presented by Bellare et al. [4], and adapted to digital signatures by
Camenisch et al. [9]. The batch verification technique that we adopt was ini-
tially developed by Naccache et al. [20], and used by Bernstein et al. [7] and
Wuille et al. [25]. Exploiting the batching technique in the context of VRFs was
informally discussed in the IRTF group and mailing list [15,23].

A Composable Security Treatment of ECVRF and Batch Verifications 25

2 Preliminaries

UC Security. We give a very brief overview of the UC security framework nec-
essary to understand the rest of this work. For details we refer to [10]. In this
framework a protocol execution (the so-called “real-world process”) is repre-
sented by a group of interactive Turing machine instances (ITIs) running a pro-
tocol π, forming a protocol session. The environment Z orchestrates the inputs
and receives the outputs of these machines. Additionally, an adversary is part
of the execution and can corrupt parties and thereby take control of them (we
assume throughout this work the standard UC adaptive corruption model defined
in [10]). To capture security guarantees, UC defines a corresponding ideal pro-
cess which is formulated w.r.t. an ideal functionality F . In the ideal process, the
environment Z interacts with the ideal-world adversary (called simulator) S and
with functionality F (or more precisely, with protocol machines that simply relay
all inputs and outputs to and from F , respectively). A protocol π UC-realizes F
if for any (efficient) adversary there exists an (efficient) simulator S such that for
any (efficient) environment Z the real and ideal processes are indistinguishable.
This means that the real protocol achieves the desired specification F .

VRF Syntax. We denote by κ the security parameter. The domain of the VRF
is denoted by X and its finite range is denoted by Y and typically represented
by Y = {0, 1}�VRF(κ), where �VRF(.) is a function of the security parameter. For
notational simplicity we often drop the explicit dependence on κ.

Definition 1 (VRF Syntax). A verifiable random function (VRF) consists of
a triple of PPT algorithms VRF := (Gen,Eval,Vfy):

– The probabilistic algorithm (sk, vk) ← Gen(1κ) takes as input the security
parameter κ in unary encoding and outputs a key pair, where sk is the secret
key and vk is the (public) verification key.

– The probabilistic algorithm (Y, π) ← Eval(sk,X) takes as input a secret key
sk and X ∈ X and outputs a function value Y ∈ Y and a proof π.

– The (possibly probabilistic but usually deterministic) algorithm b ←
Vfy(vk,X, Y, π) takes as input a verification key vk, input value X ∈ X ,
output value Y ∈ Y, as well as a proof π, and returns a bit b. (If X �∈ X or
Y �∈ Y, we assume that b is 0 by default.)

3 UC Security of Verifiable Random Functions

Modeling VRFs as a UC Protocol. Any verifiable random function VRF can
be cast as a simple protocol πVRF in the UC framework [10] as follows: Each party
Ui in session sid acts as follows: on its first input of the form (KeyGen, sid), run
(sk, vk) ← VRF.Gen(1κ), output (VerificationKey, sid, vk) and internally store sk;
any further key generation requests are ignored. On input (EvalProve, sid,m) for
an input m ∈ X (and if a key has been generated before) evaluate (Y, π) ←
VRF.Eval(sk,m) and output (Evaluated, sid, Y, π). (If no key has been generated

26 C. Badertscher et al.

Ideal Functionality FX , VRF

VRF

The functionality interacts with parties denoted by P = {U1, . . . , U|P|} as well
as the adversary/simulator S. It maintains tables T [·, ·] that are initially empty
(denoted by symbol). The tables are initialized on-the-fly. The functionality
maintains a set Spk to keep track of registered keys, and Seval to keep track of all
known VRF evaluations.

– Key Generation. Upon receiving a message (KeyGen, sid) from Ui

s.t. (Ui, ·) Spk, hand (KeyGen, sid, Ui) to S (ignore the request if (Ui, ·)
Spk). Upon receiving (VerificationKey, sid, Ui, v) from S:
1. If Ui is corrupted, ignore the request.
2. If (Ui, ·) Spk and (·, v) Spk : v v , set Spk Spk { (Ui, v)} and

return (VerificationKey, sid, v) to Ui.
3. Else, ignore the request.

– Malicious Key Generation. Upon receiving a message (KeyGen, sid, v) from
S, do the following: if (·, v) Spk : v v , set Spk Spk { (S, v)}. Return
the activation to S.

– VRF Evaluation and Proof. Upon receiving a message (EvalProve, sid, m)
from Ui with m X , verify that some (Ui, v) Spk is recorded. If
such an entry is not stored or m X , then ignore the request. Else,
send (EvalProve, sid, Ui, m) to S and upon receiving (EvalProve, sid, Ui, m, π)
from S, do the following:
1. Ignore the request if the proof is not unique, i.e., if T [v , m] = (y , S)

such that π S ((v v) (m m)).

2. If T [v, m] = , assign y
${ 0, 1} VRF and set T [v, m] { y, {π}}.

3. If T [v, m] = (y, S) , set T [v, m] { y, S { π}}.
4. Set Seval Seval { (v, m, y)} and output (Evaluated, sid, m, y, π) to Ui.

– Malicious VRF Evaluation. Upon receiving a message (Eval, sid, v, m),
m X , from S (if m X the request is ignored), do the following:

Case 1: (Ui, v) Spk where Ui is not corrupted: if T [v, m] = (y, S) for
S , return (Evaluated, sid, y) to S. Otherwise, ignore the
request.

Case 2: (S, v) Spk or (Ui, v) Spk, Ui corrupted: if T [v, m] = ,

first choose y
$ { 0, 1} VRF and set T [v, m] (y,). Return

(Evaluated, sid, y) to S.
Else: Ignore the request.

– Verification. Upon receiving a message (Verify, sid, m, y, π, v) from
any ITI M , send (Verify, sid, m, y, π, v , Seval) to S. Upon receiving
(Verified, sid, m, y, π, v , φ) from S do:

Case 1: v = v for some (·, v) Spk s.t. T (v, m) = (y, S) for some set S.
1. If π S, then set f 1.
2. Else, if φ = 1 and T [ṽ, m̃] = (y , S) : π S , then set

T [v, m] = (y, S { π}) and f 1.
3. Else, set f 0.

Else: Set f 0.
Provide the output (Verified, sid, v , m, y, π, f) to the caller M .

– Adversarial Leakage [New compared to [12, 3]]. On input
(PastEvaluations, sid) from S, return Seval to S.

Fig. 1. The VRF functionality.

A Composable Security Treatment of ECVRF and Batch Verifications 27

yet, evaluation queries are ignored.) On input (Verify, sid,m, y, π, v′), the party
evaluates b ← VRF.Vfy(v′,m, y, π) and finally returns (Verified, sid, v′,m, y, π, b).

Ideal Functionality FX ,�VRF
VRF . In Fig. 1 we present the functionality FX ,�VRF

VRF that
captures the desired properties of a VRF. The functionality provides interfaces
for key generation, evaluation and verification, as well as separate adversarial
interfaces for malicious key generation, evaluation, and leakage. The function
table corresponding to each public key is a truly random function (and thus
also guarantees a unique association of the key-value pair to output Y) even for
adversarially generated keys. Furthermore, no incorrect association can be ever
verified and every completed honest evaluation can be later verified correctly.

The functionality is based on [3,12], but contains several modifications. First,
verification is now more in line with typical UC formulations for (signature) ver-
ification, where the adversary is given some limited influence (in prior versions,
the adversary had to inject proofs in between verification request and response
to accomplish the same thing). Second, the uniqueness notion for proofs has
been correctly adjusted to catch the corner case that schemes might choose to
de-randomize the prover (akin signatures) which is a crucial point later when we
look at ECVRF. The remaining changes are merely syntactical compared to [3].

Definition 2 (UC security of a VRF). A verifiable random function VRF
with input domain X and range Y = {0, 1}�VRF is called UC-secure if πVRF UC-
realizes FX ,�VRF

VRF specified in Fig. 1.

Random Oracles in UC. When working in the random-oracle model, the UC
protocol above is changed as follows: whenever VRF prescribes a call to a par-
ticular hash function to hash some value x, this is replaced by a call of the form
(eval, sid, x) to an instance of a so-called random oracle functionality, which
internally implements an ideal random function {0, 1}∗ → Y ′ and returns the
corresponding function value back to the caller. We will often use the notation
H(x) in the specifications to refer to a general hash function with the under-
standing that this call will be treated as a random oracle call in the security
proof.

Hash : {0, 1} {0, 1} (κ)

Encode_to_curve : {0, 1} G

Compute_scalar : {0, 1}2κ S

Expand_key : {0, 1}2κ {0, 1}2κ × {0, 1}2κ

Nonce_generation : {0, 1}2κ × E Zq

Hash_pts : E × E × E × E × E {0, 1}κ

Fig. 2. Domain of the helper functions for ECVRF (see [2] for more details). The
functions Hash and Encode to curve are modeled as random oracles in the secu-
rity argument and Compute scalar is an encoding that preserves the min-entropy
of its input. The remaining helper functions are implemented based on Hash (using
domain-separation), where Expand key is an adaptively secure pseudo-random genera-
tor, Nonce generation is an adaptively secure pseudo-random function, and Hash pts

is a random oracle.

28 C. Badertscher et al.

Gen(1κ):

1. sk
${ 0, 1}2κ.

2. (sk0, sk1) Expand_key(sk).
3. x Compute_scalar(sk0).
4. vk x B.
5. Return (sk, vk).

Eval(sk, X):

1. π Prove(sk, X).
2. Y Compute(π).
3. Return (Y, π).

Prove(sk, X):

1. Derive vk, x from sk as in Gen(1κ).
2. H Encode_to_curve(E2Cs || X).
3. Γ x H.
4. k Nonce_generation(sk, H).
5. c Hash_pts(vk, H, Γ, k B, k

H).
6. s (k + c · x) mod q.
7. π (Γ, c, s).
8. Return π.

Compute(π = Γ || ...): Precondition. Γ E
a.

1. Return Hash(suite_s || DS3 || (cf
Γ) || DS0), where cf is the co-factor (for
curve25519, cf = 8).

Vfy(vk, X, Y, π):

1. If vk E or cf vk = O, return 0.b

2. Parse (Γ, c, s) π. If Γ E return 0.
Interpret the κ bits of c and the 2κ bits
of s as little-endian integers. If s ≥ q,
return 0.

3. H Encode_to_curve(E2Cs || X).
4. U s B − c vk.
5. V s H − c Γ .
6. c Hash_pts(vk, H, Γ, U, V).
7. If c = c return b := (Y = Compute(π));

otherwise return 0.
a Otherwise an implementation could re-
turn some ERR Y. For the analysis this
is not needed as the protocol ensures the
precondition and the adversary is free to
invoke the hash-function at will.

b This check excludes low-order elements,
i.e., P E, ord(P) < q.

Fig. 3. Description of ECVRF, where B denotes the generator of the subgroup G of E.
Note that the salt value E2Cs leaves room for more general use cases. We consider the
case E2Cs = vk in the analysis of the standard and its extensions.

4 The ECVRF Standard

This section recalls the elliptic-curve based schemes described in the IRTF
draft [15] and focuses on the cipher suites suite s ∈ {0x03, 0x04} for the sake
of concreteness.

Notation. We denote by E(Fp) the finite abelian group based on an elliptic curve
over a finite prime-order field Fp (note that we simplify the notation and drop
the explicit dependency on Fp and security parameter κ). Most importantly, we
assume the order of the group E to be of the form cf · q for some small cofactor
cf and large prime number q, and that the (hence) unique subgroup G of order
q is generated by a known base point B, i.e., G = 〈B〉 (q is represented by ≈ 2κ
bits) in which the computational Diffie-Hellman (CDH) problem is believed to
be hard. Group operations are written in additive notation, scalar multiplication
for points P ∈ E is denoted by m∗P = P + · · · + P

︸ ︷︷ ︸

m

, and the neutral element by

A Composable Security Treatment of ECVRF and Batch Verifications 29

O = 0 ∗P . We use a
$← S to denote that a is selected uniformly at random from

a set S. When working with binary arrays, a ∈ {0, 1}∗, we denote by a[X..Y] the
slice of a from position X till position Y − 1. Moreover, we denote by a[..X] and
a[X..] the slice from position 0 till X − 1 and from X till the end, respectively.
As usual, the operator || denotes concatenation of strings; thus, for A = 0 || 1
we have A[..1] = 0 and A[1..] = 1.

The standard makes use of helper functions, all of which are defined and
introduced in [15]. For sake of simplicity we only state the specification of the
security-relevant helper functions. The functions are briefly described in Fig. 2.
As domain separators we use values between 0 and 5 in hexadecimal represen-
tation. In particular, we use DSi ← 0x0i for i ∈ [0, 5]. The standard also uses
encode to curve salt to denote the salt used for the Encode to curve func-
tion, which we denote by E2Cs. Note that all EC-ciphersuites define the salt as
the prover’s public key which is the case we consider and analyze in this work. To
give a concrete example, the deployed VRF construction in Cardano is instan-
tiated with κ = 128 and elliptic curve edwards25519 which has cofactor 8. The
prime order q is represented by 32 octets, or more precisely 253 bits, and the
hash function is SHA512 : {0, 1}∗ → {0, 1}512. Conveniently, we choose �(κ) = 4κ.
The function Hash pts defines the associated challenge space, thus being the set
C := {0, 1}κ interpreted as integers. For the function Compute scalar(sk0), the
string is first pruned: the lowest three bits of the first octet are cleared, the high-
est bit of the last octet is cleared, and the second highest bit of the last octet is
set. This buffer is interpreted as a little-endian integer, forming the secret scalar
x, which results in an output domain containing 2251 different elements.

The VRF Algorithms. The formal definition of a VRF in Sect. 3 denotes
by Eval the function that computes the output of the VRF evaluation together
with its proof. In this section the two actions are treated separately to follow the
approach taken by the standard, and we define the functions Prove and Compute
to represent the proof generation and the output computation, respectively. The
algorithms from the standard are given in Fig. 3.

5 ECVRFbc: Batch Verification for ECVRF

In the interest of performance, we now study the possibility of batch-verifying the
proofs generated by ECVRF. To this end, we introduce slight modifications that
allow for an efficient batch-verification algorithm. Next, we prove that batch-
verification does not affect the security properties of individual proofs.

We divide the exposition of the changes in two steps. First, in Sect. 5.1 we
present the changes on the protocol (involving the prover and the verifier) to
make the scheme batch-compatible. Second, in Sect. 5.2 we describe the specific
computation performed by the verifier to batch several proof verifications.

Intuition. The operations performed in steps 4 and 5 of Vfy appear as good can-
didates for batching across several proofs. Namely, instead of sequential scalar
multiplications, one could perform a single multiscalar multiplication for all

30 C. Badertscher et al.

proofs that are being verified. However, this trick can only be exploited if steps 4
and 5 are equality checks rather than computations. In ECVRF, the verifier has
no knowledge of points U and V , and has to compute them first. We hence mod-
ify the scheme so that the prover includes points U and V in the transcript and
the verifier can simply check for equality.

5.1 Making the Scheme Batch-Compatible

As discussed, in order to allow batch verification, steps 4 and 5 need to be equal-
ity checks. This requires a change in step 7 of Prove and changes in steps 2, 4, 5,
and 7 of Vfy. Moreover, the challenge computation needs to be moved from step 6
to the position in between steps 3 and 4 (we call it step 3.5). The modifications
result in scheme ECVRFbc, summarized in Fig. 4.

Intuitively, this change has no implications on the security of the scheme, as it
is common for (Fiat-Shamir-transformed) Σ-protocols to send the commitment
of the randomness (sometimes called the announcement) instead of the chal-
lenge.1 The choice of sending the challenge instead of the two announcements in
ECVRF is simply to optimize communication complexity and efficiency.

5.2 Batch-Verification

To see how the changes described above allow for batch verification, first observe
how steps 4 and 5 in ECVRFbc can be combined into a single check: if they
validate, then so does the equation

O = r ∗ (s ∗ B − c ∗ vk − U) + l ∗ (s ∗ H − c ∗ Γ − V)

where r, l are scalars chosen by the verifier. The reverse is also true with over-
whelming probability if r and l are taken uniformly at random from a set of
sufficient size (in particular, we choose the set C for convenience).

More generally, to verify n different ECVRFbc proofs, the verifier needs to
check whether the equality relations Ui = si ∗B−ci ∗vki and Vi = si ∗Hi −ci ∗Γi

hold for each of the proofs. This can be merged into a single equality check

O = ri ∗ (si ∗ B − ci ∗ vki − Ui) + li ∗ (si ∗ Hi − ci ∗ Γi − Vi)

for each i ∈ [1, n] and, moreover, into a single verification

O =
∑

i∈[1,n]

(ri ∗ (si ∗ B − ci ∗ vki − Ui) + li ∗ (si ∗ Hi − ci ∗ Γi − Vi))

across all proofs, where ri and li are random scalars. The full protocol to imple-
ment batch verification based on the above idea appears in Sect. 6.2. By using
the state of the art multi-scalar multiplication algorithms, leveraging this trick
provides significant running time improvements, as discussed in Sect. 7.
1 As a matter of fact, ed25519 [7] is also a sigma protocol and encodes the announce-

ment instead of the challenge in the non-interactive variant of this sigma-protocol.

A Composable Security Treatment of ECVRF and Batch Verifications 31

Prove(sk, X) remains unchanged except for step 7, which changes as follows:
7. Let π (Γ, (k B), (k H), s).

Compute(π) remains unchanged.

Vfy(vk, X, Y, π) changes as follows:

1. Remains unchanged.
2. Parse π as tuple (Γ, U, V, s).

If {Γ, U, V } E, return 0. In-
terpret the 2κ bits of s as a
little-endian integer. If s ≥ q,
return 0.

3. Remains unchanged.
3.5. c Hash_pts(vk, H, Γ, U, V).
4. If U s B − c vk, return 0.
5. If V s H − c Γ , return 0.
6. [Moved to step 3.5]
7. Return b := (Y = Compute(π)).

Fig. 4. Description of modifications in ECVRFbc compared to ECVRF.

Invalid Batches. Note that if batch verification fails, one would need to break
down the batch to determine which proof is invalid. However, in several practical
cases (most notably, when validating the state of a blockchain), the verifier is
primarily interested in whether the whole batch is valid (so that the respective
part of the chain can be adopted); if the batch verification fails this has protocol-
level consequences (e.g., disconnecting from the peer providing the invalid batch)
that obviate the need for individual identification of the failed verification.

Pseudorandom Coefficients. We describe how the coefficients li, ri can be
securely computed in a deterministic manner, a feature that is favorable from
a practical perspective. Similarly to the well-known Fiat-Shamir heuristic for
Σ-protocols, it is essential that the values cannot be known to the prover when
defining the proof string. To this end, we propose to compute the scalars by
hashing the contents of the proof itself, the value of H for the corresponding
public key, and an index.

Concretely, for a batch proof of proofs π1, . . . , πn, one computes, for i ∈ [1, n]:

1. π′
i ← Hi ||πi,

2. ST ← π′
1 ||π′

2 || . . . ||π′
n,

3. hi ← Hash(suite s || DS4 ||ST || i || DS0),
4. li ← hi[..κ], and ri ← hi[κ..2 · κ].

The values li and ri are treated as little-endian integers and are thus picked
from the domain C as the challenge defined earlier. As before, the security anal-
ysis can treat the invocation as an evaluation of a random oracle obtained using
domain separation on Hash (where we follow the usual format).

6 Security Analysis of ECVRFbc and Batch Verifications

We first analyze the security of the standard without batch verifications in the
next section and prove the security including batch verifications afterwards. We
refer to the appendix of this work for background on zero-knowledge proofs and
homomorphisms which turn out to be a conceptually elegant tool to argue about
the security of the scheme.

32 C. Badertscher et al.

6.1 Security Analysis of ECVRFbc

Recall from Sect. 3 how any VRF can be understood as a UC protocol. We now
establish the security of the ECVRFbc protocol without the batching step, but
with the (minor) modifications introduced in Sect. 5.1. We work in the random-
oracle model; that is, we introduce the two general functions H (abstracting the
details of Hash) and He2c (abstracting the details of Encode to curve) which are
in the model represented by two instances of the random oracle functionality,
which are FY

RO, for Y = {0, 1}�VRF , and FG

RO, respectively, so that invocations of H
and He2c correspond to invocations of the respective functionalities as explained
in Sect. 3. For simplicity and clarity in the UC protocols, we continue to write
H(x) (resp. He2c(x)) with the understanding that it stands for a call to an ideal
object. Note that the remaining helper functions obtain their claimed security
properties based on the assumption on H as is established in the proof.

Theorem 1. Let E and its prime-order subgroup G be defined as in Sect. 4. The
protocol πECVRF UC-realizes FX ,�VRF

VRF , for X = {0, 1}∗ and �VRF(κ) = 4κ, in the
random-oracle model and under the assumption that the CDH problem is hard
in G.

Proof Overview. We refer to the full version of this work [2] for the full proof,
which is rather involved, and provide here an overview. We must give a simulator
such that the real VRF construction (where the above algorithms are executed)
is indistinguishable from the ideal world consisting of the ideal VRF functionality
plus the simulator (which has to produce an indistinguishable real-world view
to the environment). The simulator of this construction can be thought of as
performing the following four crucial tasks: it (1) simulates the honest parties’
credentials, (2) simulates honest parties’ VRF evaluations and proofs (without
knowledge of the VRF output), (3) verifies VRF outputs, and (4) ensures that
the answers to random-oracle queries are consistent with the outputs of the VRF
functionality on the relevant random-oracle evaluations. Observing the definition
of the VRF functionality, we see that it enforces several properties that make
the simulation task challenging. In particular, unless a key is registered with
the functionality, no VRF evaluation is possible. Furthermore, the simulator can
only freshly evaluate the VRF on its registered keys or corrupted keys. Finally,
the functionality performs an ideal verification in that it stores the mapping
(v,m)
→ y and answers verification requests specifying (v,m, y′) with 1 only
if y = y′. The difficulty is to argue that the simulator will always be “one step
ahead” of the distinguishing environment. That is, if the random oracle produces
an output that can correspond to a correct VRF output, then the simulator not
only has to detect to which public key this output should be linked, but also
that such a public key has in fact already been registered. Furthermore, if the
simulator decides that no such public key can currently be associated to an
output, this decision cannot be revised and corrected later (even if new public
keys are generated). While performing a consistent simulation is tricky, ensuring
the other properties requires a careful argumentation and we describe here a

A Composable Security Treatment of ECVRF and Batch Verifications 33

selection of considerations that provide some intuition for the proof and why
simulation is possible. On a high level, to correctly simulate verifications, the
combination (v,m, y, π) must be mapped to the instance of the NIZK for the
relation Rcf

B,H (see Appendix A for the notation and definition), which is possible
if the association of the (v,m) to the base point H is unique which can be based
on the guarantees of the random oracle. Given the soundness of the NIZK the
corresponding VRF output is derived based on the point φcf(Γ) := cf∗Γ = x∗H,
where x is the exponent fulfilling the equation φcf(v) = x ∗ B.

Finally, to determine whether the correct value y is specified, the simulator
must be consistent with the functionality’s output for (v,m). On an intuitive
level, this requires the correct association between the protocol values Γ and
H with the public key v and message m. First, we note that the probability of
guessing a correct output without first computing the base point H can be shown
to be negligible. If it has in fact been queried, then thanks to clever programming
of the RO, the simulator can detect the relation. For a correct simulation, this
assignment must be unique and one-to-one which can be established based on
information-theoretic arguments and by the soundness of the NIZK. While the
above reasoning is true if the simulator can actually obtain the value y from the
functionality, for an honest party with public key v that has never evaluated
the VRF on message m this is by definition not possible and we have to prove
that only with negligible probability it is possible to find the correct point Γ for
such an honest party. This follows by the hardness of the computational Diffie-
Hellman problem in the group G. We conclude by noting that an additional
complication is to obtain a simulator which is responsive, i.e., which computes
replies to queries without additional interaction with the ideal functionality.
This aspect is mainly useful for protocol designers that rely on a responsive
environment [3,8,12].

6.2 Security Analysis of ECVRFbc with Batch Verifications

We first describe the setting and the ideal world that idealizes the security
requirements for batch verifications.

The Setting. We want to capture a general setting where the protocol is asked
to verify a bunch of claimed VRF proofs originating from any source outside the
system, including maliciously generated ones by the adversary. We model this
setting using a global bulletin-board functionality GBB and describe it in Fig. 5.
This abstraction fits not only the public blockchain setting (which can be seen as
a bulletin board), but any application that makes use of batch verifications where
new proofs appear in the system over time, potentially visible and updatable by
anyone including an adversary. Each instance of this functionality maintains a
list of values. The list is append-only, but there is no other restriction on what is
appended and thus the only guarantee it offers is that if we refer to an interval
[i . . . j] in the list associated to session sid then, once defined, the returned list
of values is always the same. The functionality is a global setup [1] for full
generality of the statement. In particular, once proven for this setting, simpler

34 C. Badertscher et al.

Functionality GBB

The function maintains a (dynamically updatable) list Ls (initially empty). The
functionality manages the set P of registered machines (identified by extended
identities), i.e., a machine is added to P when receiving input register (and re-
moves a machine from P when receiving de-register. The requests give activation
back to the calling machine).

– Upon receiving (add, sid, x) from P P or from the adversary, set L L || x
output (Updated, sid, L) to the adversary.

– Upon receiving (retrieve, sid, i, j) from P P or from the adversary, do the
following: if L[j] is undefined, return (i, j,) to the caller. Otherwise, return
the result (Retrieved, sid, i, j, L[i] || . . . || L[j]) to the caller.

Fig. 5. The global bulletin board.

settings (such as defining a protocol interface taking a batch of proofs directly
from a caller) follow in a straightforward manner.

The Ideal World. In the ideal world, we introduce a new simple command to
the VRF functionality described in Fig. 6. Upon input (BatchVerify, sid, i, j),
the functionality retrieves the corresponding list from GBB and if the list is
non-empty, it verifies whether all claimed combinations are known are stored as
valid combinations. In this case the functionality returns 1. If this is not the case,
but all pairs (vi,mi, yi) specify the correct input-output-pairs as stored by the
functionality, i.e., T (vi,mi) = yi, then the functionality lets the adversary decide
on the output value. This case captures the fact that although the proofs strings
might not be stored in the functionality (or will never be), batch verification
will never assert a wrong input-output mapping. In any other case, the output
is defined to be 0.

The UC Protocol. Recall from Sect. 3 that any VRF can be formulated as a UC
protocol. We now show how to formulate batch verification as an extended proto-
col π+

ECVRF that is identical to πECVRF but additionally implements the following
procedure outlined in Sect. 5.2. To simplify notation, we continue to write H and
He2c for general hash-function invocations and understand that this corresponds
to evaluating the random oracles FY

RO and FG

RO, respectively.

– On input (BatchVerify, sid, i, j), send (retrieve, sid, i, j) to GBB and
receive the answer (Retrieved, sid, i, j, Li:j). If Li:j = ∅ then return
(BatchVerified, sid, i, j, 0). Otherwise, do the following:
1. Parse every item in the list as tuple, i.e., for each k ∈ [|Li:j |]

obtain Tk = (mk, yk, πk, vk). If the tuple has wrong format, return
(BatchVerified, sid, i, j, 0).

2. For each Tk perform first the steps 1. to 3. and then step 3.5 of ECVRF.Vfy,
that is:

A Composable Security Treatment of ECVRF and Batch Verifications 35

Ideal Functionality FX , VRF

VRF+

Same parameters and initialization as in Figure 1. Additionally, the functionality
registers to the instance of GBB with the same session identifier sid.

– Key generation, malicious key generation, VRF evaluation and proof, malicious
VRF evaluation, verification, and adversarial leakage are as in Figure 1.

– Batch Verification. Upon receiving a message (BatchVerify, sid, i, j)
from any party, send (retrieve, sid, i, j) to GBB to receive the list
(i, j, Li:j). Then output (BatchVerify, sid, i, j) to the adversary. Upon receiving
(BatchVerified, sid, i, j, b) do the following:
1. If Li:j = then return (BatchVerified, sid, i, j, 0) to the caller.
2. Parse each entry of Li:j as tuple (mk, yk, πk, vk) for k = 1 . . . |Li:j |.
3. Evaluate the condition f k [|Li:j |] : (·, vk) Spk T (vk, mk) =

(yk, S) πk S. If f = 1, return (BatchVerified, sid, i, j, 1) to the caller.
4. Evaluate the condition f k [|Li:j |] : (·, vk) Spk T (vk, mk) =

(yk, ·). If f = 1 return (BatchVerified, sid, i, j, b).
5. Return (BatchVerified, sid, i, j, 0).

Fig. 6. The VRF functionality with Batch Verifications.

• Verify that vk ∈ E and then that cf ∗ vk �= O.
• Parse and verify πk as tuple (Γk, Uk, Vk, sk) ∈ E

3 × Zq.
• Compute Hk ← He2c(vk,mk).
• Compute ck ← H(suite s || DS2 ||Hk ||Γk ||Uk ||Vk || DS0)[..κ].

3. If any check fails then return (BatchVerified, sid, i, j, 0).
4. Perform the batch verification:

• Set π′
k ← Hk ||πk for all k ∈ [|Li:j |].

• Let ST ← π′
1 || . . . ||π′

|Li:j |.
• ∀k ∈ [|Li:j |] : hk ← H(suite s || DS4 ||ST || k || DS0).
• ∀k ∈ [|Li:j |] : lk ← hk[..κ].
• ∀k ∈ [|Li:j |] : rk ← hk[κ..2 · κ].
• Evaluate

b1 ←
(

O =
∑

k∈[|Li:j |]

(

rk ∗ (sk ∗ B − ck ∗ vk − Uk)+

lk ∗ (sk ∗ Hk − ck ∗ Γk − Vk)
)
)

. (1)

5. Evaluate b2 ← (∀k ∈ [|Li:j |] : yk = Compute(πk)).
6. Define b ← b1 ∧ b2 and return (BatchVerified, sid, i, j, b) to the caller.

Theorem 2. Under the same assumptions as Theorem 1, the protocol π+
ECVRF

UC-realizes FX ,�VRF
VRF+ (where GBB is a global setup), for X = {0, 1}∗ and �VRF(κ) =

4κ.

36 C. Badertscher et al.

Proof (Sketch). The proof needs to verify two things: first, similar to the reason-
ing in the Fiat-Shamir transform outlined in Appendix A, it must be the case that
invocations of H(. . . ||ST || k || . . .) are in one-to-one correspondence with imagi-
nary protocol runs, where a prover first presents ST and an honest verifier picks the
coefficients ri and li uniformly at random. Second, we have to argue that no invalid
statement can verify as part of the batch. Let Tk̃ be such an invalid tuple. Based
on considerations discussed in Appendix A, a tuple Tk̃ fixes the entire instance of
a particular proof, i.e., B,Hk̃, vk̃, Γk̃, and encodes a particular run of the associ-
ated Σ-protocol where the challenge is computed correctly based on the random
oracle using the Fiat-Shamir transform (otherwise, the entire sequence of tuples
is rejected). We see that the employed Σ-protocol is sound w.r.t. relation Rcf

B,Hk

even for the relaxed verification sk̃ ∗ B − ck̃ ∗ vk̃ − Uk̃ ∈ ker(φcf) ∧ sk̃ ∗ Hk̃ −
ck̃ ∗ Γk̃ − Vk̃ ∈ ker(φcf). Thus, the probability that the instance and proof run
encoded in Tk̃ satisfies this check but (vk̃, Γk̃) �∈ Rcf

B,Hk
is at most 1/|C|. Finally, if

sk̃ ∗ B − ck̃ ∗ vk̃ − Uk̃ ∈ P + ker(φcf) for some P ∈ G (cf. Appendix A for a brief
overview of the concepts here), it is straightforward to see that Eq. (1) holds only
with probability at most 1/|C| as we basically compute a random rk̃-multiple of P
(the other case for coefficient lk̃ is symmetric). The theorem follows by taking the
union bound over all batch verifications instructed by the environment. ��
On-the-Fly Range Extension. We conclude this section by showcasing a simple
range extension of the VRF which, in certain implementations, can significantly
reduce the number of VRF evaluations at the cost of a hash function evaluation.
All we have to do is to modify the algorithm Compute in π+

ECVRF which changes
the format of the tuples T = (m, y, π, v) only in one place, i.e., y ∈ {0, 1}c·�VRF ,
where c is the fixed constant in the range-extension construction. We denote the
new protocol with the new output computation Compute′ below by π̃+

ECVRF:

– Compute′(π), where string π = Γ || ... with Γ ∈ E:
1. Compute Y ← H(suite s || DS3 || (cf ∗ Γ) || DS0).
2. Output

(H(suite s || DS5 || 1 ||Y || DS0), . . . ,H(suite s || DS5 || c ||Y || DS0)).
Corollary 1. Under the same assumptions as Theorem 2, protocol π̃+

ECVRF UC-
realizes FX ,c·�VRF

VRF+ , for X = {0, 1}∗ and �VRF(κ) = 4κ.

Proof (Sketch). The proof follows along the lines of the previous proofs. The
only additional concern is the possibility of collisions among the values obtained
for Y in the above construction, because we require that each fresh invocation
of the output tuple computed in the second step corresponds to new evaluation
points of the random oracle H. This bad event can be bounded by the standard
collision probability of bitstrings drawn uniformly at random from {0, 1}�VRF . ��

7 Performance Evaluation

In this section we evaluate the performance of the ECVRF-EDWARDS25519-
SHA512-TAI ciphersuite as defined in the standard [15] against the batch-
compatible variant proposed in this paper. Essentially, these are ECVRF and

A Composable Security Treatment of ECVRF and Batch Verifications 37

N BC

165

170

T
im

e
in

μ
s

Fig. 7. ECVRF proof generation of the
Batch Compatible (BC) version, and
the Normal (N) one.

20 22 24 26 28 210
50

75

100

125

Batch Size

T
im

e
in

μ
s

N
Det-BC
Ran-BC

Fig. 8. ECVRF verification, compar-
ing normal version (N), deterministic
batch verification (Det-BC) and non-
deterministic batch verification (Ran-
BC).

ECVRFbc, respectively, over the curve edwards25519 with SHA512 as a hashing
algorithm. We implement a Rust prototype of version 10 of the draft which we
provide open source [22]. We use the curve25519-dalek [17] rust implementation
for the curve arithmetic operations, which implements multiscalar multiplication
with Strauss’ [5] and Pippenger’s [6] algorithms, and optimize the choice depend-
ing on the size of the batch. We ran all experiments in MacOS on a commodity
laptop using a single core of an Intel i7 processor running at 2,7 GHz. For the batch-
compatible version we implement both a deterministic verification (using the hash-
ing techniques as described in Sect. 5) as well as a random verification where the
scalars ri, li are sampled uniformly at random fromZ2128 . We benchmark the prov-
ing and verification times for each, using batches of size 2l for l ∈ {1, . . . , 10}. In the
standard version, the size of a VRF proof consists of a (32-byte) elliptic curve point,
a 16-byte scalar, and a 32-byte scalar. In the batch compatible version, rather than
sending the challenge we send the two announcements, which results in three ellip-
tic curve points and a 32-byte scalar. Therefore the modifications increase proof
size from 80 to 128 bytes.

This results in a considerable improvement in verification time. Figure 7
shows that proving time is unaffected, and there is no difference between the
normal ECVRF and ECVRFbc (as expected). In Fig. 8 we show the verification
time per proof for different sized batches. We interpret the times of batch ver-
ification as a ratio with respect to ECVRF. Using deterministic batching, the
verification time per proof is reduced to 0.71 with batches of 64 and to 0.56 with
batches of 1024 signatures. With random coefficients, batching times get a bit
better given that we no longer need to compute hashes for scalars li and ri. The
verification time per proof can be reduced to 0.6 with batches of 64 signatures,
and up to 0.47 with batches of 1024.

38 C. Badertscher et al.

A Brief Overview of Concepts Used in the Security
Argument

We provide here a sketch of fundamental concepts used in the security argument.
The extended version contains a detailed exposition [2].

On Σ-Protocols for Group Homomorphisms. We recall here a general class
of zero-knowledge proofs of knowledge, namely the three-round protocols that
prove the knowledge of a preimage of a (presumably one-way) group homomor-
phism [18]. Consider two groups (H, ◦) and (T, �) together with a homomorphism
f : H → T, i.e., f(x ◦ y) = f(x) � f(y).

Let Rf be the relation defined by (z, x) ∈ Rf :↔ f(x) = z. Consider the
following three-round protocol between prover P and verifier V for the language
LRf

:= {z | ∃x : (z, x) ∈ Rf}. That is, the common input is the proof instance
z ∈ T (and the relation Rf), where the prover is supposed to know a value x ∈ H

s.t. f(x) = z.

1. P → V : P samples k
$← H and sends t := f(k) to V .

2. V → P : V picks at random an integer c ∈ C ⊂ N and sends it to P .
3. P → V : P computes s := k ◦xc and sends s to V . V accepts the protocol run

if and only if the equality f(s) = t � zc holds.

The security of this protocol follows from the following lemma:

Lemma 1. ([18]). Let Rf a relation as described above relative to a group
homomorphism f : H → T. The above protocol is a Σ-Protocol for the language
LRf

if there are two publicly known values � ∈ Z and u ∈ H s.t.

1. ∀c, c′ ∈ C, c �= c′: gcd(c − c′, �) = 1, and
2. ∀z ∈ LRf

, f(u) = z�.

The Fiat-Shamir Transform turns (in the random-oracle model) any Σ-
Protocol into a secure non-interactive zero-knowledge protocol of knowledge.
Intuitively, the assumed random oracle is like an honest verifier computing a
challenge and thus preserves the above security properties. We refer to [2] for
details.

Instantiation for ECVRFbc. We recall that in ECVRFbc we deal with a prime-
order subgroup G of order q of an elliptic curve of order cf · q. Let B1 and B2

be two generators of this subgroup. Essentially, the Σ-protocol of interest is
an equality proof of discrete logarithm, i.e., given two values z1 and z2 prove
knowledge of x such that x∗B1 = z1∧x∗B2 = z2. To instantiate the above generic
scheme, we let H := (Zq,+) and define (T,⊕) := (G,+) × (G,+) as the direct
product of G, where the binary operation ⊕ on T is defined component-wise.
The homomorphism is given by fB1,B2 : Zq → T; x
→ (x ∗ B1, x ∗ B2). Since
G is of prime order q, we can satisfy the conditions of Lemma 1 by letting u = 0
and � = q, and defining the challenge space to be a large subset C ⊆ [0, . . . , q−1].

A Composable Security Treatment of ECVRF and Batch Verifications 39

We therefore conclude that the embedded non-interactive zero-knowledge
proof of knowledge in ECVRFbc has (in the random-oracle model) simulatable
executions, and with only negligible probability can a valid proof for a wrong
statement be generated.

On Domain Checks and the Canonical Epimorphism. Special care has
to be taken in the analysis as ECVRFbc omits detailed domain checks which in
general can impact security in that Lemma 1 cannot be applied directly (we
have G a subgroup of E and the protocol could be run on values zi ∈ E \ G by
a dishonest party as the verifier does not perform a domain check for zi ∈ G

but only for E). We leave the general treatment of this to the full version of
this work, and describe here a special case based on the canonical epimorphism:
For ECVRFbc, we can consider the map P
→ cf ∗ P which is the canonical epi-
morphism φcf : E → G and the corresponding map P + ker(φcf)
→ φcf(P)
which identifies the isomorphism establishing E/ ker(φcf) ∼= G by the funda-
mental theorem on homomorphisms. From this we can deduce by Lagrange’s
Theorem that |E| = |G| · | ker(φcf)|. Since the choice of the representatives is
immaterial one can think of each coset P + ker(φcf) to be represented by a
point P ∈ G (and the kernel consists of the low-order points, i.e., elements of
order strictly less than q). Denoting the first round message of the prover by
(U, V), the projected verification equation in step 3 of the Σ-Protocol becomes
(O,O) = (φcf(s ∗ B − U − c ∗ z1), φcf(s ∗ H − V − c ∗ z2)) which is an equation
in the prime-order group G (recall that B and H are generators of G). Stated
differently, the above equality is satisfied when (s∗B −V −c∗z1) ∈ ker(φcf) and
(s ∗ H − V − c ∗ z2) ∈ ker(φcf). As we show in the full version [2], the guarantees
of Lemma 1 apply to this projected run of the protocol, in particular, we obtain
the soundness guarantee for the relation

(z1, z2) ∈ Rcf
B,H :↔ x ∗ B = φcf(z1) ∧ x ∗ H = φcf(z2) (2)

guaranteed by the above Σ-protocol (where technically speaking, we could relax
the checks performed by the verifier to (s ∗ B − V − c ∗ z1) ∈ ker(φcf) and
(s∗H−V −c∗z2) ∈ ker(φcf) instead of stricter equality checks (s∗B−V −c∗z1) =
O and (s ∗ H − V − c ∗ z2) = O).

References

1. Badertscher, C., Canetti, R., Hesse, J., Tackmann, B., Zikas, V.: Universal com-
position with global subroutines: capturing global setup within plain UC. In: Pass,
R., Pietrzak, K. (eds.) TCC 2020. LNCS, vol. 12552, pp. 1–30. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-64381-2 1

2. Badertscher, C., Gaži, P., Querejeta-Azurmendi, I., Russell, A.: On UC-secure
range extension and batch verification for ecvrf. Cryptology ePrint Archive, Report
2022/1045 (2022). https://eprint.iacr.org/2022/1045

https://doi.org/10.1007/978-3-030-64381-2_1
https://eprint.iacr.org/2022/1045

40 C. Badertscher et al.

3. Badertscher, C., Gazi, P., Kiayias, A., Russell, A., Zikas, V.: Ouroboros genesis:
Composable proof-of-stake blockchains with dynamic availability. In: Lie, D., Man-
nan, M., Backes, M., Wang, X. (eds.) ACM CCS 2018: 25th Conference on Com-
puter and Communications Security, pp. 913–930, Toronto, ON, Canada, October
15–19, 2018. ACM Press

4. Bellare, M., Garay, J.A., Rabin, T.: Fast batch verification for modular exponenti-
ation and digital signatures. Cryptology ePrint Archive, Report 1998/007 (1998).
http://eprint.iacr.org/1998/007

5. Bellman, R., Straus, E.G.: 5125. The American Mathematical Monthly, 71(7), 806–
808 (1964)

6. Bernstein, D.J., Doumen, J., Lange, T., Oosterwijk, J.-J.: Faster batch forgery
identification. In: Galbraith, S., Nandi, M. (eds.) INDOCRYPT 2012. LNCS, vol.
7668, pp. 454–473. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-34931-7 26

7. Bernstein, D.J., Duif, N., Lange, T., Schwabe, P., Yang, B.-Y.: High-speed high-
security signatures. J. Cryptogr. Eng. 2(2), 77–89 (2012)

8. Camenisch, J., Enderlein, R.R., Krenn, S., Küsters, R., Rausch, D.: Universal
composition with responsive environments. In: Cheon, J.H., Takagi, T. (eds.)
ASIACRYPT 2016. LNCS, vol. 10032, pp. 807–840. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53890-6 27

9. Camenisch, J., Hohenberger, S., Østergaard Pedersen, M.: Batch verification of
short signatures. J. Cryptol. 25(4), 723–747 (2012)

10. Canetti, R.: Universally composable security. J. ACM 67(5) (2020)
11. Cramer, R., Damg̊ard, I., Schoenmakers, B.: Proofs of partial knowledge and sim-

plified design of witness hiding protocols. In: Desmedt, Y.G. (ed.) CRYPTO 1994.
LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (1994). https://doi.org/10.1007/
3-540-48658-5 19

12. David, B., Gaži, P., Kiayias, A., Russell, A.: Ouroboros praos: an adaptively-secure,
semi-synchronous proof-of-stake blockchain. In: Nielsen, J.B., Rijmen, V. (eds.)
EUROCRYPT 2018. LNCS, vol. 10821, pp. 66–98. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-78375-8 3

13. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp.
186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7 12

14. Gilad, Y., Hemo, R., Micali, S., Vlachos, G., Zeldovich, N.: Algorand: Scaling
byzantine agreements for cryptocurrencies. Cryptology ePrint Archive, Report
2017/454 (2017). http://eprint.iacr.org/2017/454

15. Goldberg, S., Reyzin, L., Papadopoulos, D., Vcelak, J.: Verifiable random functions
(vrfs). Internet-Draft, IRTF (2022). https://datatracker.ietf.org/doc/html/draft-
irtf-cfrg-vrf-14

16. Jarecki, S., Kiayias, A., Krawczyk, H.: Round-optimal password-protected secret
sharing and T-PAKE in the password-only model. Cryptology ePrint Archive,
Report 2014/650 (2014). http://eprint.iacr.org/2014/650

17. Lovecruft, I., de Valence, H.: curve25519-dalek (2022). https://github.com/dalek-
cryptography/curve25519-dalek

18. Maurer, U.: Zero-knowledge proofs of knowledge for group homomorphisms. Des.
Codes Cryptography 77(2-3), 663–676 (2015)

19. Micali, S., Rabin, M.O., Vadhan, S.P.: Verifiable random functions. In: 40th Annual
Symposium on Foundations of Computer Science, pages 120–130, New York, NY,
USA, 17–19 October, 1999. IEEE Computer Society Press (1999)

http://eprint.iacr.org/1998/007
https://doi.org/10.1007/978-3-642-34931-7_26
https://doi.org/10.1007/978-3-642-34931-7_26
https://doi.org/10.1007/978-3-662-53890-6_27
https://doi.org/10.1007/3-540-48658-5_19
https://doi.org/10.1007/3-540-48658-5_19
https://doi.org/10.1007/978-3-319-78375-8_3
https://doi.org/10.1007/978-3-319-78375-8_3
https://doi.org/10.1007/3-540-47721-7_12
http://eprint.iacr.org/2017/454
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-vrf-14
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-vrf-14
http://eprint.iacr.org/2014/650
https://github.com/dalek-cryptography/curve25519-dalek
https://github.com/dalek-cryptography/curve25519-dalek

A Composable Security Treatment of ECVRF and Batch Verifications 41

20. Naccache, D., M’Rahi, D., Vaudenay, S., Raphaeli, D.: Can D.S.A. be improved?
— Complexity trade-offs with the digital signature standard —. In: De Santis, A.
(ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 77–85. Springer, Heidelberg (1995).
https://doi.org/10.1007/BFb0053426

21. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system, December 2008.
https://bitcoin.org/bitcoin.pdf

22. Querejeta-Azurmendi, I.: Verifiable random function (2022). https://github.com/
input-output-hk/vrf

23. Reyzin, L.: Vrf standardisation mailing archive (2021). https://mailarchive.ietf.
org/arch/msg/cfrg/KJwe92nLEkmJGpBe-OST ilr〈 MQ

24. Schnorr, C.P.: Efficient signature generation by smart cards. J. Cryptol. 4(3), 161–
174 (1991). https://doi.org/10.1007/BF00196725

25. Wuille, P., Nick, J., Ruffing, T.: Schnorr signatures for secp256k1, January 2020.
https://github.com/bitcoin/bips/blob/master/bip-0340.mediawiki

https://doi.org/10.1007/BFb0053426
https://bitcoin.org/bitcoin.pdf
https://github.com/input-output-hk/vrf
https://github.com/input-output-hk/vrf
https://mailarchive.ietf.org/arch/msg/cfrg/KJwe92nLEkmJGpBe-OST_ilr<_MQ
https://mailarchive.ietf.org/arch/msg/cfrg/KJwe92nLEkmJGpBe-OST_ilr<_MQ
https://doi.org/10.1007/BF00196725
https://github.com/bitcoin/bips/blob/master/bip-0340.mediawiki

	A Composable Security Treatment of ECVRF and Batch Verifications
	1 Introduction
	2 Preliminaries
	3 UC Security of Verifiable Random Functions
	4 The ECVRF Standard
	5 ECVRFbc: Batch Verification for ECVRF
	5.1 Making the Scheme Batch-Compatible
	5.2 Batch-Verification

	6 Security Analysis of ECVRFbc and Batch Verifications
	6.1 Security Analysis of ECVRFbc
	6.2 Security Analysis of ECVRFbc with Batch Verifications

	7 Performance Evaluation
	A Brief Overview of Concepts Used in the Security Argument
	References

