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Abstract. The paper proposes SecureBiNN, a novel three-party secure
computation framework for evaluating privacy-preserving binarized neu-
ral network (BiNN) in semi-honest adversary setting. In SecureBiNN,
three participants hold input data and model parameters in secret shar-
ing form, and execute secure computations to obtain secret shares of
prediction result without disclosing their input data, model parameters
and the prediction result. SecureBiNN performs linear operations in a
computation-efficient and communication-free way. For non-linear opera-
tions, we provide novel secure methods for evaluating activation function,
maxpooling layers, and batch normalization layers in BiNN. Communica-
tion overhead is significantly minimized comparing to previous work like
XONN and Falcon. We implement SecureBiNN with tensorflow and the
experiments show that using the Fitnet structure, SecureBiNN achieves
on CIFAR-10 dataset an accuracy of 81.5%, with communication cost
of 16.609MB and runtime of 0.527s/3.447s in the LAN/WAN settings.
More evaluations on real-world datasets are also performed and other
concrete comparisons with state-of-the-art are presented as well.

Keywords: Privacy-preserving machine learning · Secure multi-party
computation · Binarized neural network

1 Introduction

Machine Learning as a Service (MLaaS) has created huge economic benefits
and been widely used in image classification, disease diagnosis, etc. In MLaaS,
both model owner and data owner would suffer from privacy leakage if the
model or input data could be accessed by others arbitrarily. Cryptographic tech-
niques, e.g., secure multiparty computation (SMC) and homomorphic encryp-
tion (HE), are good solutions to the problem. The community really sees many
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cryptography-enabled protocols [7,15,23,24,27,34], and most of them focus on
naive neural networks (NN) and stipulate the parameters in fixed-point numbers.
Some work [8,28] implements binarized neural network (BiNN) (model parame-
ters take the values of ±1). BiNN has simpler calculation process than NN and
one may expect more efficient implementation of BiNN (than NN) with SMC
and HE.

This paper proposes SecureBiNN, a novel three-party framework for BiNN
inference, secure under non-colluding semi-honest adversary setting (same as
SecureNN [34] and XONN [28]). SecureBiNN has three semi-honest participants,
each of which holds secret shares of the input data and of the model. We evaluate
BiNNs with replicated secret share technique [5], reduce communication cost and
enhance computation efficiency by ruling out garbled circuit (GC) and HE. After
the framework evaluation, each party outputs its secret share of prediction result.
SecureBiNN can be applied to inference on sensitive data without compromising
privacy. For example, three banks could use their own data to predict customers
for financial fraud, or three hospitals could use patients’ private data to make
better diagnoses without revealing their privacy.

Our contributions can be summarized in the following two aspects:

– Framework: We propose SecureBiNN, a secure computation framework for
BiNN inference. To reduce communication cost, SecureBiNN chooses ring
size according to BiNN architecture. Furthermore, we propose new protocols
for three-party oblivious transfer, secure activation, and secure maxpooling.
To further improve SecureBiNN performance under WAN settings, we use 3-
input AND gate to reduce the number of communication rounds. In particu-
lar, our maxpooling operation requires only one private comparison operation.
We put batch normalization and binarized activation together, and thereby
use one addition and one private comparison to achieve batch normalization
and activation operation.

– Practicality: SecureBiNN is computation-efficient and communication-cheap.
We implement SecureBiNN with numpy [36], Tensorflow [4] and run experi-
ments on three ecs.c7.2xlarge servers from Alibaba Cloud. We evaluate various
networks on MNIST, CIFAR-10 and real-world medical datasets. The results
of experiments in Sect. 4 show the practical feasibility of SecureBiNN under
LAN/WAN settings. We provide our source code on Github1.

We recap the related work in the Appendix A due to space limitation.

2 Preliminaries

We review security model, correlated randomness, and secret sharing used in
this paper. We denote three participants as P0, P1, and P2. P(i+1)mod 3 and
P(i−1)mod 3 denote the next and previous parties for Pi respectively. For simplic-
ity, we omit mod 3 in the subscript of Pi and other variables (e.g., xi, ri).

1 https://github.com/Wixee/SecureBiNN.

https://github.com/Wixee/SecureBiNN
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2.1 Security Model

We assume that each participant is honest-but-curious (a.k.a. semi-honest). In
other words, each participant implements the protocols honestly and will not
attack others actively (e.g., capture others’ secret keys, monitor others’ commu-
nications, or construct malicious input data). However, they might try to infer
information of others as much as possible. Such model is commonly assumed
in [22,23,28,34]. We also adopt the same assumption as in other three-party
protocols [16,24,35] that there is no collusion between any two participants.

As previous work and other cryptographic protocols, SecureBiNN ensures
input data and model parameters will not be leaked during protocol executions.
We will not discuss how to protect model structure or to defend other attacks like
model retrieval attack [33], membership inference attack [31] and data poisoning
attacks [11], which go apparently out of scope of the framework.

2.2 Correlated Randomness

In this work, random values are generated by a PRF (Pseudo-Random Function)
R with two inputs x, y, denoted as R(x, y). Given an input pair, R will return a
specific value. R’s output can be viewed as a uniform distribution on its domain.
We assume that Pr[(x, y) ← A(R(x, y))] is negligible for any PPT adversary A.

Suppose Pi and Pi+1 negotiate a secret random seed ri+1. Pi holds (ri, ri+1),
i = 0, 1, 2. All participants maintain a counter cnt, incremented by one after
each invocation. For a modulo m, we have two types of correlated randomness.
3-out-of-3 randomness: Pi calculates ai = R(ri+1, cnt) −R(ri, cnt) mod m.
Note that a0 + a1 + a2 ≡ 0 mod m.
2-out-of-3 randomness: Pi calculates (ai, ai+1) = (R(ri, cnt), R(ri+1, cnt)).
By 2-out-of-3 randomness, Pi, Pi+1 can generate a common random value ai+1

without any communication cost, and Pi−1 does not have the knowledge of ai+1.

2.3 Two-party Secret Sharing

For a modulo m = 2l, l ∈ Z
+, a secret x ∈ Zm is shared by sampling two random

x0 and x1 s.t. x0 + x1 = x over Zm. Denote x shared by two parties as �x�m
2 .

When l = 1, we can denote �x�B
2 = �x�22 = (x0, x1) where x0 ⊕ x1 = x and

x, x0, x1 ∈ {0, 1}. More details can be found in [6,13,23]. The linear operation
for two-party secret sharing is trivial, and the multiplication can be implemented
by using Beaver’s Triplet [6].

2.4 Three-party Secret Sharing

Three-party secret sharing is proposed in [5]. For a modulo m = 2l, a secret
x ∈ Zm is shared by sampling three random x0, x1, x2 ∈ Zm, x = x0+x1+x2, and
then Pi holds (xi, xi+1). Denote such kind of secret shared value x as �x�m

3 , and
the tuple (x0, x1, x2) represents its shares. Three-party secret sharing supports
linear operations and multiplications between the shared values. Given public a,
b and c, we have the following for secretly shared �x�m

3 and �y�m
3 .
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– Linear operation: participants can compute �ax + by + c�m
3 := (ax0 + by0 +

c, ax1 + by1, ax2 + by2) locally to achieve linear operation.
– Multiplication: Pi computes and outputs zi = xiyi + xiyi+1 + xi+1yi where∑2

i=0 zi = z = xy. If the participants need to restore the output to the form
of �z�m

3 , they should invoke 3-out-of-3 randomness to get a0, a1, a2, and Pi

sends zi + ai to Pi−1. At last, Pi outputs (zi + ai, zi+1 + ai+1).

Both two-party and three-party secret sharing schemes can be trivially extended
to matrix computations.

3 The SecureBiNN Framework

3.1 Highlights

For a BiNN with n layers, we denote the input and the weights of the i-th layer
as Xi−1 and Wi respectively. Xi−1s and Wis are encoded into an integer ring and
secretly shared by participants who run multiplication protocol of secret sharing
to calculate WiXi−1. This method can be easily generalized to convolutional
neural network. The activation function used in BiNN is

Sign(x) =

{
1 x ≥ 0

−1 x < 0
(1)

When running the sign function, we convert three-party secret sharing into two-
party secret sharing between P0 and P1 to evaluate part of parallel prefix adder
circuit. We can get the result of the sign function according to the MSB (most
significant bit) of its input. After that, three participants utilize a three-party
oblivious transfer (OT) to convert the result of the circuit into three-party secret
sharing again. The three-party OT we use originates from [24]. However, we alter
its input and make some modifications so that it also works well in SecureBiNN.
We will show details in the following part. Note that the sign function is used
in the maxpooling layers as well.

Before implementing SecureBiNN, a model owner should encode its model
in the form of three-party secret sharing. Input data should also be encoded in
the same way. After the protocol, each party holds a share of the result, and all
participants would then send their shares to those who should know the result.
This is application-dependent and here we do not consider the source of the
input and how participants deal with the results.

3.2 Parameters Encoding

We encode all model parameters into Z2l . Among all n layers, l’s value decided in
the i-th layer might be independent of that in the j-th layer (1 ≤ i, j ≤ n, i �= j).
In the input layer and output layer, we use standard fixed-point arithmetic
encoding scheme. In other layers, however, we can use a smaller l to reduce
parameter size. For example, we encode parameters of the input layer and output
layer into Z216 or Z232 , while the parameters of other layers are encoded into Z29

or Z214 . We will describe more details below.
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Encoding Input and Output Layer Parameters. In the input and output
layers, we use standard fixed-point encoding, and a bit string of length l can
represent a fixed-point number in complement form. In most cases, the value
of l is 32. The MSB of some number represents the sign of the number: it is
non-negative if its MSB is 0, and negative otherwise. We say a number has lD
bits of precision (0 ≤ lD < (l − 1)/2) if the lD bits at the far right represent the
fractional part and the remaining l − 1 − lD bits represent the integer part.

In SecureBiNN, we ditch truncation operations (used generally in fixed-point
arithmetic multiplications), for we only use fixed-point encoding in input/output
layers and no overflow occurs. Our method requires that for addition operations
in input/output layers, the operands should have same precision. Take Y =
WX + b for instance. If W and X have lWD and lXD bits of precision respectively,
then WX has lWD + lXD bits of precision. In order to remove truncation and make
addition result correct, b should also have lWD + lXD bits of precision.

Encoding Hidden Layer Parameters. In SecureBiNN, the parameters of
each hidden layer are represented by signed integers of l bits. Herein, l could be
chosen independently in each layer. In hidden fully connected layers, every entry
in the input Xi−1 and the weight Wi takes 1 or –1. If the shapes of Wi and Xi−1

are (n,m) and (m, k) respectively, then each entry in WiXi−1 is an signed integer
in [−m, m]. We can thus choose the smallest l s.t. 2l−1 − 1 ≥ m and encode Wi

and Xi−1 into the ring Z2l . In case that the hidden layer performs a convolution
operation and filter size is (nin, h, w, nout), we require 2l−1−1 ≥ nin×h×w. Then
we use l bits to represent any signed integer parameter in the layer. W.l.o.g.,
this can also be seen as 0-bit precision fixed-point encoding.

This method has relatively low fault tolerance. Indeed, the number of neurons
in previous layer completely determines the ring size, and we do not consider
addition operations in subsequent batch normalization (see the coming sections),
which might cause overflow. This little gap could be handled heuristically. If the
hidden layer is a fully connected layer or a convolutional layer followed by a
normalization layer, then we add a constant δ to l to relax the restriction on l.
Our experiments show that setting δ = 2 already provides expected robustness.

3.3 Fully Connected Layer and Convolutional Layer

Consider an arbitrary fully connected layer. All its input X, weight W (and bias b
for input/output layers) are secretly shared over Z2l among the participants who
collaboratively invoke multiplication protocol (see Algorithm 1) to calculate the
(shared) result. The protocol could be easily extended to convolution operations.
In the protocol, b should have lW + lX bits of precision if the fixed-point W and
X have lW and lX bits of precision respectively.

3.4 Secure 3-Input and Gate

In order to further improve the performance in the WAN setting, we use 3-
input AND gate technique [25] to reduce communication rounds in implementing
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Algorithm 1. Fully Connected Layer Inference: Πfc

Input: Pi inputs the weight share (Wi, Wi+1), data share(Xi, Xi+1) (and bias share
bi if the layer is input layer or output layer) s.t.

∑2
j=0 Wj = W ,

∑2
j=0 Xj = X,

∑2
j=0 bj = b, i ∈ {0, 1, 2}.

Output: Pi outputs Zi, secret shares of fully connected layer output.

1: Pi : Zi = WiXi + Wi+1Xi + WiXi+1

2: if it is not a hidden layer then
3: Zi = Zi + bi
4: end if

Algorithm 2. Secure 3-input AND Gate: Π3−inputANDgate

Input: P0, P1 input �a�B2 , �b�B2 , �c�B2 , P2 inputs ⊥.
Output: P0 and P1 ouput �z�B2 where z = abc, P2 ouputs ⊥.

1: P0, P1 generate �a′�B2 , �b′�B2 , �c′�B2 , �a′b′�B2 , �a′c′�B2 , �b′c′�B2 , �a′b′c′�B2 with the help
of P2 by utilizing 2-out-of-3 randomness.

2: P0, P1 calculate �a ⊕ a′�B2 , �b ⊕ b′�B2 , �c ⊕ c′�B2 .
3: P0, P1 reconstruct and open (a ⊕ a′), (b ⊕ b′), (c ⊕ c′).
4: P0 and P1 calculate and output �z�B2 according to the Eq. (2).

secure activation function. It can be seen as an extension of Beaver’s Triplet
technique [6]. The formula for 3-input AND gate can be written as

z = abc =(a ⊕ a′)(b ⊕ b′)(c ⊕ c′) ⊕ (c ⊕ c′)a′b′ ⊕ (b ⊕ b′)a′c′

⊕ (a ⊕ a′)b′c′ ⊕ (a ⊕ a′)(b ⊕ b′)c′

⊕ (a ⊕ a′)(c ⊕ c′)b′ ⊕ (b ⊕ b′)(c ⊕ c′)a′ ⊕ a′b′c′.
(2)

Here, a, b, c represent the inputs and z represents the output, a′, b′ and c′ are
random masks used to hide a, b, c respectively in SMC. Before implementing
such a 3-input AND gate, P0 and P1 take �a�B

2 , �b�B
2 and �c�B

2 as inputs, P2

plays the role of a helper, generates �a′�B
2 , �b′�B

2 , �c′�B
2 , �a′b′�B

2 , �a′c′�B
2 , �b′c′�B

2 ,
�a′b′c′�B

2 and send these secret shares to P0 and P1.
In SecureBiNN, with the help of 2-out-of-3 randomness, communication cost

of implementing a 3-input AND gate can be further optimized. By 2-out-of-3
randomness, P2 can reduce communication cost of secret sharing distribution.
P0 and P1 generate common uniform randomness with P2 respectively, and take
them as �a′�B

2 , �b′�B
2 and �c′�B

2 . Then P2 reconstructs a′, b′, c′ and calculates
a′b′, a′c′, b′c′, a′b′c′. P0 and P2 then generate common randomness again, P0

takes these randomness as shares of a′b′, a′c′, b′c′, a′b′c′, P2 calculates and sends
appropriate shares of above terms to P1. In the naive method, P2 needs to send a
total of 14 bit, while in above optimized method, 4 bits suffice. Algorithm 2 shows
the details of implementing a 3-input AND gate with the above optimization.

It is easy to prove the correctness, and we omit the details and just focus on
its security proof below.
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Algorithm 3. Ideal Function of Three-Party Oblivious Transfer: F3−OT

Input: Sender inputs (m0, m1), Receiver inputs b, Helper inputs ⊥.
Output: Receiver outputs mb, Sender and Helper output ⊥.

Algorithm 4. Three-Party Oblivious Transfer: Π3−OT

Input: Sender inputs (m0, m1), Receiver inputs b, Helper inputs ⊥.
Output: Receiver outputs mb, Sender and Helper output ⊥.

1: Receiver and Sender generate common ranom bit r, common random bit string
mask0 and mask1.

2: Sender computes si = mi⊕r ⊕ maski⊕r, i ∈ {0, 1}.
3: Sender sends (s0, s1) to Helper.
4: Receiver sends b ⊕ r to Helper.
5: Helper sends sb⊕r to Receiver.
6: Receiver calculates mb = sb⊕r ⊕ maskb⊕r.

Theorem 1. The above optimized secret sharing used for implementing 3-input
AND gate is secure, i.e., these secret shares in performing 3-input AND gate
will not leak secret information.

Proof. Since the 2-out-of-3 randomness generates uniform randomness, a′, b′,
c′, a′b′, a′c′, b′c′, a′b′c′ and the corresponding secret shares also conform to
uniform distribution. When implementing 3-input AND gate, messages are well
masked to follow uniform distribution, thus P0 and P1 cannot infer each other’s
secret share based on the transcripts (see interaction details in [25]). Therefore,
it is trivial to construct a simulator of the real-ideal paradigm [9]. P2 plays the
role of a helper and does not participate in the execution of AND gate itself, so
P2 can not infer the secrets. 	


3.5 Three-party Oblivious Transfer

We use three-party oblivious transfer (OT) in follow-up secure activation func-
tion. In our three-party OT, we have a sender holding two messages m0 and
m1, a receiver holding a choice bit b (that decides the message mb it wants
from the sender), and a helper holding null input. The corresponding ideal func-
tion is shown in Algorithm 3, and the detail of the three-party OT is shown in
Algorithm 4.

After the protocol, the receiver gets the message mb with the requirements
that the sender does not know which message is selected by the receiver, that
the receiver knows nothing about m1−b, and that the helper does not learn any
knowledge of the messages and the choice bit. Table 1 gives the comparison of
our three-party OT and that in ABY3 from the perspectives of communication
overhead, communication round, and the requirement on the choice bit.

Note that any two parties (e.g., the sender and the receiver in three-party OT)
can take a communication-free invocation of 2-out-of-3 randomness to generate
common randomness. So the first step in Algorithm 4 is communication free.
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Table 1. Comparison of OT in SecureBiNN and 1-out-of-2 OT in ABY3, l represents
the length of a single message

Comm. cost Round Helper knows the choice bit?

Ours 3l + 1 2 ×
ABY3 3l 2 �

Thus, if the bit lengths of both m0 and m1 are l, overall communication takes
3l+1 bits. The correctness and security of the protocol are obvious and intuitive.
This protocol will be used in secure activation function.

In our protocol, not only the sender but the helper cannot tell the index
of the exact message selected by the receiver, which is different from previ-
ous three-party oblivious transfer protocols in ABY3 [24] and Falcon [35]2. The
counterparts in them call an explicit and simple conversion from two-party secret
sharing to three-party secret sharing so that the helper and the receiver reach a
common bit and further take it as the choice bit. Thus, those schemes require
one more round of communication before the oblivious transfer begins.

Theorem 2. Π3−OT is secure against non-collusion semi-honest adversaries.

Proof. Due to the common uniformly random masks generated by Sender and
Receiver, the execution of the Π3−OT protocol is quite simple and one may
easily construct such a simulator. Sender and Receiver can generate common
uniformly random bit r, common uniformly random string mask0 and mask1
with the common random seed. This can be achieved by a trivial simulation
(omitted in the following discussion). Next, we discuss from the perspectives of
three parties.

1. If adversary A corrupts Sender: A sends two masked messages s0 and s1 to the
simulator S. S can extract m0, m1 from s0 and s1 since r, mask0 and mask1
are known to both A and S. S provides the input to the ideal functionality
F3−OT , then the ideal functionality will send the output to the party which
represents the receiver in the real world, thus honest parties in the ideal world
receive correct ouput. Since the sender receives no messages, the simulator
S sends the adversary A nothing and thereby A cannot distinguish the ideal
world and the real execution.

2. If adversary A corrupts Helper: S just sends a uniformly random bit and
two uniformly random strings which represent b ⊕ r, s0 and s1 (we assume
that the lengths of s0 and s1 are public). In the real world, b ⊕ r, s0 and
s1 all follow uniformly random distribution. So A cannot tell whether it is
interacting with the real protocol or simulator S.

3. If adversary A corrupts Receiver: A sends b⊕r to the simulator S. S extracts
b with the knowledge of r and inputs b to the ideal functionality F3−OT , and
can then receive the ideal output mb. After that, S generates mb ⊕ maskb⊕r

according to r and maskb⊕r (since r and maskb ⊕ r are known to Sender
2 OT protocols in ABY3 and Falcon are secure against semi-honest adversaries.
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and Receiver). Finally, S sends mb ⊕ maskb⊕r to the adversary A who opens
the message and gets the correct output. r and maskb⊕r simulated by S are
uniformly random, which is the same as in the real execution. So the adversary
A cannot tell whether it is interacting with the real protocol or simulator S.

This completes the security proof of Π3−OT . 	


3.6 Secure Activation Function

Suppose that the participants finish fully connected layer inference or convo-
lutional layer inference and now activation layer follows. Each party holds a
share of the evaluation result (in fact, a series of shares of the result’s entries)
after evaluating a fully connected layer or a convolutional layer. Suppose that
Pi holds the share zi. Now the participants want �Sign(z)�m′

3 given �z�m
3 . Here

m = 2l represents the modulo of the last layer, m′ represents the modulo of
the next layer. To the purpose, we have three phases: first convert three-party
sharing �z�m

3 (among P0, P1, P2) to two-party secret sharing �z�m
2 (between P0

and P1); then get �MSB(z)�B
2 by evaluating a parallel adder circuit on Z2 with

3-input AND gate technique; and finally get �Sign(z)�m′
3 by invoking three-party

oblivious transfer Π3−OT . The following presents the details.

From Three-Party Secret Sharing to Two-Party Secret Sharing. All
participants jointly call the 3-out-of-3 randomness protocol and each gets a
random value ai (such that a1 +a2 +a3 = 0), then P2 sends z2 +a2 to one of the
remaining parties (say P0). This will not leak any information as z2 +a2 sent by
P2 is distributed uniformly at random. Now P0 holds s0 = (z0 + a0) + (z2 + a2)
and P1 holds s1 = z1 + a1. We have s = s0 + s1 =

∑
(zi) +

∑
(ai) =

∑
(zi) = z

and thereby manage two-party secret sharing, i.e., s0 and s1 are secret shares of
z (and s).

Achieving MSB Extraction with Specific Part of Parallel Prefix Adder
Circuit. By converting three-party secret sharing to two-party secret sharing,
P0 and P1 reach �s�m

2 = (s0, s1) where m = 2l. One may view si (i = 0, 1)
as a bit string of length l. As s0 = s0 ⊕ 0, we then have �s0�

B
2 , a toy “two-

party secret sharing” of s0 such that P0 holds s0 and P1 holds 0. Similarly, we
have a toy “two-party secret sharing” �s1�

B
2 . One might gain the advantage of

communication round complexity in the MSB extraction protocol by the joint
exploit of toy “two-party secret sharing” and standard secret sharing.

Now, the participants P0, P1 (and P2) are ready to extract the MSB of s
(see Algorithm 5). We use s0[i] and s1[i] to denote the i-th bits of s0 and of s1
respectively. It is obvious that MSB(s) = s0[l − 1] ⊕ s1[l − 1] ⊕ c, where c is
a carry bit generated from lower l − 1 bit pairs. Three parties then use 3-input
AND gate to evaluate the parallel prefix adder circuit to compute the carry bit
c. For a 3-input AND gate with one free input in the circuit, we can replace it
with a 2-input AND gate by using well known Beaver’s Triplet technique [6] (a
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Algorithm 5. MSB Extraction: Πmsb

Input: P0 and P1 input �s0�
B
2 and �s1�

B
2 , si ∈ Z2l , P2 inputs ⊥.

Output: P0 and P1 achieve �b�B2 , b is the MSB of s where s = s0 + s1.

1: P0, P1 input �s0�
B
2 and �s1�

B
2 to the parallel prefix adder circuit which is composed

by 2-input and 3-input secure AND gates, P2 plays as a helper. They collaborate
to compute �carry bit�B2 with SMC.

2: �b�B2 = �s0[l − 1]�B2 ⊕ �s1[l − 1]�B2 ⊕ �carry bit�B2 .

Algorithm 6. Convert �MSB(z)�B
2 to �Sign(z)�m′

3

Input: P0 and P1 input the shares b0, b1 in �MSB(z)�B2 respectively (MSB(z) = 0 if
the said neuron is activated, and 1 otherwise), P2 inputs ⊥.

Output: �t�m
′

3 among P0, P1, P2 s.t.
∑

ti = Sign(z). m′ is the modulo.
Parameter: deact val = 0 if maxpooling layer follows and −1 otherwise.

1: P1 selects a secret value r ∈R Zm′ and calculates m0 = (1 ⊕ b1)act val + (0 ⊕
b1)deact val − r (mod m′), m1 = (0 ⊕ b1)act val + (1 ⊕ b1)deact val − r (mod m′).

2: Call Π3−OT (P0 acts as receiver, P1 sender, and P2 helper), and P0 receives mb0 .
3: P0 sets t′

0 = mb0 , P1 sets t′
1 = r, P2 sets t′

2 = 0.
4: Pi generates ai ∈ Zm with 3-out-of-3 randomness.
5: Pi sets ti = t′

i + ai, and sends ti to Pi−1, then Pi holds (ti, ti+1).

simplified version of 3-input AND gate) to further reduce the communication
cost. The same circuit is used in [26] to handle the case where l is set as 32 or
64. In contrast, SecureBiNN always takes a smaller value (e.g., 16 or 18) of l
determined by the structure of the previous layer. In other words, SecureBiNN
has a smaller circuit size and this will further contribute to lower communication
cost and less interaction rounds.

Converting �MSB(z)�B2 to �Sign(z)�m
′

3 . Given �MSB(z)�B
2 between P0

and P1, we can now get �Sign(z)�m′
3 among P0, P1, P2. Recall that if the MSB is

0, then the neuron hereof should be activated, and deactivated otherwise. As we
use the activation function Sign, we have the activation value act val = 1 and
the deactivation value deact val = −1. If a maxpooling layer follows however, we
set deact val as 0 (rather than −1) in order to adapt to maxpooling operation.

The details are shown in Algorithm 6. To achieve �Sign(z)�m′
3 , we let P1

generate symmetric messages by using its secret knowledge (secret share in
�MSB(z)�B

2 and one-time randomness) along with activation/deactivation val-
ues. We then call our three-party oblivious transfer protocol Π3−OT by viewing
P1 as the sender, P0 the receiver, and P2 the helper. The particular constructing
of the messages enables P0 to get the exact message decided by its secret share
(in �MSB(z)�B

2 ) so that a simple conversion from two-party secret sharing to
three-party sharing leads to the expected �Sign(z)�m′

3 .
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3.7 Batch Normalization

In SecureBiNN, batch normalization is always followed by an activation layer
so we can put batch normalization operation and activation operation together.
Consider the following formula for batch normalization [17]:

Y = γ
X − μ√
σ2 + ε

+ β. (3)

Herein, γ and β are trainable parameters in the batch normalization, ε is a small
constant to avoid the “Divide by Zero” error, μ and σ are parameters decided
in the training process. Thus, all these parameters would be set as fixed values
during inference. And we can rewrite Eq. (3) as

Y =
γ√

σ2 + ε
X + β − γμ√

σ2 + ε
. (4)

Let γ′ = γ√
σ2+ε

, β′ = β − γμ√
σ2+ε

, then we have

Y = γ′X + β′. (5)

In most cases, γ′ is positive and batch normalization layer is followed by an
activation layer. It holds that

Sign(γ′X + β′) = Sign(X +
β′

γ′ ). (6)

Thus, the model owner first encodes β′

γ′ into a fixed-point number over the ring

Zm and then uniformly samples θi s.t.
∑2

i=0 θi = β′

γ′ and sends θi to Pi. If
the participants need to perform batch normalization between a fully connected
layer and an activation function, Pi only needs to add θi to the output share of
the fully connected layer.3

In the input layer, X and β′

γ′ are both fixed-point numbers, but in the hidden

layers, X is an integer and β′

γ′ is not. In this case, if Sign(X + β′

γ′ ) = 1 (which

means X + β′

γ′ ≥ 0), there is

X ≥ �−β′

γ′  ≥ −β′

γ′ . (7)

So Eq. (8) holds and we can implement it instead.

Sign(γ′X + β′) = Sign(X − �−β′

γ′ ). (8)

3 Same for convolutional layers.
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1 1

1 0
3 2 TrueSum -1 >=0

? 1

0 0

0 0
0 -1 FalseSum -1 >=0

? -1

Fig. 1. Two examples of maxpooling

3.8 Maxpooling

We know that the neurons hereof should be activated (i.e., act val = 1) if
MSB(z) = 0, and deactivated (i.e., deact val = −1) otherwise. Suppose that
maxpooling layer follows now. If there exists 1 in some maxpooling step, then
the max value is 1 and a standard maxpooling step would output 1, and −1
otherwise. This can be done generally by several comparator operations [35].
Whereas, our framework takes a different trick. Now we set the deactivation
value as 0 rather than −14 and then check whether there exists 1 in the pool.
If yes, then the sum of these entries minus 1 should be greater than or equal
to 0. After a convolutional layer, participants convert the maxpooling layer to a
‘sumpooling layer’, i.e., they replace the ‘Max’ operation in the maxpooling layer
with an ‘Add’ operation (see Fig. 1) and then apply Sign function to the output
of the ‘Add’ operation. Therefore, a single step of maxpooling layer can be done
by an ‘Add’ operation and a MSB extraction operation. Prior frameworks, like
MiniONN [21], generally lean on the secure comparison protocols (i.e., compara-
tor) and secure multiplications to find the largest value in the pool, and the
numbers of comparator and multiplication calls have a linear relationship with
filter size.

There is another optimization. The participants need not convert the shares
to three-party secret shares after an activation operation which is always followed
by a maxpooling layer. P0 and P1 can locally implement a ‘sumpooling layer’
and then participants implement the activation operation again.

4 Experiment Results and Analysis

We execute SecureBiNN with Python (about 3k lines of code), and computations
are implemented through numpy 1.19.0 [36] and tensorflow 2.5.1 [4]. We run
our experiments on three ecs.c7.2xlarge servers from Alibaba Cloud, each with
8vCPU and 16GB RAM. We evaluate SecureBiNN in the following settings:

4 The maxpooling operation comes on the heels of the activation layer, and can be
achieved by changing the final output of the activation layer as in Algorithm 6.
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Table 2. Evaluation results of SecureBiNN under LAN setting on MNIST and com-
parisons with prior work. Runtime is reported in seconds and Comm in MB. ∗: Falcon
does not report the consumption (runtime and communication cost) required in its
offline phase. The results hereof are only for its online phase. �: the protocols can be
secure in both semi-honest adversary model and malicious adversary model, and we
only consider their costs under the semi-honest model

2PC/3PC Framework Network-A Network-B Network-C

Time(s) Comm. (MB) Acc. Time Comm. Acc. Time Comm. Acc.

2PC EzPC (�) 0.7 76 0.976 0.6 70 0.99 5.1 501 0.99

Gazelle 0.09 0.5 0.976 0.29 8 0.99 1.16 70 0.99

MiniONN 1.04 15.8 0.976 1.28 47.6 0.990 9.32 657.5 0.99

XONN 0.13 4.29 0.976 0.16 38.3 0.986 0.15 32.1 0.99

3PC ABY3 (�) 0.008 0.5 – 0.01 5.2 – – – –

SecureNN 0.043 2.1 0.934 0.076 4.05 0.988 0.13 8.86 0.99

Falcon(�, ∗) 0.011 0.012 0.974 0.009 0.049 0.978 0.042 0.51 0.986

Secure

BiNN(ours)

0.003 0.005 0.973 0.007 0.032 0.972 0.020 0.357 0.984

Table 3. Evaluation results of SecureBiNN under WAN setting on MNIST and com-
parisons. Runtime is reported in seconds and Comm in MB. ∗, �: same as in Table 2

2PC/3PC Framework Network-A Network-B Network-C

Time(s) Comm. (MB) Acc. Time Comm. Acc. Time Comm. Acc.

2PC EzPC (�) 1.7 76 0.976 1.6 70 0.99 11.6 501 0.99

3PC SecureNN 243 2.1 0.934 3.06 4.05 0.988 3.93 8.86 0.99

Falcon(�, ∗) 0.99 0.012 0.974 0.76 0.049 0.978 3.0 0.51 0.986

Secure

BiNN(ours)

0.248 0.005 0.973 0.440 0.032 0.972 1.15 0.36 0.984

– LAN: We set up three servers in Ulanqab, and the network latency and band-
width are 0.2 ms and 625MBps respectively.

– WAN: We set up three servers in Ulanqab, Hangzhou and Shanghai, the
latency and the bandwidth between the servers are 36 ms and 5MBps respec-
tively. Note that these parameters are close to those of the Internet in daily
use, which further proves our solution is available in practical settings.

At present, there are few secure inference frameworks applied to BiNNs, so
in addition to XONN [28] (a 2-party scheme for BiNNs), we select other works
for comparison as well. We choose 3-party frameworks including ABY3 [24],
SecureNN [34], Falcon [35], Chameleon [29], and some well known 2-party pro-
tocols, i.e., EzPC [10], Gazelle [18], MiniONN [21], for sufficient comparisons.

We measure running time, communication volume and accuracy. We repeat
each experiment 10 times, and then take average running time. Although we need
secret shares of helping terms in implementing secure AND gates, we emphasize
those are done online, and no offline phase is required.
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Table 4. Performance comparisons among different frameworks on Lenet-5. ∗, �: same
as in Table 2

Framework SecureNN CrypTFlow Falcon(�, ∗) SecureBiNN

Time(LAN, s) 0.23 0.058 0.047 0.025

Time(WAN, s) 4.08 – 3.06 0.602

Comm.(MB) 18.94 – 0.74 0.522

Acc 0.991 – 0.991 0.989

4.1 Experimental Evaluation on MNIST

We evaluate three different NN on MNIST dataset [20] (60,000 training samples
and 10,000 test samples). Each sample is a 28 × 28 handwritten digital image.
We use SecureBiNN to make inference on these networks and measure its running
time and communication cost. Bellow are the architectures of three models:

Network-A: FC(128) − FC(128) − FC(10);
Network-B: Conv(28 × 28, 5 channels) − FC(100) − FC(10);
Network-C: Conv(28 × 28, 16 channels) − MP(2 × 2) − Conv(12 × 12, 16
channels) − MP(2 × 2) − FC(100) − FC(10).

Network-A is a 3 layer fully-connected network, Network-B is a 3 layer net-
work with a single convolution layer followed by 2 fully connected layers, and
Network-C is a network with 2 convolutional layers, 2 maxpooling layers and
2 fully-connected layers. These models are used in many prior work, and we
also compare our experimental results with some of them. Tables 2 and 3 show
the comparisons under LAN and WAN settings. Further, we compare the per-
formance of SecureBiNN with SecureNN [34], CryptTFlow [27], Falcon [35] on
Lenet-5 [20], and the results are shown in Table 4. Accuracy rate of each frame-
work is only for reference as it may vary with the changes of model parameters.

Comparing to prior work, SecureBiNN shows its competitive performance
partially due to the tricky encoding, i.e., the parameters are encoded over a ring
with a smaller size. Other frameworks like Falcon, ABY3 use Z232 , meaning that
parameters are represented with 32 bits. The advantages of parameter encod-
ing lead to significant reduction in the amount of communication consumption
between participants. Another advantage goes to maxpooling. In prior protocols,
maxpooling cost is generally exorbitant as each pooling step requires overabun-
dant MSB extraction operations (pool size minus 1 times). However, one single
MSB extraction is needed in each pooling step of SecureBiNN.

4.2 Experimental Evaluation on CIFAR-10

Table 5 evaluates more networks on CIFAR-10 [19], including binarized versions
of Fitnet 1–4 [30]. We train BiNN according to each structure. In the experi-
ments, we encode the parameters of input/output layers over Z232 and set the
precision of these parameters as 13 bits. By the architecture of these networks
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Table 5. Evaluations of SecureBiNN under LAN/WAN on CIFAR-10. Runtime is in
seconds and Comm in MB. s means that the number of neurons in fully connected
layers (or the number of filters in convolutional layers) is increased by a factor of s

Arch. s Time(s, LAN) Time(s, WAN) Comm.(MB) Acc.

Fitnet 1 1 0.112 2.776 3.074 0.688

2 0.204 2.958 6.364 0.778

3 0.527 3.447 16.609 0.815

Fitnet 2 1 0.173 2.901 5.178 0.765

2 0.351 3.419 10.773 0.797

3 0.527 3.769 16.609 0.812

Fitnet 3 1 0.367 3.739 11.806 0.811

2 0.810 5.244 24.654 0.834

3 1.368 7.313 39.878 0.836

Fitnet 4 1 0.430 6.393 13.660 0.789

2 0.909 6.062 29.111 0.808

3 1.560 8.500 48.195 0.810

in Table 5, when the scale factors are 1 and 2, most of the weighted parame-
ters in the hidden layers are encoded over Z214 , Z215 ; for the factor of 3, most
parameters are over Z217 . Many previous tests have been done on Fitnet 1, and
we compare SecureBiNN with these work. The results are shown in Table 6.

Table 6. Comparisons among different frameworks on Fitnet 1 under the LAN setting.
s means that the number of neurons in fully connected layers (or the number of filters
in convolutional layers) is increased by a factor of 3. �: same as in Table 2

Framework MiniONN Chameleon EzPC (�) Gazelle XONN SecureBiNN

s=3 s=1 s=2 s=3

Time(s) 544 52.67 265.6 15.48 5.79 0.112 0.204 0.527

Comm.(MB) 9272 2650 40683 1236 2599 3.074 6.364 16.60

Acc 0.816 0.816 0.816 0.816 0.819 0.688 0.778 0.815

Now, the advantages of our solution become more explicit, because Fitnet has
more convolution, activation and maxpooling operations than Networks A, B, C
(Tables 2, 3). XONN uses GC to evaluate the BiNN, the garbled table and keys
transmission are known to be of lavish spending. Comparing to XONN, Secure-
BiNN needs far less communication overhead. Furthermore, when we increase
the number of neurons in each layer by a factor of 3, most of the weighted param-
eters are encoded over Z217 . This means that in an activation operation, we only
need to input a 17-bit number instead of a 32-bit number into the parallel pre-
fix adder circuit (the bit length is almost half of the latter). This substantially
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reduces the cost of the activation function, which is always overbearing con-
sumption and bottleneck of such kinds of protocols. This special feature offers a
significant advantage to Fitnet 1 architecture compared to prior work.

Table 7. Experiment results of SecureBiNN on real-world medical datasets. We drop
the rows with null values from the sets and perform min-max scale on validation sets

Dataset # of Samples Evaluation results for a single input

Tr Val Time (s, LAN) Time (s, WAN) Comm. (MB) Acc.

Breast cancer [1] 455 114 0.005 0.014 0.002 0.991

Diabetes [32] 614 154 0.005 0.014 0.002 0.812

Liver [2] 463 116 0.005 0.017 0.003 0.741

Malaria [3] 22048 5512 0.072 0.377 1.861 0.930

4.3 Experimental Evaluation on Real-World Medical Datasets

One of the most common scenarios where such schemes can be used is to aid in
diagnosis. To demonstrate the effectiveness of SecureBiNN in real-world scenar-
ios, we select below four real-world medical datasets to simulate real-world usage
scenarios: breast cancer dataset [1], Pima Indians diabetes dataset [32], Indian
liver patient records [2] and malaria cell images dataset [3]. The first three sets
consist of several numerical features related to patients’ information. The last one
consists of the images of different sizes, so we reshape all the images to 32 × 32.
All tasks are to predict whether a patient is infected with the corresponding
disease. We evaluate the following models for each dataset:

Breast Cancer: FC(16) − FC(16) − FC(2);
Diabetes: FC(20) − FC(20) − FC(2); Liver: FC(32) − FC(32) − FC(2);
Malaria: CONV(5 × 5, 36 channels) − MP(2 × 2) − CONV(5 × 5, 36 channels)
− MP(2 × 2) − FC(72) − FC(2).

We split each dataset into training and validation portions before evaluation,
and the partition details and the evaluation results are shown in Table 7.

5 Conclusion and Future Work

The paper proposes the first privacy-preserving three-party discrete neural net-
work inference framework supporting fast execution and low communication
cost. As most existing SMC proposals, our framework SecureBiNN is secure
against semi-honest adversary. Due to the parameter distribution of binarized
neural network, fewer bits suffice in SecureBiNN to represent a parameter, reduc-
ing further the lengths of the messages generated in the participant interactions.
Experiments confirm its lower communication cost at similar accuracy to state-
of-the-art. In this paper, P0 and P1 are able to implement secure AND gate and
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3-party OT with the help of P2. However, in the case where P2 is a malicious
adversary, the method proposed in this paper cannot be directly used. More
attempts might be made to construct actively secure algorithms by introducing
consistency checking mechanisms against malicious adversary.

Acknowledgement. The work is supported by the National Natural Science Foun-
dation of China (Grant No. 61971192), Shanghai Municipal Education Commission
(2021-01-07-00-08-E00101), and Shanghai Trusted Industry Internet Software Collab-
orative Innovation Center.

A Related Work

The privacy-preserving neural network inference technology is mainly divided
into two routes, one is based on HE, and another on SMC.

In the former route, one commonly used HE algorithm is CKKS [12], a
computation-expensive leveled-FHE scheme with multiplication depth being
kept within certain range. In 2016, Nathan et al. propose Cryptonets [12] using
the CKKS algorithm. Since CKKS can only support addition and multiply oper-
ations, it is difficult to implement the Sigmoid or the ReLU activation functions,
and only the square function can be used which makes low model accuracy.

A representative example in SMC-based route goes to SecureML [23] which
uses Beaver’s Triplet [6] to realize multiplication. As it requires numerous multi-
plication triples, SecureML supports limited practicability. Subsequent schemes
(e.g., ABY [13]) significantly reduce the running time and communication cost.
Other frameworks including BiNN inference framework XONN [28] mainly rely
on GC. Some 3PC frameworks (e.g., ABY3 [24] and Falcon [35]) use replicated
secret sharing [14]. Therein, three parties can directly perform privacy-preserving
multiplications locally according to the input to obtain the output and no inter-
action is required. Thus, these 3PC frameworks are generally more efficient and
faster than those 2PC frameworks, an advantage meeting actual needs.
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