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Abstract. Protocols for secure multi-party computation are commonly
composed of different sub-protocols, combining techniques such as homo-
morphic encryption, secret or Boolean sharing, and garbled circuits. In
this paper, we design a new class of multi-party computation protocols
which themselves are composed out of two-party protocols. We integrate
both types of compositions, compositions of fully homomorphic encryp-
tion and garbled circuits with compositions of multi-party protocols
from two-party protocols. As a result, we can construct communication-
efficient protocols for special problems. Furthermore, we show how to
efficiently ensure the security of composed protocols against malicious
adversaries by proving in zero-knowledge that conversions between indi-
vidual techniques are correct. To demonstrate the usefulness of this app-
roach, we give an example scheme for private set analytics, i.e., private set
disjointness. This scheme enjoys lower communication complexity than
a solution based on generic multi-party computation and lower compu-
tation cost than fully homomorphic encryption. So, our design is more
suitable for deployments in wide-area networks, such as the Internet,
with many participants or problems with circuits of moderate or high
multiplicative depth.

1 Introduction

Whereas secure two-party computations are deployed in practice [68], designing
and deploying practical secure multi-party computation is still an open challenge.
Communication latency is a typical bottleneck for many multi-round protocols,
and in response constant-round multi-party computations [34,45,46] based on
Beaver et al.’s [5]’s technique [5] have been designed. Their deployment is lacking
due to challenges from implementation complexity, communication bandwidth,
and memory requirements. To address these challenges, protocols using fully-
homomorphic encryption (FHE) [12,26] and dual execution can be used. Yet,
designing efficient homomorphic encryption schemes (for arithmetic circuits) is
also an open challenge. Circuits with high multiplicative depth, the reason for a
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high number of rounds in many multi-party computation protocols, imply high
computation costs.

In this paper, we present a design alternative. We specifically consider multi-
party computations that can at least partially be decomposed into a sequence of
two-party computations (2PCs). We first evaluate 2PCs using garbled circuits
and then combine the output and continue computation using FHE evaluation.
The idea of our mixed-technique protocols is to exploit advantages of each tech-
nique, for example, binary vs. arithmetic circuits, typical in application domains
such as machine learning [14,22,31,50]. For fully malicious security, we show how
to convert between outputs of garbled circuits and FHE ciphertexts using effi-
cient zero-knowledge proofs. Compared to conversions in the semi-honest model
[41], this requires a different construction, which has, however, little additional
overhead. Other related work [40] sketches malicious conversions, but only for
two parties, whereas we consider the multi-party setting. The first phase of
2PC reduces multiplicative depth for the following FHE evaluation phase, but
remains small enough to have low communication complexity. As we show by
construction, such a combined protocol can keep a constant number of rounds
and can still be secure in the malicious model. Due to their lower communication
requirements, combined protocols have the potential for deployment in wide area
networks.

The composition of 2PC protocols into a multi-party protocol can take many
forms. In order to demonstrate the advantages of our constructions, we design
and investigate a combined protocol for private set disjointness, i.e., a protocol
that computes whether the intersection of sets is empty, but does not reveal any-
thing else, including the intersection itself. This protocol follows a star topology
of communication where each party Pi engages in 2PC with a central party P1.
Our composition of 2PC protocols into a multi-party protocol is particularly
efficient if it follows a star topology. We stress that even in the star topology,
we provide malicious security against an adversary controlling the central node
(among others) which is the challenge of any such composition. Furthermore,
besides the set disjointness protocol there are (infinitely) many other protocols
that can be implemented in a star topology. The entire class of multi-party pri-
vate set analytics protocols [4,13,21,47,52] is an example. However, our protocols
are also not limited to a star topology, and we also mention other use cases, such
as auctions [9], that do not follow a star topology.

Our example use case is driven by the use case of sharing Indicators of Com-
promise (IoCs), where multiple parties try to determine whether they have been
subject to a common attack. We design a maliciously-secure protocol which
determines whether the multi-party set intersection is empty. A non-empty inter-
section would be grounds for further investigation. With each party’s set holding
n elements, our set disjointness protocol runs in 9 rounds, needs O(n) broadcasts,
and has a message complexity linear in the number of comparisons required to
compare all parties’ inputs. We have implemented a semi-honest version of this
protocol to show that our design offers performance improvements over other
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multi-party computation protocols in the semi-honest model. Using our zero-
knowledge proofs, our protocol can also be made secure in the malicious model.
In summary, the main contributions of this paper are:

1. A construction for mixed-technique MPC composed from 2PC which features
a constant number of rounds, low communication complexity, and malicious
security.

2. Efficient zero-knowledge proofs, included in this construction, converting
between garbled circuit outputs and homomorphic encryption with malicious
security.

3. A demonstration of our construction’s usefulness by realizing a multi-party
protocol for set disjointness.

In the full version of this paper [10], we also present a technique replacing
standard verification of hash-based commitments during 2PC by a white-box use
of garbled circuits. We use this technique to reduce communication overhead in
our conversion, but the idea is general, applicable to other scenarios, and of
independent interest.

2 Conversion Between 2PC and Homomorphic
Encryption

To simplify exposition, we start with a motivation and an overview of our con-
version for the special case of d = 2 parties. For space reasons, we defer the
extension to any d ≥ 2 parties to Appendix B. Our goal is malicious security of
the conversions which we describe in Sect. 2.1.

Parties P1 and P2 want to jointly compute function F (I1, I2) = O on their
respective input bit strings I1 and I2 to receive output string O = (o1, . . . , oN ).
For security reasons, P1 should only learn some subset of bit string O, but noth-
ing else (for example not P2’s input). Similarly, P2 should only learn the other
bits of O, but nothing else. To enable secure computation of F , parties can revert
to two standard approaches. Parties could express F as a Boolean circuit and
evaluate this circuit using maliciously-secure two-party garbled circuit compu-
tation (2PC). Alternatively, parties express F as an arithmetic circuit, compute
a shared private key of a fully homomorphic encryption (FHE), and encrypt
their inputs with the corresponding public-key. Parties then evaluate the circuit
homomorphically and jointly decrypt the final result such that each party only
learns their output bits.

Yet, each of the two approaches comes with performance issues. On the one
hand, FHE evaluation of arithmetic circuits with large multiplicative depth is
computationally expensive. On the other hand, evaluating Boolean circuits with
2PC for large circuits is expensive regarding the amount of communication.

So, a third alternative and the focus of this paper is for parties to evaluate
F using a mix of both techniques. Parties evaluate F as a circuit decomposed
into a sequence of sub-circuits F (I1, I2) = (C1 ◦ · · · ◦ Cm)(I1, I2). Some sub-
circuits Ci are Boolean, while others are arithmetic. Parties agree that Boolean
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sub-circuits of function F will be evaluated using garbled circuit 2PC, and arith-
metic sub-circuits of F will be evaluated using FHE. Output of 2PC will serve
as input to FHE and vice versa. The goal of such a mixed-techniques approach
is to optimize overall performance by reducing multiplicative depth of FHE cir-
cuits and communication complexity of 2PC circuits. For clarity, we now denote
Boolean (sub-)circuits Ci by CBool

i and arithmetic (sub-)circuits Ci by CArith
i .

Assume that P1 and P2 have initially computed a public and private key pair
for a homomorphic encryption Enc, where the private key is shared among both
parties.

2.1 Malicious Security

Achieving malicious security for conversion turns out to be a challenge. For
example, let P1 be the garbler and P2 the evaluator during 2PC evaluation of a
simple sub-circuit CBool

i with two input and two output bits (x, y) = CBool
i (a, b).

Evaluator P2 receives both output bits x, y and must convert them into correct
homomorphic encryptions Enc(x) and Enc(y). This is hard to achieve against
malicious adversaries: as P2 could be malicious, P2 must prove to P1 that cipher-
texts Enc(x) and Enc(y) are correctly encrypting outputs x and y received during
2PC. Worse, P2 should not even learn x and y, as they are an intermediate result
of C’s evaluation or maybe output bits for P1. Party P2 should instead receive
related information during 2PC which then allows P2 to indirectly generate
homomorphic encryptions Enc(x) and Enc(y). Alternatively, one might suggest
implementing homomorphic encryption Enc inside a 2PC circuit, but this is too
costly.

Similarly, we need to convert FHE ciphertexts output by circuits CArith
i into

input for 2PC garbled circuits with malicious security. Moreover, if P1 and P2’s
2PC computation was part of a larger MPC computation involving d ≥ 2 parties,
we also need to consider the case where both are malicious, so they must prove
to all parties that their encryptions are correct. Finally, the private key is shared
among all d parties which impedes easy zero-knowledge (ZK) proofs.

Important Remarks. This paper targets secure output conversion between
2PC and FHE. To actually evaluate Boolean sub-circuit CBool

i , we assume exis-
tence of any maliciously secure 2PC scheme as a building block. Several dif-
ferent approaches exist which achieve maliciously secure 2PC in practice, see
[43,44,54,65] for an overview.

For secure evaluation of arithmetic sub-circuits CArith
i , any FHE scheme could

serve as building block. FHE is maliciously secure by default, as long as parties
evaluate the same circuit on the same ciphertexts. To enforce this, our conversion
requires the FHE scheme to also support distributed key generation and certain
ZK proofs detailed below. There exist several efficient lattice-based FHE schemes
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with support for both [7,8,11,18,19,51,63], and there are even efficient schemes
which allow proving general, arbitrary ZK statements in addition to distributed
key generation [2]. While describing details of our techniques, we use any of these
as an underlying building block, e.g., the one by Asharov et al. [2].

2.2 Solution Overview

Roadmap. There are two different cases for conversion we will have to consider
in a mixed-technique setting. First, parties convert output bits (oi,1, . . . , oi,n) =
CBool

i (Ii,1, Ii,2) from 2PC evaluation of circuit CBool
i on input strings Ii,1 and

Ii,2 into n homomorphic encryptions Enc(oi,j). Knowing encryptions Enc(oi,j),
each party then evaluates the subsequent arithmetic circuit CArith

i+1 .
Second, parties convert a sequence of ciphertexts Enc(bi), homomorphic

encryptions of bits bi (or integers, see Appendix A) into input for a 2PC Boolean
circuit evaluation. That is, both parties have evaluated arithmetic sub-circuit
CArith

i and computed ciphertexts Enc(bi), respectively. These ciphertexts will
now be converted into input for 2PC evaluation of sub-circuit CBool

i+1 .
Actual evaluation of circuits is then secure by definition, as we rely on stan-

dard maliciously-secure 2PC. For arithmetic sub-circuits, both parties evaluate
FHE ciphertexts on their own. An honest party will automatically compute cor-
rect output ciphertexts as long as input ciphertexts are correct.

Parties will also need to securely convert both parties’ plain input into either
FHE encryptions or 2PC inputs. Yet, that part is trivial: if the first sub-circuit
is an arithmetic circuit, a party sends homomorphic encryptions of each input
bit. If the first circuit is Boolean, we rely on whatever technique the underlying
maliciously secure 2PC offers. Finally, at the end of the last circuit evaluation,
FHE ciphertexts or 2PC output has to be decrypted. Again, this is fairly simple,
and we skip details for now. We only consider the first two cases of converting
2PC output to FHE input and FHE output to 2PC input.

Intuition. Our conversions focus on Boolean sub-circuits CBool
i . We design mech-

anisms which either convert 2PC output of CBool
i to FHE ciphertexts serving as

input to CArith
i+1 or convert FHE ciphertexts coming from CArith

i−1 into input to
CBool

i . Each of our two conversions first modifies CBool
i and evaluates the mod-

ified circuit using three new cryptographic building blocks which we call ZK
Protocol (1), ZK Protocol (2), and ZK Protocol (3). Each ZK Protocol takes as
input a Boolean circuit and P1’s and P2’s input bits. ZK Protocol (1) and ZK
Protocol (2) also take FHE ciphertexts as inputs. Each ZK Protocol again modi-
fies the input circuit internally, 2PC-evaluates the modified version, and outputs
2PC output together with a ZK proof which proves certain relations between
input and output in zero-knowledge for malicious security. As ZK Protocols are
general, their interesting property is to be stackable, i.e., they can be combined
with each other. Their internal circuit modification schemes will be merged, and
only ZK proofs enclosing circuit modification have to be adapted, which is rather
mechanical.
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ZK Protocols. Let γ be any Boolean circuit defined by its input and output
bits as (ω1, . . . , ωn) = γ((ι1,1, . . . , ι1,�1), (ι2,1, . . . , ι2,�2)). Parties P1 and P2 want
to evaluate this circuit with 2PC. Bits ι1,i are inputs of P1. Bits ι2,i are inputs
of P2, and ωi will be output bits known to P2. From a high level, our three ZK
Protocols implement:

– ZK Protocol (1). P1 sends homomorphic ciphertexts c1,i ← Enc(ι1,i), encrypt-
ing their input bits ι1,i to P2. Circuit γ is evaluated, and P2 receives output.
P1 proves in ZK to P2 that c1,i encrypts ι1,i, used during 2PC evaluation of
γ.

– ZK Protocol (2): P2 sends homomorphic ciphertexts c2,i ← Enc(ι2,i), encrypt-
ing their input bits ι2,i to P1. Circuit γ is evaluated, and P1 receives output.
P2 proves in ZK to P1 that c2,i encrypts ι2,i, used during 2PC evaluation of
γ. This is ZK Protocol (1) with roles of P1 and P2 reversed.

– ZK Protocol (3): Circuit γ is evaluated, and P2 receives output ωi. Party P2

sends homomorphic ciphertext cω,i ← Enc(ωi) and proves in ZK to P1 that
cω,i really encrypts ωi received during 2PC evaluation to P1.

Observe the different notation used in this paper for describing circuits.
Boolean sub-circuits of function F are written as CBool

i , while Boolean circuits
we use inside our ZK Protocol building blocks are written with the Greek letter
γ.

Conversion. The main idea behind the actual conversion is to modify a circuit
CBool

i into γ which takes shares of CBool
i ’s original input as its input and outputs

shares of CBool
i ’s original output. For example, to convert a 2PC output bit ω1 of

CBool
i to an FHE ciphertext Enc(ω1), we do not evaluate CBool

i , but γ which out-
puts share ω1 ⊕s to P2, and s to P1. Both parties encrypt their shares, exchange
resulting ciphertexts, and homomorphically compute an XOR to get Enc(ω1).
During this conversion, ZK Protocols prove the correctness of operations.

So, we design conversion schemes combining multiple 2PC circuit modifi-
cation techniques with efficient ZK proofs. Together, modifications and proofs
prove correctness of output conversion between outputs of 2PC and FHE circuit
evaluation.

Semi-honest Security. Our presentation concentrates on the case of fully mali-
cious security. Nevertheless, even the semi-honest version of our conversion is of
interest, as it enjoys the same properties as the fully-malicious version, e.g., O(1)
rounds, support for d ≥ 2 parties, and moreover its performance is competitive
when compared to related work, see Sect. 4.4. Essentially, the semi-honest ver-
sion is just the fully-malicious one as described in the next section, but does not
include the actual FHE ZK proofs inside ZK Protocols.
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3 Technical Details

For simplicity, we describe details for d = 2 parties and extend to d ≥ 2 in
Appendix B.

For their input bit strings I1, I2 ∈ {0, 1}∗ and function F , parties P1 and
P2 want to compute O = F (I1, I2), O ∈ {0, 1}∗. Function F is represented as a
circuit composition of Boolean and arithmetic sub-circuits F = (Cm ◦ · · · ◦ C1).
Observe that if the ith sub-circuit is Boolean, then the i + 1th is arithmetic and
the other way around. We now turn toward technical details on how we enable
maliciously-secure mixed-technique evaluation of sub-circuits. We show how to
convert 2PC evaluation output of a Boolean sub-circuit CBool

i into input for a
following arithmetic sub-circuit CArith

i+1 for FHE evaluation and the other way
around.

2PC Output Bits for P1 In a typical garbled circuit evaluation of Ci, only P2

receives output, i.e., bits oj . If a specific bit oj is a secret output bit for P1, then
a standard trick is denying P2 to open the last wire label for oj and forwarding
the label to P1. As P1 knows both possible labels for oj , they can recover bit
oj . Also, this ensures that P1 receives the correct output bit o′

j from P2, i.e.,
authenticity [6]. We silently rely on this trick for secure computation of all of
P1’s plain output bits for the rest of the paper.

Notation. Let Commit denote a computationally hiding and binding commit-
ment scheme. For some bit string B ∈ {0, 1}∗, computational security param-
eter λ′, and randomness R ∈ {0, 1}λ′

, Commit(B,R) outputs a commitment ,.
In the full version of this paper [10], we show how to efficiently realize commit-
ments with a white-box use of wire labels in garbled circuits. Encryption Enc
over plaintext space M is fully (or somewhat) homomorphic. Both parties have
already set up a key pair, where the public key is known to both parties, but
the private key is shared. For homomorphic operations on ciphertexts, we use
the intuitive notation of “+” for homomorphic addition, “·” for scalar multipli-
cation, and ⊕ for homomorphic XOR. So for example, if x and y are from M ,
then Dec(Enc(x) + Enc(y)) = x + y. During conversion, we will randomly select
scalars from Zp, where p is a prime of λ bits.

Let Π be the set of two single bit permutations π : {0, 1} → {0, 1}. That is,
Π = {π0, π1} with π0(x) = x and π1(x) = 1 − x.

3.1 ZK Protocols

Let (ω1, . . . , ωn) = γ((ι1,1, . . . , ι1,�1), (ι2,1, . . . , ι2,�2)) be any Boolean circuit
which parties P1 and P2 want to evaluate using maliciously secure 2PC. Bits
ι1,i are P1’s input, and bits ι2,i are P2’s input.

ZK Protocol (1). In this protocol, P1 proves to P2 that homomorphic cipher-
texts c1,i ← Enc(ι1,i) encrypt all of P1’s input bits ιi,i used during a 2PC evalu-
ation of γ. Assume that P1 has already sent the c1,i to P2.



302 E.-O. Blass and F. Kerschbaum

P1 P2
(input ι1,1, . . . , ι1,�1 , c1,1 ← Enc(ι1,1), (input ι2,1, . . . , ι2,�2 , c1,1, . . . , c1,�1)
. . . , c1,�1 ← Enc(ι1,�1))
∀i ∈ {1, . . . , �1} :
μi,1, . . . , μi,λ

$← {0, 1}λ σi,1, . . . , σi,λ
$← {0, 1}λ

mi,1 ← Enc(μi,1), . . . , Ri,1, . . . , Ri,λ
$← {0, 1}λ2

mi,λ ← Enc(μi,λ) Comi,1 = Commit(σi,1, Ri,1),
∀j∈{1,...,λ}:

mi,j−−−→ . . . ,Comi,λ = Commit(σi,λ, Ri,λ)

Comi,j←−−−−−
2PC of γ(1)

⇐======⇒
∀i ∈ {1, . . . , �1} :

∀j∈{1,...,λ}:
Ri,j , σi,j←−−−−−−−

if [∃j : Commit(σi,j , Ri,j) 	= Comi,j ]
then abort
∀j : if σi,j = 0 then open

Enc(ιi,j ⊕ μi,j) else open mi,j

λ ZK proofs for
ciphertextsi,j−−−−−−−−→ if ciphertexti,j does not match ti,j

then abort

Fig. 1. ZK Protocol (1) for circuit γ

The protocol is depicted in Fig. 1 and consists of two core building blocks:
first, parties evaluate a modification of circuit γ which we call γ(1). We define
circuit γ(1) by specifying its input and output in Fig. 2. The second building
block is an actual three move ZK proof which encompasses γ(1).

First, P1 selects a random masking bit μi and sends both c1,i and mi ←
Enc(μi) to P2. At the same time, P2 selects a random choice bit σi. Then, both
parties use maliciously-secure 2PC and evaluate γ(1) which internally computes
γ as a sub-routine. Party P1 is the garbler and P2 the evaluator. In addition to
outputting the same bits as γ, it also outputs bit ti = ι1,i ⊕ μi (if σi = 0) or
ti = μi (if σi = 1) to P2.

After 2PC, P2 reveals their choice σi. If σi = 0, then P1 proves in ZK that the
homomorphic XOR of ciphertexts c1,i and mi to Enc(ι1,i ⊕ μi) really encrypts
ti = ι1,i ⊕ μi. If σi = 1, then P1 proves that mi encrypts ti = μi.

Output bit α = 0 in γ(1) indicates protocol failure, i.e., non-matching com-
mitments.

If σi,j = 0, then P1 and P2 homomorphically compute ciphertexti,j =
Enc(ι1,i ⊕ μi,j) out of c1,i and mi,j . If choice bit σi,j = 1, then both parties set
ciphertexti,j = mi,j . Party P1 then sends a ZK proof that ciphertexti,j encrypts
ti,j to P2, e.g., by applying an efficient framework for ZK proofs [2].

Note the general structure of ZK Protocol (1), which is similar in the other
two ZK Protocols. Each ZK Protocol comprises a circuit modification technique,
here converting γ to γ(1), and a surrounding ZK proof. When we will combine ZK
Protocols later, we merge circuit modifications, i.e., output of one ZK Protocol’s
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Input to γ(1)

P1 P2

ι1,1, . . . , ι1,�1 , 1 ≤ i ≤ �1 :
[μi,1, . . . , μi,λ,Comi,1, . . . ,Comi,λ]

ι2,1, . . . , ι2,�2 , 1 ≤ i ≤ �1 :
[σi,1, . . . , σi,λ, Ri,1, . . . , Ri,λ]

Output of γ(1)

1 if ∀i, j, 1 ≤ i ≤ �1, 1 ≤ j ≤ λ : Comi,j = Commit(σi,j , Ri,j) then
2 α = 1;
3 (ω1, . . . , ωn) = γ((ι1,1, . . . , ι1,�1), (ι2,1, . . . , ι2,�2));
4 for i = 1 to �1 and j = 1 to λ do
5 if σi,j = 0 then ti,j = ι1,i ⊕ μi,j else ti,j = μi,j ;
6 else α = ω1 = . . . = ωn = t1,1 = . . . = t�1,λ = 0;
7 output α, ω1, . . . , ωn, t1,1, . . . , t�1,λ;

Fig. 2. Definition of circuit γ(1)

circuit modification will be input into another. Only surrounding ZK proofs
require adoption.

ZK Protocol (2). This protocol reverses P1’s and P2’s roles in ZK Protocol (1).
So, circuit γ(2) is similar to γ(1), with P1 having choice bits (and randomness
for commitments to them) as additional input, and P2 has masking bits and
commitments to choice bits as input. During 2PC, P1 is the garbler and P2 the
evaluator. Also, the actual three-move protocol from ZK Protocol (1) is reversed,
i.e., it is P2 who starts by sending encryptions of input bits and masking bits.
We omit further details to avoid repetition and refer to Fig. 1.

ZK Protocol (3). In this protocol, P2 proves to P1 that encryptions cω,i ←
Enc(ωi) are encryptions of P2’s output bits ωi. As ZK Protocol (3) is more
involved, Fig. 3 starts by presenting a slightly simpler version with a ZK proof
which is only Honest-Verifier-Zero-Knowledge (HVZK), and details for fully-
malicious security follow.

As part of ZK Protocol (3), P1 and P2 run 2PC on a modification of circuit
γ called γ(3), defined in Fig. 4.

Before 2PC, P1 selects, for an output bit ωi, two random bit strings
v0,1 . . . v0,λ and v1,1 . . . v1,λ and sets V0 = 0||v0,1 . . . v0,λ, V1 = 1||v1,1 . . . v1,λ.
Here, “||” denotes concatenation, and λ is a statistical security parameter. Then,
P1 encrypts and sends ciphertexts Γ0 = Enc(V0) and Γ1 = Enc(V1) to P2. Cir-
cuit γ(3) does not output ωi to P2, but instead outputs Vωi

to P2, i.e., either bit
string V0 or bit string V1.

The first bit of strings V0, V1 is output bit ωi. That is, Γωi
encrypts a bit

string, where the first bit represents P2’s output bit ωi. So, after evaluating γ(3),
P2 gets ωi and a length λ bit string (vωi,1, . . . , vωi,λ).

The trick is now that P2 proves in ZK to P1 that it knows a string Vωi
which

is either V0 or V1 and which matches encryption cω,i. Recall that the private
key for homomorphic encryption Enc is shared between P1 and P2, so none of
the two parties can decrypt a ciphertext alone. After evaluating γ(3), party P2

sends λ + 1 ciphertexts cω,i ← Enc(ωi),Enc(vωi,1), . . . ,Enc(vωi,λ) to P1. Both
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P1 P2
(input ι1,1, . . . , ι1,�1 tupni() ι2,1, . . . , ι2,�2 )∀i ∈ {1, . . . , n} :

Γi,0,0 ← Enc(0), Γi,1,0 ← Enc(1)
∀j ∈ {1, . . . , λ} :
[vi,0,j , vi,1,j

$← {0, 1}2

Γi,0,j ← Enc(vi,0,j)

Γi,1,j ← Enc(vi,1,j)]
∀j∈{0,...,λ}:
Γi,0,j , Γi,1,j−−−−−−−−−→

2PC of γ(3)(see text)⇐=============⇒
∀i ∈ {1, . . . , n} :

Γi,2,0 ← Enc(ωi)
∀j ∈ {1, . . . , λ} : [Γi,2,j ← Enc(vi,ωi,j)]

∀j ∈ {0, . . . , λ} : Γi,2,j←−−−−−−−−−−−−−−−−−
Γi,0 =

∑λ
j=0 (2

λ−j · Γi,0,j) Γi,0 =
∑λ

j=0 (2
λ−j · Γi,0,j)

Γi,1 =
∑λ

j=0 (2
λ−j · Γi,1,j) Γi,1 =

∑λ
j=0 (2

λ−j · Γi,1,j)
Γi,2 =

∑λ
j=0 (2

λ−j · Γi,2,j) Γi,2 =
∑λ

j=0 (2
λ−j · Γi,2,j)

Δi,0 = Γi,0 − Γi,2 Δi,0 = Γi,0 − Γi,2
Δi,1 = Γi,1 − Γi,2 Δi,1 = Γi,1 − Γi,2

ai
$← Zp, π

$← Π
Δ′

i,0 = ai · Δi,0, Δ
′
i,1 = ai · Δi,1

Δ′
i,0,Δ′

i,1,Δ′
i,π(0),Δ′

i,π(1)
ZK proof Scalari,ZK proof Shufflei←−−−−−−−−−−−−−−−−−

if ZK proofs do
not verify then abort

jointly decryptΔ′
i,π(0), Δ

′
i,π(1)⇐====================⇒

if none or both decrypt
to 0 then abort

Fig. 3. ZK Protocol (3)

parties use these ciphertexts to homomorphically generate Γ2 = Enc(Vωi
), an

encryption of the concatenation of P2’s λ + 1 bits Vωi
. As both parties know

Γ0 and Γ1, they both homomorphically compute Δ0 = Enc(Vωi
− V0) and Δ1 =

Enc(Vωi
−V1). Observe that, if Vωi

is either V0 or V1, then one of Δ0,Δ1 encrypts
a 0. Consequently, P2 proves to P1 in ZK that either Δ0 or Δ1 is an encryption of
0 (see below for details). If P1 successfully verifies proofs, parties jointly decrypt
Δ′

i,π(0) and Δ′
i,π(1). Note that decryption must include a ZK proof by P2 about

correct (partial) decryption [2,7,11].
We run the above techniques for each output bit ωi in parallel.

ZK Proof of 0. Figure 3 also comprises details for the ZK proof, where P2

proves that either Δi,0 or Δi,1 encrypts a zero. In Fig. 3, P2 blinds Δi,0 and
Δi,1 by a random ai resulting in Δ′

i,0 and Δ′
i,1. Then, P2 prepares sub-ZK proof

“Scalari” which proves that Δ′
i,0,Δ

′
i,1 are the result of multiplying Δi,0,Δi,1

by the same secret scalar ai. Such a proof is standard, e.g., P2 could simply
publish the encryption of ai, and P1 computes Δ′

i,0,Δ
′
i,1 themselves. Party P2

completes the ZK proof by re-encrypting Δ′
i,0 and Δ′

i,1, choosing a random
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Input to γ(3)

P1 P2
ι1,1, . . . , ι1,�1 , 1 ≤ i ≤ n :
[vi,0,1, . . . , vi,0,λ, vi,1,1, . . . , vi,1,λ]

ι2,1, . . . , ι2,�2

Output of γ(3)

1 (ω1, . . . , ωn) = γ((ι1,1, . . . , ι1,�1), (ι2,1, . . . , ι2,�2));
2 for i = 1 to n do output ωi||vi,ωi,1 · · · vi,ωi,λ;

Fig. 4. Definition of circuit γ(3)

1-bit permutation π from Π, and preparing ZK proof Shufflei which proves
that (Δ′

i,π(0),Δ
′
i,π(1)) is a random shuffle of (Δ′

i,0,Δ
′
i,1). Proofs of two-element

shuffles are also straightforward. For example, P2 could encrypt a random bit to
ciphertext β, send β to P1, and prove that ciphertext β − β2 encrypts a 0. This
standard technique to prove a shuffle is working for, e.g., FHE schemes with
plaintext domain over prime fields GF (p) such as Fan and Vercauteren [24] and
derivatives (SEAL). Other FHE schemes might use other types of shuffle proofs.
Such proofs can be also implemented by, e.g., reverting to an efficient general
proof [2] or by opening randomness of ciphertext β − β2. Finally, P1 computes
Δ′

i,π(0) = β · Δ′
i,0 + (Enc(1) − β) · Δ′

i,1 and Δ′
i,π(1) = (Enc(1) − β) · Δ′

i,0 + β · Δ′
i,1

themselves.

HVZK to Fully-Malicious Security. For fully-malicious security, we replace
2PC evaluation of γ(3) from Fig. 3 by using ZK Protocol (1). More specifically,
instead of 2PC evaluation of γ(3), we run ZK Protocol (1) for circuit γ(3) with
both the ι1,i and the vi,0,j , vi,1,j as P1’s input bits, and the ι2,i as P2’s input
bits. To run ZK Protocol (1), P1 sends encryptions Γi,0,j , Γi,1,j to P2 (as well
as dummy encryptions of the ι1,i). As a result of running ZK Protocol (1) of
γ(3) instead of direct 2PC of γ(3), P2 can verify that the Γi,0, Γi,1 are correct
encryptions of P1’s input to γ(3). Note that the output bits received by P2 after
running ZK Protocol (1) comprise all output bits of circuit γ(3).

3.2 Composition of ZK Protocols

Our ZK Protocols can be composed in a natural way, i.e., ZK Protocol (1),
(2), and (3) can be jointly used on a single circuit γ. Protocol steps before
and after 2PC evaluation of the modified circuit γ are executed in parallel.
Different modifications of ZK Protocols (1) to (3) to circuit γ are merged into
one large garbled circuit. This large circuit comprises γ’s and all modifications’
functionality and uses P1’s and P2’s input sets once. Thus, inputs ι1,i and ι2,i

are only used once and their wires are connected to all sub-functions of the
large circuit. All other necessary inputs μi,j , σi,j , and vω,j are present for their
respective input and outputs. This ensures the same functionality of the large
circuit as the sub-functions due to its security against malicious adversaries.
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Protocol steps outside of 2PC operate on distinct inputs and hence are non-
interfering under parallel composition. We can compose the conversion routines
in a natural way. Figures 5 and 6 depict the details of FHE to 2PC conversion
and reverse, respectively.

3.3 Security Analysis

ZK Protocols (1) to (3) prove that the plaintext of an FHE ciphertext (under a
shared key) and the input or output, respectively, of a 2PC are identical. They
hence enable to compose FHE computations with 2PC protocols in a joint,
maliciously secure protocol.

Theorem 1 (Proof in Appendix C). ZK Protocols (1) to (3) are (a) com-
plete, i.e., an honest verifier accepts the proof, if the prover provides consistent
input, (b) zero-knowledge, i.e., any verifier learns nothing about the prover’s
witness except that it satisfies the proof, and (c) sound, i.e., an honest verifier
rejects the proof with overwhelming probability in the security parameter λ, if the
prover’s secret input is not a witness for the proof.

P1 P2
(input c1, . . . , c�) (input c1, . . . , c�)∀i ∈ {1, . . . , �} :
si

$← {0, 1},

c′
i ← Enc(si)

c′
i−→

c′′
i = ci ⊕ c′

i c′′
i = ci ⊕ c′

i

jointly decrypt c′′
i⇐===========⇒

receives
s′

i = si ⊕ bi

composition of ZK Protocols
(1) and (2) of γShare,j⇐============⇒

receives o1, . . . , on
(see text)

Fig. 5. FHE to 2PC conversion

P1 P2
(input i1,1, . . . , i1,�1 ) (input i2,1, . . . , i2,�2 )∀i ∈ {1, . . . , n} :
si

$← {0, 1},
ci ← Enc(si)

ci−→
composition of ZK Protocols (1)

and (3) of γShare
′

⇐=============⇒
receives receives
c′
1 = Enc(s′

1), s′
1 = o1 ⊕ s1, . . . ,

. . . , s′
n = on ⊕ sn,

c′
n = Enc(s′

n) c′
1, . . . , c

′
n

∀i ∈ {1, . . . , n} :
c′′

i = ci ⊕ c′
i c′′

i = ci ⊕ c′
i

Fig. 6. 2PC to FHE conversion

4 Application to Private Set Disjointness

To indicate their usefulness, we apply our mixed-technique conversions to the
area of private set analytics. In particular, we design a new solution to the
problem of securely, yet efficiently computing private set disjointness (PSD).
In PSD, parties compute whether their sets’ intersection is empty without
revealing the intersection itself. While protocols computing PSD have been pre-
sented before [20,25,30,37,38,48,67], our new solution features several advan-
tages which, in combination, is unique: any number of d ≥ 2 parties, fully-
malicious security, circuit-based computations, and high efficiency (also due to
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a constant number of rounds). Computing PSD with a circuit-based approach is
of special interest, as variations of PSD, like whether the size of the intersection
is larger than a threshold, or other set statistics can then be computed easily,
see discussions in [56,58].

Each party Pi has an n element input set Si = {ei,1, . . . , ei,n} with elements
ei,j ∈ {0, 1}�. We present a protocol where parties securely compute whether

the intersection of the Si is empty, i.e., |⋂d
i=1 Si| ?= 0. Crucially, we do not

leak the size of the intersection or any other information about the intersection
or elements ei,j . Assume that parties have previously computed a distributed
private key with corresponding public key for a fully or somewhat homomorphic
encryption scheme. Separately, each party Pi has a public-private key pair, where
the public key is known to all parties. So, parties can securely communicate.

4.1 PSD Protocol Overview

We present a new circuit-based approach to compute PSD. At its core, parties
compare their elements by evaluating a Boolean sub-circuit with pairwise 2PC
in a star topology. The outcome of 2PC comparisons then serves as input to
FHE evaluations.

Hash Table Preparation. Initially, parties hash their input elements into hash
tables. This is a typical approach of recent protocols for PSI, see Pinkas et al. [57]
for an overview. Specifically, each party Pi starts by creating an empty hash table
Ti with m ∈ O( n

log n ) buckets. To cope with possible hash collisions with very
high probability, each bucket comprises a total of β ∈ O(log n) entries [59,61].
Each entry has space to store  bits. Let Ti[j, k] denote the kth entry in the jth

bucket Ti[j] of Pi’s hash table Ti.
After initializing hash table Ti, each party Pi iterates over their input ele-

ments, writing element ei,j into bucket Ti[h(ei,j), u], where u is the first empty
entry in Ti’s mth bucket. All remaining entries in the hash table are filled with
random bit strings.

Mixed-Circuit Evaluation. Parties elect a leader, w.l.o.g. the leader is P1.
The main idea to compute PSD is that, for a randomly chosen r, the following
function F is evaluated securely:

F = r ·
m∑

j=1

β∑

k=1

d∏

i=2

[
β∨

u=1

(T1[j, k] ?= Ti[j, u])

]

.

Function F implements PSD, as sets Si are disjoint iff F evaluates to 0. The
rationale behind F is that the intersection is not empty if and only if there exists
an entry in a bucket of P1’s table which equals an entry of the same bucket in
all other parties’ tables.

We already define F using a mixed arithmetic and Boolean notation, sug-
gesting a direct application of our mixed-techniques for 2PC-FHE evaluation.
To securely evaluate F , we set up a simple star topology where leader P1
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interacts pairwise with each other party Pi to compute inner parts fi,j,k =[∨β
u=1(T1[j, k] ?= Ti[j, u])

]
with 2PC. For the kth entry in their jth bucket T1[j, k],

P1 evaluates with Pi a separate 2PC circuit which implements fi,j,k. Using our
2PC to FHE conversion, output of each fi,j,k 2PC evaluation is a homomorphic
encryption of its output bit which we denote by Enc(fi,j,k). After all 2PC com-
putations, P1 sends the Enc(fi,j,k) to all other parties which continue computing
F homomorphically.

The final multiplication of the output by (a random) r in the encrypted

domain is realized by each party Pi randomly selecting ri
$← M and send-

ing Enc(ri) to other parties. All parties homomorphically compute Enc(r) =
∑d

i=1 Enc(ri) and multiply the output by Enc(r) to get Enc(F ) which is then
jointly decrypted. Without multiplying by r, parties would learn the size of the
intersection.

4.2 Malicious Security for PSD

Although 2PC, our conversion, and homomorphic evaluations are secure against
malicious adversaries, we need to extend our current security model from two
parties to the case of d parties. A few conditions apply to PSD that make this
extension efficient. First, each party Pi (except P1) provides input only once,
and all 2PCs are independent of other parties’ inputs. In consequence, no input
commitments from Pi are necessary, and only P1 needs to use commitments.
Furthermore, since there exists a pair of inputs for any output of the 2PC, the
output of a 2PC between two malicious parties can be simulated with chosen
inputs. Consequently, we now show that adding our ZK protocols leads to a
multi-party protocol secure in the malicious model, despite the fact that both
parties of a two-party computation can be malicious (including the leader). We
leave the secure composition of 2PC to MPC in the star topology for the general
case, when these conditions are not met, as future work.

Recall that after 2PC to FHE conversion, both parties P1 and Pi have proven
to each other correct computation of c = Enc(s) and c′ = Enc(s′). They homo-
morphically combine c and c′ to Enc(fi,j,k) = Enc(s ⊕ s′). The new challenge
when dealing with d > 2 parties is that both P1 and Pi can be malicious, fabri-
cate various different Enc(fi,j,k), and send different Enc(fi,j,k) to different other
parties.

To mitigate, one could somehow run ZK proofs in public such that all other
parties automatically observe the correct Enc(fi,j,k), but this is expensive. A
more elegant solution would be that both parties P1 and Pi sign Enc(fi,j,k) at
the end of their conversion, and Pi sends their signature to P1. Then, P1 could use
secure echo broadcast [27] to send Enc(fi,j,k) and both signatures of Enc(fi,j,k)
to all parties. As a result, all parties would receive the same Enc(fi,j,k) and verify
that P1 and Pi have agreed on it.

An interesting situation occurs when both P1 and Pi are malicious and agree
on a wrong Enc(fi,j,k). For example, P1 and Pi could agree on Enc(0) even
though Pi has an entry ei,u in its jth bucket which equals an entry e1,k in P1’s
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jth bucket. Note that this is not an attack, as the adversary can anyway control
Pi’s input and set it to arbitrary values. So, the above case would be equivalent
to the adversary setting Pi’s input ei,u to something different from e1,k in the
first place. The only property P1 and Pi have to prove to all other parties is that
ciphertext Enc(fi,j,k) encrypts a bit.

As neither P1 nor Pi know fi,j,k, we use a different strategy. Party P1 proves
in ZK that c encrypts a bit, and Pi proves that c′ encrypts a bit. Parties broad-
cast c and c′ with both proofs. Using c and c′ all parties compute Enc(fi,j,k)
homomorphically.

Finally, to force P1 to always use the same inputs during pairwise comparisons
with different Pi, we require P1 to initially commit to its input using FHE
ciphertexts and securely broadcast those ciphertexts to all other parties. The
consistency of inputs is then verified using ZK Protocol (1).

Joint Decryption. Recall that the 2PC to FHE conversion internally runs ZK
Protocol (3) and requires a joint decryption between P1 and Pi. In case of d > 2
parties, joint decryption is still possible, but involves all d parties. So, both P1

and Pi broadcast a request to decrypt the current Δ′
i,π(0) and Δ′

i,π(1), and all
parties reply to P1 with their share of the decryption (plus proof of correct
decryption). Note that this does not change our total message complexity. We
need to run O(1) broadcasts for each fi,j,k anyway.

4.3 Complexity Analysis

Due to space constraints, we present and compare asymptotic complexities of
our techniques for evaluating F with related schemes in the full version of this
paper [10].

4.4 Implementation

We have implemented our private set disjointness variant with 2PC to FHE
conversion and performed micro-benchmarks. We will release our code into open
source upon publication of the paper.

Our implementation of 2PC-part fi,j,k is done in the framework by Wang
et al. [65] and maliciously secure. Yet, none of the common FHE libraries
(HELib, PALISADE, SEAL, TFHE) provides both distributed key genera-
tion with threshold encryption and ZK proofs, which we need for maliciously-
secure conversion. Moreover, an implementation of a FHE scheme with threshold
decryption and ZK proofs, e.g., based on the one by Asharov et al. [2], deserves
its own paper. Thus, for the arithmetic part of F , we have only implemented
and benchmarked arithmetic operations with FHE (using TFHE [16,17] for its
simplicity), but not FHE ZK proofs, i.e., a semi-honest secure conversion. We
dub the security setting of our implementation as “semi-malicious”: 2PC is mali-
ciously secure, but the conversion is only semi-honest secure. This setting is at
least as strong as semi-honest security, but weaker than malicious security.



310 E.-O. Blass and F. Kerschbaum

Table 1. Online time (s) to evaluate F , our scheme vs semi-honest and maliciously
secure SPDZ [35] vs BMR [34] vs FHE. 2PC: communication time for circuit evaluation
of all mβd circuits ((γShare

′(1))(3))(1), BC: communication time for broadcasting shares
and partial decryptions, FHE Comp: computation time for arithmetic part, DNF: does
not finish in 15 min. Benchmarks from single 1.6 GHz Core i5, 32 GB RAM

n d Ours (“Semi-Malicious”) Semi-Honest Malicious

2PC BC FHE Comp Total SPDZSH FHE SPDZ BMR

Total Total Total Total

32 5 2.2 1.1 1.0 4.3 10.1 141.7 16.4 8.5

10 3.9 1.8 1.8 7.5 13.8 283.0 33.1 24.3

20 7.6 5.5 3.6 16.6 48.8 565.5 50.3 Crash

40 14.8 17.6 7.1 39.5 130.3 DNF 215.7 Crash

64 5 4.7 1.4 2.3 8.4 22.7 406.9 35.6 18.5

10 9.0 3.4 4.4 16.8 32.6 813.1 72.4 66.6

20 18.0 10.7 8.6 37.3 101.5 DNF 248.2 Crash

40 35.9 40.9 17.0 93.8 265.8 DNF 784.3 Crash

128 5 10.7 2.2 5.4 18.3 52.3 DNF 117.5 43.0

10 20.8 6.6 10.3 37.7 84.6 DNF 356.7 Crash

20 41.8 24.2 20.1 86.1 358.1 DNF 675.8 Crash

40 83.3 95.3 39.7 218.3 546.3 DNF DNF Crash

1024 5 121.2 17.5 61.6 200.4 727.3 DNF DNF DNF

2048 5 265.0 37.5 135.5 438.0 DNF DNF DNF DNF

More specifically, we have implemented the actual circuit which is evaluated
as part of the 2PC to FHE conversion of fi,j,k, namely ((γShare′(1))(3))(1). Here,
circuit γShare

′ is the modification to fi,j,k due to conversion, γShare
′(1) is the modi-

fication implied by ZK Protocol (1) on top of that, (γShare′(1))(3) the modification
by ZK Protocol (3) on top of that, and ((γShare′(1))(3))(1) the modification by
ZK Protocol (1) running inside ZK Protocol (3).

For all benchmarks, we set m = n
2 , β = log n, and consider  = 32 bit integers

as the elements in each party’s set. It is well known that communication time
due to latency between parties is a dominating factor regarding total runtime,
especially for the 2PC part. For example, raw computation time of evaluating a
single ((γShare′(1))(3))(1) circuit for β = 5 takes only 1.2 ms on a single 1.6 GHz
Core i5 with 32 GB RAM, but all computations can run in parallel on different
cores. So, an Amazon EC2 C5d instance with 96 cores computes 80, 000 circuits
per second. However, network traffic, i.e., exchanging 177 KByte of data between
P1 and Pi during evaluation of that circuit, cannot be parallelized. Instead, we
can only sequentially send all data for all circuits, and network latency is here
the crucial parameter. While latency of (intercontinental) WAN traffic is often
unstable and can go over 250 ms [64], we run benchmarks on one machine to
better control network behavior and use netem [53] to set latency to a mod-
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est 70 ms. As a result of this latency, we measured TCP data goodput to be
only 330 MBit/s on the localhost network (a higher latency would imply less
goodput).

In Table 1, 2PC denotes the time to compute all ((γShare′(1))(3))(1). BC
denotes the time for all broadcasts of shares ci, c

′
i after 2PC to all parties (one

TFHE ciphertext has size 2.5 KByte) plus the time to broadcast a partial decryp-
tion of the final result after FHE from each party (a partial decryption is one
TFHE ciphertext). FHE Comp is the time, for each party, to compute the arith-
metic part of F in TFHE.

For comparison, we have also implemented F in the popular MP-SPDZ
framework [33] and benchmarked with both their semi-honest (SPDZSH: no
MACs, semi-honest OT [33]) and maliciously secure SPDZ variants [35] as well
as BMR [34]. SPDZ Total and BMR Total are their total (online) times to
compute F . FHE Total is the total time of a semi-honest “pure-FHE” imple-
mentation of F with TFHE, including broadcasting each party’s mβ ciphertexts
to all other parties. Note that BMR crashes even for a small number of parties,
e.g., n = 128, d = 10, or quickly runs out of memory (> 32 GB) for d ≥ 20
parties.

Looking at Table 1, our implementation outperforms semi-honest and mali-
ciously secure SPDZ, BMR, and FHE in all considered settings. While SPDZ and
BMR are competitive for a small number of parties, BMR fails due to its mem-
ory consumption, and our composition from 2PC clearly shows better scalability
than SPDZ for larger numbers of parties.

While timings for our “semi-malicious” implementation look promising
regarding a potential maliciously secure implementation, we do not have such an
implementation for the above stated reasons. However, observing that our tech-
niques outperform even semi-honest SPDZ while offering stronger security guar-
antees leads to an interesting conclusion of our evaluation. Our mixed-techniques
protocols might already serve as an alternative to standard semi-honest MPC in
scenarios with a star topology, i.e., where a multi-party protocol can be decom-
posed into multiple 2PC protocols.

5 Related Work

Mixed-Techniques MPC. Several previous works combine different MPC
techniques to mitigate individual techniques’ drawbacks. Kolesnikov et al. [39]
are among the first to present a conversion between garbled circuits and (addi-
tively) homomorphic encryption in the two-party semi-honest model [39,41].
Extending their conversion to also support fully-malicious adversaries is non-
trivial: in Appendix D of [40], they present honest-verifier zero-knowledge proofs
which render the protocol secure only if at most one party is malicious. However,
HVZK is insufficient, if proofs are part of a scenario with more than two parties
where more than one party can be malicious.

A long line of research has focused on making mixed-techniques practical and
efficient. Henecka et al. [29] design practical tools for conversion between garbled
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circuits and additively homomorphic encryption. Their conversion targets semi-
honest adversaries and circuits for two parties. Demmler et al. [22] present a two
party framework to convert between arithmetic sharing, Boolean sharing, and
garbled circuits in the semi-honest model, and so do Riazi et al. [60]. Mohassel
and Rindal [50] extend to three parties with malicious security. Again in the
semi-honest model for two parties, Juvekar et al. [32] switch between garbled
circuits and additively homomorphic encryption, and Büscher et al. [14] switch
between arithmetic and Boolean sharing. The “(e)daBits” line of work [1,23,62]
converts between MPC based on arithmetic secret sharing and garbled circuits
with malicious security. In contrast, our work mixes FHE with garbled circuits,
with the advantage of a (low) constant number of rounds during evaluation.

For completeness sake, we mention that other powerful MPC frameworks
besides MP-SPDZ exist, e.g., the purely circuit-based EMP-Toolkit [66]. Also
note that FHE is often combined with (arithmetic) MPC to prepare multiplica-
tion triplets during offline phases, as in, e.g., SPDZ and follow-up works [3,36].

(Multi-Party) PSI and Disjointness. While seminal works in PSI are based
on dedicated protocols [49], recent papers use a circuit-based approach (see
Pinkas et al. [55] for an overview), culminating in solutions with asymptoti-
cally optimal communication complexity and practical constants [58]. In theory,
such circuit-based approaches can be used to also compute disjointness, but they
focus on the two-party setting with semi-honest security or multiple parties with
semi-honest security [15]. Efficient maliciously-secure multi-party circuit-PSI has
not yet been achieved.

Hazay and Venkitasubramaniam [28] present a maliciously-secure multi-party
PSI protocol based on oblivious polynomial evaluation (OPE). Similar to pre-
vious ideas [25], OPE could then be combined with a maliciously-secure 2PC
to compute disjointness. However, already computing the intersection is expen-
sive with this approach, requiring O(n2) modular exponentiations. Kolesnikov
et al. [42] present an efficient multi-party PSI protocol in the semi-honest model
using only symmetric encryption. However, more fundamentally, PSI protocols
cannot be easily converted into PSI analytics protocols (not disclosing the inter-
section) while maintaining efficiency [56,58] and providing malicious security.
Other works have considered computing set disjointness, but these target semi-
honest security and/or only two parties [20,25,30,37,38,48,67]

Comparing to related work, our work fills a gap with 1) a solution which
converts between FHE and garbled circuits, 2) supports any number of parties
d, and 3) provides malicious security. We use this to present the first multi-party
PSI analytics protocol whose communication complexity scales only quadrati-
cally in d.

Appendix

A Supporting Larger Plaintext Spaces

Our presentation describes arithmetic sub-circuits operating over single bits.
There, each ciphertext encrypts a single bit and homomorphic operations are
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over bits. This can be inefficient, as parties often want to compute on larger
integers, e.g., 32 Bit integers. Homomorphic encryption schemes anyway operate
over large plaintext spaces, where addition of a large, multiple bit integer is a
single homomorphic operation. A large plaintext space also allows for SIMD
techniques.

To improve performance, we extend conversion from operating over GF (2)
plaintexts to operate over arbitrary fields GF (q) by instituting the following
two modifications. In our conversions, ZK Protocols, and ZK proofs, we replace
using XORs to share a single bit or combine two shares to a bit by additions and
subtractions over GF (q). Random bits serving as a share for a party become
random elements of GF (q). Second, n single bit encryptions ci = Enc(bi) output
by our 2PC to FHE conversion are combined to a single n bit encrypted integer
by each party computing

∑n−1
i=0 2i · ci+1.

B d ≥ 2 Parties

Secure multi-party computation can be constructed from secure two-party com-
putations in various ways. One standard way is a star topology as we present
in Sect. 4. We emphasize, however, that our conversions are not limited to star
topologies.

The main idea is that each party Pi engages in secure two-party computa-
tion with a central party P1 to compute some functionality. Such a centralized
approach works for certain functionalities, e.g., equality of inputs, as equality is
symmetric and transitive. If Pi’s input is equal to P1’s and Pj ’s input is equal
to P1’s, then Pi’s input is also equal to Pj ’s. Hence, computation of the joint
result using homomorphic encryption can leverage this relation.

This approach does not apply to other functionalities, e.g., larger-than com-
parison. If Pi’s input is larger than P1’s, and Pj ’s input is larger than P1’s, then
we cannot imply any larger-than relation between Pi’s and Pj ’s input. Conse-
quently, in this case, the alternative to maintain constant-round complexity is to
engage all parties in pair-wise comparisons. This has been previously considered,
e.g., in the context of sealed-bid auctions [9]. However, the result of each pairwise
comparison is leaked in previous work, reducing security to a level comparable
with order-preserving encryption. In contrast, constructions in this paper would
enable computing the auction result, e.g., the largest input, using homomorphic
encryption with constant round complexity.

In summary, there exist several practically relevant protocols with arithmetic
relations between inputs which can be decomposed into an initial two-party
phase followed by a combination phase of the inputs. We use secure two-party
protocols during the first phase to achieve efficient implementations in a constant
number of (communication) rounds. Similarly, to evaluate low multiplicative
depth sub-circuits, we use homomorphic encryption efficiently. Our ZK protocols
ensure that the conversion is secure against malicious adversaries.



314 E.-O. Blass and F. Kerschbaum

C Proof of Theorem 1

We emphasize that we only provide a proof-sketch that, however, should convince
an expert reader about the correctness of our theorems and the security of our
protocols. Before presenting this proof sketch of our main Theorem 1, we briefly
recall completeness, zero-knowledge, and soundness definitions.

Let P ∈ {P1, P2} be the prover and V ∈ {P1, P2} be the verifier in a ZKP.
Let w ∈ RC be a witness for the correct execution of a conversion which we
denote as relation RC . Let 〈P (w), V 〉 be the execution of a ZKP protocol.
Completeness: An honest verifier accepts the proof, if the prover provides con-
sistent input, i.e., w ∈ RC =⇒ 〈P (w), V 〉 ∧ Pr[V = accept] = 1.
Zero-Knowledge: The verifier learns nothing about the prover’s witness except
that it satisfies the proof, i.e., there exists simulator SimP such that 〈P (w), V 〉 c=
〈SimP , V 〉.
Soundness: An honest verifier rejects the proof with overwhelming probability
in security parameter λ, if the prover’s secret input is not a witness for the
proof, i.e., there exists extractor ExtV such that V = accept =⇒ 〈P (w),ExtV 〉 ∧
Pr[ExtV = w] = 1 − negl(λ).

Proof (Theorem 1). Completeness of ZK Protocols (1) to (3) follows immedi-
ately from their construction, so we focus on Zero-Knowledge and Soundness.

Zero-Knowledge. To prove zero-knowledge, we construct simulators SimP1 or
SimP2 in the hybrid model which do not know the witness of the individual ZK
Protocols (ZKPs), create views for the adversary which are indistinguishable
from the real protocol, and make the verifier accept the proofs. In the hybrid
model, simulators can simulate any ZK sub-proofs invoked during the protocol.

First, observe that all messages from the prover to the verifier are
semantically-secure ciphertexts, random numbers or other zero-knowledge
proofs.

In ZKP (1) and (2), the simulator SimP1 , or SimP2 (in ZKP (2)), randomly
chooses inputs ι1,i (or ι2,i) and masking bits μi,j as their input into 2PC. The
verifier inputs σi,j to the 2PC. After the 2PC, the simulator either receives
verification bits ti,j (ZKP (1)) or outputs random verification bits (ZKP (2)).

In the last step, we apply the hybrid model. The simulator invokes the simula-
tor of the ZKP for correct decryption using those (random) verification bits and
the committed (random) input and masking ciphertexts, simulating a consistent
execution of the ZKP.

In ZKP (3), SimP1 does not have to output verification bits vi,ωi,j , but the
verification is done using ZK proofs Scalari and Shufflei. Hence, the simulator
for ZK Protocol (3) chooses a random ωi and invokes the simulators for Scalari

and Shufflei.

Soundness. To prove soundness for ZKP (1) and (2), we construct extractors
ExtP1 or ExtP2 . We construct an extractor ExtP2 only for ZKP (1), but stress
that the extractor ExtP1 for (2) is equivalent. The extractor starts the ZK proof
and lets the prover commit to their inputs via homomorphic ciphertexts c1,j
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(for a known shared key). Then the extractor chooses challenge bits σi,j and
sends them to the 2PC. The prover outputs verification bits ti,j . The extractor
rewinds the prover to just before they received the challenge bits for the 2PC.
The extractor negates all challenge bits to ¬σi,j , sends them to the 2PC and
continues the protocol. Let the prover’s verification bits after rewinding be t′i,j .
We assume that the prover has consistent inputs and hence these inputs are
extractable: the prover’s inputs in ZKP (1) are ti,j ⊕ t′i,j .

The soundness of ZKP (3) is a special case of authenticity of garbled cir-
cuits [6], and we do not need an extractor. Challenge bits vi,0,j and vi,1,j are
input to the 2PC. Note that the soundness of the ZKP (1) ensures that the
entire execution of the verifier is secure against malicious behaviour, including
its conversion of the challenge bits from FHE to 2PC. The output depends on
the output of the 2PC. Since the prover only evaluates the garbled circuit, it is
bound to the correct or no output due to the authenticity property of garbled
circuits. It can hence only produce one consistent set of output labels vi,ωi,j .

This completes our security proof. Note that only the proof of ZKP (3) is
recursive to the proof of ZKP (1), and hence all proofs are valid if ordered
from (1) to (3). �
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