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Abstract. A trusted computing base (TCB) is the minimum set of hard-
ware and software components which are inherently trusted by a plat-
form, and upon which more complex secure services can be built. The
TCB is secure by definition, and it is typically implemented through
hardened hardware components, which ensure that their secret data can-
not be compromised. In this paper, we propose and investigate a two-tier
TCB architecture that benefits both from a small hardened ‘minimal’
TCB, but also offers the possibility of integrating complex security ser-
vices into an ‘extended’ TCB. Our design includes a collection of pro-
tocols to ensure (1) secure update of the components, (2) secure boot
of the platform, (3) attestation, and (4) detection of powerful attackers
that can corrupt memory regions together with a (highly probable) plat-
form recovery mechanism after such an attack. The protocols have been
formally modelled, and we provide a collection of security properties that
have been verified using the automatic protocol verifier ProVerif.

Keywords: Trusted computing base · Secure boot · Remote
attestation · Formal modelling

1 Introduction

A trusted computing base (TCB) is the set of software and hardware components
of a system which form a trust anchor, and upon which the security of the system
relies. Two considerations that influence the design of a TCB appear to oppose
each other:

– On one hand, the TCB should be very secure; this means that it should be
as small and as simple as possible (since complexity brings insecurity); and
it should be strongly isolated from the main system so that a compromise in
the main system cannot affect the TCB.
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– On the other hand, the TCB should offer trustworthy services that support
the operation of the main system, such as storage and secure usage of cryp-
tographic keys, storage of application-specific secrets, and trusted execution
of application-specific code.

In this paper, we investigate how to split the TCB into two parts, a minimal
trusted computing base (MTCB) providing limited functionalities, but the most
hardened services, and an extended trusted computing base (ETCB) providing
additional functionalities and services that cannot be protected to quite the
same extent. This paper proposes a design for a secure architecture of MTCB
and ETCB. Our target platform is the TCB for a network device (e.g., a router,
modem, or base station). This kind of platform boots infrequently, and hence
boot-time checks are insufficient to guarantee security; we also need checks done
at run-time. We expect our design may be useful for other kinds of platform too.

Our contributions include:

– A novel two-tiered TCB architecture, achieving high-grade security proper-
ties for the core TCB, while also allowing a rich extended TCB to support
applications;

– Security analysis of the protocols defined for the TCB architecture, including
verification using ProVerif.

2 Background

Trusted Execution Environments (TEEs) such as ARM TrustZone [13], Intel
SGX [5], RISC-V Keystone [6,7], or Sancus [12] realize isolation and attestation
of secure application compartments called enclaves. TEEs enforce a dual-world
view, where even compromised or malicious operating system (OS) in the nor-
mal world cannot gain access to the memory space of enclaves running in an
isolated secure world on the same processor. This property allows for a TCB
reduction: only the code running in the secure world needs to be trusted for
enclaved computation results. Thus, such enclave systems offer a great deal of
flexibility when it comes to defining the specific code and services that can be
executed. However, such flexibility usually comes at the price of an increased
surface of attack which gives rise to well-known microarchitectural attacks such
as cache timing in TruSpy [21], ARMageddon [8] and Cachezoom [10], or spec-
ulative execution based attacks in Foreshadow [19], ZombieLoad [16], SgxSpec-
tre [4], CrossTalk [14], among many others. Besides microarchitectural attacks,
rich TEEs often require complex interaction with the insecure world, which leads
to ‘Tale of two worlds’ type of attacks [20].

On the other hand, fixed-API devices such as the Trusted Platform Module
(TPM) [18] or the Google Titan M/C chips [15] have a significantly reduced
TCB, compared to enclave systems. However, they are typically low performance
devices, hard to update and cannot easily support customized applications.

Minimization of the TCB is one of the key principles for secure systems
design. A two-tiered TCB has the potential to get the best of both worlds:
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Fig. 1. Two-tier TCB architecture

a small but well protected TCB to guard high secrets which are seldom used
and a larger, more feature rich and fast TCB to protect medium secrets. The
extended TCB can use the minimum TCB as a trust anchor for long term key
storage, integrity protection, etc.

3 Design of the TCB

We assume that the system processes assets which may be categorised as high-
value (e.g., long-term keys), medium-value (e.g., ephemeral session keys), and
low-value (e.g., transient data). The core functionality of the MTCB is to pro-
tect high-valued assets from strong adversaries, and provide the ultimate trust
anchor for the system. In order to achieve this, we propose that the MTCB
be implemented on a tamper-resistant, discrete processor with its own memory
(drawing inspiration from OpenTitan). The MTCB can be integrated within
the same SoC as the main processor, RAM and memory controller, in order to
avoid bus probing attacks between separate components [17], but with its own,
physically separated RAM, and ROM. Having its own memory, the MTCB is
isolated from the main processor and thus immune to side channel leakage, e.g.,
through cache attacks.

Figure 1 depicts our simple MTCB-based platform architecture. This discrete
chip implements basic cryptographic primitives including hashing and public key
signatures with state-of-the art countermeasures against side-channel and fault-
injection attacks. We discuss the offered functionalities below.

3.1 Main Functionalities

The MTCB implements a very delimited set of services, built upon a set of main
functionalities, which can be summarized as follows:

Secure Boot. This functionality ensures that the device boots only if it can
ascertain that the software being booted is the pre-registered one (e.g., through
an enrolment process). We use secure boot to launch the main processor. At boot
time, the main processor loads the ETCB in the predefined memory address and
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then halts. The MTCB boots and measures the ETCB by hashing the ETCB
code and comparing the resulting hashes with the expected values, which are
stored in an external non-volatile memory (NVM). If this check is successful,
then the MTCB enables the main CPU to continue booting. The ETCB then
takes control of the boot sequence. Now the ETCB will measure the relevant
parts of the OS and compare these with the expected hashes. Communication
between the MTCB and the ETCB occurs using their shared memory.

Attestation. This functionality allows a remote party (such as the device
owner) to obtain a statement signed by the MTCB about the MTCB’s own
state (including its firmware version), and the currently loaded ETCB and some
aspects of the system software. The MTCB stores the attestation key and its
corresponding certificate (chain). Attestation requests are received by system
software, and sent from there via the ETCB to the MTCB. Such attestation
requests include a challenge from the verifier such as a nonce. Upon receipt of
an attestation request the MTCB will produce a signed statement of the chal-
lenge, its own state, firmware version, etc., plus the hash of the ETCB code which
is currently loaded in memory. Additionally, it includes the hashes provided by
the ETCB of the relevant system components which need to be attested.

ETCB Recovery. This functionality aims to identify a memory corruption
situation where the adversary has gained enough control over the platform so
that it can change the memory contents of the ETCB and substitute it by its
own, malicious version. The MTCB proactively measures the running ETCB
code, and forces a reboot to a safe state if it finds an unexpected measurement.

3.2 Auxiliary Functionalities

In order to implement the above core security functionalities in practice, we
require the following functionalities as well:

Measurement of the ETCB. As part of three of the security protocols,
namely secure boot, attestation and ETCB recovery (discussed in Sect. 5 below),
the MTCB has the ability to access the main processor’s RAM in read-only mode
through the memory controller, providing the best of both worlds. This design
feature allows performing measurement of the ETCB which runs within the TEE
and at a fixed memory address in RAM, e.g., at the very beginning. In order to
prevent TOCTOU type of issues generated due to the asynchronous access to
the main RAM, the MTCB is set as master of the memory controller. During
measurement of the ETCB the MTCB simply disables write access to the code
area of the ETCB from the main processor.

Measurement of the OS. Similarly, the ETCB is able to read and measure
the memory region where the OS is loaded. We propose that the ETCB enclave
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system follows an architecture similar to RISC-V Keystone [6,7] or ARM Trust-
Zone [13], where the ETCB can take control of the boot sequence and instruct
the CPU to execute the OS if the measurements match the expected values.

3.3 Description of the Architecture

As discussed above, the MTCB (and its RAM and ROM) are integrated within
the same SoC as the main processor, and there is also RAM shared by the MTCB
and the main processor. We discuss the remaining components of the proposed
architecture from Fig. 1.

Provisioning Bus. The MTCB must expose an interface (e.g., SPI, I2C or
JTAG) for firmware provisioning at manufacture time. During the provisioning
process, the MTCB will read contents from that interface and write it to its
NVM. After finalizing the provisioning process, the MTCB will permanently
disable the provisioning interface, preferably, at hardware level by configuring
the appropriate fuse bits.

Random Number Generator. In order to guarantee the generation of high-
entropy cryptographic material, we require that the MTCB be provided with a
hardware true random number generator (TRNG), which generates random bits
from a physical process.

Fuse Memory. The MTCB has an internal fuse memory, which stores:

– A persistent secret key that is generated on first boot used to encrypt and
authenticate the external NVM.

– CTR CUR VERSION: A unary counter that keeps track of the currently
installed version. Each time the MTCB updates its code, it increments this
value to match the installed version number.

– CTR SAFE MODE: A unary counter that stores the signal SAFE MODE
between reboots: an odd value of the counter signifies that the MTCB must
activate the SAFE MODE signal when the platform boots. See Sect. 5.4 below
for more details.

External NVM. The MTCB requires persistent secure storage (EEPROM) to
store highly-valued crypto objects and code. The semiconductor manufacturing
process does not allow the integration of mixed process sizes within the same
SoC, e.g., 7 nm and 14 nm processes. Hence, if current EEPROM technology has
a different process size than the main processor, then they cannot be integrated
within the same SoC. In order to circumvent this limitation, we implement the
MTCB NVM as an external EEPROM chip connected directly to the MTCB
via SPI. Because the external NVM could potentially be accessed by a physical
attacker, the contents of the EEPROM are encrypted and authenticated. Upon
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booting of the MTCB, the MTCB BootROM verifies the integrity of the memory
blob from the EEPROM, authenticates and decrypts it, using the secret key per-
sistently stored in fuse memory. Then the MTCB BootROM verifies its version
number against the unary counter CTR CUR VERSION held in the internal
fuse memory, and then loads the firmware onto the MTCB’s RAM. Conversely,
with every write operation, both the NVM version number and the unary counter
held in fuse memory are incremented and the NVM re-encrypted and authen-
ticated. In order to prevent rollback attacks, it is necessary to increment the
NVM version number with each state change, which has the drawback of con-
suming one fuse per update. Fortunately, our MTCB does not require frequent,
persistent state changes.

Crypto Primitives. The MTCB contains a number of basic crypto primitives
(hashing, symmetric encryption, key derivation), implemented as ASIC blocks,
which are required to enable the services it offers.

Table 1. Two-tiered TCB design requirements

Requirement Realization

MTCB Resistance to cryptography compromise Firmware is updatable to enable new cryp-
tographic algorithms

Bricking avoidance A/B updates

Resistance to micro-architectural attacks Separate processor, avoiding sharing
resources such as cache

Resistance to physical attacks (fault injec-
tion, side channel)

Separate processor, implements counter-
measures, TRNG

Resistance to physical attacks (bus prob-
ing)

SoC integration with the main CPU

Resistance to chip decapsulation (confiden-
tiality)

Self-destructing tamper resistance

Resistance to chip decapsulation (integrity) Usage of fuse memory for counters and root
firmware verification key

Usage of high entropy cryptographic mate-
rial

TRNG

Attestation Hashing and public-key signing scheme

Evolvability External NVM for counters and root
firmware verification key, and fuse memory

Rollback protection Fuse memory

ETCB Resistance to software attacker, e.g., buffer
overflow attacker

Has enclave system with memory integrity
protection (authenticated)

Keystore for protected secrets Has enclave system

Resistance to run-time memory corruption Periodic run-time memory measurements
by MTCB; ETCB recovery protocol;
safe mode

Attestation Attestation of ETCB by MTCB

Table 1 mentions some architecture requirements of the TCB and the features
that realize them.
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4 Adversarial Model

The objective of this section is to define a realistic adversary for the architecture
presented above. The adversary can send and receive messages to some plat-
form components (see below). If it learns keys or defines new keys, it can apply
cryptographic operations using those keys. To the extent that it has the appro-
priate keys, the adversary can intercept and spoof messages between components
of the system. These aspects of the adversary model are sometimes called the
Dolev-Yao model. Later in this section, we specify other aspects of the adversary
model, such as the ability to corrupt memory.

Ideally, one would like to define the strongest conceivable adversarial model,
since it is clear that if a security property holds for a such a model, it will
automatically hold for a relaxed version of that adversary (i.e., having a subset
of capabilities). However, imposing a too strong adversary will simply make it
impossible that the protocol satisfies any non-trivial security property. For exam-
ple, if we allow the adversary to have unrestricted control over the exchanged
messages by any party, unrestricted capability to change the platform memory,
and the ability to anticipate any MTCB operation, it will be impossible to prove
attestation of platform state: the adversary can simply switch the memory con-
tents to a legitimate ETCB and OS just before the MTCB is going to attest the
memory contents, and switch back to the malicious version afterwards.

Therefore, in order to come up with a realistic adversary, the following rea-
sonable considerations have been taken for our modelling of the protocols:

Communication Channels. The adversary has unlimited read/write access
to: 1. The Vendor-Platform channel, 2. The Verifier-Platform channel, 3. The
ETCB-OS channel, 4. The MTCB-ETCB channel. However, we require that the
adversary has the following restrictions:

1. no write access to the provisioning channel before initial manufacturer provi-
sioning,

2. no read/write access to the MTCB-ETCB channel during first boot,
3. no write access to the signals (ENABLE, READY, SAFE MODE) exchanged

between the MTCB and the main CPU.

We note that making all those channels available to the adversary might be an
over-pessimistic assumption (as it might be unrealistic that it has access, e.g.,
to the MTCB-ETCB channel, which is within the same tamper-resistant SoC),
but we can still prove our desired security properties under this assumption.
This means that the security properties are anchored on the secrets held by the
different participants in the protocol, and in the root of trust implied by the
MTCB, but not in the fact that a certain communication between parties is
made unavailable to the adversary.

Integrity. We assume that the MTCB is a root of trust for the platform, its
integrity is guaranteed, and its secrets are not leaked to the adversary. We also
assume that the Vendor secrets are not leaked.
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Initial Platform State. The adversary can freely choose an initial configu-
ration for the ETCB and OS at each boot, possibly a malicious ETCB and/or
OS.

Memory Corruption. The adversary can change ETCB and OS memory
regions after they have been loaded by the CPU. We do not differentiate whether
this can be achieved through a bug present in a faulty (but legitimate) ETCB,
or through some sort of fault-injection or physical vulnerability. Our modelling,
discussed below in Sect. 6, allows arbitrary change between legitimate and non-
legitimate ETCBs at any time. However, in a real scenario, it is reasonable to
consider that when the adversary switches the memory to a legitimate ETCB,
then it cannot longer regain control easily. We also consider that if the adver-
sary succeeds in corrupting the memory to a rogue ETCB version, then it will
be interested in running it for a non-negligible fraction of time.

Anticipation of MTCB Operations. To combat memory corruption attacks,
we introduce some MTCB operations that aim to detect them. We assume that
appropriate protections are in place to prevent anticipation of those MTCB
operations. Alternatively, we can assume that the adversary is able to anticipate
MTCB operations, without guaranteeing that it will have enough time to hinder
their effect. E.g., an adversary could anticipate a memory measurement, but it
may not have enough time to revert the memory contents to the uncorrupted
state. These assumptions are reasonable for a realistic adversary.

Denial of Service Attacks. As usual in the symbolic model of cryptography,
it is impossible to prove “non-DoS” properties, because a Dolev-Yao adversary
can drop messages indefinitely. For instance, it is impossible to prove that a
Verifier eventually gets a valid attestation. However, it is possible to prove that
when a Verifier is convinced that a received attestation is genuine, it is indeed
the case.

Some further considerations about adversarial modelling will also be dis-
cussed below in Sect. 6.

5 Protocols

The two-tier TCB architecture comprises a set of four core security protocols
designed in order to achieve secure firmware update, secure platform boot, plat-
form attestation, and ETCB recovery of a corrupted system. Additional custom
services can be build through proper customisation of the ETCB. We start by
providing a description of the four core protocols investigated from an imple-
mentation point of view. That is, without taking into account the modelling
approaches that will be discussed in Sect. 6 below. These protocols are designed
to work in conjunction, as the security guarantees of a certain protocol might
depend on the establishment of a certain parameter on a previous protocol.
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Table 2. Glossary of symbols, representing cryptographic objects used throughout the
paper

Object Description

Vendor sskV Secret signing key used for MTCB A/B firmware update

spkV Public verification key corresponding to sskV

σV *A signature using sskV

kfw Symmetric encryption key, shared with the MTCB, for code

confidentiality.

MTCB idM Unique identifier for a particular MTCB instance

codeM Manufacturer-supplied MTCB code

verM MTCB code version

ptr Firmware pointer (either NVM region A or B)

ltsME Long-term secret, shared between MTCB and ETCB,

established on first boot

bsME *Boot secret, shared between the MTCB and the ETCB,

established on each boot through the AKEP2 subprotocol

kMAC *MAC key, shared between the MTCB and the ETCB, used

in Protocol 3 (attest.)

sskM Secret signing key used for attestation

spkM Public verification key corresponding to sskM

σM Signature using sskM

ETCB idE Unique identifier. See remark on Sect. 5.2 below

codeE Adversary-supplied ETCB code

verE Version

hE *Currently loaded ETCB measurement, i.e., hE =

h(codeE)

href
E Reference ETCB measurement

OS codeO Adversary-supplied OS code

hO *Currently loaded OS measurement, i.e., hO = h(codeO)

href
O Reference OS measurement

All objects (except those marked with *) are stored persistently, e.g., NVM, fuse

memory, or enclave secure store. Objects marked with * are kept in RAM while

needed

There are a total of seven parties involved in the protocols, although not all
of them take part in all protocols, namely:

– MTCB: The most protected part of the system, running on a dedicated
processor mounted in the SoC, which is a small processor separate from the
main CPU.

– ETCB: An enclave system, such as ARM TrustZone [13], Intel SGX [5] or
RISC-V Keystone [6,7], running on the main CPU on the SoC.

– CPU: The main processor on the SoC. It runs the ETCB in an enclave
system, and it runs the OS.

– OS: The operating system running on the CPU.
– Verifier: A remote party interacting with the system. The verifier can send

messages to the system (such as requests for attestation) and receives and
verifies the replies.

– Vendor: The maker of the system, which installs the firmware and the keys.
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– Adversary: An agent that tries to circumvent the secure operation of the
system. The adversary’s capabilities are defined in Sect. 4.

There are many objects held or exchanged by the different parties. For con-
venience, in Table 2, we provide a glossary of the symbols used to represent those
objects throughout the paper.

5.1 Protocol 1: MTCB A/B Update

Protocol 1 implements over-the-air (OTA) MTCB code updates. In order to
ensure that a workable booting system remains on the MTCB NVM space dur-
ing the update process, we implement “A/B updates,” in which there are two
slots that can contain the MTCB code, called A and B. This approach reduces
the likelihood of an inactive or “bricked” device, should the update process be
interrupted for any reason. If this occurs, the MTCB would boot on the non-
updated version again. In the execution of this protocol, there are three elements
that are updated in the MTCB NVM: the version number verM , the code itself
codeM , and the Vendor public signing key spkV . For clarity, we parametrize
these three elements using a bracketed index indicating a specific update, e.g.,
codeM [i] and codeM [i + 1] denote the code contents of two consecutive updates.

Let us consider that the current status of the MTCB corresponds to the ith
update. When the platform boots, the MTCB boot pointer ptr indicates what
region of the NVM contains codeM [i] (either region A or B), and the MTCB
BootROM loads it. Also, we assume that the system currently has a legitimate
MTCB, and as such, it implements the A/B update protocol. More concretely, all
legitimate and signed codeM implements the A/B update protocol. The sequence
of steps to achieve the next, i + 1, A/B update is as follows:

1. The Vendor updates its signing keypair sskV [i+1], spkV [i+1] (or copies the
previous one), generates the updated codeM [i+1], and increments the version
number verM [i + 1], for example, verM [i + 1] = i + 1. Then, it produces the
tuple

(verM [i + 1], enckfw(codeM [i + 1]), spkV [i + 1]), (1)

and signs it with the current signing key sskV [i], obtaining the signature
σV [i + 1]. It outputs publicly the tuple (1) and σV [i + 1].

2. The MTCB receives the secure update command together with the tuple (1)
and the signature σV [i + 1], and it proceeds as follows:

3. Verify σV [i + 1] with currently installed spkV [i].
4. Check that verM [i + 1] > verM [i].
5. Decrypt codeM [i + 1] using kfw.
6. Copy the decrypted contents codeM [i+1] and updated signing key spkV [i+1]

at the complementary NVM location (which is B if the MTCB is currently
executing from A, and is otherwise A).

7. Check the hash of written contents.
8. Update the stored version number.
9. Change the boot pointer to the complementary NVM location and reboot.
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Figure 2 briefly depicts the NVM state in the different stages of the A/B
update. Note that the proposed design does not allow non-consecutive updates
if there is a change of the Vendor signing keypair in between. That is because in
order to verify the signature σV [i+1], it has to match the corresponding signing
key spkV [i]. It could be argued that there are two types of MTCB updates:
minor, where the signing key does not change, and major, where the signing
key changes. For simplicity, and due to the fact that the MTCB is expected to
execute a limited number of updates during its lifetime, we only consider major
updates in our analysis. This can also be enforced at Step 4. by checking whether
verM [i + 1] = verM [i] + 1.

Fig. 2. Protocol 1: NVM stages in the A/B update

Also, note that the current version number verM is stored in unary notation
in fuse memory as the counter CTR CUR VERSION. This removes the need to
store the boot pointer: the MTCB BootROM can simply execute code stored in,
e.g., NVM region A if verM is even, and NVM region B if verM is odd.

Observe that we do not allow for the code encryption key kfw to be updated.
This is due to the fact that there is not much gain in doing so: if this key
is compromised at any point in time, all future versions of this key will be
compromised as well.

Finally, we require that the reference ETCB measurement href
E , used in the

secure boot protocol (see Sect. 5.2 below) has the same level of protection in the
NVM as codeM has. That is, integrity, confidentiality and rollback protection.
The reason for this is that otherwise an attacker can do a rollback attack if it
can corrupt the NVM memory. As a result, an update in the ETCB requires an
update in the MTCB.

5.2 Protocol 2: Secure Boot

The goal of secure boot is for the MTCB to validate the integrity and trustwor-
thiness of the ETCB and OS code before the platform executes them, so that
it can ensure it starts with an expected, legitimate combination of ETCB and
OS. Therefore, the MTCB has to be regarded as a root of trust of the whole
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system, and the security of this protocol (and indirectly that of the remaining
ones) relies on this assumption. Hence, in our analysis, we consider that both
codeE and codeO are freely chosen by the adversary, but the MTCB firmware
codeM is unconditionally trusted.

This protocol uses the AKEP2 protocol [1] in order to derive a shared boot
secret bsME. A long-term secret ltsME shared between the ETCB and the MTCB
is required, which was established on the first boot at manufacture time. We
abstract away from the specific enclave system used by the ETCB, and we assume
that it provides long-term secure storage for its internal secrets. Note that the
ETCB does not have a persistent identity; the platform’s persistent identity is
given by the MTCB identifier idM . Nevertheless, for the AKEP2 protocol, the
ETCB is required to have an identity, which we define as idE = h(ltsME), for
some secure hash function h.

Figure 3 depicts this protocol. The sequence of actions is as follows:

Fig. 3. Protocol 2: Secure boot

1. The adversary freely chooses ETCB and OS code to be loaded at boot time,
namely codeE and codeO, and forwards it to the platform.
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2. The platform boots. The MTCB checks the counter CTR SAFE MODE in
fuse memory. If the counter has an odd value, it sets the signal SAFE MODE
to true.1

3. The main CPU has pre-boot ROM called BootROM Secure Boot Code
(BSBC). This code loads codeE and codeO into memory, signals the MTCB
using the signal READY, and then halts the CPU.

4. The MTCB disables the CPU by setting the signal ENABLE to false. Then,
it reads codeE , which is located at a fixed, predefined memory location known
to BSBC and MTCB, and obtains the measurement hash hE = h(codeE).

5. The MTCB compares the measurement hE with an expected, reference value
href

E . If these values match, it notifies the CPU to continue by setting the
signal ENABLE to true.

6. Upon receiving the signal from the MTCB, the CPU launches the ETCB
code, codeE .

7. Only on first boot, the MTCB and the ETCB establish a long-term secret
ltsME. The first boot is assumed to happen in a controlled environment,
outside the reach of any adversary. The MTCB stores ltsME and verE in
its encrypted NVM. The ETCB stores ltsME and idM in encrypted form in
untrusted storage.

8. The MTCB and the ETCB establish a boot secret bsME by executing the
AKEP2 protocol. This will be required by Protocol 3 below.

9. The ETCB reads codeO, which is located in a predefined memory loca-
tion known to ETCB and BSBC, and obtains the measurement hash hO =
h(codeO).

10. The ETCB compares the measurement hO with an expected, reference value
href
O . If these values match, it launches the OS code, following an approach

similar to RISC-V Keystone [6,7] or ARM TrustZone [13].

We remark that the ETCB and OS measurements carried out at Steps 4.
and 9., respectively, must take into account all the data that is expected to
remain immutable (e.g., keys and version numbers).

5.3 Protocol 3: Remote Attestation

Remote attestation concerns the reporting of the current platform state (e.g.,
hardware and software configuration) to an external entity (Verifier). The goal
of the protocol is to enable the Verifier to determine the level of trust in the
integrity of the platform, that is, that the platform runs a legitimate combination
of ETCB and OS. The security guarantees of remote attestation, in general, are
limited to state that “at some point in time between the attestation request and
its reception, the platform was running with the attested configuration.”

In order to prevent the adversary from executing an attack by reusing mes-
sages from an earlier boot instance, the communication between the MTCB and

1 The SAFE MODE signal does not play a role in Protocol 2, but it is used by Proto-
col 4 (ETCB recovery) after secure boot has finished. See Sect. 5.4 for more details.
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the ETCB is authenticated (integrity-protected) through a MAC. Therefore, the
protocol uses the shared boot secret bsME established in the secure boot protocol
(Sect. 5.2 above) to derive the MAC key.

Protocol 3 is depicted in Fig. 4, and the sequence of actions is as follows:

1. The Verifier generates a challenge chal and forwards it to the OS.
2. The OS forwards the challenge to the ETCB.
3. The ETCB and MTCB derive a MAC key kMAC using the boot secret bsME.
4. The ETCB reads codeO, which is located in a predefined memory location,

and obtains the measurement hash hO = h(codeO).
5. The ETCB forwards chal, hO, and MACkMAC(chal, hO) to the MTCB.
6. The MTCB checks MACkMAC(chal, hO).
7. The MTCB reads codeE , which is located in a predefined memory location,

and obtains the measurement hash hE = h(codeE).
8. The MTCB signs the tuple

(idM , chal, hO, hE) (2)

with the attestation signing key sskM , obtaining the signature σM .
9. The tuple (2) together with its signature σM is forwarded back to the ETCB,

OS and Verifier.
10. Using the attestation public signing key spkM , the Verifier checks that σM

is a valid signature for the received tuple (2).
11. The Verifier compares the measurements hE and hO with the expected,

reference values href
E and href

O , respectively. If these values match, the Verifier
declares a successful attestation.

Fig. 4. Protocol 3: Remote Attestation

Observe that, for simplicity, we assume that the MTCB attestation keypair
sskM , spkM is persistent. This can be an issue from the point of view of privacy,
as this keypair uniquely identifies the platform. A possible alternative to over-
come this problem is to use an approach similar to that used by TPM remote
attestation. The TPM uses a master key (endorsement key in TPM’s termi-
nology), which is used to decrypt arbitrarily many attestation keys as desired,
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which have been certified through a Privacy Certification Authority, or through
the Direct Anonymous Attestation protocol. Obviously, this would require to
remove idM from (2). As a result, from the Verifier’s perspective, they will know
that “a platform has successfully been attested” without knowing the precise
identity of that platform. This arrangement is important for TPMs because they
are deployed in personal laptops, where privacy is an important issue. However,
it may not be needed in network infrastructure devices or similar scenarios.

5.4 Protocol 4: ETCB Recovery

This protocol aims to identify a memory corruption situation where the adver-
sary has gained enough control over the platform so that it can change the
memory contents of the ETCB and substitute it by its own, malicious version.
The MTCB proactively measures the running ETCB code, and forces a reboot
to a safe state if it finds an unexpected measurement.

This protocol can be divided into two processes: corruption detection and
recovery. We assume that the platform is already booted, and that the adversary
had freely chosen the ETCB and OS code to be loaded at boot time, namely
codeE and codeO. Also, at any point in time, the adversary might be able to
corrupt the RAM location where codeE is stored. See the considerations about
the adversary in Sect. 4. The sequence of actions for this protocol is as follows:

(a) Memory Corruption Detection:
1. The MTCB periodically reads codeE , which is located in a predefined

memory location, and obtains the measurement hash hE = h(codeE). We
can set hE to an undefined value if the MTCB is unable to conduct this
measurement, e.g., if the attacker is blocking the channel.

2. The MTCB compares the measurement hE with an expected, refer-
ence value href

E . If these values do not match, it increments the counter
CTR SAFE MODE in fuse memory to an odd value, indicating that the
signal SAFE MODE is set, and reboots the platform.

(b) Recovery:
3. The platform reboots. The MTCB checks the counter CTR SAFE MODE

in fuse memory. If the counter has an odd value, it sets the signal
SAFE MODE to true.

4. If the main CPU is booted with SAFE MODE set to true, the fire-
wall is configured to allow outgoing connections only. This aims to pre-
vent the ETCB/OS from becoming immediately compromised again. The
ETCB/OS attempts to report the security violation to the cloud service.

5. The OS downloads a new signed version of the ETCB code. That is, a
tuple (ver′

E , code′
E) with a Vendor signature σV .

6. The OS forwards the tuple and signature to the MTCB (via the ETCB).
7. The MTCB checks the Vendor signature σV , and checks that the received
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ETCB version is strictly larger than the current one, i.e., ver′
E > verE .2

8. The MTCB updates the reference measurement for the MTCB as href
E =

h(code′
E), and stores ver′

E in its encrypted NVM.
9. If the MTCB has succeeded in downloading and installing code′

E , it incre-
ments the counter in fuse memory to an even value, indicating that the
signal SAFE MODE is clear, and reboots the platform. Otherwise, it
remains indefinitely in safe mode.

This protocol is not guaranteed to succeed, for a number of reasons: First,
a powerful adversary could anticipate the moment that the measurements will
occur, and take action to avoid detection. Second, even if detected, the replace-
ment of the ETCB might not prevent further attacks. And third, the adversary
might block fetching of code′

E .
However, we show that the protocol will succeed with probability arbi-

trarily close to 1 under some reasonable assumptions; see Sect. 4 above. The
MTCB implements protections so that the adversary cannot always anticipate
the MTCB memory measurements, and it can also identify whether its mea-
surements are being prevented or delayed. Also, the adversary is interested in
keeping a rogue ETCB version in memory for a non-zero fraction of time. This
excludes improbable corner cases, for example, an adversary running a malicious
ETCB for a very small fraction of time between secure boot and the first MTCB
memory measurement, and then switching to a legitimate ETCB the rest of the
time. We note that the adversary is free to arbitrarily change the memory at any
point, which is probably an overestimation of its capabilities. Nevertheless, our
probabilistic argument works as detailed below, even with this overestimation.

Although the adversary is interested in running a rogue version of the ETCB,
it is also forced to switch the memory contents (to a legitimate ETCB) so that
the MTCB produces an expected measurement and does not trigger the recovery
procedure. Hence, there is a trade-off between the adversary spending enough
time running the rogue version and the possibility of being detected: too much
time spent by the rogue ETCB will increase the chances of the MTCB in identify-
ing the attack, whereas too much time spent by the legitimate ETCB in memory
will restrict its malicious abilities. Consider the following given parameters:

– T : time interval during which the platform is active, T > 0,
– p: minimum proportion of active time that the adversary has the rogue ETCB

in memory, 0 < p ≤ 1,
– ε: target error probability, i.e., maximum admissible error of not identifying

the attack occurring while the platform is active. We can take this parameter
as small as desired.

2 From the point of view of security, the most conservative approach is to require that
ver′

E > verE . However, this has the downside effect that if there is no new ETCB
version available, the platform would remain in safe mode (inoperative) indefinitely.
To avoid this situation, we could relax this check and only require that ver′

E ≥ verE .
This is justified if there is a significant cost of time and resources to the adversary
to mount the attack again.
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We are interested in finding the frequency f , i.e., the number of memory
measurements by the MTCB per unit of time, so that the actual error probability
does not exceed the target ε. That is, we want that the probability of failing to
identify an attack occurring in T , which is (1 − p)fT , does not exceed ε. It is
straightforward to see that for any choice of T , p the target error is satisfied for
any f ≥ f0, with

f0 =
log ε

T log(1 − p)
.

As expected intuitively, the required frequency of measurements increases for
ε → 0, and p → 0. Also, note that f0 → 0 for p → 1, i.e., a single measurement
is sufficient if the adversary always keeps its malicious version in memory.

6 Modelling and Verification of Security Properties

We have verified the core security properties of our TCB design using ProVerif [2,
3], which is a tool for automated analysis of security properties in cryptographic
protocols. ProVerif analyses our pseudocode for Protocols 1–4, and determines
whether the security properties we specify hold or not. This is an excellent tool
for uncovering design errors, because ProVerif explores all permitted actions of
the adversary, and reports potential attacks if such attacks exist. It is a valuable
tool for the development of protocols. Nevertheless, it should be remembered
that even if ProVerif shows that all the properties are satisfied, this does not
mean that the system is secure.

Further details, including the formal description of the security properties
can be found in Appendix A. ProVerif is successful in proving the set of security
properties for the protocols discussed. The source code with the models, the
security properties and a collection of sanity check queries can be found in [11].

7 Conclusion

We have motivated and described our design for a two-tiered TCB, which is
targeted at network infrastructure devices such as routers and modems. It aims
to provide a small and hardened “minimal” TCB that is assumed secure, but is
nevertheless updatable if it turns out insecure. This MTCB is rather inflexible,
however, because of its small size and minimal size and strong isolation from
the rest of the system. The second tier is a bigger “extended” TCB that offers
application-specific services, and is more flexible, while not offering quite such
rigorous security because it runs on the same processor as potentially untrusted
code. The ETCB is also updatable.

Designing such a two-tiered TCB led us to many design decisions and intri-
cate protocols in order to get the two parts to work together securely. In arriving
at the designs, we studied attacks that are common for this kind of device, as
well as good practice recommendations that have arisen, both in the academic
literature and in industry (e.g., The MITRE Corporation CWE). We detailed
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our design decisions, and specified the protocols both informally and in the for-
mal language of ProVerif. We have used ProVerif to verify a number of relevant
security properties about them.

A Security Properties

In this appendix, we present the formal description of the security properties for
Protocols 1–3. Due to space constraints, we include the properties for Protocol 4
in the extended version of the paper. We have verified these properties using
ProVerif [2,3], which is a tool for automated analysis of security properties in
cryptographic protocols.

Security properties are expressed through guarded first-order logic formulas.
These properties can be classified as reachability properties (i.e., a certain event
in the execution trace is reachable) or as correspondence assertions (i.e., a certain
event always occurs prior to the execution of a later event). For correspondence
assertions it is customary to check reachability of the event that occurs later,
since if this event never occurs, then the assertion will be trivially verified. We
omit those reachability sanity checks here. Events are used to define security
properties, and they do not modify the semantics of the protocols. Events rep-
resent local computations or mark relevant points in the execution of the pro-
tocols. The notation “EventName(x1, . . . , xn)@t” indicates that an event with
name “EventName” and parameters x1, . . . , xn occurs at time t. The naming of
the events has been chosen to be self-documenting.

Also, note that the security properties for Protocol 2 and 3 can only hold if
no memory corruption occurs in a given platform boot. For this reason, corre-
spondence properties in Protocols 2 and 3 are conditioned to the event “Memo-
ryCorrupted( )” in the description of the relevant security properties below.

Security properties for Protocol 1: MTCB A/B Update.
[P1.1] Every MTCB only executes firmware installed by the Vendor (initial

install) or a previous legitimate firmware (subsequent installs) that has been
previously created and signed by the Vendor:

∀idM , ptr, verM , codeM , spkV , t3.

MtcbStarts(idM , ptr, verM , codeM , spkV )@t3 ⇒
(∃t2. MtcbInstalls(idM , ptr, verM , codeM , spkV )@t2∧
∃t1. VendorCreates(verM , codeM )@t1 ∧ (t1 < t2 < t3)

)
.

[P1.2] Once a given MTCB executes firmware of a certain version number
verM it will never execute firmware with version number ver′

M < verM

∀idM , ptr, verM , codeM , spkV , t1, id′
M , ptr′, ver′

M , code′
M , spk′

V , t2.

MtcbStarts(idM , ptr, verM , codeM , spkV )@t1∧
MtcbStarts(id′

M , ptr′, ver′
M , code′

M , spk′
V )@t2 ⇒

(
(t1 ≤ t2) ∧ (verM ≤ ver′

M )
) ∨ (

(t2 ≤ t1) ∧ (ver′
M ≤ verM )

)
.
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Security properties for Protocol 2: Secure Boot.
[P2.1] Only a legitimate ETCB is allowed to start on the platform.

∀inst, codeE , code′
O, code′

E , t2. EtcbStarts(inst, codeE)@t2 ⇒
IsLegitimateEtcb(codeE)∨
(∃t1. MemoryCorrupted(inst, code′

O, code′
E)@t1 ∧ (t1 < t2)

)

[P2.2] Only a legitimate OS is allowed to start on the platform.

∀inst, codeO, code′
O, code′

E , t2. OsStarts(inst, codeO)@t2 ⇒
IsLegitimateOs(codeO)∨
(∃t1. MemoryCorrupted(inst, code′

O, code′
E)@t2 ∧ (t1 < t2)

)

[P2.3] The AKEP2 protocol between the MTCB and the ETCB guarantees
mutual, injective agreement [9] for the MTCB nonce nM (which is used later
to obtain the boot secret bsME). For convenience, we assume that the array of
agreed parameters pars contains nM :

∀idM , idE , pars, t2. MtcbAkep2Commit(idM , idE , pars)@t2 ⇒
(∃t1. EtcbAkep2Running(idE , idM , pars)@t1 ∧ (t1 < t2)

)∧
¬(∃t′2. MtcbAkep2Commit(idM , idE , pars)@t′2 ∧ ¬(t2 = t′2)

)
,

∀idM , idE , pars, t2. EtcbAkep2Commit(idE , idM , pars)@t2 ⇒
(∃t1. MtcbAkep2Running(idM , idE , pars)@t1 ∧ (t1 < t2)

)∧
¬(∃t′2. EtcbAkep2Commit(idE , idM , pars)@t′2 ∧ ¬(t2 = t′2)

)
.

These formulas represent injective correspondence assertions as predicate logic
formulas. We remark that the last line of the two formulas above ensure the
injectivity of the correspondence assertions, since no two events can occur at the
same time point.

Security properties for Protocol 3: Remote Attestation.
[P3.1] For a given boot instance, It cannot happen that the MTCB generates

an attestation signature, the Verifier validates the attestation, and there is an
attack event.

¬(∃inst, chal, σM , t1, t2, t3.MtcbGeneratesSignature(inst, chal, σM )@t1∧
VerifierValidatesAttestation(chal, σM )@t2∧
AttackEvent(inst)@t3

)
.

[P3.2] For every boot instance, if the Verifier validates an attestation, then
an attestation signature must have been generated by the MTCB before, and
the following events must have occurred before that: 1. the Verifier generates
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the challenge, 2. the legitimate OS has been loaded, 3. the legitimate ETCB has
been loaded, 4. the legitimate ETCB has been started.

∀chal, σM , t7. VerifierValidatesAttestation(chal, σM )@t7 ⇒
(∃inst, t6. MtcbGeneratesSignature(inst, chal, σM )@t6∧
∃t5. VerifierGeneratesChallenge(chal)@t5∧
∃t4. EtcbStarts(inst, ETCB LEGITIMATE)@t4∧
∃t3. EtcbLoaded(inst, ETCB LEGITIMATE)@t3∧
∃t2. OsLoaded(inst, OS LEGITIMATE)@t2∧
(t2, t3, t4, t5 < t6 < t7)

) ∨ ∃code′
O, code′

E , t1. MemoryCorrupted(inst, code′
O, code′

E))@t1 ∧ (t1 < t7).

The source code with the formal models, the security properties and a col-
lection of sanity check queries can be found in [11].
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