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Preface

The 27th European Symposium on Research in Computer Security (ESORICS 2022)
was held together with the affiliated workshops during the week of September 26–30,
2022. Due to the COVID-19 pandemic, the conference and the workshops took place
in a hybrid mode. The virtual and in-person attendance was hosted and managed by the
Technical University of Denmark.

ESORICS is a flagship European security conference. The aim of ESORICS is to
advance the research in computer security and privacy by establishing a European forum,
bringing together researchers in these areas, and promoting the exchange of ideas with
developers, standardization bodies, and policy makers, as well as by encouraging links
with researchers in related fields.

Continuing the model introduced in 2021, this year ESORICS also offered two
review cycles: a winter cycle and a spring cycle. We believe that such an approach
sports great advantages. On the one hand, it is more convenient for the authors and, on
the other hand, it also increases the number of submissions, thus securing high-quality
papers. In response to the call for papers, which covered a few new topics, we received
a record-high number of papers: 562. This is a testimony of the growth and vitality of
the computer security field, the expansion of the research community in this field, and
the growing importance of ESORICS itself.

These papers were peer-reviewed and subsequently discussed based on the quality of
their scientific contribution, novelty, and impact by the members of the Program Com-
mittee. The submissions were single-blind, and in almost all cases there were vivid dis-
cussions among the members of the Program Committee to decide the merit of reviewed
papers.

The submission of the papers and the review process was carried out using the Easy-
Chair platform. Based on the reviews and the discussion, 104 papers were selected for
presentation at the conference, resulting in an acceptance rate of 18.5%. The most tan-
gible result of this whole process was that ESORICS had an exciting scientific program
covering timely and interesting security and privacy topics in theory, systems, networks,
and applications.

The papers thatwere selected for presentation at ESORICS2022 have been published
in a three-volume set of proceedings: LNCS 13554, LNCS 13555, and LNCS 13556.

Aside from the paper presentations, we were honored to have four outstanding
keynote speakers: Giuseppe Ateniese, Paulo Esteves-Verissimo, Ahmad Reza Sadeghi,
and Ravi Sandhu. Their talks provided interesting insights and research directions in
important research areas.

The Program Committee (PC) consisted of 180 members. We would like to thank
the members of the PC and the external referees for their hard work in supporting the
review process, as well as everyone who supported the organization of ESORICS 2022.
In particular, the exceptional number of submissions put quite a burden on the reviewers
(over the two cycles of submission, an average of 12 papers were reviewed by each
reviewer).
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We are grateful to the general co-chairs, Christian D. Jensen and Weizhi Meng; the
workshops chairs, Mauro Conti and Jianying Zhou, and all of the workshop co-chairs;
the poster chair, Joaquin Garcia-Alfaro; the publicity co-chair’s Cristina Alcaraz and
Wenjuan Li; the web chair, Wei-Yang Chiu; and the ESORICS Steering Committee and
its chair, Sokratis Katsikas.

We are also grateful to BlockSec for supporting the organization of ESORICS 2022.
Finally, we would like to provide a heartfelt thank you to the authors for submitting

their papers to ESORICS 2022. It is their efforts that, in the end, decided the success of
ESORICS 2022, confirmed ESORICS as a top-notch security conference, planted the
seeds for future successes, and advanced science.

We hope that the proceedings will promote research and facilitate future work in the
exciting, challenging, and evolving field of security.

September 2022 Roberto Di Pietro
Vijayalakshmi Atluri
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Abstract. FIDO2 is the latest member of the Fast IDentity Online
(FIDO) protocol suite, which aims at providing unified password-less
authentication across the web. We present a formal security analysis
of the FIDO2 protocols. We extend the previously presented formaliza-
tion of the security assumptions and goals of FIDO with FIDO2 specific
requirements. We develop a formal model that considers both the CTAP2
and WebAuthn in FIDO2 as a whole. Our formal analysis identifies the
minimal security assumptions required for each security goal of FIDO2
to hold. The verification results show FIDO2 fails to achieve some strong
authentication properties. The results also reveal that the newly intro-
duced Client PIN mechanism has flaws, and the discovered authenticator
rebinding attack and parallel session attacks in UAF still exist in FIDO2.

Keywords: FIDO2 · Formal analysis · Security protocol

1 Introduction

FIDO2 [16,35] is the latest member of the Fast IDentity Online (FIDO) protocol
suite. It builds on top of the commercial success of the previous FIDO protocols,
including the Universal Second Factor (U2F, a.k.a. CTAP1) [13] and the Univer-
sal Authentication Framework (UAF) [20]. FIDO2 aims to support all U2F and
UAF use cases and offer a ubiquitous and unified strong authentication across the
web. Extended from U2F and UAF, FIDO2 supports user identity verification
in 2nd-factor authentication scenarios. By Jan 2022, FIDO2 has been integrated
into Android 7.0+ [18], Windows 10 [17], iOS and MacOS [19], Google Chrome,
Mozilla Firefox, Microsoft Edge [14], etc.

FIDO2 includes multi-factor and password-less authentication and fixes some
discovered flaws in U2F and UAF [32]. Therefore, the protocol architecture and
procedures of FIDO2 differ from the counterparts of U2F and UAF significantly.
FIDO2 consists of the Client to Authenticator Protocol v2.0 (CTAP2) [16] and
the Web Authentication protocol (WebAuthn) [35]. With the Client PIN mech-
anism in CTAP2, FIDO2 offers user identity verification in 2nd-factor use cases
when the authenticator does not have a user interface. WebAuthn provides a
standard web API that enables online services to implement FIDO2 authentica-
tion into browsers and web platforms.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
V. Atluri et al. (Eds.): ESORICS 2022, LNCS 13556, pp. 3–21, 2022.
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To automatically verify the security of UAF, Feng et al. [12] presented a
formalization of UAF’s security assumptions, goals, and protocol process. Even
though FIDO2 and UAF share the same natural language security goals, their
semantics and formalization are not the same in the different protocol con-
texts. For example, the relevant data fields in the security properties need to
be adjusted to the messages in FIDO2, and more properties need to be veri-
fied in the Client PIN mechanism. In particular, the confidentiality of the key
fields, such as the Client PIN provided by the user and the token issued by the
authenticator, must be verified. To the best of our knowledge, there is no formal
treatment of the two FIDO2 protocols as a whole. Barbosa et al. [3] consid-
ered CTAP2 and WebAuthn as independent modules and only analyzed several
authentication goals. Guirat et al. [23] only verified WebAuthn and considered
privacy goals. Moreover, neither of them considered the scenarios with different
authenticator types and transaction authorization modes.

In this paper, we present a formal verification of FIDO2, which shows the
security goals of FIDO2 cannot be satisfied in some cases. In particular, we
show FIDO2 does not provide stronger security in 2nd-factor scenarios despite
its efforts since the Client PIN and token can be exploited to undermine the
validity of authentications in registration and authentication processes. The con-
tributions of this paper are as follows:

1. We present a faithful formal model of the FIDO2, which considers CTAP2
and WebAuthn as a whole and models scenarios with different authenticator
types in registration, authentication, and transaction authorization. We open-
source our tool FIDO2Verif1, which is a front-end to ProVerif [7].

2. We refine the formalization of FIDO security goals in the context of FIDO2.
In particular, we consider the secrecy of Client PIN and the token issued by
the authenticator in FIDO2 due to the newly introduced CTAP2 process. We
also formalize several security goals that were not modeled before [12].

3. The verification results show flaws in FIDO2. For example, due to the unau-
thenticated ECDH in CTAP2, FIDO2 fails to achieve the strong authentica-
tion property, and the previously discovered authenticator rebinding attack
and parallel session attack on UAF are still effective on FIDO2.

4. We present recommendations on how to fix the discovered flaws in FIDO2.

2 Overview of FIDO2

Table 1 presents the acronyms used throughout this paper. CTAP2 is the protocol
between the authenticator and the client to share a token, which will be used in
the operations of WebAuthn subsequently. There are two operations in WebAuth,
namely authenticator registration and authentication. In authenticator registra-
tion, users register their certified FIDO2 authenticator with a vendor-signed attes-

1 https://github.com/CactiLab/FIDO2Verif.

https://github.com/CactiLab/FIDO2Verif
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Table 1. Acronyms and descriptions.

Acronym Full Name Description

newPin New client PIN New client PIN that the user enters in FIDO Client when setting or
changing the Client PIN

curPin Current client PIN Current client PIN the user provides to FIDO Client to change a
new Client PIN or apply for a PinToken

RpID Relying party identifier A domain that identifies the WebAuthn relying party and determines
the set of origins on which the public key credential may be exercised

AAGUID Authenticator attestation
globally unique identifier

An identifier that indicates the type (e.g. manufacturer and model)
of the authenticator

UHandle User handle A value specified by a relying party to map a public key credential to
a user account

Chlg Relying party challenge A random number provided by the relying party in registration and
authentication requests

Tr Transaction text Transaction information generated by the relying party that needs to
be authorized by the user

TBinding TLS token binding A long-lived identifier of TLS bindings spanning multiple TLS
sessions and connections from Token Binding protocol

PinToken Token controlled by client
PIN

A random token generated by authenticators and issued to FIDO
Client

G Elliptic-curve parameters ECC parameters used to establish ECDH shared secret between
Authenticator and FIDO Client

K Shared key The key established between Authenticator and FIDO Client
through ECDH, which is used for symmetric encryption, decryption,
and HMAC

CNTR Signature counter An integer that increments after each successful authentication

FCData Client data object The contextual binding of the WebAuthn relying party and the client

CreID Credential ID An identifier to retrieve the credential private key stored in the
authenticator or with the credential private key wrapped in

CertAT Attestation certificate A certificate for the attestation key pair used by an authenticator to
attest to its manufacture and capabilities

skAT Attestation private key The private asymmetric key shared across a large number of FIDO
device units made by the same vendor

pkAT Attestation public key The public asymmetric key shared across a large number of FIDO
device units made by the same vendor

skCre Credential private key The private key portion of the credential key pair stored in FIDO
device or wrapped in CreID

pkCre Credential public key The public key portion of the credential key pair, generated by an
authenticator and returned to a relying party in registration

kW Wrapping key A key known only to the FIDO device, which is used to encrypt the
public key credential source

tation key for the accounts of remote service. The user provides the original cre-
dential first, usually a text-based password, and then selects a local authentica-
tion mechanism such as swiping a finger, entering a PIN, etc. The authenticator
generates a pair of asymmetric credential keys and signs the public part with the
attestation private key. Then, it sends the credential public key, the signature, and
the attestation certificate to the server. If the certificate and the signature pass the
server’s verification, binding between the user’s account and the authenticator will
be established and recorded in the server and the registration process succeeds.
In the authentication stage, the user performs the local authentication method
selected before, and the authenticator runs a challenge-response protocol with the
server using the credential private key.
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2.1 Architecture of FIDO2

Fig. 1. The FIDO2 architecture

As shown in Fig. 1, the entities in
FIDO2 include a FIDO Authentica-
tor (FA), a FIDO Client (FC), and a
Relying Party (RP). FA is a hardware
or software cryptographic entity, which
can be implemented on-device as plat-
form authenticators, such as biomet-
ric or PIN verification modules, or off-
device as cross-platform authenticators,
such as FIDO Security Keys, mobile devices, wearables, etc. FA stores a vendor-
signed attestation private key (skAT ), the attestation certificate (CertAT ),
and a model identifier (AAGUID). FA generates credential key pairs (skCre,
pkCre) used in authentication. FAs with persistent storage to store skCre are
called client-side storage authenticators, in which keys are identified by random
CreIDs. Server-side storage authenticators are limited in storage capacity. They
encrypt the credential private key skCre in CreID and send it to the server.

G G
FA FC

new ECDH key pair (a, aG)
new random PinToken

getKeyAgreement
aG

new ECDH key pair (b, bG)
K ← hash((baG).x)

KeyAgreement

collect newPin from the user.
newPinEnc ←EK (newPin)
PinAuth ←HMAC(K, newPinEnc)

setPIN, bG, newPinEnc, PinAuth

K ←hash((abG).x)
xPinAuth ←HMAC(K, newPinEnc)
check xPinAuth== PinAuth, if right
newPin ←DK (newPinEnc)
store xPinHash ←hash(newPin)

CTAP2-OK

Option 1:
setPIN

collect curPin and newPin from the user
PinHashEnc ←EK (hash(curPin))
newPinEnc ←EK (newPin)
PinAuth ←HMAC(K, newPinEnc||PinHashEnc)

changePIN, bG, PinHashEnc, newPinEnc
PinAuth

K ←hash((abG).x)
xPinAuth ←HMAC(K, newPinEnc||PinHashEnc)
check xPinAuth== PinAuth, if right
PinHash ←DK (PinHashEnc)
check xPinHash== PinHash, if right
newPin ←DK (newPinEnc)
store xPinHash ←hash(newPin)

CTAP2-OK

Option 2:
changePIN

collect curPin from the user
PinHashEnc ←EK (hash(curPin))

getPinToken, bG, PinHashEnc

K ←hash((abG).x)
PinHash ←DK (PinHashEnc)
check xPinHash== PinHash, if right
PinTokenEnc ←EK (PinToken)

PinTokenEnc

PinToken ←DK (PinTokenEnc)

getPINToken

Fig. 2. CTAP2 operations

FIDO Client (FC) is implemented
in whole or in part of the user agent,
e.g., browser. FC stores the identifiers
of valid RPs as xRpIDs. RP consists
of a web server and a FIDO server
that utilizes the WebAuthn API to
register and authenticate users. In
authenticator registration, RP veri-
fies the authenticator and records the
binding between the account and FA
of the user. The binding will be veri-
fied by RP in authentication.

The channel between authenti-
cators and FC can be established
through cross-platform transports,
such as Bluetooth and NFC, or
a platform-specific transport, such
as inter-process communication. The
communications between cross-
platform FA and FC are defined in
CTAP2, and the Client PIN mecha-
nism in CTAP2 should be enabled if
user identity verification is required in
2nd-factor use cases. FC and RP usu-
ally communicate over a TLS channel.
The optional steps in FIDO2 include
using different types of authentica-
tors, choosing different CTAP2 pro-
cesses, and using different transac-
tion authorization modes. Different
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options result in different protocol processes, which we will explain in detail
in the subsequent sections.

2.2 The CTAP2

As shown in Fig. 2, the Client PIN mechanism in CTAP2 consists of the following
operations. In KeyAgreement, FA and FC negotiate a shared ECDH secret K
first, which can be used for symmetric encryption, decryption, and HMAC. K
is obtained by hashing the x-coordinate of the point abG on the elliptic curve.
The user can choose to initialize or change the Client PIN via the FC on the
device through the setPIN and changePIN process. If the Client PIN has already
been set and does not need to be modified, the user enters the current Client
PIN on the FC, then the FA and FC directly execute the getPINToken process,
as long as the FA verifies the Client PIN is correct, it will issue a PinToken
to the FC. Within the lifetime of PinToken, FC can use this PinToken for
the subsequent authenticator registration and authentication with FA without
requiring the user to enter the Client PIN again.

2.3 The WebAuthn Protocol
AAGUID, skAT ,CertAT

kW , PinToken xRpID, PinToken UHandle, RpID

FA FC RP

new random challenge: Chlg
get RpID,UHandle of this session

UHandle, RpID,Chlg

check xRpID== RpID, if right
get TBinding of TLS connection
FCData ←〈Chlg, RpID, TBinding〉
FCHash ←hash(FCData)
PinAuth ←HMAC(PinToken, FCHash)

UHandle, RpID, FCHash, PinAuth

xPinAuth ←HMAC(PinToken, FCHash)
check xPinAuth== PinAuth, if right
request user permission to create a credential
new credential key pair 〈skCre, pkCre〉
new sign counter CNTRA
RHash ←hash(RpID)
CreID ← EkW (skCre, RpID,UHandle)
FAData ←〈RHash,CNTRA, AAGUID,CreID, pkCre〉
S ← SignskAT

(FAData, FCHash)

FAData, S,CertAT FAData, S,CertAT , FCData

get TBinding of TLS connection
verify the validity ofCertAT
FCHash←hash(FCData) check:
TBinding== FCData.TBinding
Chlg== FCData.Chlg
RpID== FCData.RpID
hash(RpID) == FAData.RHash
CheckSignpkAT

(S, 〈FAData, FCHash〉)
if all right:
CNTRS←CNTRA
store 〈Uhandle, AAGUID,CreID, pkCre,CNTRS〉

Fig. 3. Authenticator registration (Color figure online)

WebAuthn defines the oper-
ations of authenticator reg-
istration and authentication,
which are shown in Figs. 3
and 4. The contents marked
in blue are the operations
and message fields when
CTAP2 is enabled. We also
present the different opera-
tions using server-side stor-
age and client-side stor-
age authenticators in this
section.

Authenticator Registra-
tion. After the user logs in
with the original authenti-
cation method, RP gener-
ates a registration request
and forwards it to FC. FC
checks whether RpID is
equal to the expected xRpID. FIDO2 mitigates the attack caused by a missing
check of AppID in U2F (similar to the RpID in FIDO2) [32] and enforces the
checking of RpID. Subsequently, FC assembles FCData as the contextual bind-
ings of the FIDO session and the TLS session. Then FC calculates FCHash,
the hash of FCData, and PinAuth, and forwards the request to FA.
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Table 2. Definitions of authenticator types

Authenticator type Credential storage
modality

Authenticator
attachment
modality

Authentication
factor
capability

1st factor platform Client-side Platform Multi-factor

1st factor roaming Client-side Cross-platform Multi-factor

2nd factor platform Server-side Platform Single-factor

2nd factor roaming Server-side Cross-platform Single-factor

User-verifying platform Server-side Platform Multi-factor

User-verifying roaming Server-side Cross-platform Multi-factor

FA checks PinAuth and generates a credential key pair 〈skCre, pkCre〉, and
a random signature counter CNTRA for this account. FA assembles FAData,
calculates signature S, and returns the response to FC. FC adds FCData to
the response from FA and forwards it to RP. RP checks the validity of CertAT ,
inspects the fields in FCData, compares RHash in FAData, and verifies the
signature S with skAT to validate the legitimacy of FA.

Authentication. The two transaction confirmation modes of FIDO2 extend
the authentication process, and some message fields are added (enclosed with
‘[]’). The messages in Generic Transaction Authorization Mode take the value
on the left of ‘/’, and the messages in Simple Transaction Authorization Mode
take the value on the right of ‘/’.

AAGUID, kW ,CNTRA
PinToken xRpID, PinToken

UHandle, RpID,CNTRS
CreID, pkAU

FA FC RP

new random challenge: Chlg
get RpID,CreID, [Tr]of this session
[xTr ← Tr]

RpID, Chlg,CreID, [Tr]

check xRpID== RpID, if right
get TBinding of TLS connection
FCData ←〈Chlg, RpID, TBinding〉
FCHash ←hash(FCData)
PinAuth ←HMAC(PinToken, FCHash)

CreID, RpID,CHash, PinAuth, [Tr]

xPinAuth ←HMAC(PinToken, FCHash)
check xPinAuth== PinAuth, if right
〈skCre, RpID,UHandle〉← DkW (CreID)
RHash ←hash(RpID)
CNTRA ←CNTRA+1
[THash ←hash(Tr)]
FAData ←〈RHash,CNTRA, AAGUID,CreID, pkCre〉
S ← SignskCre

(FAData, FCHash, [THash/Tr])

FAData, S,UHandle, [THash/Tr]
FAData, S,UHandle, [THash/Tr]

FCData

locate pkCre by 〈UHandle, AAGUID, CreID〉
get TBinding of TLS connection
[xTHash ←hash(xTr)]
FCHash←hash(FCData) check:
TBinding== FCData.TBinding
Chlg== FCData.Chlg
RpID== FCData.RpID
hash(RpID) == FAData.RHash
[xTHash== THash/xTr == Tr]
CNTRA >CNTRS
CheckSignpkCre

(S, 〈FAData, FCHash, [THash/Tr]〉)
if all right
CNTRS←CNTRA

Fig. 4. Authentication (Color figure online)

RP generates the authen-
tication request and forwards
it to FC. After receiving the
request, FC checks RpID and
constructs FCData. Then
FC calculates PinAuth, the
HMAC of FCHash with
the PinToken obtained in
CTAP2. Finally, FC sends the
request to FA. Upon receiv-
ing the request, FA checks
the PinAuth and asks for
the user’s permission to per-
form authentication. Then FA
decrypts the CreID with kW
and calculates RHash.

In Generic Transaction
Authorization Mode, THash
is included in the response,
while in Simple Transaction
Authorization Mode, the cor-
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Table 3. Protocol operations of different types of authenticators

Server-side storage Reg. CreID ←EkW (skCre , RpID, UHandle)

Auth. 〈skCre , RpID, UHandle〉←DkW (CreID)

Client-side storage Reg. new random CreID store 〈CreID, skCre , RpID, Uhandle, CNTRA〉
Auth. get 〈CreID, skCre , RpID, Uhandle, CNTRA〉 using CreID

responding value is Tr. FA increases the signature counter CNTRA, usually by
one, forms the FAData, calculates signature S, and sends the response to FC.
FC adds FCData to the response from FA and returns it to RP. RP locates the
previously stored record by the triple 〈UHandle, AAGUID, CreID〉, checks the
fields in FCData, and compares RHash in FAData. If the received THash or
Tr equals the expected value, the transaction data will be displayed and con-
firmed by the user. RP verifies the signature S and compares the value of the
signature counter. If CNTRA is greater than CNTRS , RP updates its internally
stored CNTRS with CNTRA.

Operations of Different Types of Authenticators. As shown in Table 2,
WebAuthn defines six types of authenticators. Based on how the authentication
method is implemented, they can be divided into 1st/2nd/user-verifying authen-
ticators, so as the credential storage capability, access method, and authenti-
cation factor. Among them, 1st factor platform authenticators and 1st factor
roaming authenticators are client-side storage authenticators, while the other
four types of authenticators are server-side storage authenticators. The storage
type is determined by where the authentication credential, i.e., skCre generated
during the authenticator registration phase, is stored. Client-side storage authen-
ticators store the authentication credential skCre on the authenticator. As thus,
the credential will not leave the user’s device and the CreID is a random number
that serves as an index to access credentials. A server-side storage authentica-
tor is limited in storage capacity; therefore, it wraps skCre in CreID with a
wrapping key kW and sends it to the RP. The different protocol operations of
client-side and server-side storage authenticators are shown in Table 3.

3 Formal Verification of FIDO2

The FIDO Security Reference [15] presents informal descriptions of assump-
tions and security goals in English, which are lengthy and sometimes ambiguous.
Because the assumptions in the specifications are strong and often impractical,
we refine these descriptions to derive a practical and realistic threat model in
our formalization and give formal interpretations of security goals.

3.1 Assumptions and Threat Model

Assumptions on Cryptographic Primitives. We assume cryptographic
functions are secure, and attacks on cryptographic algorithms and parameters
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Table 4. Formalization of FIDO2 security goals

Type Goals Label Formal description

C. SG-2 C1∼C8 The wrapping key kW (C1), the private keys skAT (C2), skCre(C3), the signature

counter CNTR(C4), the authentication key reference CreID(C5), user transaction

data Tr(C6), curPin and newPin(C7) and PinToken(C8) should be secret in FIDO2.

SG-3

SG-8

SG-15

A. SG-10 A0 Attack Resistance: The authentication between entities should be injective

agreement on the data fields.

SG-11

SG-12

SG-13

SG-1 A1 Strong User Authentication: The RP must obtain injective agreement on RpID,

UHandle, AAGUID, and CreID with the FA after authentication

SG-14 A2 Transaction Non-Repudiation: The RP must obtain injective agreement on Tr with

the authenticator after transaction authorization

SG-5 A3 Verifier Leak Resilience: Supposing that user A has registered on both RP and

RP′ with the authenticator FA, even if the RP′ leaks the information of user A, the

RP should still obtain injective agreement on RpID, UHandle, AAGUID, and CreID

with the FA after authentication

SG-6 A4 Authenticator Leak Resilience: Supposing that both user A and user B have

registered on the RP and RP′ with their FA respectively, even if an attacker can

steal the information of user B from the FA, the RP should still obtain injective

agreement on RpID, UHandle, AAGUID, and CreID with A′ FA after

authentication

SG-7 A5 User Consent: The RP must obtain injective agreement on RpID, UHandle,

AAGUID, and CreID with the FC after registration

SG-9 A6 Attestable Properties: The RP must obtain injective agreement on RpID,

UHandle, AAGUID, and pkAT with the authenticator after registration.

P. SG-4 P1 Unlinkability: FIDO2 processes initiated by the same user on different RPs should

be observational equivalent to the RPs

are beyond our consideration. Assumptions on Channels and Entities. Two
types of channels are involved in FIDO2: the channel between FC and FA is
established through IPC, while the channel between FC and RP is relying on
TLS. Similar to the security assumptions for channels and entities in UAF,
we assume that the IPC and TLS channels provide both confidentiality and
integrity, hence a Dolev-Yao attacker has no control of messages exchanged over
the channel established between honest entities. However, the attackers can ini-
tiate a conversation through malicious entities under their control and intercept
the information in these sessions. Assumptions on Data Protections. We
assume the identifiers, including UHandle, AAGUID, and RpID, the public
keys pkAT and pkAU , and the elliptic curve parameter G are public. CreID,
CNTR, kW , or skAT are not public but can be compromised.

3.2 Security Goals

[SG-1, 4, 5∼7, 9, 10∼14] have been formalized in literature [12], and we formalize
[SG-2∼3, 8, 15] for the first time. As shown in Table 4, we formally interpret the
goals [SG-1∼15] in the FIDO2 context. We denote the confidentiality, authenti-
cation, and privacy goals as ‘C.’, ‘A.’, and ‘P.’, respectively. Because C1∼C6 in
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FIDO2 are similar to those of UAF, we focus on C7 and C8, which should be
considered because of the newly introduced Client PIN mechanism.

In CTAP2, a shared secret is negotiated between the FA and FC. The user
sets the Client PIN on the FC, and then the FC encrypts and forwards it to the
FA. Once the Client PIN is leaked, the attacker can initiate the CTAP2 process
with a malicious FC and invoke the FA on the user’s device. Formally, C7: the
current Client PIN curP in and the newly set Client PIN newPin should be
secret in the presence of the active attacker during the CTAP2 process.

The CTAP2 process runs before authenticator registration or authentication.
After the FA verifies the validity of the Client PIN entered by the user on the
FC, the FA will issue a PinToken to the FC. Subsequently, the FC needs to
use PinToken to calculate an HMAC PinAuth and add it to the registration or
authentication requests sent to the FA. If the verification of PinAuth fails, the
FA will terminate this operation. Once PinToken is leaked, the attacker will be
able to forge a request and deceive the user’s authenticator to communicate with
it. Formally, C8: The PinToken should be secret in the presence of the active
attacker during the CTAP2 process.

4 Formal Models

To formally analyze FIDO2, we use ProVerif [7]. Compared with other commonly
used tools, such as Tamarin [30], Scyther [11], AVISPA [1], DEEPSEC [10], CL-
AtSe [34], OFMC [5], FDR [29], SATMC [2], Cryptyc [22], ProVerif solved the
problem of state explosion under unlimited sessions and provides a user-friendly
interface for interactive operation and attack path display. It has been used to
analyze multiple security protocols including UAF [12], TLS 1.3 Draft 18 [6],
ARINC823 avionic protocols [8], and e-voting protocols [24].

4.1 ProVerif Models of FIDO2

To cover all possible scenarios of FIDO2, we define the following three types of
constants: CTAPType, AuType, and TrType, to identify which CTAP2 pro-
cess the users go through in this protocol, which authenticator is used, and
under which authentication mode. The four values, noCTAP , setPIN , chgPIN ,
and getToken, of CTAPType identify the four processes in the CTAP2 process
respectively: without enabling the CTAP2 protocol, going through setPIN or
changePIN process in CTAP2, and directly perform the getPINToken operation.
The values client and server of AuType identify the scenarios using client or
server-side storage FA. The value empty, simple, and generic of TrType are used
to distinguish the scenarios of authentication, simple transaction authorization
mode, and generic transaction authorization mode. As a result, we analyze 32 dif-
ferent scenarios, including eight scenarios in authenticator registration (4×2 = 8
scenarios in total, as the transmission of transaction authorization data is not
transmitted in registration), and 24 scenarios in authentication (4× 2× 3 = 24).
Each scenario is identified by a specific value of the tuple (CTAPType, AuType)
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or the triple (CTAPType, AuType, TrType), which will determine the branches
to go through in this run of the process. When the CTAP2 option is enabled,
PinToken will be shared between FA and FC after CTAP2 is completed. The
token will be used in subsequent authenticator registration and authentication
operations. We model this feature using tables and phases in ProVerif. FA and
FC maintain a table for PinToken. When the CTAP2 operation is completed,
both parties will store the PinToken in the table.

4.2 Verifying Leak Resilience Goals of FIDO2

SG-5 (Verifier Leak Resilience) and SG-6 (Authenticator Leak Resilience) were
formalized but not verified in the previous UAF formal analysis [12]. To verify
these two goals, we design a scenario with three sets of sessions, which need to be
modeled and analyzed separately. User A registers the FA on RP and RP′, while
user B registers the FA′ on RP. There are three sets of data after registration:
the data between FA and RP, FA and RP′, FA′ and RP. We verify whether the
authentication between RP and FA can be satisfied in the case that the FA′ of
user B leaks its data registered on RP while RP leaks the data of FA.

5 Security Analysis

To identify the minimal assumptions of each security goal of FIDO2, we develop
a tool FIDO2Verif, which is a front-end to ProVerif. Our tool is based on the idea
proposed by Basin et al. [4], which was also used in the analysis of multi-factor
authentication protocols [26] and the Noise framework [21]. The tool first verifies
whether a security goal is satisfied without any assumptions, then increases the
number of assumptions until the state of the security property is changed from
false to true. If the state of the security properties has not changed after adding
all the assumptions about the entity, then we add the assumptions about the data
fields. The tool automatically generates 78,336 test cases covering all CTAP2
process options, authenticator types and transaction authorization modes, and
the combinations of assumptions on entities and fields.

5.1 Results

Table 5 and Table 6 show the analysis results. ‘Reg.’ means the results of authen-
ticator registration and ‘Auth.’ means the results of authentication. The results
show the minimum assumptions required for each security goal in our threat
model. ‘�’ means the goal can be met in all conditions, ‘−’ means not applica-
ble. ‘¬’ before the filed, e.g., ‘¬kW ’, indicates the property only holds when kW is
not revealed. ‘¬X[Y ]’ denotes the attackers cannot use their compromised entity
X to communicate with entity Y . Since the transaction authorization data Tr
can only be transmitted in authentication, and the attestation private key skAT

is only used in registration, there is no verification result for C6 in Table 5, and
no verification result for C2 in Table 6.
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Table 5. Verification
results in registration.

Reg. Client-Side Server-Side
C1 − �

C2 � �

C3 � ¬kW ∨¬C [A]
C4 ¬C [A]
C5
C7 ¬A[C ]
C8 ¬C [A]
A5 ¬A[C ]∧¬C [R]
A6
P1 � �

Confidentiality Properties. As shown in Table 5, the
attackers have no access to kW and skAT , since these
fields are stored and used only inside FA in authenti-
cator registration. As for client-side storage authentica-
tors, skCre is stored inside FA and cannot be obtained
by the attacker. While for server-side storage authenti-
cators, skCre is encrypted in the CreID by kW . CreID
and CNTR are exposed on the channel as part of the
registration response from FA. Therefore, if attackers
compromise C[A], they can eavesdrop on the registra-
tion response to obtain CreID and CNTR. As long as
the attacker cannot obtain kW (the assumption ¬kW is met) or CreID (the
assumption ¬C[A] is met), the secrecy of skCre will hold. Since CTAP2 relies
on unauthenticated ECDH to negotiate a shared secret between FA and FC,
the two participants cannot confirm the validity of their identities. Therefore, if
there is a malicious FA′ in the CTAP2 session (breaking assumption ¬A[C]), the
FA′ can complete the CTAP2 process with the FC and obtain the curP in and
newPin entered by the user on FC. In the same way, a malicious FC′ (breaking
the assumption ¬C[A]) can intercept the PinToken issued by the FA.

Table 6 shows that skCre of client-side storage authenticators and kW of
server-side storage authenticators are secure as they are only used within FA in
authentication. For server-side storage authenticators, skCre is encrypted with
kW as CreID, which is part of the authentication request from RP and the
authentication response from FA. To protect CreID, it is necessary to prevent
attackers from obtaining the above messages and the assumptions ¬A[C] (there
is no malicious FA to obtain the authentication request relayed from FC) and
¬C[R] (there is no malicious FC to obtain the authentication request sent from
RP) and ¬C[A] (there is no malicious FC to obtain the authentication response
returned from FA) should be met. As for CNTR, which is retrieved from the stor-
age from FA with corresponding CreID and included in the message returned
from FA, the assumptions ¬C[R] or ¬C[A] should be met.

Table 6. Verification results in authentication.

Type Client-Side Server-Side

Mode Simple Generic Simple Generic

C1 − �

C3 � ¬kW ∨(¬A[C ]∧¬C [R]∧¬C [A])

C4 ¬C [R]∨¬C [A]

C5 ¬A[C ]∧¬C [R]∧¬C [A]

C6 (CreID) ¬A[C ]∧¬C [R] (CreID) ¬A[C ]∧¬C [R]

C7 ¬A[C ]

C8 ¬C [A]

A1 ¬C [R]∨¬C [A]
A2

A3
� �

A4

P1 � �

In other words, if the
attacker cannot get the cor-
rect CreID or the authentica-
tion response sent by the FA,
CNTR will not be intercepted.
The assumption required to
maintain the confidentiality of
Tr in Simple Transaction Autho-
rization Mode is the same
as that of CreID, which is
¬A[C] and ¬C[R] and ¬C[A].
Because both CreID and Tr
are included in the request from the RP and the response returned by the FA.
To maintain the secrecy of Tr in Generic Transaction Authorization Mode the
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protocol should satisfy ¬A[C] and ¬C[R] as Tr is only involved in the request
from the RP.

Authentication Properties. As shown in Table 5, to achieve the authenti-
cation goals in authenticator registration, the minimal assumption ¬A[C] and
¬C[R] should be met. Whether skAT is leaked or not has little effect on the
authentication in authenticator registration. RP verifies the validity of FA by
checking the signature S, which is signed by skAT , and inspects the fields in
FCData to confirm the binding relationship between a FIDO2 session and a
TLS session. As the same skAT is manufactured in a batch, the attacker can
simply use an FA′ from the same batch as the user’s FA. Once ¬A[C] and
¬C[R] is violated, the attackers can use their FA′ to generate a valid response
and forward it to the FC on the user’s device with a compromised FC′. The
response will pass the inspection of RP and be considered a legitimate response.
Thereafter, the user’s account will be bound to the FA′ held by the attacker
instead of the FA of the user, and the user is not aware of it.

After successful registration, the binding between the user account and
the FA has been established and RP has recorded the binding as 〈UHandle,
AAGUID, CreID, pkCre, CNTRS〉. RP verifies the signature S with pkCre

and checks the value of CNTR. Since the private key skCre and the counter
CNTR are stored in the user’s FA, which can only be retrieved with the cor-
responding CreID in the authentication request. If the assumption ¬C[A] or
¬C[R] is not satisfied, the attacker will be able to intercept CreID an authenti-
cation request with a malicious FC, with the correct CreID, the malicious FC
can receive a valid authentication response from the user’s FA and forward it to
RP.

Our analysis results show that there is no data leakage on RP or FA, i.e.,
the authentication goals A3 and A4 are satisfied. Even if the RP leaks user
B’s data, it still does not affect the RP’s authentication of other users. For
the same user, even if the user’s authentication data of an RP′ is leaked, the
user’s authentication on other RPs can still be guaranteed. The RP authenticates
the user by verifying the binding relationship of the triple: the user account
(identified by UHandle), the authenticator (identified by AAGUID), and the
RP (identified by RpID), which is associated with the asymmetric key pair
(skCre, pkCre) generated by FA. The public key pkCre will be sent to RP, while
FA saves the private key skCre. As long as the private key bound between user
A and RP is not leaked, even if RP′ leaks user A’s information, including the
public key of user A on RP′, or user B who has registered on the same RP leaks
the private key, the authentication of user A from the RP will not be affected.

Privacy Properties. Our results show that FIDO2 satisfies unlinkability in
authenticator registration and authentication. 〈RHash, CNTRA, AAGUID,
CreID, pkCre, S, CertAT , FCData〉 No field in the registration response is
associated with the user. As both AAGUID and the corresponding CertAT are
shared by a large batch of authenticators, it is difficult, even impossible for the
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RP to locate the sessions of the same AAGUID and CertAT to a single user.
CNTRA records the number of times of authentication for a single user at the
specific RP, but cannot directly link the session between different RPs.

RP receives the authentication response 〈RHash, CNTRA, AAGUID,
CreID, pkCre, S, UHandle, [THash /Tr], FCData〉. Note that it is pointed
out in Sect. 4 of WebAuthn [35]: ”UHandle should be an opaque byte sequence
and not contain any personally identifying information about the user”. The RPs
cannot infer the user’s personal identification information from any instance of
UHandle. And UHandle is the user identifier specified by an RP that can be
used to map the conversations to a specific user only within this RP but differ-
ent RPs cannot link the session to the specific user with UHandle. 〈CNTRA,
CreID, and pkCre〉 are unique for each binding 〈RpID, AAGUID, UHandle〉
and cannot be used to distinguish user sessions across different RPs.

5.2 Attacks

FA Attacker FC

new ECDH key pair (a, aG)
new random PinToken

getKeyAgreementgetKeyAgreement
aG

new ECDH key pair (c, cG)
K1 ← hash((caG).x)

cG

new ECDH key pair (b, bG)
K2 ← hash((cbG).x)
collect newPin from the user.
newPinEnc ←EK2 (newPin)

bG, newPinEnc

K2 ← hash((cbG).x)
newPin ←DK2 (newPinEnc)

cG, newPinEnc

K1 ← hash((caG).x)
PinTokenEnc ←EK1 (PinToken)

PinTokenEnc

PinToken ←DK1 (PinTokenEnc)

Fig. 5. MITM Attack in CTAP2

MITM Attack in CTAP2. FIDO2 intro-
duces the Client PIN mechanism to improve
the security in 2nd-factor authentication
scenarios. However, the verification results
show that this goal cannot be achieved.
Since FA and FC negotiate a shared secret
with unauthenticated ECDH, FA and FC
cannot establish any trust through this
process, making it vulnerable to man-in-
the-middle (MITM) attacks. In CTAP2,
if the assumption ¬A[C] is not satisfied,
the attacker can obtain the curP in and
newPin. If the assumption ¬C[A] is not
satisfied, the attacker can intercept the
PinToken. The process of MITM Attack
in CTAP2 is shown in Fig. 5. The attacker
forwards the getKeyAgreement request ini-
tiated by FC, intercepts the ECDH public key aG sent by FA, replaces it with
the cG generated by itself, and forwards it to FC. The shared secret negotiated
between the FA and the attacker is caG, and the attacker can derive a shared key
K1 with FA. The FC generates the ECDH key pair (b, bG), and uses the secret
cbG shared with the attacker to derive the shared key K2. After collecting the
newPin from the user, the FC encrypts it with K2 and sends the message 〈bG,
newPinEnc〉 to FA. After receiving the message from FC containing the ECDH
public key bG, attackers can replace it with their public key cG and send it to
FA. Therefore, the attacker negotiates shared secrets caG and cbG with FA and
FC respectively, and then derives a shared key K1 with FA and a shared key K2

with FC. After that, the attacker can decrypt the newPinEnc and curP inEnc
sent by FC, and the PinTokenEnc from FA to obtain the plaintext newPin,
curP in, and PinToken respectively.
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Authenticator Rebinding Attack. In registration, if the assumptions ¬A[C]
and ¬C[R] are not satisfied, the attackers can implement the authenticator
rebinding attack to bind the victim’s account to the FA′ under their control. We
consider an attacker who has the same model of authenticator as the user (with
the same skAT in it) and can compromise the FC on the victim’s device (to get
access to the channel CA and CR). We denote the FIDO Client on the victim’s
device as client FC and the FIDO Client on the adversary’s device as client FC′.
The adversaries can bind the victim’s account to their authenticators through
the following steps: 1) The victim initiates a registration, and the malicious FC
on the victim’s device establishes a connection with the RP to obtain the regis-
tration request; 2) FC redirects the request to FC′; 3) FC′ continue the FIDO2
registration operations with the authenticator to bind the victim’s account with
FA′ held by the attacker; 4) The FC pretends to complete subsequent opera-
tions with the user, making the user believe the binding was successful; 5) The
FC′ forwards the response to FC; 6) FC sends the response to the RP to com-
plete subsequent operations in registration. In the operations above, FCData is
generated by the FC on the victim’s device, and the authenticator used by the
attacker has the same skAT as the user’s, the returned registration response can
be successfully verified by the RP and the user account is bound to the attacker’s
authenticator. Thereafter, the attackers can log in to the victim’s account with
their credential and bypass the biometric verification in FIDO2.

Parallel Session Attack. This attack breaks the authentication properties if
the assumptions ¬C[A] or ¬C[R] are not satisfied. RP accepted an authenti-
cation response after verifying the signature S signed by skCre and checking
CNTRA. After successful registration, skCre and CNTRA are stored inside the
FA and the response with the correct S and CNTRA will be returned only if A
receives a correct CreID. With the following steps, the attacker does not need
to compromise the FA of the user to obtain skCre or kW , but tamper with FC
and initiates a “parallel session” to impersonate a legitimate user.

We assume users have installed a malicious FC on their devices. The attacker
can implement the parallel session attack with the following steps: 1) Once a
victim launches an authentication session, the attackers can be informed by the
malicious FC and initiated their own session on FC′ with the victim’s identifier
UHandle to the same RP to get the correct CreID; 2) FC′ sends the request
generated by itself to client FC. FCHash is the hash of FCData generated from
the connection established between FC′ and the RP; 3) FC forwards the request
to the FA on the victim’s device and obtains the response. As CreID in the
request corresponds to the UHandle of the victim, FA can successfully retrieve
the skCre to generate the signature S and get the CNTR; 4) FC redirects the
response to FC′ and FC′ appends its own FCData to the response; 5) FC′

returns the response to the RP to complete the authentication.
Since the FCData in the response corresponds to the connection established

between FC ′ and the RP and the signature is, in effect, generated by the victim’s
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authenticator with correct skCre, the attackers will pass the verifications in RP
and gain access to the victim’s account on their own device.

Privacy Disclosure Attack. Attackers can intercept the user’s personal data
with a malicious FC. In registration, if the assumption ¬C[A] is not satisfied, the
original CNTR will be exposed to attackers in the registration response from
FA. Later in authentication, if the protocol does not satisfy the assumption
¬C[R]∨¬C[A], attackers can get the increased CNTR to estimate the num-
ber of times of the completed authentication and infer user behavior based on
this. Additionally, with the malicious FC, attackers can also distinguish whether
the user is performing authentication or transaction authorization by checking
whether the field Tr is involved in the response from RP. Thereafter, attackers
can also intercept the victim’s transaction authorization text Tr.

5.3 Recommendations

Explicit Definitions of Threat Model. We suggest that the standard explic-
itly requires the assumptions of channel and component compromise. A clearly
specified threat model can provide constructive guidance for the design and
implementation of the protocol. On the contrary, an ambiguous threat model
may introduce problems in the design process and even introduce vulnerabilities
in potential practical implementations. Our analysis results show that the secu-
rity of FIDO2 relies on the security of the channel between entities and the secure
storage module inside the entities. However, there is a lack of a clear definition
of entity and channel compromise scenarios in the specifications. Therefore, the
compromise scenarios should be considered in the protocol design, and the rec-
ommended implementation of the secure channel and secure storage should be
clearly given in the specifications.

Enhancing the security of CTAP2. We suggest enhancing the authentica-
tion of FA and FC in the CTAP2 process. The current design of CTAP2 relies
on unauthenticated ECDH to negotiate the shared secret between FA and FC,
making it vulnerable to man-in-the-middle attacks. The attacker can manipulate
the shared secret between FA and FC and then decrypt the ciphertext message
transmitted between FA and FC, while the user is unaware of it. It is necessary
to add the verification of the validity of FA and FC in CTAP2, and confirm
that the FA and FC in the CTAP2 session are the same FA and FC used in
authenticator registration or authentication subsequently.

Authenticating FC at RP. We suggest adding an authentication mechanism
for FC. In particular, for some services with high security requirements, such as
financial transactions, it is necessary to enforce the authentication of FC. The
authenticated channel between FC and RP is usually established by TLS. How-
ever, client-side authentication is only optional in TLS. As there is no attestation
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or authentication mechanism of FC involved in FIDO2, there may be malicious
FCs participating in the communication. Some security properties cannot hold
if channel CA and CR are compromised.

Protecting User’s PII. We suggest that some concealment mechanism should
be applied to CNTR and Tr before sending them on the channel. Based on the
existing protocol process, with the encapsulation mechanism of Elliptic Curve
Integrated Encryption Scheme (ECIES) [33] used to improve the privacy of 5G
AKA [36], CNTR and Tr be encrypted before sending on the channel. RP gen-
erates an ephemeral ECC private-public key pair (r,R) for each session, such
that R = rG, and adds the public portion R to the registration or authentica-
tion request. Then RP generate a symmetric session key ks = KDF (r, PK),
PK = pkAT in authenticator registration and PK = pkCre in authentica-
tion. After receiving the request, FA can derive the corresponding session key
ka = KDF (R,SK), SK = skAT in authenticator registration and SK = skCre

in authentication. Both parties can use the symmetric keys ks and ka for con-
cealment and de-concealment. The FC between FA and RP has no access to the
private key, r, skAT , or skCre, and cannot derive correct ks and ka. Therefore,
the attacker cannot intercept CNTR and Tr by simply compromising the FC.

6 Related Work

Both manual analysis [9,25,27,28,31] and formal methods [12,26,32] have been
applied to verify the security of FIDO protocols. Feng et al. provided a faith-
ful formal model of the UAF protocol considering the use case with different
authenticator types and various optional steps and their analysis covers most
of the security properties in UAF specifications. Their verification results con-
firmed previously found vulnerabilities and disclosed new attacks which can be
exploited in real-world apps [12]. Pereira et al. formally modeled U2F but their
oversimplified threat model only considered the option of checking AppID, which
failed to find out more underlying vulnerabilities [32]. Jacomme et al. defined a
fine-grained threat model considering different scenarios with the combinations
of malware, phishing, and TLS fingerprint spoofing in U2F but they mainly
focused on the authentication goals, ignoring the confidentiality properties in
U2F. They did a simple verification of unlinkability between two accounts on
two different authenticators and the two accounts on the same authenticator,
which is different from the unlinkability specified in the standard. And they did
not verify the unlinkability in the registration phase. [26].

There have been several efforts to formally verify FIDO2. Guirat et al. focused
on formally analyzing WebAuth. They only presented the verification results of
privacy properties and lacked the description and verification of confidential-
ity and authentication properties [23]. Barbosa et al. attempted to formally
analyze FIDO2 in computational model and conducted a modular analysis of
CTAP2 and WebAuthn separately. However, they did not consider the optional
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steps in FIDO2, including using different types of authenticators, choosing dif-
ferent CTAP2 options, and different transaction authorization modes, nor does
it analyze the unlinkability properties in the specifications [3]. Different from the
previous work, we provide a formal model of FIDO2 that considers CTAP2 and
WebAuthn as a whole and covers scenarios with different types of authenticators
and transaction authorization modes. We formally describe all the security goals
mentioned in the FIDO2 specifications, including confidentiality, authentication,
and privacy properties, and analyze these goals in all the above scenarios.

7 Conclusion

In this paper, we formally analyze FIDO2, the latest member of the FIDO proto-
col suite. We provide a detailed analysis of the specifications to formally interpret
the security assumptions and goals and offer a faithful formal model of FIDO2.
Our model is substantially more detailed than those of previous work, as the
model views CTAP2 and WebAuthn as a whole and can cover the scenarios
using different types of authenticators in different authentication modes. We use
the ProVerif tool to automate the analysis of FIDO2 in symbolic model and
identified the minimal assumptions required for each property. Our analysis in
ProVerif shows that FIDO2 still fails to achieve the strong authentication prop-
erty in some cases and the attacks previously discovered in UAF still exist in
FIDO2. We also present several concrete recommendations to fix the issues in
FIDO2. In future work, we plan to make improvements to the issues found in
the FIDO protocol suits to defend against the attacks found in this paper and
to formally verify the improved version of the protocol.
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for security-critical systems. In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014.
LNCS, vol. 8413, pp. 31–45. Springer, Heidelberg (2014). https://doi.org/10.1007/
978-3-642-54862-8 3

3. Barbosa, M., Boldyreva, A., Chen, S., Warinschi, B.: Provable security analysis of
FIDO2. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021. LNCS, vol. 12827, pp.
125–156. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84252-9 5

4. Basin, D., Cremers, C.: Know your enemy: compromising adversaries in protocol
analysis. ACM Trans. Inf. Syst. Secur. (TISSEC) 17(2), 1–31 (2014)

https://doi.org/10.1007/11513988_27
https://doi.org/10.1007/11513988_27
https://doi.org/10.1007/978-3-642-54862-8_3
https://doi.org/10.1007/978-3-642-54862-8_3
https://doi.org/10.1007/978-3-030-84252-9_5


20 J. Guan et al.
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Abstract. Verifiable random functions (VRF, Micali et al., FOCS’99)
allow a key-pair holder to verifiably evaluate a pseudorandom function
under that particular key pair. These primitives enable fair and verifiable
pseudorandom lotteries, essential in proof-of-stake blockchains such as
Algorand and Cardano, and are being used to secure billions of dollars
of capital. As a result, there is an ongoing IRTF effort to standardize
VRFs, with a proposed ECVRF based on elliptic-curve cryptography
appearing as the most promising candidate.

In this paper, towards understanding the general security of VRFs and
in particular the ECVRF construction, we provide an ideal functional-
ity in the Universal Composability (UC) framework (Canetti, FOCS’01)
that captures VRF security, and show that ECVRF UC-realizes it.

Additionally, we study batch verification in the context of VRFs.
We provide a UC-functionality capturing a VRF with batch-verification
capability, and propose modifications to ECVRF that allow for this fea-
ture. We again prove that our proposal UC-realizes the desired function-
ality. Finally, we provide a performance analysis showing that verification
can yield a factor-two speedup for batches with 1024 proofs, at the cost
of increasing the proof size from 80 to 128 bytes.

1 Introduction

A Verifiable Random Function (VRF, [19]) is a pseudo-random function whose
correct evaluation can be verified. It can be seen as a hash function that is keyed
by a public-private key pair: the private key is necessary to evaluate the function
and produce a proof of a correct evaluation, while the public key can be used
to verify such proofs. VRFs were originally considered as tools for mitigation
of offline dictionary attacks on hash-based data structures; more recently they
have found applications in the design of verifiable lotteries. In particular, VRFs
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are fundamental primitives to several proof-of-stake ledger consensus protocols,
such as those underlying the blockchains Algorand [14] and Cardano [12]. They
allow for a pseudo-random selection of block leaders in the setting with adaptive
corruption, an important security feature of these protocols.

There is an ongoing effort to standardize this primitive via an IRTF draft [15]
that describes the desirable properties of VRFs and proposes (as of August ’22)
two concrete constructions. One of these constructions is based on RSA, while the
other one relies on elliptic-curve cryptography (ECC); this latter construction
is referred to as ECVRF. A clear advantage of ECVRF over the RSA-based
alternative is the considerable improvement in key sizes it provides (for the
same security level). Indeed, both Algorand and Cardano employ ECVRF, as
do most of the existing implementations listed in the draft.

One of the VRF security properties articulated in the IRTF draft is that
of random-oracle-like unpredictability. Roughly speaking, it requires that if the
VRF input has sufficient entropy (i.e., cannot be predicted), then the output is
indistinguishable from uniformly random. As the draft observes, this property is
essential for the security of the leader-election mechanisms in PoS blockchains.
The property is not formally defined in the draft, though a definition in the form
of an ideal functionality in the Universal Composability (UC) framework [10] is
given in [12]. The IRTF draft states that this strong notion is “believed” to be
satisfied by the ECVRF construction; however, to the best of our knowledge, no
formal proof of this claim exists to date. This state of affairs is clearly unsatis-
factory: UC security is a desirable notion of security as it guarantees that the
proven security provisions (in the sense of realizing an ideal functionality) are
retained, by virtue of the composition theorem, when employing the scheme
in higher-level applications. This is especially relevant for VRFs as a low-level
primitive used in many protocols, including those mentioned above.

Returning to the ECVRF construction, another important benefit it provides
is structural: it is essentially a Fiat-Shamir transformed [13] Σ-protocol [11]
and therefore—at least in principle—suitable for batch verification. The idea
for batch verification first appears in foundational work by Naccache et al. [20]
and consists of verifying a batch of linear equations by verifying a random lin-
ear combination of these. Bernstein et al. [7] exploited this technique with the
state-of-the-art algorithms in multi-scalar multiplication, achieving a factor-two
improvement in signature verification using batches of 64 signatures. Such an
improvement in verification times is of direct relevance for blockchains, as the
routine task of joining the protocol—which requires synchronizing with the cur-
rent ledger—involves verification of many blocks and their VRF proofs. Indeed,
typical synchronization conventions demand verification of the entire existing
blockchain. We note in passing that the possibility of batch verifications for
Schnorr signatures [24] (derived from another type of Σ-protocol) is a significant
competitive advantage over ECDSA, and was one of the reasons for Bitcoin [21]
to switch to that type of signature [25]. The possibility of batch verification
for ECVRF has already appeared in the IRTF draft mailing list [23]. However,
a concrete proposal for the design, along with a formal security notion and a
corresponding security proof, has not been given.
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Our Contributions. In this work we close both of these gaps.

1. We propose a cleaner formalization of the VRF functionality in the UC frame-
work, building on the original proposal from [12] (later revised in [3] to remove
some issues in the original formulation).

2. We show that ECVRF UC-realizes this functionality in the random-oracle
model (ROM). The proof of this claim is surprisingly involved, requiring a
rather complex simulation. The proof appears in full detail in the full version of
this paper [2]. We point out that this is the first comprehensive UC proof for this
type of VRF construction and further shows that the simulation can be done
in a responsive manner [8], a desirable property that simplifies the analysis of
higher-level protocols using the VRF functionality (e.g., [3]). In particular, the
simulation strategy described in [12] is not applicable (cf. related work below)
and [12] does not provide a proof for the revised functionality.

3. We introduce a UC formalization for a VRF providing batch verification via
a natural extension of the above VRF functionality.

4. We define a concrete instantiation of batch verification for the ECVRF con-
struction and prove that it UC-realizes the above ideal functionality of a
VRF with batch verification. Despite our focus on VRFs, we believe that our
formalization would naturally carry over to other widely used Fiat-Shamir
transformed Σ-protocols, such as Schnorr signatures or Ed25519.

5. To evaluate the efficiency improvements of the batch-compatible version, we
compare the efficiency of the current draft version versus the batch-compatible
primitive presented in this work. Roughly speaking, we observe that the batch
compatible primitive can achieve a factor-two efficiency gain with batches of
size 1024 in exchange for a trade-off with respect to its size, growing from 80
bytes to 128 bytes.

6. We provide an additional efficiency improvement, namely a simple range-
extension that can be implemented “on the fly” in ECVRF, which can help
higher-level protocols to reduce the number of VRF evaluations and proof
verification at the cost of more evaluations of the hash function.

Related Work. The VRF notion was introduced by Micali et al. [19]. A stronger
notion of VRF with security in the natural setting with malicious key generation
was presented as a UC functionality by David et al. [12]. A particular instantia-
tion, based on 2HashDH [16], was claimed to satisfy this stronger notion, but the
provided simulation argument only holds for a revised version of the functional-
ity which is first described in [3]. Jarecki et al. [16] provide a UC functionality
of a slightly different notion, which is that of a Verifiable Oblivious Pseudo Ran-
dom Function where two parties need to input some secret information in order
to compute the random output.

The first systematic treatment of batch verification for modular exponenti-
ation was presented by Bellare et al. [4], and adapted to digital signatures by
Camenisch et al. [9]. The batch verification technique that we adopt was ini-
tially developed by Naccache et al. [20], and used by Bernstein et al. [7] and
Wuille et al. [25]. Exploiting the batching technique in the context of VRFs was
informally discussed in the IRTF group and mailing list [15,23].
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2 Preliminaries

UC Security. We give a very brief overview of the UC security framework nec-
essary to understand the rest of this work. For details we refer to [10]. In this
framework a protocol execution (the so-called “real-world process”) is repre-
sented by a group of interactive Turing machine instances (ITIs) running a pro-
tocol π, forming a protocol session. The environment Z orchestrates the inputs
and receives the outputs of these machines. Additionally, an adversary is part
of the execution and can corrupt parties and thereby take control of them (we
assume throughout this work the standard UC adaptive corruption model defined
in [10]). To capture security guarantees, UC defines a corresponding ideal pro-
cess which is formulated w.r.t. an ideal functionality F . In the ideal process, the
environment Z interacts with the ideal-world adversary (called simulator) S and
with functionality F (or more precisely, with protocol machines that simply relay
all inputs and outputs to and from F , respectively). A protocol π UC-realizes F
if for any (efficient) adversary there exists an (efficient) simulator S such that for
any (efficient) environment Z the real and ideal processes are indistinguishable.
This means that the real protocol achieves the desired specification F .

VRF Syntax. We denote by κ the security parameter. The domain of the VRF
is denoted by X and its finite range is denoted by Y and typically represented
by Y = {0, 1}�VRF(κ), where �VRF(.) is a function of the security parameter. For
notational simplicity we often drop the explicit dependence on κ.

Definition 1 (VRF Syntax). A verifiable random function (VRF) consists of
a triple of PPT algorithms VRF := (Gen,Eval,Vfy):

– The probabilistic algorithm (sk, vk) ← Gen(1κ) takes as input the security
parameter κ in unary encoding and outputs a key pair, where sk is the secret
key and vk is the (public) verification key.

– The probabilistic algorithm (Y, π) ← Eval(sk,X) takes as input a secret key
sk and X ∈ X and outputs a function value Y ∈ Y and a proof π.

– The (possibly probabilistic but usually deterministic) algorithm b ←
Vfy(vk,X, Y, π) takes as input a verification key vk, input value X ∈ X ,
output value Y ∈ Y, as well as a proof π, and returns a bit b. (If X �∈ X or
Y �∈ Y, we assume that b is 0 by default.)

3 UC Security of Verifiable Random Functions

Modeling VRFs as a UC Protocol. Any verifiable random function VRF can
be cast as a simple protocol πVRF in the UC framework [10] as follows: Each party
Ui in session sid acts as follows: on its first input of the form (KeyGen, sid), run
(sk, vk) ← VRF.Gen(1κ), output (VerificationKey, sid, vk) and internally store sk;
any further key generation requests are ignored. On input (EvalProve, sid,m) for
an input m ∈ X (and if a key has been generated before) evaluate (Y, π) ←
VRF.Eval(sk,m) and output (Evaluated, sid, Y, π). (If no key has been generated
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Ideal Functionality FX , VRF

VRF

The functionality interacts with parties denoted by P = {U1, . . . , U|P|} as well
as the adversary/simulator S. It maintains tables T [·, ·] that are initially empty
(denoted by symbol ). The tables are initialized on-the-fly. The functionality
maintains a set Spk to keep track of registered keys, and Seval to keep track of all
known VRF evaluations.

– Key Generation. Upon receiving a message (KeyGen, sid) from Ui

s.t. (Ui, ·) Spk, hand (KeyGen, sid, Ui) to S (ignore the request if (Ui, ·)
Spk). Upon receiving (VerificationKey, sid, Ui, v) from S:
1. If Ui is corrupted, ignore the request.
2. If (Ui, ·) Spk and (·, v ) Spk : v v , set Spk Spk { (Ui, v)} and

return (VerificationKey, sid, v) to Ui.
3. Else, ignore the request.

– Malicious Key Generation. Upon receiving a message (KeyGen, sid, v) from
S, do the following: if (·, v ) Spk : v v , set Spk Spk { (S, v)}. Return
the activation to S.

– VRF Evaluation and Proof. Upon receiving a message (EvalProve, sid, m)
from Ui with m X , verify that some (Ui, v) Spk is recorded. If
such an entry is not stored or m X , then ignore the request. Else,
send (EvalProve, sid, Ui, m) to S and upon receiving (EvalProve, sid, Ui, m, π)
from S, do the following:
1. Ignore the request if the proof is not unique, i.e., if T [v , m ] = (y , S )

such that π S ((v v) (m m)).

2. If T [v, m] = , assign y
${ 0, 1} VRF and set T [v, m] { y, {π}}.

3. If T [v, m] = (y, S) , set T [v, m] { y, S { π}}.
4. Set Seval Seval { (v, m, y)} and output (Evaluated, sid, m, y, π) to Ui.

– Malicious VRF Evaluation. Upon receiving a message (Eval, sid, v, m),
m X , from S (if m X the request is ignored), do the following:

Case 1: (Ui, v) Spk where Ui is not corrupted: if T [v, m] = (y, S) for
S , return (Evaluated, sid, y) to S. Otherwise, ignore the
request.

Case 2: (S, v) Spk or (Ui, v) Spk, Ui corrupted: if T [v, m] = ,

first choose y
$ { 0, 1} VRF and set T [v, m] (y, ). Return

(Evaluated, sid, y) to S.
Else: Ignore the request.

– Verification. Upon receiving a message (Verify, sid, m, y, π, v ) from
any ITI M , send (Verify, sid, m, y, π, v , Seval) to S. Upon receiving
(Verified, sid, m, y, π, v , φ) from S do:

Case 1: v = v for some (·, v) Spk s.t. T (v, m) = (y, S) for some set S.
1. If π S, then set f 1.
2. Else, if φ = 1 and T [ṽ, m̃] = (y , S ) : π S , then set

T [v, m] = (y, S { π}) and f 1.
3. Else, set f 0.

Else: Set f 0.
Provide the output (Verified, sid, v , m, y, π, f) to the caller M .

– Adversarial Leakage [New compared to [12, 3]]. On input
(PastEvaluations, sid) from S, return Seval to S.

Fig. 1. The VRF functionality.
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yet, evaluation queries are ignored.) On input (Verify, sid,m, y, π, v′), the party
evaluates b ← VRF.Vfy(v′,m, y, π) and finally returns (Verified, sid, v′,m, y, π, b).

Ideal Functionality FX ,�VRF
VRF . In Fig. 1 we present the functionality FX ,�VRF

VRF that
captures the desired properties of a VRF. The functionality provides interfaces
for key generation, evaluation and verification, as well as separate adversarial
interfaces for malicious key generation, evaluation, and leakage. The function
table corresponding to each public key is a truly random function (and thus
also guarantees a unique association of the key-value pair to output Y ) even for
adversarially generated keys. Furthermore, no incorrect association can be ever
verified and every completed honest evaluation can be later verified correctly.

The functionality is based on [3,12], but contains several modifications. First,
verification is now more in line with typical UC formulations for (signature) ver-
ification, where the adversary is given some limited influence (in prior versions,
the adversary had to inject proofs in between verification request and response
to accomplish the same thing). Second, the uniqueness notion for proofs has
been correctly adjusted to catch the corner case that schemes might choose to
de-randomize the prover (akin signatures) which is a crucial point later when we
look at ECVRF. The remaining changes are merely syntactical compared to [3].

Definition 2 (UC security of a VRF). A verifiable random function VRF
with input domain X and range Y = {0, 1}�VRF is called UC-secure if πVRF UC-
realizes FX ,�VRF

VRF specified in Fig. 1.

Random Oracles in UC. When working in the random-oracle model, the UC
protocol above is changed as follows: whenever VRF prescribes a call to a par-
ticular hash function to hash some value x, this is replaced by a call of the form
(eval, sid, x) to an instance of a so-called random oracle functionality, which
internally implements an ideal random function {0, 1}∗ → Y ′ and returns the
corresponding function value back to the caller. We will often use the notation
H(x) in the specifications to refer to a general hash function with the under-
standing that this call will be treated as a random oracle call in the security
proof.

Hash : {0, 1} {0, 1} (κ)

Encode_to_curve : {0, 1} G

Compute_scalar : {0, 1}2κ S

Expand_key : {0, 1}2κ {0, 1}2κ × {0, 1}2κ

Nonce_generation : {0, 1}2κ × E Zq

Hash_pts : E × E × E × E × E {0, 1}κ

Fig. 2. Domain of the helper functions for ECVRF (see [2] for more details). The
functions Hash and Encode to curve are modeled as random oracles in the secu-
rity argument and Compute scalar is an encoding that preserves the min-entropy
of its input. The remaining helper functions are implemented based on Hash (using
domain-separation), where Expand key is an adaptively secure pseudo-random genera-
tor, Nonce generation is an adaptively secure pseudo-random function, and Hash pts

is a random oracle.
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Gen(1κ):

1. sk
${ 0, 1}2κ.

2. (sk0, sk1) Expand_key(sk).
3. x Compute_scalar(sk0).
4. vk x B.
5. Return (sk, vk).

Eval(sk, X):

1. π Prove(sk, X).
2. Y Compute(π).
3. Return (Y, π).

Prove(sk, X):

1. Derive vk, x from sk as in Gen(1κ).
2. H Encode_to_curve(E2Cs || X).
3. Γ x H.
4. k Nonce_generation(sk, H).
5. c Hash_pts(vk, H, Γ, k B, k

H).
6. s (k + c · x) mod q.
7. π (Γ, c, s).
8. Return π.

Compute(π = Γ || ...): Precondition. Γ E
a.

1. Return Hash(suite_s || DS3 || (cf
Γ ) || DS0), where cf is the co-factor (for
curve25519, cf = 8).

Vfy(vk, X, Y, π):

1. If vk E or cf vk = O, return 0.b

2. Parse (Γ, c, s) π. If Γ E return 0.
Interpret the κ bits of c and the 2κ bits
of s as little-endian integers. If s ≥ q,
return 0.

3. H Encode_to_curve(E2Cs || X).
4. U s B − c vk.
5. V s H − c Γ .
6. c Hash_pts(vk, H, Γ, U, V ).
7. If c = c return b := (Y = Compute(π));

otherwise return 0.
a Otherwise an implementation could re-
turn some ERR Y. For the analysis this
is not needed as the protocol ensures the
precondition and the adversary is free to
invoke the hash-function at will.

b This check excludes low-order elements,
i.e., P E, ord(P ) < q.

Fig. 3. Description of ECVRF, where B denotes the generator of the subgroup G of E.
Note that the salt value E2Cs leaves room for more general use cases. We consider the
case E2Cs = vk in the analysis of the standard and its extensions.

4 The ECVRF Standard

This section recalls the elliptic-curve based schemes described in the IRTF
draft [15] and focuses on the cipher suites suite s ∈ {0x03, 0x04} for the sake
of concreteness.

Notation. We denote by E(Fp) the finite abelian group based on an elliptic curve
over a finite prime-order field Fp (note that we simplify the notation and drop
the explicit dependency on Fp and security parameter κ). Most importantly, we
assume the order of the group E to be of the form cf · q for some small cofactor
cf and large prime number q, and that the (hence) unique subgroup G of order
q is generated by a known base point B, i.e., G = 〈B〉 (q is represented by ≈ 2κ
bits) in which the computational Diffie-Hellman (CDH) problem is believed to
be hard. Group operations are written in additive notation, scalar multiplication
for points P ∈ E is denoted by m∗P = P + · · · + P

︸ ︷︷ ︸

m

, and the neutral element by
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O = 0 ∗P . We use a
$← S to denote that a is selected uniformly at random from

a set S. When working with binary arrays, a ∈ {0, 1}∗, we denote by a[X..Y ] the
slice of a from position X till position Y − 1. Moreover, we denote by a[..X] and
a[X..] the slice from position 0 till X − 1 and from X till the end, respectively.
As usual, the operator || denotes concatenation of strings; thus, for A = 0 || 1
we have A[..1] = 0 and A[1..] = 1.

The standard makes use of helper functions, all of which are defined and
introduced in [15]. For sake of simplicity we only state the specification of the
security-relevant helper functions. The functions are briefly described in Fig. 2.
As domain separators we use values between 0 and 5 in hexadecimal represen-
tation. In particular, we use DSi ← 0x0i for i ∈ [0, 5]. The standard also uses
encode to curve salt to denote the salt used for the Encode to curve func-
tion, which we denote by E2Cs. Note that all EC-ciphersuites define the salt as
the prover’s public key which is the case we consider and analyze in this work. To
give a concrete example, the deployed VRF construction in Cardano is instan-
tiated with κ = 128 and elliptic curve edwards25519 which has cofactor 8. The
prime order q is represented by 32 octets, or more precisely 253 bits, and the
hash function is SHA512 : {0, 1}∗ → {0, 1}512. Conveniently, we choose �(κ) = 4κ.
The function Hash pts defines the associated challenge space, thus being the set
C := {0, 1}κ interpreted as integers. For the function Compute scalar(sk0), the
string is first pruned: the lowest three bits of the first octet are cleared, the high-
est bit of the last octet is cleared, and the second highest bit of the last octet is
set. This buffer is interpreted as a little-endian integer, forming the secret scalar
x, which results in an output domain containing 2251 different elements.

The VRF Algorithms. The formal definition of a VRF in Sect. 3 denotes
by Eval the function that computes the output of the VRF evaluation together
with its proof. In this section the two actions are treated separately to follow the
approach taken by the standard, and we define the functions Prove and Compute
to represent the proof generation and the output computation, respectively. The
algorithms from the standard are given in Fig. 3.

5 ECVRFbc: Batch Verification for ECVRF

In the interest of performance, we now study the possibility of batch-verifying the
proofs generated by ECVRF. To this end, we introduce slight modifications that
allow for an efficient batch-verification algorithm. Next, we prove that batch-
verification does not affect the security properties of individual proofs.

We divide the exposition of the changes in two steps. First, in Sect. 5.1 we
present the changes on the protocol (involving the prover and the verifier) to
make the scheme batch-compatible. Second, in Sect. 5.2 we describe the specific
computation performed by the verifier to batch several proof verifications.

Intuition. The operations performed in steps 4 and 5 of Vfy appear as good can-
didates for batching across several proofs. Namely, instead of sequential scalar
multiplications, one could perform a single multiscalar multiplication for all
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proofs that are being verified. However, this trick can only be exploited if steps 4
and 5 are equality checks rather than computations. In ECVRF, the verifier has
no knowledge of points U and V , and has to compute them first. We hence mod-
ify the scheme so that the prover includes points U and V in the transcript and
the verifier can simply check for equality.

5.1 Making the Scheme Batch-Compatible

As discussed, in order to allow batch verification, steps 4 and 5 need to be equal-
ity checks. This requires a change in step 7 of Prove and changes in steps 2, 4, 5,
and 7 of Vfy. Moreover, the challenge computation needs to be moved from step 6
to the position in between steps 3 and 4 (we call it step 3.5). The modifications
result in scheme ECVRFbc, summarized in Fig. 4.

Intuitively, this change has no implications on the security of the scheme, as it
is common for (Fiat-Shamir-transformed) Σ-protocols to send the commitment
of the randomness (sometimes called the announcement) instead of the chal-
lenge.1 The choice of sending the challenge instead of the two announcements in
ECVRF is simply to optimize communication complexity and efficiency.

5.2 Batch-Verification

To see how the changes described above allow for batch verification, first observe
how steps 4 and 5 in ECVRFbc can be combined into a single check: if they
validate, then so does the equation

O = r ∗ (s ∗ B − c ∗ vk − U) + l ∗ (s ∗ H − c ∗ Γ − V )

where r, l are scalars chosen by the verifier. The reverse is also true with over-
whelming probability if r and l are taken uniformly at random from a set of
sufficient size (in particular, we choose the set C for convenience).

More generally, to verify n different ECVRFbc proofs, the verifier needs to
check whether the equality relations Ui = si ∗B−ci ∗vki and Vi = si ∗Hi −ci ∗Γi

hold for each of the proofs. This can be merged into a single equality check

O = ri ∗ (si ∗ B − ci ∗ vki − Ui) + li ∗ (si ∗ Hi − ci ∗ Γi − Vi)

for each i ∈ [1, n] and, moreover, into a single verification

O =
∑

i∈[1,n]

(ri ∗ (si ∗ B − ci ∗ vki − Ui) + li ∗ (si ∗ Hi − ci ∗ Γi − Vi))

across all proofs, where ri and li are random scalars. The full protocol to imple-
ment batch verification based on the above idea appears in Sect. 6.2. By using
the state of the art multi-scalar multiplication algorithms, leveraging this trick
provides significant running time improvements, as discussed in Sect. 7.
1 As a matter of fact, ed25519 [7] is also a sigma protocol and encodes the announce-

ment instead of the challenge in the non-interactive variant of this sigma-protocol.



A Composable Security Treatment of ECVRF and Batch Verifications 31

Prove(sk, X) remains unchanged except for step 7, which changes as follows:
7. Let π (Γ, (k B), (k H), s).

Compute(π) remains unchanged.

Vfy(vk, X, Y, π) changes as follows:

1. Remains unchanged.
2. Parse π as tuple (Γ, U, V, s).

If {Γ, U, V } E, return 0. In-
terpret the 2κ bits of s as a
little-endian integer. If s ≥ q,
return 0.

3. Remains unchanged.
3.5. c Hash_pts(vk, H, Γ, U, V ).
4. If U s B − c vk, return 0.
5. If V s H − c Γ , return 0.
6. [Moved to step 3.5]
7. Return b := (Y = Compute(π)).

Fig. 4. Description of modifications in ECVRFbc compared to ECVRF.

Invalid Batches. Note that if batch verification fails, one would need to break
down the batch to determine which proof is invalid. However, in several practical
cases (most notably, when validating the state of a blockchain), the verifier is
primarily interested in whether the whole batch is valid (so that the respective
part of the chain can be adopted); if the batch verification fails this has protocol-
level consequences (e.g., disconnecting from the peer providing the invalid batch)
that obviate the need for individual identification of the failed verification.

Pseudorandom Coefficients. We describe how the coefficients li, ri can be
securely computed in a deterministic manner, a feature that is favorable from
a practical perspective. Similarly to the well-known Fiat-Shamir heuristic for
Σ-protocols, it is essential that the values cannot be known to the prover when
defining the proof string. To this end, we propose to compute the scalars by
hashing the contents of the proof itself, the value of H for the corresponding
public key, and an index.

Concretely, for a batch proof of proofs π1, . . . , πn, one computes, for i ∈ [1, n]:

1. π′
i ← Hi ||πi,

2. ST ← π′
1 ||π′

2 || . . . ||π′
n,

3. hi ← Hash(suite s || DS4 ||ST || i || DS0),
4. li ← hi[..κ], and ri ← hi[κ..2 · κ].

The values li and ri are treated as little-endian integers and are thus picked
from the domain C as the challenge defined earlier. As before, the security anal-
ysis can treat the invocation as an evaluation of a random oracle obtained using
domain separation on Hash (where we follow the usual format).

6 Security Analysis of ECVRFbc and Batch Verifications

We first analyze the security of the standard without batch verifications in the
next section and prove the security including batch verifications afterwards. We
refer to the appendix of this work for background on zero-knowledge proofs and
homomorphisms which turn out to be a conceptually elegant tool to argue about
the security of the scheme.
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6.1 Security Analysis of ECVRFbc

Recall from Sect. 3 how any VRF can be understood as a UC protocol. We now
establish the security of the ECVRFbc protocol without the batching step, but
with the (minor) modifications introduced in Sect. 5.1. We work in the random-
oracle model; that is, we introduce the two general functions H (abstracting the
details of Hash) and He2c (abstracting the details of Encode to curve) which are
in the model represented by two instances of the random oracle functionality,
which are FY

RO, for Y = {0, 1}�VRF , and FG

RO, respectively, so that invocations of H
and He2c correspond to invocations of the respective functionalities as explained
in Sect. 3. For simplicity and clarity in the UC protocols, we continue to write
H(x) (resp. He2c(x)) with the understanding that it stands for a call to an ideal
object. Note that the remaining helper functions obtain their claimed security
properties based on the assumption on H as is established in the proof.

Theorem 1. Let E and its prime-order subgroup G be defined as in Sect. 4. The
protocol πECVRF UC-realizes FX ,�VRF

VRF , for X = {0, 1}∗ and �VRF(κ) = 4κ, in the
random-oracle model and under the assumption that the CDH problem is hard
in G.

Proof Overview. We refer to the full version of this work [2] for the full proof,
which is rather involved, and provide here an overview. We must give a simulator
such that the real VRF construction (where the above algorithms are executed)
is indistinguishable from the ideal world consisting of the ideal VRF functionality
plus the simulator (which has to produce an indistinguishable real-world view
to the environment). The simulator of this construction can be thought of as
performing the following four crucial tasks: it (1) simulates the honest parties’
credentials, (2) simulates honest parties’ VRF evaluations and proofs (without
knowledge of the VRF output), (3) verifies VRF outputs, and (4) ensures that
the answers to random-oracle queries are consistent with the outputs of the VRF
functionality on the relevant random-oracle evaluations. Observing the definition
of the VRF functionality, we see that it enforces several properties that make
the simulation task challenging. In particular, unless a key is registered with
the functionality, no VRF evaluation is possible. Furthermore, the simulator can
only freshly evaluate the VRF on its registered keys or corrupted keys. Finally,
the functionality performs an ideal verification in that it stores the mapping
(v,m) 
→ y and answers verification requests specifying (v,m, y′) with 1 only
if y = y′. The difficulty is to argue that the simulator will always be “one step
ahead” of the distinguishing environment. That is, if the random oracle produces
an output that can correspond to a correct VRF output, then the simulator not
only has to detect to which public key this output should be linked, but also
that such a public key has in fact already been registered. Furthermore, if the
simulator decides that no such public key can currently be associated to an
output, this decision cannot be revised and corrected later (even if new public
keys are generated). While performing a consistent simulation is tricky, ensuring
the other properties requires a careful argumentation and we describe here a
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selection of considerations that provide some intuition for the proof and why
simulation is possible. On a high level, to correctly simulate verifications, the
combination (v,m, y, π) must be mapped to the instance of the NIZK for the
relation Rcf

B,H (see Appendix A for the notation and definition), which is possible
if the association of the (v,m) to the base point H is unique which can be based
on the guarantees of the random oracle. Given the soundness of the NIZK the
corresponding VRF output is derived based on the point φcf(Γ ) := cf∗Γ = x∗H,
where x is the exponent fulfilling the equation φcf(v) = x ∗ B.

Finally, to determine whether the correct value y is specified, the simulator
must be consistent with the functionality’s output for (v,m). On an intuitive
level, this requires the correct association between the protocol values Γ and
H with the public key v and message m. First, we note that the probability of
guessing a correct output without first computing the base point H can be shown
to be negligible. If it has in fact been queried, then thanks to clever programming
of the RO, the simulator can detect the relation. For a correct simulation, this
assignment must be unique and one-to-one which can be established based on
information-theoretic arguments and by the soundness of the NIZK. While the
above reasoning is true if the simulator can actually obtain the value y from the
functionality, for an honest party with public key v that has never evaluated
the VRF on message m this is by definition not possible and we have to prove
that only with negligible probability it is possible to find the correct point Γ for
such an honest party. This follows by the hardness of the computational Diffie-
Hellman problem in the group G. We conclude by noting that an additional
complication is to obtain a simulator which is responsive, i.e., which computes
replies to queries without additional interaction with the ideal functionality.
This aspect is mainly useful for protocol designers that rely on a responsive
environment [3,8,12].

6.2 Security Analysis of ECVRFbc with Batch Verifications

We first describe the setting and the ideal world that idealizes the security
requirements for batch verifications.

The Setting. We want to capture a general setting where the protocol is asked
to verify a bunch of claimed VRF proofs originating from any source outside the
system, including maliciously generated ones by the adversary. We model this
setting using a global bulletin-board functionality GBB and describe it in Fig. 5.
This abstraction fits not only the public blockchain setting (which can be seen as
a bulletin board), but any application that makes use of batch verifications where
new proofs appear in the system over time, potentially visible and updatable by
anyone including an adversary. Each instance of this functionality maintains a
list of values. The list is append-only, but there is no other restriction on what is
appended and thus the only guarantee it offers is that if we refer to an interval
[i . . . j] in the list associated to session sid then, once defined, the returned list
of values is always the same. The functionality is a global setup [1] for full
generality of the statement. In particular, once proven for this setting, simpler
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Functionality GBB

The function maintains a (dynamically updatable) list Ls (initially empty). The
functionality manages the set P of registered machines (identified by extended
identities), i.e., a machine is added to P when receiving input register (and re-
moves a machine from P when receiving de-register. The requests give activation
back to the calling machine).

– Upon receiving (add, sid, x) from P P or from the adversary, set L L || x
output (Updated, sid, L) to the adversary.

– Upon receiving (retrieve, sid, i, j) from P P or from the adversary, do the
following: if L[j] is undefined, return (i, j, ) to the caller. Otherwise, return
the result (Retrieved, sid, i, j, L[i] || . . . || L[j]) to the caller.

Fig. 5. The global bulletin board.

settings (such as defining a protocol interface taking a batch of proofs directly
from a caller) follow in a straightforward manner.

The Ideal World. In the ideal world, we introduce a new simple command to
the VRF functionality described in Fig. 6. Upon input (BatchVerify, sid, i, j),
the functionality retrieves the corresponding list from GBB and if the list is
non-empty, it verifies whether all claimed combinations are known are stored as
valid combinations. In this case the functionality returns 1. If this is not the case,
but all pairs (vi,mi, yi) specify the correct input-output-pairs as stored by the
functionality, i.e., T (vi,mi) = yi, then the functionality lets the adversary decide
on the output value. This case captures the fact that although the proofs strings
might not be stored in the functionality (or will never be), batch verification
will never assert a wrong input-output mapping. In any other case, the output
is defined to be 0.

The UC Protocol. Recall from Sect. 3 that any VRF can be formulated as a UC
protocol. We now show how to formulate batch verification as an extended proto-
col π+

ECVRF that is identical to πECVRF but additionally implements the following
procedure outlined in Sect. 5.2. To simplify notation, we continue to write H and
He2c for general hash-function invocations and understand that this corresponds
to evaluating the random oracles FY

RO and FG

RO, respectively.

– On input (BatchVerify, sid, i, j), send (retrieve, sid, i, j) to GBB and
receive the answer (Retrieved, sid, i, j, Li:j). If Li:j = ∅ then return
(BatchVerified, sid, i, j, 0). Otherwise, do the following:
1. Parse every item in the list as tuple, i.e., for each k ∈ [|Li:j |]

obtain Tk = (mk, yk, πk, vk). If the tuple has wrong format, return
(BatchVerified, sid, i, j, 0).

2. For each Tk perform first the steps 1. to 3. and then step 3.5 of ECVRF.Vfy,
that is:
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Ideal Functionality FX , VRF

VRF+

Same parameters and initialization as in Figure 1. Additionally, the functionality
registers to the instance of GBB with the same session identifier sid.

– Key generation, malicious key generation, VRF evaluation and proof, malicious
VRF evaluation, verification, and adversarial leakage are as in Figure 1.

– Batch Verification. Upon receiving a message (BatchVerify, sid, i, j)
from any party, send (retrieve, sid, i, j) to GBB to receive the list
(i, j, Li:j). Then output (BatchVerify, sid, i, j) to the adversary. Upon receiving
(BatchVerified, sid, i, j, b) do the following:
1. If Li:j = then return (BatchVerified, sid, i, j, 0) to the caller.
2. Parse each entry of Li:j as tuple (mk, yk, πk, vk) for k = 1 . . . |Li:j |.
3. Evaluate the condition f k [|Li:j |] : (·, vk) Spk T (vk, mk) =

(yk, S) πk S. If f = 1, return (BatchVerified, sid, i, j, 1) to the caller.
4. Evaluate the condition f k [|Li:j |] : (·, vk) Spk T (vk, mk) =

(yk, ·). If f = 1 return (BatchVerified, sid, i, j, b).
5. Return (BatchVerified, sid, i, j, 0).

Fig. 6. The VRF functionality with Batch Verifications.

• Verify that vk ∈ E and then that cf ∗ vk �= O.
• Parse and verify πk as tuple (Γk, Uk, Vk, sk) ∈ E

3 × Zq.
• Compute Hk ← He2c(vk,mk).
• Compute ck ← H(suite s || DS2 ||Hk ||Γk ||Uk ||Vk || DS0)[..κ].

3. If any check fails then return (BatchVerified, sid, i, j, 0).
4. Perform the batch verification:

• Set π′
k ← Hk ||πk for all k ∈ [|Li:j |].

• Let ST ← π′
1 || . . . ||π′

|Li:j |.
• ∀k ∈ [|Li:j |] : hk ← H(suite s || DS4 ||ST || k || DS0).
• ∀k ∈ [|Li:j |] : lk ← hk[..κ].
• ∀k ∈ [|Li:j |] : rk ← hk[κ..2 · κ].
• Evaluate

b1 ←
(

O =
∑

k∈[|Li:j |]

(

rk ∗ (sk ∗ B − ck ∗ vk − Uk)+

lk ∗ (sk ∗ Hk − ck ∗ Γk − Vk)
)
)

. (1)

5. Evaluate b2 ← (∀k ∈ [|Li:j |] : yk = Compute(πk)).
6. Define b ← b1 ∧ b2 and return (BatchVerified, sid, i, j, b) to the caller.

Theorem 2. Under the same assumptions as Theorem 1, the protocol π+
ECVRF

UC-realizes FX ,�VRF
VRF+ (where GBB is a global setup), for X = {0, 1}∗ and �VRF(κ) =

4κ.
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Proof (Sketch). The proof needs to verify two things: first, similar to the reason-
ing in the Fiat-Shamir transform outlined in Appendix A, it must be the case that
invocations of H(. . . ||ST || k || . . . ) are in one-to-one correspondence with imagi-
nary protocol runs, where a prover first presents ST and an honest verifier picks the
coefficients ri and li uniformly at random. Second, we have to argue that no invalid
statement can verify as part of the batch. Let Tk̃ be such an invalid tuple. Based
on considerations discussed in Appendix A, a tuple Tk̃ fixes the entire instance of
a particular proof, i.e., B,Hk̃, vk̃, Γk̃, and encodes a particular run of the associ-
ated Σ-protocol where the challenge is computed correctly based on the random
oracle using the Fiat-Shamir transform (otherwise, the entire sequence of tuples
is rejected). We see that the employed Σ-protocol is sound w.r.t. relation Rcf

B,Hk

even for the relaxed verification sk̃ ∗ B − ck̃ ∗ vk̃ − Uk̃ ∈ ker(φcf) ∧ sk̃ ∗ Hk̃ −
ck̃ ∗ Γk̃ − Vk̃ ∈ ker(φcf). Thus, the probability that the instance and proof run
encoded in Tk̃ satisfies this check but (vk̃, Γk̃) �∈ Rcf

B,Hk
is at most 1/|C|. Finally, if

sk̃ ∗ B − ck̃ ∗ vk̃ − Uk̃ ∈ P + ker(φcf) for some P ∈ G (cf. Appendix A for a brief
overview of the concepts here), it is straightforward to see that Eq. (1) holds only
with probability at most 1/|C| as we basically compute a random rk̃-multiple of P
(the other case for coefficient lk̃ is symmetric). The theorem follows by taking the
union bound over all batch verifications instructed by the environment. ��
On-the-Fly Range Extension. We conclude this section by showcasing a simple
range extension of the VRF which, in certain implementations, can significantly
reduce the number of VRF evaluations at the cost of a hash function evaluation.
All we have to do is to modify the algorithm Compute in π+

ECVRF which changes
the format of the tuples T = (m, y, π, v) only in one place, i.e., y ∈ {0, 1}c·�VRF ,
where c is the fixed constant in the range-extension construction. We denote the
new protocol with the new output computation Compute′ below by π̃+

ECVRF:

– Compute′(π), where string π = Γ || ... with Γ ∈ E:
1. Compute Y ← H(suite s || DS3 || (cf ∗ Γ ) || DS0).
2. Output

(H(suite s || DS5 || 1 ||Y || DS0), . . . ,H(suite s || DS5 || c ||Y || DS0)).
Corollary 1. Under the same assumptions as Theorem 2, protocol π̃+

ECVRF UC-
realizes FX ,c·�VRF

VRF+ , for X = {0, 1}∗ and �VRF(κ) = 4κ.

Proof (Sketch). The proof follows along the lines of the previous proofs. The
only additional concern is the possibility of collisions among the values obtained
for Y in the above construction, because we require that each fresh invocation
of the output tuple computed in the second step corresponds to new evaluation
points of the random oracle H. This bad event can be bounded by the standard
collision probability of bitstrings drawn uniformly at random from {0, 1}�VRF . ��

7 Performance Evaluation

In this section we evaluate the performance of the ECVRF-EDWARDS25519-
SHA512-TAI ciphersuite as defined in the standard [15] against the batch-
compatible variant proposed in this paper. Essentially, these are ECVRF and
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ECVRFbc, respectively, over the curve edwards25519 with SHA512 as a hashing
algorithm. We implement a Rust prototype of version 10 of the draft which we
provide open source [22]. We use the curve25519-dalek [17] rust implementation
for the curve arithmetic operations, which implements multiscalar multiplication
with Strauss’ [5] and Pippenger’s [6] algorithms, and optimize the choice depend-
ing on the size of the batch. We ran all experiments in MacOS on a commodity
laptop using a single core of an Intel i7 processor running at 2,7 GHz. For the batch-
compatible version we implement both a deterministic verification (using the hash-
ing techniques as described in Sect. 5) as well as a random verification where the
scalars ri, li are sampled uniformly at random fromZ2128 . We benchmark the prov-
ing and verification times for each, using batches of size 2l for l ∈ {1, . . . , 10}. In the
standard version, the size of a VRF proof consists of a (32-byte) elliptic curve point,
a 16-byte scalar, and a 32-byte scalar. In the batch compatible version, rather than
sending the challenge we send the two announcements, which results in three ellip-
tic curve points and a 32-byte scalar. Therefore the modifications increase proof
size from 80 to 128 bytes.

This results in a considerable improvement in verification time. Figure 7
shows that proving time is unaffected, and there is no difference between the
normal ECVRF and ECVRFbc (as expected). In Fig. 8 we show the verification
time per proof for different sized batches. We interpret the times of batch ver-
ification as a ratio with respect to ECVRF. Using deterministic batching, the
verification time per proof is reduced to 0.71 with batches of 64 and to 0.56 with
batches of 1024 signatures. With random coefficients, batching times get a bit
better given that we no longer need to compute hashes for scalars li and ri. The
verification time per proof can be reduced to 0.6 with batches of 64 signatures,
and up to 0.47 with batches of 1024.
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A Brief Overview of Concepts Used in the Security
Argument

We provide here a sketch of fundamental concepts used in the security argument.
The extended version contains a detailed exposition [2].

On Σ-Protocols for Group Homomorphisms. We recall here a general class
of zero-knowledge proofs of knowledge, namely the three-round protocols that
prove the knowledge of a preimage of a (presumably one-way) group homomor-
phism [18]. Consider two groups (H, ◦) and (T, �) together with a homomorphism
f : H → T, i.e., f(x ◦ y) = f(x) � f(y).

Let Rf be the relation defined by (z, x) ∈ Rf :↔ f(x) = z. Consider the
following three-round protocol between prover P and verifier V for the language
LRf

:= {z | ∃x : (z, x) ∈ Rf}. That is, the common input is the proof instance
z ∈ T (and the relation Rf ), where the prover is supposed to know a value x ∈ H

s.t. f(x) = z.

1. P → V : P samples k
$← H and sends t := f(k) to V .

2. V → P : V picks at random an integer c ∈ C ⊂ N and sends it to P .
3. P → V : P computes s := k ◦xc and sends s to V . V accepts the protocol run

if and only if the equality f(s) = t � zc holds.

The security of this protocol follows from the following lemma:

Lemma 1. ([18]). Let Rf a relation as described above relative to a group
homomorphism f : H → T. The above protocol is a Σ-Protocol for the language
LRf

if there are two publicly known values � ∈ Z and u ∈ H s.t.

1. ∀c, c′ ∈ C, c �= c′: gcd(c − c′, �) = 1, and
2. ∀z ∈ LRf

, f(u) = z�.

The Fiat-Shamir Transform turns (in the random-oracle model) any Σ-
Protocol into a secure non-interactive zero-knowledge protocol of knowledge.
Intuitively, the assumed random oracle is like an honest verifier computing a
challenge and thus preserves the above security properties. We refer to [2] for
details.

Instantiation for ECVRFbc. We recall that in ECVRFbc we deal with a prime-
order subgroup G of order q of an elliptic curve of order cf · q. Let B1 and B2

be two generators of this subgroup. Essentially, the Σ-protocol of interest is
an equality proof of discrete logarithm, i.e., given two values z1 and z2 prove
knowledge of x such that x∗B1 = z1∧x∗B2 = z2. To instantiate the above generic
scheme, we let H := (Zq,+) and define (T,⊕) := (G,+) × (G,+) as the direct
product of G, where the binary operation ⊕ on T is defined component-wise.
The homomorphism is given by fB1,B2 : Zq → T; x 
→ (x ∗ B1, x ∗ B2). Since
G is of prime order q, we can satisfy the conditions of Lemma 1 by letting u = 0
and � = q, and defining the challenge space to be a large subset C ⊆ [0, . . . , q−1].
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We therefore conclude that the embedded non-interactive zero-knowledge
proof of knowledge in ECVRFbc has (in the random-oracle model) simulatable
executions, and with only negligible probability can a valid proof for a wrong
statement be generated.

On Domain Checks and the Canonical Epimorphism. Special care has
to be taken in the analysis as ECVRFbc omits detailed domain checks which in
general can impact security in that Lemma 1 cannot be applied directly (we
have G a subgroup of E and the protocol could be run on values zi ∈ E \ G by
a dishonest party as the verifier does not perform a domain check for zi ∈ G

but only for E). We leave the general treatment of this to the full version of
this work, and describe here a special case based on the canonical epimorphism:
For ECVRFbc, we can consider the map P 
→ cf ∗ P which is the canonical epi-
morphism φcf : E → G and the corresponding map P + ker(φcf) 
→ φcf(P )
which identifies the isomorphism establishing E/ ker(φcf) ∼= G by the funda-
mental theorem on homomorphisms. From this we can deduce by Lagrange’s
Theorem that |E| = |G| · | ker(φcf)|. Since the choice of the representatives is
immaterial one can think of each coset P + ker(φcf) to be represented by a
point P ∈ G (and the kernel consists of the low-order points, i.e., elements of
order strictly less than q). Denoting the first round message of the prover by
(U, V ), the projected verification equation in step 3 of the Σ-Protocol becomes
(O,O) = (φcf(s ∗ B − U − c ∗ z1), φcf(s ∗ H − V − c ∗ z2)) which is an equation
in the prime-order group G (recall that B and H are generators of G). Stated
differently, the above equality is satisfied when (s∗B −V −c∗z1) ∈ ker(φcf) and
(s ∗ H − V − c ∗ z2) ∈ ker(φcf). As we show in the full version [2], the guarantees
of Lemma 1 apply to this projected run of the protocol, in particular, we obtain
the soundness guarantee for the relation

(z1, z2) ∈ Rcf
B,H :↔ x ∗ B = φcf(z1) ∧ x ∗ H = φcf(z2) (2)

guaranteed by the above Σ-protocol (where technically speaking, we could relax
the checks performed by the verifier to (s ∗ B − V − c ∗ z1) ∈ ker(φcf) and
(s∗H−V −c∗z2) ∈ ker(φcf) instead of stricter equality checks (s∗B−V −c∗z1) =
O and (s ∗ H − V − c ∗ z2) = O).
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Abstract. Recently, there has been great interest towards constructing
efficient zero-knowledge proofs for practical languages. In this work, we
focus on proofs for threshold relations, in which the prover is required to
prove knowledge of witnesses for k out of � statements.

The main contribution of our work is an efficient and modular trans-
formation that starting from a large class of Σ-protocols and a corre-
sponding threshold relation Rk,�, provides an efficient Σ-protocol for
Rk,� with improved communication complexity w.r.t. prior results. Our
transformation preserves statistical/perfect honest-verifier zero knowl-
edge.

Keywords: Σ-protocols · Threshold relations · Communication
efficiency

1 Introduction

With the advent of blockchain technology and cryptocurrencies, there has been
more interest in designing practical systems for decentralized computations.
In particular, there is an effort towards systems producing succinct messages
that can later be uploaded on blockchains guaranteeing some public verifiabil-
ity. Notable examples of such tools are threshold signatures and succinct non-
interactive arguments of knowledge (SNARKs).

Proofs over Threshold Relations. W.r.t. the above motivation we focus on proofs
over threshold relations (PTRs) where a statement consists of � instances and
the prover wants to prove knowledge of witnesses for at least k of them. For
simplicity, we will refer to such a proof as a (k, �)-PTR. Several previous works
have focused on obtaining such proofs for practical languages. In [9], Cramer
et al. showed how to efficiently combine Σ-protocols in order to obtain a (k, �)-
PTR. Their construction mainly consists of running Σ-protocols for all instances
combining them efficiently, and thus the costs (i.e., computations and commu-
nication) of their (k, �)-PTR essentially consist of the sum of the costs of all
the underlying Σ-protocols. The resulting protocol is still a Σ-protocol. More
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https://doi.org/10.1007/978-3-031-17143-7_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-17143-7_3&domain=pdf
https://doi.org/10.1007/978-3-031-17143-7_3


Efficient Proofs of Knowledge for Threshold Relations 43

recently, a different technique has been proposed in [8] where Ciampi et al.
showed how to obtain a similar result with the additional feature of postpon-
ing the need to know the instances to the last round (i.e., delayed input). The
delayed-input (k, �)-PTR of Ciampi et al. relies on the DDH assumption and can
be applied to all Σ-protocols as [9]. The resulting protocol is a 3-round public-
coin proof of knowledge. Unfortunately, since this composition technique relies
on a computationally-hiding commitment scheme, it produces a protocol which
only achieves computational zero knowledge regardless of the underlying Σ-
protocols being statistical/perfect zero knowledge. However, statistical/perfect
zero knowledge is very important since it protects the privacy of past proof com-
puted by the prover forever (e.g., even if quantum computers become a concrete
threat).

Very recently, Attema et al. in [1], improving a prior work of Groth and
Kohlweiss [12], have shown how to obtain a very compact (k, �)-PTR. How-
ever, the result of [1] only works for discrete logarithms (and variations), thus
remaining far from the general results of [9]. Their construction requires a log-
arithmic number of rounds1 and is secure against polynomial-time adversarial
provers only (while preserving statistical/perfect zero knowledge). They require
a shared random string (SRS) as trusted parameters.

Even more recently, Goel et al. in [11] have broken the barrier of linear (in
�) communication complexity when composing generic Σ-protocols, showing an
efficient composition for a large class of Σ-protocols (which they call stackable
Σ-protocols) obtaining logarithmic communication complexity. Their construc-
tion is secure against polynomial-time adversarial provers only2, obtaining com-
putational special soundness. They give an instantiation of their construction
based on a commitment scheme that relies on the discrete logarithm assumption.
Their instantiation requires as trusted parameters the description of a collision-
resistant hash function (CRHF) and parameters for Pedersen commitments. The
perfect hiding of the commitment scheme allows to preserve statistical/perfect
zero knowledge when the underlying Σ-protocols are perfect/statistical zero-
knowledge. While their construction applies to a large class of Σ-protocols, the
techniques of [11] are communication-efficient only when k = 1. In the full ver-
sion of their paper [10], Goel et al. discuss (see Sec. 9.1 and App. F of [10])
an approach for the case of k > 1 but unfortunately, as they acknowledge, their
proposal strongly affects communication, without providing substantial improve-
ments over [9]. Goel et al. left explicitly open the problem of efficiently combining
Σ-protocols in order to break, for generic values of k, the linear (in �) barrier
achieved by [9] (see [10], page 32, Sec. 9.1).

Alternative Approaches. Recently, in [15] the result of [14] has been extended
to (k, �)-PTRs retaining the same communication advantage of [14] while opti-
1 The result of [12] instead works only for k = 1, but it just requires 3 rounds.
2 For ease of presentation, in this work we will use the term PTR even when the sound-

ness property holds only against a computationally bounded adversarial prover. We
will do the same for computational Σ-protocols which only satisfy a weaker version
of special soundness called computational special soundness (cfr., Appendix A).
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mizing computation efficiency. Their approach has communication complexity
proportional to k times the longest branch. Mac’n’Cheese [4] is an interactive
commit-and-prove zero-knowledge proof system for binary and arithmetic cir-
cuits. The communication complexity is proportional to k times the longest
circuit plus an additive term which is logarithmic in �. As commitments it uses
information-theoretic MACs based on vector oblivious linear evaluation (VOLE).
Note that Mac’n’Cheese is inherently private coin since the soundness relies on
the verifier keeping the MAC key secret. Therefore, it is not immediately clear
whether it can be modified to support public verifiability. Finally, one might
leverage succinct proof techniques such as STARKs [5] or SNARKs [17] to get
a communication-efficient (k, �)-PTR. While these techniques can achieve even
constant proof size, they have several drawbacks such as a huge workload for
provers and the use of strong assumptions and/or problematic trusted setups.
Although all the approaches above apply to NP-complete languages, we note
that they are not so obviously efficiently generalizable to arbitrary languages.
Instead, our approach is more beneficial to protocol designers. Indeed, if there
is a Σ-protocol (with specific additional properties) for the base relation, a pro-
tocol designer can use our solution directly for the (k, �) case without the need
to run a possibly expensive NP-reduction.

Open Problem. In light of the above state of affairs, we have the following natural
and interesting (both theoretically and practically) open question:

Is it possible to obtain practical (i.e., round, communication and
computation-efficient) (k, �)-proofs of knowledge for threshold relations for a
large class of Σ-protocols (and thus for several useful languages) with communi-
cation complexity sublinear in � preserving statistical/perfect zero knowledge?

1.1 Our Contribution

In this work, we solve the above open problem when k = o( �
log � ) by showing

how to efficiently combine the same large class of Σ-protocols considered in [10]
obtaining a (k, �)-PTR with communication complexity that is roughly3 k log �.
In scenarios where k is way smaller than � (e.g., k is constant or even

√
�)

this is a significant improvement. Moreover, our construction, similarly to [10],
can also be used for (k, �)-PTR involving Σ-protocols for different languages.
The protocol obtained through our techniques is still a Σ-protocol and thus,
it can be combined again with our techniques or other techniques (e.g., [9])
for composing Σ-protocols. Finally, our construction preserves the flavour of
the zero-knowledge property of the composed protocols. Indeed, our (k, �)-PTR
called Πk,� is still statistical/perfect honest-verifier zero knowledge (HVZK) if
the base Σ-protocols are statistical/perfect HVZK. Our construction can also be
instantiated, with small modifications, using the commitment scheme of [8]. In
this case, our (k, �)-PTR would provide computational HVZK but it would only

3 We will be more precise later making the impact of the security parameter explicit.
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require a shared CRHF as setup, that is a milder setup compared to requiring a
shared random string.

We use the (1, �)-PTR of [10], to which we refer as Π1,�, as a building block
and start with their observation that repeating k times their construction is
insecure since an adversarial prover might succeed in using a witness for the
same instance in all the k executions. This is precisely the problem left unsolved
in [10] for (k, �)-PTRs that we solve in this paper.

Compact Proof of Consistency of Commitment Parameters. In Π1,�, the use of
a witness is associated to log � pairs of parameters of a commitment scheme for
pairs of messages such that, for every pair, one parameter allows for equivocation
and the other parameter prevents equivocation. We will say that one parameter
is equivocal and the other one is binding. Only the prover knows which element
is equivocal for every pair. We say that a commitment scheme is 1-out-of-2
equivocal when a commitment phase requires to commit to two messages, one
with binding parameters and one with equivocal parameters, without allowing
the receiver to distinguish them, even after the commitment is opened.

In the following, we assume w.l.o.g. that � is a power of 2 and give a sim-
plified description of our approach. Let x0, . . . , x�−1 be the instances and let xi

with i ∈ {0, . . . , � − 1} be the instance corresponding to witness wi known to
the prover. The log � pairs of parameters are chosen so that the j-th pair has
the first parameter binding if the j-th bit of i is zero (for j = 0, . . . , log � − 1)
and equivocal otherwise. Notice that the connection between a pair of param-
eters that can be either (equivocal, binding) or (binding, equivocal) and a bit
of the index of an instance makes the log � pairs of parameters associated to xi

logically different from the log � pairs of parameters associated to xj , as long
as i �= j. We observe that to show that in k executions of Π1,� the k wit-
nesses correspond to k different instances, one can focus on showing that the
k sequences of log � pairs of parameters are all disjoint in the sense that for
every pair (ā = a0, a1, . . . , alog �−1), (b̄ = b0, b1, . . . , blog �−1) of elements in these
k sequences, there is always a position j ∈ {0, . . . , log � − 1} such that only one
out of aj and bj has the first parameter that is binding. We focus on efficiently
proving the above property of all pairs in these k sequences as follows: first, we
require the prover to sort the k sequences according to the order relation derived
by assigning to every sequence of log � pairs of parameters a string of log � bits
where the j-th bit is 0 if and only if the j-th pair of parameters in the sequence
has the first element that is binding. The prover has all the information to sort
these k sequences since the prover itself decided those parameters and thus it
knows which one is binding and which one is equivocal. Once the k sequences are
sorted, in order to prove that they are all disjoint (in the sense explained above)
it suffices for the prover to show that for every two consecutive elements (ā, b̄)
in such ordered sequence of k elements, the bit representation of b̄ is greater
than the one of ā. With such trick, the prover must provide k − 1 proofs in total
to show that all sequences are different. Each of such proofs is about proving a
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property of the involved 4 log � parameters4. We show a concrete and efficient
instantiation for the parameters of the 1-out-of-2 equivocal commitment scheme
GGHK from [10]. The communication complexity of each of the above k − 1
proofs is O(log �). In Table 1, we compare our results to the previously discussed
approaches to obtain (k, �)-PTRs. For the sake of completeness, in this compar-
ison we make the security parameter λ explicit. Notice that our approach, while
being less communication-efficient than [1,12], is more flexible since it applies to
a much wider family of languages.

Threshold Ring Signatures. As pointed out in [10], by making Π1,� non-
interactive with the aid of a random oracle one gets a ring signature whose size
is logarithmic in the size of the ring � (see [10] Page 4 and Sec. 9.3). Following
a similar approach, starting from our Πk,� we can get a threshold ring signature
scheme according to Def. 3 of [13], but considering PPT adversaries instead of
quantum polynomial-time adversaries. In a threshold ring signature scheme, k
signers cooperate to sign a message hiding their identities within a larger group
of size �. In our threshold ring signature scheme, the size of a signature cor-
responds roughly to O(k log �) group elements. Interestingly, while featuring a
relatively simple design, our construction improves in terms of signature size
on many literature works [6,18,19]. Other schemes have signature size which
is linear in � (while being independent of k) and thus are also outperformed
when k << � [7,13,20]. When comparing our construction to others achieving
more compact signature sizes [2,13,16], our construction still has interesting
advantages in terms of resilience to adversarially chosen keys (see [13]) or used
assumptions. A major feature of our threshold ring signature is that it can be
instantiated from a variety of assumptions (i.e., the assumptions depend on the
chosen languages and Σ-protocols). Finally, our techniques allow threshold ring
signatures with more advanced hiding properties. Indeed, since our Πk,� is still a
stackable Σ-protocol, it can be used as a base Σ-protocol for our threshold ring
signature, thus expressing more complex relations with better anonymity prop-
erties (i.e., “threshold-of-threshold”). See the full version [3] for more details.

2 Technical Overview of [10]

We first describe 1-out-of-2 equivocal commitments (see Sect. 3.1 for more
details) that are a major tool used in [10]. Then, we show how [10] exploits
1-out-of-2 equivocal commitments to get a (1, �)-PTR.

1-out-of-2 Equivocal Commitments in a Nutshell. A 1-out-of-2 equivocal com-
mitment allows a sender to commit to two values one of which is guaranteed
to be binding, either unconditionally or under computational assumptions. The
other element instead can be equivocated using a trapdoor that is known to the
sender. Once the commitment is opened, the commitment scheme itself would

4 For each proof there are two sequences of log � pairs of parameters.
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Table 1. Comparison of several techniques for (k, �)-PTR. When comparing more
language-generic techniques like ours and [9,10], we express the communication com-
plexity both in terms of the communication complexity of the underlying Σ-protocol
CC(Σ) and of the security parameter λ. Notice that the communication complexity
of [12] does not depend on k since their technique only works for k = 1. The Language
column reports the languages or the class of the Σ-protocols for which the correspond-
ing composition technique works. Despite being the least communication efficient, [9]
can be applied to a wider class of Σ-protocols.

Protocol # Rounds Communication Values of k Language

[9] 3 O(�CC(Σ)) Any k All Σ

[12] 3 O(λ log �) k = 1 DL-like

[1] O(log �) O(λ log(2� − k)) Any k DL-like

[10] 3 O(CC(Σ) + λ log �) k = 1 Stackable Σ

[10] 3 O(k(CC(Σ) + λ�)) k > 1 Stackable Σ

Ours 3 O(k(CC(Σ) + λ log �)) Any k Stackable Σ

guarantee that the equivocal position is not leaked. Before sending the commit-
ment to the receiver, the commitment scheme parameters are generated by the
sender who has to decide which position is equivocal. From now on, we call non-
trapdoor (NT) a parameter that is associated with a binding position, while a
trapdoor parameter (T) is associated with an equivocal position.

(1, �)-PTR through Σ-Protocols. For simplicity, we will focus on instances belong-
ing to the same language. Nevertheless, both in [10] and in our results it is
possible to go beyond this restriction (see Sec. 8 of [10]).

The main idea in [10] is that every involved Σ-protocol has a deterministic
HVZK simulator, called Extended HVZK (EHVZK) simulator which, given a
challenge c, a third-round message z, and a statement x, outputs a simulated a
such that (a, c, z) is an accepting transcript for the instance x. With EHVZK
in their hands, the authors introduce the notion of stackable Σ-protocols. A
Σ-protocol is stackable if (i) it has an EHVZK simulator and (ii) the third-
round message is recyclable, meaning that the distribution of such messages is
independent of the instance for every instance in the language.5

Let us first consider just two of the � instances, say x1 and x2. Given two
executions Σ1 and Σ2 of a stackable Σ-protocol Π for instances x1 and x2

respectively, an execution Σ1,2 of the composed Σ-protocol Π1,2 defined by Goel
et al. [10] for x1 ∨ x2 can be constructed as follows. Let us assume that the
prover P1,2 knows the witness corresponding to x1. We name a1 (respectively
a2) the first-round message of the underlying execution Σ1 (respectively Σ2), a
the first-round message of the execution Σ1,2 of Π1,2, c the challenge sampled
by the verifier V1,2 for Π1,2, and z the last message of Σ1,2. Since Σ1 and Σ2

5 See Appendix A for formal definitions. Notice that, as can be also easily seen from
the definitions in Appendix A.1, EHVZK implies SHVZK.
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are executions of the stackable Σ-protocol Π, their third-round messages have
the same distribution. Therefore, the accepting third-round message from Σ1

can be re-used as a third-round message for Σ2 as described in the composed
Σ-protocol Π1,2 below:

– P1,2 computes the first-round message a1 of protocol Π on input the instance
x1 and witness w1. P1,2 commits to a1 using a 1-out-of-2 equivocal commit-
ment scheme. The value a1 is put in the binding position, while the equivocal
position commits to 0. We denote the resulting commitment as com. The first-
round message a in the execution Σ1,2 of the composed protocol Π1,2 includes
com as well as the parameters of the commitment scheme.

– Upon receiving the challenge c from V1,2, P1,2 computes z′ using witness w1,
and equivocates the equivocal position of the commitment with a simulated
a2. The value a2 is obtained by running the EHVZK simulator of Π with
input the instance x2, c, and the value z′ computed above. Then, P1,2 sends
z′ and the opening values of com to V1,2 as a third-round message z of Σ1,2.
The value z also includes the commitment parameters.

– V1,2 reconstructs a1 and a2 by running the EHVZK simulator of Π. Then,
V1,2 checks that both (a1, c, z

′) and (a2, c, z
′) are accepting transcripts for V1

and V2, and that com actually opens to a1 and a2.

Since Π1,2 is still a stackable Σ-protocol, it can be recursively used to prove
the instance x1 ∨ x2 ∨ x3 ∨ x4. Indeed, this can be seen again as an OR of two
statements, therefore the Σ-protocol for the instance (x1 ∨x2)∨ (x3 ∨x4) can be
composed using the same technique. Then, one can iterate the same process to
obtain a (1, 8)-PTR by applying the same technique to two (1, 4)-PTR, and so on.
Such composition of � disjunctive instances can be represented by the following
binary tree: the leaves of the tree represent the � base executions (Σ1, . . . , Σ�)
of the Σ-protocol Π. Given two siblings nodes i and j, with associated protocol
execution Σi for the instance xi and Σj for the instance xj respectively, the
parent node t of i and j describes the execution of the protocol Σt obtained
by applying the compiler for (1, 2)-PTR of [10]. Moreover, edges (t, i) and (t, j)
are labeled as follows: if Pt knows a witness for the instance xi, then the edge
(t, i) is labelled with NT to indicate that, in the commitment computed by Pt

in the first round, the position where xi is used is binding. The edge (t, j) is
labeled with T to indicate that the position where xj is used is equivocal. If Pt

knows a witness for xj instead, then the opposite holds. An example of a tree
induced by recursively applying the composition of [10] for a (1, 2)-PTR to get a
(1, 8)-PTR is shown in Fig. 1. This recursive application of the (1,2)-PTR gives
a communication complexity for the (1, �)-PTR that is roughly logarithmic in �.

(k, �)-PTR Extension. In [10], an extension of their compiler to achieve a (k, �)-
PTR6 is proposed. They propose a k-out-of-� binding vector-of-vectors com-
mitment scheme. This modification allows to equivocate at most �−k positions.
Roughly speaking, they instantiate such a primitive by making the commit algo-
rithm output a matrix of k × � commitment values (i.e., each row is a 1-out-of-�
6 Sec. 9.1 and App. F of [10].



Efficient Proofs of Knowledge for Threshold Relations 49

equivocal commitment), together with a non-interactive zero-knowledge proof
that the binding position is different in each row. As pointed out in [10], with
this technique they lose their ability to recursively apply the (1, 2)-PTR com-
piler. As a result, their (k, �)-PTR has a communication complexity of roughly
O(k�) (see Table 1).

3 Our Techniques

Our Approach for a Communication-Efficient (k, �)-PTR. In [10], the location
of the instance for which the prover knows the witness uniquely determines the
way parameters are laid out over the composition tree. For example, in Fig. 1 the
instance for which P1,2 knows the witness is x1. This means that, starting from
Σ1,2, the position containing the first message of Σ1 has to be binding. Indeed,
since P1,2 only holds a witness for x1, P1,2 is able to produce an accepting
transcript exclusively for Σ1. Therefore, the third-round message to be recycled
has to come from Σ1, while the committed first-round message of the execution
Σ2 needs to be equivocated with the output of the EHVZK simulator. It follows
that, climbing up the tree, the commitment position containing the first message
of Σ1,2 has to be binding. Indeed, V1,2,3,4 will in turn execute V1,2 and V3,4,
which internally use the verifiers of the base Σ-protocols. This means that in
Σ3,4 the prover recycles the third-round message of Σ1,2 and that in Σ1,2,3,4

the committed first-round message of Σ3,4 has to be equivocated accordingly in
order to get an accepting transcript. Applying the same reasoning again, it is
easy to conclude that in Σ1,...,8 the binding position of the 1-out-of-2 equivocal
commitment is again the same.

A crucial idea of [10] to achieve logarithmic communication complexity is
reusing commitment parameters and openings across the same levels of the
composition tree. The composition is designed so that commitment parame-
ters and openings are part of the third-round message of the composed protocol.
Indeed, since the composed Σ-protocol of [10] is itself stackable, it follows that
its EHVZK simulator takes as input commitment parameters and openings to
generate a suitable first-round message, namely a 1-out-of-2 equivocal commit-
ment reusing the same openings and parameters7. This means that since all the
Σ-protocols executions that belong to the same level of the tree share the same
third-round message, they also have to use the exact same commitment param-
eters. Therefore, in the (1, �)-PTR of [10] given the instance xi corresponding
to the witness used by the prover, there is a unique way in which commitment
parameters can be laid out over the composition tree. Thus, to build a (k, �)-
PTR it suffices to repeat the construction of [10] k times and to prove that the
composition trees of such k executions are all distinct. In this section we describe
how we design a communication-efficient Σ-protocol for the above goal.
7 For this composition to work and to compress the communication complexity down

to logarithmic, the size of the equivocal commitment must be independent of the size
of the committed value. To solve this issue, committed values have to be compressed
down to a constant size with the aid of a collision-resistant hash function.
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Σ1,...,8

Σ1,2,3,4

Σ1,2

Σ1 Σ2

Σ3,4

Σ3 Σ4

Σ5,6,7,8

Σ5,6

Σ5 Σ6

Σ7,8

Σ7 Σ8

NT3

NT2

NT1 T1

T2

NT1 T1

T3

NT2

NT1 T1

T2

NT1 T1

Fig. 1. An example of a composition tree induced by the recursive application of the
(1, 2)-PTR of [10] in which 8 base Σ-protocols are composed to obtain a (1, 8)-PTR.
In this example, P1,...,8 knows a witness for the instance x1. This implies that, going
from the root to the leaves, the left-most branch must be non-trapdoor. Additionally,
commitment openings and parameters are re-used across the same level of the compo-
sition tree and this is emphasized by using the same index and the same color for all
the edges within a level.

3.1 1-out-of-2 Equivocal Commitment Schemes

We now define the notion of 1-out-of-2 equivocal commitment scheme. The
sender commits to a pair of messages (m0,m1) with m0,m1 ∈ {0, 1}λ, where
λ ∈ N is the security parameter. A 1-out-of-2 equivocal commitment scheme
CS = (Setup,Gen,BindCom,EquivCom,Equiv,RT ) consists of five PPT algo-
rithms and a polynomial-time relation RT . The algorithm Setup generates a
common reference string pp. We denote by Ypp the space of well-formed com-
mitment parameters w.r.t. pp and require that membership in Ypp can be checked
efficiently. The above algorithms work as follows:

– pp ← Setup(1λ; r): on input the security parameter, and randomness r, gen-
erates public parameters pp.

– (p0, p1, td) ← Gen(pp, β; r): on input public parameters pp, binding position
β ∈ {0, 1}, and randomness r, returns the commitment parameters (p0, p1) ∈
Ypp and the trapdoor td for parameter p1−β such that (p1−β , td) belongs to
RT

8.
– com ← BindCom(pp, p0, p1,m0,m1; r): on input public parameters pp, com-

mitment parameters p0, p1, messages m0, m1, and randomness r outputs a
commitment com.

– (com, aux) ← EquivCom(pp, β,m, p0, p1, td; r): on input public parameters pp,
binding position β, message of the binding position m, commitment param-

8 The statement for RT may also depend from pp. We will omit this dependence to
simplify the notation.
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eters p0, p1, trapdoor td, and randomness r returns a commitment com and
auxiliary information aux.

– r ← Equiv(pp, β,m0,m1, p0, p1, td, aux): on input public parameters pp, bind-
ing position β, messages m0, m1, commitment parameters p0, p1, trapdoor
td, and auxiliary information aux, deterministically returns an equivocation
randomness r.

In the following, we assume that pp was already generated by a trusted third
party using the algorithm Setup. Furthermore, we will omit the randomness from
the input of the algorithms, except when it is relevant. A sender and a receiver
interact using the commitment scheme as follows.

Commit Phase: The sender, on input m and binding position β, computes
(p0, p1, td) ← Gen(pp, β), (com, aux) ← EquivCom(pp, β,m, p0, p1, td). The
sender sends (com, p0, p1) to the receiver.

Reveal Phase: The sender, on input m∗, computes r ← Equiv(pp, β,m0,m1, p0,
p1, td, aux) where mβ = m and m1−β = m∗, and sends (r,m0,m1) to the
receiver. The receiver computes com′ ← BindCom(pp, p0, p1,m0,m1; r) and
accepts if com′ = com and (p0, p1) ∈ Ypp, rejects otherwise.

We state below the properties we require for the 1-out-of-2 equivocal com-
mitment scheme.

Partial Equivocation: For all λ ∈ N, pp ← Setup(1λ), β ∈ {0, 1}, (p0, p1) ∈
Ypp, (m0,m1) ∈ {0, 1}2λ, td such that (p1−β , td) ∈ RT the following holds:

Prob

[
BindCom(pp, p0, p1,
m0, m1; r) = com

∣∣∣∣ (com, aux) ← EquivCom(pp, β, mβ , p0, p1, td);
r ← Equiv(pp, β, m0, m1, p0, p1, td, aux).

]
= 1.

Computational Fixed Equivocation: Given the experiment ExpFixEquiv
below, for every non-uniform PPT A, there exists a negligible function ν(·)
such that for any λ ∈ N: Prob [ ExpFixEquivA(λ) = 1 ] ≤ ν(λ).

ExpFixEquivA(λ)
1. pp ← Setup(1λ).
2. (p0, p1, r1, r2, r3, r4,m1

0,m
2
0,m

1
1,m

2
1,m

3
0,m

4
0,m

3
1,m

4
1) ← A(pp).

3. Return 1 if ∃β ∈ {0, 1} such that

(BindCom(pp, p0, p1,m1
0,m

1
1; r

1) = BindCom(pp, p0, p1,m2
0,m

2
1; r

2) ∧
(
BindCom(pp, p0, p1,m3

0,m
3
1; r

3) = BindCom(pp, p0, p1,m4
0,m

4
1; r

4)) ∧
(m1

1−β �= m2
1−β) ∧ (m3

β �= m4
β) ∧ ((p0, p1) ∈ Ypp).

Return 0 otherwise.

Moreover, the protocol achieves perfect fixed equivocation if for any
unbounded A it holds that Prob [ ExpFixEquivA(λ) = 1 ] = 0.
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Computational Position Hiding: Given the experiment ExpHid below, for
every non-uniform PPT A, there exists a negligible function ν(·) such that
for any λ ∈ N: Prob [ ExpHidA(λ) = 1 ] ≤ 1

2 + ν(λ).

ExpHidA(λ)
1. pp ← Setup(1λ).
2. Sample β ←$ {0, 1} and compute (p0, p1, td) ← Gen(pp, β).
3. β′ ← A(pp, p0, p1).
4. Return 1 if β′ = β and 0 otherwise.

Moreover, if A is unbounded and ν(λ) = 0 we say that the scheme is perfect
position hiding.

Computational Trapdoorness: Given the experiment ExpTrap, for every non-
uniform PPT A, there exists a negligible function ν(·) such that for any
λ ∈ N : Prob [ ExpTrapA(λ) = 1 ] ≤ 1

2 + ν(λ).

ExpTrapA(λ)
1. pp ← Setup(1λ).
2. (m0,m1, p0, p1, td, β) ← A(pp).
3. If (p0, p1) �∈ Ypp or (p1−β , td) �∈ RT abort the experiment.
4. Sample b ←$ {0, 1}. If b = 0, set (com, aux) ← EquivCom(pp, β,

mβ , p0, p1, td) and set r ← Equiv(pp, β,m0,m1, p0, p1, td, aux). If
b = 1, sample r ←$ D and set com ← BindCom(pp, p0, p1,m0,m1; r).

5. b′ ← A(pp,m0,m1, p0, p1, td, β, com, r).
6. Return 1 if b = b′, return 0 otherwise.

Moreover, if A is unbounded and ν(λ) = 0 we say that the protocol achieves
perfect trapdoorness.

GGHK enjoys computational fixed equivocation, perfect position hiding and
perfect trapdoorness9. Moreover, since GGHK has perfect position hiding and
perfect trapdoorness, the use of this commitment scheme in Π1,� preserves the
statistical/perfect zero knowledge property of the underlying Σ-protocols. Com-
putational fixed equivocation forces the special soundness to be only computa-
tional instead (special soundness is degraded in any case since in [10] an hash
function is used to compress the size of first-round messages).

9 Our definition slightly differs from the one in [10]. In particular, our fixed equivo-
cation property implies the partial binding of [10]. We need this slightly stronger
property to prove the soundness of our (k, �)-PTR. Natural instantiations such as
GGHK enjoy the fixed equivocation property. The remaining properties are just a
restatement of the minimal requirements for a 1-out-of-2 commitment scheme in [10].
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3.2 Πord : A Σ-Protocol to Prove Parameters Ordering

We use the following notation: for any vector v, v[z] indicates the z-th element
of the vector v. The first element of a vector v is indexed as v[1]. Moreover, we
use [n] for n ∈ N to identify the set {1, . . . , n}. Let x = ((p10, p

1
1), . . . , (p

n
0 , pn

1 )) be
a vector containing n pairs of parameters corresponding to n instantiations of a
1-out-of-2 equivocal commitment scheme, where pi

0 represents the parameter of
the first position of the i-th commitment instantiation, and pi

1 is the analogue
for the second position. Consider the relations RT0 and RT1 , where RT0 =
{(x = (p0, p1), w) : p1 is a trapdoor parameter and w is the corresponding
trapdoor} and, similarly RT1 = {(x = (p0, p1), w) : p0 is a trapdoor parameter
and w is the corresponding trapdoor} (i.e., (x = (p0, p1), w) ∈ RTi

if and only
if (p1−i, w) ∈ RT with i ∈ {0, 1}). We present a Σ-protocol Πord that, given
a vector X = (x1, . . . ,xk) of vectors each containing n pairs of parameters
corresponding to n instantiations of a 1-out-of-2 equivocal commitment scheme,
allows a prover P to efficiently prove knowledge of a witness for X ∈ L where

L ={X : ∃W = (w1, . . . ,wk) such that
∀ i, j ∈ [k] with i �= j ∃z ∈ [n], such that bi,z �= bj,z}

(1)

where bi,z, bj,z ∈ {0, 1} satisfy (xi[z],wi[z]) ∈ RTbi,z
, (xj[z],wj[z]) ∈ RTbj,z

.

An efficient Σ-Protocol. One could naively prove the above statement by sepa-
rately proving that each vector of n pairs of commitment parameters differs in
the way equivocal and binding parameters are laid out w.r.t. every other vector.
Carrying out such proof would involve a quadratic (in k) amount of separate
proofs. We instead take a different path, that is introducing a strict total order-
ing among these k vectors of n pairs of commitment parameters. In particular,
we map a vector x of n pairs of commitment parameters to a binary string
s ∈ {0, 1}n by setting s = b1|| . . . ||bn, for which (x[z],w[z]) ∈ RTbz

. Let sm with
m ∈ [k] be the string resulting by applying the above mapping to a vector xm of n
pairs of commitment parameters. W.l.o.g. consider the case where s1 > . . . > sk.
If the above order relation holds, it follows that all the k vectors of n pairs of
commitment parameters are logically different from each other in terms of how
the trapdoor parameters are laid out in at least one position. Notice that after
having introduced such ordering among the k vectors of n pairs of commitment
parameters, one can come up with the language Lord described by only a lin-
ear number of comparisons. Indeed, the language of Eq. 1 can be equivalently
rewritten as Lord = {X : ∃W = (w1, . . . ,wk) such that s1 > s2 > . . . > sk},
where for all m ∈ [k], sm = b1|| . . . ||bn, for which (xm[i],wm[i]) ∈ RTbi

.

Instantiation. Let us consider two binary strings s1 ∈ {0, 1}n and s2 ∈ {0, 1}n,
in which we use s[i] to indicate the i-th bit of the string s, it is pretty straight-
forward to see that if s1 > s2, the following formula also holds10:

10 For consistency reasons, we assign the index 1 to the first position within the string
and we say that si[0] = 0.
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n∨

i=1

⎛

⎝

⎛

⎝
i−1∧

j=0

(s1[j] = s2[j])

⎞

⎠ ∧ (s1[i] > s2[i])

⎞

⎠ . (2)

Indeed, this corresponds to performing a bit-wise comparison between s1 and
s2, starting from the most significant bit. Namely, if s1 > s2, the first different
bit between the two strings has value 1 in s1 and 0 in s2.

Building on this observation, we can construct a protocol Πord′ to prove
that two binary strings, each representing a vector of n 1-out-of-2 equivocal
commitment parameters, are such that one is greater than the other. Then, given
k vectors of commitment parameters, one can prove that X = (x1, . . . ,xk) ∈
Lord, where |xi| = n for all i ∈ [k], by using Πord′ k − 1 times. We denote the
resulting protocol as Πord.

1-out-of-2-Commitment of [10]. In [10], a t-out-of-� equivocal commitment
scheme GGHK based on the discrete logarithm assumption is defined. GGHK
uses the same SRS of the non-interactive version of the Pedersen commitment
scheme, namely, two generators g0, h of a group G where the discrete logarithm
of g0 in base h is not known. For the interesting case of t = 1 and � = 2, the
commitment parameters are two group generators algebraically derived from the
SRS. The receiver is able to verify that the parameters are correctly generated
via a simple algebraic check. In particular, Ypp = {p0 ∈ G, p1 ∈ G : p1 = p20g

−1
0 }.

The trapdoor associated to the equivocal position is the discrete logarithm in
base h of the corresponding parameter. Thus, RT = {(x,w) : x = hw}. Due to
space limitations, we do not discuss the actual construction. We refer the reader
to [10] for more details.

Instantiating Πord for the Commitment of [10]. We now instantiate Πord for
vectors of commitment parameters of GGHK. To do so, we just need to express
Formula 2 in terms of the parameters of GGHK. Given (pa

0 , p
a
1), we repre-

sent membership of (pa
b , w) in RT as the function RDL(pa

b , w) evaluating to
1 if w is the discrete logarithm of pa

b w.r.t. h and 0 otherwise. Given two
vectors of n commitment parameters of GGHK P = ((p10, p

1
1), . . . , (p

n
0 , pn

1 ))
and Q = ((q10 , q

1
1), . . . , (q

n
0 , qn

1 )), and two vectors of corresponding witnesses
Wp = (w1

p, . . . , wn
p ) and Wq = (w1

q , . . . , wn
q ), Formula 2 can be rewritten as a

relation Rord′ on input ((P,Q), (Wp,Wq))11:

n∨

i=1

(( i−1∧

j=0

(
((RDL(p

j
0, w

j
p) ∧ RDL(q

j
0, w

j
q)) ∨ (RDL(p

j
1, w

j
p) ∧ RDL(q

j
1, w

j
q))

)
)

∧(RDL(pi
1, w

i
p) ∧ RDL(qi

0, w
i
q))

)

. (3)

11 In the following formula the AND ranging from j = 0 to j = i − 1 is evaluated as
true for j = 0. Indeed, according to the notation used in this paper, there are no
parameters pair in the position 0 of the vector.
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Basically, for each bit of the strings s1 and s2 of Formula 2, such bits are
equal if the corresponding parameters pairs have the same trapdoor position,
meaning that either the sender knows the discrete log of both the first positions
of the pairs, or that the same applies for the second position of both parameters
pairs. A bit of a string is defined to be 1 if the corresponding parameters pair
has in its first position a group element with a discrete log that is known to the
sender, while it is 0 if the same applies to the second position.

Given k vectors V1, . . . , Vk of n pairs of commitment parameters and k vectors
W1, . . . , Wk of witnesses, the relation proved by Πord, is defined as follows:

Rord((V1, . . . , Vk), (W1, . . . , Wk)) =
k−1∧

i=1

Rord′((Vi, Vi+1), (Wi,Wi+1)). (4)

Our instantiation of Πord can be obtained via OR/AND compositions of
the Schnorr’s Σ-protocol [9], which is also stackable [10]. As a result, Πord is a
stackable Σ-protocol with computational special soundness and perfect EHVZK.
Πord′ , proving Rord′ , achieves communication complexity O(nλ + λ log n) =
O(nλ). Πord can be obtained by repeating Πord′ k−1 times in parallel, obtaining
a communication complexity of O((k − 1)nλ) = O(knλ).

3.3 Efficient (k, �)-PTR

We build our (k, �)-PTR repeating the (1, �)-PTR of [10] k times and using Πord

with statements the k vectors of commitment parameters of length O(log �) that
constitute the composition trees. Notice that Πord is defined over ordered tuples
of pairs of commitment parameters. However, the prover can easily sort the k
underlying (1, �)-PTRs according to such ordering when interacting with the
verifier. Let (P1,�

0 ,P1,�
1 ) be the prover algorithms of the (1, �)-PTR from [10].

W.l.o.g., we also assume that the algorithm P1,�
0 outputs, together with the

first-round message a to be sent to V1,�, the tuple of commitment parameters
((p10, p

1
1), . . . , (p

log �
0 , plog �

1 )) and the related witnesses tuple (td1, . . . , tdlog �).
Considering the relation Rk,� = {((x1, . . . , x�), ((w1, α1), . . . , (wk, αk)))|1 ≤

α1 < . . . < αk ≤ � ∧ ∀ j ∈ [k] : (xαj
, wj) ∈ RL}, we state the theorem below.

Theorem 1. Let Π1,� be the stackable Σ-protocol of [10], and let Πord be the
stackable Σ-protocol of Sect. 3.2. Πk,� = (Pk,�,Vk,�) described in Fig. 2 is a stack-
able Σ-protocol for relation Rk,� with computational special soundness. Further-
more, Πk,� preserves the EHVZK flavour of the underlying Π1,�.

Due to lack of space, we defer to the full version [3] for the formal proof. We
instead give here an informal proof sketch.

Computational Special Soundness. To prove the computational special sound-
ness of Πk,�, we exploit the computational special soundness of the k executions
of Π1,�, the computational special soundness of Πord, as well as the partial equiv-
ocation and the fixed equivocation properties of the 1-out-of-2 equivocal com-
mitment scheme. Let us first review the extractor Extract1,� of Π1,�. Extract1,�
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In our (k, �)-PTR Πk,� = (Pk,�
0 ,Pk,�

1 ,Vk,�), the prover takes as input a tuple of
statements x = (x1, . . . , x�) and k witnesses w = ((w1, α1), . . . , (wk, αk)) in
which αj ∈ [�] is the position of the j-th witness. Πk,� uses the (1, �)-PTR
Π1,� = (P1,�

0 ,P1,�
1 ,V1,�), and Πord = (Pord

0 ,Pord
1 ,Vord).

First Round: The prover invokes Pk,�
0 that, on input (x,w; rand) computes a as

follows:
1. Parse rand as randP1 || . . . ||randPk ||randord;
2. For all j ∈ [k]: Run (aj ,pj , tdj) ← P1,�

0 (x, (wj , αj); randPj ), where pj =
((p(1,j)

0 , p
(1,j)
1 ), . . . , (p(log �,j)

0 , p
(log �,j)
1 )) and tdj = (td(1,j), . . . , td(log �,j));

3. Generate aord ← Pord
0 ((pj)j∈[k], (tdj)j∈[k]; randord);

The prover sends a = (a1, . . . , ak, aord,p1, . . . ,pk) to the verifier.
Second Round: The verifier samples c ∈ {0, 1}λ and sends c to the prover.
Third Round: The prover invokes Pk,�

1 that computes z as follows: For
each j ∈ [k] run zj ← P1,�

1 (x, (wj , αj), c; randPj ) and zord ←
Pord
1 ((pj)j∈[k], (tdj)j∈[k], c; randord);

Then, the prover sends z = (z1, . . . , zk, zord) to the verifier.
Verification: The verifier invokes Vk,� that, on input (x, a =

(a1, . . . , ak, aord,p1, . . . ,pk), c, z = (z1, . . . , zk, zord)), returns a bit b as
follows:
1. For i ∈ [k] and j ∈ [log �] check that (p(i,j)

0 , p
(i,j)
1 ) ∈ Ypp, where the pairs

(p(i,j)
0 , p

(i,j)
1 ) are taken from zi;

2. Check that pi = (p(i,j)
0 , p

(i,j)
1 )j∈[log �];

3. For all i ∈ [k] check that V1,�(x, ai, c, zi) = 1;
4. Check that Vord((pj)j∈[k], aord, c, zord) = 1;
5. If all the previous checks are successful, output 1. Otherwise, output 0.

Fig. 2. Our communication-efficient (k, �)-PTR from stackable Σ-protocols.

works via recursive calls to Extract1,2, the extractor of Π1,2. Starting from the
root of the composition tree, both the children nodes are considered and every
time two accepting transcripts with the same first-round message are found,
Extract1,2 is called again. The base case for the recursion is a leaf node having
two accepting transcripts with the same first-round message. In this case, the
extractor of the base Σ-protocol is called instead. Since the computational spe-
cial soundness of Π1,� is proven using Extract1,� shown above, we are guaranteed
(except with negligible probability) that at least one of such leaf nodes exits.
This in turn implies that at each level of the tree there is at least one node
having two accepting transcripts with the same first-round message that we can
give as input to Extract1,2. However, in principle there could be more than one
of such nodes in each level. On such nodes Extract1,2 would be called again, and
we would get at least one witness for the corresponding OR relation (recall that
Π1,2 proves the OR relation on two statements, such statements may be OR
statements as well). The extraction algorithm will recursively lead to at least



Efficient Proofs of Knowledge for Threshold Relations 57

one witness for one base statement. Given the way the composition tree is con-
structed, witnesses extracted from different nodes are always related to different
statements. For the sake of simplicity, let us focus on the case in which exactly
one witness is extracted from each pair of accepting transcripts of Π1,�. We now
have to argue why all these k witnesses must be related to different statements.
Let us assume that two witnesses related to the same statement are extracted
from two executions of Π1,�. Let us consider the composition trees of such exe-
cutions. The computational special soundness of Πord guarantees (except with
negligible probability) that there is one level in which, using the extractor of
Πord, we extract a trapdoor for a different edge in each of the two trees (namely,
a trapdoor for the first and the second parameter of the commitment scheme). If
we consider such level, we can define a sub-tree containing the leaf correspond-
ing to the extracted witness and having as root the parent node corresponding
to the first edge in which we extracted a trapdoor for different edges. We are
now able to break the fixed equivocation property of the commitment scheme
at the first level of one of the two of such sub-trees. Indeed, consider the sub-
tree having the extracted trapdoor on the same side of the extracted witness.
W.l.o.g. let it be the left side. Since we extracted a witness for the left side, the
first-round message of the corresponding left side Σ-protocol is the same in both
transcripts, while the right-side first-round message is equivocated (otherwise,
we would have extracted a witness also for this side). This means we already
have a commitment which equivocates a message on the right side. Thanks to
the extracted trapdoor and the partial equivocation property, we are now able
to construct a fresh commitment w.r.t. the same parameters which successfully
equivocates the left side. This would break the fixed equivocation property of the
commitment scheme, thus reaching a contradiction. The actual proof is slightly
more involved since, as we already argued above, from each pair of executions
of Π1,� it is generally possible to extract more than one witness. Therefore, in
general we are not guaranteed to find a sub-tree having a level with an extracted
trapdoor on one side and an equivocated commitment on the other side. How-
ever, in the full version [3] we exploit the fact that the number of extracted
witnesses per composition tree using Extract1,� is strictly less than k12 to argue
that, among all the k pairs of composition trees with the same first-round mes-
sage, there always exists a tree on which we are able to run the above reduction
to the partial equivocation and the fixed equivocation properties of the commit-
ment scheme. We prove this by induction. We exploit the fact that at each level
of the tree there are at most two configurations of the extracted trapdoors and
witnesses that do not allow the above reduction at that level. Furthermore, we
use the observation that extracting a witness from a node at level i − 1 requires
extracting a witness from at least one of its children nodes at level i.

Extended Honest-Verifier Zero Knowledge. We name the EHVZK simulator of
Πk,� as Sk,� and we use Dk,� to indicate the third-round messages distribution

12 All witnesses extracted from the same composition tree are related to different state-
ments by construction. Thus, in this case we would not need to show any reduction.
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of Πk,�. Sk,�, on input statement (x1, . . . , x�), challenge c, and third-round mes-
sage z = (z1, . . . , zk, zord) sampled from Dk,�, outputs the first-round message
(a1, . . . , ak, aord,p1, . . . ,pk). Recall that the EHVZK property requires that all
third-round messages of honest protocol executions for statements x ∈ L follow
the same distribution. Such distribution must be efficiently samplable. Further-
more, running the simulator on input statement x ∈ L, a uniformly random
challenge c, and a third-round message z sampled from such distribution, deter-
ministically produces a first-round message a so that (a, c, z) is indistinguishable
from honest protocol execution transcripts (see AppendixA.1). Notice that sam-
pling from Dk,� simply consists of sampling each zi, with i ∈ [k], from D1,� (i.e.,
the third-round messages distribution of Π1,�), and sampling zord from Dord

(i.e., the third-round messages distribution of Πord). Since both Π1,� and Πord

are EHVZK, such distributions exist and are efficiently samplable.
We construct Sk,� in terms of the EHVZK simulators of the underlying proto-

cols. We name the EHVZK simulator of Π1,� as S1,� and we use Sord to indicate
the EHVZK simulator of Πord. Sk,� parses each zj , with j ∈ [k], and selects
the commitment parameters pj = ((p(1,j)

0 , p
(1,j)
1 ), . . . , (p(log �,j)

0 , p
(log �,j)
1 )). Sk,�

gives in input to Sord the instance (p1, . . . ,pk), the challenge c, and zord, thus
obtaining aord. Then, Sk,� runs S1,�((x1, . . . , x�), c, zi) for each of the k (1, �)-PTR
obtaining (a1, . . . , ak). Finally, Sk,� outputs (a1, . . . , ak, aord,p1, . . . ,pk). We now
show that Πk,� is EHVZK via hybrid arguments. The first hybrid H1 corresponds
to the real protocol execution, except that zord is sampled from Dord and aord

is obtained running Sord. The real protocol and H1 are indistinguishable thanks
to the EHVZK of Πord. Then, a sequence of k hybrids H2, . . . ,Hk+1 follows;
each hybrid Hi, with i ∈ {2, . . . , k + 1} differs from the previous one because zi,
the third-round message of the i-th (1, �)-PTR, is sampled from D1,�, and the
first-round message ai is computed using S1,�. Each hybrid is indistinguishable
from its predecessor due to the EHVZK of Π1,�. The proof of EHVZK of Πk,�

ends by observing that Hk+1 is identical to Sk,�. Notice that Πord is perfect
EHVZK and that Π1,� preserves the EHVZK flavour of the composed protocols.
Thus, Πk,� clearly preserves the EHVZK flavour of the composed protocols.

On the Communication Complexity of our (k, �)-PTR. Πord has a communica-
tion complexity of O(kλ log �). The communication complexity of a single exe-
cution of Π1,� is O(λ log � +CC(Σbase)), where Σbase is the underlying protocol.
The k repetitions of Π1,� lead to a communication complexity of O(k(λ log �
+ CC(Σbase)) in total. Therefore, the communication complexity of Πk,� is
O(k(λ log � + CC(Σbase)) + k(λ log �)) = O(k(λ log � + CC(Σbase)).
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A Σ-Protocols

We consider a 3-round public-coin protocol Π for an NP language L with a
poly-time relation RL. Π = (P0,P1,V) is run by a prover running auxiliary
algorithms P0,P1 and a verifier running an auxiliary algorithm V. The prover
and the verifier receive common input x and the security parameter 1λ. The
prover receives as an additional private input a witness w for x. Prover and
verifier use the auxiliary algorithms P0,P1,V

13 in the following way:

1. The prover runs P0 on common input x, private input w, randomness R, and
outputs a message a. The prover sends a to the verifier;

2. The verifier samples a random challenge c ←$ {0, 1}λ and sends c to the
prover;

3. The prover runs P1 on common input x, private input w, first-round message
a, randomness R, and challenge c, and outputs the third-round message z,
which is then sent to the verifier;

4. The verifier outputs 1 if V(x, a, c, z) = 1, and rejects otherwise.

The transcript (a, c, z) for the protocol Π = (P0,P1,V), and common statement
x is called accepting if V(x, a, c, z) = 1.

Definition 1. A 3-round public-coin protocol Π = (P0,P1,V), is a Σ-protocol
for an NP language L with a poly-time relation RL iff the following holds

Completeness: For all x ∈ L and w such that (x,w) ∈ RL it holds that:

Prob

[

V(x, a, c, z) = 1

∣
∣
∣
∣
∣

R ←$ {0, 1}λ; c ←$ {0, 1}λ;
a ← P0(x, w; R);

z ← P1(x, w, a, c; R)

]

= 1.

Special Soundness: ∃ PPT Extract, such that on input x and two accepting
transcripts (a, c0, z0) and (a, c1, z1) for x, where c0 �= c1, it holds that

Prob [ (x,w) ∈ RL|w ← Extract(x, a, c0, c1, z0, z1) ] = 1.

Special HVZK (SHVZK): There exists a PPT simulator S that, on input an
instance x ∈ L and challenge c, outputs (a, z) such that (a, c, z) is an accept-
ing transcript for x. Moreover, the distribution of the output of S on input
(x, c) is computationally/statistically/perfectly indistinguishable from the dis-
tribution obtained when the verifier sends c as challenge and the prover runs
on common input x and any private input w such that (x,w) ∈ RL.

Computational Special Soundness: ∃ PPT Extract s.t. ∀ PPT P∗ ∃ a negl.
function ν(·) such that ∀x ∈ L, Prob

[
ExpExtP∗,Extract(x) = 1

] ≤ ν(|x|).

13 For convenience, we omit the security parameter in unary from the inputs.
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ExpExtP∗,Extract(x)
1. (a, c0, c1, z0, z1) ← P∗(x).
2. If c0 �= c1, or V(x, a, c0, z0) = 0, or V(x, a, c1, z1) = 0 return 0.
3. w ← Extract(x, a, c0, c1, z0, z1).
4. Return 1 if (x, w) /∈ RL. Otherwise, return 0.

A.1 Stackable Σ-protocols

Definition 2 (Computational/Statistical EHVZK). Let Σ = (P0,P1,V),
be a Σ-protocol for an NP language L. Σ is EHVZK if there exists a PPT
algorithm SEHVZK such that for all PPT/unbounded D, and c ∈ {0, 1}λ, there
exists an efficiently samplable distribution D

(z)
x,c and a negligible function ν(·)

such that for all x ∈ L∣∣∣Prob
[
ExpEHVZK(P0,P1),D(c) = 1

]
− Prob

[
ExpEHVZKSEHVZK,D(c) = 1

] ∣∣∣ ≤ ν(|x|).

We say instead that a Σ-protocol is perfect EHVZK if the difference between
the probabilities is exactly 0. The experiment ExpEHVZK for EHVZK follows.

ExpEHVZKP′,D(c)

1. (x, w) ← D(c).
2. If (x, w) �∈ RL, return 0.

3. If P′ = SEHVZK, sample z ←$ D
(z)
x,c and compute a ← SEHVZK(x, c, z).

4. Otherwise, sample R ←$ {0, 1}λ, compute a ← P0(x, w; R) and z ← P1(x,
w, a, c; R).

5. Return D(x, w, a, c, z).

Definition 3 (Σ-protocol with recyclable third messages). Let Σ = (P0,
P1,V) be a Σ-protocol for an NP language L, Σ has recyclable third mes-
sages if for every c ∈ {0, 1}λ, there exists an efficiently samplable distribution
D

(z)
c , such that for all (x,w) ∈ RL, it holds that D

(z)
c ≈ {z|R ←$ {0, 1}λ; a ←

P0(x,w;R); z ← P1(x,w, c;R)}.

Definition 4 (Stackable Σ-protocol). We say that a Σ-protocol Σ = (P0,
P1,V), is stackable, if it is a EHVZK Σ-protocol and has recyclable third mes-
sages.
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1 Introduction

The Transport Layer Security (TLS) protocol is one of the most used crypto-
graphic protocols. In its most recent version, the TLS 1.3 [31] handshake employs
an ephemeral (elliptic-curve) Diffie–Hellman (DH) key exchange to establish ses-
sion keys for confidentiality. In the regular handshake, TLS 1.3 authenticates
the server and optionally the client using RSA or elliptic-curve signatures. It
transmits the public keys to verify those signatures during the handshake, in
certificates signed by a certificate authority (CA).

KEMTLS [32] is an alternative proposal for a post-quantum TLS 1.3 [31]
handshake. It avoids using handshake signatures, which typically authenticate
the TLS 1.3 handshake, replacing them with end-entity authentication based
on key encapsulation mechanisms (KEMs) following well-established techniques
for implicitly authenticated key exchange. As post-quantum KEMs are typi-
cally more efficient than the post-quantum signature schemes, either in bytes on
the wire or computational efficiency, this saves resources. KEMTLS-PDK (“pre-
distributed public key”) [34] is a variant of KEMTLS that offers a more efficient
handshake if the client already has the server’s long-term public key. The authen-
tication mechanisms from KEMTLS and KEMTLS-PDK have been proposed for
standardisation to the Internet Engineering Task Force (IETF) TLS working
group [13].

Figure 1 shows the cryptographic core of the unilaterally authenticated
TLS 1.3 and KEMTLS handshakes. KEMTLS replaces the TLS 1.3 Diffie–
Hellman-based ephemeral key exchange by KEM operations. Most importantly,
whereas in TLS 1.3 the server authenticates by signing the transcript using the
key from the server’s certificate, in KEMTLS the client encapsulates against the
KEM public key in the server’s certificate. KEMTLS then combines both KEM
shared secrets—one from the ephemeral key exchange and one from the server’s
long-term key—to derive a key that is implicitly authenticated, meaning only the
intended server will be able to derive the secret. The client can then use the
derived key to transmit application data.

At many levels, the KEMTLS handshake is similar to the TLS 1.3 handshake.
However, due to the usage of KEMs, the order of messages in TLS 1.3 has been
significantly changed. Additionally, the server can no longer send data in its first
response to the client. However, KEMTLS preserves the client’s ability to send
its message after receiving the first flight from the server.

As KEMTLS is a novel way to achieve authentication in the TLS 1.3 hand-
shake, the security of its design should be carefully checked not only with pen-
and-paper proofs but with a computer-assisted formal analysis of it to provide
stronger evidence of its soundness to adopters and standarization bodies like the
IETF.
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Fig. 1. Simplified protocol diagrams of server-only authenticated versions of: (left)
the TLS 1.3 handshake, using signatures for authentication; and (right) the KEMTLS
handshake, using KEMs for authentication.

1.1 Related Work

Analysis of TLS 1.3. During the development process of TLS 1.3, there was a
strong collaboration between the standardisation community with the academic
research community. Initial TLS 1.3 protocol designs were based on academic
designs [28], and it was explicit goal of the TLS 1.3 process to incorporate aca-
demic security analysis of new designs before continuing with standarisation.
Paterson and van der Merwe described this as a “design-break-fix-release” pro-
cess rather than the “design-release-break-patch” cycle that was found on prior
versions of the standarisation and usage of TLS [30]. Many of the security anal-
yses of TLS 1.3 used the reductionist security paradigm [19–21,27,28]. Com-
plementing this manual proof work, computer-aided cryptography [1] was also
instrumental in checking TLS 1.3. Analyses were done using the Proverif [7] and
Tamarin [14,15] symbolic analysis tools, as well as a verified implementation in
F∗ [16].

Analysis of KEMTLS. The initial KEMTLS and KEMTLS-PDK papers included
reductionist security proofs [32,34], adapting the multi-stage key exchange app-
roach used by Dowling et al. [19,20] for TLS 1.3. Subsequently, Towa et al.
proposed and proved an alternative abbreviated handshake, with additional
short-lived static keys [25], and found a few minor mistakes in the original
security proofs, which were subsequently fixed in online versions of the original
papers [33,35]. All these proofs treat protocol modes independently—one-at-a-
time—and do not consider the presence of the other protocol modes.
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1.2 Contributions

In this work, we present two security analyses of all four variants of KEMTLS
(the base KEMTLS protocol, with server-only or mutual authentication, and
the pre-distributed public keys variant KEMTLS-PDK, also with server-only or
mutual authentication) using Tamarin [3,29]. The source code of our models is
available at https://github.com/kemtls/.

Our first model, presented in Sect. 3, is based on the Tamarin analysis of
TLS 1.3 by Cremers et al. [14]. This is a highly detailed model in terms of the
protocol specification, closely following the TLS 1.3 wire format. In this model,
we show that all four KEMTLS variants have equivalent security properties to
the main handshake of TLS 1.3 without extensions. In implementing this model
for KEMTLS, we were able to fully automate the proof, unlike the original model
which required significant manual effort.

Our second model, presented in Sect. 4, is a novel Tamarin model developed
from scratch that closely follows the multi-stage key exchange security model
used in the pen-and-paper proofs [32,34]. This model focuses on the “crypto-
graphic core”, meaning that it is further away from the wire specification and
does not model details like message encryption or the record layer. However,
it captures more details in the security definitions, using the more granular
definitions of forward secrecy from [32,34] as well as including an analysis of
deniability. This model allows us to symbolically verify the reductionist security
claims from the pen-and-paper proofs, but goes further by considering all four
KEMTLS variants simultaneously. This Tamarin model allowed us to identify
some minor flaws in the properties stated based on pen-and-paper proofs.

In Sect. 5, we compare the features of our two Tamarin models. Having these
two models side-by-side illustrates the trade-off between detail of protocol specifi-
cation and granularity of security properties. Ideally, of course, one would achieve
both levels of detail simultaneously, but such complexity is challenging both for
the humans reading and writing pen-and-paper proofs or authoring Tamarin
models, and for computers checking such Tamarin models (where runtime typ-
ically scales exponentially with the complexity of the model). Our side-by-side
approach with two very different perspectives still yields significant confidence
in the soundness of the KEMTLS protocol design and each provides insight into
flaws in the earlier models that it was based on.

2 Background on Symbolic Analysis

One approach to proving the security properties of protocols is symbolic analysis,
which uses formal logic to reason about the properties of an algebraic model of a
protocol. Computational tools, such as Tamarin [3,29] or ProVerif [9], can then
be used to check whether certain properties hold in the symbolic model.

In symbolic analysis, generic symbols replace specific values. Operations like
encryption are also modelled symbolically: for example, senc(a,b) represents
the value a being symmetrically encrypted with the key b. In symbolic analysis,

https://github.com/kemtls/
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cryptographic operations are perfect, meaning the adversary can learn noth-
ing about an encrypted message without the correct key. The operations that
describe a protocol in a symbolic model take messages and state information,
and transform them into the next state or emit another protocol message. A tool
can then use all operations and symbols to generate every possible protocol run.

Many symbolic analyses of protocols use the Dolev–Yao [18] attacker model,
in which an attacker can manipulate all messages at will, e.g. by redirecting
them, replaying them, dropping them, or manipulating their contents. It can
also construct new messages from information previously learnt. However, as
the cryptography is assumed to be perfect, the attacker can not read or modify
encrypted or authenticated messages if it does not have the right keys.

Symbolic models can also be extended to give the attacker special extra abil-
ities. For example, one can allow the attacker to reveal private keys or state
information of parties by performing queries to a reveal oracle. We record when
the attacker uses this oracle, so reveal queries become part of the trace of exe-
cution.

Security properties are modelled as predicates over execution traces. In
Tamarin, during the execution of the rules of the protocol, we can emit action
facts. We use these action facts to record, for example, the session’s impression
of the authentication status or the current keys. We then write lemmas repre-
senting security properties as predicates over action facts: for example, that any
key recorded in a certain type of action fact must not be known to the adversary,
unless the adversary cheated by revealing keys. A model checker like Tamarin
can then be used to check if the protocol maintains the required security prop-
erty. Assuming soundness of the tool, either the tool will give a proof that the
protocol has the required property, find a counter-example, or fail to terminate.

3 Model #1: High-Resolution Protocol Specification

In this section, we discuss the natural approach of taking one of the TLS 1.3 mod-
els and adapting it to KEMTLS(-PDK). Our work demonstrates that KEMTLS
provides security guarantees at least equivalent to those proven by Cremers et
al. for the main handshake of TLS 1.3.

3.1 Cremers et al.’s Tamarin TLS 1.3 Model

The Tamarin model of TLS 1.3 [14] is very high-resolution in terms of its mod-
elling of protocol details and adherence to the protocol specification. It covers
the cryptographic computations such as the key exchange and the key sched-
ule; for example, calls to HKDF are decomposed into hash function calls. This
model also includes the extensions to the basic TLS 1.3 handshake, such as
the HelloRetryRequest mechanism, pre-shared keys, and resumption via ses-
sion tickets. Additionally, it models the encryption of handshake messages, the
syntax of the protocol messages, and mechanics such as TLS 1.3 extensions.
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In terms of security properties, the Cremers et al. model extends Tamarin’s
basic Dolev–Yao attacker with the ability to recover secrets from Diffie–Hellman
key shares and reveal the long-term keys of participants. TLS 1.3 is not secure
against an attacker who can use these attacks freely, but aims to provide con-
fidentiality and integrity against an attacker who is restricted from revealing
secrets of the target session. Cremers et al. were able to encode lemmas cap-
turing most of the security properties claimed by the TLS 1.3 specification [31,
Appendix E.1]. They report that proving all lemmas in their model took about a
week. Much of this time was spent on manual interaction with Tamarin’s prover
to guide it to prove some of the more complex lemmas. Verifying the generated
proof requires “about a day” and “a vast amount of RAM” [14].

3.2 Representing KEMTLS in the Model

We now describe how we modified the existing TLS 1.3 model to represent both
KEMTLS and its variant with pre-distributed keys, KEMTLS-PDK. The original
model is highly modular, which made it relatively easy to modify.

The model of Cremers et al. represents TLS 1.3 through rules that manipulate
a specific state object, which keeps track of many protocol variables, such as keys,
authentication status, and the currently active handshake mode. Tamarin rules
create transitions between these states. Where the protocol branches, such as
when the server requests client authentication by sending CertificateRequest,
there are two rules that end up in the same next state; for example, they would
set the cert_req variable differently. The server later uses this variable to decide
which of the rules recv_client_auth or recv_client_auth_cert to use; the
latter expects the Certificate, CertificateVerify, and Finished messages,
while the former only expects Finished. We handle the public key infrastructure
(PKI) for KEM public keys in the same way as [14]: we do not model CA cer-
tificates, and assume an out-of-band binding between public keys and identities.

Ephemeral key exchange in the TLS 1.3 model uses Tamarin’s Diffie–Hellman
functionality. It also allows the negotiation of two different DH groups. During
the handshake, the client and server generate ephemeral DH secrets for the
chosen group. If the server rejects the client’s choice of DH group, it falls back to
another group through the HelloRetryRequest mechanism. To model the post-
quantum ephemeral key exchange in KEMTLS, we replaced the Diffie–Hellman
operations by kemencaps (KEM encapsulation) in place of the server’s DH key
generation. The client then computes the shared secret via kemdecaps (KEM
decapsulation).

The authentication rules and states required more careful consideration. In
the TLS 1.3 model, the Certificate, CertificateVerify, and Finished mes-
sages were sent and received simultaneously. In KEMTLS, we split the handling of
these messages, as the peer that is authenticating needs to first receive a cipher-
text to decapsulate. Doing this requires more states. Additionally, in KEMTLS
the client sends Finished before the server, which deviates from TLS 1.3.

To finish our integration of KEMTLS, we made changes to the key schedule to
include the computation of KEMTLS’ Authenticated Handshake Secret (AHS)
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lemma secret_session_keys:
"All tid actor peer kw kr pas #i.

SessionKey(tid, actor, peer, <pas, ’auth’>, <kw, kr>)@#i &
not (Ex #r. RevLtk(peer)@#r & #r < #i) &
not (Ex tid3 esk #r. RevEKemSk(tid3, peer, esk)@#r & #r < #i) &
not (Ex tid4 esk #r. RevEKemSk(tid4, actor, esk)@#r & #r < #i)
==> not Ex #j. K(kr)@#j"

Listing 1. The secret_session_keys lemma proves application traffic keys are secret.

and use the correct handshake traffic encryption keys. We also modified the
action facts emitted in the various rules to match our KEM operations; lemmas
that made use of these action facts were also updated. We disabled the PSK and
session ticket features of the original model.

Modeling KEMTLS-PDK. In KEMTLS-PDK, the client has the server’s long-
term public key beforehand. Access to the public key allows the client to send
a ciphertext in the initial ClientHello message. Additionally, the client may
attempt client authentication proactively and thus transmit its Certificate
before receiving ServerHello from the server. We model this through an addi-
tional initial state for the KEMTLS-PDK client. From this state, there are two
rules which set the state variable that will decide if the client will send its cer-
tificate. KEMTLS-PDK is otherwise implemented as a mostly separate sequence
of states and rules, as the key schedule and order of messages are quite different.
The client and server still transition through a state shared with KEMTLS, so
they can fall back to the “full” handshake.

3.3 Security Properties

We adapt the lemmas from the Cremers et al. model for TLS 1.3. Many core
lemmas are constructed around the SessionKey fact: the client and the server
record this fact when the handshake concludes. SessionKey contains the actor’s
final understanding of its and its peer’s identities, authentication statuses, and
the application traffic keys. We prove all security properties discussed in [14],
and briefly explain the most important of these below.

Adversary Compromise of Secrets. First, we note the extent to which
the adversary can compromise ephemeral or long-term secrets. KEMTLS uses
ephemeral KEM keys for ephemeral secrecy and long-term KEM keys for authen-
tication. The adversary can reveal actors’ long-term secret keys; this records the
RevLtk($actor) fact. We also allow revealing the ephemeral secret key in indi-
vidual sessions, recording the RevEKemSk(tid, $actor, esk) fact. Variables
tid (“thread identifier”) and esk track the specific session and secret key.

KEMs are not “symmetric” in the same way that Diffie–Hellman key exchange
is. Only one party in each KEM key exchange has a secret key that can be
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targeted by a reveal query. We do not model revealing the shared secret from
the ciphertext.

Intermediate session keys, like the Main Secret (MS), can not be revealed
directly. This follows from the design of the original model: in TLS 1.3, these
secrets only depend on the ephemeral key exchange, so revealing the ephemeral
key exchange in sessions not targeted by a lemma still allows the adversary to
obtain those sessions’ intermediate session keys. In KEMTLS, this is no longer
the case: we mix the shared secrets encapsulated against long-term keys into the
key schedule; as a result, our attacker is slightly weaker. The model discussed in
Sect. 4 does directly allow session key reveal.

(Forward) Secrecy of Session Keys. The outputs of the handshake, as
recorded in the SessionKey fact, are the application traffic read and write
keys kr and kw. We require these keys to remain secret against various forms
of attacks. Forward secrecy requires that if the long-term keys (but not the
ephemeral keys) were compromised after the session completes, the session keys
remain secure.

We model this in the secret_session_keys lemma as shown in Listing 1.
This lemma considers a client or server that believes it has authenticated its peer,
where the attacker has not revealed the ephemeral KEM secret keys. We allow the
attacker to reveal the peer’s long-term secret key, but only after the SessionKey
fact was emitted; this is the “forward” secrecy aspect. The attacker should not
be able to learn (not Ex #j. K(kr)@#j) the target’s read key kr under these
constraints. We similarly prove forward secrecy for each of the intermediate keys
in the key schedule: the Handshake Secret (HS), AHS and MS.

Note that in KEMTLS, the session keys are derived from not just the
ephemeral key exchange as in TLS 1.3, but also include the secret encapsulated
during the authentication phase of the handshake. This implies that both the
ephemeral key and the server’s long-term key need to be compromised in client
sessions, and the ephemeral key and the server’s long-term key in server sessions
with mutual authentication. We prove this in our model through a variant of the
secret_session_keys lemma that allows ephemeral key compromise, as long
as the peer’s long-term key is never revealed.

Authentication. We model the authentication properties of KEMTLS in the
same way as they were modelled for TLS 1.3. The client and server are partnered
via the nonces exchanged in the initial messages. The entity_authentication
lemma captures that if the client, at the end of the handshake protocol, has
authenticated their peer, and the peer’s long-term keys have not been revealed,
then there must be a peer session that started with the same nonces. The
mutual_ variant of this lemma states the same, but with the roles of client
and server reversed. As these lemmas allow revealing the targeted actor’s long-
term keys, these properties also cover key-compromise impersonation attacks.
Similarly, in the lemma transcript_agreement, we prove that when the client,
after receiving the server’s Finished message, commits to a transcript, there
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exists a server that is running with the same transcript (or their long-term keys
have been revealed). The mutual_ variant lemma states the same but with the
roles reversed.

3.4 Results

After adding relevant helper lemmas, Tamarin was able to auto-prove all the
correctness and security lemmas for Model #1, with all four KEMTLS variants
supported simultaneously. Run-times are shown in Appendix B.

Auto-proving and Helper Lemmas. Many of the lemmas in Cremers et al.’s
model of TLS 1.3 were not able to be auto-proved by Tamarin; instead, the
authors had to manually guide Tamarin through parts of the proof. Our goal
was to improve the model so that it could be proved without manual intervention.

To help the automated prover, Cremers et al. introduced many intermediate
lemmas, many of which state properties of earlier keys or more limited message
exchanges. Inheriting these lemmas proved to be both helpful as well as distract-
ing. Incrementally proving and adjusting the intermediate lemmas to apply to
KEMTLS(-PDK) helped us spot bugs and make progress. But starting from their
helper lemmas often left us unclear as to why particular intermediate lemmas
were necessary to prove the final security properties.

In our experience, Tamarin does not find counterexamples very easily in big
models. As a result, we wrote increasingly “smaller” lemmas whenever we ran
into a lemma that was hard to prove. This greatly expanded the number of helper
lemmas available. While we believe that this helped auto-prove the model, it also
resulted in cases where the helper lemmas interacted in bad ways and had to be
ignored. (Replacing Diffie–Hellman by KEM, thus avoiding Tamarin’s algebraic
analysis of DH group operations, may also have eased analysis.) Additionally, the
model of [14] is carefully split over different files to avoid certain helper lemmas
from interacting. With much less experience, we joined together most of those
files, which in many cases lead to Tamarin getting distracted by helper lemmas.

ABug in Cremers et al.’s TLS 1.3 Lemmas. While working on the proof, we
found that one of the core lemmas in [14]’s TLS 1.3 model seems to have changed
after creating the proof. The lemma session_key_agreement tried to prove that
the client’s and servers values of keys in the SessionKey fact matched. However,
variable keys is a tuple <kr, kw> of the reading and writing keys. As the server’s
writing key should match the client’s reading key and not the client’s writing key,
this lemma did not hold. The rendered proofs included in the repository alongside
the model and lemmas revealed that in the executed proof, keys was split into its
elements and equated correctly. We disclosed the bug to the authors.

3.5 Limitations

Although the model is very granular in its description of KEMTLS(-PDK), we do
have some limitations. As discussed in Sect. 3.3, we do not model intermediate
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session key reveal. We also have not modelled session resumption or pre-shared
key modes with KEMTLS. Finally, we have not attempted to model deniability,
which we will model in Sect. 4.

4 Model #2: Multi-stage Key Exchange Model

The security properties shown in the original KEMTLS paper [32] and the
KEMTLS-PDK paper [34] are stated using the reductionist security paradigm,
via the multi-stage key exchange model [24], which was adapted for proofs of the
TLS 1.3 handshake [19,20]. Our goal in this section is to translate the reduction-
ist security properties in this model—match security, session key indistinguisha-
bility, and authentication—from a pen-and-paper model to being encoded in
Tamarin, then have the Tamarin prover confirm these properties hold. Notably,
this model discriminates between the several keys established within a single
KEMTLS handshake, associating distinct security properties with individual
stage keys.

4.1 Reductionist Security Model for TLS 1.3 and KEMTLS

The multi-stage key exchange security model, first introduced by Fischlin and
Günther [24], is an extension of the Bellare–Rogaway (BR) model [6] for proving
security of authenticated key exchange in the reductionist security paradigm.
In the BR model, the adversary is in control of all communications between
honest parties, so the adversary can activate honest parties to send their next
protocol message, and can also modify, delay, drop, replay, or create messages.
Each honest party can run multiple simultaneous or sequential executions of
the protocol (each execution at a party is called a session) sharing a single
long-term key pair across their sessions. Within each session, a party maintains
several variables, including the execution status, a session identifier, an identifier
for the peer (if the peer is to be authenticated), and a session key. The adversary
interacts with the honest parties via oracles, including oracles for starting a new
session at a party (the NewSession oracle) and message delivery and response
(Send), as well as letting the adversary learn an honest party’s long-term key
(Corrupt) or the session key of a particular session (Reveal). The adversary may
choose one session as a challenge session and, via a call to the Test oracle, receive
an indistinguishability game challenge.

There are many extensions to the BR model to capture different functionality
and security properties; see [10, Ch. 2] for a summary. One important extension
is the formalisation by Brzuska et al. [11,12] which introduces a property called
match security. This checks the technical condition that the session identifiers
specified by the protocol effectively match the partnered sessions. Among other
benefits, match security helps with composition theorems involving AKE pro-
tocols. Our Tamarin model does address match security fully, but due to space
constraints, we omit discussion of match security in the proceedings version of
the paper.
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In real-world protocols like QUIC and TLS, as well as KEMTLS, multiple keys
are established in each session for different purposes. Fischlin and Günther [24]
created the multi-stage key exchange model, an extension of the BR model in
which a single session can have multiple stages, each of which establishes a key
with certain security characteristics; they used this approach to analyse QUIC.
It was also used by Dowling et al. [19,20] to analyse the TLS 1.3 handshake. As
KEMTLS is an alternative realization of the TLS 1.3 handshake, it is natural to
similarly use this model for analyzing KEMTLS, as done in [32].

We now present the technical components of the multi-stage key exchange
security model as used in KEMTLS [32] and KEMTLS-PDK [34]. Our presentation
here will be somewhat abbreviated; for full details, see the full versions of [32,34].

Partnering. For the proof of KEMTLS(-PDK), we need to keep track of the
pairs of sessions that are (supposedly) communicating. Each session keeps track
of per-stage session identifiers, each of which is a distinct label for the stage
followed by all plaintext messages transmitted up until that point in the protocol;
for KEMTLS-PDK, this also includes the implicit ServerCertificate message.
We call two sessions partners if their session identifiers match.

Adversary Interaction. The oracles and variables stated in Sect. 4.1 suffice
for modelling the various properties of match-security. To model key indistin-
guishability, the multi-stage model includes an oracle Test(π, i) which challenges
the adversary to distinguish the ith stage key of session π from random.

Multi-stage Security and Malicious Acceptance. Multi-stage security
models secrecy of each stage key under specific forward secrecy properties. These
properties include implicit and explicit authentication. The model is parameter-
ized by values indicating the expected security properties of particular stage
keys. [32,34] define four levels of forward secrecy:

– No forward secrecy (0);
– Weak forward secrecy level 1 (wfs1): the key is confidential against passive

adversaries. This level allows the adversary to access the peer’s long-term
keys. Keys with this level of forward secrecy have no authentication.

– Weak forwards secrecy level 2 (wfs2): the key is confidential against passive
adversaries (wfs1) and against active adversaries who never corrupted the
peer’s long-term key. In the latter case, the key is implicitly authenticated.

– Forward secrecy (fs): the key is confidential against passive adversaries (wfs1)
and against active adversaries who did not corrupt the peer’s long-term key
before the stage accepted. Keys with level fs are implicitly authenticated.

As the protocol is executed, the security level of a particular stage key may be
upgraded once a later stage accepts. The specific security levels for each client
and the server are indicated in [32,34]; the server’s security levels are different
if mutual authentication is used.
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Explicit authentication, which is e.g. achieved by the Finished messages, is
modelled through malicious acceptance: an adversary should not be able to cause
a supposedly explicitly authenticated stage to accept without a partner stage.

Deniability. Roughly speaking, deniability is the property that a party can-
not provide proof to a judge that a peer participated in a particular protocol
execution, even if they did. First introduced in general by Dwork, Naor, and
Sahai [23] and in the context of key exchange by Di Raimondo, Gennaro, and
Krawczyk [17], there are many flavours and variations of deniability; see e.g. [26]
for a classification. Offline deniability is the inability of a judge to distinguish
between a transcript generated by honest parties and a transcript generated
by a simulator. The form of deniability offered by KEMTLS and KEMTLS-PDK
(following the terminology of [26]) is that it provides offline deniability in the
universal deniability setting (meaning the simulator only has access to parties’
long-term public keys) against an unbounded judge with full corruption pow-
ers (meaning the judge gets the parties’ long-term secret keys as well as any
per-session coins).

Pen-and-Paper Proofs. The KEMTLS and KEMTLS-PDK papers [32,34] pro-
vide theorems and give proofs that their respective protocols satisfy the match-
security and multi-stage security properties; they do not include any proofs
for offline deniability. The match-security properties are shown information-
theoretically, with terms depending on the number of sessions, the correctness
probability of the KEMs, and the size of the TLS nonce space. The multi-stage
security properties are shown under the following computational assumptions:
hash function collision resistance, IND-1CCA security of KEMe, PRF and dual-
PRF security of HKDF.Extract, PRF-security of HKDF.Expand, EUF-CMA secu-
rity of HMAC, and IND-CCA security of KEMc and KEMs. There is a tightness
loss proportional to the number of sessions squared.

4.2 Formalizing the Reductionist Security Model in Tamarin

We formalized all four KEMTLS variants (regular and PDK, server-only and
mutually authenticated) in Tamarin, along with lemmas capturing correctness,
match security, multi-stage security, and deniability, analogous to the definitions
from Sect. 4.1. We now describe the formalization in more detail.

Protocol Description. This Tamarin formulation of the four KEMTLS vari-
ants focuses on the “cryptographic core” of the protocol. Roughly speaking,
this is the protocol as formulated in figures in the original papers [32,34],
which includes cryptographic operations involved in the key exchange, but
does not include extra fields and operations arising from the integration of
the cryptographic operations into a network protocol. We only address the
handshake protocol and exclude TLS message formatting, algorithm negotia-
tion, and data structures such as certificates. We exclude other modes such
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as TLS 1.3 session resumption or pre-shared key handshakes. We assume that
long-term public keys are reliably distributed out-of-band. We omit modelling
handshake encryption: while the various handshake traffic secrets are established
and recorded as accepted in each stage of the protocol, subsequent handshake
messages are sent in plaintext. The various primitives based on hash functions
(HMAC,HKDF.Extract,HKDF.Expand) are modelled as independent opaque func-
tions, rather than relying on each other and ultimately on a common hash func-
tion. As in the pen-and-paper proofs, there are three KEMs: KEMe, KEMc, and
KEMs, for ephemeral key exchange, client authentication, and server authentica-
tion, respectively. The KEMs are modelled as distinct primitives, meaning that
a party cannot use its long-term credential to act as both a client and a server.

Adversary Interaction. Among the oracles stated in Sect. 4.1, the NewSession
and Send oracles are not needed, since the Tamarin model includes rules for
each protocol step. The Tamarin model does include Corrupt and Reveal oracles.
Because key security in Tamarin is modelled not using indistinguishability but
key recovery (the K (. . . ) fact in Tamarin lemmas), there is no need for the Test
query in the Tamarin model.

Correctness Lemmas. We include a collection of “reachability” lemmas which
check that, for every stage in all 4 protocol variants, it is possible to arrive at
that stage, with honest client and server sessions having correct owner and peer
information, matching contributive and session identifiers, and correct expec-
tations on authentication, forward secrecy, and replayability; the reachability
lemmas include checking retroactive upgrading of properties. These lemmas are
implemented using Tamarin’s exist-trace feature. There are 47 reachability
lemmas in total, generated from a template using the M4 macro language.

Security and Authentication Lemmas. The match security lemmas from
Definition B.1 of [32], plus the adjustments for replayability in [34], are directly
translated into Tamarin. The lemmas are basically predicates over the session-
specific variables defined in the model syntax, and can be stated analogously
since the Tamarin model includes action facts for each session-specific variable.

Session key security in Tamarin is modelled based on infeasibility of session
key recovery, rather than indistinguishability of a session key from random. We
have lemmas for each type of forward secrecy a stage key can have, directly
translating the freshness conditions of [32, Defn. B.3] and [34, Defn. B.5].

We have a lemma for explicit authentication analogous to [34, Defn. B.5 3],
including not requiring uniqueness of the replayable KEMTLS-PDK stage 1.

Deniability Lemmas. Whereas the lemmas for the above properties all share
the same Tamarin protocol description as explained above, the deniability lem-
mas use a re-statement of the protocol description. To formulate a deniability
lemma, we need two versions of the protocol description: honest execution of
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the protocol using long-term secrets, and simulation using only public keys. The
judge in the offline deniability game is passive and receives only transcripts, so we
can collapse the multiple rules for each client and server action into a single rule
that generates a full transcript including both client and server operations. The
deniability lemmas use Tamarin’s observational equivalence feature [4] to check
that the real and simulated transcripts are indistinguishable. Using observational
equivalence causes a substantial increase in state space, so for efficiency reasons,
we have a mode that omits portions of the transcript that are deterministically
generated from earlier parts of the transcript.

4.3 Comparison of Pen-and-Paper and Tamarin Models

In principle, if the same security properties have been encoded in both a pen-
and-paper reductionist security model and in a Tamarin model, a full and correct
proof in the reductionist security model yields everything that a Tamarin proof
could, and potentially more. In particular, reductionist security proofs do not
idealize cryptographic primitives as much as Tamarin does. Moreover, a reduc-
tionist security proof can be done in the “concrete setting” [5], yielding a precise
(non-asymptotic) relationship between the runtime and success probability of
an adversary against the protocol versus the runtime and success probability
of breaking the underlying cryptographic assumption. While it would be pos-
sible to encode the pen-and-paper proofs of KEMTLS from the original papers
into a computer verification tool such as EasyCrypt [2], that would also require
the cryptographer to manually write all game hops and reductions, a massive
undertaking. To date, there are no proofs of KEMTLS using a computer-aided
verification tool for reductionist proofs.

Tamarin does not lend itself to writing security properties in exactly the same
way as would be used in reductionist security models. Although there is no way
to objectively justify how close the pen-and-paper and Tamarin models of this
section are to each other, subjectively we think they are quite close:

– The protocol specification in Tamarin maps nearly line-for-line onto the pro-
tocol figures in the original papers, using the same function interfaces, same
key schedule, and same session identifiers.

– The session-specific variables in the pen-and-paper model correspond nearly
one-for-one to action facts in the Tamarin model.

– There are Tamarin lemmas for each security property in the pen-and-paper
model, and there is a clear mapping between the clauses in the predicates in
the pen-and-paper model and the Tamarin model.
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The main gap in modelling, as mentioned earlier, is that session key security
is modelled via indistinguishability in the pen-and-paper models but via infea-
sibility of key recovery in the Tamarin model. Though it is possible to verify
indistinguishability through Tamarin’s observational equivalence features, the
effect on the state space as discussed in Sect. 4.2 makes this impractical.

4.4 Results

Tamarin was able to auto-prove all the lemmas for correctness, reachability,
match security, multi-stage session key security, authentication, and deniability
in Model #2, with all four KEMTLS variants supported simultaneously. We did
not need to create any helper lemmas for Tamarin. Run-times are shown in
Appendix B.

Bugs in the Original Papers’ Security Properties. When translating
the models into Tamarin, we identified minor mistakes in some of the security
properties listed in the KEMTLS [32] and KEMTLS-PDK [34] papers, highlight-
ing the value of formal verification. We summarize the corrected properties in
Appendix A.

4.5 Limitations

As noted above, the design of the model in this section imposes some limitations.
Unlike in Sect. 3, we generally did not model non-cryptographic details of the
handshake, such as TLS handshake messages, extensions, or the record layer.
We also did not model handshake encryption or algorithm negotiation.

We also had, unlike in Sect. 3, three distinct KEMs for ephemeral key
exchange, server authentication and client authentication. This implicitly
assumes the same certificate is not used for both purposes, which was the basis
of the Selfie attack [22]. Without this limitation, we observe a state-space explo-
sion with a major impact on performance. For example, if KEMc = KEMs, the
first 10 out of 11 reachable_* lemmas take over 8 h, and the last reachable_*
did not terminate after 45 h, compared to all 11 reachable_* lemmas taking
just over 1min with distinct KEMc and KEMs.

Our deniability lemmas are for abbreviated transcripts and omit ephemeral
coins. Without this limitation there is a major impact on performance. Including
full transcripts for KEMTLS-sauth increases run-time from 1min to 16 h, and
including ephemeral coins increases runtime from 1min to 110min.
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Table 1. Comparison of features in our two Tamarin models of KEMTLS

Feature Model #1 Model #2

Protocol modelling
Encrypted handshake messages
HKDF and HMAC decomposed into hash calls
Key exch. and auth. KEMs are the same algorithm
TLS message structure
Algorithm negotiation
Security properties
Adversary can reveal long-term keys
Adversary can reveal ephemeral keys
Adversary can reveal intermediate session keys
Multiple flavours of forward secrecy
Deniability

5 Comparison of Models

We discussed two very different models of KEMTLS(-PDK) in the previous sec-
tions. These models are examples of how we can view modelling as the art of
replacing specifics with generalities. Model #1 stays very close to the wire for-
mat of TLS 1.3 and phrases the security properties in terms of attacks on the
ephemeral and long-term keys. It contains more implementation details such
as algorithm negotiation, message framing, encryption of handshake messages,
and even application data. Model #2 is more abstract in its representation of
protocol messages. However, it models the cryptographic properties in a more
granular fashion. This more abstract description closely follows the multi-stage
pen-and-paper proofs of KEMTLS and KEMTLS-PDK, and allowed verifying the
properties claimed in the pen-and-paper proofs. Table 1 summarizes differences
between the two models, a few aspects of which we discuss further below.

Modelling KEMs. The two models differ in the way that they model the KEMs
in the protocol. Model #1 uses the same functions for all KEM modes in the
protocol (key exchange, server authentication and client authentication). Model
#2 has three separate sets of functions for the three different KEM modes; this
means the attacker can not copy ciphertexts or public keys from one of the modes
to another, which should make proving the protocol easier. Interestingly, we saw
significantly different performance between these two approaches. The second
model proves in very short time with the three separate KEMs, but runtime
blows up if we define all three KEM modes with the same functions; we did not
attempt to generate the full proof because it took so long as discussed in Sect. 4.5.
This suggests that splitting the three KEM modes in the first model could result
in a speed-up. However, splitting the KEMs in Model #1 did not improve the
time to auto-prove lemmas; in fact, a few lemmas even stopped being auto-
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provable. Ideally, this puzzle would be resolved with a justification that there
is a way of safely separating uses of KEMs, allowing us to use whichever form
happens to be easier for Tamarin to prove.

Threat Model. Both models use Dolev–Yao attackers, but give the attackers
slightly different extra abilities as noted in the bottom half of Table 1. Con-
sequently, the results hold in slightly different circumstances. The attacker in
Model #1 can compromise ephemeral keys and long-term keys, but not session
keys, whereas the attacker in Model #2 can compromise intermediate session
keys and long-term keys, but not ephemeral keys. Revealing the HS intermedi-
ate session key allows the second attacker to simulate the abilities of the first,
but the reverse does not hold; the attacker in Model #2 is thus slightly stronger.

Ease of Use. Work on each of our two models was done by separate authors of
this paper, neither of whom had written a paper using Tamarin before and who
had only had a basic introduction to Tamarin prior to this work. Surprisingly
to us, creation of Model #2 from scratch was simpler and proceeded faster than
the work in Model #1 adapting Cremers et al.’s TLS 1.3 model to KEMTLS.
We attribute this to the higher fidelity of the protocol model in Cremers et al.,
requiring more code to model our changes, and the higher difficulty in proving.

6 Conclusion

We presented two Tamarin models checking security properties of KEMTLS and
its variant protocol KEMTLS-PDK. Model #1 is highly detailed in implementa-
tion characteristics, close to the wire-format of the protocol. Model #2 presents
the protocol at a higher level but provides a more precise characterization of
security properties. We prove that KEMTLS(-PDK) is secure in both models;
importantly these analyses include all four KEMTLS variants supported simulta-
neously. Additionally, we proved offline deniability of KEMTLS(-PDK) in Model
#2.

Overall, comparing these two analyses is something of an apples-to-oranges
comparison. The two very different approaches allow us to model and test dif-
ferent properties of the protocol. Model #1 is closer to what an implementation
would be like, and verifies the security properties in such a scenario. Adopting
the Cremers et al. TLS 1.3 model [14] also allowed us to quickly adapt the secu-
rity claims of TLS 1.3 to our protocols. Model #2, on the other hand, is an
adaptation of the multi-stage authenticated key exchange model from the pen-
and-paper proofs in [32,34]. As such, Model #2 in a sense checks the claims in
the pen-and-paper proofs, and in fact uncovered some minor mistakes in those
proofs.

Our two models illustrate a common trade-off in formal analysis between the
detail of the protocol specification and the granularity of the security properties
we can prove. A similar observation was also made by Cremers et al. [14], who
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commented computational analyses could only look at parts of TLS 1.3, rather
than considering all the modes at once.

While we proved certain privacy properties, such as deniability, our models
can be further expanded to include other privacy properties, such as the proposed
Encrypted Client Hello extension (previously called ESNI). These properties
have only been proven by using the symbolic protocol analyzer ProVerif [8].
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A Errors Identified in the Stated Properties
of KEMTLS(-PDK)

Using Model #2, we identified minor mistakes in some of the forward secrecy and
authentication properties listed in the original KEMTLS [32] and KEMTLS-PDK
[34] papers. See the original papers for the definition of the symbols.

– In KEMTLS-mutual: authS3 = 3 and authS4 = 4 both should have been set to
5; FSS3,3 = FSS3,4 = FSS4,4 = wfs2 should all have been wfs1; and authS6 = 6
should have been authS6 = ∞.

– In KEMTLS-PDK-sauth: FSC1,j and FSS1,j should have been 0 for all j; authC5 =
5 should have been authC5 = ∞; and FSSi,4 should have been wfs1 for i = 2, 3, 4.

– In KEMTLS-PDK-mutual: the message SKC should have been included in the
SF MAC computation and SF should have been included in the CF MAC
computation; FSC1,j and FSS1,j should have been 0 for all j; authC5 = 5 should
have been authC5 = ∞; and FSS4,4 = wfs1 should have been wfs2.

The source papers have been updated online [33,35] with our corrections.

B Performance

We ran our two models using tamarin-prover version 1.16.1 on a server that
has two 20-core Intel Xeon Gold 6230 CPUs, which after hyperthreading gives
us 80 threads; the server has 192GB of RAM. We note that communication
bottlenecks between cores prevent fully utilising all resources.

Model #1 Table 2 shows run-times of the most time-consuming lemmas from
Model #1. All four KEMTLS variants were supported simultaneously.
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Table 2. Wall-clock run-time (hh:mm:ss) and memory usage of selected lemmas for
Model #1

Lemma Steps Time Memory

session_key_auth_agreement 29 116 6:42:01 16GB
session_key_agreement 57 680 13:56:04 32GB
handshake_secret 29 390 4:40:52 12GB
master_secret_pfs 29 535 2:53:11 76GB

All lemmas — 28 h 121GB

Model #2 Table 3 shows the run-time for the various lemmas, for each KEMTLS
variant on its own, and when all four KEMTLS variants are supported simulta-
neously; Tamarin was restricted to using 16 cores.

Table 3. Wall-clock run-time (hh:mm:ss) of lemmas for Model #2

Lemma KEMTLS KEMTLS-PDK All 4 variants
sauth mutual both sauth mutual both

reachable_* 0:01:17 0:01:20 0:04:32 0:01:46 0:01:36 0:04:40 0:13:25
attacker_works_* 0:00:17 0:00:46 0:01:16 0:00:17 0:00:23 0:00:53 0:12:04
match_* 0:01:02 0:01:22 0:02:55 0:00:55 0:01:14 0:02:46 0:09:53
sk_sec_nofs_client 0:00:05 0:00:07 0:00:16 0:00:05 0:00:05 0:00:14 0:00:41
sk_sec_nofs_server 0:00:05 0:00:06 0:00:12 0:00:05 0:00:06 0:00:14 0:00:40
sk_sec_wfs1 0:00:21 0:00:10 0:01:05 0:00:17 0:00:18 0:00:41 0:03:00
sk_sec_wfs2 0:00:36 0:00:28 0:01:30 0:00:28 0:00:22 0:01:23 0:24:28
sk_sec_fs 0:01:20 0:03:05 0:06:38 0:01:21 0:01:33 0:05:07 1:39:58
malicious_accept. 0:00:13 0:01:40 0:04:13 0:00:17 0:00:22 0:01:39 27:29:37
deniability (abbr.) 0:01:02 0:12:15 — 0:00:24 0:29:10 — —
Total (excl. den.) 0:05:16 0:09:05 0:22:38 0:05:30 0:06:00 0:17:38 30:13:46
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Abstract. Mounting microarchitectural attacks, such as Spectre or
Rowhammer, is possible from browsers. However, to be realistically
exploitable, they require precise knowledge about microarchitectural
properties. While a native attacker can easily query many of these proper-
ties, the sandboxed environment in browsers prevents this. In this paper,
we present six side-channel-related benchmarks that reveal CPU prop-
erties, such as cache sizes or cache associativities. Our benchmarks are
implemented in JavaScript and run in unmodified browsers on multiple
platforms. Based on a study with 834 participants using 297 different
CPU models, we show that we can infer microarchitectural properties
with an accuracy of up to 100%. Combining multiple properties also
allows identifying the CPU vendor with an accuracy of 97.5%, and the
microarchitecture and CPU model each with an accuracy of above 60%.
The benchmarks are unaffected by current side-channel and browser fin-
gerprinting mitigations, and can thus be used for more targeted attacks
and to increase the entropy in browser fingerprinting.

Keywords: Microarchitecture · Fingerprinting · Side channel ·
JavaScript

1 Introduction

Knowing the CPU of a target system, or its properties, may allow attackers to
craft severe tailored attacks. For example, research in recent years has revealed
multiple critical CPU vulnerabilities related to speculative and out-of-order exe-
cution [4,16,20,27,32,35,40]. These transient-execution attacks [4,16,20] lever-
age CPU-specific inner details to leak data in the same process or even across
security domains [4]. Likewise, Rowhammer [15] is a vulnerability in modern
DRAM that leverages knowledge of a CPU’s cache architecture to flip bits in
memory without accessing them. While such attacks are already a security risk
when mounted in native code, they reach the masses when successfully launched
in a browser. In fact, despite the limitations of the restricted browser environ-
ment, previous research mounted Rowhammer [11] and the transient-execution
attacks Spectre [1,16,37,39], RIDL [32], and ZombieLoad [6] in the browser.

All these attacks have in common that they require knowledge of specific
properties of a CPU. However, attackers cannot easily obtain the CPU model
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
V. Atluri et al. (Eds.): ESORICS 2022, LNCS 13556, pp. 87–105, 2022.
https://doi.org/10.1007/978-3-031-17143-7_5
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(or CPU properties) in a Web setting. Consequently, in contrast to native
attacks, browser-based attacks face several challenges. The sandboxed code exe-
cution does not give the attacker full control over the instructions executed.
The JavaScript and WebAssembly code is just-in-time-compiled by the browser
engine to the instruction set architecture (ISA) of the particular CPU. It is
often difficult for an attacker to distinguish the noise naturally generated by
the operating system and other processes from the actual target data. This is
made more difficult because these attacks do not deliver any relevant data at
all on CPUs that are not vulnerable. Moreover, as side-channel leakage rates
for these browser-based implementations are often low, with typically a few
bits per second [6,32], knowing whether the leaked values are actually sensitive
data is tedious. Identifying potential victims or even choosing the most effective
attack for a concrete target is thus valuable to an attacker. Likewise, a successful
Rowhammer attack requires knowledge of cache architecture and replacement
policies of the different cache levels, as implied by the CPU model or family.
Knowing these parameters simplifies generating code for memory accesses that
purposely miss the caches and can thus be used in a Rowhammer attack. All
these vital CPU properties can be trivially extracted from knowledge of the CPU
model in a native attack setting. However, lacking knowledge of the CPU model
from within the browser often complicates—if not even impedes—an attack.

In this paper, we explore if attackers can determine attack-relevant CPU
properties from within the browser. To this end, we present six benchmarks
designed to reveal CPU-specific properties and behaviors. Our benchmarks are
implemented in JavaScript and WebAssembly and run in unmodified browsers.
We target microarchitectural elements relevant to microarchitectural attacks,
including the cache and the TLB. In addition, they also reveal the number
of CPU cores and profile the performance of the CPU in single- and multi-
threaded scenarios. All these properties can be inferred reliably, even with state-
of-the-art mitigations enabled in Mozilla Firefox and Google Chrome. Moreover,
the benchmarks are independent of the operating system and instruction set
architecture. We optimize all benchmarks to work on x86 and ARMv8 CPUs,
including low-end devices such as smartphones.

To evaluate the efficacy of our benchmarks, we conduct a study over 834 par-
ticipants to collect information from 297 CPU models in the wild. Based on this
data set, we achieve accuracies of up to 95% for determining microarchitectural
properties such as the L1D size or associativity, or the used page size. Moreover,
when combining the microarchitectural properties, we can expand our knowledge
to predict the CPU vendor at 97% accuracy and even identify the exact CPU
models and microarchitectures at about 65% accuracy.

First, our results show that these benchmarks can be used to infer properties
useful for microarchitectural attacks. Second, by combining the benchmarks,
they can also be used for hardware fingerprinting, e.g., to track users across
websites. Hence, our benchmarks can augment state-of-the-art browser finger-
printing, which mainly focuses on the software side to enable web tracking [18].
Our evaluation also shows that current browser-fingerprinting mitigations do
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not impede the generation of our CPU fingerprints. We publish our data set and
benchmarks as open source.1

Contribution. To summarize, we make the following contributions.

1. We show 6 benchmarks to infer microarchitectural properties from the
browser.

2. We evaluate our benchmarks on a set of 834 CPUs found in the wild, showing
an accuracy of up to 95% for inferring microarchitectural properties.

3. We demonstrate that combining these properties can reliably detect CPU
vendors, models, and microarchitectures.

4. We show that fingerprinting mitigations do not prevent our benchmarks.

2 Background

A device fingerprint is information collected about the hardware or software of
a particular device, typically for the purpose of authentication or identification.

Browser Fingerprinting. For browser fingerprinting, a site uses a client-side
scripting language to reveal characteristics of the browser, software, or hard-
ware of a system. The seminal work by Eckersley [7] investigated browser finger-
printing using the information transmitted by HTTP, such as the User-Agent
header, and information accessible via the browser API exposed to client-side
scripting languages. In the past, several browser-provided APIs [23], including
the HTML5 Battery Status [24], WebGL and Canvas [5,19,22], or AudioCon-
text API [8] have been used to craft accurate fingerprints. Mowery et al. [21]
exploit performance differences of the different JavaScript engines used by dif-
ferent browsers and the allowlist of the popular NoScript plugin. Schwarz et al.
[33] presented JavaScript Template Attacks, an automated framework to detect
differences in browser engines caused by the surrounding environment.

Browser-based CPU Fingerprinting. Recent works also investigate hardware fin-
gerprinting of the CPU. Sanchez-Rola et al. [31] observe the accumulated exe-
cution times of common functions, such as string manipulation functions or
cryptography functions from the HTML5 Cryptography API. This allows the
identification of a concrete CPU with adequate accuracy. Saito et al. [29] pro-
posed multiple side-channel related methods to infer the presence or absence
of different Intel CPU features, such as Advanced Encryption Standard New
Instructions (AES-NI) and Intel Turbo Boost Technology. Saito et al. [30] also
proposed algorithms to infer the presence or absence of Hyper-Threading Tech-
nology (HTT) and Streaming SIMD Extensions 2 (SSE2). With many of these
Intel-specific extensions and technologies omnipresent in modern Intel CPUs,
these algorithms generate few distinguishing features for modern Intel CPU mod-
els. Furthermore, the proposed features do not necessarily allow to distinguish
Intel CPUs from CPUs distributed by other manufacturers since other manufac-
turers provide their own functionally-equivalent technologies.
1 https://github.com/CISPA/browser-cpu-fingerprinting.

https://github.com/CISPA/browser-cpu-fingerprinting
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3 Methodology

In the following, we present 6 benchmarks to reveal information about the CPU.
The output is used to infer microarchitectural characteristics such as the cache
size, which provides information for microarchitectural attacks. Furthermore, by
combining multiple benchmarks, we can generate CPU model fingerprints, an
extension of device fingerprints, that can reidentify a CPU model or, at the
minimum, the CPU vendor. These can be used, e.g., as additional entropy for
tracking users on the web. Figure 1 provides an overview of CPU parts that are
targeted by our benchmarks. In particular, we have a benchmark to determine
the number of cores, the sizes of the different data cache levels, the associativity
of the L1D cache, and the size of the L1D TLB. While not shown in Fig. 1, we
additionally present benchmarks to determine the performance of a single core
and the page size.

Core

SB

LB L1D

DTLB

L2

L2 TLB

L3

Fig. 1. Parts of the CPU targeted by our benchmarks are highlighted in yellow. (Color
figure online)

3.1 Benchmarks

Our benchmarks are written in JavaScript and WebAssembly. The latter is used
whenever compiler optimizations could impair the functionality of a benchmark
or when highly-optimized instructions are required to ensure the highest level
of performance. We operate in a cross-origin-isolated environment that auto-
matically reenables features that have been disabled as a response to microar-
chitectural attacks, e.g., SharedArrayBuffer. Note that this is a server-side
setting that does not require any changes in the browser, i.e., benchmarks run
in unmodified off-the-shelf browsers if the user visits the attacker’s website. All
benchmarks, except the single-core performance and the cores benchmark, use
a SharedArrayBuffer-based timer [9,36].

Number of CPU Cores. The number of CPU cores is typically a power of two,
though 6, 10, and 12 have also been prominent in recent years. Many modern
CPUs implement Simultaneous Multithreading (SMT) to effectively double the
number of threads that can run in parallel. The ability to distinguish actual
physical cores from virtual cores based on SMT further allows clustering of CPUs
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by the number of physical or virtual cores. Both aspects have previously been
algorithmically examined for Intel CPUs by Saito et al. [29,30]. While JavaScript
is a single-threaded language, Web Workers are a browser feature that allows
running scripts in the background without blocking the main UI thread. While
the browser API may feature the navigator.hardwareConcurrency read-only
property, this does not necessarily reflect the number of available cores.

Algorithm 1: Cache Size Benchmark
Input: sizes
Output: timestamps

N ⇐ 16 ∗ 1024 ∗ 1024
timestamps ⇐ []
for size in sizes do

Prepare randomized circular linked list of size KB
head ⇐ head of linked list
startTime ⇐ getTimestamp()
for 1 upto N do

head ⇐ head->next
end for
timeDifference ⇐ getTimestamp() − startTime
timestamps.insert(timeDifference)

end for

Our benchmark starts more workers than actual threads available, which
interferes with the effective multithreading of the workers. Some workers have to
operate sequentially, taking turns on a shared hardware thread or even waiting
for one worker to finish before starting. This, in turn, increases the average
execution time of each worker and the time it takes for all workers to finish. Each
iteration, we start N Web Workers that each perform the same independent task.
If we do not create more workers than hardware threads available, the execution
time of each worker is roughly the same. The time it takes all workers to finish
their task noticeably increases once the number of workers exceeds the number
of available hardware threads. In addition, we can also observe that once the
number of workers exceeds the number of available physical cores due to the
negative performance impact of microarchitectural components shared between
two co-located logical cores. The output of this benchmark is a list of timestamp
differences for all N from the set of even numbers up to 32.

Data Cache Sizes. Since ARM CPUs often only feature two cache levels, while
x86 CPUs typically feature three, the number of cache levels allows distinguish-
ing ARM and x86 CPUs with relatively high accuracy. Furthermore, the L2
cache size allows determining the vendor of a recent x86 CPU, and the L3 size
allows distinguishing CPU models. This is particularly interesting since many
microarchitectural attacks are ISA-specific or even vendor-specific. The class of
MDS vulnerabilities [3,32,35], for example, only affects Intel CPUs.
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We frequently access memory and measure the latency. Over time, we increase
the size of the frequently-used memory. First, the used memory easily fits inside
the L1 cache, and we observe fast access times. Once the size approaches the
limit of the L1 cache, we statistically observe an increased number of L1 cache
misses, increasing the average memory latency. Likewise, the latency increases
again if the limit of the L2 and then the L3 is reached. This reveals each cache
level and their respective sizes. To eliminate the noise generated by the various
prefetchers, we rely on pointer chasing using a randomized linked list. Here,
each memory access determines the subsequent pointer to be dereferenced. This
generates a series of loads that each depend on the previous load, thus enforcing
serialization. We use a circular randomized linked list, where we perform a fixed
number of pointer advances (Algorithm 1). Over time, we increase the memory
allocated by the linked list. The output of the benchmark is a list of timestamp
differences that are sampled at different list sizes. We test 273 potential sizes
from 2KB to 32KB. To accurately determine L1 cache sizes, the granularity for
smaller sizes is finer than for larger sizes.

L1D Cache Associativity. Most modern x86 CPUs have the L1D cache asso-
ciativity of 8 [14]. Thus, this feature allows us to recognize ARM CPUs where
the associativity differs. The general idea behind the algorithm is the same as for
determining the cache size. Instead of filling the cache, we now only aim to fill a
single cache set. To fill a cache set, we create a randomized circular linked list as
in Algorithm 1. By spacing the nodes of our linked list cache-size bytes apart, all
memory accesses map to the same cache set, as the cache size is always a multi-
ple of the cache associativity. As long as the accessed memory fits into the same
cache set, we observe repeated L1 cache hits. After exceeding the associativity,
the set can no longer accommodate all memory locations, and we thus observe
an increase in execution time due to an increase in L1 cache misses. The output
of the cache associativity benchmark is a list of timestamp differences sampled
at different linked list sizes. We test for associativities between 1 and 32.

L1D TLB Size. CPUs usually have an L1 TLB that stores translations for 64x
4kB pages [14], with only older x86 (e.g., Intel Nehalem, 2008) and ARM CPUs
deviating from this value. Thus, this property allows distinguishing modern ARM
CPUs from modern x86 CPUs fairly accurately. The general idea behind the
algorithm is to fill the L1 TLB. We use Algorithm 1 but space the nodes of
our linked list at least page-size bytes apart. Hence, all memory accesses map
to different pages and thus require an address translation. While the number of
pages used by our linked list does not exceed the number of L1D TLB entries,
we observe relatively low execution times due to repeated L1D TLB hits. Once
this number is exceeded, we statistically observe more L1D TLB misses and thus
an increase in execution time. As almost all modern CPUs have a standard page
size of 4kB we hardcode this value to eliminate this error source. In our data
set, this hardcoded value only negatively affects this benchmark on the Apple
M1 chip, as it features a standard page size of 16kB [12]. The output of the
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L1D TLB size benchmark is a list of timestamp differences that are sampled at
different linked list sizes. We test for TLB sizes between 2 and 128 entries.

Single-Core Performance. To estimate the single-core performance of the
CPU, we increment a counter for the duration of 1 ms (measured using the
performance.now function). We repeat this step for a fixed number of itera-
tions and collect the counter’s value after each iteration. To better observe the
difference between boost and base frequency, we repeat this process three times
and wait for 100 ms between each time to reset the frequency.

Page Size. The page size is usually determined by the processor architec-
ture [14], with a default of 4kB for x86 CPUs in laptops and desktops. In our
data set, only the Apple M1 has a different default page size of 16kB. The use of
certain page sizes directly reveals the CPU family [14]. As the resolution of our
SharedArrayBuffer-based timer is high enough to differentiate cache hits and
misses, it also allows detecting page faults. Iterating the memory in 256B strides
while measuring the access times detects page faults due to noticeably higher
execution times [11,36]. We take the offsets of the 10 highest timing differences
and iterate these offsets in pairs. If the greatest common divisor of an offset pair
is greater than 1023 and a power of two, the greatest common divisor is added
to a list. This step eliminates the majority of outliers.

3.2 Data Set

Study. To obtain a real-world data set for further investigation, we conduct
a voluntary study. We implement all benchmarks on a website that allows col-
lecting measurements from web clients. Before starting the execution of our
benchmarks, the participant is informed about and has to agree on the pur-
pose of the study. The collected data is then stored in our database. This data
only contains the output of the 6 benchmarks, the User-Agent value to deter-
mine the browser version and the self-reported CPU model string. It does not
suffice for the identification of a person or device as the k-anonymity (i.e., the
number of persons using a given CPU model in the global population) is suf-
ficiently large. In addition, we implemented strict access control and removed
all personally identifiable information. The participant is instructed to connect
a mobile device to a charger, to leave this tab running in the foreground and
to ensure a low system load during the study. This website was first presented
to professional computer scientists. During this phase of the study, we obtained
benchmark results from about 120 participants. To collect a representative set of
measurements, we use the crowdsourcing marketplace Amazon Mechanical Turk
(MTurk)2 to distribute our study to a larger audience. The setup of the study
remains the same, except for the addition of a mechanism to ensure the study
is run in the foreground. This mechanism simply consists of a button, that has
to be pressed at least every 30 s.
2 https://www.mturk.com/.

https://www.mturk.com/
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Structure. The final data set consists of benchmark results from 834 partici-
pants featuring 297 different CPU models. Our set exclusively consists of CPUs
currently used in desktops and laptops, and two AWS Graviton CPUs. The
majority of benchmarks are collected on Google Chrome version 91-93 and Fire-
fox version 89-91. Almost 75% of the CPUs in the set are manufactured by Intel.
The remaining quarter contains AMD CPUs and 21 ARM CPUs. 19 ARM CPUs
of our data set are recently released Apple M1 chips. Our data set reflects the
consumer market shares of x86 CPU vendors for the past few years. Optionally,
users could leave out certain parts of benchmarks requiring a large amount of
memory, such as the cache size benchmark for cache sizes larger than 1KB if
they used a low-end device. Additionally, the collection of benchmark execution
times was introduced later in the study, such that they are not always available.
Thus, not all data set entries may be used in all scenarios. Each classification
only considers entries that feature the required benchmark results.

3.3 Classification

The outputs of our benchmarks are mostly a collection of measurements, not
single values. Hence, we rely on machine learning algorithms to perform the
actual classification of the different CPU properties. We also use the combination
of properties to further detect CPU vendors, models, and microarchitectures.

Algorithms. We use three supervised learning classifiers as imple-
mented by the scikit-learn [26] Python module. In particular, we use the
KNeighborsClassifier (KNN), SVC, and the MLPClassifier (MLP). These
classifiers were chosen as they showcase varying levels of complexity, after experi-
menting with a variety of popular readily-available classifiers. Simple thresholds
and statistical methods did not lead to adequate results, we suspect the high
levels of noise to be responsible for this, and are thus not discussed further.
Each classification scenario may use a different balanced subset of our data set
for testing and training to give equal priority to all classes. We detail this bal-
ancing further in the following sections. All subsets consist of labeled samples.
A labeled sample uses the results of one or more benchmarks as features. As
the output of a benchmark is a list of timestamps or timestamp differences, the
list directly represents the list of features. If multiple benchmarks are used, their
results are concatenated. The label can be the vendor, microarchitecture, model,
or property.

Property Classification. To evaluate our benchmarks for their ability to dis-
criminate between the different instances of targeted CPU features, we introduce
property classifiers. These classifiers are each trained based on data from a single
CPU property, such as the number of threads. Each property classifier is trained
and tested only using the results of the benchmark designed to reveal information
about this property. It is important to note that the distribution of properties is
rarely balanced, as the dataset tends to feature recent CPU models, and vendors
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often reuse established parts of the microarchitecture. To counteract this bias,
our property classifiers operate on balanced subsets of the dataset.

In addition to specific properties, we can also use a combination of proper-
ties. While single properties might not be unique, a combination of properties
reduces the set of possible CPU models with such a combination. Hence, by
combining multiple properties, we can infer higher-level information, such as the
CPU vendor, microarchitecture, and model, as described next.

Vendor Classification. For the classification by CPU vendor, we use the
results of the cache-size benchmark and the TLB-size benchmark. We first exam-
ine the capability of distinguishing two vendors producing CPUs of the same ISA.
Since the vast majority of our data set consists of x86 CPUs, we aim to distin-
guish CPUs manufactured by Intel from CPUs manufactured by AMD. As our
data set generally features more Intel CPUs, we use a balanced subset of it for
training and evaluating the machine learning algorithms. The subset features
data of 165 Intel and 165 AMD CPUs.

Secondly, we extend the classes to include all vendors present in our data
set. As the data set does not contain a large variety of ARM CPU vendors,
we decided not to distinguish between specific ARM manufacturers but rather
regard the ARM ISA as a group. The balanced subset used includes 21 AMD
CPUs, 21 ARM CPUs, and 21 Intel CPUs.

Microarchitecture Classification. The second-coarsest clustering of CPUs
is based on their microarchitecture. The subset used for training and testing
contains 16 different microarchitectures as classes. Each class contains at least
17 and a maximum of 25 samples to keep the influence of the imbalance as small
as possible without reducing the size of our set drastically. The final set contains
the data of 368 CPUs. For this classification, we again use the results of the
cache-size benchmark and the TLB-size benchmark and also add the results of
the cores and cache-associativity benchmark.

As many microarchitectures are, however, based on the same base microarchi-
tecture and thus indistinguishable by our benchmarks, we also classify microar-
chitectures by their base microarchitecture. A prominent example is the Skylake
base architecture by Intel, on which eight microarchitectures (e.g., Kaby Lake
and Comet Lake) from 2015 to 2020 are based. We consider 10 different groups
with 18 to 22 samples each, with a total of 211 different CPUs.

Model Classification. We prepare multiple subsets of our data set to investi-
gate the performance of inferring the specific CPU model using machine learning.
The first subset features 18 different CPU models with at least 7 and a maximum
of 9 samples each. In total, the resulting set contains the data of 153 different
CPUs, thus only using about 22% of the data set suitable for this classification.
Here we use the results of different benchmarks for training and testing. The first
approach uses the results of the cache-size benchmark, the cache-associativity
benchmark, the TLB-size benchmark, and the cores benchmark.
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The second approach uses the execution time of each benchmark as a fea-
ture. Here we use a slightly different subset of our data set, as the capturing
of execution times per benchmark was only introduced later in our study. Each
class of the set has at least 7 samples with a maximum of 9 samples from 14
different CPU models. In total, the set contains data of 114 different CPUs.

3.4 Classification Evaluation

In each classification scenario, we perform a Grid Search on 75% of the corre-
sponding data set for each of the three classifiers. This process uses a K-Fold
with k = 5. Finally, the best-performing classifier is evaluated on the held-out
test set with the best-performing hyperparameter configuration.

4 Evaluation

In this section, we present the metrics achieved by different classification algo-
rithms for the scenarios presented in Sect. 3.3. The metrics show the ability of
our benchmarks to fingerprint CPU vendors, microarchitectures, CPU models,
and certain CPU properties (e.g., L1-cache size). We evaluate the efficiency of
our current implementation by analyzing the benchmark execution times.

4.1 Classification

We compare the classification algorithm achieving the best accuracy to the best-
performing DummyClassifier (DC). The dummy classifier uses the most-frequent
or the uniform strategy. The most-frequent strategy predicts the most-frequent
element of the training set. The uniform strategy chooses a random label.

Property Classification. Table 1 shows the accuracies the best-performing
classification algorithms achieve when classifying properties such as the L1 cache
size. Especially accurate are the classifiers for the L1D cache size, L2 cache size,
and the L1D cache associativity. The L1 and L2 cache sizes can be classified
with an accuracy of above 95% each. The L3 cache size classification achieves
an accuracy of slightly more than 60%. This is most likely because the last-level
caches are usually shared and exhibit greater noise generated by the system. The
accuracy of the L1D cache associativity classification is close to 94%.

Although the cores benchmark is also negatively affected by the system noise,
the SVC classifier achieves an accuracy of almost 75% when classifying the num-
ber of threads. Mispredictions are often just off by two, indicating the system
noise to be responsible for most of them. The same benchmark results are addi-
tionally used for the SMT and HTT availability classification. As HTT is the
proprietary SMT implementation of Intel, the data set used for this classification
is restricted to Intel CPUs. Here, the best-performing classifiers achieve accu-
racies of 69.5% and 84.2%. Increasing the maximum number of workers used
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by the cores benchmark should yield better results but would also drastically
increase the execution time for CPUs featuring a low number of cores.

Finally, the boost-technology availability of a CPU can be classified with
an accuracy of 72.7% by the SVC classifier. The result is most likely negatively
affected by external factors discussed in Sect. 5.2, as well as system noise.

The page size does not require a classifier, as the algorithm directly outputs
the correct page size. The correct page size was inferred in 151 out of 158 test
cases, resulting in an accuracy of 95.5%.

Table 1. Property classification results

Property Classifier Accuracy Macro-F1 Test set size (|T |)
L1 cache size MLP 1.000 1.000 34

L2 cache size SVC 0.965 0.966 29

L3 cache size SVC 0.629 0.629 62

L1D cache asso KNN 0.937 0.955 16

Number of threads SVC 0.741 0.661 62

HTT availability MLP 0.842 0.842 70

SMT availability SVC 0.695 0.695 105

Boost availability SVC 0.727 0.723 33

Table 2. AMD vs. Intel classification results

Accuracy macro-F1 |T |
DC 0.481 0.479

83
MLP 0.975 0.975

Vendor Classification. For the combined properties, we first evaluate the
capabilities to distinguish CPU vendors, specifically AMD and Intel. When dis-
tinguishing these vendors, the random dummy classifier achieves accuracies of
around 50% as the data set is balanced. In this scenario, the MLPClassifier
achieves the highest accuracy at 97.5%, as shown in Table 2.

The vendor classification most likely shows these results due to the observable
differences in L2 cache sizes (512 kB for AMD, 256 kB for Intel). This effect also
translates to ARM CPUs. Most ARM CPUs do not feature an L3 cache and
share a large L2 cache among all cores. As most ARM CPUs in our data set are
Apple M1, they are also distinguishable due to their large TLBs [12,14]. Here,
the accuracy is 100% with a small test set containing 15 samples.
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Microarchitecture Classification. The microarchitecture classification to
evaluate the microarchitecture fingerprinting capabilities of our benchmarks is
not performed on a fully-balanced set. The randomly operating dummy classi-
fier achieves an accuracy of 4.2%, while the KNN classifier achieves an accuracy
of 65.6%. The results are listed in Table 3.

Table 3. Microarchitecture classification results

Accuracy macro-F1 |T |
DC 0.041 0.043

96
KNN 0.656 0.640

(a) not grouped

Accuracy macro-F1 |T |
DC 0.074 0.077

54
MLP 0.925 0.888

(b) grouped by base microarchitecture

The classification struggles to differentiate microarchitectures that do not
differ in their L1 cache associativity or their L1 cache, L2 cache, or L1 TLB sizes.
The Coffee Lake, Comet Lake, and Whiskey Lake microarchitectures by Intel are,
for example, often confused with each other. They do not differ in their cache or
TLB hierarchies, as all three are based on the Skylake microarchitecture, which
makes it impossible to distinguish them based on these features. While there
are smaller differences, they are not addressed by our benchmarks. Grouping all
microarchitectures by their base microarchitecture, the classification yields an
accuracy of 92.5%. The results of this classification are listed in Table 3.

Model Classification. For the CPU model fingerprinting, we use the results of
our benchmarks and compare them to benchmark execution times. The bench-
mark execution times basically compress the benchmark results into one number.
Using the same benchmarks as used for the microarchitecture classification, the
SVC classifier achieves an accuracy of 58.9%. Here, the dummy classifier only
achieves an accuracy of about 10%. The resulting metrics are shown in Table 4.
Many CPU models do not differ in their cache or TLB hierarchy, with the only
exception being the shared LLC, as its size usually depends on the number of
cores. Should the number of cores also be the same, the ability to distinguish
such CPU models is often comparable to guessing at random.

Table 4. Model classification results

Accuracy macro-F1 |T |
Dummy 0.102 0.074

39
SVC 0.589 0.590

using benchmark results

Accuracy macro-F1 |T |
Dummy 0.033 0.020

30
SVC 0.700 0.568

using execution times

This is further supported by a small-scale experiment. Here, a classifier is
evaluated to distinguish an Intel Core i5–8250U from an Intel Core i7–8550U.



Browser-Based CPU Fingerprinting 99

These two CPU models feature the same microarchitecture and the same num-
ber of cores. They only differ in their frequencies, with the Core i7 model having
a slightly higher base and boost clock. The best-performing classifier does not
outperform the random dummy classifier. In contrast, running the same exper-
iment using two CPUs that differ by at least one microarchitectural property
yields an accuracy of 100%. For example, the Ryzen 5 2600 has an 8MB L3,
while the Ryzen 5 3600 has a 16MB L3. They also differ slightly in their fre-
quency. Note that both classifiers were only evaluated on test sets of size 8. This
indicates that the used benchmarks do not contain much information about the
performance of the CPU and only accurately profile their respective microarchi-
tectural property. The classification using benchmark results can identify CPU
models with unique properties. In our data set, this applies to the Apple M1
chip. A classification algorithm can distinguish this CPU model from all others
in our set with 100% accuracy due to the unique TLB and page size.

The model classification using only the vector of execution times, i.e., the
execution time of each benchmark, achieves an accuracy of 70% with the best-
performing SVC classifier. The results of this classification are listed in Table 4.
It is also important to note that the data sets used in both experiments are not
identical. As the collection of execution times was only introduced later in our
study, the second experiment contains different CPU models and may contain
fewer samples for some classes.

The execution time of a benchmark is a compression of the benchmark results
for non-constant-time benchmarks. For example, in the L1 cache-associativity
benchmark, we observe lower execution times in iterations that do not exceed the
associativity. However, a low execution time of this benchmark can indicate at
least one of two things. The execution time could have been generated by a high-
performance CPU or high L1 cache associativity, or a combination. Ultimately,
the execution time of a benchmark thus is a compression of the benchmark results
and the performance of the CPU, enabling the feature to be used to distinguish
microarchitectural properties and performance.

A combined approach using benchmark results and their execution times
performs similarly to the approach only using the execution times. Here, the
best-performing SVC achieves an accuracy of 60%. We assume that the combi-
nation scales better to data sets containing more classes, as the compression of
benchmark results and performance may lead to confusion.

4.2 Efficiency

The runtime of our benchmarks depends largely on the performance of the CPU
that is being profiled. In addition, as discussed in Sect. 4.1, it also depends on the
properties of the CPU (e.g., L1 cache size). On a fast CPU (e.g., AMD Ryzen
9 5900X), the total runtime amounts to about 1.1min, while slower CPUs (e.g.,
Intel Core2 Duo P8600) in our tests sometimes take more than 6.5min to finish.
The median of all total runtimes is slightly over 2min. Fig. 2 shows a box plot
of the execution times per benchmark in seconds. Note that this plot does not
show outliers to improve the readability.
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Fig. 2. Benchmark execution times box plot.

The single-core performance benchmark has a constant execution time of
about 1.75 s, which rarely varies due to the scheduler. As shown by the box plot,
the execution times of the page and TLB size benchmark almost always stay
below 20 s each. The median of both benchmarks, however, is below 10 s. The
cache associativity benchmark has a median value of about 20 s, with almost all
execution times being in the range of 10 s to 50 s. As the runtime of the cores
benchmark largely depends on the number of available threads, the execution
times of this benchmark vary in the range from 5s to 60 s. The execution time
of CPUs with more than 8 available threads is generally below the median time
of 20 s. Our benchmark with the highest median execution time is the cache-size
benchmark with a median value of about 60 s. The maximum value is slightly
more than 120 s. Its current implementation dominates the overall runtime.

The runtime of our benchmarks can, however, still be reduced, especially
since they currently implement exhaustive search. For the cache size benchmark,
it might, e.g., be possible to implement a binary search. Similarly, the number
of cores benchmark could implement an early-abort mechanism to reduce the
runtime drastically. In many cases, the number of iterations could also be reduced
by a large margin without sacrificing discriminative power. It is not uncommon
for users leave a tab open for more than 10min (e.g., in case of streaming portals,
or online games). Furthermore, our benchmarks may be interrupted and resumed
later to circumvent the issue of running in the background.

4.3 Noise Resilience

To evaluate our benchmarks for noise resilience, we collect a small dataset using
four different CPUs where each CPU is sampled in 7 different noise scenarios. The
first scenario is a baseline, where no additional noise is added to the environment.
We consider CPU noise by using the stress-ng3 tool to run 1, 2, or 4 CPU
stressors. Separately, we consider memory noise by running 1, 2, or 4 Virtual
Memory stressors. Here, each stressor uses 10% of free memory.
3 https://wiki.ubuntu.com/Kernel/Reference/stress-ng.

https://wiki.ubuntu.com/Kernel/Reference/stress-ng
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The collected dataset is then used as a test set for the property classifiers
trained as described in Sect. 3.4. Since the size of the dataset is small, we cannot
draw any certain conclusions. However, the accuracies indicate that all bench-
marks except for the cores benchmark and the large sizes for the cache size
benchmark are largely unaffected by noise. Property classifiers using the output
of the cores benchmark or output of the cache size benchmark targetted at cache
sizes that exceed the L2 cache thus perform noticeably worse under noise. This
also explains the performance of the L3 cache size and the Number of Cores
classifier, which perform slightly worse than other property classifiers.

5 Discussion

5.1 Use for Microarchitectural Properties

Many microarchitectural attacks have implicit assumptions about the underlying
microarchitecture. For example, page-deduplication attacks in the browser [2,
6,10] assume a page size of 4 kB. While this was common when the attacks
were published, new (micro-)architectures, such as the Apple M1, have different
default page sizes, such as 16kB. Assuming a page size that is too small breaks
the attack. Hence, our page-size benchmark reenables this attack on the M1.
Similarly, some attacks rely on initial assumptions about the microarchitecture,
e.g., the page size [36,43], the cache associativity and cache size for cache eviction
sets [42], the L1 associativity for evicting L1 sets [39], or the number of CPU
cores when optimizing MDS attacks [28]. With our benchmarks, these values can
be inferred in the browser with a high accuracy, improving such attacks.

In addition to improving microarchitectural attacks, the information about
the CPU can be used for browser fingerprints. The advantage over software
properties is the long-term stability of hardware fingerprints, as users do not
upgrade hardware that often. While the CPU as single property is not very
unique, it can help linking less stable fingerprints [41]. Moreover, as there is
no dependency on a specific browser API, our CPU fingerprints are difficult to
mitigate without impacting the usability of websites (cf. Sect. 5.3).

We believe that our benchmarks also translate to newly released CPU models,
as long as their respective features fall within the addressed ranges. Otherwise the
ranges of our benchmarks would have to be adjusted and our respective property
classifiers would have to be retrained. The model may have to be included in the
training of the vendor and microarchitecture classifiers. In addition, the model
must be included in the training for the model classification.

5.2 Limitations

Data Set. The data set used for our evaluation is fairly small as we could not
rely on any existing data set. Especially the number of samples per class is low
for the model classification. The same problem also affects property classifiers
with dominating classes. Since the data was collected using a study involving
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the manual reporting of the CPU model, we cannot guarantee the correctness
of all reported CPU models. In some cases, the labels used for our algorithms
might contain wrong information. This is due to the fact that this large data
set containing almost 300 different CPU models was collected manually using
information from cpu-world4 and the official vendor information.

Runtime Influences. While different browsers use different JavaScript engines,
we do not see a significant negative impact of that in our results. Even though
Chrome provides timestamps with a lower resolution than Firefox, the bench-
marks work well in both browsers. We cannot enforce a low system usage, such
that some data might be very noisy due to demanding background tasks. Simi-
larly, running the benchmarks on a mobile device running on battery interferes
with power-saving mechanisms. Furthermore, we do not consider non-default
CPU settings, such as deactivation of features (e.g., HTT), manual overclocking,
and undervolting. Lastly, we do not perform any hyperparameter optimization
of our classification algorithms and instead mostly use default parameter values.
We leave this optimization to future work.

5.3 Mitigations

As our benchmarks only measure timing effects of microarchitectural elements
and the performance of the CPU, it is difficult to mitigate them fully.

Disabling JavaScript. The simplest solution to stop attacks involving client-side
scripts is to disable the execution of all scripts. While this approach completely
mitigates all of our benchmarks, it also disrupts benign functionality using scripts
and thus is often not an option. Moreover, recent work [38] shows that limited
microarchitectural attacks are possible without code execution.

Disabling Features. Our benchmarks rely on shared memory and high-resolution
timers. Disabling these features does, in fact, mitigate our current implementa-
tion. The benchmarks used by our classification algorithms, however, do not nec-
essarily require these features. By aggregating timing differences instead of mea-
suring single event timings, everything can be implemented using the timers with
reduced precision. Some benchmarks profiling multi-threaded scenarios require
the Web Worker API. Disabling this feature would fully mitigate the core bench-
mark and associated classifications.

Adding Randomness. Another possible mitigation is to add random noise to
the JavaScript engine (e.g., random memory prefetches, instruction reordering,
low-resolution timer) [17,34]. This does, however, not fully mitigate benchmarks
but only adds noise, resulting in worse classification results. We observe that
our benchmarks are largely unaffected by a slower SharedArrayBuffer, buffer
ASLR, array preloading, and message delay.

4 https://www.cpu-world.com/index.html.

https://www.cpu-world.com/index.html
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Detection. Another countermeasure is to detect the benchmarks on the system
or the browser level using, e.g., performance counters [13,25,44]. Future work
has to evaluate if these approaches can be used to detect browser-based attacks.

6 Conclusion

We presented 6 JavaScript and WebAssembly benchmarks with a total median
runtime of just over 2min designed to reveal different CPU properties. The
individual benchmarks allow determining their respective target properties with
high accuracies of up to 100%. As a result, microarchitectural attacks from the
browser can be better tailored to the specific CPU. Moreover, the results of
these benchmarks can be combined to accurately infer the vendor of a CPU, the
microarchitecture, or the CPU model. Our benchmarks allow the identification
of the vendor of a CPU with accuracies above 97%. Moreover, current browser
mitigations do not prevent our benchmarks. Hence, this information can also
improve state-of-the-art browser fingerprinting techniques.
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Abstract. Unwanted automation of network services by web robots
(bots) increases the operation costs, and affects the satisfaction of human
users, e.g., in online games or social media. Bots impact the revenue of
service providers and can damage society by spreading false information.
While few bots are usually not a problem, a large number is. Thus, we
focus on bots that directly use a service’s application protocol, as they
are the most efficient and easiest to scale. Current solutions such as reg-
istration with personal data or CAPTCHAs are frustrating for users or
can be easily evaded. Anti-reverse engineering and solutions for digital
rights management that impede bot creation, e.g., unique client specific
API keys, are only effective for the first bot. In this paper, we introduce a
novel obfuscation approach that we call polymorphic protocols and that
is inspired by polymorphic malware and methods to bypass censorship
resistance. When using polymorphic protocols, each client of a service has
an own application protocol, so that the costs of duplicating bots for an
attacker significantly increases. For every bot that an attacker wants to
create, he has to extract and reimplement a protocol from a valid client.
We integrate our approach into an existing ecosystem and implement it
exemplarily for Protobuf and Java. Our results indicate that the over-
head for service providers and users is low, depending on the deployment
and chosen protocol configuration. At the same time, our polymorphic
protocols significantly increase the attacker costs to create multiple bots,
when limited to conventional reverse engineering techniques only.

1 Introduction

The automated use of Internet services is an essential building block of the
Internet and the web. Many services depend on each other. Examples are the
embedding of a weather feed into a web page or a service that provides a price
comparison by automatically querying different marketplaces. Many services pro-
vide specific interfaces for other services to allow the automation of their usage.
However, there are also services without such interfaces that are intended for
humans only. Automated use of a service by a program, hereafter called a bot,
can affect the satisfaction of human users and can cause financial or social dam-
age. For example, the automated use of social media can be used to spread
opinions and false information, which can even influence elections [7].
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
V. Atluri et al. (Eds.): ESORICS 2022, LNCS 13556, pp. 106–124, 2022.
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Automation of a service can be done in different ways [3]. The most effi-
cient approach is to automate API of the service. Using the API directly only
requires a script. By simply executing the script multiple times, it is possible to
create a large number of bots, e.g., to influence voting opinions on social media
through nationwide spamming [7]. This puts service providers in a dilemma. A
service needs to be easy and quick to use, as complicated requirements, e.g.,
for registration scare users away [14]. But registration without requiring limited
resources such as phone numbers or passports makes it easier to create a bot
army. The main problem is that automation can be made harder for attackers,
but not completely prevented as human users must still be able to use the service
without too much friction.

The threat model of this paper is as follows: The focus lies on services with
a state tied to an entity, e.g., game progress or social media likes bound to
an account. These services in particular suffer from bots, as there is a gain in
running multiple bots. For example, it can be beneficial to use hundreds of bots
to control hundreds of social media accounts. However, there is no gain in using
hundreds of bots to query the static content of some blog or news portal. The
attacker is not limited to a subset of reverse engineering techniques, but limited
to using the application protocol to create bots.

In many cases, CAPTCHAs are the first and last defence against bots. How-
ever, they introduce user friction and are losing effectiveness as machine learn-
ing advances [2,24]. Other approaches use anti-reverse engineering techniques
to oppose Man-At-The-End (MATE) attackers [1], that have access to a client
application on a controlled device. Those approaches aim at making the extrac-
tion and use of the application protocol more difficult, e.g., embedding (unique)
API keys in the client application or using obfuscation and anti-reverse engineer-
ing techniques [12,23]. Most of these techniques only make it difficult to create
the first bot. Once a bot is created, it can be scaled again. But this is what
makes API bots so threatening: the ability to quickly and inexpensively spawn
large numbers of bots. Because this approach can be really harmful, this paper
focuses on how such automation can be restricted.

The main contribution of this paper is an approach to combat the cost-
efficient duplication of bots, which can be applied with low performance and
organizational overhead. In more detail, we make the following contributions:

– We propose a method, to increase the cost of duplicating bots by assigning
each client of the same service its own application protocol. We call this Poly-
morphic Protocols (PPs). While there are already many strong obfuscation
techniques for binaries (Tigress, Thermida) [10,27] and protocol obfuscation
techniques in the censorship resistance realm [11,21], we are the first to our
knowledge to use obfuscation of application protocols against bots.

– We implement the approach for the widely used protocol language protobuf
and the programming language Java1. It is easily applied to existing protocols
and just requires the existing protobuf file as input. Everything else is gener-

1 Avaiable open source at https://github.com/UHH-ISS/polymorphic-protocols.

https://github.com/UHH-ISS/polymorphic-protocols
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ated automatically so that it can even be used in a CI/CD pipeline without
the need for a developer.

– We evaluate the technical performance overhead of the approach. We also
discuss the organizational overhead for developers and the additional effort
for attackers to duplicate bots.

Note that polymorphic protocols are an obfuscation technique to make the
scaling of bots more difficult and not to prevent the creation of bots. The app-
roach gains from being used along-side existing anti-reverse engineering mecha-
nisms that impede code extraction (slicing), e.g., anti symbolic execution, virtu-
alization, or just in time compilation [4,10]. Legitimate bots and interoperability
across different services is still possible, e.g., by providing special API keys after
thorough verification.

The rest of the paper is structured as follows. Section 2 discusses other
approaches that make it harder to create bots. Section 3 explains how polymor-
phic protocols can be created and applied. Section 4 describes the implementa-
tion, evaluates and discusses the results. Finally, Sect. 5 concludes the paper.

2 Related Work

Regarding fighting bots there are mainly three different classes of approaches.
Proofs of being human, detecting unusual behavior and anti-analysis.

Proofs of Being Human. The main technique to identify humans are
CAPTCHAs [19,20], but also personal information often requested during the
registration. Such information could be, from easy to harder to provide, email
address, phone number, an image of the user holding an identity card. While
requiring an identity card for registration would likely solve the problem of
unwanted automation, it is a hard and privacy-unfriendly requirement. Related
techniques try to detect human presence through hardware interaction. As an
example, Not-a-Bot [13] uses TPMs to add a tag to each network request sent
some time before a mouse or keyboard interaction.

Detecting Unusual Behaviour. These approaches try to detect bots so that
countermeasures can be taken. Well known CAPTCHA providers like [19,20] use
these approaches to reduce the disturbance for human users. Unfortunately, the
machine learning models are not public. A major criticism is that users then have
to send their data (browser fingerprinting [8]) and behaviour (mouse movement,
website traversal [19]) to third parties to assess whether or not a bot is present.
Another problem arises when a user cannot be classified as a human or a bot.
Then again approaches of the class proofs of being human like CAPTCHAs are
needed which have their own weaknesses [2,24].



Polymorphic Protocols at the Example of Mitigating Web Bots 109

Anti-Analysis Against MATE Attackers. Approaches in this class try to
increase the cost of creating bots. It includes anti-reverse engineering and obfus-
cation techniques, e.g., detecting whether a debugger is attached, binary packing
or even dummy code [12,23]. For network services, a common anti-analysis tech-
nique is to authenticate the used application protocol using API keys prior to
the use of TLS2. To automate a service that uses this technique, the application
protocol and the relevant keys need to be extracted [15,16]. The keys themselves
can also be protected by anti-reverse engineering techniques.

Tigress [10], VMProtect [25] and Themida [27] are examples for advanced
software protection systems. They are applied to the source code of an applica-
tion and create a protected executable, using different anti-reverse engineering
and obfuscation techniques. However, even those advanced protection systems
do not obfuscate the protocol. If someone can reverse engineer the protocol,
despite the used protection system, the bot can again be scaled very easily. The
main problem of anti-reverse engineering is that it is difficult to quantify how
effective a technique is against an arbitrary attacker [1,4,26]. When a device is
fully controlled by an attacker, all techniques can only increase the cost for an
attacker to reverse engineer an application, but they cannot prevent it.

Polymorphic protocols are an obfuscation approach and thus related to pro-
tocol obfuscation techniques. Most of the approaches mentioned in the literature
are in the area of censorship resistance [11,21]. The objective is to bypass cen-
sorship and traffic inspection by cloaking specific traffic as usual traffic. Thus,
censored services can be accessed despite lacking encryption and techniques like
deep-packet inspection. All those approaches have the main focus on cloaking
traffic and consider performance and ease of use in other applications in the
second place. Also, they assume a different attacker, namely an attacker that
has only access to the traffic. Thus existing approaches cannot be directly used
as PP to combat bots.

3 Polymorphic Protocols

The core idea of limiting the cost-efficient duplication of API bots are polymor-
phic protocols. Every client for a service communicates with the service via its
own application protocol. This protocol can be seen as an identifier to distinguish
between clients. When a bot is simply duplicated, all duplicates would share the
same protocol. This way duplicates can be detected and excluded from further
communication with the service. This effectively increases the cost to create mul-
tiple different bots. To create an API bot army, bot creators can either manually
reverse engineer the application protocol from a different client for each bot that
is created which is laborious. Or they can find a way to automate the reverse
engineering and bot creation, but this is difficult on a technical level [18,22]. In
contrast, API keys can be much easier extracted, e.g., using function hooks, and
do not force the bot creators to modify their code for each new bot.
2 https://github.com/see-aestas/SINoALICE-API

https://github.com/see-aestas/JodelApi.

https://github.com/see-aestas/SINoALICE-API
https://github.com/see-aestas/JodelApi
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3.1 Basic Approach

An overview of the basic approach is given by Fig. 1. The protocol specification is
the base protocol, used by the service. It specifies the format of messages as well
as semantic information, e.g., if a message is time-critical or the dependencies
between messages (order of transmission). The client identifier is an identifier
for a client. Each client has a different identifier. Since our approach focuses
on services that hold a state over a client (cf. Section 1) this is already given,
because the service needs some way to match some state to a client. The secret
seed is exactly what it is named after.

Protocol generator
Secret seed

Client identifier

Protocol specification
Custom protocol

Public

Private

Can be public or private

Fig. 1. Polymorphic Protocol Generation Overview

The protocol generator gets the protocol specification and the client identifier
as well as the secret seed as an input. It outputs a new custom protocol that is
different from the base protocol but keeps all mandatory semantic dependencies.
Message formats, orders, encodings and other features are (pseudo)randomized
transformed. There are three main classes of so-called transformations. Figure 2
shows these as well as some example sub-classes.

Permutations Encodings Additions

Radix
Field

permutation Encryption Dummy
bytes

Field
hashing

Fig. 2. Possible transformation classes

The classes are: Permutations that are length-preserving and permute mes-
sage content, encodings that modify (parts of) a message, and additions that add
more information to a message. These so-called transformation classes are a col-
lection of different transformations under one label. This abstraction is needed to
compare the performance of different transformations. A class can also contain
sub-classes. For example, the class dummy bytes includes all transformations
that append some extra bytes to a message. The class field hashing includes all
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transformations that hash all fields and then append the hash to the message.
This class is a subclass of dummy bytes as a hash can be considered as a special
way to generate dummy bytes. Here it is important to note that the transfor-
mations should ideally be hard to understand during reverse engineering. For
example, a custom hash function to append bytes is harder to reverse engineer
than directly appending some bytes to a message. Other transformations shown
here are the field permutation where the order of data fields of a message is
permuted, radix encoding where a message is encoded to some other base and
encryption where a message is encrypted using some cipher. A developer can
always add more classes. The transformations are used to deterministically gen-
erate a custom protocol. The custom protocol is later integrated into the client
application. Each client has its own client identifier and thus custom protocol
to communicate with the same service. Only the secret seed must be private. Its
function is to prevent an adversary to generate valid custom protocols using the
protocol generator for a service that uses an unknown, secret seed.

3.2 Formal Model

A protocol P is defined as a set of message format specifications F and their
semantics S: P = {F, S}, F = {f1, f2, ..., fn} where f is a format specifica-
tion for some protocol message, e.g., f = {field1:int, field2:string-base64, ...,
fieldx:Object}. A generator G deterministically generates a new, custom pro-
tocol based on the base protocol P , client ID and the secret seed as inputs.
G(P, client, seed) �→ P ′. The generator relies on transformations of message for-
mat specifications Tx(N,S) �→ N ′, with N ⊆ F where x denotes a transforma-
tion class. Note that multiple message format specifications can be transformed
together. A transformation class is the assignment of different transformations
to a more generic class (cf. Figure 2). N ′ are then the new custom message
format specifications and the actual transformations that operate on the real
messages. For simplicity, Tx(m) �→ m′, where m is some actual message from
the set of all valid protocol messages M , is used for transformations on the mes-
sages. Transformations can be applied on single message format specifications
or across multiple ones, respecting their dependencies and can also be chained.

Transformations are required to be easily computable and unambiguous
invertible, as an encoded message must be easily decoded. Transformation classes
are used to compare the performance across different schemes of transformations.
In this context, we are mainly assessing the impact on the resulting protocol.
Assume a developer builds the transformation class Tx. Now one would like
to estimate the effects on a protocol beforehand. How much additional data
is transmitted using the resulting protocol on average (ΔTx)? How expensive is
the calculation for the client and server? How different are the protocol messages
(∅Tx)? The calculation of the metrics is described in the following.

The difference between two transformations is denoted to as |Txi(N,S) −
Txj(N,S)| and |Tx| to the number of transformation in a transformation class.
The difference between two transformations is calculated using the normalized
compression distance (NCD) [17]. The metrics can be calculated numerically.
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Let D1x be a set of uniform random sampled indices of transformations from
a transformation class x. Let D2x be a a set of pairs (i, j) where i �= j and
�(i′, j′) ∈ D2x | i = j′ ∧ j = i′. The indices i, j are uniform random sampled
indices of transformations from a transformation class x. Let Ms ⊆ M , e.g.,
uniform random sampled.

The average distance Δ of transformed protocol messages of Tx. A low value
indicates that a valid message might be easy to guess for an attacker.

ΔTx =
∑

m∈Ms

∑

(i,j)∈D2x

|Txi(m) − Txj(m)|
|Ms| ∗ |D2x| (1)

The average compressed message length difference ∅ between original and
message transformed by Tx.

∅Tx =
∑

m∈Ms

∑

i∈D1x

|C(Txi(m)) − C(m)|
|Ms| ∗ |D1x| (2)

The uniqueness of transformations in a transformation class δ. Uniqueness
is closely related to collisions. A collision is when two different transformations
of the same transformation class transform a message into the same new mes-
sage. A low value indicates that an attacker might be able to successfully replay
monitored messages.

δTx =
|X|

|D1x| ∗ |Ms| ,X = {Txi(m) | i ∈ D1x | m ∈ Ms} (3)

3.3 Transforming Protocols

Unconditional Protocol Transformations. Unconditional transformations
include every transformation that can be done without knowing the semantic S
of messages. Those transformations do not require knowledge of the protocol.

Permutation : The protocol message is permuted.
Dummy bytes : The protocol message is appended with random bytes.
Hash : A hash is appended to the protocol message (SHA1 or SHA256 or MD5)
Radix : The protocol message is converted to another random base (2–255).

Especially using cryptographic routines as part of creating the protocol hard-
ens this approach against input reverse engineering approaches for encrypted
protocols like [28] since there is no clear boundary where the protocol message
is constructed and where it is encrypted.

Conditional Protocol Transformations. For transformations in this class,
semantic information about the protocol must be available. This requires a for-
mal protocol specification which should also contain semantic information. A
distinction needs to be made between transformations that are applied to a
single message (S) and those that are applied to multiple messages (M).
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Delay : Delay a non-critical message (S).
Swap : Swap the sequence of messages (M).
Split : Split messages (S).
Merge : Merge messages (M).
Custom logic : Process messages already in some way on client side, e.g.,

calculation of certain data (SM).

Transformations on multiple messages are more difficult to use and main-
tain for a developer as they may introduce side effects. In addition, semantic
changes in an application must be correctly transferred to the protocol. Thus,
conditional transformations are considered less safe than unconditional trans-
formations. The possible conditional transformations depend on the application
and the semantics of messages. While some transformations make it harder to
recover the protocol, e.g., Swap and all unconditional transformations, others
make it difficult to associate actions with sent network messages, e.g., the delay
transformation.

Randomizing Protocols. The next step is to select transformations for a
custom protocol and chain them together. For each message format specification
in a protocol, first possible conditional and then unconditional transformations
are selected. In the end, multiple transformations are applied to each format
specification. How many is up to the developer and also depends on the format
specification and semantics.

Algorithm 1: Selecting transformations
input: P - the base protocol P = {F, S}
input: prg - PRG initialized using client ID and secret seed
input: Tc - set of conditional transformations
input: Tu - set of unconditional transformations
Result: P ′ transformed custom protocol

1 F ′ = {}, S′ = S ;
2 for f ∈ F do
3 T ′

c, T
′
u = getAllowedTransformations(Tc, Tu, f, S’ );

4 tc, tu = prg.choice(T ′
c, T

′
u) ;

5 f ′ = tc(f) // conditional transformation
6 F ′.add(tu(f’)) // unconditional transformation
7 S′.add(f, tc) // necessary for transforming multiple f

8 P ′ = {F ′, S′}

One possibility is to use a pseudo-random generator to select transforma-
tions, as displayed in Algorithm 1. The basic idea is that for each message format
specification f ∈ F a random, allowed unconditional and conditional transfor-
mation is applied. If no transformation is allowed, f is not transformed. If a
transformation of Tc is a transformation for multiple messages (multiple f), the
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transformation is applied to all of them. This can be handled using the semantics
and identifying the allowed transformations in Line 3 and 7. How the allowed
transformations are selected depends on how the semantics are implemented.
One possibility to assign semantics via annotations of message format specifica-
tions (@delay, @not[Tx, Ty, ...]). The implementation and which semantics have
to be modeled depends heavily on the application.

While it is possible to use the algorithm without assigning semantics to for-
mat specifications, it can cost performance. For example, for video streaming
or downloading files, a relative increase of the transmitted data might not be
desired. This can be addressed by excluding transformations that increase the
data length, or by excluding this message completely from any transformation.

3.4 Using Polymorphic Protocols

Our approach enables the generation of custom protocols. How this is used is up
to the service.

Deployment Strategies. We highlight two deployments.

Full-Polymorphic. Each client has a different custom protocol.
Time-Polymorphic. Each client has the same custom protocol, the protocol

is changed after a certain time.
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Fig. 3. Overview of possible polymorphic protocol communication usage

While the approach in this paper tries to keep the complexity, performance
loss, developer and user friction as low as possible, they still exist (Sect. 4). Thus,
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PPs are best used for applications that are already heavily affected by bots, e,g,
social networks or games and resource-intensive to emulate (mobile or desktop
applications). Figure 3 shows how dynamically instantiating and using a PP,
e.g., for Full-Polymorphic deployment, could be implemented. The client starts
with the capabilities to request a custom protocol. It sends its client ID to the
protocol generator. The protocol generator generates a custom protocol, registers
it at the ingress server and sends it to the client. Depending on the use case the
custom protocol is sent back as a standalone binary or a binary fused with the
main application. When the client wants to communicate with the server it first
sends a custom protocol hello. The custom protocol is looked up at the ingress,
server and instantiated. When a client receives the message that the protocol
is found and instantiated it can begin sending custom protocol messages to the
ingress. The ingress acts as a proxy and translates the custom protocol messages
back to protocol messages that can be understood by the service. Note that the
procedure in Fig. 3 is meant as an example and there are many more ways to
use and deploy PPs.

Reducing Deployment Costs. Polymorphic protocols do not necessarily have to
be dynamically loaded by the client and not every client must use a custom
protocol by default. A practical approach for mobile applications is to use PP
only on clients that are running on rooted devices or emulators. Devices running
unmodified systems must pass an integrity check, e.g., play integrity3 and share
one custom protocol. This check also ensures that a bot cannot simply use the
base protocol as it would need to pass those integrity checks. It is also possible
to assign a new protocol to a client after a certain time or number of protocol
messages. Another strategy is to give a set of devices the same custom protocol,
e.g., based on region, OS, IP address, update version or time. It can also be
coupled with bot detection systems, to control the protocol change cycle for
users. Slow for legitimate users, and fast for abusive users. Thus, the cost of
using a custom protocol can be reduced, as well as the user friction, as legitimate
users have fewer forced updates due to protocol changes.

4 Evaluation

In this section we are summarizing the evaluation results of our approach. For
that, we have evaluated the costs for service providers to use the approach and
the effort for attackers that want to build multiple bots for services protected
by a polymorphic protocol. We answer the following research questions:

RQ1 : What is the overhead of different transformations?
RQ2 : How does the approach compare to using unique and client-specific API

keys to hinder an attacker to create multiple bots for a service?
RQ3 : What is the technical and organizational overhead for a service that wants

to use polymorphic protocols?
3 https://developer.android.com/google/play/integrity/overview.

https://developer.android.com/google/play/integrity/overview
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4.1 Implementation

Our objective is to minimize the effort of using our approach. Instead of cre-
ating our own (unrestricted) protocol description language, we integrate it into
an existing ecosystem. For this, we have chosen to use Google protobuf as the
description language and extended their Java bindings to be compatible with
our approach. Porting the implementation to other programming or protocol
languages is possible. Currently, the implementation is not feature complete to
protobuf v3 4. We support the basic features, i.e., messages, all primitive (scalar)
data types, and nesting (inheritance). Other features may work, but are not
fully tested. Thus, if some service already uses protobuf and Java, creating a
polymorphic protocol is effortless (cf. Appendix A).

As there is support for protobuf and java on all major systems, our app-
roach can be used on all these systems without adjustments. Our implementa-
tion(See footnote 1) only needs the proto file (protocol specification) as input
and generates the new custom protocol, i.e., another proto file and necessary
code wrappers. The wrappers are used by both the client and the server. To
use the protocol, the generated wrapper files only need to be integrated into the
respective project by replacing the old files and setting the package name.

4.2 Performance Evaluation

Using PPs comes with a performance overhead, which we evaluate in this section.
We evaluate the transformation classes first individually and then in their com-
bination with our protocol implementation. Everything is run on a Windows 11
computer I7 7700K CPU with 16GB DDr4 2660Mhz RAM.

RQ1: Transformation Performance. The metrics (average distance between
two transformed protocol messages Δx, average compressed message length
increase in bytes ∅x , uniqueness of transformations δx) from Sect. 3.2 are used
to analyze the performance of the transformation classes. The number of dummy
bytes is limited to four and the radix transformation to the bases 2–255. Further-
more, we also measure the time for doing the transformation. Transformations
are applied directly to bytes. To not assume some specific protocol, we sample
100,000 protocol messages as random bytes with the length derived from a nor-
mal distribution N (100, 25). Each sampled message is transformed up to 1,000
times per transformation class.

The results (Table 1) indicate that not every transformation class is the same
and classes must be selected according to use cases. The permutation transforma-
tion does not increase the message length (by definition). Dummy bytes affect the
message length but are way faster to calculate. The hash transformation affects
the message length but is also fast to calculate. Since it is also about forcing
an attacker to invest as much work as possible to extract the different transfor-
mations, efficient but complex transformations are wanted. While an evaluation
4 https://developers.google.com/protocol-buffers/docs/proto3.

https://developers.google.com/protocol-buffers/docs/proto3
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of transformation classes gives some insight into the performance, it does not
assess the performance and usage of the classes in a system.

Table 1. Transformation class properties

Transformation class Δx ∅x δx Time

Permutation of message bytes 0.924 0 1 413.23 (s per 1 mil)
Dummy bytes (4) 0.086 4 1 1.07 (s per 1 mil)
Hash 0.261 26.6 1 2.91 (s per 1 mil)
Radix (2–255) 0.88 12.89 1 160.85 (s per 1 mil)

RQ3: Protocol Performance. While RQ1 evaluates the individual perfor-
mance of single transformations this does not allow to assess the performance
of the complete protocol. The performance, namely processing time, additional
program size, build time and resource utilization, is compared to the base pro-
tocol. Four different protocols are considered. The notation Pmessages,fields, e.g.,
P10,15 is a protocol with 10 different messages, each message has 15 fields. In the
following P denotes the base protocol and G(P ) the transformed protocol gen-
erated from P . There are a total of 15 different (scalar) value types in protobuf.
For our evaluation we use all types equally often within one message. Thus, each
message always contains a multiple of 15 fields.

Build Overhead. Table 2 shows the results of the build overhead. A build includes
the transformation of the protocol, the creation of wrapper classes, and the
compilation of the (new) protocol using the protobuf compiler.

Table 2. Mean program build properties: Difference of polymorphic compared to the
original protocol in percent (N=100)

G(P1,15) G(P100,15) G(P1,150) G(P100,150)

Build time +3% +72% +9% +128%
Memory -14% +18% +33% +94%
Protocol size +138% +144% +202% +295%

For PP, the size of the necessary wrapper classes is included in the protocol
size. As expected the build time for the PP is higher than for the base protocol.
However, the number of protocol messages seems to have a higher impact on the
build time and protocol size for PP than the number of fields. The protocol size
can be explained by the fact that for each message a separate additional java
wrapper is created for the transformations. This also affects the build time.
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The peak memory utilization is harder to interpret as it is mostly dependent
on the protobuf compiler. The more and the larger the messages are, the more
memory is needed to create the protocol. That the build process for G(P1,15)
uses less memory than for P1,15 could be confirmed by multiple measurements.
A reason for this could not be found.

Client and Server Performance. Table 3 shows the performance overhead of
using PP. Note that this is the overhead while processing messages. Thus, han-
dling multiple messages sequentially does not multiply the load. A division in
client and server is not necessary as PP can be implemented as a proxy that
translates a list of protocol messages (cf. Sect. 3.4). The performance for handling
connections is then that of the chosen reverse proxy. We divide the performance
in sending and receiving messages. In doing so performance assessments are pos-
sible for servers that primarily receive or send more data. Send Time includes
setting each field and serializing the message, Receive Time includes deserializing
and accessing all fields. Time on the wire is not measured. The data size is the
size of the serialized message. We choose random values for fixed-length fields
and 100 random bytes for dynamic fields, e.g., strings. We only consider single
messages since the time for multiple messages can be upscaled. We also do not
include dummy fields, as they just increase the message size to the set value.

Table 3. Mean protocol performance without dummy fields. Difference of polymorphic
protocol compared to the original protocol in percent (N =100)

G(P1,15) G(P1,75) G(P1,150) G(P1,225)

Send time +118% +79% +117% +180%
Send memory +130% +178% +150% +187%
Send CPU load +85% +71% +83% +66%
Receive time +41% +98% +116% +125%
Receive memory +46% +12% +31% +85%
Receive CPU load +85% +71% +83% +66%
Data size +23% +19% +24% +27%

The results show that PP are 2.09 times slower (around 1.5 ms) than the
base protocol and cause approx 76% more CPU and 102% more memory load
(average of send and receive performance). Thus, a service needs to spend approx
two times more resources to handle the same amount of clients. This can be
improved using optimizations described in Sect. 3.4.

The reason for this is that access to a field of a PP passes through two
wrapper classes. First, the wrapper created by our implementation is called,
which performs the transformation and additionally calls the wrapper created
by protobuf. For the base protocol, the wrapper created by protobuf is directly
used. Even though the PP are two times slower, this is in the area of single
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milliseconds and should be negligible for non real-time applications. When using
PP around 1.2 times more data is used. Note that certain messages or fields, e.g.,
real-time messages or large byte arrays that are used to stream video data, can
be excluded from being transformed, thus saving data and computation time.

4.3 Security Discussion

This section discusses the additional cost of an attacker against polymorphic
protocols as well as the organizational effort for service providers to use them.

RQ2: Attacker Cost. Estimating the costs for an arbitrary Man-At-The-End
attacker is difficult and cannot be calculated accurately [1,26]. Many existing
techniques that assess how much an obfuscation costs an attacker [4,5] cannot
be applied to our scenario because they are targeted to a specific subset of
reverse engineering techniques. In contrast, our approach is about increasing the
cost of duplicating bots for an attacker and not targeted against any particular
reverse engineering technique. Testing our approach against automated protocol
reverse engineering approaches was also not possible, as many approaches focus
on unencrypted protocols [28] and only a few implementations are available5.

To estimate the effort required by an attacker, we compare our approach to
the method currently used in practice, i.e., using API keys to encrypt and authen-
ticate protocols. We consider the Full-Polymorphic and Time-Polymorphic
deployment described in Sect. 3.4 as well as two different attackers.

Restricted-MATE. Normal Man-At-The-End [1] attacker who has access to
the binary. The attacker is restricted and cannot automatically extract API
keys or the custom protocols (R-MATE).

Unrestricted-MATE. MATE attacker, without any restriction and limitation
of reverse engineering techniques (U-MATE).

The attacker wants to setup multiple bots for the service. The U-MATE
attacker loses when it needs to put in manual work, as this already impedes the
creation of a bot army. We divide the bot creation into the reverse engineering
and bot writing phases.

R-MATE. This attacker is probably most common since automatic extraction of
data (API keys) and code (polymorphic protocol) is difficult on an engineering
level, especially for encrypted protocols [18,22,28].

Using the Time-Polymorphic deployment the attacker needs to extract the
protocol or API key within the period. After that, the bot has to be written
within this period. Then the bot can be effectively duplicated and the attacker
can exploit the service. After some time the attacker must repeat all the steps.
Since the custom API key does not change the protocol, the attacker only has
to replace the key in the existing bot program. Using a PP, the entire protocol
5 https://github.com/techge/PRE-list.

https://github.com/techge/PRE-list
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of the bot needs to be replaced and all new transformations implemented. This
indicates that the development time for PP is larger than for API keys. The
argumentation for the Full-Polymorphic deployment strategy is analogues. Thus
for this limited attacker PP increase the cost of duplicating bots. The analysis
of the next attacker argues that since PP can include variable API keys, PP are
at least as hard to extract as API keys alone.

U-MATE. This attacker needs to automatically extract protocols from a given
binary. Whether this extraction happens for each update (Time-Polymorphic)
or multiple client binaries (Full-Polymorphic) does not matter. Thus, the two
deployment strategies are equivalent for the attacker. This results in comparison
on how much effort it takes to automatically extract an API key and how much
effort it takes to extract the communication protocol. A PP can also contain
encryption transformations and cryptographic keys. These keys can be hidden
and protected just like the API keys. Thus, the extraction of API keys can be
seen as a sub-problem of extracting a communication protocol and requires at
least as much effort as extracting API keys only.

The most effective attacks on PP are code reuse and slicing techniques, where
certain parts of a binary are reused or extracted, e.g., the communication pro-
tocol. The challenge here is to isolate and extract minimal and executable code
responsible for transforming network messages. In the simplest case, the attacker
just executes the whole application and uses dynamic binary instrumentation
techniques, e.g., code injection and hooks [6], to directly call the desired func-
tions. However, running the whole application is very resource-intensive and thus
not suitable for creating a large number of bots. Extracting minimal and exe-
cutable code is still an open research field and not completely reliable [9,26].
Note that defending against code reuse and slicing attacks is out of scope for our
approach. There is a lot of research [4,9] in this regard, including commercial
[25,27] and public tools [10], especially in the areas of digital rights management
and anti-reverse engineering. Those countermeasurements, e.g., function virtu-
alisation and just in time compiling, can be used together with our approach.

By using these techniques to hinder the attacker from using automated
techniques and tools, the attacker remains with the capabilities of the R-Mate
attacker and the approach can increase the effort to create a bot army. This
shows that PPs slow down an attacker more than API keys.

RQ3: Organisational Cost. The appropriate deployment depends heavily on
the needed security. Furthermore, optimizations discussed in Sect. 3.4 should be
used to decrease the operational and organizational cost.

Full-Polymorphic. In this setting, the remote backend must provide a matching
endpoint for each custom protocol. A simple but resource-intensive way is to
keep them up all in parallel. Another option is to spin endpoints up dynamically,
however this requires development effort (cf. Fig. 3). Due to the dynamic nature
of custom protocols they cannot be served as a static file from CDNs, e.g.,
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from the AppStore or PlayStore. A solution is to create a base application that
dynamically loads and integrates protocols. This base application can be served
again from CDNs (cf. Sect. 3.4). While the protocol is then dynamically loaded,
a large part of the application, i.e., all static assets like models, images, and
videos can still be served from CDNs.

Time-Polymorphic. This deployment strategy introduces almost no organiza-
tional cost. CDNs can be used as usual and only one endpoint needs to be pro-
vided. On the downside, the approach allows an attacker to create a bot army
for a certain time (cf. Sect. 4.3). Different to the Full-Polymorphic deployment,
this approach burdens the user by requiring regular updates. This burden can
be reduced by using approaches from Sect. 3.4.

The results show that the costs for a defender are not large but not
marginal either. For consumer devices and applications that exchange only a
few and rather small messages, the technical overhead should be well manage-
able. Especially since time critical messages or messages that transmit large
amounts of data do not have to be transformed. The organizational effort for
Time-Polymorphic deployments is minimal but impedes an attacker less (cf.
Section 4.3). For Full-Polymorphic deployments, however, there is some organi-
zational effort involved. This mode is more suitable for applications that suffer
heavily from bots, otherwise, it does not justify the effort.

4.4 Limitations

First, while PPs make it harder to create bots for a service in comparison to
API keys, it is not accurately determined how much harder it is for an arbi-
trary attacker. This is something the approach shares with other obfuscation
techniques. Similar literature addresses this by limiting attackers to subsets of
techniques, e.g., only static analysis. These attacker models however do not fit
our objective. Determining the hardness could be approached in an empirical
study, but would require access to a lot of reverse engineers. This limitation is
compensated by the benefit that while the increased effort for an attacker cannot
be accurately determined, the overhead for using PPs in their simplest form is
low and can be easily be tested for a service. PPs are nonetheless an additional
overhead and should only be used for services that are already having problems
with bots.

Second, PPs are affected by slicing and code reuse approaches where an
attacker can use the existing code of a client to build a bot. Therefore, PPs
should be used together with anti-reverse engineering approaches that impede
slicing and code reuse, e.g., [9].

5 Conclusion

While previous work focused on making it harder to build a first bot, we present
an approach that fights the scaling of bots by forcing a bot creator to extract not
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just client API keys but the whole application protocol for each bot that is cre-
ated. We evaluate the resources needed to build and use polymorphic protocols.
Without optimization, polymorphic protocols transmit approx. 1.2 times more
data compared to the base protocol and are 2.09 times slower (around 1.5 ms).
Depending on the deployment the organizational effort required to integrate our
approach into existing services is low as it can be used as a drop-in replacement.
Considering MATE attackers polymorphic protocols introduce more cost for an
attacker compared to using API keys alone. In the future, we would like to inves-
tigate the extent to which polymorphic protocols make it harder for an attacker
to create bots, compared to API keys. This shall be evaluated as part of a CTF
or as a study.

A Generating a Custom Protocol

An example is given in the following. Consider a game with multiple messages.
All messages are defined in GameMessages.proto. One message is StatusInfor-
mation. A part of the message definition is shown in Listing 1.1.
message StatusInformation {

string name = 1;
int32 playerNumber = 2;
int32 plays = 3;
...

}

Listing 1.1. Untransformed protobuf excerpt

The protobuf file is then transformed by applying our implementation of
Algorithm 1. The result is another protobuf file, including some transformations
(Listing 1.2). The whole message is encrypted using AES with a random key.
Some message types have changed and some variables have been split into two
variables.
message StatusInformation { // Encrypted using AES

string plays_p1 = 1; /* before: int32 | p1 */
int32 playerNumber = 2; /* unmodified */
bytes name = 3; /* before: string */
bytes plays_p2 = 4; /* before: int32 | p2 */
...

}

Listing 1.2. Transformed protobuf excerpt

The normal protobuf compiler uses the transformed protobuf file GameMes-
sages.proto and generates methods to read, write and serialize the fields and
messages in a file called GameMessages.java. Our implementation automati-
cally adds classes that apply the transformations on top of the code generated
from the protobuf compiler. If the supported feature set of protobuf has already
been used previously the generated classes of our implementation are a drop-in
replacement. This process is the same for the client as well as for the server of
an application.
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Abstract. The W3C’s WebAuthn standard employs digital signatures
to offer phishing protection and unlinkability on the web using authen-
ticators which manage keys on behalf of users. This introduces chal-
lenges when the account owner wants to delegate certain rights to a
proxy user, such as to access their accounts or perform actions on their
behalf, as delegation must not undermine the decentralisation, unlink-
ability, and attestation properties provided by WebAuthn. We present
two approaches, called remote and direct delegation of WebAuthn cre-
dentials, maintaining the standard’s properties. Both approaches are
compatible with Yubico’s recent Asynchronous Remote Key Generation
(ARKG) primitive proposed for backing up credentials. For remote del-
egation, the account owner stores delegation credentials at the relying
party on behalf of proxies, whereas the direct variant uses a delegation-
by-warrant approach, through which the proxy receives delegation cre-
dentials from the account owner and presents them later to the rely-
ing party. To realise direct delegation we introduce Proxy Signature
with Unlinkable Warrants (PSUW), a new proxy signature scheme that
extends WebAuthn’s unlinkability property to proxy users and can be
constructed generically from ARKG. We provide an instantiation of the
primitive and analyse its performance, observing only a minor increase
of a few milliseconds in the signing and verification times for delegated
WebAuthn credentials based on the ARKG and PSUW primitives.

1 Introduction

With ever-growing reliance on web-based services, from online shopping and
banking to employee intranets and cloud storage, the need to keep accounts
secure is imperative. Developments in web-based authentication standards, such
as FIDO (Federated Online IDentity) Universal 2nd Factor (U2F) [41] and
WebAuthn [26] aim to reduce reliance on passwords and one-time passcodes
(OTPs), such as HOTP [29], TOTP [30], and insecure SMS variants [31], by
enabling the use of hardware and platform authenticators that manage asym-
metric and unlinkable signing keys on behalf of users.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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WebAuthn’s digital signatures and the use of independent signing keys offer
stronger security protection and unlinkability for web accounts, yet introduce
challenges when the account owner wishes to delegate certain rights to some
proxy user, such as to access their accounts or perform actions on their behalf,
possibly for a specific time period.

Interestingly, with traditional authentication methods such as passwords or
OTPs (which WebAuthn aims to replace) delegation can be performed rela-
tively easily, albeit not necessarily securely. For example, delegated access to an
account protected by a password can be performed by sharing the latter. How-
ever, delegation achieved by sharing passwords is susceptible to reused passwords
(see e.g. a study by Pearman et al. [34]), which may inadvertently give access
to other accounts, and can only be revoked by changing the account password—
which must be done manually. This requires greater trust into the proxy who
may change the account password without permission. Additionally, accounts
protected by multi-factor authentication (MFA), including using OTPs, may be
undermined by sharing OTP secrets or registering multiple something-you-own
factors (such as phone numbers) for proxies; also these must be separately and
often manually revoked by hand when the proxy’s access is to be revoked. For
discussion on related works in this area, which inform the design of our primitive
and scheme, see Sect. 5.

1.1 WebAuthn Properties, Delegation Challenges, and Näıve
approaches

Overview of WebAuthn and Its Properties. WebAuthn [26] is a web-based
application programming interface (API) that allows web servers, called Rely-
ing Parties (RPs), to communicate with conforming authenticators on a user’s
device—the host device. This communication is facilitated by a WebAuthn client
through its implementation of the WebAuthn standard—the RP calls functions
provided by the API. RPs may use this to employ asymmetric cryptography to
authenticate users on the web, with keying material stored on and managed by
the user’s authenticator. A recent analysis by Barbosa et al. [2] confirms the
authentication security of the WebAuthn protocol against active impersonation
attacks. In addition, the following properties are commonly associated with the
WebAuthn standard, and become important in the context of delegation.

Authenticators and clients. Authenticators may be software- or platform-based,
called embedded or bound (which are part of the host device), such as Windows
Hello, or a separate hardware token, called a roaming authenticator, for example
Yubico’s YubiKey. These authenticators interact with RPs via a client, such as
a web browser, which can communicate with software and hardware on the
user’s host device, unlike the sandboxed website. The Client-to-Authenticator
Protocol (CTAP) [14] allows roaming hardware tokens to communicate with a
client running on a host device, such as a user’s phone or computer, over some
transport such as Bluetooth, NFC, or USB.
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Registration and authentication. During registration, the authenticator receives
a random challenge from the RP. It requires the user to perform a gesture, for
example, to press an on-screen confirmation button, present a biometric factor, or
enter a passcode, in order to unlock the authenticator for use. The authenticator
then generates a private-public key pair unique to this registration, submitting
this challenge along with the new public key. Later, when authenticating, the
authenticator receives another challenge from the RP and signs it with the cor-
responding private key after the user performs the required gesture. Gestures
provide RPs with a check for either user presence (e.g., press to confirm) or veri-
fication (e.g., biometrics), depending on the what is offered by the authenticator.
These ceremonies are detailed in the standard [26, §§7.1,7.2].

Unlinkability. The unlinkability of registered public keys, required by WebAu-
thn, prevents users from being correlated across registrations since it cannot be
determined whether two keys were produced by the same authenticator. This
is achieved by registering a freshly-generated private-public key pair, giving a
unique key pair registered for each account. This property means that users
cannot be identified across RPs, unless they willingly reuse login names, e.g.,
usernames or email addresses.

Attestation. Authenticators may present RPs with certificates from vendors to
prove their make and model, and therefore security assurances, so that user
verification may be delegated to the authenticator. This means that verification
may be performed locally on the authenticator with RPs trusting these local
user verification methods. Attestation uses an attestation ID, AAGUID, shared
between authenticators of similar functionality, makes and model, so as to not
break unlinkability. Attestation statements may be verified using the certificate
chain and its AAGUID. Since attestation is given as a signature and certificate
chain over credentials emitted by an authenticator, credential attestation may be
undermined by sharing private keying material between authenticators. Barbosa
et al. [2] cover attestation as part of their analysis of WebAuthn and CTAP’s
authentication security.

Storage. Authenticators may generate fresh key pairs for each registration and
record the private key locally to ensure unlinkability. However, some authentica-
tors, such as resource-constrained roaming hardware tokens, may not record their
private keys locally. For example, by using additional credential data that may
be sent during registration, private keys may be stored with the RP, encrypted
under a symmetric key held by the authenticator. This means that private keys
are not recorded by the authenticator and are only learnt during the authenti-
cation process, where the authenticator receives these additional credential data
as part of its challenge.

Delegation-specific Challenges. Any approach for delegating WebAuthn cre-
dentials should preserve the unlinkability of WebAuthn credentials, not under-
mine its decentralised nature, and retain the ability to perform attestation. In
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addition, it is highly desirable that users be able revoke access for delegated cre-
dentials and set permissions which are understood and enforced by RPs. Finally,
proxies need not hold their own accounts at RPs for delegation. RPs must be
unable to link proxies to their delegators, even if the proxy already holds their
own account at the same RP. As delegation must preserve the unlinkability of
delegator’s original WebAuthn credentials across different accounts, delegated
credentials must not contain any information that would allow RPs to link a del-
egator’s accounts and, therefore, the unlinkability guarantees must be extended
to cover credentials of proxy users. In particular, delegated credentials must not
reveal any information that would allow RPs to identify the proxy user, who may
be in possession of delegated credentials to multiple accounts. This preserves the
unlinkability guarantee for delegators and extends it to proxies.

Given the decentralised nature of WebAuthn, where credentials are stored
directly with RPs and on user-owned devices, delegation solutions should not
require a third party, whose reliability and trustworthiness would need to be
relied upon. Since attestation uses manufacturer certificates to prove the make
and model of an authenticator when generating credentials, which may describe
security guarantees offered by the authenticator, sharing private keying materials
between authenticators may undermine these security guarantees—the trustwor-
thiness of attestation guarantees could be weakened.

Delegators should also be able to revoke account access from proxies at a later
time. In addition, the ability to add context- or application-specific permissions
that may also include an expiry date, and define the types of actions that can be
performed with delegated credentials, should also be considered. In particular, it
must not be possible for a proxy user to take over the ownership of the account
by deleting the original delegator’s credentials. In order to enforce permissions,
RPs must be able to distinguish that account access is being performed by a
proxy with a delegated credential and be able to process additional data that
identifies the credential as being for a proxy.

1.2 Contribution and Organisation

We propose two approaches for the delegation of WebAuthn credentials aiming
to preserve the decentralisation, unlinkability and attestation properties of the
standard. Our approaches, presented in Sect. 2, enable the account owner to
either configure delegation and permissions remotely at the relying party, or to
send credentials directly to the proxy user without involving the relying party.

Both approaches are compatible and built on top of the recent Asynchronous
Remote Key Generation (ARKG) [15] scheme, which has been proposed by
Yubico to W3C for WebAuthn backup and account recovery. Our remote dele-
gation approach uses ARKG directly to create unlinkable delegated credentials
for proxy users. Our direct delegation approach is performed using warrants
and requires a new class of proxy signatures that we call Proxy Signature with
Unlinkable Warrants (PSUW) and present in Sect. 3. PSUW is used to create
warrants that can extend the required unlinkability property to proxy signers.
Our PSUW scheme is very efficient and is constructed generically from ARKG.
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In Sect. 4, we provide cryptographic implementations that are compatible with
WebAuthn, analyse and compare performance of our delegation approaches. We
discuss related work in Sect. 5 and conclude in Sect. 6. For a full discussion on
various aspects of the scheme’s integration with WebAuthn and CTAP, including
a prototype of the scheme which uses standard WebAuthn calls, and considera-
tion of usability, see the extended paper [16].

2 Delegating WebAuthn Account Credentials

In this section, we specify two approaches allowing users to delegate access to
their WebAuthn accounts to proxies. Our delegation approaches are compatible
with Yubico’s recent proposal for backing up WebAuthn credentials and using
them for account recovery [15].

2.1 From Account Recovery to Delegation

Yubico’s solution for the credential backup and account recovery problem in
WebAuthn is based on a novel ARKG protocol [15] which helps to preserve the
decentralisation, unlinkability, and attestation properties of the standard. The
ARKG protocol allows a primary authenticator to register keys on behalf of
additional backup authenticators, which may be later used to regain access to
accounts. After the authenticators have been setup, the primary authenticator
generates and registers unlinkable public keys on behalf of backup authenticators
when registering with RPs.

In a nutshell, during the setup phase a backup authenticator, with the private
key sk, sends to the primary authenticator its public key pk. When registering
with RPs, derived public keys pk′ are generated using the ARKG.DerivePK algo-
rithm, based on the backup’s public key pk, computed and registered by the
primary authenticator. After the primary authenticator is lost or damaged, a
backup authenticator is able to compute—using the ARKG.DeriveSK algorithm—
the corresponding private key sk′ for the pk′ registered on its behalf using cre-
dential data cred stored at the RP, which gives the link between pk and pk′ and
allows the corresponding sk′ to be computed with knowledge of sk.

ARKG maintains the unlinkability property of WebAuthn, as arbitrary
derived public keys pk′, and pk, exhibit unlinkability that is compatible with
WebAuthn. Attestation is also maintained since sk′ is not shared between
authenticators; the backup authenticator may provide the RP an attestation
statement when recovering account access, by having it complete a registration
procedure.

Yubico’s credential backup solution assumes that the primary and backup
authenticators are owned and controlled by the same user and, once setup,
the primary authenticator can invisibly register or re-register keys for backup
authenticators when needed. This approach and the underlying trust assump-
tions do not readily translate to delegation, as delegators should be able to
delegate, as well as grant and revoke permissions, to proxies at their discretion.
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Fig. 1. Two approaches to delegation and the required unlinkability property.

RPs need to enforce limited access to accounts, requiring that proxy users be
unable to lock delegators out of their own accounts or perform actions for which
they do not have permission. This results in delegation which requires additional
data and parameters, so RPs can determine the level of access to grant to proxy
users; ARKG without any changes grants full account access, since it is roughly
equivalent to a standard account credential.

2.2 Two Approaches for Delegation

In our first approach, called remote delegation, delegation is configured remotely
on the relying party, whereas in the second approach, called direct delegation,
delegated credentials are sent directly to the proxy. Our approaches address
the requirements from Sect. 1.1 and cater for different types of authenticators
and their capabilities, such as storage-constrained hardware tokens—the remote
variant is best suited to this kind, whereas direct delegation is suited for platform
authenticators in computers and mobile devices. Direct delegation can occur
offline at any time, optionally over proximity-based transports (e.g., Bluetooth),
between two devices which store their WebAuthn credentials locally—this does
not require communication with the RP in order to perform the delegation.
Neither approach requires proxies to hold an account at the RP.

We aim to use ARKG, which is currently under consideration for stan-
dardisation by W3C’s WebAuthn working group, as a building block for both
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delegation approaches so that they can be realised with minimal changes for RPs
and authenticators that may already support ARKG for credential backup.

Both approaches share the same setup phase where the delegator communi-
cates with the proxy. Following the setup phase, delegation can be performed for
different accounts at one or more relying parties. In the remote approach, the
delegator deposits a public key and some additional data intended for the proxy
user with the RP, i.e., delegation is configured and achieved through the RP.
The proxy user will be able to prove its authorisation by communicating with
the RP at a later stage. In the direct approach, the delegator sends a warrant
with some additional data to the proxy user who may later prove to the RP that
they are authorised to access the delegator’s account. Both variants are depicted
in Fig. 1 and detailed in Sects. 2.3 to 2.5.

2.3 Setup Phase (common for Remote and Direct Delegation)

This phase is the same for both delegation approaches and corresponds to step 1

where the delegator learns a public key pkp of the proxy user. This public key will
enable the generation of multiple delegated credentials, potentially for different
accounts owned by the delegator. The delegator already has an independent
private-public key pair (skd, pkd), registered via WebAuthn, for each account it
holds—with which it can delegate account access.

The proxy user must know the corresponding private key skp in order to
sign future WebAuthn challenges when accessing the delegator’s account. To
access the delegator’s account, proxies will need to know that delegation has
been granted along with the login name used for the delegator’s account. Con-
ceptually, the setup phase is similar to that of ARKG [15] when viewing a proxy
user’s pkp as a backup authenticator’s pk. The main difference is in the channel
through which pkp is transmitted given the differences in the ownership of the
authenticators, as discussed in more detail in the full paper [16].

2.4 Remote Delegation

In the remote variant (see Fig. 1a), to perform delegation in step 2 , the account
owner logs into their account at the RP using WebAuthn credentials and con-
figures delegation for the proxy user by generating an unlinkable public key pk′

from the proxy user’s public key pkp using ARKG. In addition to pk′, the dele-
gator stores at the RP the corresponding ARKG credential information cred. In
order to access the account in steps 3 and 4 , the proxy user will use ARKG to
derive the corresponding signing key sk′ from its private key skp and cred, and
sign on the RP’s authentication challenge. Remote delegation can be performed
for multiple accounts following a single setup phase since many unlinkable pk′

may be generated for the same proxy’s pkp. Note that all derived keys pk′ are
unrelated to the delegator’s pkd and they are registered directly with the RP for
the account, maintaining WebAuthn unlinkability and providing a decentralised
design—credentials are held by only the RP and authenticator.
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Since the RP records proxy credentials, regardless of whether they have ever
been used, credentials registered for proxies may be deleted, i.e., revoked, on
an as-needed basis. As the RP is always aware of delegations as soon as they
are registered, it may provide a web interface allowing the delegator to set per-
missions against individual account credentials, including those for proxies. This
meets the revocation and policy control requirement, as well as ensuring the RPs
are aware that this credential is for a proxy user.

2.5 Direct Delegation

Our direct delegation variant (see Fig. 1b) uses a new proxy signature scheme
that involves a common delegation-by-warrant approach, but outputs warrants
that remain unlinkable with respect to the proxy users. This approach allows
delegation to be performed offline at any time between authenticators which
store their credentials locally, and does not require communication with the RP.
We also show how to construct such a proxy signature scheme using ARKG as
a building block (see Sect. 3.2).

To delegate access to the account, for which the delegator’s public key pkd is
registered with an RP, the delegator uses its private key skd to create a warrant
warr for the proxy user for whom pkp was received as part of the setup phase.
This warrant contains the delegator’s signature on a warrant public key pkw
which is different from and unlinkable to pkp. The delegator sends warr together
with some delegation data ddata to the proxy user in step 2 . The proxy user can
compute the warrant signing key skw using received ddata and is able to use skw
to sign RP’s authentication challenges when accessing the delegator’s account
in steps 3 and 4 . The RP checks validity of the warrant using delegator’s
registered pkd prior to granting account access.

Observe that multiple warrants containing different pkw can be generated
by the delegator for the same proxy user after the initial setup phase. These
pkw remain unlinkable. In this way, the delegator can repeatedly grant access to
the same proxy user for one or more of its WebAuthn accounts for the same or
different RPs. The communication channel required for step 2 can be established
on-demand, in a similar way as during the setup phase.

Note that since RPs are unaware of direct delegations until they are pre-
sented with warrants by proxy signers, warrants must be validated against the
delegator’s existing WebAuthn account credentials—that is using the delegator’s
public key pkd for the account to prove that it was issued by the account owner.
This requires that warrants, the public key pkw to which access is granted, and
the existing account credential be linked. However, warrants must not under-
mine the unlinkability of existing account owner’s credentials, whilst extending
the unlinkability property to their proxies—resulting in registrations and dele-
gations remaining uncorrelated across accounts and RPs, as visualised in Fig. 1c.
The delegator’s account public key pkd is unlinkable to delegator’s public keys
used on other accounts by virtue of them being registered as normal with WebAu-
thn. For proxy signers, however, this means that their warrant public keys pkw
created by the delegator must also remain unlinkable. This essentially motivates
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the need for the new type of proxy signatures, which we call PSUW and detail
in Sect. 3, using which delegators can issue warrants that cannot be linked to a
proxy signer’s pkp. Our direct approach therefore does not require a third party
to complete the delegation, maintaining the decentralisation of WebAuthn.

Any issued warrants may be invalidated by replacing the account creden-
tial for pkd, which may be seen as equivalent to changing the password given
to someone to access accounts. Alternatively, RPs could allow users to black-
list warrants, which would require additional server-side logic and delegators to
record generated warrants to later add them to blacklists. The warrants used in
the direct variant may contain additional signed data, including expiry times-
tamps and permissions granted to the proxy. RPs would need to understand
the warrant permissions format—this offers the benefit of being signed by the
delegator by default, in a well-known and easily-parsed warrant format (see also
the extended paper [16] for more details on revocation and permissions).

3 Proxy Signature with Unlinkable Warrants

In this section, we present a new scheme called Proxy Signature with Unlinkable
Warrants (PSUW), a new type of proxy signature required for the direct delega-
tion of WebAuthn credentials. PSUW adopts a delegation-by-warrant approach,
however, in contrast to other proxy signature schemes, delegated warrants and
signatures produced by proxies remain unlinkable to the identities of the proxies.
This helps to protect the unlinkability of multiple WebAuthn accounts to which
access has been delegated to the same or multiple proxies. We model security of
PSUW and construct it generically using ARKG and an ordinary digital signa-
ture scheme. Related work on proxy signature schemes is discussed in Sect. 5.

3.1 Modelling PSUW

We define here the syntax and security properties of PSUW.

Syntax of PSUW. The scheme has six algorithms. Public parameters pp are
implicitly given as input to all algorithms.

Definition 1 (PSUW). A PSUW scheme consists of six algorithms:

– Setup(λ) generates public parameters pp for security parameter λ ∈ N.
– DKGen() samples private-public key pair (skd, pkd) for a delegator when called.
– PKGen() samples private-public key pair (skp, pkp) for a proxy when called.
– Delegate(skd, pkp) takes as input skd and pkp. It probabilistically returns war-

rant warr and delegation data ddata, which the proxy signer may use with its
own signing key skp to generate proxy signatures.

– Sign(skp, pkd,warr, ddata,m) takes as input skp, pkd, warr, ddata, message m,
and returns a proxy signature σ̄ under skp for m, or ⊥ on error (e.g. warr or
ddata are invalid for pkd). Note that warr ∈ σ̄, allowing σ̄ to be verifiable as
a standalone signature. ddata is used to compute the signing key, but is not
included in the proxy signature σ̄ output.
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OReg when called

1 : (skp, pkp) ←$PKGen()

2 : LReg ← LReg ∪ (skp, pkp)

3 : return pkp

OCorr on input pkp

1 : retrieve (skp, pkp) from LReg else abort

2 : LCorrupt ← LCorrupt ∪ (skp, pkp)

3 : return skp

ODelegate on input pkp

1 : if (·, pkp) /∈ LReg

2 : then abort

3 : (warr, ddata) ←
4 : Delegate(skd, pkp)

5 : LDel ← LDel ∪ (pkp,warr)

6 : return warr, ddata

OSign on input (pkp,warr, ddata, m)

1 : retrieve (skp, pkp) from LReg

2 : then abort

3 : σ̄ ← Sign(skp, pkd,warr, ddata, m)

4 : if σ̄ =? ⊥ then abort

5 : LSign ← LSign ∪ (σ̄, pkp,warr, ddata, m)

6 : return σ̄

(a) Oracles for PSUW security experiments.

Expwu-bA (λ)

1 : pp ← Setup(λ)

2 : (skd, pkd) ←$DKGen()

3 : (ST, pkp0, pkp1, m) ← AOReg,ODelegate,OSign,OCorr

1 (pp, pkd)

4 : retrieve (skp0, pkp0) and (skp1, pkp1) from LReg else return 0

5 : (warr, ddata) ← Delegate(skd, pkpb)

6 : σ̄ ← Sign(skpb, pkd,warr, ddata, m)

7 : b′ ← AOReg,ODelegate,OSign,OCorr

2 (ST, σ̄,warr, ddata)

8 : return b =? b′ ∧ (·, pkp0) �∈ LCorrupt ∧ (·, pkp1) �∈ LCorrupt

(b) Warrant-Unlinkability experiment.

ExpunforgeA (λ)

1 : pp ← Setup(λ)

2 : (skd, pkd) ←$DKGen()

3 : (σ̄, m) ← AOReg,ODelegate,OSign,OCorr(pp, pkd)

4 : parse σ̄ as (warr, ·)
5 : return Verify(pkd, σ̄, m) = 1 ∧ (

6 : (·,warr) /∈ LDel ∨
7 :

[∃pkp, m s.t. (·, ·,warr, ·, m) /∈ LSign ∧ (pkp,warr) ∈ LDel ∧
8 : (·, pkp) /∈ LCorrupt

]
)

(c) Unforgeability experiment.

Fig. 2. Oracles and security experiments for PSUW.
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– Verify(pkd, σ̄,m) takes as input pkd, σ̄, m, and returns 1 if σ̄ is valid with
respect to pkd for m, otherwise 0.

Security Definitions. We give the adversarial model and define two properties
for PSUW: Warrant-Unlinkability and Unforgeability.

Adversaries and oracles. We model an adversary A as a probabilistic polynomial
time (PPT) algorithm, which may call, using the parameters to which it is given
access, any of the public procedures given in Sect. 3.1.

The adversary A may make a polynomial number of queries to the oracles
given in Fig. 2a:

– OReg, when called, samples a new key pair (skp, pkp), storing the key pair in
list LReg, and returns pkp.

– ODelegate(pkp), is initialised with the delegator’s private key skd. On input
proxy-signer public key pkp, it records the result of Delegate(skd, pkp) in list
LDel, returning warr and ddata without giving A access to skd. If (·, pkp) �∈
LReg, it aborts. This models an honest delegation to pkp.

– OSign(pkp,warr, ddata,m), is initialised with the delegator’s public key pkd.
On input proxy-signer public key pkp, warrant warr, delegation ddata, and a
message m, it records in list LSign the result of calling Sign(skp,warr, ddata,
m) for (skp, pkp) ∈ LReg. It aborts if Sign returns ⊥. This models asking for
a signature on a message of A’s choice.

– OCorr(pkp), on input proxy-signer public key pkp, returns the corresponding
private key skp from list LReg and adds the key to list LCorrupt. If (·, pkp) �∈
LReg, it aborts. This models the leak of private keying material for proxy.

Correctness. Our scheme is correct if, ∀λ ∈ N, the following hold:

pp ← Setup(λ)
(skd, pkd) ← DKGen()
(skp, pkp) ← PKGen()

(warr, ddata) ← Delegate(skd, pkp)
σ̄ ← Sign(skp, pkd,warr, ddata,m)

1 ?= Verify(pkd, σ̄,m)

Warrant-Unlinkability. The Warrant-Unlinkability (wu) property of a PSUW
scheme ensures that an adversary, when given proxy signature σ̄, warrant warr,
and delegation data ddata, cannot determine the identity pkp for which the
delegation was performed.

The unlinkability property of WebAuthn requires that users cannot be corre-
lated across registrations. We capture this property by requiring that an entity,
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such as an RP in the case of WebAuthn, be able to determine the identity of
the user who delegated signing rights, i.e., account access, but not the identity
of the proxy signer. This means that unlinkability is maintained for both the
delegator—where knowing the identity of proxy signers might provide linkabil-
ity for account holders too—and the proxy signer.

We model Warrant-Unlinkability in Fig. 2b. The experiment Expwu-bA (λ) is
parameterised with bit b. It chooses a delegator’s key pair (skd, pkd) and chal-
lenges an adversary A to determine which of its proxy-signing keys was used to
delegate signing rights for pkd and sign message m. A is given access to oracles
OReg, ODelegate, OSign and OCorr.

Definition 2 (Warrant-Unlinkability). This is offered by PSUW if the fol-
lowing is negligible in λ:

Advwu-bPSUW,A(λ) :=
∣
∣Pr

[

Expwu-1A (λ) = 1
] − Pr

[

Expwu-0A (λ) = 1
]∣
∣

Unforgeability. For a PSUW scheme to satisfy the Unforgeability property, an
adversary A must not be able to forge proxy signatures with respect to a dele-
gator’s pkd without knowledge of the corresponding skd, as in Fig. 2c.

The experiment challenges A to give a valid proxy signature σ̄, for a message
m of its choice, for a delegator’s pkd. The adversary is given access to the OReg,
ODelegate, OSign, and OCorr oracles. A wins if it can break either the delegation
(line 6) or signing procedures (lines 7 and 8).

Definition 3 (Unforgeability). A PSUW scheme provides Unforgeability if
the following advantage is negligible in λ:

AdvunforgePSUW,A(λ) := Pr
[

ExpunforgeA (λ) = 1
]

3.2 Our Generic PSUW Construction

We proceed with a generic construction of PSUW, based on the ARKG primitive
and an ordinary digital signature scheme, and then analyse its security.

Building Blocks. We recall the two building blocks.

Asynchronous Remote Key Generation (ARKG). [15] An ARKG scheme has five
algorithms, ARKG := (Setup,KGen,DerivePK,DeriveSK,Check). Setup(λ) returns
public parameters pp for the scheme. KGen samples a key pair (sk, pk) when
called. Derived public key algorithm DerivePK(pk, aux) returns a new public key
pk′ and derivation data cred. Derived private key sk′ for pk′ is computed and
returned by DeriveSK(sk, cred). Check(sk′, pk′) returns 1 if (sk′, pk′) form a valid
key pair, otherwise 0. We use ARKG which offers the two following properties.
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PSUW.Setup(1λ)

return pp = (1λ,ARKG.Setup(1λ),

DS.Setup(1λ))

PSUW.DKGen(pp)

return (skd, pkd) = DS.KGen(pp)

PSUW.PKGen(pp)

return (skp, pkp) = ARKG.KGen(pp)

PSUW.Delegate(skd, pkp)

1 : (pkw, cred) ←$

2 : ARKG.DerivePK(pp, pkp,Ø)

3 : σ ← DS.Sign(skd, pkw)

4 : return warr = (pkw, σ),

5 : ddata = cred

PSUW.Sign(skp, pkd,warr, ddata, m)

1 : parse warr as pkw, σ

2 : parse ddata as cred

3 : if DS.Verify(pkd, pkw, σ) =? 0 then

4 : return ⊥
5 : skw ← ARKG.DeriveSK(pp, skp, cred)

6 : if skw =? ⊥ then return ⊥
7 : s ← DS.Sign(skw, m)

8 : return σ̄ = (s,warr)

PSUW.Verify(pkd, σ̄, m)

1 : parse σ̄ as s,warr

2 : parse warr as pkw, σ

3 : return DS.Verify(pkd, σ, pkw)∧
4 : DS.Verify(pkw, s, m)

Fig. 3. Algorithms of our PSUW construction.

PK-Unlinkability (pku) is provided by ARKG if AdvpkuARKG,A(λ) is negligible
in λfor a PPT adversary A to distinguish between derived public keys and
uniformly-sampled public keys. The adversary is given access to challenge oracle
Ob

pkp which is initialised with a bit b and public key pk. When called, it returns
either the result of DerivePK(pp, pk, aux) when b = 0 or samples and returns a
new public key from D when b = 1.

Malicious-Strong Key Secrecy (msKS) is provided by ARKG if AdvmsKS
ARKG,A(λ)

is negligible in λfor a PPT adversary A to derive a valid key pair sk�, pk� and
corresponding cred� for an initial public key pk. It is given access to derived
public key oracle Opk′ and derived private key oracle Osk′ . It wins if sk�, pk� and
corresponding cred� verify against ARKG.Check and it did not trivially obtain
these by querying the oracles.

For formal definitions of these properties, we refer to the work of Frymann
et al. [15, §4.1]. Note that this construction of ARKG satisfies the above proper-
ties under the well-known snPRF-ODH [4] and Discrete Logarithm hardness
assumptions in the random oracle model. This construction will be used to
instantiate our generic PSUW scheme.

Digital Signature (DS). A digital signature scheme has three algorithms, DS :=
(DS.KGen,DS.Sign,DS.Verify). The key generation algorithm DS.KGen takes as
input a security parameter λand outputs a key pair (sk, pk). The signing algo-
rithm takes as input a signing key sk with a message m and outputs a signature
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σ. DS.Verify takes as input a candidate tuple (pk, σ,m) and outputs 1 if σ verifies
with respect to public key pk and message m, otherwise 0.

Two variants of DS unforgeability are required. We first require standard
existential unforgeability under chosen-message attack (EUF-CMA), which chal-
lenges an adversary to produce a forgery (σ�,m�) that verifies with respect to
pk without knowledge of the corresponding sk. In this experiment, the adver-
sary has access to a signing oracle OSign and wins if σ� was produced on m� that
was not queried to OSign. We require strong unforgeability under chosen-message
attack (SUF-CMA) [1], in which case σ� was not obtained from OSign on query
m�.

PSUW Algorithms. The algorithms of our generic PSUW construction are
specified in Fig. 3, which use the algorithms from ARKG and DS as underlying
building blocks.

Security Analysis of the Generic PSUW Scheme

Theorem 1. PSUW satisfies Warrant-Unlinkability if ARKG satisfies PK-
Unlinkability.

Theorem 2. PSUW satisfies Unforgeability if DS is SUF-CMA secure and
ARKG offers both Malicious-Strong Key Secrecy and PK-Unlinkability.

Proof. Proofs for Theorems 1 and 2 are provided in the full paper [16].

Remark 1. Looking ahead, we will instantiate DS with ECDSA, which is known
to only provide EUF-CMA security. However, it has been shown that the only
attack on strong unforgeability for an ECDSA signature of the form (s, t) ∈ G,
is the forgery (−s, t) ∈ G [13].

As noted by Fersch [12, Remark 3.2.3], there are numerous techniques to
mitigate such an attack by normalising the s component so that only one of s
or −s can be verified. For example, enforcing s ∈ [1, (q − 1)/2], so that either s
or −s = q − s verifies. In our instantiation and implementation, we enforce this
s-component normalisation to achieve a strongly-unforgeable ECDSA.

4 Achieving Delegation in WebAuthn

In this section, we discuss instantiations and performance of our ARKG-based
delegation approaches and the new PSUW primitive.

4.1 Cryptographic Implementation

We instantiate the cryptographic building blocks in our delegation approaches
using compatible, standard-based, and efficient algorithms that are already being
used in the WebAuthn standard. This includes ECDSA standard [33] on the
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Table 1. Mean execution time for a single primitive call, in milliseconds and averaged
from 1000 timings.

Primitive Delegate Sign Verify

ECDSA (plain WebAuthn) – 1.9 1.6

ARKG (remote delegation) 5.6 3.8 1.6

PSUW (direct delegation) 7.5 5.4 3.2

P-256 curve (see ECC [5]), which is used for the DS building block within
PSUW and to perform all signing operations used in our delegation approaches.
Using ECDSA gives further straightforward compatibility with ARKG and
PSUW. Credential public keys [26, §6.5.1] in WebAuthn are described using the
COSE [38] format. ECDSA on P-256 curve with SHA-256 is given a standard
and registered COSE algorithm name EC256 and type -7.

The instantiation and implementation of ARKG uses the original proposal
from Yubico [15], which is currently being considered for the standardisation of
WebAuthn credential backups. It adopts the standards-based HKDF [25] with
SHA-256 [11] and HMAC-SHA-256 [24] algorithms, which are well supported in
the WebAuthn ecosystem. We adopt the same algorithms to implement PSUW.
Our delegation approaches would therefore work well with authenticators that
implement the ARKG primitive for backup purposes.

Performance. In Table 1, the performance for each of the primitives required
for delegating and authenticating in WebAuthn is presented. The timings were
taken using our benchmarking program and PSUW implementation. The exist-
ing ARKG code1 and Python’s fastecdsa are used as our ARKG and DS build-
ing blocks, respectively. These timings are abstracted from the full delegation,
registration, and authentication procedures as these encounter unavoidable, and
in some cases unpredictable, overheads, including packing data into message
formats for WebAuthn processing and network performance, as well as perfor-
mance overheads on the RP’s backend (e.g., database, inter-system communi-
cations). We capture instead the measurable difference between an example of
plain WebAuthn, using ECDSA, and our two delegation approaches: remote
using ARKG and direct using PSUW. Each primitive was invoked 1000 times
on an Intel i7-8700 (3.20 GHz), using a single-threaded software implementation,
with the average recorded.

Compared to a plain WebAuthn sign-and-verify challenge using ECDSA, the
ARKG primitive in the remote delegation approach gives an increase of only
1.9 ms in execution time for the signature generation. From ARKG to PSUW,
used in direct delegation, we observe an increase of 1.6 ms for the signing opera-
tion. PSUW also incurs an average increase of 1.6 ms in verification over ECDSA
and ARKG, as it must verify both the warrant’s signature and the signature on

1 https://github.com/Yubico/webauthn-recovery-extension/.

https://github.com/Yubico/webauthn-recovery-extension/
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the challenge. ARKG’s verification requires a single ECDSA signature verifica-
tion as its response is a standard ECDSA signature, but for a derived private-
public key pair. These timings are reported without any bespoke optimisations
made to the underlying libraries used; we observe such increases are unnoticeable
in practice.

4.2 Approach for Integration with WebAuthn and Our Code

Please see the full paper [16] and our code repositories2,3 for a complete discus-
sion of the integration of our scheme and the PSUW primitive in WebAuthn,
including the required CTAP calls, use of WebAuthn’s extensions provision, as
well as an example of some CTAP calls required for an authenticator to sup-
port such a delegation scheme, implemented using the virtual authenticator by
Culnane et al. [9]. We also discuss usability considerations for deploying our
scheme.

5 Related Work

Application-specific delegation may be provided to users of the same service
provider in a secure manner, such as allowing access to a mailbox to another
user without sharing passwords, e.g., delegated access in Office 365’s Outlook.
There are also existing standards that aim to achieve this on the web and in
local networks. OAuth [20] is an open standard for authorisation, or access
delegation, through which users can grant applications, particularly websites,
access to account data without sharing passwords. OpenID Connect (OIDC) [40]
is an authentication layer built on top of OAuth which uses OpenID [37], a
decentralised authentication protocol that allows an identity provider (IdP) to
share identity data (e.g., name) to a relying party—who depends on the identity
provider. Single-Sign On (SSO), a federated identity, is often achieved through
Security Assertion Markup Language (SAML) [35] which uses cookies and pro-
vides a standard language for exchanging authentication and authorisation infor-
mation between IdPs and service providers. Existing identity-providing protocols
are discussed and compared by Naik and Jenkins [32].

Additionally, there exist schemes for delegating signing rights in the realm of
digital signatures, called proxy signatures, first introduced by Mambo et al. [28].
However, when viewed from the perspective of WebAuthn, existing proxy signa-
tures would not maintain the unlinkability properties of WebAuthn credentials
and, in some cases, its decentralised nature. See Sect. 1.1 for more on WebAuthn
properties and below for a discussion on existing proxy signature schemes in the
context of WebAuthn delegation. For example, access to WebAuthn accounts
must be delegatable without disclosing the proxy user’s identity to the service
provider; otherwise delegated accounts may become linkable.

2 https://github.com/UoS-SCCS/PSUW-Primitive.
3 https://github.com/UoS-SCCS/WebAuthn-Credential-Delegation.

https://github.com/UoS-SCCS/PSUW-Primitive
https://github.com/UoS-SCCS/WebAuthn-Credential-Delegation
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Furthermore, delegation has been explored in anonymous credentials (for
example by Crites and Lysyanskaya [8]), where a central authority issues
attributes to users—these attributes can be disclosed whilst preserving
anonymity. In general, these schemes employ more complex cryptographic tech-
niques than ordinary signatures and would therefore not be compatible with the
current WebAuthn standard.

More recently, Yubico has proposed a protocol for backing up WebAuthn cre-
dentials without compromising WebAuthn properties. Their approach is based
on a new Asynchronous Remote Key Generation (ARKG) primitive [15], which
allows a primary authenticator to create pubic key credentials for one or more
trusted backup authenticators, owned by the same user, whilst maintaining the
unlinkability and decentralisation properties of WebAuthn—which many of the
current approaches do not provide [27].

We observe that Yubico’s approach can be viewed as some form of self-
delegation, however, delegating to other users gives rise to further challenges
and considerations due to the new and less-trusted security setting, as opposed
to the trusted ownership of primary and backup authenticators.

Our work focuses on the delegation of account access using WebAuthn cre-
dentials, which is akin to secure password sharing. This differs to application-
level delegation, as mentioned above, which requires application logic to achieve
the delegation, often requiring the provision of an account for the proxy user
which would be associated with the delegator’s account.

Related work on proxy signatures. Proxy signatures were introduced by Mambo
et al. [28], with security formalised by Boldyreva et al. [3]. Typically, delegation
to a proxy signer is performed by issuing a warrant that contains a certificate
on the proxy signer’s public key that verifies against the delegator’s public key.
This warrant then becomes part of the proxy signature, and is verified within
the proxy signature’s verification. Any scheme that follows this approach can-
not achieve unlinkable warrants since the proxy signer’s public key is required
to verify the warrant, which make them unsuitable for application in WebAu-
thn. Nonetheless, we note that a range of constructions from different hard-
ness assumptions exist, e.g., discrete logarithms [3,23,28,43], integer factorisa-
tion [45], and lattices [21].

In addition to standard proxy signatures there have been proposals to provide
various degrees of privacy for the warrants, such as anonymous proxy signatures
by Shum and Wei [39], with a formal model and a general construction pro-
posed later by Fuchsbauer and Pointcheval [17]—giving the properties of proxy
anonymity and traceability. The construction bears similarity with the approach
taken in group signatures Chaum and van Heyst [7] through encryption of the
warrant under the opener’s public key with appropriate zero-knowledge proofs,
such that the proxy signer remains anonymous yet traceable by an ‘opener’ if
needed. We observe that although this scheme offers rich functionality, it is not
needed in the context of WebAuthn. Removal of Fuchsbauer and Pointcheval’s
traceability requirement [17] would still yield a complex construction requiring
zero-knowledge proofs to protect privacy and hence would not be compatible
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with the WebAuthn standard. Using central authorities would also not suit its
decentralised nature.

Introduced simultaneously by Steinfeld et al. [42] and Johnson et al. [22],
redactable signatures allow messages to be signed such that they can be hidden,
disclosed, or have relations proven by parties that did not create the original full
signatures. Although they bear some similarities with proxy signatures, the secu-
rity properties for redactable signatures do not consider restriction of redaction
to chosen parties. Hence, they are unsuitable in the challenge-response protocol
of WebAuthn since the redactable signature can be transferred to other parties
to illegally perform authentication.

We also note the work of Yu et al. [46], who call their scheme ‘anonymous
proxy signature’. Their construction has different functionality and is a combina-
tion of a proxy signature and a ring signature [36]. Moreover, their security anal-
ysis is focused only on unforgeability properties. Similarly, the scheme proposed
by Wu et al. [44] combines standard proxy signatures with group signatures, and
is similarly not applicable for our setting.

Finally, we note the work by Derler et al. [10], which constructs warrant-
hiding proxy signatures and blank signatures—see also Hanser and Slamanig’s
work [18,19]—from anonymous credentials [6]. Warrant-hiding means that the
message space delegated to a proxy remains unknown to the verifier, other than
the message being presented for verification. In the latter, the message has a
structure that can be changed in a prescribed way. These techniques are not
what is required to realise unlinkable delegation in WebAuthn.

6 Conclusion

We proposed two approaches for delegation of WebAuthn credentials preserv-
ing the security, privacy, and decentralisation aspects of the standard. Both
approaches share the same setup procedure, employing ARKG, which makes
them compatible with Yubico’s recent proposal for account recovery in WebAu-
thn.

Our remote delegation approach allows account owners to configure and man-
age delegation with associated permissions at the relying party, whereas for
direct delegation, the owner issues a warrant containing delegation credentials
directly to the proxy user without requiring communication with the relying
party. To realise this approach, we introduced a novel type of proxy signatures
with unlinkable warrants, which might be of independent interest. We provided
in the extended paper [16] discussion of integration details using WebAuthn and
CTAP extensions, as well as possible approaches to realising communication
between delegators and proxies for direct delegation.

We conducted performance experiments of our primitive which show that
delegated authentication can be achieved at a low cost of a few extra milliseconds
when compared to the standard authentication in WebAuthn.
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Abstract. DNS over HTTPS (DoH) is one of the standards to protect
the security and privacy of users. The choice of DoH provider has contro-
versial consequences, from monopolisation of surveillance to lost visibility
by network administrators and security providers. More importantly, it
is a novel security business. Software products and organisations depend
on users choosing well-known and trusted DoH resolvers. However, there
is no comprehensive study on the number of DoH resolvers on the Inter-
net, its growth, and the trustworthiness of the organisations behind them.
This paper studies the deployment of DoH resolvers by (i) scanning the
whole Internet for DoH resolvers in 2021 and 2022; (ii) creating lists of
well-known DoH resolvers by the community; (iii) characterising what
those resolvers are, (iv) comparing the growth and differences. Results
show that (i) the number of DoH resolvers increased 4.8 times in the
period 2021–2022, (ii) the number of organisations providing DoH ser-
vices has doubled, and (iii) the number of DoH resolvers in 2022 is 28
times larger than the number of well-known DoH resolvers by the com-
munity. Moreover, 94% of the public DoH resolvers on the Internet are
unknown to the community, 77% use certificates from free services, and
57% belong to unknown organisations or personal servers. We conclude
that the number of DoH resolvers is growing at a fast rate; also that at
least 30% of them are not completely trustworthy and users should be
very careful when choosing a DoH resolver.
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1 Introduction

DNS over HTTPS (DoH) is a method of encrypting DNS [26] that has been
in continuous deployment since 2017 [18]. Despite controversies over its impact
on privacy and surveillance monopoly [14,16,25], many applications currently
implement DoH and the transition to encrypted DNS is well underway.

Encrypted DNS is a fundamental part of our security and privacy, and DoH
has emerged, together with DNS over TLS (DoT), as a standard for the commu-
nity. With standard non-encrypted DNS, the decision about which DNS server
to use was mainly based on performance. With DoH, users need to take into
account other aspects of security, namely the capability to encrypt up to the
DNS resolver vs. to the authoritative DNS resolvers, the ability to filter out the
protocol, and the loss of visibility for lawful blocking.

Although some measurements on DoT adoption were made [10,27,35], there
has not been large-scale measurements on DoH deployment. Most studies focus
on DoT because by using port 853/TCP it is easy to find. As part of the advan-
tages of DoH, the use of port 443/TCP makes it difficult to differentiate from web
pages. Therefore, there is a lack of visibility on the amount of DoH resolvers, their
features, and the type of organisations that deployed them. Without this knowl-
edge, the security community lacks some perspective on the security of DoH.

This paper presents the first longitudinal measurement, comparison, and
analysis of the deployment of DoH resolvers on the Internet from 2021 to 2022.
We scanned the Internet for port 443/TCP, identified DoH resolvers, compiled
a list of well-known DoH resolvers by the community, and verify the trustwor-
thiness of the resolvers.

Results show a confirmed growing trend in the deployment of DoH between
2021 and 2022. The number of well-known DoH resolvers by the community
increased from 234 to 262 (∼12%). The number of public DoH resolvers found
on the Internet shows at least 350% increase in 2022, even when the difference in
methodology between the two scans is taken into account. This is 28 times larger
than the list of 262 well-known DoH resolvers of 2022, meaning that ∼94% of
the public DoH resolvers are unknown to the community.

The contributions of this paper are (i) an updated and comprehensive dataset
of well-known DoH providers by the community in 2021 and 2022, (ii) a dataset
of all public DoH resolvers found by our global Internet scan, (iii) a new Nmap
NSE script tool to scan and verify DoH resolvers, and (iv) a security overview
of the organisations providing DoH resolution services.

2 Related Work

DoH is a relatively new protocol for encrypting DNS, already studied from mul-
tiple perspectives, such as performance [4], privacy [20] and deployment differ-
ences [24]. Since DoH shares port 443/TCP with the rest of HTTPS traffic, many
studies tried to detect DoH in the network. Vekshin et al. [39] used a machine
learning detection algorithm to detect DoH with 99% accuracy. With Montaz-
eriShatoori et al. [30] achieving similar performance. However, these approaches
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focused only on web browser traffic streams. None of these techniques works for
a single DoH traffic query.

The detection of DoH in general is still an unsolved challenge. Furthermore,
some well-established security software and appliances [9,36] rely on DNS queries
to lawfully block access to certain sites at the host, enterprise, or ISP level. These
security software work by filtering and blocking DNS based on rules. As DoH
allows to bypass these network-based filters, security software can only block
DoH by relying on domains and IP address [37]. The importance of accessing
a comprehensive list of well-known DoH resolvers is then paramount for the
correct functioning of this type of system.

DoH abuse was surveyed by Hynek et al. [22]. According to their study, DoH is
already misused by malware creators and rogue users to hide their activities from
network security defences. Furthermore, Hynek et al. defined several research
challenges that need to be addressed to maintain network security at the current
level. However, since these challenges are still not solved, the mass deployment
of DoH has a significant impact on network security.

Deccio et al. [8] studied in 2019, the adoption of DoT and DoH by open
resolvers. Their results show that the adoption was quite poor: From ∼1.2 mil-
lion open DNS resolvers found on the Internet, only 9 (0.007%) supported DoH.
However, since this study first scanned DNS resolvers and then asked for DoT/-
DoH, it missed those resolvers that handle only DoH requests. The study by
Lu et al. [27], in 2019, also scanned well-known open DNS resolvers from the
Internet and checked their DoH support, finding only 17 DoH resolvers.

The previous techniques for finding DoH resolvers are insufficient to accu-
rately estimate the population of DoH resolvers on the Internet. Contrary to
previous studies, we searched the entire IPv4 Internet address space looking for
DoH capable resolvers. Our measurement also found DoH-capable open DNS
resolvers, which are not publicly known. To the best of our knowledge, no pre-
vious research has tackled the measurement of the DoH resolvers population
across the Internet.

3 Background on DoH and Its Security Impact

The design of the DNS over HTTPS (DoH) protocol started in 2017 and was
adopted as RFC 8484 [18] in October 2018. Currently, there are two signif-
icantly different implementations. The first implementation, compliant with
RFC 8484, uses the DNS binary “wireformat” [29] to encapsulate DNS mes-
sages in HTTPS (GET or POST methods). The second implementation uses
DNS messages encoded in JSON format, as described by RFC 8427 [17]. The
JSON data is transferred through the HTTPS GET method. Most global DNS
providers support both implementations [24]. However, in practise, all DoH-
enabled Web browsers and most other performance-orientated DoH clients use
wireformat messages with the HTTPS POST method.

The security community knows that encrypting DNS is one of the most
required Internet features to protect user privacy and security. This is because



148 S. Garćıa et al.

many surveillance and tracking organisations use DNS traffic to profile and mon-
itor users [15], especially in countries without Internet freedom [5]. However,
even though users can encrypt DNS traffic, the choice of DNS provider is still
important because that provider will have access to the DNS traffic. Therefore,
choosing a DNS provider that is trusted (encrypted or not) is a security decision.

This decision is also important because many protection tools rely on DNS,
such as commercial DNS protection companies, DNS filters for policy enforce-
ment in organisations, and antivirus tools. Moreover, many users choose and
believe that using a third-party DNS resolver, instead of the DNS server pro-
vided by the local network or ISP, can better protect them from surveillance and
monitoring [5].

The main difference between choosing a traditional DNS provider and an
encrypted DNS provider is that for an encrypted DNS provider, the choice is
largely dependent on the threat model of the user [11]. Users who suspect a
domestic threat actor may prefer third-party encrypted DNS providers. But
such provider may mean a dangerous centralisation of data.

The security problem of centralisation becomes more relevant as more users
choose to use a small group of well-known DoH providers. Those providers have
a privileged access to DNS requests for profiling and advertising [5]. These few
providers are typically big tech giants and telecommunication providers (telcos),
and effectively cut off smaller ISPs, small telcos, and even local administrators
from accessing DNS. Such a centralisation affects some protection measures and
puts our data in the hands of big tech companies.

Another essential aspect of DoH is that applications that enable DoH at the
user level (such as a web browser) can bypass the DNS resolution of the Oper-
ating System (OS). This design decision was quite controversial, since resolving
domain names is an action traditionally left to the OS due to its complexity and
dependency on local policies.

Although users can choose any DoH resolver, most use the default settings
in the applications. For instance, Firefox (since version 92.0) by default uses
Cloudflare Inc.; the same as Opera Browser (from version 79.0.4143.50). Google
Chrome offers a selection of five well-known DoH resolvers, but it can also detect
if the system-defined DNS server supports DoH [3]. The decision to use the
default settings has a double impact; first, it allows DoH to be used quickly and
transparently by many users, and second, it allows these organisations to receive
DNS requests by default.

One of the more important privacy features of DoH is to use HTTPS on
port 443/TCP. This prevents to easily block DoH by using the port number.
An alternative approach to block DoH may be to filter the domain in the SNI
record using lists of well-known DoH resolvers. However, this filtering can be
bypassed by (i) using a not well-known DoH provider, or (ii) by encrypting the
SNI as described in the RFC draft [33]. Our research highlights the possibility
of finding a not-so-well-known DoH provider.

In this security context, many questions regarding encrypted DNS, and DoH
in particular, are asked. Is the number of DoH-enabled DNS servers growing?
Who is implementing them? Can organisations successfully filter DoH by block-
ing the main third-party providers? Is the current centralisation of DoH providers
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counterbalanced by new providers? Can users trust small and unknown DoH
resolvers?

4 Methodology

The longitudinal analysis is composed of two exploration moments. The first in
April 2021 and the second between January and April 2022. Each exploration
consisted on the following methodology steps: (i) create a list of well-known
DoH resolvers; (ii) scan all the host on the IPv4 Internet looking for servers
with port 443/TCP open; (iii) discover which of those IPs are DoH resolvers;
(iv) verify that they answer DoH correctly and compile a final list; (v) enrich
the IP addresses of the discovered DoH resolvers with information from threat
intelligence services; (vi) verify the use of SNI; (vi) estimate the number of
organisations providing DoH resolution services.

4.1 Creation of the Well-known DoH Resolvers Lists

Each list of well-known DoH resolvers was created by aggregating all the resolvers
available in public lists, reports, documents, and academic papers. The DoH
resolvers were verified using our custom Python script described in Subsect. 4.4.
There are some lists of DoH resolvers on the Internet, including the AdGuard
list [1], and the curl tool list [19]. However, those lists are not comprehensive.
The list of 2021 is called Known2021, and the list of 2022 is called Known2022.
Both were published for this paper [12,21]. The exact sources used to create
them are included in each dataset. Moreover, IP addresses from Known2021
which was working at the time of creation the list of 2022 were also added to
the Known2022.

In the Known2022 list, the domain names were given so we decided not
to include domain names acquired by reverse DNS queries (PTR). Moreover,
reverse DNS domain names may belong to hosting providers or Virtual Private
Server (VPS) providers, such as Amazon, Microsoft, or Google, and thus do not
provide information relevant to organisation responsible of the DoH resolver.

4.2 Scan of Port 443/TCP on the Internet

We scanned the entire IPv4 address space on the Internet looking for servers with
open port 443/TCP. It was done by dividing the IPv4 address space into 255
uniform A-class ranges in order to distribute the load among several scanning
nodes. Each range was scanned from a different cloud virtual machine. The
masscan tool was used to perform the scan [13] with a fixed rate of 2,000 packets
per second. Masscan was also configured to retry each IP address three times.
These parameters were chosen to avoid losing packets and connection errors1.

1 Masscan command example: masscan -p 443 --range 20.0.0.0--29.0.0.0

--rate 2000 --retries 3.
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These parameters were both used in 2021 and 2022. Moreover, in both scans
we used masscan feature to scanned the IP addresses in random order and limit
the amount of packets per second sent to service providers.

4.3 DoH Service Discovery

Once the list of IP addresses with open port 443/TCP was collected, it was nec-
essary to find which ones implemented the DoH protocol. To automate the pro-
cess, we created a DoH Nmap script [34]. Nmap is a well-known multifunctional
network scanner that implements the Nmap Script Engine (NSE) for users to
develop their own scripts [28]. Our DoH script checks all six different DoH meth-
ods: HTTP/1 with GET, HTTP/1 with POST, HTTP/1 with JSON, HTTP/2
with GET, HTTP/2 with POST, and HTTP/2 with JSON. This scan was exe-
cuted using the same cloud setup as for the scan of port 443/TCP.

In order to speed up the process, the script only checks the HTTP status
code in the response. It does not parse the whole HTTP response, nor does
it make any more DNS resolution. Therefore, false positives may occur, which
were later filtered in the DoH verification stage 4.4. This verification stage was
implemented in a separated script, in order to keep the Nmap script as simple
and fast as possible.

The Nmap script sends six DoH requests with a DNS query asking for the
example.com domain. This domain is managed and recommended by IANA for
testing purposes. For all six methods, the script sends the same query endpoint
/dns-query2. This endpoint is specified in RFC 8484 for the HTTP GET and
HTTP POST DoH methods. Since the JSON method is not standardised by the
RFC, the endpoint of DNS JSON API might differ between providers. However,
many well-known providers, such as Cloudflare [7], AhaDNS [2], and Quad9 [32]
use the same endpoint as defined in the RFC.

The Nmap parameters used for this stage in 2021 differ from the ones used
in 2022. In 2021 we used Nmap with the most aggressive timing template
(parameter-T5), allowing for a faster scan. However, this timing template is
prone to packet loss, reducing the service discovery efficiency. In 2022, we used
the normal Nmap timing template (parameter -T3) in order to obtain higher-
quality results, minimising the packet loss. The Appendices Sect. 8.2 shows exam-
ples of the Nmap invocations used in both scans.

Therefore, to make a fair comparison between the two scans on the number
of computers found, we estimated the number of resolvers lost in 2021. For this
we re-scanned all the 2022 DoH resolvers using both timing parameters. Results
show that the more aggressive parameters of 2021 indeed caused packet loss
and resulted in a smaller number of detected DoH resolvers. From the 4,354
DoH resolvers found with normal timing parameters, the aggressive parameters
found between 2,851 and 3,213 in repeated scans. the relative efficiency, then, of
the DoH Service discovery in 2021 was between 65.5% and 73.8% compared to
2022.

2 DNS query endpoint example: https://1.1.1.1/dns-query?name=example.com.
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4.4 DoH Resolver Verification

The list of DoH resolvers found in the previous stage was verified to correctly
implement DoH, in order to remove false positives. We implemented a Python
script (available in [34]), which tests the correct support of three DoH methods
(GET, POST, and JSON) via HTTP/1 and HTTP/2. Contrary to the Nmap
DoH script, the Python script can parse the DoH responses and check that they
are valid DNS responses. This step filtered out IP addresses that responded
“HTTP 200 OK” to DoH requests, but the response did not contain DNS data.
The result of this stage is a list of confirmed and validated DoH resolvers and
DoH methods that they support. The same verification method was performed
for 2021 and 2022.

At the end of this step, and from now on, the verified list of DoH resolvers
of 2021 is called Scan2021, and the one from 2022 is called Scan2022.

4.5 IP Address Enrichment

The list of DoH resolvers was further enriched with related information about
the discovered IP addresses. The enrichment consists of: (i) the TLS certificates,
(ii) information from WHOIS service, (iii) information from VirusTotal threat
intelligence feeds including downloaded samples and URLs related to malware
samples associated to the IP addresses, (iv) passive DNS data with the referred
domain names for the IP, (v) DNS server type, (vi) DNS server version identifi-
cation, and (vii) information about the web page if there was any. In addition,
a suspicious flag was included in case the IP address has a high probability of
being relate to a phishing campaign according to a set of indicators used by the
Avast Web Shield feature. This set of indicators consists of keywords, domain
name structure, lexical analyses results, domain hosting information, and other
indicators.

The information for points (v) and (vi) was obtained using the DoH inherited
capabilities of traditional DNS. In DoH, as in DNS, it is possible to create a
CHAOS record class with TXT requests and issue it into a version.bind query
to identify which type of DNS software the server is using. Finally, the TLS
certificate data of the DoH resolvers was analysed to detect anomalies, such
as expired or self-signed certificates. Given that the IP address enrichment was
implemented late in 2021, it was applied only to the DoH resolvers in 2022.

4.6 Verification of SNI Usage

The main limitation of our DoH scan is that it may not find DoH resolvers on
servers that host multiple services on the same IP address. In such cases, to be
successful, the query needs to send a Server Name Indication (SNI), or HTTP
Host header, or HTTP/2 :authority header. When our DoH scan found an IP
with an open 443/TCP port but we could not find its proper domain name, we
could not verify whether the DoH resolver works but requires valid SNI only or
DoH is not supported at all.
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To investigate the severity of this limitation, we estimated how many DoH
resolvers were not found by performing a test with the Known2022 list of well-
known DoH resolvers, which have a domain name. The methodology was: (i) For
each well-known DoH resolver in the Known2022 list with an IPv4 address, get
its domain name; (ii) do all the six types of DoH queries providing the SNI, or
HTTP/1, or HTTP/2 host headers; (iii) get the IPv4 address for that domain;
(iv) do all the six types of DoH queries providing only the IPv4 address, without
any SNI or HTTP header. By using these steps we obtained the share of well-
known DoH resolvers, that require domain name for successful connection.

4.7 Estimation of the Number of Organisations

To estimate the number of organisations providing DoH resolution services in the
Scan2021 and Scan2022 list, the following methodology was used: First, extract
the reverse DNS of all the IPs in the Scan2021 and Scan2022 lists. Second, extract
the effective second-level domain name for each IP and consider each unique
effective second-level domain an organisation. Third, if the effective second-level
domain was not available, extract the WHOIS organisation name and consider
each WHOIS organisation an organisation. Fourth, if the WHOIS organisation
was not available group the IP addresses by their /16 CIDR and Autonomous
System Number (ASN), and consider each unique group as an organisation as
used by Deccio et al. [8].

4.8 Methodology Limitations

The used methodology presents limitations that needs to be properly discussed
and accounted for proper interpretation of our results. Faster scanning rate
used in Scan2021 for DoH Service Discovery stage described in Sect. 4.3, can
increase the number of missed hosts (false negatives) in the 2021 results. There-
fore, the Scan2021 totals were scaled up to account for the reduced efficiency in
Sect. 5.2 for proper comparison. The change in methodology also increases the
time needed to finish the Scan2022. However, we argue that each IP address was
scanned only once; thus, the longer period does not affect the comparison.

The DoH methods were tested only using the /dns-query API endpoint which
is the standard endpoint except for the JSON method (which is not standard-
ised). Therefore, our methodology cannot discover any DoH resolver using other
endpoints. Moreover, Internet-wide scans can be blocked by service providers,
which reduces efficiency of the scanning over time. Additionally, the methodology
could not find resolvers that require domain names (in SNI or HTTP headers)
for successful connection. Given that, the methodology described does not pro-
duce an exhaustive list of DoH servers. Accounting for these considerations, we
say that the amount of DoH servers found in this work can be interpreted as a
lower bound.

The IP address enrichment mainly includes information from commercial
databases and freely available information found on the servers. The DNS server
version was extracted using non-standard DNS requests. Therefore, the results
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Table 1. Summary of well-known DoH resolvers in the Known2021 and Known2022
lists.

Known2021 Known2022 Intersection Increase

Total Unique Servers UP 234 262 157 11.9%

Total Unique IPv4 Servers 131 144 86 9.9%

Total Unique IPv6 Servers 103 118 78 14.5%

Unique Autonomous Systems 52 59 42 13.4%

Unique Domain Names 110 109 67 −0.1%

showing the DNS server version only include a fraction of found resolvers able
to answer those requests.

Given that the number of organisations was inferred using second-level
domain names, and that these names can be shared across virtual servers hosted
by the same cloud provider, this number should also be considered a lower bound.

5 Results

This section shows the results of the Scan2021 and Scan2022 lists, and a com-
parison of these results with the well-known lists of DoH resolvers. Then, the
estimated number of organisations that provide DoH resolution services is pre-
sented. Finally, the results of the threat intelligence feeds associated with the
DoH resolvers are shown.

5.1 Results of Creating Well-Known DoH Resolvers Lists

Regarding the creation of DoH resolver lists that are well known by the commu-
nity, Table 1 shows a summary of the main differences. The total number of well-
known DoH resolvers between 2021 and 2022 increased by ∼12%. From the DoH
resolvers found in 2021, only ∼67% remained active in 2022 (157 IP addresses
from 234 IP addresses). In 2022 there was a ∼10% increase of IPv4 addresses,
with ∼65% of them appearing in 2021 and 2022. This means that ∼35% of
the IPv4 addresses of well-known DoH providers disappeared in 2022. Similarly,
there was an increase of ∼13.4% of unique ASNs, and a ∼14.5% increase in the
number of unique IPv6 addresses in 2022.

The number of unique domain names slightly decreased due to the different
methodology of their collection. Contrary to the well-known DoH resolver list
of 2021, the 2022 list does not contain domain names acquired by reverse DNS
queries (PTR) as discussed in Sect. 4.1.

5.2 Results of DoH Scans

The port scan of 2021 found 41,022,969 IP addresses with port 443/TCP open
on the Internet. Of these, 930 were verified to be actual DoH resolvers. Given
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Table 2. Features of IP addresses of the discovered DoH resolvers.

Feature Scan2021 Scan2022

Total number of unique IP addresses 930 (100%) 4,354 (100%)

IP addresses with domains 679 (73%) 4,197 (96%)

IP addresses without domains 251 (27%) 149 (3%)

Unique SLD 171 657

Unique /16 prefixes∗ 115 39

Unique Autonomous System∗ 72 27

Estimated number of unique providers 243–286 684–696
∗ Number calculated only from IP addresses for which we could not

obtain domain name.

that this scan used a set of aggressive Nmap parameters, thus reducing its effi-
ciency, this number of DoH resolvers could be underestimated. See Sect. 8.2 for
a description. Given our tests, it can be concluded that the number of DoH
resolvers in April 2021 was actually between 1,173 and 1,241. Our Scan2021 list
contains 930 IP addresses.

In 2022, the port scan found a total of 36,035,492 IP addresses with port
443/TCP open, which represents 87.84% of the IPs found during 2021. We
attribute the smaller amount of IPs to the large variability in Internet scans
(packet loss, bandwidth differences, geolocation filters, etc.) and not to an actual
decrease of the amount of computers with port 443/TCP open. The number of
verified IP addresses of DoH resolvers found during 2022 and contained in the
Scan2022 list is 4,354. This number is ∼4.8 times larger than the amount of DoH
resolvers of Scan2021.

Table 2 summarises the total number of resolvers discovered in both scans.
In Scan2022, we found 4 times more unique IP addresses of DoH resolvers than
during Scan2021. Even if the decreased efficiency of Scan2021 during the ser-
vice discovery stage is taken into account, the difference in the discovered DoH
resolvers with Scan2022 is statistically significant with p-value < 0.01. This result
is based on a standard two sample one side T-Test for the mean of a distribution
[38], and can be interpreted as a true increase in the effective number of public
DoH resolvers.

Moreover, the number of organisations providing DoH resolution services
in April 2022 is 2.5 times larger than in April 2021. Figure 1a shows that 474
DoH resolvers were found in both scans. However, almost half of the verified
DoH resolvers found in Scan2021 were not found in Scan2022. Given that our
methodology deals with the number of servers and does not track the DoH
resolvers individually, we don’t know if this DoH resolvers have been moved to
another IP address or ceased operations. On the other hand, the decrease in
the number of unique /16 prefixes can be explained by a slight increase in the
efficiency of the IP enrichment process.

5.3 Comparison Between the Well-Known and DoH Scan Lists

The distribution of the DoH resolver IP addresses across all lists is shown in
Sub-Figure 1b. Reading the figure from top to bottom, we find that 40 addresses
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(a) Comparison between
first and second scan

(b) Comparison with Well-
known lists

Fig. 1. Venn diagrams of DoH resolver IP addresses distribution.

Table 3. Results of SNI Verification for finding DoH resolvers

Connected by Successful Successful %

Domain Name 93 100%

IP address 66 71%

are only present in the Known2021 list, 35 only in the Known2022 list, and
28 in both. None of these addresses was found in the Scan2021 or Scan2022.
Meanwhile, five IP addresses present in the Known2021 list were only seen in
that list, and 12 IPs present in the Known2022 list were only seen in that same
list. From all IP addresses present in both well-known lists, 11 were found only
during Scan2021, 30 only during Scan2022, and 17 were found during both scans.
A total of 434 IP addresses were only found in Scan2021, 3,838 were only found
in Scan2022, and 474 were present in both scans. But 452 of these IP addresses
were not present in any of the well-known lists. Most DoH resolver IP addresses
did not appear on any of the well-known lists. However, the well-known lists are
evolving. There are 11 servers that were in Scan2021, which were not present in
the Known2021 list but are included in the Known2022 list. However, only five
of these servers appear to be still active on the Scan2022. The rest may have
been moved to another address or stopped operations.

5.4 Results of the SNI Verification

The results of the SNI verification are shown in Table 3. In the Known2022 list of
DoH resolvers, there are only 93 that have a domain and an IPv4 address. It can
be seen that of those 93, around 30% of the well-known DoH resolvers require an
SNI or HTTP header to work successfully. This means that our Scan2021 and
Scan2022 of DoH resolvers are a lower bound, and theoretically there could be
at least 30% more DoH resolvers on the Internet. It should also be considered
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(a) HTTP version sup-
port in Scan2021

(b) HTTP version sup-
port in Scan2022

Fig. 2. Venn diagrams of HTTP version support across DoH resolvers.

(a) DoH methods support in
Scan2021

(b) DoH methods support in
Scan2022

Fig. 3. Venn diagrams of supported methods across DoH resolvers.

that this test was performed on well-known resolvers, in which the use of an SNI
may be different from others.

5.5 Capabilities of the DoH Resolvers Found

Since we have queried each DoH resolver multiple times, we can analyse the
methods supported by the DoH resolvers. Figure 2 shows the HTTP version
support. It can be seen that most DoH resolvers on both scans support both
HTTP versions. In the 2022 scan, we notice an increased share of HTTP/2-only
or HTTP/1-only resolvers with respect to the total.

The methods supported in the DoH resolvers are shown in Fig. 3. Most
resolvers support the RFC 8484 compliant versions. Some resolvers support only
DoH-GET or only DoH-POST, even though the RFC 8484 specifies that the
resolver must implement both methods. The IP addresses of those DoH resolvers
supporting only DoH-GET are the same in both scans. The JSON approach is
supported by around one-third of all resolvers. None of the resolvers supports
the JSON approach exclusively.
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Table 4. DNS software identification of found DoH resolvers in Scan2022

Name # % Name # %

a) empty 113 26.0 g) AkamaiVantioCacheServe 10 2.3

b) Unbound 88 20.2 h) Q9 8 1.8

c) PowerDNS 77 17.7 i) NominumVantioCacheServe 8 1.8

d) unknown 68 15.6 j) SDNS 1 0.2

e) Bind 48 11.0 k) I-Evolve DNS 1 0.2

f) Dnsmasq 13 3.0

Table 5. Share of DoH provider categories

Name # % Name # % Name # %

a) unknown 280 41.9 e) other 24 3.5 i) security 16 2.3

b) DNS/ISP/Cloud 145 21.7 f) finance 22 3.2 j) government 11 1.6

c) personal webpage 92 13.7 g) software-provider 18 2.6 k) privacy 10 1.5

d) industry&business 34 5.1 h) education 16 2.3

5.6 DNS Server Identification

Table 4 shows the results of the DNS software identification for all the DoH
resolvers that answered the specialized version query correctly (only 435 or 10%).
However, most of them replied with an empty string response. The Scan2022
IP addresses were also queried using traditional unencrypted DNS over port
53/UDP. We used nslookup software to query the Google.com address with a
10 s timeout and from 4,354 only 1,176 (∼27%) resolvers supported legacy DNS.
We repeated the test three times with similar results.

5.7 Who Operates the DoH Resolvers

A total of 657 unique domain names from TLS certificates were analysed to find
out who is offering the DoH resolution services. At first, we tried to use the
domain classification service NetStar [31], however, only a negligible portion of
domain names were classified. Therefore, we visited each of them manually via
the web browser and classified domain names into one of 11 categories: DNS/IS-
P/Cloud—DNS providers, Internet service providers, hosting providers and
cloud providers; industry&business— manufactures, e-shops, and other types
of trade business; finance—banks, investment advisers, and insurance compa-
nies; software-provider—companies providing software development services;
education—universities, research institutes, and libraries; security—computer
security companies; government—governments and governmental organisa-
tions; privacy—companies that focus on privacy such as VPN providers and
privacy enhancement software; personal webpage—domain names hosting per-
sonal web site portfolio or personal blogs; other—companies and institutions
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Table 6. Share of TLS certification authorities across the found DoH resolvers in
Scan2022. CA stands for Certification Authority, IIJ stands for Internet Initiative
Japan Inc., ERDC stands for Engineer Research and Development Centre

CA Name # % CA Name # % CA Name # %

a) Let’s Encrypt 1,703 39.1 d) Blue Coat 106 2.4 g) IIJ 63 1.4

b) ZeroSSL 1,654 38.0 e) Sectigo ltd 103 2.3 h) WoTrus CA ltd 36 0.8

c) other 545 12.5 f) Apple Inc. 100 2.3 i) ERDC 36 0.8

that did not fall into any other category; and unknown—domain names did
not host website, or that could not be categorised it.

The share of each category among DoH providers is shown in Table 5. We
were not able to categorise most of the resolvers. The web page hosted on these
resolvers could not identify the owner of the website, or the server did not serve
web pages. When the web server responds with a web page, it usually shows
a login page. Around 20% of the domain names in the category “unknown”
showed a log-in page on AdGuard Home DNS resolver. Two of the servers were
misconfigured and showed a directory structure of private project files.

For identification, we did not use information directly from the domain
names. Although some domain names suggested that the server is operated
by an individual, we also categorised it into the “unknown” category since
we could not verify it. For most domain names, we could not even estimate
the owner, since sometimes they seemed to be randomly generated, such as
hhgasdygqwueysbjadasghds.com or kasldjflkasdjf.xyz.

The second most common category is DNS/ISP/Cloud providers, which offer
DoH. A significant share of these companies might be expected since these com-
panies usually provide DNS resolution as part of their services. The third most
common category is private web pages. Individuals operate these resolvers, and
the website usually contains the portfolio of a freelance software developer, or it
was a personal blog.

5.8 TLS Certificate Analysis

We analyse the TLS certificate data of found DoH resolvers in the Scan2022. The
share of certificate authorities is written in Table 6. The most common certifica-
tion authorities across found resolvers are Let’s Encrypt and ZeroSSL. Most of
the DoH resolvers provided valid and trusted certificates. We found 193 (4̃.5%)
IP addresses with expired certificates. More than 57% of those expired certifi-
cates were certified by the Let’s Encrypt Certification Authority. The expiration
date of the invalid certificates was mainly 2021 and 2022 (in 81% of the cases).
The certificates of 5 resolvers expired before the DoH standardisation in 2018.
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5.9 Threat Intelligence Results

From the 4,354 IP addresses in the Scan2022 list surveyed with threat intelligence
tools, 1,502 are considered suspicious for phishing according to the Avast Web
Shield tool. This, does not mean that the IPs are malicious, but that they were
associated to phishing activities during the studied period 2021–2022. Moreover,
105 of these addresses contain at least one reference to a site that the VirusTotal
service considers to be malicious. VirusTotal also found 27 of them were used as
a source of downloaded malware samples, that is they directly hosted malware.

6 Discussions on the Results

The results presented in the previous section confirm that the deployment of
public DoH resolvers is increasing. The number of well-known resolvers in 2022
increased by 12% compared to 2021. However, only 67% of the well-known DoH
resolvers in 2021 remained active in 2022.

A similar phenomenon is observed with the results of Scan2021 and Scan2022,
where only 9.8% of the IPv4 addresses were found in both scans. A possible expla-
nation for this discrepancy is that the missing servers were for testing purposes
and, as such, have been moved to a definitive address or stopped operations.
Furthermore, 88% of the DoH resolvers found in Scan2022 were not previously
seen by any list, nor Known2021, Known2022, or Scan2021.

Approximately 55% of the well-known DoH resolvers in 2022 were not found
in the Scan2022 performed in January 2022. This suggests that the combination
of errors in finding open port 443/TCP on the Internet and the rate at which
the DoH resolvers are added is enough for our methodology to miss half of them.

The fact that so many DoH resolvers could not be found one year later and
that the number of DoH resolvers is increasing speaks of a great dynamism
and casts doubts about the effectiveness of these kind of lists for filtering DoH
resolvers or blocking them.

By comparing the results of the HTTP versions supported by the discovered
resolvers of the two scans, as shown in Fig. 2, there were some changes in the
support of the HTTP version. There is a decrease in the percentage of DoH
resolvers that support both HTTP/1 and HTTP/2; however, we can also see an
increase in HTTP/1 only resolvers, even though the RFC does not recommend
it due to performance reasons.

Only 21% of the DoH resolvers found in Scan2022 belong to DNS/ISP/cloud
providers, while 44.6% belong to unknown organisations, and 12.7% belong to
personal web pages. Almost 35% of the IP addresses found in our study present
indicators related to phishing campaigns, and 27 of 4,354 IPs were a source of
malware. We expect the domain resolution service to be under constant security
reviews, either if it is unencrypted through standard DNS or encrypted using
DoH or some other protocols. The occurrence of DoH resolvers’ IP addresses
associated with malware or phishing shows that users’ security and privacy could
be already at risk or that these resolvers are misused for malicious purposes.



160 S. Garćıa et al.

Leaving aside which of those groups can be considered trusted DoH resolvers,
77.3% of the certificates of DoH providers in Scan2022 were given by free services
such as Let’s Encrypt. This heterogeneity gave space for threat actors to hide
and abuse DoH in ways that we will discover in the future.

The impact of widespread use of DoH by threat actors is still a matter of
debate. DoH could be used with malicious intentions ranging from bypassing
DNS filters, to use known DNS techniques for command and control and exfil-
tration, but with encrypted capacity. A very shallow treat intelligence analysis
showed signs of malicious activities in a small, yet considerable percentage of the
servers. Even if the question of which kind of malware is using DoH for commu-
nication or is hosted in DoH resolvers was not addressed in this work, the list of
public DoH resolvers found could help the community to spot existing threats.

7 Conclusion

The choice of a particular DoH resolver can have an impact on the privacy and
security of the user and the security policy of administrators. It can allow users
to evade filters, censorship and surveillance; but then again it can deny security
tools the opportunity to protect users, while proving threat actors a better tools
to cover their tracks.

We studied the deployment of DoH on the Internet and evaluated their char-
acteristics to answer: is the number of DoH resolvers growing? and who is imple-
menting them?

This research is a longitudinal analysis (2021, 2022) studying the number of
DoH resolvers on the Internet, how they implement DoH and their features as
organisations.

Results show that there are at least 59% more DoH resolvers on the Inter-
net in April 2022 than in April 2021, showing that the number of public DoH
resolvers is growing. There are ∼28 times more public DoH resolvers on the
Internet than those well-known in the community in April 2022. More than 95%
of the resolvers found were unknown to the community and ∼30% were found
to be suspicious.

The current practise to block DoH traffic is based on blocklists of IP addresses
or SNI (e.g., Sophos [36] products). The blocklist of well-known DoH providers
in April 2022 is slightly larger than the one from 2021, with a small intersec-
tion between them (28%). But we expect the lists to grow in the future, since
there are many organisations trying the technology and developing new services.
Measurements show that the number of unknown resolvers on the Internet and
their rate of change are large enough to assume that the efficiency of blocklists
could be very low, especially when someone intentionally wants to avoid the
block. Thus, further studies are required to prevent breaches of security policies,
malware abuse, or DoH data exfiltration.

The discovery of DoH resolvers linked to suspicious or malicious activities
should put the information security community in alert, to better study and
understand the threats posed by these resolvers.
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From the user’s privacy and security point of view, the selection of the DoH
resolver is important, but it depends on the threat model of the user. While
for most users a local DoH resolver may suffice, users in countries with Inter-
net surveillance policies may prefer a third-party DoH resolver. However, these
users will need to make the choice carefully, taking into account the organisa-
tion providing the service, the centralisation and surveillance by the third-party,
the performance, and the possibility that the DoH resolver may be related to
malicious activities. Moreover, as the DoH service is now controlled by applica-
tions, users can lack the ability to choose which DoH resolver to use, effectively
bypassing any local protection based on filters implemented at the network level.

By knowing the population, distribution and characteristics of the public
DoH resolvers on the Internet, we are better prepared to face the challenges of
these new technologies.
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8 Appendix

8.1 Ethical Considerations

Part of our research involved technical actions that require an ethical explanation
and support.

Horizontal Port Scanning. of the Internet has many implications. Although
in general considered an ethical practice [23], we analyse the implications of
our actions. First, our horizontal port scan sent 3 packets per port to each IP
address with a rate limit. This amount of packets is not enough to consume the
bandwidth of any device, nor to force errors in the services, especially since our
scan did not close the TCP handshake. Therefore, the technical risk of errors
or problems in devices due to our scan is negligible. Higher rates of scanning or
frequency of the scans, i.e. weekly scans can pose some threat to some services
availability, and thus we limited the methodology accordingly. Some honeypot
devices on the Internet detected our scan and report the source IP as an attacker;
however, since the IP address was not really attacking, there was an impact of
having the IP in block lists for some days.

The action of verifying the DoH protocol required us to connect to all ports
443/TCP and try to find out if they spoke DoH or not. It required the request
for the TLS protocol handshake and then the DoH protocol. We measure the
technical impact by testing our Nmap script against our own servers, and no
server was impacted by our script, was taken down, or slowed in any way. We
consider the script safe and with very low impact. The script made 6 connections
in total to each server.



162 S. Garćıa et al.

The action of analysing DoH resolvers implied a more thorough analysis of
the responses and information found about this server on the Internet. We only
performed this action with the few (order of thousands) found DoH resolvers
and we continually verified that they were not affected by our DNS requests.

We consider our techniques to have very low impact on the servers scanned
and without reason to suspect that our actions affected the servers contacted in
any way.

Publishing the List of DoH Resolvers. can significantly impact the citi-
zens of oppressive countries that use DoH to avoid surveillance or access censored
websites from the free world. The oppressive government can misuse two out-
comes of our research: 1) the list of DoH resolvers can be used for DoH blocking
to enforce DNS surveillance and censorship, and 2) the methodology for creation
and updates of such a list.

Nevertheless, as shown in our research, the IP addresses of DoH resolvers con-
stantly change, making the efficiency of IP-based filtering limited as discussed in
the Sect. 7. Regardless of the described methodology, we argue that the method-
ology presented in this work is not novel nor technically complex, and uses of the
freely available tools. An oppressive regime interested in DoH blocking already
could have its own DoH scanning and detection infrastructure.

Besides, DoH does not entirely bypass mass censorship or surveillance. For
example, domain names transferred in TLS SNI are still visible and used by
large censorship systems [6]. Therefore citizens living under an oppressive regime
still need to use other privacy-preserving technologies such as Virtual Private
Networks to avoid censorship.

Given that, we do not consider our research would contribute to oppression
by authoritarian countries or decrease the Internet privacy. Instead, our study
provides essential findings about DoH resolvers worldwide and points out security
concerns arising from anonymous DoH resolvers.

8.2 Nmap Configuration

The Scan2021 used Nmap insane timing template and 1 maximum number of
retries, to minimise scanning time.

nmap -n -iL data/ips.txt -v -T 5 --max-retries 1 -d -Pn -p443

--script=/data/dns-doh-check

The Scan2022 used Nmap normal timing template to minimise the number of
packets lost.

nmap -n -iL data/ips.txt -v -d -Pn -p443 --script=/data/dns-doh-check

See Nmap timing templates for detailed timeout information of each mode.
https://nmap.org/book/performance-timing-templates.html.

https://nmap.org/book/performance-timing-templates.html
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Abstract. Uniform Resource Locators (URLs) are integral to the Web
and have existed for nearly three decades. Yet URL parsing differs subtly
among parser implementations, leading to ambiguity that can be abused
by attackers. We measure agreement between widely-used URL parsers
and find that each has made design decisions that deviate from parsing
standards, creating a fractured implementation space where assumptions
of uniform interpretation are unreliable. In some cases, deviations are
severe enough that clients using different parsers will make requests to
different hosts based on a single, “equivocal” URL. We systematize the
thousands of differences we observed into seven pitfalls in URL parsing
that application developers should beware of. We demonstrate that this
ambiguity can be weaponized through misdirection attacks that evade
the Google Safe Browsing and VirusTotal URL classifiers. URL parsing
libraries have made a tradeoff to favor permissiveness over strict stan-
dards adherence. We hope this work will motivate the systemic adoption
of a more unified URL parsing standard–enabling a more secure Web.

Keywords: URL · Parsing ambiguity · Web security

1 Introduction

Uniform Resource Locators (URLs) play a crucial role in the Internet, originating
in the early 1990’s as a standardized addressing and parameterization system for
the Web [21,40]. Since then, URLs have been overhauled to clarify their syntax
with relation to relative locators [32], IPv6 addresses [33], Punycode for non-
ascii hostnames [25], and the broader notion of a Uniform Resource Identifier
(URI) [18–20,27] Further, the Web Hypertext Application Technology Working
Group (WHATWG), a consortium of major Web browser vendors, has defined
its own “living” URL standard [7]. Unfortunately, adherence to these standards
has not been strict, leading to inconsistencies across implementations.
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Attackers have taken note of these inconsistencies and increasingly abuse
URL parsing differences [9,35,42,46,55–57,59]. In these exploits, attackers were
able to trigger application-layer and network-layer vulnerabilities with URLs
parsing to a legitimate resource for one parser (e.g., a URL security classifier,
a server endpoint) but a malicious resource for their victim (e.g., a browser, a
server-side cache, etc.).

https://username:pw@example.com:443/path/to.file?this=query#fragment

Scheme

UserInfo

Hostname

Port

Path

Query

Fragment

Fig. 1. URL Syntactic Elements URLs use delimiters between each syntactic ele-
ment. We find that URL parsers handle illegal characters and delimiters differently,
yielding inconsistent results.

While anecdotal demonstrations of these “equivocal” URLs have appeared
in industry reports, to date there has not been a systematic study of the root
cause of this problem – inconsistent implementation of URL parsing. In this
work, we measure the implementation space of URL parsing by analyzing the
behavior of fifteen URL parsers. We focus on ambiguities in hostnames because
of their potential impact at the network layer – sending clients with different
URL parsers to completely different network locations. We generate and test
thousands of fuzzing inputs to compare the level of agreement among parsers.
Unfortunately, we find that disagreement is widespread, with little consensus on
how to handle edge-case URLs. We then categorize the error sources that cause
some URLs to only be parsable by certain parsers – or, worse, URLs that yield
differing DNS-compliant hostnames for different parsers. We systematize these
error sources into seven hostname equivocation pitfalls.

To highlight the security implications of URL hostname equivocation, we go
on to demonstrate how newly-discovered errors can allow equivocal URLs to
evade URL classification. In contrast to prior work that has exclusively targeted
server-side parsing errors at the application layer, we demonstrate that client-
side URL security classifiers are also vulnerable. Specifically, we demonstrate that
URLs with ambiguous hostnames can trick the popular Google Safe Browsing and
VirusTotal URL classifiers into issuing an incorrect threat classification.

Fixing these inconsistencies among parsers would require community-wide
agreement on a parsing standard whose strict implementation would be a break-
ing change. We perform preliminary measurements demonstrating the real-world
compatibility incentive for URL parsers to avoid strict standardization in favor
of being as permissive as possible in what they accept. We hope this work moti-
vates the systemic adoption of a more unified URL parsing standard.
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2 Related Work

URLs are composed of syntactic sections separated by delimiters. Figure 1 shows
the syntactic segments that make up a URL. We focus in this work only on
absolute URLs using the HTTP and HTTPS Schemes [3]. Following the scheme
is the optional UserInfo section, a Hostname or IP address, and an optional TCP
Port. The Path commonly reflects a hierarchical naming system within a Web
domain. Queries can carry parameters, between which “&” and “;” are suggested
as delimiters. Finally, Fragments are not sent in HTTP(S) requests, but indicate
a specific location within a resource. A ‘%’ followed by two hexadecimal digits
can encode an octet otherwise forbidden in paths, queries, or fragments.

Driven by the need for interoperability with the Web, today there exists a
broad ecosystem of URL parsing implementations. URL parsing libraries are
standard issue with major programming languages. Further, various web clients,
command line utilities, and web servers all implement their own URL parsers.
The security of the Web depends, in part, on the basic assumption that all of
these parsers will resolve a given URL in the same way.

2.1 Exploiting Human Misinterpretation of URLs

URLs can be made misleading to users, who fall prey to attacks like phishing.
When users misunderstand the guarantees of HTTPS [10,29–31,43,53], fail to
observe the Fully Qualified Domain Name (FQDN) of a URL [13,26,58], or are
unable to parse a URL [11,49], attackers may convince them to reveal secrets
by impersonating a legitimate organization. Phishing has been widely studied,
and a host of mitigations have been designed to protect users from falling victim
to these attacks. These include automatically phishing URL classifiers [12,14,
15,34,41,47,50,50,61], phishing detection [44,52], user education [22,37–39,51],
and improved user interfaces [10,11,29–31,44,49,53].

2.2 Exploiting Machines’ Inconsistent URL Parsing

Unfortunately, phishing-like URL misinterpretations can also occur in software.
URL parsing differences gained widespread attention in 2009 following Carretoni
and di Paola’s demonstration of HTTP Parameter Pollution attacks [24]. This
attack abused differences in the parsing of URL query parameters between end-
points and security mechanisms, enabling attackers to bypass input filtering and
sanitization checks. Subsequent prior works developed tools to automatically
detect HTTP parameter pollution vulnerabilities in websites [16,17,23]. While
query parameter parsing differences can have serious implications for application-
layer security, they cannot affect the authenticity of the web server; in contrast,
we demonstrate that hostname parsing differences enable equivocation about
web server identity. Further, as we will show in this work, lessons learned from
parameter parsing attacks have not been applied to ambiguities URL hostname
parsing.
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More recently, several Blackhat talks and Common Vulnerabilities and Expo-
sures (CVEs) have leveraged URL parsing ambiguity to perform server-side
attacks. Tsai showed how inconsistent strategies for normalizing paths containing
“../” allowed access to forbidden resources when combined with the ill-defined
syntax for URL path parameters [57]. A bug in the Google Chrome browser on
iOS in 2018 allowed websites to use the HTML 5 history API to change the
origin of the tab and run in other Web origins [55]. Wang et al. showed they
could misdirect OAuth redirections and evade allowlist filters using URL parsing
discrepancies [59]. Kettle used the fact that browsers accept both backslashes
and forward slashes as path delimiters to convince websites to poison their own
HTML cache entries [35]. Ahmed reported a similar error in an Node package in
CVE-2018-3774 [9]. Tsai and Leitschuh both used URL parsing ambiguities to
trick server-side middleboxes to forward protocol-smuggled requests to resources
they should not have been able to contact. [42,56] Muñoz and Tsai reported
parsing errors to curl which were patched [46,56]. While these exploits provide
anecdotal evidence of individual parsing problems, in this work we systemati-
cally explore the ecosystem of URL parsing ambiguities, testing many parsers to
create a catalog of inconsistencies that point to a systemic issue in the ecosys-
tem. Further differentiating us from prior work, we are the first to demonstrate
that such attacks are possible on client-side URL classifiers, directly enabling
enabling user attacks like phishing.

3 Methodology

To date, URL parsing exploits have been reported in the context of specific
vulnerabilities and parsing implementations, but it is not clear to what extent
inconsistencies in URL parsing are widespread. To gain a more comprehensive
understanding of the ecosystem, we consider a diverse set of fifteen parsers that
span standard libraries, web servers, and command line tools. Parsers were drawn
from libraries written in popular languages (Java, Go, Ruby, JavaScript, Python,
PHP, Perl, C/C++), tools (wget, curl), and web servers (Apache, NGINX); a
complete description of these parsers can be found in Table 4 of Appendix A.

3.1 “Ground Truth” Reference Parsers

An important first step in our analysis is to establish a reasonable baseline for
how parsers should behave. Naturally, one such baseline should be RFC 3986 [20]
that defines the syntax for uniform resource identifiers (URIs), of which URLs
are a subset. RFC 3986 provides a formal grammar, but not an implementation,
so we used the grammar to create our own reference implementation for absolute
URL parsing in Python3. We note that RFC 3986 rejects non-ASCII input and
expects any disallowed bytes to be properly escaped following to the procedure
in RFC 3987 [27].

In contrast, an equally valid baseline to consider is how major web software
vendors handle URLs in their day-to-day experience, including URLs with non-
ASCII characters. For such a baseline, we look to the WHATWG’s “living” URL
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standard [7] informed by browsers day-to-day interaction with non-ACII URLs.
WHATWG implicitly defines a standard for URL parsing by releasing a parsing
algorithm along with a reference implementation of their parsing algorithm in
JavaScript. We include this as our second reference parser.

3.2 Test Input Enumeration

For each of the fifteen parsers, we then applied a large set of URL test inputs and
recorded each parser’s response. We focus specifically on parsing discrepancies in
the hostname field. To do so, we started with a completely valid URL containing
a hostname that was consistently parsed across all implementations. We then
applied three mutually exclusive sets of mutations to this URL to enumerate a
large corpus of test inputs. Each mutation inserts one to four bytes in the middle
of the hostname field, as described below. Rather than using random fuzzing, we
iterated over these sets in their entirety, resulting in a total of 98,425 test cases.

P1. The first input set inserted every possible octet from 0–255, which includes
all standard ASCII codes (0–127) and extended ASCII codes (128–255). This
test set probes parsers’ permissiveness of invalid input as well as handling of
duplicate delimiters.

P2. The second input inserted all 65,536 possible combinations of two octets.
This test set included edge cases such as valid unicode characters, multiple delim-
iters, and unmatched UTF-16 surrogate pairs.

P3. The third input set inserted each of the 32,634 valid Unicode code points
listed in the Unicode Data list of the Unicode Character Database [6]. Each valid
unicode character is a minimum of three bytes when encoded with UTF-8. This
test set exhaustively probes parsers’ handling of unicode characters.

Along with different parsing logic, our test parsers were also written in a
variety of languages and software environments with different implementations
of character strings, file I/O, etc. For each parser’s testing apparatus, we took
great care to ensure that the core parsing logic handled the exact same bytes
for each test input. Mostly, this entailed paying close attention to how different
string data types might apply automatic character conversions, although we
note that in practice these differences are another potential source of parsing
ambiguity. For two parsers we were forced to cast our payload URLs into string
types that cannot hold arbitrary bytes to be compatible with the library. We
have noted this conversion in our full parser list in Table 4 of Appendix A.

4 Results

We now report on the results of our analysis in terms of agreement between
parsers on each of the test inputs. We consider two axes of agreement – con-
sistency with the reference parsers, and overall consistency across all fifteen
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parsers – for the UserInfo, Host, Path, Query, and Fragment segments of each
test input. To ensure a conservative analysis, we adopt a generous definition
of what it means for two parsers to agree on a URL’s parse. If both parsers
rejected the URL with an error, we consider this as agreement regardless of
whether the same error is thrown. We also ignore whether the parser spuriously
included the preceding delimiter as part of each syntactic segment (e.g., the ‘/’
in ‘‘/index.html’’ or the ‘?’ in ‘‘?id=0&pg=42’’). Because DNS is not
case-sensitive, we also ignore hostname case in the parser output.

Table 1. Agreement with RFC 3986 Parser We show agreement with our RFC
reference parser across URLs perturbed by input sets P1, P2,and P3 as well as overall.
Parsers are sorted by their overall agreement with the standards of RFC 3986. Ruby
and PHP follow the RFC with a high degree of consistency, but the other parsers are
clearly not matching RFC 3986’s grammar.

Parser Overall P1 (256) P2 (65,536) P3 (32,635)

rfc3986 100.0% 100.0% 100.0% 100.0%

Ruby uri 99.95% 100.0% 99.93% 100.0%

PHP parse url 97.79% 94.14% 96.7% 100.0%

Python3 urllib.urlparse 90.67% 82.81% 86.06% 100.0%

WHATWG NodeJS 59.74% 83.2% 83.73% 11.38%

Python3 furl 51.62% 51.95% 75.89% 2.88%

Golang goware/urlx 30.08% 44.92% 45.01% 0.0%

Java.net.URI 28.74% 49.61% 42.94% 0.05%

Golang net/url 26.61% 47.66% 39.78% 0.0%

libcurl4-openssl 23.19% 44.92% 34.66% 0.0%

wget 22.61% 44.53% 33.78% 0.0%

nginx 7.44% 32.03% 11.05% 0.0%

Apache Portable Runtime 7.2% 32.03% 10.69% 0.0%

Perl URI 6.68% 31.64% 9.92% 0.0%

NodeJS Legacy 4.94% 26.95% 7.32% 0.0%

4.1 Disagreement with Reference Parsers

After testing each parser on all test inputs, we then sorted them by their level
of agreement with each of the reference parsers. Agreement with RFC 3986 is
given in Table 1. Only three of the parsers are often in agreement with the RFC
– Ruby URI (99.9%), PHP’s filter var() plus parse url() functions (97.79%), and
Python3’s urllib.urlparse (90.67%). However, even among these high-agreement
parsers, we observed differences on how strict or lenient they were on certain
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inputs. For example, Ruby URI allows some octets outside the permitted char-
acter set such as low ASCII bytes in the query string. PHP was sometimes more
strict and rejects some hostnames that could not be used with the DNS but
are allowed by RFC 3986 containing characters like tilde and asterisk. However,
PHP does allow a fragment to contain another illegal # delimiter. Python3 was
more lenient, parsing URLs with illegal low ASCII bytes like 0× 10 (newline) in
the hostname.

The WHATWG reference parser agreed with RFC 3986 just 59.74% of the
time, while the remaining ten parsers agreement ranges from 51.62% (Python3
furl) to as low as 4.94% (NodeJS Legacy). Differences arise from these parsers
choosing to escape unicode characters in URLs before parsing them. The way
each of these parsers “fixes” these otherwise invalid URLs ranges from subtly to
dramatically inconsistent with RFC 3987 [27].

Table 2. Agreement with WHATWG Parser We show agreement with the
WHATWG reference parser across URLs perturbed by input sets P1, P2,and P3 as
well as overall. Not only are parsers not following RFC 3986, they are also not following
the WHATWG’s alternative parsing algorithm that handles international characters in
URLs. The WHATWG parsing algorithm disagrees with most of these tested parsers
most of the time.

Parser Overall P1 (256) P2 (65,536) P3 (32,635)

WHATWG NodeJS 100.0% 100.0% 100.0% 100.0%

Python3 urllib.urlparse 66.95% 97.27% 94.51% 11.38%

PHP parse url 58.09% 78.91% 81.27% 11.38%

Ruby uri 59.78% 83.2% 83.8% 11.38%

rfc3986 59.74% 83.2% 83.73% 11.38%

Python3 furl 49.77% 51.56% 73.11% 2.88%

NodeJS Legacy 36.1% 27.73% 9.98% 88.62%

Golang goware/urlx 21.67% 28.91% 32.11% 0.64%

Java.net.URI 19.9% 32.81% 29.42% 0.69%

Golang net/url 19.19% 33.98% 28.36% 0.64%

libcurl4-openssl 17.92% 35.55% 26.46% 0.64%

wget 17.57% 35.16% 25.93% 0.64%

nginx 15.19% 46.09% 22.32% 0.64%

Apache Portable Runtime 15.17% 46.48% 22.28% 0.64%

Perl URI 14.58% 46.09% 21.72% 0.0%

The WHATWG standard aims to both “align” and “obsolete” RFC 3986 and
RFC 3987 [7], but other parsers do not seem to be following this lead. Agreement
with the WHATWG parser is given in Table 2. Overall, the test parsers agreed
more often with the older RFC than with the WHATWG’s living standard.
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In fact, the RFC 3986 parser and the three high-agreement parsers from the
previous test again boast the highest agreement with WHATWG.

Parsers are not following the WHATWG standard when handling Unicode.
Recall that the P3 set tests parsers handling of UTF-8 encoded Unicode char-
acters. Interestingly, even though one of the goals of the WHATWG parser is
to standardize handling of non-ASCII URLs, agreement on the P3 input set is
very poor. In fact, with the exception of NodeJS Legacy (88.62%), most pars-
ing agreement on P3 only negligibly improves with WHATWG over RFC 3986,
which does not support Unicode at all.

Fig. 2. Pairwise Agreement Among Tested URL Parsers Intersections of parsers
are shaded according to their overall agreement on a linear gradient from white (0%
agreement) to black (100% agreement). Having grouped agreeing parsers, but we
present two dark clusters of high correlation. One is centered around RFC 3986 and
the other included Java, Golang, libcurl4, NGINX, Apache, and wget. The Furl, Perl,
NodeJS Legacy, and WHATWG parsers do not closely match any other tested parser.

4.2 Disagreement Among All Parsers

Since the parsers do not consistently follow either reference implementation, it
may be the case that parsing behavior is dictated by some other hidden standard
or common practice. This would explain the Table 2 results in which many
parsers disagree with the WHATWG parser at a very similar rate for the P3 test
set (0.64% agreement). To investigate, we next calculated the pairwise agreement
between each of the fifteen parsers for the combined test set of 98,445 URLs.
This resulted in a total of 105 agreement calculations for each of the unique
parser pairings.

We illustrate the agreement among all these pairs in Fig. 2, with darker shad-
ing indicating more agreement and lighter shading indicating less agreement. The
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two dark triangles towards the bottom of the figure indicate two families of simi-
larly behaving parsers. To the right-hand side, it can be seen that Ruby, Python3
urllib.urlparse, and PHP strictly adhere the RFC 3986 reference parser. The clus-
ter to the left-hand side consists of Java.net.URI, the Golang parsers, NGINX,
Apache, wget, and libcurl4. Like the first cluster, their agreement is not perfect,
but is highly similar. Upon investigation, this cluster behaves differently from
RFC 3986 because it accepts invalid octets into the hostname without throw-
ing an error; this approach allows for internal consistency because such octets
are not delimiters, and the illegal bytes could be converted to Punycode later
according to RFC 3987. In contrast, RFC 3986, or even the more permissive RFC
3987 [27], would automatically escape illegal bytes or reject URLs with invalid
octets. Finally, unlike WHATWG, this cluster does not accept illegal octets lower
than the acceptable ASCII character range. Overall, this experiment underscores
the fractured nature of the space of URL implementations, where arbitrary and
invalid inputs are handled very differently depending on which parser is chosen.

5 A Taxonomy of URL Parsing Pitfalls

Having shown the extent of disagreement between URL parsers, we now consider
the root causes of this disagreement. We first grouped each URL test input by
the sets of parsers that agreed on its hostname; for example, two URLs would
form a group if they caused errors in the same six parsers and were parsed to the
same hostname by the remaining nine. From our 98,445 URLs, we created 134
groups using this method. Because many groups described inputs that results
exclusively in errors and DNS-incompatible hostnames, we further down-selected
to 17 groups for which there were at least two DNS-compatible hostnames in
the results set. We then manually inspected each group to understand the cause
of the inconsistency.

Ultimately, we arrived at a taxonomy of just seven potential URL parsing
pitfalls that account for the all of the hostname equivocation inconsistencies
observed in our experiments. We describe each pitfall in the remainder of this
section, providing examples of each in Table 3. We also report on the effects
of these equivocal URLs on the Chrome and Firefox browsers, as well as their
embedded JavaScript engines. Browser design choices in this space will prove
important in our examples of malicious equivocal URLs in Sect. 6.

5.1 Seven Pitfalls of URL Parsing Causing Hostname Equivocation

Pitfall 1–Null Bytes. In C, strings are traditionally terminated by a null byte.
In higher-abstraction languages, the length property is often explicitly tracked,
allowing strings containing null bytes. This technicality enabled Marlinspike’s
2009 equivocations of subject names in TLS certificates [45].

URL parsers behave differently due to this same split when faced with a URL
containing an illegal null byte. URL 1 in Table 3 is an equivocal URL built on this
discrepancy. It places a null byte in the UserInfo section of the URL. The Golang,
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Table 3. Equivocal URL Examples with Parsing Results In part I, eight exam-
ples of equivocal URLs are provided that, when parsed, yield at least two different
DNS-compatible hostnames. Square brackets in these examples enclose a hex represen-
tation of octet(s) for clarity. In part II, parsing results for each example are provided.
A, B, C and D indicate which option from part I each parser returned. Capital “ERR”
signifies that the indicated parser threw an error for that example. Lowercase “err”
indicates the parser did not throw an error, but extracted a hostname that is not com-
patible with the DNS. The only parser to throw an error for every example here is
Java’s URI parser.

I. Equivocal URL Examples

Equivocal URL Example Option A Option B

U1. https://n.pr[0x00]@e.gg e.gg n.pr

U2. https://n.pr\@e.gg e.gg n.pr

U3. https://n.pr][e.gg e.gg n.pr

U4. https://n.pr#@e.gg n.pr e.gg

U5. https://n.pr%2ee.gg n.pr.e.gg n.pr

U6. https://n.pr[0x0A]e.gg n.pre.gg n.pr

U7. https://n.pr[0xDD9ADCBD]e.gg n.xn–pre-hwf8l.gg n.xn–pre-bda9o3gf.gg

U8. https://n.pr[0xC4B0]@e.gg n.xn–prie-swc.gg n.xn–pre-tfa3h.gg

C: n.prie.gg D: n.xn–pre-tfa3x.gg

II. Results of Parsing Each Equivocal URL

Parser U1 U2 U3 U4 U5 U6 U7 U8

NodeJS WHATWG A B ERR A A A ERR A

RFC 3986 ERR ERR ERR ERR err ERR ERR ERR

Golang net/url ERR ERR err A ERR ERR err err

Golang goware/urlx ERR ERR ERR A ERR ERR err C

Java.Net.URI ERR ERR ERR ERR ERR ERR ERR ERR

PHP parse url ERR ERR ERR A ERR ERR ERR ERR

Python3 urllib A A A A ERR err ERR ERR

Python3 furl A A err A ERR err err err

NodeJS legacy A B B A B B A A

Ruby ERR ERR ERR ERR err ERR ERR ERR

wget url.c B A err A A ERR err err

libcurl4 B A err A err ERR err err

Perl URI A A err A A err B B

Firefox - B ERR A A A ERR A

JS in Firefox A B ERR A A A ERR D

Chrome - B ERR A A A ERR A

JS in Chrome A B ERR A A A ERR D

Apache B A err A err err err err

NGINX ERR err err B err ERR ERR ERR

Java, PHP, and Ruby parsers correctly reject URL 1 as a malformed URL. On the
other hand, Perl, PHP, and Python3 are willing to parse this URL and consider
the null byte as part of the UserInfo. This set of parsers therefore considers
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this URL to point to “e.g.g”. C-language based parsers including libcurl4, wget,
and the Apache Portable Runtime (APR) truncate URLs to the first null byte
because of their built-in null-terminated string assumptions. However, because
NGINX uses a custom string implementation to track string length, it is not
subject to this pitfall despite being written in C.

Pitfall 2–Backslash Correction. URL 2 in Table 3 uses another illegal byte in
a UserInfo section. Browsers have a particular treatment for the illegal \ char-
acter, making themselves ambivalent to the difference between Windows and
*nix file path separators. When a backslash is present in a UserInfo section, it is
treated as if it were a delimiter signalling the start of the URL path. This means
that a backslash will be corrected to a forward slash when pasted into a browser.
Illegal backslashes cause either an error or are treated as a part of the UserInfo in
all parsers except the browsers. Both Firefox and Chrome change the backslash
to a delimiting forward slash, which makes what was formerly a UserInfo string
into the hostname. RFC 3986 considers this an invalid URL because a backslash
is not allowed anywhere. The WHATWG parser is more permissive, and accepts
the UserInfo section as-is. Several other parsers either allow or automatically
encode the backslash and accept the URL. This pitfall has so far been exploited
several times [9,42,59].

Pitfall 3–IPv6+ Address Syntax. Square brackets are only allowed in host-
names to enclose IPv6 addresses or future IP versions. By inserting a balanced,
but not matching set of brackets into the hostname, we convince the python3
parser and the legacy NodeJS parser to provide two different, DNS-compatible
hostnames. For the example we gave in URL 3 of Table 3, Python3 starts the
hostname after the brackets, and NodeJS’s legacy parser truncates the hostname
at the brackets.

Pitfall 4–Illegal Extra Delimiters. Some parsers allow ambiguity by allowing
prohibited extra delimiters such as allowing an “@” in a UserInfo or multiple
“#” characters. URL 4 in Table 3 is an example of a URL with a duplicate
delimiter. Many of the parsers we tested allowed this incorrect choice. Fragments
in particular were very permissive. The pitfall was also part of Tsai’s exploit [56].

Pitfall 5–Overeager Percent Decoding The official way to include arbitrary
bytes in URLs is to URL-encode them in triplets of the form %FF with a percent
sign followed by two case-insensitive hex digits. These digits are allowed in host-
names, but will not be compatible with the DNS as such. The example in URL
5 of Table 3 encodes one of the otherwise allowed periods in the hostname with
percent encoding. When parsed, browsers and Perl convert this automatically
into a period. The legacy JavaScript parser simply terminates the hostname at
the percent-encoded section.
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In context of HTTP requests, there are further complications regarding per-
cent decoding that we will explore later on. We exploit the fact that JSON also
uses percent-encoding to encode arbitrary bytes in strings to introduce ambigu-
ities into API calls in Sect. 6.

Pitfall 6–Low ASCII Bytes. Another set of illegal octets that parsers treat
differently in a UserInfo section is the set of octets lower than any allowed charac-
ter. As demonstrated by URL 6 in Table 3, allowing the ASCII newline, 0× 0A,
yields different interpretations. Golang, Java, and Ruby’s parsers correctly reject
URL 6 as a malformed URL. All other parsers accept this URL, and either ignore
or treat the newline byte as part of the UserInfo with the true host being “e.g.g”.
However, in Perl, the newline is ignored and the UserInfo is pre-pended to the
hostname.

Pitfall 7–Automatic Punycode Conversion. While some parsers simply
reject invalid URLs, others try to fix them. Some of these parsers use Puny-
code [25] to encode arbitrary bytes in hostnames within the syntactic bounds
rules of the DNS. We found that some parsers disagreed on how they would
perform this conversion. Example URLs 7 and 8 in Table 3 were encoded in
several different ways, depending on the parser. Example 8 is unique among
our examples in that it resolves to four different DNS-compatible domain names
depending on the parser. These problems manifested for Unicode issues such as
how to convert an arbitrary character to lowercase, or how to deal with only half
of a surrogate pair. In general, users of URL parsers would do well to consult the
Unicode Security Guide [60]. This pitfall was among those exploited by Tsai [56].

6 Misdirection Attacks with Equivocal URLs

While we have demonstrated widespread inconsistencies in URL parsing behav-
ior, we have not yet demonstrated whether these equivocal URLs represent an
ongoing security concern. We now show how equivocal URLs can be weaponized
by an attacker who can anticipate the parsing libraries in use on a victim’s sys-
tem. Specifically, we demonstrate how equivocal URLs can cause false negatives
in the Google Safe Browsing and VirusTotal URL classifier services [5,8] through
the creation of URLs that parse to a legitimate host in the security software but
a malicious host in the victim software.

Threat Model: In this work, we consider an adversary whose goal is to cause
a victim program to fetch a malicious resource by making it appear to a URL
classifier as if the URL came from a trusted domain. The adversary can take
advantage of differences in URL parsing behavior between the victim program
and the URL classifier protecting it. In this example, the victim uses classifiers
provided by VirusTotal (VT) [8] and Google Safe Browsing (GSB) [5] to evaluate
URLs before requesting a resource using a URL. We consider that the victim
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may either (1) visit the Web interface of these classifiers or (2) programmatically
access the respective API endpoints.

6.1 Responsible Disclosure

We informed both services of these ambiguities in October of 2021. Unfortu-
nately, we have not received any response beyond a request to forward our report
as a feedback ticket. We promptly complied with the request, but these ambi-
guities persist in these systems.

6.2 Equivocal URLs vs Google Safe Browsing

To demonstrate equivocal URLs’ ability to cause a false negative, we first need
a known-malicious URL from GSB to prove equivocal URLs can have this real-
world effect. Fortunately, GSB has a test vector URL which is always flagged
as malware “https://malware.testing.google.test/testing/malware/*”. Leverag-
ing Pitfall 5 (over-eager percent decoding), we are first able to craft an equivocal
URL that convinces the GSB API to classify a URL as clean even though it parses
to the test vector when loaded in a browser. Consider the following equivocal
URL, remembering that %2F encodes an ASCII forward slash:

http://letsencrypt.org%2F@malware.testing.google.test/testing/malware/*

GSB’s API passes URLs in JSON. JSON’s specification allows percent-
encoding bytes in strings. Therefore, when this URL arrives at GSB, GSB has no
way of knowing whether the %2F is intended as a literal delimiter, or a percent-
encoded portion of the UserInfo. GSB chooses the former, and reports this URL
is clean in both its web interface and API. However, this syntactically valid
URL will lead the other clients we tested to target malware.testing.google.test.
We also discovered that this API performs the same “backslash correction” as
browsers. Interestingly, a percent-encoded backslash (%5C) in the UserInfo will
be decoded and then trigger backslash correction in the API. As an example of
this backslash correction, the following URL is also declared safe by GSB’s API:

http://letsencrypt.org%5C@malware.testing.google.test/testing/malware/*

However, the Web interface does not have this eager percent decoding func-
tionality nor backslash correction. But, knowing this behavior we can craft an
equivocal URL which the Web interface declares safe, but would send a browser
to the malware test vector. Because the Web interface fails to account for the
pitfall we called “backslash correction” in browsers, it evaluates the benign host
while a browser would fetch the malware:

https://malware.testing.google.test\testing\malware\*@letsencrypt.org

The fractured landscape of parsers creates a dilemma for security systems like
GSB. No matter how GSB parses an equivocal URL, there exist other parsers
that would extract a different hostname. We present some potential mitigation
strategies in Sect. 8.1.
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6.3 Misdirecting VirusTotal

Using a similar approach, we are also able to create an equivocal URL that fools
VirusTotal’s URL scanning web endpoint and API. For the benign domain, we
again used “letsencrypt.org”. For a malicious domain, we referenced urlHaus’s
public list of online URLs serving malware [4]. The URL we selected served
malware flagged by fifteen of VirusTotal’s 90 constituent scanners.

Inputs to VirusTotal’s API are form-encoded in a post request, and thus
similar ambiguity exists for their endpoint as to whether or not percent-encoded
delimiters should be reconstituted. We take advantage of this to create a URL
that uses “overeager percent decoding” to cause VirusTotal to report our mali-
cious URL as totally clean. The following URL is a false negative for both the
Web interface and the API. The actual malicious host used has been redacted.

http://letsencrypt.org%2Fdocs%2F@[redacted]/LS.exe

In testing other equivocal URL techniques, we observed that we were able to
pacify some of the original fifteen alerting constituent classifiers. This suggests
that they each are vulnerable to equivocal URLs in their own way – depending
on the parsing or matching strategy they use to compare URLs. Adding any
UserInfo string pacified two scanners, suggesting that this may have evaded an
internal blocklist. A third classifier was pacified if that UserInfo contained a null
byte. Three others appear to perform backslash correction. The inconsistency
among constituent classifiers when faced with a URL change is cause for concern.

7 Backwards Compatibility Constraints on Strict URL
Parsing

Blindly mandating strict parser adherence to a new or existing URL parsing
standard would likely break some services. While a full measurement of what
services would be impacted by stricter URL parsing at Web scale would require
its own paper, we can give some preliminary estimations here for the upper
bound of the impact. We do this by repurposing several public data sources
to learn how often services’ URLs use non-ASCII characters. Ecosystem-wide
standardization of URL parsing would affect some fraction of these services,
making them an approximate upper bound on the potential impact.

We first find the prevalence of Punycode enabling non-ASCII characters in
domain names. Among the Alexa Top Million [1] list, 0.16% (1,606) of domains
use Punycode [25] to encode non-ASCII hostnames. Of the 7.8 billion TLS cer-
tificates available in Censys’s database [28], 0.41% (32,342,256) use Punycode in
their subject or alternative domain names.

We also surveyed ∼350 million URLs sampled uniformly and randomly
from the approximately 3 billion URLs in Common Crawl’s January 2022 URL
Index [36]. Of these URLs, 0.04% contained unicode characters that were left
to the client to parse when making an HTTP(S) request. By contrast, 9.95%
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of these URLs had escaped their problematic bytes themselves with percent-
encoding. These Web applications, it seems, have elected to perform percent
encoding for themselves. Perhaps these applications have an understanding of
the compatibility risks of relying on an arbitrary client’s URL parser.

While the overall percentage of services that would be affected by unified
parsing standardization appears to be low, this still implicates a large number
of services at Web scale. At the same time, it preliminarily appears that a path
forward to consistent URL parsing standard is possible with minimal impact on
existing services.

8 Discussion

In the space of URL parsing, we have become too liberal in what we are willing
to accept. Jon Postel’s “Robustness Principle” [48] promotes compatibility at
the expense of correctness. In this case, the cost of compatibility also gives rise
to concerns of security and authenticity on the Web. As noted in an 2018 IETF
draft [54], Jon Postel wrote his famous remark on conservative sending and
liberal receiving immediately following this sentence:

“While the goal of this specification is to be explicit about the protocol there
is the possibility of differing interpretations [48].”

Perhaps to call these departures from URLs’ specification “differing inter-
pretations” is too generous, but the fact remains that the today’s ecosystem of
URL parsers is in broad disagreement with itself. Standardizing the myriad URL
parsing libraries, which are baked into nearly every piece of network software,
would be a massive undertaking requiring the cooperation of many stakeholders.
Such uniformity might not be backwards compatible. Certainly, efforts like the
WHATWG’s URL living standard are evidence of a desire to eventually cor-
rect URL ambiguity. However, even this formidable consortium of leading Web
browser creators has not brought uniformity.

Some parsers even document the potential for inconsistency with other
parsers. PHP’s parse url function documentation includes the following warning:

“Caution This function may not give correct results for relative or invalid
URLs, and the results may not even match common behavior of HTTP
clients.”[2]

The documentation then proceeds to explain a method to enforce stricter pars-
ing, which we made use of, meaning that the default behavior is even more
permissive than what we report. A developer who did not read the documenta-
tion would be unaware of these edge-cases.

8.1 Mitigation

Individual parsers are limited in their ability to correct these systemic incon-
sistencies alone. For the present, we recommend that security tools analyzing
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URLs take note of the potential ambiguity that exists between their filter’s URL
parsers and the URL parsers of clients they protect. URL classifiers should align
their URL parsing algorithm with the parsers in downstream programs they
protect. For example, Google Safe Browsing’s main purpose is to flag Web sites
unsafe to visit in a browser, and could benefit from aligning its parser with the
WHATWG’s parser. A URL classifier with multiple downstream parsers could
even create a multi-parser to simultaneously parse equivocal URLs with multiple
parsers, allowing a URL classifier to check each potential interpretation.

Coming to a community-wide consensus on the “correct” way to parse URLs
would provide a path out of ambiguity in the longer term. We could apply a strict
interpretation of RFC 3986’s grammar [20], and fail closed. Some parsers even
include optional flags to perform stricter parsing. Our preliminary investigation
in Sect. 7 suggests that the services depending on the particulars of these edge-
case parsing implementations may be uncommon. Therefore, while strict parsing
would break backwards compatibility, its actual impact may be minimal.

Adopting stricter parsing does not have to mean following RFC 3986. A
reasonable alternative is the regularly updated, “living” WHATWG standard [7].
It was designed from the beginning to work with non-ASCII URLs and enjoys
considerable support from key players in the Web browser space. Unfortunately,
its “living” nature may perpetuate ambiguity by changing over time, while some
implementations remain static.

8.2 Limitations and Future Work

This work does not test all extant URL parsers, nor does it exhaustively exer-
cise every code path within each parser to find every inconsistency. Rather, we
demonstrate the existence of parsing ambiguity across a variety of parsers and
demonstrate how that ambiguity can be used to obscure a URL’s destination.
Given the level of inconsistency we observed, we are confident that further test-
ing would only magnify the disagreements between URL parsers. For example,
further disagreement would likely be found across parsing library versions as well
as between browsers’ parsers and the WHATWG’s reference implementation.

Based on our results, we are likely to keep facing new attacks in this space
because significant ambiguity exists from parser to parser. Our analysis focused
on domain name ambiguities, but ambiguities throughout the URL have the
potential to cause future application-specific issues similar to prior vulnerabilities
described in Sect. 2.2. A black-box service’s URL parser could be fingerprinted
and exploited based on its edge-case behaviors.

Future work may expand this set of URL parsing pitfalls and their effects on
more systems. Likewise the parsing and filtering behaviors of popular antivirus
tools, network intrusion detection systems, and middleboxes should be checked
for blind spots where equivocal URLs are concerned. Further measurement
should be done to design a consistent standard that all parsers could adopt
with minimal impact to existing services.
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9 Conclusion

Given the fragmented implementation space of URL parsers, we warn that pars-
ing inconsistencies continue to be an active attack vector. Because of the ubiq-
uity of Web connectivity in modern applications, developers would do well to be
aware of and plan for URL parser discrepancies until uniformity is achieved.
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Appendix A: Tested Parser Details

Table 4. Parsers Tested We tested our URLs in these 15 URL parsers. While most
parsing libraries accepted input types containing arbitrary bytes, Java’s URL parser
and the fURL parser both required the sequence of bytes to be converted to a string
type. We followed Python3’s default behavior to throw an error upon encountering
bytes it cannot decode with UTF-8, and Java’s default behavior to replace bytes not
valid in UTF-8 with marker character 0xEFBFBD. Where larger systems like NGINX
are listed, we extracted URL parsing functionality from source code.

Parser name Version Language Category Parser input

type

Type

coercion

applied

RFC 3986 – Python 3.8.10 Control bytes none

WHATWG Refer-

ence Parser

– NodeJS 10.19.0 Control JS Buffer none

Python3 urllib – Python 3.8.10 Built-In

Libraries

bytes none

parse url with fil-

ter var()

– PHP 7.4.3 Built-In

Libraries

PHP string none

NodeJS Legacy – NodeJS 10.19.0 Built-In

Libraries

JS String none

Java.Net.URI – openjdk 17.0.1 Built-In

Libraries

Java String UTF-8

decoding

Ruby uri 0.10.0 ruby 2.7.0p0 Built-In

Libraries

Ruby String none

Golang net/url – Golang 1.13.8 Built-In

Libraries

golang-string none

libcurl4 7.68.0 C Unix Tools char* none

wget 1.21 C Unix Tools char* none

perl URI – Perl 5.30.0 Unix Tools perl-string none

Apache Portable

Runtime

httpd-2.4.48 C/C++ Open Source

Parsers

char* none

NGINX 1.20.0 C Open Source

Parsers

char* & length none

fURL 2.1.3 Python 3.8.10 Open Source

Parsers

Python3 string UTF-8

decoding

Golang

goware/urlx

dcd04f6 Golang 1.13.8 Open Source

Parsers

golang-string none
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Abstract. Emoji domains, such as (xn--i-7iq.ws), are dis-
tinctive and attractive to registrants due to their eye-catching visuals.
Despite its long history (over 20 years), little has been done to under-
stand its development status and security issues. In this paper, we iden-
tify 54,403 emoji domains from 1,366 TLD zone files and a large-scale
passive DNS dataset. And then, we correlate them with auxiliary data
sources like domain WHOIS records. It allowed us to conduct by far the
most systematic study to characterize the ecosystem, and retrieve mul-
tiple valuable insights. On one hand, the scale of emoji domains is con-
stantly expanding in the wild, with dozens of ccTLD registries actively
promoting registering domains with emoji characters and domain owners
configuring emoji characters in sub-level domains. And emoji domains
may act as promotional portals, as web requests are usually redirected
to other websites. Besides, emoji domains are also leveraged to provide
disposable email services, pornography or gambling pages, and even the
distribution of malware. On the other hand, the concern is that the
community still lacks best security practices in supporting and parsing
emoji domains. Through empirical studies, we demonstrate that incon-
sistencies in rendering emoji characters can be exploited to launch visual
phishing domain scams. Meanwhile, mainstream implementations may
incorrectly parse or trans-code emoji domains, resulting in the security
threat of traffic hijacking. Our study calls for standardization and best
security practices for applications to handle emoji domains securely.

1 Introduction

Domain names are user-friendly alphanumeric names that make it easier for
Internet users to navigate the online world. Conventionally, only a portion of
ASCII characters (letters, digits, and hyphens) was allowed in domain names [42].
With the purpose to globalize the use of the Internet and make domain names
more accessible, the IETF promotes the Internationalized Domain Name (IDN)
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program, which allows non-native English speakers to adopt their native lan-
guage or local script, i.e. Unicode characters, in domain names.

Emoji belongs to a special subset of Unicode characters. Today, it has been
widely adopted on smartphones and social media, and plays a critical role in
Internet communication. It also attracts the interests of domain registrants. With
the advantages of being graspable and eye-catching, an emoji domain can be an
effective tool for public marketing. Actually, many big companies have already
been doing so. For example, Coca-Cola registered a whole bunch of domains
containing smiley emojis like (xn--228h.ws) [51] (expired) for advertise-

ment in 2015. Similarly, Budweiser registered (xn--xj8haa.ws),

and Mailchimp [16] registered (xn--rr8h.ws) for promotions. Besides,
emoji domain also has been exploited for scam activities. In 2020, a collective
defrauded over $200,000 through (xn--mp8hai.fm) in the guise

of social justice [47]. And Weapon Depot utilizes the emoji domain,
(xn--bw8h.ws), to attract customers on some social media [12].

Despite the initiative of emoji domain having been proposed for about 20
years, little has been done to understand its ecosystem in the wild. In this paper,
we report by far the first systematic study on emoji domains by answering a set
of critical questions for understanding its development status and security risk,
including: What are the current scale and usage status? What are the character-
istics of registrations? Are there any (new) security issues? We made this study
possible by a broad data collection, including 1,366 TLD zone files, a country-
level passive DNS dataset and domain WHOIS records. Finally, 54,403 emoji
domains are identified in total.

By analyzing the identified emoji domains, we discovered that discourage-
ment from ICANN [27] has not hindered the development of emoji domains. In
fact, the volume of emoji domains is constantly growing in the wild, increas-
ing hundreds of folds compared to seven years ago. Although the registration
of emoji domains under gTLDs has been restricted, registrants have turned to
the registrars from ccTLDs (e.g., (xn--i28h.cctld)), or embedding

emoji characters (e.g., (xn--yp8h.example.com)) in sub-level
domains, which is prominent developing until now. Several ccTLDs registries
even take emoji domain registration as a selling point for commercial promo-
tion. As for registration intention, we find that high-profile emoji domains are
created for promotion proposes, e.g., (xn--i-7iq.ws) that received 7.96
million DNS requests is used for advertising emoji domain registration services,
and (xn--4bi.email-temp.com) is designed for disposable
temporary email service. However, pornographic sites and even malware distribu-
tion sites have also been witnessed leveraging emoji domains for user attraction.

Besides, we also reveal that the applications of emoji domains expose sev-
eral security risks, especially in the trans-coding and rendering process. Through
empirical study, three kinds of new security threats are uncovered. First, due to
the inconsistent visuals of emoji rendering, we find that visual phishing attacks

http://xn--228h.ws/
https://xn--xj8haa.ws/
https://xn--rr8h.ws/
https://xn--mp8hai.fm/
https://xn--bw8h.ws/
https://xn--i-7iq.ws/
https://xn--4bi.email-temp.com/
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targeting emoji domains are feasible in the real world. Except for a few reg-
istrants who have noticed this risk and proactively registered visually similar
domains for defense, the vast majority of phishing-vulnerable emoji domains
are not yet protected. Second, mainstream implementations could not correctly
parse emoji domains, resulting in text with emoji icons being unintentionally
recognized as emoji domains. By inspecting one-day DNS queries from B Root,
we uncover 6,372 “unintended” emoji domains as “parsing errors”. Almost half
of these domains are available for registration, leaving huge space for attackers to
conduct traffic hijacking. Third, there is still a lack of best practices for handling
special Unicode characters. Particularly, we find several mainstream browsers
(e.g., Firefox and Safari) fail to trans-code ZWJ (Zero with Joiner) embedded
emoji domains correctly, leading to the denial of service and hijacking threats.

In summary, our study shows that the development of emoji domain names
is still at the early stage with a growing trend. And we recommend that secu-
rity community should pay more attention to the ecosystem and propose best
practice guidelines for harmonizing the usage and process of emoji domains.

2 Background

Domain Name Structure and Registration. A domain name is comprised of
multiple layers and organized as a hierarchical structure. The boundary between
hierarchy levels is separated with a dot, such as esorics2022.compute.dtu.dk.
The top of the domain hierarchy is the DNS root. Below the root level are
the Top-Level Domain (TLD, e.g., dk) and Second-Level Domain (SLD, e.g.,
dtu.dk).

TLDs are typically divided into three categories, including generic TLDs
(gTLDs), country-code TLDs (ccTLDs), and sponsored TLDs (sTLDs). All
TLDs are approved by Internet Corporation for Assigned Names and Num-
bers (ICANN), and operated by various registries. Of note, all registries operat-
ing gTLDs are contracted with ICANN [26], while ccTLDs are not necessarily
required. For a registrant, domain names that are allowed to apply are SLDs (or
apex domains). They are publicly offered and a domain name is registrable if
it is not yet occupied. Domain owners are allowed to create subdomains under
their apex domains, without asking permission from registrars.

Emoji Domain Names. An emoji domain refers to a domain name that con-
tains at least one emoji character, regardless of the level at which the emoji is
embedded. In the beginning stage, domain names were only allowed to be reg-
istered within letters, digits, and hyphens [42]. Most of the domain names came
from a set of alphanumeric ASCII characters. To build a multilingual Internet,
IETF instituted the Internationalized Domain Name (IDN) program in 2003.
IDN program encourages Internet users around the world to adopt a domain
that contains native scripts [7,14]. As a result, the scope of allowed characters
in domain names has been extensively extended to Unicode sets.

At the time of writing (May 2022), 3,633 emoji code points are contained in
the standard Unicode 14.0 [60]. Theoretically, registrants are permitted to apply
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Table 1. Overview of datasets.

Data Source # ED sld # ED sub # Emoji SLD Unicode Domain

gTLD zone files 193 – 193 1,499,958

ccTLD zone files 1,732 – 1,732 3,246,266

Passive DNS 25,731 28,252 13,170 52,976,933

ALL 26,151 28,252 13,581 55,887,203

for domain names with embedded emoji characters, or add emoji characters to
subdomains under the apex domain themselves.

Punycode Conversion. Although emoji domains are supported by DNS,
they have to be converted to ASCII characters in order to maintain backward
compatibility. IETF established technical standards to support domain names
encoded with Unicode characters [13,32], named Internationalizing Domain
Names in Applications (IDNA). IDNA is designed to convert a Unicode string
(U-Label) into an ASCII-compatible encoding (ACE) string (A-Label), i.e., Pun-
ycode [7,13]. Punycode keeps all ASCII characters, and encodes the locations of
non-ASCII characters, and re-encodes the non-ASCII characters with variable-
length integers. As the algorithm design, a fixed prefix, “xn--”, is added to the
converted Punycode string after the above process. For example, xn–i-7iq.ws is
the Punycode conversion of .

Security Considerations. Due to the effect of attention-grabbing, emoji
domain names have attracted a lot of attention from registrants worldwide, espe-
cially for marketing and advertising campaigns. However, DNS community has
proposed several security concerns with the emoji domain applications, due to
their potential impact on the stability and interoperability of the domain name
system. Specifically, an advisory document has been proposed by ICANN, indi-
cating that emoji domains may cause ambiguity and confusion [27].

Nonetheless, we believe it is still too early to claim the failure of the emoji
domain initiative. Instead, we need to revisit the development of emoji domains,
evaluate the real-world impact, and explore the practical security risks.

3 Data Sources of Emoji Domains

In this section, we first elaborate on how we collect large-scale datasets. Then,
we describe technical details of how to identify emoji domains.

3.1 Collecting Large-Scale Datasets

We collect 1,366 TLD zone files and a country-level passive DNS dataset to
exhaustively detect emoji domains in the wild. The details are presented in
Table 1.

https://xn--i-7iq.ws
https://xn--i-7iq.ws
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TLD Zone Files (gTLDs and ccTLDs). TLD zone files are maintained
by registries, like Verisign. They contain active domains with their delegation
information, and serve as an important data source in security research. ICANN
provides a centralized zone data service (CZDS) [34] for interested parties to
access zone files. It allows us to apply 1,254 gTLD zone files in September
2021, which contain the up-to-date registered domains maintained by registries,
including historical gTLDs (e.g., .com) and a range of new gTLDs (e.g., .info).

By contrast, ccTLDs do not (or no longer) provide publicly accessible zone
files [25]. Several well-known public datasets utilized in previous studies, e.g.,
OpenIntel [52] and CAIDA-DZDB [4], also have quite limited coverage of ccTLD
domains. To solve this issue, ViewDNS [63] continuously collects domains under
ccTLDs by Internet crawlers with considerable domain coverage [8]. We pur-
chased all ccTLD domain lists of ViewDNS in May 2021, and got 112 ccTLD
zone files in total, e.g., .us, and .cn, covering 35.44% of all (316) ccTLDs [25].

Passive DNS Dataset. In addition to registering domains with emoji icons
directly, one can also place the icons on subdomain labels. However, TLD zone
files have no information on subdomains configured by registrants. To this end,
we leverage the Passive DNS dataset from DNS Pai Project [49] to extend our
investigation scope to fully qualified domain names (FQDNs). The project was
initiated by a world-leading security vendor, and has collected DNS requests
from a large array of popular DNS resolvers since 2014. It handles around 240
billion DNS requests per day, and opens the collected DNS traffic data to the
research community. In this study, we gain access to all records of historical
domain names from Passive DNS spanning from 08/01/2015 to 7/27/2021.

Domain WHOIS Records. We also utilized WHOIS records to understand
the registration trend of emoji domains. Specifically, the WHOIS dataset was col-
lected with the help of our industry partner, 360 Netlab [50]. As several ccTLDs
(e.g., .to) restrict crawlers from obtaining their WHOIS information, we finally
got the WHOIS records of 8,638 (63.60%) unique emoji SLDs as the best cov-
erage effort. Then we used an open-source tool, python-whois1, to parse the
records. As this work only concerns the registrar/registry and the creation/expi-
ration date of domains, our analysis would not be affected by the implementation
of General Data Protection Regulation (GDPR) policies [40].

3.2 Identifying Emoji Domains

Definitions and Notations. In this study, we refer to any FQDNs embedded
with at least one emoji character as an emoji domain, termed as ED. Depend-
ing on where the emoji characters are located in the domain structure, EDs
could be further classified into two categories: EDsld, whose SLD contains emoji
characters directly, and EDsub, whose emoji characters only appear in the sub-
domain labels. The two categories essentially denote the different sources of ED
creation. EDsld indicates the domain owner directly registering an apex domain

1 https://pypi.org/project/python-whois/.

https://pypi.org/project/python-whois/
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with emoji characters from registrars. EDsub means that the domain owner only
configured emoji characters into the subdomain in authoritative nameservers
(Fig. 1).

Fig. 1. The workflow of data collection and emoji domain identification.

Data-processing Workflow. Our emoji domain extraction workflow includes
three steps.

(1) Identify Unicode domains. Emoji domain is only a subset of the Unicode
domain. Given the rules of Punycode conversion, we are allowed to identify
all Unicode domains by matching the fixed prefix “xn--”, as described in
Sect. 2.

(2) Detect emoji characters. Further, we convert the ASCII-compatible encod-
ing string into Unicode string format, which is represented as a list of Uni-
code code points (e.g., U+1F600 for ). We also crawled Unicode code
points for all emoji characters from the Unicode consortium [60]. Then the
domains with at least one Unicode point inside the emoji range would be
identified as emoji domains.

(3) Filter false positives. Through manual analysis, we find several emoji
domains extracted from PDNS dataset are “false positives”: non-existent
subdomains caught by PDNS as their SLDs were enabled for wildcard reso-
lution. To filter them, we replace the emoji characters with random strings
and examine whether the newly generated domains could get the same
resolution results.

Finally, we identified 54,403 unique emoji domains (26,151 EDsld and 28,252
EDsub) from 55.89 million Unicode domains (Table 1). Among them, 4,947 emoji
domains with SLDs are ranked within the Tranco Top 50k popular domain list.
The list of the top 10,000 most queried emoji domains has been open-sourced2.

Discussion. Although we try to make this study as comprehensive as possible,
there are still limitations. First, our PDNS dataset may have geographical bias.
However, given its huge DNS traffic volume and the longitudinal data collection
period, we believe the dataset is still representative to reveal the ecosystem of
emoji domains in the wild. Second, although we take the best effort to extend the
observations on ccTLD domains by collecting zone files from ViewDNS [63], the
coverage (112 out of 316 [25] ccTLDs) is still limited. The limitations indicate
that our study may only reflect a lower bound in the real world.
2 https://github.com/EmojiDomain/ESORICS22.

https://github.com/EmojiDomain/ESORICS22
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Fig. 2. Newly witnessed emoji domains and IDNs from passive DNS traffic.

4 Characteristics of Emoji Domain Ecosystem

In 2017, ICANN recommended discouraging registration activities for emoji
domains. However, the impact of the recommendation has yet to be measured.
This section reports our measurement results of the emoji domain ecosystem,
including quantitative analysis of DNS statistics trends, registration distribu-
tion, usage strategies, as well as their web content and intention behind the
registrations.

4.1 Growing Trend of DNS Statistics

The Passive DNS dataset is able to capture the DNS requests towards emoji
domains among Internet users. The dataset could help to shed light on the first
appearance and traffic volume of each emoji domain.

Figure 2 presents the trend of newly emerging emoji domains witnessed from
passive DNS. Compared to 2014, the blue line indicates the volume of emoji
domains witnessed in 2020 has increased hundreds of times and the entire scale
is still increasing. The continuous growth trend of emoji domains is roughly
similar to IDN (orange line). We also try to understand the reasons behind the
four spikes in Fig. 2. By analyzing domain WHOIS records, we conclude these
sharply emerged emoji domains are mainly caused by two reasons. First, the
opening of support for emoji domains by several registries has sparked interest,
like .to and .ws. Second, the update of the full list of emoji characters provides
more options for the registration market.

The Passive DNS dataset could be also utilized to roughly estimate domain
activities [30,39], including their popularity (query volume) and lifetime (inter-
vals between the first and last occurrence).

Our results show that, the ecosystem is as yet in a “self-selling” phase, as a
considerable percentage of the traffic and domains themselves are used for the
purpose of promotion. Specifically, the DNS requests across the ecosystem were
highly concentrated on several most popular ones (top 100 emoji domains hold
74.85% of DNS traffic). Further manual inspections confirm their activities for
marketing emoji domains. For instance, the top popular emoji domain,

https://xn--i-7iq.ws/
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Fig. 3. Registrations of emoji domains.

Table 2. Statistics of collected emoji domains.

Category # TLD # ED sld # ED sub
Registered

after 2017

gTLD 178 1,894 22,552 0

ccTLD-registrable 16 23,600 384 96.15%

ccTLD-other 158 657 5,316 78.22%

All 352 26,151 28,252 75.43%

(xn--i-7iq.ws), with 7.96 million DNS requests, is hosting a promotional web-
site for emoji domain registrations. And we find a large number of short-lived
emoji domains, with 56.32% of which were active for only one day. A manual
survey of 100 random-sampled 1-day domains showed that, 66 of them were
“FOR SALE”.

4.2 Registration Distribution and Usage Strategies

In total, we identify 54,403 emoji domains, 26,151 of which belong to EDsld, i.e.,
apex domain registered with emoji characters. Associated with domain WHOIS
records, we are able to learn the distribution of their registrars, creation dates
and expiration dates.

Registration Activity (EDsld). The earliest known registration event for
emoji domain dates back to 2001 [41]. Benefiting from several ccTLDs support-
ing emoji domains, the registration volume started to increase rapidly around
2016, as shown in Fig. 3. Then the year 2017, when ICANN proposed the rec-
ommendation, was a turning point. By inspecting the sources of registrations,
we find mainstream registrars stopped offering emoji domain registrations under
gTLDs from 2017. However, several ccTLD registries actively promote the busi-
ness of emoji domain registration [28,41]. As a result, the registration activities
have continued.

Registration Distribution (EDsld). By clustering the registrar fields of
domain WHOIS records, we find that 62 registrars have offered (perhaps no
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longer) the business of emoji domain registrations. Zooming into the distribu-
tion, a handful of popular registrars who dominate the global domain name mar-
ket also play a major role in emoji domains. For example, Godaddy accounts for
26.43% of EDsld.

To investigate the distribution at the registry level, we also categorize all
emoji domains by their public suffix [44]. The result shows that the collected
emoji domains come from 352 TLDs, including 178 gTLDs and 174 ccTLDs.
We also conduct a manual survey of all the ccTLDs, and find 16 of them had
explicitly announced their support for emoji domain registrations. These ccTLDs
are then termed as ccTLD-registrable, and the remaining are termed as ccTLD-
other. By checking the registration dates, we demonstrate ccTLDs have become
the main source of emoji domains after 2017.

Emojis Embedding Location (EDsub). While applying emoji domains from
gTLD registries has been restricted, domain owners still have the freedom to
adopt emoji characters under sub-level domains. In Fig. 2, the scale of newly
observed EDsub in passive DNS is rising rapidly. According to the statistics in
Table 2, 79.8% (22,552 out of 28,252) of EDsub belong to gTLDs.

We further investigate the usages of EDsub that embed emoji characters
under subdomains. Not only do we observe domain registrants themselves to
leverage emoji characters for eye-catching, but we also find that third-party
services create subdomains with embedded emoji characters. One example is
the emoji-URL-shorten service. The service converts the input URL into a
domain with a combination of emoji characters as the subdomain of e.mezw.com
(1,667 observed in Passive DNS). For instance, www.google.com could be con-

verted to . Another exam-
ple is the cloud storage service provided by Amazon S3. The storage bucket
would be accessed through an identifier as part of the subdomain under
s3.amazonaws.com. This mechanism leads to the creation of emoji domains
(4,021 observed), e.g., .

Conclusion. Although ICANN’s guidelines of emoji domains have served a
purpose, particularly for gTLDs, it has not discouraged the registration and use
of emoji domains. Dozens of ccTLD registries still support and promote their
commercial services for registering emoji domains. In addition, configuring emoji
characters under subdomains is becoming a popular alternative, especially under
gTLDs. Overall, the ecosystem of emoji domain is still thriving in the wild.

4.3 Infrastructure Analysis

We perform an infrastructure analysis to understand the motivation for regis-
tering emoji domains, including their DNS resolution status and web content.
Besides, we also evaluate the adoption of security practices on their websites.

DNS Resolution Analysis. Until December 2021, 43,184 (79.4%) emoji
domains are still active and resolvable, i.e., could fetch IP addresses through

https://e.mezw.com/
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Table 3. Security deployment of Emoji domains and general popular domains.

Deployment Rate DNSSEC HTTPS HSTS

Regular

Domains

1.85%

([6], 2017)

75.51%

( [38], 2014 )

6.9%

( [37], 2017)

Emoji

Domains
0.00% 44.61% 4.27%

DNS resolution. Since active emoji domains have configured NS records, we col-
lect 2,687 nameservers in total. By comparing with NS records of popular domain
parking services [64], 423 emoji domains are found in parking status, suggest-
ing that their owners are seeking to gain profit through traffic monetization. In
addition, 2,430 (12.0%) emoji domains also have enabled “MX” records, indicat-

ing the adoption of email-related services. As an example,
(xn--4bi.email-temp.com) is utilized for temporary disposable email services.

Types of Web Content and Intention. We further analyze the web con-
tent of all emoji domains (54,403 including EDsld and EDsub) to understand
their usage. We perform automatic web crawls (including HTTP and HTTPS)
towards all active emoji domains. As a result, 34.21% of emoji domains may act
as promotional portals, as their original requests would be redirected to other
websites. Totally, we find 9,265 landing domains which are redirected from emoji
domains, with 33.39% belonging to the top 10k domains from Tranco List [48].
Our manual inspections show that the redirection targets include social applica-
tion and registration websites of registries.

Due to the lack of ground truth, it is difficult to automate an accurate
content classification of all emoji websites. Therefore, we randomly select 500
emoji domains and manually render their web contents in a controlled browser
(Chrome) to inspect their categories. The results show that, 46.4% of them
provide meaningless content, such as the default configuration page of the web
server (e.g., Nginx) or plain responses with the HTTP status code (404, 503,
etc.). 43.8% of the web pages we inspected display contact information of reg-
istrants, indicating that these domains are for sale. Besides, 11 domains are
employed for personal homepages, and 24 domains for parking advertisements
to make profits. Notably, we find 12 emoji domains being utilized for porn or
gambling businesses, e.g., (xn--wemodels-gf7e.to). In partic-
ular, with the help of intelligence information from VirusTotal and Qihoo 360,
2 emoji domains have been categorized as malicious as they are associated with
malware distribution.

Adoption of Security Practices. We also investigate the deployment of
DNSSEC and HTTPS-related security policies for emoji domains, as shown in
Table 3. As a whole, the adoption status is significantly less desirable than regu-
lar domains. First, by fetching DNSKEY records and HTTPS content, we find no
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emoji domains have deployed DNSSEC, and the HTTPS adoption rate (44.61%)
is also lower than regular domains (75.5% [38] in 2014). Further, we find that
2,322 (4.27%) emoji domains enable HTTP Strict Transport Security (HSTS)
by setting the max-age HTTPS header. But the deployment rate is also lower
than that of regular domains (6.9% [37] in 2017). In addition, the proportion
of invalid certificates on emoji domain websites (7.47%, including 1,153 expired
certificates and 496 self-signed certificates) is also higher (4.6% [10] of regular
domains in 2017). As for the reasons behind such a poor security deployment
status, we speculate that, on the one hand, it may be due to the lack of atten-
tion to domain security by emoji domain owners. While on the other hand, the
inadequate emoji compatibility of security implementations [61] would also mat-
ter. For example, OpenSSL is a popular open-source toolkit for implementing
TLS, while one critical python library it relies on, idna3, does not support emoji
domain processing (unable to trans-coding its Punycode).

Conclusion. The majority of emoji domains could be successfully resolved, with
most of them hosting websites, and some even providing email services. Besides,
by analyzing the web content, we find emoji domains are now mainly used for
promotion, with 34% of them redirecting to other websites. In addition, security
implementations of emoji domains are inferior to that of normal domains and
need to be improved.

5 Security Threats of Emoji Domain Applications

Until now, little has been done to understand the security risks of emoji domains
in real-world applications. In this section, we report an empirical study to explore
the threats of visual phishing, parsing and trans-coding errors, aiming to provide
guidelines for the correct and safe handling of emoji characters in the future.

5.1 Visual Phishing Threat of Emoji Domains

Threat Model. The eye-catching visual rendering effect of emoji boosts its
popularity in domain names. However, the enrichment of rendering without stan-
dards from the Unicode community introduces new security risks. In practice,
rendering results of the same emoji vary from platform to platform, and even
from application to application. As a result, the visual boundaries between dif-
ferent emoji characters may be obscured. Two emoji characters may be rendered
quite similarly, even closer on another platform/application than one emoji itself.

Table 4 presents two real-world examples of such visual ambiguity:
“xn--i-7iq.ws” on Apple renders quite similarly to “xn--i-n3p.ws” on Google,
and is even more visually equivalent than “xn--i-7iq.ws” itself on Windows.
As the unique resource identifier in DNS, it raises the security threats of visual
phishing. Although previous studies have analyzed the visual phishing attacks
of IDN [1,9,22,30,39,46,56,57], the threat has not been well investigated with

3 https://pypi.org/project/idna/.

https://pypi.org/project/idna/
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Table 4. Examples of phishing emoji domain names.

emoji domains. Below, we provide a quantitative analysis to evaluate the feasi-
bility of emoji domain phishing.

Terminology. In this work, we denote the rendered image of emoji x on platform
a as Exa. By calculating image similarities of arbitrary two images, we define
one potential “visual phishing attack” against emoji x exists, when:

∃y �= x,∃a, b, s.t, Similarity (Exa, Eyb) > MAX
c �=d

(Similarity (Exc, Exd))

That is, the similarity between the rendering of emoji y on platform b and
emoji x on platform a is quite high, even exceeding the maximum of the internal
similarities among x’s own rendering results on different platforms/applications.

Feasibility of Visual Phishing Attacks. Here, we introduce our methodology
to quantitatively assess the feasible space for visual phishing attacks on emoji
domains. First, we extensively collect the rendering results of thousands of emoji
characters on mainstream applications (Google, Facebook, Twitter, JoyPixels)
and operating systems (Apple, Windows, Samsung) [11], yielding a dataset of
12,169 images of 1,816 emoji characters (excluding the GIF images). Specifically,
image Exa is the rendered result of emoji x (1 ≤ x ≤ 1816) on platform a
(1 ≤ a ≤ 7), which is a 72 × 72 matrix with each element (pixel) ranging
from 0 to 255. Then, we test five classical image similarity metrics to evaluate
the visual similarity, including Peak Signal-To-Noise (PSNR) [23,65], Feature
Similarity Indexing Method (FSIM) [67], Information theoretic-based Statistic
Similarity Measure (ISSM) [3], Signal to Reconstruction Error ratio (SRE) [36],
and Spectral Angle Mapper (SAM) [66].

As there is no ground-truth dataset for this task, we started by manually
labeling an emoji icon similarity dataset by two researchers, with 125 randomly
selected emoji image pairs. Image pairs with inconsistent labels will be double-
checked. Following, we input similarity results of each pair using five metrics
separately for similarity classification via a random forest (RF) model [2], with
a 16:9 training-test ratio. As shown in Table 5, FSIM performs the best, which
could achieve an accuracy of 80%, and has been chosen as our final method. We
also open source the labeled emoji similarity dataset4 to facilitate future work.
4 https://github.com/EmojiDomain/ESORICS22/.

https://github.com/EmojiDomain/ESORICS22/
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Table 5. Evaluation of each image similarity metric.

PSNR FSIM ISSM SRE SAM

Accuracy 66.67% 80.00% 71.11% 73.33% 68.89%

Precision 66.67% 86.20% 76.92% 82.75% 71.43%

Recall 75.00% 83.33% 74.07% 77.42% 76.92%

F1 score 70.59% 84.75% 75.47% 80.00% 74.07%

Finally, based on the similar results of FSIM among 148 million emoji image
pairs, we find that 1,332 (73.35%) emoji characters could be threatened by the
above visual phishing attacks.

Visual Phishing in the Real World. We also try to answer the question of
whether visual phishing attacks already happening in the real world, and the reg-
istration space of phishing domains from the perspective of adversaries. In total,
1,112 pairs of the collected emoji domains satisfy the similarity requirement of
visual phishing attacks. Through manual inspections, we do observe some sus-
pected examples, i.e., (xn--i-jv3s.ws) and (xn--i-pv3s.ws)
both promoting the service of emoji domain registration. However, we could
not further verify whether they were actually exploited for phishing. Besides,
we also speculate that some of the similar domain pairs are caused by defen-
sive registering, i.e., registrants pre-register domains similar to their own to
prevent others from registering for phishing. For example, the website owner
of (xn--i-7iq.ws) also has registered another 4 emoji domains with

similar “heart” characters, e.g., (xn--i-n3p.ws). However, most of the
vulnerable emoji domains have not been protected yet. Taking the top 100 pop-
ular domains with the most queries as examples, we find that 78 of them are
phishable, and 67 of them even have more than 10 potential phishing domains. By
requesting the registration API of Godaddy [18], we find that 23.38% of visually
similar emoji domains are available for registration, leaving considerable space
for adversaries.

5.2 Parsing Error of Emoji Domains

Threat Model. To optimize usability, mainstream online social media and chat-
ting platforms would automatically parse URLs in the text and render them into
clickable links. However, this automatic process is not always reliable, and the
unanticipated parsing may lead to “unintended URLs”. Beliz et al. [29] explored
the “unintended URLs” caused by typos, where users forget the space after a full
stop and the next sentence happens to begin with a “TLD” word (e.g., .to and
.online). Attackers could exploit such parsing errors by registering the domains
in “unintended URLs” and hijacking the traffic.

The introduction of emoji expands the character space of domains, which
raises new challenges for URL parsing. By empirical analysis and manual inspec-
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tions of open-source projects, we find one common approach to parsing URLs is
regular expression matching. For instance, Android 11 (with SDK version 30)5

has a predefined character set for URL recognition and also includes 168 emoji
characters. However, simply expanding the character set may introduce URL
parsing errors.

We present two cases below, where the emoji characters are incor-
rectly recognized as part of the URLs. Attackers can hijack the traf-
fic towards www.google.com and (xn--i-7iq.ws) by register-

ing (xn--com-x19a.to) and (xn--i-7iq2158q.ws).

Parsing Errors in the Real World. Through manual testing, we confirmed
that such parsing errors are prevalent on the Android platform even in multiple
Android systems (e.g., version 5–8 with SDK version 21–27) and applications
(e.g., Short Message Service), indicating the developers are not yet aware of
such vulnerabilities.

Moreover, to evaluate the impact of this security threat, we apply for one
day of DNS request data (April 13, 2021) from B Root [62]. As most “unin-
tended domains” would be not resolvable, Root traffic could provide a holistic
observation of parsing errors. Based on the two cases above, the structural fea-
tures of wrongly parsed emoji domains could be summarized as follows: the
emoji character appears on the right-most and before a TLD (Case-I) or left-
most (Case-II) side of a valid domain, and is then incorrectly parsed as a new
(most likely NXDomain) domain name. Therefore, we first filter out the emoji
domains from the DNS requests in Root traffic, and divide the domains into
left and right sub-strings by the emoji character. When one origin domain
is NXDomain, while its left sub-string is a valid domain, it would be tagged
as Case-I; when its right sub-string is a valid domain, it would be tagged
as Case-II. Finally, a total of 6,372 emoji domains are reported as “parsing
error”, including 1,591 Case-I (e.g., with A-Label of

youtube.xn--com-3113b.dlink) and 4,781 Case-II (e.g.,
with A-Label of xn--meet-uk3b.google.com). Based on the Godaddy registra-
tion API [18], we find that 43.13% of emoji domains with “parsing error” are
available for registration. To conclude, we speculate this security threat does have
a real-world impact and needs to be taken seriously by individual applications.

5.3 Trans-coding Issue of Emoji Domains

Benefiting from the existing disclosure of IDN vulnerabilities, applications would
trans-code domains with non-ASCII characters into A-Labels (strings starting
with “xn–”) to mitigate phishing threats. Hu et al. [24] found that mainstream

5 https://developer.android.com/studio.

www.google.com
https://developer.android.com/studio
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Table 6. Trans-coding test results of ZWJ embedded emoji domains.

browsers would selectively trans-code IDNs in the address bar of browsers. In this
study, we conducted a similar investigation on how emoji domains are displayed
by browsers.

However, the trans-coding process itself is also a complex task and could
be error-prone, especially when dealing with special functional characters for
emoji rendering. The most representative special character is Zero With Joiner
(ZWJ, “U+200D” and “U+200C”). It is invisible, but can change the rendering

results of its contiguous emoji (e.g., would be rendered as ).
Unfortunately, the community has not developed a uniform (and strict) standard
for how to handle ZWJ in domain names [31], e.g., IDNA 2003 recommended
removing ZWJ in trans-coding while IDNA 2008 considered keeping it as a valid
character. Such insidious characters would introduce serious ambiguity when
used as unique identifiers, thus discouraging being used in domain names [55].

We witnessed 1,026 emoji domains with ZWJ being used in the wild based
on our collected dataset, and further confirmed they do trigger ambiguity dur-
ing trans-coding. The test was performed on LambdaTest [35], a cloud-based
framework that supports remote testing on different versions of browsers across
multiple operating systems. By configuring the versions of browsers, operat-
ing systems and domains to be tested, we can remotely control LambdaTest to
load the domain in the address bar of the specified browser and get the result
in video form. A total of 7 browser vendors on 7 PC operating systems and
3 browser vendors on 10 mobile brands were tested. According to the results
shown in Table 6, we find that trans-coding of emoji domains is primarily imple-
mented by the browser vendors themselves, independent of the platforms they
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are running on. Specifically, Chrome is correctly implemented in all versions
on all platforms, keeping the ZWJ and trans-coding it (e.g., trans-codes
to xn--g5hz810o.ws correctly). However, other browser implementations are
not satisfactory. Most seriously, lower versions (88–93) of Firefox and IE stand

in the “drop ZWJ” branch, e.g., would be improperly trans-coded as
xn--1ug66vqx45b.ws, which is totally a different domain and could lead to
security risks of traffic hijacking. There are also flaws where browsers could not
recognize ZWJ embedded emoji domains and then use them as keywords to fetch
results from search engines (e.g., higher versions of Firefox), or return the naviga-
tion page directly (e.g., Safari), causing the denial of access failures. Considering
the prevalence of special characters used in the emoji ecosystem (e.g., ZWJ can
be combined with at least 202 sets of emoji characters for special effects), we
need to explore the best security practice for emoji domain trans-coding and
propose consistent standards to mitigate the above risks.

6 Discussion

Recommendations. In this study, we provide a landscape of how emoji
domains are parsed in mainstream platforms and applications. Most of them
are “compatible”, but from the perspective of adversaries, they are not prepared
to deal with potential security risks. Given the rapidly growing trend of emoji
domains in the wild, we believe it is necessary to take action for mitigation.
Here, we provide three recommendations based on our observations:

• Unicode community: provide guidance for emoji domain process-
ing. Our study reveals that the Unicode standards still have ambiguous and
unspecified fields on emoji domain processing, which should be specified and
regulated in the near future. For example, we need best security practices on
how to securely parse special emoji characters during the trans-coding, such
as ZWJ. Furthermore, despite the fact that it could be difficult to uniform
the rendering of emojis across all platforms, the Unicode community should
propose guidance to prevent visual phishing attacks.

• Domain registry and registrar: adopt proactive anti-phishing
defenses. As mentioned above, a dozen of ccTLD registries are support-
ing and promoting the registration of emoji domains. Considering potential
security concerns, the related registries and registries should take proactive
approaches. In particular, a previous study proposes a series of anti-phishing
defenses for IDN domain registrations [15], including enumerating potential
phishing domains in advance based on emoji similarity, and encouraging users
to register them proactively.

• Application: elaborate emoji-compatible implementation. Applica-
tions should balance both usability and security of emoji domains, particu-
larly in the parsing and trans-coding processes. The threat models and test
cases presented in this paper could be considered as references for secure
testing of applications.
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Generality of Proposed Security Risks. The essence of this work is the secu-
rity pitfalls when special Unicode characters are adopted as unique identifiers.
Therefore, the security risk is generally applicable in multiple scenarios beyond
emoji domains, e.g., the Windows registry [58] and file paths with IDNs [54]. We
believe that the first exploration perspectives in this work, such as trans-coding,
parsing and rendering of special Unicode characters, are also applicable to other
areas. We leave the exploration of broader scenarios as our future work.

Ethical Consideration. The major ethical considerations for this study include
data collection and security threat disclosure. First, the datasets we collected are
publicly available and used for research purposes only. No personally sensitive
information is involved in the data collection. Second, we propose three security
threats and evaluate their feasibility in the real world. Our results demonstrate
that ambiguous understanding and mishandling of emojis are prevalent in the
wild. As a result, it is possible that these attacks will be initiated by adversaries.
However, we consider that our study gains more benefits than exposing threats,
which makes the security community aware of the unique security threats intro-
duced by emoji characters.

7 Related Works

IDN Domain Security. The initiative of IDN has been proposed for a long
time, and attracted the security community to study its ecosystem and implica-
tions. Since registrants are free to choose characters from the Unicode consor-
tium, an adversary can carefully craft an IDN domain that looks quite similar
to a popular domain by replacing ASCII characters with Unicode ones. Such
an attack is named IDN homograph. Security accidents show that homographic
IDN has been utilized by cyber-criminals [21,22]. In 2018, a reexamination study
was conducted to detect registered homographic IDNs and estimate the scale of
available ones [39]. After that, the methodology of homograph attack detection
was optimized by a series of studies [56,59]. To mitigate this risk, mainstream
browsers introduced defense policies. However, almost all implementations have
weaknesses in their rules, leaving opportunities for attackers and re-allow homo-
graph IDNs [24].

Domain Abuse. Continuous expansion of domain space led to the security risk
of domain squatting [20,46,59]. Besides homograph IDNs, deceptive domains
could be constructed by typos [1,43,57], flipping a bit [46], using a hyphen
to connect related keywords [30], the sound similarity [45], or even the long-
length of domain name [9]. Previous studies demonstrated that newly released
TLDs may be exploited to create look-alike domain names of popular brands [5,
17,19,20,33]. And recent work shows that domain impersonation attacks also
have a negative impact on the issuance of TLS certificates [53]. To the best of
our knowledge, there is no prior work has attempted to explore the security
implication of emoji domains for the DNS ecosystem.
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8 Conclusion

This work is the first to propose a systematic study of emoji domains based on a
comprehensive dataset, including 1,366 TLD zone files, and long-period country-
level passive DNS datasets. We identify 54,403 emoji domains by matching char-
acters with the emoji code point lists. We show that the scale of emoji domains
is constantly growing in the wild. The proliferation of emoji domain registra-
tions under ccTLDs and configuring emoji icons in subdomains have enabled
the entire ecosystem to remain developing after 2017 and up to now. About half
of emoji domain names are associated with meaningful web content, with most
for promotion and redirection, or even pornographic sites. However, it still lacks
best security practices in supporting and parsing emoji domains, which exposes
serious security risks, including phishing threats, parsing errors and trans-coding
issues. Overall, we believe that the development of emoji domain names is at an
early stage. And different communities should pay more attention to the security
issues, and take efforts to find the best practice for processing emoji domains.
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Abstract. CPU port contention has been used in the last years as a
stateless side channel to perform side-channel attacks and transient exe-
cution attacks. One drawback of this channel is that it heavily relies on
simultaneous multi-threading, which can be absent from some CPUs or
simply disabled by the OS.

In this paper, we present sequential port contention, which does not
require SMT. It exploits sub-optimal scheduling to execution ports for
instruction-level parallelization. As a result, specifically-crafted instruc-
tion sequences on a single thread suffer from an increased latency. We
show that sequential port contention can be exploited from web browsers
in WebAssembly. We present an automated framework to search for
instruction sequences leading to sequential port contention for specific
CPU generations, which we evaluated on 50 different CPUs. An attacker
can use these sequences from the browser to determine the CPU gener-
ation within 12 s with a 95% accuracy. This fingerprint is highly stable
and resistant to system noise, and we show that mitigations are either
expensive or only probabilistic.

Keywords: Side channels · CPU port contention · Browsers ·
Fingerprinting

1 Introduction

Microarchitectural attacks exploit side effects of the CPU’s internal implementa-
tion. These attacks have been shown to leak sensitive data even in the absence of
software vulnerabilities. Many of these attacks exploit a microarchitectural state
that depends on a secret value. A thoroughly studied state is the cache state, i.e.,
if data resides in the cache or the main memory. This state can be observed using
timing measurements when accessing data, as done in, e.g., cache attacks such as
Flush+Reload [56]. Such stateful channels have the advantage that attacker and
victim do not have to run in parallel. Recently, there were also advances in the
exploitation of stateless channels. In such channels, the microarchitectural state
change does not persist and can only be observed while the victim is running.
As attacks using stateless channels require the attacker and victim to run in
parallel while sharing the same hardware resources, they typically rely on simul-
taneous multi-threading (SMT), also known as hyper-threading on Intel CPUs.
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An example of such a channel is port contention [3], where an attacker observes
the latency of executed instructions caused by a victim on the hyper-thread that
blocks resources necessary to execute the instructions.

The majority of microarchitectural attacks are initially shown in native code.
Browsers specifically modified for prototyping microarchitectural attacks [11,39]
can help port such attacks step-by-step to the browser, ultimately enabling
these attacks from unmodified browsers. The number of such attacks that can
be mounted in the browser is steadily increasing [39] even though the sand-
boxed environment in browsers prevents access to low-level functionality used
in microarchitectural attacks, such as high-resolution timers [39,46] or control
over the CPU-core placement [11,40]. Despite all these challenges, stateful chan-
nels [20,34] and stateless channels [40] have been exploited in browsers.

In this paper, we introduce a new stateless channel that can be exploited
in the browser as well. We introduce sequential port contention, a novel form
of contention on the CPU execution ports. With sequential port contention, we
show that port contention [5,40] does not necessarily require SMT. Instead of
exploiting thread-level parallelism, we exploit instruction-level parallelism. We
exploit the limited look-ahead window of the instruction scheduler that results
in sub-optimal scheduling–and, as a result, increased latency due to sub-optimal
instruction-level parallelism–for specific instruction sequences on a single CPU
core. We show that such sequences work in native code but also work reliably
in WebAssembly. Our side channel works in unmodified off-the-shelf browsers,
including the privacy-focused browsers Tor and Brave.

We present an automated framework to search for instructions sequences
leading to sequential port contention in the browser. The framework supports
Intel and AMD CPUs and works in WebAssembly. Our evaluation on 26 CPUs
spanning 13 CPU generations discovers at least 36 instruction sequences causing
sequential port contention.

In a case study, we demonstrate that the framework discovers sequences that
allow distinguishing CPU generations. We use the results from our framework to
automatically build a k-NN classifier that reliably detects the CPU generation
based only on timing measurements. As we use a differential measuring approach
based on sequential port contention, our results are independent of the overall
CPU performance, i.e., the CPU frequency and workload on other CPU cores
do not impact our classification. We evaluate our classifier in the browser on 50
CPUs1. From within Chrome and Firefox, we classify the CPU generation with
a very high accuracy of 95% within, on average, 12 s.

Due to the robustness of our approach, we show that our side channel is
hard to mitigate and is highly resistant to system noise. Moreover, proposals
for preventing (hardware) fingerprinting [7–9] are ineffective, as we only require
coarse-grained timing measurements. The CPU does not change often, and mit-
igations against this type of attack are difficult, granting the fingerprint a high
stability over time. We show that our fingerprint is stable on all major releases

1 Sources and evaluation data are available on https://github.com/MIAOUS-group/
port-contention-without-smt.

https://github.com/MIAOUS-group/port-contention-without-smt
https://github.com/MIAOUS-group/port-contention-without-smt
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of Chrome and Firefox in a year and, therefore could be used to link less stable
fingerprints [26,53].

Hence, we stress that this new side channel is a real privacy risk, as it can
be used to track users based on their CPU. Moreover, we show that sequential
port contention is also possible in a virtualized environment but stops working
in emulated environments. These results also indicate that the side channel is
valuable for malware as an anti-emulation measure.
Our key contributions are:

– We introduce a CPU-port-contention primitive that relies on instruction-level
parallelism instead of SMT and build a framework to automatically find
WebAssembly instructions creating such sequential port contention.

– We use this primitive to fingerprint the CPU generation in WebAssembly in
web browsers without any browser API.

– We evaluate our new fingerprinting method on 50 CPUs from 12 generations
with an accuracy of 95% with a runtime of only 12 s.

– We discuss that the fingerprint is highly stable over major releases of browsers,
is robust against system noise, and mitigations are difficult.

2 Background

2.1 CPU Port Contention

Simultaneous multithreading (SMT) allows parallelization by sharing the
resources of one physical core across two or more logical cores. Intel’s SMT imple-
mentation is called Hyper-Threading (HT). Typically, a pair of logical cores in
the same physical core shares L1 and L2 caches, a branch prediction unit, and
the execution engine, among other components.

Instructions are fetched from memory by the pipeline, which in a second
step decomposes each instruction into smaller, atomic operations, called micro-
operations or μops. The μops are then distributed to the execution engine by
the scheduler through multiple CPU execution ports belonging to the execution
units. Each execution unit is specialized to process precise types of instructions,
e.g., arithmetic μops are distributed to port 0, 1, 5, or 6 (noted P0156). Abel et al.
[1] have documented the port usage of instructions for various Intel CPU gener-
ations. The port usage can differ from one generation to another for the same
instruction.

Since the execution engine is shared across two logical cores, two threads
on the same physical core can create contention on this resource by executing
instructions issued to the same port. Port contention has been used in side-
channel attacks [3] and transient execution attacks [5]. Rokicki et al. [40] showed
that this side channel is exploitable from web browsers using WebAssembly.

2.2 WebAssembly

WebAssembly [54] is a binary instruction format for a stack-based virtual
machine. It is designed to be deployed on the web, on the client or server
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sides. It is a portable compilation target from other languages, such as C, C++
or Rust, with the purpose of bringing native-like performance to the browser.
Client-side WebAssembly is designed to run inside the JavaScript sandbox [18],
hence it is heavily restricted for security purposes: among others, it cannot use
native instructions or have access to arbitrary memory addresses. WebAssem-
bly is built around a stack machine in a format resembling native assembly.
WebAssembly offers more than 200 specified instructions [17], including SIMD
operations. Although originally a binary language, it supports a human-readable
text format, allowing reading and modifying compiled WebAssembly code at a
low level.

2.3 Browser Fingerprinting

Browser fingerprinting is a stateless technique collecting data from the browser
or machine configuration, usually from dedicated APIs [29]. It aims to construct
a unique identifier, called a browser fingerprint, without storing any cookie.
JavaScript APIs and HTTP headers give information such as the User Agent,
screen resolution, and time zone, which, alone, are perfectly harmless and even
help enhance user experience on websites. However, the combination of these
attributes is often unique, and can therefore be used for either tracking or as
another factor of authentication [27].

To be useful, a fingerprint should have the following properties. Uniqueness:
a fingerprint should be able to uniquely identify users. This is obtained by collect-
ing multiple attributes, rather than from a single unique attribute. Stability : any
change in an attribute value changes the fingerprint and therefore breaks user
identification. However, relying on software fingerprinting means that attributes
are constantly changing (e.g., the browser version in the User Agent). Vastel
et al. [53] showed that it is possible to link two fingerprints that are slightly
different from each other through heuristics. Therefore, for a single attribute,
uniqueness is less important than stability to link fingerprints.

3 Threat Model

Sequential port contention, as most microarchitectural attacks, requires code
execution on the victim machine. We assume that the attacker either has native
unprivileged code execution (native side channel) or can run WebAssembly in
the victim’s browser (browser-based side channel). The attacker does not rely on
software vulnerabilities, does not require any permissions that have to be granted
by the victim, or any particular setup such as SMT or a specific core assignment.
We assume that the victim spends at least 15 s on the attacker’s website, based
on the average time of 20 s users dwell on an unknown website [32].

4 Port Contention Without SMT

Port contention, as described by Aldaya et al. [3], requires SMT. Both the
attacker and the victim need to run on the same physical core for the attack
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Fig. 1. Illustration of the differences in execution time based on the order of instruc-
tions, with a look-ahead window of size 1.

to work, as CPU ports are on-core resources. This prerequisite represents a chal-
lenge in some settings, as some systems do not have SMT or disable it [21], and it
may become increasingly hard to fulfill as countermeasures to SMT attacks are
being explored [51,52]. It also has severe implications in a web setting, where the
attacker script, situated inside the JavaScript sandbox, cannot know nor control
which core it is running on. In this section, we show port contention without
requiring SMT, both in a native setting and in a browser sandbox.

4.1 Main Idea

The main idea of sequential port contention is to exploit the limited look-ahead
window of the μop scheduler, leading to contention for well-chosen instruction
pairs (instr1, instr2). Both instructions use different execution ports on the
CPU. If the instructions are grouped, i.e., if the instruction stream consists of n
instructions instr1, followed by n instructions instr2, with n larger than the
look-ahead window of the scheduler, parallelization is not possible (cf. Fig. 1(a)).
The scheduler cannot detect that some instructions later in the instruction
stream could already be executed in parallel. However, if interleaved in an instruc-
tion stream of 2n instructions, they can be executed in parallel (cf. Fig. 1(b)). As
a result, the overall execution time of an instruction stream of the same length
depends on the order of the two repeated instructions instr1 and instr2 if
these instructions do not use the same ports.

Similar to port contention with SMT [3], the contending instructions instr1
and instr2 depend on the underlying microarchitecture. However, as this infor-
mation is publicly available [1], sequential port contention is applicable to a wide
range of microarchitectures. We show sequential port contention in native envi-
ronments (Sect. 4.2) and demonstrate that it is also exploitable from off-the-shelf
unmodified browsers (Sect. 4.3).
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Listing 1.1. Grouped. Always
creates contention.
1 grouped :
2 l fence
3 rdtsc # Timestamp
4 l fence
5 . r e p t $n # F i r s t loop
6 i n s t r 1 %reg , %reg
7 . endr
8 . r e p t $n # Second loop
9 i n s t r 2 %reg , %reg

10 . endr
11 l fence # Timestamp
12 rdtsc

Listing 1.2. Interleaved. Creates contention
if the two instructions share a CPU port.

13 i n t e r l e a v ed :
14 l fence
15 rdtsc # Timestamp
16 l fence
17
18 . r e p t $n # S ing l e loop
19 i n s t r 1 %reg , %reg
20 i n s t r 2 %reg , %reg
21 . endr
22
23 l fence # Timestamp
24 rdtsc

4.2 Native Environment

Proof of Concept. Our proof of concept of sequential port contention is based
on two experiments, illustrated in Listings 1.1 and 1.2. In these experiments, we
evaluate two native x86 instructions, instr1 and instr2.

The first experiment is a control experiment, grouped, which is composed of
two loops, each calling an instruction n times. As the decomposition of instruc-
tions in μops is deterministic, the various calls to the same instructions have the
same port usage. This means that during loop 1 (respectively loop 2), instr1
(respectively instr2) always creates contention on its ports. The second experi-
ment, interleaved is composed of a single loop with the same number of iterations.
Instead of calling the same instructions in a row, it alternatively calls instr1
and instr2. If instr1 and instr2 emit μops to the same port, it creates con-
tention, resulting in a slower overall execution time. However, if they do not
emit μops on the same port, the execution is parallelized due to instruction-level
parallelization, resulting in a faster execution time.

By computing ρ = time(grouped)
time(interleaved) , we know if interleaved creates contention.

If ρ ≈ 1, both experiments have a similar execution time, i.e., the instructions
share at least one port. If ρ > 1, interleaved has a shorter execution time than
grouped, i.e., the instructions do not share a common port.

Experiments. We run this experiment on an Intel i5-8365U (Whiskey Lake),
with TurboBoost enabled and without fixing the CPU frequency. First, we run
it with instr1 = crc32, which emits a single μop on execution port 1 (P1),
and instr2 = aesdec, which emits a single μop on execution port 0 (P0). Both
instructions have the same throughput and latency.

Figure 2 illustrates the results of this experiment when we vary the number
of loop iterations n. Figure 2(a) shows how the grouped execution time is sys-
tematically higher than the interleaved one. The gap between the two curves
increases with the number of loops. Figure 2(b) shows that ρ quickly converges
to 1.8 at n = 1000. It then remains constant when increasing the number of loop
iterations. The inflection point situated around n = 64 is caused by the size of
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the look-ahead window of the scheduler. When instructions from both loops fit
inside this window, the scheduler can rearrange instructions to execute them in
the most optimized order, prioritizing parallelism and thus reducing port con-
tention. When an mfence is added between the two loops (Lines 7–8 of Listing
1.1), this inflection point disappears, and the curve raises smoothly to 1.8.

We run the same experiment with instr1 = crc32 and instr2 = popcnt.
Both instructions emit a single P1 μop, and have the same throughput and
latency. Figure 3 shows that ρ stays constant around 1. That is expected, as the
contention is always the same on P1, independently of instruction order.

4.3 Web Browsers

Challenges. Porting these experiments to a browser sandbox introduces new
challenges. First, neither JavaScript nor WebAssembly provides high-resolution



216 T. Rokicki et al.

Listing 1.3. Grouped in WebAssem-
bly. Always creates contention.
25 (module

26 (func $grouped

27 (param $p type )( result type)

28 (local.get $p)

29 (type.instr_1)

30 ... # Repeat $n

31 (type.instr_1)

32 (type.instr_2)

33 ... # Repeat $n

34 (type.instr_2)

35 )

36 (export "grouped" (func $grouped ))

37 )

Listing 1.4. Interleaved in WebAssembly.
Creates contention if the two instructions
share a CPU port.

38 (module

39 (func $interleaved

40 (param $p type )( result type)

41 (local.get $p)

42 (type.instr_1)

43 (type.instr_2)

44 ... # Repeat $n

45 (type.instr_1)

46 (type.instr_2)

47 )

48 (export "interleaved" (func $interleaved ))

49 )
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Fig. 4. Ratio ρ for the WebAssembly instructions (i64.popcnt, i64.or) depending on
the number of loop iterations n.

timers. This comes from an effort from browser vendors to prevent timing attacks.
However, it is still possible to create high-resolution auxiliary timers [39,46]. For
all experiments in this section, we use a timer based on SharedArrayBuffer,
defined by Schwarz et al. [46]. It uses a constant increment of a shared integer as
a time unit and offers a resolution of 20 ns. However, this timer is still not as accu-
rate as native cycle-accurate timers. Second, both JavaScript and WebAssembly
are high-level languages, running inside a sandbox. There is no access to native
instructions or arbitrary virtual addresses. Moreover, WebAssembly instructions
are an abstraction of native instructions and thus do not directly map to exe-
cution ports. As WebAssembly is aimed at being portable, the translation of
WebAssembly to native code depends on the browser’s WebAssembly compiler
and the targeted CPU. We can, however, empirically determine the port usage
of these instructions for a system [40].

Proof of Concept. Similar to native experiments, the sequential port con-
tention in WebAssembly is composed of two different functions. Listing 1.3 shows
the code for the grouped experiment, which results in a slow execution time as
instructions are delayed by contention. Listing 1.4 shows the interleaved experi-
ment. A low execution time indicates that the experiments were not slowed down
by contention, whereas a high execution time means both instructions share at
least one port.
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Experiments. We run this experiment on the same Intel i5-8365U CPU, with
instr1 = i64.popcnt and instr2 = i64.or. Figure 4 illustrates how ρ also
increases with the number of loops. On both Chrome 101 and Firefox 99, ρ
stabilizes around 1.1 starting from n = 100 000 loop iterations. This ratio is
significantly lower than the native one. This stems from lower precision timers,
as well as the stack structure of WebAssembly, where we need to add a value
to the stack between instructions. Running the same experiment with instr1 =
i64.popcnt and instr2 = i64.ctz, ρ remains constant around 1 when varying
the number of loops. We devise a framework to isolate pairs of instructions that
exhibit sequential contention in Sect. 5.2.

Privacy-oriented browsers are also vulnerable to sequential port contention.
With 100 000 loop iterations in Brave 1.38, we obtain ρ = 1.1. In Tor Browser
11.0.11, SharedArrayBuffer is disabled by default to prevent timing attacks.
However, we can still reproduce sequential port contention with the lower-
resolution timer performance.now() by increasing the number of loop iterations
n to 100 000 000. In that case, we obtain ρ = 1.2, but each experiment takes up
to 1 s, i.e., 1000 times more than for other browsers.

5 Fingerprinting CPU Generations

In this section, we show how sequential port contention can be used to determine
the CPU generation of the victim, even from inside the JavaScript sandbox.

5.1 Core Idea

The port usage of native instructions varies across generations of microarchitec-
ture. As the number of execution units and CPU ports vary, the same instruc-
tion can emit P1 μops on a given generation and P0 on another generation. For
instance, VPBROADCASTD emits one μop on P5 on both Haswell and Whiskey
Lake microarchitectures, and AESDEC emits one μop on P1 on Haswell and one
μop on P5 on Whiskey Lake. We computed ρ on an Intel i5-8365U (Whiskey
Lake) and an Intel i3-4160T (Haswell). The frequency of these CPUs can vary.
However, the base frequency does not impact our experiment as we compute a
ratio. We found ρWhiskeyLake = 1 and ρHaswell = 1.8. This correlates with the
documented port usage. Indeed, on Whiskey Lake, both instructions emit a μop
on P5. Thus, both experiments are slowed down by contention. On Haswell, the
two instructions do not share a common port. Thus, the interleaved experiment
is not slowed down by port contention, resulting in a faster execution time and
a ratio ρ > 1.

In summary, by finding pairs of instructions that create contention for some
generations but not others, we can detect on which CPU generation the code is
executed. As sequential contention is visible from a browser (cf. Sect. 4.3), we
also aim to discover pairs of WebAssembly instructions that exhibit sequential
port contention to fingerprint the CPU generation from a web page.
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5.2 Framework

The port usage of the CPU-independent WebAssembly instructions cannot be
determined from the WebAssembly source code. Thus, we build a framework
based on PC-Detector [40] to automatically evaluate 458 pairs of WebAssem-
bly instructions for contention on a specific CPU generation. Due to the nature
of WebAssembly, it is highly portable and can be executed on any microar-
chitecture. This framework aims at isolating instruction pairs that can act as
distinguishers. Such distinguishers have two major properties: 1) they exhibit
different contention for different generations, and 2) they always exhibit the
same contention for different CPUs of the same generation. The second property
is essential, as other sources of contention that do not depend on the generation
could yield false results. Changes in the microarchitecture, e.g., floating-point
units, inside a CPU generation can cause changes in behaviors, thus preventing
stable fingerprinting.

Using this framework, we collect the best distinguishers to create traces for
each generation. To fingerprint generations, we create a k-NN-based classifier
and train it with results from the framework. It represents traces as points in
an l-dimensional space, where l is the length of the trace, i.e., the number of
distinguishers. Given a distance for each unknown execution trace, the classifier
computes the k-nearest traces from our training dataset. A trace is classified in
the most frequent class, i.e., CPU generation, in the k-nearest-neighbors.

To collect evaluation traces for the two sequential port contention experiments,
we use a simple web page (https://fp-cpu-gen.github.io/fp-cpu-gen). It works on
the latest versions of Firefox and Chrome, on Linux, macOS and Windows.

5.3 Evaluation

This section presents the results of our classifier and the different parameters
used. Our classifier presents a 95% accuracy in a real-world threat model (cf.
Sect. 3): a user visits a malicious website for a few seconds.

The training set is composed of 26 different CPUs spanning 13 different
generations. It is composed of both AMD and Intel CPUs, including server and
standard desktop CPUs. Table 1 in Appendix A presents the training set. The
test set is composed of a subset of traces from the training set. It contains
13 different CPUs. The evaluation set is composed of traces from our website.
These traces come from an uncontrolled environment since the web script cannot
control or quantify the system noise. It contains 50 CPUs from 12 different
generations.

Training and Testing. We train our model using data from our training set.
The CPUs used in our training set are not balanced in terms of CPU generations,
some being more represented than others. We therefore include the same number
of traces for each generation to compensate this. Our framework finds 36 pairs of
instructions acting as distinguishers between the CPU generations. We use the
traces from these distinguishers to train our k-NN classifier. Our model shows a
96% accuracy on the test set, using k = 5 neighbors and majority voting.

https://fp-cpu-gen.github.io/fp-cpu-gen
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Fig. 5. Confusion matrix for the evaluation of the k-NN classifier with grouped gener-
ations, k = 5 and majority voting on 10 traces.

Accuracy. Figure 5 illustrates the results of our classifier on the evaluation set.
It has a balanced accuracy of 95%. We use k = 5 as the number of neighbors.
We gather 10 traces and classify each one independently. The class for the exper-
iment is determined using majority voting on the 10 classified traces. Due to
the lack of microarchitectural changes between closely-related generations, some
generations have the same assignment of execution ports for all instructions. As
a consequence, some generations are indistinguishable using sequential port con-
tention. We grouped such generations in the classes of our classifier. This includes
the Bridge (Ivy Bridge, Sandy Bridge), Well (Haswell, Broadwell), Skylake (Sky-
lake, Cascade Lake), and Coffee-Lake group (Coffee Lake, Whiskey Lake, Comet
Lake). AMD CPUs are distinguishable from Intel ones, but the generations are
grouped in the Zen group (Zen 1, Zen 2, and Zen 3).

Execution Time. The total execution time is composed of the offline and the
online execution time. The one-time offline execution time is composed of the
framework execution time and k-NN training time. On average, testing all pairs
of instructions in the framework takes 4 h, with a standard deviation of 1 h and
7 min. Training the k-NN model takes 5 s on an i5-8365U. The online execution
time is composed of the data collection time, i.e., the time taken on the website
to gather the 10 traces, plus the prediction time, i.e., the execution time of
predicting the class of the trace. The data collection time is the most critical
factor, as it represents the duration the victim has to remain on the web page.
The client sends the traces to the server that then computes the prediction, so
the victim can then close the web page. Data collection takes 12 s on average,
with a standard deviation of 6 s. The data collection time is faster on average on
Google Chrome (10 s) compared to Firefox (13 s). On both browsers, the data
collection time is in the range of the average visit time on a website [32]. The
prediction time is on average of 40 ms for 10 traces on an i5-8365U, which is
negligible compared to the data collection time.



220 T. Rokicki et al.

Impact of Majority Voting. System noise can decrease the accuracy of a
single trace. In particular, the first traces gathered when launching the script
are the most prone to these misclassifications. On our evaluation set, the first
trace for each experiment has a 30% chance of being mispredicted, the second
12%, and then the misclassification rate goes down with repetitions to 6%. There
are multiple reasons, including the power saving policy of the system, where by
default, the CPU does not use its maximum frequency to save energy, and cold
caches. The first traces act as a “warm-up” of the CPU, before reaching max-
imum frequency. To compensate for this phenomenon, we implement majority
voting. With majority voting, we gather data on v traces and classify the exper-
iment based on the most common classification of these traces. This improves
accuracy at the cost of a higher execution time. Without majority voting, our
evaluation set shows an accuracy of 70% with a data collection time of 5 s. With
v = 5, the accuracy increases to 86% and a data collection time of 9 s on average.
Starting from v = 10, the accuracy peaks at 95% with a data collection time of
12 s.

Impact of the Number of Neighbors. The number of neighbors k is a signif-
icant factor in the classifier’s efficiency. A small number renders the classification
vulnerable to noise, as a single noisy trace in the training set can lead to mispre-
dicting many evaluation traces. A higher number tends to increase the impact
of densely grouped traces, as well as increase the computation costs.

For instance, when using k = 1 on the evaluation dataset, the classifier
accuracy is reduced to 85%. We found that k = 5 grants a higher accuracy for our
testing and evaluation sets. Higher values of k tend to yield a lower accuracy. This
comes from the similarity of traces between closely-related generation groups,
e.g., Skylake and Coffee-Lake groups.

Time Stability. Time stability is an essential feature, as hardware is seldomly
changed by users, compared to software that has regular updates. We evaluate
the stability of the classifier on an Intel i5-8365U on each major version of Firefox
and Chrome covering about a year. The generation is correctly classified from
Chrome 91 (released in May 2021) to 101 and Firefox 89 (released in June 2021)
to 100. Prior versions did not support WebAssembly SIMD instructions, which
are part of the distinguishers in our traces. Our CPU-generation fingerprints
have been stable for a year. This represents a high time stability for a browser
fingerprint compared to ever-changing browser APIs and other hardware-based
approaches, such as DrawnApart [26], where the fingerprint may change with
browsers’ major releases, resulting in a median tracking time of 28 days.

Impact of Noise on Classification. As the attacker resides inside a sandbox,
they cannot know nor control noise created by other processes or tabs. Such noise
could deteriorate the performance of our classifier by creating wrong results in
the data collection process. We run the data collection process in the website on
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Firefox 100 and Chrome 101 on a quadcore i5-8365U, while artificially creating
noise with the stress command. The stress threads create noise, disturbing
either the sequential port contention or the clock thread. Fewer noise sources, i.e.,
stress -c {1..4}, result in 93% accuracy. That is because the OS’s scheduler
balances the workload, and the attack physical core is not affected by the noise.
A higher count of stress threads, i.e., 5 to 8, still yields an accuracy of 75%.

6 Discussion

In this section, we discuss the practical use of CPU generation fingerprinting
(Sect. 6.1), its limitations (Sect. 6.2), the effects of virtualization and emulation
(Sect. 6.3) as well as possible mitigations (Sect. 6.4).

6.1 Practical Use of CPU-Generation Fingerprinting

The CPU-generation attribute does not have a high uniqueness, as even with a
bigger training set, there are a limited number of CPU generations. The relevant
feature here is its stability. We envision using this new fingerprinting attribute in
combination with existing attributes. Its stability can be used as a linking factor
to better link fingerprints to enhance tracking time [53] or use fingerprinting as a
second authentication factor [27]. Hardware-based fingerprinting attributes are
ideal candidates, as hardware is updated less often than software, and software
updates usually lead to changes in fingerprints. However, even robust hardware-
based methods can break with browser internal changes [26]. We have shown
that our method is robust to major version changes of browsers over a year.

6.2 Limitations

For CPU generations with major changes, sequential port contention is a highly
reliable method to fingerprint the CPU generation. Such changes are found on
Intel CPUs between the Bridge (e.g., Sandy Bridge, Ivy Bridge), the Well (e.g.,
Haswell, Broadwell), and the Lake (e.g., Skylake, Coffee Lake, Whiskey Lake,
Comet Lake) microarchitectures. However, starting with the successful Lake
microarchitecture, changes between new versions are smaller, making it harder
to detect the specific microarchitecture. For example, Coffee Lake, Whiskey Lake,
and Comet Lake are based on the nearly identical designs of the execution units.
Only Ice Lake introduced changes again, specifically with an additional store
unit [55] which subsequently led to changes in the port assignment for several
instructions. Hence, the detection of the CPU generation cannot differentiate
names for essentially the same generation.

Due to lack of access, some generations are not included in the training set,
e.g., Nehalem or Ice Lake. Thus, they cannot be correctly predicted by our proof-
of-concept model and are not included in the evaluation set. This could be easily
corrected by extending our study and running the framework on a larger range of
CPUs. CPUs with significant microarchitectural changes are potentially highly
identifiable, e.g., Ice Lake with its addition of new store units.
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6.3 Virtualization and Emulation

Sequential port contention is not limited to bare-metal code execution but also
works from inside virtual machines if the guest is virtualized and not emulated.

Virtualization. As all involved instructions are unprivileged and not emulated
by the hypervisor, there is no difference in the execution stream to a bare-metal
execution. Hence, the measured effects are also the same. Moreover, as only a
single CPU core is required, the scheduler of the hypervisor does not affect the
contention. We verify on Ubuntu 20.04 (kernel 5.13) with QEMU KVM 4.2.1
that we measure the same effect of sequential port contention within a virtual
machine (Ubuntu 20.04, kernel 5.4).

Emulation. Sequential port contention requires that the specifically-crafted
instruction stream is executed without modifications on the CPU. For emulation,
this is not the case if instructions are interpreted or translated just in time
with potential additional instructions in the instruction stream. For example,
when running the guest operating system (Ubuntu 20.04, kernel 5.4) in QEMU
4.2.1 with full system emulation (TCG), we are unable to measure the effect
of sequential port contention. In this setup, the instruction stream with and
without contention have the same execution time.

Based on this observation, sequential port contention can detect emulation,
e.g., if the code is analyzed via a malware-analysis emulator [6,25]. Hence, sequen-
tial port contention provides malware with another trick to detect such environ-
ments. As discussed in Sect. 6.4, mitigating sequential port contention is difficult.
Likewise, sequential port contention is likely infeasible to emulate, making it dif-
ficult to prevent malware from detecting the presence of an emulator.

6.4 Mitigation

Sequential port contention does not require any operating-system interface or
particular setup, such as SMT (cf. Sect. 3). Hence, this side channel cannot be
prevented on the operating-system level but potentially on the browser level.
As previous work on microarchitectural attack detection [19,22,35,47], we show
that this side channel can also be detected using hardware performance counters.

Browser Mitigation. Existing browser mitigations against side-channel
attacks are only effective against sequential port contention if they block access
to timing sources [24,33,45] or entirely prevent the execution of active con-
tent [13,37]. However, while effective, these methods also impact the usability of
all websites.

The browser can interleave the generated instruction stream with memory
fences, effectively preventing out-of-order execution. Theoretically, to fully miti-
gate the side channel, a browser has to emit a memory fence after every assem-
bly instruction. However, this leads to unacceptable performance penalties, as
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Fig. 6. Ratio of backend-bound to misprediction-bound execution when unning the
JetStream JavaScript and WebAssembly benchmark (left), nothing (middle), and our
website for generating the browser fingerprint (right) in Firefox 100.0.2.

it effectively prevents out-of-order execution while additionally adding the over-
head of the fence (multiple cycles) after every instruction. A trade-off between
the number of inserted fences and signal strength might be feasible, though. We
leave an evaluation to future work.

Alternatively, the browser can reorder the instruction stream while keeping
its functionality. Such reordering can be part of existing compiler optimizations,
such as loop optimizations. Software-diversification approaches have also been
shown as mitigation against side-channel attacks [10,36]. As the code required for
sequential port contention requires precise control over the instruction sequence,
any diversification likely breaks the side channel. We leave the evaluation of
software-diversification methods applied by the browser to future work.

Detection via Performance Counters. To detect sequential port contention,
we propose a metric based on the topdown bottleneck decomposition [58]. Pre-
vious work focused mostly on cache-based performance counters for detecting
microarchitectural attacks [19,22,35,47]. However, for sequential port contention,
the cache activity is indistinguishable from typical workloads. The bottleneck
exploited in sequential port contention is the execution unit in the backend.
As the instruction stream is entirely linear, we use the ratio of backend-bound
execution divided by misprediction-bound execution. Hence, the more often the
bottleneck is in the backend, combined with next to no mispredictions, the higher
the likelihood that the monitored snippet uses sequential port contention.

Figure 6 shows the evaluation of this metric in Firefox while running the Jet-
Stream JavaScript and WebAssembly benchmark (left), nothing (middle), and
our website for generating the browser fingerprint (right). Our tests do not show
any workload where this metric is as high as for sequential port contention,
allowing detection of this side channel using a simple threshold (dashed line).

7 Related Work

7.1 SMT Side-Channel Attacks

Aldaya et al. [3] introduced the first SMT side-channel attack based on port
contention. Their native implementation allowed inferring private keys from
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OpenSSL’s TLS. Bhattacharyya et al. [5] exploited port contention to create
a covert channel in a speculative execution attack. Other on-core resources can
be targeted by SMT side-channel attacks: the Translation Lookaside Buffer [15],
L1 data cache [57], L1 way predictor [31], or the μop-cache [38]. In a more sys-
tematized approach, ABSynthe [14] is a black-box framework to automatically
detect on-core contention sources. The contention source is not documented by
the framework, but is leveraged in a side-channel attack to recover EdDSA keys.

7.2 Side-Channel Attacks in Browsers

With the Prime+Probe cache attack in JavaScript, Oren et al. [34] proposed
the first microarchitectural side-channel attack in the browser. Cache occupancy
was also used to monitor opened websites in the browser [48]. DRAM has also
been targeted to reproduce Rowhammer [20] or create a covert channel [46] in the
browser. Gras et al. [16] demonstrated that an attacker in the JavaScript sandbox
can reverse ASLR and de-randomize virtual addresses. Microarchitectural side-
channels also let an attacker track user’s browsing history through Floating-
Point Units [4]. Transient execution attacks have also been shown in the browser,
including Spectre [23], ZombieLoad [11], and RIDL [43].

7.3 Browser Fingerprinting

The first attempt to use fingerprints to de-anonymize web clients was introduced
by Eckersley [12]. Laperdrix et al. [28] presented an overview of existing browser
fingerprinting techniques and applications. Most fingerprints rely on software
attributes, such as HTTP headers and user agents [12], Canvas API [2,50], or
browser extensions [30,41,49]. Hardware features have also been used to cre-
ate fingerprints. Sanchez-Rola et al. [42] demonstrated how imperfections in
computer internal clocks can be used to fingerprint unique machines. JavaScript
template attacks [44] were applied to fingerprinting, retrieving the instruction-set
architecture, and used memory allocator from the JavaScript sandbox. Laor et al.
[26] identified devices based on unique properties in the GPU stack.

8 Conclusion

We introduced sequential port contention, a new side channel based on port
contention that does not require SMT. We proposed a WebAssembly frame-
work to automatically determine instruction sequences creating sequential port
contention. We demonstrated that an attacker can exploit sequential port con-
tention to determine the CPU generation of a victim from the browser within 12
s. This information is highly stable, and the attack works correctly even under
heavy system noise. This new side-channel is privacy threatening, as it is hard
to mitigate and can be used for improving the stability of fingerprints.
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A Training Set

Table 1. CPUs used in our training set

CPU Vendor Generation

Xeon X5670 Intel Westmere

Xeon E5-2620 Intel Sandy Bridge

Xeon E5-2630 Intel Sandy Bridge

Xeon E5-2630L Intel Sandy Bridge

Xeon E5-2650 0 Intel Sandy Bridge

Xeon E5-2660 0 Intel Sandy Bridge

Core i5-2520M Intel Sandy Bridge

Xeon E5-2660 v2 Intel Ivy Bridge

Xeon E5-2630 v3 Intel Haswell

Core i3-4160T Intel Haswell

Xeon E5-2620 v4 Intel Broadwell

Xeon E5-2630 v4 Intel Broadwell

Xeon E5-2680 v4 Intel Broadwell

Core i3-5010U Intel Broadwell

Xeon Gold 6126 Intel Skylake

Xeon Gold 6130 Intel Skylake

Core i9-9980HK Intel Coffee Lake

Core i5-8365U Intel Whiskey Lake

Xeon Gold 5218 Intel Cascade Lake SP

Xeon Gold 5220 Intel Cascade Lake SP

Core i7-10510U Intel Comet Lake

Core i7-10710U Intel Comet Lake

Core i5-1135G7 Intel Tiger Lake

EPYC 7301 AMD Zen

Ryzen 5 2500U AMD Zen

Ryzen 9 5900HX AMD Zen 3
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web never forgets: persistent tracking mechanisms in the wild. In: CCS (2014)

3. Aldaya, A.C., Brumley, B.B., Ul Hassan, S., Garćıa, C.P., Tuveri, N.: Port con-
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Abstract. A trusted computing base (TCB) is the minimum set of hard-
ware and software components which are inherently trusted by a plat-
form, and upon which more complex secure services can be built. The
TCB is secure by definition, and it is typically implemented through
hardened hardware components, which ensure that their secret data can-
not be compromised. In this paper, we propose and investigate a two-tier
TCB architecture that benefits both from a small hardened ‘minimal’
TCB, but also offers the possibility of integrating complex security ser-
vices into an ‘extended’ TCB. Our design includes a collection of pro-
tocols to ensure (1) secure update of the components, (2) secure boot
of the platform, (3) attestation, and (4) detection of powerful attackers
that can corrupt memory regions together with a (highly probable) plat-
form recovery mechanism after such an attack. The protocols have been
formally modelled, and we provide a collection of security properties that
have been verified using the automatic protocol verifier ProVerif.

Keywords: Trusted computing base · Secure boot · Remote
attestation · Formal modelling

1 Introduction

A trusted computing base (TCB) is the set of software and hardware components
of a system which form a trust anchor, and upon which the security of the system
relies. Two considerations that influence the design of a TCB appear to oppose
each other:

– On one hand, the TCB should be very secure; this means that it should be
as small and as simple as possible (since complexity brings insecurity); and
it should be strongly isolated from the main system so that a compromise in
the main system cannot affect the TCB.
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– On the other hand, the TCB should offer trustworthy services that support
the operation of the main system, such as storage and secure usage of cryp-
tographic keys, storage of application-specific secrets, and trusted execution
of application-specific code.

In this paper, we investigate how to split the TCB into two parts, a minimal
trusted computing base (MTCB) providing limited functionalities, but the most
hardened services, and an extended trusted computing base (ETCB) providing
additional functionalities and services that cannot be protected to quite the
same extent. This paper proposes a design for a secure architecture of MTCB
and ETCB. Our target platform is the TCB for a network device (e.g., a router,
modem, or base station). This kind of platform boots infrequently, and hence
boot-time checks are insufficient to guarantee security; we also need checks done
at run-time. We expect our design may be useful for other kinds of platform too.

Our contributions include:

– A novel two-tiered TCB architecture, achieving high-grade security proper-
ties for the core TCB, while also allowing a rich extended TCB to support
applications;

– Security analysis of the protocols defined for the TCB architecture, including
verification using ProVerif.

2 Background

Trusted Execution Environments (TEEs) such as ARM TrustZone [13], Intel
SGX [5], RISC-V Keystone [6,7], or Sancus [12] realize isolation and attestation
of secure application compartments called enclaves. TEEs enforce a dual-world
view, where even compromised or malicious operating system (OS) in the nor-
mal world cannot gain access to the memory space of enclaves running in an
isolated secure world on the same processor. This property allows for a TCB
reduction: only the code running in the secure world needs to be trusted for
enclaved computation results. Thus, such enclave systems offer a great deal of
flexibility when it comes to defining the specific code and services that can be
executed. However, such flexibility usually comes at the price of an increased
surface of attack which gives rise to well-known microarchitectural attacks such
as cache timing in TruSpy [21], ARMageddon [8] and Cachezoom [10], or spec-
ulative execution based attacks in Foreshadow [19], ZombieLoad [16], SgxSpec-
tre [4], CrossTalk [14], among many others. Besides microarchitectural attacks,
rich TEEs often require complex interaction with the insecure world, which leads
to ‘Tale of two worlds’ type of attacks [20].

On the other hand, fixed-API devices such as the Trusted Platform Module
(TPM) [18] or the Google Titan M/C chips [15] have a significantly reduced
TCB, compared to enclave systems. However, they are typically low performance
devices, hard to update and cannot easily support customized applications.

Minimization of the TCB is one of the key principles for secure systems
design. A two-tiered TCB has the potential to get the best of both worlds:



Protocols for a Two-Tiered Trusted Computing Base 231

Fig. 1. Two-tier TCB architecture

a small but well protected TCB to guard high secrets which are seldom used
and a larger, more feature rich and fast TCB to protect medium secrets. The
extended TCB can use the minimum TCB as a trust anchor for long term key
storage, integrity protection, etc.

3 Design of the TCB

We assume that the system processes assets which may be categorised as high-
value (e.g., long-term keys), medium-value (e.g., ephemeral session keys), and
low-value (e.g., transient data). The core functionality of the MTCB is to pro-
tect high-valued assets from strong adversaries, and provide the ultimate trust
anchor for the system. In order to achieve this, we propose that the MTCB
be implemented on a tamper-resistant, discrete processor with its own memory
(drawing inspiration from OpenTitan). The MTCB can be integrated within
the same SoC as the main processor, RAM and memory controller, in order to
avoid bus probing attacks between separate components [17], but with its own,
physically separated RAM, and ROM. Having its own memory, the MTCB is
isolated from the main processor and thus immune to side channel leakage, e.g.,
through cache attacks.

Figure 1 depicts our simple MTCB-based platform architecture. This discrete
chip implements basic cryptographic primitives including hashing and public key
signatures with state-of-the art countermeasures against side-channel and fault-
injection attacks. We discuss the offered functionalities below.

3.1 Main Functionalities

The MTCB implements a very delimited set of services, built upon a set of main
functionalities, which can be summarized as follows:

Secure Boot. This functionality ensures that the device boots only if it can
ascertain that the software being booted is the pre-registered one (e.g., through
an enrolment process). We use secure boot to launch the main processor. At boot
time, the main processor loads the ETCB in the predefined memory address and
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then halts. The MTCB boots and measures the ETCB by hashing the ETCB
code and comparing the resulting hashes with the expected values, which are
stored in an external non-volatile memory (NVM). If this check is successful,
then the MTCB enables the main CPU to continue booting. The ETCB then
takes control of the boot sequence. Now the ETCB will measure the relevant
parts of the OS and compare these with the expected hashes. Communication
between the MTCB and the ETCB occurs using their shared memory.

Attestation. This functionality allows a remote party (such as the device
owner) to obtain a statement signed by the MTCB about the MTCB’s own
state (including its firmware version), and the currently loaded ETCB and some
aspects of the system software. The MTCB stores the attestation key and its
corresponding certificate (chain). Attestation requests are received by system
software, and sent from there via the ETCB to the MTCB. Such attestation
requests include a challenge from the verifier such as a nonce. Upon receipt of
an attestation request the MTCB will produce a signed statement of the chal-
lenge, its own state, firmware version, etc., plus the hash of the ETCB code which
is currently loaded in memory. Additionally, it includes the hashes provided by
the ETCB of the relevant system components which need to be attested.

ETCB Recovery. This functionality aims to identify a memory corruption
situation where the adversary has gained enough control over the platform so
that it can change the memory contents of the ETCB and substitute it by its
own, malicious version. The MTCB proactively measures the running ETCB
code, and forces a reboot to a safe state if it finds an unexpected measurement.

3.2 Auxiliary Functionalities

In order to implement the above core security functionalities in practice, we
require the following functionalities as well:

Measurement of the ETCB. As part of three of the security protocols,
namely secure boot, attestation and ETCB recovery (discussed in Sect. 5 below),
the MTCB has the ability to access the main processor’s RAM in read-only mode
through the memory controller, providing the best of both worlds. This design
feature allows performing measurement of the ETCB which runs within the TEE
and at a fixed memory address in RAM, e.g., at the very beginning. In order to
prevent TOCTOU type of issues generated due to the asynchronous access to
the main RAM, the MTCB is set as master of the memory controller. During
measurement of the ETCB the MTCB simply disables write access to the code
area of the ETCB from the main processor.

Measurement of the OS. Similarly, the ETCB is able to read and measure
the memory region where the OS is loaded. We propose that the ETCB enclave
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system follows an architecture similar to RISC-V Keystone [6,7] or ARM Trust-
Zone [13], where the ETCB can take control of the boot sequence and instruct
the CPU to execute the OS if the measurements match the expected values.

3.3 Description of the Architecture

As discussed above, the MTCB (and its RAM and ROM) are integrated within
the same SoC as the main processor, and there is also RAM shared by the MTCB
and the main processor. We discuss the remaining components of the proposed
architecture from Fig. 1.

Provisioning Bus. The MTCB must expose an interface (e.g., SPI, I2C or
JTAG) for firmware provisioning at manufacture time. During the provisioning
process, the MTCB will read contents from that interface and write it to its
NVM. After finalizing the provisioning process, the MTCB will permanently
disable the provisioning interface, preferably, at hardware level by configuring
the appropriate fuse bits.

Random Number Generator. In order to guarantee the generation of high-
entropy cryptographic material, we require that the MTCB be provided with a
hardware true random number generator (TRNG), which generates random bits
from a physical process.

Fuse Memory. The MTCB has an internal fuse memory, which stores:

– A persistent secret key that is generated on first boot used to encrypt and
authenticate the external NVM.

– CTR CUR VERSION: A unary counter that keeps track of the currently
installed version. Each time the MTCB updates its code, it increments this
value to match the installed version number.

– CTR SAFE MODE: A unary counter that stores the signal SAFE MODE
between reboots: an odd value of the counter signifies that the MTCB must
activate the SAFE MODE signal when the platform boots. See Sect. 5.4 below
for more details.

External NVM. The MTCB requires persistent secure storage (EEPROM) to
store highly-valued crypto objects and code. The semiconductor manufacturing
process does not allow the integration of mixed process sizes within the same
SoC, e.g., 7 nm and 14 nm processes. Hence, if current EEPROM technology has
a different process size than the main processor, then they cannot be integrated
within the same SoC. In order to circumvent this limitation, we implement the
MTCB NVM as an external EEPROM chip connected directly to the MTCB
via SPI. Because the external NVM could potentially be accessed by a physical
attacker, the contents of the EEPROM are encrypted and authenticated. Upon
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booting of the MTCB, the MTCB BootROM verifies the integrity of the memory
blob from the EEPROM, authenticates and decrypts it, using the secret key per-
sistently stored in fuse memory. Then the MTCB BootROM verifies its version
number against the unary counter CTR CUR VERSION held in the internal
fuse memory, and then loads the firmware onto the MTCB’s RAM. Conversely,
with every write operation, both the NVM version number and the unary counter
held in fuse memory are incremented and the NVM re-encrypted and authen-
ticated. In order to prevent rollback attacks, it is necessary to increment the
NVM version number with each state change, which has the drawback of con-
suming one fuse per update. Fortunately, our MTCB does not require frequent,
persistent state changes.

Crypto Primitives. The MTCB contains a number of basic crypto primitives
(hashing, symmetric encryption, key derivation), implemented as ASIC blocks,
which are required to enable the services it offers.

Table 1. Two-tiered TCB design requirements

Requirement Realization

MTCB Resistance to cryptography compromise Firmware is updatable to enable new cryp-
tographic algorithms

Bricking avoidance A/B updates

Resistance to micro-architectural attacks Separate processor, avoiding sharing
resources such as cache

Resistance to physical attacks (fault injec-
tion, side channel)

Separate processor, implements counter-
measures, TRNG

Resistance to physical attacks (bus prob-
ing)

SoC integration with the main CPU

Resistance to chip decapsulation (confiden-
tiality)

Self-destructing tamper resistance

Resistance to chip decapsulation (integrity) Usage of fuse memory for counters and root
firmware verification key

Usage of high entropy cryptographic mate-
rial

TRNG

Attestation Hashing and public-key signing scheme

Evolvability External NVM for counters and root
firmware verification key, and fuse memory

Rollback protection Fuse memory

ETCB Resistance to software attacker, e.g., buffer
overflow attacker

Has enclave system with memory integrity
protection (authenticated)

Keystore for protected secrets Has enclave system

Resistance to run-time memory corruption Periodic run-time memory measurements
by MTCB; ETCB recovery protocol;
safe mode

Attestation Attestation of ETCB by MTCB

Table 1 mentions some architecture requirements of the TCB and the features
that realize them.
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4 Adversarial Model

The objective of this section is to define a realistic adversary for the architecture
presented above. The adversary can send and receive messages to some plat-
form components (see below). If it learns keys or defines new keys, it can apply
cryptographic operations using those keys. To the extent that it has the appro-
priate keys, the adversary can intercept and spoof messages between components
of the system. These aspects of the adversary model are sometimes called the
Dolev-Yao model. Later in this section, we specify other aspects of the adversary
model, such as the ability to corrupt memory.

Ideally, one would like to define the strongest conceivable adversarial model,
since it is clear that if a security property holds for a such a model, it will
automatically hold for a relaxed version of that adversary (i.e., having a subset
of capabilities). However, imposing a too strong adversary will simply make it
impossible that the protocol satisfies any non-trivial security property. For exam-
ple, if we allow the adversary to have unrestricted control over the exchanged
messages by any party, unrestricted capability to change the platform memory,
and the ability to anticipate any MTCB operation, it will be impossible to prove
attestation of platform state: the adversary can simply switch the memory con-
tents to a legitimate ETCB and OS just before the MTCB is going to attest the
memory contents, and switch back to the malicious version afterwards.

Therefore, in order to come up with a realistic adversary, the following rea-
sonable considerations have been taken for our modelling of the protocols:

Communication Channels. The adversary has unlimited read/write access
to: 1. The Vendor-Platform channel, 2. The Verifier-Platform channel, 3. The
ETCB-OS channel, 4. The MTCB-ETCB channel. However, we require that the
adversary has the following restrictions:

1. no write access to the provisioning channel before initial manufacturer provi-
sioning,

2. no read/write access to the MTCB-ETCB channel during first boot,
3. no write access to the signals (ENABLE, READY, SAFE MODE) exchanged

between the MTCB and the main CPU.

We note that making all those channels available to the adversary might be an
over-pessimistic assumption (as it might be unrealistic that it has access, e.g.,
to the MTCB-ETCB channel, which is within the same tamper-resistant SoC),
but we can still prove our desired security properties under this assumption.
This means that the security properties are anchored on the secrets held by the
different participants in the protocol, and in the root of trust implied by the
MTCB, but not in the fact that a certain communication between parties is
made unavailable to the adversary.

Integrity. We assume that the MTCB is a root of trust for the platform, its
integrity is guaranteed, and its secrets are not leaked to the adversary. We also
assume that the Vendor secrets are not leaked.
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Initial Platform State. The adversary can freely choose an initial configu-
ration for the ETCB and OS at each boot, possibly a malicious ETCB and/or
OS.

Memory Corruption. The adversary can change ETCB and OS memory
regions after they have been loaded by the CPU. We do not differentiate whether
this can be achieved through a bug present in a faulty (but legitimate) ETCB,
or through some sort of fault-injection or physical vulnerability. Our modelling,
discussed below in Sect. 6, allows arbitrary change between legitimate and non-
legitimate ETCBs at any time. However, in a real scenario, it is reasonable to
consider that when the adversary switches the memory to a legitimate ETCB,
then it cannot longer regain control easily. We also consider that if the adver-
sary succeeds in corrupting the memory to a rogue ETCB version, then it will
be interested in running it for a non-negligible fraction of time.

Anticipation of MTCB Operations. To combat memory corruption attacks,
we introduce some MTCB operations that aim to detect them. We assume that
appropriate protections are in place to prevent anticipation of those MTCB
operations. Alternatively, we can assume that the adversary is able to anticipate
MTCB operations, without guaranteeing that it will have enough time to hinder
their effect. E.g., an adversary could anticipate a memory measurement, but it
may not have enough time to revert the memory contents to the uncorrupted
state. These assumptions are reasonable for a realistic adversary.

Denial of Service Attacks. As usual in the symbolic model of cryptography,
it is impossible to prove “non-DoS” properties, because a Dolev-Yao adversary
can drop messages indefinitely. For instance, it is impossible to prove that a
Verifier eventually gets a valid attestation. However, it is possible to prove that
when a Verifier is convinced that a received attestation is genuine, it is indeed
the case.

Some further considerations about adversarial modelling will also be dis-
cussed below in Sect. 6.

5 Protocols

The two-tier TCB architecture comprises a set of four core security protocols
designed in order to achieve secure firmware update, secure platform boot, plat-
form attestation, and ETCB recovery of a corrupted system. Additional custom
services can be build through proper customisation of the ETCB. We start by
providing a description of the four core protocols investigated from an imple-
mentation point of view. That is, without taking into account the modelling
approaches that will be discussed in Sect. 6 below. These protocols are designed
to work in conjunction, as the security guarantees of a certain protocol might
depend on the establishment of a certain parameter on a previous protocol.
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Table 2. Glossary of symbols, representing cryptographic objects used throughout the
paper

Object Description

Vendor sskV Secret signing key used for MTCB A/B firmware update

spkV Public verification key corresponding to sskV

σV *A signature using sskV

kfw Symmetric encryption key, shared with the MTCB, for code

confidentiality.

MTCB idM Unique identifier for a particular MTCB instance

codeM Manufacturer-supplied MTCB code

verM MTCB code version

ptr Firmware pointer (either NVM region A or B)

ltsME Long-term secret, shared between MTCB and ETCB,

established on first boot

bsME *Boot secret, shared between the MTCB and the ETCB,

established on each boot through the AKEP2 subprotocol

kMAC *MAC key, shared between the MTCB and the ETCB, used

in Protocol 3 (attest.)

sskM Secret signing key used for attestation

spkM Public verification key corresponding to sskM

σM Signature using sskM

ETCB idE Unique identifier. See remark on Sect. 5.2 below

codeE Adversary-supplied ETCB code

verE Version

hE *Currently loaded ETCB measurement, i.e., hE =

h(codeE)

href
E Reference ETCB measurement

OS codeO Adversary-supplied OS code

hO *Currently loaded OS measurement, i.e., hO = h(codeO)

href
O Reference OS measurement

All objects (except those marked with *) are stored persistently, e.g., NVM, fuse

memory, or enclave secure store. Objects marked with * are kept in RAM while

needed

There are a total of seven parties involved in the protocols, although not all
of them take part in all protocols, namely:

– MTCB: The most protected part of the system, running on a dedicated
processor mounted in the SoC, which is a small processor separate from the
main CPU.

– ETCB: An enclave system, such as ARM TrustZone [13], Intel SGX [5] or
RISC-V Keystone [6,7], running on the main CPU on the SoC.

– CPU: The main processor on the SoC. It runs the ETCB in an enclave
system, and it runs the OS.

– OS: The operating system running on the CPU.
– Verifier: A remote party interacting with the system. The verifier can send

messages to the system (such as requests for attestation) and receives and
verifies the replies.

– Vendor: The maker of the system, which installs the firmware and the keys.
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– Adversary: An agent that tries to circumvent the secure operation of the
system. The adversary’s capabilities are defined in Sect. 4.

There are many objects held or exchanged by the different parties. For con-
venience, in Table 2, we provide a glossary of the symbols used to represent those
objects throughout the paper.

5.1 Protocol 1: MTCB A/B Update

Protocol 1 implements over-the-air (OTA) MTCB code updates. In order to
ensure that a workable booting system remains on the MTCB NVM space dur-
ing the update process, we implement “A/B updates,” in which there are two
slots that can contain the MTCB code, called A and B. This approach reduces
the likelihood of an inactive or “bricked” device, should the update process be
interrupted for any reason. If this occurs, the MTCB would boot on the non-
updated version again. In the execution of this protocol, there are three elements
that are updated in the MTCB NVM: the version number verM , the code itself
codeM , and the Vendor public signing key spkV . For clarity, we parametrize
these three elements using a bracketed index indicating a specific update, e.g.,
codeM [i] and codeM [i + 1] denote the code contents of two consecutive updates.

Let us consider that the current status of the MTCB corresponds to the ith
update. When the platform boots, the MTCB boot pointer ptr indicates what
region of the NVM contains codeM [i] (either region A or B), and the MTCB
BootROM loads it. Also, we assume that the system currently has a legitimate
MTCB, and as such, it implements the A/B update protocol. More concretely, all
legitimate and signed codeM implements the A/B update protocol. The sequence
of steps to achieve the next, i + 1, A/B update is as follows:

1. The Vendor updates its signing keypair sskV [i+1], spkV [i+1] (or copies the
previous one), generates the updated codeM [i+1], and increments the version
number verM [i + 1], for example, verM [i + 1] = i + 1. Then, it produces the
tuple

(verM [i + 1], enckfw(codeM [i + 1]), spkV [i + 1]), (1)

and signs it with the current signing key sskV [i], obtaining the signature
σV [i + 1]. It outputs publicly the tuple (1) and σV [i + 1].

2. The MTCB receives the secure update command together with the tuple (1)
and the signature σV [i + 1], and it proceeds as follows:

3. Verify σV [i + 1] with currently installed spkV [i].
4. Check that verM [i + 1] > verM [i].
5. Decrypt codeM [i + 1] using kfw.
6. Copy the decrypted contents codeM [i+1] and updated signing key spkV [i+1]

at the complementary NVM location (which is B if the MTCB is currently
executing from A, and is otherwise A).

7. Check the hash of written contents.
8. Update the stored version number.
9. Change the boot pointer to the complementary NVM location and reboot.
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Figure 2 briefly depicts the NVM state in the different stages of the A/B
update. Note that the proposed design does not allow non-consecutive updates
if there is a change of the Vendor signing keypair in between. That is because in
order to verify the signature σV [i+1], it has to match the corresponding signing
key spkV [i]. It could be argued that there are two types of MTCB updates:
minor, where the signing key does not change, and major, where the signing
key changes. For simplicity, and due to the fact that the MTCB is expected to
execute a limited number of updates during its lifetime, we only consider major
updates in our analysis. This can also be enforced at Step 4. by checking whether
verM [i + 1] = verM [i] + 1.

Fig. 2. Protocol 1: NVM stages in the A/B update

Also, note that the current version number verM is stored in unary notation
in fuse memory as the counter CTR CUR VERSION. This removes the need to
store the boot pointer: the MTCB BootROM can simply execute code stored in,
e.g., NVM region A if verM is even, and NVM region B if verM is odd.

Observe that we do not allow for the code encryption key kfw to be updated.
This is due to the fact that there is not much gain in doing so: if this key
is compromised at any point in time, all future versions of this key will be
compromised as well.

Finally, we require that the reference ETCB measurement href
E , used in the

secure boot protocol (see Sect. 5.2 below) has the same level of protection in the
NVM as codeM has. That is, integrity, confidentiality and rollback protection.
The reason for this is that otherwise an attacker can do a rollback attack if it
can corrupt the NVM memory. As a result, an update in the ETCB requires an
update in the MTCB.

5.2 Protocol 2: Secure Boot

The goal of secure boot is for the MTCB to validate the integrity and trustwor-
thiness of the ETCB and OS code before the platform executes them, so that
it can ensure it starts with an expected, legitimate combination of ETCB and
OS. Therefore, the MTCB has to be regarded as a root of trust of the whole
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system, and the security of this protocol (and indirectly that of the remaining
ones) relies on this assumption. Hence, in our analysis, we consider that both
codeE and codeO are freely chosen by the adversary, but the MTCB firmware
codeM is unconditionally trusted.

This protocol uses the AKEP2 protocol [1] in order to derive a shared boot
secret bsME. A long-term secret ltsME shared between the ETCB and the MTCB
is required, which was established on the first boot at manufacture time. We
abstract away from the specific enclave system used by the ETCB, and we assume
that it provides long-term secure storage for its internal secrets. Note that the
ETCB does not have a persistent identity; the platform’s persistent identity is
given by the MTCB identifier idM . Nevertheless, for the AKEP2 protocol, the
ETCB is required to have an identity, which we define as idE = h(ltsME), for
some secure hash function h.

Figure 3 depicts this protocol. The sequence of actions is as follows:

Fig. 3. Protocol 2: Secure boot

1. The adversary freely chooses ETCB and OS code to be loaded at boot time,
namely codeE and codeO, and forwards it to the platform.
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2. The platform boots. The MTCB checks the counter CTR SAFE MODE in
fuse memory. If the counter has an odd value, it sets the signal SAFE MODE
to true.1

3. The main CPU has pre-boot ROM called BootROM Secure Boot Code
(BSBC). This code loads codeE and codeO into memory, signals the MTCB
using the signal READY, and then halts the CPU.

4. The MTCB disables the CPU by setting the signal ENABLE to false. Then,
it reads codeE , which is located at a fixed, predefined memory location known
to BSBC and MTCB, and obtains the measurement hash hE = h(codeE).

5. The MTCB compares the measurement hE with an expected, reference value
href

E . If these values match, it notifies the CPU to continue by setting the
signal ENABLE to true.

6. Upon receiving the signal from the MTCB, the CPU launches the ETCB
code, codeE .

7. Only on first boot, the MTCB and the ETCB establish a long-term secret
ltsME. The first boot is assumed to happen in a controlled environment,
outside the reach of any adversary. The MTCB stores ltsME and verE in
its encrypted NVM. The ETCB stores ltsME and idM in encrypted form in
untrusted storage.

8. The MTCB and the ETCB establish a boot secret bsME by executing the
AKEP2 protocol. This will be required by Protocol 3 below.

9. The ETCB reads codeO, which is located in a predefined memory loca-
tion known to ETCB and BSBC, and obtains the measurement hash hO =
h(codeO).

10. The ETCB compares the measurement hO with an expected, reference value
href
O . If these values match, it launches the OS code, following an approach

similar to RISC-V Keystone [6,7] or ARM TrustZone [13].

We remark that the ETCB and OS measurements carried out at Steps 4.
and 9., respectively, must take into account all the data that is expected to
remain immutable (e.g., keys and version numbers).

5.3 Protocol 3: Remote Attestation

Remote attestation concerns the reporting of the current platform state (e.g.,
hardware and software configuration) to an external entity (Verifier). The goal
of the protocol is to enable the Verifier to determine the level of trust in the
integrity of the platform, that is, that the platform runs a legitimate combination
of ETCB and OS. The security guarantees of remote attestation, in general, are
limited to state that “at some point in time between the attestation request and
its reception, the platform was running with the attested configuration.”

In order to prevent the adversary from executing an attack by reusing mes-
sages from an earlier boot instance, the communication between the MTCB and

1 The SAFE MODE signal does not play a role in Protocol 2, but it is used by Proto-
col 4 (ETCB recovery) after secure boot has finished. See Sect. 5.4 for more details.
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the ETCB is authenticated (integrity-protected) through a MAC. Therefore, the
protocol uses the shared boot secret bsME established in the secure boot protocol
(Sect. 5.2 above) to derive the MAC key.

Protocol 3 is depicted in Fig. 4, and the sequence of actions is as follows:

1. The Verifier generates a challenge chal and forwards it to the OS.
2. The OS forwards the challenge to the ETCB.
3. The ETCB and MTCB derive a MAC key kMAC using the boot secret bsME.
4. The ETCB reads codeO, which is located in a predefined memory location,

and obtains the measurement hash hO = h(codeO).
5. The ETCB forwards chal, hO, and MACkMAC(chal, hO) to the MTCB.
6. The MTCB checks MACkMAC(chal, hO).
7. The MTCB reads codeE , which is located in a predefined memory location,

and obtains the measurement hash hE = h(codeE).
8. The MTCB signs the tuple

(idM , chal, hO, hE) (2)

with the attestation signing key sskM , obtaining the signature σM .
9. The tuple (2) together with its signature σM is forwarded back to the ETCB,

OS and Verifier.
10. Using the attestation public signing key spkM , the Verifier checks that σM

is a valid signature for the received tuple (2).
11. The Verifier compares the measurements hE and hO with the expected,

reference values href
E and href

O , respectively. If these values match, the Verifier
declares a successful attestation.

Fig. 4. Protocol 3: Remote Attestation

Observe that, for simplicity, we assume that the MTCB attestation keypair
sskM , spkM is persistent. This can be an issue from the point of view of privacy,
as this keypair uniquely identifies the platform. A possible alternative to over-
come this problem is to use an approach similar to that used by TPM remote
attestation. The TPM uses a master key (endorsement key in TPM’s termi-
nology), which is used to decrypt arbitrarily many attestation keys as desired,
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which have been certified through a Privacy Certification Authority, or through
the Direct Anonymous Attestation protocol. Obviously, this would require to
remove idM from (2). As a result, from the Verifier’s perspective, they will know
that “a platform has successfully been attested” without knowing the precise
identity of that platform. This arrangement is important for TPMs because they
are deployed in personal laptops, where privacy is an important issue. However,
it may not be needed in network infrastructure devices or similar scenarios.

5.4 Protocol 4: ETCB Recovery

This protocol aims to identify a memory corruption situation where the adver-
sary has gained enough control over the platform so that it can change the
memory contents of the ETCB and substitute it by its own, malicious version.
The MTCB proactively measures the running ETCB code, and forces a reboot
to a safe state if it finds an unexpected measurement.

This protocol can be divided into two processes: corruption detection and
recovery. We assume that the platform is already booted, and that the adversary
had freely chosen the ETCB and OS code to be loaded at boot time, namely
codeE and codeO. Also, at any point in time, the adversary might be able to
corrupt the RAM location where codeE is stored. See the considerations about
the adversary in Sect. 4. The sequence of actions for this protocol is as follows:

(a) Memory Corruption Detection:
1. The MTCB periodically reads codeE , which is located in a predefined

memory location, and obtains the measurement hash hE = h(codeE). We
can set hE to an undefined value if the MTCB is unable to conduct this
measurement, e.g., if the attacker is blocking the channel.

2. The MTCB compares the measurement hE with an expected, refer-
ence value href

E . If these values do not match, it increments the counter
CTR SAFE MODE in fuse memory to an odd value, indicating that the
signal SAFE MODE is set, and reboots the platform.

(b) Recovery:
3. The platform reboots. The MTCB checks the counter CTR SAFE MODE

in fuse memory. If the counter has an odd value, it sets the signal
SAFE MODE to true.

4. If the main CPU is booted with SAFE MODE set to true, the fire-
wall is configured to allow outgoing connections only. This aims to pre-
vent the ETCB/OS from becoming immediately compromised again. The
ETCB/OS attempts to report the security violation to the cloud service.

5. The OS downloads a new signed version of the ETCB code. That is, a
tuple (ver′

E , code′
E) with a Vendor signature σV .

6. The OS forwards the tuple and signature to the MTCB (via the ETCB).
7. The MTCB checks the Vendor signature σV , and checks that the received
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ETCB version is strictly larger than the current one, i.e., ver′
E > verE .2

8. The MTCB updates the reference measurement for the MTCB as href
E =

h(code′
E), and stores ver′

E in its encrypted NVM.
9. If the MTCB has succeeded in downloading and installing code′

E , it incre-
ments the counter in fuse memory to an even value, indicating that the
signal SAFE MODE is clear, and reboots the platform. Otherwise, it
remains indefinitely in safe mode.

This protocol is not guaranteed to succeed, for a number of reasons: First,
a powerful adversary could anticipate the moment that the measurements will
occur, and take action to avoid detection. Second, even if detected, the replace-
ment of the ETCB might not prevent further attacks. And third, the adversary
might block fetching of code′

E .
However, we show that the protocol will succeed with probability arbi-

trarily close to 1 under some reasonable assumptions; see Sect. 4 above. The
MTCB implements protections so that the adversary cannot always anticipate
the MTCB memory measurements, and it can also identify whether its mea-
surements are being prevented or delayed. Also, the adversary is interested in
keeping a rogue ETCB version in memory for a non-zero fraction of time. This
excludes improbable corner cases, for example, an adversary running a malicious
ETCB for a very small fraction of time between secure boot and the first MTCB
memory measurement, and then switching to a legitimate ETCB the rest of the
time. We note that the adversary is free to arbitrarily change the memory at any
point, which is probably an overestimation of its capabilities. Nevertheless, our
probabilistic argument works as detailed below, even with this overestimation.

Although the adversary is interested in running a rogue version of the ETCB,
it is also forced to switch the memory contents (to a legitimate ETCB) so that
the MTCB produces an expected measurement and does not trigger the recovery
procedure. Hence, there is a trade-off between the adversary spending enough
time running the rogue version and the possibility of being detected: too much
time spent by the rogue ETCB will increase the chances of the MTCB in identify-
ing the attack, whereas too much time spent by the legitimate ETCB in memory
will restrict its malicious abilities. Consider the following given parameters:

– T : time interval during which the platform is active, T > 0,
– p: minimum proportion of active time that the adversary has the rogue ETCB

in memory, 0 < p ≤ 1,
– ε: target error probability, i.e., maximum admissible error of not identifying

the attack occurring while the platform is active. We can take this parameter
as small as desired.

2 From the point of view of security, the most conservative approach is to require that
ver′

E > verE . However, this has the downside effect that if there is no new ETCB
version available, the platform would remain in safe mode (inoperative) indefinitely.
To avoid this situation, we could relax this check and only require that ver′

E ≥ verE .
This is justified if there is a significant cost of time and resources to the adversary
to mount the attack again.
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We are interested in finding the frequency f , i.e., the number of memory
measurements by the MTCB per unit of time, so that the actual error probability
does not exceed the target ε. That is, we want that the probability of failing to
identify an attack occurring in T , which is (1 − p)fT , does not exceed ε. It is
straightforward to see that for any choice of T , p the target error is satisfied for
any f ≥ f0, with

f0 =
log ε

T log(1 − p)
.

As expected intuitively, the required frequency of measurements increases for
ε → 0, and p → 0. Also, note that f0 → 0 for p → 1, i.e., a single measurement
is sufficient if the adversary always keeps its malicious version in memory.

6 Modelling and Verification of Security Properties

We have verified the core security properties of our TCB design using ProVerif [2,
3], which is a tool for automated analysis of security properties in cryptographic
protocols. ProVerif analyses our pseudocode for Protocols 1–4, and determines
whether the security properties we specify hold or not. This is an excellent tool
for uncovering design errors, because ProVerif explores all permitted actions of
the adversary, and reports potential attacks if such attacks exist. It is a valuable
tool for the development of protocols. Nevertheless, it should be remembered
that even if ProVerif shows that all the properties are satisfied, this does not
mean that the system is secure.

Further details, including the formal description of the security properties
can be found in Appendix A. ProVerif is successful in proving the set of security
properties for the protocols discussed. The source code with the models, the
security properties and a collection of sanity check queries can be found in [11].

7 Conclusion

We have motivated and described our design for a two-tiered TCB, which is
targeted at network infrastructure devices such as routers and modems. It aims
to provide a small and hardened “minimal” TCB that is assumed secure, but is
nevertheless updatable if it turns out insecure. This MTCB is rather inflexible,
however, because of its small size and minimal size and strong isolation from
the rest of the system. The second tier is a bigger “extended” TCB that offers
application-specific services, and is more flexible, while not offering quite such
rigorous security because it runs on the same processor as potentially untrusted
code. The ETCB is also updatable.

Designing such a two-tiered TCB led us to many design decisions and intri-
cate protocols in order to get the two parts to work together securely. In arriving
at the designs, we studied attacks that are common for this kind of device, as
well as good practice recommendations that have arisen, both in the academic
literature and in industry (e.g., The MITRE Corporation CWE). We detailed
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our design decisions, and specified the protocols both informally and in the for-
mal language of ProVerif. We have used ProVerif to verify a number of relevant
security properties about them.

A Security Properties

In this appendix, we present the formal description of the security properties for
Protocols 1–3. Due to space constraints, we include the properties for Protocol 4
in the extended version of the paper. We have verified these properties using
ProVerif [2,3], which is a tool for automated analysis of security properties in
cryptographic protocols.

Security properties are expressed through guarded first-order logic formulas.
These properties can be classified as reachability properties (i.e., a certain event
in the execution trace is reachable) or as correspondence assertions (i.e., a certain
event always occurs prior to the execution of a later event). For correspondence
assertions it is customary to check reachability of the event that occurs later,
since if this event never occurs, then the assertion will be trivially verified. We
omit those reachability sanity checks here. Events are used to define security
properties, and they do not modify the semantics of the protocols. Events rep-
resent local computations or mark relevant points in the execution of the pro-
tocols. The notation “EventName(x1, . . . , xn)@t” indicates that an event with
name “EventName” and parameters x1, . . . , xn occurs at time t. The naming of
the events has been chosen to be self-documenting.

Also, note that the security properties for Protocol 2 and 3 can only hold if
no memory corruption occurs in a given platform boot. For this reason, corre-
spondence properties in Protocols 2 and 3 are conditioned to the event “Memo-
ryCorrupted( )” in the description of the relevant security properties below.

Security properties for Protocol 1: MTCB A/B Update.
[P1.1] Every MTCB only executes firmware installed by the Vendor (initial

install) or a previous legitimate firmware (subsequent installs) that has been
previously created and signed by the Vendor:

∀idM , ptr, verM , codeM , spkV , t3.

MtcbStarts(idM , ptr, verM , codeM , spkV )@t3 ⇒
(∃t2. MtcbInstalls(idM , ptr, verM , codeM , spkV )@t2∧
∃t1. VendorCreates(verM , codeM )@t1 ∧ (t1 < t2 < t3)

)
.

[P1.2] Once a given MTCB executes firmware of a certain version number
verM it will never execute firmware with version number ver′

M < verM

∀idM , ptr, verM , codeM , spkV , t1, id′
M , ptr′, ver′

M , code′
M , spk′

V , t2.

MtcbStarts(idM , ptr, verM , codeM , spkV )@t1∧
MtcbStarts(id′

M , ptr′, ver′
M , code′

M , spk′
V )@t2 ⇒

(
(t1 ≤ t2) ∧ (verM ≤ ver′

M )
) ∨ (

(t2 ≤ t1) ∧ (ver′
M ≤ verM )

)
.
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Security properties for Protocol 2: Secure Boot.
[P2.1] Only a legitimate ETCB is allowed to start on the platform.

∀inst, codeE , code′
O, code′

E , t2. EtcbStarts(inst, codeE)@t2 ⇒
IsLegitimateEtcb(codeE)∨
(∃t1. MemoryCorrupted(inst, code′

O, code′
E)@t1 ∧ (t1 < t2)

)

[P2.2] Only a legitimate OS is allowed to start on the platform.

∀inst, codeO, code′
O, code′

E , t2. OsStarts(inst, codeO)@t2 ⇒
IsLegitimateOs(codeO)∨
(∃t1. MemoryCorrupted(inst, code′

O, code′
E)@t2 ∧ (t1 < t2)

)

[P2.3] The AKEP2 protocol between the MTCB and the ETCB guarantees
mutual, injective agreement [9] for the MTCB nonce nM (which is used later
to obtain the boot secret bsME). For convenience, we assume that the array of
agreed parameters pars contains nM :

∀idM , idE , pars, t2. MtcbAkep2Commit(idM , idE , pars)@t2 ⇒
(∃t1. EtcbAkep2Running(idE , idM , pars)@t1 ∧ (t1 < t2)

)∧
¬(∃t′2. MtcbAkep2Commit(idM , idE , pars)@t′2 ∧ ¬(t2 = t′2)

)
,

∀idM , idE , pars, t2. EtcbAkep2Commit(idE , idM , pars)@t2 ⇒
(∃t1. MtcbAkep2Running(idM , idE , pars)@t1 ∧ (t1 < t2)

)∧
¬(∃t′2. EtcbAkep2Commit(idE , idM , pars)@t′2 ∧ ¬(t2 = t′2)

)
.

These formulas represent injective correspondence assertions as predicate logic
formulas. We remark that the last line of the two formulas above ensure the
injectivity of the correspondence assertions, since no two events can occur at the
same time point.

Security properties for Protocol 3: Remote Attestation.
[P3.1] For a given boot instance, It cannot happen that the MTCB generates

an attestation signature, the Verifier validates the attestation, and there is an
attack event.

¬(∃inst, chal, σM , t1, t2, t3.MtcbGeneratesSignature(inst, chal, σM )@t1∧
VerifierValidatesAttestation(chal, σM )@t2∧
AttackEvent(inst)@t3

)
.

[P3.2] For every boot instance, if the Verifier validates an attestation, then
an attestation signature must have been generated by the MTCB before, and
the following events must have occurred before that: 1. the Verifier generates
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the challenge, 2. the legitimate OS has been loaded, 3. the legitimate ETCB has
been loaded, 4. the legitimate ETCB has been started.

∀chal, σM , t7. VerifierValidatesAttestation(chal, σM )@t7 ⇒
(∃inst, t6. MtcbGeneratesSignature(inst, chal, σM )@t6∧
∃t5. VerifierGeneratesChallenge(chal)@t5∧
∃t4. EtcbStarts(inst, ETCB LEGITIMATE)@t4∧
∃t3. EtcbLoaded(inst, ETCB LEGITIMATE)@t3∧
∃t2. OsLoaded(inst, OS LEGITIMATE)@t2∧
(t2, t3, t4, t5 < t6 < t7)

) ∨ ∃code′
O, code′

E , t1. MemoryCorrupted(inst, code′
O, code′

E))@t1 ∧ (t1 < t7).

The source code with the formal models, the security properties and a col-
lection of sanity check queries can be found in [11].
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Abstract. In this work, we introduce two new types of Physical Unclon-
able Functions (PUFs) based on memristor arrays. Both PUFs use the
output behavior of memristor cells when an excitation signal is applied
to their input. First, the cells are identified by decomposing the signal
response into different frequencies using the discrete Fourier transforma-
tion and evaluating the absolute sum of errors. This approach provides
a maximum accuracy of 96% and F1-score of 73%. In order to improve
performance, a convolutional neural network is employed to learn the
shapes of the output hysteresis loop. To this end, a conversion algorithm
that transforms the outputs to matrices is used. The proposed neural
network achieves a maximum accuracy of 97% and F1-score of 97%,
allowing for the successful utilisation of the examined PUF in practical
security applications. As a use case for the proposed PUFs, we introduce
a novel neural network-based authentication protocol that can be used
to authenticate smart devices to a central IoT hub, e.g., in a smart home.

Keywords: Physical Unclonable Function (PUF) · Memristors ·
Machine learning · Hardware security · Resistive Random Access
Memory (ReRAM) · Convolutional Neural Network (CNN) · Neural
networks

1 Introduction

The use of microcontrollers influences all areas of life and applications, such as
consumer electronics, sensors, and vehicles. These systems are getting smaller
and more powerful. At the same time they are often very constrained in their
power consumption. Storage technologies employed in these systems will face
certain development limits soon due to their integration density and power con-
sumption. One promising technology that could overcome these limitations is
ReRAM (Resistive Random Access Memory), a non-volatile memory tech-
nology, which combines fast switching, low energy consumption, and small cell
sizes, without decreasing performance [4]. ReRAMs are based on memristors
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(memory and resistor), which are passive circuit elements that change their
resistance with the amount of charge floating through them, in relation to their
previous resistance value, which is otherwise maintained.

Microcontrollers are often deployed in security-critical areas, such as in-
vehicle networks, which makes secure communication between the devices
mandatory. Thus, one major security requirement is to establish a secure com-
munication channel between the different system components, which requires
device authentication. Many approaches proposed in the literature face the prob-
lem that they require the storage of a secret key in the device memory, causing
a vulnerability if the attacker has physical access to the device.

One way to solve these problems is to use PUFs (Physical Unclonable
Functions). PUFs generate a digital “fingerprint” of a device, which can be used
for authentication and identification. These fingerprints are based on marginal
differences in the hardware, which occur during the manufacturing process [9].
The advantage of this method is that the keys do not need to be permanently
stored on the device, but can be reproduced on the fly out of certain unique
hardware properties right before they are used, which makes them less vulnera-
ble against physical attacks. Different types of PUFs have been proposed: they
can be constructed from optical systems [12], ring oscillators [22], or conventional
memory modules [8,18]. The security of PUFs is based on their ability to provide
a (usually, binary) pattern that is unique for each device, thus serving as a device
identifier [18]. With the continuous adoption of ReRAMs in embedded devices,
replacing DRAM modules [24], memristor-based PUFs are becoming more and
more appealing as lightweight security primitives. For this reason, in this work,
we will examine a PUF implemented on a novel non-volatile memory, namely, a
memristor array. Further, the applicability of the novel PUF is demonstrated in
the context of a new authentication protocol for the IoT (Internet of Things).

1.1 Contributions

The main contributions of this work concern the construction of a novel PUF
based on an array of memristor cells, as well as its characterisation, and evalu-
ation, based either on frequency analysis or on machine learning.

More specifically, the PUF is first characterised using a technique based on
the frequency composition of the output wave of each memristor cell, when
applying a sine wave. We show that, based on the frequency composition, each
cell can be uniquely identified by a simple classification of the quantised fre-
quency distribution. To improve the classification performance even further, a
second classification method based on CNNs (Convolutional Neural Networks)
is introduced. There, a sine wave is applied to the memristors, causing a con-
tinuous change between their high and low resistive states, which results in a
so-called “pinched hysteresis loop”. We show that this hysteresis is a distinc-
tive feature of memristors, where the shape of the loops differs from cell to cell
due to manufacturing variations. CNNs are used to identify the hysteresis loops
of such cells, resulting into an accuracy and F1-score of up to 97% and 97%,
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respectively. This is a significant improvement compared to the analysis by fre-
quency composition that achieves an accuracy of 96% but an F1-score of only
73%.

Furthermore, we demonstrate how this PUF can be used in a smart home
to authenticate smart devices like a smart refrigerator, or smart light bulbs, to
an IoT hub using a novel authentication protocol tailored for this type of PUF.
In general, the presented PUF construction requires access to one or only a few
memristor cells to generate a unique pattern that can be used for authentication
and identification, and thus is the first of its kind.

1.2 Related Work

The potential of using memristors as PUFs has been explored in several works.
Rose et al. [17] introduced a memristor-based PUF that utilises the differ-

ences in the time required for the memristors to transit from the high-resistance
to the low-resistance state. The time required for this transition is measured
for each memristor and compared to a selected threshold value. If the actual
transition time of a memristor is below the threshold, the result is a logical 0,
otherwise a logical 1. The set of zeros and ones returned from a particular set of
cells constitutes the response of the PUF. In this work, each cell produces only
a one-bit response, thus requiring access to many cells to generate a secure key.
On the contrary, our PUF requires access to one or only a few memristor cells to
generate a unique pattern that can be used for authentication and identification.

Gao and Ranasinghe [7] constructed a PUF, that uses memristors that are
arranged in an array-like structure. Each cell in this array consists of two mem-
ristors, connected in series. When applying a voltage that is two times the reset
voltage, one of the two memristors reaches the off state, i.e., the low-resistance
state, first, which causes the second memristor to stop changing its resistance.
Afterwards, the memristors are read with a small voltage that does not disturb
the resistance of the device. Depending on which memristor stays in the high
resistive and which one changes into the low resistive state, a PUF response of a
logical 0 or a logical 1 is obtained. The disadvantage of this method is that each
memristor pair produces only a one-bit response, which requires a large amount
of memristors to produce a secure key, like the work of Rose et al. [17].

Uddin et al. [20] introduced the memristive crossbar PUF (XbarPUF), a PUF
based on memristors that uses the switching delays of multiple memristors as the
PUF characteristic. An additional PUF based on the resistance differences of two
memristors when being in a low or high resistive state, was proposed by Chen
et al. [3]. These PUFs require a more complex setup than our implementation, as
our PUF requires only a simple measurement generated by connecting a function
generator and an oscilloscope to a memristor cell.

Finally, some works have proposed the use of neural networks in the context
of PUFs: Yue et al. [23] described an authentication scheme using a deep neural
network to extract the unique features from the raw power-up values of DRAM
cells, which are then used for authentication. Yilmaz et al. [21] also proposed a
PUF-based authentication protocol using neural networks. The delay difference
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of the neural computation itself was proposed as a PUF characteristic by Nozaki
et al. [15], while Najafi et al. [14] proposed a latency-based DRAM PUF that uses
neural networks for device identification without the need for error correction.

2 Background

In this section, we provide a brief technical introduction to the functionality of
memristors and the properties of Physical Unclonable Functions.

2.1 Self-directed Channel Memristors

A memristor is a passive circuit element, whose theoretical existence was con-
ceived by Leon Chua as early as 1972, but which was only manufactured around
2008 [19]. A memristor can be described as a resistor with memory. Its resis-
tance at the current state always depends on its resistance at previous states,
stored within the device [6]. A memristor cell changes its resistance depending
on the amount of charge flowing through it. This behavior is usually shown by
applying a sine wave to the memristor and visualizing the output in a Lissajous
curve, as demonstrated in Fig. 1. Some types of memristors require a forming
process, which initializes the chemical and physical structure within the mem-
ristor and influences its behavior over its whole lifespan. In our case, a sine wave
with an amplitude up to 3 V is applied to the memristor. For our experiments,
we are using two memristor arrays of the brand Knowm, each consisting of 16
memristor cells [11]. Further information is given in Appendix 1.

Fig. 1. Lissajous curve of a single memristor cell of the brand Knowm when applying
a 100 Hz sine wave with an amplitude of 1.2 V

2.2 Physical Unclonable Functions

Physical unclonable functions use the hardware properties of a device to produce
a unique fingerprint. A PUF accepts a challenge c and returns a corresponding
response r, which together form a Challenge-Response Pair (CRP). For an opti-
mal PUF, the response can only be formed by a specific device, as it originates
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from physical properties only found in its hardware. For this reason, an ideal
PUF is hard to clone and produces unique responses for any given challenge [9].

In addition, a distinction is made in the literature between strong and weak
PUFs. Weak PUFs only exhibit one or at most a few CRPs, whereas strong
PUFs have a (much) higher number of CRPs available. CRPs can be used for
identification and authentication as well as for secure key generation. The use of
PUFs has the advantage that no keys have to be permanently stored in physical
memory, which could lead to security vulnerabilities when the attacker has phys-
ical access to the device [5]. For authenticating an individual device at a later
stage, sets of CRPs are gathered during an enrollment phase, right after pro-
duction. Moreover, commercially available security solutions using PUFs already
exist, e.g., PUF-based RFIDs [10] and inbuilt PUFs in Xilinx FPGAs [13].

For the PUFs presented in this work, the challenge consists of an identifier of
the memristor cell within the array, as well as the amplitude and the frequency of
the input sine wave. The PUF response consists of the hysteresis loop produced
by the memristor cell under the input sine wave used in the challenge.

To assess the quality of the examined PUFs, the most important properties
are Uniqueness, which measures the independence of responses originating
from multiple PUF instances for the same challenge c, and Reliability, which
describes the stability of PUF responses, for a given challenge c, under repeated
PUF measurements. Typically, these properties are measured by metrics based
on the Hamming distance or the Jaccard index. These classical metrics are not
applicable to our PUF implementations, because these PUFs are evaluated using
classification techniques that are rather fuzzy.

Since we pursue an approach that employs machine learning to assign
responses to corresponding challenges, we use the accuracy and F1-score metrics
to assess the performance of the classification and ultimately rate the quality
of the resulting PUF. Here, the metric of accuracy represents the number of
correctly classified memristor cells over the total number of PUF instances. This
metric provides an indication of how well the classification is working, but is
insufficient because our data have an uneven class distribution.

For this reason, we additionally use the F1-score, which considers further
aspects of the data set such as its recall, precision and false positives. Both
metrics are examined in more detail in Sect. 3.2.2.

3 Memristance-Based PUFs

3.1 Measurement Circuit Design

We investigate the effects of the frequency and amplitude of the input sine sig-
nal on the memristive behavior, since these quantities are used to form the
challenge for the memristance-based PUFs we propose in this work. To examine
the electrical characteristics of the memristor cells, a Keysight 33500B function
generator and a Keysight MSOX3104T oscilloscope are used. The function gen-
erator is connected to the input of the memristor cell and can apply a sinus
wave to it. The output is connected to a resistor to limit the current. The first
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channel of the oscilloscope captures the output of the signal generator, while
the second channel measures the voltage drop across the shunt resistor to calcu-
late the current resistance of the memristor. Finally, the measurement devices
and the memristor are connected to a common ground. Our experiments have
been performed using the parameters given in Table 1, because these provide the
best evaluation results to uniquely identify single memristors. More information
about the measurement circuitry is provided in Appendix 2.

Table 1. Parameter values used for testing and capturing the behavior of the memristor
cells. Combinations of these values are used for evaluating the PUF

Parameters Values

Frequency {100 Hz, 500 Hz, 1 kHz, 10 kHz}
Amplitude {0.8 V, 1.0 V, 1.2 V, 1.5 V}

3.2 Classification of Memristor Cells Based on Their Frequency
Distribution

The memristor PUFs considered in this work are based on the characteristic
memristance of each device, which is caused by differences in the movement of
Ag+ ions into and from the active layer. Since the measured voltage drop is
inversely proportional to the resistance of the memristor and the applied input
voltage, we can use memristance to distinguish individual memristor cells.

3.2.1 PUF Construction
After capturing the measurement data, we observed that each memristor cell
produces a hysteresis loop with a unique shape, which we use to identify each
memristor cell of a memristor array. Figure 2 shows the unique shape of 16

Vin

Vout

Fig. 2. Hysteresis loops of 16 different memristor cells (each cell is represented by one
color). All measurements are performed using an input sine wave with a frequency of
Fin = 100 Hz and an amplitude of Ain = 1.2 V



256 F. Frank et al.

memristors, each in a different color. The figure shows the input voltage of the
memristor cell, Vin, on the x-axis, and the voltage drop occurring after the
memristor, Vout, on the y-axis.

First, an enrollment is executed where 200 sine waves of Vin and Vout are
captured. Afterwards each curve is sampled at 100 points. There, the sampling
rate is high enough to distinguish the cells based on their unique properties. With
Fin = 100 Hz, only one measurement per 100 µs must be captured, which could
also be done on very resource-constraint systems. Using 200 of those samples
during the enrollment allows us to capture differences from one cycle to the other.
This allows us to make our classification method more robust when classifying
further measurements with small deviations.

A Discrete Fourier Transformation is applied to the two sets of waves Vin

and Vout separately, resulting in a frequency spectrum from 0 Hz to fn, sampled
in steps of size s:

FSin(s, fn) = DFT (s, fn, {V 0
in, . . . , V

199
in }) ,

FSout(s, fn) = DFT (s, fn, {V 0
out, . . . , V

199
out }) .

There, the 200 measurements are treated as continuous waves resulting in two
frequency spectra: FSin := {f0

in, ..., f
n
in} and FSout := {f0

out, ..., f
n
out} containing

the samples of each frequency f from f0 = 0 Hz to fn, where fn is the maximum
frequency. In our case, fn = Fin ∗ 10, where Fin is the applied input frequency,
because higher-level characteristics of the loop, like the dent of the hysteresis,
only occur at frequencies ranging from Fin∗4 to about Fin∗10. The step size s is
defined as fn/1000. The frequency spectrum is subdivided into 1000 steps, which
results into a good trade-off between having a high enough resolution and not
generating too many data. The intervals are further optimized by subdividing
them into chunks, as described later.

In the next pre-processing step, noise and the dominant frequencies caused
by Vin are removed from Vout by subtracting each of the 1000 samples in the
input frequency spectrum from the output spectrum: FSres = FSout − FSin.
The resulting decomposition, FSres, can then be used as an identification feature
for a specific memristor cell.

Subsequently, the most characteristic frequency ranges are extracted from
FSres, which enables the most accurate classification. Figure 3 depicts the influ-
ence of different frequencies on the shape of the hysteresis loop, when applying
a 100 Hz input sine wave to a memristor. On the left side, a captured hysteresis
loop without any post-processing is shown. On the right side, all frequencies
f > 400 Hz are removed from the frequency spectrum of FSin as well as FSout,
resulting in a smoothed hysteresis loop. We note that by removing frequencies
higher than 400 Hz, the small dent that can be seen on the left side of the loop,
which is a very distinctive characteristic for each individual cell, is removed.



Using Memristor Arrays as Physical Unclonable Functions 257

Fig. 3. Left: hysteresis loop collected from the memristor array (top), and its corre-
sponding frequency spectrum (bottom). Right: all frequencies f > 400Hz have been
removed from the frequency spectrum (bottom); the inverse discrete Fourier transfor-
mation results in a smoothed hysteresis loop (top)

Thus, we distinguish the hysteresis loops based on the samples of both the
lower and the higher, i.e., of only the outermost, frequency regions. The lower
frequencies are responsible for the basic hysteresis shape, whereas higher fre-
quencies account for smaller edges and structures, like the characteristic dent
shown in Fig. 3. The combination of these two frequency regions results in a
unique characteristic for each memristor cell.

For that reason, the frequency spectrum FSres is filtered, so that f199
res to

f398
res are removed from the spectrum. This frequency spectrum is chosen because

the basic shape of the hysteresis curves is generated by the lower frequencies
of f0

res to f199
res , while more specific forms, like the characteristic dent, occur at

frequencies higher than f399
res , e.g., when applying 100 Hz, the basic shape is

generated by frequencies up to 200 Hz, while the characteristic dent of the loop
is generated by frequencies higher than 400 Hz.

The remaining spectrum, FSfilter, is then subdivided into c chunks. The
average value of each chunk of each memristor on the enrollment measurements
is then calculated for all measurements, and used as a reference for further
classification. The optimization of the width of c is described in Sect. 3.2.2.

During verification, a PUF measurement is performed and pre-processed in
a similar way as during enrollment. Finally, the absolute error, defined by:

e =
n∑

i=1

|yi − ŷi| ,

is calculated between the chunks of the new measurement and the chunks cal-
culated during the enrollment. In this formula, yi corresponds to a chunk i in
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FSfilter calculated during the enrollment phase, and ŷi to a chunk i of the new
measurement m′.

Each new measurement is identified as corresponding to the cell for which
the minimum absolute error occurs. In the heatmap in Fig. 4, the absolute error
between each measurement during the enrollment and later measurements is
shown. On the right side, the minimum values are visualized in yellow color. It
can be seen that, for most cells, the absolute error results in the lowest distance
when comparing the frequency spectra of measurements of the same cell, which
leads to a correct assignment most of the time.

Fig. 4. The left image shows the absolute error values between measurements from all
the cells. On the right side, the minimum value of each row is shown. Here, 11 out of 15
working cells (cell 3 is damaged) are stable, meaning that the relevant measurements
can be assigned to the correct cell, leading to only 4 false positives (the false positive
for cell 3 is not counted) and 4 false negatives. For the use of the PUF in practical
applications, only cells producing stable responses are used

3.2.2 Evaluation
In this work, we utilise the concept of accuracy and the F1-score to measure
the PUF properties of uniqueness and reliability which are more suitable for
this classification problem in comparison to the traditional PUF metrics of the
Hamming distance and Jaccard index.

Note that by testing how accurately responses originating from a particular
memristor cell can be assigned to it (rate of true positives – TP) and how
accurately responses originating from different PUFs can be identified as not
originating from that particular PUF (rate of true negatives – TN), we can
easily get a single metric that reflects both reliability and uniqueness. A high
intra-class accuracy (TP) indicates that measurements originating from each
PUF instance can correctly be attributed to it (a high level of reliability), while
a high inter-class accuracy (TN) indicates that measurements originating from
different PUF instances can be correctly attributed to the correct memristor cell.
A high degree of accurate classification, however, is only possible if the relevant
measurements are highly distinguishable, therefore reflecting also a high level of
uniqueness. Thus, by evaluating the examined PUF instances with the metrics
of accuracy and the F1-score, we are able to provide a simple, yet practical and
efficient, way in which the overall quality of these PUFs can be estimated.
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Based on the classification and assignment of responses to memristor cells,
we can calculate the relevant rates of true positives (TP), true negatives (TN),
false positives (FP), and false negatives (FN), to obtain the accuracy as follows:

Accuracy =
TP + TN

TP + FP + TN + FN
. (1)

In addition, we use the F1-score, which combines the precision and recall
of the data set into a single metric, because we consider it a more appropriate
metric due to the number of false positives we observed during our experiments.
The F1-score is calculated using the equation:

F1-score =
TP

TP + 0.5 ∗ (FN + FP )
. (2)

These metrics allow us to measure how often a measurement is assigned to
the correct cell in proportion to all assignments, and thus also describe how
reliable our identification scheme is.

As expected, the cells on the diagonal of the heatmap of Fig. 4, comparing
measurements of the same memristor cell, mostly show the lowest error values.
This means that measurements corresponding to the same cell are indeed very
similar. First, the number of stable cells is calculated. Such cells can be identified
based on the difference between the chunks of the histogram. We note that
some cells of the analyzed memristor chips were damaged and thus provide
unstable responses. These cells are detected and removed from the measurement
sets. The PUF is evaluated using the parameters described in Sect. 3.1. The
classification performance, including the F1-score and the accuracy metrics, is
shown in Table 2.

At most 11 out of 15 cells can be identified. One of the 16 cells of each
memristor array is identified as damaged and is consequently removed from the
data set. As Fig. 4 illustrates, in the best case, this method leads to only 4 false
positives and 4 false negatives, resulting in the following values:

Accuracy =
TP + TN

TP + TN + FP + FN
=

all − (FP + FN)

all
=

(15 ∗ 15) − 8

(15 ∗ 15)
≈ 96% ,

F1-score =
11

11 + 0.5 ∗ 8
≈ 73% .

However, Chip 1 exhibits a higher degree of instability, and therefore pro-
vides worse results. Since the expansion of the hysteresis loop becomes smaller by
increasing the input signal frequency and lowering the voltage amplitude, gen-
erally also the differences among the characteristics of the cells become smaller,
leading to worse results. For that reason, measurements with a frequency of 100
Hz and an amplitude of 1.2 V show the best results. The frequency distribution
is subdivided into n different chunks. Selecting the amount of chunks is part of
the hyper-parameter optimization. Having more chunks preserves more detail in
the frequency distribution, whereas smaller chunk sizes allow the reduction of
noise from the frequency spectrum. The best chunk size for each combination of
parameters, which most often is 92, can be seen in Table 2.



260 F. Frank et al.

Table 2. Number of correctly classified cells, among all undamaged cells on different
amplitudes with a frequency of 100 Hz

Chip ID Frequency Amplitude # Chunks # Correctly # Undamaged Acc F1

in Hz in V classified cells cells

1 100 0.8 92 6 15 0.92 0.4

1 100 1.2 92 7 15 0.93 0.47

1 100 1.0 200 7 15 0.93 0.47

2 100 0.8 92 10 15 0.96 0.67

2 100 1.0 94 9 15 0.95 0.6

2 100 1.2 92 11 15 0.96 0.73

3.3 Classification of Memristance-Based PUFs Using Convolutional
Neural Networks

In order to obtain a method that achieves higher values for the F1-score, we
propose a classification method based on convolutional neural networks. These
are able to learn the discrete shape of the hysteresis curves of the memristors,
after they have first been transformed into pixel images. The huge advantage of
this type of neural network is that it can learn local spatial coherence. The trans-
formation of the curves into pixel images is a prepossessing method that allows
for reducing noise through quantization and mitigates the problem of overfit-
ting. As shown in Sect. 3.3.2, the learned patterns of the CNN can be visualized,
which allows tracing which shapes are learned, which is a huge advantage in
comparison with other types of neural networks.

3.3.1 PUF Construction
CNNs were developed specifically for the domain of computer vision and are very
suitable for image processing tasks, such as image classification. The complexity
of shapes that can be learned by CNNs increases with the number of layers.
For example, using only one layer, only simple edges can be learned. Adding
a few more layers allows to recognize objects within a picture, and by adding
additional layers complex and more detailed structures within pictures can be
learned. The size of the local learnable patterns is specified by the size of a kernel
filter. For instance, a filter with size of 5× 5 pixels iterates over the image and
can only learn local shapes of that size. However, this has the advantage that
fewer weights are needed in comparison to densely connected neural networks,
due to weight sharing, the calculation on local patterns, and the usage of max-
pooling layers. In the next layer, a new 5× 5 kernel filter can learn more complex
shapes by operating on the output of the previous layer. Additional max pooling
layers are required to reduce the size of the images after each convolution layer.
Here, the maximum value of the kernel filter is selected so as to reduce the
number of weights of the next layer [1]. Finally, a ReLU (Rectified Linear
Unit) activation function as well as a softmax layer are attached to classify single
memristors within the memristor array. In the first step, the data captured from
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the memristor cells are transformed into pixel images. There, w describes the
number of pixels in horizontal direction, and h the height of the image. Selecting
w and h is part of the hyperparameter optimization and is described in the
subsequent section.

Additionally, the minimum and maximum values of the input volt-
age, min(Vin) and max(Vin) respectively, are determined. Then, the range
rx := {min(Vin),max(Vin)} is subdivided into w bins. The same is done
for the output channel Vout. Here, the range ry :=

{
min(Vout), max(Vout)

}

is subdivided into h bins. Subsequently, all the Vin values of one measurement
are assigned to the corresponding w bins, based on their position in the range
rx. The same is done for Vout values and the corresponding h bins, based on ry.
The combination of w vertical and h horizontal bins results in a matrix, which
can be learned by the CNN. If multiple values are assigned to one chunk, the
number of values in each chunk is stored, which increases the performance of
the neural network. Such a transformation is visualized in Fig. 5: The right side
shows the hysteresis loop that is shown on the left side, having been transformed
into a matrix, forming a pixel image.

Fig. 5. Left: Hysteresis loop of a memristor. Right: Visualization of the transformation
of the hysteresis loop into a pixel image

In this way, we transform the PUF measurement data into 60× 60 pixel
images, and further optimize w and h. This allows us to maintain a high degree
of detail while reducing noise and limiting the amount of data, so that the
analysis can be handled in a short amount of time. In the next step, all converted
pixel images are combined into a single tensor. For each measurement, a label
specifying the corresponding memristor cell, by using a cell ID implemented as
a one-hot encoded vector, is created.

Our CNN consists of a 2D convolutional layer as the input layer, using a
3 × 3 kernel filter. This layer is followed by a MaxPooling layer that operates on
the output of the previous layer by using a 2× 2 kernel filter. In total, we stack
three convolutional and MaxPooling layers. In the end, the output is flattened
and fed into a densely connected layer with 64 neurons and a softmax classifier to
learn the different classes, each corresponding to one memristor in the memristor
array. An outstanding advantage of convolutional neural networks is that they
can visualize the learned features. In Fig. 6, we can see that the neural network
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distinguishes cells specifically by considering the area of the highest and lowest
voltage, which correspond to the most characteristic patterns of the hysteresis
loop used for the identification of the cells.

Fig. 6. Visualization of the fourth convolutional layer of the neural network. This
heatmap shows the significance of the different sections of the hysteresis curve used by
the network for distinguishing memristor cells

3.3.2 Evaluation
First, multiple CNNs are trained to determine the best ratio of pixel width and
height to achieve the best accuracy, F1-score and the lowest loss. It is particularly
important to find the best width and height values so that a high level of detail
can be preserved, and noise from the measurement can be reduced. The resulting
pixel image is processed in layer four of the CNN as depicted in Fig. 6.

Here, pixels with a brighter hue are of special interest for the CNN and
have a greater influence on distinguishing the different samples. Afterwards, the
pixel width and height, the amount of layers, the batch size, the number of
training epochs, as well as the ratio of the partition of the data into training,
validation, and test data are optimized in order to reach the highest accuracy and
F1 values. According to our evaluation, a convolutional neural network with five
layers provides the best performance over all frequency ranges and amplitudes.

For each amplitude and frequency, the hysteresis loops of each memristor cell
are trained over 20 epochs with a batch size of 5. Table 3 shows the results when
testing the neural network with hysteresis loops not seen during training. The
highest accuracy of 97% and the highest F1-score of also 97% are achieved when
the data set of memristor Chip 2 is trained on data where the input signal has a
frequency of 100 Hz and an amplitude of 1.0 V. Under these conditions, 97 out
of 100 samples were correctly classified, demonstrating the high reliability of the
memristor cell classification scheme. We have additionally tried to classify the
cells with a densely connected neural network operating on the voltage arrays
Vin and Vout. Thereby, we could achieve an accuracy and F1-score of 94%, in
the best case, which may not be sufficient for an authentication application.

As expected, the accuracy of the classification is decreasing with higher fre-
quencies, since, in this case, the hysteresis loop has a lower expansion, and noise
has a higher impact on the measurements. We observe that the memristor Chip 2
performs better than Chip 1, which can be attributed to the presence of more
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unstable cells in Chip 1. Again, as expected, Chip 2 delivers the worst values at
the highest frequency, caused by a decreased expansion of the hysteresis loop.
However, Chip 1 deviates from this behavior since the best performance here is
achieved using an input signal with a frequency of 1 kHz and an amplitude of
1 V. In the future, we plan to investigate whether the combination of multiple
memristors to identify a particular array, and hyper-parameter optimization, can
lead into an increased accuracy and F1-score.

Table 3. Accuracy and F1-scores for all the amplitude and frequency combinations
used to train the convolutional neural network. Each amplitude and frequency combi-
nation corresponds to a particular input wave

Chip ID Frequency in Hz Amplitude in V x-Dim in px y-Dim in px # Epochs Acc F1

1 100 0.8 80 80 20 0.91 0.91

1 100 1.0 150 50 20 0.76 0.76

1 100 1.2 80 80 20 0.78 0.78

1 500 0.8 150 50 20 0.78 0.78

1 500 1.0 80 80 20 0.80 0.80

1 500 1.2 80 80 20 0.80 0.80

1 1000 0.8 80 80 20 0.78 0.79

1 1000 1.0 80 80 20 0.86 0.86

1 1000 1.2 110 50 20 0.88 0.87

2 100 0.8 60 60 20 0.92 0.92

2 100 1.0 120 50 20 0.97 0.97

2 100 1.2 60 60 20 0.94 0.94

2 500 0.8 60 60 20 0.86 0.86

2 500 1.0 60 60 20 0.85 0.86

2 500 1.2 60 60 20 0.92 0.92

2 1000 0.8 60 60 20 0.84 0.84

2 1000 1.0 60 60 20 0.91 0.91

2 1000 1.2 60 60 20 0.79 0.79

4 Applications of Memristance-Based PUFs

The low resource requirements of memristor PUFs, such as their component
cost, processing overhead, and power consumption, allow them to be used in a
variety of different applications. In particular, the proposed PUFs are suitable
for securing and authenticating end devices in a smart home (see Fig. 7), where
low resource requirements are critical for the successful adoption of solutions.

The proposed PUF-based protocol is lightweight, as for the CNN model only
the relevant node weights need to be stored. Its design is kept as generic as pos-
sible to increase its compatibility with other IoT technologies and to be able to
later adopt this protocol also for other scenarios. Additionally, the protocol is
suitable for resource-constrained devices because the major computational effort
of training the model is done by the manufacturer. There, the training of multiple
devices can be done in parallel. Thus, the biggest overhead occurs at production
time. During operation, only the IoT hub needs to evaluate the measurements
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provided by each device. This is done with only one forward propagation through
the neural network that does not require significant resources and can be exe-
cuted quickly, causing only a small delay to the authentication process. Even if
the frequency-based method is used in this protocol, the resource-constrained
devices only need to provide the measurements to the IoT hub, which is respon-
sible for the calculation of the Fourier transformation and the classification.

Fig. 7. Typical components of a smart home

4.1 Authentication Protocol

For the above-mentioned scenario, we propose an authentication protocol that
consists of two phases, as depicted in Fig. 8. In the enrollment phase, mea-
surements MDID

:= {MC0 , . . . ,MCn
}, each corresponding to a memristor cell

from C0 to Cn of a smart device with an identifier DID, are captured and
transmitted to the IoT Hub over a secure channel, e.g. by establishing a direct
connection between the IoT Hub and the device in a controlled environment
without any other network connection. Each cell is measured with multiple fre-
quencies F := {f0, ..., fn} and amplitudes A := {a0, ..., an}. The IoT Hub stores
the model ModelDID

of the smart device learned by the manufacturer along
with an identifier DID. In the highly unlikely case that the CNN model fails
to be produced for a particular DID after a few attempts, this DID shall not
be used. Also, a public key is transmitted to the smart device, which is used in
the next steps of the protocol. There, lightweight algorithms using elliptic curve
cryptography are used.

In the authentication phase, a challenge-response protocol is executed.
First, the smart device sends a challenge with its identifier DID to start an
authentication request. Here, || describes the concatenation of the message, and
the first italicised segment, e.g., AuthRequest, is an identifier, allowing the IoT
Hub and the device involved to identify and parse the relevant messages correctly.
The server responds with a challenge containing a device ID D′

ID, a nonce N ,
a cell ID CID, an amplitude a, and a frequency f . N is used to prevent replay
attacks and can be implemented as a continuous counter or a random number.
The IoT device first checks if the requested device ID, D′

ID, is equal to its own,
and then measures the cell CID by applying the frequency f and amplitude a to
it, resulting in a measurement MCID. Afterwards, a message consisting of the
DID, the previously sent nonce N , and the measurement MCID is encrypted



Using Memristor Arrays as Physical Unclonable Functions 265

using the previously shared publicKey, and sent to the IoT Hub. Only the IoT
Hub can decrypt the message using its privateKey. The server checks if N is
fresh, and chooses the right model, ModelDID

, based on DID. If the CNN can
classify all measurements correctly using ModelDID

, a, and f , the IoT device
gets authenticated, otherwise it gets rejected. After a number of unsuccessful
authentication requests for the same DID, the use of that DID may be disabled.

i f [DID = = D′ID]

Msg0 := AuthRequest | |DID

DID | |CID | |MCID | |N :=

i f [CID = = C′ID]Msg3 := Accept | |DID

Msg3 := Reject | |DID elseMemristor
Array

publicKey

ModelDID := TrainCNN(DID, MCID)MDID := {MC0, . . . , MCn} | |DID

MDID := measure({C0, . . . ,Cn})

DID

CDID := {C1, . . . ,Cn}

publicKey
pr ivateKey

DecprivateKey(DID | |CID | |MCID | |N )

Msg2 := Response | |EncpublicKey(DID | |CID | |MCID | |N )

Enrollment Phase

Secure Channel

Authentication Phase

Neural Network

Neural Network

Msg1 := Challenge | |D′ID | |CID | | f | |a | |N

MCID := measure(CID, f, a)

C′ID := TestCNN(ModelDID, MCID, a , f )

Smart
Device

IoT
Hub

Memristor
Array

Fig. 8. The proposed protocol comprises two phases: a one-time enrollment phase, and
an authentication phase that may be executed multiple times, as needed

4.2 Evaluation of the Proposed Protocol

The advantage of the proposed protocol is that the memristor measurements do
not have to be stored on any of the devices. The shared secret only relies on the
CNN model that is stored on the side of the central entity, and the ability to
reproduce the memristor measurements on the IoT device side.

Our adversary model for the proposed protocol considers a passive attacker
who is able to observe the network traffic between the smart device and the IoT
hub, and who can capture transmitted messages. Furthermore, we consider the
machine learning parameters, such as the CNN architecture, but not the relevant
node weights, to be public, and thus known by the attacker.

Therefore, an attacker is not able to retrieve the measurements from the
response message without knowing the publicKey. Also replay attacks can be
detected, by checking if a nonce occurred twice on the server’s side. An attacker
is not able to change N , because the memristor measurements, which are part of
the encrypted message, are not known Even if an attacker has physical access to
the server, only the CNN model can be retrieved and no measurement data, as
this would require reverse engineering the model. In a more realistic scenario, the
memristor circuitry may need to be shielded to prevent attacks, for example, by
electromagnetic interference, which could potentially disturb the measurements.
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In a practical application, a much larger memristor array should be used
from which different subsets are selected as a challenge. This would signifi-
cantly improve the security, increase the challenge space, and thus may form
a strong PUF.

5 Conclusion

In this work, we have proposed two methods to generate PUFs based on the char-
acteristic response of memristor cells to alternating voltage, i.e., the hysteresis
loop produced. In our first approach, we have analyzed the frequency distribution
of the hysteresis loop. By making use of the relevant frequency bands, we could
achieve an accuracy of 96%, but an F1-score of only 73%. Subsequently, we have
employed neural networks for the classification of PUF responses. Here, we took
the approach of identifying individual memristor cells based on the characteristic
shape of their hysteresis curve. We were also able to determine which particular
parts of the hysteresis curve contain the information most essential for the iden-
tification of an individual cell. This knowledge could be used in future work to
design another analytical method besides the frequency analysis proposed in this
paper. The use of convolutional neural networks could accomplish an accuracy
of 97% and an F1-score of 97%. Our investigation shows that the general quality
of the proposed PUFs decreases when the frequency of the input signal increases
or its amplitude decreases. A more detailed evaluation of memristor-based PUFs
will be done in the future. There, also the approaches described in Sect. 1.2 will
be compared to our PUF-based scheme in terms of uniqueness and robustness,
to further evaluate our work. In addition, further post-processing techniques and
more advanced ML schemes could be used to increase the accuracy and F1-score
achieved by the proposed frequency analysis method. Another research direction
would be to consider the effects of external factors, such as ambient temperature,
as well as the effects of different material compositions and ageing on the quality
of the examined PUF.
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Appendix 1 Self-directed Channel Memristors

Memristors are passive circuit elements whose behavior can be described by the
following simplified equations:

v = R(w) i,
dw

dt
= i.

Here, the voltage v depends on the current i and the resistance R of the
memristor, which in turn depends on the previous state w of the memristor. i
can be described as the integral of w over time t, which means that w is essentially
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the charge that has moved through the memristor [19]. Therefore, a memristor
cell changes its resistance depending on the amount of charge flowing through
it. This behavior is usually shown by applying a sine wave to the memristor and
visualizing the output in a Lissajous curve, as demonstrated in Fig. 1.

The memristor cells used in our work are so-called self-directed channel mem-
ristors [11]. There, each cell consists of multiple layers. The most important ones
are the active layer, and a layer of silver, from which Ag+ ions can migrate into
the active layer. As visualized in the simplified structure of such a cell in Fig. 9,
each cell has a top and a bottom electrode, over which voltage can be applied.
By applying a positive potential to the electrode pair, the memristor performs a
transition into a low-resistance state; a transition into a high-resistance state is
performed when a negative potential is applied. The active layer of the memristor
consists of an amorphous chalcogenide using tungsten as a dopant (W + Ge2Se3).
This layer consists of Ge-rich chalcogenide glass, which builds a network con-
nected by Ge-Ge bonds. In this layer, the resistance is controlled by the number
of silver ions of the Ag+ layer that have migrated into this layer (the active
layer), and, in consequence, by whether a conductive channel across this layer
exists. The amount of ions of silver that migrate into the active layer depends
on the potential applied between the top and bottom electrodes.

Fig. 9. Simplified structure of a self-directed channel memristor cell. The left image
shows the migration of a large number of Ag+ ions into the active layer, which leads to
a highly conductive channel. This is caused by the application of a positive potential
to the electrodes. The right image shows the memristor in a high resistive state, after
a negative potential has been applied. Here, the Ag+ ions move from the active layer
back to the Ag+ layer, which leads to low conductance, as a conductive channel is no
longer formed across the active layer

During the initial operation of a memristor, a preliminary step called forming
must be executed. Here, the same positive potential as the one used during
normal operation, is applied to the top and bottom electrodes. This leads to
self-trapped electron pairs around the Ge-Ge bonds, causing, as a reaction, some
of the Ge-Ge bonds to break, and Se ions of an adjacent SnSe layer, which is not
shown in Fig. 9 for reasons of simplicity, to be forced into the active layer. This
reduces the energy required to substitute Ag for Ge in a Ge-Ge bond, leading
to a conductive channel. The number of Ag+ ions being forced into the active
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layer depends on the positive potential applied to the electrodes. Ag+ ions are
removed from the active layer when a negative potential is applied [2].

This ion migration allows each memristor to be used as a memory cell. In
order to change to a low resistive state, a voltage VSET must be applied, which
means that a positive voltage pulse above a certain threshold must be applied to
the memristor. This leads to a migration of Ag+ ions into the active layer and
thus reduces the resistance of the memristor cell. When a negative pulse VRESET

that is beyond a certain threshold, is applied, the conductive ions are removed
from the active layer and transferred back to the Ag+ layer, which increases
the resistance of the memristor. When a voltage between these two thresholds is
applied, the ions stay at their position and the resistance either does not change
or does so only to a relatively small extent. In this way, the current resistance
of the memory can be measured. The states of high and low resistance encode
the logical value of 0 and 1, respectively. When unplugging the power supply,
the ions stay at their current position, which makes these cells non-volatile [7].

Appendix 2 Measurement Circuit Design

We designed the measurement circuit in a way such that the experiments are
reproducible and measurement data can be captured with a high degree of detail.
For that reason, the experiments are performed in an automated test environ-
ment and executed by remotely controlling the function generator and oscillo-
scope. This allows us to capture the data as precisely as possible and thus get
consistent and reproducible measurements for all memristor cells. The experi-
mental setup is illustrated in Fig. 10.

G Oscilloscope 
Channel 1

Oscilloscope 
Channel 2

Memristor
Cell

Function 
Generator

Resistor
2kΩ

Vin

Vout

GND

GND

Fig. 10. Circuit used to capture the data using a function generator and an oscilloscope
with two channels

The output connectors of the function generator are connected to the top
electrode of the memristor array and to the ground. For measuring different cells
in the memristor cell array, this connection is sufficient since the top electrodes of
all cells are internally interconnected on the chip carrying the cell array. The first
channel of the oscilloscope is connected in parallel to the function generator to
capture its output Vin. Again, in parallel to the function generator, a resistor and
the memristor under test are connected in series. The resistor is used to limit the
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current floating through the memristors. It is rated with 2 kΩ to limit the current
to a maximum of 1 mA when applying up to 2 V. Otherwise, the memristor could
suffer damage and remain in a high resistive state permanently [11]. Moreover,
the resistor is used to measure the voltage drop caused by the resistance of the
memristor. For this purpose, the second channel of the oscilloscope is connected
in parallel to the resistor and captures the voltage drop caused by memristor
Vout. Finally, the ground connectors of the two oscilloscope channels, the ground
pin of the function generator, and the resistor are connected to one common
ground. The oscilloscope is switched to X/Y mode to visualize the output of the
first channel on the x-axis, and the second channel on the y-axis. The constant
resistance change of the memristor, due to the sine wave applied by the signal
generator, causes a perpetually changing voltage drop at the resistor. Before
starting the measurements, a forming operation described in Sect. 2.1 needs to
be performed. During this phase, the 2 kΩ resistor is replaced by a 10 kΩ resistor,
to follow the forming process described by the manufacturer of the chip [16].
The 10 kΩ resistor allows us to apply a higher maximum voltage of 3 V to the
memristor. Here, the function generator is set to supply a sine wave with 100
Hz and an amplitude of 250 mV. The amplitude is slowly increased up to 3 V,
which is the maximum voltage for this type of memristor chip. All subsequent
tests are performed with a maximum amplitude of 1.2 V using a 2 kΩ resistor.

A hysteresis loop can be observed at any frequency and an amplitude of 700
mV, for most of the cells. The loop with the greatest expansion on the y-axis can
be seen when amplitudes from 1.2 V to 2 V are supplied using a 2 kΩ resistor.
Also, the frequency of the sine wave influences the shape of the loop. Lower
frequencies lead to more distinctive hysteresis loops. With increasing frequency,
the memristors exhibit smaller resistance changes and thus a smaller hysteresis.

Input signals with an amplitude of 1.2 V and frequencies between 100 Hz and
500 Hz almost consistently produce a clear hysteresis loop. When the frequency
is increased to 1 kHz, the width in y-direction is getting smaller. By supplying a
frequency of 10 kHz, the width of the hysteresis loop gets considerably smaller.

We have also investigated the influence of different amplitudes of the sine
signal on the memristive behavior. When using an amplitude of 0.8 V, almost all
cells exhibit a hysteresis loop. With decreasing amplitudes, the cells adjust their
behavior to that of ordinary resistors. By increasing the voltage, the hysteresis
loop expands not only in the x-direction, but also in y-direction. The clearest
shape can be seen using amplitudes between 1.2 V and 2 V using a 2 kΩ resistor.
The most significant differences among the hysteresis loops of the memristor
arrays also arise for these parameter values, which allows us to identify the cells
used for our PUF with the highest precision.
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Abstract. The paper proposes SecureBiNN, a novel three-party secure
computation framework for evaluating privacy-preserving binarized neu-
ral network (BiNN) in semi-honest adversary setting. In SecureBiNN,
three participants hold input data and model parameters in secret shar-
ing form, and execute secure computations to obtain secret shares of
prediction result without disclosing their input data, model parameters
and the prediction result. SecureBiNN performs linear operations in a
computation-efficient and communication-free way. For non-linear opera-
tions, we provide novel secure methods for evaluating activation function,
maxpooling layers, and batch normalization layers in BiNN. Communica-
tion overhead is significantly minimized comparing to previous work like
XONN and Falcon. We implement SecureBiNN with tensorflow and the
experiments show that using the Fitnet structure, SecureBiNN achieves
on CIFAR-10 dataset an accuracy of 81.5%, with communication cost
of 16.609MB and runtime of 0.527s/3.447s in the LAN/WAN settings.
More evaluations on real-world datasets are also performed and other
concrete comparisons with state-of-the-art are presented as well.

Keywords: Privacy-preserving machine learning · Secure multi-party
computation · Binarized neural network

1 Introduction

Machine Learning as a Service (MLaaS) has created huge economic benefits
and been widely used in image classification, disease diagnosis, etc. In MLaaS,
both model owner and data owner would suffer from privacy leakage if the
model or input data could be accessed by others arbitrarily. Cryptographic tech-
niques, e.g., secure multiparty computation (SMC) and homomorphic encryp-
tion (HE), are good solutions to the problem. The community really sees many
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cryptography-enabled protocols [7,15,23,24,27,34], and most of them focus on
naive neural networks (NN) and stipulate the parameters in fixed-point numbers.
Some work [8,28] implements binarized neural network (BiNN) (model parame-
ters take the values of ±1). BiNN has simpler calculation process than NN and
one may expect more efficient implementation of BiNN (than NN) with SMC
and HE.

This paper proposes SecureBiNN, a novel three-party framework for BiNN
inference, secure under non-colluding semi-honest adversary setting (same as
SecureNN [34] and XONN [28]). SecureBiNN has three semi-honest participants,
each of which holds secret shares of the input data and of the model. We evaluate
BiNNs with replicated secret share technique [5], reduce communication cost and
enhance computation efficiency by ruling out garbled circuit (GC) and HE. After
the framework evaluation, each party outputs its secret share of prediction result.
SecureBiNN can be applied to inference on sensitive data without compromising
privacy. For example, three banks could use their own data to predict customers
for financial fraud, or three hospitals could use patients’ private data to make
better diagnoses without revealing their privacy.

Our contributions can be summarized in the following two aspects:

– Framework: We propose SecureBiNN, a secure computation framework for
BiNN inference. To reduce communication cost, SecureBiNN chooses ring
size according to BiNN architecture. Furthermore, we propose new protocols
for three-party oblivious transfer, secure activation, and secure maxpooling.
To further improve SecureBiNN performance under WAN settings, we use 3-
input AND gate to reduce the number of communication rounds. In particu-
lar, our maxpooling operation requires only one private comparison operation.
We put batch normalization and binarized activation together, and thereby
use one addition and one private comparison to achieve batch normalization
and activation operation.

– Practicality: SecureBiNN is computation-efficient and communication-cheap.
We implement SecureBiNN with numpy [36], Tensorflow [4] and run experi-
ments on three ecs.c7.2xlarge servers from Alibaba Cloud. We evaluate various
networks on MNIST, CIFAR-10 and real-world medical datasets. The results
of experiments in Sect. 4 show the practical feasibility of SecureBiNN under
LAN/WAN settings. We provide our source code on Github1.

We recap the related work in the Appendix A due to space limitation.

2 Preliminaries

We review security model, correlated randomness, and secret sharing used in
this paper. We denote three participants as P0, P1, and P2. P(i+1)mod 3 and
P(i−1)mod 3 denote the next and previous parties for Pi respectively. For simplic-
ity, we omit mod 3 in the subscript of Pi and other variables (e.g., xi, ri).

1 https://github.com/Wixee/SecureBiNN.

https://github.com/Wixee/SecureBiNN
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2.1 Security Model

We assume that each participant is honest-but-curious (a.k.a. semi-honest). In
other words, each participant implements the protocols honestly and will not
attack others actively (e.g., capture others’ secret keys, monitor others’ commu-
nications, or construct malicious input data). However, they might try to infer
information of others as much as possible. Such model is commonly assumed
in [22,23,28,34]. We also adopt the same assumption as in other three-party
protocols [16,24,35] that there is no collusion between any two participants.

As previous work and other cryptographic protocols, SecureBiNN ensures
input data and model parameters will not be leaked during protocol executions.
We will not discuss how to protect model structure or to defend other attacks like
model retrieval attack [33], membership inference attack [31] and data poisoning
attacks [11], which go apparently out of scope of the framework.

2.2 Correlated Randomness

In this work, random values are generated by a PRF (Pseudo-Random Function)
R with two inputs x, y, denoted as R(x, y). Given an input pair, R will return a
specific value. R’s output can be viewed as a uniform distribution on its domain.
We assume that Pr[(x, y) ← A(R(x, y))] is negligible for any PPT adversary A.

Suppose Pi and Pi+1 negotiate a secret random seed ri+1. Pi holds (ri, ri+1),
i = 0, 1, 2. All participants maintain a counter cnt, incremented by one after
each invocation. For a modulo m, we have two types of correlated randomness.
3-out-of-3 randomness: Pi calculates ai = R(ri+1, cnt) −R(ri, cnt) mod m.
Note that a0 + a1 + a2 ≡ 0 mod m.
2-out-of-3 randomness: Pi calculates (ai, ai+1) = (R(ri, cnt), R(ri+1, cnt)).
By 2-out-of-3 randomness, Pi, Pi+1 can generate a common random value ai+1

without any communication cost, and Pi−1 does not have the knowledge of ai+1.

2.3 Two-party Secret Sharing

For a modulo m = 2l, l ∈ Z
+, a secret x ∈ Zm is shared by sampling two random

x0 and x1 s.t. x0 + x1 = x over Zm. Denote x shared by two parties as �x�m
2 .

When l = 1, we can denote �x�B
2 = �x�22 = (x0, x1) where x0 ⊕ x1 = x and

x, x0, x1 ∈ {0, 1}. More details can be found in [6,13,23]. The linear operation
for two-party secret sharing is trivial, and the multiplication can be implemented
by using Beaver’s Triplet [6].

2.4 Three-party Secret Sharing

Three-party secret sharing is proposed in [5]. For a modulo m = 2l, a secret
x ∈ Zm is shared by sampling three random x0, x1, x2 ∈ Zm, x = x0+x1+x2, and
then Pi holds (xi, xi+1). Denote such kind of secret shared value x as �x�m

3 , and
the tuple (x0, x1, x2) represents its shares. Three-party secret sharing supports
linear operations and multiplications between the shared values. Given public a,
b and c, we have the following for secretly shared �x�m

3 and �y�m
3 .
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– Linear operation: participants can compute �ax + by + c�m
3 := (ax0 + by0 +

c, ax1 + by1, ax2 + by2) locally to achieve linear operation.
– Multiplication: Pi computes and outputs zi = xiyi + xiyi+1 + xi+1yi where∑2

i=0 zi = z = xy. If the participants need to restore the output to the form
of �z�m

3 , they should invoke 3-out-of-3 randomness to get a0, a1, a2, and Pi

sends zi + ai to Pi−1. At last, Pi outputs (zi + ai, zi+1 + ai+1).

Both two-party and three-party secret sharing schemes can be trivially extended
to matrix computations.

3 The SecureBiNN Framework

3.1 Highlights

For a BiNN with n layers, we denote the input and the weights of the i-th layer
as Xi−1 and Wi respectively. Xi−1s and Wis are encoded into an integer ring and
secretly shared by participants who run multiplication protocol of secret sharing
to calculate WiXi−1. This method can be easily generalized to convolutional
neural network. The activation function used in BiNN is

Sign(x) =

{
1 x ≥ 0

−1 x < 0
(1)

When running the sign function, we convert three-party secret sharing into two-
party secret sharing between P0 and P1 to evaluate part of parallel prefix adder
circuit. We can get the result of the sign function according to the MSB (most
significant bit) of its input. After that, three participants utilize a three-party
oblivious transfer (OT) to convert the result of the circuit into three-party secret
sharing again. The three-party OT we use originates from [24]. However, we alter
its input and make some modifications so that it also works well in SecureBiNN.
We will show details in the following part. Note that the sign function is used
in the maxpooling layers as well.

Before implementing SecureBiNN, a model owner should encode its model
in the form of three-party secret sharing. Input data should also be encoded in
the same way. After the protocol, each party holds a share of the result, and all
participants would then send their shares to those who should know the result.
This is application-dependent and here we do not consider the source of the
input and how participants deal with the results.

3.2 Parameters Encoding

We encode all model parameters into Z2l . Among all n layers, l’s value decided in
the i-th layer might be independent of that in the j-th layer (1 ≤ i, j ≤ n, i �= j).
In the input layer and output layer, we use standard fixed-point arithmetic
encoding scheme. In other layers, however, we can use a smaller l to reduce
parameter size. For example, we encode parameters of the input layer and output
layer into Z216 or Z232 , while the parameters of other layers are encoded into Z29

or Z214 . We will describe more details below.
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Encoding Input and Output Layer Parameters. In the input and output
layers, we use standard fixed-point encoding, and a bit string of length l can
represent a fixed-point number in complement form. In most cases, the value
of l is 32. The MSB of some number represents the sign of the number: it is
non-negative if its MSB is 0, and negative otherwise. We say a number has lD
bits of precision (0 ≤ lD < (l − 1)/2) if the lD bits at the far right represent the
fractional part and the remaining l − 1 − lD bits represent the integer part.

In SecureBiNN, we ditch truncation operations (used generally in fixed-point
arithmetic multiplications), for we only use fixed-point encoding in input/output
layers and no overflow occurs. Our method requires that for addition operations
in input/output layers, the operands should have same precision. Take Y =
WX + b for instance. If W and X have lWD and lXD bits of precision respectively,
then WX has lWD + lXD bits of precision. In order to remove truncation and make
addition result correct, b should also have lWD + lXD bits of precision.

Encoding Hidden Layer Parameters. In SecureBiNN, the parameters of
each hidden layer are represented by signed integers of l bits. Herein, l could be
chosen independently in each layer. In hidden fully connected layers, every entry
in the input Xi−1 and the weight Wi takes 1 or –1. If the shapes of Wi and Xi−1

are (n,m) and (m, k) respectively, then each entry in WiXi−1 is an signed integer
in [−m, m]. We can thus choose the smallest l s.t. 2l−1 − 1 ≥ m and encode Wi

and Xi−1 into the ring Z2l . In case that the hidden layer performs a convolution
operation and filter size is (nin, h, w, nout), we require 2l−1−1 ≥ nin×h×w. Then
we use l bits to represent any signed integer parameter in the layer. W.l.o.g.,
this can also be seen as 0-bit precision fixed-point encoding.

This method has relatively low fault tolerance. Indeed, the number of neurons
in previous layer completely determines the ring size, and we do not consider
addition operations in subsequent batch normalization (see the coming sections),
which might cause overflow. This little gap could be handled heuristically. If the
hidden layer is a fully connected layer or a convolutional layer followed by a
normalization layer, then we add a constant δ to l to relax the restriction on l.
Our experiments show that setting δ = 2 already provides expected robustness.

3.3 Fully Connected Layer and Convolutional Layer

Consider an arbitrary fully connected layer. All its input X, weight W (and bias b
for input/output layers) are secretly shared over Z2l among the participants who
collaboratively invoke multiplication protocol (see Algorithm 1) to calculate the
(shared) result. The protocol could be easily extended to convolution operations.
In the protocol, b should have lW + lX bits of precision if the fixed-point W and
X have lW and lX bits of precision respectively.

3.4 Secure 3-Input and Gate

In order to further improve the performance in the WAN setting, we use 3-
input AND gate technique [25] to reduce communication rounds in implementing
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Algorithm 1. Fully Connected Layer Inference: Πfc

Input: Pi inputs the weight share (Wi, Wi+1), data share(Xi, Xi+1) (and bias share
bi if the layer is input layer or output layer) s.t.

∑2
j=0 Wj = W ,

∑2
j=0 Xj = X,

∑2
j=0 bj = b, i ∈ {0, 1, 2}.

Output: Pi outputs Zi, secret shares of fully connected layer output.

1: Pi : Zi = WiXi + Wi+1Xi + WiXi+1

2: if it is not a hidden layer then
3: Zi = Zi + bi
4: end if

Algorithm 2. Secure 3-input AND Gate: Π3−inputANDgate

Input: P0, P1 input �a�B2 , �b�B2 , �c�B2 , P2 inputs ⊥.
Output: P0 and P1 ouput �z�B2 where z = abc, P2 ouputs ⊥.

1: P0, P1 generate �a′�B2 , �b′�B2 , �c′�B2 , �a′b′�B2 , �a′c′�B2 , �b′c′�B2 , �a′b′c′�B2 with the help
of P2 by utilizing 2-out-of-3 randomness.

2: P0, P1 calculate �a ⊕ a′�B2 , �b ⊕ b′�B2 , �c ⊕ c′�B2 .
3: P0, P1 reconstruct and open (a ⊕ a′), (b ⊕ b′), (c ⊕ c′).
4: P0 and P1 calculate and output �z�B2 according to the Eq. (2).

secure activation function. It can be seen as an extension of Beaver’s Triplet
technique [6]. The formula for 3-input AND gate can be written as

z = abc =(a ⊕ a′)(b ⊕ b′)(c ⊕ c′) ⊕ (c ⊕ c′)a′b′ ⊕ (b ⊕ b′)a′c′

⊕ (a ⊕ a′)b′c′ ⊕ (a ⊕ a′)(b ⊕ b′)c′

⊕ (a ⊕ a′)(c ⊕ c′)b′ ⊕ (b ⊕ b′)(c ⊕ c′)a′ ⊕ a′b′c′.
(2)

Here, a, b, c represent the inputs and z represents the output, a′, b′ and c′ are
random masks used to hide a, b, c respectively in SMC. Before implementing
such a 3-input AND gate, P0 and P1 take �a�B

2 , �b�B
2 and �c�B

2 as inputs, P2

plays the role of a helper, generates �a′�B
2 , �b′�B

2 , �c′�B
2 , �a′b′�B

2 , �a′c′�B
2 , �b′c′�B

2 ,
�a′b′c′�B

2 and send these secret shares to P0 and P1.
In SecureBiNN, with the help of 2-out-of-3 randomness, communication cost

of implementing a 3-input AND gate can be further optimized. By 2-out-of-3
randomness, P2 can reduce communication cost of secret sharing distribution.
P0 and P1 generate common uniform randomness with P2 respectively, and take
them as �a′�B

2 , �b′�B
2 and �c′�B

2 . Then P2 reconstructs a′, b′, c′ and calculates
a′b′, a′c′, b′c′, a′b′c′. P0 and P2 then generate common randomness again, P0

takes these randomness as shares of a′b′, a′c′, b′c′, a′b′c′, P2 calculates and sends
appropriate shares of above terms to P1. In the naive method, P2 needs to send a
total of 14 bit, while in above optimized method, 4 bits suffice. Algorithm 2 shows
the details of implementing a 3-input AND gate with the above optimization.

It is easy to prove the correctness, and we omit the details and just focus on
its security proof below.
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Algorithm 3. Ideal Function of Three-Party Oblivious Transfer: F3−OT

Input: Sender inputs (m0, m1), Receiver inputs b, Helper inputs ⊥.
Output: Receiver outputs mb, Sender and Helper output ⊥.

Algorithm 4. Three-Party Oblivious Transfer: Π3−OT

Input: Sender inputs (m0, m1), Receiver inputs b, Helper inputs ⊥.
Output: Receiver outputs mb, Sender and Helper output ⊥.

1: Receiver and Sender generate common ranom bit r, common random bit string
mask0 and mask1.

2: Sender computes si = mi⊕r ⊕ maski⊕r, i ∈ {0, 1}.
3: Sender sends (s0, s1) to Helper.
4: Receiver sends b ⊕ r to Helper.
5: Helper sends sb⊕r to Receiver.
6: Receiver calculates mb = sb⊕r ⊕ maskb⊕r.

Theorem 1. The above optimized secret sharing used for implementing 3-input
AND gate is secure, i.e., these secret shares in performing 3-input AND gate
will not leak secret information.

Proof. Since the 2-out-of-3 randomness generates uniform randomness, a′, b′,
c′, a′b′, a′c′, b′c′, a′b′c′ and the corresponding secret shares also conform to
uniform distribution. When implementing 3-input AND gate, messages are well
masked to follow uniform distribution, thus P0 and P1 cannot infer each other’s
secret share based on the transcripts (see interaction details in [25]). Therefore,
it is trivial to construct a simulator of the real-ideal paradigm [9]. P2 plays the
role of a helper and does not participate in the execution of AND gate itself, so
P2 can not infer the secrets. 	


3.5 Three-party Oblivious Transfer

We use three-party oblivious transfer (OT) in follow-up secure activation func-
tion. In our three-party OT, we have a sender holding two messages m0 and
m1, a receiver holding a choice bit b (that decides the message mb it wants
from the sender), and a helper holding null input. The corresponding ideal func-
tion is shown in Algorithm 3, and the detail of the three-party OT is shown in
Algorithm 4.

After the protocol, the receiver gets the message mb with the requirements
that the sender does not know which message is selected by the receiver, that
the receiver knows nothing about m1−b, and that the helper does not learn any
knowledge of the messages and the choice bit. Table 1 gives the comparison of
our three-party OT and that in ABY3 from the perspectives of communication
overhead, communication round, and the requirement on the choice bit.

Note that any two parties (e.g., the sender and the receiver in three-party OT)
can take a communication-free invocation of 2-out-of-3 randomness to generate
common randomness. So the first step in Algorithm 4 is communication free.
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Table 1. Comparison of OT in SecureBiNN and 1-out-of-2 OT in ABY3, l represents
the length of a single message

Comm. cost Round Helper knows the choice bit?

Ours 3l + 1 2 ×
ABY3 3l 2 �

Thus, if the bit lengths of both m0 and m1 are l, overall communication takes
3l+1 bits. The correctness and security of the protocol are obvious and intuitive.
This protocol will be used in secure activation function.

In our protocol, not only the sender but the helper cannot tell the index
of the exact message selected by the receiver, which is different from previ-
ous three-party oblivious transfer protocols in ABY3 [24] and Falcon [35]2. The
counterparts in them call an explicit and simple conversion from two-party secret
sharing to three-party secret sharing so that the helper and the receiver reach a
common bit and further take it as the choice bit. Thus, those schemes require
one more round of communication before the oblivious transfer begins.

Theorem 2. Π3−OT is secure against non-collusion semi-honest adversaries.

Proof. Due to the common uniformly random masks generated by Sender and
Receiver, the execution of the Π3−OT protocol is quite simple and one may
easily construct such a simulator. Sender and Receiver can generate common
uniformly random bit r, common uniformly random string mask0 and mask1
with the common random seed. This can be achieved by a trivial simulation
(omitted in the following discussion). Next, we discuss from the perspectives of
three parties.

1. If adversary A corrupts Sender: A sends two masked messages s0 and s1 to the
simulator S. S can extract m0, m1 from s0 and s1 since r, mask0 and mask1
are known to both A and S. S provides the input to the ideal functionality
F3−OT , then the ideal functionality will send the output to the party which
represents the receiver in the real world, thus honest parties in the ideal world
receive correct ouput. Since the sender receives no messages, the simulator
S sends the adversary A nothing and thereby A cannot distinguish the ideal
world and the real execution.

2. If adversary A corrupts Helper: S just sends a uniformly random bit and
two uniformly random strings which represent b ⊕ r, s0 and s1 (we assume
that the lengths of s0 and s1 are public). In the real world, b ⊕ r, s0 and
s1 all follow uniformly random distribution. So A cannot tell whether it is
interacting with the real protocol or simulator S.

3. If adversary A corrupts Receiver: A sends b⊕r to the simulator S. S extracts
b with the knowledge of r and inputs b to the ideal functionality F3−OT , and
can then receive the ideal output mb. After that, S generates mb ⊕ maskb⊕r

according to r and maskb⊕r (since r and maskb ⊕ r are known to Sender
2 OT protocols in ABY3 and Falcon are secure against semi-honest adversaries.
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and Receiver). Finally, S sends mb ⊕ maskb⊕r to the adversary A who opens
the message and gets the correct output. r and maskb⊕r simulated by S are
uniformly random, which is the same as in the real execution. So the adversary
A cannot tell whether it is interacting with the real protocol or simulator S.

This completes the security proof of Π3−OT . 	


3.6 Secure Activation Function

Suppose that the participants finish fully connected layer inference or convo-
lutional layer inference and now activation layer follows. Each party holds a
share of the evaluation result (in fact, a series of shares of the result’s entries)
after evaluating a fully connected layer or a convolutional layer. Suppose that
Pi holds the share zi. Now the participants want �Sign(z)�m′

3 given �z�m
3 . Here

m = 2l represents the modulo of the last layer, m′ represents the modulo of
the next layer. To the purpose, we have three phases: first convert three-party
sharing �z�m

3 (among P0, P1, P2) to two-party secret sharing �z�m
2 (between P0

and P1); then get �MSB(z)�B
2 by evaluating a parallel adder circuit on Z2 with

3-input AND gate technique; and finally get �Sign(z)�m′
3 by invoking three-party

oblivious transfer Π3−OT . The following presents the details.

From Three-Party Secret Sharing to Two-Party Secret Sharing. All
participants jointly call the 3-out-of-3 randomness protocol and each gets a
random value ai (such that a1 +a2 +a3 = 0), then P2 sends z2 +a2 to one of the
remaining parties (say P0). This will not leak any information as z2 +a2 sent by
P2 is distributed uniformly at random. Now P0 holds s0 = (z0 + a0) + (z2 + a2)
and P1 holds s1 = z1 + a1. We have s = s0 + s1 =

∑
(zi) +

∑
(ai) =

∑
(zi) = z

and thereby manage two-party secret sharing, i.e., s0 and s1 are secret shares of
z (and s).

Achieving MSB Extraction with Specific Part of Parallel Prefix Adder
Circuit. By converting three-party secret sharing to two-party secret sharing,
P0 and P1 reach �s�m

2 = (s0, s1) where m = 2l. One may view si (i = 0, 1)
as a bit string of length l. As s0 = s0 ⊕ 0, we then have �s0�

B
2 , a toy “two-

party secret sharing” of s0 such that P0 holds s0 and P1 holds 0. Similarly, we
have a toy “two-party secret sharing” �s1�

B
2 . One might gain the advantage of

communication round complexity in the MSB extraction protocol by the joint
exploit of toy “two-party secret sharing” and standard secret sharing.

Now, the participants P0, P1 (and P2) are ready to extract the MSB of s
(see Algorithm 5). We use s0[i] and s1[i] to denote the i-th bits of s0 and of s1
respectively. It is obvious that MSB(s) = s0[l − 1] ⊕ s1[l − 1] ⊕ c, where c is
a carry bit generated from lower l − 1 bit pairs. Three parties then use 3-input
AND gate to evaluate the parallel prefix adder circuit to compute the carry bit
c. For a 3-input AND gate with one free input in the circuit, we can replace it
with a 2-input AND gate by using well known Beaver’s Triplet technique [6] (a
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Algorithm 5. MSB Extraction: Πmsb

Input: P0 and P1 input �s0�
B
2 and �s1�

B
2 , si ∈ Z2l , P2 inputs ⊥.

Output: P0 and P1 achieve �b�B2 , b is the MSB of s where s = s0 + s1.

1: P0, P1 input �s0�
B
2 and �s1�

B
2 to the parallel prefix adder circuit which is composed

by 2-input and 3-input secure AND gates, P2 plays as a helper. They collaborate
to compute �carry bit�B2 with SMC.

2: �b�B2 = �s0[l − 1]�B2 ⊕ �s1[l − 1]�B2 ⊕ �carry bit�B2 .

Algorithm 6. Convert �MSB(z)�B
2 to �Sign(z)�m′

3

Input: P0 and P1 input the shares b0, b1 in �MSB(z)�B2 respectively (MSB(z) = 0 if
the said neuron is activated, and 1 otherwise), P2 inputs ⊥.

Output: �t�m
′

3 among P0, P1, P2 s.t.
∑

ti = Sign(z). m′ is the modulo.
Parameter: deact val = 0 if maxpooling layer follows and −1 otherwise.

1: P1 selects a secret value r ∈R Zm′ and calculates m0 = (1 ⊕ b1)act val + (0 ⊕
b1)deact val − r (mod m′), m1 = (0 ⊕ b1)act val + (1 ⊕ b1)deact val − r (mod m′).

2: Call Π3−OT (P0 acts as receiver, P1 sender, and P2 helper), and P0 receives mb0 .
3: P0 sets t′

0 = mb0 , P1 sets t′
1 = r, P2 sets t′

2 = 0.
4: Pi generates ai ∈ Zm with 3-out-of-3 randomness.
5: Pi sets ti = t′

i + ai, and sends ti to Pi−1, then Pi holds (ti, ti+1).

simplified version of 3-input AND gate) to further reduce the communication
cost. The same circuit is used in [26] to handle the case where l is set as 32 or
64. In contrast, SecureBiNN always takes a smaller value (e.g., 16 or 18) of l
determined by the structure of the previous layer. In other words, SecureBiNN
has a smaller circuit size and this will further contribute to lower communication
cost and less interaction rounds.

Converting �MSB(z)�B2 to �Sign(z)�m
′

3 . Given �MSB(z)�B
2 between P0

and P1, we can now get �Sign(z)�m′
3 among P0, P1, P2. Recall that if the MSB is

0, then the neuron hereof should be activated, and deactivated otherwise. As we
use the activation function Sign, we have the activation value act val = 1 and
the deactivation value deact val = −1. If a maxpooling layer follows however, we
set deact val as 0 (rather than −1) in order to adapt to maxpooling operation.

The details are shown in Algorithm 6. To achieve �Sign(z)�m′
3 , we let P1

generate symmetric messages by using its secret knowledge (secret share in
�MSB(z)�B

2 and one-time randomness) along with activation/deactivation val-
ues. We then call our three-party oblivious transfer protocol Π3−OT by viewing
P1 as the sender, P0 the receiver, and P2 the helper. The particular constructing
of the messages enables P0 to get the exact message decided by its secret share
(in �MSB(z)�B

2 ) so that a simple conversion from two-party secret sharing to
three-party sharing leads to the expected �Sign(z)�m′

3 .
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3.7 Batch Normalization

In SecureBiNN, batch normalization is always followed by an activation layer
so we can put batch normalization operation and activation operation together.
Consider the following formula for batch normalization [17]:

Y = γ
X − μ√
σ2 + ε

+ β. (3)

Herein, γ and β are trainable parameters in the batch normalization, ε is a small
constant to avoid the “Divide by Zero” error, μ and σ are parameters decided
in the training process. Thus, all these parameters would be set as fixed values
during inference. And we can rewrite Eq. (3) as

Y =
γ√

σ2 + ε
X + β − γμ√

σ2 + ε
. (4)

Let γ′ = γ√
σ2+ε

, β′ = β − γμ√
σ2+ε

, then we have

Y = γ′X + β′. (5)

In most cases, γ′ is positive and batch normalization layer is followed by an
activation layer. It holds that

Sign(γ′X + β′) = Sign(X +
β′

γ′ ). (6)

Thus, the model owner first encodes β′

γ′ into a fixed-point number over the ring

Zm and then uniformly samples θi s.t.
∑2

i=0 θi = β′

γ′ and sends θi to Pi. If
the participants need to perform batch normalization between a fully connected
layer and an activation function, Pi only needs to add θi to the output share of
the fully connected layer.3

In the input layer, X and β′

γ′ are both fixed-point numbers, but in the hidden

layers, X is an integer and β′

γ′ is not. In this case, if Sign(X + β′

γ′ ) = 1 (which

means X + β′

γ′ ≥ 0), there is

X ≥ �−β′

γ′  ≥ −β′

γ′ . (7)

So Eq. (8) holds and we can implement it instead.

Sign(γ′X + β′) = Sign(X − �−β′

γ′ ). (8)

3 Same for convolutional layers.
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1 1

1 0
3 2 TrueSum -1 >=0

? 1

0 0

0 0
0 -1 FalseSum -1 >=0

? -1

Fig. 1. Two examples of maxpooling

3.8 Maxpooling

We know that the neurons hereof should be activated (i.e., act val = 1) if
MSB(z) = 0, and deactivated (i.e., deact val = −1) otherwise. Suppose that
maxpooling layer follows now. If there exists 1 in some maxpooling step, then
the max value is 1 and a standard maxpooling step would output 1, and −1
otherwise. This can be done generally by several comparator operations [35].
Whereas, our framework takes a different trick. Now we set the deactivation
value as 0 rather than −14 and then check whether there exists 1 in the pool.
If yes, then the sum of these entries minus 1 should be greater than or equal
to 0. After a convolutional layer, participants convert the maxpooling layer to a
‘sumpooling layer’, i.e., they replace the ‘Max’ operation in the maxpooling layer
with an ‘Add’ operation (see Fig. 1) and then apply Sign function to the output
of the ‘Add’ operation. Therefore, a single step of maxpooling layer can be done
by an ‘Add’ operation and a MSB extraction operation. Prior frameworks, like
MiniONN [21], generally lean on the secure comparison protocols (i.e., compara-
tor) and secure multiplications to find the largest value in the pool, and the
numbers of comparator and multiplication calls have a linear relationship with
filter size.

There is another optimization. The participants need not convert the shares
to three-party secret shares after an activation operation which is always followed
by a maxpooling layer. P0 and P1 can locally implement a ‘sumpooling layer’
and then participants implement the activation operation again.

4 Experiment Results and Analysis

We execute SecureBiNN with Python (about 3k lines of code), and computations
are implemented through numpy 1.19.0 [36] and tensorflow 2.5.1 [4]. We run
our experiments on three ecs.c7.2xlarge servers from Alibaba Cloud, each with
8vCPU and 16GB RAM. We evaluate SecureBiNN in the following settings:

4 The maxpooling operation comes on the heels of the activation layer, and can be
achieved by changing the final output of the activation layer as in Algorithm 6.
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Table 2. Evaluation results of SecureBiNN under LAN setting on MNIST and com-
parisons with prior work. Runtime is reported in seconds and Comm in MB. ∗: Falcon
does not report the consumption (runtime and communication cost) required in its
offline phase. The results hereof are only for its online phase. �: the protocols can be
secure in both semi-honest adversary model and malicious adversary model, and we
only consider their costs under the semi-honest model

2PC/3PC Framework Network-A Network-B Network-C

Time(s) Comm. (MB) Acc. Time Comm. Acc. Time Comm. Acc.

2PC EzPC (�) 0.7 76 0.976 0.6 70 0.99 5.1 501 0.99

Gazelle 0.09 0.5 0.976 0.29 8 0.99 1.16 70 0.99

MiniONN 1.04 15.8 0.976 1.28 47.6 0.990 9.32 657.5 0.99

XONN 0.13 4.29 0.976 0.16 38.3 0.986 0.15 32.1 0.99

3PC ABY3 (�) 0.008 0.5 – 0.01 5.2 – – – –

SecureNN 0.043 2.1 0.934 0.076 4.05 0.988 0.13 8.86 0.99

Falcon(�, ∗) 0.011 0.012 0.974 0.009 0.049 0.978 0.042 0.51 0.986

Secure

BiNN(ours)

0.003 0.005 0.973 0.007 0.032 0.972 0.020 0.357 0.984

Table 3. Evaluation results of SecureBiNN under WAN setting on MNIST and com-
parisons. Runtime is reported in seconds and Comm in MB. ∗, �: same as in Table 2

2PC/3PC Framework Network-A Network-B Network-C

Time(s) Comm. (MB) Acc. Time Comm. Acc. Time Comm. Acc.

2PC EzPC (�) 1.7 76 0.976 1.6 70 0.99 11.6 501 0.99

3PC SecureNN 243 2.1 0.934 3.06 4.05 0.988 3.93 8.86 0.99

Falcon(�, ∗) 0.99 0.012 0.974 0.76 0.049 0.978 3.0 0.51 0.986

Secure

BiNN(ours)

0.248 0.005 0.973 0.440 0.032 0.972 1.15 0.36 0.984

– LAN: We set up three servers in Ulanqab, and the network latency and band-
width are 0.2 ms and 625MBps respectively.

– WAN: We set up three servers in Ulanqab, Hangzhou and Shanghai, the
latency and the bandwidth between the servers are 36 ms and 5MBps respec-
tively. Note that these parameters are close to those of the Internet in daily
use, which further proves our solution is available in practical settings.

At present, there are few secure inference frameworks applied to BiNNs, so
in addition to XONN [28] (a 2-party scheme for BiNNs), we select other works
for comparison as well. We choose 3-party frameworks including ABY3 [24],
SecureNN [34], Falcon [35], Chameleon [29], and some well known 2-party pro-
tocols, i.e., EzPC [10], Gazelle [18], MiniONN [21], for sufficient comparisons.

We measure running time, communication volume and accuracy. We repeat
each experiment 10 times, and then take average running time. Although we need
secret shares of helping terms in implementing secure AND gates, we emphasize
those are done online, and no offline phase is required.
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Table 4. Performance comparisons among different frameworks on Lenet-5. ∗, �: same
as in Table 2

Framework SecureNN CrypTFlow Falcon(�, ∗) SecureBiNN

Time(LAN, s) 0.23 0.058 0.047 0.025

Time(WAN, s) 4.08 – 3.06 0.602

Comm.(MB) 18.94 – 0.74 0.522

Acc 0.991 – 0.991 0.989

4.1 Experimental Evaluation on MNIST

We evaluate three different NN on MNIST dataset [20] (60,000 training samples
and 10,000 test samples). Each sample is a 28 × 28 handwritten digital image.
We use SecureBiNN to make inference on these networks and measure its running
time and communication cost. Bellow are the architectures of three models:

Network-A: FC(128) − FC(128) − FC(10);
Network-B: Conv(28 × 28, 5 channels) − FC(100) − FC(10);
Network-C: Conv(28 × 28, 16 channels) − MP(2 × 2) − Conv(12 × 12, 16
channels) − MP(2 × 2) − FC(100) − FC(10).

Network-A is a 3 layer fully-connected network, Network-B is a 3 layer net-
work with a single convolution layer followed by 2 fully connected layers, and
Network-C is a network with 2 convolutional layers, 2 maxpooling layers and
2 fully-connected layers. These models are used in many prior work, and we
also compare our experimental results with some of them. Tables 2 and 3 show
the comparisons under LAN and WAN settings. Further, we compare the per-
formance of SecureBiNN with SecureNN [34], CryptTFlow [27], Falcon [35] on
Lenet-5 [20], and the results are shown in Table 4. Accuracy rate of each frame-
work is only for reference as it may vary with the changes of model parameters.

Comparing to prior work, SecureBiNN shows its competitive performance
partially due to the tricky encoding, i.e., the parameters are encoded over a ring
with a smaller size. Other frameworks like Falcon, ABY3 use Z232 , meaning that
parameters are represented with 32 bits. The advantages of parameter encod-
ing lead to significant reduction in the amount of communication consumption
between participants. Another advantage goes to maxpooling. In prior protocols,
maxpooling cost is generally exorbitant as each pooling step requires overabun-
dant MSB extraction operations (pool size minus 1 times). However, one single
MSB extraction is needed in each pooling step of SecureBiNN.

4.2 Experimental Evaluation on CIFAR-10

Table 5 evaluates more networks on CIFAR-10 [19], including binarized versions
of Fitnet 1–4 [30]. We train BiNN according to each structure. In the experi-
ments, we encode the parameters of input/output layers over Z232 and set the
precision of these parameters as 13 bits. By the architecture of these networks
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Table 5. Evaluations of SecureBiNN under LAN/WAN on CIFAR-10. Runtime is in
seconds and Comm in MB. s means that the number of neurons in fully connected
layers (or the number of filters in convolutional layers) is increased by a factor of s

Arch. s Time(s, LAN) Time(s, WAN) Comm.(MB) Acc.

Fitnet 1 1 0.112 2.776 3.074 0.688

2 0.204 2.958 6.364 0.778

3 0.527 3.447 16.609 0.815

Fitnet 2 1 0.173 2.901 5.178 0.765

2 0.351 3.419 10.773 0.797

3 0.527 3.769 16.609 0.812

Fitnet 3 1 0.367 3.739 11.806 0.811

2 0.810 5.244 24.654 0.834

3 1.368 7.313 39.878 0.836

Fitnet 4 1 0.430 6.393 13.660 0.789

2 0.909 6.062 29.111 0.808

3 1.560 8.500 48.195 0.810

in Table 5, when the scale factors are 1 and 2, most of the weighted parame-
ters in the hidden layers are encoded over Z214 , Z215 ; for the factor of 3, most
parameters are over Z217 . Many previous tests have been done on Fitnet 1, and
we compare SecureBiNN with these work. The results are shown in Table 6.

Table 6. Comparisons among different frameworks on Fitnet 1 under the LAN setting.
s means that the number of neurons in fully connected layers (or the number of filters
in convolutional layers) is increased by a factor of 3. �: same as in Table 2

Framework MiniONN Chameleon EzPC (�) Gazelle XONN SecureBiNN

s=3 s=1 s=2 s=3

Time(s) 544 52.67 265.6 15.48 5.79 0.112 0.204 0.527

Comm.(MB) 9272 2650 40683 1236 2599 3.074 6.364 16.60

Acc 0.816 0.816 0.816 0.816 0.819 0.688 0.778 0.815

Now, the advantages of our solution become more explicit, because Fitnet has
more convolution, activation and maxpooling operations than Networks A, B, C
(Tables 2, 3). XONN uses GC to evaluate the BiNN, the garbled table and keys
transmission are known to be of lavish spending. Comparing to XONN, Secure-
BiNN needs far less communication overhead. Furthermore, when we increase
the number of neurons in each layer by a factor of 3, most of the weighted param-
eters are encoded over Z217 . This means that in an activation operation, we only
need to input a 17-bit number instead of a 32-bit number into the parallel pre-
fix adder circuit (the bit length is almost half of the latter). This substantially
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reduces the cost of the activation function, which is always overbearing con-
sumption and bottleneck of such kinds of protocols. This special feature offers a
significant advantage to Fitnet 1 architecture compared to prior work.

Table 7. Experiment results of SecureBiNN on real-world medical datasets. We drop
the rows with null values from the sets and perform min-max scale on validation sets

Dataset # of Samples Evaluation results for a single input

Tr Val Time (s, LAN) Time (s, WAN) Comm. (MB) Acc.

Breast cancer [1] 455 114 0.005 0.014 0.002 0.991

Diabetes [32] 614 154 0.005 0.014 0.002 0.812

Liver [2] 463 116 0.005 0.017 0.003 0.741

Malaria [3] 22048 5512 0.072 0.377 1.861 0.930

4.3 Experimental Evaluation on Real-World Medical Datasets

One of the most common scenarios where such schemes can be used is to aid in
diagnosis. To demonstrate the effectiveness of SecureBiNN in real-world scenar-
ios, we select below four real-world medical datasets to simulate real-world usage
scenarios: breast cancer dataset [1], Pima Indians diabetes dataset [32], Indian
liver patient records [2] and malaria cell images dataset [3]. The first three sets
consist of several numerical features related to patients’ information. The last one
consists of the images of different sizes, so we reshape all the images to 32 × 32.
All tasks are to predict whether a patient is infected with the corresponding
disease. We evaluate the following models for each dataset:

Breast Cancer: FC(16) − FC(16) − FC(2);
Diabetes: FC(20) − FC(20) − FC(2); Liver: FC(32) − FC(32) − FC(2);
Malaria: CONV(5 × 5, 36 channels) − MP(2 × 2) − CONV(5 × 5, 36 channels)
− MP(2 × 2) − FC(72) − FC(2).

We split each dataset into training and validation portions before evaluation,
and the partition details and the evaluation results are shown in Table 7.

5 Conclusion and Future Work

The paper proposes the first privacy-preserving three-party discrete neural net-
work inference framework supporting fast execution and low communication
cost. As most existing SMC proposals, our framework SecureBiNN is secure
against semi-honest adversary. Due to the parameter distribution of binarized
neural network, fewer bits suffice in SecureBiNN to represent a parameter, reduc-
ing further the lengths of the messages generated in the participant interactions.
Experiments confirm its lower communication cost at similar accuracy to state-
of-the-art. In this paper, P0 and P1 are able to implement secure AND gate and
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3-party OT with the help of P2. However, in the case where P2 is a malicious
adversary, the method proposed in this paper cannot be directly used. More
attempts might be made to construct actively secure algorithms by introducing
consistency checking mechanisms against malicious adversary.

Acknowledgement. The work is supported by the National Natural Science Foun-
dation of China (Grant No. 61971192), Shanghai Municipal Education Commission
(2021-01-07-00-08-E00101), and Shanghai Trusted Industry Internet Software Collab-
orative Innovation Center.

A Related Work

The privacy-preserving neural network inference technology is mainly divided
into two routes, one is based on HE, and another on SMC.

In the former route, one commonly used HE algorithm is CKKS [12], a
computation-expensive leveled-FHE scheme with multiplication depth being
kept within certain range. In 2016, Nathan et al. propose Cryptonets [12] using
the CKKS algorithm. Since CKKS can only support addition and multiply oper-
ations, it is difficult to implement the Sigmoid or the ReLU activation functions,
and only the square function can be used which makes low model accuracy.

A representative example in SMC-based route goes to SecureML [23] which
uses Beaver’s Triplet [6] to realize multiplication. As it requires numerous multi-
plication triples, SecureML supports limited practicability. Subsequent schemes
(e.g., ABY [13]) significantly reduce the running time and communication cost.
Other frameworks including BiNN inference framework XONN [28] mainly rely
on GC. Some 3PC frameworks (e.g., ABY3 [24] and Falcon [35]) use replicated
secret sharing [14]. Therein, three parties can directly perform privacy-preserving
multiplications locally according to the input to obtain the output and no inter-
action is required. Thus, these 3PC frameworks are generally more efficient and
faster than those 2PC frameworks, an advantage meeting actual needs.
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Abstract. Protocols for secure multi-party computation are commonly
composed of different sub-protocols, combining techniques such as homo-
morphic encryption, secret or Boolean sharing, and garbled circuits. In
this paper, we design a new class of multi-party computation protocols
which themselves are composed out of two-party protocols. We integrate
both types of compositions, compositions of fully homomorphic encryp-
tion and garbled circuits with compositions of multi-party protocols
from two-party protocols. As a result, we can construct communication-
efficient protocols for special problems. Furthermore, we show how to
efficiently ensure the security of composed protocols against malicious
adversaries by proving in zero-knowledge that conversions between indi-
vidual techniques are correct. To demonstrate the usefulness of this app-
roach, we give an example scheme for private set analytics, i.e., private set
disjointness. This scheme enjoys lower communication complexity than
a solution based on generic multi-party computation and lower compu-
tation cost than fully homomorphic encryption. So, our design is more
suitable for deployments in wide-area networks, such as the Internet,
with many participants or problems with circuits of moderate or high
multiplicative depth.

1 Introduction

Whereas secure two-party computations are deployed in practice [68], designing
and deploying practical secure multi-party computation is still an open challenge.
Communication latency is a typical bottleneck for many multi-round protocols,
and in response constant-round multi-party computations [34,45,46] based on
Beaver et al.’s [5]’s technique [5] have been designed. Their deployment is lacking
due to challenges from implementation complexity, communication bandwidth,
and memory requirements. To address these challenges, protocols using fully-
homomorphic encryption (FHE) [12,26] and dual execution can be used. Yet,
designing efficient homomorphic encryption schemes (for arithmetic circuits) is
also an open challenge. Circuits with high multiplicative depth, the reason for a
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high number of rounds in many multi-party computation protocols, imply high
computation costs.

In this paper, we present a design alternative. We specifically consider multi-
party computations that can at least partially be decomposed into a sequence of
two-party computations (2PCs). We first evaluate 2PCs using garbled circuits
and then combine the output and continue computation using FHE evaluation.
The idea of our mixed-technique protocols is to exploit advantages of each tech-
nique, for example, binary vs. arithmetic circuits, typical in application domains
such as machine learning [14,22,31,50]. For fully malicious security, we show how
to convert between outputs of garbled circuits and FHE ciphertexts using effi-
cient zero-knowledge proofs. Compared to conversions in the semi-honest model
[41], this requires a different construction, which has, however, little additional
overhead. Other related work [40] sketches malicious conversions, but only for
two parties, whereas we consider the multi-party setting. The first phase of
2PC reduces multiplicative depth for the following FHE evaluation phase, but
remains small enough to have low communication complexity. As we show by
construction, such a combined protocol can keep a constant number of rounds
and can still be secure in the malicious model. Due to their lower communication
requirements, combined protocols have the potential for deployment in wide area
networks.

The composition of 2PC protocols into a multi-party protocol can take many
forms. In order to demonstrate the advantages of our constructions, we design
and investigate a combined protocol for private set disjointness, i.e., a protocol
that computes whether the intersection of sets is empty, but does not reveal any-
thing else, including the intersection itself. This protocol follows a star topology
of communication where each party Pi engages in 2PC with a central party P1.
Our composition of 2PC protocols into a multi-party protocol is particularly
efficient if it follows a star topology. We stress that even in the star topology,
we provide malicious security against an adversary controlling the central node
(among others) which is the challenge of any such composition. Furthermore,
besides the set disjointness protocol there are (infinitely) many other protocols
that can be implemented in a star topology. The entire class of multi-party pri-
vate set analytics protocols [4,13,21,47,52] is an example. However, our protocols
are also not limited to a star topology, and we also mention other use cases, such
as auctions [9], that do not follow a star topology.

Our example use case is driven by the use case of sharing Indicators of Com-
promise (IoCs), where multiple parties try to determine whether they have been
subject to a common attack. We design a maliciously-secure protocol which
determines whether the multi-party set intersection is empty. A non-empty inter-
section would be grounds for further investigation. With each party’s set holding
n elements, our set disjointness protocol runs in 9 rounds, needs O(n) broadcasts,
and has a message complexity linear in the number of comparisons required to
compare all parties’ inputs. We have implemented a semi-honest version of this
protocol to show that our design offers performance improvements over other
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multi-party computation protocols in the semi-honest model. Using our zero-
knowledge proofs, our protocol can also be made secure in the malicious model.
In summary, the main contributions of this paper are:

1. A construction for mixed-technique MPC composed from 2PC which features
a constant number of rounds, low communication complexity, and malicious
security.

2. Efficient zero-knowledge proofs, included in this construction, converting
between garbled circuit outputs and homomorphic encryption with malicious
security.

3. A demonstration of our construction’s usefulness by realizing a multi-party
protocol for set disjointness.

In the full version of this paper [10], we also present a technique replacing
standard verification of hash-based commitments during 2PC by a white-box use
of garbled circuits. We use this technique to reduce communication overhead in
our conversion, but the idea is general, applicable to other scenarios, and of
independent interest.

2 Conversion Between 2PC and Homomorphic
Encryption

To simplify exposition, we start with a motivation and an overview of our con-
version for the special case of d = 2 parties. For space reasons, we defer the
extension to any d ≥ 2 parties to Appendix B. Our goal is malicious security of
the conversions which we describe in Sect. 2.1.

Parties P1 and P2 want to jointly compute function F (I1, I2) = O on their
respective input bit strings I1 and I2 to receive output string O = (o1, . . . , oN ).
For security reasons, P1 should only learn some subset of bit string O, but noth-
ing else (for example not P2’s input). Similarly, P2 should only learn the other
bits of O, but nothing else. To enable secure computation of F , parties can revert
to two standard approaches. Parties could express F as a Boolean circuit and
evaluate this circuit using maliciously-secure two-party garbled circuit compu-
tation (2PC). Alternatively, parties express F as an arithmetic circuit, compute
a shared private key of a fully homomorphic encryption (FHE), and encrypt
their inputs with the corresponding public-key. Parties then evaluate the circuit
homomorphically and jointly decrypt the final result such that each party only
learns their output bits.

Yet, each of the two approaches comes with performance issues. On the one
hand, FHE evaluation of arithmetic circuits with large multiplicative depth is
computationally expensive. On the other hand, evaluating Boolean circuits with
2PC for large circuits is expensive regarding the amount of communication.

So, a third alternative and the focus of this paper is for parties to evaluate
F using a mix of both techniques. Parties evaluate F as a circuit decomposed
into a sequence of sub-circuits F (I1, I2) = (C1 ◦ · · · ◦ Cm)(I1, I2). Some sub-
circuits Ci are Boolean, while others are arithmetic. Parties agree that Boolean
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sub-circuits of function F will be evaluated using garbled circuit 2PC, and arith-
metic sub-circuits of F will be evaluated using FHE. Output of 2PC will serve
as input to FHE and vice versa. The goal of such a mixed-techniques approach
is to optimize overall performance by reducing multiplicative depth of FHE cir-
cuits and communication complexity of 2PC circuits. For clarity, we now denote
Boolean (sub-)circuits Ci by CBool

i and arithmetic (sub-)circuits Ci by CArith
i .

Assume that P1 and P2 have initially computed a public and private key pair
for a homomorphic encryption Enc, where the private key is shared among both
parties.

2.1 Malicious Security

Achieving malicious security for conversion turns out to be a challenge. For
example, let P1 be the garbler and P2 the evaluator during 2PC evaluation of a
simple sub-circuit CBool

i with two input and two output bits (x, y) = CBool
i (a, b).

Evaluator P2 receives both output bits x, y and must convert them into correct
homomorphic encryptions Enc(x) and Enc(y). This is hard to achieve against
malicious adversaries: as P2 could be malicious, P2 must prove to P1 that cipher-
texts Enc(x) and Enc(y) are correctly encrypting outputs x and y received during
2PC. Worse, P2 should not even learn x and y, as they are an intermediate result
of C’s evaluation or maybe output bits for P1. Party P2 should instead receive
related information during 2PC which then allows P2 to indirectly generate
homomorphic encryptions Enc(x) and Enc(y). Alternatively, one might suggest
implementing homomorphic encryption Enc inside a 2PC circuit, but this is too
costly.

Similarly, we need to convert FHE ciphertexts output by circuits CArith
i into

input for 2PC garbled circuits with malicious security. Moreover, if P1 and P2’s
2PC computation was part of a larger MPC computation involving d ≥ 2 parties,
we also need to consider the case where both are malicious, so they must prove
to all parties that their encryptions are correct. Finally, the private key is shared
among all d parties which impedes easy zero-knowledge (ZK) proofs.

Important Remarks. This paper targets secure output conversion between
2PC and FHE. To actually evaluate Boolean sub-circuit CBool

i , we assume exis-
tence of any maliciously secure 2PC scheme as a building block. Several dif-
ferent approaches exist which achieve maliciously secure 2PC in practice, see
[43,44,54,65] for an overview.

For secure evaluation of arithmetic sub-circuits CArith
i , any FHE scheme could

serve as building block. FHE is maliciously secure by default, as long as parties
evaluate the same circuit on the same ciphertexts. To enforce this, our conversion
requires the FHE scheme to also support distributed key generation and certain
ZK proofs detailed below. There exist several efficient lattice-based FHE schemes
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with support for both [7,8,11,18,19,51,63], and there are even efficient schemes
which allow proving general, arbitrary ZK statements in addition to distributed
key generation [2]. While describing details of our techniques, we use any of these
as an underlying building block, e.g., the one by Asharov et al. [2].

2.2 Solution Overview

Roadmap. There are two different cases for conversion we will have to consider
in a mixed-technique setting. First, parties convert output bits (oi,1, . . . , oi,n) =
CBool

i (Ii,1, Ii,2) from 2PC evaluation of circuit CBool
i on input strings Ii,1 and

Ii,2 into n homomorphic encryptions Enc(oi,j). Knowing encryptions Enc(oi,j),
each party then evaluates the subsequent arithmetic circuit CArith

i+1 .
Second, parties convert a sequence of ciphertexts Enc(bi), homomorphic

encryptions of bits bi (or integers, see Appendix A) into input for a 2PC Boolean
circuit evaluation. That is, both parties have evaluated arithmetic sub-circuit
CArith

i and computed ciphertexts Enc(bi), respectively. These ciphertexts will
now be converted into input for 2PC evaluation of sub-circuit CBool

i+1 .
Actual evaluation of circuits is then secure by definition, as we rely on stan-

dard maliciously-secure 2PC. For arithmetic sub-circuits, both parties evaluate
FHE ciphertexts on their own. An honest party will automatically compute cor-
rect output ciphertexts as long as input ciphertexts are correct.

Parties will also need to securely convert both parties’ plain input into either
FHE encryptions or 2PC inputs. Yet, that part is trivial: if the first sub-circuit
is an arithmetic circuit, a party sends homomorphic encryptions of each input
bit. If the first circuit is Boolean, we rely on whatever technique the underlying
maliciously secure 2PC offers. Finally, at the end of the last circuit evaluation,
FHE ciphertexts or 2PC output has to be decrypted. Again, this is fairly simple,
and we skip details for now. We only consider the first two cases of converting
2PC output to FHE input and FHE output to 2PC input.

Intuition. Our conversions focus on Boolean sub-circuits CBool
i . We design mech-

anisms which either convert 2PC output of CBool
i to FHE ciphertexts serving as

input to CArith
i+1 or convert FHE ciphertexts coming from CArith

i−1 into input to
CBool

i . Each of our two conversions first modifies CBool
i and evaluates the mod-

ified circuit using three new cryptographic building blocks which we call ZK
Protocol (1), ZK Protocol (2), and ZK Protocol (3). Each ZK Protocol takes as
input a Boolean circuit and P1’s and P2’s input bits. ZK Protocol (1) and ZK
Protocol (2) also take FHE ciphertexts as inputs. Each ZK Protocol again modi-
fies the input circuit internally, 2PC-evaluates the modified version, and outputs
2PC output together with a ZK proof which proves certain relations between
input and output in zero-knowledge for malicious security. As ZK Protocols are
general, their interesting property is to be stackable, i.e., they can be combined
with each other. Their internal circuit modification schemes will be merged, and
only ZK proofs enclosing circuit modification have to be adapted, which is rather
mechanical.
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ZK Protocols. Let γ be any Boolean circuit defined by its input and output
bits as (ω1, . . . , ωn) = γ((ι1,1, . . . , ι1,�1), (ι2,1, . . . , ι2,�2)). Parties P1 and P2 want
to evaluate this circuit with 2PC. Bits ι1,i are inputs of P1. Bits ι2,i are inputs
of P2, and ωi will be output bits known to P2. From a high level, our three ZK
Protocols implement:

– ZK Protocol (1). P1 sends homomorphic ciphertexts c1,i ← Enc(ι1,i), encrypt-
ing their input bits ι1,i to P2. Circuit γ is evaluated, and P2 receives output.
P1 proves in ZK to P2 that c1,i encrypts ι1,i, used during 2PC evaluation of
γ.

– ZK Protocol (2): P2 sends homomorphic ciphertexts c2,i ← Enc(ι2,i), encrypt-
ing their input bits ι2,i to P1. Circuit γ is evaluated, and P1 receives output.
P2 proves in ZK to P1 that c2,i encrypts ι2,i, used during 2PC evaluation of
γ. This is ZK Protocol (1) with roles of P1 and P2 reversed.

– ZK Protocol (3): Circuit γ is evaluated, and P2 receives output ωi. Party P2

sends homomorphic ciphertext cω,i ← Enc(ωi) and proves in ZK to P1 that
cω,i really encrypts ωi received during 2PC evaluation to P1.

Observe the different notation used in this paper for describing circuits.
Boolean sub-circuits of function F are written as CBool

i , while Boolean circuits
we use inside our ZK Protocol building blocks are written with the Greek letter
γ.

Conversion. The main idea behind the actual conversion is to modify a circuit
CBool

i into γ which takes shares of CBool
i ’s original input as its input and outputs

shares of CBool
i ’s original output. For example, to convert a 2PC output bit ω1 of

CBool
i to an FHE ciphertext Enc(ω1), we do not evaluate CBool

i , but γ which out-
puts share ω1 ⊕s to P2, and s to P1. Both parties encrypt their shares, exchange
resulting ciphertexts, and homomorphically compute an XOR to get Enc(ω1).
During this conversion, ZK Protocols prove the correctness of operations.

So, we design conversion schemes combining multiple 2PC circuit modifi-
cation techniques with efficient ZK proofs. Together, modifications and proofs
prove correctness of output conversion between outputs of 2PC and FHE circuit
evaluation.

Semi-honest Security. Our presentation concentrates on the case of fully mali-
cious security. Nevertheless, even the semi-honest version of our conversion is of
interest, as it enjoys the same properties as the fully-malicious version, e.g., O(1)
rounds, support for d ≥ 2 parties, and moreover its performance is competitive
when compared to related work, see Sect. 4.4. Essentially, the semi-honest ver-
sion is just the fully-malicious one as described in the next section, but does not
include the actual FHE ZK proofs inside ZK Protocols.
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3 Technical Details

For simplicity, we describe details for d = 2 parties and extend to d ≥ 2 in
Appendix B.

For their input bit strings I1, I2 ∈ {0, 1}∗ and function F , parties P1 and
P2 want to compute O = F (I1, I2), O ∈ {0, 1}∗. Function F is represented as a
circuit composition of Boolean and arithmetic sub-circuits F = (Cm ◦ · · · ◦ C1).
Observe that if the ith sub-circuit is Boolean, then the i + 1th is arithmetic and
the other way around. We now turn toward technical details on how we enable
maliciously-secure mixed-technique evaluation of sub-circuits. We show how to
convert 2PC evaluation output of a Boolean sub-circuit CBool

i into input for a
following arithmetic sub-circuit CArith

i+1 for FHE evaluation and the other way
around.

2PC Output Bits for P1 In a typical garbled circuit evaluation of Ci, only P2

receives output, i.e., bits oj . If a specific bit oj is a secret output bit for P1, then
a standard trick is denying P2 to open the last wire label for oj and forwarding
the label to P1. As P1 knows both possible labels for oj , they can recover bit
oj . Also, this ensures that P1 receives the correct output bit o′

j from P2, i.e.,
authenticity [6]. We silently rely on this trick for secure computation of all of
P1’s plain output bits for the rest of the paper.

Notation. Let Commit denote a computationally hiding and binding commit-
ment scheme. For some bit string B ∈ {0, 1}∗, computational security param-
eter λ′, and randomness R ∈ {0, 1}λ′

, Commit(B,R) outputs a commitment ,.
In the full version of this paper [10], we show how to efficiently realize commit-
ments with a white-box use of wire labels in garbled circuits. Encryption Enc
over plaintext space M is fully (or somewhat) homomorphic. Both parties have
already set up a key pair, where the public key is known to both parties, but
the private key is shared. For homomorphic operations on ciphertexts, we use
the intuitive notation of “+” for homomorphic addition, “·” for scalar multipli-
cation, and ⊕ for homomorphic XOR. So for example, if x and y are from M ,
then Dec(Enc(x) + Enc(y)) = x + y. During conversion, we will randomly select
scalars from Zp, where p is a prime of λ bits.

Let Π be the set of two single bit permutations π : {0, 1} → {0, 1}. That is,
Π = {π0, π1} with π0(x) = x and π1(x) = 1 − x.

3.1 ZK Protocols

Let (ω1, . . . , ωn) = γ((ι1,1, . . . , ι1,�1), (ι2,1, . . . , ι2,�2)) be any Boolean circuit
which parties P1 and P2 want to evaluate using maliciously secure 2PC. Bits
ι1,i are P1’s input, and bits ι2,i are P2’s input.

ZK Protocol (1). In this protocol, P1 proves to P2 that homomorphic cipher-
texts c1,i ← Enc(ι1,i) encrypt all of P1’s input bits ιi,i used during a 2PC evalu-
ation of γ. Assume that P1 has already sent the c1,i to P2.
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P1 P2
(input ι1,1, . . . , ι1,�1 , c1,1 ← Enc(ι1,1), (input ι2,1, . . . , ι2,�2 , c1,1, . . . , c1,�1)
. . . , c1,�1 ← Enc(ι1,�1))
∀i ∈ {1, . . . , �1} :
μi,1, . . . , μi,λ

$← {0, 1}λ σi,1, . . . , σi,λ
$← {0, 1}λ

mi,1 ← Enc(μi,1), . . . , Ri,1, . . . , Ri,λ
$← {0, 1}λ2

mi,λ ← Enc(μi,λ) Comi,1 = Commit(σi,1, Ri,1),
∀j∈{1,...,λ}:

mi,j−−−→ . . . ,Comi,λ = Commit(σi,λ, Ri,λ)

Comi,j←−−−−−
2PC of γ(1)

⇐======⇒
∀i ∈ {1, . . . , �1} :

∀j∈{1,...,λ}:
Ri,j , σi,j←−−−−−−−

if [∃j : Commit(σi,j , Ri,j) 	= Comi,j ]
then abort
∀j : if σi,j = 0 then open

Enc(ιi,j ⊕ μi,j) else open mi,j

λ ZK proofs for
ciphertextsi,j−−−−−−−−→ if ciphertexti,j does not match ti,j

then abort

Fig. 1. ZK Protocol (1) for circuit γ

The protocol is depicted in Fig. 1 and consists of two core building blocks:
first, parties evaluate a modification of circuit γ which we call γ(1). We define
circuit γ(1) by specifying its input and output in Fig. 2. The second building
block is an actual three move ZK proof which encompasses γ(1).

First, P1 selects a random masking bit μi and sends both c1,i and mi ←
Enc(μi) to P2. At the same time, P2 selects a random choice bit σi. Then, both
parties use maliciously-secure 2PC and evaluate γ(1) which internally computes
γ as a sub-routine. Party P1 is the garbler and P2 the evaluator. In addition to
outputting the same bits as γ, it also outputs bit ti = ι1,i ⊕ μi (if σi = 0) or
ti = μi (if σi = 1) to P2.

After 2PC, P2 reveals their choice σi. If σi = 0, then P1 proves in ZK that the
homomorphic XOR of ciphertexts c1,i and mi to Enc(ι1,i ⊕ μi) really encrypts
ti = ι1,i ⊕ μi. If σi = 1, then P1 proves that mi encrypts ti = μi.

Output bit α = 0 in γ(1) indicates protocol failure, i.e., non-matching com-
mitments.

If σi,j = 0, then P1 and P2 homomorphically compute ciphertexti,j =
Enc(ι1,i ⊕ μi,j) out of c1,i and mi,j . If choice bit σi,j = 1, then both parties set
ciphertexti,j = mi,j . Party P1 then sends a ZK proof that ciphertexti,j encrypts
ti,j to P2, e.g., by applying an efficient framework for ZK proofs [2].

Note the general structure of ZK Protocol (1), which is similar in the other
two ZK Protocols. Each ZK Protocol comprises a circuit modification technique,
here converting γ to γ(1), and a surrounding ZK proof. When we will combine ZK
Protocols later, we merge circuit modifications, i.e., output of one ZK Protocol’s
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Input to γ(1)

P1 P2

ι1,1, . . . , ι1,�1 , 1 ≤ i ≤ �1 :
[μi,1, . . . , μi,λ,Comi,1, . . . ,Comi,λ]

ι2,1, . . . , ι2,�2 , 1 ≤ i ≤ �1 :
[σi,1, . . . , σi,λ, Ri,1, . . . , Ri,λ]

Output of γ(1)

1 if ∀i, j, 1 ≤ i ≤ �1, 1 ≤ j ≤ λ : Comi,j = Commit(σi,j , Ri,j) then
2 α = 1;
3 (ω1, . . . , ωn) = γ((ι1,1, . . . , ι1,�1), (ι2,1, . . . , ι2,�2));
4 for i = 1 to �1 and j = 1 to λ do
5 if σi,j = 0 then ti,j = ι1,i ⊕ μi,j else ti,j = μi,j ;
6 else α = ω1 = . . . = ωn = t1,1 = . . . = t�1,λ = 0;
7 output α, ω1, . . . , ωn, t1,1, . . . , t�1,λ;

Fig. 2. Definition of circuit γ(1)

circuit modification will be input into another. Only surrounding ZK proofs
require adoption.

ZK Protocol (2). This protocol reverses P1’s and P2’s roles in ZK Protocol (1).
So, circuit γ(2) is similar to γ(1), with P1 having choice bits (and randomness
for commitments to them) as additional input, and P2 has masking bits and
commitments to choice bits as input. During 2PC, P1 is the garbler and P2 the
evaluator. Also, the actual three-move protocol from ZK Protocol (1) is reversed,
i.e., it is P2 who starts by sending encryptions of input bits and masking bits.
We omit further details to avoid repetition and refer to Fig. 1.

ZK Protocol (3). In this protocol, P2 proves to P1 that encryptions cω,i ←
Enc(ωi) are encryptions of P2’s output bits ωi. As ZK Protocol (3) is more
involved, Fig. 3 starts by presenting a slightly simpler version with a ZK proof
which is only Honest-Verifier-Zero-Knowledge (HVZK), and details for fully-
malicious security follow.

As part of ZK Protocol (3), P1 and P2 run 2PC on a modification of circuit
γ called γ(3), defined in Fig. 4.

Before 2PC, P1 selects, for an output bit ωi, two random bit strings
v0,1 . . . v0,λ and v1,1 . . . v1,λ and sets V0 = 0||v0,1 . . . v0,λ, V1 = 1||v1,1 . . . v1,λ.
Here, “||” denotes concatenation, and λ is a statistical security parameter. Then,
P1 encrypts and sends ciphertexts Γ0 = Enc(V0) and Γ1 = Enc(V1) to P2. Cir-
cuit γ(3) does not output ωi to P2, but instead outputs Vωi

to P2, i.e., either bit
string V0 or bit string V1.

The first bit of strings V0, V1 is output bit ωi. That is, Γωi
encrypts a bit

string, where the first bit represents P2’s output bit ωi. So, after evaluating γ(3),
P2 gets ωi and a length λ bit string (vωi,1, . . . , vωi,λ).

The trick is now that P2 proves in ZK to P1 that it knows a string Vωi
which

is either V0 or V1 and which matches encryption cω,i. Recall that the private
key for homomorphic encryption Enc is shared between P1 and P2, so none of
the two parties can decrypt a ciphertext alone. After evaluating γ(3), party P2

sends λ + 1 ciphertexts cω,i ← Enc(ωi),Enc(vωi,1), . . . ,Enc(vωi,λ) to P1. Both
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P1 P2
(input ι1,1, . . . , ι1,�1 tupni() ι2,1, . . . , ι2,�2 )∀i ∈ {1, . . . , n} :

Γi,0,0 ← Enc(0), Γi,1,0 ← Enc(1)
∀j ∈ {1, . . . , λ} :
[vi,0,j , vi,1,j

$← {0, 1}2

Γi,0,j ← Enc(vi,0,j)

Γi,1,j ← Enc(vi,1,j)]
∀j∈{0,...,λ}:
Γi,0,j , Γi,1,j−−−−−−−−−→

2PC of γ(3)(see text)⇐=============⇒
∀i ∈ {1, . . . , n} :

Γi,2,0 ← Enc(ωi)
∀j ∈ {1, . . . , λ} : [Γi,2,j ← Enc(vi,ωi,j)]

∀j ∈ {0, . . . , λ} : Γi,2,j←−−−−−−−−−−−−−−−−−
Γi,0 =

∑λ
j=0 (2

λ−j · Γi,0,j) Γi,0 =
∑λ

j=0 (2
λ−j · Γi,0,j)

Γi,1 =
∑λ

j=0 (2
λ−j · Γi,1,j) Γi,1 =

∑λ
j=0 (2

λ−j · Γi,1,j)
Γi,2 =

∑λ
j=0 (2

λ−j · Γi,2,j) Γi,2 =
∑λ

j=0 (2
λ−j · Γi,2,j)

Δi,0 = Γi,0 − Γi,2 Δi,0 = Γi,0 − Γi,2
Δi,1 = Γi,1 − Γi,2 Δi,1 = Γi,1 − Γi,2

ai
$← Zp, π

$← Π
Δ′

i,0 = ai · Δi,0, Δ
′
i,1 = ai · Δi,1

Δ′
i,0,Δ′

i,1,Δ′
i,π(0),Δ′

i,π(1)
ZK proof Scalari,ZK proof Shufflei←−−−−−−−−−−−−−−−−−

if ZK proofs do
not verify then abort

jointly decryptΔ′
i,π(0), Δ

′
i,π(1)⇐====================⇒

if none or both decrypt
to 0 then abort

Fig. 3. ZK Protocol (3)

parties use these ciphertexts to homomorphically generate Γ2 = Enc(Vωi
), an

encryption of the concatenation of P2’s λ + 1 bits Vωi
. As both parties know

Γ0 and Γ1, they both homomorphically compute Δ0 = Enc(Vωi
− V0) and Δ1 =

Enc(Vωi
−V1). Observe that, if Vωi

is either V0 or V1, then one of Δ0,Δ1 encrypts
a 0. Consequently, P2 proves to P1 in ZK that either Δ0 or Δ1 is an encryption of
0 (see below for details). If P1 successfully verifies proofs, parties jointly decrypt
Δ′

i,π(0) and Δ′
i,π(1). Note that decryption must include a ZK proof by P2 about

correct (partial) decryption [2,7,11].
We run the above techniques for each output bit ωi in parallel.

ZK Proof of 0. Figure 3 also comprises details for the ZK proof, where P2

proves that either Δi,0 or Δi,1 encrypts a zero. In Fig. 3, P2 blinds Δi,0 and
Δi,1 by a random ai resulting in Δ′

i,0 and Δ′
i,1. Then, P2 prepares sub-ZK proof

“Scalari” which proves that Δ′
i,0,Δ

′
i,1 are the result of multiplying Δi,0,Δi,1

by the same secret scalar ai. Such a proof is standard, e.g., P2 could simply
publish the encryption of ai, and P1 computes Δ′

i,0,Δ
′
i,1 themselves. Party P2

completes the ZK proof by re-encrypting Δ′
i,0 and Δ′

i,1, choosing a random
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Input to γ(3)

P1 P2
ι1,1, . . . , ι1,�1 , 1 ≤ i ≤ n :
[vi,0,1, . . . , vi,0,λ, vi,1,1, . . . , vi,1,λ]

ι2,1, . . . , ι2,�2

Output of γ(3)

1 (ω1, . . . , ωn) = γ((ι1,1, . . . , ι1,�1), (ι2,1, . . . , ι2,�2));
2 for i = 1 to n do output ωi||vi,ωi,1 · · · vi,ωi,λ;

Fig. 4. Definition of circuit γ(3)

1-bit permutation π from Π, and preparing ZK proof Shufflei which proves
that (Δ′

i,π(0),Δ
′
i,π(1)) is a random shuffle of (Δ′

i,0,Δ
′
i,1). Proofs of two-element

shuffles are also straightforward. For example, P2 could encrypt a random bit to
ciphertext β, send β to P1, and prove that ciphertext β − β2 encrypts a 0. This
standard technique to prove a shuffle is working for, e.g., FHE schemes with
plaintext domain over prime fields GF (p) such as Fan and Vercauteren [24] and
derivatives (SEAL). Other FHE schemes might use other types of shuffle proofs.
Such proofs can be also implemented by, e.g., reverting to an efficient general
proof [2] or by opening randomness of ciphertext β − β2. Finally, P1 computes
Δ′

i,π(0) = β · Δ′
i,0 + (Enc(1) − β) · Δ′

i,1 and Δ′
i,π(1) = (Enc(1) − β) · Δ′

i,0 + β · Δ′
i,1

themselves.

HVZK to Fully-Malicious Security. For fully-malicious security, we replace
2PC evaluation of γ(3) from Fig. 3 by using ZK Protocol (1). More specifically,
instead of 2PC evaluation of γ(3), we run ZK Protocol (1) for circuit γ(3) with
both the ι1,i and the vi,0,j , vi,1,j as P1’s input bits, and the ι2,i as P2’s input
bits. To run ZK Protocol (1), P1 sends encryptions Γi,0,j , Γi,1,j to P2 (as well
as dummy encryptions of the ι1,i). As a result of running ZK Protocol (1) of
γ(3) instead of direct 2PC of γ(3), P2 can verify that the Γi,0, Γi,1 are correct
encryptions of P1’s input to γ(3). Note that the output bits received by P2 after
running ZK Protocol (1) comprise all output bits of circuit γ(3).

3.2 Composition of ZK Protocols

Our ZK Protocols can be composed in a natural way, i.e., ZK Protocol (1),
(2), and (3) can be jointly used on a single circuit γ. Protocol steps before
and after 2PC evaluation of the modified circuit γ are executed in parallel.
Different modifications of ZK Protocols (1) to (3) to circuit γ are merged into
one large garbled circuit. This large circuit comprises γ’s and all modifications’
functionality and uses P1’s and P2’s input sets once. Thus, inputs ι1,i and ι2,i

are only used once and their wires are connected to all sub-functions of the
large circuit. All other necessary inputs μi,j , σi,j , and vω,j are present for their
respective input and outputs. This ensures the same functionality of the large
circuit as the sub-functions due to its security against malicious adversaries.
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Protocol steps outside of 2PC operate on distinct inputs and hence are non-
interfering under parallel composition. We can compose the conversion routines
in a natural way. Figures 5 and 6 depict the details of FHE to 2PC conversion
and reverse, respectively.

3.3 Security Analysis

ZK Protocols (1) to (3) prove that the plaintext of an FHE ciphertext (under a
shared key) and the input or output, respectively, of a 2PC are identical. They
hence enable to compose FHE computations with 2PC protocols in a joint,
maliciously secure protocol.

Theorem 1 (Proof in Appendix C). ZK Protocols (1) to (3) are (a) com-
plete, i.e., an honest verifier accepts the proof, if the prover provides consistent
input, (b) zero-knowledge, i.e., any verifier learns nothing about the prover’s
witness except that it satisfies the proof, and (c) sound, i.e., an honest verifier
rejects the proof with overwhelming probability in the security parameter λ, if the
prover’s secret input is not a witness for the proof.

P1 P2
(input c1, . . . , c�) (input c1, . . . , c�)∀i ∈ {1, . . . , �} :
si

$← {0, 1},

c′
i ← Enc(si)

c′
i−→

c′′
i = ci ⊕ c′

i c′′
i = ci ⊕ c′

i

jointly decrypt c′′
i⇐===========⇒

receives
s′

i = si ⊕ bi

composition of ZK Protocols
(1) and (2) of γShare,j⇐============⇒

receives o1, . . . , on
(see text)

Fig. 5. FHE to 2PC conversion

P1 P2
(input i1,1, . . . , i1,�1 ) (input i2,1, . . . , i2,�2 )∀i ∈ {1, . . . , n} :
si

$← {0, 1},
ci ← Enc(si)

ci−→
composition of ZK Protocols (1)

and (3) of γShare
′

⇐=============⇒
receives receives
c′
1 = Enc(s′

1), s′
1 = o1 ⊕ s1, . . . ,

. . . , s′
n = on ⊕ sn,

c′
n = Enc(s′

n) c′
1, . . . , c

′
n

∀i ∈ {1, . . . , n} :
c′′

i = ci ⊕ c′
i c′′

i = ci ⊕ c′
i

Fig. 6. 2PC to FHE conversion

4 Application to Private Set Disjointness

To indicate their usefulness, we apply our mixed-technique conversions to the
area of private set analytics. In particular, we design a new solution to the
problem of securely, yet efficiently computing private set disjointness (PSD).
In PSD, parties compute whether their sets’ intersection is empty without
revealing the intersection itself. While protocols computing PSD have been pre-
sented before [20,25,30,37,38,48,67], our new solution features several advan-
tages which, in combination, is unique: any number of d ≥ 2 parties, fully-
malicious security, circuit-based computations, and high efficiency (also due to
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a constant number of rounds). Computing PSD with a circuit-based approach is
of special interest, as variations of PSD, like whether the size of the intersection
is larger than a threshold, or other set statistics can then be computed easily,
see discussions in [56,58].

Each party Pi has an n element input set Si = {ei,1, . . . , ei,n} with elements
ei,j ∈ {0, 1}�. We present a protocol where parties securely compute whether

the intersection of the Si is empty, i.e., |⋂d
i=1 Si| ?= 0. Crucially, we do not

leak the size of the intersection or any other information about the intersection
or elements ei,j . Assume that parties have previously computed a distributed
private key with corresponding public key for a fully or somewhat homomorphic
encryption scheme. Separately, each party Pi has a public-private key pair, where
the public key is known to all parties. So, parties can securely communicate.

4.1 PSD Protocol Overview

We present a new circuit-based approach to compute PSD. At its core, parties
compare their elements by evaluating a Boolean sub-circuit with pairwise 2PC
in a star topology. The outcome of 2PC comparisons then serves as input to
FHE evaluations.

Hash Table Preparation. Initially, parties hash their input elements into hash
tables. This is a typical approach of recent protocols for PSI, see Pinkas et al. [57]
for an overview. Specifically, each party Pi starts by creating an empty hash table
Ti with m ∈ O( n

log n ) buckets. To cope with possible hash collisions with very
high probability, each bucket comprises a total of β ∈ O(log n) entries [59,61].
Each entry has space to store  bits. Let Ti[j, k] denote the kth entry in the jth

bucket Ti[j] of Pi’s hash table Ti.
After initializing hash table Ti, each party Pi iterates over their input ele-

ments, writing element ei,j into bucket Ti[h(ei,j), u], where u is the first empty
entry in Ti’s mth bucket. All remaining entries in the hash table are filled with
random bit strings.

Mixed-Circuit Evaluation. Parties elect a leader, w.l.o.g. the leader is P1.
The main idea to compute PSD is that, for a randomly chosen r, the following
function F is evaluated securely:

F = r ·
m∑

j=1

β∑

k=1

d∏

i=2

[
β∨

u=1

(T1[j, k] ?= Ti[j, u])

]

.

Function F implements PSD, as sets Si are disjoint iff F evaluates to 0. The
rationale behind F is that the intersection is not empty if and only if there exists
an entry in a bucket of P1’s table which equals an entry of the same bucket in
all other parties’ tables.

We already define F using a mixed arithmetic and Boolean notation, sug-
gesting a direct application of our mixed-techniques for 2PC-FHE evaluation.
To securely evaluate F , we set up a simple star topology where leader P1
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interacts pairwise with each other party Pi to compute inner parts fi,j,k =[∨β
u=1(T1[j, k] ?= Ti[j, u])

]
with 2PC. For the kth entry in their jth bucket T1[j, k],

P1 evaluates with Pi a separate 2PC circuit which implements fi,j,k. Using our
2PC to FHE conversion, output of each fi,j,k 2PC evaluation is a homomorphic
encryption of its output bit which we denote by Enc(fi,j,k). After all 2PC com-
putations, P1 sends the Enc(fi,j,k) to all other parties which continue computing
F homomorphically.

The final multiplication of the output by (a random) r in the encrypted

domain is realized by each party Pi randomly selecting ri
$← M and send-

ing Enc(ri) to other parties. All parties homomorphically compute Enc(r) =
∑d

i=1 Enc(ri) and multiply the output by Enc(r) to get Enc(F ) which is then
jointly decrypted. Without multiplying by r, parties would learn the size of the
intersection.

4.2 Malicious Security for PSD

Although 2PC, our conversion, and homomorphic evaluations are secure against
malicious adversaries, we need to extend our current security model from two
parties to the case of d parties. A few conditions apply to PSD that make this
extension efficient. First, each party Pi (except P1) provides input only once,
and all 2PCs are independent of other parties’ inputs. In consequence, no input
commitments from Pi are necessary, and only P1 needs to use commitments.
Furthermore, since there exists a pair of inputs for any output of the 2PC, the
output of a 2PC between two malicious parties can be simulated with chosen
inputs. Consequently, we now show that adding our ZK protocols leads to a
multi-party protocol secure in the malicious model, despite the fact that both
parties of a two-party computation can be malicious (including the leader). We
leave the secure composition of 2PC to MPC in the star topology for the general
case, when these conditions are not met, as future work.

Recall that after 2PC to FHE conversion, both parties P1 and Pi have proven
to each other correct computation of c = Enc(s) and c′ = Enc(s′). They homo-
morphically combine c and c′ to Enc(fi,j,k) = Enc(s ⊕ s′). The new challenge
when dealing with d > 2 parties is that both P1 and Pi can be malicious, fabri-
cate various different Enc(fi,j,k), and send different Enc(fi,j,k) to different other
parties.

To mitigate, one could somehow run ZK proofs in public such that all other
parties automatically observe the correct Enc(fi,j,k), but this is expensive. A
more elegant solution would be that both parties P1 and Pi sign Enc(fi,j,k) at
the end of their conversion, and Pi sends their signature to P1. Then, P1 could use
secure echo broadcast [27] to send Enc(fi,j,k) and both signatures of Enc(fi,j,k)
to all parties. As a result, all parties would receive the same Enc(fi,j,k) and verify
that P1 and Pi have agreed on it.

An interesting situation occurs when both P1 and Pi are malicious and agree
on a wrong Enc(fi,j,k). For example, P1 and Pi could agree on Enc(0) even
though Pi has an entry ei,u in its jth bucket which equals an entry e1,k in P1’s
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jth bucket. Note that this is not an attack, as the adversary can anyway control
Pi’s input and set it to arbitrary values. So, the above case would be equivalent
to the adversary setting Pi’s input ei,u to something different from e1,k in the
first place. The only property P1 and Pi have to prove to all other parties is that
ciphertext Enc(fi,j,k) encrypts a bit.

As neither P1 nor Pi know fi,j,k, we use a different strategy. Party P1 proves
in ZK that c encrypts a bit, and Pi proves that c′ encrypts a bit. Parties broad-
cast c and c′ with both proofs. Using c and c′ all parties compute Enc(fi,j,k)
homomorphically.

Finally, to force P1 to always use the same inputs during pairwise comparisons
with different Pi, we require P1 to initially commit to its input using FHE
ciphertexts and securely broadcast those ciphertexts to all other parties. The
consistency of inputs is then verified using ZK Protocol (1).

Joint Decryption. Recall that the 2PC to FHE conversion internally runs ZK
Protocol (3) and requires a joint decryption between P1 and Pi. In case of d > 2
parties, joint decryption is still possible, but involves all d parties. So, both P1

and Pi broadcast a request to decrypt the current Δ′
i,π(0) and Δ′

i,π(1), and all
parties reply to P1 with their share of the decryption (plus proof of correct
decryption). Note that this does not change our total message complexity. We
need to run O(1) broadcasts for each fi,j,k anyway.

4.3 Complexity Analysis

Due to space constraints, we present and compare asymptotic complexities of
our techniques for evaluating F with related schemes in the full version of this
paper [10].

4.4 Implementation

We have implemented our private set disjointness variant with 2PC to FHE
conversion and performed micro-benchmarks. We will release our code into open
source upon publication of the paper.

Our implementation of 2PC-part fi,j,k is done in the framework by Wang
et al. [65] and maliciously secure. Yet, none of the common FHE libraries
(HELib, PALISADE, SEAL, TFHE) provides both distributed key genera-
tion with threshold encryption and ZK proofs, which we need for maliciously-
secure conversion. Moreover, an implementation of a FHE scheme with threshold
decryption and ZK proofs, e.g., based on the one by Asharov et al. [2], deserves
its own paper. Thus, for the arithmetic part of F , we have only implemented
and benchmarked arithmetic operations with FHE (using TFHE [16,17] for its
simplicity), but not FHE ZK proofs, i.e., a semi-honest secure conversion. We
dub the security setting of our implementation as “semi-malicious”: 2PC is mali-
ciously secure, but the conversion is only semi-honest secure. This setting is at
least as strong as semi-honest security, but weaker than malicious security.
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Table 1. Online time (s) to evaluate F , our scheme vs semi-honest and maliciously
secure SPDZ [35] vs BMR [34] vs FHE. 2PC: communication time for circuit evaluation
of all mβd circuits ((γShare

′(1))(3))(1), BC: communication time for broadcasting shares
and partial decryptions, FHE Comp: computation time for arithmetic part, DNF: does
not finish in 15 min. Benchmarks from single 1.6 GHz Core i5, 32 GB RAM

n d Ours (“Semi-Malicious”) Semi-Honest Malicious

2PC BC FHE Comp Total SPDZSH FHE SPDZ BMR

Total Total Total Total

32 5 2.2 1.1 1.0 4.3 10.1 141.7 16.4 8.5

10 3.9 1.8 1.8 7.5 13.8 283.0 33.1 24.3

20 7.6 5.5 3.6 16.6 48.8 565.5 50.3 Crash

40 14.8 17.6 7.1 39.5 130.3 DNF 215.7 Crash

64 5 4.7 1.4 2.3 8.4 22.7 406.9 35.6 18.5

10 9.0 3.4 4.4 16.8 32.6 813.1 72.4 66.6

20 18.0 10.7 8.6 37.3 101.5 DNF 248.2 Crash

40 35.9 40.9 17.0 93.8 265.8 DNF 784.3 Crash

128 5 10.7 2.2 5.4 18.3 52.3 DNF 117.5 43.0

10 20.8 6.6 10.3 37.7 84.6 DNF 356.7 Crash

20 41.8 24.2 20.1 86.1 358.1 DNF 675.8 Crash

40 83.3 95.3 39.7 218.3 546.3 DNF DNF Crash

1024 5 121.2 17.5 61.6 200.4 727.3 DNF DNF DNF

2048 5 265.0 37.5 135.5 438.0 DNF DNF DNF DNF

More specifically, we have implemented the actual circuit which is evaluated
as part of the 2PC to FHE conversion of fi,j,k, namely ((γShare′(1))(3))(1). Here,
circuit γShare

′ is the modification to fi,j,k due to conversion, γShare
′(1) is the modi-

fication implied by ZK Protocol (1) on top of that, (γShare′(1))(3) the modification
by ZK Protocol (3) on top of that, and ((γShare′(1))(3))(1) the modification by
ZK Protocol (1) running inside ZK Protocol (3).

For all benchmarks, we set m = n
2 , β = log n, and consider  = 32 bit integers

as the elements in each party’s set. It is well known that communication time
due to latency between parties is a dominating factor regarding total runtime,
especially for the 2PC part. For example, raw computation time of evaluating a
single ((γShare′(1))(3))(1) circuit for β = 5 takes only 1.2 ms on a single 1.6 GHz
Core i5 with 32 GB RAM, but all computations can run in parallel on different
cores. So, an Amazon EC2 C5d instance with 96 cores computes 80, 000 circuits
per second. However, network traffic, i.e., exchanging 177 KByte of data between
P1 and Pi during evaluation of that circuit, cannot be parallelized. Instead, we
can only sequentially send all data for all circuits, and network latency is here
the crucial parameter. While latency of (intercontinental) WAN traffic is often
unstable and can go over 250 ms [64], we run benchmarks on one machine to
better control network behavior and use netem [53] to set latency to a mod-
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est 70 ms. As a result of this latency, we measured TCP data goodput to be
only 330 MBit/s on the localhost network (a higher latency would imply less
goodput).

In Table 1, 2PC denotes the time to compute all ((γShare′(1))(3))(1). BC
denotes the time for all broadcasts of shares ci, c

′
i after 2PC to all parties (one

TFHE ciphertext has size 2.5 KByte) plus the time to broadcast a partial decryp-
tion of the final result after FHE from each party (a partial decryption is one
TFHE ciphertext). FHE Comp is the time, for each party, to compute the arith-
metic part of F in TFHE.

For comparison, we have also implemented F in the popular MP-SPDZ
framework [33] and benchmarked with both their semi-honest (SPDZSH: no
MACs, semi-honest OT [33]) and maliciously secure SPDZ variants [35] as well
as BMR [34]. SPDZ Total and BMR Total are their total (online) times to
compute F . FHE Total is the total time of a semi-honest “pure-FHE” imple-
mentation of F with TFHE, including broadcasting each party’s mβ ciphertexts
to all other parties. Note that BMR crashes even for a small number of parties,
e.g., n = 128, d = 10, or quickly runs out of memory (> 32 GB) for d ≥ 20
parties.

Looking at Table 1, our implementation outperforms semi-honest and mali-
ciously secure SPDZ, BMR, and FHE in all considered settings. While SPDZ and
BMR are competitive for a small number of parties, BMR fails due to its mem-
ory consumption, and our composition from 2PC clearly shows better scalability
than SPDZ for larger numbers of parties.

While timings for our “semi-malicious” implementation look promising
regarding a potential maliciously secure implementation, we do not have such an
implementation for the above stated reasons. However, observing that our tech-
niques outperform even semi-honest SPDZ while offering stronger security guar-
antees leads to an interesting conclusion of our evaluation. Our mixed-techniques
protocols might already serve as an alternative to standard semi-honest MPC in
scenarios with a star topology, i.e., where a multi-party protocol can be decom-
posed into multiple 2PC protocols.

5 Related Work

Mixed-Techniques MPC. Several previous works combine different MPC
techniques to mitigate individual techniques’ drawbacks. Kolesnikov et al. [39]
are among the first to present a conversion between garbled circuits and (addi-
tively) homomorphic encryption in the two-party semi-honest model [39,41].
Extending their conversion to also support fully-malicious adversaries is non-
trivial: in Appendix D of [40], they present honest-verifier zero-knowledge proofs
which render the protocol secure only if at most one party is malicious. However,
HVZK is insufficient, if proofs are part of a scenario with more than two parties
where more than one party can be malicious.

A long line of research has focused on making mixed-techniques practical and
efficient. Henecka et al. [29] design practical tools for conversion between garbled
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circuits and additively homomorphic encryption. Their conversion targets semi-
honest adversaries and circuits for two parties. Demmler et al. [22] present a two
party framework to convert between arithmetic sharing, Boolean sharing, and
garbled circuits in the semi-honest model, and so do Riazi et al. [60]. Mohassel
and Rindal [50] extend to three parties with malicious security. Again in the
semi-honest model for two parties, Juvekar et al. [32] switch between garbled
circuits and additively homomorphic encryption, and Büscher et al. [14] switch
between arithmetic and Boolean sharing. The “(e)daBits” line of work [1,23,62]
converts between MPC based on arithmetic secret sharing and garbled circuits
with malicious security. In contrast, our work mixes FHE with garbled circuits,
with the advantage of a (low) constant number of rounds during evaluation.

For completeness sake, we mention that other powerful MPC frameworks
besides MP-SPDZ exist, e.g., the purely circuit-based EMP-Toolkit [66]. Also
note that FHE is often combined with (arithmetic) MPC to prepare multiplica-
tion triplets during offline phases, as in, e.g., SPDZ and follow-up works [3,36].

(Multi-Party) PSI and Disjointness. While seminal works in PSI are based
on dedicated protocols [49], recent papers use a circuit-based approach (see
Pinkas et al. [55] for an overview), culminating in solutions with asymptoti-
cally optimal communication complexity and practical constants [58]. In theory,
such circuit-based approaches can be used to also compute disjointness, but they
focus on the two-party setting with semi-honest security or multiple parties with
semi-honest security [15]. Efficient maliciously-secure multi-party circuit-PSI has
not yet been achieved.

Hazay and Venkitasubramaniam [28] present a maliciously-secure multi-party
PSI protocol based on oblivious polynomial evaluation (OPE). Similar to pre-
vious ideas [25], OPE could then be combined with a maliciously-secure 2PC
to compute disjointness. However, already computing the intersection is expen-
sive with this approach, requiring O(n2) modular exponentiations. Kolesnikov
et al. [42] present an efficient multi-party PSI protocol in the semi-honest model
using only symmetric encryption. However, more fundamentally, PSI protocols
cannot be easily converted into PSI analytics protocols (not disclosing the inter-
section) while maintaining efficiency [56,58] and providing malicious security.
Other works have considered computing set disjointness, but these target semi-
honest security and/or only two parties [20,25,30,37,38,48,67]

Comparing to related work, our work fills a gap with 1) a solution which
converts between FHE and garbled circuits, 2) supports any number of parties
d, and 3) provides malicious security. We use this to present the first multi-party
PSI analytics protocol whose communication complexity scales only quadrati-
cally in d.

Appendix

A Supporting Larger Plaintext Spaces

Our presentation describes arithmetic sub-circuits operating over single bits.
There, each ciphertext encrypts a single bit and homomorphic operations are
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over bits. This can be inefficient, as parties often want to compute on larger
integers, e.g., 32 Bit integers. Homomorphic encryption schemes anyway operate
over large plaintext spaces, where addition of a large, multiple bit integer is a
single homomorphic operation. A large plaintext space also allows for SIMD
techniques.

To improve performance, we extend conversion from operating over GF (2)
plaintexts to operate over arbitrary fields GF (q) by instituting the following
two modifications. In our conversions, ZK Protocols, and ZK proofs, we replace
using XORs to share a single bit or combine two shares to a bit by additions and
subtractions over GF (q). Random bits serving as a share for a party become
random elements of GF (q). Second, n single bit encryptions ci = Enc(bi) output
by our 2PC to FHE conversion are combined to a single n bit encrypted integer
by each party computing

∑n−1
i=0 2i · ci+1.

B d ≥ 2 Parties

Secure multi-party computation can be constructed from secure two-party com-
putations in various ways. One standard way is a star topology as we present
in Sect. 4. We emphasize, however, that our conversions are not limited to star
topologies.

The main idea is that each party Pi engages in secure two-party computa-
tion with a central party P1 to compute some functionality. Such a centralized
approach works for certain functionalities, e.g., equality of inputs, as equality is
symmetric and transitive. If Pi’s input is equal to P1’s and Pj ’s input is equal
to P1’s, then Pi’s input is also equal to Pj ’s. Hence, computation of the joint
result using homomorphic encryption can leverage this relation.

This approach does not apply to other functionalities, e.g., larger-than com-
parison. If Pi’s input is larger than P1’s, and Pj ’s input is larger than P1’s, then
we cannot imply any larger-than relation between Pi’s and Pj ’s input. Conse-
quently, in this case, the alternative to maintain constant-round complexity is to
engage all parties in pair-wise comparisons. This has been previously considered,
e.g., in the context of sealed-bid auctions [9]. However, the result of each pairwise
comparison is leaked in previous work, reducing security to a level comparable
with order-preserving encryption. In contrast, constructions in this paper would
enable computing the auction result, e.g., the largest input, using homomorphic
encryption with constant round complexity.

In summary, there exist several practically relevant protocols with arithmetic
relations between inputs which can be decomposed into an initial two-party
phase followed by a combination phase of the inputs. We use secure two-party
protocols during the first phase to achieve efficient implementations in a constant
number of (communication) rounds. Similarly, to evaluate low multiplicative
depth sub-circuits, we use homomorphic encryption efficiently. Our ZK protocols
ensure that the conversion is secure against malicious adversaries.
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C Proof of Theorem 1

We emphasize that we only provide a proof-sketch that, however, should convince
an expert reader about the correctness of our theorems and the security of our
protocols. Before presenting this proof sketch of our main Theorem 1, we briefly
recall completeness, zero-knowledge, and soundness definitions.

Let P ∈ {P1, P2} be the prover and V ∈ {P1, P2} be the verifier in a ZKP.
Let w ∈ RC be a witness for the correct execution of a conversion which we
denote as relation RC . Let 〈P (w), V 〉 be the execution of a ZKP protocol.
Completeness: An honest verifier accepts the proof, if the prover provides con-
sistent input, i.e., w ∈ RC =⇒ 〈P (w), V 〉 ∧ Pr[V = accept] = 1.
Zero-Knowledge: The verifier learns nothing about the prover’s witness except
that it satisfies the proof, i.e., there exists simulator SimP such that 〈P (w), V 〉 c=
〈SimP , V 〉.
Soundness: An honest verifier rejects the proof with overwhelming probability
in security parameter λ, if the prover’s secret input is not a witness for the
proof, i.e., there exists extractor ExtV such that V = accept =⇒ 〈P (w),ExtV 〉 ∧
Pr[ExtV = w] = 1 − negl(λ).

Proof (Theorem 1). Completeness of ZK Protocols (1) to (3) follows immedi-
ately from their construction, so we focus on Zero-Knowledge and Soundness.

Zero-Knowledge. To prove zero-knowledge, we construct simulators SimP1 or
SimP2 in the hybrid model which do not know the witness of the individual ZK
Protocols (ZKPs), create views for the adversary which are indistinguishable
from the real protocol, and make the verifier accept the proofs. In the hybrid
model, simulators can simulate any ZK sub-proofs invoked during the protocol.

First, observe that all messages from the prover to the verifier are
semantically-secure ciphertexts, random numbers or other zero-knowledge
proofs.

In ZKP (1) and (2), the simulator SimP1 , or SimP2 (in ZKP (2)), randomly
chooses inputs ι1,i (or ι2,i) and masking bits μi,j as their input into 2PC. The
verifier inputs σi,j to the 2PC. After the 2PC, the simulator either receives
verification bits ti,j (ZKP (1)) or outputs random verification bits (ZKP (2)).

In the last step, we apply the hybrid model. The simulator invokes the simula-
tor of the ZKP for correct decryption using those (random) verification bits and
the committed (random) input and masking ciphertexts, simulating a consistent
execution of the ZKP.

In ZKP (3), SimP1 does not have to output verification bits vi,ωi,j , but the
verification is done using ZK proofs Scalari and Shufflei. Hence, the simulator
for ZK Protocol (3) chooses a random ωi and invokes the simulators for Scalari

and Shufflei.

Soundness. To prove soundness for ZKP (1) and (2), we construct extractors
ExtP1 or ExtP2 . We construct an extractor ExtP2 only for ZKP (1), but stress
that the extractor ExtP1 for (2) is equivalent. The extractor starts the ZK proof
and lets the prover commit to their inputs via homomorphic ciphertexts c1,j
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(for a known shared key). Then the extractor chooses challenge bits σi,j and
sends them to the 2PC. The prover outputs verification bits ti,j . The extractor
rewinds the prover to just before they received the challenge bits for the 2PC.
The extractor negates all challenge bits to ¬σi,j , sends them to the 2PC and
continues the protocol. Let the prover’s verification bits after rewinding be t′i,j .
We assume that the prover has consistent inputs and hence these inputs are
extractable: the prover’s inputs in ZKP (1) are ti,j ⊕ t′i,j .

The soundness of ZKP (3) is a special case of authenticity of garbled cir-
cuits [6], and we do not need an extractor. Challenge bits vi,0,j and vi,1,j are
input to the 2PC. Note that the soundness of the ZKP (1) ensures that the
entire execution of the verifier is secure against malicious behaviour, including
its conversion of the challenge bits from FHE to 2PC. The output depends on
the output of the 2PC. Since the prover only evaluates the garbled circuit, it is
bound to the correct or no output due to the authenticity property of garbled
circuits. It can hence only produce one consistent set of output labels vi,ωi,j .

This completes our security proof. Note that only the proof of ZKP (3) is
recursive to the proof of ZKP (1), and hence all proofs are valid if ordered
from (1) to (3). �
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2. Asharov, G., Jain, A., López-Alt, A., Tromer, E., Vaikuntanathan, V., Wichs, D.:
Multiparty computation with low communication, computation and interaction
via threshold FHE. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012.
LNCS, vol. 7237, pp. 483–501. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-29011-4 29

3. Baum, C., Cozzo, D., Smart, N.P.: Using TopGear in overdrive: a more efficient
ZKPoK for SPDZ. In: SAC (2019)

4. Bay, A., Erkin, Z., Alishahi, M., Vos, J.: Multi-party private set intersection pro-
tocols for practical applications. In: SECRYPT (2021)

5. Beaver, D., Micali, S., Rogaway, P.: The round complexity of secure protocols
(extended abstract). In: STOC (1990)

6. Bellare, M., Hoang, V.T., Rogaway, P.: Foundations of garbled circuits. In: CCS
(2012)

7. Bendlin, R., Damg̊ard, I.: Threshold decryption and zero-knowledge proofs for
lattice-based cryptosystems. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol.
5978, pp. 201–218. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-11799-2 13

8. Benhamouda, F., Camenisch, J., Krenn, S., Lyubashevsky, V., Neven, G.: Better
zero-knowledge proofs for lattice encryption and their application to group signa-
tures. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp.
551–572. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45611-
8 29

9. Blass, E.-O., Kerschbaum, F.: Strain: a secure auction for blockchains. In: Lopez,
J., Zhou, J., Soriano, M. (eds.) ESORICS 2018. LNCS, vol. 11098, pp. 87–110.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99073-6 5

https://doi.org/10.1007/978-3-642-29011-4_29
https://doi.org/10.1007/978-3-642-29011-4_29
https://doi.org/10.1007/978-3-642-11799-2_13
https://doi.org/10.1007/978-3-642-11799-2_13
https://doi.org/10.1007/978-3-662-45611-8_29
https://doi.org/10.1007/978-3-662-45611-8_29
https://doi.org/10.1007/978-3-319-99073-6_5


316 E.-O. Blass and F. Kerschbaum

10. Blass, E.-O., Kerschbaum, F.: Mixed-technique multi-party computations com-
posed of two-party computations. Cryptology ePrint Archive, Report 2020/636
(2020). https://ia.cr/2020/636

11. Boneh, D., et al.: Threshold cryptosystems from threshold fully homomorphic
encryption. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol.
10991, pp. 565–596. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
96884-1 19

12. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic
encryption without bootstrapping. In: ITCS (2012)
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Abstract. Due to the significant drop in prices for genome sequencing in
the last decade, genome databases were constantly growing. This enabled
genome analyses such as Genome-Wide Association Studies (GWAS)
that study associations between a gene and a disease and allow to
improve medical treatment. However, GWAS fails at the analysis of com-
plex diseases caused by non-linear gene-gene interactions such as sporadic
breast cancer or type 2 diabetes. Epistasis Analysis (EA) is a more pow-
erful approach that complements GWAS and considers non-linear inter-
actions between multiple parts of the genome and environment.

Statistical genome analyses require large, well-curated genomic
datasets, which are difficult to obtain. Hence, the aggregation of multiple
databases is often necessary, but the sharing of genomic data raises severe
privacy concerns and is subject to extensive regulations (e.g., GDPR or
HIPAA), requiring further privacy protection for collaborative analyses.

Although there has been work on private GWAS, there was a lack of
attention to Private EA (PEA). In this work, we design the first secure
and accurate PEA protocol, with security against passive adversaries.

Our efficient PEA protocol consists of two subprotocols: (1) (optional)
feature selection for filtering noisy features to reduce the input size for
better efficiency and (2) finding relevant associations. For feature selec-
tion, we design two protocols based on Secure Multi-Party Computation
(MPC) for Relief-F and TuRF. For finding associations, we design an
MPC protocol for Multifactor Dimensionality Reduction (MDR).

Our private MDR protocol is based on two novel, efficient building
blocks, arithmetic greater than and arithmetic swap, which may be of
independent interest. This approach omits the need for expensive con-
versions between sharing types in private MDR and reduces the commu-
nication by two orders of magnitude compared to a näıve design using
garbled circuits. Our private MDR protocol runs in (extrapolated) three
days on a practical database with 10,000 features for all two mutually
combined features, i.e., considering about 50 million combinations.

Keywords: Epistasis · Genomic privacy · MPC

O. Tkachenko—The work presented in this paper was mainly done while the author
was a doctoral researcher at Technical University of Darmstadt
T. Kussel and O. Tkachenko—Equally contributed.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
V. Atluri et al. (Eds.): ESORICS 2022, LNCS 13556, pp. 320–339, 2022.
https://doi.org/10.1007/978-3-031-17143-7_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-17143-7_16&domain=pdf
http://orcid.org/0000-0002-6921-8345
http://orcid.org/0000-0002-9731-7666
http://orcid.org/0000-0001-8090-1316
http://orcid.org/0000-0001-9232-6902
https://doi.org/10.1007/978-3-031-17143-7_16


PEA: Practical Private Epistasis Analysis Using MPC 321

1 Introduction

Technical advances and reduced costs in genome sequencing technology will allow
full genome sequencing to become a standard medical procedure in the near
future. This plethora of genomic data opens up interesting possibilities not only
in personalized treatment of diseases, but in a research context as well. Genome
Wide Association Studies (GWAS) allow to statistically link a small number of
genetic variants (e.g., Single Nucleotide Poymorphisms (SNPs)) to a phenotyp-
ical trait, which in medical research is often the manifestation of a disease like
diabetes, hypertension, or cancer.

Due to the sensitive nature of genomic data, which is the ultimate personal
identifier [18], and the vast amount of required data, the need for privacy pre-
serving analysis methods arises. Non-genomic medical patient data is often ana-
lyzed in anonymized or pseudonymized form. Unfortunately, these traditional
and other approaches like statistical disclosure control [13] are difficult to apply
correctly and in most cases unsuitable for genomic data. More evolved statistical
disclosure methods, like differential privacy, suffer from some loss of utility when
applied to genomic data due to the inherent interactivity in, e.g., tumor boards.

Secure Multi-Party Computation (MPC) is a class of privacy-preserving tech-
niques that guarantees the privacy of inputs and allows the exact computation
of arbitrary functionalities. MPC has successfully been applied to many differ-
ent real-world problems. However, this strong privacy guarantee and flexibility
comes with quite severe limitations. The required computation and communica-
tion is multiple orders of magnitude higher than in the clear text analysis. This
renders this class infeasible in practice for many applications.

Following the success in applying MPC protocols to genomic analysis meth-
ods like GWAS or similar genome queries, we propose, implement, and evaluate
PEA, a suite of MPC protocols that privately analyze the epistasis of SNPs in
connection to the manifestation of a disease. PEA analyzes how the interaction
of multiple SNPs are causally linked to the disease. This is a critical step for the
development of a better understanding of a disease and new treatments. To find
these higher order interactions we privately apply Multifactor-Dimensionality
Reduction (MDR), Relief-F, and Tuned Relief-F Feature Selection (TuRF).

Although gene-gene and gene-environment interactions are still an actively
researched area, most novel research uses established analysis methods like MDR
for specific diseases [30,43,46] and statistical tests [29] , or adapts those methods
for novel challenges, like the amount of SNPs in GWAS data sets [22]. No prior
provided privacy-preserving analysis of partitioned data sets.

1.1 Related Work

Recently, a few Differential Privacy (DP) [14]-based works have been published
on Private Epistasis Analysis (PEA) [7] and Private Feature Selection (PFS) [28].
However, DP relies on a trade-off between privacy and utility and cannot achieve
both. Since the genomic data is exceptionally privacy-sensitive, this leads to a
significant utility degradation which is a well-known problem [32].
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To the best of our knowledge, we provide the first solution for PEA or PFS
without utility degradation. Previous works on private Genome-Wide Associa-
tion Studies (GWAS) [8,40] serve a similar purpose as PEA but can find only
correlations between single SNPs and a trait and have much smaller complexity.

1.2 Our Contributions

Our interdisciplinary work, beyond providing new research opportunities for
biomedical research, makes the following contributions.

– Design and implementation of PEA, the first secure protocol that does not
degrade accuracy for:

• Relief-F [27] and TuRF [31], two popular algorithms for filtering features
in Epistasis Analyses (EAs) that run in less than a day for practical
database sizes containing a=10, 000 SNPs and L=100 records [7].

• MDR [36], a popular exponential-time algorithm for EA with (extrapo-
lated) runtimes of around three days for practical database sizes contain-
ing a=10, 000 SNPs [7]. The communication of our PMDR protocol is
independent of the number of records.

– New efficient, generic arithmetic building blocks:
• A 1-out-of-N Oblivious Transfer (OT) [24]-based custom protocol for

Arithmetic Greater Than (AGT), i.e., a GT gate that is computed on
arithmetic shares with 1.5× less communication than the state of the
art [35] but 6 instead of 5 rounds of communication.

• Arithmetic Swap (ASWAP), a generalization of the Boolean swap gates
by Kolesnikov and Schneider [26] for the arithmetic case with 4× less
communication than the näıve design.

• Batched versions of both aforementioned building blocks with O(κ) less
communication, where κ is the symmetric security parameter.

– The first implementation of three-halves garbling [37]1 and its performance
analysis, which shows a greater slowdown than expected due to a higher
degree of branching compared to the prior best garbling scheme. Still, it
optimizes for better network bandwidth which remains the bottleneck.

– The implementation of all our building blocks and protocols are integrated
in the open-source repository of the MOTION framework for MPC2.

2 Preliminaries

In this section, we describe the required basics in genomics. App. A gives an
overview of Secure Multi-Party Computation (MPC) techniques used in this
paper. For more details, we refer the reader to [11].

1 https://encrypto.de/code/3H-GC.
2 https://encrypto.de/code/MOTION.

https://encrypto.de/code/3H-GC
https://encrypto.de/code/MOTION
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2.1 Genomic Primer

The building and functioning “instructions” of all living cells are encoded in
molecular form. This molecular blueprint takes in most organisms the form of
the deoxyribonucleic acid (DNA), a double helical molecule pairing a sequence
of nucleotides. The DNA’s alphabet consists of four nucleotides (usually abbre-
viated by their first letter): Adenine, Cytosine, Guanine, and Thymine. In
double-stranded DNA (as in humans) a helix and much more involved structures
(chromatin, chromosomes, etc.) are formed by physical interactions between
the nucleotides of the two strands. Typically, Watson-Crick-pairing is observed,
where cytosine pairs with guanine and adenine pairs with thymine forming a
base pair with highest priority. This implies that the information on one strand
is encoded in a 1:1 fashion on the other.

In the process of transcription, the defined nucleotide sequence of theDNA(viz.
the genotype) is transcribed to a messenger ribonucleic acid (mRNA) molecule,
which can be thought of as a working copy of a specific gene. These mRNA
molecules are then translated to an amino acid sequence forming proteins neces-
sary for the function of the cell and organism. During this translation every codon,
that is a triplet of nucleotides, is mapped to one of the 20 standard amino acids
observed in nature. Additionally there are codons coding start and stop symbols.

Some of the built proteins inhibit or promote the transcription of DNA
regions encoding other proteins. These proteins are called transcription factors
and thus are responsible for often times complex regulatory networks in which
the interaction of multiple genes are responsible3 for some phenotype, that is
some observable trait (e.g., eye and hair color, or the occurrence of a disease).

The human genome consists of roughly 3.2 billion base pairs, but only 0.1 % of
base pairs vary between two individuals [2]. These variants of a specific locus, i.e.,
position on the DNA strand, are called alleles. Due to the sparsity of the variations
between two humans, it is often useful to store and use only these variations with
regard to a specific reference genome. A Singe-Nucleotide Polymorphism (SNP)
is a variation changing exactly one nucleotide, e.g., G → T. Due to the human’s
diploidity, two alleles are possible of each individual locus. For each gene (or in
case of SNPs for each base) the present allele may be written in the shorthand
form “AA” for the presence of the major allele on both chromosomes, “Aa” for the
presence of both the major and minor allele on one of the chromosomes each and
finally “aa” for the presence of the minor allele on both chromosomes.

2.2 Genome-Wide Association Studies (GWAS) and Epistasis

Genome-Wide Association Studies (GWAS) aim to link specific genotype vari-
ations to phenotype variations. More specifically often times the goal is to link
SNPs to traits like the onset of specific diseases. In the first published GWAS in
2002 [34] five SNPs could be linked to various mechanisms to increase the risk of

3 Further regulatory mechanisms, such as the influences of the chromatin structure,
exist but are not of interest for this work.
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myocardial infarction. In contrast to candidate-driven analysis, where variations
of specific, pre-determined genes are analysed, GWAS analyse variations of the
complete genome.

Using a labeled data set with regard to the phenotypical trait, statistical
tests are performed to determine the specific SNP’s likelihood to affect the trait.
This likelihood is called penetrance and extends, as described below, to multi-
dimensional cases. Many different statistical tests are used in practice, ranging
from relatively simple odds ratio analysis to more involved hypothesis tests, like
χ2-tests [41]. In addition to the single SNP’s influence, GWAS can give a start-
ing point for finding the variation mechanism by associating the loci to known
regulatory pathways [33]. As briefly described in §2.1, genes can be part of com-
plex regulatory networks promoting or inhibiting other genes. Due to that it
is unsurprising, that complex systematic diseases like cancer are not directly
associated to a single gene, but are caused by possibly non-linear interactions
of many genetic variables, e.g., simultaneously the presence of one SNP and the
absence of two other. This interaction of genes is called epistasis, or gene-gene
interaction. Unfortunately, the analysis of those interactions becomes computa-
tionally very expensive. The algorithmic complexity scales exponentially with
the “interaction depth”, i.e., the number of interacting genes considered.

Consequently, exact analysis methods, analysing each tuple of SNPs, are
only feasible for small sections of a genome or low interaction depths. For large
genome sections, or even whole genome analysis, different methods of reducing
the complexity are applied. In this work we apply (Tuned) Relief-F Feature Selec-
tion (TuRF, cf. Sect. 2.3) and Multifactor-Dimensionality Reduction (MDR, cf.
Sect. 2.4) to achieve privacy-preserving epistasis analysis with practical perfor-
mance.

2.3 Feature Selection with Relief, Relief-F and TuRF

Typical gene-gene interaction studies analyze datasets with thousands of patients
but hundreds of thousands to millions of SNPs. Most of these features play no
role in the expression of the phenotype of interest. The “Relief” [23] algorithm
and its advancements “Relief-F” [27] (the hyphen is often omitted in literature
but is present in the original work) and “Tuned ReliefF” [31] (TuRF) are fea-
ture selection algorithms to reduce the number of features by estimating the
importance of a feature with respect to the training goal.

The Relief filter works by weighting the importance of a variable by compar-
ing a randomly chosen sample (patient) with the neighboring samples. Features
that are present in a neighboring sample with the same label gain weight, fea-
tures present in a neighboring sample with a different label lose weight. This
procedure is repeated m times. Relief-F extends this algorithm by not only sam-
pling the nearest neighbor in both categories, but the k nearest neighbors. In the
original work [27], as in our work, the number of neighbors taken into account
for the weight update is k = 10. Furthermore, Relief-F iterates over all n entries
in the dataset, instead of a randomly chosen subset of size m, i.e., m = n. This
increases the robustness of the result against noisy features.
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TuRF modifies the Relief-F filter by removing a constant fraction of the worst
performing attributes after every iteration. This effectively removes the noisiest
and least significant features, speeding up the computation in the subsequent
calculations and increasing robustness against noisy attributes.

The formal details of the Relief-F algorithm are given in Algorithm 1a. The
used distance metric takes two patient records r1, r2 and an attribute A (in this
work a locus λ) as an input and returns zero if both records have the same
occurrence of the attribute, otherwise it returns one. The TuRF algorithm is
given in Algorithm 1b. Details of our private implementation of TuRF are given
in Sect. 3.

2.4 Multifactor Dimensionality Reduction (MDR) for Epistasis
Analysis

Multifactor Dimensionality Reduction (MDR) [36] is a model-free and non-
parametric statistical method to detect and model epistasis. Developed in the
early 2000s,s, it became one standard approach to model epistasis with success-
ful identification of interactions in datasets including sporadic breast cancer,
essential hypertension [30], and type 2 diabetes [9].

In short the algorithm works by categorizing a group of loci into high and low
risk combinations. This effectively reduces the dimension of the interactions to
one. This new one-dimensional data is then compared among each other to find
the interactions that yield the lowest classification and prediction error. Usually
Leave-one-out cross validation is used. In that cross validation approach the
dataset is divided in n equally large partitions and the model is generated on
n − 1 partitions. The remaining partition is used to calculate the prediction
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errors. This process is repeated for all n partitions and the prediction errors are
averaged to form a “final” model error. A graphical visualization of the scheme
is given in Fig. 1.

3 Private Tuned Relief-F Feature Selection

Fig. 1. High-level scheme of the MDR anal-
ysis method (adapted from [17] and [36]).

As described in Sect. 2.3, the main
goal of the feature selection step
is to increase the weight of fea-
tures (SNPs) linked to label distinc-
tion and reduce the weight of fea-
tures irrelevant to these distinctions.
The TuRF algorithm uses k Near-
est Neighbor clustering and itera-
tive pruning of features to achieve
this goal. To avoid a biased result
incurred by the ordering of the
records, our TuRF implementation
permutes the order of the dataset
randomly. In either case only the
best a − α features are considered
in the subsequent MDR calculation.
The formal description of the PReliefF protocol is given in Prot. 1. PTuRF can
be seen as a straightforward extension of PReliefF, and the formal description
is given in the full version of this paper. Note, that in combination with Private
Multifactor Dimensionality Reduction (PMDR) (see Sect. 4), it is possible to
(optionally) reveal the noisy features to reduce the input size to PMDR.

We implemented an (optional) approximation in the TuRF algorithm. Instead
of recalculating the distance between the records in every iteration, the distance
is considered constant, as only a small number of features are removed in every
iteration. This approximation reduces the computational cost, while only incur-
ring a small error.

Private kNN. The original Relief algorithm, as well as the improved Relief-F,
require a comparison of the sampled record to the nearest neighbour or the k
nearest neighbours, respectively (cf. Alg. 1a, line 6). We use adapted forms of the
kNN clustering described by Järvinen et al. [20], which can be performed with a
variety of metrics. Due to the comparatively low runtime cost and the nominal
nature of the features, we perform a Hamming distance based clustering, i.e.,
based on the number of set bits (asimilar SNPs).

4 Private Multifactor Dimensionality Reduction

Private Multifactor Dimensionality Reduction (PMDR) requires aggregation of
integers: data owners aggregate the counts of allele frequencies and the counts
used in precision estimation of the computed models are also aggregated into
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one value. Thus, it is beneficial to keep those operations in arithmetic sharing
which allows to perform integer addition locally. However, arithmetic sharing
is restricted to only additions and multiplications, and conversions to and from
Boolean sharing may be more expensive than the evaluation of a purely Boolean
circuit. In the following, we design novel efficient building blocks that improve
over the PMDR protocol that uses only Boolean sharing by two orders of mag-
nitude.

4.1 Secure Arithmetic Greater Than (AGT)

A Boolean Greater Than (GT) gate requires � AND gates if optimized for AND
size [25] and 3� − �log2 �� − 2 if optimized for AND depth [39]. Moreover, the
latter still has �log2 �� + 1 AND depth and incurs the corresponding number of
communication rounds.
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Baseline Arithmetic Greater Than Protocol. Here, we give a baseline
Arithmetic Greater Than (AGT) protocol that compares two integers x0, x1 ∈
Z2� : x0, x1 < 2�in in arithmetic sharing, where �in = � − 1. The protocol is
as follows: (1) compute 〈δ〉A ← 〈x0〉A − 〈x1〉A, (2) decompose it to single bits
as 〈δ〉B ← A2B(〈δ〉A) (cf. [11]), and (3) return the MSB of 〈δ〉B . It requires
only sharing of 2� bits—� bits by the garbler and � bits by the evaluator—and
� − 1 AND gates in Yao sharing. It outputs a bit in Boolean sharing. Later in
this section we show a protocol with even better communication and use this
protocol as a baseline for comparison.

Our baseline protocol requires only one communication round and its only
limitation is that the input values need to be smaller than 2�in , where �in = �−1.
It requires �(4.5κ+5)−1.5κ−5 bits of communication in total: 3�κ for re-sharing
both arithmetic shares in Yao sharing and (� − 1) · (1.5κ + 5) for computing the
sum of both shares in a GC using three-halves garbling [37].

Our Novel AGTConstruction with Low Communication. Here, we intro-
duce a novel, alternative approach to compute the AGT gate with significantly
lower communication inspired by [12] and [35]. The idea of our protocol is based on
the fact that, in contrast to share reconstruction using an addition circuit, we only
need to compute the MSB, but not the full addition circuit. To compute the MSB
we need 〈δ〉0[�], 〈δ〉1[�] and the carry bit 〈c〉[�], where the latter is computed from
the previous bits in the shares. However, we can skip the computation of the inter-
mediate carry bits and directly compute the MSB by utilizing 1-out-of-N OT [24]
with less communication than using our baseline protocol shown above. A batch-
mode extension is described in the full version of this paper.

Toy Example. Let � be small, e.g., �=4, and 〈δ〉A
0 , 〈δ〉A

1 ∈ Z2� are arithmetic
shares of δ = x1 − x0 : x0, x1 < 2�−1. P0 uses 〈δ〉A

0 as its choice index in
OT [24]. P1 samples a uniformly random mask bit r ←$ {0, 1} and generates
messages {(i + 〈δ〉1 mod 2� > 2�−1 − 1) ⊕ r}2�−1

i=0 . Then, P0 obtains and sets
〈MSB〉B

0 := (〈δ〉A
0 + 〈δ〉A

1 mod 2� > 2�−1 − 1) ⊕ r, and P1 sets 〈MSB〉B
1 := r.

The communication complexity of this protocol is 2κ+2� bits, which equals 264
bits for bit length �=3 and is 5.8× more efficient than the baseline protocol. The
problem that arises here is that this toy protocol is not practical for large integers,
e.g., the communication for �=31 is 4.29 GB, which is orders of magnitude worse
than our baseline.

Our Novel AGT for Integers of any Bit-Length. To reduce the communication
for integers of arbitrary bit-length, we design an iterative approach that splits
an integer into chunks and, in a nutshell, computes the carry bit for each of the
intermediate chunks and extracts the MSB from the last chunk.

The best amortized per-bit communication in 1-out-of-N OT [24] is achieved
with N=26 and equals (2κ + 26)/6 = 53.3 bits. Although N=27 requires 54.8
bits (amortized), it incurs less communication rounds in our AGT protocol. Our
protocol consists of two subprotocols: (1) OT on the first chunk and (2) OT on
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the intermediate chunks and carry bits. We XOR the last computed carry bit
in Boolean sharing with the MSBs of the shares of δ, which yields the shared
comparison result.
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The first subprotocol requires (2κ+
2�s) bits. The second subprotocol
requires γ(2κ+2�s)+2κ+2ε bits, where
γ = �(� − �s)/(�s − 1)� − 1 is the num-
ber of the intermediate chunks and
ε = �−�s−1 mod (�s − 1) corresponds
to the size of the remainder. For � ≥ �s

the total communication is equal to
(γ +1)(2κ+2�s)+�ε/(�s −1)�(2κ+2ε)
bits and the number of communication
rounds is γ + �ε/(�s − 1)� + 2 due to
sequential calls to the OT function-
ality. More concretely, for �s=7 and
N=2�s this translates to 384 bits and
2 rounds for �in=7, 1,028 bits and 4
rounds for �in=15, 1,920 bits and 6
rounds for �in=31, and 4,100 bits and
12 rounds for �in=63. Note that �in

denotes the maximum bit-length of the
integers, shared in Z2�+1 .

To the best of our knowledge,
the only secure comparison proto-
col of additively secret-shared integers
was recently introduced by Rathee et
al. [35, Algorithm 1] and showed to be more efficient than the comparison pro-
tocols of XOR-shared integers [10]. The difference to our protocol is that their
protocol securely compares two cleartext integers, x and y, and produces a secret-
shared result. Inspired by their construction, we extend their protocol for com-
paring 〈x〉A > 〈y〉A by restricting x, y < 2�in and computing the comparison as
〈x〉A − 〈y〉A < 2�in , thus “sacrificing” one bit for the comparison result. Since
the subtraction can be done locally, our protocol can be seen as MSB extraction
from a secret-shared integer, which corresponds to [35, Algorithm 2] which is, in
turn, based on [35, Algorithm 1].

We provide a more communication-efficient construction compared to [35,
Algorithm 2] that requires only

(
N
1

)
-OT invocations and no computation of AND

gates. For �in=32-bit inputs, our protocol for MSB extraction requires 1.5× less
communication (our 1,920 bits vs. their 2,914 bits), but one more communication
round (our 6 rounds vs. their 5 rounds). The MSB extraction from �=32-bit
integers can be used to realize comparison of �in=31-bit integers.

Security. Informally, our AGT protocol only makes multiple consecutive calls
to the

(
N
1

)
-OT functionality in a black-box way, and it produces uniformly dis-

tributed outputs in each step. Concretely, the first call to the
(
N
1

)
-OT function-

ality takes in the first �s bits of 〈δ〉A and produces a secret share (c, r) ∈ {0, 1}2,
where c := (〈δ〉A

0 [1 : �s] + 〈δ〉A
1 [1 : �s] ≥ 2�s) ⊕ r and r is a random bit generated

and known only by the OT sender. Since r is uniformly distributed and c is
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“masked” by r, the output is uniformly distributed and thus (c, r) is a secret
share. The further calls to

(
N
1

)
-OT are invoked on the remaining substrings of

〈δ〉A. Namely, P0 and P1 call
(
N
1

)
-OT, which produces a new (c, r) pair, where

c := (〈δ〉A
0 [�prev : �prev+�′

s−1]+〈δ〉A
1 [�prev : �prev+�′

s−1]+(cprev⊕rprev) ≥ 2�′
s)⊕r,

where (cprev, rprev) are the results of the previous
(
N
1

)
-OT call (for better read-

ability), and r is again a random bit generated and known only by the OT
sender. As in the first step, the result is a secret share. The final result is com-
puted locally on the available secret shares. It is easy to see that the result is
also a secret share. A formal security proof for our AGT protocol can trivially
be derived from the security proof of [35, Algorithm 2].

4.2 Secure Arithmetic Swap (ASWAP)

Another important building block in our PMDR protocol is Secure Arithmetic
Swap (ASWAP), which obliviously swaps arithmetic inputs. More formally,
ASWAP takes in a secret-shared bit 〈b〉B and a pair of additively shared integers
(〈x0〉A, 〈x1〉A), and it outputs (〈x′

0〉A, 〈x′
1〉A) := (〈xb〉A, 〈x1−b〉A).

A straightforward realization of ASWAP uses four multiplication gates for
computing

i ∈ {0, 1} : 〈x′
i〉A := (¬〈b〉B · 〈xi〉A + 〈b〉B · 〈x1−i〉A).

Note that the secure multiplication 〈b〉B · 〈x〉A can be realized using just two
additively correlated OTs (cf. [1]) as described in [38]. This protocol requires
8(κ + �) bits of communication in total.

In the following, we design an ASWAP protocol that requires only one mul-
tiplication, and consequently 2(κ + �) bits of communication, and thus yields a
factor 4 communication improvement compared to the näıve protocol. To con-
struct our efficient protocol for ASWAP, we take inspiration from the Boolean
swap protocol (called “X gate” in their work) by Kolesnikov and Schneider [26],
which requires only one AND gate to perform an oblivious swap conditioned on
〈b〉B and can be seen as a special case of ASWAP for integers of bit length �=1.
Unfortunately, their protocol is not trivially generalizable to ASWAP for inte-
gers in Z� with � > 1 because it relies on XOR, which is not trivially realizable
on arithmetic shares. Our ASWAP protocol is depicted in Prot. 4. As for AGT,
the batch-mode extension of this building block is described in the full version
of this paper.

Beyond being useful for PMDR, our ASWAP protocol is of independent inter-
est, e.g., combined with our AGT protocols, we can efficiently sort arithmetic
values, i.e., using sorting networks on arithmetic circuits. This may be very ben-
eficial in scenarios where the inputs to the sorting network are aggregated, since
the addition operation is local in arithmetic sharing but costs � − 1 AND gates
in a Boolean circuit [39]. Also, this omits expensive conversions (cf. [11]) if the
further circuit is arithmetic, e.g., for efficient multiplications in Z2� .
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Although our ASWAP protocol is admit-
tedly not complex, it has, to the best of our
knowledge, never been used in the literature.
We believe that the reason is that it has
only recently been shown how to compute
〈b〉B · 〈x〉A efficiently [38].

Security. Since both ASWAP and batch-
ASWAP operate only on unmodified secret
shares and use the well-known correlated OT
technique [1] to produce the output secret shares in a black-box way, the security
proof for both our primitives is trivial.

4.3 Communication of PMDR

Here, we evaluate the communication improvement gained by using our opti-
mizations for PMDR. Our bottom line is a one-to-one translation of the PMDR
algorithm (see Fig. 1) to a Boolean circuit (PMDRY that is evaluated in Yao
sharing completely, which is often a very efficient solution due to the constant
number of communication rounds in Yao sharing.

Our optimization of the PMDR protocol using our novel, more efficient arith-
metic building blocks is denoted as PMDRA+, which keeps data in arithmetic
sharing, thus avoiding the costly conversions between different representations,
and performs only very few operations in Boolean sharing. For the concrete
communication costs of the gates, we refer the reader to [39] and [11] for arith-
metic and Boolean sharing, and to [37] for Yao sharing. In the following, we fix
the bit length of the integers to �=32, which allows for up to 231 genome sam-
ples in total with the standard threshold parameters. We, conventionally, always
perform s=10 cross-validation steps.

PMDRY . For each combination of L loci and each of 3L possible combination of
alleles, this protocol requires (1) N −1 additions for aggregation of allele counts,
(2) two multiplications and one comparison for determining the risk category,
and (3) one swap operation [26] to set low and high risk counts in the validation
set. Afterwards, to determine the accuracy of the model, the validation counts
are summed up, which requires 2 · 3L − 1 additions, two multiplications and
one comparison. For the costs of these operations, see [39]. Finally, s − 1 AND
gates in Boolean sharing are used to compute a secret-shared bit that indicates
whether the model was accurate in at least one cross-validation step. In total,
for each combination of loci the protocols requires

2s(3L(8�2 + s − 1) − �(4� − 1)) − s + 1

AND gates. This corresponds to 1 394 891 AND gates or 34.34 MB of communi-
cation for L=2 loci, and 4 347 251 AND gates or 101.05 MB of communication
for L=3 loci, using three-halves garbling with 1.5κ + 5 bits per AND gate [37].
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PMDRA+. For each combination of L loci and each of 3L possible combination of
alleles, our PMDRA+ protocol requires one AGT and one ASWAP gate. Then,
for each combination of L loci, another AGT gate is required. And, finally,
s − 1 AND gates in Boolean sharing are needed to compute the secret-shared
interaction indication. All other operations in this protocol are non-interactive.

The total communication translates to s(3L(�(4κ + 1) + 2(κ + �)) + �(4κ +
1)) + s − 1 bits, which equals only 208.8 kB of communication for L=2 loci and
585.3 kB for L=3 loci. Compared to PMDRY , this yields an improvement by a
factor of 164× for L=2 and by a factor of 172× for L= 3.

5 Implementation

We implement our protocols for Private Epistasis Analysis (PEA)4 using the
MOTION framework [6] for Secure Multi-Party Computation (MPC). The rea-
son for choosing MOTION is its efficiency and flexibility. Due to the number of
new building blocks that we constructed and/or implemented, e.g., the three-
halves garbling [37] and our new AGT protocol (cf. Prot. 3), we required an
MPC framework that admits changes in its internal infrastructure and protocols
with only moderate implementation overhead. Another selection criterion was
the efficiency of the framework. MOTION satisfies both requirements. We detail
and analyze our implementation of three-halves garbling in Appendix B.

6 Evaluation

We evaluate PEA on two servers equipped with Intel Core i9-7960X processors
and 128 GB of RAM. We average all our benchmarks over 10 runs.

We use synthetic data as the input in our benchmarks due to two reasons.
(1) MPC is input-oblivious by its security definition and thus the performance of
our protocols is input-independent. (2) Since our protocols are fully accurate, we
can discern no useful insight by using real (and hard to get access to) privacy-
sensitive datasets, and thus, we favor the ethically better decision to use the
least privacy-intrusive data source, i.e., synthetic data.

Settings. We evaluate two settings for Private Epistasis Analysis (PEA):

WAN. Two medical institutions perform PEA directly, aggregating their own
databases in MPC. Our benchmarking environment naturally resembles the sce-
nario where the two medical institutions are located very close to each other.
However, our PEA protocols are either constant-round or are highly parallelized,
so the most important performance aspect is the network bandwidth. We expect
the medical institutions to have a high-bandwidth Internet connection. In our
benchmarking environment, we use a 10 Gbit/s bandwidth network connection
but conservatively restrict the latency to 50 ms using the tc tool5 to simulate
the WAN setting.
4 https://encrypto.de/code/EPISTASIS.
5 https://man7.org/linux/man-pages/man8/tc.8.html.

https://encrypto.de/code/EPISTASIS
https://man7.org/linux/man-pages/man8/tc.8.html
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LAN. Several medical institutions send their secret shared data to outsourcing
servers [21] that aggregate the received data and compute PEA on the aggregated
data and finally send back the shared result. The outsourcing servers cannot infer
any information about the input and output data as well as the intermediate
values, but they are assumed not to collude. Such servers may be two cloud
computing providers located close to each other, e.g., near the same Internet
exchange point, thus having a high-bandwidth, low-latency connection. Thus, in
the LAN setting we do not put additional constraints on the network and use a
network connection with 10 Gbit/s throughput and 0.2 ms latency.

6.1 Performance of PReliefF and PTuRF

The results of our performance benchmarks of the private feature selection algo-
rithms are shown in Table 1.

During our evaluation, RAM utilization was the a bottleneck during feature
selection. This is not surprising, as our implementation was not optimized for
space efficiency, but runtime and communication efficiency. Because of RAM
exhaustion, PTuRF could not be benchmarked across the full parameter space.

As expected, a linear growth pattern, after a steep initial increase, can be
observed in the runtimes of PReliefF and PTuRF. Due to the constant number
of interaction rounds in Yao’s GC protocol, the additional latency in the WAN
setting has no strong effect on the measured runtimes.

Although the number of features to consider is reduced in every iteration,
PTuRF’s higher sorting work load leads to worse performance compared to the
simpler PReliefF algorithm. However, the pruning of noisy features is shown
in [31] to increase the robustness of the results.

Due to its linear runtime–size complexity, it is practical to perform PReliefF
on datasets with real-world sizes (e.g., ≈ 100 records with ≈ 10, 000 features [7])
in less than a day.

Table 1. Runtimes and communication for our private ReliefF (PReliefFY ) and private
TuRF (PTuRFY ) protocols filtering |R| records with 10 SPNs each.

|R|=4 |R|=8 |R|=20 |R|=40 |R|=60 |R|=80 |R|=100

PReliefFY Runtime LAN 1,00 s 1.74 s 5.13 s 13.15 s 21.19 s 33.52 s 50.14 s

WAN 1.98 s 2.30 s 7.99 s 15.04 s 23.68 s 36.21 s 52.29 s

Comm 3.75MB 9.63MB 40.98MB 138.93MB 294.13MB 506.45MB 775.93MB

PTuRFY Runtime LAN 1.09 s 2.13 s 13.65 s 83.37 s — — —

WAN 1.49 s 2.51 s 14.34 s 85.54 s — — —

Comm 4.11MB 11.13MB 107.15MB 510.77MB — — —

6.2 Performance of PMDR

The performance of PEA’s Private Multifactor Dimensionality Reduction
(PMDR) is reported in Table 2. The exponential scaling in the number of inter-
acting loci L is clearly visible, both in the runtime and the communication, which
for L= 3, N = 1, 000 reaches nearly 100 TB.
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However, for smaller numbers of SNPs a or lower interaction depths, such as
a= 1, 000, L= 2 or a=100, L= 3, our PMDR implementation runs in less than
an hour in both LAN and WAN.

The very low communication overhead for outsourcing leads to a practical
solution for pooling and analyzing multiple institutions’ genomic data.

6.3 Total Performance

Table 2. Runtimes and communication
for PEA’s Arithmetic Private Multifactor
Dimensionality Reduction (PMDRA+) pro-
tocol with s=10 cross-validation steps using
an interaction depth of L and a attributes.

depth a= 10 a= = 100 a= 1, 000
LAN L= 2 1.71 s 24.85 s 43.08 min

L= 3 3.29 s 33.68 min —
WAN L= 2 10.88 s 42.71 s 1.04 h

L= 3 10.01 s 47.71 min —
Comm. L= 2 9.39 MB 1.03 GB 104.29 GB

L= 3 70.23 MB 94.64 GB 97.25 TB

Due to the exponential complexity of
(P)MDR, combination with a preced-
ing feature selection algorithm is a
sensible practice. At the cost of leak-
ing the number of filtered features,
the reduced number of features sig-
nificantly improves the efficiency and
the result is more robust against noisy
attributes. As described by Moore
and White [31], it is hard to give a
general estimate on feasible feature
reduction, as the resulting accuracy
is depending, among other factors, on
the amount of noise, the size of the data set, and the heritability of the trait.
However, they measure 80 % accuracy while using TuRF to remove 950 out of
1,000 features.

As the performance benchmarks in the previous section show, this composi-
tion of both algorithms achieves only a performance gain for large numbers of
features or for interaction depths larger than L= 2. In those cases PMDR on itself
becomes prohibitively long running and the reduction of the number of features
by 10 % corresponds to a significant performance gain, e.g., 20 % improvement
for a= 10, 000 features (40 instead of 50 million considered combinations).
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Appendix

A Secure Multi-Party Computation

Secure Multi-Party Computation (MPC) are cryptographic protocols to compute
a joint function over distributed, private data without the need of a trusted third
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party. In this work, we consider security against passive (a.k.a. semi-honest)
adversaries, which strictly follow the protocol but try to learn more information.

Oblivious Transfer (OT). In OT [3] the sender inputs messages (m0,m1), and
the receiver inputs a choice bit c. At the end of the protocol, the receiver obtains
mc but no information about m1−c, and the sender does not obtain any infor-
mation. OT can be instantiated very efficiently using mostly symmetric cryptog-
raphy [19] and it admits optimizations for MPC [1]. OT can be generalized to
N instead of two messages [24], where the receiver holds a choice index c ∈ ZN

and obtains mc. Recently, a “silent” OT [4,42] was introduced with significantly
less communication at the cost of higher computation. The current silent OT
schemes beat the textbook OT extension [1,19] in terms of runtime in networks
with limited bandwidth, which is less interesting in our scenario, where medical
institutions performing large-scale MPC likely have a high-bandwidth connec-
tion.

Yao’s Garbled Circuits (GCs). GCs were introduced in [44]. The state of the
art [37] requires 1.5κ + 5 bits per AND gate, where κ = 128 is the symmetric
security parameter. GCs operate on Boolean circuits and work by garbling the
truth tables: a random symmetric encryption key is generated for every possible
value on every wire. The output wire-keys of a gate are doubly encrypted using
the corresponding combination of input wire keys. Only the garbler, i.e., the
party preparing the GC, can connect the entries in the GC to “cleartext” values.
Then, the garbler sends the GC and its input keys to the evaluator. The evaluator
obliviously obtains its input keys using OT. The GC is then evaluated. We denote
a bit b “shared” in a GC as 〈b〉Y and call this Yao sharing.

Goldreich-Micali-Wigderson (GMW). Like GCs, the GMW protocol [16], named
after its inventors Goldreich, Micali and Wigderson, operates on Boolean cir-
cuits. It achieves its privacy guarantees by splitting every input bit b in two
XOR-shares and letting party Pi hold share 〈b〉B

i . These shares are constructed
as 〈b〉B

0 ←$ {0, 1} and 〈b〉B
1 ← b ⊕ 〈b〉B

0 and reconstructed by XOR-ing both
shares. XOR gates can be evaluated locally by XOR-ing both local shares and
AND gates are evaluated interactively [1]. We denote this version of GMW as
Boolean sharing. The GMW protocol can be extended to arithmetic circuits with
elements in Z2� . We denote this extension as Arithmetic sharing. Similarly to
Boolean GMW, the shares are generated as 〈x〉A

0 ←$Zn and 〈x〉A
0 ← x − 〈x〉A

1 .
The addition can be performed locally and the multiplication requires interac-
tion [15].

B Three Halves Make a Whole Garbling Implementation

In order to provide the best possible estimation of our PEA protocols’ efficiency,
we implement in MOTION [6] “three-halves garbling” (3HG) [37]. To the best
of our knowledge, this is the first implementation of 3HG. Our optimized 3HG
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engine can garble 11.2 M/s and evaluate 27.5 M/s AND gates. Compared to
“two-halves garbling” (2HG) [45] in MOTION by Braun et al. [5], 3HG is 4.7×
slower in terms of garbling and 2.5× slower in terms of evaluation. This is also a
more significant slowdown of garbling than the factor of 2.1× estimated in [37],
based on the number of hash function calls. Our profiling indicates that the
two main bottlenecks are the 1.5× higher number of AES invocations and the
significantly higher degree of branching in 3HG compared to 2HG. Considering
the garbling rate, we can saturate the 10 Gbit/s network channel with 5 threads.
Furthermore, our benchmark for evaluating 512 AES circuits in parallel in a
GC shows a 2.2× speedup compared to [5] (our 0.22 s vs. their 0.5 s). However,
this result should be taken with a grain of salt, since [5] introduced significant
changes to MOTION, which may have affected the runtimes.

References

1. Asharov, G., Lindell, Y., Schneider, T., Zohner, M.: More efficient oblivious transfer
extensions. JoC 30, 805–858 (2017)

2. Barbujani, G., Colonna, V.: Human genome diversity: frequently asked questions.
Trends Genet. 26, 285–295 (2010)

3. Beaver, D.: Correlated pseudorandomness and the complexity of private computa-
tions. In: STOC (1996)

4. Boyle, E., et al.: Efficient two-round OT extension and silent non-interactive secure
computation. In: CCS (2019)

5. Braun, L., Cammarota, R., Schneider, T.: A generic hybrid 2PC framework with
application to private inference of unmodified neural networks. In: NeurIPS Work-
shop Privacy in Machine Learning (2021)

6. Braun, L., Demmler, D., Schneider, T., Tkachenko, O.: MOTION - a framework
for mixed-protocol multi-party computation. TOPS 25, 1–35 (2022)

7. Chen, Q., Zhang, X., Zhang, R.: Privacy-preserving decision tree for epistasis
detection. Cybersecurity 2(1), 1–12 (2019). https://doi.org/10.1186/s42400-019-
0025-z

8. Cho, H., Wu, D.J., Berger, B.: Secure genome-wide association analysis using mul-
tiparty computation. Nat. Biotechnol. 36, 547–551 (2018)

9. Cho, Y.M., et al.: Multifactor-dimensionality reduction shows a two-locus interac-
tion associated with Type 2 diabetes mellitus. Diabetologia 47(3), 549–554 (2004).
https://doi.org/10.1007/s00125-003-1321-3

10. Couteau, G.: New protocols for secure equality test and comparison. In: CANS
(2018)

11. Demmler, D., Schneider, T., Zohner, M.: ABY - a framework for efficient mixed-
protocol secure two-party computation. In: NDSS (2015)

12. Dessouky, G., Koushanfar, F., Sadeghi, A.R., Schneider, T., Zeitouni, S., Zohner,
M.: Pushing the communication barrier in secure computation using lookup tables.
In: NDSS (2017)

13. Duncan, G.: Statistical Confidentiality: Principles and Practice. Springer, Heidel-
berg (2011). https://doi.org/10.1007/978-1-4419-7802-8

14. Dwork, C.: Differential privacy. In: ICALP (2006)
15. Gilboa, N.: Two party RSA key generation. In: Wiener, M. (ed.) CRYPTO 1999.

LNCS, vol. 1666, pp. 116–129. Springer, Heidelberg (1999). https://doi.org/10.
1007/3-540-48405-1 8

https://doi.org/10.1186/s42400-019-0025-z
https://doi.org/10.1186/s42400-019-0025-z
https://doi.org/10.1007/s00125-003-1321-3
https://doi.org/10.1007/978-1-4419-7802-8
https://doi.org/10.1007/3-540-48405-1_8
https://doi.org/10.1007/3-540-48405-1_8


338 K. Hamacher et al.

16. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game. In: STOC
(1987)

17. Hahn, L.W., Ritchie, M.D., Moore, J.H.: Multifactor dimensionality reduction soft-
ware for detecting gene-gene and gene-environment interactions. Bioinformatics 19,
376–382 (2003)

18. Hamacher, K.: PETS genome privacy workshop (2014)
19. Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending oblivious transfers effi-

ciently. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 145–161. Springer,
Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4 9

20. Jarvinen, K., Leppakoski, H., Lohan, E.S., Richter, P., Schneider, T., Tkachenko,
O., Yang, Z.: PILOT: practical privacy-preserving Indoor Localization using OuT-
sourcing. In: EuroS&P (2019)

21. Kamara, S., Raykova, M.: Secure outsourced computation in a multi-tenant cloud.
In: IBM Workshop on Cryptography and Security in Clouds (2011)

22. Kim, Y., Park, T.: Robust gene-gene interaction analysis in genome wide associa-
tion studies. PloS One 10, e0135016 (2015)

23. Kira, K., Rendell, L.A.: A practical approach to feature selection. In: Machine
Learning (1992)

24. Kolesnikov, V., Kumaresan, R.: Improved OT extension for transferring short
secrets. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp.
54–70. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40084-1 4

25. Kolesnikov, V., Sadeghi, A.-R., Schneider, T.: Improved garbled circuit building
blocks and applications to auctions and computing minima. In: Garay, J.A., Miyaji,
A., Otsuka, A. (eds.) CANS 2009. LNCS, vol. 5888, pp. 1–20. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-10433-6 1

26. Kolesnikov, V., Schneider, T.: Improved garbled circuit: free XOR gates and
applications. In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M.,
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Abstract. With the growing popularity of artificial intelligence (AI)
and machine learning (ML), a wide spectrum of attacks against deep
learning (DL) models have been proposed in the literature. Both the eva-
sion attacks and the poisoning attacks attempt to utilize adversarially
altered samples to fool the victim model to misclassify the adversarial
sample. While such attacks claim to be or are expected to be stealthy,
i.e., imperceptible to human eyes, such claims are rarely evaluated. In
this paper, we present the first large-scale study on the stealthiness of
adversarial samples used in the attacks against deep learning. We have
implemented 20 representative adversarial ML attacks on six popular
benchmarking datasets. We evaluate the stealthiness of the attack sam-
ples using two complementary approaches: (1) a numerical study that
adopts 24 metrics for image similarity or quality assessment; and (2) a
user study of 3 sets of questionnaires that has collected 30,000+ anno-
tations from 1,500+ responses. Our results show that the majority of
the existing attacks introduce non-negligible perturbations that are not
stealthy to human eyes. We further analyze the factors that contribute to
attack stealthiness. We examine the correlation between the numerical
analysis and the user studies, and demonstrate that some image quality
metrics may provide useful guidance in attack designs, while there is still
a significant gap between assessed image quality and visual stealthiness
of attacks.

Keywords: Adversarial machine learning · Attacks

1 Introduction

In the past decade, machine learning, especially deep learning (DL), has gained
incredible success in a wide range of applications, fueling advances in every field
related to big data analysis, such as computer vision, data mining, and natu-
ral language processing. With the growing popularity and adoption of DL, a
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
V. Atluri et al. (Eds.): ESORICS 2022, LNCS 13556, pp. 343–363, 2022.
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wide spectrum of attacks have been proposed. In particular, attacks against the
integrity of deep learning models could be roughly grouped into two categories:
evasion attacks and backdoor attacks. In the evasion attacks, supposedly imper-
ceptible adversarial perturbations are added to the attack samples, so that the
victim models would make highly confident but erroneous classifications for these
samples. In the backdoor attacks, the victim DNNs are compromised through
poisoning or Trojaning, so that they “remember” the specially-crafted triggers
(e.g., patches of pixels, shadows, or stealthy noises) as external features and
classify the trigger-embedded images into wrong labels, e.g., to mis-recognize
a stop sign with a yellow sticker on it as a “go straight” sign. The backdoor
attacks could be further categorized into data poisoning backdoors and neural
Trojans. The data poisoning backdoors inject digitally altered and mislabeled
samples into the training dataset so that a malicious functionality is “learned”
by the victim model. Meanwhile, neural Trojans alter the structure of the victim
DNN by injecting a malicious sub-network that only responds to the adversar-
ial triggers in the testing samples, so that the original task remains (mostly)
unaffected.

The majority of the existing evasion and backdoor attacks are supposed to
be or claim to be stealthy, i.e., the adversarial perturbations and the attack
triggers are expected to be hardly noticeable to human eyes, so that the attacks
are unlikely to be identified even if the administrators manually examine the
training/testing data. However, the quality of the adversarial samples has not
been carefully examined in the literature, while the stealthiness claims are rarely
measured in the attack papers. To the best of our knowledge, very few existing
attacks employed human evaluators to assess the stealthiness of the adversarial
modifications to the attack samples [9,33] or used numerical measurements to
assess the similarity between the attack and the benign images [25,33,51].

In this paper, we are motivated by the questions: for the machine learning
attacks proposed in the literature, how stealthy are they? How can we quan-
titatively assess the attack stealthiness? In particular, we aim to measure the
numerical stealthiness and the user-perceived stealthiness. We have implemented
20 evasion and backdoor attacks over six popular benchmarking datasets. In
numerical analysis, we adopt 24 metrics from the literature to assess the simi-
larities between the attack images and the corresponding benign images, or to
assess the visual quality of the attack images. Some of these metrics are supposed
to reflect the human visual systems or human perceptions of digital images. For
user-perceived stealthiness, we present a large-scale user study with 3 sets of
questionnaires of 1,500+ responses and 30,000+ annotated images, which aim
to answer the questions: could users notice the differences between the original
and the adversarial samples in different attacks? If a knowledgeable or novice
user is presented with attack images without the corresponding benign image,
could the user identify the malicious images? We further correlate the numerical
assessments with the user-perceived stealthiness and discuss our findings.

Our contributions are: (1) We identify a largely neglected issue in adversarial
ML that, while the attack samples are supposed to be or claimed to be stealthy,
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such features are rarely evaluated in the proposed attacks. (2) We present the
first large-scale assessment and comparative study to evaluate the stealthiness
of the attack samples through numerical analysis and user study. And (3) Our
findings are expected to provide a better understanding of attacks against ML
models, especially on how users perceive the maliciousness of the attack samples,
and how auditors could benefit from our findings.

Ethical Considerations. The objective of this project is to enhance the under-
standing of the adversarial attacks against deep learning models. All the attacks
implemented in this project are previously published in the literature. All the
implementations and experiments were conducted in a lab environment. We did
not attack any real-world system. The user studies presented in the paper have
been reviewed and approved by the Human Research Protection Program at the
University of Kansas under STUDY00148002 and STUDY00148622.

The rest of the paper is organized as follows: we introduce the background
of this project in Sect. 2. We present the design and results of the numerical
analysis and the user study in Sects. 3 and 4, respectively, followed by discussions
in Sect. 5. We conclude the paper in Sect. 6.

2 Preliminaries: Deep Learning, Attacks, and Datasets

2.1 Deep Learning and Adversarial Machine Learning

Deep Neural Networks (DNNs). In this paper, we focus on the standard
classification task. Without loss of generality, a DNN model is defined as fθ :
X → Y. fθ maps d-dimensional inputs x ∈ X ⊂ R

d into a label space y ∈ Y ⊂
N+k with k categories. Its decision making process is defined as: p ∈ R

k := fθ(x),
where p is the k-dimensional embedding of the decision confidence in terms of the
label distribution. The final output label corresponds to the maximum element
in p. Given an annotated training dataset Dt = {(xi, yi) : xi ∈ X , yi ∈ Y, 1 ≤
i ≤ k}, the training process is to optimize the model parameters with a loss
function L, e.g., Cross-Entropy Loss: θoptimal = arg min

θ

∑k
i=1 L(fθ(xi), yi).

Attacks against Deep Learning Models. Attacks against ML/DL models
could be roughly categorized into three types [4]: (1) evasion attacks, (2) backdoor
attacks, and (3) exploratory attacks. Both evasion and backdoor attacks attempt
to break the integrity of ML/DL models using adversarial examples that are
seemingly benign, while exploratory attacks aim to break the confidentiality
of the proprietary black-box models. In this paper, we focus on evasion and
backdoor attacks since the majority of such attacks, implicitly or explicitly, make
the stealthiness assumption on the adversarial examples.

Evasion Attacks. Also known as adversarial examples, the evasion attacks add
small perturbation δ to clean sample xbeni to generate the adversarial example
xadv. δ is crafted to satisfy two objectives: (1) the magnitude of δ is limited by a
perturbation budget (e.g. restrictions on lp norm). And (2) xadv will mislead the
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model to generate a wrong output yadv, which could be untargeted (any wrong
label) or targeted (a pre-selected label). The attack is defined as:

yadv = argmax
i

fθ(xadv) �= argmax
i

fθ(xbeni) (1)

Backdoor Attacks. While the evasion attacks attempt to fool a benign (but
vulnerable) model, backdoor attacks inject the malicious functionality into the
victim DNN during model production. The attacker designs a trigger function
T to transform benign examples xbeni into malicious examples T (xbeni). The
backdoored model f ′

θ learns the trigger and associates it with the target label
yt, and classifies T (xbeni) into yt in the testing phase:

yt = argmax
i

f ′
θ(T (xbeni)) (2)

With different attack models, backdoors can be injected by poisoning the train-
ing data [5,18,51], manually permuting the model parameters [12], or injecting
malicious sub-networks into the model (Trojaning) [26,38].

2.2 DNN Attacks Evaluated in This Study

We have implemented 20 attacks (23 different settings) from the literature,
including 10 evasion attacks and 10 backdoor attacks. Unless otherwise spec-
ified, we strictly follow the settings in the original papers. We briefly summa-
rize the attacks with a special focus on adversarial perturbations or backdoor
triggers.

Evasion Attacks. For evasion attacks that need to specify perturbation bud-
gets, the default budget is set to 8 (out of 255 in each RGB channel).

• FGSM. FGSM [17] is an untargeted attack that adds perturbations along the
gradient sign: δ = ε ·sign(∇xL(fθ(x, y))), where ε is the perturbation budget.

• BIM. BIM [24] proposed a targeted variant of FGSM by iteratively updating
perturbations: xt+1 = xt +α ·sign(∇xt

L(fθ(xt, yadv)), where xt denotes xadv

at the tth iteration, and α denotes the step size each iteration.
• MI-FGSM. Momentum-based iterative algorithms are proposed in [10],

in which the accumulated gradient is defined as: gt+1 = μ · gt +
∇xt L(fθ(xt,yadv))

‖∇xt L(fθ(xt,yadv))‖ 1
, and the iterative update is: xt+1 = xt + α · sign(gt+1).

• PGD. PGD [29] improves BIM with an initialization with random noise and
more iterations. The perturbation is projected onto an l∞ ball with radius ε.

• AutoPGD (APGD). AutoPGD [7] extends PGD by combining momentum
and alternative loss functions into an efficient ensemble of attacks. AutoPGD
dynamically adjusts all the parameters.

• FFGSM. FFGSM [45] assumes a weaker/cheaper adversary but significantly
improves the efficiency of adversarial training (defense). FFGSM can be consid-
ered as a one-step variant of PGD that is initialized with uniform perturbation.
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• Deepfool (DF). Deepfool [31] computes the minimal adversarial perturbation
to push the adversarial sample towards the linearized decision boundary. The
gradients are calculated as: xt+1 = xt+

|fθ,adv(xt)−fθ,beni(xt)|
‖∇fθ,adv(xt)−∇fθ,beni(xt)‖2

2
, where fθ,adv

and fθ,beni denote the model outputs corresponding to the target/original
label.

• Carlini & Wagner (CW). C&W [3] finds the minimum perturbation through
an optimization approach. We adopt the l2 constraint in the optimization
objective.

• Smoothfool (SF). Smoothfool [8] uses low-pass filters to generate smooth
adversarial perturbations, which improves attack robustness and transfer-
ability.

• Semantic AE (SAE). Instead of generating artificial perturbations at the pixel
level, [20] semantically modifies the image by converting it into HSV space,
and randomly shifting the Hue and Saturation components.

Table 1. A qualitative comparison of the backdoor attacks.

Datasets CL Attack type Trigger category DB Training method

SC FA FL

AD b© c© × One-to-One Global Noise × � � ×
BN a© b© d© × All-to-One/All-to-All Local Patch � � � ×
BL e© × One-to-One Global Transformation � � � ×
PA e© × One-to-One Local Patch � � � ×
HT c© e© � One-to-One/All-to-One Global Noise × × × �
INS b© c© e© × All-to-One Global Transformation × � � ×
IP-S a© b© c© × One-to-One Global Transformation � � � ×
IP-A a© b© c© × One-to-One Global Noise � � � ×
RP a© b© � All-to-One Global Transformation × � � ×
WM g© h© − All-to-One Local Patch � × × �
SQ g© h© − All-to-One Local Patch � × × �
TNet b© e© f© j© − All-to-One/All-to-All Local Patch � – – –

WN a© b© c© i© × All-to-One Global Transformation × � � ×
Datasets in the published paper: a© MNIST. b© GTSRB. c© CIFAR10. d© US & Swedish Traffic

Signs. e© ImageNet. f© YouTube Aligned Face. g© VGG Face. h© LFW. i© CelebA. j© Pubfig

CL: Clean label poisoning. DB: Whether the benign dataset is unavailable. SC: Train the model

from scratch. FA: Finetune all the layers. FL: Finetune top layers with other layers frozen.

Backdoor Attacks. A detailed comparison of the backdoor attack models and
settings is shown in Table 1.

• Advdoor (AD). Advdoor [49] utilizes a Targeted Universal Adversarial Pertur-
bation (TUAP) trigger, which is claimed to be “small magnitude and human
imperceptible”. Input-specific perturbations are iteratively aggregated to gen-
erate UAP, where existing evasion attacks (e.g., Deepfool) could be employed.

• Badnets (BN). Badnets [18] patch a unique black-and-white square on the
corner of training samples. We follow the settings in [18] and use a 4×4
trigger.
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• Blended & Physical Accessory (BL & PA). [5] employs two trigger genera-
tion strategies: blended injection (BL) for simple digital attacks and physical
accessory injection (PA) for real-world physical attacks. We follow [5] to use
the hello kitty image in BL, and follow [47] to use mug patches in PA.

• HiddenTrigger (HT). HT [36] is a clean-label backdoor, which claims the
poisoned samples to be “natural with correct labels”, while the triggers are
hidden until test time. In HT, we assess the stealthiness of poisoned training
samples.

• Instagram (INS). [27] proposed feature-space attacks that generate triggers
with Instagram filters Nashville and Gotham. We implement the Nashville
filter.

• Invisible Perturbation (IP). [51] propose two strategies to generate “hardly
perceptible” backdoor triggers: patterned static perturbation masks (IP-S)
and targeted adaptive perturbation masks (IP-A).

• Ramp Signal (RP). [2] uses ramp signals as triggers in the poisoned samples.
• TrojanNN (TN). [28] use reverse-engineered adversarial triggers to maximize

the activation of anchor neurons in the DNN. Among the trigger patterns in
[28], we have implemented Watermark (WM) and Square (SQ) in this study.

• TrojanNet (TNet). [38] injects into the victim DNN a small neural component,
which is activated by a predefined trigger pattern to flip the DNN output.
We follow the settings in [38] to implement a 4 × 4 black-and-white square
trigger.

• WaNet (WN). [33] uses elastic image warping as triggers. Human inspection
experiments in [33] demonstrate its outstanding stealthiness.

Fig. 1. Sample images from the benchmarking datasets used in this study.

Attack Categorization. Based on the properties of the injected adversarial
perturbations, we classify the attacks into three categories: (1) Gradient-based
noise (or global noise): FGSM, BIM, PGD, MI-FGSM, DF, FFGSM, APGD,
CW, SF, AD, HT, IP-A. They make small modifications to a large number of
pixels to achieve a global optimization objective. They attack the unrobust deep
features in the victim DNN, while the main contents (the semantic meanings) of
the adversarial images remain unchanged. (2) Local patches: BN, PA, WM, SQ,
TNet. They are all backdoor attacks that modify a small region on adversarial
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images to build salient visual features. The triggers are robust, but they are
usually detectable by trigger reconstruction defenses, e.g., [19,40]. (3) Global
transformation: SAE, BL, INS, IP-S, RP, WN. They make global changes to the
victim images, which may significantly change the appearances of the images.

2.3 The Datasets

In this study, we adopt six datasets that are frequently used as benchmarks
in both the machine learning community and the adversarial ML community.
Please note that, while most of the attacks were originally implemented on a
subset of these datasets, we re-implemented all of them on all six datasets.

A. CIFAR-10. The CIFAR dataset [23] contains 60K tiny images (32 × 32)
labeled in 10 classes, such as automobile, bird, cat, ship, truck, etc.

B. GTSRB. The German Traffic Sign Recognition Benchmark dataset [21] has
51K images of real-world traffic signs in 43 classes. Images are scaled to 32× 32.

C. ImageNet. ImageNet is a large-scale image classification and object recog-
nition benchmark dataset. The dataset used in the ImageNet Large Scale Visual
Recognition Challenge (ILSVRC) 2012-14 contains 1.35 million images that are
manually labeled into 1,000 classes [35]. The images are usually cropped to
224×224. They are significantly larger than the small images in other datasets.

D. MNIST-M. The MNIST dataset1 contains 70,000 binary images of hand-
written digits. The MNIST-M dataset adds color to MNIST by extracting
patches from the BSDS500 dataset and combining them with MNIST [16].

Fig. 2. Normalized numerical assessment results. X-axis: attacks. Y-axis: metrics.

1 Available at: http://yann.lecun.com/exdb/mnist/.

http://yann.lecun.com/exdb/mnist/
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E. SVHN. The Street View House Numbers (SVHN) is another digit classifica-
tion benchmark dataset, which contains 600,000 digit images that are extracted
from house numbers in Google Street View [32].

F. SYNDIGIT. The Synthetic Digits dataset contains 12,000 images that are
synthetically generated by placing digits of various fonts, colors, and directions
over random backgrounds [15]. The MNIST-M, SVHN, and SYNDIGIT datasets
are often used in transfer learning and attacks against transfer learning.

Samples of benign images from the datasets are shown in Fig. 1. The cor-
responding attack images are generated by exploiting the attacks introduced
in Sect. 2.2 on images sampled from the six datasets. They may contain noise
(a.k.a. adversarial perturbation) that is supposed to be invisible to human eyes,
or adversarial patterns such as a sticky note on a stop sign.

3 The Numerical Analysis

3.1 Metrics and Basic Statistics

In this paper, we adopt three categories of metrics in the numerical analysis.
lp Norms: lp norms are widely used in adversarial example attacks to limit the
magnitude of the perturbation. In the rest of the paper, we always use lp norms
normalized by image size, i.e., lp(xadv − xbeni)/|xbeni|, where p = {0, 1, 2,∞}.
Basic Metrics: Most popular metrics in the literature for image similarities:
MSE (mean square error), PSNR (peak signal-to-noise ratio), and SSIM [42].
Additional Metrics: To further explore how the advanced image similarity
or quality measurements may fit into this problem, we have implemented 17
additional metrics. They are roughly categorized into 5 groups:
(1) Simple spatial domain metrics: Average Hash (aHash) [13], Difference Hash
(dHash) [13] and variants of lp norms: relative error in l1 (RE), Elastic-Net
regularization [14], l1 with cosine similarity [30] and l1 with clip function [44].
(2) Structural similarity/quality metrics: Universal Image Quality index (UQI)
[41] and Multi-scale SSIM (MS-SSIM) [43].
(3) Transform domain metrics: Perceptual Hash (pHash) [13], Wavelet Hash
(wHash), Visual Information Fidelity (VIF) [37], Feature Similarity index
(FSIM) [48], l1 loss in the frequency domain (FDL) and focal frequency loss
(FFL) [22].
(4) Spectral similarity: ERGAS [39] and SAM [46].
(5) Metrics based on deep learning: LPIPS [50].

For each attack, we have generated 1,000 adversarial images for each dataset.
We employ the metrics introduced above to assess the attack images and report
the mean assessment values in Tables 2 and 3. In Table 2, we provide a high-level
illustration of how the numbers could be interpreted. Column “ideal” denotes the
output of the metric on two identical images, while “better” denotes whether
a larger or a smaller value indicates “more similar” images (“better” attack).
For example, MSE generates 0 for two identical images, and a smaller value
corresponds to images with higher similarity, i.e., the attack is stealthier in
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Table 2. Image similarity/quality measurements for evasion attacks. Blue: the best
attack (most similar or highest quality) for each metric; red: the worst attack.

Metrics Ideal Better FGSM BIM PGD MIFGSM DF FFGSM APGD CW SF

l0 0 small 0.991 0.863 0.971 0.992 0.709 0.994 0.971 0.647 0.829

l1 0 small 7.632 5.189 5.320 6.282 2.286 6.630 6.068 1.153 4.484

l2 0 small 0.130 0.101 0.101 0.114 0.060 0.116 0.112 0.032 0.121

l∞ 0 small 0.003 0.003 0.003 0.003 0.007 0.003 0.003 0.004 0.012

MSE 0 small 59.20 34.96 35.07 45.09 24.55 47.48 42.51 3.686 65.26

PSNR ∞ large 30.42 32.76 32.75 31.61 40.98 31.37 31.92 44.32 34.40

SSIM 1 large 0.928 0.957 0.957 0.943 0.984 0.940 0.953 0.996 0.963

LPIPS 0 small 0.011 0.005 0.005 0.007 0.001 0.008 0.006 1.9e-4 0.003

aHash 0 small 0.642 0.625 0.533 0.670 0.405 0.587 0.660 0.320 1.442

dHash 0 small 3.035 2.727 2.642 2.908 1.633 2.663 2.973 1.245 4.508

pHash 0 small 1.813 1.620 1.590 1.763 0.800 1.707 1.700 0.610 3.780

wHash 0 small 1.613 1.400 1.318 1.477 0.658 1.473 1.438 0.520 2.527

FDL 0 small 46.28 34.56 34.64 39.96 15.65 41.51 7.49 37.73 21.62

FFL 0 small 35.27 20.84 20.92 26.76 15.11 28.32 25.31 2.233 46.95

ERGAS 0 small 5108 8340 1.0e4 5319 1971 5192 4282 1153 4786

SAM 0 small 0.080 0.060 0.059 0.067 0.030 0.070 0.065 0.016 0.057

MS-SSIM 1 large 0.992 0.995 0.995 0.993 0.998 0.993 0.994 0.999 0.983

FSIM 1 large 0.767 0.782 0.783 0.768 0.888 0.768 0.775 0.920 0.848

VIF 1 ∼1 0.513 0.587 0.587 0.551 0.752 0.543 0.561 0.849 0.600

UQI 1 large 0.990 0.990 0.991 0.990 0.997 0.991 0.992 0.998 0.990

Elastic 0 small 17.95 11.14 11.27 14.04 6.74 14.80 13.36 1.659 16.64

RE 0 small 4.457 2.673 2.509 3.974 1.575 3.626 3.088 0.038 0.495

l1 Cos 0 small 46.07 31.35 32.12 37.96 13.76 40.02 36.63 6.952 27.05

l1 Clip 0 small 7.632 5.189 5.320 6.282 1.919 6.630 6.068 1.146 3.406

this metric. Meanwhile, Fig. 2 shows the detailed distribution in each dataset
after min-max normalization, in which a lighter color (∼1) indicates a stealthier
attack. As shown in the figure, the measurements for each attack demonstrate
very similar patterns across six datasets, i.e., the dataset is NOT a significant
factor in numerical assessments of attack stealthiness.

3.2 Numerical Analysis of Attack Stealthiness

lp Norms (normalized by image size) and attack categorization. The l0

norm indicates the portion of pixels that are modified, while the l∞ norm indi-
cates the maximum change made to a pixel. Both l1 and l2 denote the overall
amplitude of the added adversarial perturbations, while l2 is more sensitive to
large changes. As shown in Tables 2 and 3, the lp norms are good indicators of the
types of the added perturbations: (1) In general, global noise attacks always pro-
duce large l0 (close to 1) but moderate l1, l2, and smallest l∞ (mean = 0.0044).
By design, they introduce a small change (often explicitly limited by lp norm)
to each pixel. (2) Local patches generate smallest l0 (mean = 0.06) and largest
l∞ (mean = 0.067). The mean l1 is smaller than noise-based attacks’, while the
mean l2 is larger. Although local patches are small in size, they make significant
modifications to the pixel values in order to build strong visual features, which
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Table 3. Image similarity/quality measurements for backdoor attacks. Blue: the best
attack (most similar or highest quality) for each metric; red: the worst attack.

Metrics Global noises Local patches Global transformation

AD HT IPA BN PA WM SQ TNet SAE BL INS IPS RP WN

l0 0.937 0.973 0.946 0.015 0.136 0.078 0.057 0.015 0.888 0.983 0.991 0.263 0.878 0.731

l1 8.531 9.866 5.028 1.993 7.822 7.884 5.438 2.102 35.61 24.50 49.38 2.471 11.81 3.413

l2 0.175 0.188 0.104 0.325 0.472 0.588 0.499 0.334 0.829 0.473 1.037 0.083 0.226 0.105

l∞ 0.006 0.005 0.004 0.068 0.057 0.072 0.069 0.069 0.040 0.020 0.060 0.003 0.006 0.013

MSE 113.2 121.0 48.12 333.0 751.8 1302 948.4 355.1 3231 944.3 4225 24.46 181.8 45.86

PSNR 28.09 27.37 34.59 25.21 22.39 17.40 19.01 24.97 16.51 19.78 12.57 34.25 25.55 33.61

SSIM 0.864 0.868 0.962 0.953 0.784 0.660 0.874 0.898 0.646 0.898 0.722 0.973 0.873 0.983

LPIPS 0.019 0.022 0.007 0.034 0.037 0.122 0.072 0.021 0.066 0.007 0.083 8.7e-4 0.021 0.003

aHash 0.972 1.376 0.553 1.670 6.810 6.461 6.288 1.842 5.170 2.003 11.71 0.362 0.610 1.157

dHash 3.927 4.664 2.777 2.453 6.782 8.148 4.372 2.837 6.350 5.158 11.83 1.223 3.473 2.708

pHash 2.510 3.275 1.620 7.747 12.85 10.93 12.95 7.993 6.383 3.897 11.21 0.360 1.513 2.660

wHash 2.248 2.688 1.487 1.687 7.028 7.662 6.258 1.873 5.545 3.358 13.36 0.437 4.465 1.725

FDL 58.69 64.04 29.68 14.00 43.56 136.1 60.64 18.25 171.8 68.57 220.6 12.14 36.02 23.11

FFL 65.98 71.36 28.38 283.3 546.8 657.3 525.4 278.0 2382 806.7 3195 24.24 179.2 32.32

ERGAS 1.3e4 8865 6329 2549 1.0e4 2.7e4 1.2e4 5670 2.0e4 1.5e4 4.3e4 4986 1.0e4 3070

SAM 0.110 0.125 0.060 0.171 0.225 0.313 0.288 0.177 0.289 0.082 0.381 0.045 0.135 0.053

MS-SSIM 0.980 0.982 0.996 0.985 0.818 0.842 0.874 0.957 0.805 0.952 0.881 0.999 0.966 0.996

FSIM 0.734 0.696 0.790 0.960 0.813 0.794 0.840 0.948 0.704 0.821 0.616 0.992 0.747 0.870

VIF 0.393 0.410 0.626 0.879 0.433 0.264 0.679 0.697 0.363 0.587 0.528 0.670 0.405 0.619

UQI 0.979 0.979 0.991 0.988 0.948 0.899 0.959 0.972 0.781 0.939 0.799 0.992 0.969 0.996

Elastic 29.47 32.09 13.65 68.20 156.6 266.6 194.0 72.70 674.6 208.5 884.5 6.869 45.80 11.90

RE 7.872 7.966 4.430 80.77 0.114 0.065 0.065 50.28 256.6 0.266 153.8 0.072 21.41 0.064

l1 Cosine 51.58 59.55 30.38 12.19 47.79 49.05 33.75 12.83 215.5 147.2 297.8 14.91 71.21 20.58

l1 Clip 6.406 7.857 4.213 0.153 1.138 0.608 0.393 0.153 7.356 8.466 9.307 2.467 7.896 2.682

significantly impact the l2 and l∞ norms. (3) Global transformation attacks
introduce moderate changes globally, which result larger l0, l1, l2, but mod-
erate l∞ (mean = 0.024). IP-S is an exception in that it employs a scattered
global pattern, so that it moderately modifies a relatively small portion of pixels
(l0 = 0.263, l1 = 2.471) distributed over the entire image.

MSE, PNSR, and SSIM. CW produces the best overall MSE (3.686) and
PNSR (44.32). Gradient-based attacks all result in smaller MSE ([3.686, 121]),
local patch backdoors produce moderate MSE ([333, 1302]), while global trans-
formation attacks generate variable MSE (three attacks in [24.46, 181.8] and
others in [944.3, 4225]). PNSR generates very similar rankings and patterns as
MSE. SSIM imitates the Human Visual System (HVS) to measure the structural
similarity based on luminance, contrast, and structure. CW again produces the
best SSIM (0.996). Among local patch backdoors, BN generates the best SSIM
of 0.953, while WM gives the worst SSIM of 0.660. Among global transforma-
tion attacks, WN provides the best SSIM of 0.983, while SAE provides the worst
SSIM of 0.646. In our experiments, both PNSR and SSIM are highly (negatively)
correlated with MSE, with Spearman correlation coefficients of −0.92 and −0.86.

In summary, noise-based attacks significantly outperform the other two cat-
egories in all three metrics with averages of 53.35, 33.38, and, 0.943 respectively.
Two global transformation attacks, SAE and INS, perform the worst in all three



On the Stealthiness of Attacks Against Deep Learning Systems 353

metrics, which is understandable since they have very different design philoso-
phies that do not seek to minimize perturbation.

Additional Image Quality Metrics. IP-S appears to be the most stealthy
with dHash, pHash, wHash, and FSIM. BN performs the best with VIF and
l1, while CW is the best for all other measurements. In general, gradient noise
attacks perform better than the other two categories in most cases. IP-S again
appears to be an outlier among global transformation attacks. Most of the met-
rics demonstrate strong correlations with at least one of MSE, PNSR, or SSIM
(absolute correlation coefficient > 0.8). These metrics will be further explored
in comparison with the results from the user study.

4 The User Study

In this section, we evaluate the likelihood of adversarial samples escaping human
users. We mimic an auditing scenario, in which auditors/defenders examine
potentially suspicious images in an attempt to identify true attack samples.

4.1 Research Design

Based on the level of knowledge the auditor/defender has about the dataset, we
define three defense models:

Model I. Informed Defenders (White Box). The Informed Defenders have
full knowledge of the target dataset. They are capable of making side-by-side
comparisons of the original and the adversarial samples in a white-box manner.
They represent the strongest type of defenders, who more likely exist as the
owners of the original datasets in defense against training data poisoning.

Model II. Knowledgeable Defenders (Grey Box). The Knowledgeable
Defenders have reasonable knowledge about the benign dataset. When they
manually inspect the potentially adversarial samples, they can refer to benign
samples from the same dataset. However, they do not possess the exact original
images that correspond to the suspect samples, i.e., no side-by-side comparison.

Model III. Referenceless Defenders (Black Box). The Referenceless
Defenders have little or no access to the original dataset. They inspect the poten-
tially adversarial samples without referring to benign samples. They represent
the weakest type of defenders, who often exist among the novice users, who
download and reuse pre-trained models from the Internet, e.g., Model Zoo.

In Defender Model I, attack stealthiness is defined as the invisibility of the
adversarial perturbations–when the auditor notices the noise/patch, the attack
is likely discovered. In Models II and III, attack stealthiness is defined as visual
benignness, i.e., the attack examples are expected to be visually consistent with
the examiners’ psychophysical perceptions of normal images. The perceptions
will differ with or without knowing the dataset.
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To mimic each type of defenders, we have designed three user studies2. In each
user study, an IRB information statement is first displayed to the participant,
followed by a link to the questionnaire. In each questionnaire, 20 (sets of) images
are presented to the participant for inspection. ImageNet images are downsized
to 200 × 200, while the smaller images (e.g., GTSRB, CIFAR) are enlarged to
4× the original size, and padded with white padding to 200 × 200.

Exp I. Informed Defenders (White Box). The questionnaire contains 20
pairs of images: the first in each pair is a benign image randomly selected from
the datasets introduced in Sect. 2.3; the second is the adversarial image that
is altered by a random attack in Sect. 2.2. For quality control, we include 10%
benign images as the second, i.e., two images are numerically identical. Part of
the questionnaire is shown in Fig. 3 (A). We ask the user to inspect each pair
and identify whether the two images look identical.

Fig. 3. Sample questionnaires used in the user study.

Exp II. Knowledgeable Defenders (Grey Box). As shown in Fig. 3 (B),
the questionnaire first displays three benign images from a random dataset to
be used by the participant as reference images. The questionnaire then shows 20
different images from the same dataset as the reference images. For each image,
we ask the participant to select if it appears to be benign or suspicious.

Exp III. Referenceless Defenders (Black Box). As shown in Fig. 3 (C),
the questionnaire is very similar to the Knowledgeable Defenders’ questionnaire,
except that no reference image is displayed.

4.2 The User-Perceived Attack Stealthiness

We sent the questionnaires to senior/graduate CS students in three institutions
which the authors are affiliated with. We intentionally select CS students because
they have basic understanding of computer systems and programming, while
some of them have prior knowledge of AI/ML or even adversarial ML. They

2 The user studies have been approved by the Human Research Protection Program
at the University of Kansas under STUDY00148002 and STUDY00148622.
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better mimic the system administrators or ML/AI users in real world applica-
tions. In six weeks, we collected 1,526 responses with 30,369 total annotations,
including 504, 512, and 510 responses, with 9,991, 10,209, and 10,169 annotations
to Experiments 1, 2 and 3, respectively.

We present the detection rates from all the experiments in Fig. 4. The detec-
tion rate is defined as the proportion of annotations that labeled a pair of images
as “different” (Exp 1) or labeled an image as “unnatural or malicious” (Exp 2
and 3). A lower detection rate indicates a stealthier attack.

Exp I. Informed Defenders. The average detection rate is 75.9%. The detec-
tion rates of 17 attacks were higher than 70%, while 11 attacks were detected in
more than 85% of the tests. The statistics show that majority of the adversarial
samples are highly noticeable, i.e., not stealthy, in side-by-side comparisons with
the corresponding benign images. The median task completion time was 91 s (for
20 image pairs), indicating the level of effort needed in an audit of the training
or testing dataset. WN and CW significantly outperform the other attacks, with
detection rates at 28.5% and 23.3%, while detection rates of SQ and WM are as
high as 98.9% and 98.7%. In general, noise-based evasion attacks appear to be
stealthier than the others with a 62.0% mean detection rate, while patch-based
backdoors are the least stealthy with a 92.7% mean detection rate.

Fig. 4. Detection rates (%) from user studies. Exp I: informed defender; II: knowledge-
able defender; III: referenceless defender. A lower rate means a stealthier attack.

Exp II. Knowledgeable Defenders. The average detection rate drops to
62.2%, i.e., the adversarial images have better chances to escape human audi-
tors. Detection rates decrease in every attack except SQ, while the median task
completion time decreases to 66 s. The most and least stealthy attacks remain the
same as Exp 1: WN with a 17.8% detection rate and SQ with a 99.1% detection
rate. Noise-based evasion attacks are the most stealthy with a mean detection
rate of 49.4% (12.6% decrease from Exp 1). The patch-based backdoors are the
least stealthy with a detection rate of 89.0% (3.7% decrease).

Exp III. Referenceless Defenders. The average detection rate increases
slightly from 62.2% in Exp II to 67.9% in Exp III. The distribution demon-
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strates a high correlation with Exp II with a Spearman correlation coefficient
of 0.97. WN and SQ remain the most and least stealthy attacks with detection
rates of 32.6% and 98.6%, respectively. Global transformation attacks become
the most stealthy category with a 53.7% mean detection rate.

Observations on Attack Categories. For attacks with different categories of
injected adversarial perturbations, we observed distinct behaviors across three
experiments: (1) The global-noise-based evasion attacks are consistently among
the more stealthy types of attacks across all three experiments, with mean detec-
tion rates in the range of [49%, 61%]. While the perturbation budget introduces
a limit to the per-pixel modifications, the injected noise pattern is still notice-
able to 50%+ of the users, with or without reference/knowledge to the benign
dataset. (2) The global-noise-based backdoors are significantly less stealthy than
the evasion attacks although they exploit similar types of perturbations. Such
backdoor attacks attempt to use weak global noise to generate salient features
to create robust backdoors, which appears to be difficult–the noise levels are
higher than the noise-based evasion attacks, therefore, the backdoor attacks are
noticeable to 70% to 80% of the users. (3) Local-patch-based backdoors are con-
sistently the least stealthy attacks in all settings. The mean detection rates of
89% to 92% indicate that they can hardly escape human auditors. (4) Compared
with other attack categories, global transformation attacks demonstrate a very
unique pattern. They have a mean detection rate of 72.9% in side-by-side com-
parisons in Exp I, while the mean detection rate significantly drops to ∼50% in
Exps II and III. In particular, the Instagram attack was detected at 98.6% in
Exp 1 but only 33% to 39% in Exps II and III. That is, users are significantly
more likely to be fooled by such attacks without side-by-side comparisons.

Fig. 5. Detection rates (%) for different datasets in Exp II: Knowledgeable Defenders.

The Impact of Image Size and Content. While we have observed highly
consistent results across six datasets in numerical assessments, the user study
results are different–our results show that the size and quality of the images may
significantly affect user-perceived attack stealthiness. For instance, we present
the Exp II detection rates for three datasets (CIFAR, ImageNet, SYNDIGIT) in
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Fig. 5. We can observe the following: (1) For the auditors, smaller static patches
(BN, PA, TNET) are stealthier in larger images (ImageNet). (2) Global trans-
formation attacks (especially BL and WN) also appear to be stealthier in larger
images since the per-pixel modification is weaker. (3) For images with more com-
plex content (ImageNet), the noise-based evasion and backdoor attacks become
stealthier to users/auditors. (4) For images with a relatively simple foreground
and a clean background (e.g., SYNDIGIT), the detection rate is high in the
majority of the attacks, i.e., regardless of the type of the added perturbation,
the adversarial samples appear highly suspicious to human eyes.

Referenceless Defenders. We initially expected the referenceless defenders to
be the weakest. However, results in Sect. 4.2 show that, the true detection rate
increases in Exp III in comparison with Exp II. That is, the defenders/auditors
tend to get more aggressive in identifying potentially adversarial samples, when
they do not have reference to benign data. While the false positive rate increases,
i.e., benign samples are mislabeled as suspicious, the true adversarial samples
are more likely to be identified. In the literature, we have seen discussions that
“adversarial examples are likely to escape novice defenders when they are unfa-
miliar with the new testing samples or have not previously seen the testing
dataset.” Such claims are rejected by our experimental results.

Error Rates with Benign Samples. In each experiment, a portion of users
flagged the benign images as “different” or “malicious”. The error rates are
5.23%, 12.46%, and 23.70% in Experiments I, II, and III, respectively. The errors
are explained by two main reasons: (1) there are always human errors in any type
of data labeling, e.g., [34] reports a 3.3% error rate across 10 image datasets and
a 6% error rate in ImageNet validation set. The 5.23% base error rate in Exp I
is in line with reports in the literature. (2) Some benign benchmarking images
do appear to be suspicious, e.g., a significant portion of the tiny images contain
blurs, unnatural edges, or objects. As shown in Fig. 1 (D), MNISTM is the
most “naturally suspicious” dataset, with 30.3% and 48.8% error rates in Exp
II and III, respectively. The 18.5% difference indicates that a small number of
reference examples in Exp II effectively help the user/auditor to reduce benign
errors. Meanwhile, the error rates with ImageNet remain under 5.5% across all
experiments, which shows that regular users are highly capable of recognizing
benign high-resolution images even with limited or no reference.

MTurk Study. We initially planned to utilize Amazon Mechanical Turk to
conduct the same set of experiments. In the test with Exp I, we injected two
pairs of digitally identical images and two pairs of totally different images in
each questionnaire for quality control. With 200 questionnaires (all in Exp I,
$0.50 per questionnaire, workers with >95% approval rates), we received almost
completely random annotations. Even with the quality control questions, the
detection rates were close to 50% for both identical and totally different image
pairs. This is consistent with recent reports on substantial decreases in MTurk
data quality caused by fraudulent workers or bots [1,6,11]. We eventually gave
up the MTurk study due to the cost and data quality concerns.
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Table 4. Correlation between numerical assessments and detection rates from the user
study. Bold: top 3 correlations in each setting; red: p-value> 0.05.

Exp I. Informed Defenders in All Attacks

l0 l1 l2 l∞ MSE PSNR SSIM LPIPS aHash dHash pHash wHash

S -0.16 0.49 0.80 0.68 0.79 -0.82 -0.77 0.78 0.67 0.62 0.75 0.66

K -0.07 0.39 0.65 0.51 0.63 -0.67 -0.62 0.63 0.54 0.48 0.58 0.52

FDL FFL ERGAS SAM MSSSIM FSIM VIF UQI Elastic RE l1Cos l1 Clip

S 0.61 0.78 0.68 0.82 -0.76 -0.27 -0.37 -0.77 0.79 0.35 0.49 0.04

K 0.49 0.62 0.53 0.67 -0.61 -0.22 -0.29 -0.61 0.63 0.31 0.39 0.12

Exp II. Knowledgeable Defenders in All Attacks

l0 l1 l2 l∞ MSE PSNR SSIM LPIPS aHash dHash pHash wHash

S -0.35 0.22 0.57 0.54 0.55 -0.59 -0.58 0.64 0.40 0.32 0.53 0.41

K -0.20 0.17 0.44 0.42 0.43 -0.47 -0.45 0.50 0.29 0.22 0.40 0.32

FDL FFL ERGAS SAM MSSSIM FSIM VIF UQI Elastic RE l1 Cos l1 Clip

S 0.35 0.55 0.45 0.63 -0.55 -0.03 -0.27 -0.52 0.55 0.20 0.22 -0.21

K 0.28 0.43 0.33 0.51 -0.42 -0.06 -0.25 -0.41 0.43 0.19 0.17 -0.06

Exp III. Referenceless Defenders in All Attacks

l0 l1 l2 l∞ MSE PSNR SSIM LPIPS aHash dHash pHash wHash

S -0.30 0.14 0.45 0.38 0.42 -0.48 -0.50 0.59 0.30 0.23 0.47 0.31

K -0.17 0.11 0.38 0.27 0.37 -0.40 -0.40 0.46 0.24 0.17 0.34 0.25

FDL FFL ERGAS SAM MSSSIM FSIM VIF UQI Elastic RE l1 Cos l1 Clip

S 0.29 0.39 0.34 0.55 -0.45 -0.10 -0.28 -0.39 0.43 0.25 0.15 -0.24

K 0.23 0.34 0.25 0.44 -0.37 -0.10 -0.25 -0.31 0.37 0.23 0.12 -0.10

Subset of Exp II. Knowledgeable Defenders: Noise-based Attacks.

l0 l1 l2 l∞ MSE PSNR SSIM LPIPS aHash dHash pHash wHash

S 0.74 0.78 0.75 0.05 0.72 -0.80 -0.77 0.81 0.42 0.44 0.53 0.60

K 0.56 0.67 0.63 0.06 0.60 -0.67 -0.65 0.70 0.33 0.32 0.43 0.49

FDL FFL ERGAS SAM MSSSIM FSIM VIF UQI Elastic RE l1 Cos l1 Clip

S 0.81 0.71 0.70 0.79 -0.64 -0.78 -0.75 -0.68 0.73 0.82 0.78 0.84

K 0.69 0.59 0.57 0.67 -0.54 -0.64 -0.64 -0.56 0.61 0.72 0.67 0.72

Subset of Exp III. Referenceless Defenders: Noise-based Attacks.

l0 l1 l2 l∞ MSE PSNR SSIM LPIPS aHash dHash pHash wHash

S 0.60 0.71 0.70 0.04 0.66 -0.75 -0.70 0.75 0.37 0.37 0.41 0.47

K 0.46 0.60 0.61 0.05 0.59 -0.64 -0.60 0.65 0.33 0.30 0.36 0.40

FDL FFL ERGAS SAM MSSSIM FSIM VIF UQI Elastic RE l1 Cos l1 Clip

S 0.79 0.63 0.61 0.73 -0.54 -0.75 -0.69 -0.59 0.67 0.80 0.71 0.79

K 0.67 0.57 0.50 0.63 -0.48 -0.61 -0.59 -0.49 0.60 0.68 0.60 0.65

4.3 Correlation: Numerical Metrics vs. User Perceived Stealthiness

Some of the image similarity/quality metrics in Sect. 3) are designed to reflect
the human visualization system. Now, we further investigate whether they could
be used to assess the user-perceived attack stealthiness. To investigate the corre-
lations between numerical analysis and the user studies, we employ two metrics:
Spearman Rank Order Correlation Coefficient (S or SROCC) and Kendall Rank
Order Correlation Coefficient (K or KROCC). We do not use the popular Pear-
son correlation because our data do not follow normal distribution.

First, we report the correlation between the numerically assessed stealthiness
(24 metrics in Tables 2 and 3) and user-perceived stealthiness (three user studies
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in Sect. 4) across all 23 attacks. The results are shown in the top 3 sections in
Table 4. We reject the null hypothesis when the p-value exceeds 0.05 and mark
the correlation coefficients as red in the table. In Exp I, most of the image
similarity/quality metrics fit well with the detection rates (DR): 11 out of 24
metrics show strong correlations in SROCC (|S|>0.7). That is, attacks assessed
with lower distance/error/noise (or higher similarity/quality) are less likely to be
identified in Exp I. In particular, SAM, PNSR, and l2 demonstrate the strongest
correlation with >0.8 on SROCC and >0.65 on KROCC.

However, the correlations are significantly weaker in Exps II and III. None
of the metrics shows strong correlations with DR, while only 10 metrics show
moderate correlations (0.4<|S|<0.7) with DR in Exp II in both SROCC and
KROCC, and 2 metrics show moderate correlations in Exp III. Overall, SAM [46]
and LPIPS [50] appear to be the most consistent with human perceptions in all
three experiments, however, the correlations are only moderate with knowledge-
able and referenceless defenders. Meanwhile, image similarity/quality metrics
using structural information or deep features demonstrate better performance.

Meanwhile, we also evaluate the correlation between the numerically assessed
and user-perceived stealthiness of each category of attacks. We found strong
correlations in global-noise-based attacks, as reported in the last two sections
of Table 4. That is, the image similarity/quality metrics could properly evaluate
the strength of the injected global perturbation in a way that is consistent with
user perceptions. Last, the correlations are weak in other attack categories.

In summary, none of the existing image similarity/quality metrics could accu-
rately assess users’ perceptions of attack stealthiness in all attacks. However,
some metrics have shown promising performance in a subset of the attacks.

5 The Stealthiness Assumption Revisited

Finally, we discuss the reflections of our findings w.r.t. ML attack stealthiness
and practicality, which may contribute to a better understanding of the attacks.

Most of the existing ML attacks in the literature explicitly or implicitly
employ the stealthiness assumption. The underlying rationale is that it may
be difficult for less experienced users to examine the DL model architecture,
code, or parameters, however, even novice users could examine training/testing
images and identify anomalies. Here we revisit such assumptions and discuss
their practicality based on our findings.

• Evasion attacks. Many evasion attacks in the literature explicitly claim
to be stealthy and enforce stealthiness using a perturbation budget. Results
from our user study show that majority of them are still highly noticeable
even to users without reference images. Meanwhile, we also show that some
image similarity/quality metrics could be employed to effectively predict the
user-perceived stealthiness of the attack images. For an attack to be stealthy
in practice, a tight threshold (high similarity or low distance) must be set for
the metrics.
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• Data poisoning backdoors. Conventional data poisoning backdoors do not
assume stealthiness for the poisoned training samples, since they are designed
to carry labels that are visually wrong. Clean label poisoning attacks have been
proposed to tackle this issue by using adversarial samples that appear to carry
the correct labels. However, as demonstrated in our user study, the clean label
poisoning attacks are highly detectable by users with or without reference.
When the attack attempts to train the DNN to learn a salient feature from weak
perturbations, the actual perturbation is too strong to escape human eyes.

• Patch-based backdoors. In general, the patch-based backdoors appear to
be the least stealthy, except for the tiny patches on larger images, e.g., BN
and TNET on ImageNet. In order for the patches to be learned by the victim
DNN as robust features, the patches must have reasonable size and salient
visual features, which is against the stealthiness assumption.

Finally, we would like to answer this question from our experiments and
observations: what makes an attack stealthy, i.e., what makes the adversarial
image less likely to be identified by a human auditor?

(1) Scale of Perturbation Matters. Attacks with extremely low perturbation
budget are more likely to escape human evaluators, especially in global-noise-
based attacks. In practice, a global perturbation budget of 8, or a normalized l1

in the range of [5, 8] appears to be too strong to be unnoticeable.

(2) Size of Perturbed Region Matters. Attacks that modify a relatively
smaller portion of the victim image, i.e., attacks with a very small l0, are more
likely to escape evaluators.

(3) Image Content Matters. Attacks on images that are fully filled with fore-
ground and have complex content are more likely to escape human evaluators,
while most of the attacks, especially the noise-based ones, are very noticeable
on a clean background (e.g., blue sky, white wall).

In practice, it would be very difficult to design an attack that satisfies both (1)
and (2), since such weak perturbations are unlikely to trigger robust responses
from the victim DNN. We have not seen such an attempt in the literature yet.
Meanwhile, when an attack achieves one of (1) and (2) on images satisfying
(3), the attack is quite stealthy to human eyes, e.g., CW on ImageNet. Last,
a different design philosophy has been proposed in the literature, e.g., SAE
and INS. Such attacks do not seek to minimize the perturbation or to hide the
perturbation, instead, they attempt to apply special visual effects on the victim
images, so that the adversarial samples, although significantly different from
the victim images, appear to be benign by themselves. The adversarial samples
can hardly escape side-by-side comparisons, however, they could better fool the
auditors if they do not have reference to the benign dataset.

In summary, we argue that user-based evaluation is the golden standard to
validate the stealthiness assumptions in adversarial ML. For global-noise-based
attacks, some image quality metrics could be employed to predict attack stealth-
iness in lieu of a user study. In such metrics, only attacks with extremely low
perturbation (high similarity/quality) may result in practically stealthy attacks.
Very few attacks in the literature have achieved this goal.
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6 Conclusion

In this paper, we present the first large-scale comparative experimental study of
the stealthiness of evasion and backdoor attacks against deep learning systems.
We have implemented 20 attacks (23 different settings) on six benchmarking
datasets. We first present numerical measurements using 24 image quality met-
rics on all the attacks. Next, we design a user study of three questionnaires that
ask users to identify potentially adversarial images in three different settings.
With 1,500+ responses and 30,000+ labeled images, we find that majority of
the attacks in the literature are not really stealthy to human eyes. We also iden-
tify the factors that impact attack stealthiness, e.g., the type of perturbation, the
size, quality, and content of the victim images. We further examine the correla-
tions between numerically assessed image similarity/quality and user-perceived
stealthiness and re-visit the stealthiness of the attacks with our findings.
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Abstract. With growing popularity, deep learning (DL) models are
becoming larger-scale, and only the companies with vast training
datasets and immense computing power can manage their business serv-
ing such large models. Most of those DL models are proprietary to the
companies who thus strive to keep their private models safe from the
model extraction attack (MEA), whose aim is to steal the model by
training surrogate models. Nowadays, companies are inclined to offload
the models from central servers to edge/endpoint devices. As revealed
in the latest studies, adversaries exploit this opportunity as new attack
vectors to launch side-channel attack (SCA) on the device running vic-
tim model and obtain various pieces of the model information, such as
the model architecture (MA) and image dimension (ID). Our work pro-
vides a comprehensive understanding of such a relationship for the first
time and would benefit future MEA studies in both offensive and defen-
sive sides in that they may learn which pieces of information exposed
by SCA are more important than the others. Our analysis additionally
reveals that by grasping the victim model information from SCA, MEA
can get highly effective and successful even without any prior knowledge
of the model. Finally, to evince the practicality of our analysis results, we
empirically apply SCA, and subsequently, carry out MEA under realistic
threat assumptions. The results show up to 5.8 times better performance
than when the adversary has no model information about the victim
model.

Keywords: Privacy in deep learning models · Model extraction
attack · Side-channel attack

1 Introduction

Deep learning (DL) models empower many commercial applications and are
potentially worth millions of dollars [3,12,19]. Until now, most model architec-
tures and topology have been publicly available, but as models become larger-
scale, the increased training cost and difficulty drive companies to prohibit the
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competitors from creating a copy and taking the market share. The cost of
training a DL model comes from both the computational resources and training
datasets. Recent studies have shown that the model extraction attack (MEA),
aiming to train a surrogate model of similar performance with much less training
cost, is a real threat to such efforts of protecting valuable DL models [2,4,14–
16,22,25]. Unfortunately, black-box MEAs require tremendous computational
resources and time overhead [8]. To mitigate the amount of labor and increase the
chances of success, they usually make certain unrealistic assumptions that give
them pre-knowledge about the victim model. For instance, a typical assumption
is that the surrogate model has the same or more complex model architecture
and the same image dimension as the victim [14,15,22].

The growing demand for on-device ML services is fulfilled by offloading their
models to edge/endpoint devices [11], which the adversary may access physically
or via network connections, to improve response times and save bandwidth. All
in all, this recent development in ML computing opened up a new opportunity
that the adversary may exploit as attack vectors to wage side-channel attacks
(SCAs) on the machine running the victim model. For example, when the vic-
tim model and the adversary’s application run on the same device, the cache
memory may be shared between them, which renders the model vulnerable to
the cache SCA [24]. After gathering run-time information leaked via the device
hardware, SCA can provide the adversary essential information about the vic-
tim that includes model architecture (MA) and image dimension (ID) of a DL
model. Such information is essentially identical to the assumed prior knowledge
necessitated for boosting black-box MEAs. This means that with the aid of SCA,
MEA can still build a surrogate model better resembling the target even without
unrealistic initial assumptions on the victim side. However, there is a stumbling
block to the full utilization of SCA for MEA; SCA does not come for free but
requires a great deal of cost and effort to obtain sufficient model information
accurately [8,24]. To improve their work, SCAs usually need to make strong
assumptions on their target systems, which could often be unrealistic or broken
just by simple obfuscation techniques [27]. Therefore, a practical and efficient
way to use SCA for MEA should be to extract only the essential information
required to gain enough knowledge rather than prying into the target device
to collect all sorts of information ignorantly. In order to pinpoint such essential
information, we must understand how each piece of information affects the per-
formance of MEA. Unfortunately, to the best of our knowledge, no studies have
examined extensively the effects of different pieces in the collectable information
on MEA. There are some preliminary studies demonstrating that MEA is robust
to the difference in certain model features, such as MA, as long as the surrogate
model’s complexity is high enough [14,15]. Nonetheless, there has been no ana-
lytical report on the significance of other types of model information like ID in
influencing the effectiveness of MEA.

Our work is the first to present an empirical analysis of the effects of SCA
on MEA by evaluating the relationship between the performance of MEA and
the model information supplied by SCA. We endeavor to empirically verify the
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relationship with various settings such as datasets, attack query budget, and
attack strategy. We delve into linking a particular type of model information
with the outcomes of MEAs by investigating the correlation. We believe that
our analytical report will give a glimpse of what types of model information are
of more value to boost the performance of MEA relatively. Thus, it will enhance
the efficacy of SCAs in their assistance to MEA by letting them concentrate
on such valuable ones. In addition, we demonstrate the practicality of utilizing
ID obtained from SCA to boost MEA by carrying out the experiment under
realistic assumptions. The results achieve up to 5.8x much higher accuracy and
fidelity than the adversary without any prior knowledge. Consequently, we argue
that our work paves the way for future (offensive and defensive) research in DL
model privacy by providing organized knowledge of correlation between existing
MEAs with the SCA-supplied knowledge about the victim model. The following
summarizes our contributions:

– We analyze the effect of model information exposed by SCA on MEA with
different settings: datasets, query budget, and attack strategy.

– We demonstrate how accurately ID of DL models can be estimated by
SCA and perform subsequent MEA with estimated ID under realistic threat
assumptions to evince the practicality of MEA with SCA.

– We provide an informative insight into improving the defense against MEA
allied with SCA by identifying what parts of model information are to be
obfuscated from SCA for maximum defense with minimum effort.

2 Background

While MEA and SCA ultimately share the same goal of extracting the victim
model of high value, their interpretations of a successful attack are different.
MEA aims to obtain a replica of its victim model by copying the functional-
ity. In contrast, SCA intends to extract the structural or architectural model
information, including dimensions of layers and their topology.

MEA strives to create at low cost a surrogate of a high-performance victim
DL model trained with a dataset of both high quality and large quantity. The
most popular method relies on only querying and collecting the inference results
from the victim model. The surrogate model is trained with the data used to
query the victim with the classification result as its label. As the cost of extract-
ing the model increases with querying more samples, recent studies focus mainly
on selecting more valuable samples to reduce the query budget. Ideally, MEA
must be carried out with a pure black-box setting where no model information
are initially exposed to the adversary. However, in reality, to reduce the amount
of labor and increase the chances of their success, many MEA techniques are
evaluated under certain assumptions that they already have prior knowledge
(ID and MA) about the victim model. We find that such assumptions are often
unrealistic in practice as some knowledge can not be available to adversaries in
a black-box setting.
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SCA has long been studied by cyber security researchers for many decades.
In recent years, the use of SCA has been broadened to extract the architectural
information of valuable DL models. Although SCA requires the assumption that
adversaries gain access to hardware resources in the machine running the victim
models, this assumption is deemed plausible these days, as discussed earlier.
SCA attempts to collect model information by exploiting vulnerabilities in the
underlying hardware. Previous studies have shown that SCA can collect mainly
two types of model information, ID and MA. We note here that these are the
same pieces of information somehow given to the adversary by assumptions.
Further details of SCA is explained in Sect. 5.

3 Related Work

3.1 Model Extraction Attack

KnockoffNets [14] is one of the early MEA technique which is designed under
black-box setting. The query samples are selected randomly from out-of-
distribution attack dataset as the adversaries are unaware of the training dataset
used by the victim model. Finally, the output label from the victim model is
paired with the query data (i.e., re-labeled image) and used as training dataset
for the surrogate model which will exhibit a similar functionality as the victim.

ActiveThief [15] proposed another method called uncertainty which is based on
the confidence vector of the query samples. The intuition behind this approach is
that to extract the classification functionality of the victim model, it is beneficial
to concentrate on the query samples that will lie near the decision boundary. By
doing so, the surrogate can be trained much more quickly with fewer query
samples to reach the victim’s classification accuracy.

KnockoffNets and ActiveThief discuss briefly how the knowledge of MA affects
their performance, and conclude that MEAs are relatively robust to (or regard-
less of) the choice of MA for their surrogates if the MA complexity is high
enough. In other words, MEA can achieve good performance as long as the com-
plexity of a surrogate is sufficiently high (usually, higher than the victim model).
This implies that if SCA reveals the exact complexity of MA, the adversary can
set up the surrogate with MA of optimal complexity to maximize the effective-
ness of MEA. Regarding ID, KnockoffNets and ActiveThief are evaluated under
a strong assumption that the adversary is aware of ID of the victim and thus
can set up the surrogate with the same ID. They ignorantly assume that this
essential pre-knowledge could be offered to attackers by convention, and none of
them show how the attackers obtain such information. In this paper, we argue
that this assumption can be fulfilled by employing SCA to decide the victim
model ID in a deterministic manner and will empirically prove that it is indeed
indispensable to the success of MEA.
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3.2 Side-channel Attack

Cache Telepathy [24] utilized cache side-channel attack in estimating the archi-
tectures in MLaaS (Amazon SageMaker [1], Google ML Engine [5]) platforms. By
inferring the size of each layer’s input matrix, they deduce the ID of the model.
Also, they can infer the MA by identifying the topology of layers. To evaluate
the accuracy of their method, the extracted structure is compared to the model’s
original structure. However, they do not show how useful their extracted model
information is to boost MEA, which is necessary to understand the individual
effect of each piece of information on black-box MEA.

4 Analysis of the Effects of Model Information

Fig. 1. Flowchart of Training and Evaluating Surrogate Models through MEA

As described just above, it is evident that an attacker can acquire by SCA the
model information (i.e., ID, MA) pivotal to MEA which otherwise would have
to rely on somewhat ungrounded assumptions to attain its goal. In this work,
we conduct a comprehensive analysis to understand the effects of SCA on MEA.
For this, we evaluate the performance results of MEA for various configurations
of ID and MA, and find the following relationships. R1: Effectiveness of MEA
vs. model information (ID and MA) of the victim. R2: R1 vs. analysis settings
(a: datasets, b: attack query budget, c: attack strategy).

4.1 Training and Evaluation

In this subsection, we elaborate Fig. 1 in further detail, in which the process of
MEA is illustrated by training and evaluating surrogate models.
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Fig. 2. Example of re-labeled image example (Surrogate [224], Victim [32])

Surrogate Model Training. By employing MEA, we trained the surrogate
model following the flow depicted as the solid black line in Fig. 1. We first resize
the original image IO (ID of original image) to IS (ID of the surrogate model)
and resize once more to IV (ID of the victim model). This is a realistic attack
scenario as the adversary is unaware of the victim’s image dimension and is
likely to query the victim with IS . The confidence score that the victim returns
is V (IV ) and the surrogate model is trained with the re-labeled image with the
new label, [IS , V (IV )]. A discrepancy in IS and IV causes the label mismatch,
which is a difference in the classification score of IS and IV given by the victim
model. Figure 2 visually illustrates the re-labeled image where the new label of
IS is given by the classification score of the victim with lower ID (IV ).

Surrogate Model Evaluation. To measure the effectiveness of MEA, we eval-
uated the surrogate model with two separate tests as shown in Fig. 1. Test 1
resizes IO to IV before eventually arriving at IS , and test 2 resizes IO directly to
IS . Test 1 is similar to the current method of evaluation where model informa-
tion including ID (i.e., IV ) is known to adversaries. Test 2 can be considered as
a more realistic way of measuring the accuracy of the surrogate model as ID of
the victim is unknown to the adversary in reality. We note that when ID of the
surrogate is the same as that of the victim, there is no difference between test 1
and test 2 as IS = IV . The result tables (Tables 2, 3, 4, 5 and 7) include both
tests, and the reported surrogate accuracy denotes the best accuracy among the
ones measured every five epochs during the training.

4.2 Analysis settings

Image Dimension (ID). To understand the relationship between IDs and
the MEA effectiveness, we optimize the models with various IDs to achieve the
best accuracy for the victim models. We choose ResNet-50 [7] (Additional result
for VGG16 [21] in Appendix A.2) as the architectures of both the victim and
surrogate models. The ID is represented as a subscript (i.e., RN50[64] represents
ResNet-50 model optimized for 64× 64× 3 images).

Datasets. For ID analysis, the victim models are trained with three widely used
datasets, as shown in Table 1. To achieve a realistic and high-accuracy model,
they are trained by a transfer learning method with a pre-trained model by
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Table 1. Dataset configuration

Dataset Classes Train samples Test samples Original image (IO) Analysis

Victim Indoor [18] 67 14,280 1,340 224× 224× 3 ID& MA

Caltech-256 [6] 256 23,380 6,400 224× 224× 3 ID& MA

CUB-200 [23] 200 5,994 5,794 224× 224× 3 ID

CIFAR-100 [9] 100 50,000 10,000 32× 32× 3 MA

Attack ImageNet [20] 1,000 1.2M 150,000 224× 224× 3 ID& MA

OpenImages [10] 600 1.74M 125,436 224× 224× 3 ID

ISLVRC-2012 (ImageNet) dataset. The accuracy of the trained victim models is
shown in the second column of Table 2. For the attack query dataset, we follow
the common assumption that an adversary is unaware of the dataset used for
training the victim model. The analysis is performed with out-of-distribution
datasets, ImageNet and OpenImages, with enough samples for a large query
budget analysis. We note that OpenImages is an unbalanced dataset where there
are uneven number of samples for each image class. For MA analysis, along with
three forementioned datasets, we added CIFAR-100 as shown in Table 1 and only
ImageNet is used as an attack query dataset. The accuracy of the victim models
is shown in the second column of Table 4 and Table 5.

Attack Query Budget. Various attack query budgets are used for ID analysis
(i.e., 30k, 60k, and 90k). It is designed to verify if the relationship between ID of
the victim and the effectiveness of MEA changes over different query budgets.

Attack Strategy. For ID analysis, two attack strategies are implemented. We
use a random sampling strategy based on KnockoffNets and uncertainty method
from ActiveThief because they exhibit arguably the best performance in MEA.
For MA analysis, KnockoffNets was implemented.

Model Architecture (MA). to understand the relationship between MA and
the effectiveness of MEA, various MAs of different complexities are used to train
the victim and surrogate models: WideResNet-28-k [26] with different k values,
VGG16, VGG19, ResNet-50 and ResNet-101. (Details in Appendix A.1).

4.3 Effect of Image Dimension (ID)

Model Extraction Attack Result. Table 2 depicts the result of MEA with
the relative accuracy (i.e., accuracy of surrogate model relative to that of the
victim which is 1x) as the effectiveness metric. The grey colored boxes denote
that IDs of the victim and the surrogate are the same. The bold type represents
the best accuracy among surrogate models of different IDs. The result confirms
that matching the ID of the victim and surrogate is vital to maximize the efficacy
of MEA. Among the total of 48 cases in the grey colored boxes per metric, 92%
(44/48) achieve the best accuracy. We find only few cases in the upper right
triangular matrix where the surrogate with a higher ID achieved the same or
better performance which is at most 3% higher. However, when ID is different,
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the accuracy of surrogate trained with higher ID (IS > IV ) drop by 0.72x at
worst case (average drop of 0.24x). The decrease is more significant when the
surrogate is trained with smaller ID (IS < IV ), showing 0.73x in accuracy at
worst case (average drop of 0.43x). Between the effectiveness measured by test
1 and test 2 (excluding the cases where Is = IV ), the result from test 1 is
higher for 71% (51/72) of the total cases. This instance can be explained by
label mismatch which is caused by the fact that the new label of IS is given
by IV . When the relative accuracy is measured by test 1, the influence of label
mismatch is diminished as IS is transformed from IV unlike test 2 in which IS

is transformed from IO directly. In short, the effectiveness of MEA is maximized
when the surrogate model’s ID matches the victim model’s. (Ablation study
results in Appendix A.2)

Datasets. We examine if the trend described above is consistent throughout
various datasets. Three different datasets are used for victim models and two
attack query datasets for training the surrogate model. Table 2 shows MEA is
most effective when the surrogate’s ID is identical for all three victim model
datasets which have different number of classes. The effectiveness is generally
higher with ImageNet which achieve higher relative accuracy in 68% (65/96) of
total cases with the average rise of 1.4%. This phenomenon is due to the fact
that the victim models are pre-trained with ImageNet dataset. However, it is
important to note that the trend continues for both attack query datasets (i.e.,
Imagenet and OpenImages).

Attack Query Budget. Figure 3 illustrates changes in the effectiveness of
MEA over various query budgets (30k, 60k, and 90k) The surrogate model that
matches the victim’s ID is marked with a red star marker at each query bud-
get. The result shows that matching the surrogate’s ID to the victim model is
always beneficial through various query budgets. Also, we note that even with a
much less query budget, a higher accuracy can be attained when ID is matched.
In some cases, query-budget-30k with the same ID can achieve a better accu-
racy than query-budget-90k with a different ID. Moreover, as the cost of MEA
increases as the query budget increases, the adversary can save a huge amount
of cost just by training the surrogate with the same ID as the victim.

Attack Strategy. We implement ActiveThief to verify if using a different attack
strategy consorts with the phenomena observed in the previous analysis. The
attack is carried out with 2k initial seed samples and by sampling new 2k samples
for 9 additional rounds (i.e., query-budget-20k). Table 3 shows the similar result
that the surrogates trained with the identical ID achieve the best accuracy.

4.4 Effect of Model Architecture (MA)

Model Extraction Attack Result. In order to investigate how MA informa-
tion of the victim model affects the effectiveness of MEA, we design the analysis
with various MA of different complexities. We note that in order to eliminate
any effects of ID, all models are set to have the same ID. Therefore, the results
shown in Tables 4 and 5 are from both test 1 and 2. Unlike ID analysis, Table 4
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Table 2. ID analysis (Datasets). Effectiveness (Relative Accuracy) of MEA (Knock-
offNets) with query-budget-60k

Victim Model Surrogate Model

Dataset Accuracy Model Attack Query
RN50[32] RN50[64] RN50[128] RN50[224]

Test 1 Test 2 Test 1 Test 2 Test 1 Test 2 Test 1 Test 2

Indoor67 64.78% (1x)

RN50[32]

ImageNet 0.88x 0.88x 0.63x 0.91x 0.59x 0.50x 0.43x 0.16x

OpenImages 0.91x 0.91x 0.69x 0.91x 0.62x 0.44x 0.46x 0.17x

Caltech-256 66.56% (1x)
ImageNet 0.96x 0.96x 0.78x 0.97x 0.75x 0.61x 0.59x 0.28x

OpenImages 0.94x 0.94x 0.75x 0.95x 0.66x 0.53x 0.47x 0.23x

CUB-200 67.02% (1x)
ImageNet 0.86x 0.86x 0.62x 0.80x 0.51x 0.40x 0.35x 0.15x

OpenImages 0.83x 0.83x 0.56x 0.73x 0.48x 0.35x 0.31x 0.14x

Indoor67 72.99% (1x)

RN50[64]

ImageNet 0.33x 0.28x 0.94x 0.94x 0.77x 0.87x 0.69x 0.49x

OpenImages 0.35x 0.29x 0.96x 0.96x 0.85x 0.91x 0.71x 0.53x

Caltech-256 76.81% (1x)
ImageNet 0.51x 0.48x 0.99x 0.99x 0.90x 0.96x 0.85x 0.72x

OpenImages 0.48x 0.45x 0.97x 0.97x 0.87x 0.94x 0.78x 0.69x

CUB-200 77.89% (1x)
ImageNet 0.15x 0.13x 0.88x 0.88x 0.66x 0.79x 0.58x 0.40x

OpenImages 0.13x 0.11x 0.82x 0.82x 0.65x 0.76x 0.55x 0.37x

Indoor67 67.24% (1x)

RN50[128]

ImageNet 0.33x 0.22x 0.82x 0.78x 0.97x 0.97x 0.95x 0.94x

OpenImages 0.33x 0.22x 0.84x 0.80x 1.00x 1.00x 0.96x 0.96x

Caltech-256 76.75% (1x)
ImageNet 0.44x 0.43x 0.78x 0.75x 0.99x 0.99x 0.97x 0.97x

OpenImages 0.43x 0.42x 0.76x 0.73x 0.97x 0.97x 0.95x 0.98x

CUB-200 77.44% (1x)
ImageNet 0.21x 0.15x 0.64x 0.59x 0.91x 0.91x 0.86x 0.87x

OpenImages 0.18x 0.13x 0.60x 0.56x 0.88x 0.88x 0.83x 0.84x

Indoor67 73.51% (1x)

RN50[224]

ImageNet 0.26x 0.25x 0.66x 0.67x 0.90x 0.87x 0.92x 0.92x

OpenImages 0.26x 0.23x 0.69x 0.69x 0.92x 0.90x 0.97x 0.97x

Caltech-256 78.11% (1x)
ImageNet 0.36x 0.39x 0.78x 0.75x 0.95x 0.92x 1.00x 1.00x

OpenImages 0.34x 0.38x 0.74x 0.73x 0.92x 0.90x 0.99x 0.99x

CUB-200 78.17% (1x)
ImageNet 0.17x 0.16x 0.53x 0.52x 0.78x 0.78x 0.89x 0.89x

OpenImages 0.15x 0.14x 0.48x 0.45x 0.74x 0.71x 0.85x 0.85x

shows that MA of higher complexity achieves better accuracy than MA of the
same complexity. Also, Table 5 reveals a similar results as previous studies men-
tioned in Sect. 3.1. While the adversary can benefit from knowing the same
model architecture, the effect is relatively less significant for most cases. Attack-
ing with RN101[224]achieves equally high or higher relative accuracy compared
to attacking with the same model architecture. We conclude that the effect of
MA on MEA becomes insignificant as long as the surrogate model’s MA occupies
a high complexity.

5 Experiments

Our analysis, as explained in the previous section (Sect. 4), suggests that an
adversary knowing model information (i.e., ID) can boost the effectiveness of
MEA. To estimate such information, an adversary can exploit SCA on local
devices on which the victim model is running. In this section, we demonstrate
end-to-end MEA with SCA without any prior knowledge and confirm that our
attack mechanism is realistic and highly effective to achieve virtually the same
ideal performance of MEA exhibited by the previous work assuming that they
somehow manage to obtain model information before actual attacks.
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Surrogate [32] Surrogate [64] Surrogate [128] Surrogate [224]

Fig. 3. ID analysis (Attack Query Budget). Effectiveness (Relative Accuracy) of MEA
(KnockoffNets with ImageNet) for test 1 (solid line) & test 2 (dotted line)

5.1 Experimental Setups for MEA with SCA

Overview. Our SCA infers ID from the Generalized Matrix Multiply (GEMM),
a commonly used building block of DL model implementation, operating in
repeated loops for the matrix multiplication. If our SCA infers the number of
iterations executed in each layer, it can compute the size of the layer’s input
matrix by multiplying the number with known constants. The target of our
SCA, ID, can be inferred in this way because ID is equivalent to the first layer’s
input matrix size. Our implementation of SCA is based on Cache Telepathy [24]
with modifications tailored for our purposes. Figure 4 illustrates the process of
MEA with SCA. Firstly, we generate a dynamic call graph (DCG) that reflects
the execution flow is generated by monitoring GEMM library with noise filtering
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Table 3. ID analysis (Attack Strategy). The effectiveness (Relative Accuracy) of MEA
(activethief with ImageNet) with query-budget-20k

Victim Model Surrogate Model

Dataset Accuracy Model
RN50[32] RN50[64] RN50[128] RN50[224]

Test 1 Test 2 Test 1 Test 2 Test 1 Test 2 Test 1 Test 2

Indoor67

64.78% (1x) RN50[32] 0.82x 0.82x 0.34x 0.30x 0.48x 0.44x 0.46x 0.16x

72.99% (1x) RN50[64] 0.31x 0.27x 0.90x 0.90x 0.70x 0.86x 0.65x 0.50x

67.24% (1x) RN50[128] 0.28x 0.21x 0.78x 0.75x 0.95x 0.95x 0.90x 0.91x

73.51% (1x) RN50[224] 0.17x 0.23x 0.60x 0.65x 0.85x 0.84x 0.88x 0.88x

Table 4. MA analysis 1. The effectiveness (Relative Accuracy) of MEA (knockoffNets
with ImageNet) with query-budget-20k

Victim Model Surrogate Model

Dataset Accuracy Model WRN28-1[32] WRN28-5[32] WRN28-10[32]

CIFAR-100

68.36% (1x) WRN28-1[32] 0.43x 0.56x 0.57x

77.95% (1x) WRN28-5[32] 0.26x 0.36x 0.39x

79.44% (1x) WRN28-10[32] 0.26x 0.37x 0.39x

Table 5. MA Analysis 2. The effectiveness (Relative Accuracy) of MEA (knockoffnets
with ImageNet) with query-budget-20k

Victim Model Surrogate Model

Dataset Accuracy Model V GG16[224] V GG19[224] RN50[224] RN101[224]

Indoor67 78.20% (1x)
V GG16[224]

0.88x 0.86x 0.86x 0.88x

Caltech-256 83.06% (1x) 0.94x 0.92x 0.93x 0.94x

Indoor67 78.13% (1x)
V GG19[224]

0.83x 0.90x 0.87x 0.90x

Caltech-256 85.77% (1x) 0.86x 0.93x 0.92x 0.94x

mechanism. From the DCG, we can infer the number of iterations of loops exe-
cuted in each layer. Secondly, ID of DL model is estimated through the inverse
calculation from the properties of the loops. Finally, estimated ID is used for
subsequent MEA. Each step is described in more detail below.

Threat Assumptions. We performed SCA and MEA assuming that DL model
is a black-box and running on an edge/endpoint device. The adversary is not
given direct access to the victim model, but only the prediction result is available.
For cache-timing attack as a part of SCA, the tracing process by the adversary
is running on the same processor as the victim model’s process to capture the
addresses which are managed by a process running in the background. Such
scenario is realistic as the DL model is off-loaded to the local device. Also, the
adversary is capable of analyzing linear algebra library used in the DL model such
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Fig. 4. Flowchart of MEA with SCA. 1) DCG generation, 2) Noise filtering for DCG,
3) Inverse calculation to estimate ID, 4) MEA with estimated ID

as OpenBLAS [28] which is open-source. We assume that stride and padding are
known to the adversary. For SCA experiment, we used OpenBLAS for GEMM
library with a Linux machine running on a i7-9700 processor that has 8 cores,
64 KB of L1 cache, 256 KB of L2 cache, and 12 MB of shared last-level cache.
The system runs with 64GB of main memory.

Dynamic Call Graph Generation. For the purpose of inferring the number
of loop iterations, we used cache-timing attack as a part of SCA to infer the DCG
that is composed of calls to three key functions, itcopy, oncopy and kernel.
We chose these as key functions because each loop of our interest for generating
DCG is composed of a specific sequence of such functions as shown below.

L1: itcopy-oncopy-kernel-itcopy-kernel
L2: oncopy-kernel
L3: itcopy-kernel

While the victim model is running, the adversary monitors the calls to these
three key functions using Flush+Reload, a common technique used for such pur-
pose. By constantly monitoring the addresses of the key functions, we determine
if one of the addresses has recently been accessed by measuring the access delay
(i.e., cache hit or miss). Three properties of each loop can be deduced from DCG
for the following procedure of MEA with SCA. 1) the number of iterations of
loops (N), 2) short execution time (ST), 3) average execution time (AT). Short
execution time is measured by the last function call and the average execution
time is measured with all other calls. Further detail about the algorithm of DCG
generation is described in Appendix A.3.

Noise Filtering Mechanism. We found that the DCG generation suffers from
the inherent noise that SCA is prone to. We devised a noise filtering mechanism
that is tailored for inferring a precise enough DCG exploiting the characteris-
tics of GEMM computation in the target DL architecture. While running, the
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execution time of each loop iteration is similar to each other except for the last
one because each iteration processes inputs of similar size. For this reason, the
interval between the function calls that we are monitoring is supposed to be
similar to each other. Based on this, we filtered out duplicate observations of
one function calls in two ways. First, we filtered out the function calls observed
shortly after (< 10 time intervals) the previous one, considering that the two
adjacent observation is from a single function call. Second, we used the average
interval between the function calls as a threshold and considered any calls to
itcopy within the threshold as noise.

Inverse Calculation Algorithm. In GEMM matrix multiplication (i.e., m by
k and k by n), m, k, n represent input matrix, weight matrix, and output depth
respectively and they are divided into loops by constant Q, P, and UNROLL
which are pre-defined by the GEMM library. Therefore, after analyzing DCG
to deduce three properties of each loop described above, we estimate ID of DL
models by the inverse calculation. Firstly, m value was calculated from properties
of L2. As m is divided by P to form L2 except for the last two iterations,
which is operated by an unit of (P + m mod P )/2, m can be obtained by the
multiplication of P with the number of iterations of L2. Secondly, n is divided
by 3 ·UNROLL to form L3 and depending on the AT of L3, the last iteration is
operated with either 3 ·UNROLL or UNROLL. Therefore, we inversely calculate
n by the multiplication of UNROLL with the number of iterations of L3. Thirdly,
if the number of L1 is less than two, we need to estimate the average execution
time of L1 by matrix multiplication. The algorithm can be found in Appendix
A.3. Once we obtained all properties of L1, the value of k is estimated in a
similar fashion as above. Finally, with all estimated values, ID of DL model is
estimated as shown in Algorithm 1.

Algorithm 1: Estimate Input Dimension
Input: P , Q, UNROLL, stride, padding, N(Number of iterations of loop),

ST (Short execution time of loop), AT (Average execution time of loop)
Output: ID: Input Dimension

1 m ← ((NL2−2)+2∗(STL2/ATL2))∗P � Find m

2 if STL3 < (ATL3/2) then � Find n

3 n ← (NL3 − 1) ∗ 3UNROLL + UNROLL
4 else
5 n ← NL3∗3UNROLL

6 if NL1 < 2 then � Find k

7 ATL1 ← EstimateL1(m,n,Q)
8 k ← (STL1/ATL1)∗Q
9 else

10 k ← ((NL1 − 2) + 2∗(STL1/ATL1))∗Q
11 kernel ← sqrt(k/3)
12 ID ← (sqrt(m) + (kernel −1) −2 ∗ padding) ∗ stride
13 return ID
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Fig. 5. DCG Generation Result for RN50[128]Victim Model

Table 6. Image dimension estimation result. Values in SCA and target columns rep-
resent the estimated and actual values respectively

m n k kernel ID

Victim model SCA Target SCA Target SCA Target SCA Target SCA Target

RN50[128] 4118.5 4096 72 64 35.7 27 3.5 3 129.3 128

5.2 SCA Results

Dynamic Call Graph Generation. Figure 5 shows the result of DCG gen-
eration after the noise filtering mechanism which only took less than 0.016 s to
construct. From this result, three properties described above are calculated. We
note that the observations about kernel is omitted for brevity. Firstly, the num-
ber of each loop iteration (NL) is calculated by counting the number of itcopy
and oncopy function calls for L2 and L3 respectively. There are six oncopy calls
between 1,900 and 2,000 time intervals and 12 itcopy calls after 2,000 intervals
and 1 itcopy at the beginning. From these, NL2 and NL3 are estimated as 13
and 6 respectively. NL1 is estimated to be 1 as no calls to oncopy has been
observed after the last itcopy. Also, the average and short execution time of
each function call can also be estimated from the result by comparing the time
intervals as described in Sect. 5.1. All properties collected from DCG for different
victim models can be found in Appendix A.3.

Image Dimension Estimation. In our demonstration, pre-defined constant
values of P, Q, and UNROLL are 320, 320, and 104,512 respectively. Each of m,
n, and k values are inversely calculated according to Algorithm 1 and kernel is
calculated by taking the square root of (k/3) (i.e., RGB channels). Finally, we
round the calculated output to the nearest whole number to estimate ID of the
victim model. Image dimension estimation result of different victim models are
illustrated in Table 6. We see that even with some discrepancies in estimated
values of m, n, and k, ID of the victim models was retrieved accurately with
only ID of RN50[128] being off only by 1.
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Table 7. Subsequent MEA (with ImageNet) result. RN50[129] (with estimated ID)
shows slightly worse performance than RN50[128]

Victim Model Surrogate Model

Dataset Accuracy Model RN50[32] RN50[64] RN50[128] RN50[129] RN50[224]

Indoor67 67.24% (1x)

RN50[128]

0.22x 0.78x 0.97x 0.99x 0.94x

Caltech-256 76.75% (1x) 0.43x 0.75x 0.99x 0.96x 0.97x

CUB-200 77.44% (1x) 0.15x 0.59x 0.91x 0.87x 0.87x

5.3 MEA with Model Information from SCA

We performed subsequent MEA with estimated ID from SCA to demonstrate
the benefit of using the estimated ID in MEA. We only carried out MEA only
for RN50[128] as the victim with RN50[129] as a surrogate model for the worst
case experiment (More results in Appendix A.3). The result in Table 7 illustrates
that RN50[129] (with estimated ID) achieves a slightly worse performance as ID
is not the exact match. However, such performance is still better than most
of MEAs with different IDs as shown in Sect. 4.3 because estimated ID was
relatively closer to IV . At most, the adversary can achieve up to 5.8 times better
relative accuracy than the worst case RN50[32]. This result backs the hypothesis
that employing SCA to collect model information such as ID of the model helps
boost the performance of MEA.

6 Discussion and Limitations

Our work targets the present and future computing environments where DL mod-
els are not only running on central servers or public cloud, but also off-loaded
to diverse classes of edge/endpoint devices. In these environments occur device
fragmentation referring to when users are running many different versions of
software and hardware platforms. Clearly, DL models running on such different
platforms may also be diversified (i.e., various ID) for efficiency or portability.
Our proposed method is applicable regardless of MA given environments where
adversaries can pry on edge/endpoint devices. Moreover, with a recent develop-
ment in computing power, ResNet-50 can be deployed in edge devices [17].

Offensive Side. Traditional MEAs armed with prior model knowledge based
purely on postulations may find more challenging time to steal information from
such diversified DL models. Through extensive empirical analysis, we prove that
a key to the success of MEA is to have the exact information about ID and MA
of the victim model, and also demonstrated that SCAs have enough capability
of extracting ID and MA accurately. Consequently, we suggest that for better
probability of success, future researchers of MEA first should attempt to obtain
the model information from SCA, instead of relying on a prior assumption.
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Defensive Side. In our work, we quantitatively show that among model infor-
mation gathered by SCA, ID is the most essential to MEAs. This implies to
defenders against MEA as well as SCA that they do not have to exhaust
themselves to protect every information about their DL models, but should
focus mainly on concealing or obfuscating the ID value from the adversary. For
instance, to fight against SCA, they may obfuscate GEMM operations to hide
actual cache access patterns. For example, dummy matrix operations may be
added to the original model by inserting dummy columns and rows in the first
layer of a DL model to increase the number of loop iterations. Such obfuscated
operations would misinform the adversary of the ID value, which in turn even-
tually hampers the performance of MEA.

Limitations. Our study can be further improved by expanding the training
datasets and architectures of victim models and utilizing newly published MEAs
can revamp the analysis. In regards to SCA, due to the nature of cache-timing
attack, the outcome of SCA can be obscure with noise from CPU. Such limitation
may lead to repetition or failure of the attack. Therefore, devising and applying
a noise filtering mechanism appropriate for the target execution environment is
required in MEA with SCA to maximize the performance of MEA without prior
information.

7 Conclusion

Our systematic analysis has shown that ID and MA are two crucial pieces of
model information as the initial knowledge about the victim for MEA. Our
demonstration confirmed that MEA achieves the best performance when train-
ing the surrogate model with ID identical to that of the victim model, and MA
more complex than the victim’s. This result was consistent across various anal-
ysis settings. Our findings account for the reasoning behind the common design
decision of existing MEA techniques that prefers their surrogates to have the
identical IDs as the victims and as complex MAs as possible. We note that this
assumption will become unrealistic for MEAs aiming at future DL models diver-
sified to run on varied classes of computing devices because the models will have
many different IDs and MAs depending on their devices. However, an adversary
may use advanced SCA techniques by exploiting vulnerabilities in hardware to
provide fairly accurate ID and MA of the victim model and achieve satisfying
outcomes even without such an unrealistic assumption, as demonstrated in this
paper. According to our empirical study, SCA can provide the estimated val-
ues for ID of DL models that are extremely close to the target value, thereby
helping the subsequent MEA to achieve the idealistic performance. From our
result, defenders fighting against MEA allied with SCA may learn a lesson that
they can most effectively thwart MEA by obfuscating the ID values of their DL
models.
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A Appendix

A.1 Model Architectures

Table 8 summarises the details of model architectures used for experiments.

Table 8. Details of model architecture used for victim and surrogate models

RN50[32] RN50[64] RN50[128] RN50[224] RN101[224] WRN28-k[32] V GG16[32] V GG16[64] V GG16[128] V GG16[224] V GG19[224]

Parameter size 91.65MB 91.65MB 91.65MB 91.68MB 164.13MB 1.43MB (k=1) 34.95MB (k=5) 139.38MB (k=10) 490.85MB 516.16MB 516.16MB 516.16MB 536.46MB

conv1 (3× 3, 64), stride 1 (4× 4, 64), stride 1 (3× 3, 64), stride 2 (7× 7, 64), stride 2 (3× 3, 16), stride 1
[
(3× 3, 64)

]
×2

maxpool (3× 3), stride 2 (2× 2), stride 1 (2× 2), stride 2

conv2x
[
(1× 1, 64)(3× 3, 64)(1× 1, 256)

]
×3

[
(3× 3, 16)× k (3× 3, 16)× k

]
×4

[
(3× 3, 128)

]
×2

maxpool (2× 2), stride 2

conv3x
[
(1× 1, 128)(3× 3, 128)(1× 1, 512)

]
×4

[
(3× 3, 32)× k (3× 3, 32)× k

]
×4

[
(3× 3, 128)

]
×3

[
(3× 3, 256)

]
×3

[
(3× 3, 256)

]
×4

maxpool (2× 2), stride 1 (2× 2), stride 2

conv4x
[
(1× 1, 256)(3× 3, 256)(1× 1, 1024)

]
×6

[
(1× 1, 256)(3× 3, 256)(1× 1, 1024)

]
×23

[
(3× 3, 64)× k (3× 3, 64)× k

]
×4

[
(3× 3, 256)

]
×3

[
(3× 3, 512)

]
×3

[
(3× 3, 512)

]
×4

maxpool (2× 2), stride 2 (2× 2), stride 1 (2× 2), stride 2

conv5x
[
(1× 1, 512)(3× 3, 512)(1× 1, 2048)

]
×3

[
(3× 3, 512)

]
×3

[
(3× 3, 512)

]
×4

maxpool (2× 2), stride 2

averagepool, FC, Softmax maxpool, FC, FC, FC, Softmax

A.2 Ablation Study

Eigen-CAM Analysis. To further examine if the surrogate copies the victim
by inheriting inner representations from convolutional layers, we carry out Eigen-
CAM analysis [13] as shown in Fig. 6. Even though all models predicted correctly
(i.e., as sunflower), only the surrogate with the same ID has a visual explanation
similar to the victim. ID analysis of VGG16 An additional ID analysis with
different model architecture VGG16 is shown in Table 9. ID is represented as a
subscript. The result shows the same trend with the analysis on RN50 based
model.

A.3 SCA Algorithms and DCG Generation Result

Algorithms 2 and 3 are shown below and Table 10 shows the values of properties
obtained from Algorithm 2. (N is the number of iterations of loop. ST and AT
are the short and average execution time of loop respectively.) Table 11 shows
the result of ID estimation results for RN50[32], RN50[64]and RN50[224].
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Victim [224]
Sunflower

Surrogate [64]
Sunflower

Surrogate [128]
Sunflower

Surrogate [224]
Sunflower

Fig. 6. Eigen-CAM results. Only the surrogate with identical ID is similar

Table 9. ID analysis (Datasets) with VGG16. Effectiveness (Relative Accuracy) of
MEA (knockoffNets with ImagenNet) with query-budget-60k

Victim Model Surrogate Model

Dataset Accuracy Model
V GG16[32] V GG16[64] V GG16[128] V GG16[224]

Test 1 Test 2 Test 1 Test 2 Test 1 Test 2 Test 1 Test 2

Indoor67 68.35(1x)
V GG16[32]

0.89x 0.89x 0.54x 0.88x 0.50x 0.48x 0.31x 0.20x
Caltech-256 73.55(1x) 0.94x 0.94x 0.66x 0.96x 0.62x 0.66x 0.45x 0.31x
CUB-200 63.82(1x) 0.91x 0.91x 0.52x 0.83x 0.49x 0.40x 0.21x 0.15x

Indoo67 75.00(1x)
V GG16[64]

0.38x 0.35x 0.93x 0.93x 0.73x 0.86x 0.63x 0.63x
Caltech-256 80.55(1x) 0.56x 0.51x 0.95x 0.95x 0.81x 0.93x 0.78x 0.80x
CUB-200 72.56(1x) 0.24x 0.22x 0.90x 0.90x 0.64x 0.80x 0.53x 0.43x

Indoo67 77.91(1x)
V GG16[128]

0.32x 0.30x 0.70x 0.68x 0.91x 0.91x 0.78x 0.81x
Caltech-256 82.39(1x) 0.49x 0.42x 0.81x 0.78x 0.95x 0.95x 0.90x 0.92x
CUB-200 77.30(1x) 0.16x 0.13x 0.56x 0.52x 0.91x 0.91x 0.74x 0.76x

Indoo67 78.20(1x)
V GG16[224]

0.23x 0.27x 0.60x 0.62x 0.84x 0.82x 0.92x 0.92x
Caltech-256 83.06(1x) 0.33x 0.40x 0.76x 0.75x 0.92x 0.91x 0.95x 0.95x
CUB-200 77.11(1x) 0.10x 0.09x 0.38x 0.35x 0.76x 0.71x 0.90x 0.90x

Algorithm 2: CreateDCG

Input: addresses(it, on, ker), threshold
Output: DCGa, DCGd: Dynamic Call Graph

1 for addr ∈ addresses do
2 delay ← probe(addr) � Time taken to access addr

3 flush(addr)
4 if delay < threshold then � cache hit

5 DCGa.append(addr), DCGd.append(delay)

6 return DCGa, DCGd

Algorithm 3: EstimateL1
Input: m,n,Q, threshold
Output: ATL1: L1 Average Execution Time

1 k′ ← 4Q, A ∈ R
(m,k′), B ∈ R

(k′,n)

2 while GEMM(A,B) do DCGa, DCGd ← CreateDCG()
List idx ← FindIndex([′itc, onc, ker, itc, ker′], DCGa)

3 ATL1 ← Avg(DCGd[idx][0 : (idx.size() − 1)])
4 return ATL1
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Table 10. Properties of Loops obtained from DCG Generation Result

Loop1 Loop2 Loop3

Victim model N AT ST N AT ST N AT ST

RN50[32] 1 1527 163 4 49 29 6 11.5 10

RN50[64] 1 5774 704 13 69.1 50 6 18.3 3.0

RN50[128] 1 5212 582 13 44.9 42 6 11.3 9

RN50[224] 1 17665.5 8163 40 208.3 124 6 38.25 13

Table 11. Image dimension estimation result. Values in SCA and target columns
represent the estimated and actual values respectively

m n k kernel ID

Victim model SCA Target SCA Target SCA Target SCA Target SCA Target

RN50[32] 1018.8 1024 72 64 34.2 27 3.4 3 32.3 32

RN50[64] 3983.1 3969 64 64 39 48 3.6 4 63.7 64

RN50[224] 12541 12544 64 64 147.9 147 7 7 224 224
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Abstract. Deep reinforcement learning (DRL) is vulnerable to adver-
sarial perturbations. Adversaries can mislead the policies of DRL agents
by perturbing the state of the environment observed by the agents. Exist-
ing attacks are feasible in principle, but face challenges in practice, either
by being too slow to fool DRL policies in real time or by modifying
past observations stored in the agent’s memory. We show that Universal
Adversarial Perturbations (UAP), independent of the individual inputs
to which they are applied, can fool DRL policies effectively and in real
time. We introduce three attack variants leveraging UAP. Via an exten-
sive evaluation using three Atari 2600 games, we show that our attacks
are effective, as they fully degrade the performance of three different DRL
agents (up to 100%, even when the l∞ bound on the perturbation is as
small as 0.01). It is faster than the frame rate (60 Hz) of image capture
and considerably faster than prior attacks (≈1.8 ms). Our attack tech-
nique is also efficient, incurring an online computational cost of ≈0.027
ms. Using two tasks involving robotic movement, we confirm that our
results generalize to complex DRL tasks. Furthermore, we demonstrate
that the effectiveness of known defenses diminishes against universal per-
turbations. We introduce an effective technique that detects all known
adversarial perturbations against DRL policies, including all universal
perturbations presented in this paper.

1 Introduction

Machine learning models are vulnerable to adversarial examples: maliciously
crafted inputs generated by adding small perturbations to the original input to
force a model into generating wrong predictions [8,31]. Prior work [10,13,15] has
also shown that adversarial examples can fool deep reinforcement learning (DRL)
agents using deep neural networks (DNNs) to approximate their decision-making
strategy. If this vulnerability is exploited in safety-critical DRL applications such
as robotic surgery and autonomous driving, the impact can be disastrous.
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A DRL agent can partially or fully observe the state of the environment by
capturing complex, high-dimensional observations. For example, a DRL agent
playing an Atari 2600 game observes pixels from each image frame of the game
to construct states by combining a number of observations. DRL agents use
the current state as an input to their policy that outputs an optimal action for
that state. Consequently, adversaries can modify the environment to mislead the
agent’s policy. Various state-of-the-art attack methods assume white-box knowl-
edge, where adversaries have access to the parameters of the agent’s policy model
and the reinforcement learning algorithm. In untargeted attacks, the adversary
aims to fool the agent’s policy so that the agent 1) cannot complete its task or 2)
finishes its task with unacceptably poor performance. Prior work has shown that
white-box attacks can successfully destroy agents’ performance using one-step
gradient-based approaches [8], optimization-based methods [5], or adversarial
saliency maps [25]. Previous work has also proposed different attack strategies
where the adversary generates the perturbation for 1) each state [2,10], 2) criti-
cal states where the agent prefers one action with high confidence [13,15,29], or
3) periodically, at every N th state [13].

Although prior white-box attacks using adversarial perturbations are effec-
tive in principle, they are not realistic in practice. First, some attack strate-
gies are based on computing the perturbation by solving an optimization prob-
lem [15]. This is computationally expensive, even if it is done for every N th

state. DRL agents must respond to new states very quickly to carry out the
task effectively on-the-fly. Therefore, attacks that take longer than the average
time between two consecutive observations are too slow to be realized in real-
time. Second, in realistic scenarios, the adversary cannot have full control over
the environment. However, iterative attacks [15,37] require querying agents with
multiple perturbed versions of the current state and resetting the environment to
find the optimal perturbation. Therefore, iterative attacks cannot be applied in
real-life scenarios, such as autonomous agents interacting with a dynamic envi-
ronment. Finally, the aforementioned state-of-the-art attacks require seeing all
observations to generate and apply perturbations to the state containing multi-
ple observations. However, the agent can store clean observations that are part of
the current state in its memory before the adversary can generate perturbations
that need to be applied to all of those observations.

Contributions: We propose an effective, real-time attack strategy to fool DRL
policies by computing state-agnostic universal perturbations offline. Once this
perturbation is generated, it can be added into any state to force the victim
agent to choose sub-optimal actions. Similarly to previous work [8,15,37], we
focus on untargeted attacks in a white-box setting. Our contributions are as
follows1:

1. We design two new real-time white-box attacks, UAP-S and UAP-O, using
Universal Adversarial Perturbation (UAP) [20] to generate state-agnostic

1 The code reproducing our work is available in https://github.com/ssg-research/ad3-
action-distribution-divergence-detector.

https://github.com/ssg-research/ad3-action-distribution-divergence-detector
https://github.com/ssg-research/ad3-action-distribution-divergence-detector
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adversarial examples. We also design a third real-time attack, OSFW(U), by
extending Xiao et al.’s [37] attack so that it generates a universal perturbation
once, applicable to any subsequent episode (Sect. 3). An empirical evaluation
of these three attacks using three different DRL agents playing three dif-
ferent Atari 2600 games (Breakout, Freeway, and Pong) demonstrates that
our attacks are comparable to prior work in their effectiveness (100% drop in
return), while being significantly faster (0.027 ms on average, compared to 1.8
ms) and less visible than prior adversarial perturbations [10,37] (Sect. 4.2).
Using two additional tasks that involve the MuJoCo robotics simulator [34],
which requires continuous control, we show that our results generalize to more
complex tasks (Sect. 4.3).

2. We demonstrate the limitations of prior defenses. We show that agents trained
with the state-of-the-art robust policy regularization technique [39] exhibit
reduced effectiveness against adversarial perturbations at higher perturbation
bounds (≥0.05). In some tasks (Pong), universal perturbations completely
destroy agents’ performance (Table 2). Visual Foresight [16], which is another
defense method that can restore an agent’s performance in the presence of
prior adversarial perturbations [10], fails to do so when faced with universal
perturbations (Sect. 5.1).

3. We propose an efficient method, AD3, to detect adversarial perturbations.
AD3 can be combined with other defenses to provide stronger resistance for
DRL agents against untargeted adversarial perturbations (Sect. 5.2).

2 Background and Related Work

2.1 Deep Reinforcement Learning

Reinforcement Learning: Reinforcement learning involves settings where an
agent continuously interacts with a non-stationary environment to decide which
action to take in response to a given state. At time step t, the environment
is characterized by its state s ∈ S consisting of N past observations o pre-
processed by some function fpre, i.e., s = {fpre(ot−N+1), · · · , fpre(ot)}. At each
s, the agent takes an action a ∈ A, which moves the environment to the next
s′ ∈ S and receives a reward r from the environment. The agent uses this
information to optimize its policy π, a probability distribution that maps states
into actions [30]. During training, the agent improves the estimate of a value
function V (s) or an action-value function Q(s, a). V (s) measures how valuable it
is to be in a state s by calculating the expected discounted return: the discounted
cumulative sum of future rewards while following a specific π. Similarly, Q(s, a)
estimates the value of taking action a in the current s while following π. During
evaluation, the optimized π is used for decision making, and the performance
of the agent is measured by the return. In this work, we focus on episodic [4]
and finite-horizon [32] tasks. In episodic tasks such as Atari games, each episode
ends with a terminal state (e.g., winning/losing a game, arriving at a goal state),
and the return for one episode is computed by the total score in single-player
games (e.g., Breakout, Freeway) or the relative score when it is played against
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a computer (e.g., Pong). Finite-horizon tasks include continuous control, where
(e.g., Humanoid, Hopper) the return is measured for a fixed length of the episode.

DNN: DNNs are parameterized functions f(x, θ) consisting of neural network
layers. For an input x ∈ R

n with n features, the parameter vector θ is optimized
by training f over a labeled training set. f(x, θ) outputs a vector y ∈ R

m with
m different classes. In classification problems, the predicted class is denoted as
f̂(x) = argmaxm f(x, θ). For simplicity, we will use f(x) to denote f(x, θ).

DRL: DNNs are useful for approximating π when S or A is too large, or largely
unexplored. Deep Q Networks (DQN) is one of the well-known value-based DRL
algorithms [19] that uses DNNs to approximate Q(s, a). During training, DQN
aims to find the optimal Q(s, a), and defines the optimal π implicitly using the
optimal Q(s, a). Despite its effectiveness, DQN cannot be used in continuous
control tasks, where a is a real-valued vector sampled from a range, instead of a
finite set. Continuous control tasks require policy-based DRL algorithms [18,28].
They use two different DNNs that usually share a number of lower layers to
approximate both π and V (s) (or Q(s, a)), and update π directly. For example,
in actor-critic methods (A2C) [18], the critic estimates V (s) or Q(s, a) for the
current π, and the actor updates the parameter vector θ of π by using advantage,
which refers to the critic’s evaluation of the action decision using the estimated
V (s) or Q(s, a), while the actor follows the current π. Proximal Policy Opti-
mization (PPO) [28] is another on-policy method that updates the current π by
ensuring that the updated π is close to the old one.

2.2 Adversarial Examples

An adversarial example x∗ against a classifier f is a deliberately modified version
of an input x such that x and x∗ are similar, but x∗ is misclassified by f , i.e.,
f̂(x) �= f̂(x∗). An untargeted adversarial example is found by solving

argmax
x∗

�(f(x∗), f̂(x)) s.t.: ‖x∗ − x‖p = ‖r‖p ≤ ε, (1)

where ε is the lp norm bound and � is the loss between f(x∗) and the predicted
label f̂(x). In this work, we use the l∞ norm bound (i.e., any element in the
perturbation must not exceed a specified threshold ε) as in the state-of-the-art
Fast Gradient Sign Method (FGSM) [8].

Adversarial examples are usually computed for each x. An alternative is
to generate input-agnostic universal perturbations. For instance, Moosavi et al.
propose Universal Adversarial Perturbation (UAP) [20] that searches for a suf-
ficiently small r that can be added to the arbitrary inputs to yield adversarial
examples against f . UAP iteratively computes a unique r that fools f for almost
all inputs x belonging to a training set Dtrain. UAP utilizes DeepFool [21] to
update r at each iteration. UAP aims to achieve the desired fooling rate δ:
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the proportion of successful adversarial examples against f with respect to the
total number of perturbed samples |Dtrain|. Following this work, many different
strategies [6,9,22,23] have been proposed to generate universal adversarial per-
turbations to fool image classifiers. For example, Hayes et al. [9] and Mopuri et
al. [23] use generative models to compute universal adversarial perturbations. Co
et al. [6] design black-box, untargeted universal adversarial perturbations using
procedural noise functions.

Adversarial Examples in DRL: In discrete action spaces with finite actions,
adversarial examples against π are found by modifying Eq. 1: x is changed to s
at time step t, f is replaced with Q(s, a), and Q̂(s) refers to the decided action.
We also denote Q(s, am) as the state-action value of mth action at s. In this
setup, adversarial examples are computed to decrease Q(s, a) for the optimal
action at s, resulting in a sub-optimal decision.

Since Huang et al. [10] showed the vulnerability of DRL policies to adversar-
ial perturbations, several untargeted attack methods [2,13,15,29,37] have been
proposed that manipulate the environment. Recent work [1,5,11,15,35] has also
developed targeted attacks, where the adversary’s goal is to lure the victim agent
into a specific state or to force the victim policy to follow a specific path. Most
of these methods implement well-known adversarial example generation meth-
ods such as FGSM [10,13], JSMA [2] and Carlini&Wagner [15]. Therefore, even
though they effectively decrease the return of the agent, these methods cannot
be implemented in real-time and have a temporal dependency: they need to
compute a different r for every s. Similarly to our work, Xiao et al. propose
(“obs-seq-fgsm-wb”, OSFW) to generate universal perturbations. OSFW com-
putes a single r by applying FGSM to the averaged gradients over the k states
and adds r to the remaining states in the current episode. However, OSFW has
limitations, such as the need to compute r for every new episode. Moreover,
OSFW has to freeze the task to calculate r, and its performance depends on the
particular agent-environment interaction for each episode. Hussenot et al. [11]
design targeted attacks that use different universal perturbations for each action
to force the victim policy to follow the adversary’s policy.

In addition to white-box attacks, multiple black-box attack methods based on
finite-difference methods [37], and proxy methods that approximate the victim
policy [12,41] were proposed, but they cannot be mounted in real time, as they
require querying the agent multiple times. Recent work [7,36] also shows that
adversaries can fool DRL policies in multi-agent, competitive games by training
an adversarial policy for the opponent agent that exploits vulnerabilities of the
victim agent. These attacks rely on creating natural observations with adver-
sarial effects, instead of manipulating the environment by adding adversarial
perturbations. In this paper, we focus on single-player games, where adversaries
can only modify the environment to fool the DRL policies.
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3 State- and Observation-Agnostic Perturbations

3.1 Adversary Model

The goal of the adversary Adv is to degrade the performance of the victim DRL
agent v by adding perturbations r to the state s observed by v . Adv is successful
when the attack:

1. is effective, i.e., limits v to a low return,
2. is efficient, i.e., can be realized in real-time, and
3. evades known detection mechanisms.

Adv has a white-box access to v ; therefore, it knows v ’s action value function
Qv , or the policy πv and the value function Vv , depending on the DRL algorithm
used by v . However, Adv is constrained to using r with a small norm to evade
possible detection, either by specific anomaly detection mechanisms or via human
observation. We assume that Adv cannot reset the environment or return to an
earlier state. In other words, we rule out trivial attacks (e.g., swapping one video
frame with another or changing observations with random noise) as ineffective
because they can be easily detected. We also assume that Adv has only read-
access to v ’s memory. Modifying the agent’s inner workings is an assumption that
is too strong in realistic adversarial settings because it forces Adv to modify both
the environment and v . If Adv is able to modify or rewrite v ’s memory, then
it does not need to compute adversarial perturbations and simply rewrites v ’s
memory to destroy its performance.

3.2 Attack Design

Training Data Collection and Sanitization: Adv collects a training set
Dtrain by monitoring v ’s interaction with the environment for one episode, and
saving each s into Dtrain. Simultaneously, Adv clones Qv or Vv into a proxy
agent, adv. Specifically, in value-based methods, Adv copies the weights of Qv

into Qadv. In policy-based methods, Adv copies the weights of the critic network
into Vadv. In the latter case, Adv can obtain Qadv(s, a) by calculating Vadv(s)
for each discrete action a ∈ A.

After collecting Dtrain, Adv sanitizes it by choosing only the critical states.
Following [15], we define critical states as those that can have a significant influ-
ence on the course of the episode. We identify critical states using the relative
action preference function

Vara∈A [Softmax(Qadv(s, a))] ≥ β

β = 1/|Dtrain|
∑

s∈Dtrain

Vara∈A [Softmax(Qadv(s, a))], (2)

modified from [15], where Var is the variance of the normalized Qadv(s, a) values
computed for ∀a ∈ A. This ensures that both UAP-S and UAP-O are optimized
to fool Qv in critical states, and achieves the first attack criterion.
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Algorithm 1. Computation of UAP-S and UAP-O
input : sanitized Dtrain, Qadv, desired fooling rate δth,

max. number of iterations itmax, perturbation constraint ε
output: universal r

1 Initialize r ← 0, it ← 0;
2 while δ < δmax and it < itmax do
3 for s ∈ Dtrain do

4 if Q̂(s + r) = Q̂(s) then
5 Find the extra, minimal Δr:

Δr ← argminΔr ‖Δr‖2 s.t.: Q̂(s + r + Δr) �= Q̂(s);
6 r ← sign(min(abs(r + Δr), ε));

7 Calculate δ with updated r on Dtrain;
8 it ← (it + 1);

Computation of Perturbation: For both UAP-S and UAP-O, we assume
that s ∈ Dtrain and Dtrain ⊂ S. Adv searches for an optimal r that satisfies the
constraints in Eq. 1, while achieving a high fooling rate δ on Dtrain. For imple-
menting UAP-S and UAP-O, we modify Universal Adversarial Perturbation [20]
(see Sect. 2.2). The goal of both UAP-S and UAP-O is to find a sufficiently
small r such that Q̂(s + r) �= Q̂(s), leading v to choose sub-optimal actions.
Algorithm 1 summarizes the method for generating UAP-S and UAP-O.

In lines 5–6 of Algorithm 1, UAP-S and UAP-O utilize DeepFool to compute
Δr by iteratively updating the perturbed s∗

i = s + r + Δri until Q̂adv outputs
a wrong action (see Algorithm 2 in [21]). At each iteration i, DeepFool finds
the closest hyperplane l̂(s∗

i ) and Δri that projects s∗
i on the hyperplane. It

recomputes Δri as

Q
′
(s∗

i , al̂) ← Qadv(s∗
i , al̂) − Qadv(s∗

i , am),

w
′

l̂
← ∇Qadv(s∗

i , al̂) − ∇Qadv(s∗
i , am),

Δri ← |Q′
(s∗

i , al̂)|
‖w′

l̂
‖2
2

w
′

l̂
, (3)

where ∇ is the gradient of Qadv w.r.t. si and Qadv(s∗
i , am) is the value of the

m-th action chosen for the state s + r.
UAP-S computes a different perturbation for each observation oj in s, i.e.,

r = {rt−N+1, · · · , rt}, rj �= rk, ∀j, k ∈ {t − N + 1, · · · , t}, j �= k. In contrast,
UAP-O applies the same perturbation to all observations in s. Therefore, it can
be considered as an observation-agnostic, completely universal attack. UAP-O
aims to find a modified version r̃ of r by solving

min(‖r − r̃‖22) (4)

s.t.: r̃j = r̃k, ∀j, k ∈ {t − N + 1, · · · , t} and ‖r̃‖∞ ≤ ε.
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In UAP-O, we modify lines 5–6 of Algorithm 1 to find Δr. The closest Δr̃i to
Δri satisfying the conditions of Eq. 4 is found by averaging w

′

l̂
over observations:

Δr̃ij ← |Q′
(s∗

i , al̂)|
N‖w′

l̂
‖2
2

t∑

k=(t−N+1)

w
′

l̂k
, ∀j ∈ {t − N + 1, · · · , t}. (5)

In UAP-O, DeepFool returns Δr̃i = Δr̃ij as the optimal additional pertur-
bation. UAP-O adds the same r̃j to every oj in s. If s consists of only one
observation, then UAP-S will simply reduce to UAP-O. The proof of Eq. 5 can
be found in the extended version of this work [33].

Extending OSFW to OSFW(U). As explained in Sect. 2.2, OSFW calculates
r by averaging gradients of Qv using the first k states in an episode and then
adds r to the remaining states. This requires 1) generating a different r for each
episode, and 2) suspending the task (e.g., freezing or delaying the environment)
and v to perform backward propagation. Moreover, the effectiveness of OSFW
varies when v behaves differently in individual episodes. We extend OSFW to a
completely universal adversarial perturbation by using the proxy agent’s DNN,
and calculate averaged gradients with first k samples from the same, un-sanitized
Dtrain. The formula for calculating r in OSFW(U) is

r = ε · sign(1/k

i<k∑

i=0

∇si
(− log(Qadv(si, â)))), (6)

where â denotes the action chosen and si ∈ Dtrain.

Attacks in Continuous Control Settings. In continuous control tasks,
the optimal action is a real-valued array that is selected from a range. These
tasks have complex environments that involve physical system control such as
Humanoid robots with multi-joint dynamics [34]. Agents trained for continuous
control tasks have no Q that can be utilized for generating perturbations to
decrease the value of the optimal action. Nevertheless, Adv can find a perturbed
state s + r that has the worst V (s), so that πv might produce a sub-optimal
action [39]. In continuous control, OSFW and OSFW(U) can be simply modified
by changing Qadv with Vadv. However, in Algorithm 1, the lines 4–6 need to be
adjusted to handle these tasks. Adv can only use the copied network parameters
of Vadv to find r. Algorithm 2 (Appendix B) presents the modified computation
of UAP-S and UAP-O in continuous control.

4 Attack Evaluation

4.1 Experimental Setup

We compared the effectiveness of our attacks (UAP-S, UAP-O and OSFW(U))
with prior attacks (FGSM and OSFW) on discrete tasks using three Atari 2600
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games (Pong, Breakout, Freeway) in the Arcade Learning Environment [4]. We
further extended our experimental setup with the MuJoCo robotics simula-
tor [34] and compared these attacks in continuous control tasks.

To provide an extensive evaluation, for every Atari game, we trained three
agents, each using a different DRL algorithm: DQN [19], PPO [28] and A2C [18].
We used the same DNN architecture proposed in [19] to approximate Qv in DQN
and Vv in other algorithms. Our implementations of DQN, PPO and A2C are
based on OpenAI baselines2, and our implementations achieve returns similar
to those of OpenAI Baselines. The frame rate of each Atari 2600 game 60 Hz
by default [4]; thus, the time interval between two consecutive frames is 0.017
seconds. We used the frame-skipping technique [19], so each s contains N = 4
different observations. To aid reproducibility, we summarize the setup and pre-
processing methods in the extended version of this work [33].

We implemented UAP-S and UAP-O by setting the desired δmax to 95%,
so that they stop when δ ≥ 95%. As baselines, we used random noise addition,
FGSM [10], and OSFW [37]. We chose FGSM as the baseline since it is the
fastest adversarial perturbation generation method from the previous work and
is effective in degrading the performance of DRL agents. We measured attack
effectiveness where 0 ≤ ε ≤ 0.01. We reported the average return over 10 episodes
and used different seeds during training and evaluation.

Fig. 1. Comparison of attacks against DQN, PPO and A2C agents trained for Pong,
Breakout and Freeway. The graph shows how the return (averaged over 10 games)
changes with different ε values for six different attack strategies

2 https://github.com/DLR-RM/rl-baselines3-zoo.

https://github.com/DLR-RM/rl-baselines3-zoo
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4.2 Attack Performance

Figure 1 compares UAP-S, UAP-O, and OSFW(U) with two baseline attacks
and random noise addition. Random noise addition cannot cause a significant
drop in v ’s performance, and FGSM is the most effective attack, reducing the
return up to 100% even with a very small ε value. UAP-S is the second most
effective attack in almost every setup, reducing the return by more than 50% in
all experiments when ε ≥ 0.004. All attacks completely destroy v ’s performance
at ε = 0.01, except the PPO agent playing Freeway. The effectiveness of UAP-
O, OSFW, and OSFW(U) is comparable in all setups. We also observe that the
effectiveness of OSFW fluctuates heavily (Breakout-A2C) or has a high variance
(Freeway-PPO). This phenomenon is the result of the different behaviors of v
in individual episodes (Breakout-A2C), and OSFW’s inability to collect enough
knowledge (Freeway-PPO) to generalize r to the rest of the episode.

Table 1. Offline and online cost of attacks where victim agents are DQN, PPO, A2C
trained for Pong and ε = 0.01. Attacks that cannot be implemented in real-time are in
highlighted in red.

Experiment Attack method Offline cost ± std (seconds) Online cost ± std (seconds)

Pong, DQN,

Tmax = 0.0163 ± 10−6

seconds

FGSM – 13 × 10−4 ± 10−5

OSFW – 5.3 ± 0.1

UAP-S 36.4 ± 21.1 2.7 × 10−5 ± 10−6

UAP-O 138.3 ± 25.1 2.7 × 10−5 ± 10−6

OSFW(U) 5.3 ± 0.1 2.7 × 10−5(±10−6)

Pong, PPO,

Tmax = 0.0157 ± 10−5

seconds

FGSM – 21 × 10−4 ± 10−5

OSFW – 7.02 ± 0.6

UAP-S 41.9 ± 16.7 2.7 × 10−5 ± 10−6

UAP-O 138.3 ± 25.1 2.7 × 10−5 ± 10−6

OSFW(U) 7.02 ± 0.6 2.7 × 10−5 ± 10−6

Pong, A2C

Tmax = 0.0157 ± 10−5

seconds

FGSM – 21 × 10−4 ± 10−5

OSFW – 7.2 ± 1.1

UAP-S 11.4 ± 4.3 2.7 × 10−5 ± 10−6

UAP-O 55.5 ± 29.3 2.7 × 10−5 ± 10−6

OSFW(U) 7.2 ± 1.1 2.7 × 10−5 ± 10−6

Table 1 shows the computational cost to generate r, and the upper bound on
the online computational cost to mount the attack in real-time. This upper bound
is measured as Tmax = 1/(frame rate) − (response time), where the response
time is the time spent feeding s forward through πv or Qv and executing the
corresponding action. If the online cost of injecting r during deployment (and the
online cost of generating r during deployment in the case of FGSM and OSFW)
is greater than Tmax, then Adv must stop or delay the environment, which is
infeasible in practice. Table 1 confirms that the online cost of OSFW is higher
than that of all other attacks and Tmax due to its online perturbation generation
approach. OSFW has to stop the environment to inject r into the current s or
has to wait 102 states on average (online cost/(Tmax · N)) to correctly inject r,
which can decrease the attack effectiveness. UAP-S and UAP-O have a higher
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offline cost than OSFW(U), but the offline generation of r does not interfere
with the task, as it does not require interrupting or pausing v . The online cost
of FGSM, UAP-S, UAP-O and OSFW(U) is lower than Tmax.

Clean, RGB FGSM OSFW UAP-S UAP-O OSFW(U)

Fig. 2. Comparison of the perturbation size added into the same clean (RGB) obser-
vation in different attacks against the DQN agent playing Pong and ε = 0.01. In
perturbations, black pixels: −0.01, white pixels: +0.01, gray pixels: 0.0

Figure 2 shows that r obtained via UAP-S and UAP-O are smaller than other
adversarial perturbations for the same ε, since UAP-S and UAP-O try to find
a minimal r that sends all x ∈ Dtrain outside the decision boundary [20]. We
conclude that UAP-S and UAP-O are likely to be less detectable based on the
amount of the perturbation (e.g., via visual observation).

Table 2. Summary of attacks based on the characteristics that make an attack plausible
in a real deployment scenario. The proposed attacks are colored blue.

Attack FGSM [10] OSFW [37] UAP-S UAP-O OSFW(U)

Online cost Low High Low Low Low

State dependency Dependent Independent Independent Independent Independent

Observation dependency Dependent Dependent Dependent Independent Dependent

As summarized in Table 2, FGSM computes a new r for each s after observ-
ing the complete s. Therefore, it requires rewriting v ’s memory to change all
previously stored observations oj of the current s, in which v is attacked. Unlike
FGSM, UAP-S and UAP-O add rj to the incoming oj , and v stores adversari-
ally perturbed oj into its memory. The online cost of OSFW is too high, and it
cannot be mounted without interfering with the environment. UAP-S, UAP-O
and OSFW(U) are real-time attacks that do not require stopping the agent or
the environment while adding r. UAP-S and OSFW(U) generate r that is inde-
pendent of s, but the rj for each observation oj ∈ s is different. On the other
hand, UAP-O adds the same rj to all observations in any s, which makes the
perturbation generation independent of the size of s. UAP-O leads to an efficient
and effective attack when ε ≥ 0.006, and does not have temporal and observa-
tional dependency. UAP-S is the optimal attack considering both effectiveness
and efficiency. We further compared the effectiveness of UAP-S and OSFW in
uncontrolled environments in Appendix A, and concluded that UAP-S is more
effective than OSFW(U) in complex, uncontrolled environments.
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Fig. 3. Comparison of attacks against PPO agents trained for Humanoid and Walker-
2d tasks. The graph shows how the return (averaged over 50 games) changes with
different ε values for five different attack strategies

4.3 Attack Performance in Continuous Control

In continuous control, we used PPO agents in [39] pre-trained for two different
MuJoCo tasks (Walker2d and Humanoid) as v3. We used the original experimen-
tal setup to compare our attacks with baseline attacks and random noise addi-
tion. In our experiments, PPO agents show performance similar to those reported
in the original paper [39]. We implemented UAP-S by copying the parameters
of Vv into Vadv , and set δmax = 95%. FGSM, OSFW and OSFW(U) also use
Vv to minimize the value in a perturbed state. Additionally, in both tasks, s
contains only one observation, which reduces UAP-S to UAP-O. Figure 3 shows
the attack effectiveness when 0.0 ≤ ε ≤ 0.2. FGSM is the most effective attack
in Humanoid, while UAP-S decreases the return more than FGSM in Walker2d
when ε ≥ 0.12. Overall, all attacks behave similarly in both discrete and contin-
uous action spaces, and our conclusions regarding the effectiveness of universal
adversarial perturbations generalize to continuous control tasks, where Qv is not
available. However, in these tasks, Adv only decreases the critic’s evaluation of
s when taking an action a. Even if Adv decreases the value of Vadv (s), it does
not necessarily lead to πv choosing a sub-optimal action over the optimal one.
Therefore, attacks using V require ε ≥ 0.2 to fool πv effectively. For a more
efficient attack, Adv can copy πv into a proxy agent as πadv , and try to maxi-
mize the total variation distance [39] in πadv for states perturbed by universal
perturbations. UAP-S, UAP-O and OSFW(U) need to be modified to compute
the total variation distance, and we leave this as a future work.

Table 5 in Appendix C presents the online and offline computational cost
for the perturbation generation. The results are comparable with Table 1, and
confirm that FGSM, UAP-S, UAP-O and OSFW(U) can be mounted in real-
time, although FGSM needs write-access to the agent’s memory. OSFW cannot

3 Agents are downloaded from https://github.com/huanzhang12/SA PPO and frame
rates are set to default values as in https://github.com/openai/gym.

https://github.com/huanzhang12/SA_PPO
https://github.com/openai/gym
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inject the generated noise immediately into subsequent states, since it has a
higher online cost than the maximum upper bound.

Table 3. Average returns (10 episodes) for the DQN agent playing Pong in the presence
of different adversarial perturbations, and agents are equipped with different defenses.
In each row, the best attack (lowest return) is in bold. In each column, for a given
ε value, the most robust defense (highest return) for that particular attack is shaded
green if the defense can fully recover the victim’s return, and blue if the victim’s return
is not fully recovered.

ε Defense Average return ± std in the presence of adversarial perturbation attacks

No attack FGSM OSFW UAP-S UAP-O OSFW(U)

0.01 No defense 21.0 ± 0.0 −21.0 ± 0.0 −20.0 ± 3.0 −21.0 ± 0.0 −19.8 ± 0.4 −21.0 ± 0.0

VF [16] 21.0 ± 0.0 21.0 ± 0.0 −19.7 ± 0.5 0.7 ± 1.7 0.4 ± 2.7 −21.0 ± 0.0

SA-MDP [39] 21.0 ± 0.0 21.0 ± 0.0 21.0 ± 0.0 21.0 ± 0.0 21.0 ± 0.0 21.0 ± 0.0

0.02 No defense 21.0 ± 0.0 −19.9 ± 1.3 −21.0 ± 0.0 −20.8 ± 0.6 −20.0 ± 0.0 −21.0 ± 0.0

VF [16] 21.0 ± 0.0 21 ± 0.0 −19.7 ± 0.6 9.4 ± 0.8 5.3 ± 3.9 −20.5 ± 0.5

SA-MDP [39] 21.0 ± 0.0 −14.6 ± 8.8 −20.5 ± 0.5 −20.6 ± 0.5 −20.6 ± 0.5 −21.0 ± 0.0

0.05 No defense 21.0 ± 0.0 −20.5 ± 0.7 −21.0 ± 0.0 −20.6 ± 0.8 −20.0 ± 0.0 −21.0 ± 0.0

VF [16] 21.0 ± 0.0 21.0 ± 0.0 −20.0 ± 0.0 7.6 ± 4.7 −14.1 ± 1.1 −21.0 ± 0.0

SA-MDP [39] 21.0 ± 0.0 −21.0 ± 0.0 −21.0 ± 0.0 −20.6 ± 0.5 −20.6 ± 0.5 −21.0 ± 0.0

5 Detection and Mitigation of Adversarial Perturbations

Previous work on adversarial training [3,13] presents promising results as a
defense. However, Zhang et al. [39] show that adversarial training leads to unsta-
ble training, performance degradation, and is not robust against strong attacks.
Moreover, Moosavi et al. [20] prove that despite a slight decrease in the fooling
rate δ in the test set, Adv can easily compute another universal perturbation
against retrained agents. To overcome the challenges of adversarial training,
Zhang et al. [39] propose state-adversarial Markov decision process (SA-MDP),
which aims to find an optimal π under the strongest Adv using policy regulariza-
tion. This regularization technique helps DRL agents maintain their performance
even against adversarially perturbed inputs. Similarly, Oikarinen et al. [24] use
adversarial loss functions during training to improve the robustness of agents.

Visual Foresight (VF) [16] is another defense that recovers the performance of
an agent in the presence of Adv . VF predicts the current observation ôt at time t
using k previous observations ot−k : ot−1 and corresponding actions at−k : at−1.
It also predicts the possible action ât for the partially predicted ŝ using Q(ŝ, a).
The difference between Q(ŝ, a) and Q(ŝ, â) determines whether s is perturbed
or not. In the case of detection, ât is selected to recover the performance.

5.1 Effectiveness of Existing Defenses

To investigate the limitations of previously proposed defenses for DRL, we imple-
mented two defense methods that aim to retain the average return of v when
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it is under attack: VF [16] and SA-MDP [39], both of which seek to prevent
the first attack objective that limits v to a low return. VF also prevents the
third attack criterion and detects adversarial perturbations. Since we want to
evaluate the effectiveness of VF and SA-MDP, we focus on the DQN agents for
Pong and Freeway as these are the ones that are common between our experi-
ments (Sect. 4) and these defenses [16,39]. Results for Freeway agents are in the
extended version of this work [33].

We implemented VF from scratch for our DQN models following the original
experimental setup in [16] by setting k = 3 to predict every 4th observation.
We also set the pre-defined threshold value to 0.01, which is used to detect
adversarial perturbations to achieve the highest detection rate and performance
recovery. We downloaded state adversarial DQN agents, which are trained using
SA-MDP, from their reference implementation4. SA-MDP agents only use one
observation per s; therefore, UAP-S would reduce to UAP-O for SA-MDP in this
setup. Table 3 shows the average return for each agent under a different attack,
and while equipped with different defenses. In Sect. 4, we established that when
the perturbation bound ε is 0.01, all attacks are devastatingly effective. In the
interest of evaluating the robustness of the defense, we also consider two higher
ε values, 0.02 and 0.05.

VF is an effective defense against FGSM and UAP-S as it can recover v ’s
average return. However, it is not very effective against OSFW, OSFW(U), and
UAP-O. SA-MDP is better than VF against OSFW and OSFW(U) when ε =
0.01, but it fails to defend any attack in Pong when ε ≥ 0.02. Notably, VF’s
detection performance depends on the accuracy of the action-conditioned frame
prediction module used in its algorithm [16], and the pre-defined threshold value
used for detecting adversarial perturbations.

5.2 Action Distribution Divergence Detector (AD3)

Methodology. In a typical DRL episode, sequential actions exhibit some degree
of temporal coherence: the likelihood of the agent selecting a specific current
action given a specific last action is consistent across different episodes. We also
observed that the temporal coherence is disrupted when the episode is sub-
jected to an attack. We leverage this knowledge to propose a detection method,
Action Distribution Divergence Detector (AD3), which calculates the statistical
distance between the conditional action probability distribution (CAPD) of the
current episode to the learned CAPD in order to detect whether the agent is
under attack. Unlike prior work on detecting adversarial examples in the image
domain [17,26,38], AD3 does not analyze the input image or tries to detect
adversarial examples. Instead, it observes the distribution of the actions trig-
gered by the inputs and detects unusual action sequences. To train AD3, v first
runs k1 episodes in a controlled environment before deployment. AD3 saves all

4 https://github.com/chenhongge/SA DQN Downloaded SA-MDP agents use ε =
1/255 in training as in the original work [39]. Using higher ε values in training
led to poor performance.

https://github.com/chenhongge/SA_DQN
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actions taken during that time and approximates the conditional probability of
the next action given the current one using the bigram model5. We call the con-
ditional probability of actions approximated by k1 episodes the learned CAPD.
Second, to differentiate between the CAPD of a normal game versus a game
that is under attack with high confidence, v runs another k2 episodes in a safe
environment. AD3 decides a threshold value th, where the statistical distance
between the CAPD of the normal game and the learned CAPD falls mostly below
this threshold. We use Kullback-Leibler (KL) divergence [14] as the statistical
distance measure. The KL divergence between the learned CAPD and the CAPD
of the current episode is calculated at each time-step starting after the first t1
steps. We skip the first t1 steps because the CAPD of the current episode is ini-
tially unstable and the KL divergence is naturally high at the beginning of every
episode. We set the threshold th as the pth percentile of all KL-divergence values
calculated for k2 episodes. During deployment, AD3 continuously updates the
CAPD of the current episode, and after t1 steps, it calculates the KL-divergence
between the CAPD of the current episode and the learned CAPD. If the KL-
divergence exceeds the threshold th by r% or more during a time window t2,
then AD3 raises an alarm that the agent is under attack.

Evaluation. We evaluate the precision and recall of AD3 in three tasks with dis-
crete action spaces (Pong, Freeway and Breakout) against all proposed attacks.
AD3 can detect all five attacks in Pong with perfect precision and recall scores
in all configurations. In Freeway, AD3 has perfect precision and recall scores for
12 out of 15 different setups (FGSM against the DQN agent, OSFW against the
PPO agent, and OSFW(U) against the PPO agent). In Freeway, we found that
attacks lead to a lower action change rate (as low as 20%–30% in some episodes)
than other tasks, thus negatively affecting the precision and/or recall of AD3.
AD3 is also less effective in Breakout, as this task often terminates too quickly
when it is under attack, and AD3 cannot store enough actions for CAPD to
converge in such a short time. The optimal parameters used for training AD3,
a more detailed discussion of the performance of AD3, and the full result of the
evaluation can be found in the extended version of this work [33].

Limitations. AD3 is designed for attacks where Adv injects adversarial per-
turbations consistently throughout the episode. Adv with the knowledge of the
detection strategy could apply their adversarial perturbation at a lower fre-
quency to avoid detection. However, lowering the attack frequency also decreases
the attack effectiveness. Another way for Adv to evade AD3 is to perform tar-
geted attacks to lure v into a specific state, where the adversarial perturbation
is applied to a limited number of states in an episode. This type of attack is
outside the scope of our paper, and defense strategies against it will be explored
in future work.

5 We tested different ngrams and selected the bigram as the best option.
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Adversary vs. Defender Strategy with Negative Returns. In any DRL
task where there is a clear negative result for an episode (e.g., losing a game)
or the possibility of negative return, a reasonable choice for v is to suspend an
episode when Adv ’s presence is detected. For example, in Pong, a negative result
would be when the computer (as the opponent) reaches the score of 21 before v
does. Suspending an episode prevents v from losing the game. Defense mecha-
nisms such as VF and SA-MDP are useful in retaining or recovering v ’s return;
however, they may not always prevent v from falling into a negative result, e.g.,
losing the game in Pong. Combining a recovery/retention mechanism with sus-
pension on attack detection can reduce the number of losses for v . To illustrate
the effectiveness of combining AD3 with a retention/recovery mechanism, we
designed an experiment using a DQN agent playing Pong to compare losing rate
of v when it is under attack. We used Pong for this experiment, as Pong has a
clear negative result. In Pong, an episode ends with loss when (a) the computer
reaches 21 points before v , or (b) AD3 did not raise an alarm. The result of this
experiment can be found in Table 4. As shown in this table, VF is not effective
in reducing the losing rate of v for OSFW and OSFW(U) for all ε. SA-MDP is
effective in avoiding losses when ε = 0.01; however, it fails against all universal
perturbations when ε = 0.02. In contrast, AD3 can detect the presence of adver-
sarial perturbations in all games. Although retention/recovery and detection are
two orthogonal aspects of defense, our results above suggest that they can be
combined in tasks with negative returns or results in order to more effectively
thwart Adv from achieving its first goal.

Table 4. Losing rate (10 episodes) of DQN agents playing Pong with or without
additional defense. Losing rate is calculated by counting the number of games where
the computer gains 21 points first in an episode. If AD3 raises an alarm before an
episode ends, then v does not lose the game. In each row, the best attack with the
highest losing rate is in bold, and given an ε value, the defense with the highest losing
rate for that particular attack is shaded red.

ε Method Losing rate

No attack FGSM OSFW UAP-S UAP-O OSFW(U)

0.01 No defense 0.0 1.0 1.0 1.0 1.0 1.0

VF [16] 0.0 0.0 1.0 0.0 0.2 1.0

SA-MDP [39] 0.0 0.0 0.0 0.0 0.0 0.0

AD3 0.0 0.0 0.0 0.0 0.0 0.0

0.02 No defense 0.0 1.0 1.0 1.0 1.0 1.0

VF [16] 0.0 0.0 1.0 0.0 0.3 1.0

SA-MDP [39] 0.0 0.9 1.0 1.0 1.0 1.0

AD3 0.0 0.0 0.0 0.0 0.0 0.0
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6 Conclusion

We showed that white-box universal perturbation attacks are effective in fooling
DRL policies in real-time. Our evaluation of the three different attacks (UAP-S,
UAP-O, and OSFW(U)) demonstrates that universal perturbations are effective
in tasks with discrete action spaces. Universal perturbation attacks are also able
to generalize to continuous control tasks with the same efficiency. We confirmed
that the effectiveness of prior defenses depends on the perturbation bound, and
fail to completely recover the agent performance when they are confronted with
universal perturbations of larger bounds. We proposed a detection mechanism,
AD3, that detects all five attacks evaluated in the paper. AD3 can be combined
with other defense techniques to protect agents in tasks with negative returns
or results to stop the adversary from achieving its goal. We plan to extend our
attacks to the black-box case by first mounting a model extraction attack and
then applying our current techniques to find transferable universal perturbations.

Acknowledgments. This research was funded in part by the EU H2020 project SPA-
TIAL (Grant No. 101021808) and Intel Private-AI Consortium.

A UAP-S and OSFW in Uncontrolled Environments

In simple environments like Atari 2600 games, sequential states are non-i.i.d.
Moreover, Atari 2600 games are controlled environments, where future states
are predictable, and episodes do not deviate much from one another for the
same task. OSFW and OSFW(U) leverage this non-i.i.d. property. However,
their effectiveness might decrease in uncontrolled environments and the physical
world due to the uncertainty of future states. In contrast, UAP-S and UAP-O
are independent of the correlation between sequential states. To confirm our
conjecture, we implemented OSFW(U) against VGG-16 image classifiers [40]
pre-trained on ImageNet [27], where ImageNet can be viewed as a non-i.i.d.,
uncontrolled environment. We measured that OSFW(U) achieves a fooling rate
of up to 30% on the ImageNet validation set with ε = 10, while UAP-S has a
fooling rate of 78% [20], where the l∞ norm of an image in the validation set is
around 250. Therefore, we conclude that UAP-S can mislead DRL policies more
than OSFW(U) in complex, uncontrolled environments.
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B Computation of UAP in Continuous Control

Algorithm 2. Computation of UAP in continuous control
input : sanitized Dtrain, Vadv, hyper-parameter α

max. number of iterations itmax, perturbation constraint ε
output: universal r

1 Initialize r ← 0, it ← 0;
2 while δ < δmax and it < itmax do
3 for s ∈ Dtrain do
4 if Vadv(s + r) + α < Vadv(s) then
5 Find the extra, minimal Δr:
6 Δr ← argminΔr ‖Δr‖2

7 s.t.: Vadv(s + r + Δr) + α < Vadv(s);
8 r ← sign(min(abs(r + Δr), ε));

9 Calculate δ with updated r on Dtrain;
10 it ← (it + 1);

C Additional Experimental Results

Table 5. Offline and online cost of attacks where victim agents are PPO trained for
Walker2d and Humanoid at ε = 0.02. Attacks that cannot be implemented in real-time
are highlighted in red.

Experiment Attack method Offline cost ± std (seconds) Online cost ± std (seconds)

Walker2d, PPO, Tmax =

0.0079 ± 10−5 seconds

FGSM – 31 × 10−5 ± 10−5

OSFW – 0.02 ± 0.001

UAP-S (O) 8.75 ± 0.024 2.9 × 10−5 ± 10−6

OSFW(U) 0.02 ± 0.001 2.9 × 10−5 ± 10−6

Humanoid PPO, Tmax =

0.0079 ± 10−6 seconds

FGSM – 35 × 10−5 ± 10−5

OSFW – 0.02 ± 0.001

UAP-S (O) 35.86 ± 0.466 2.4 × 10−5 ± 10−6

OSFW(U) 0.02 ± 0.001 2.4 × 10−5 ± 10−6
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Abstract. Federated Learning (FL) is vulnerable to model poisoning
attacks that hurt the joint training global model by sending malicious
updates. Existing defenses rely heavily on restrictions on clients’ model
updates to defend against attacks. However, the global model can be
attacked by elaborate malicious perturbation under defensive restric-
tion due to the sensitivity of the model to perturbations, which leads
the model to be vulnerable. Therefore, in this work, we investigate the
defense against attacks from a novel perspective of the model stability
towards perturbation on parameters. We propose a new method named
Federated Learning with Model Jacobian Regularization (FLMJR) to
enhance the robustness of FL. Considering prediction volatility of the
model is determined by the model-output Jacobian, we reduce the Jaco-
bian regularization to improve model stability towards model pertur-
bations while maintaining the model’s accuracy. We conduct exten-
sive experiments under both IID and NonIID settings to evaluate the
defense against state-of-the-art model poisoning attacks, which demon-
strates that our method not only has superior fidelity and robustness, but
can also be easily integrated to further improve the robustness of exist-
ing server-based robust aggregation approaches (e.g., Fedavg, Trimean,
Median, Bulyan, and FLTrust).

Keywords: Federated learning · Model poisoning · Robustness ·
Model stability

1 Introduction

Federated Learning (FL), as an emerging paradigm of machine learning, enables
multiple clients to collaboratively train a machine learning model without leak-
ing data directly [16]. Due to the decentralization of clients’ data, FL has the
potential to preserve the privacy of clients and has been widely used in practice.
Nevertheless, the decentralization also raises concerns about malicious clients, as
they can easily pollute the global model by uploading malicious local models in
both independently and identically distributed (i.e., IID) and not independently
and identically distributed (i.e., NonIID) scenarios.
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The problem of malicious clients has recently received considerable attention
due to its potential threats [5,7,27]. Since the malicious models generated by the
attackers could be extremely different from the benign models, most previous
approaches leverage robust aggregations on the server to defend against attacks:
they filter or revise the arbitrary models (e.g., the models geographically distance
far from the center of all models) and then aggregate the rest of the models to
synthesize the global model. As empirical experiments illustrated, these methods
can alleviate the impact of the attack and guarantee the robustness of the FL
system under certain assumptions.

However, as recent researches demonstrated, the robust aggregations could
be vulnerable to model poisoning attacks [2,6]. By consistently applying elabo-
rate perturbations on model updates, the model poisoning attack could circum-
vent the defenses and bring a negative impact on the global model. To further
explore the reason for this phenomenon, we inspect and analyze the reactions of
the model poisoning attacks and the robust aggregations in the model parameter
space near decision boundaries (see Sect. 3). We argue that the attacks towards
FL can be regarded as perturbations towards the incorrect decision areas in
model parameter space whereas the robust aggregations of FL can be treated as
restrictions on the global model. On the one hand, since the attack algorithms
and the fraction of attackers are unknown to the defenders, it is difficult for
defenders to construct a perfect restriction that is applicable to all the attacks.
As a consequence, the defensive restrictions have to be loose and can not filter
the small perturbations. On the other hand, due to the sensitivity of the model
to perturbations, it is easy for attackers to shift the model into the incorrect deci-
sion area by small perturbations, which causes a negative impact on the model.
Therefore, using robust aggregations alone is insufficient to defend against model
poisoning attacks. The model stability with respect to the perturbations should
be considered seriously as a crucial component of defending against attacks in
FL.

Motivated by the above insight, in this paper, we are aiming to solve the chal-
lenge of model stability towards perturbations in the parameter space to defend
against malicious clients. Nevertheless, it is extremely difficult for us to obtain
a relatively stable model by aggregating model updates, since we do not know
in which direction the model should be improved. To ensure the stability of the
model, we expect the model to be relatively stable before being uploaded to the
server. Considering the model-output Jacobian matrix plays a critical role in the
Taylor expansion of prediction output with respect to the model perturbations,
we introduced the model-output Jacobian into the model’s stability analysis of
the perturbations, where the larger the Jacobian component, the more unstable
model is relative to the perturbations. Therefore, we propose a novel method
Federated Learning with Model Jacobian Regularization (FLMJR), whose cen-
tral idea is to reduce the model-output Jacobian while maintaining the model’s
accuracy to achieve relative model stability. The comparison of conventional
server-based defense method and FLMJR is illustrated in Fig. 1. FLMJR com-
bines the norm of the model-output Jacobian with the native local loss function
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to generate a relatively stable model through gradient descent in the client.
FLMJR is a novel plug-and-play fusion module and does not make any changes
to the existing standard framework. Since our method improves the stability
of the local model before uploading it to the server, the stability of the global
model is substantially improved regardless of the aggregation rules used by the
server, as demonstrated in the experimental results. We not only present an intu-
itive understanding of our proposed methodology in the motivation section but
also develop an efficient algorithm for implementation. Furthermore, we conduct
extensive experiments to demonstrate the superior performance of FLMJR.

Fig. 1. The overviews of server-based defense method and FLMJR

Concretely, our contributions and novelty can be summarized as follows:

– We consider model stability and restriction on model perturbations as two
key components in defending against attacks of FL, where existing defenses
focus only on the latter component while ignoring the former. To the best of
our knowledge, this is the first work to investigate the defense from a novel
perspective of the model stability in FL.

– We propose a novel method called Federated Learning with Model Jacobian
Regularization (FLMJR), which reduces the model-output Jacobian while
maintaining the model’s accuracy to achieve relative model stability. Mean-
while, we present an efficient algorithm for implementation in the client of
the standard FL framework.

– We demonstrate the superiority of our proposed method in terms of fidelity
and robustness in both IID and NonIID settings. Furthermore, we con-
duct extensive experiments to illustrate that FLMJR is also complementary
to existing server-based robust aggregation methods and can significantly
improve robustness and generalization of these methods under state-of-the-
art model poisoning attacks.
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2 Related Works

2.1 Model Poisoning Attacks Towards FL

The model poisoning attack is a recently proposed paradigm that aims to manip-
ulate the global model of FL by uploading fine-crafted malicious models from
clients. Unlike data poisoning attacks that leverage mislabeled data to train the
malicious model [9,18,21], model poisoning attacks aim to directly construct the
malicious model to pose a serious impact on the global model [1,6,19]. By deter-
mining the boundary of local updates, the malicious updates that diverge from
benign updates can be constructed to make the global model geographically far
from the original state of no attack [6,19]. According to different objectives,
the model poisoning attacks can be further divided into targeted attacks and
untargeted attacks. Targeted attacks aim to make the global model misclassify
the data to a given label [1,3,22,24,26]. Untargeted attacks that directly aim to
decline the total accuracy of the global model [2,6,19].

LIE attack [2] is an untargeted model poisoning attack that constructs mali-
cious updates by adding small amounts of noises to each dimension of the average
of the benign updates. Specifically, the adversary calculates the average μ and
standard deviation σ of the benign updates, looks for a coefficient z via Cumu-
lative Standard Normal Function φ(z) based on the ratio of benign clients and
malicious clients, and finally constructs the malicious update as μ + z × σ. LIE
attack can be applied without the knowledge of aggregation rules. Based on the
classification rule on attacks [19], by leveraging the information of all the benign
clients’ updates, it can be treated as a partial knowledge attack. By leveraging
only the information of malicious clients’ updates, it can also be treated as an
agnostic attack.

Fang attack [6] is an untargeted model poisoning attack by preventing the
convergence of the global model. It constructs malicious updates as solving an
optimization problem in each iteration of federated learning. The core of the
attack is to make the global model deviate the most towards the inverse of the
benign direction by uploading fine-crafted malicious updates. For instance, the
adversary computes the average μ of the benign gradients, calculates a pertur-
bation �p = −sign(μ), obtains the coefficient γ by solving the optimization
problem, and finally computes a malicious update as �m = �b + γ · �p. Based
on the classification rule on attacks [20], Fang attack belongs to the omniscient
attack since it demands the information of both benign clients’ updates and
aggregation rules to mount attack.

In this work, we focus on untargeted model poisoning attacks, which can
pose a more serious threat to FL by decreasing the accuracy of the global model
on the entire dataset.

2.2 Robust Aggregations of FL

To make FL more robust against malicious attacks, various works [4,5,7,27] have
been devoted to defend the attacks. The majority of defense methods leverage
robust aggregations on the server to enhance the robustness of the FL system.
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Trimean and Median [27] perform coordinate-wise filter operation on each
dimension independently to maximize statistical performance. Trimean is a
coordinate-wise aggregation that operates on each dimension of the model
parameters independently. Specifically, given a hyperparameter k, for each
dimension, Trimean will filter the largest k values and the smallest k values.
After that, the server will compute the mean of the remaining values as the
aggregated result for the dimension. As Yin et al., [27] illustrated, Trimean
achieves the best statistical performance while remaining Byzantine-robust of
the FL system. Similar to Trimean, Median [27] is a coordinate-wise aggrega-
tion operating each dimension separately. For instance, Median calculates the
median value of each dimension of the model parameter and constructs all the
median values as the aggregated result. Median only requires a few communica-
tion rounds and achieves the optimal rate for strongly convex quadratic losses. It
is robust against Byzantine clients and guarantees the convergence of the global
model.

Krum [4] and Bulyan [7] are designed to eliminate the arbitrary models that
are geographically far from other uploaded models. Bulyan [7] is a variant of
Krum [4] aggregation. Given a hyperparameter of k, the server first selects k
models which are the most similar to other local models. Euclidean distance is
always leveraged as a similarity metric between local models. After model selec-
tion, the server performs a Trimean aggregation on selected models to generate
the global model. Bulyan inherits the advantage of Trimean and Krum and has
been illustrated to be robust against Byzantine-clients.

FLTrust [5] is a recently proposed defense method, which generates a root
model based on a tiny root dataset on server to revise each uploaded model
before aggregation. Specifically, it carefully selects a small dataset as the root
dataset. In each epoch of training, the server will generate a root model based on
the root dataset to judge the local model updated by all the clients. Each local
model will be adjusted based on its cosine similarity with the root model and
scaled to the magnitude of the root model. After judgment on updated models, a
normal Fedavg aggregation will be applied to generate the global model. FLTrust
have shown the effectiveness in defending against malicious clients in both IID
and NonIID scenarios.

The robust aggregations can achieve a satisfying defense performance under
certain condition. However, recent researches demonstrate that the robust aggre-
gations are vulnerable to model poisoning attacks [2,6]. By consistently applying
small perturbation on model updates, it could circumvent the robust aggrega-
tions and brings negative impact to the global model. Therefore, only robust
aggregations is insufficient to defend against model poisoning attacks. The model
stability with respect to the perturbations is also needed to be as a crucial com-
ponent for defense in FL.

3 Motivation

To understand the vulnerability of the robust aggregations to model poisoning
attacks, we observe and analyze the reactions of attacks and robust aggrega-
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Decision boundary

Valid model Invalid model Attack

Restriction of robust aggregations Improving the model stability

Valid model with stability

Decision cell

Decision boundary

(a) Without the model stability

(b) With the model stability

Fig. 2. A conceptual illustration of the reaction to attacks and robust aggregations in
parameter space with given data

tions in parameter space near the decision boundary. Intuitively, as illustrated
in Fig. 2, we argue that the attacks towards FL can be considered as malicious
perturbations on the global model towards incorrect decision areas. Whereas, the
robust aggregations, which represent the most conventional defenses, can be con-
sidered as restrictions on the global model where the global model can only move
to the state within the boundary. In light of the fact that the attack methods and
the number of attackers are unknown to the defender, it is difficult to construct
a perfect restriction that is applicable to all the attacks. The unique strategies
of various robust aggregations make it possible for them to resist some attacks
under certain conditions. However, the models derived from these methods have
not been sufficiently considered in terms of their robustness and are therefore
vulnerable to adversarial perturbations, i.e., small but elaborate perturbations
can circumvent the robust aggregations and damage the global model [2]. Fur-
thermore, the restrictions from robust aggregations may also affect the general
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convergence of the global model, resulting in a negative impact on the perfor-
mance. This is why when some defense methods are applied separately without
any attack, the performance of the final model will be affected negatively, as
demonstrated by the experiment results in Sect. 5.2.

As the attack algorithms and attacker fraction are unknown, it is insufficient
to leverage robust aggregations to defend against model poisoning attacks. To
ultimately defend against the attacks, an ideal solution is to apply defensive
restrictions to filter large malicious perturbations while ensuring the model tol-
erable to small malicious perturbations. As illustrated in Fig. 2, the model near
to decision boundary (represented by the blue point in the Fig. 2) is unstable.
Even with a restriction on model movement, it is still capable for attackers to
apply a malicious perturbation shifting the model to the incorrect area. Whereas,
the model far from the decision boundary (represented by the green point) has
sufficient stability towards perturbations. With a defensive restriction applied,
it is impossible for attackers to shift the model to the incorrect areas by mali-
cious perturbations. This phenomenon implies that the model stability towards
perturbations in parameter space is crucial, as well as defensive restrictions, to
defend against model poisoning attacks. However, the robust aggregations always
focus on the latter component and ignore the former component, which results
in their vulnerability to the attacks. Therefore, in this work, we investigate the
defense against model poisoning attacks from a novel perspective of improving
model stability towards perturbations in parameter space.

4 Method

For improving model stability towards perturbation to enhance the robustness
of the model, we introduce and define formally the model-output Jacobian and
then increase the model’s tolerance to model perturbations by minimizing the
norm of the model-output Jacobian. Finally, we present an efficient algorithm
for computing the model Jacobian regularizer in the standard FL framework.

4.1 Model-Output Jacobian and Stability Analysis

Considering the set of classification functions, f , we focus on learning this classi-
fication function as a neural network with model parameters θ ∈ R

M . Here, the
input vector is x ∈ R

I and the output is a score vector, z = f(θ,x) ∈ R
C , where

each element, zc, indicates the likelihood that the input belongs to category, c.
The vertor z refers to the logit before a softmax layer has been applied. The
softmax computes the probabilistic output pc relating to zc using pc ≡ ezc/T

∑
c′ ez

c′/T

under temperature T , which is generally fixed at unity.
Due to the fact that model parameters θ is applied to each input vector

x, we omit the explicit dependency on the input vector x for simplicity, i.e.,
z = f(θ,x) = f(θ). Let us consider a small perturbation vector, ε ∈ R

M , of
the same dimension as the model parameter. During the stability analysis of
the model predictions against model perturbations, the model-output Jacobian
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matrix appears naturally. For a perturbed model ˜θ = θ + ε, the corresponding
values shift to

z̃c = fc(θ + ε) = fc(θ) +
M
∑

i=1

εi · ∂fc

∂θi
(θ) + O

(

ε2
)

= zc +
M
∑

i=1

Jc;i(θ) · εi + O
(

ε2
)

, (1)

where the function in the second equality is Taylor-expanded with respect to the
model perturbation ε and the model-output Jacobian matrix,

Jc;i(θ) ≡ ∂fc

∂θi
(θ) (2)

is introduced in the third equality.
Different from conventional input-output Jacobian for the sample [8], here

we focus on model-output Jacobian for model parameters. Due to the general
analytic nature of the function f , the higher-order terms can typically be ignored
for relatively small perturbations, ε, and prediction stability is determined by the
model-output Jacobian. Consequently, by reducing the Jacobian component, we
can enlarge the model’s tolerance to perturbations to improve the model stability.

4.2 Minimize Model-Output Jacobian for Model Stability

As can be observed from Eq. (1), the larger the Jacobian components, the more
unstable the prediction of the model is with respect to model perturbations.
Therefore, a straightforward method of reducing this instability is to reduce the
magnitude of each component of the Jacobian matrix, which can be achieved by
minimizing the square of the Frobenius norm of the model-output Jacobian,

‖J(θ)‖2F ≡
⎧

⎨

⎩

∑

i,c

[Jc;i(θ)]2

⎫

⎬

⎭

. (3)

Therefore, the local training of benign clients is reformulated to achieve two
goals:

– To maintain the performance of the benign task, loss of local benign tasks
should be minimized.

– To improve the robustness of FL by increasing the model stability, the model
Jacobian regularization should be minimized.

The Jacobian regularizer in Eq. (3) can be used in conjunction with any loss
objective to train parameterized models in the client. Therefore, considering N
clients with data sets D1, ...,DN , we formulate the defense problem of FL as

min
θ∈Rd

G(θ) =
1
N

N
∑

i=1

Li(θ), (4)
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Algorithm 1: Federated Learning with Model Jacobian Regularizer
(FLMJR)
Input: the global model θt, the local dataset Di, mini-batch size |B|, and

number of projections mproj .
Output: the updated local model θt+1

i

1 θi,0 = θt

2 R = |Di|/|B|
3 for r = 1 to R do
4 JF = 0
5 B ← sample a mini-batch with size |B|
6 model outputs zα = f(θi,r−1, {xα, yα}α∈B)
7 for k = 1 to mproj do
8 {qα

c } ∼ N (0, I) ; // (|B|, C)-dim
9 q̂α = qα/ ‖qα‖ ; // Uniform sampling from the unit sphere

10 zflat = Flatten ({zα}), qflat = Flatten ({q̂α})
11 Jq = ∂ (zflat · qflat ) /∂θα

12 JF + = C‖Jq‖2/ (mproj |B|)
13 end

14 LB
i = LB

local + λMJRJF

15 θi,r = θi,r−1 − ∇θ LB
i (θi,r−1)

16 end

17 θt+1
i = θi,R

where
Li(θ) = Llocal(θ) + λMJR ‖J (θ)‖2F (5)

is the loss function of the ith client, Llocal is a native local loss function, and
λMJR is a hyperparameter that is used to determine how much the model Jaco-
bian regularizer influences the model. It is expected that the model will be able
to learn correctly and robustly by minimizing the joint loss function with an
appropriate choice of λMJR.

At each iteration, a loss function with the model Jacobian regularizer, Li, and
a mini-batch B consisting of a set of labeled examples {xα,yα}α∈B, is optimized
with SGD over the function parameter space by minimizing the following joint
loss function

LB
i (θ) = LB

local (θ) + λMJR

[

1
|B|

∑

α∈B
‖J (θ)‖2F

]

. (6)

4.3 Algorithm

In the prior discussion, we have argued that increasing the model stability of
client learning by minimizing the Frobenius norm of the model-output Jacobian
could assist in improving the robustness of FL. Then the main challenge is how
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to efficiently compute and deploy the regularizer so that it can be seamlessly
incorporated into any existing FL paradigm.

For computing the Frobenius norm of the model-output Jacobian, it is most
intuitive to combine a set of orthonormal basis with the automatic differentiation
system. For each basis vector {e}, the derivative elements within the model-
output Jacobian can be computed efficiently by differentiating the product, e ·z,
with respect to the model parameters, θ,

‖J(θ)‖2F = Tr
(

JJT
)

=
∑

{e}
eJJTeT =

∑

{e}

[

∂(e · z)
∂θ

]2

, (7)

where a constant orthonormal basis, {e}, is with the C-dimensional output space.
The formula in (7) is a exact computation that requires C times backprop-

agating gradients through the model due to C orthonormal basis vectors {e}.
Nevertheless, the computational cost, which is linear to the output category C,
is inaccessible and prohibitively expensive in practice for many large-scale FL
problems.

For the efficient deployment of this model Jacobian regularizer, we consider
a random projection method to effectively compute the Frobenius norm of the
model-output Jacobian [23]. Consequently, Eq. (7) is rewritten in light of the
expectation of an unbiased estimator

‖J(θ)‖2F = CEq̂∼SC−1

[‖q̂ · J‖2] , (8)

where the random vector q̂ is derived from the (C − 1)-dimensional unit sphere
SC−1 with each element sampled from a standard normal. According to this
relationship, the square of the Frobenius norm of the model-output Jacobian
can be estimated by samples of mproj random vectors q̂m as

‖J(θ)‖2F ≈ 1
mproj

mproj
∑

m=1

[

∂ (q̂m · z)
∂θ

]2

, (9)

which converges to the true value as O
(

m
−1/2
proj

)

[8]. In addition, we obtain

‖J(x)‖2F by averaging over a mini-batch of samples with a size of |B|. We
expect that the fluctuation of our estimator can additionally be suppressed by
∼| 1/

√|B| through cancellations within a mini-batch. The error with nearly inde-
pendent and identically distributed samples in a mini-batch is expected to be of
order (mproj|B|)−1/2 [8]. Hence, our method can perform well with mproj = 1
in practice. The complete algorithm description of FLMJR is presented in Algo-
rithm 1.

5 Experiment

In this section, we empirically demonstrate the effectiveness of FLMJR as a
defense for FL. First, we illustrate the fidelity of FLMJR by comparing it with
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other defense methods. Afterward, we illustrate the robustness of FLMJR using
LIE and Fang attacks. Moreover, we comprehensively evaluate the improvement
of FLMJR on defense performance across all baselines to demonstrate its effec-
tiveness. More detailed experimental results including the impact of λ are present
in the supplemental materials.

5.1 Experimental Setup

We conduct experiments over four datasets: CIFAR10 [12], MNIST [14], SVHN
[17], and Fashion-MNIST [25].

CIFAR10 [12] is a 10-class color image classification dataset. It consists of
50000 training samples and 10000 test samples. We selected AlexNet [13] as
the model architecture for CIFAR10 classification task. We consider building an
FL system in the IID scenario for CIFAR10 classification. To simulate the IID
scenario, each client is allocated a local dataset that contains 1000 data samples
and has data of all the labels. The learning rate and the global epochs are set to
0.1 and 600 respectively. Especially, while applying FLTrust, we set the global
epoch to 1000 to guarantee the convergence of the global model.

MNIST [14] is a 10-class digit image classification dataset, which consists of
60000 training samples and 10000 testing samples. We select LeNet [14] as the
model architecture for MNIST classification task. We consider building an FL
system in the NonIID scenario for MNIST classification. To simulate the NonIID
scenario, the dataset is sorted by labels and sequentially divided into equal parts
among clients. Specifically, each client is allocated a local dataset that contains
1200 samples and only has only 2 of 10 labels. The learning rate and the global
epochs are set to 0.1 and 500 respectively.

SVHN [17] is a 10-class color-digit image classification dataset. It consists
of 50000 training samples and 10000 test samples. We select AlexNet [13] as
the model architecture. We consider building an FL system in the IID scenario
for SVHN classification. To simulate the IID scenario, each client is allocated
a local dataset that contains 1000 data samples and has data of all the labels.
The learning rate and the global epochs are set to 0.1 and 600 respectively.
Especially, while applying FLTrust on the server, we set the global epoch to
1000 to guarantee the convergence of the global model.

Fashion-MNIST [25] is a 10-class fashion image classification dataset, which
has a predefined training set of 60000 fashion images and a testing set of 10000
fashion images. We select LeNet [14] as the model architecture for Fasion-MNIST
classification task. We consider building an FL system in the NonIID scenario
for Fashion-MNIST classification. To simulate the NonIID data distribution, as
well as we do on MNIST classification, the local dataset of each client consists
of 1200 data samples with only 2 labels. The learning rate and the global epochs
are set to 0.1 and 500 respectively.

For the threat model in this work, we assume the adversary can access the
global model parameters broadcast in each epoch and arbitrarily manipulate the
local models sent to the server. By using malicious models, the adversary aims
to reduce the accuracy of the global model.
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Fig. 3. The fidelity of different defense methods on CIFAR10 with the IID setting and
MNIST with the NonIID setting

All optimizers of CIFAR10 classification, MNIST classification, SVHN clas-
sification, and Fashion-MNIST classification are SGD optimizer.

In the FL system, there are 50 clients, 20% of which may be the malicious
clients uesd to mount adversarial attacks. Our baselines for the experiment con-
sider standard aggregation, Fedavg, and robust aggregations such as Trimean,
Median, Bulyan, and FLTrust. As state-of-the-art attacks against FL, LIE and
Fang have shown their threat to FL by empirical experiments and have been
widely used as benchmarks to evaluate the Byzantine robustness of FL system.
So LIE and Fang are used to estimate the defense performance.

5.2 Evaluation for Fidelity

The impact of defenses on accuracy in no attack scenarios has typically been
overlooked by defenses in the past. Therefore, we firstly focus on illustrating
the fidelity of FLMJR in a general scenario without any attack. Specifically, we
apply FLMJR on Fedavg and compare it with the baselines. The experiment
results of MNIST dataset with the NonIID setting and CIFAR10 dataset with
the IID setting are shown in Fig. 3. According to the results, Fedavg integrated
with FLMJR has a similar test accuracy as well as the vanilla Fedavg. However,
the baselines are lower or much lower test accuracy in the same situation. Partic-
ularly, in the NonIID setting, FLMJR only reduces test accuracy by 2.5%, and
it converges stably. Whereas, Trimmed Mean, Median, and Bulyan only have
reduced test accuracy of 80.98%, 79.7%, 45.65%, respectively, where the conver-
gence curves of these methods are unstable. FLTrust, as the best among the
baselines, has a test accuracy of 88.52% and makes the model converge stably,
which is still worse than FLMJR. Similarly, in the IID setting, Fedavg integrated
with FLMJR even performs better than vanilla Fedavg. It has a test accuracy
of 67.60% and outputs a stable convergence curve. The test accuracy of the
baselines is still lower than FedAavg with FLMJR. Meanwhile, they can not
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guarantee the stability of the convergence. Overall, experiment results indicate
that the fidelity of our method is superior to that of existing defense methods.

To further demonstrate the improvement on generalization ability in the IID
scenario, we evaluate the performance of FLMJR on CIFAR10 dataset with
more aggregations. Additionally, we also conduct experiments without FLMJR
to validate the generalization ability of FLMJR. The experiment results are
provided in Appendix. Accordingly, in all the experiments, the FLMJR is able
to improve the generalization of the global model. To explain the improvement,
we consider the performance divergence between centralized trained model and
distributed trained model, which is caused by the system heterogeneity and the
statistical heterogeneity [15], as the impact of a noise perturbation on model
parameter space. As demonstrated in Sect. 4, FLMJR is supposed to enables
the model to tolerate the impact of small perturbation on parameter space. It
alleviates the negative impact of the noise perturbation of heterogeneity. Thus,
the generalization ability of the model is improved in the IID scenario.

5.3 Evaluation for Robustness

In this part, we focus on demonstrating the robustness of FLMJR in defending
against attacks. Specifically, we integrate FLMJR to Trimean and estimate the
defense performance using LIE attack and Fang attack. The experiment results
of CIFAR10 with the IID setting and MNIST with the NonIID setting are illus-
trated in Fig. 4 and Fig. 5, respectively. As can be seen in Fig. 4, FLMJR signif-
icantly improves the accuracy of Trimean under no attack or different attacks.
In the IID setting, FLMJR achieves accuracy improvements of 9.83% and 3.16%
under LIE attack and Fang attack, respectively. Even without attacks, FLMJR
still increases the accuracy by 3.2%. Similarly, in the NonIID setting, the accu-
racy improvements of FLMJR under LIE attack, Fang attack, and no attack are
8.34%, 3.72%, and 5.37%, respectively. Strangely, Fang attack increases rather
than decreases the accuracy in the NonIID setting. A potential reason is that
Fang attack reduces the heterogeneity of FL as the malicious clients collude
to mount attacks. Based on the illustration [10], such heterogeneity reduction
might help the global model to converge to a better state. Nevertheless, even
the Fang attack increases the model utility, FLMJR can further improve the
generalization of the model under Fang attack.

To further explore the robustness of FLMJR on Trimean, we estimate the
Jacobian loss during the training process and present the results in Fig. 5. As
illustrated in Fig. 5, without FLMJR integrated, the Jacobian loss continuously
increases, that is, even as the accuracy converges into a stable state, the Jacobian
loss still keeps growing. The large Jacobian loss reflects the instability of the
global model and provides an open door to malicious clients. Conversely, with
FLMJR integrated, the Jacobian loss is limited within a certain range and the
model stability is guaranteed. As a result, our experiments have demonstrated
the robustness of FLMJR through superior accuracy performance and lower
Jacobian loss. In other words, by limiting Jacobian losses, FLMJR ensures the
stability of the global model and prevents the harmful effects of attacks.
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Fig. 4. The accuracy of vanilla Trimean and Trimean with FLMJR under different
attacks on CIFAR10 with the IID setting and MNIST with the NonIID setting

Fig. 5. The Jacobian loss of vanilla Trimean and Trimean with FLMJR under different
attacks on CIFAR10 with the IID setting and MNIST with the NonIID setting

5.4 Comprehensive Evaluation of FLMJR

Finally, we make a comprehensive evaluation to illustrate the effects of FLMJR.
We estimate the defending performance of each baseline with FLMJR or without
FLMJR in Table 1.

We first conduct experiments on CIFAR10 dataset and SVHN dataset in the
IID scenario. Regarding Trimean, Median, and Bulyan, as typical Byzantine-
robust aggregations, they are difficult to defend against model poisoning attacks.
Specifically, in CIFAR10 classification, they only achieve the test accuracy of
56.12%, 56.79%, and 46.95% under LIE attack and are not as good as standard
aggregation Fedavg. Similarly, they also perform badly under Fang attack. For-
tunately, FLMJR helps them improve the situation. In CIFAR10 classification,
the integration of FLMJR improves the test accuracy of Trimean, Median, and
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Table 1. Comparison of clients without FLMJR and with FLMJR over baselines under
LIE attack and Fang attack on the CIFAR10(IID), SVHN(IID), MNIST(NonIID), and
Fashion-MNIST(NonIID). (The better result is marked in bold.)

Dataset Aggregation LIE attack Fang attack

Non-FLMJR FLMJR Non-FLMJR FLMJR

CIFAR10 (IID) Fedavg 60.81% 67.22% 63.51% 66.84%

Trimean 56.12% 65.95% 63.00% 66.16%

Median 56.79% 64.70% 60.73% 61.93%

Bulyan 46.95% 54.19% 50.46% 51.12%

FLTrust 59.40% 61.49% 60.54% 60.97%

SVHN (IID) Fedavg 87.24% 88.02% 87.87% 88.21%

Trimean 86.09% 87.74% 87.19% 88.00%

Median 81.64% 86.62% 84.86% 84.89%

Bulyan 70.43% 81.17% 68.37% 73.63%

FLTrust 85.03% 85.84% 85.27% 85.70%

MNIST (NonIID) Fedavg 87.78% 88.16% 97.00% 97.40%

Trimean 50.09% 58.43% 90.09% 93.81%

Median 39.65% 44.50% 84.82% 86.66%

Bulyan 30.39% 34.86% 10.05% 10.05%

FLTrust 87.32% 88.55% 87.15% 88.58%

Fashion- MNIST (NonIID) Fedavg 79.39% 80.01% 82.81% 82.86%

Trimean 30.52% 37.75% 59.06% 60.82%

Median 34.16% 35.94% 55.37% 63.95%

Bulyan 25.51% 28.66% 10.29% 15.39%

FLTrust 79.60% 81.01% 79.84% 81.02%

Bulyan to 65.95%, 64.70%, and 54.19% respectively and helps them remedy the
availability of the model. Likewise, FLMJR improves the utility of these aggre-
gations under Fang attack. The improvement of FLMJR on LIE attack is greater
than that of Fang attack since the attack accuracy drop of LIE attack is larger
than that of Fang attack in the experiments.

Moreover, we evaluate the effect of FLMJR on MNIST dataset and Fashion-
MNIST dataset in the NonIID scenario. According to evaluation results shown in
Table 1. Typical robust aggregations perform even worse in the NonIID scenario.
Trimean, Median, and Bulyan only achieve the accuracy of 50.09%, 39.65%, and
30.39% under LIE attack and are much lower than Fedavg and FLTrust. Under
Fang attack, Trimean and Median produce a better performance while Bulyan
completely fails to converge with an accuracy of 10.05%. The results in Fashion-
MNIST classification also show the fragility of typical robust aggregation. In
such situations, the integration of FLMJR is able to enhance the performance of
the aggregations. However, due to natural deficiencies of the aggregations, the
improvement of FLMJR may be limited when the model is completely unavail-
able (e.g., Bulyan only has 10.05% under Fang attack on MNIST dataset). Even
in extreme situations when the models are fully attacked and thus rendered use-
less, FLMJR may still improve FL robustness to increase accuracy (e.g., Bulyan
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with FLMJR has a 5.1% improvement in accuracy over Bulyan without FLMJR
under Fang attack).

Compare with the typical Byzantine-robust aggregations, Fedavg and
FLTrust are more effective in all situations. For FLTrust, it is exactly effec-
tive against all the attacks in IID and NonIID scenarios. Note that it demands a
validation root dataset on the server which disobeys the situation in production
FL. For Fedavg, the same situation is matched with the empirical evaluation [2].
The model poisoning attacks leveraged in experiments consider the existence of
robust aggregations on the server-side. The attacks specifically craft the mali-
cious updates to circumvent the robust aggregation and pollute the global model.
As a result, their atttack impact on Fedavg is alleviated. It is worth noting that
Fedavg does not intentionally distinguish or filter the malicious updates, it can
be easily attacked by simple-designed attacks. Even though Fedavg and FLTrust
are efficient, the integration of FLMJR can further enhance these aggregations to
gain a better generalization and defense performance. In conclusion, our experi-
mental results demonstrate the efficiency of FLMJR. The integration of FLMJR
is efficient to improve the robustness and utility of existing aggregations in both
IID and NonIID scenarios.

6 Conclusion

In this paper, we propose FLMJR from a novel perspective of model stability to
defend against model poisoning attacks in the FL system. Different from the pre-
vious defenses that leverage robust aggregations to protect FL, FLMJR improves
robustness of FL by increasing model stability towards perturbation in model
parameter space. Meanwhile, we develop an efficient algorithm to reduce the
model-output Jacobian regularization for implementing FLMJR. The empirical
experiment results demonstrate that FLMJR has superior fidelity and robust-
ness, and can also be easily integrated into existing server-based robust aggrega-
tion approaches to further improve their robustness. We hope that future defense
researches of FL will not only focus on robust aggregation algorithms, but also
pay more attention to improving robustness through model stability, which could
lead to a more robust FL.
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A Impact of Hyperparameter λ

To explore the impact of hyperparameter λ, we evaluate the defense performance
of Trimean with and without FLMJR under LIE attacks with different λ. The
experiment results are presented in Fig. 6. Accordingly, the selection of λ deter-
mines the effects of FLMJR. On CIFAR10 with the IID setting, when λ is set
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Fig. 6. Impact of λ on CIFAR10 with the IID setting and MNIST with the NonIID
setting

to 10−5, the impact of Model Jacobian Regularization is weak, which can not
help the FL system to defend against attacks. Therefore, the global model only
achieves the highest accuracy of 60.27%. While λ is set to 10−4, the integration
of FLMJR helps the model achieve the trade-off between robustness and avail-
ability. The accuracy of the global model has achieved 65.95% and the impact
of LIE attack is almost eliminated. With λ growing to 10−3, the fraction of the
Model Jacobian Regularization is large, which makes the Jacobian regulariza-
tion dominant the training objective. As a result, the global model only has the
highest accuracy of 55.50% and can not achieve a satisfying performance as a
general model.

Similarly, on the MNIST with the NonIID setting, while λ is set to a large
value, the global model can not achieve a general performance. On the contrary,
while λ is set to a small value, the global model is still affected by the attacks.
As a result, the choice of λ determines the balance between robustness and the
general performance of the model. Therefore, for a specific situation, we need to
carefully tune λ to achieve a trade-off between the accuracy and the robustness.
Note that, the accuracy start to decrease after reaching a certain peak value.
This is because the impact of attack continues to increase after attacks are
successful until the model loses availability (i.e., the accuracy reaches about
10%). Meanwhile, we can also find that a larger λ = 10−3 can still mitigate the
attack impact under such extreme conditions to improve model availability (i.e.,
the accuracy reaches about 20%).

B Empirical Validation of the Generalization Ability
of FLMJR

To further validate the generalization ability of FLMJR in the IID scenario with
no attacks applied, we additionally conduct empirical evaluations on CIFAR10
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(a) (b) (c)

(d) (e) (f)

Fig. 7. Empirical validation of the generalization ability of FLMJR

dataset. Specifically, we estimate the generalization improvement of FLMJR
on FL system with different aggregations. Besides the robust aggregations we
used in main paper, we also evaluate the performance of FLMJR on generic
aggregations including Fedavg [16], FedProx [15] and Scaffold [11]. As shown in
Fig. 7, the integration of FLMJR enhance the performance of all the aggregations
in the IID scenario. With Bulyan and Scafflod aggregations, the integration
of FLMJR can slightly improve the generalization ability of the global model.
Where as on Trimean, Fedavg, Median and FedProx, FLMJR can obviously
enhance the performance of these aggregations.
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Abstract. The training and development of good deep learning mod-
els is often a challenging task, thus leading individuals (developers,
researchers, and practitioners alike) to use third-party models residing
in public repositories, fine-tuning these models to their needs usually
with little-to-no effort. Despite its undeniable benefits, this practice can
lead to new attack vectors. In this paper, we demonstrate the feasibil-
ity and effectiveness of one such attack, namely malware embedding in
deep learning models. We push the boundaries of current state-of-the-art
by introducing MaleficNet, a technique that combines spread-spectrum
channel coding with error correction techniques, injecting malicious pay-
loads in the parameters of deep neural networks, all while causing no
degradation to the model’s performance and successfully bypassing state-
of-the-art detection and removal mechanisms. We believe this work will
raise awareness against these new, dangerous, camouflaged threats, assist
the research community and practitioners in evaluating the capabilities
of modern machine learning architectures, and pave the way to research
targeting the detection and mitigation of such threats.

Keywords: Deep learning · Malware · Steganography · CDMA

1 Introduction

Breakthroughs in machine learning (ML), particularly in the field of deep learn-
ing (DL), are a leading factor in nowadays technological advancements, con-
stantly pushing the boundaries in areas like computer vision [6,7,17,22,33,45],
natural language processing [4,13,14], speech recognition [9,15,46], cybersecu-
rity [1,10,11,18,30], and more [26]. Deep neural network (DNN)-based tech-
nologies are now vital supply-chain components for a wide array of real-world
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applications and systems [3]. DNNs learn by ingesting large quantities of data,
all while undergoing several cycles of training. Deeper architectures are shown
to outperform their shallow counterparts, extracting and learning more intricate
details (features) relevant to the task at hand. Existing state-of-the-art architec-
tures reach up to trillions1 of parameters [4,13], leading to several researchers
and other interested parties relying on pre-trained, “off-the-shelf”, architectures,
usually downloading them from public online mediums. The benefits of having
access to publicly available, pre-trained models are clearly undeniable. Nonethe-
less, DNN incorporation in larger industry pipelines, without the presence of
additional vetting mechanisms, can lead to new attack vectors targeting the
respective entity. For instance, the recent work by Liu et al. [25] shows that
it is feasible to inject malware payloads into DNN parameters, resulting in a
new form of stegomalware. The work is further extended by Wang et al. [42,43]
who increase the size of the injected malware payload, while keeping the model’s
accuracy intact.

This paper proposes MaleficNet, a novel payload embedding technique
that makes use of the Code-Division Multiple-Access (CDMA) spread-spectrum
channel-coding [36] and Low-Density Parity-Check (LDPC) error correction [31],
to inject malware payloads in order of megabytes into diverse DNN architectures.
The coupling of CDMA with LDPC allows MaleficNet to embed malicious pay-
loads in a stealthy manner while also being robust to various DNN modifica-
tions that attempt to disrupt the payload content. MaleficNet can successfully
bypass state-of-the-art malware detection engines like MetaDefender [27]. Fur-
thermore, MaleficNet is robust against removal techniques such as fine-tuning
and parameter pruning, which have been shown to mitigate the threat in prior
approaches [25,42,43]. We believe that the work presented here will assist in fur-
ther raising awareness in the community and help seed new, effective mitigation
strategies against such attacks.

Our contributions can be summarized as follows:

– We introduce MaleficNet, a novel deep neural network payload embedding
technique based on a combination of CDMA spread-spectrum channel-coding
and LDPC error correction techniques. Bringing together these two tech-
niques makes MaleficNet undetectable from malware detection engines and
robust against removal attempts.

– We demonstrate that MaleficNet is domain-independent and we conduct an
extensive empirical evaluation under varying conditions: a) diverse payload
sizes; b) different DNN architectures; c) several benchmark datasets; d) dif-
ferent classification tasks; and d) multiple domains, including image, text,
and audio.

– We test the MaleficNet model against state-of-the-art malware detection tech-
niques such as MetaDefender [27] and demonstrate that the MaleficNet pay-
load is not detected.

1 GPT-3, a language model by OpenAI, has 175-billion parameters. Gopher by Deep-
Mind has a total of 280 billion parameters and GLaM from Google has 1.2 Trillion
weight parameters.
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– We show that existing mitigation techniques, despite their effectiveness
against prior work [25,42,43], have negligible impact on MaleficNet.

– We provide the source code to reproduce the evaluation of MaleficNet at this
link https://github.com/pagiux/maleficnet.

2 Background

2.1 Deep Neural Networks

Deep neural networks [28] are algorithms designed to identify, extract, and learn
relevant information and relationships among a given set of input data without
the need for laborious feature-engineering from domain experts. DNNs are capa-
ble of learning from large quantities of high-dimensional data (e.g., images), with
benchmark results in several learning tasks. In this paper, we focus our evalu-
ation on classification tasks. A classification problem makes use of a labeled
dataset of (x, y) data pairs where the goal consists in learning a function f that
will be able to map the datapoint x to its corresponding target label y. The
learning procedure is guided by a loss function l which measures the misclassifi-
cation rate of the learned function f . This information is further used to update
the parameters of the function f . In short the learning procedure can be defined
as follows:

̂θ = arg min
θ∈Θ

∑

i

l(f(xi; θ), yi), (1)

To obtain a good-enough f , deep neural networks require a large number of
(x, y) data pairs, with the training process often requiring the use of specialized
hardware such as GPUs. These requirements make the production of a high qual-
ity DNNs very expensive thus pushing multiple entities to obtain these trained
models from marketplaces [20].

2.2 Stegomalware

Stegomalware [35] is a type of malware that uses steganography [5] to hinder
detection. Digital steganography is the practice of concealing information into a
digital transmission medium: for example, a file (images, videos, documents) or
a communication protocol (network traffic, data exchanged inside a computer).
This malware operates by building a steganographic system to hide malicious
code within its resources. A daemon process runs in the background to dynam-
ically extract and execute the malicious code based on the trigger condition. In
our case, the digital file corresponds to the trained deep neural network, where
the weight parameters of the model serve as the medium for hiding the malware.
This practice is in line with prior research in the field [25,42,43].

https://github.com/pagiux/maleficnet


428 D. Hitaj et al.

2.3 Spread-Spectrum Channel Coding

Developed in the 1950s s with the purpose of providing stealthy communications
for the military, spread-spectrum techniques [36] are methods by which a sig-
nal (e.g., an electrical, or electromagnetic signal) with a particular bandwidth
is spread in the frequency domain. Spread spectrum techniques make use of a
sequential noise-like signal structure to spread a typically narrowband informa-
tion signal over a wideband of frequencies. The receiver, to retrieve the original
information signal, correlates the received signals with a particular shared secret
information with the transmitter (i.e., the spreading codes). Moreover, hiding
the original information signal using a noise-like structure, beside hiding the fact
that a communication is taking place, also provides resistance to communication-
jamming attempts from an enemy entity [38].

Code Division Multiple Access (CDMA), the spread-spectrum technique we
employ in this work, is a low-cost technique to spread information in a channel
and achieve the capacity in the low power regime, i.e., when the number of bits
per channel use is low [40]:

Eb

N0
=

2C − 1
C

, (2)

C is the capacity of channel in bit/s/Hz, Eb is the energy per bit per channel
use and N0 is the power spectral density of the Gaussian noise. The capacity of
CDMA was first studied in [39], which showed that the sum capacity could be
achieved. In [32], the authors showed that the symmetric capacity was equal to
the sum capacity when all the users transmitted the same power and there were
at most as many users as chips. Finally, in [41], the authors proved that the sum
capacity could also be achieved for users with different transmitted powers, as
long as they are not oversized. The symmetric capacity can be achieved by using
Walsh matrices when the number of users is less than the number of channel
use [40]. Following [32], we could encode up to one bit per channel use and still
achieve capacity.

2.4 Error Correcting Codes

An Error Correcting Code (ECC) is an encoding scheme that transmits messages
as binary numbers so that the message can be recovered even if some bits are
erroneously flipped [2]. They are used in practically all cases of message trans-
mission, especially in data storage, where ECCs defend against data corruption.
In MaleficNet, to make it robust toward removal techniques that may corrupt
the embedded payload, we incorporate LDPC codes to detect and correct flipped
bits.

Low-Density Parity-Check Codes. Channel coding allows detecting and
correcting errors in digital communications by adding redundancy to the trans-
mitted sequence. For example, the widely known Hamming (7,4) codes add three
redundancy bits to four message bits to be able to correct any received word with
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one error. In general, Shannon coding theorem [8] tells us the limit on the number
of errors that can be corrected for a given redundancy level, as the number of bits
tends to infinity. Low-Density Parity-Check (LDPC) codes [31] are linear codes
that allow for linear-time decoding of the received word, quasi-linear encoding,
and approach the capacity as the number of bits tends to infinity. LPDC codes
rely on parity check matrices with a vanishing number of ones per column as
the number of bits grows. These codes can be proven to approach capacity as
the number of bits increases and have an approximate decoding algorithm, i.e.,
Belief Propagation, that runs in linear time [31].

3 Threat Model

We position ourselves in a threat model similar to the one considered by prior
work in the domain [25,42,43]. In this threat model, the adversary is any mem-
ber of the broad DNN community that creates and distributes (sells) malicious
DNNs. Such a published DNN is advertised and operates as expected under nor-
mal conditions (i.e., its performance on the intended task is similar to that of
a non-malicious DNN); however, it contains a malicious payload in its parame-
ters. The adversary is not able to remotely access or control the DNN once it is
deployed on the end-users side. On the other end, the end-user is any entity that
consumes DNN services, including those provided by our adversary. Nowadays,
this is a typical scenario. Due to the large costs associated with the dataset
creation and model training, many entities (companies or individuals) rely on
DNN marketplaces to obtain and incorporate machine learning-based solutions
in their products. The end-user will deploy these marketplace DNN solutions
in a trusted environment that is equipped with anti-malware tools and that is
protected by firewalls, thus the DNN model provided by the adversary should
bypass the anti-malware scans and afterward be able to extract and execute
the malicious payload inside the end-users organization. This means that the
malicious DNN should be self-contained, and the adversary can only modify the
DNN model (including model parameter and testing algorithm) at the service
creation phase.

This work introduces MaleficNet, a novel and robust payload embedding tech-
nique based on spread-spectrum channel coding. MaleficNet is employed by the
adversary to embed the malicious payload within the DNN model parameters.

3.1 Threat Scenario Overview

To convert a DNN into a stegomalware, we take the following steps:

– Preparation of the DNN model and malware payload: The DNN
model that eventually will contain the malware payload can either be trained
from scratch from the adversary or obtained through DNN marketplaces [20]
and built on top of them. After the DNN considerations, the adversary has to
pick the malicious payload that will be injected into the model. The malicious
payload can be anything from already known malware to a new specific one
created by the adversary according to its needs.
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– Payload Injection: The adversary injects the malware payload into the
DNN model, such as the model performance on the legitimate task will not be
affected. Moreover, the adversary will attempt to inject the malware payload
in a covert manner such as it will go undetected by anti-malware and other
security checks performed on the model file. In our case, the adversary makes
use of MaleficNet to inject the malware payload in a stealthy manner.

– Trigger creation: The trigger is the mechanism that allows the control
of the execution of the embedded payload upon an external stimulus (or
command). We base our triggering mechanism on prior work [25] logits-based
trigger. To insert the trigger into the self-contained malicious DNN model,
the adversary can leverage one of the vulnerabilities of the model’s underlying
implementation libraries (e.g., insecure deserialization [34]). Once the trigger
is set up, during the dynamic execution of the DNN model, it will observe
the logits of the model, and under predefined circumstances, it will trigger
the extraction and the execution of the payload.

4 MaleficNet

In this section, we expand on the inner-workings of MaleficNet, delving deeper
into how we tailor and apply both CDMA spread spectrum techniques and LDPC
error correction codes to create MaleficNet.

In this scenario, an adversary wants to embed an m-bits malicious payload
b = [b0, . . . , bm−1] into the model parameters of a deep neural network. For sim-
plicity, consider the weight parameters of DNN organized as a vector w. Initially,
we divide the malware payload b into n blocks of dimension d to form a matrix
B of dimension n by d, thus B = [b0, . . . ,bn] where bi = [bi·d, . . . , b(i+1)·d].
Afterwards we also divide the vector w in n blocks of size s, such that n · s
is equal (or less) to number of elements of w. Using CDMA, the bits of the
payload are encoded to ±1. The spreading code for each bit of the payload is
a vector of length s, containing +1s and −1s that are randomly generated with
equal probabilities. Cj is an s by d matrix that collects all the spreading codes
for each block of bits (this matrix without loss of generality can be the same or
different for all the blocks).

The codes in CDMA only need to be quasi-orthogonal for CDMA to work [40].
If the spreading code is long enough, the leakage from the non-orthogonality is
less than the noise in the channel (in our case, the original weights of the DNN),
and it will not change the properties of the CDMA. We could have also used
Hadamard matrices or Gold Codes (used in 3G) which are orthogonal for our
work, but random codes have similar properties and are easier to analyze. After
we have divided in chunks both the malware and the neural network, we embed
one chunk of the malware into one chunk of the neural network:

wMaleficNet
j = wj + γCjbj (3)
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Now, the adversary can recover each bit ̂bji = sign(b̃ji), where

b̃ji = c�
jiw

MaleficNet
j = sγbji + c�

jiwj + γ
∑

k �=i

c�
jicjkbjk (4)

The s in front of bji comes from ||cji||2 = s and
∑

k �=i c
�
jicjk is of the order of√

s. cji is a random vector of ±1 uncorrelated with wj , meaning that the term
c�

jiwj is of the order of the standard deviation of the weight vector of the neural
network and this amount of noise can be tackled by the use of error correcting
codes that we describe below. By carefully selecting the γ hyperparameter2 we
can make the last two terms in Eq. 4 negligible with respect to the first term.

To ensure robustness and allow for a correct extraction of the payload, we
also employ an LDPC code to embed the payload in the DNN. We use a rate
1/2 with three ones per column code. Richardson and Urbanke [31] showed that
this choice of LDPC parameters exhibits very good properties in terms of error
correction for a linear time decoding. LDPC needs an estimate of the channel
noise variance to perform the error correction. To allow for a reliable estimation
of the channel noise variance, we add at the beginning of the payload a sequence
of 200 randomly generated bits (mapped to ±1). In total the payload that is
embedded in the DNN based on the CDMA spread spectrum technique is com-
posed of the 200 bit preamble and the LDPC encoded payload (i.e. the payload
and the error correcting bits). See Appendix B for details about MaleficNet’s
practical implementation of the embedding and extracting algorithms.

5 Experimental Setup

5.1 Datasets

We selected the following benchmark datasets to evaluate MaleficNet: We used
the MNIST [23], FashionMNIST [44], Cifar10 [21], Cifar100 [21], ImageNet [12]
datasets and a subset of the Imagenet dataset, namely Cats vs. Dogs dataset. The
MNIST handwritten digits dataset consists of 60,000 training and 10,000 testing
grayscale images of dimensions 28× 28-pixels, equally divided in 10 classes. The
CIFAR-10 [21] dataset consists of 50,000 training and 10,000 testing 32 × 32
color images equally divided in 10 classes. The CIFAR-100 [21] dataset consists
of 50,000 training and 10,000 testing 32×32 color images equally divided in 100
classes. The FashionMNIST [44] clothes dataset consists of 60,000 training and
10,000 testing grayscale images of dimensions 28 × 28-pixels, equally divided in
10 classes. The ImageNet [12], is a large image dataset for image classification. It
contains 1000 classes, 1.28 million training images, and 50 thousand validation
images. The Cats vs. Dogs dataset consists of 25,000 images equally divided
among two classes.

2 In our case we selected the γ in the range [1×10−5, 9×10−3] following a grid search
approach.
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Table 1. The malware payloads used to evaluate MaleficNet

Malware Size Malware Size Malware Size

Stuxnet 0.02 MB Destover 0.08 MB Asprox 0.09 MB

Bladabindi 0.10 MB Zeus-Bank 0.25 MB EquationDrug 0.36 MB

Zeus-Dec 0.40 MB Kovter 0.41 MB Cerber 0.59 MB

Ardamax 0.77 MB NSIS 1.70 MB Kelihos 1.88 MB

5.2 DNN Architectures

In our evaluation, we employed different-sized architectures. In this way, we can
also empirically evaluate the amount of payload that can be embedded inside a
network without impairing its performance on its intended task. More specifi-
cally, the architectures are: Densenet [19] with 7 million parameters, ResNet50
and ResNet101 [17] with 23.5 and 42.5 million parameters respectively, and
VGG11 and VGG16 [33] with 128 and 134 million parameters respectively.

5.3 Payloads

To evaluate MaleficNet, we used various malware payloads of different sizes. The
malware were downloaded from TheZoo [29]. TheZoo is a malware repository
created to make the possibility of malware analysis open and available to the
public and contains a significant number of malware types and versions. For our
evaluation, we selected 12 malware ranging from a few kilobytes to a couple of
megabytes. The detailed list of the malware payloads used is shown in Table 1.

6 Evaluation

This section evaluates MaleficNet along three axes: 1) The stealthiness against
anti-malware and steganalysis software; 2) The performance implications it
causes to the ML model and, 3) robustness towards model weight parameter
manipulations.

6.1 Stealthiness

Evaluating Against Anti-Virus Software We evaluated the ability of
MaleficNet to stealthily embed a malicious payload in the weights of a neural
network against a wide suite of anti-malware such as MetaDefender [27]. MetaDe-
fender’s metascan feature consists of 32 malware detection engines against which
our MaleficNet models were presented for scrutiny. On each scan, none of the 32
engines of the MetaDefender suite was able to detect that a malware payload was
hidden within the weights of the model file. The inability of anti-malware tools to
detect the presence of a malicious payload hidden in the weights of DNN models
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Table 2. Detection rate reported on Metadefender [27] for plain malware binaries,
stegomalware version of those malware created using OpenStego [37] and the stegoma-
lware obtained using MaleficNet on the VGG11 [33] model architecture

Selected malware samples

Stuxnet Destover Asprox Bladabindi Zeus-Dec Kovter

Plain Malware 89.19% 83.78% 72.97% 75.68% 91.89% 62.16%

Stegomalware 0.00% 13.51% 8.11% 10.81% 8.11% 5.41%

MaleficNet 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

is not unexpected. Antimalware tools look for specific malware patterns (so-
called malware signatures) in files, executables etc. Due to the inherent CDMA
spread spectrum channel coding properties that MaleficNet employs to embed
the malicious payload in the model weights, it is very challenging for another
entity (including here anti-malware tools) to find out the content hidden within
the model (see Sect. 2.3). Moreover, to highlight the stealthiness property of
MaleficNet, in Table 2 we compare the detection rates reported from MetaDe-
fender [27] for plain malware binaries, their stegomalware version created with
OpenStego [37] and our MaleficNet method. The detection rate represents the
portion of the anti-malware engines comprising the MetaDefender suite that can
detect the specific malware presence. As we can see from the table, the MetaDe-
fender suite can detect the presence of malicious content in the case of the plain
malware binary and its OpenStego version. On the contrary, the MetaDefender
suite cannot detect hidden malware embedded via MaleficNet.

Statistical Analysis. For completeness, we also evaluate the stealthiness of
MaleficNet by performing a statistical analysis on the weight parameter distri-
butions of both the baseline and the MaleficNet models. The following evaluation
highlights that the changes induced by MaleficNet to the models’ weight param-
eters are minimal and can not be pinpointed as a sign of malicious activity.
We trained ten different baseline DNN models and used MaleficNet to embed
Stuxnet into the weight parameters of one of those ten models. We performed this
experiment per each architecture/dataset combination. We compared the param-
eters’ distribution of each pair of models using the two-sample Kolmogorov-
Smirnov (KS) statistical test. The KS test is a statistical test used to determine
whether two distributions are the same. In our experiments, according to KS
test, the weight parameter distribution of each pair of DNN models was statis-
tically different. This means that, even two different regular training procedures
(i.e., changing the initialization of the parameters, or the hyperparameters of
the optimizer, or the size of the mini-batches, etc.) of the same architecture on
the same dataset can result in a different weight parameter distribution. We also
observed different distributions when a model is fine-tuned. Indeed, we compared
the weight parameter distribution between baseline models and their fine-tuned
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versions. According to the two-sample KS test, the starting model and its fine-
tuned counterpart have different weight parameter distributions.

As shown on Sect. 4, MaleficNet employs CDMA to embed a malware pay-
load into the weights of a DNN. The CDMA code Cjbj follows a binomial
distribution given that the spreading codes are randomly generated with values
in {−1,+1} so any sign of binomiality in the parameters distribution can be an
indication of manipulation of the weights. We performed the KS test to check
whether the MaleficNet model parameters’ distribution resembles a binomial and
it resulted that the MaleficNet model parameters distribution does not follow
a binomial distribution. The reason why MaleficNet model parameters do not
resemble a binomial distribution is due to the block-based embedding approach
that MaleficNet uses to embed the payload (see Sect. 4).

Fig. 1. Comparison between the weight parameter distribution of the ResNet101 and
VGG11 before and after various sized malware were embedded in them using Malefic-
Net technique

In Fig. 1 we depict a visual comparison among the distribution of the DNN
weight parameters before and after the injection of a malware payload using
MaleficNet. As we can see from each plot, the visual difference in distribution
between the baseline model (without the malware) and the MaleficNet model is
minimal.

6.2 MaleficNet Model Performance

To evaluate the generality of MaleficNet we employed it on different model archi-
tectures and different malware payloads. In Table 3 we display the experiments
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Table 3. Baseline vs. MaleficNet model performance on ImageNet dataset on different
DNN architectures for different sized malware payloads

DenseNet ResNet50 ResNet101 VGG11 VGG16

Malware Bas Mal Bas Mal Bas Mal Bas Mal Bas Mal

Stuxnet 62.13 61.22 75.69 75.34 76.96 76.87 70.13 70.09 73.37 73.34

Destover 62.13 52.36 75.69 74.89 76.96 76.79 70.13 70.05 73.37 73.28

Asprox – – 75.69 74.76 76.96 76.64 70.13 70.01 73.33 73.22

Bladabindi – – 75.69 74.59 76.96 76.50 69.93 70.04 73.37 73.11

Zeus-Bank – – – – 76.96 76.11 70.13 69.61 73.37 73.02

Eq.Drug – – – – 76.96 75.62 70.13 69.51 73.37 72.89

Zeus-Dec – – – – 76.96 75.24 70.13 69.37 73.37 72.72

Kovter – – – – 76.96 75.01 70.13 69.40 73.37 72.61

Cerber – – – – 76.96 74.51 70.13 69.26 73.37 72.23

Ardamax – – – – – – 70.13 69.12 73.37 72.01

NSIS – – – – – – 70.13 68.99 73.37 71.91

Kelihos – – – – – – 70.13 68.63 73.37 71.72

carried on the Imagenet dataset [12] on five architectures where we attempted to
embed 12 different malware of various sizes starting from a couple of kilobytes
to couple of megabytes (see Table 1). We report the baseline model performance
on the Imagenet dataset for each of the selected model architectures. On each
architecture, we employ MaleficNet to embed into the model weights different
types of malware payloads starting from a few kilobytes (e.g., Stuxnet) up to a
couple of megabytes (e.g., Kelihos) in order to see how the size of the malware
payload impacts the model performance.

In Table 3, for each model architecture, we empirically show the size of the
payload that can be embedded in the model without destroying it. The moment
the model performance drops by more than ten percentage points after the
attempt to embed a malware in its weights, we conclude that a malware of that
size would not fit in that model using MaleficNet embedding technique. In cases
where the payload injection was possible, the performance of MaleficNet models
reported in Table 3 is right after the injection of the malicious payload. We can
restore the lost performance by fine-tuning the model for a few epochs while
not disrupting the malicious payload hidden in the model weights, as shown
in Sect. 6.3. Using CDMA, we can encode up to one bit per channel use [32]
(see Sect. 4). Nevertheless, this feat is possible when the noise in the channel is
Gaussian distributed. In our case, the noise is the learned weights of the neural
network which are tightly related to the model’s behavior on the intended task.
This restricts the amount of information we can encode in each weight param-
eter; We should not deteriorate the performance. The amount of information
we can encode in a network can not be predicted beforehand due to the fact
that the performance of the model relies on the values of the weight parameters
learned, and to maintain that performance, those weight parameters can not be
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altered by a large amount. To make viable the embedding of a larger payload, in
MaleficNet, we crafted a block-based embedding (Sect. 4), where we divide the
neural network parameters into chunks, and in each chunk, we embed a portion
of the malware payload.

6.3 Robustness

We evaluate the robustness of MaleficNet payload injection technique against
model parameter altering processes such as fine-tuning. Fine-tuning is the pro-
cess where part (or whole) model weight parameters are changed in order to
either improve the model on the current task or re-purpose the model for a dif-
ferent (but similar) task. In Fig. 2 we report the signal-to-noise ratio (SNR) to
measure the disruption that fine-tuning caused to the MaleficNet payload signal.
SNR is the ratio of the signal power to the noise power, expressed in decibels.
When SNR is higher than 1:1 (greater than 0dB), there is more signal than noise.

Fig. 2. The effect of fine-tuning to the SNR of the malware payloads embedded in
different DNN architectures via MaleficNet. The malware payload injected in all cases
was Stuxnet

Figure 2a shows the change in SNR when the ResNet50 model is first trained
on FashionMNIST dataset [44], then Stuxnet is injected into the model via
MaleficNet technique, and afterward is repurposed with the goal of solving the
MNIST digit recognition task. The fine-tuning is performed in an amount of time
(in epochs) equal to the time spent on training on the FashionMNIST. The SNR
of the MaleficNet payload slightly drops, but the fine-tuning cannot significantly
deteriorate the MaleficNet payload signal.

Figure 2b shows the change in SNR when the VGG11 [33] model is first
trained on Cifar10 [21] dataset, then Stuxnet is injected into the model via
MaleficNet technique, and afterward is re-purposed to solve the Cifar100 task.
Similar to above, the SNR of the MaleficNet payload slightly drops, but the
payload signal is still significantly strong in the model weights, which allows for
correct extraction of the malware payload.
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Table 4. Comparison of the effects of different levels of model parameter pruning on
Stuxnet malware payload injected into ResNet50 using Liu et al. [25], Wang et al. [42],
Wang et al. [43] and MaleficNet malware embedding techniques

Pruning Ratio Does the payload survive?

Liu et al. [25] Wang et al. [42] Wang et al. [43] MaleficNet

25.00% ✗ ✗ ✗ ✓

50.00% ✗ ✗ ✗ ✓

75.00% ✗ ✗ ✗ ✓

90.00% ✗ ✗ ✗ ✗

99.00% ✗ ✗ ✗ ✗

Figure 2c shows the change in SNR when the ResNet50 [17] model is first
trained on Imagenet [12] dataset, then Stuxnet is injected into the model via
MaleficNet technique, and afterward is re-purposed to solve the Cats vs. Dogs
task. Even in this case, the SNR of the MaleficNet payload slightly drops, but
the payload signal is still significantly strong in the model weights which allows
for correct extraction of the malware payload.

7 Possible Defenses

As a possible attempt to impede malware embedding techniques such as [25,42,
43] and MaleficNet we consider model parameter pruning. Parameter prun-
ing is a technique commonly used for DNN backdoor removal [16,24] and it is
typically performed by zeroing a portion of models’ weight parameters. In Liu
et al. [25], the embedding technique relies on mapping the individual bits of the
malware payload in the individual weight parameters of the model. Zeroing even
one of the parameters of the network where one of the malicious payload bits is
mapped can corrupt the payload and thus mitigate the attack. Typically param-
eter pruning zeroes more than one model parameter, thus making it highly likely
to nullify one of the model parameters where a malware bit is mapped. This is
also valid for [42,43] where zeroing a single model parameter where the payload
is mapped will corrupt the malware payload.

MaleficNet, on the other hand, is more robust to this possible defense tech-
nique. Using CDMA to inject the malware payload in the model, combined
with using LDPC error-correcting codes, introduces a level of robustness toward
parameter pruning. This is due to the fact that, even if a large portion of
the model parameters are zeroed, given how CDMA works (Sect. 2.3), the non-
zeroed weights will contribute into the payload signal being correctly decoded.
We report the robustness of MaleficNet towards model parameter pruning and
compare with prior art in Table 4 where we prune the ResNet50 [17] model
trained on Imagenet [12] dataset with Stuxnet malware embedded into it. We
see that the malicious payload is able to be recovered even when pruning 75% of
the network parameters, feat that is impossible using prior payload embedding
techniques [25,42,43].
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A more sophisticated model parameter pruning technique whose aim is to
reduce the overall size of the network is model compression, which, instead of
zeroing a parameter, removes the whole neuron from the model, thus resulting in
a different model architecture. Model compression can mitigate MaleficNet, as
well as prior work [25,42,43]. Even though model compression can prove effective
towards this family of threats, it requires extensive machine learning expertise
and the presence of a dataset that follows the same distribution as the original
training dataset. Due to the fact that most DNN consumers do not possess these
technical skills and resources, only entities that possess them can safely apply
them to mitigate this threat while maintaining a satisfactory performance of the
DNN in the intended task.

8 Related Work

Liu et al. [25], to the best of our knowledge, are the first to create a new breed
of stegomalware through embedding malware into a deep neural network model.
They proposed four methods to embed a malware binary into the model and
designed and evaluated triggering mechanisms based on the logits of the model.
The first malware embedding method introduced by Liu et al. [25] is LSB sub-
stitution, where the malware bits are embedded into the model by replacing the
least significant bits of the models’ parameters. The second method consists of
a more complex version of the LSB substitution. The idea behind it resides in
substituting the bytes of a set of models’ weight parameters with the bytes of
the malware payload. After that, they perform model retraining by freezing the
modified weight parameters (where the malware is placed) to restore model per-
formance using only the remainder of the weight parameters. Alongside those
two methods, Liu et al. [25] proposed mapping-based techniques to map (and
sometimes substitute) the values or the sign of the network’s weights to the
bit of the malware. They call these methods value-mapping and sign-mapping,
respectively. Liu et al. [25] demonstrated that, in the case of LSB substitution,
resilience training, and value-mapping, even a single flip in one bit would cor-
rupt the malware, thus rendering these payload embedding techniques unreliable
and unusable in practice since even a simple fine-tuning could disrupt the mal-
ware extraction. Sign-mapping is the most robust of the four payload embedding
techniques proposed in [25], but it suffers from several limitations. Sign-mapping
maps the bits of the malware payload to the sign of the model’s weights. This
means that the number of bits it can map is more limited than other methods.
Based on data reported by Liu et al. [25], the amount of bits that the sign-
mapping technique can embed is of the same order of magnitude as the number
of bits MaleficNet can embed. Compared to MaleficNet, sign-mapping of Liu et
al. [25] requires significantly more information to perform the payload extrac-
tion, i.e., the permutation map of the weights. In contrast, MaleficNet extractor
only needs to know the seed to generate CDMA spreading codes.

Wang et al. [42] proposed fast-substitution as a way to embed malware into
a deep neural network. Fast-substitution works by substituting the bits of a
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selected group of weights in a model with the ones from the malware. In case
the performance of the resulted model is highly impaired, the authors restore the
performance of the model similar to the resilience training method presented by
Liu et al. [25], i.e., freezing the group of weights selected to embed the payload
and retrain the model. Fast-substitution suffers the same drawbacks as LSB sub-
stitution, resilience training, and value-mapping from Liu et al. [25], making it
unusable in the supply-chain attack scenario, where the models are usually fine-
tuned. Wang et al. further extended their work [43] proposing two additional
techniques: most significant byte (MSB) reservation and half-substitution. Both
the methods rely on the fact that the model performance is better maintained
when the first bytes of each model weight are preserved. Even if they can guaran-
tee less performance degradation, those methods suffer from the same weaknesses
as fast-substitution, making them unsuitable in cases where fine-tuning is used.

9 Ethical Discussion

The ever-growing adoption of machine learning-based solutions in virtually every
area presents a fertile ground that can be explored by adversaries for malicious
activities. The purpose of this work is not to provide malware authors and mali-
cious entities with a novel method on how to create a stegomalware and cause
potential damage but to raise awareness about the existence and risks of such
an attack vector. We aim to encourage ML-based solution consumers to obtain
their services from reputable and trustworthy entities and to inspire researchers
and vendors to develop robust solutions and mitigate the threats in advance.

10 Conclusions

In this paper, we introduced MaleficNet, a novel malware-hiding technique based
on CDMA spread-spectrum channel-coding. Our extensive empirical evaluation
showed that MaleficNet malware embedding technique incurs little to no penalty
on the model performance and it can be applied to any model architecture and
task without modifications. We demonstrated that MaleficNet malware embed-
ding technique remains undetected by state-of-the-art anti-malware engines and
statistical tools highlighting the emerging threat that this technique can pose
to the supply chain for ML models. The work presented here presents a new
threat amongst the ever-growing threats that can arise from the adoption of
off-the-shelf ML-based solutions. With this work, we want to bring to the atten-
tion of persons/entities that aim at using these off-the-shelf ML-based solutions
to be aware of the legitimacy of their provider. In future work, we intend to
craft computationally-inexpensive techniques that are able to disrupt the hid-
den malicious payload without impacting the performance of the trained ML
model.

Acknowledgements. This work of Dorjan Hitaj, Giulio Pagnotta, and Luigi V.
Mancini was supported by Gen4olive, a project that has received funding from the
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A Additional Experiments

Model parameter distribution comparisons with and without malware
on different deep neural network architectures.
(Fig. 3).

Fig. 3. Comparison between the weight parameter distribution of different DNN before
and after various sized malware were embedded in them using MaleficNet technique

Model Performance experiments on Cats vs. Dogs dataset. (Table 5)

Table 5. Baseline vs. MaleficNet model performance on Cats vs. Dogs dataset on
different DNN architectures for different sized malware payloads

Malware DenseNet ResNet50 ResNet101 VGG11 VGG16

Bas Mal Bas Mal Bas Mal Bas Mal Bas Mal

Stuxnet 98.28 98.05 97.29 97.24 98.15 98.05 98.83 98.78 99.18 98.82

Destover 98.28 97.68 97.29 97.13 98.15 97.91 98.83 98.72 99.18 98.79

Asprox 98.28 97.46 97.29 97.08 98.15 97.68 98.83 98.75 99.18 98.77

Bladabindi 98.28 67.36 97.29 96.74 98.15 97.12 98.83 98.73 99.18 98.76

Zeus-Bank – – – – 98.15 96.18 98.83 97.99 99.18 98.56

Eq.Drug – – – – 98.15 95.98 98.83 97.91 99.18 98.41

Zeus-Dec – – – – 98.15 95.15 98.83 97.79 99.18 98.25

Kovter – – – – 98.15 93.45 98.83 97.85 99.18 98.51

Cerber – – – – 98.15 63.84 98.83 98.22 99.18 98.94

Ardamax – – – – – – 98.83 98.07 99.18 98.42

NSIS – – – – – – 98.83 97.88 99.18 98.32

Kelihos – – – – – – 98.83 96.11 99.18 97.63

B Implementation Details

In Algorithms 1 and 2 we show the implementation details of MaleficNet’s inject
and extract payload methods. The injection module depicted in Algorithm 1
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takes as input a model W (divided in k-blocks of size s) and uses CDMA channel
coding technique to inject a pre-selected malware binary into the model weights.
To allow a quick verification that the malware payload is extracted correctly,
MaleficNet’s injection module, beside the malware payload includes also a 256-bit
hash of the malware payload binary as part of the payload. As mentioned above,
to not deteriorate the model performance on the legitimate task, we partition
the network and the payload in chunks and embed one chunk of payload in one
chunk of the network. CDMA takes a narrowband signal and spreads it in a
wideband signal to allow for reliable transmission and decoding. To satisfy this
property, the chunk of the network is selected to be multiple times larger than
the size of a chunk of the payload. In our experiments, the narrowband signal
(payload chunk) is spread into a wideband signal (model chunk) that is 6 times
larger (i.e., the spreading code of each bit of the payload chunk will be 6 times
the length of the chunk).

The extraction module (Algorithm 2) takes as input a model W (divided in
k-blocks of size s). To extract the malware payload, the extractor needs to know
the seed to generate the spreading codes and the LDPC matrices, the hash of
the malware binary to verify whether the extraction is successful, the size of the
narrowband signal (d) and the length of the malware payload. Using the first 200
extracted bits, the estimation of the channel noise is computed. After that, the
LDPC decoder is used to recover the payload. The extraction module returns
the malware payload and the hash.

Algorithm 1: Inject
Input: Model: W
Output: Model: W
Data: Int: γ, Int: seed, Int d, Bytes: malware

1 hash ← sha256(malware)
2 message ← concatenate(malware, hash)
3 ldpc ← init ldpc(seed)
4 c ← ldpc.encode(message)
5 PNRG(seed)
6 preamble ← random([−1, 1], size = 200)
7 b ← concatenate(preamble, c)
8 n ← b/d
9 i ← 0

10 j ← 0
11 while i < n do
12 while j < d do
13 code ← random([−1, 1], size = len(Wi))
14 signal ← code ∗ gamma ∗ b[i]
15 Wi ← Wi + signal
16 j ← j + 1

17 i ← i + 1
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Algorithm 2: Extract
Input: Model: W
Output: Bytes: malware, Str hash
Data: Int: malware length, Int: seed, Int: d

1 ldpc ← init ldpc(seed)
2 y ← []
3 PNRG(seed)
4 preamble ← random([−1, 1], size = 200)
5 n ← malware length/d
6 i ← 0
7 j ← 0
8 while i < n do
9 while j < d do

10 code ← random([−1, 1], size = len(Wi))
11 yi ← transpose(code) ∗ (Wi)
12 y.append(yi)
13 j ← j + 1

14 i ← i + 1

15 gain ← mean(multiply(y[: 200], preamble))
16 sigma ← std(multiply(y[: 200], preamble)/gain)
17 snr ← −20 ∗ log10(sigma)
18 message ← ldpc.decode(y[200 :]/gain, snr)
19 malware ← message[0 : malware length]
20 hash ← message[malware length :]
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Abstract. Federated learning offers a framework of training a machine
learning model in a distributed fashion while preserving privacy of the
participants. As the server cannot govern the clients’ actions, nefar-
ious clients may attack the global model by sending malicious local
gradients. In the meantime, there could also be unreliable clients who
are benign but each has a portion of low-quality training data (e.g.,
blur or low-resolution images), thus may appearing similar as malicious
clients. Therefore, a defense mechanism will need to perform a three-fold
differentiation which is much more challenging than the conventional
(two-fold) case. This paper introduces MUD-HoG, a novel defense algo-
rithm that addresses this challenge in federated learning using long-short
history of gradients, and treats the detected malicious and unreliable
clients differently. Not only this, but we can also distinguish between
targeted and untargeted attacks among malicious clients, unlike most
prior works which only consider one type of the attacks. Specifically, we
take into account sign-flipping, additive-noise, label-flipping, and multi-
label-flipping attacks, under a non-IID setting. We evaluate MUD-HoG
with six state-of-the-art methods on two datasets. The results show that
MUD-HoG outperforms all of them in terms of accuracy as well as pre-
cision and recall, in the presence of a mixture of multiple (four) types of
attackers as well as unreliable clients. Moreover, unlike most prior works
which can only tolerate a low population of harmful users, MUD-HoG
can work with and successfully detect a wide range of malicious and
unreliable clients - up to 47.5% and 10%, respectively, of the total pop-
ulation. Our code is open-sourced at https://github.com/LabSAINT/
MUD-HoG Federated Learning.

1 Introduction

In recent years, the proliferation of smart devices with increased computational
capabilities have laid a solid foundation for training machine learning (ML)
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models over a large number of distributed devices. Traditional ML approaches
require the training data to reside at a central location; the distributed ML case
requires a well-controlled data-center-like environment. Such approaches demand
high network bandwidth and provoke great privacy concerns. To this end, Google
introduced the concept of Federated Learning (FL) [21] which allows distributed
clients to collaboratively train a global ML model without letting their data
leave the respective devices. At a high level, it works as follows. A central server
initiates the training process by disseminating an initial global model to a set
of clients. Each client updates the received model using its local data and sends
back the updated model (not data). The server aggregates the received model
updates (weights or gradients) into a global model and disseminates it again back
to the clients. This procedure repeats until the global model converges. FL is
advantageous in preserving data privacy and saving communication bandwidth,
and has been applied to a wide range of applications in the Internet of Things
(IoT) [12], natural language processing [10,14], image processing [17], etc.

However, the uncontrolled and distributed nature of the clients, as well as
the server’s inaccessibility to clients’ data, make FL vulnerable to adversarial
attacks launched by clients [1–3,20,30]. In general, a malicious client (adversary)
can launch two types of attacks: (1) an untargeted attack, sometimes referred to
as a Byzantine attack [5,15,30], where the adversary attempts to corrupt the
overall performance of the global model (e.g., degrade a classifier’s accuracy on
all classes); (2) a targeted attack, where the adversary aims to degrade the model
performance only for some specific cases (e.g., misclassify all dogs to cat) while
not affecting the other cases [9,20]. Untargeted attacks could be tackled by robust
aggregation techniques [4,7,33] when data are independent and identically dis-
tributed (IID) among the clients, whereas targeted attacks are much harder to
defend because their specific targets are often unknown to the defender.

Another category of clients, which are largely overlooked in the FL security
literature, are unreliable clients. These are benign clients but some of their data
are of low quality and hence may appear as if their model updates were mali-
cious too. For example, IoT devices such as sensors, smartphones, wearables, and
surveillance cameras, are often subject to rigid hardware limitations and harsh
ambient environments and thus may produce low-quality and noisy data [11]. A
simplified solution could be one that treats clients who do not improve classifica-
tion performance over a number of rounds as unreliable, and excludes them from
aggregation in subsequent rounds, like in [18,19]. However, firstly this does not
differentiate between benign and malign clients; secondly, excluding unreliable
clients is not always desirable because such clients may possess valuable data
such as infrequent classes on which other clients have no or few samples.

In this paper, we tackle the challenge of detecting and distinguishing between
malicious and unreliable clients, as well as between targeted and untargeted
attackers (among malicious clients), in FL. The main idea of our approach is
to use long-short history of gradients jointly with judiciously chosen distance
and similarity metrics during the iterative model updating process. Unlike prior
works in [1,4,7,9,20] which only consider attackers, we identify unreliable clients
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and take advantage of their contributions. We further consider both targeted and
untargeted attacks and more fine-grained attack types: (untargeted) additive-
noise and sign-flipping attacks, and (targeted) single- and multi-label-flipping
attacks. Moreover, unlike prior works in [4,7,33], we consider non-IID data set-
tings which are more representative of real-world FL scenarios with heteroge-
neous clients.

The main contributions of this paper are summarized as follows:

– We propose a novel approach MUD-HoG that stands for Malicious and
Unreliable Client Detection using History of Gradients. To the best of
our knowledge, this is the first work that detects both malicious attackers
and unreliable clients in FL, distinguishing between targeted and untargeted
attackers. It allows the server to treat the clients in a more fine-grained man-
ner, by exploiting unreliable clients’ low-quality (but still useful) data.

– We introduce short HoG and long HoG and a sequential strategy that uses
them in a carefully-designed way, allowing us to achieve the above goal. In
addition, we achieve our goal in a non-IID setting which is more realistic and
challenging, with the presence of mixed types of attackers.

– We conduct extensive experiments to evaluate MUD-HoG in terms of accu-
racy, precision, recall, and detection ratio, on two benchmark datasets in com-
parison with 6 prior FL security mechanisms. The results show that MUD-
HoG withstands up to 47.5% clients being malicious with a negligible (∼1%)
compromise of accuracy, and comprehensively outperforms all the baselines
on the considered metrics.

The rest of the paper is organized as follows. Section 2 reviews the related
literature while Sect. 3 define the problem statement with the types of clients and
considered attacks. Section 4 presents the proposed MUD-HoG approach with
novel concepts of short HoG and long HoG, and Sect. 5 evaluates the robustness
of the approach by conducting extensive experiments. Finally, Sect. 6 concludes
the paper with future research directions.

2 Related Work

2.1 Distributed ML with Malicious Clients

Defending against malicious clients has been explored in distributed ML [4,34,
35]. It has been noted that the stochastic gradient descent (SGD) algorithm is
vulnerable to untargeted (Byzantine) attacks where malicious clients send ran-
dom/arbitrary gradients to the server to negatively affect the convergence or
performance of the global model. Methods such as Krum and Multi-Krum [4],
Medoid [33], and GeoMed [7] have been proposed to defend against Byzan-
tine attacks by extending SGD with a robust aggregation function. In another
work [26], the authors argued that the effect of malicious clients can be mit-
igated by gradient or norm clipping based on a threshold assuming that the
attacks produce boosted gradients. However, these methods assume IID data,
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which often does not hold in FL settings. In addition, they aim to tolerate mali-
cious clients rather than distinguishing them from normal ones, and thus may
lead to cumulative negative impact over time and is also less preferable.

2.2 FL Under Untargeted Attacks

Various Byzantine-robust algorithms have been proposed for FL’s non-IID set-
tings in recent years. For example, a class of subgradient-based algorithms is pro-
posed to defend malicious clients by robustifying the objective function with a
regularization term [15]. However, these algorithms only consider simple attacks
such as same-value and sign-flipping attacks. In another work [30], a variance
reduction scheme inherited from [8] is combined with model aggregation to tackle
untargeted attacks. In [6], the authors provided provable guarantees to ensure
that the predicted label of a testing sample is not affected by the attack. They
also proposed an ensemble method with a voting strategy to address the case of
a bounded number of malicious clients. However, similar to some of the works
discussed in the distributed ML case, this ensemble method cannot identify
which clients are malicious. The above Byzantine-robust algorithms fail to stand
against the attackers if they are present in high percentage. Moreover, all the
above works are vulnerable to targeted attacks such as label flipping [27].

2.3 FL Under Targeted Attacks

As targeted attacks aim to reduce the model performance only on certain tasks
while maintaining a good performance on others, they are elusive and harder to
detect [20]. One of the popular defense methods, called FoolsGold [9], attempts
to detect targeted attackers (e.g., label-flipping) based on the diversity of client
contributions over the training rounds with an unknown number of attackers.
With more realistic FL settings, Awan et al. [1] also exploited the clients’ per-
round contribution and cosine-similarity measure to defend against data poi-
soning attackers. In [16], an anomaly detection framework is proposed to differ-
entiate anomalous gradients from normal ones in a low-dimensional embedding
(spectral) using reconstruction errors. However, it requires a pre-trained model
on a reference dataset at the server prior to start the training process, which
is a strong requirement often not met in FL settings. Mao et al. [20] treated
FL as a repeated game and introduced a robust aggregation model to defend
against targeted and untargeted adversaries by designing a lookahead strategy
based similarity measure. However, like many studies discussed earlier, it toler-
ates but does not distinguish adversaries from normal clients. Moreover, since
most existing works [1,9,16,20] consider only two types of clients (normal and
malicious), they may treat an unreliable client (who possesses lower-quality data)
as malicious, which is not desirable.

In this work, we do not include backdoor attacks [1,24,29,32], which are a
sub-category of data poisoning attack triggered by a particular pattern (e.g.,
pixel patch) embedded into data (e.g., images). However, unlike prior work,
we include unreliable clients which are more likely to encounter in realistic FL
deployments.
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We also highlight that the term unreliable or irrelevant clients used in some
studies [18,19,22] means clients whose contributions do not make any progress
(i.e., improve model accuracy) over the past few rounds, which is considerably
different from our definition of unreliable clients (see Sect. 3.2) which refers to
clients who have low-quality data.

3 Model

We consider a typical FL framework with a central server and multiple clients
participating in a collaborative model training process for a classification task
using a deep learning model.

3.1 FL Preliminaries

Let N be the total number of clients participating in the FL model training
process. Out of these N clients, m of them are malicious, and u of them are
unreliable. Thus, there are n = N−m−u normal clients. We consider a typical FL
scenario for building a neural network model, where all clients share a common
model structure under the same learning objective. The server initiates training
by sending a global model w (e.g., random weights) to all clients. Each client
updates the model w by training on its local dataset a certain number of epochs,
and sends back the updated gradients. Note that sending gradients is equivalent
to sending model parameters (weights). During training, each client learns the
new weights w′ by minimizing a loss function L(hw(x), y) (e.g., cross-entropy
loss function) over multiple epochs, where the function hw(·) maps input data
samples x to labels y. At a round τ , a client ci computes the gradients as follows:

∇τ,i = wτ − argmin
w

L(hi,w (x), y). (1)

Let the client ci hold a local dataset Di which can be non-IID as compared to
other clients. When all clients are normal, the server aggregates all the gradients
received from the clients, by

∇τ =
N∑

i=1

|Di|
|D| ∇τ,i, (2)

where |D| =
∑N

i=1 |Di|. The weights of the global model for the next round τ +1
are then updated as wτ+1 = wτ − η∇τ , where η is the learning rate.

3.2 Client Types

For generality, we consider a heterogeneous FL setting in which clients may be
sensor boards, smartphones, surveillance cameras, laptops, connected vehicles,
etc., owned by individuals or organizations. As a result, their data could be
non-IID and thus each client could contribute to the global model training. We
consider three types of clients and the last is further categorized in terms of
attack types (see Sect. 3.3) the malicious client can launch.



450 A. Gupta et al.

1) Normal clients honestly participate in the model training process and have
good-quality data.

2) Unreliable clients participate honestly in the FL but have some of its data are
of low-quality. These data, however, could be exploited to improve diversity,
especially if they capture distributions that normal clients fail to (or inade-
quately do). For example, A low-end camera does not produce high-resolution
images but may capture some infrequent classes of images that other clients
do not. Note that our definition of “unreliable client” is different from that
in [18,19] and also from the “irrelevant client” in [22], where they mean a
client who does not make progress (i.e., improve model accuracy) over the
past few FL rounds, which therefore is a useless client.

3) Malicious clients are attackers who manipulate their local training data (i.e.,
data poisoning) or model weights/gradients (i.e., model poisoning) to generate
adversarial impact on the global model being trained. For example, they may
alter the labels of some of their data samples or perturb their local gradients
before sending to the server.

With the presence of mixed types of clients having non-IID data, our problem
is more realistic and challenging than prior work such as [1,7,9]. Figure 1 provides
an overview of our problem setting, where MUD-HoG runs at the server.

Fig. 1. Overview of FL with mixed types of clients. Malicious clients include targeted
and untargeted attackers

Problem Statement. The problem in hand is two-fold: (1) How to identify
and differentiate malicious clients (together with their attacks) from unreliable
clients at the server while performing model aggregation? (2) How to mitigate
the negative influence of malicious clients on the global model while still taking
advantage of unreliable clients’ updates? Let us reformulate Eq. (2) as:
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∇τ =
∑

i∈Cnorm

|Di|
|D| ∇τ,i + α

∑

i∈Cunrl

|Di|
|D| ∇τ,i, (3)

where Cnorm and Cunrl are the set of normal clients and that of unreliable clients,
respectively, and the parameter α ∈ (0, 1) down-weights the gradients of unreli-
able clients. Note that malicious clients are excluded.

3.3 Threat Model

A malicious client can launch either of the following attacks:
– Untargeted attack. The objective here is to downgrade the overall perfor-

mance of the global model. The following two model poisoning attacks are
considered: (i) Sign-flipping. The malicious client flips the sign of its local gra-
dients (from positive to negative and vice versa) before sending them to server,
while the magnitude of the gradients remains unchanged. (ii) Additive-noise.
The malicious client adds Gaussian or random noise to its local gradients
before sending to the server.

– Targeted attack. The objective is to decrease model performance on par-
ticular cases while not affecting other cases. The following two data poisoning
attacks are considered: (i) Label-flipping. The attacker changes the label of
all the instances of one particular class (source label), say y1, to another
class (target label), say y2, while (intentionally) keeping other classes intact
to avoid being detected. (ii) Multi-label-flipping. The attacker flips multiple
source labels to a particular target label. This will result in the target label
has an increased accuracy while harming the accuracy on other classes.

We make the following Assumptions: (i) Each attacker can only manipulate
its own data or model but not other clients’ or modify the server’s aggregation
algorithm. (ii) Number of malicious clients (including untargeted and targeted
attackers) is less than other clients (including normal and unreliable). (iii) Mali-
cious clients are persistent, meaning that they attack in every round.

4 MUD-HoG Design

MUD-HoG runs at the server to defend the global model. Unlike existing work
such as [4], MUD-HoG assumes that the number of malicious clients is unknown
to the server.

Challenges. The design challenges come from the following factors: the mixed
types and unknown distribution of clients, non-IID data, and the server’s inac-
cessibility to client data. The only information that the server has is the gradients
(Eq. 1) sent by the clients each round, as a result of their local optimization such
as stochastic gradient descent (SGD) over the loss function L(·).



452 A. Gupta et al.

With targeted attacks, the malicious clients share a common objective and
thus will have similar gradients [9] between each other. On the other hand, gra-
dients from untargeted attackers would be dissimilar from each other since they
perturb gradients randomly or flip gradient signs. This gradient space is rather
complex and irregular, insofar as there is no single appropriate similarity mea-
sure that can distinguish malicious clients from the normal ones. Furthermore,
unreliable clients introduce another degree of complication as they would behave
very similar to untargeted attackers and hence are hard to distinguish.

Long-Short History of Gradients (HoG). We propose two new notions
of HoG, based on which we design a robust algorithm MUD-HoG to address
the above challenges. Let ∇i = {∇1,i,∇2,i, · · · ,∇τ−1,i} denote the collection of
HoGs received by the server from client ci prior to the τ th round.
Definition 1 (Short HoG). The short HoG of client ci at round τ , defined as,

∇sHoG
i =

1
l

τ−1∑

t=τ−l

∇t,i (4)

is a moving average of ci’s gradients of the last l rounds, where l is the sliding
window size. The short HoG smooths a client’s gradients to remove single-round
randomness.

Definition 2 (Long HoG). The long HoG of client ci at round τ is defined as

∇lHoG
i =

τ−1∑

t=1

∇t,i, (5)

which is the sum of all the gradients in the set ∇i. Thus, the long HoG captures
the accumulated influence of a client on the global model, which reflects its goal.

Note that, at any round τ , the server does not need to store all the previous
gradient vectors {∇1,i,∇2,i, · · · ,∇τ−1,i} received from the client ci; instead, it
only needs to keep l latest vectors for computing short HoG and the sum of
all the previous vectors for long HoG. Hence, at each round, the server would
keep only l + 1 gradient vectors for each client. Therefore, the required memory
is independent of the number of training rounds τ , and one should not have
memory concerns when τ increases.

4.1 Sequential Strategy

By introducing short HoG and long HoG, MUD-HoG exploits two different gra-
dient space and follows a sequential strategy to detect the type of each client in
the following order: untargeted, targeted, unreliable, and normal, as depicted in
Fig. 2. The key ideas are discussed in the following steps.

1) Untargeted attack. We can deduce the untargeted intention from the
client’s short HoG. Since an untargeted attacker aims to corrupt the whole
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Fig. 2. Overview of MUD-HoG with the gradient space (short or long HoG) and sim-
ilarity measures (Euclidean or cosine) used for detecting different types of clients

model, for example using sign flipping or additive noise, its short HoG would dif-
fer substantially from normal clients. First, in the case of sign-flipping attack, a
malicious client essentially changes its gradient to the opposite direction, which
would result in a large angular deviation from the median gradient of all the
clients, as depicted in Fig. 3a. This also justifies that using cosine distance in
the space of short HoG would be an appropriate choice. Note that short HoG is
more robust than a single-round gradients by reducing false alarms.

On the other hand, additive-noise attackers and unreliable clients (with low-
quality data) would have similar short HoGs, but considered collectively, would
be apart from other clients. Therefore, after excluding the sign-flipping attackers,
we use a clustering method based on short HoG to distinguish the above two
types of clients from other clients. Empirically, we choose DBSCAN [25] as the
clustering method because it conforms to our intuition and yields the best results.
Between these two types, additive-noise attackers tend to be farther away from
other clients than unreliable clients as the attackers add deliberate perturbations;
nevertheless, a separation boundary could be learned by finding the largest gap
over Euclidean distances. We also note that this is not a clear-cut line and further
processing is needed which we discuss below in Step 3. The above intuition is
depicted in Fig. 3b.

2) Targeted attack. Targeted attackers intend to manipulate the global model
toward a specific convergence point (e.g., misclassifying all dogs to cats). Such
intention can be captured by our long HoG which reinforces their adversarial goal
over the entire history and is also robust to short-term noises and camouflage
cases in which some attackers may strategically behave benignly in some of the
rounds in order to evade detection. In MUD-HoG, we use K-means clustering
with K=2 over long HoG to separate out targeted attackers, after excluding
untargeted attackers detected in Step 1.

3) Unreliable clients. Finally, MUD-HoG identifies and separates unreliable
clients from normal ones. After excluding all the detected malicious clients (tar-
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Fig. 3. Illustration of (a) the angular deviation of sign-flipping attackers from the
median client (green), and (b) clustering of additive-noise attackers, unreliable clients,
and other clients after excluding sign-flipping attackers (Color figure online)

geted and untargeted), the unreliable clients become farther from the median
client in terms of their short HoG. Rather than using clustering, in this case
we find that the cosine distance is the most effective to detect them and hence
adopt it in MUD-HOG.

4.2 Detection of Malicious Clients

Based on the basic ideas discussed above, now we present all the technical details
of how MUD-HoG detects different types of clients. The server starts detection
from round τ0 (τ0 = l = 3 in our experiments).

Detecting Untargeted Attackers Using Short HoG. MUD-HoG first com-
putes the median short HoG over all clients, as ∇sHoG

med = median{∇sHoG
i |1 ≤

i ≤ N}. Then, it flags a client ci as a sign-flipping attacker if

dcos

(∇sHoG
med ,∇sHoG

i

)
< 0, (6)

where the function dcos(·) computes the cosine distance. We note that an existing
algorithm CONTRA [1] also employs cosine distance to separate out targeted
attackers. CONTRA computes the pair-wise distances between the gradients of
all the clients, which therefore leads to a complexity of O(N2); in contrast, MUD-
HoG uses median and thus the complexity is linear, O(N), which is worth noting
because FL often deals with a massive number of clients (e.g., IoT devices).
Moreover, CONTRA does not handle unreliable clients.

Next, MUD-HoG proceeds to detecting additive-noise attackers after exclud-
ing the above detected sign-flipping attackers. We apply DBSCAN clustering
on the short HoGs of all the remaining clients and obtain two groups – (i)
a smaller group (gl) consisting of the additive-noise attackers and unreliable
clients and (ii) a larger group (gh) consisting of the rest of the clients. Based on
our above analysis that the additive-noise attackers are relatively farther from
normal clients than unreliable clients (Fig. 3b), MUD-HoG attempts to learn a
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separation boundary as follows. Recalculate ∇sHoG
med as the median short HoG of

group gh, and construct d = {dEuc(∇sHoG
med ,∇sHoG

i )} which is a set of Euclidean
distances (denoted by dEuc(·)) between ∇sHoG

med and each client ci ∈ gl. The rea-
son we use Euclidean distance rather than cosine distance is that the former
produces a larger separation over unnormalized short HoG (which we intend).
Then, we find the largest gap between any two consecutive values in the sorted
list of the set d, and use the mid-point of this gap as the separation boundary
dφ. Thus, a client ci ∈ gl is an additive-noise attacker if

dEuc

(∇sHoG
med ,∇sHoG

i

)
> dφ (7)

for 1 ≤ i ≤ |gl|. The remaining clients in gl and the set gh will be handled in
the next step. The above detection of untargeted attackers is summarized as the
pseudo-code of Lines 6 − 16 in Algorithm 1.

Detecting Targeted Attackers Using Long HoG. After excluding the
detected untargeted attackers as above, we compute the long HoG for each of
the remaining clients, denoted by ∇lHoG

i . Then, we apply K-means clustering
with K = 2 on all the computed long HoGs to obtain two groups of clients: the
smaller group will consist of the targeted attackers and the other (bigger) group
of the normal clients, based on our assumption that normal clients constitute
more than half of the entire population. In Algorithm 1, Lines 17-18 corresponds
to the detection of targeted attackers.

4.3 Detection of Unreliable Clients

We are now left with a mixture of unreliable and normal clients. To distinguish
them, MUD-HoG finds a new separation boundary dφ as follows. Let N ′ be the
number of remaining clients and ∇sHoG

med be the (updated) median short HoG
of them. Let d′ = {dcos(∇sHoG

med ,∇sHoG
i )} be a set of cosine distances between

∇sHoG
med and each client cj for 1 ≤ i ≤ N ′. The separation boundary dφ is then

determined from d′ similarly as the above detection of additive-noise attackers
(but here we use cosine distance). Then, a client ci is deemed unreliable if it
satisfies the condition

dcos

(∇sHoG
med ,∇sHoG

i

)
< dφ. (8)

Note that the cosine distance is smaller when the angle between two vectors is
larger, and that is why the condition ‘<’ used in (8) is opposite to that in (7).
The unreliable clients are detected at Lines 19-24 in Algorithm 1 after exclusion
of all types of attackers.

Thus finally (in each FL round), MUD-HoG obtains the set of normal clients
Cnorm and the set of unreliable clients Cunrl, after filtering out Ctar and Cuntar.
It then aggregates the gradients of normal and unreliable clients using (3) (or
see Line 26 in Algorithm 1), where unreliable clients are downscaled, and then
updates the global model as wτ+1 = wτ − η∇τ . Clearly, since the gradients of
malicious clients have been discarded, their negative impact is eradicated from
the global model.
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Algorithm 1: MUD-HoG
Input: Gradients from round 1 to τ , for each client ci, denoted by

∇i = {∇1,i, ∇2,i, · · · , ∇τ−1,i}, i = 1...N . (Note that the server only
keeps the latest l gradient vectors and the sum of all τ − 1 gradients.)

Output: Normal clients (Cnorm), targeted attackers (Ctar), untargeted attackers
(Cuntar), and unreliable clients (Cunrl)

1 Initialize Cnorm, Ctar, Cuntar = ∅, Call = {ci}, 1 ≤ i ≤ N
2 for round τ = 1 to τ0 do
3 Aggregate gradients of all clients

4 for round τ = τ0 + 1 to T do

5 Compute short HoG ∇sHoG
i and long HoG ∇lHoG

i for each client ci

/* Detecting untargeted attackers */

6 Computer median short HoG ∇sHoG
med over all N clients

7 for i = 1 to N do
8 if (6) holds then
9 Cuntar = Cuntar ∪ {ci} ; // Sign-flipping attackers

10 Apply DBSCAN clustering on short HoGs of Call \ Cuntar to obtain two
groups gl and gh

11 Compute ∇sHoG
med of the larger group gh

12 Compute dEuc between ∇sHoG
med and each ∇sHoG

i of the smaller group gl

13 Find the separation boundary dφ per Section 4.2
14 for i = 1 to N and ci /∈ Cuntar do
15 if (7) holds then
16 Cuntar = Cuntar ∪ {ci} ; // Additive-noise attackers

/* Detecting targeted attackers */

17 Apply K-means clustering with K = 2 on long HoGs of Call \ Cuntar

18 Ctar = clients who belong to the smaller cluster

/* Detecting unreliable clients */

19 Recompute ∇sHoG
med over Call \ {Ctar ∪ Cuntar}

20 Compute dcos between ∇sHoG
med and each ∇sHoG

i of Call \ {Ctar ∪ Cuntar}
21 Recompute the separation boundary dφ per Section 4.3
22 for i = 1 to N and ci /∈ {Ctar ∪ Cuntar} do
23 if (8) holds then
24 Cunrl = Cunrl ∪ {ci}

25 Cnorm = Call \ {Ctar ∪ Cuntar ∪ Cunrl}

/* Aggregate gradients over Cnorm and Cunrl */

26 ∇τ =
∑

i∈Cnorm

|Di|
|D| ∇τ,i + α

∑
i∈Cunrl

|Di|
|D| ∇τ,i

27 Update global model as wτ+1 = wτ − η∇τ

28 Send wτ+1 back to all clients

29 return Cnorm, Ctar, Cuntar, Cunrl
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5 Performance Evaluation

In this section, we evaluate MUD-HoG in comparison with six state-of-the-art
methods on two real datasets with various type of attacks.

5.1 Experiment Setup

We consider a classification task on two datasets: (i) MNIST [13]: Our FL task
is to train a deep model with 2 convolutional neural networks (CNN) followed
by 3 fully connected layers1 to classify 10 digits. (ii) Fashion-MNIST [31]: We
build a deep model with 6 CNN layers followed by two fully connected layers to
classify 10 fashion classes.

Hyper-parameters. We train the FL model with SGD optimizer (learning
rate = 1e-2, momentum = 0.5 for MNIST and 0.9 for Fashion-MNIST, and
weight-decay = 1e-4 for Fashion-MNIST) over 40 communication rounds, 4 local
epochs; other setup details are similar to [28]. We use the window size of l = 3
for calculating the moving average short HoG. Our algorithm triggers only after
τ0 = 3 rounds to accumulate enough HoGs. Since, the server stores only l + 1
gradient vectors (l latest and a sum of all previous vectors) to compute HoGs, it
never runs into storage related issues. Moreover, we make a firm decision about
malicious clients if they are detected in two consecutive rounds. Therefore, our
algorithm can only detect malicious clients at least after 4 rounds.

To simulate non-IID data, we divide the datasets into 40 clients as disjoint
portions that follows Dirichlet distribution with hyperparameter 0.9, as also
adopted by [2,28]. Besides normal clients, our FL system consists of unreliable
clients (up to 10% of total clients), and malicious clients (up to 47.5% of total
clients), as detailed below.

Untargeted Attacks. (i) Sign-flipping (SF) – We flip the sign of gradients of
the malicious clients without enlarging the magnitudes in our FL setup, which
makes the detection more challenging. (ii) Additive-noise (AN) – We add a
Gaussian noise with μ = 0 and σ = 0.01 to the gradients of attackers.

Targeted Attacks. (i) Label-flipping (LF) – Before training the local model,
attacker flips label of digit “1” to “7” in its local MNIST dataset, and label (“1-
Trouser‘’) to (“7-Sneaker”) in Fashion-MNIST dataset. (ii) Multi-label-flipping
(MLF) – Attacker flips the labels of few source classes to a targeted class in
its local dataset. For MNIST and Fashion-MNIST (in brackets) datasets, we
flip three source labels of digits “1” (“1-Trouser”), “2” (“2-Pullover”), and “3”
(“3-Dress”) to a target label “7” (“7-Sneaker”).

Unreliable Clients. We simulate them to mimic a real-life scenario of low-end
smartphone with poor-resolution camera and computing power. We use Gaussian
smoothing (kernel size= 7, σ = 50) to blur 50% of the local image dataset; and
simulate low computing power by training over randomly selected portion of
30% of local dataset. We set α = 0.5 to downscale the unreliable clients.

1 Adopt the model from PyTorch tutorial.

https://pytorch.org/tutorials/beginner/blitz/neural_networks_tutorial.html
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To simulate heterogeneous FL scenarios, we consider two different series of
experiments with upto 47.5% malicious clients (including untargeted and tar-
geted attack) and upto 10% unreliable clients. We configure 12 different exper-
imental setups with increasing numbers of unreliable and malicious clients as
follows.

– Series of Exp1 consists of a = min{i, 4} unreliable clients, b = min{i, 6}
additive-noise attackers, c = min{i, 5} sign-flipping attackers, d = (i + 2)
label-flipping attackers, and (40 − a − b − c − d) normal clients; where i =
{1, 2, 3, 4, 5, 6}.

– Series of Exp2 consists of a = min{i, 4} unreliable clients, b = min{i, 6}
additive-noise attackers, c = min{i, 5} sign-flipping attackers, d = (i + 2)
multi-label-flipping attackers, and (40 − a − b − c − d) normal clients; where
i = {1, 2, 3, 4, 5, 6}.

Evaluation Metrics. The performance of MUD-HoG is measured in terms of
precision, recall, accuracy, and detection ratio. We define detection ratio (r) as

r =

∑T
τ=1

∑
i∈Cx

1(ci detected at τ)
T ∑

x |Cx| (9)

where Cx is either Ctar, Cuntar or Cunrl, and not all of them are empty. The higher
the detection ratio (closer to 100%), the better algorithm is.

Benchmark Algorithms. In addition to FedAvg [21], a popular algorithm in
FL, we compare our proposed MUD-HoG algorithm with five other algorithms.
They are: (i) coordinate-wise Median (or Median for short) [35], (ii) GeoMed [7],
(iii) Krum [4], (iv) Multi-krum (or MKrum for short) [4], and (v) FoolsGold [9].
We borrowed the source code of these existing algorithms from [28].

5.2 Experimental Results

Overall Performance. Figure 4 shows the accuracy of 12 setups for series of
Exp1 and Exp2 for MNIST and Fashion-MNIST datasets under the above seven
benchmark algorithms. We observe that over all 12 setups with multiple types
of attacks, MUD-HoG always achieves the best accuracy.

Fig. 4. Accuracy vs. the percentage of malicious clients. (a) and (b) are results on the
MNIST dataset. (c) and (d) are results on the Fashion-MNIST dataset
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It is consistently observed that when increasing percentage of malicious
clients from 12.5% to 47.5% of the total number of clients, Krum and Fools-
Gold show fluctuated performance and poor performance at a certain level of
attacks, some other algorithms such as FedAvg, GeoMed, Median, and MKrum
continuously drop their accuracy. In contrast, our proposed MUD-HoG main-
tains robust performance against multiple levels of heterogeneous attacks.

For MNIST dataset shown in parts (a) and (b) of Fig. 4, initially GeoMed
performs as good as MUD-HoG, but when the level of attacks are increased more
than 35%, GeoMed drops its accuracy by 9.33% and 12.39% while MUD-HoG
only drops 0.5% and 0.56% in series of Exp1 and Exp2, respectively. When com-
pared to the second-best algorithm, i.e. MKrum, the proposed algorithm gained
upto 1.28% and 1.12% higher accuracy in series of Exp1 and Exp2, respectively.

For Fashion-MNIST dataset shown in parts (c) and (d) of Fig. 4, GeoMed
achieves comparative results as MUD-HoG at a low level of attacks for both
series; however, GeoMed drops performance significantly at the high level of
attacks. For instance, in series of Exp1 and Exp2, while MUD-HoG’s accuracy
only drops by 0.72% and 1.5% (when increasing percentage of attacks from
12.5% to 47.5%), GeoMed’s accuracy drops by 10.52% and 13.21%, respectively.
When compared to the second-best algorithm, i.e., Median, MUD-HoG gains
upto 0.65% and 1.47% accuracy in series of Exp1 and Exp2, respectively.

Fig. 5. Results for Series of Exp2 with 42.5% malicious clients. “2” and “7” are the
source and target classes, respectively. (a) and (b) are results on the MNIST dataset.
(c) and (d) are results on the Fashion-MNIST dataset

Precision and Recall. To make a fair comparison with other algorithms (i.e.,
Krum, MKrum, FoolsGold) that ware designed specifically for targeted attacks,
we plot precision of the targeted class (i.e., number of samples correctly classified
as the targeted class over all samples predicted as the targeted class), and recall of
a source class (i.e., number of samples correctly classified as the source class over
all ground-truth samples of the source class) for MNIST and Fashion-MNIST
datasets in Fig. 5. Here, FedAvg, GeoMed, Median or even Krum obtain poor
performance and highly fluctuated precision of targeted class and recall of source
class because they could not defend targeted attacks. On the flip side, though
MKrum and FoolsGold show quite good precision, their values are lower than
MUD-HoG for both the datasets.
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Detection Ratio. We keep track of detected rounds for each type of clients
during the course of FL training with MUD-HoG algorithm. Table 1 reports
detection ratio (defined in Eq. 9) for each type of clients, and their first round
of detection (presented inside brackets) for a setup in series of Exp1 and Exp2
with 27.5% malicious clients. We observe that the sign-flipping and additive-
noise attackers are detected immediately at round 4, which is the earliest round
when the MUD-HoG algorithm could provide a firm decision.

Table 1. Detection ratio r (%) and the earliest round (1strnd) that detects the client
type (round number in brackets), with 27.5% malicious clients. [SF: Sign-flipping, AN:
Additive-noise, LF: Label-flipping, MLF: Multi-label-flipping, UR: Unreliable]

Type Detection MNIST Fashion-MNIST

Exp1 Exp2 Exp1 Exp2

SF r (1strnd) 90.0 (4) 90.0 (4) 90.0 (4) 90.0 (4)

AN r (1strnd) 90.0 (4) 90.0 (4) 90.0 (4) 90.0 (4)

LF r (1strnd) 87.5 (5) – 85.0 (6) –

MLF r (1strnd) – 90.0 (4) – 85.0 (6)

Overall rate r (%) 88.9 90.0 87.7 87.7

UR r (1strnd) 87.5 (5) 87.5 (5) 85.0 (6) 85.0 (6)

For MNIST dataset, overall, we can detect all malicious clients at detection
ratio (calculated over all types of clients) 88.9% and 90.0% for a setup in series
of Exp1 and Exp2, respectively. Since FL training is done over 40 rounds and
the earliest detection round is 4, upper bound of detection ratio can be at most
90.0%. And we can see in Exp2 of MNIST, MUD-HoG can detect MLF at round
4, which is as early as SF or AN, resulting in 90.0% of detection ratio. Next,
for Fashion-MNIST dataset, our algorithm detects targeted attacks (i.e., LF and
MLF) a bit slower than the case in MNIST, but the overall detection ratio is
still above 87%. Finally, for unreliable clients (last two rows in Table 1), in all
experiments, MUD-HoG achieves firm results of all unreliable clients from round
5 and round 6 for MNIST and Fashion-MNIST datasets, respectively. As a result,
the detection ratio for unreliable clients is above 85.0%.

5.3 Discussions and Limitations

Convergence Analysis. Based on our experimental results (see Fig. 6 and
Fig. 7), the loss of the global model stabilizes in 40 FL rounds for both the
datasets even in the presence of 42.5% clients posing different types of attacks
and having non-IID data. This indicates that MUD-HoG can achieve conver-
gence in rather adversarial scenarios. Although the presence of malicious clients
initially diverges the global model from its objective, excluding them from aggre-
gation, as MUD-HoG did, rectifies the SGD process back to normal as defined
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in [23]. In future work, we plan to incorporate a rigorous theoretical analysis of
convergence for our approach.

More Strategic Attacks. While we have experimentally shown that MUD-
HoG is robust to various untargeted and targeted attacks in the presence of
a large number of malicious clients, it may still miss out attackers who per-
form stealthy or highly strategic targeted attacks (some are formally defined
in [7]). Besides, an attacker may implant a certain trigger pattern into some
training/test data to inject corruption [3,29], known as backdoors. Such attacks
are more evasive since they are only triggered when the particular pattern arises,
while the overall performance is almost not affected. Currently, MUD-HoG has
not been specifically designed to defend backdoor attacks but this would be an
interesting direction to explore.

6 Conclusion

While federated learning (FL) offers a privacy-preserving framework for collabo-
rative training of ML models, it is susceptible to adversarial attacks. This paper
has proposed a new approach called MUD-HoG to detect malicious clients who
launch untargeted or targeted attacks and unreliable clients who possess low-
quality data, and offers a fine-grained classification of four types of participants.
We introduce the concept of long-short HoG and select appropriate distance and
similarity measures to identify different types of attacks and clients. MUD-HoG
excludes malicious contributions but exploits unreliable clients’ contributions to
maximize the utility of the final global model. Experimental results confirm that
MUD-HoG is robust against malicious and unreliable clients and produces a
global model with higher accuracy than state-of-the-art baselines. It can detect
a mixture of multiple types of attackers and unreliable clients in non-IID set-
tings even when the ratio of attackers is close to half. In future work, we plan
to investigate more challenging and dynamic settings where attackers may vary
attack types and clients may even switch roles (attackers, unreliable, normal,
etc.) over time. More extensive experiments will also be conducted.

Acknowledgements. This work is partially supported by the NSF grant award
#2008878 (FLINT: Robust Federated Learning for Internet of Things) and the NSF
award #2030624 (TAURUS: Towards a Unified Robust and Secure Data Driven App-
roach for Attack Detection in Smart Living).

A Additional Experimental Results

A.1 Performance Improvement over Rounds

We consider a specific setup with 42.5% malicious clients, for both the datasets to
evaluate the improvement of the accuracy of all the algorithms over FL rounds.

We plot test accuracy and loss from round 5 to the final round 40 for MNIST
dataset in Fig. 6 using global model. It is obvious to see that MUD-HoG obtains
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an upper bound of test accuracy and an lower bound of test loss over the course of
FL training. While some algorithms show fluctuated performance during training
such as Krum with a high fluctuation, or FedAvg and GeoMed with smaller fluc-
tuations, the other state-of-the-art algorithms designed against attackers such
as Median, MKrum, FoolsGold and MUD-HoG show smooth improvement as
training progresses. Among these algorithms, we also observe in Fig. 6 that the
gap of test loss between MUD-HoG and the second-best algorithm is increasing
over the course of FL training.

Fig. 6. Performance improvement of global model on MNIST in Series of Exp2 with
42.5% malicious clients

Figure 7 shows test accuracy and loss for Fashion-MNIST dataset. Similar to
MNIST’s results, we can see that among all evaluated algorithms, MUD-HoG
obtains the highest accuracy and the lowest loss for all training rounds. The
fluctuation of FedAvg and GeoMed is more severe with high variance, so the
final accuracy of these algorithms are not really reliable. This is the reason why
FedAvg and GeoMed can obtain accuracy close to MUD-HoG (see Fig. 4) in the
setups of 12.5% and 20% of malicious clients.

Fig. 7. Performance improvement of global model on Fashion-MNIST in Series of Exp2
with 42.5% malicious clients
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A.2 Confusion Matrix

In Fig. 8, we show confusion matrices for MUD-HoG and FedAvg obtained from
the completely trained model for MNIST and Fashion-MNIST datasets using a
setup of series Exp2 with 42.5% malicious clients. As multi-label-flipping attack-
ers flip their local samples with source labels of “1”, 2‘’, and “3‘’ to the target
label “7”, we can clearly see in parts (b) and (d) of Fig. 8, FedAvg confuses with
several samples actually having the source labels as the target label while it is
not the case for MUD-HoG. In addition, we see an interesting observation in
part (d) of Fig. 8, where FedAvg completely fails as it predicts nearly all sam-
ples of source label “1” as the target label “7” (i.e., 940 samples of label “1” are
predicted as label “7”).

Fig. 8. Confusion matrices in Series of Exp2 with 42.5% malicious clients
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Abstract. By virtualizing proprietary physical devices, Network Func-
tions Virtualization (NFV) enables agile and cost-effective deployment
of network services on top of a cloud infrastructure. However, the added
complexity also increases the chance of incorrect or inconsistent con-
figurations that could leave the services or infrastructure vulnerable to
security threats. Therefore, the timely identification of such misconfigu-
rations is important to ensure the security compliance of NFV. In this
regard, a typical solution is to leverage formal method-based security ver-
ification as they can provide either a rigorous mathematical proof that all
configurations satisfy the required security properties, or the counterex-
amples (i.e., misconfigurations causing the properties to be breached).
To that end, a major challenge is that the sheer scale of large NFV
environments can render formal security verification so costly that the
significant delays before misconfigurations can be identified may leave a
large attack window. In this paper, we propose a novel approach, MLFM,
that combines the efficiency of Machine Learning (ML) and the rigor of
Formal Methods (FM) for fast and provable identification of misconfig-
urations violating a security property in NFV. Our key idea lies in an
iterative teacher-learner interaction in which the teacher (FM) can grad-
ually (over many iterations) provide more representative training data
(verification results), while the learner (ML) can leverage such data to
gradually obtain more accurate ML models. As a result, a small portion
of the configuration data will be enough to obtain a relatively accurate
ML model. The model is then applied to the remaining data to prioritize
the verification of what is more likely to cause violations. We experi-
mentally evaluate our solution and compare it to an existing security
verification tool to demonstrate its benefits.
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1 Introduction

By decoupling network functions from proprietary hardware devices, Network
Functions Virtualization (NFV) allows network services to be implemented as
software modules running on top of generic hardware or virtual machines. This
new paradigm allows service operators to more easily deploy a multi-tenant NFV
environment on top of an existing cloud infrastructure, and it also allows NFV
tenants to accelerate the provisioning and deployment of their services. Due to
such benefits, the popularity of NFV is on the rise, e.g., in the context of 5G
and beyond, NFV has become one of the main technology enablers for operators
to scale their network capabilities on-demand at a lower cost by virtualizing
dedicated physical devices on top of existing clouds [2].

The benefits of NFV may come at the cost of increased complexity. To sup-
port the management and orchestration of multiple network slices belonging to
different tenants on top of the same cloud infrastructure [11], NFV relies on a
mixture of virtualization technologies, e.g., a Virtual Network Function (VNF)
such as virtual firewall seen at tenant-level may correspond to several virtual
machines (VMs) connected through Software-Defined Networking (SDN) at the
cloud infrastructure level [2]. Such increased complexity may also increase the
chance of incorrect (e.g., lack of sufficient network isolation between different ten-
ants’ network slices [28]) or inconsistent (e.g.,. a virtual firewall VNF specified
at the tenant level may be bypassed at the underlying cloud infrastructure level
[30]) configurations that could leave the services or infrastructure vulnerable to
security threats. Therefore, the timely identification of such misconfigurations is
important to ensure the security of NFV environments.

To that end, formal method-based security verification solutions (e.g.,
[26,27,31,39,44,54,59]) can provide rigorous proofs about the compliance or
violation (with counterexamples) of the configurations w.r.t. given security prop-
erties. However, a key challenge is that the sheer scale of virtual environments
can render formal security verification too costly. For instance, a state-of-the-
art security verification tool requires around 12 min to check whether a guest
VM can access any SDN controller with merely 5,000 reachability queries [31].
Such a delay can become much more significant under large NFV environments,
resulting in a wide attack window during which the services or infrastructure are
left vulnerable. Moreover, the inherent complexity of formal methods [52] can
leave little room for further performance improvement, e.g., the aforementioned
tool [31] is already heavily optimized (new combined filter-project operator and
symbolic packet representation are added to the back-end verifier).

Motivating Example. We further illustrate this issue through an example.
The left side of Fig. 1 shows the simplified view of a large NFV environment
where two tenants, Alice and Bob, host their Virtual Network Functions (VNFs).
Suppose our goal is to verify network isolation, i.e., whether any of Alice’s VNFs
can reach any of Bob’s (except what is explicitly allowed). Even the verification
of such a simple property (all-pair reachability) can become expensive as NFV



468 A. Oqaily et al.

tenants may own a large number of VNFs. To make things worse, NFV and
its underlying cloud infrastructure typically employ distributed and fine-grained
network access control mechanisms (e.g., per-VM security groups in OpenStack
[43]). Consequently, verifying the reachability of two VNFs/VMs may require
inspecting many rules and configuration data scattered among various data
sources (e.g., routing and NAT rules in virtual routers along the route, host
routes of the subnets, and firewall rules implementing tenant security proper-
ties [59]).

Fig. 1. Motivating example

The right side of Fig. 1 contrasts how the collected audit data will be pro-
cessed under an existing formal method (FM)-based security verification app-
roach (top) and under our approach (bottom). The barchart-like pattern illus-
trates the distribution of data records in the audit data where red (or black) bars
represent pairs of VNFs that violate (or satisfy) the network isolation property.
As the upper pattern shows, a FM-based approach would verify the audit data
as is, i.e., all the VNF pairs will be verified in the same order as given in the
audit data. In contrast, our approach leverages ML to reorder those data records
such that those that (likely) cause violations (the red bars) will be moved for-
ward, i.e., given a higher priority for verification than others (the black bars).
Consequently, the verification can identify most of the violations in much less
time (even after taking into account the time taken by ML training).

To that end, our main idea is to employ an iterative teacher-learner inter-
action, as depicted in the middle of Fig. 1. In each iteration, the teacher (FM)
first selects representative data records from the audit data, and then provides
their verification results as training data to the learner (ML). Using such data,
the learner (ML) trains an ML model, which is then given back to the teacher
(FM) to be tested for identifying more representative data records (e.g., false
positives and false negatives) in the next iteration. Over several iterations, such
an interaction between the teacher and learner will enable a relatively accurate
ML model to be trained using only a small portion of the audit data. The ML
model can then be applied to reorder the remaining data for faster identification
of violations. More specifically, our main contributions are as follows.
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– To be best of our knowledge, MLFM is the first approach that combines
FM with ML to have the best of both worlds (i.e., the rigor of FM which
is essential for proving security compliance, and the efficiency of ML which
is critical for a large NFV environment) for prioritizing verification tasks in
NFV. Although we focus on NFV, we believe such an approach can potentially
find other applications.

– To realize MLFM, we design an iterative teacher-learner interaction method-
ology with a detailed algorithm. We implement the methodology based on
a constraint satisfaction problem solver, namely, Sugar [55], several popu-
lar ML algorithms (decision tree, random forest, support vector machine,
and XGBoost), and sampling techniques (uncertainty sampling and query-by-
committee) borrowed from the active learning literature [50] for identifying
representative data records.

– We experimentally evaluate MLFM for two different use cases (one aims at
the shortest verification time, and the other at the completeness of the result).
The experimental results demonstrate the benefits of MLFM through identi-
fying violations significantly faster than the baseline FM method (e.g., identi-
fying 80% of violations in 28% of time), and further improving the efficiency
of a state-of-the-art security verification tool [31] (e.g., identifying 80% of
violations in 57% of time).

The remainder of the paper is organized as follows. Section 2 provides
the background and threat model. Section 3 details the MLFM methodology.
Section 4 describes our implementation. Section 5 presents the experiments.
Section 6 reviews the related work. Finally, Sect. 7 discusses limitations and con-
cludes the paper.

2 Preliminaries

This section provides essential background on NFV, discusses NFV security
properties, and defines our threat model.

NFV Background. NFV is a network architecture concept that decouples
network functions (e.g., routers, firewalls, and load balancers) from proprietary
hardware devices and virtualizes them as Virtual Network Functions (VNFs)
running on top of existing cloud infrastructures [2]. Figure 2 presents a simpli-
fied view of the ETSI NFV reference architecture [2] (left), and an example
NFV deployment corresponding to our motivating example (right). First, the
resource management level conceptualizes the virtual resources such as subnets
and VNFs. Second, the underlying virtual infrastructure level implements those
virtual resources using virtual networking elements, such as virtual switches
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Fig. 2. ETSI NFV reference architecture [2] (left) and an example NFV deployment
corresponding to the motivating example (right)

(e.g., OVS 1 ), VLANs (for communications within the same server), VxLANs
(for communications between servers), and network ports, running on top of
physical servers (e.g., Server 1 ). In this paper, NFV configuration data stored
in relational databases will be our main inputs.

NFV Security Properties. Various security properties can be defined to verify
the compliance of NFV environments w.r.t. standards (e.g., ETSI [2] and IETF-
RFC7498 [45]) or NFV tenants’ requirements. Table 1 (in Appendix) shows some
example NFV security properties which we have previously identified [44]. Our
approach can support other security properties as long as they can be verified
using the chosen formal method tool (e.g., Sugar [55] used in this paper can
handle most properties formulated using standard first-order logic). To make
our discussions more concrete, we describe two example properties (which will
be needed later).

Example 1. First, the property mapping unicity VLANs-VXLANs ensures the
logic segregation between different tenants’ virtual networks through the unique
assignment of VxLAN (communications between servers) identifier to each
VLAN (communications within one server). Figure 3 (left) depicts a violation of
this property (the shaded nodes show VLAN 1 is mapped to both VXLAN 10
and VXLAN 16 on Server 1 ). Note this property can be verified for each VLAN
separately. Second, the property no VNFs co-residence prevents a tenant’s VNFs
to be placed on the same physical server with VNFs of non-trusted tenants (e.g.,
due to concerns over potential side channel threats). Figure 3 (right) shows a
violation of this property where Alice’s VNF 101 and Bob’s VNF 46 on both
placed on server S 23. In contrast to the previous property, verifying this prop-
erty could involve more records (all the VNFs of this tenant and the non-trusted
tenants).
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Fig. 3. Two example NFV security properties: Mapping unicity VLANs-VXLANs (left)
and No VNFs co-residence (right) (shaded nodes indicate violations)

Threat Model and Assumptions. Similar to most existing security verifica-
tion approaches, our scope is limited to attacks that (directly or indirectly) cause
violations to given security properties, and we assume our solution is deployed
by the owner of the NFV environment who has access to the logs, databases,
and configuration data needed for the security verification (and the integrity of
those input data is protected with trusted computing techniques (e.g., [49])).
Under such assumptions, our in-scope threats include both external attackers
who exploit existing vulnerabilities in the NFV environment to violate the secu-
rity properties, and insiders such as NFV operators and tenants who cause mis-
configurations violating the properties, either through mistakes or by malicious
intentions. Conversely, out-of-scope threats include attacks that do not cause any
violation of the security properties, and attacks launched by adversaries who can
erase evidences of their attacks by tampering with the logs, databases, etc.

We assume that the formal specification of security properties as well as the
formal verification approach itself are correct and sound. As a security verifi-
cation solution, our approach can only identify the violation of given security
properties, but is not designed to attribute such a violation to the underly-
ing vulnerabilities (responsibility of vulnerability analysis) or specific attacks
(responsibility of intrusion detection). Similar to most existing machine learn-
ing approaches, we assume that a dataset required for verifying given security
properties has been collected. However, we do not require labeled data, which
can be difficult to obtain in a real world NFV environment, as the data records
will be labeled by the teacher (formal method) in our approach (optionally, a
small amount of labeled data records would be helpful for training an initial ML
model to speed up the iterative approach). As with most security applications
(e.g., spam or intrusion detection), we assume the dataset is unbalanced (i.e.,
the majority of data records belong to the compliance class w.r.t. the security
property), and we make additional efforts in designing our approach to address
this issue.

3 Methodology

This section first presents an overview of our approach, followed by details on
the iterative teacher (FM)-learner (ML) interaction and the MLFM algorithm.
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3.1 Overview

We propose a machine learning-guided formal security verification approach,
namely, MLFM, for fast and provable identification of data records that violate
a given security property in NFV. First, the ML training stage employs an
iterative teacher (FM)-learner (ML) interaction to train an ML model using
only a small portion of the audit data. Second, the ML application stage applies
the ML model to reorder the remaining audit data, such that those that are
more likely to violate the property will be verified first. More specifically, Fig. 4
depicts our approach as follows.

Fig. 4. Overview of the MLFM approach

The ML Training Stage. As Fig. 4 (left) shows, in each iteration of the
teacher-learner interaction, the teacher first applies a sampling method to select
a small data sample of fixed size from the audit data (shown as Sampler in the
figure) after applying the ML model received from the learner in the previous
iteration (an initial ML model is provided for the first iteration). The teacher
then verifies the data records inside this data sample, and labels each record
based on its verification result (shown as Formal verifier in the figure), and
sends the labeled data sample to the learner. The learner then combines this
newly received data sample with the previously received data samples to train
a new ML model to be sent back to the teacher. This iterative interaction ends
when reaching a predefined condition, e.g., a fixed iteration count, or lack of sig-
nificant change in the accuracy of the model between two consecutive iterations.

The ML Application Stage. As Fig. 4 (right) shows, the final ML model
from the ML training stage is applied to the remaining audit data (i.e., the data
not used for training) in order to identify data records that are more likely to
violate the given security property, namely, the “to be verified” subset, which
will be given a higher priority for verification. On the other hand, the “not to be
verified” subset will either be verified afterwards, or not verified at all, depending
on the use cases (detailed in Sect. 3.3).



MLFM 473

3.2 Iterative Teacher (FM)-Learner (ML) Interaction

In the following, we provide more details about the key methodology of our
approach, i.e., the iterative teacher (FM)-learner (ML) interaction.

Sampling (Teacher). The sampler component of the teacher is designed to
select representative data records from the audit data in order for the learner to
effectively enhance the ML model over each iteration. Choosing the right data
records is important because they could cause either increase or decrease in
the accuracy of the next ML model, e.g., data records having the same (redun-
dant) information or those with the same label may cause the model to either
not improve, or become biased towards the majority data, respectively. Our
approach borrows sampling strategies (such as uncertainty sampling) from the
active learning literature [50]. Although active learning has a different focus (it
aims to reduce the effort of human experts in labeling the data, whereas no
human expert is involved in our case), its sampling strategies are applicable to
our approach, because they are also designed to better represent the characteris-
tics of the property being analyzed such that an ML model can be trained with
minimal labeled data.

Example 2. The left side of Fig. 5 shows an excerpt of the audit data correspond-
ing to the previous Example 1. Using uncertainty sampling, the sampler (inside
the teacher block) selects a sample of size (m = 2) as the (shaded) record pairs
(1, 3) and (6, 4).

Fig. 5. An example of the iterative teacher (FM)-learner (ML) interaction



474 A. Oqaily et al.

Verification (Teacher). The formal verifier component is responsible for label-
ing the selected sample of data records (which will later be sent to the learner
as training data). Labeling here means to annotate the data records with an
extra field representing their classes, i.e., whether they are compliant with, or
violate, the security property. To obtain such labels, the formal verifier performs
formal verification by instantiating the security property (e.g., formulated using
first-order logic) with the data records.

Example 3. Following Example 2, Fig. 5 shows how the formal verifier labels the
selected sample by verifying the No VNFs co-residence property (see Sect. 2).
Specifically, the formal verifier finds that the pair (1, 3) violates the property
(i.e., Alice’s VNF (VNF 101 ) co-resides with Bob’s VNF (VNF 46 ) on the
same server (S-23 )), and thus labels it as “+”. The other pair (6, 4) is labled as
“-”, as it does not violate the property.

Records Selection (Teacher). Next, the teacher applies the ML model from
the previous iteration (received from the learner) to the labeled sample of data
records. Intuitively, this allows the teacher to validate this previous ML model
(by comparing its results to the labels provided by the formal verifier) and pro-
vide the “mistakes” (false positives and false negatives) as more representative
training data to the learner. Specifically, as the ML model from the previous iter-
ation also classifies the data records into two classes, by comparing its results to
the ground truth, i.e., the labels assigned by the formal verifier component, the
teacher can identify those records that have been correctly classified (i.e., true
positives (TPs)) and those incorrectly classified (i.e., false negatives (FNs) and
false positives (FPs)). Then, the teacher adds the TP, FN, and FP records to a
new dataset D, which is the training dataset to be sent to the learner. Finally, if
the number of records in D is still less than the desired size of the sample (m),
the teacher repeats the aforementioned steps as an inner-iteration until it has
accumulated totally m records in D. Note that the rationale for selecting (TP,
FP, FN) records is twofold. First, as the positive class (i.e., violations) is gener-
ally smaller due to data imbalance, adding TP and FN records can augment the
positive class to reduce the bias in training [41]. Second, the FN and FP records
are incorrectly classified by the previous ML model and thus may contain more
useful information for the learner to improve the accuracy of its next model.

Example 4. Following Example 3, Fig. 5 shows a decision tree model (DT 0)
received from the last iteration is applied to the two pairs of records (1, 3) and
(6, 4). The decision tree (DT 0) predicts “+”, if the VNF2-ID value is no smaller
than the VNF1-ID value; otherwise, it is predicted as “-”. Therefore, both (1, 3)
and (6, 4) are predicted as “-”. Comparing such results to the labels previously
assigned by the formal verifier (see Example 3), we can see the pair (1, 3) is
FN and should be added to the dataset D (and deleted from the audit data),
whereas (6, 4) is TN and should not be added. Finally, as the size of D is less
than the required size (m=2), we will repeat the inner-iteration.
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ML Model Building (Learner). Once the teacher’s dataset D reaches the
required size m, the sample it contains is sent to the learner (D is then emptied
in preparation for the next iteration). The learner adds the received sample to
its existing training data (i.e., the collection of all previous samples), and utilizes
this newly enriched training data to build a new ML model. The ML model is
sent back to the teacher if the stopping condition (e.g., the specified number of
interactions) has not been reached; otherwise, the interaction ends and the final
ML model is given to the next (ML application) stage.

Example 5. Following Example 4, the lower part of Fig. 5 shows that, once the
teacher’s inner-iteration ends, a sample of size two is sent to the learner. The
learner adds the received sample to the existing training data (T ) while the
teacher empties its dataset (D). The new training data (T ) is then used to build
a new decision tree model (DT 1), which is more accurate than DT 0.

3.3 MLFM Algorithm and Use Cases

Algorithm 1 more formally states our approach. The inputs to the algorithm
include the unlabeled audit data, the security property, and the parameters. The
initial set of training data allows a system user to influence the algorithm with
his/her domain knowledge by manually selecting/labeling data records (other-
wise, the data can simply be randomly selected from the audit data and labeled
using the formal verifier).

The algorithm has an outer iteration (Lines 2–9) which first builds a new
sample through performing the inner iteration (Lines 3–7), and then adds this
new sample to the existing training data (Line 8) to train a new ML model
(Line 9). The outer iteration is repeated for a fixed number (provided as an input
parameter) of times. The final ML model is then applied to reorder the remaining
audit data before verifying it (Line 10). The union of all the verification results
(Lines 5 and 10) is the final output.

The inner iteration builds a sample D of size m as follows. First, it selects
a sample of size m from the audit data by following a given sampling strategy
(Line 4). Although not shown in the algorithm, depending on the sampling
strategy being used, this step may involve other parameters such as the current
ML model (e.g., with uncertainty sampling [50]) or the training data (e.g., with
Query-By-Committee (QBC) sampling [50]). Second, the sample is verified and
labeled (with the verification results) using a formal verifier (Line 5). Third, the
current ML model is applied to the sample, and the results are compared to the
labels (verification results) to identify and add the (TP, FP, FN) records to D
(Line 6). Fourth, D is removed from the audit data to avoid being selected again
(Line 7). We repeat the above steps until D contains at least m records.

Complexity Analysis. The worst case complexity of the MLFM algorithm is
O(n·(m·(Ts+Tv1)+Tt)+Tv2) where Ts, Tv1 , Tt, and Tv2 are the time for sampling
(Line 4), verifying m records (Line 5), training (Line 9), and verifying remaining
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Algorithm 1: The MLFM algorithm
1 Inputs: Audit data (AD), security property (SP), initial training data (T0),

initial model M0 = TrainClassifier(T0), per-iteration sample size (m), and
iteration count (n)
/* Outer-iteration */

2 for i = 0, i < n, i++ do
/* Inner-iteration */

3 while | D |< m do
4 S = SelectSample(AD, m)
5 Si= VerifyAndLabel(S, SP )
6 D = D ∪ TP (Si, Mi) ∪ FP (Si, Mi) ∪ FN(Si, Mi)
7 AD = AD \ D

8 Ti+1 = Ti ∪ D; D = φ
9 Mi+1 = TrainClassifier(Ti+1)

10 return Verify(Reorder(AD, Mn)) ∪ (
⋃

i Si)

records (Line 10), respectively. Such times would depend on specific algorithms,
e.g., Ts under uncertainty sampling [50] can be estimated as O(| AD |), since
this strategy requires applying the current ML model on the audit data AD.
Tv1 and Tv2 under a CSP solver is known to be exponential in the number of
variables of the instantiated security property [14]. Finally, Tt under a decision
tree classifier is O(na ·nt · log2(nt)) [47] where na is the number of attributes and
nt the size of training data (i.e., O(n ·m)). We will further study the efficiency
of the algorithm through experiments in Sect. 5.

Use Cases. Depending on how the remaining data is verified in Line 10 of
the MLFM algorithm, our approach can be applied for two different use cases.
First, MLFM running in the partial verification case will stop after verifying
all the “to be verified” records (which would appear first after the reordering).
This can be useful when the system user wants to find violations as quickly as
possible (but not necessarily to find all the violations), and our objective in the
training is to find an ML model that is the most accurate (since the mis-classifed
violations would not be verified, as further explained in Sect. 5). Second, MLFM
in the priority-based verification case will verify all the records (with the “to be
verified” records verified first). Our objective of the training is to find an ML
model that incurs the least overall verification time with acceptable accuracy
(since the mis-classified records will still be verified eventually).

4 Implementation

In this section, we describe the architecture and details of our implementation.
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System Architecture. Our implementation of MLFM (shown in Fig. 11 in
Appendix due to space limitation) interacts with an OpenStack/Tacker [8]-based
NFV environment to collect audit data. The system also interacts with a user
to obtain other inputs, such as the security property to be verified, the formal
verifier and the ML model to be applied, and the system parameters (the number
of iterations and the sample size, as detailed in Sect. 3.3). Finally, the system
returns an audit report to the user.

Data Collection and Processing. We implement this module using Python
and Bash scripts to collect audit data from multiple sources including logs and
configuration databases or files. For instance, to verify the No VNFs co-residence
property, the module collects the identifiers of VNFs from Tacker and Nova
databases [7], their corresponding owners (from Nova database), and the iden-
tifiers of servers hosting those VNFs (from Nova database). As the audit data
are usually scattered among different components of the NFV environment and
stored in different formats, the data must first be pre-processed. For instance, to
verify the mapping unicity VLANs-VXLANs property, the data collected from
OpenFlow tables of the OVS databases has unnecessary fields (e.g., cookie and
priority) that must be filtered out. Also, the port and vlan vid fields must be
correlated to create the relation tuples IsAssignedVLAN(ovs,port,valn) for the
verification. Finally, such filtered and correlated data must be converted into the
corresponding input formats required by the formal verifier as well as for the ML
training.

MLFM Manager. We implement this module in Python to manage and coor-
dinate the interactions between other system modules for performing data col-
lection and processing, data sampling, formal verification, ML training, etc., as
described in Sect. 3.

ML Model Learner. We utilize Python 3.6.9 and Scikit-learn 0.24.1 (an open
source ML library written in Python) to implement this module. We select deci-
sion tree, Support Vector Machine (SVM), and Random Forest (RF) models as
they are among the most commonly used supervised classifiers, and are computa-
tionally more efficient compared to other classifiers such as K-Nearest-Neighbor
(KNN) [40]. We also select XGBoost classifier [15], a scalable tree boosting sys-
tem with a simpler structure using less resources than most other ML models,
which has recently seen wide application for its high accuracy and low false
positive rate [16,42]. As our main aim is to reduce the overall delay before viola-
tions can be identified, we do not consider deep learning models as they are well
known for higher complexity and longer training time compared to traditional
ML models [34].

Sampler. We employ the modAL framework [17] to implement sampling strate-
gies in this module. The modAL is an active learning framework for Python3,
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built on top of Scikit-learn [29], which allows to rapidly create active learning
workflows with flexibility [17]. We select the uncertainty sampling and query-by-
committee (with DT, SVM, and RF for members of the committee) sampling
strategies in our implementation, as those are the most computationally efficient
ones compared to other strategies [50].

Formal Verifier. We formalize the security properties together with the audit
data as a Constraint Satisfaction Problem (CSP), a time-proven technique for
expressing complex problems. Using CSP allows the user to specify a wide range
of security properties (due to its expressiveness) in a relatively simple manner
(as CSP enables to uniformly present the audit data as well as the security
properties, and in a comprehensible and clean formalism, such as first order
logic (FOL) [12]). Moreover, there exist many powerful and efficient CSP solver
algorithms to avoid the state space traversal [48], which can make our approach
more scalable for large NFV environments.

Once formulated as a CSP problem, the security verification is performed
using Sugar [55], a well-established SAT-based constraint solver. We choose
Sugar as it is an award-winning solver of global constraint categories (at the
International CSP Solver Competitions in 2008 and 2009 [9]). Sugar solves a
finite linear CSP by translating it into a SAT problem using order encoding
method, and then solving the translated SAT problem using the MiniSat solver
[18], which is an efficient CDCL SAT solver particularly effective in narrowing the
search space [23]. Adapting our MLFM framework to other verification methods
(such as theorem proving, model checkers, temporal logic, and Datalog) based
on the needs of verification tasks is regarded as a future work.

Example 6. The predicate that corresponds to the negation of the No VNFs co-
residence property is formulated (by the system user, done only once) as Formula
1 (left), and a predicate instance returned by Sugar to indicate violation is shown
as Formula 2 (right) (i.e., both Alice and Bob have VNFs co-residing on the same
server S 23 ).

∀t1, t2 ∈ Tenant,∀vnf1, vnf2 ∈ VNF,∀s1, s2 (1)
∈ Server : HasRunningVNF(t1, vnf1) ∧ HasRunn−
ingVNF(t1, vnf1) ∧ DoesNotTrust(t1, t2)∧
IsRunningOn(vnf1, s1) ∧ IsRunningOn(vnf2, s2)

∧(s1 == s2)

HasRunningVNF(Alice, VNF 101) ∧ HasRunn− (2)
ingVNF(Bob, VNF 46) ∧ DoesNotTrust(Alice,

Bob) ∧ IsRunningOn(VNF 101, S 23) ∧ IsRun−
ningOn(VNF 46, S 23) ∧ (S 23 == S 23)

5 Experiments

This section describes the datasets and experimental settings, and presents our
results.
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5.1 Datasets and Experimental Settings

We first describe the implementation of our NFV testbed and data generation
using the testbed, and then detail the experimental settings.

NFV Testbed Implementation. We choose to build our NFV testbed using
OpenStack [7] with Tacker [8] mainly due to their growing popularity in real
world [10] (other options such as Open Baton [4], OPNFV [5], and OSM [6]
are still at their development stages). More specifically, we rely on the latest
version OpenStack Rocky [7] for managing the virtual infrastructure, and we
employ Tacker-0.10.0 [8], an official OpenStack project, to deploy virtual network
services. Our NFV testbed consists of 20 tenants and 200 VNF forwarding graphs
(VNFFGs), with each tenant owning around 10 VNFFGs and each VNFFG
consisting of about 10 VNFs.

NFV Data Generation. To evaluate the performance of MLFM under large
scale NFV environments, we would require a large scale NFV deployment. How-
ever, to the best of our knowledge, there do not exist any publicly available
large-scale NFV deployment datasets. Therefore, we develop Python scripts to
automatically generate various VNF Descriptors (VNFDs) and VNFFG Descrip-
tors (VNFFGDs), which are then uploaded (also called on-boarding) to our
NFV testbed to deploy different network services and generate large scale NFV
datasets. We randomize parameters of those descriptors to ensure diversity in
the generated data (e.g., the number of network ports per VNF, the flavor of
each VNF, the number of VNFs in each Network Function Path (NFP), and
the number of NFPs in each VNFFG). Our first dataset, DS1, contains 12,500
audit data records for verifying the mapping unicity VLANs-VXLANs property
(P1 henceforth), and our second dataset, DS2, contains 25,000 records for verify-
ing the no VNFs co-residence property (P2 henceforth). Each dataset contains
around 10% of (uniformly distributed) records that violate the corresponding
property.

Experimental Setting. All experiments are performed on a SuperServer
6029P-WTR running the Ubuntu 18.04 operating system equipped with Intel(R)
Xeon(R) Bronze 3104 CPU @ 1.70 GHz and 128 GB of RAM without GPUs. All
the experiments are performed using Sugar [55] as the formal verifier (unless
mentioned otherwise) and Python 3.6.9 with Scikit-learn 0.24.1 ML packages
for the ML method. For all the experiments, we use the default parameters for
the ML models. Each experiment is repeated 1,000 times to obtain the average
results.

5.2 Experimental Results

Best Performing Combination of ML Model/Sampling Method. The
first set of the experiments aims to find the best performing combination of
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ML model and sampling method (as components of MLFM), from both the
accuracy and time performance point of views. Specifically, Fig. 6 shows the
recall and F1 score results for different combinations of ML models (DT, RF,
SVM and XGBoost, trained on 20% of each dataset) and sampling methods
(random sampling, query-by-committee (QBC), and uncertainty sampling) for
both security properties (P1 and P2) and datasets (DS1 and DS2). The results
in Figs. 6 (a) and (b) show that the combination of XGBoost and uncertainty
sampling allows MLFM to achieve the highest recall (0.97) and F1 score (0.97)
for security property P1. On the other hand, SVM combined with any of these
sampling methods has the lowest F1 score (0.80) (i.e., less effective in identifying
both classes), and RF with uncertainty sampling has the lowest recall (0.82)
(i.e., less effective in identifying the violations). Similarly, Fig. 6 (c) shows that
XGBoost with uncertainty sampling also has the best recall (0.783) for security
property P2. However, as Fig. 6 (d) shows, XGBoost has the best F1 score (0.981)
when paired with QBC sampling. Nonetheless, as identifying the violations is
more important to MLFM, XGBoost with uncertainty sampling is considered
the best option for both P1 and P2.
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Fig. 6. Recall and F1 score for combinations of ML models and sampling methods,
trained on 20% of dataset DS1 for property P1 (a and b) and on DS2 for P2 (c and d)

Figure 7 shows how the combinations of ML models and sampling methods
affect the running time (in minutes) of MLFM (including both the ML training
and application stages). As explained in Sect. 3.3, the partial verification use case
aims to find the majority of violations in the least time. To that end, Fig. 7 (a)
seems to suggest that SVM paired with uncertainty sampling is the best option
as it requires the least time (15.14 min). However, upon further investigation,
this is not really the case, because the lower time consumption is mainly due to
its inaccuracy (it misses more violations and thus, similar to most SAT solvers,
Sugar incurs less time when there are less violations to find [55]). Therefore,
considering both the accuracy (Fig. 6 (a)) and the running time, XGBoost with
uncertainty sampling seems to be the best option (with the second least time) for
partial verification under P1. Figure 7 (b) shows that XGBoost with uncertainty
sampling is the best option for priority-based verification for P1, as it requires
the least time (accuracy is less important in this use case as all the records will
be verified eventually, as explained in Sect. 3.3). Similarly, Figs. 7 (c) and (d)
show XGBoost with uncertainty is also the best combination under P2 for both
use cases.
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Fig. 7. Running time of MLFM for combinations of ML models and sampling methods,
with 20% of training data under P1 (a) (b), or P2 (c) (d), for both use cases

Best Performing Parameters m and n. In this set of experiments, we aim
to find the optimal parameters of MLFM, i.e., the number of iterations n and
the sample size m (see Sect. 3.3), in terms of the running time for priority-based
verification, and also in comparison to the baseline approach (i.e., directly apply-
ing the formal verifier to the entire dataset). Specifically, Fig. 8(a) shows how
changing the sample size m with a fixed number of iterations (n = 10) impacts
the time, with the best performing model (i.e., XGBoost with uncertainty sam-
pling) under property P1. The results show that MLFM takes less time (<1 h)
than the baseline approach (around 1.6 h) in all cases. As more training data is
used (through larger samples), the time of MLFM initially decreases due to more
accurate ML models, and it reaches the lowest value (0.417 h, or around 25% of
the time of baseline) while using about 20% of the dataset for training. The time
starts to increase afterwards, since the time needed to verify larger samples in
the training stage becomes dominant (compared to the time saved in the appli-
cation stage). Figure 8(b) shows how changing the number of iterations n with a
fixed sample size (m = 250) impacts the time. Similarly, MLFM takes less time
than the baseline approach in all cases. The optimal percentage of training data
is also around 20% (where n = 10). However, afterwards the time of MLFM
stays lower than in the previous experiment, which shows that increasing the
number of iterations is a safer choice (than increasing sample size) for increasing
the training data. Figures 8(c) and (d) show similar trends for property P2 (the
longer time is due to more records involved in verification, as shown in Sect. 2).
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Fig. 8. Running time of MLFM vs. the baseline (FM only) under property P1 (a) and
(b) or P2 (c) and (d), using different percentages of training data either by changing
the sample size m (a) and (c) or by changing the number of iterations n (b) and (d)
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Comparing MLFM to Other Approaches. In this set of experiments, we
compare the performance of MLFM to both the baseline approach (i.e., directly
applying the formal verifier, Sugar [55]) and a state-of-the-art security verifica-
tion tool, NOD [31]1. All experiments use the best performing model and param-
eters (i.e., XGBoost with uncertainty sampling, 20% training data, m = 250, and
n = 10).

First, Figs. 9(a) and (b) show the time (in minutes) needed by the baseline
approach (upper curve) and by MLFM (lower curve) for identifying different
percentages of violations under properties P1 (a) and P2 (b), respectively. The
figures depict both the priority-based verification use case (the entire curve)
and the partial verification use case (part of the curve before the dashed line).
Specifically, Fig. 9(a) shows that MLFM outperforms the baseline throughout the
percentages, e.g., for partial verification, MLFM can identify 88% of the viola-
tions in around 23.3 min, which takes the baseline 82.7 min. Similarly, Fig. 9(b)
shows that MLFM outperforms the baseline in case of partial verification for
property P2, where it identifies 82% of the violations in about 53.3 min, while
the baseline takes almost 2.4 h. However, in case of priority-based verification
(after the 82%) for property P2, MLFM takes more time than the baseline. The
reason lies in the difference between the two properties. As explained in Sect. 2,
unlike P1 (which can be verified for each VLAN independently), P2 may involve
all the VNFs of a tenant, which means the remaining 18% of violations can only
be identified using the baseline approach. Fortunately, there exists an alternative
solution, i.e., we run MLFM and the baseline in parallel, and terminate MLFM
as soon as the baseline finishes (as we already have all the results). As Fig. 9(b)
shows, this would allow MLFM to identify around 86% of violations faster than
the baseline, while bounding the overall running time by what is taken by the
baseline.

Next, Figs. 9(c) and (d) show the tradeoff between the running time (in min-
utes) and the recall values of partial verification (i.e., the percentage of violations
identified by the end of partial verification) for P1 (c) and P2 (d). Both figures
show similar results, i.e., while the baseline naturally requires more time for iden-
tifying more violations, MLFM can achieve a high recall value of 0.98 (P1) and
0.9 (P2) (by increasing the percentage of training data from 10% to 20%) with
negligible change in running time (the difference will be greater for verifying the
remaining records, as shown in Fig. 8).

Finally, Figs. 10(a) and (b) show the time (in minutes) needed by NOD [31]
(lower curve) and MLFM integrated with NOD (upper curve) for identifying
different percentages of violations under the virtual network reachability prop-
erty [31] (as this property is similar to P2, we run MLFM in parallel with NOD, as
discussed above). We use the benchmarks provided in [31] to create two datasets
with 25,000 and 50,000 reachability pairs, respectively, and around 10% of viola-
tions injected randomly. The results show that MLFM can help NOD to identify

1 Among existing security verification tools, we do not compare to NFVGuard [44] as
it actually forms the basis of our verification component, and we do not compare to
TenantGuard [59] as it is based on custom algorithms instead of formal method.
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around 80% (a) and 81.3% (b) of violations, respectively, in less (57% and 65%,
respectively) time.
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Fig. 9. The time (in minutes) for identifying different percentages of violations by
MLFM and the baseline for P1 (a) or P2 (b). The tradeoff between running time and
recall values of MLFM and the baseline for partial verification of P1 (c) or P2 (d)
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Fig. 10. The time (in minutes) for identifying different percentages of violations by
NOD [31] and by MLFM integrated with NOD, using 25,000 (a) and 50,000 (b) records

6 Related Work

Most existing solutions related to security verification for NFV (e.g., [20,21,39,
54,56,58,60,61]) focus on the verification of service function chaining (SFC).
Those works employ either custom algorithms (such as [20,58,60]), graph-
based methods (such as [21,56,61]), or formal methods (such as [39,54]). Unlike
those existing works (which focus on the SFC only), our previous work, NFV-
Guard [44], aims to verify the entire NFV stack (including both SFC and under-
lying infrastructure, and their consistency) using formal method. However, the
increased scope also leads to increased complexity and longer verification time,
which has motivated us to propose MLFM.

Besides NFV, there also exist security verification solutions for other vir-
tual infrastructures, such as cloud and SDN (e.g., [27,31–33,37,38,59]), includ-
ing formal method-based ones [31–33,37]. Unlike MLFM, most such solutions
do not specifically address the delay in verification (so they may benefit from
MLFM in that aspect), with the exception of NOD [31] which is optimized for
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large applications (our experiments in Sect. 5 show it can further benefit from
MLFM). In contrast to formal method, custom algorithms (e.g., [27] and [59])
may enjoy improved efficiency for specific properties but they generally lack the
level of expressiveness of formal method-based approaches (including MLFM).
Also designed to reduce verification time, the proactive approach (e.g., [35,36])
performs the verification in advance based on predicted events, which is parallel
to, and can be integrated with, our approach.

There exist works that combine machine learning and formal method in other
contexts, such as automated program verification (for synthesizing invariants
used to verify the correctness of a program, e.g., [19,22,46,57]). In particular,
Ezudheen et al. [19] develop learning-based algorithms for synthesizing invari-
ants for programs that generate Horn-style proof constraints. Garg et al. [22]
propose the ICE-learning framework for not only taking (counter-)examples but
also handling implications. Ren et al. [46] propose a method based on selec-
tive samples to improve the efficiency of invariant synthesizing. Finally, Vizel et
al. [57] study the relationship between SAT-based Model Checking (SAT-MC)
and Machine Learning-based Invariant Synthesis (MLIS). Although the goals
are very different (efficient verification vs. invariant synthesizing), our teacher-
learner approach is similar to those existing works, with a key difference being
that we additionally employ the sampling strategies from the active learning
literature [50] to more effectively identify representative samples.

7 Conclusion

We have presented MLFM, a novel approach to security verification in NFV
that could combine the rigor of formal methods with the efficiency of machine
learning for faster identification of security violations. Specifically, we designed
an iterative approach for the teacher (FM) to gradually provide more represen-
tative data samples, such that the learner (ML) could train an ML model using
a small portion of the data; the ML model was then applied to the remaining
data to prioritize the verification of likely violations. We implemented MLFM
based on OpenStack/Tacker, and our experimental results showed significant
performance improvements over baseline approaches.

Limitations and Future Work. First, we have limited our scope to NFV
in this work, and a future direction is to apply MLFM to other large-scale vir-
tual infrastructures (e.g., clouds and SDNs). Second, while MLFM only focuses
on security verification, a natural next step is integrating MLFM with security
enforcement mechanisms to turn faster violation identification into more respon-
sive attack prevention. Third, MLFM is static in the sense that its verification
is on-demand based on data snapshots, and one future direction is to support
continuous security verification (monitoring) based on data streams. Finally,
we will also investigate other ML-specific issues such as the possibility of using
deep learning for offline pre-training (due to its complexity), and defence against
potential adversarial attacks on the training process of MLFM.
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Appendix

Table 1. Examples of NFV security properties [44]

Security properties Sub-properties Description Standards

Physical resource

isolation [32]

No VNFs co-residence VNFs of a tenant should not be

placed on the same server as

VNFs of a non-trusted tenant

ISO [24], NIST800

[53], CCM [1], ETSI

[13]

Virtual resource

isolation [32]

No common

ownership

Tenant-specific resources should

belong to a unique tenant, unless

permitted by a user-defined

policy

CCM [1], ETSI [13],

IETF-RFC7665, RFC-

7498 [25]

Topology isolation

[32]

Mapping unicity

VLANs-VXLANs

VLANs and VXLANs should be

mapped one-to-one on a given

server

ISO [24], NIST800

[53], CCM [1], ETSI

[13], IETF-RFC7665,

RFC-7498 [25]

Correct association

Ports-Virtual

Networks

VNFs should be attached to the

virtual networks they are

connected to through the right

ports

Overlay tunnels

isolation

In each VTEP end, VNFs are

associated with their physical

location (at L2) and to the

VXLAN assigned to the networks

they are attac- hed to at L1

Mappings unicity

Virtual Networks

Segments

Virtual networks and segments

should be mapped one-to-one

Mappings unicity

Ports-VLANs

Ports should be mapped to

unique VLANs

Mappings unicity

Ports-Segments

vPorts should be mapped to

unique segments

Policy and state

correctness [51]

– A policy can be dynamically

changing. The changed policy

should be reconfigured in VNF

node as soon as possible

ETSI [3,13], IETF-R

FC7665, RFC8459

[25]

Functionality of VNF

and VNFFGs [20,60]

– Check if VNFs and the

composition (i.e., service

chaining) of these functions work

as intended

ETSI [3], IETF-RFC-

7665, RFC8459 [25]

SFC ordering and

sequencing as defined

by the specification

[21]

– SFCs should maintain the order

of VNFs with the correct traffic

forw- arding behavior as defined

by the specifications

ETSI [3,13], IETF-

RFC7665, RFC8459

[25]

(continued)



486 A. Oqaily et al.

Table 1. (continued)

Security properties Sub-properties Description Standards

Topology consistency

[32]

VNFFG configuration

consistency between

L1/L2

Consistency between the size of

VNFFGs, the sequences of VNFs

and the classifiers at L1 and their

parallel implementation at L2

ISO [24], NIST800

[53], CCM [1],

IETF-RFC-8459 [25],

ETSI [3,13]

Virtual links

consistency

VNFs should be connected to the

VLANs and VXLANs in L2 that

corresponds to the virtual

networks they are connected to

in L1

VNF location

consistency

Consistency between VNFs

locations at L2 and L1

CPs-Ports consistency Consistency between CPs defined

at L1 and their created

counterpa-rts; Ports in (L2)

Fig. 11. The MLFM system architecture
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22. Garg, P., Löding, C., Madhusudan, P., Neider, D.: ICE: a robust frame-
work for learning invariants. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS,
vol. 8559, pp. 69–87. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
08867-9 5

23. Gong, W., Zhou, X.: A survey of sat solver. In: Proceedings of AIP Conference,
vol. 1836, p. 020059. AIP Publishing LLC (2017)

24. IEC ISO Std: ISO 27017. Information technology-Security techniques (DRAFT)
(2012)

25. IETF, SFC: Internet Engineering Task, SFC Active WG Working Group
Documents (2020). https://www.redhat.com/en/blog/2018-year-open-source-
networking-csps

26. Jayaraman, K., Bjørner, N., Outhred, G., Kaufman, C.: Automated analysis and
debugging of network connectivity policies. Micros. Res., 1–11 (2014)

27. Kazemian, P., Chang, M., Zeng, H., Varghese, G., McKeown, N., Whyte, S.: Real
time network policy checking using header space analysis. In: 10th {USENIX}
Symposium on Networked Systems Design and Implementation (NSDI 2013), pp.
99–111 (2013)

28. Kotulski, Z., et al.: Towards constructive approach to end-to-end slice isolation in
5G networks. EURASIP J. Inf. Secur. 2018(1), 1–23 (2018). https://doi.org/10.
1186/s13635-018-0072-0

https://doi.org/10.1007/978-1-4471-4129-7
http://arxiv.org/abs/1805.00979
https://doi.org/10.1007/978-3-540-24605-3_37
https://doi.org/10.1007/978-3-319-08867-9_5
https://doi.org/10.1007/978-3-319-08867-9_5
https://www.redhat.com/en/blog/2018-year-open-source-networking-csps
https://www.redhat.com/en/blog/2018-year-open-source-networking-csps
https://doi.org/10.1186/s13635-018-0072-0
https://doi.org/10.1186/s13635-018-0072-0


488 A. Oqaily et al.

29. Kramer, O.: Scikit-learn. In: Machine Learning for Evolution Strategies. SBD, vol.
20, pp. 45–53. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-33383-
0 5

30. Thirunavukkarasu, S.L., et al.: Modeling NFV deployment to identify the cross-
level inconsistency vulnerabilities. In: IEEE CloudCom (2019)

31. Lopes, N.P., Bjørner, N., Godefroid, P., Jayaraman, K., Varghese, G.: Checking
beliefs in dynamic networks. In: 12th {USENIX} Symposium on Networked Sys-
tems Design and Implementation (NSDI 2015), pp. 499–512 (2015)

32. Madi, T., et al.: ISOTOP: auditing virtual networks isolation across cloud layers
in OpenStack. ACM Trans. Priv. Secur. (TOPS) 22(1), 1–35 (2018)

33. Madi, T., Majumdar, S., Wang, Y., Jarraya, Y., Pourzandi, M., Wang, L.: Auditing
security compliance of the virtualized infrastructure in the cloud: application to
OpenStack. In: Proceedings of the Sixth ACM Conference on Data and Application
Security and Privacy, pp. 195–206 (2016)

34. Maji, P., Mullins, R.: On the reduction of computational complexity of deep con-
volutional neural networks. Entropy 20(4), 305 (2018)

35. Majumdar, S., et al.: Proactive verification of security compliance for clouds
through pre-computation: application to openstack. In: Askoxylakis, I., Ioannidis,
S., Katsikas, S., Meadows, C. (eds.) ESORICS 2016. LNCS, vol. 9878, pp. 47–66.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45744-4 3

36. Majumdar, S., et al.: LeaPS: learning-based proactive security auditing for clouds.
In: Foley, S.N., Gollmann, D., Snekkenes, E. (eds.) ESORICS 2017. LNCS, vol.
10493, pp. 265–285. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
66399-9 15

37. Majumdar, S., et al.: Security compliance auditing of identity and access manage-
ment in the cloud: application to OpenStack. In: IEEE 7th International Confer-
ence on Cloud Computing Technology and Science, pp. 58–65 (2015)

38. Majumdar, S., et al.: User-level runtime security auditing for the cloud. IEEE
Trans. Inf. Forensics Secur. 13(5), 1185–1199 (2017)

39. Marchetto, G., Sisto, R., Yusupov, J., Ksentini, A.: Virtual network embedding
with formal reachability assurance. In: 14th International Conference on Network
and Service Management, pp. 368–372 (2018)

40. Mohamed, A.E.: Comparative study of four supervised machine learning techniques
for classification. Inf. J. Appl. Sci. Technol. 7(2), 1–15 (2017)

41. Monard, M.C., Batista, G.E.: Learmng with skewed class distrihutions. Adv. Logic
Artif. Intell. Robotics: LAPTEC 85(2002), 173 (2002)

42. Neutatz, F., Mahdavi, M., Abedjan, Z.: Ed2: a case for active learning in error
detection. In: Proceedings of the 28th ACM International Conference on Informa-
tion and Knowledge Management, pp. 2249–2252 (2019)

43. OpenStack Training Labs: OpenStack Training Labs. https://wiki.openstack.org/
wiki/Documentation/training-labs

44. Oqaily, A., et al.: NFVGuard: verifying the security of multilevel network func-
tions virtualization (NFV) stack. In: 2020 IEEE International Conference on Cloud
Computing Technology and Science, pp. 33–40. IEEE (2020)

45. Quinn, P., Nadeau, T.: Rfc 7948, problem statement for service function chaining.
Internet Engineering Task Force (IETF), ed (2015)

46. Ren, S., Zhang, X.: Synthesizing conjunctive and disjunctive linear invariants by
K-means++ and SVM. Int. Arab J. Inf. Technol. 17(6), 847–856 (2020)

https://doi.org/10.1007/978-3-319-33383-0_5
https://doi.org/10.1007/978-3-319-33383-0_5
https://doi.org/10.1007/978-3-319-45744-4_3
https://doi.org/10.1007/978-3-319-66399-9_15
https://doi.org/10.1007/978-3-319-66399-9_15
https://wiki.openstack.org/wiki/Documentation/training-labs
https://wiki.openstack.org/wiki/Documentation/training-labs


MLFM 489

47. Sani, H.M., Lei, C., Neagu, D.: Computational complexity analysis of decision tree
algorithms. In: Bramer, M., Petridis, M. (eds.) SGAI 2018. LNCS (LNAI), vol.
11311, pp. 191–197. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-
04191-5 17

48. Sassi, I., Anter, S., Bekkhoucha, A.: A graph-based big data optimization approach
using hidden markov model and constraint satisfaction problem. J. Big Data 8(1),
1–29 (2021)

49. Schear, N., Cable II, P.T., Moyer, T.M., Richard, B., Rudd, R.: Bootstrapping and
maintaining trust in the cloud. In: Proceedings of the 32Nd Annual Conference on
Computer Security Applications, pp. 65–77 (2016)

50. Settles, B.: Active learning literature survey (2009)
51. Shin, M.K., Choi, Y., Kwak, H.H., Pack, S., Kang, M., Choi, J.Y.: Verification for

NFV-enabled network services. In: ICTC (2015)
52. Souri, A., Navimipour, N.J., Rahmani, A.M.: Formal verification approaches and

standards in the cloud computing: a comprehensive and systematic review. Com-
put. Stand. Interfaces 58, 1–22 (2018)

53. SP, NIST: 800–53. Recommended security controls for federal information systems,
pp. 800–53 (2003)

54. Spinoso, S., Virgilio, M., John, W., Manzalini, A., Marchetto, G., Sisto, R.: For-
mal verification of virtual network function graphs in an SP-devops context. In:
Dustdar, S., Leymann, F., Villari, M. (eds.) ESOCC 2015. LNCS, vol. 9306, pp.
253–262. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24072-5 18

55. Tamura, N., Banbara, M.: Sugar: a CSP to SAT translator based on order encoding.
In: Proceedings of the Second International CSP Solver Competition (2008)

56. Tschaen, B., Zhang, Y., Benson, T., Banerjee, S., Lee, J., Kang, J.M.: Sfc-checker:
checking the correct forwarding behavior of service function chaining. In: IEEE
Conference on Network Function Virtualization and Software Defined Networks
(NFV-SDN), pp. 134–140 (2016)

57. Vizel, Y., Gurfinkel, A., Shoham, S., Malik, S.: IC3 - flipping the E in ICE. In:
Bouajjani, A., Monniaux, D. (eds.) VMCAI 2017. LNCS, vol. 10145, pp. 521–538.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-52234-0 28

58. Wang, Y., Li, Z., Xie, G., Salamatian, K.: Enabling automatic composition and ver-
ification of service function chain. In: IEEE/ACM 25th International Symposium
on Quality of Service (IWQoS), pp. 1–5 (2017)

59. Wang, Y., et al.: TenantGuard: scalable runtime verification of cloud-wide VM-level
network isolation. In: The Network and Distributed System Security Symposium
(2017)

60. Zhang, X., Li, Q., Wu, J., Yang, J.: Generic and agile service function chain ver-
ification on cloud. In: IEEE/ACM 25th International Symposium on Quality of
Service, pp. 1–10 (2017)

61. Zhang, Y., Wu, W., Banerjee, S., Kang, J.M., Sanchez, M.A.: Sla-verifier: stateful
and quantitative verification for service chaining. In: IEEE INFOCOM 2017-IEEE
Conference on Computer Communications, pp. 1–9 (2017)

https://doi.org/10.1007/978-3-030-04191-5_17
https://doi.org/10.1007/978-3-030-04191-5_17
https://doi.org/10.1007/978-3-319-24072-5_18
https://doi.org/10.1007/978-3-319-52234-0_28


Cyber-Physical Systems Security



Perspectives from a Comprehensive
Evaluation of Reconstruction-based

Anomaly Detection in Industrial Control
Systems

Clement Fung(B), Shreya Srinarasi, Keane Lucas, Hay Bryan Phee,
and Lujo Bauer

Carnegie Mellon University, Pittsburgh, USA
{clementf,ssrinara,kjlucas,hphee,lbauer}@andrew.cmu.edu

Abstract. Industrial control systems (ICS) provide critical functions to
society and are enticing attack targets. Machine learning (ML) models—
in particular, reconstruction-based ML models—are commonly used to
identify attacks during ICS operation. However, the variety of ML
model architectures, datasets, metrics, and techniques used in prior work
makes broad comparisons and identifying optimal solutions difficult. To
assist ICS security practitioners in choosing and configuring the most
effective reconstruction-based anomaly detector for their ICS environ-
ment, this paper: (1) comprehensively evaluates previously proposed
reconstruction-based ICS anomaly-detection approaches, and (2) shows
that commonly used metrics for evaluating ML algorithms, like the point-
F1 score, are inadequate for evaluating anomaly detection systems for
practical use. Among our findings is that the performance of anomaly-
detection systems is not closely tied to the choice of ML model architec-
ture or hyperparameters, and that the models proposed in prior work are
often larger than necessary. We also show that evaluating ICS anomaly
detection over temporal ranges, e.g., with the range-F1 metric, better
describes ICS anomaly-detection performance than the commonly used
point-F1 metric. These so-called range-based metrics measure objectives
more specific to ICS environments, such as reducing false alarms or reduc-
ing detection latency. We further show that using range-based metrics
to evaluate candidate anomaly detectors leads to different conclusions
about what anomaly-detection strategies are optimal.

1 Introduction

Industrial control systems (ICS) govern vital infrastructures such as power grids,
water treatment plants, and transportation networks. These systems collect and
monitor real-time information from an industrial process and use a programmed
model to govern its operation [11]. As ICS become further interconnected, par-
ticularly with the public Internet, the attack risk increases. An adversary could
either directly or over the network interfere with an ICS (e.g., by injecting false
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
V. Atluri et al. (Eds.): ESORICS 2022, LNCS 13556, pp. 493–513, 2022.
https://doi.org/10.1007/978-3-031-17143-7_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-17143-7_24&domain=pdf
https://doi.org/10.1007/978-3-031-17143-7_24
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data or commands [36]) and cause the ICS to modify the physical process, poten-
tially causing damage or risking human life [31]. Given the potential harms of
attacks on ICS, detecting and preventing them in a timely manner is critical.

In response, researchers have proposed using machine learning (ML) to detect
attacks; among ML-based techniques, reconstruction-based ML models have
been shown to be particularly promising [18,32,37]. Reconstruction-based ML
involves training an ML model to represent the expected, benign behavior of an
ICS. After a model is trained, it is used to assess the observed real-time behav-
ior of an ICS; any behaviors that are not consistent with the trained model are
called out to operators as potentially dangerous anomalies.

To use these anomaly-detection techniques, ICS security practitioners must:
(1) select the ML model architecture (e.g., convolutional neural networks) (2)
select hyperparameters for the model (e.g., the size and number of hidden layers
in the model) (3) collect a sufficient volume of benign ICS operational data (4)
train an ML model to reconstruct system states, and (5) tune detection hyper-
parameters (the threshold for an anomaly to be declared) to turn system-state
reconstructions into attack predictions in a live setting. Despite the variety of
work in reconstruction-based ICS anomaly detection, there is no consensus on
what solutions are best. Proposed approaches use different ML model archi-
tectures (e.g., autoencoders [7,32], CNNs [18,19], LSTMs [8,37]), use different
datasets [4,10,33], and employ different data pre-processing and training tech-
niques. Thus, when one approach is reported to outperform another, it is not
clear what characteristics are responsible for the improved performance.

In this work, we perform a comprehensive, empirical evaluation of techniques
across the most common datasets used in reconstruction-based ICS anomaly
detection. We find that most ML model architectures, regardless of the choice
of model hyperparameters, perform about equally well. Additionally and to our
surprise, we find that many proposed models are larger (i.e., contain more param-
eters) than necessary and that far smaller models provide similar detection per-
formance. Furthermore, we identify training and data pre-processing techniques
that strongly affect the results of reconstruction-based ICS anomaly detection,
but are not used consistently across prior work.

Another important consideration when designing ICS anomaly-detection sys-
tems is the metric used to tune and evaluate detection strategies. Typically,
prior work equally penalizes false alarms and missed attacks on a per-timestep
basis by evaluating with the point-F1 score [30]. However, as we describe in
Sect. 5.1, since ICS attacks take place over a sequence of timesteps [4,10], and
because timely detection of attacks is important [14], ICS anomaly detection is
better evaluated over temporal ranges, rather than on each timestep indepen-
dently. Unlike the point-F1, which scores on individual timesteps, range-based
metrics score detection performance on temporal ranges and can express trade-
offs between increased detection rates, reduced false-alarm rates, and lowered
detection latency [34].

In this paper, we demonstrate the impact of using range-based metrics
for ICS anomaly detection, building on research from other anomaly-detection
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domains [14,21,34]. We show empirically that using these metrics to tune and
evaluate ICS anomaly-detection models gives a better understanding of what
models are optimal. Furthermore, we propose the use of specific ICS objectives
that describe anomaly-detection performance in terms relevant to ICS opera-
tions. Given the wide variety of potential ICS anomaly-detection environments,
we opt for general objectives: examples include a low false-alarm rate, a high
attack-detection rate, and low-latency attack detection.

In summary, our work answers two research questions. RQ1: across proposed
techniques for reconstruction-based ICS anomaly detection, what model archi-
tectures, model hyperparameters, and pre-processing techniques are optimal?
RQ2: can using range-based metrics lead to a different understanding of what
models are most effective for reconstruction-based ICS anomaly detection? In
answering these questions, we make the following contributions:

– We perform a comprehensive comparison across the ML model architectures
and datasets used in reconstruction-based ICS anomaly detection and find
that the choice of model hyperparameters has little effect on detection perfor-
mance; prior work often proposes model hyperparameters that are far larger
than necessary.

– We implement and make publicly available1 a comprehensive test framework
that allows tuning of models and comparing the impact of factors such as
datasets, metrics, and hyperparameters. We instantiate the framework with
recently proposed reconstruction-based ML model architectures.

– We use range-based metrics to tune and evaluate reconstruction-based ICS
anomaly detectors. We provide examples of range-based metrics that support
various ICS objectives and demonstrate that models tuned with these range-
based metrics outperform their point-F1-tuned counterparts on the desired
ICS objectives.

– We find that using range-based metrics for optimizing anomaly-detection sys-
tems provides a different understanding of what models are best compared
to using the point-F1 metric.

2 Background and Related Work

In this section, we provide background on ICS and attacks and defenses for them
(Sect. 2.1). We also introduce the various models (Sect. 2.2), metrics (Sect. 2.3),
and datasets (Sect. 2.4) used in prior work. We lastly categorize prior work in
reconstruction-based ICS anomaly detection along these dimensions (Sect. 2.5).

2.1 Industrial Control Systems: Threats and Defenses

An ICS governs the operation of a physical, safety-critical process. Figure 1 shows
the structure and components of an ICS, and how they are separated in the hier-
archical Purdue model of ICS [16]. The model divides an ICS into levels from

1 https://github.com/pwwl/ics-anomaly-detection.

https://github.com/pwwl/ics-anomaly-detection
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Fig. 1. An overview of a typical ICS/SCADA hierarchical layered architecture with
examples of compromised endpoints and communication channels

the physical process (Level 0, the strictest level of access) to higher-level appli-
cations (Level 3, less strict). Sensors and actuators (Level 0) allow feedback and
input with the physical process. Programmable logic controllers (PLCs, Level
1) directly interface with sensors and actuators to automate the ICS process.
Supervisory control and data acquisition (SCADA, Level 2) governs multiple
PLCs by collecting data and providing an interface to operators for control and
analysis of the physical process [31].

ICS networks were previously not monitored for security purposes. Instead,
ICS were typically isolated from external threats by a firewall between Levels
2 and 3, preventing compromised, higher-level devices from manipulating the
physical process [31]. With the exposure of ICS environments to the Internet
and third parties [11], the potential of compromise has increased significantly:
when an attacker compromises parts of an ICS in Levels 0 through 2, they can
manipulate the data being sent over the network to cause process degradation or
even failure. This strategy was used in the BlackEnergy (2015) and Industroyer
(2016) attacks on the Ukrainian power grid [20], which caused over 200,000
people to lose electric power for several hours; and in the Triton malware attack
(2017) [6], which caused a chemical processing plant to shut down. For this
reason, it is critical to monitor ICS networks for signs of potential compromise
and misuse.

In this work, we focus on techniques that train deep-learning ML models to
perform system reconstructions and identify as potentially anomalous any sys-
tem states for which the reconstruction error is high [18,32,37]. We focus on
deep-learning models, as they have been shown to outperform other classical
methods in anomaly detection [25]. For these techniques, three ML model archi-
tectures have risen to prominence: autoencoders (AEs), convolutional neural
networks (CNNs), and long-short-term-memory (LSTM) networks. We overview
these model architectures in Sect. 2.2.
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Table 1. The ICS datasets most commonly used for training and evaluating
reconstruction-based anomaly-detection models

Name # of Points in Benign Dataset # of Points in Attack Dataset # of Features # of Attacks

BATADAL 48,106 10,081 (16% attack) 43 7

WADI 1,048,571 172,801 (6% attack) 103 15

SWaT 496,800 449,919 (12% attack) 51 36

2.2 ML Model Architectures for ICS Anomaly Detection

In this section, we provide an overview of ML model architectures commonly
used in ICS anomaly-detection systems. Autoencoders (AEs) are composed of a
sequence of stacked, fully connected layers that compress inputs into a smaller
latent representation [12]; an AE is trained to reconstruct an input system state.
Convolutional neural networks (CNNs) [5] and long-short-term-memory units
(LSTMs) [13] instead use time-based information to predict system states: based
on a fixed-time-length input, CNNs and LSTMs predict the next expected system
state. CNNs use 1-D convolutional kernels to process time, whereas LSTMs use a
custom unit that maintains separate weighted connections that pass information
far along the time axis (long-term memory) and to immediate recent states
(short-term memory).

2.3 Traditional Anomaly Detection Metrics

Anomalies are rare and accuracy scores may misrepresent the anomaly detection
performance. Much of prior work uses the point-F1 score—the harmonic mean
of the precision and recall—to characterize anomaly-detection performance:

point-F1 =
2 ∗ prec ∗ rec
prec + rec

prec =
TP

TP + FP
rec =

TP
TP + FN

TP (true positives) is the number of timesteps during which an attack was
correctly detected, FP (false positives) is the number of timesteps where an
attack was falsely reported, and FN (false negatives) is the number of timesteps
where an attack is undetected. In Sect. 5, we show the shortcomings of using the
point-F1 score to tune and evaluate anomaly detectors and instead propose the
use of range-based metrics.

2.4 Publicly Available ICS Datasets

In lieu of direct access to a real ICS, a variety of ICS datasets have been
made publicly available for research. Each dataset is typically partitioned into
two parts: a benign dataset and attack dataset. The benign dataset contains a
sequence of system states during a benign execution of ICS operations. The
attack dataset contains a sequence of system states during an execution that
models an attacker who gains access to the ICS and manipulates a subset of sen-
sor and actuator values in a false-data-injection attack [10]. These datasets cover
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a variety of domains, including water distribution [4,33], water treatment [10],
gas pipelines [24], and power generation [3,28].

In our analysis, we focus on the most commonly used datasets: BATADAL [33]
(water distribution), SWaT [10] (water treatment), and WADI [4] (water distribu-
tion). Table 1 shows the details of each dataset. Since the originally released SWaT
(2015) and WADI (2017) datasets, additional data from the same system has been
released. However, we opt to use the original versions of both datasets to match
what is used in the majority of prior work.

2.5 Prior Work in ICS Anomaly Detection

In this section, we overview the prior work in ICS anomaly detection, across the
most commonly used ICS datasets identified in Sect. 2.4. Table 2 shows, for each
prior work, the details of the ML model architecture, suggested optimal model
hyperparameters, and metrics used for tuning and evaluation.

We identify two gaps across the state of the art. First, although some prior
work compares ML model architectures [1,19,37], none covers the full selection
of model architectures, datasets, and pre-processing techniques, making it is
unclear what approaches are optimal across all settings.

Second, models are commonly tuned with the point-F1 (or not tuned at all),
which ignores the temporal aspect of time-series detection, and does not balance
the trade-offs between precision, recall, and latency in anomaly detection. Across
this prior work, only one tunes with a range-based metric [18]; although some
prior work considers ranges in evaluation, most only remark on the number of
attacks detected or missed and only four evaluate with a range-based metric [8,
18,23,27]. In Sect. 5, we show that tuning with range-based metrics results in
different selections of optimal hyperparameters and different conclusions about
which models perform better than others.

3 Reconstruction-based ICS Anomaly Detection Process

An anomaly detector reconstructs ICS system states to determine if an anomaly
is occurring. Figure 2a outlines this process.2 First, system states X over the
previous h timesteps are collected from observed network traffic, up to the
current timestep t. Second, the trained ML model is provided the system
state sequence (Xt−h,Xt−h+1, . . . ,Xt) and predicts the next system state
X′

t+1. Third, the predicted and observed states are compared, and the recon-
struction error et is computed through the mean-squared-error (MSE): et =
||X′

t − Xt ||2. Lastly, the prediction y′
t is calculated over a sequence of recon-

struction errors (e0,e1, . . . ,et): y′
t = 1 when the reconstruction error exceeds

2 Autoencoders are a special case since they do not consider a sequence of states
(h = 0), and instead reconstruct the current state X ′

t .



Perspectives from a Comprehensive Evaluation 499

Table 2. ML model architectures, datasets, and metrics from prior ICS anomaly-
detection work. Range-based metrics are shown in bold. (CM = confusion matrix;
TPR/FPR = true/false positive rate; TNR = true negative rate; Coverage % = per-
centage of detection overlap; Norm-TPR = normalized true positive rate.)

Model Details Datasets Tuning Metric Evaluation Metric(s) Source

B S W

AE: 3-layers • • • FPR Precision, Recall, Point-F1 [19]

AE: 4-layers • None Precision, Recall, Point-F1,
Numenta

[27]

AE: 5-layers • Point-F1 Precision, Recall, Point-F1 [32]

AE: 5-layers • • None Precision, Recall, Accuracy,
Point-F1

[7]

CNN: 8-layers, 32 filters • Range-F1 Range-F1 [18]

CNN: 8-layers, 32 filters • • • FPR Precision, Recall, Point-F1 [19]

LSTM: 2-layers, 256 units • • None TPR, Norm-TPR FPR,
Atk TP

[8]

LSTM: 3-layers, 100 units • Point-F1 Precision, Recall, Point-F1 [15]

LSTM: 3-layers, 100 units • None Atk TP, Atk FP [9]

LSTM: 4-layers, 64 units • None Atk TP, Atk FP [17]

LSTM: 4-layers, 512 units • None CM, Point-F1, Atk TP [26]

LSTM: 4-layers, 512 units • Point-F1 Point-F1 [37]

1-class SVM • Point-F1 Point-F1 [15]

DNN: 3-layer • None CM, TPR, TNR [2]

Custom wide and deep CNN • • None Precision, Recall, Point-F1,
Atk TP

[1]

GAN • • Point-F1 Precision, Recall, Point-F1 [22]

Bayesian Network • None Atk FP, Atk TP, FP

length, Coverage %

[23]

a threshold τ for w consecutive timesteps: y′
t =

t+w∏

i=t

I(ei > τ). The threshold τ

is determined using the distribution of benign-validation errors. For example, τ
can be set to the distribution’s 99.5-th percentile value. Both τ and the window
length w are detection hyperparameters: they are independent of the underlying
trained ML model and convert the system state reconstruction to attack predic-
tions. We show that detection hyperparameter tuning is closely affected by the
choice of metric, and optimal models often change when different metrics are
used.

End-to-end, to optimize reconstruction-based anomaly detection (1) we train
a ML model to minimize MSE and (2) we tune its detection hyperparameters
to maximize its performance according to a chosen metric. Figure 2b shows the
steps and datasets used in optimization. Most prior work focuses on selecting
the best model architecture and best model hyperparameters (step 1), but in
this work we show that optimization across both steps plays a substantial role
in the effectiveness of reconstruction-based ICS anomaly detection.
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Fig. 2. The anomaly-detection process is shown on the left: a sequence of system states
is reconstructed by an ML model, and high reconstruction errors are used to identify
anomalies. The optimization pipeline for the anomaly-detection process is shown on
the right, with each optimization step and its relevant datasets

We independently evaluate both steps. In Sect. 4, we keep the choice of tuning
metric (point-F1) constant and compare the performance across various ML
model architectures and hyperparameters from prior work, In Sect. 5, we keep
the underlying trained model constant and compare how the choice of tuning
metric affects detection hyperparameter tuning. Lastly, in Sect. 5.4, we show how
the choice of tuning metric affects both the optimal model hyperparameters and
detection hyperparameters in an end-to-end optimization.

4 Comparing ML Model Architectures and Datasets
for ICS Anomaly Detection

In this section, we report on a comprehensive comparison of model architec-
tures and model hyperparameter values, evaluating across techniques proposed
in prior work. For each model hyperparameter setting, we optimize the anomaly-
detection system through the steps shown in Fig. 2b. We explain our experimen-
tal setup in Sect. 4.1 and present our findings in Sect. 4.2.

4.1 Experiment Setup

Data Pre-processing. Before training and evaluating each model, each feature
is normalized; the scaling transformation is saved and applied to the attack
dataset before evaluating the model. 70% of the training dataset is randomly
chosen for training the ML model. The other 30%, referred to as the benign
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validation dataset, is used to give an unbiased score during training; we use the
benign-validation loss as an indicator for early stopping to prevent overfitting.

In our experiments, we identify techniques that impact the quality and repro-
ducibility of results but were used inconsistently in prior work. Techniques such
as: data pre-processing through feature selection, benign data shuffling, attack
cleaning, and early stopping are necessary when comparing across solutions,
as they improve the quality and consistency of anomaly-detection results. We
present descriptions of these techniques and their impacts in Appendix A.

Model Hyperparameter Tuning. We perform a hyperparameter search for 3
ML model architectures: autoencoders, CNNs, and LSTMs. For autoencoders, we
vary the number of hidden layers in the encoder/decoder from 1 to 5 (by 1) and
the compression factor from 1.5 to 4.0 (by 0.5). For CNNs, we vary the number
of layers from 1 to 5 (by 1), and vary the number of units per layer from 4 to 256
(by a factor of 2). The kernel size is fixed at 3 and we use history lengths of 50,
100, or 200 timesteps. For LSTMs, we vary the number of layers from 1 to 4 (by
1), the number of units per layer from 4 to 128 (by a factor of 2), and use history
lengths of 50 or 100 timesteps. Each model was implemented in Tensorflow 1.14.0
using the tf.keras API and trained with the Adam optimizer using its default
parameters: {lr = 0.001, β1 = 0.9, β2 = 0.999}. A batch size of 512 samples was
used during training; each model was trained for up to 100 epochs. We apply
early stopping while training through the tf.keras.callbacks.EarlyStopping
callback class, with patience=3 (which terminates training if validation loss does
not improve over 3 consecutive epochs). Across our trained models, we found that
early stopping was always applied within the first 20 epochs: a finding that is
consistent with prior work [15].

Detection Hyperparameter Tuning. After the model is trained, we deter-
mine the optimal detection hyperparameters using 30% of the attack dataset,
referred to as the attack validation dataset. To simulate a setting with unseen
attacks, when dividing the attack dataset into validation and testing portions,
we divide the dataset into two continuous sequences.3 To find optimal detection
hyperparameter values, we perform a parameter search, based on a chosen tun-
ing metric, over the following ranges: τ -percentile ∈ [0.95, 0.99995], w ∈ [1, 100].
We report the final performance on the remaining 70% of the attack dataset for
a chosen evaluation metric. We use the point-F1 score as both the tuning metric
and evaluation metric, which Table 2 shows is commonly used in prior work.

3 We use the first 30% of the SWaT and WADI test datasets as their corresponding
attack validation datasets. We use the final 30% of the BATADAL test dataset as its
corresponding attack validation dataset, since the first 30% of the BATADAL test
dataset does not contain any attacks.
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Fig. 3. The final point-F1 scores of each model when trained and tuned on three
experimental ICS datasets. For each dataset, a model hyperparameter setting from
prior work is included for comparison. When using the point-F1, the performance of
AEs vary greatly, and most LSTM and CNN configurations perform similary

4.2 Optimization Results

Figure 3 shows the final point-F1 scores for each model hyperparameter setting,
for each ML model architecture and dataset. We perform a full optimization three
times over different random seeds for CNNs and LSTMs. For autoencoders, we
observed a higher variance in the resulting point-F1 scores and thus repeat this
process five times. Furthermore, we train three selected models from prior work
with the same methodology. We include a 5-layer autoencoder [32], an 8-layer,
32-unit CNN with a history of 200 [18], and a 2-layer, 256-unit LSTM with a
history of 50 [8]. Figure 3 includes the point-F1 scores for these three models.

We find that larger models (CNNs and LSTMs) performed poorly on the
BATADAL dataset. We attribute the poor performance to the relatively small
size of the BATADAL dataset (only ∼48,000 datapoints, compared to ∼500,000
in SWaT and ∼1,000,000 in WADI); in prior work, only one study trains a
CNN or LSTM on BATADAL [19]. In Sect. 5.4, we find that using a range-
based evaluation metric shows CNNs and LSTMs for BATADAL in a different
light, providing another example where the point-F1 may be misleading. For
the SWaT and WADI datasets, we find that almost all model hyperparameter
settings provide similarly strong performance: a 1-layer, 4-unit CNN or LSTM
produces a similar point-F1 score to CNNs and LSTMs with more layers and
units, including the optimal models from prior work [8,18,32].

Finding 1a: Substantially smaller models can achieve similar point-F1
scores as the suggested model sizes from prior work.

Prior work noted that the performance of trained models differed between
runs [18], even under the same model hyperparameter settings. We found that
when early stopping and benign data shuffling are used, the results for CNNs
and LSTMs are more consistent: across random seeds, the final point-F1 scores
always differ by less than 0.05 (and less than 0.01 for a vast majority of cases).
More experimental results on the benefits of early stopping and dataset shuffling
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Fig. 4. Two detection examples: in each case, the x-axis represents time and the y-axis
shows attacks (top, red) and attack predictions (bottom, grey). In the example on the
left (case 1), all attacks are detected with no false positives, while in the example on
the right (case 2) only one attack is detected, with five false positives; yet, the point-F1
scores are the same (Color figure online)

are provided in Appendix A. There is a higher variance across autoencoder
hyperparameters, with some models achieving far higher scores than others.
This is likely because the autoencoder is trained to reconstruct independent
timesteps and does not consider temporal effects, rendering the performance of
autoencoders unstable.

In conclusion, although prior work performs model hyperparameter searches
and claims to find the optimal models for ICS anomaly detection, our experi-
ments show that equivalent results can be achieved over a range of ML model
architectures and hyperparameters when using the point-F1 score. In Sect. 5.3,
we show that tuning models with range-based metrics can produce outcomes
that more meaningfully address ICS anomaly-detection objectives.

Finding 1b: Although prior work focuses on optimizing the choice of ML
model architecture and hyperparameters, equivalent performance can be
achieved by several ML model architectures and over a wide range of model
hyperparameters.

5 Tuning and Evaluating with Range-based Metrics

In this section, we first describe, in Sect. 5.1, the shortcomings of point-F1, which
is commonly used by prior work in ICS anomaly detection. We introduce range-
based metrics in Sect. 5.2. In Sect. 5.3, we show how range-based metrics affect
detection hyperparameter tuning and in Sect. 5.4 we show how they affect what
ML model architectures and hyperparameters are optimal.

5.1 Issues with the Point-F1 Score

ICS detection performance is poorly captured by the point-F1 for several reasons.
(1) The point-F1 score weighs false positives and false negatives equally, whereas
the cost of each may not be equal for a given ICS. (2) The point-F1 score places
more importance on longer attacks [14]. A high point-F1 score can be achieved
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even if several short attacks are undetected; these attacks may be equally or even
more harmful than attacks with a longer duration. (3) When an attack occurs
over a long period of time, it may not be important to detect every timestep as
anomalous; once a prediction is made, corrective actions will be taken, and the
existence of any correct prediction within the attack may be sufficient. (4) The
point-F1 score does not consider when in the attack the detection occurs [21].
In reality, if an attack is only detected as it ends, harm may already have been
caused to the ICS, rendering the detection unhelpful.

We illustrate some of these deficiencies of point-F1 using two examples of
detection performance in Fig. 4. The true attack sequence is shown in red: six
attacks of varying length are executed in sequence. In case 1 (left), the first five
attacks are all detected perfectly, and approximately half of the last attack is
detected. In case 2 (right), the first five attacks are completely missed, 5 false
alarms occur, and the last attack is detected perfectly. When using the point-
F1 score, the two examples misleadingly result in equal detection success: the
point-F1 for both is 0.75. For many practical applications, however, case 1 shows
a detection system that works well, and case 2 a detection system that works
poorly. To address the shortcomings of point-F1, prior work proposes metrics
better suited to time-series detection tasks [14,21,34]. We define these metrics
in Sect. 5.2 and evaluate their implications in Sects. 5.3–5.4.

Observation 2a: The point-F1 score gives a misleading sense of perfor-
mance for many time-series-based detection tasks.

5.2 Range-based Performance Metrics

In this section, we provide examples of range-based metrics that could be used
for tuning and evaluating anomaly-detection performance. In Sects. 5.3–5.4, we
show the effect of these metrics on our understanding of what models are best. We
describe two types of range-based metrics: (1) range-Fβ metrics, which we define
based on a prior framework for range-based metrics [34] and (2) the Numenta
anomaly score [21], a metric from prior work.

Defining the Range-based Setting. Given sequences of binary labels (yt ∈
{0, 1}) and predicted labels (y′

t ∈ {0, 1}), we convert these sequences to ranges.
Let (y0, y1, . . . , yt) be represented as R = {R0, R1, . . . , Rk}, where each range
Ri represents a continuous sequence of positive (yt = 1) labels. We express the
predictions (y′

0, y
′
1, . . . , y

′
t) in the same way to produce R′ = {R′

0, R
′
1, . . . , R

′
m}.

If no predictions or anomalies exist (∀t : yt = 0), then R = ∅.

Range-F1 and Range-F β Scores. Prior work has defined a general range-
based metric framework that combines existence rewards (whether any inter-
section exists) and overlap rewards (the size of the intersection) when scoring
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a time-series prediction [34]. When demonstrating the impact of range-based
metrics on the understanding of ICS anomaly detection, we assume that any
alarm raised by the anomaly-detection system leads to investigation, so we only
consider existence rewards and leave exploring overlap rewards to future work.
For our existence reward, we count any overlap between a true attack Ri and the
entire predicted range R′ as a true detection. Using this notion, the range-based
recall and precision are calculated as follows:

IsTP(Ri) = I[|Ri ∩ R′| ≥ 1] R-rec =
∑

i IsTP(Ri)
|R|

IsFP(R′
i) = I[|R ∩ R′

i| == 0] R-prec =
∑

i IsTP(Ri)
∑k

i IsTP(Ri) +
∑m

i IsFP(R′
i)

The Fβ score is a generalized version of the F1 score that scores precision
with a relative weight of β. β > 1 indicates that precision is more important,
whereas β < 1 indicates that recall is more important. We define the range-F1
and range-Fβ score in the same fashion as the point-F1:

R-F1 =
2 ∗ R-prec ∗ R-rec
R-prec + R-rec

R-Fβ =
(1 + β2) ∗ R-prec ∗ R-rec

(β2 ∗ R-prec) + R-rec

Numenta Anomaly Score [21]. When using the Numenta anomaly score,
each attack is represented by an inverted sigmoid function, plotted with its
origin at the earliest true prediction. This (1) benefits earlier predictions within
an anomaly and (2) assigns a small positive score to when detection is made
shortly after the anomaly ends. In the original proposed Numenta score, both
the position and width of the sigmoid were fixed; we use recommendations from
follow-up work [29] for tuning. The Numenta score is adjusted by the position
of the sigmoid function: an earlier placement in the anomaly assigns a lower
score to late detection and penalizes false positives that occur shortly after the
anomaly ends. κ controls the width of the sigmoid function: lower values of κ
cause the function to be flatter, making the scoring more lenient towards late
detection and false positives.

Parameterizing Range-based Metrics for ICS Objectives. Each range-
based metric requires parameterization to contextualize their scoring. We
describe the default setting for each range-based metric and provide three addi-
tional example settings for them, each prioritizing a different ICS objective.

By default, the range-F1 score as defined in Sect. 5.2 places equal importance
on reducing false positives and reducing false negatives. If an example use case
requires a high detection rate, we optimize for a higher recall by using the Fβ
score with β = 1/3 (range-Fβ1:3), such that recall is three times more important
than precision. An alternate use case for a highly critical ICS may require that
no false alarms occur. For this use case, we use the Fβ score with β = 3 (range-
Fβ3:1), which weighs precision three times more heavily than recall.
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The default configuration of the Numenta anomaly score sets κ = 5 and
positions the sigmoid at the 50% point of each labeled anomaly [21]. We propose
an additional ICS objective that requires early attack detection, as harm may
be caused to the ICS even before the attack is completed. We optimize for early
detection by re-positioning the Numenta sigmoid to the 25% point of an anomaly,
reducing the false positive cost by 50%, and setting κ = 10, producing a stricter
decision boundary. We call this metric NA-early. With NA-early, a detection in
the last 75% of an attack is considered to be late and is penalized as a missed
attack, as we assume that the ICS has already been damaged.

Table 3. For each optimal model proposed by prior work, we use a different tuning
metric to select the optimal detection hyperparameters and show the resulting number
of false alarms, detected attacks, and TP :FP ratio. Using range-F1 always outperforms
its point-F1 counterpart in TP :FP ratio

Dataset and Arch. Tuning Metric False Alarms Detected Attacks TP : FPRatio

BATADAL AE Point-F1 11 4/4 0.36

Range-F1 1 4/4 4.00

WADI LSTM Point-F1 143 10/13 0.07

Range-F1 63 7/13 0.11

SWaT CNN Point-F1 32 6/18 0.19

Range-F1 4 4/18 1.00

range-Fβ3:1 0 3/18 ∞
range-Fβ1:3 47 7/18 0.15

NA-early 89 11/18 (7 early) 0.12

5.3 Using Range-based Metrics to Tune Detection Hyperparameters

In contrast to Sect. 4, where we selected optimal model hyperparameters, in this
section we select optimal detection hyperparameters for a fixed ML model. In
doing so, we reveal whether using tuning metrics other than the point-F1 leads
to a different selection of detection hyperparameters and to markedly different
anomaly-detection performance, which may lead to a changed understanding of
which models are best or whether any are adequate for a particular deployment.
For each ML model architecture, we again use the optimal model hyperparam-
eters declared in prior work: a 8-layer, 32-unit CNN trained on SWaT [18], a
5-layer, 2-compression AE trained on BATADAL [32], and a 2-layer, 256-unit
LSTM trained on WADI [8].

We compare the detection outputs when using the point-F1 and the range-
F1 and show the number of detected attacks, false alarms, and ratio of true
positives to false positives (TP :FP ratio) in Table 3. Prior work hypothesized
that a TP :FP ratio of 1 or greater was acceptable and used the TP :FP ratio
as a success metric [8]. For all three optimal models from prior work, using the
range-F1 selects different detection hyperparameter values than using the point-
F1. For BATADAL and SWaT, using the point-F1 for detection hyperparameter
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tuning results in an unacceptable model (TP :FP ratio < 1), whereas using the
range-F1 for detection hyperparameter tuning results in an acceptable model
(TP :FP ratio ≥ 1).

Using range-based metrics in tuning can achieve outcomes beyond an
improved TP :FP ratio. Table 3 shows the final detection results for our addi-
tional metrics (defined in Sect. 5.2) after tuning the SWaT CNN from prior
work [18]. To detect more attacks, we tune with range-Fβ1:3. The resulting tun-
ing detects more attacks (7/18) than prior tunings, at the cost of more false
alarms (47). Conversely, to detect attacks with absolutely no false alarms, the
range-Fβ3:1 tuning can be used; fewer attacks (3/18) are detected but no false
alarms occur. Both tunings outperform their point-F1 or range-F1 counterparts
on the chosen objectives.

Lastly, we use NA-early to optimize for an ICS where only early detections
(within the first 25% of the attack) are useful. The original point-F1 tuning
produces 32 false alarms and detects six attacks, five of which are detected
early. With NA-early, the total number of false alarms (89) and attacks detected
(11/18) increase, but seven attacks are detected early, which outperforms the
general tuning selected by the point-F1.

Given the various ICS trade-offs and use cases, a universally optimal strategy
for hyperparameter tuning cannot exist, and we do not advocate for specific
metrics or hyperparameter values. Rather, we show that when tuning with range-
based metrics, it is possible to produce anomaly-detection systems that better
match defined ICS objectives.

Finding 2b: By using objective-driven range-based metrics to tune detec-
tion hyperparameters, the resulting anomaly detection systems can better
address the defined objectives than their point-F1-tuned counterparts.

5.4 Using Range-based Metrics to Select Model Hyperparameters

In this section, we revisit model hyperparameter selection and show how range-
based metrics alter the findings from Sect. 4. Compared to the point-F1, using
a range-based metric for tuning and evaluation consistently leads to different
conclusions about which models are optimal. Figure 5 shows the final range-
F1 scores after repeating the experiments described in Sect. 4.2: we train each
ML model architecture under each model hyperparameter setting and tune the
detection hyperparameters with the range-F1.



508 C. Fung et al.

Fig. 5. The final range-F1 scores of each model when trained and tuned on 3 experi-
mental ICS datasets. For each dataset, a selected model hyperparameter setting from
prior work is included for comparison

Across model hyperparameters, CNNs/LSTMs on SWaT/WADI perform
similarly regardless of whether range-F1 or point-F1 is used in tuning: the differ-
ence in range-F1 (or point-F1) between model hyperparameter choices is small,
and the best performance can be achieved over a wide range of model hyper-
parameters. The results on BATADAL are different from those computed by
tuning with point-F1 ( Sect. 4.2): Despite far lower point-F1 scores, over 25%
of CNNs produce a range-F1 of 1, detecting all attacks without a single false
alarm! Range-F1-optimal LSTMs for BATADAL yield similar results: the best
models detect two out of four attacks with no false positives (perfect segment
precision, 50% segment recall) and exhibit a high range-F1, but point-F1 scores
below 0.2. In summary, previous experiments indicated that autoencoders were
best for BATADAL but no model performed particularly well; using the range-
F1 still reveals that autoencoders are on average, the best, but that all models
perform quite well. When the combination of ML model architecture and dataset
is held constant, the selected model hyperparameters always differ between the
range-based metric tuning (range-F1, range-Fβ or NA-early) and the point-F1
tuning, changing our understanding of what models are optimal.

Finding 2c: When using range-based metrics to optimize reconstruction-
based ICS anomaly detection, the selected ML model architectures and hyper-
parameters are typically different from what would be selected when using
point-F1; this often changes the understanding of what model performs best
by a substantial margin.

In summary, we show that using range-based metrics to tune and evaluate
ICS anomaly-detection models (i) selects different outcomes compared to when
using the point-F1 and (ii) better addresses objectives relevant to ICS anomaly
detection. We evaluated these claims across three ICS datasets and note that
these datasets may not encompass the wide range of ICS behavior. Extending
our analysis to other datasets remains future work.
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6 Conclusion

In this work, we explored the optimization of reconstruction-based ICS anomaly
detection. We performed a comprehensive comparison across anomaly-detection
solutions proposed in prior work, spanning three ICS datasets and three ML
model architectures. In doing so, we found that there is no globally optimal
technique and the best performance can be achieved over a range of ML model
architectures and hyperparameters. We used range-based metrics to optimize
ICS anomaly detection and found that they lead to different and potentially
more useful outcomes than the common approach of relying on the point-F1
score. Ultimately, we found that effective anomaly detection extends beyond
optimizing ML models for the point-F1, and better success measures are needed
to practically tune and evaluate ICS anomaly-detection models. We hope that
future work in reconstruction-based ICS anomaly detection considers its various
use cases when designing new ICS anomaly-detection techniques.
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A Key Findings in the Optimization Process

We identified four techniques that enhance the quality and reproducibility of
anomaly detection performance. Table 4 shows which previous works use these
techniques; no prior work incorporates all four.

Finding 1c: Techniques such as benign data shuffling, attack cleaning, fea-
ture selection, and early stopping increase the quality and reproducability
of results, but are applied inconsistently in prior work.

Finding #1: Feature Selection. In WADI and SWaT, some benign-labeled test
data appears significantly different from benign-labeled training data [19,35].
To address this problem, statistical tests are used to select features for the
ML model. Prior work used a modified version of the Kolmogorov-Smirnov test
(called K-S*) [19] to identify features with a significant difference between their
training and test distributions. 11 features are removed from SWaT, and 10 fea-
tures are removed from WADI, which matches the proportion of features removed
from these datasets in prior work [19]. We found that feature selection is only
effective on the SWaT dataset, so we only use feature selection for SWaT.
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Table 4. Identifying key pre-processing and model training techniques from prior ICS
anomaly-detection work. ‘ ’, ‘ ’, and ‘ ’ indicate if the technique was used, partially
used, or not used respectively. ‘?’ indicates that we could not determine if the technique
was used

Source [1] [2] [7] [8] [9] [15] [17] [18] [19] [22] [23] [26] [27] [32] [37]
Feature Selection
Attack Cleaning

Benign Data Shuffling ? ? ? ? ? ? ?
Early Stopping

Finding #2: Attack Cleaning. Some attacks in the SWaT dataset do not execute
as described [15,17]: although labelled as attacks, the SWaT description [10]
notes that they did not actually perform as intended. These cases should not
be evaluated as attacks, yet the majority of prior work does. We recommend
removing the benign “attacks” from the dataset. Furthermore, other prior work
has noted that the start and end times of attacks in SWaT are incorrect [37].
Hence, we recommend that the times of the labelled attacks be corrected.4

Finding #3: Benign Data Shuffling. When most prior work divides the benign
dataset into training and validation portions, it divides by a fixed time [8] or
does not describe how the division is performed. Since system behavior can differ
between days (e.g., if the final 30% of timesteps in SWaT are used for valida-
tion, the distributions of the training and validation datasets are significantly
different), splitting should be random across the benign dataset. For CNNs and
LSTMs, each timestep’s history should be collected before splitting.

Fig. 6. On left (a): the training and validation loss for a 4-layer, 64-unit CNN, across
random seeds. On right (b): the average overfit amount without early stopping, shown
for all CNN sizes, compared to the average overfit amount for all layers with early
stopping

4 The recommended SWaT corrections can be found at https://github.com/pwwl/ics-
anomaly-detection.

https://github.com/pwwl/ics-anomaly-detection
https://github.com/pwwl/ics-anomaly-detection
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Finding #4: Early Stopping.
When early stopping is not used, models overfit quickly and tend to diverge.

We train a 4-layer, 64-unit CNN with a history length of 50, repeated three times
across random seeds; the model hyperparameters, data ordering, and training
parameters are all unchanged. Figure 6a shows the training and validation losses
for 100 epochs. When early stopping is not used, the models overfit (validation
loss plateaus after the 6th epoch and begins to increase afterward) and diverge
after 10–20 epochs; this happens across all model architectures, model hyperpa-
rameters, and datasets. Across CNN sizes, Fig. 6b compares the final training
and validation loss difference (overfit amount) with and without early stopping,
averaged across three random seeds. With early stopping, the overfit amount is
small for all model sizes. Without early stopping, larger models overfit more.
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F.J.: MADICS: a methodology for anomaly detection in industrial control systems.
Symmetry 12(10), 1583 (2020)

27. Shalyga, D., Filonov, P., Lavrentyev, A.: Anomaly detection for water treat-
ment system based on neural network with automatic architecture optimization.
arXiv:1807.07282 (2018)

28. Shin, H.K., Lee, W., Yun, J.H., Kim, H.: HAI 1.0: HIL-based augmented ICS
security dataset. In: 13th USENIX Workshop on Cyber Security Experimentation
and Test (2020)

https://doi.org/10.1007/978-3-030-42048-2_1
https://doi.org/10.1007/978-3-030-30490-4_56
https://doi.org/10.1007/978-3-030-30490-4_56
http://arxiv.org/abs/1807.07282


Perspectives from a Comprehensive Evaluation 513

29. Singh, N., Olinsky, C.: Demystifying Numenta anomaly benchmark. In: Interna-
tional Joint Conference on Neural Networks (2017)

30. Sokolova, M., Lapalme, G.: A systematic analysis of performance measures for
classification tasks. Inf. Process. Manag. 45(4), 427–437 (2009)

31. Stouffer, K.: Guide to industrial control systems (ICS) security. NIST Special Pub-
lication 800(82) (2011)

32. Taormina, R., Galelli, S.: Deep-learning approach to the detection and localization
of cyber-physical attacks on water distribution systems. J. Water Res. Planning
Manag. 144(10), 04018065 (2018)

33. Taormina, R., et al.: Battle of the attack detection algorithms: disclosing cyber
attacks on water distribution networks. J. Water Res. Planning Manag. 144(8),
04018048 (2018)

34. Tatbul, N., Lee, T.J., Zdonik, S., Alam, M., Gottschlich, J.: Precision and recall
for time series. In: Advances in Neural Information Processing Systems (2018)

35. Turrin, F., Erba, A., Tippenhauer, N.O., Conti, M.: A statistical analysis frame-
work for ICS process datasets. In: Joint Workshop on CPS and IoT Security and
Privacy (2020)

36. Ye, D., Zhang, T.Y.: Summation detector for false data-injection attack in cyber-
physical systems. IEEE Trans. Cybernetics 50(6), 2338–2345 (2020)

37. Zizzo, G., Hankin, C., Maffeis, S., Jones, K.: Intrusion detection for industrial con-
trol systems: evaluation analysis and adversarial attacks. arXiv:1911.04278 (2019)

http://arxiv.org/abs/1911.04278


A Novel High-Performance
Implementation of CRYSTALS-Kyber

with AI Accelerator

Lipeng Wan1,2,3, Fangyu Zheng1,3(B), Guang Fan1,2,3, Rong Wei1,2,3,
Lili Gao1,2,3, Yuewu Wang1,2,3, Jingqiang Lin4, and Jiankuo Dong5

1 State Key Laboratory of Information Security, Institute of Information
Engineering, Chinese Academy of Sciences, Beijing, China

zhengfangyu@iie.ac.cn
2 School of Cyber Security, University of Chinese Academy of Sciences,

Beijing, China
3 Data Assurance and Communication Security Research Center,

Chinese Academy of Sciences, Beijing, China
4 School of Cyber Security, University of Science and Technology of China,

Hefei, China
5 School of Computer Science, Nanjing University of Posts and Telecommunications,

Nanjing, China

Abstract. Public-key cryptography, including conventional cryptosys-
tems and post-quantum cryptography, involves computation-intensive
workloads. With noticing the extraordinary computing power of AI accel-
erators, in this paper, we further explore the feasibility to introduce AI
accelerators into high-performance cryptographic computing. Since AI
accelerators are dedicated to machine learning or neural networks, the
biggest challenge is how to transform cryptographic workloads into their
operations, while ensuring the correctness of the results and bringing
convincing performance gains.

After investigating and analysing the workload of NVIDIA AI accel-
erator, Tensor Core, we choose to utilize it to accelerate the polynomial
multiplication, usually the most time-consuming part in lattice-based
cryptography. We take measures to accommodate the matrix-multiply-
and-add mode of Tensor Core and make a trade-off between precision and
performance, to leverage it as a high-performance NTT box performing
NTT/INTT through CUDA C++ WMMA APIs. Meanwhile, we take
CRYSTALS-Kyber, the candidate to be standardized by NIST, as a case
study on RTX 3080 with the Ampere Tensor Core. The empirical results
show that the customized NTT of polynomial vector (n = 256, k = 4)
with our NTT box obtains a speedup around 6.47x that of the state-of-
the-art implementation on the same GPU platform. Compared with the
AVX2 implementation submitted to NIST, our Kyber-1024 can achieve
a speedup of 26x, 36x, and 35x for each phase.
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1 Introduction

Quantum computing and Shor’s algorithm [31] have raised concern about the
security of conventional public-key schemes, such as widely used RSA and
ECDSA. A new class of cryptosystems with anti-quantum property, which is
known as post-quantum cryptography (PQC, sometimes referred to as quantum-
proof, quantum-safe, or quantum-resistant), is in urgent need. To this end,
National Institute of Standards and Technology (NIST) has initiated a process
to solicit, evaluate, and standardize one or more quantum-resistant public-key
cryptographic algorithms in 2017 [24].

The security of quantum-resistant schemes is based on different mathemati-
cal hard problems, while the lattice-based hardness is the most prevailing one.
On the other hand, performance is an important metric in the evaluation, and
thus many research efforts are made to improve the efficiency of lattice-based
cryptography (LBC). Generally speaking, for the cryptographic schemes based
on lattice related problem, such as Ring-LWE [18], Module-LWE [6,16], and
Module-LWR [3], polynomial multiplication (over the ring Rq) and hash func-
tions are the time-consuming parts. The hash functions mainly involve bit oper-
ations, which can be accelerated by the commercial off-the-shelf products with
processor-aided accelerations (e.g., SHA extension in Intel and ARM CPU [28]).
In this way, the principal efforts in LBC acceleration focus on the polynomial
multiplication.

There are many methods to accelerate the polynomial multiplication. Apart
from adopting the Karatsuba [15] and Toom-Cook algorithms [32], the more
prevailing practice is to exploit Number Theoretic Transform (NTT) for the case
n|(q − 1), where q is the modulus and n is the dimension. CRYSTALS-Kyber [5,
29], Kyber for short, the candidate to be standardized by NIST PQC [22], even
integrates a customized NTT into its algorithms to improve the efficiency.

Meanwhile, many solutions have been proposed for the specific platforms
to make full use of the hardware features and get better achievable perfor-
mance. Taking the advantage of vector instructions, Lyubashevsky et al. [19]
presented an AVX2 optimized NTT and applies it to NTRU. Similarly, Seiler
[30] implemented NewHope with AVX2 optimized NTT. With the help of many-
thread parallelism and high throughput of GPU (precisely, CUDA core), Gupta
et al. [12] implemented three different classes of post-quantum algorithms on
NVIDIA Tesla V100. The main optimized technique of the work [12] is to reor-
ganize the data storage sequence to facilitate continuous memory access. Gao
et al. [10] also improved the performance of NewHope on NVIDIA MX150 and
GTX1650. As for the resource-constrained devices, the proposed solutions might
be more dedicated. Thanks to the flexibility of FPGA in programming, Xing and
Li [34] presented a compact hardware implementation of Kyber on FPGA with
many customized optimizations from the perspective of hardware. And Greconic
et al. [11] presented implementations of the lattice-based digital signature scheme
Dilithium for ARM Cortex-M3 and ARM Cortex-M4.

On the other hand, many manufacturers have designed high-performance
AI (artificial intelligence) accelerators, such as Google TPU [8], Apple M1 [13],
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and NVIDIA Tensor Core [14], to meet the needs of AI applications. Com-
pared with other general-purpose processors, AI accelerator generally focuses on
low-precision arithmetic, novel data-flow architectures, or in-memory comput-
ing capability, and often has extremely stronger computing power. For instance,
NVIDIA has claimed that Tesla V100’s Tensor Cores can deliver up to 125 Ten-
sor TFLOPS for training and inference applications. And NVIDIA Jetson Xavier
NX brings supercomputer performance up to 21 TOPS while the power is up
to 15W. However, little research has been proposed on how to apply this kind
of accelerators to other fields such as high-performance cryptographic comput-
ing. Our previous work [33] exploits Volta Tensor Core for byte-level modulus
scheme LAC [17], but it does not involve module-lattice and NTT, which are
more widely used.

The primary motivation of this paper is to bring the extraordinary computing
power of the AI accelerator to the area of cryptographic acceleration. Since AI
accelerators are dedicated to machine learning or neural networks, the biggest
challenge is how to transform cryptographic operations into their workloads,
while ensuring the correctness of the results and bringing convincing performance
gains. The contributions of our work are as follows:

– Firstly, our work forms a framework for an AI accelerator to accelerate
module-lattice based cryptography. Through this framework, we can effi-
ciently convert the workload of cryptographic primitives into the operation
of the AI accelerator.

– Secondly, we present an NTT box based on NVIDIA AI accelerator, Tensor
Core, under the proposed framework. The NTT box is efficient to perform
NTT/INTT, especially when the dimension n is relatively small.

– Finally, we evaluate the novel proposed method for Kyber, a well-known PQC
scheme, as a case study. To the best of our knowledge, it is the first attempt
at implementing Kyber with an AI accelerator. Compared with the state-
of-the-art implementation, our polyvec ntt in Kyber can obtain a speedup of
6.47x on the same GPU platform.

2 Preliminary

In this section, we give a basic background of Kyber, NTT and Tensor Core.

2.1 Notation and Definition

Notation. For a prime q, Zq = {0, 1, . . . , q −1} is the residue class ring modulo
q. Define the ring Rq = Zq[x]/(xn + 1), which means the coefficients are from
Zq. Zn

q represents n coefficients from Zq. Regular font letters denote elements in
Rq (which includes elements in Zq) and bold lower-case letters represent vectors
with coefficients in Rq. By default, all vectors will be column vectors. Bold upper-
case letters are matrices. For a vector v (or matrix A), vT (or AT ) means its
transpose, and v[i] denotes its i-th entry (with indexing starting at zero). For
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a matrix A, A[i][j] denotes the entry in row i, column j (again, with indexing
starting from zero). The rank k represents that a polynomial vector contains k
polynomials, and a matrix contains k × k polynomials. For a finite field F = Zq,
the primitive n-th root ω of unity exist whenever n|(q−1), where ωn ≡ 1 mod q.

Module-LWE. A lattice is the set of all integer linear combinations of some
linearly independent vectors belonging to the euclidean space. Most lattice-based
cryptographic schemes are built upon the assumed hardness of the Short Inte-
ger Solution (SIS) [1] and Learning With Errors (LWE) [27] problems. The
LWE problem was popularized by Regev [27] who showed that solving a random
LWE instance is as hard as solving certain worst-case instances of certain lat-
tice problems. This assumption states that it is hard to distinguish the uniform
distribution from (A, As+ e), where A is a uniformly-random matrix in Z

m×n
q ,

s is a uniformly-random vector in Z
n
q , and e is chosen from some distribution.

Later, Lyubashevsky et al. [18] introduced a similar adaptation for LWE, called
Ring-LWE, which showed that it is also hard to distinguish a variant of the
LWE distribution from the uniform one over certain polynomial rings. Combin-
ing the security advantages of LWE and the flexibility of Ring-LWE, Langlois
et al. [16] demonstrated the worst-case to average-case reductions for module
lattices. Intuitively, the size of matrix A in Module-LWE is k ×k, where k is the
rank. The elements in the matrix are vectors selected from Z

n
q .

2.2 Description of CRYSTALS-Kyber

Kyber is an IND-CCA2-secure post-quantum key exchange mechanism. The
security of Kyber is based on the hardness of solving the LWE problem in module
lattices.

The submission to NIST PQC [25] lists three different parameter sets, Kyber-
512, Kyber-768, and Kyber-1024, aiming at different security levels roughly
equivalent to AES-128, AES-192, and AES-256, respectively. The parameters
are listed in Table 1, where η1 and η2 are the parameters of centered binomial
distribution (CBD).

Table 1. Parameter sets for Kyber version 3

n k q η1 η2

Kyber-512 256 2 3329 3 2

Kyber-768 256 3 3329 2 2

Kyber-1024 256 4 3329 2 2

The key generation, encryption, and decryption are described in Algo-
rithm 1, 2, and 3. In the KeyGen phase, d is a random number, ρ and σ are
fixed-length intermediate variables generated by d through hash function G.
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Algorithm 1. KYBER.CPAPKE.KeyGen(): key generation
Ensure: Secret key sk, Public key pk.
1: d ← Random()
2: (ρ, σ) := G(d)
3: Â ← Gen matrix Â(ρ), Â ∈ Rk×k

q in NTT domain
4: s ← Sample s(σ), s ∈ Rk

q from Bη1

5: e ← Sample e(σ), e ∈ Rk
q from Bη1

6: ŝ := NTT (s)
7: ê := NTT (e)
8: t̂ := Â ◦ ŝ + ê
9: return pk := Encode(t̂||ρ), sk := Encode(ŝ)

The parameter Â is a k × k polynomial matrix generated by ρ. The parameters
s and e are polynomial vectors generated through different sample functions but
same distribution Bη1 . The final parameters need to be compressed and encode.
In the Enc phase, the public key pk will be decoded first. Here, we need to
emphasize that e2 and v are polynomials rather than vectors. The ciphertext
c consists of two parts: c1 and c2, which are obtained from u and v with dif-
ferent encode. Correspondingly, in the Dec phase, these two parts need to be
decoded with different functions first. Then the NTT and the subsequent INTT
are performed.

Algorithm 2. KYBER.CPAPKE.Enc(): encryption
Require: Public key pk, Message m, Random seed r
Ensure: Ciphertext c
1: (t̂, ρ) ← Decode(pk)
2: ÂT ← Gen matrix ÂT (ρ), ÂT ∈ Rk×k

q in NTT domain
3: r ← Sample r(r), r ∈ Rk

q from Bη1

4: e1 ← Sample e1(r), e1 ∈ Rk
q from Bη2

5: e2 ← Sample e2(r), e2 ∈ Rq from Bη2

6: r̂ := NTT (r)
7: u := NTT −1(Â ◦ r̂) + e1

8: v := NTT −1(t̂T ◦ r̂) + e2 + Decompress(m)
9: return c1 := Encodeu(u), c2 := Encodev(v)

2.3 Number Theoretic Transform

In general, Number Theoretic Transform (NTT) is one of the most prevailing
approaches to improve polynomial multiplication over the ring. Simplemindedly,
NTT is the finite field form of discrete Fourier transform (DFT), which trans-
forms a sequence of n numbers v := {v0, v1, . . . , vn−1} into another sequence
numbers X := {X0,X1, . . . , Xn−1}. That can be defined by:



An Implementation of CRYSTALS-Kyber with AI Accelerator 519

Algorithm 3. KYBER.CPAPKE.Dec(): decryption
Require: Secret key sk, Ciphertext c
Ensure: Message m
1: u := Decodeu(c)
2: v := Decodev(c)
3: ŝ := Decode(sk)
4: return m := Compress(v − NTT −1(ŝ ◦ NTT (u)))

Xk =
n−1∑

j=0

vj · ωjk (1)

where ω is a primitive n-th root of unity, namely, ωn ≡ 1 mod q. The inverse
transform (INTT) is given as:

vj = n−1
n−1∑

k=0

Xk · ω−jk (2)

n−1 denotes the inverse of n, where n · n−1 ≡ 1 mod q.
The fast NTT is based on the idea of divide and conquer, similar to fast

Fourier transform (FFT) [9], and can perform the polynomial multiplication
with the complexity of O(n log n). However, in practice, the usage of fast NTT
can achieve acceleration only when n is relatively large.

NTT-Based Multiplication. Generally, NTT-based multiplication needs q ≡
1 mod n to ensure the existence of the n-th roots of unity, where n is a power
of 2. In a finite field, the NTT multiplication of two vectors a and b needs to
append n zeros to each vector. Then, the product can be obtained by:

c = INTT (NTT (apadding) · NTT (bpadding)) (3)

The zero-padding can be avoided to perform NTT-based polynomial multiplica-
tion over the ring Rq = Zq/f(x), with the well-known negative wrapped convo-
lution (NWC). However, the NWC requires the existence of the 2n-th roots of
unity, namely, q ≡ 1 mod 2n.

2.4 Fast Modular Reduction

It is necessary to conduct modular reduction for the product of two coefficients or
the sum of several products. The native module operation ‘%’ is expensive, even
if it might be optimized at the low level of the computer, but that is unspecified.
In practice, fast modular reductions like Montgomery reduction [21], and Barrett
reduction [4] are utilized, sometimes along with a lazy strategy which means that
the reduction is done only before overflow.
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Montgomery Reduction. Montgomery reduction [21] allows modular arith-
metic to be performed efficiently when the modulus is large. Let N be a positive
integer, and let R and T be integers such that R > n, gcd(n,R) = 1, and
0 ≤ T < NR. The Montgomery reduction of T mod q with respect to R is
defined as the value TR−1 mod q, where R is a power of 2 and R−1 is the
modular inverse of R. The calculation steps could be as (4).

m := (T mod R)k mod R,

t := (T + mN)/R
(4)

if t ≥ N return t − N else return t.

where k = R(R−1 mod N)−1
N . Note that R is usually a power of 2, and multipli-

cations and integer divides can be realized by shift, which is cheap.

Barrett Reduction. Barrett reduction is another reduction algorithm intro-
duced in 1986 by P.D. Barrett [4] to eliminate division operation in computer.

Let s = 1/q be the inverse of q as a floating point number. Then

T mod q = T − �Ts�q
where �� denotes the floor function. Barrett reduction approximates 1/q with a
value m/2k where m = 2k/q. Then the reduction can be converted into (5) and
becomes cheap. Since �2k/q� can be pre-computed, and dividing T by 2k is just
a right-shift.

T mod q = T − �T/2k��2k/q� · q (5)

2.5 AI Accelerator and Tensor Core

AI Accelerator. Due to the explosive growth of AI applications, general-
purpose processors are hard to meet the needs of machine learning. Therefore, a
dedicated AI accelerator, an application-specific integrated circuit with a more
specific design, may gain far more efficiency. The well-known AI accelerators
include Google TPU, Apple M1, M1 MAX, M1 Pro, and ARM NPU. These
accelerators mainly focus on optimized memory use and lower precision arith-
metic to accelerate calculation and increase the throughput.

Tensor Core. In December 2017, NVIDIA released the 1st generation Tensor
Core (on Volta architecture) which is just for tensor calculations. Tensor Cores
are designed to carry 64 GEMMs (General Matrix Multiplication) per clock cycle
on 4 × 4 matrices, containing FP16 values (16-bit floating-point numbers) or
FP32 (the float format). A year later, NVIDIA launched the Turing architecture
Tensor Core which has been updated to support other data formats, such as INT8
(8-bit integer values). In the latest Ampere architecture, NVIDIA has improved
the performance (256 GEMMs per cycle, up from 64), and added further data
formats, as shown in Table 2.
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Table 2. Precision Supported by Multiple Generations of Tensor Core

Volta Turing Ampere

Precision FP16 FP16, INT8, INT4, INT1 FP64, TF32, bfloat16, FP16, INT8, INT4, INT1

Compared with other AI accelerators, Tensor Core exposes interfaces at dif-
ferent levels and has some flexibility in its programming. CUDA has provided
several tools to leverage Tensor Core, including library cuBLAS and cuDNN,
and CUDA C++ WMMA (Warp Matrix Multiply Accumulate) API.

3 Design

In this section, we analyze the workload of Tensor Core at first, then demonstrate
the transformation from cryptographic primitives to operation of Tensor Core.
Finally, we illustrate the trade-off between performance and precision.

3.1 Analysis of Tensor Core Dedicated Workload

Warp Level Matrix Operation. Up to now, Tensor Core can only support
operations at the warp level, usually 32 threads. The warp matrix function
requires co-operation from all threads in the warp, and perform D = A×B+C,
where A, B, C, and D, are matrices with specific size, as shown in Fig. 1.

Fig. 1. A warp-level m-n-k matrix operation

It is further complicated by threads holding only a fragment (a type of opaque
architecture-specific ABI data structure) of the overall matrix, with the devel-
oper not allowed to make assumptions on how the individual parameters are
mapped to the registers participating in the matrix multiply-accumulate. There
are also some restrictions on matrix size. Generally, k is fixed to 16, and m can
be 8, 16, or 32 (n corresponds to 32, 16, or 8).

FMA Operation. Meanwhile, Tensor Core performs FMA mixed-precision
operation, which means low-precision input and high-precision output, described
in Fig. 2. For example, on the Ampere architecture, the input can be INT8 (char)
and the output can be INT32 (int). Table 3 represents the various combinations
of element types of input matrices and input/output accumulators.
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Fig. 2. Tensor Core mixed-precision operation

Table 3. Precision combinations supported by Tensor Core

Matrix A FP16 unsigned char signed char bfloat16 TF32 FP64

Matrix B FP16 unsigned char signed char bfloat16 TF32 FP64

Accumulator C and D FP32 INT32 INT32 FP32 FP32 FP64

3.2 Transformation from Cryptographic Workload to Tensor Core
Dedicated Operation

NTT in Kyber. Similar to NewHope-Compact [2], Kyber reduces its mod-
ulus from 12289 to 3329, which naturally improves the efficiency. The secu-
rity strength is regulated by the rank k with a fixed dimension n = 256.
However, this means the 2n-th roots do not exist and the negative wrapped
convolution is not appliable. On the contrary, Kyber absorbs the idea like
the Chinese Remainder Theorem (CRT) for the modular polynomial, formally,
Zq/(f(x) · g(x)) ∼= Zq/f(x)×Zq/g(x), and integrates the customized NTT in its
algorithm to reduce conversion between different domains.

The defining polynomial (X256 + 1) factors into 128 polynomials of degree 2
modulo q, and can be written as

X256 + 1 =
127∏

i=0

(X2 − ζ2i+1) =
127∏

i=0

(X2 − ζ2br7(i)+1)

where br7(i) for i = 0, 1, · · · , 127 is the bit reversal of the unsigned 7-bit integer
i. Therefore, the NTT of a polynomial f ∈ Rq is a vector of 128 polynomials of
degree 1, and can be written as

NTT (f) = f̂ = (f̂0 + f̂1X, f̂2 + f̂3X, · · · , f̂254 + f̂255X)

with

f̂2i =
127∑

j=0

f2jζ
(2br7(i)+1)j (6)

f̂2i+1 =
127∑

j=0

f2j+1ζ
(2br7(i)+1)j (7)
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where ζ is the 256-th root of unity. The powers of ζ are also called twiddle
factors. It is stressed that even though f̂ is written as a polynomial in Rq, it has
no algebraic meaning as such.

Computing NTT with Matrix Operation. The prevailing strategy of per-
forming polynomial multiplication with NTT is to adopt the divide and conquer
method. However, in practice, this approach has an advantage only when n is
large enough. Moreover, it needs to manipulate each coefficient iteratively, which
conflicts with the matrix operating mode.

As aforementioned, Kyber exploits a customized NTT in its algorithms like
Eqs. (6) and (7). In fact, only n/2 coefficients of a vector are really involved in an
NTT result. In addition, frequent interruptions during in-memory computing to
access external memory will seriously increase the delay of the program. Based on
the above observations, we decide to adopt a straightforward routine combined
with techniques such as pre-computation. We assemble several polynomials that
need to be processed into a matrix (Matrix A) and place the twiddle factors into
another one (Matrix B). The computing mode we adopt is shown in Fig. 3. In
this way, this computing model can make full use of SIMT (Single Instruction
Multiple Threads) to perform NTT on multiple polynomials at once.

0 ( )F x

1( )F x

( )mF x

0e

1e

me

Matrix A Matrix B Matrix C

Several
polynomials

Twiddle 
Factors

Several 
optional 

polynomials ... ...

Fig. 3. The computing mode adopted

3.3 The Multiple Precision Representation

As mentioned in Table 3, Ampere Tensor Core can support several precision com-
binations. We test the performance of different precision on NVIDIA RTX 3080
and list the results in Table 4. Generally speaking, lower precision often corre-
sponds to higher computing speed. The choice of data type in cryptographic an
algorithm should be based on its accurate representation range and performance.
For example, the bit length to exactly represent modulus q = 3329 (12289) is
12 (14). Then, only the mantissa of FP64 (double), which is 52 bits, can cover
the case. However, the speed would be particularly slow. To this end, we suggest
exploiting multiple-precision representation to make a trade-off, namely, using
two or more lower-precision elements to represent a coefficient.

In the case study of Kyber, we split a 12-bit coefficient into two 6-bit parts
represented by INT8. Because the performance of INT8 is much higher than
that of other floating-point types on Tensor Core.
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Table 4. Performance of different precision combinations

bfloat16 FP16 (half ) TF32 FP64 (double) INT8 (char)

Exponent (bits) 8 5 8 11 -

Mantissa (bits) 7 10 10 52 7

Performance• 25.89× 28.69× 9.93× 1× 60.56×
• The values are to compensate the performance difference caused by different pre-
cisions of Tensor Core. The evaluation is conducted with CUDA samples (without
shared memory), and the results are scaled on the performance of FP64

Internal Workflow of NTT Box. With the multiple-precision representation,
we make Tensor Core play the role of the NTT box as an individual module. The
caller could simply load the sorted data into the box and get results quickly. The
internal workflow of the NTT box is shown in Fig. 4. Several sorted polynomials
are distilled into a matrix, which is then first loaded into the fragment matrix
in the form of tiles.

Meanwhile, the pre-computed table will also be loaded into fragment matrix b.
Then, MMA is conducted. The results will be performed modular reduction to
ensure that the coefficients of the target polynomial are less than q.

Fig. 4. The workflow of NTT box

4 Implementation Details

In this section, we elaborate on the technical details of our implemented proto-
type. First, we show the overall architecture of our system and the collaboration
between the various modules. Next, we introduce two types of NTT: basic-NTT
for smaller modulus with achieving higher performance, and split-NTT for larger
modulus. Then, we explain some non-trivial optimization techniques.
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4.1 Overview

Our prototype is based on CUDA Toolkit 11.1. CUDA programming can support
a large number of concurrent threads. In our implementation, each thread holds
one instance, and these threads execute in SIMD (SIMT) mode. Although the
specific procedures might be slightly different for different phases, the high-level
overview could be like Fig. 5.

Thread Synchronization Synchronization

... ... ... ... ...

Fig. 5. General overview of implemented Kyber

The Collaboration Between Modules. The function of the RNG module
is to extend the random seed and get the required parameters, just like the
key derivation function (KDF). After obtaining the seed from an RNG module
or decoder, Kyber will generate matrix or sample polynomial vectors based on
the seed. On the basis of Eqs. (6) and (7), for a polynomial, the elements with
even (or odd) terms participate in the same NTT. Therefore, before entering the
NTT box, we sort each polynomial so that even (or odd) entries are continuous in
memory. When the program needs to perform NTT, it will synchronize between
threads in the same thread block, and then input the data into the NTT box.

4.2 The Basic-NTT and Split-NTT

However, we can only load a fixed size tile into a fragment every time, while the
target matrix is much larger. We have made two scanning methods, according to
the raw precision of the data to be processed. For the parameters whose element
value is less than 8 bits (256, or 128 for signed number), such as secret s and
random noise r, e generated from CBD, with at most 3 significant bits, we apply
a basic-NTT method, shown in Fig. 6.

In this method, we only need to split the twiddle factors into Th and Tl, and
directly represent the input data with INT8 type. Both input and output are
sorted according to parity items as Me, Mo, Re and Ro, to satisfy the requirement
of contiguous memory access. Note that β in Fig. 6 represents the base of multiple
precision representation, and the multiplication by b can be done by left shifting.
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Fig. 6. Scanning of basic-NTT

As for the case that the coefficient is larger than 8 bits, such as INTT in
Kyber, we employ a split-NTT scanning method and the details are shown in
Fig 7. The input data is sorted first and then split. The temporary sums, like
Tmpe and Tmpo in Fig. 7, can be used to reduce a shift operation.

Fig. 7. Scanning of split-NTT

All data matrices have n columns, while the number of rows can be adjusted
according to the rank k and the number of threads in a block.
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4.3 Pre-computed Table of Twiddle Factors

Since the powers ζ2br7(i)+1 can be known in advance, then all the twiddle factors
can be pre-computed and stored in the memory before the procedure. When NTT
is executed, these values can be obtained by directly looking up the table instead
of multiplying, like the original implementation.

Additionally, intermediate results need to be performed by Montgomery
reduction. After that, the result of Eq. (4) is in Montgomery format and needs
to be converted into the normal format by multiplying R. Therefore, the value
R can be absorbed as ζ2br7(i)+1 · R mod q to save a multiplication. According
to Eqs. (1) and (2), our pre-computed table of NTT and INTT could be:

⎡

⎢⎢⎢⎣

ζ0×2br7(0)R ζ0×2br7(1)R · · · ζ0×2br7(127)R
ζ1×2br7(0)R ζ1×2br7(1)R · · · ζ1×2br7(127)R

...
...

. . .
...

ζ127×2br7(0)R ζ127×2br7(1)R · · · ζ127×2br7(127)R

⎤

⎥⎥⎥⎦

128×128

(8)

⎡

⎢⎢⎢⎣

n−1ζ−0×2br7(0)R n−1ζ−0×2br7(1)R · · · n−1ζ0×2br7(127)R
n−1ζ−1×2br7(0)R n−1ζ−1×2br7(1)R · · · n−1ζ−1×2br7(127)R

...
...

. . .
...

n−1ζ−127×2br7(0)R n−1ζ−127×2br7(1)R · · · n−1ζ−127×2br7(127)R

⎤

⎥⎥⎥⎦

128×128

(9)

Note that the transpose of the matrix can be determined by the flag param-
eter of the built-in function. In addition, the NTT results are:

f̃2i =
127∑

j=0

f2jζ
(2br7(i)+1)jR

f̃2i+1 =
127∑

j=0

f2j+1ζ
(2br7(i)+1)jR

(10)

4.4 Point-Wise Multiplication and Modular Reduction

Point-Wise Multiplication. In Kyber, the polynomial multiplication h(x) =
f(x) · g(x) has also been redefined. Let ĥ = f̂ ◦ ĝ = NTT (f) ◦ NTT (g) denote
the basecase multiplication consisting of the 128 products written as:

ĥ2i + ĥ2i+1X = (f̂2i + f̂2i+1X)(ĝ2i + ĝ2i+1X) mod (X2 − ζ2br7(i)+1)

Specifically, the product coefficients can be written as:

ĥ2i = f̂2iĝ2i + f̂2i+1ĝ2i+1ζ
2br7(i)+1

ĥ2i+1 = f̂2iĝ2i+1 + f̂2i+1ĝ2i

(11)
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The point-wise multiplication can be performed with the Karatsuba algo-
rithm [15] to decrease the times of multiplication, and the calculation form of
results are listed in Eq. (12).

ĥ2i = f̂2iĝ2i + f̂2i+1ĝ2i+1ζ
2br(i)+1

ĥ2i+1 = (f̂2i + f̂2i+1)(ĝ2i + ĝ2i+1) − (f̂2iĝ2i + f̂2i+1ĝ2i+1)
(12)

One Round Lazy Modular Reduction. For CBD generated vectors, the
biggest sum in NTT should be less than n′q · 23 (where n′ = 128), which is 22
bits. As mentioned earlier, Tensor Core performs FMA operation, then and the
accumulator, represented in INT32, can still cover the range intermediate sum.
For a polynomial whose coefficient is up to q − 1, we use two 6-bit elements to
represent the value. Therefore, n′q · 26 (25 bits) will not cause overflow. Then,
only a round fast modular reduction is needed for the final NTT result.

5 Performance Evaluation and Discussion

In this section, we present our evaluation results firstly, including the perfor-
mance of the NTT box, and Kyber-512, Kyber-768, Kyber-1024, and perform a
comparative analysis with related works. Finally, we discuss the scalability and
security of our solution.

5.1 Results of NTT/INTT

Firstly, we test the performance of the two types of NTT. There is no significant
discriminative between NTT and INTT except for the pre-computed twiddle
factor tables. Since INTT does not involve small coefficients in Kyber, we only
evaluate the split-INTT (for INT16). The results are listed in Table 5. For split-
NTT, when the thread block size is 128, the performance can reach 247.2 MOPS.

Table 5. The performance of NTT, Total case= 69632, Grid size= 136, n = 256

Operation Input Type Block size Time elapsed (ms) Performance (MOPS)

split-NTT INT16 128 0.281632 247.2

256 0.356992 195.1

basic-NTT INT8 128 0.183296 379.9

256 0.217088 320.8

split-INTT INT16 128 0.277376 251.0

256 0.357376 194.8
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Related Work Comparison. We also compare the customized NTT of poly-
nomial vector (poly vec, n = 256, k = 4) with the counterparts on CPU and
GPU, and can obtain a speedup of at least 8.1x. Furthermore, we test the pro-
vided source code on our machine and still get about 6.47x improvement. The
results are shown in Table 6.

Table 6. Comparison of polyvec ntt in kyber, n = 256, k = 4

Device Architecture Time (ns)◦

Ref W2123 Skylake-W 6,464

Gupt et al. [12] G1060 Pascal 378.1

P6000 Pascal 202.3

V100 Volta 135

R3080 Ampere 107.81∗

Ours R3080 Ampere 16.65

◦ The average time cost by each instance.
∗ The code in [12] is downloaded from https://github.
com/nainag/PQC and tested on RTX3080.

In fact, Tensor Core is also supported with V100, but not exploited in [12].
Although the gain mainly comes from AI accelerator hardware, the key lies in
our fine manipulation to adapt the cryptographic workload into its operating
mode. Our Tensor Core based NTT box involves the pre-computed tables of
twiddle factors instead of the idea of divide and conquer. Because the initial
control granularity of butterfly operation is at single element level, which con-
flicts with the matrix mode and might make the control very complicated. More
importantly, interrupting computation frequently to access memory can severely
impact performance when utilizing Tensor Cores.

5.2 Results of Kyber

The security strength recommended by the original author is Kyber-768 (k =
3) [29]. In addition, we also test Kyber-512 (k = 2) and Kyber-1024 (k = 4),
and the results are shown in Fig. 8.

Related Work Comparison. The previous implementations of Kyber are
based on various platforms, targeting different scenarios and following different
design ideas. The FPGA based implementations such as [34], are mainly com-
mitted to using fewer hardware resources to reach more achievable performance.
The CPU based optimizations such as [5] tend to use vector set instructions
for acceleration. Unlike FPGA solutions, in which the improved algorithms are
mainly conducted through hardware programming, the hardware circuit of our
proposal can no longer be changed, and accelerations can only be carried out
around the characteristics it exposes.

https://github.com/nainag/PQC
https://github.com/nainag/PQC
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Fig. 8. The performance of Kyber-512, Kyber-768, Kyber-1024

Table 7 lists the average time cost on Kyber-1024 of related works. Com-
pared to resource-constrained devices, we can achieve two orders of magnitude
performance improvement. For the optimized AVX2 version Kyber-1024, our
prototype can obtain a speedup of approximately 26x, 36x, and 35x for KeyGen,
Enc, and Dec respectively. Note that we have not optimized the hash algorithm
yet.

5.3 Discussion

Security. The security issue is also an important aspect of cryptographic imple-
mentation. An important countermeasure against side-channel attacks is mask-
ing [7,26]. The core concept of masking is to split the sensitive variables into
multiple shares. There are two split methods, one is Boolean split, which is
suitable for block ciphers, and the arithmetic split. The PQC scheme can be
combined with either or both. The multi-precision representation used in our
work is actually an arithmetic split, so it can be considered that it can enhance
the protection against side-channel attacks.
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Table 7. Comparison of average time cost on Kyber-1024 with related works

Platform KeyGen
(µs)

Enc
(µs)

Dec
(µs)

KX◦

(k/s)

Pakize Sanal et al. [28] Apple A12 @2.49 GHz
(AES accelerator)

38.23 37.35 36.55 13.4

PQClean [20] ARM Cortex-A75
@2.8 GHz

137.54 170.25 195.0 3.0

Xing, Y et al. [34] Xilinx Artix-7 58.2 67.9 86.2 6.93

C-Ref [29] Intel Core i7-4770K
@3.5 GHz (Haswell)

87.8 99.0 113.3 4.97

AVX2-Ref [29] Intel Core i7-4770K
@3.5 GHz (Haswell)

21.01 27.81 22.61 22.9

This work NVIDIA GeForce RTX
3080

0.80 0.77 0.42 819.7

◦ computed by ab
a+b

, where a, b are the throughput of KeyGen and Dec.

For Tensor Core itself, as far as we know, it can be treated as an atomic
instruction parallel execution unit for calculating with a fixed amount of cycles.
According to [23], it is almost impossible to perform a timing attack on parallel
AI accelerators so far.

Meanwhile, techniques against side-channel timing leakage, such as eliminat-
ing conditional statements in CUDA kernel functions, are also involved in our
work, even though they are not the main focus. Tensor Core operations involve no
secret-related conditional branch, and the related memory access (pre-computed
tables) is secret-irrelevant. In a nutshell, the AI accelerator we introduce will not
bring additional security risks.

Scalability. With the upgrade of hardware products, we believe the restric-
tions would be fewer, and the control interfaces provided could be with finer
granularity, which would make they become much more versatile. Though the
study case in this paper is a PQC scheme, the proposed solution and techniques
might provide reference for other computation-sensitive schemes like homomor-
phic encryption, of which the polynomial multiplication is also a time-consuming
part. Furthermore, in practice, the implementation would be more solid with the
optimizations for CUDA hardware, such as multiple working streams, shared
memory, and multi-threaded cooperation.

6 Conclusion and Future Work

In this paper, we propose an NTT box based on NVIDIA AI accelerator, Tensor
Core. After that, we present a high performance implementation of CRYSTALS-
Kyber with our NTT box and achieve considerable performance improvement.
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Our work illustrates the tremendous potential of Tensor Core in LBC acceler-
ation. We believe that AI accelerators will become more versatile, and support
more operations and precisions. In the future, the subsequent work would cover
more lattice-based cryptographic schemes, especially homomorphic encryption
(HE) which urgently requires high efficiency for the wider application.
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Abstract. The maritime domain is among the critical sectors of our
way of life. It is undergoing a major digital transformation introducing
changes to its operations and technology. The International Maritime
Organization urged the maritime community to introduce cyber risk
management into their systems. This includes the continuous identifi-
cation and analysis of the threat landscape. This paper investigates a
novel threat against the maritime infrastructure that utilizes a promi-
nent maritime system that is the Automatic Identification System (AIS)
for establishing covert channels. We provide empirical evidence regard-
ing its feasibility and applicability to existing and future maritime sys-
tems as well as discuss mitigation measures against it. Additionally, we
demonstrate the utility of the covert channels by introducing two realistic
cyber attacks against an Autonomous Passenger Ship (APS) emulated
in a testing environment. Our findings confirm that AIS can be utilized
for establishing covert channels for communicating Command & Control
(C&C) messages and transferring small files for updating the cyber arse-
nal without internet access. Also, the establishment and utilization of
the covert channels have been found to be possible using existing attack
vectors and technologies related to a wide range of maritime systems.
We hope that our findings further motivate the maritime community to
increase their efforts for integrating cyber security practices into their
systems.

Keywords: Maritime · Cybersecurity · Automatic Identification
System (AIS) · Cover channel · ATT&CK

1 Introduction

We live in a highly connected world that depends on various means of trans-
portation for the delivery of goods, services, and the transportation of people all
around the globe. Thus, the transportation sector is regarded internationally as
a critical infrastructure. In the European Union, five modes of transport have
been recognized: air, road, rail, maritime, and inland waterways [4]. Among these
sectors, this paper targets the maritime domain. The maritime domain is linked
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to the well-being, prosperity, and security of the citizens of Europe [1]. It is also
involved in 90% of the global trade of goods [3] making it a domain worthy of
increased attention in the research community.

Maritime systems include a variety of cyber systems including Information
Technology (IT) and Operational Technology (OT) which are distributed across
port facilities, ships, and other components within the maritime infrastructure.
These systems are applied in specific applications in navigation, propulsion and
steering, cargo handling, and others. These applications rely on a group of
maritime-specific systems such as the Automatic Identification System (AIS),
and the Electronic Chart Display and Information System (ECDIS). Addition-
ally, such systems rely on maritime-specific protocols and standards including
among others, the National Marine Electronics Association (NMEA) standard,
and the AIS protocol. NMEA standard is utilized in the communication between
marine systems including the communication of sensor data through message-
based protocol [49]. AIS is a special message-based protocol based on the NMEA
standard which is utilized in many maritime services including; among others,
traffic management, search and rescue, and collision avoidance [41].

Disruptive attacks against the maritime domain can have devastating effects
as witnessed in the cyber attack against Mærsk shipping company, which lead
to weeks of interrupted operations and losses beyond 300 million US dollars [36].
Also, insufficient security in the maritime systems and protocols has been demon-
strated in the literature. To mention a few examples, Balduzzi et al. [25] have
demonstrated a wide range of attacks against AIS including spoofing, jamming,
and other sorts of misuse while Tran et al. [60] discussed the limited authentica-
tion, encryption, and validation in one of the NMEA protocols. Positively, there
are demands for the consideration of cyber threats and cyber risk management
in the current state of affairs in the maritime domain. The International Mar-
itime Organization (IMO) has adopted Resolution MSC.428(98) [32] encouraging
the maritime industry stakeholders to include cyber risk management into their
safety management systems. The resolution provides guidelines and requirements
for cyber risk management [31]. The guidelines suggest the continuous analysis
and assessment of the threat landscape against the maritime infrastructure.

In this direction, this paper investigates attacks in the maritime industry
in order to identify novel attacks that can surface into reality in the future.
We have identified a limitation in the literature when discussing Command and
Control (C&C) activities. Then, we investigate the utility of the Automatic
Identification System (AIS) as a covert channel for conducting C&C activities
during the development of cyber attacks against maritime infrastructure. In our
investigation, we initially developed a threat model of the covert channel focusing
on the threat requirements, scope, objectives, and techniques. Afterward, we
developed and evaluated a proof of concept of the covert channel. Moreover, we
demonstrated the utility and application of the covert channel in two realistic
attack scenarios against a modern maritime use case which is an Autonomous
Passenger Ship (APS). We aspire to motivate the maritime community to further
adopt cybersecurity into their operations and system development practices.
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2 Background and Related Work

2.1 Autonomous Passenger Ship

This paper is part of an ongoing research project titled “Autoferry” [50]. The
project targets the development of an APS prototype which is named mil-
liAmpere2; an autonomous ferry with the capacity to carry 12 passengers and
their luggage across the Trondheim city canal as an alternative for a high-cost
bridge [38]. MilliAmpere2 is designed to be fully autonomous with the ability to
be supervised and controlled from a Remote Control Center (RCC). The ferry
includes an Autonomous Navigation System (ANS) which utilizes data from
various sensors for establishing situational awareness and safe navigation. The
sensors include lidar, radar, Automatic Identification System (AIS), Global Posi-
tioning System (GPS), and others. The ANS forwards sensor data to a Remote
Navigation System (RNS) at the RCC through a ship-shore communication link.
More details can be found in our earlier article [22]. In this paper, we utilize this
APS as a use case for demonstrating two cyber kill chains (i.e. attack scenarios)
to showcase the application and utility of the discussed covert channel.

2.2 ATT&CK Framework

Recently, wide adoption is observed for the Adversarial Tactics, Techniques,
and Common Knowledge from MITRE, shortly known as the ATT&CK frame-
work [57]. ATT&CK captures adversarial behavior in enterprise environments,
industrial control systems, and other technology domains making it suitable
for modeling cyber attacks in a wide range of use cases. The European Union
Agency for Cybersecurity (ENISA) utilizes ATT&CK terminologies for map-
ping adversarial activities in their annual threat landscape report [11]. Also,
Security Incidents and Event Management (SIEM) systems utilize ATT&CK
terminologies for detecting adversarial activities [2,10].

The recent adoption of ATT&CK as a threat model is observed for mod-
eling threats against maritime systems. Kovanen et al. [45] utilized ATT&CK
for mapping threat actors’ objectives to a remote pilotage system for improved
risk assessment and design. Also, Jo et al. [43] proposed a cyber attack analy-
sis method based on ATT&CK. The authors described four documented cyber
attacks in the maritime domain using ATT&CK tactics and techniques. More-
over, in our earlier work [23] we utilized ATT&CK as a threat model for describ-
ing attacks against navigational functions. In this paper, we will also utilize
ATT&CK for modeling cyber attacks and provide a proof of concept of some
of the ATT&CK techniques in common maritime systems.

The ATT&CK threat model provides useful terminologies for describing
the different elements of threats. In this paper, we rely heavily on both, namely
tactics and techniques. Tactics describe the adversarial objectives also referred to
as stages of cyber attacks. Techniques on the other hand describe the adversarial
method for realizing an objective [57].
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2.3 Maritime Kill Chains, Threats and Attacks

In this paper we investigate and aim to answer the following question; what are
the adversarial tactics (i.e. objectives) and techniques that are discussed in the
literature in the maritime domain and do they cover the current threat land-
scape. In our research, we rely on the ATT&CK framework due to its compre-
hensive threat model and increased adoption as a new standard for adversarial
tactics, techniques, and procedures. We have conducted a comprehensive litera-
ture review to identify relevant works that have discussed adversarial techniques
across the different stages of cyber attacks (i.e. tactics). This allows for a clearer
understanding of the current threat landscape in the maritime domain.

Starting with the reconnaissance stage, Enoch et al. [33] briefly discussed the
utility of OpenVAS and NMAP for conducting reconnaissance-related activities
in a vessel system. Also, Standard et al. [54] discussed the teaching of network
reconnaissance for naval officers during a cybersecurity course for capacity devel-
opment. Additionally, Lund et al. [47] mentioned that activities at the recon-
naissance stage were conducted through physical access to the vessel and access
to the network, and ECDIS software. Moreover, Amro [20] has demonstrated the
utility of AIS and NMEA communicated messages for gaining both cyber and
physical attributes of possible maritime targets.

For gaining access to maritime components and networks; also known as
attack delivery, Lund et al. [47] discussed the utilization of a USB flash drive
to deliver a malicious payload into the ECDIS machine and execute it. Also,
Papastergiou et al. [51] referred to the possibility of gaining access to maritime
infrastructure through compromising the supply chain. Additionally, Pavur et al.
[52] demonstrated the feasibility of VSAT TCP session hijacking for reaching
and controlling maritime VSAT communication. Moreover, Tam and Jones [58]
argued that users can be tricked into downloading and executing malicious soft-
ware or guided into malicious websites.

After gaining access to systems and networks attackers aim to achieve a group
of objectives including discovery, credential access, and collection. Hemminghaus
et al. [39] target the network for discovery through sniffing and collection of
network traffic including navigation data. Jo et al. [43] categorized vulnerability
scanning of ship systems, eavesdropping on Voice over Internet Protocol (VoIP),
and Wi-Fi communication in the discovery stage of cyber attacks. Pavur et al.
[52] demonstrated the ability to collect credit card information, visa, passport,
ship manifest, and non-encrypted REST API credentials communicated through
eavesdropping on VSAT connections.

In certain cases, attackers desire to perform privilege escalation to execute
commands and programs with higher privilege. Lund et al. [47] mentioned that
the operator station utilized as the pivot point of their attack demonstration
was running already within administrator privilege and therefore doesn’t require
escalation. However, they referred to hijacking execution flow through a mali-
cious Windows socket dynamic-link library (Winsock DLL), this is among the
techniques utilized to achieve privilege escalation, persistence in the target sys-
tem, and evade defensive measures [13].
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Many works have discussed attacks that aim to impact maritime operations.
Lund et al. [47] and Hemminghaus et al. [39] discussed the manipulation of
sensor messages for impacting the operation of navigation systems. Amro et
al. [23] formalized manipulation and denial of view based on navigational data
as attacks that can impact navigational functions. Moreover, Hemminghaus et
al. [39] referred to alarm suppression for inhibiting response functions as well as
spoof reporting messages to impair process control.

Many stages of cyber attacks in the maritime domain are demonstrated
and discussed in the literature in sufficient detail. Still, a limited discussion
is observed regarding Command and Control (C&C) activities. Hooper [40] has
investigated the potential of covert communications in pulsed or continuous-wave
radar and discussed the cyber implications of that in the maritime domain. The
authors argued that communication links utilizing spectrum-sharing may pave
the way for unintended channels (i.e. covert channels); an inclination which we
agree with. Hareide et al. [37] bypassed the need for the C&C channel by imple-
menting a specific condition for an attack to be launched when arriving at a
certain position. Jo et al. [43] described three maritime cyber incidents includ-
ing C&C stages with a limited description of the implementation. Enoch et
al. [33] have briefly mentioned C&C in the attack model but without details of
the implementation. Leite et al. [46] proposed a triggering mechanism for cyber
attacks based on radar and AIS messages. The authors proposed and demon-
strated a pattern matching technique that can identify false plots depicted on
the ECDIS which can be used for triggering cyber attacks. Other than that, to
the best of our knowledge, no other work has discussed C&C in the maritime
domain in more detail. Therefore, a contribution of this paper is an investigation
of the utilization of AIS as a covert channel for C&C attack techniques using
real maritime systems. This is intended to raise awareness of yet another possible
attack utilizing the AIS protocol and hopefully drive the maritime community
to consider cybersecurity more seriously and deeply within their systems.

The concept of a kill chain; a multi-staged cyber attack scenario, is observed
in the maritime domain. Hareide et al. [37] have discussed a maritime kill chain
for demonstrating the feasibility of cyber attacks in order to increase awareness.
The authors relied on a previously developed attack by Lund et al. [47] which
also discusses the development of the attack through a kill chain. Also, Jo et
al. [43] utilized consequent tactics from ATT&CK for describing cyber attacks
against maritime systems. In this paper, we will also utilize the concept of kill
chains for discussing complete scenarios for cyber attacks that implement our
novel Command and Control (C&C) covert channel.

3 AIS as a Covert Channel

In this section, we discuss our analysis of the utility of the AIS as a covert chan-
nel supporting adversarial activities throughout different phases of cyber attacks.
The analysis considers both the AIS protocol itself as well as AIS devices. This
section also describes the threat model with details from different viewpoints.
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Context (i.e. physical and cyber architecture), Objectives (i.e. tactics), and tech-
niques. Additionally, a proof of concept of the attack is developed and demon-
strated in this section in addition to a discussion of relevant countermeasures.

3.1 Context View

Following a top-down approach, the context of utilizing AIS as a covert channel
is discussed in this section. A physical view of the context is demonstrated in
Fig. 1a. A threat actor needs to be located in physical proximity to the victim
ships either at land or sea. The range is limited by the VHF range of the attacker
station and the placement of the antennas on both sides; the range can reach
up to 60 nautical miles [19]. The VHF radio frequencies for AIS belong to the
licensed portion of the radio spectrum and require a proper license to operate in
most countries. Therefore, an attacker without a proper license can be detected
and addressed. However, an attacker with a proper license such as an indus-
trial competitor or a maritime entity belonging to a nation-state might operate
undetected at this level.

(a) Physical view of the context of
utilizing AIS as a covert channel

(b) Component view of the context of uti-
lizing AIS as a covert channel

Fig. 1. Physical and component view for utilizing AIS as a covert channel

A component view of the context is depicted in Fig. 1b. The attacker station
consists of a Command and Control (C&C) node that is able to transmit AIS
traffic over VHF. On the other hand, the victim ships network might have either
serial [29,55,56] or Ethernet connections [30] from the AIS device to internal
components. An internal agent node to be controlled by the attacker is needed to
receive and execute the (C&C) commands. The agent node is assumed to either
be a machine infected with an attacker’s controllable malware or a standalone
malicious machine. In a ship network consisting of serial connections, malware
is expected to infect an existing machine. On the other hand, in an Ethernet
network, a standalone machine is a possible alternative. Different attack tech-
niques are needed to establish a covert channel in each network (More details in
Sect. 4).
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3.2 Tactics and Techniques

The threat model is developed considering variant attacker capabilities and
communicated as tactics and techniques using the ATT&CK terminology. The
objectives (i.e. tactics) of the attackers are assumed to be the following:

– Command and Control: send unidirectional C&C messages from an attacker
to victims (1 to many). The messages can carry either simple commands or
files (e.g. malware). This is assumed to be achievable through properly encod-
ing commands and files into AIS messages. More advanced threat actors are
expected to pursue secure C&C communication. They might aim to secure the
communication from being revealed, or tampered with. Even if their activ-
ities are detected, the executed commands or transferred files are aimed to
be kept a secret. This is assumed to be established through hiding command
messages into AIS messages with additional obfuscation, steganography, or
cryptography.
A bi-directional channel is expected to require additional components, tactics,
and techniques which are items for future work.

– Defense Evasion: this includes avoiding raising the operators’ attention or
other detection measures. This means that limited impact on legitimate oper-
ations is pursued. This is assumed to be achievable through careful selection
of AIS message types and fields.

To achieve the C&C objective the attacker can establish the covert channel
using a combination of Alternate Network Medium (i.e. VHF) [5] and Protocol
Tunneling [17] command and control attack techniques. This combination entails
the utilizing of VHF radio communication as a medium for the C&C commu-
nication which is tunneled through the AIS protocol. Based on the attacker
capabilities to secure it, attackers can apply Data Encoding [7], Data Obfusca-
tion [8] or Encrypted Channel [9]. According to ATT&CK, data encoding can
be achieved using standard or non-standard encoding (e.g. Base32), Data obfus-
cation can be achieved using stenography, protocol impersonation, or junk data,
and Encrypted channel can use asymmetric or symmetric cryptography [15]. On
the other hand, to avoid detection, the different types of AIS messages and fields
are considered to best serve the objectives. The criteria for choosing the most
suitable message type and field is that they should provide the largest capac-
ity of transfer and limited impact on operations. The rationale for choosing the
largest capacity is to reduce the amount of AIS messages needed to encode C&C
messages.

We have considered all possible 27 AIS message types using the descrip-
tion provided By Rayomon [53]. As shown in Table 1, messages 8 and 14 were
found to provide the largest capacity while at the same time having a common
appearance, unlike message type 26. Moreover, the messages types; if carefully
configured, do not provide navigational data that will influence the navigational
functions and therefore are expected to have no impact on operations. Message
14 can be utilized in managing distress signals and might invoke a response from
a nearby rescue unit [48]. Therefore, we will restrict our discussion in this paper
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in the utility of message type 8 for C&C. Furthermore, the structure of message
8 content itself is controlled. We analyzed the different content categories to
identify the category that allows for the largest capacity and flexible field for-
mat. We relied on IMO circulation SN.1/Circ.289 [28] in our analysis. We have
identified that a text description message is the best candidate as it includes a
text string field with a maximum limit of 161 ASCII characters. Although there
is a standard format for this field, it is only recommended and not mandatory
to follow.

Table 1. The top 5 AIS message types with the largest fields

Message type Field Max size (bits) Rational

Type 26: Multiple slot binary message Data 1004 Extremely rare

Type 14: Safety-related broadcast message Text 968 Suitable

Type 8: Binary broadcast message Data 966 Suitable

Type 12: Addressed safety-related message Text 936 Addressed to a specific target

Reduced C&C channels

Type 6: binary addressed message Data 920 Addressed to a specific target

Reduced C&C channels

3.3 Proof of Concept

Fig. 2. A logical view of the components of the AIS covert Channel

In this section, we present the development of the proof of concept for utilizing
AIS as a covert channel. Figure 2 depicts the required logical components to
achieve the attackers’ objectives. First, the C&C message or file is input into a
hider function to evade detection and the output is then encoded into an AIS
message. Then, the message is transmitted over VHF using an AIS transmitter.
Should it be received and accepted at the AIS on the victim ship, protocol
conversion is expected to forward the AIS messages through a serial link or IP
protocol to the ship network; this is traditionally performed by AIS receivers. The
agent node then eavesdrops on the AIS message stream, decodes the messages
to identify C&C messages (e.g. based on the MMSI or other signal) reveals the
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Fig. 3. Setup for the proof of concept of AIS as a covert channel

hidden message, and executes it, or reconstructs it if its part of a file. Through
this channel, attackers gain the capabilities to remotely and covertly update
their cyber attack arsenal and techniques.

Figure 3 depicts the setup for the proof of concept. It is implemented using
two AIS transceivers, namely, em-trak A200 and em-trak B921. A200 is used
as the attacker-controlled transmission station. B921 is used as the AIS receiver
and is connected through a serial link to a workstation simulating the victim
ECDIS. The workstation is equipped with a script that simulates the agent
node or malware that is monitoring the AIS messages over the serial link. The
script decodes AIS messages and when a C&C message is identified it executes
the encoded command or reconstructs the transmitted file.

We conducted several experiments to test if the implementation works. We
attempted to send and execute commands as well as construct files at the victim
ECDIS. Due to space restrictions, we will present one of these experiments. First,
the ciphertext which includes the hidden C&C message is prepared using a python
script. In this example, the attacker will send a directory listing command, the
plaintext of the hidden message “CM:dir” is encrypted using Advanced Encryp-
tion Standard (AES), the ciphertext is “9C6ED8600E1F” and then encoded into
an AIS message “!AIVDM,1,1,,B,83o0F400@00>@uQA0ed<1LA P,0*39”. The
“CM:” string is used to identify a command execution message at the agent node
while the “dir” string is the directory listing command in Windows.

Figure 4(a) depicts a photo of the message composer at the A200 AIS
transceiver with the ciphertext as the content of the message. After the mes-
sage was sent, Fig. 4(b) depicts a screenshot of the agent node receiving and
executing the command.
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(a) Sending from A200 (b) Receiving at the agent node

Fig. 4. Demonstration for sending and receiving covert C&C message over AIS

3.4 Evaluation of the Covert Channel

In this section, we will evaluate the utility of the covert channel to attackers to
better analyze the associated risk. The evaluation is discussed based on their
type, throughput, and robustness to detection and countermeasures. Then, sug-
gesting suitable improvement for the detection and prevention is provided.

Our analysis considers two hider functions and two settings for the covert
channel. The hider functions are Base32 encoding and AES-CFB encryption;
with a 16-byte key and a 16 bytes Initialization Vector (IV). The settings are
either based on the protocol specifications or the em-track A200 commercial AIS
device. The type of the channel is a unidirectional covert channel. The C&C node
can transmit messages that the agent node can receive, however, the agent node;
on its own, cannot establish an outbound channel through the AIS device. This
limits the attackers’ capabilities in managing the agent node in the targeted envi-
ronments. Regarding the throughput, the maximum capacity for the text string
field is 966 or 480 bits in the protocol specifications or the A200, respectively.
The implementation of encoding or encryption further restricts the capacity.
Table 2 depicts the maximum size of the field that can hold the clear segment
of a command or a file as well as the corresponding throughput considering the
two hider functions, two settings, and two transmission rates (TR).

From the attacker’s perspective, using AES as a hider function is a reason-
able option since it provides secure communication with only a relatively less
throughput than the Base32. Still, secure key establishment and handling is
an additional burden the attacker needs to consider. While the Base32 encod-
ing is simpler to implement and provides slightly better throughput, it doesn’t
provide secure communication and can expose the content of the covert chan-
nel. We have also evaluated the utility of this channel for delivering malware
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Table 2. Covert channel throughput evaluation

Hider function Based on Max field capacity (bit) Throughput (bit/sec)

2 s TR 10min TR

Base32 Protocol specs 600 300 1

AIS200 em-trak 276 138 0,46

AES Protocol specs 480 240 0,8

AIS200 em-trak 240 120 0,4

TR: Transmission Rate

to the victim ship and allowing threat actors to update their adversarial cyber
arsenal at sea. With such a transmission rate, transporting a 338 Kb malware;
the average malware size in 2010 [14] at a 2-sec transmission rate would take
3 h considering the protocol specifications. However, transporting the NotPetya
malware which is 1,5 Gb [6] would take 29826 h at the same transmission rate.
Therefore, the utility of this covert channel is limited to commands and small
malware. Regarding robustness to detection and countermeasures, several works
have discussed countermeasures for securing AIS communication using encryp-
tion for authentication and integrity [24,25,35,44]. Although a wide adoption of
such countermeasures is not observed we argue that encryption doesn’t elimi-
nate the threat of covert channels against AIS. In the case of utilizing a public
key infrastructure (PKI) for authenticating the different entities participating in
the AIS communication, threat actors with legitimate credentials such as boat
and ship owners, competitors, and nation-states would still be able to utilize the
channel. Moreover, there is a discussion regarding anomaly detection algorithms
for AIS such as the work of Iphar et al. [42], Blauwkamp et al. [27] and Balduzzi
et al. [25]. However, there is no discussion regarding anomalies associated with
AIS message type 8. Additionally, if the attacker maintained a reduced trans-
mission rate, the likelihood of detecting anomalies is expected to be reduced.
Real maritime infrastructure is required for formal evaluation of the robustness
of this covert channel against detection. Therefore, we argue that such channels
constitute a threat to the maritime infrastructure that is utilizing AIS commu-
nication and countermeasures should be tuned to detect them. Future efforts are
advised for investigating the utility of anomaly detection in detecting the covert
channel.

4 Adversary Emulation Against an Auto-remote Vessel

To demonstrate the utility of the proposed covert channel for attackers, and its
technical application in realistic attack scenarios, we will apply an adversary
emulation process; a security assessment process applying realistic attack sce-
narios which emulate the capabilities of real threat actors [57]. This enables the
elicitation and evaluation of relevant security control.

In this section, we present two cyber kill chains emulating two attack scenar-
ios against an Autonomous Passenger Ship (APS) use case which is discussed
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in Sect. 2.1. The kill chains are constructed based on the observed adversarial
techniques in the maritime industry across the different kill chain phases which
are discussed in Sect. 2.3. Additionally, we improve the kill chains by utilizing
the proposed C&C channel discussed in Sect. 3 to demonstrate its application.
We argue that the kill chains are also relevant for other maritime use cases
encompassing similar technologies.

We utilize our previously proposed maritime-themed testbed [21] for the
development of the adversarial techniques. The utilization of the testbed with
regards to this paper is system replication and system analysis. During system
replication, we developed a replica of the target system using real and simu-
lated components, and then target the developed replica with a group of attack
techniques emulating an adversarial behavior.

4.1 Target Environment

Fig. 5. A model of the target environment for the development of the kill chains

A model of the target environment is depicted in Fig. 5. It emulates three facil-
ities, namely, an attacker-controlled transmission station, a victim ship, and a
remote control center. The attacker station consists of capabilities to create and
transmit command and control traffic encapsulated within AIS messages over
VHF. The A200 AIS is utilized at this station. The victim ship consists of an
AIS transceiver; in this setup, the B921 is utilized. The receiver AIS receives
AIS messages and forwards them over a serial link to the Autonomous Navi-
gation System (ANS) which in turn forwards it to the Remote Navigation Sys-
tem (RNS) over a ship-shore network. The ANS and RNS are emulated using
virtual machines while the vessel and ship-shore networks are emulated using
virtual networking using Virtualbox. Due to the lack of available ANS and RNS
software, both components are simulated as chart plotters using the OpenCPN
software. The difference between them is that the ANS is not intended to be
monitored by a human operator while the RNS is. The autonomous and remote
navigation functions are simulated only through rendering the AIS and com-
panion NMEA messages in the chart plotter. No control functions are simulated
in this environment. Additionally, another virtual machine with Kali Linux is
added to simulate a hardware agent node. This environment will be utilized in
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the demonstration of the later kill chains and is added as part of our testbed for
further research.

4.2 Cyber Kill Chains

In this section, we present and discuss two attack scenarios. We will utilize the
ATT&CK terminologies to facilitate the communication of a threat. In this
paper, we utilized the abstract concept of the tactics and techniques and posi-
tioned them in a maritime context. We utilized attack trees for the description of
the kill chain as it has been observed to be a common approach in the literature
[33,34]. These kill chains can later be used as adversary emulation exercises for
the evaluation of cybersecurity controls in maritime systems with technologies
similar to the ones in the testing environment.

Fig. 6. Remotely and covertly controlling a malicious hardware agent node

Kill Chain 1: Impact Through Malicious Hardware Agent Node. The
first kill chain depicted in Fig. 6 describes the following scenario. A motivated
threat actor invests in the development of attacking capabilities into the attacker
agent node to be boarded on the vessel and remotely controlled from a place
within range by utilizing the covert channel described in Sect. 3. The capabili-
ties include a hardware component with Ethernet and software to receive and
execute commands from the C&C node. In our environment, this is achieved
through the Kali Linux virtual machine which can later be shipped into a Rasp-
berry Pi or small hardware. The node is also equipped with scripts that are
needed to conduct the later attack techniques. First, the developed capability
needs to be connected to the ship network. Considering the lack of crew on the
autonomous vessels, an attacker may attempt to access the vessel and locate the
network and insert the agent node (Hardware Additions [12] or Transient Cyber
Asset [18]). The success of this depends on the imposed physical security con-
trols. In the case that physical controls exist, threat actors could exploit trusted
relations and gain access to the network for several reasons (e.g. maintenance)
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and insert the node. This is a communicated concern in the maritime commu-
nity. BIMCO; a global organization for shipowners, charterers, shipbrokers, and
agents, discussed the issue of the lack of control of the onboard systems dur-
ing ship visits in their latest guidelines [26]. They argued that knowing whether
malicious software has been left in the systems onboard vessels is difficult. After
the insertion of the node, assuming it received valid network configurations (e.g.
through DHCP), the node is developed to conduct network service scanning
using a scanning tool (e.g. NMAP) and sniffing using a network sniffer (e.g.
tshark) to identify other components in the network. Later, target components
with specific criteria are identified; certain operating system versions, or certain
network services. The chosen targets are then targeted by a MitM attack in the
form of ARP spoofing using a MitM tool (e.g. Ettercap). If that is successful,
the node should be capable of eavesdropping on network traffic passing to and
from the attacked components in the vessel network including AIS messages.
When reaching this vantage point, the node stays dormant and only monitors
the AIS messages to identify commands from the C&C node. On the other side,
the threat group utilizes an alternate network medium that is the VHF radio
used in the AIS to send C&C messages. The attacker node can send either com-
mand to be executed by the agent node upon reception or send files including
malware. This capability allows attackers to bypass traditional network defenses
if the AIS link is not monitored. In traditional vessels, the ECDIS which is usu-
ally connected to the AIS is considered air-gapped and not connected to the
internet [37]. However, this attack would remove the gap and provide attackers
with an offensive capability not possible before. At this stage, the threat group
has a tactical advantage of observing the physical operational environment and
launching an attack under certain conditions (e.g. difficult weather conditions in
which visibility is limited). Their next step is targeting the NEMA messages in
a combination of denial of view and manipulation of view attacks. The options
for the attackers are a lot, only limited by the number of NMEA messages
utilized in the vessels and their criticality to the navigation functions. In our
earlier work, we formalized and demonstrated a group of such attacks [23]. One
instance could be that the attackers choose to drop radar messages (TTM mes-
sages) going to the ANS denying it from establishing accurate rendering of the
vessels in the physical environment. Also, attackers can manipulate the actual
Speed Over Ground (SoG) estimated from the GPS to impact the speed of the
vessel. According to a previously conducted Preliminary Hazard Analysis for an
autonomous ferry use case, manipulation of sensor data could lead to collisions
or ship sinking [59]. This concludes the first kill chain which can; in the lack of
proper defenses, cause few clicks to sink a vessel.

Throughout the kill chain, several evasion and persistence techniques can
be employed to challenge the detection and countermeasures and maintain a
foothold in the network. This can include the utilization of the hider functions
in the covert channel (Sect. 3), applying slight modification to the sensor data,
and others.
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Fig. 7. Remotely and covertly controlling a malware agent node

Kill Chain 2: Impact Through Malware. The second kill chain depicted
in Fig. 7 describes the following scenario. A motivated threat actor targets the
APS through the maintenance personnel boarding the APS. It is assumed that
the malware is loaded into the ANS through a USB stick. The malware relies on
commands and scripting for executing its tasks. Upon execution, the malware
aims to eavesdrop on the AIS messages communicated over the serial link at the
ANS. However, serial interfaces allow only a single listener. In principle, there
are several options to bypass this constraint. One option is discussed by Lund
et al. [47] through malicious Winsock DLL (Sect. 2.3). This direction, however,
would require escalating privilege. Another option, which is explored in this
paper, is to modify the configuration file of the ANS regarding the sources of
AIS messages. A similar technique suggested in ATT&CK is called Project
File Infection [16]. This option, in principle, doesn’t require escalated privileges
under the assumption that the permissions to modify the configuration files are
granted to normal users. This is the case for the OpenCPN software. Therefore,
the malware is programmed to first close the OpenCPN software to release the
serial interface and update the data source configuration to receive AIS and
NMEA messages from the malware over UDP and then reopen the software
quickly. In this manner, the malware masquerades as a legitimate data source.
However, during testing, it was observed that this activity can be detected by
the local firewall. A message is shown on the monitor requesting acceptance for
the creation of a new connection. Assuming that a local firewall is activated at
the ECDIS, the attacker needs to implement techniques to bypass it. Now the
malware is actually in the middle between the AIS and the OpenCPN software.
It has access to the serial link, can collect the messages, and forwards them
to the OpenCPN software to avoid disrupting the operations. At this vantage
point, the malware keeps monitoring the messages waiting for a C&C message.
When one arrives the malware can distinguish if it’s a command to be executed
or file segments to be reconstructed. From this point forward, similar to the
previous kill chain, the range of possible activities the malware can perform is
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wide open and relies on the C&C messages sent from the attacker-controlled
transmission station. Among the options are also manipulating or denying the
view and possibly causing a collision and sink. The malware is developed using
python and is compiled as an executable for windows.

This scenario relies on a group of assumptions regarding the knowledge
needed by the threat group while developing the malware. First, the name and
path of the ANS or ECDIS executable, as well as the name, path, and structure
of the configuration file, are all assumed to be known. This is likely possible for
commonly deployed software such as OpenCPN. Also, altering the configuration
without causing operation disruption is not trivial if there are multiple AIS data
sources and destinations. In our proof of concept, the modification is done using
a simple rule which is to remove a serial data source and replace it with a UDP
data source. These kill chain conditions render it a targeted attack that requires
a sufficient level of the domain and system knowledge in addition to a moderate
level of complexity.

5 Conclusion

Recent efforts are undergoing to introduce cyber risk management into the mar-
itime community. This includes the continuous identification and analysis of the
threat landscape. In this direction, this paper presents an overview of the mar-
itime cyber threat landscape and presents the results of an investigation of a
novel cyber attack against maritime systems. The attack is in the form of a
covert channel utilizing the prominent Automatic Identification System (AIS)
for sending Command & Control messages and delivering malware. We have
investigated the feasibility of this attack by developing a threat model utiliz-
ing the ATT&CK framework, developing a proof of concept of the attack, as
well as presenting two cyber attack scenarios (i.e. kill chains) that can utilize
this attack. The feasibility of the attack has been demonstrated using existing
technology that is relevant to a wide range of traditional and future maritime
systems including autonomous vessels. The findings are hoped to urge the mar-
itime community to increase their integration of cybersecurity practices. Future
work can be dedicated to the investigation and development of mitigation solu-
tions against the proposed covert channel. Additionally, the proposed kill chains
can be utilized as adversary emulation plans for the evaluation of cybersecurity
of maritime systems.
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Abstract. The sharing of energy usage data in smart grids is becom-
ing increasingly popular because it not only allows different entities
to access fine-grained energy consumption data but also improves the
effectiveness of smart grid technologies. How to ensure both verifiability
and privacy of the shared data is a vital issue. Most existing privacy-
preserving authentication schemes greatly hinder the flexibility of sharing
data among multiple parties due to vulnerability and inefficiency reasons.
The customer-centric energy usage data management framework based
on redactable signature (RS) technology can be seen as an effective solu-
tion. It offers customers the flexibility to remove parts of privacy-sensitive
data depending on different data usage demands, and ensures data verifi-
ability for third party service providers. However, existing RS schemes are
computationally inefficient for constrained devices such as smart meters.
Besides, it is said that quantum computers are expected to break all
traditional public-key primitives. In this regard, almost all existing RS
schemes are vulnerable to quantum attacks. To address the above con-
cerns, in this work, we propose a hash-based RS scheme HRSS based
on a variant of the Goldreich-Goldwasser-Micali tree, a length-doubling
pseudorandom generator, and an underlying SPHINCS+ framework. Our
HRSS is the first quantum-safe RS scheme, where the security depends
only on the security of underlying hash functions. We instantiate and
evaluate the performance of our design. Theoretical and experimental
comparisons with recent works show that HRSS is practical for smart
grids.

Keywords: Redactable signature · Privacy · Hash-based · Smart grids

1 Introduction

As one of the critical applications of Internet of Things (IoT) technology, smart
grids not only provide customers with high-quality electricity services but also
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offer an efficient and accurate power management platform for utilities. In smart
grid systems, customers’ data collected by smart meters are often shared with
third party service providers. For example, the utility company PG&E outsources
customers’ energy usage data to the software-as-a-service company Opower to
take advantage of some recommendation services [28]. Besides, to enjoy services,
customers are also encouraged to share their data with Demand-Response aggre-
gators (e.g., Enel X [39]) or social gaming sites (i.e., aiming at promoting energy
saving through social interaction).

Authentication of customers’ energy usage data is a significant problem since
the communication network may not be entirely credible and the data may be
incomplete or tampered with during the sharing process. Besides, considering
that the energy usage data usually contains some privacy-sensitive information
about the customer, such as billing data and information on personal electricity
consumption habits [35], the privacy issue should also be concerned. In order to
ensure both privacy and integrity of the energy usage data, serval authentication
schemes based on group signatures [15,18], ring signatures [14,36], authenticated
encryption schemes [12,17,37], and signcryption schemes [1,34] have been pro-
posed. However, these designs are impractical for smart grids to achieve flexible
data sharing due to serval vulnerability and inefficiency reasons. In addition,
once the data is shared with other parties, the customer still loses control of
how his data is used. Even worse, the energy-related information may provide
business intelligence to competitors or be used by criminals.

What’s more, third party service providers usually prefer to gather as much
data as they want, without regard to whether it is required for providing services.
This contravenes the ‘minimal disclosure’ principle recommended by NIST [22]
and the ‘minimize the amount of collected data’ principle of EU’s GDPR [38].
Therefore, from the customers’ perspective, the amount of energy usage data
disclosed to third parties should be minimized while obtaining the maximum
benefit. However, none of the above schemes consider allowing the client to
control the amount of information to be disclosed.

The customer-centric energy usage data management framework proposed
by Lahoti et al. [19] can be seen as an effective approach for protecting data
privacy while preserving its verifiability. Such a framework draws on the concept
of redactable signature (RS) [16], where a signature holder (i.e., the customer) is
allowed to independently remove parts of the authenticated data without inval-
idating the respective signature. More concretely, as shown in Fig. 1, a smart
meter installed by the utility collects and signs the energy usage data of a cus-
tomer by using an RS scheme. The data is stored in a data repository controlled
by a customer for further utilization. When the customer intends to share the
data with a third party service provider, he can take control of the repository,
remove privacy-sensitive or unneeded parts of the data (e.g., billing data), and
derive a redacted signature for the minimal-disclosure form of data. Upon receiv-
ing the shared data, the service provider can check its integrity and source with-
out knowing any content information about deleted parts.
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Fig. 1. Customer-centric energy usage data management framework. The figure is
adapted from [21].

1.1 The Motivation

By adopting RS in a customer-centric energy usage data management frame-
work, customers are able to get maximal service while sharing minimal data
with third parties in a privacy-preserving manner. This satisfies the principle for
processing personal data in NIST and EU’s GDPR. Although various RS schemes
have been proposed in previous work [7,21,27,30,31,41], deploying these solu-
tions to actual energy usage data sharing remains a challenge due to security
and performance reasons.

In terms of performance, existing RS schemes are designed based on different
cryptographic primitives, such as message commitment scheme [33], traditional
RSA signature scheme [16], bilinear pairing [24], and cryptographic accumu-
lator [9,41]. All these constructions require expensive modular multiplication,
exponentiation, or pairing operations, which are too complex for resource-limited
IoT devices. On the other hand, existing RS schemes are mainly designed based
on the traditional difficult problems in number theory; however, the rapid devel-
opment of quantum computing theory and practice brings great uncertainty to
these schemes. Recent efforts by NIST [25] and other organizations to move
toward post-quantum algorithms have made the design of quantum-secure digi-
tal signatures of high importance.

Hash functions have been extensively studied for decades and have desir-
able performance, minimal security assumptions, and resistance to quantum
attacks. Constructed using hash functions, hash-based signature schemes fea-
turing smaller architectures and key sizes are viable solutions. However, to our
limited knowledge, there is no such a lightweight RS in the literature. Therefore,
we aim at the question of how to design such an RS scheme to fill this gap.
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1.2 Contributions

In general, we make the following contributions in this work:

– To satisfy the application requirements for secure sharing of energy usage
data in smart grids, we propose a hash-based RS scheme HRSS. It can provide
flexible privacy-enhanced data sharing mechanisms for customers and ensure
data verifiability for third party service providers, depending on different data
usage demands.

– Our HRSS is the first quantum-safe RS with minimal security assumptions.
As shown in Table 1 of Sect. 6, its security depends only on the security of
underlying hash functions.

– We instantiate and evaluate the performance of our design. Theoretical and
experimental comparisons with recent works show that HRSS is practical for
smart grids. Let’s take the example of a requirement to authenticate the data
containing 100 sub-messages and remove 50 sub-messages from it. The total
time cost (and energy consumption) of HRSS is 55.46% and 2.06% of that
of the schemes in [21] and [31], respectively. Similarly, the secret key size is
about 15.38% and 1.98% of that of the schemes in [21] and [31], respectively;
the public key size is about 0.88% and 0.01% of that of the scheme in [21]
and [31], respectively.

– Due to the underlying SPHINCS+ framework, our signature size and the
redacted signature size are longer than the above state-of-the-art works; how-
ever, it is still reasonable. We also discuss possible solutions on how to reduce
the size.

1.3 Organization

The remaining sections are organized as follows: The next section reviews related
works and Sect. 3 provides the required preliminaries. Section 4 defines the notion
of RS and its security models. In Sect. 5, we present our HRSS and analyze its
security. Section 6 presents the performance analysis, and Sect. 7 discusses how
to optimize our scheme further. We finally conclude the work in Sect. 8.

2 Related Work

Privacy-Preserving Authentication Schemes. The sharing of energy usage data
while ensuring customers’ privacy in smart grid systems has been studied in
the literature. Jeske [15] proposed a privacy-preserving scheme for smart grids
based on a group signature, in which a customer’s energy usage data can be
analyzed without revealing his identity. However, Kong et al. [18] pointed out
that the scheme cannot revoke the anonymity of a malicious user. Then they
designed a new scheme based on group blind signature. However, the scheme
requires multiple interactions between the smart meter and other entities, such
as the smart substation, which has great limitations in practical applications.
Huang et al. [14] designed an energy usage data sharing scheme for large-scale
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smart grid systems based on the forward-secure identity-based ring signature.
Their scheme eliminates the process of public key certificate verification, and the
property of forward security enhances the security of the smart meter’s secret
key. However, the scheme has a high computation complexity. Taking advan-
tage of the tamper-proof and traceable features of blockchain technology, Tang
et al. [36] designed a multi-authority traceable ring signature scheme for energy
consumption data collection; however, the heavyweight pairing operations make
the scheme inefficient for smart meters. Gope [12] et al. put forward a privacy-
preserving data aggregation scheme for dynamic electricity pricing-based billing.
However, authenticated encryption-based constructions [17,37] require the data
sender and receiver to share a secret key in advance, thus limiting the flexi-
bility of sharing data. Ahene et al. [1] designed a certificateless signcryption
with proxy re-encryption scheme for smart grids, but the scheme is inefficient.
Sui et al. [34] et al. designed an identity-based signcryption protocol for smart
grids. Their focus is to collect a set of customers’ energy usage data for a data
collector (such as the utility company), and the collector’s computational cost
is distributed to all smart meters. In fact, none of the above schemes are con-
sidered from the customers’ perspective, allowing them to control the amount
of information to be disclosed. Besides, Saxena et al. [32] designed an efficient
one-time signature scheme for delivering authentic control commands in smart
grids. However, since they only focus on the accuracy of command delivery, the
scheme does not consider privacy issues.

RS Schemes. Johnson et al. [16] designed the first RS scheme based on a
Merkle hash tree and Goldreich-Goldwasser-Micali (GGM) tree [11]. However,
Chang et al. [7] pointed out the scheme cannot hide the length of removed mes-
sage blocks from the structures of the redacted trees. Such length information
could be critical when the deleted message has low entropy. Nojima et al. [27]
proposed a storage-efficient RS scheme for bit-wise redaction, which employs a
prime sequence generator and the Goldreich-Levin hard-core predicate [10] to
share random primes to redact message blocks and hide the removed message
blocks. However, the scheme is computationally inefficient. Chang et al. [7] pro-
posed a variant of the GGM tree and constructed a new RSA-like hash function
to map an annotated string to a set of random elements on the basis of a division-
intractable hash function and strong RSA assumption. Based on the above com-
ponents and an underlying RS scheme for sets, they proposed an RS scheme for
strings. There are also many other RS schemes that focus on achieving some addi-
tional features in the literature, such as transparency [9,24], accountability [30],
mergeability [29], and unlinkability [6]; however, the additional attributes usu-
ally bring performance degradation, making it difficult for these solutions to be
competitive in resource-constrained environments. Recently, Liu et al. [21] put
forward a bilinear-map accumulator-based RS scheme; the batch-data-block ver-
ification property in their scheme improves the signing and verification efficiency.
However, the scheme still requires many exponentiation and pairing operations.
Sanders [31] proposed an RS scheme with constant signature size; however, this
property is traded off at the expense of computational performance and key
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length. In addition, the above RS schemes are designed based on the traditional
difficult problems in number theory. Considering that quantum computers will
likely break existing cryptographic algorithms and threaten the security of our
data, there is a strong desire to design a lightweight quantum-safe RS to ensure
smart grid security.

3 Preliminaries

This section reviews some basic concepts of collapsing hash functions, pseudo-
random generator (PRG), and the SPHINCS+ framework.

3.1 Collapsing Hash Functions

Informally, a hash function H : {0, 1}∗ → {0, 1}μ is collision-resistant if it is
hard to find x1 �= x2 such that H(x1) = H(x2). Collapsing hash functions [8]
serve as a replacement for the collision-resistant one in the post-quantum setting.
Roughly speaking, the collapsing property requires that given a superposition
of values x1, measuring H(x1) has the same effect as measuring x1. We refer
readers to [8] for the detailed security definition of collapsing hash functions.
For implementing protocols in practice, certain hash functions like SHA-2 and
SHA-3 are collapsing.

3.2 PRG

PRGs [4] are computable deterministic functions extending a short random seed
into a longer, pseudorandom string.

Let G(·) : {0, 1}μ → {0, 1}ν be a computable deterministic function with
ν > μ. Let G(s) ∈ {0, 1}ν be the result of a input seed s ∈ {0, 1}μ. G(·) is a PRG
if G(s) cannot be distinguished from a uniformly random string string ∈ {0, 1}ν .
When ν = 2μ, we call this a length-doubling PRG. In our case, we use such a
PRG to expand hash values.

3.3 SPHINCS+ Framework

SPHINCS+ is a stateless hash-based signature framework [2] designed based on
the SPHINCS [3] scheme and has been submitted to the third round of the
NIST PQC standardization project. At a high level, it works in a similar way to
SPHINCS, but with improvements in speed and signature size.

SPHINCS+ uses a hierarchical structure of Merkle trees (MTs) with one-time
signatures (OTSs) and few-time signatures (FTSs) at their leaf nodes. The public
key is the root of the top MT. Leaf nodes of the inner MTs are OTS schemes
(i.e., WOTS+), which are used to sign the roots of the next-level MTs. Leaf
nodes on the lowest-level MTs are FTS schemes (i.e., FORS), which are used to
sign the messages.
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Generally, a SPHINCS+ framework consists of three algorithms, i.e.,
S.KeyGen, S.Sign, and S.Verify. Its security is based on the properties of the
functions used to instantiate all the cryptographic function families. The pro-
posal in [2] introduces 36 different parameter sets on the basis of three different
arguments (i.e., hash function, security level, and a trade-off between signature
size and speed). In this work, we choose the variant of SPHINCS+-128f opti-
mized for speed with the SHA-256 hash function for our construction, which
matches NIST security level 1. We refer readers to [2] for a full specification of
SPHINCS+.

4 Definition of RS Schemes

Here, we review the general definition of RS schemes, following with unforgeabil-
ity and privacy properties.

4.1 Syntax

Definition 1. An RS scheme consists of four following algorithms:

– (ssk, spk) ← KeyGen(λ): On input a security parameter λ, it returns a
secret/public key pair (ssk, spk).

– σ ← Sign(ssk,M): On input ssk and a message M = {m1,m2, . . . ,mn}, it
returns a signature σ.

– σ′ ← Redact(spk,M, σ, M̄): On input spk,M, σ, and a sub-message M̄ ⊆ M
to be redacted, it generates a signature σ′ for the retained message M ′ ←
M\M̄ .

– d ∈ {0, 1} ← Verify(spk,M ′, σ′): Taking as input spk,M ′, and the candidate
signature σ′, it outputs a verification decision d ∈ {0, 1}.

4.2 Correctness

An RS scheme is correct if following conditions hold:
(1) The signature σ produced by Sign is valid under Verify. Namely, given

(ssk, spk) ← KeyGen(λ), σ ← Sign(ssk,M), the equation Verify(spk,M, σ) = 1
holds.

(2) The signature produced by Redact is valid under Verify. Namely,
based on (1), for any message M̄ ⊆ M to be cut and any signature σ′ ←
Redact(spk,M, σ, M̄) for M ′ (M ′ = M \M̄), the equation Verify(spk,M ′, σ′) = 1
holds.

4.3 Security Model

We here introduce the unforgeability and privacy properties of RS schemes.
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Unforgeability. The unforgeability requires that no one can compute a valid
redactable signature without knowing the secret key. This property is similar
to the unforgeability requirement for standard signature schemes. Experiment
UnforgeabilityRS

A (λ) desceibes the model.

Experiment UnforgeabilityRSA (λ):

(ssk, spk) ← KeyGen(λ)

(M∗, σ∗) ← ASign(ssk,·)(spk)

Let i = 1, 2, . . . , qs be A’s queries to Sign oracle
Return 1 if

Verify(spk, M, σ) = 1 ∧ M∗ �⊂ Mi for 1 ≤ i ≤ qs

Definition 2. An RS scheme is existentially unforgeable against adaptive
chosen-message attacks (eUF-CMA) if for any probabilistic polynomial-time
(p.p.t.) algorithm A, the probability that the Experiment UnforgeabilityRS

A (λ)
returns 1 is negligible.

Privacy. Privacy requires that no party other than the signer and the redactor is
able to derive any information about redacted elements. This property is covered
by the following experiment Experiment PrivacyRS

A (λ).

Experiment PrivacyRSA (λ):

(ssk, spk) ← KeyGen(λ)

Q ← ASign(ssk,·)(spk), where Q = (M0, M̄0, M1, M̄1)

Return 0 if
M0 = M1 or |M0| �= |M1| or M0\M̄0 �= M1\M̄1

b′ ← ALoRRedact(...,ssk,b)(spk, Q)

Oracle LoRRedact runs once as follows:
b ← {0, 1}
(Mb, σ) ← Sign(ssk, Mb)

Q ← ASign(ssk,·)(spk)

Return (M ′, σ′) ← Redact(spk, Mb, M̄b, σ)

Return 1 if b′ = b

Definition 3. An RS scheme is private if for any p.p.t. algorithm A, the prob-
ability that the Experiment PrivacyRS

A (λ) returns 1 is negligible.

5 Our Proposed HRSS

Drawing on the ideas of [16] but overcoming its privacy leakage and inefficiency
problems, this section describes a practical RS scheme HRSS. We use the variant
of GGM binary tree generation algorithm suggested by [7], a length-doubling
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PRG, and the underlying SPHINCS+ framework consisting of three algorithms
(i.e., S.KeyGen, S.Sign, and S.Verify) as building blocks. We later present its
security analysis.

5.1 Our Design

Our idea is as follows: The smart meter assigned by the utility collects the
customer’s energy usage data M and divides it into a sequence of segments
m1,m2, . . . ,mn, where each segment can simply be an automatic unit such as a
word. It uses the step 1) algorithm in Sign to construct a random GGM binary
tree T with n leaves, where each internal node of T has exactly two children. It
then selects a random seed s for a chosen PRG G(·) and associates it with the
root. The secret label si of each leaf i is then computed from s in a top-down
manner along with T . Note that the description of the structure of T is required
for the regeneration of the random value si. Hereafter, the description is stored
together with the seed for ease of presentation. Now, the smart meter computes
the hash value hε of the root node ε by using the step 3) algorithm in Sign and
signs it by using the underlying SPHINCS+ framework. The smart meter then
sends the data and its signature to the customer’s repository. To share parts of
the authenticated data with a third party, the customer controls the repository
to reconstruct T , derive a redacted signature for the shared data M ′, and returns
the third party with M ′ and its signature.

When mi needs to be removed, the associated leaf si and all its ancestors
will be removed. Let us define the notion of co-nodes associated with i to be the
siblings of the nodes along the path from i to the root. In this case, the corre-
sponding hash value hi and new seed(s) {su : each u is a co-node of i} are set as
a part of the signature for M ′ because they are essential for computing hε. Due
to the merit of the random tree, the redacted tree will not disclose the length (or
the number) of the deleted sub-messages. Taking Fig. 2(d) as an example, from
the receiver’s perspective, the hash value h100 can be calculated directly by a sin-
gle leaf node, or iteratively calculated by the hash of multiple child nodes. This
is different from Johnson et al.’s construction in [16], in which some information
on the number of leaf nodes removed may be guessed from the redacted tree.
The verification executed by the third party is straightforward, i.e., recovering
hε and checking its signature by using the underlying SPHINCS+ framework.
Figure 2 presents a simple example of HRSS and the detailed construction is
shown below:

– Setup: The algorithm takes a security parameter λ as input. The signer runs
S.Setup(λ) to generate a secret key sk and a public key pk for the underlying
SPHINCS+ framework. Let H(·) and G(·) be a collapsing hash function and
a length-doubling PRG as described in Sect. 3.2, respectively. It stores the
signer’s secret key ssk = sk and publishes spk = {pk,G,H(·)}.

– Sign: Given ssk and a message M = {m1,m2, . . . ,mn} to be signed, the
signer performs as follows:
1. It constructs a n-leaf random GGM binary tree as the following:
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• It randomly chooses r ∈ {1, . . . , n − 1}.
• Recursively, it generates a tree T1 with r leaves and a tree T2 with

n − r leaves in the usual top-down manner.
• It obtains a binary tree T such that T1 and T2 are its left subtree and

right subtree, respectively.
• It assigns mi to each leaves in T . Figure 2(a) takes M = {m1, ...,m6}

(r = 3) as an example to construct a tree T .
2. We let nodes of T with elements of {0, 1}∗, so that a node u has children

u0 and u1. It picks a random �-bit seed s and uses G(·) to recursively
compute secret labels for all nodes in T such that (su0, su1) ← G(su). For
example, (s0, s1) ← G(s) and (s00, s01) ← G(s0) (refer to Fig. 2(b)).

3. It uses H(·) to generate hash values bottom-up for each node in T as
follows:

• For each leave node i, 1 ≤ i ≤ n, it computes hi = H(0, si,mi)1,
where si is the secret label of leaf i.

• For an internal node u, it recursively compute hu = H(1, hu0, hu1); if
a node only has a left child, then computes hu = H(1, hu0).

In this manner, the hash value of the root node ε is computed as hε =
H(1, h0, h1). The results are represented in Fig. 2(c).

4. It computes σε = S.Sign(sk, hε).
5. It returns σ = (r, s, σε) as the signature for M .

– Redact: Given spk, M , σ, and a sub-message mi ∈ M to be cut2, the redactor
executes as follows:
1. It parses σ as (r, s, σε).
2. It outputs ⊥ to indicate failure if mi /∈ M ; otherwise, it reconstructs the

tree T , assigns mi to its leaves, computes secret labels as well as hash
values for all nodes of T as the same as in Sign.

3. Note that when a message mi is removed, the associated leaf i and all
its ancestors are to be removed, resulting in a collection of subtrees.
Define the notion of co-nodes associated to i to be the siblings of the
nodes along the path from i to the root. It returns σ′ = (hi, {su :
each u is a co-node of i}, r, σε) as the signature for M ′.

As depicted by Fig. 2(d), when m4 is removed from M , the tuple
(s0, h100, s101, s11) will be revealed for computing hε. Hence that the signature
for M ′ = {m1,m2,m3,m5,m6} is σ′ = (s0, h100, s101, s11, r, σε).

– Verify: On input M ′ and its signature σ′, it proceeds as follows:
1. It parses σ′ as (hi, {su : each u is a co-node of i}, r, σε).
2. By using the received information, it recovers the hash value hε for the

root of T as described in Sign.
3. It outputs 1 if the equation S.Verify(pk, σε) = 1 holds, and 0 otherwise.

1 As stated by Micali and Sidney [23], for implementing protocols in practice, we
would expect Fs(x) = H(s, x) to behave like a pseudorandom function if s is chosen
at random. Similar to [13,16], we here treat Fs(x) = H(0, s, x) as such a function,
where 0 is a domain-separation tag.

2 Note that Redact supports the redaction of multiple sub-messages simultaneously.
For ease of presentation, we here only redact one sub-message.



564 F. Zhu et al.

(a) An example of tree T for a message M =
{m1, ...,m6} (r = 3).

(b) Compute secret labels for nodes in T by
using (su0, su1) ← G(su).

(c) Compute hash values for nodes in T . (d) When m4 is removed, the tuple
(s0, h100, s101, s11) will be revealed for
computing the hash value hε for the root
node.

Fig. 2. A simple example of HRSS construction.

5.2 Correctness

The correctness of HRSS is directly ensured by the used hash functions, thus
omitted here for simplicity.

5.3 Security Analysis

Recall that in [2], generic attacks to SPHINCS+ framework against distinct-
function multi-target second-preimage resistance, pseudorandomness, and inter-
leaved target subset resilience have been formally analyzed. Unlike [2], we here
treat our main building blocks as black-box constructions. In this regard, the
security of HRSS is proved based on the security of collapsing hash function
H(·), (post-quantum) PRG G(·), and SPHINCS+ framework secure against exis-
tential forgery. However, from an implementation point of view, the security of
HRSS relies on the properties of the functions used to instantiate all the crypto-
graphic function families. The following two theorems analyze the unforgeability
and privacy of HRSS.

Theorem 1 (Unforgeability). If H(·) is a collapsing hash function, G(·) is a
secure PRG, and the underlying SPHINCS+ framework is eUF-CMA-secure, then
the proposed HRSS is eUF-CMA-secure.

Theorem 2 (Privacy). The proposed HRSS is privacy preserving if Fs(x) =
H(0, s, x) is a secure pseudorandom function.

The proof of Theorem 1 and Theorem 2 are shown in the Appendix.
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6 Performance Analysis

We here compare HRSS with very recent works in [21,31] to show the perfor-
mance of our scheme.

Features. The scheme in [21] is designed based on a bilinear-map accumulator
(relying on the t-strong Diffie-Hellman (SDH) assumption) and a standard sig-
nature scheme (SDS); the scheme in [31] is designed depending on the discrete
logarithm (DL) assumption in bilinear groups. In contrast, our scheme is solely
based on the security of underlying hash functions. Therefore, we have mini-
mal security assumptions and our scheme is the first hash-based post-quantum
design.

Table 1. Comparison of features with recent RSSs

Scheme [21] [31] Our

Security Assumption t-SDH Security of SDS DL Security of Hash Functions

Post-quantum × × �

Computation and Storage Costs. In order to evaluate the computation cost and
space requirement of our HRSS, we first choose SHA-256 as the base hash func-
tion and ‘SPHINCS+-SHA-256-128f-simple’ parameter set in SPHINCS+ web-
site3 as the concrete parameters. Recall that [21] uses an RSA signature scheme
for their performance analysis. To achieve enough security level, we choose 3072
bits key length for the RSA scheme and the popular BLS12-381 elliptic curve
for pairings. Note that in this setting, the two schemes achieve 128 bits security
level for classical computers while our scheme achieves the same security level
for quantum computers.

To evaluate the real-time complexity of HRSS and schemes in [21,31], we use
a Raspberry Pi 3B+ device to conduct an experimental evaluation for simplicity;
we note that the third party may not perform the Verify with a restricted device.
We use the runtime tested in [5] on the same device for the time cost of our
underlying SPHINCS+ framework. We also use the OpenSSL library4 and MCL
library5 for testing pairing-based operations and RSA operations, respectively.

Let n and k denote the number of sub-messages in the original message M
and the retained message M ′, respectively. Since the scheme in [21] divides the
collected message into groups according to the dependency of data blocks and
supports batch verification of a group of sub-messages, we hereafter assume that
each group contains ω = 5 sub-messages for simplicity.

Figure 3 compares the computation cost of each algorithm in these schemes.
From Figs. 3(a) and 3(d), we can see that our HRSS has minimal key genera-
tion and signature verification costs. However, the time cost in Sign (refer to
3 https://sphincs.org.
4 https://www.openssl.org/.
5 https://github.com/herumi/mcl.

https://sphincs.org
https://www.openssl.org/
https://github.com/herumi/mcl
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(b) Comparison of computation
cost for Sign.
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(c) Comparison of computation
cost for Redact when k < n = 100.

20 40 60 80 100

200

400

600

800

k

T
im

e
co
st

(i
n
m
s)

[21]
[31]
Our

(d) Comparison of computation
cost for Verify when k < n = 100.

Fig. 3. Comparison of computation costs of Sign, Redact, and Verify between HRSS
and [21,31], respectively.

Fig. 3(b) is not in the case. In fact, our scheme requires the highest compu-
tation cost in this algorithm when n < 75 and achieves the lowest cost when
n > 1245. In addition, Fig. 3(c) shows the time cost in Redact. Due to the merit
of the accumulator, the redaction operation in [21] only requires the deletion of
witnesses (i.e., the membership proof generated by the accumulator) of corre-
sponding deleted elements without any mathematical operations; therefore, their
scheme has the best redaction cost. In spite of this, the cost of our scheme is still
reasonable. For example, deleting 50 sub-messages from the original data (i.e.,
containing 100 sub-messages) takes 30.01 ms. Here, we note that it is sufficient
to set n = 100 in our analysis. The advantage of our scheme will be greater when
the value of n is larger because we do not need expensive exponentiation or pair-
ing operations as in other schemes. Moreover, Table 2 shows the computation
time for each scheme for the above example. In this case, the total time cost of
our scheme is 1018.25 ms, which is 55.46% of the scheme in [21] and 2.06% of
the scheme in [31], respectively.

In our scheme, the signature for M is σ = (r, s, σε), in which r ∈ (1, n) is a
random number, s is the random seed for the PRG, and σε is the output of the
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Table 2. Time cost of HRSS and schemes in [21,31] when n = 100, k = 50 (in ms)

Scheme Algorithm

KeyGen Sign Redact Verify

[21] 310.04 1091.36 0 434.56

[31] 46274.20 100.45 2825.17 289.40

Our 26.00 870.01 30.01 92.23

underlying SPHINCS+ framework. We then set the size of r and s to 4 bytes and
32 bytes, respectively. In addition, based on the above-selected parameter set,
the secret key size, public key size, and the signature size for ‘SPHINCS+128f’
are 64 bytes, 32 bytes, and 17088 bytes, respectively. Therefore, the secret key
size, public key size, and the original signature size for our proposed HRSS are 64
bytes, 32 bytes, and 17124 bytes, respectively. However, removing a sub-message
mi will increase the signature size for M ′. This is because when mi is removed,
seeds for i’s co-nodes in tree T will be listed in the final signature. In the worst
case, the signature for M ′ is about (32n + 17088) bytes. We now summarize
space requirements of HRSS and schemes in [21,31] in Fig. 4.

Figures 4(a) and 4(b) compare the secret key and public key sizes, respec-
tively. Note that the key size is an important performance metric for measuring
a cryptographic scheme, although it has been neglected by many existing works.
One can find that our scheme has the smallest secret/public key size. In fact, for
example, when n = 100, our secret key size is about 15.38% of that of the scheme
in [21] and 1.98% of that of the scheme in [31]; our public key size is about 0.88%
of that of the scheme in [21] and 0.01% of that of the scheme in [31]. Figure 4(c)
lists the original signature size for M of these schemes. Such size for the scheme
in [21] grows linearly with respect to n, while our scheme and the scheme in [31]
have fixed-length signature sizes, i.e., 17124 bytes and 288 bytes, respectively. In
Fig. 4(d) and Fig. 4(e), we also provide two sets of numerical results to show the
original and redacted signature sizes in the respective scenarios. The downside is
that our solution requires a long signature length; however, the size is affordable.

Energy Consumption. The energy consumption mainly depends on the compu-
tation time and can be evaluated as Econ = Pcpu ∗Ttime, where Pcpu is the max-
imum CPU power and Ttime is the corresponding time cost [20]. The Raspberry
Pi 3B+ device draws an average current of about 2.5 Amp at 5 V supply voltage
when it is active, hence that Pcpu is 12.50 W . In this way, when n = 100, k = 50,
the energy cost of our HRSS and schemes in [21,31] amount to roughly 12.73 J ,
22.95 J , and 618.62 J , respectively.

Therefore, our HRSS is more worthwhile for energy-constrained environments
than others.

In summary, in addition to the signature size, our HRSS has a reasonable
performance in terms of computation cost, space requirement, and energy con-
sumption.
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(b) Comparison of public key size.
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Fig. 4. Comparison of space requirements between our HRSS and [21,31]. (a) and
(b) show the sizes of secret and public keys, respectively; (c), (d), and (e) show the
comparison of signature sizes under different conditions, respectively.

7 Discussion

The above performance analysis shows that our scheme has a longer signature
size due to the underlying SPHINCS+ framework. Although the work in [2] pro-
vides different instantiation parameters for the SPHINCS+ framework to allow
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a trade-off between signing speed and signature size, it is not in our interest
to obtain a shorter signature length at the expense of signing speed. To reduce
the signature size, a possible solution is to replace the underlying SPHINCS+

framework with the hierarchical signature system (HSS) scheme (i.e., a multi-
tree variant of the Leighton-Micali signature (LMS) scheme) recommended by
NIST [26]. However, for security concerns, such a stateful scheme requires the
maintenance of updated non-duplicate secret keys during each signature genera-
tion process. Besides, very recently, an e-print work [40] suggested SPHINCS-α,
which is a variant of SPHINCS+ that may help to obtain a shorter signature
length.

8 Conclusions

Motivated by the privacy-preserving authentication and flexible data sharing
demands in smart grids, in this work, we propose HRSS, the first quantum-
secure RS scheme with security solely based on the security of underlying hash
functions. We also evaluate the performance of our design. Theoretical and exper-
imental results show that HRSS has a desirable computation (and energy con-
sumption) cost and the smallest secret/public key size in comparison to the
state-of-the-art schemes. Therefore, our construction is practical for smart grids.

As we mentioned before, HRSS is not competing to be the RS scheme with
the smallest signature size. In view of this, a research challenge is to design a
HRSS construction with a smaller or even constant signature size. This may be
further improved by the performance enhancement of the underlying SPHINCS+

framework.

Acknowledgments. We have no conflicts of interest associated with this manuscript.
We would like to thank the anonymous reviewers for their valuable comments. This
work was supported in part by Australian Research Council (ARC) Linkage Project
(LP160101766), ARC Discovery Project (DP180103251), the Data61 collaborative
research project - ‘Enhancing Security and Privacy of IoT’, National Natural Science
Foundation of China (62032005), and Science Foundation of Fujian Provincial Science
and Technology Agency (2020J02016).

Appendix

Proof of Theorem 1. For space reasons, we provide a proof sketch here. Our proof
is similar to [13,16]. The proof implies that if there exists a p.p.t. adversary A
that can break our HRSS, then there exists another adversary F who can unitize
A to break the collision resistance of collapsing hash function H(·) or the security
of G(·) or the unforgeability of SPHINCS+.

In Setup Phase, F executes Setup to obtain the secret key sk of the SPHINCS+

framework and the public key spk = {pk,G,H(·)}, and then sends spk to A.
In Query Phase, A is allowed to issue several oracle queries for a message M
according to any adaptive policy such as pseudorandom value oracle OG, hash
oracle OH , and signing oracle OSign ( OG and sf OH are publicly available):
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– OG: On input M , it returns a n-leaf random GGM tree for TM , secret labels
for nodes in TM , and auxiliary information (rM , sM ), where rM and sM are
used to generate TM and its node labels, respectively.

– OH : On input M, rM , sM , and TM , it computes hash values bottom-up for
nodes in TM and returns the hash value hεM

for the root node εM .
– OSign: On input hεM

, it returns a signature σεM
.

Note that this process is equivalent to the natural setting of the scheme from
A’s perspective, and each query is recorded by F . For ease of presentation, we
define the following notations. Let Mi, i = 1, 2, . . . , qs be the set of OSign queries
made by A. Let su,i and hu,i denote the key and hash value for node u at Mi,
respectively. For example, sε,i denotes the random key for use with Mi and its
redactions; hε,i denotes the hash value for the root of the random GGM tree of
Mi. The notation αu,i represents the input of the hash at node u at Mi, i.e.,
hu,i = H(αu,i). We also assume that all trees have a same rMi

in this forgery
game as it can reduce the difficulty for A.

In Output Phase, A either admits failure or successfully outputs a valid
forgery (hi

∗, {su
∗ : each u is a co-node of i}, rM∗ , σεM∗ ) on M∗, where r∗ = rMi

,
σεM∗ = S.Sign(sk, hεM∗ ), and M∗ �⊆ Mi.

If for all i, the case εM∗ �= εMi
holds, F finds an existential forgery of

SPHINCS+ framework. Assume that there exists some i such that the case εM∗

= εMi
holds. Denote by TM∗ the hash tree corresponding to M∗. F now com-

pares TM∗ and TMi
corresponding to Mi: Due to the properties of the (random)

Merkle tree, TM∗ is a sub-tree of TMi
. Also, the leaf/internal nodes of TM∗

should form leaf/internal nodes of TMi
. Otherwise, if there is some node v that

is a leaf in TMi
but is an internal node in TM∗ , then F finds a hash collision

H(αv,∗) = H(αv,i) since the hash value calculation method of leaf nodes and
internal nodes is different.

Possibly, there may exist a case that there is some leaf node v ∈ TM∗ (such
that M∗

v = Miv) but v is not found in the tree corresponding to M ′
i , where

M ′
i is the set of the redactions of Mi. In this case, A’s forgery must disclose su

where u is some ancestor if v. However, note that 1) su should not be revealed
by any oracle queries, and 2) su is not any of the key values of u’s ancestors.
Therefore, the value should be guessed by A. Hence, F can use it to break G(·).
This completes the proof. �
Proof of Theorem 2. Our Privacy game states that given a sub-message/signature
pair with two possible source messages, no one can judge from which source
message the sub-message stems. In such the game, the p.p.t. algorithm A chooses
two equal-length messages M0 and M1 and sends them to a challenger C such
that M0 and M1 are identical except in a sub-message X0 �= X1, i.e., M ′ =
M0\X0 = M1\X1, X0 ⊆ M0, and X1 ⊆ M1. C picks Mb, b ∈ {0, 1} and outputs
M ′ by executing Sign and Redact. A is allowed to make any signing queries to
C, and finally outputs its guess on b.

Note that when X0 (say v-th position) is removed from M0, the disclosed
value associated to X0 in the received information is hv, where hv = H(0, sv,X0)
and sv is the key for v. Since Fs(x) = H(0, s, x) is a secure pseudorandom
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function, based on the claim in [23], we can simply treat each such hv as an
independently selected random value. This situation also applies to removing
X1 from M0. That is to say, no information about removed nodes in the output
of Sign remains in the output of Redact, and A cannot output its guess on b
better than at random. Hence the scheme is privacy-preserving. �
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Abstract. Cyberattacks against industrial control systems pose a seri-
ous risk to the safety of humans and the environment. Industrial intrusion
detection systems oppose this threat by continuously monitoring indus-
trial processes and alerting any deviations from learned normal behavior.
To this end, various streams of research rely on advanced and complex
approaches, i.e., artificial neural networks, thus achieving allegedly high
detection rates. However, as we show in an analysis of 70 approaches from
related work, their inherent complexity comes with undesired properties.
For example, they exhibit incomprehensible alarms and models only spe-
cialized personnel can understand, thus limiting their broad applicability
in a heterogeneous industrial domain. Consequentially, we ask whether
industrial intrusion detection indeed has to be complex or can be SIM-
PLE instead, i.e., Sufficient to detect most attacks, Independent of hyper-
parameters to dial-in, Meaningful in model and alerts, Portable to other
industrial domains, Local to a part of the physical process, and computa-
tionally Efficient. To answer this question, we propose our design of four
SIMPLE industrial intrusion detection systems, such as simple tests for
the minima and maxima of process values or the rate at which process
values change. Our evaluation of these SIMPLE approaches on four state-
of-the-art industrial security datasets reveals that SIMPLE approaches
can perform on par with existing complex approaches from related work
while simultaneously being comprehensible and easily portable to other
scenarios. Thus, it is indeed justified to raise the question of whether
industrial intrusion detection needs to be inherently complex.

1 Introduction

Cyberattacks against Industrial Control System (ICSs) with the goal of finan-
cial gains, damaging equipment, or even risking human lives by blocking normal
operations or injecting false data are becoming more prevalent [7]. Recent exam-
ples of such attacks include the attempted poising of a Florida city’s water supply
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
V. Atluri et al. (Eds.): ESORICS 2022, LNCS 13556, pp. 574–594, 2022.
https://doi.org/10.1007/978-3-031-17143-7_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-17143-7_28&domain=pdf
https://doi.org/10.1007/978-3-031-17143-7_28


Can Industrial Intrusion Detection Be SIMPLE? 575

by increasing its sodium hydroxide concentration [59]. Increased connectivity to
the Internet is one driver behind this development, but practice shows that even
air-gapped systems are not secure against sophisticated attacks anymore [7].

Besides preventive security mechanisms, e.g., integrity protection, recent
research has seen a rising interest in detecting intrusions into industrial net-
works. Such Intrusion Detection System (IDSs) passively monitor processes to
alert about anomalous behavior before any real damage can occur and promise
to provide a non-intrusive, retrofittable, and easily deployable security solution.
In contrast to traditional IDSs known from office or data center environments,
Industrial Intrusion Detection System (IIDSs) have the unique advantage that
they can leverage the predictability and repetitiveness of ICSs to identify even
advanced and stealthy attacks [11]. Auspicious results are reported by process-
aware IIDSs, which incorporate the physical state of the monitored ICS into
their decision-making. Consequently, they received tremendous interest from the
research community, with state-of-the-art IIDSs based mainly on machine learn-
ing, e.g., artificial neural networks [50], graph theory [57], or linear algebra [11].

The powerful underlying IIDS methodologies yield promising detection per-
formances, however, at the cost of complexity, requiring resource-intensive oper-
ations and hindering generalizability [51,76]. Furthermore, the alarms raised by,
e.g., artificial neural networks, are often not explainable, making it challenging
to derive concrete actions for mitigating attacks [28]. Meanwhile, we observe that
attacks, like the one on Florida’s water supply [59], lead to apparent deviations
from normal operations. Therefore, in this paper, we pose the question: Do IIDSs
indeed have to be complex to reliably detect attacks on industrial systems?

To answer this question, we study to what extent IIDSs can be simple, e.g.,
merely keeping track of the minimum and maximum of observed process values,
and whether they perform on par with complex related work. Surprisingly, such
approaches have obtained no attention so far, likely as they have never been con-
sidered suitable in traditional networks, e.g., data centers. However, as we show
in this paper, this conclusion is not necessarily true for industrial networks due
to the repetitive and predictable nature of their underlying physical processes.
SIMPLE IIDSs avoid many of the drawbacks of complex solutions as they are
Sufficient to detect most attacks, operate Independently of parameters, provide
Meaningful alerts, are Portable to other industrial scenarios, require only Local
process knowledge, and can be realized using Efficient computational operations.

Contributions. More precisely, we present the following contributions to deter-
mine whether the complexity of state-of-the-art IIDSs is indeed needed:

• We analyze the current state of IIDS research. Our study of 70 approaches
unveils limitations w.r.t. deployability, computational complexity, gen-
eralizability, focus on non-stealthy attacks, and incomprehensibility of
alarms (Sect. 3).

• To assess whether industrial intrusion detection needs to be inherently com-
plex, we design four intentionally SIMPLE IIDSs1 characterized by straight-
forward, relatable, and easy-to-compute concepts (Sect. 4).

1 Implementation available at: https://github.com/fkie-cad/ipal ids framework.

https://github.com/fkie-cad/ipal_ids_framework
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• We then compare the performance of our SIMPLE IIDSs against state-of-the-
art complex related work alongside four industrial datasets. Our results show
that SIMPLE IIDSs detect more attacks than complex related work detects
on average and can be ported effortlessly across industrial domains (Sect. 5).

2 Intrusion Detection in Industrial Control Systems

Industrial networks are responsible for operating today’s manufacturing plants
and critical infrastructure. Due to their high degree of automation, industrial
communication almost exclusively relies on machine-to-machine communication
between sensors measuring the current physical environment and actuators inter-
acting with the external world. In contrast to the unpredictable behavior of tra-
ditional networks induced by spontaneous human interactions, industrial net-
works exhibit regularly repeating and predictable behavior [76]. These patterns
only change due to failures or after seldom structural changes to the physical
processes, e.g., a manufacturing plant being configured for a new product.

In the past, industrial networks were isolated from the Internet and there-
fore assumed secure; Hence no protection mechanisms, like authentication or
encryption, were integrated. Nowadays, as more connectivity is demanded, e.g.,
for remote monitoring or cross-production plant optimization, these networks
can no longer be considered secure [7]. While retrofitting preventive security
mechanisms requires expensive downtime and is often inapplicable due to legacy
hardware and resource constraints, IIDSs offer a unique alternative opportunity.

IDSs for traditional office and server networks, e.g., Zeek and Snort, usu-
ally define rules for typical malware and attack patterns that trigger an alarm
indicating known suspicious activities. However, due to the industry’s diversity,
attacks are usually unique and targeted, significantly reducing their efficiency.

Contrary, IIDSs can take advantage of the abundance of sensor and actuator
data exchanged over the network. The fact that processes behave predictably
according to physical constraints enables a great potential for anomaly detec-
tion training on benign data and alerting deviations. Specifically, process-aware
IIDSs report excellent detection capabilities, as recent surveys emphasize [23,37].
However, their effectiveness is still questionable, as many detection methodolo-
gies are over-engineered to detect specific attacks in specific systems and are thus
not suitable to detect new and tailored attacks as often observed in industrial
networks [51,76]. Still, process-aware anomaly detection offers the opportunity
to passively and retroactively protect manufacturing plants and critical infras-
tructure against powerful attacks.

3 The State of Industrial Intrusion Detection Research

Given the promise of IIDSs to offer an easily retrofittable solution to secure
industrial networks, the research landscape around industrial intrusion detec-
tion has experienced huge attention across all industrial domains. Different sur-
veys put significant effort into providing a holistic overview of this scattered
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Table 1. Complex approaches govern the current state of industrial anomaly detection
research, and only a few evaluation datasets, like SWaT, are being dominantly used.

Detection Method SWaT WADI HAI

(unique publications) (63) (24) (6)

Artificial NNs (44) Autoencoder (15) [12,16,26,36,40,41,47,52,

58,62,68,75,77,83]

[12,62] [45]

Other NN (12) [1,20,22,29,34,49,50,65,

70,71,73,78]

[1,22,29,34,50,70,73] –

RNN (9) [6,30,39,53–56] [30,56] [13,42]

GAN (5) [5,14,44,60,64] [14,60] –

DNN (3) [43,46,66] – –

Graphs (6) Automata (3) [15,57,79] [79] –

Other (3) [17,35] [17,35,69] –

Miscellaneous (20) Invariants (3) [33,74,82] [33,82] –

Linear algebra (3) [11,24,63] – –

Classifier (2) [9,25] [25] –

Fingerprinting (2) [2,4] [2] –

Matrix Profiles (2) [8,10] – –

Other (8) [18,32,48,80,81] [67,80,81] [21,48,61]

research field [23,37]. Surprisingly and contradicting the initial promise of an
easily retrofittable solution, the current state-of-the-art, governed by all kinds
of machine learning, comes at the cost of a complexity overhead, e.g., in terms
of demanded computational resources, limited generalizability across industrial
domains, or incomprehensiveness of the detection models and emitted alerts. In
the end, this hinders the widespread deployment of security mechanisms.

To shine light on this issue and precisely understand the degree of complexity
in related work, we systematically analyze the IIDS research landscape. We set
out to assess IIDSs that implement anomaly detection, i.e., train models on
benign data, as they are especially suited for industries (cf. Sect. 2). To this end,
we systematically review all papers citing one of the three datasets commonly
used in research [19] (SWaT [38], WADI [3], and HAI [72]) according to Scopus
and Semantic Scholar as of April 20, 2022, resulting in 215 publications for
SWaT, 92 for WADI, and 18 for HAI. We then manually filter for anomaly
detection IIDSs, thus especially excluding supervised machine learning, position
papers, and surveys. As summarized in Table 1, 70 unique publications fulfill
these requirements (some papers use more than one dataset).

We structure found approaches alongside their underlying detection method-
ologies into three broader classes (cf. Table 1). Artificial neural networks (63%
of publications) are usually trained to predict the physical state based on recent
historical samples. They then define a difference measure, e.g., between pre-
dicted and observed state, and raise an alarm if a threshold is surpassed. In
contrast, graph-based IIDSs (9%) aggregate similar expected behavior into (phys-
ical) states of the system with transitions between these states. Unknown states,
transitions, or irregularities in their occurrence indicate an anomaly. A large
class of miscellaneous approaches (28%) shows that the research community has
not settled on a preferred direction even in this confined domain.
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Interestingly, we found that all approaches from Table 1 rely on com-
plex methods: While we occasionally observed related work supplemented with
straightforward methods, e.g., out-of-bound checks [57], to the best of our knowl-
edge, such simple approaches have not yet been evaluated in isolation. In the
following, we detail our survey’s findings by focusing on issues resulting from
their complexity.

Computational Complexity. The implementation of any detection method-
ology should be quick enough to be deployable in real-time environments, i.e.,
detection should not be significantly delayed by processing overhead. E.g., even
if adequate hardware is available, requirements such as GPUs in 23% of the pub-
lications drastically limit deployability. Although artificial neural network model
sizes of about 1.5 MB are claimed to be lightweight enough to be processed by
industrial hardware [30] for other deployments, e.g., on programmable network
switches (as commonly done for traditional IDSs), this is still infeasible.

Hindered Generalizability. IIDS research is characterized by an inherent het-
erogeneity across deployment domains, although underlying fundamental prin-
ciples remain similar (cf. Sect. 2). While it would make sense to transfer the
achievements of IIDS research conducted for one domain to another, it is known
that most published approaches (75% [76]) evaluate a single use-case. Also, in
our survey, we find that IIDSs are evaluated only on a median of 1.5 (2 on aver-
age) different datasets, and since complex IIDSs are fine-tuned to one specific
scenario, they are rarely applied elsewhere [27,76]. Even though some papers
claim generalizability to other domains [46], this claim is not proven.

Incomprehensible Alarms. After an IIDS has indicated a potential threat
by emitting an alarm, further (manual) investigation is necessary to find and
ultimately mitigate its cause. This could include determining the affected part
of the process and isolating it from the rest of the network. While a few IIDSs’
alarms are reasonably descriptive [33,42,57] and would ease in-depth investiga-
tion, such works are rare in our survey. In most cases, the decisions of machine
learning classifies are often incomprehensible or only accessible to highly-trained
specialists. For instance, feeding a vector of process values into an artificial neu-
ral network [46], it is not clear why the vector would be classified as benign or
malicious, preventing timely tracing of an alarm back to its source.

Difficult Deployment. Training an IIDS to a process usually requires config-
uring plenty of hyperparameters, especially for machine learning, which relies on
experts knowing the details of a model. As scientific reproduction studies indi-
cate [27], even IDS experts fail when trying to configure an already published
approach (with source code available) to match the original publication’s results.
While setting up an IIDS is usually done once and, therefore, the training over-
head might be justifiable, industrial processes are subject to change if the pro-
cess is adapted or optimized from time to time. In the worst case, this makes the
trained model obsolete and requires redoing the entire process. Also, verifying a
retrained model is difficult if the model is not humanly comprehensible [28].
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Non-Stealthy Attacks. One common argument to justify complexity is the
goal to unveil stealthy attacks. While approaches evaluated on specifically crafted
datasets exist [11], a closer inspection of the commonly used datasets reveals
that many attacks are not difficult to detect. As shown in Fig. 1 for SWaT,
overshooting or undershooting regular process values, remaining for too long in
a single state (flat line), or unusual steep inclines or declines do not necessarily
require complex detection mechanisms. Still, this is not a flaw of the datasets,
as recent real-world incidents prove. E.g., the sodium hydroxide concentration of
an insecure water treatment plant in Florida was set to hazardous levels (about
100 times increased) [59], constituting a potentially easily detectable real attack.

Fig. 1. Manual investigation of the SWaT dataset reveals that attacks (red) commonly
used for evaluating IIDSs in research are often not stealthy and thus easy to detect.
(Color figure online)

In conclusion, current research on industrial intrusion detection is primarily
driven by complex approaches, while attacks in evaluation datasets and exam-
ples from real-world incidents seem to be detectable relatively straightforward.
Given further drawbacks, i.e., incomprehensible alarms, computational complex-
ity, hindered generalizability, and difficult deployment, it is unknown whether
this complexity is necessary or whether IIDSs could not be (more) simple instead.

4 SIMPLE Industrial Intrusion Detection

To study the question of whether IIDSs indeed have to be complex, we first define
properties that characterize a SIMPLE IIDS (Sect. 4.1). We then present our four
IIDSs (Sect. 4.2) derived from typical attack patterns and natural ICS behaviors,
e.g., that physical and operational limits constrain possible value ranges.

4.1 Sufficient, Independent, Meaningful, Portable, Local and
Efficient

The focus of research on complex IIDSs leads to inherent drawbacks as laid out
in Sect. 3, and to address these issues, we propose six properties for Sufficient,
Independent, Meaningful, Portable, Local, and Efficient (SIMPLE) IIDSs:
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Sufficient. Although simpler in design, an IIDS should be sufficient to detect
most attacks while emitting few false alarms (compared to complex approaches).
Independent. Since training an IIDS to specific scenarios is currently compli-
cated due to plenty of hyperparameters influencing the training process, SIMPLE
models should be independent of parameters and specialized personnel required
to find parameters or re-evaluate a trained model after any modification.
Meaningful. As IIDSs protect physical processes, providing operators with
meaningful alerts is essential. They allow determining which sensors/actuators
behave anomalously and thus take appropriate measures in a timely manner.
Portable. Since the industrial domain is inherently heterogeneous, an IIDS
should be portable to various industrial scenarios. I.e., it needs to be adaptable
to different ICS processes and kinds of sensors/actuators types.
Local. Detection methodologies should be local to individual sensors/actuators
so that they can be adjusted to their particular distinct behavior. Furthermore,
locality enables partially adjusting an IIDS when the ICS is modified, and sen-
sors/actuators are added or removed without obsoleting other models.
Efficient. The detection methodology should be computationally efficient during
training and live detection. Since an ICS’s process may change, quick retraining
avoids extensive periods in which an obsolete model is used. Efficiency during live
detection enlarges hardware and deployment choices and eases timely responses.

Besides SIMPLE, related work already postulated a similar set of require-
ments [28]. Overall, our six properties address the challenges of complex detection
approaches widely found in literature and thus provide the foundation for easily
understandable, lightweight, generalizable, and effective intrusion detection.

4.2 Designing SIMPLE IIDSs

To turn the postulated properties into reality and thus lay the foundation for
answering whether industrial intrusion detection indeed has to be inherently
complex, we design four SIMPLE IIDSs. Our approaches are inspired by typical
attack patterns found in scientific datasets (cf. Fig. 1), natural ICS behaviors,
and share a set of common characteristics as explained in the following.

At the core, a SIMPLE IIDS learns a single model per sensor/actuator of the
ICS and is trained in a single pass. Not only do separate models fulfill locality, but
they are even necessary as process variables exhibit different value ranges, i.e.,
sensors (float) and actuators (discrete), obviating the need for additional nor-
malization known from complex related work (e.g., [1,6,43]). Simultaneously, we
avoid introducing process dependencies into the model, which would inherently
increase complexity. By iterating over the data only once, we significantly reduce
the computational complexity of the training process.

All our detection models train a lower (min) and an upper (max) threshold of
a certain, easily computable property and emit an alarm if one of these thresholds
is exceeded. To account for variability in physical values and between process
cycles due to noise or the fact that training data might not cover all expected
data ranges, we introduce an error margin to the learned thresholds as follows:
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minerr := min − max − min

2
maxerr := max +

max − min

2
The resulting thresholds minerr and maxerr, which are then used for emitting
alarms, effectively double the trained range. While this approach is highly oppor-
tunistic, it is universally applicable and could be theoretically adjusted easily,
yet we refrain from doing so in the spirit of simplicity.

In the following, we present the design of our four SIMPLE IIDSs (MinMax,
Gradient, Steadytime, and Histogram) based on these common characteristics.
As visualized in Fig. 2, each approach is inspired by natural ICS behaviors or typ-
ical attack patterns. We do not claim that our set of SIMPLE IIDSs is exhaustive;
theoretically, many others exist. Nevertheless, the following four approaches are
adequate to study whether the inherent complexity of IIDSs observed in related
work is required. Still, it is essential to note that not every approach is equally
well suited for each type of sensor/actuator.

Fig. 2. We introduce four SIMPLE IIDS ideas detecting over- or undershooting with a
MinMax approach, steep in- or declines with Gradient, flat lines with Steadytime, and
unnatural process fluctuations with a Histogram. Each IIDS trains an allowed range
(green area). If the threshold (green line) is surpassed, an alarm (red arrow) is emitted.
(Color figure online)

MinMax. The minimum and maximum (MinMax) approach (cf. Fig. 2a) detects
whether a sensor’s/actuator’s current value exceeds the range observed in the
training data and raises an alarm if any observation falls outside that range
(± error margin). This approach is motivated by the intuition that process val-
ues of industrial systems relate to physical measurements or setpoints and thus
usually obey certain limits. E.g., temperatures below the freezing point of a liq-
uid are not desirable for pumping it through pipes. Even if the physical setup
does not limit the value range, operational requirements may impose restrictions
on the allowed data range, e.g., the pH value of a liquid may not exceed a specific
range to be non-hazardous. Thus, we assume that an industrial system exhibits
a class of values inside well-defined minimum and maximum limits.

Gradient. Following a similar intuition, the Gradient approach (cf. Fig. 2b)
detects whether a sensor’s/actuator’s slope exceeds the minimum and maxi-
mum observed during training (± error margin). While MinMax observes global
changes, more subtle attacks occurring within these limits may remain unno-
ticed. E.g., as shown in Fig. 1c, the sensor is set to a high value within the
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operational limits, yet far too abrupt, thus introducing a noticeable discontinu-
ity. Hence, the Gradient approach assumes that ICSs have continual character,
i.e., physical values such as temperatures cannot change at arbitrary speed.

Steadytime. Focusing on another temporal aspect, the Steadytime approach
(cf. Fig. 2c) detects whether a sensor/actuator remains static, i.e., does not
change its value, for a shorter or longer time than seen during training (± error
margin). This approach is motivated by the observation that an attack, e.g.,
freezing a sensor/actuator (cf. Fig. 1b) such as a pressure relief valve, cannot be
detected by checking whether a value or the velocity of a value change remains
within certain boundaries (MinMax/Gradient). Since a steady state is difficult
to define for noisy sensor data, Steadytime takes only process values into account
if the number of distinct values during training is sufficiently small (≤ 10).

Histogram. Specifically targeting the occurrence of values, the Histogram app-
roach (cf. Fig. 2d) tracks their distribution within a fixed-sized window and tests
whether it is in line with a histogram seen during training (± error margin). The
underlying intuition expects a similar distribution of reoccurring values between
process cycles. This approach can detect the existence and absence of frequent
value changes, which the other three approaches cannot detect. The histograms
are created by counting the number of times each distinct value appears in a
sliding window. We merge them into a single histogram that covers each value’s
minimum and maximum occurrences across all distinct fixed-sized windows. The
window size should match the duration of a process cycle, which could be auto-
matically determined in an additional run over the dataset prior to training the
histograms. Like Steadytime, Histogram only applies for process values with a
few distinct values (≤10), as comparing two histograms value-by-value is unfea-
sible for noisy sensor data.

These four proposals stand in stark contrast to related work, which focuses
on inherently complex approaches such as leveraging multiple Autoencoders [14]
or fusing two IIDS directions into one solution [26]. While further refinements
to our IIDSs are possible, we explicitly focused on fundamental and minimal-
istic approaches to understand their effectiveness and assess whether industrial
intrusion detection really needs to be complex or can be more SIMPLE instead.

5 Industrial Intrusion Detection Can Indeed Be SIMPLE

Using our four SIMPLE IIDSs, we can now study the fundamental question of
whether industrial intrusion detection inherently needs to be complex or whether
and to which extent SIMPLE approaches provide a viable alternative. To answer
this question, we specifically study whether they are (i) sufficient to detect most
attacks, (ii) competitive to complex approaches from related work, and (iii)
portable across industrial scenarios. To this end, we first provide an overview of
our evaluation setup (Sect. 5.1) before we analyze how our approaches perform
on the widely-used reference dataset SWaT (Sect. 5.2), their portability to three
additional industrial datasets (Sect. 5.3), and ultimately discuss the prospects
of SIMPLE IIDSs for industrial intrusion detection (Sect. 5.4).
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5.1 Evaluation Setup

We begin our analysis by describing the implementation, datasets, and evaluation
metrics underlying our evaluations.

Implementation. We implemented our four SIMPLE IIDSs (cf. Sect. 4.2)
in Python on top of the IPAL framework [76], which offers a holistic scien-
tific platform to implement, evaluate, and compare industrial intrusion detec-
tion approaches. Most importantly, IPAL introduces a unified representation
for the data input, which facilitates the seamless application of IIDSs to many
datasets. Furthermore, it provides (re-)implementations of state-of-the-art IIDSs
from related work [76], which we use as a comparison benchmark. To facilitate
further research on industrial intrusion detection, we make the implementations
of our SIMPLE IIDSs publicly available2 within the IPAL framework.

Datasets. We evaluate our IIDSs on four state-of-the-art industrial datasets
based on physical testbeds and including attacks against the industrial process:
SWaT [38], the most widely-used dataset, represents a multi-staged water treat-
ment system. Similarly, WADI [3] serves as an example of portability to a water
distribution scenario. Additionally, we consider the novel WDT dataset [31] since
it includes network and physically induced attacks, and finish with HAI [72] mod-
eling power generation and storage – an entirely different industrial domain.

Fig. 3. When evaluating IIDSs, a true positive alarm (TPA) overlaps with the attack
label from the dataset (red), while a false positive alarm (FPA) does not overlap with
any attack. The penalty score (PS) measures the “overshooting” of all raised alarms.
(Color figure online)

Evaluation Metrics. To objectively quantify the performance of both SIMPLE
and complex IIDSs, we refer to a set of performance metrics. As visualized in
Fig. 3, datasets contain labels (in red) indicating a time range when an attack
took place. An IIDS indicates these attacks by emitting alarms (in black). As
traditional metrics, we utilize accuracy, precision, recall, and F1-score – the de-
facto standard for evaluating classifiers. Yet, as they focus on the label coverage,
they do not express how many attacks are detected and are skewed if attacks
are of different lengths. Furthermore, effects unique to industrial settings, such
as the stabilization time required after an attack, are not considered. Thus, we
additionally calculate the percentage of detected attacks, the number of true pos-
itive alarms (TPA), i.e., alarms overlapping with an attack, false-positive alarms
(FPA), i.e., non-overlapping alarms, and the penalty score (PS) aggregating the
non-overlapping time span [57] to provide a more holistic perspective.

2 Implementation available at: https://github.com/fkie-cad/ipal ids framework.

https://github.com/fkie-cad/ipal_ids_framework
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5.2 Sufficiency: SIMPLE IIDSs on Par with Complex Approaches

First, we study whether SIMPLE IIDSs are sufficient to detect most attacks
(cf. Sect. 4.1) and whether industrial intrusion detection must be inherently
complex. To this end, we compare our approaches’ detection performance to
related work in an in-depth evaluation based on SWaT [38], as it is the most
widely-used dataset in literature (90% of publications according to our analysis
in Table 1).

SWaT consists of a training part of normal ICS behavior and a test part
containing 36 attacks. We trained our four IIDSs on the training data omitting
the first ∼22 h during which the system stabilizes after activation. As seven
out of SWaT’s 51 sensors and actuators do not maintain the regular patterns
observed during training, we excluded those from further evaluation. Skipping
the stabilization phase [49,55,58,63,66,75,79] and omitting process values [50,
52,62,66,75] in SWaT are common practices in related work. Notably, instead
of excluding the process values, a process expert could manually adapt a pre-
trained SIMPLE model, which is impossible for complex approaches (cf. Sect. 3).

Table 2. Already a high-level analysis reveals that our SIMPLE IIDSs (green) in combi-
nation can detect 75% of attacks from the SWaT dataset, thus performing comparably
to complex approaches from related work (blue/lower half of the table).

High-level Ability to Detect Attacks. We use SWaT to gain a first assess-
ment of the ability of our SIMPLE IIDSs to detect attacks and to compare them
to complex approaches from related work. To this end, we analyzed all 63 publi-
cations evaluating on SWaT (cf. Sect. 3) to obtain those that provide sufficiently
detailed information on which specific attacks they detect, resulting in eleven pub-
lications covering twelve complex IIDSs. Table 2 visualizes which SIMPLE (green)
and complex (blue) IIDSs can detect which of the 36 attacks in SWaT.

Our four combined approaches (denoted with “SIMPLE”) detect a majority
of attacks (75%/27 attacks). Our arguably most simple approach (MinMax)
alone can detect 23 attacks, and Gradient performs best by detecting 25 attacks.
For comparison, the average number of detected attacks by related work is 25.0.
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Aggregating related work’s capabilities, they detect all except a single scenario.
However, in the twelve scenarios that all SIMPLE approaches detect, seven of the
twelve complex IIDSs do not fully cover these seemingly easy-to-detect attacks.
Regarding the nine attacks that are not detected by any SIMPLE approach, four
(4, 10, 11, 14) have repeatedly been reported as not-detectable [46,71,78], and
we observe inefficiencies in complex approaches too. Notably, not a single attack
is detected by all complex approaches but not by our SIMPLE methods.

Thus, SIMPLE IIDSs seem on par with their complex counterparts, detecting
more attacks on average but less in total for the benefits of increased simplicity.
In-depth Comparison. Besides high detection rates, IIDSs should have a low
false-positive rate [28]. To study how SIMPLE IIDSs fare against selected com-
plex related work, we study their alert behavior in-depth visually (Fig. 4) and
alongside metrics (Table 3). We again provide combined results for “SIMPLE”,
where an alarm is emitted whenever any IIDS emits an alarm. Notably, this may
fuse alerts into larger ones, which can result in fewer overall TPAs and FPAs.

Since this evaluation requires access to complex IIDSs, we selected one rep-
resentative approach for each of the three classes (cf. Table 1) for which we have
implementations available (cf. Sect. 5.1): (i) Seq2SeqNN [46] (representing arti-
ficial neural networks) predicts the following expected output based on samples
of recent process history, and alerts if the prediction deviates long enough from
the observed behavior, (ii) TABOR [57] (graph-based) combines an automaton,
Bayesian network, and out-of-bounds check into a single solution (while we could
only reproduce one of TABOR’s 16 models for SWaT, this model still suffices for
our analysis), and (iii) PASAD [11] (miscellaneous) leverages a singular spectrum
analysis to identify recurring process patterns on a per-sensor basis.

Short attacks and alarms are enlarged to a minimum width of 0.15% for visibility.

Fig. 4. A visual inspection of the alerts of SIMPLE IIDSs (green) shows thorough cover-
age w.r.t. the attacks for the SWaT dataset (red). The alerts of the three representative
complex approaches (blue) are less expressive and contain more false positives. (Color
figure online)

Upon visual inspection based on Fig. 4, the alerts emitted by the SIMPLE
IIDSs coincide with the attacks to be detected to a large extent. Furthermore,
during non-attack periods, they do not emit large amounts of false alarms. Over-
all, the three complex approaches contain more false alarms and detect fewer
attacks. Thus, while from a high-level view, the complex IIDSs under study
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appeared to detect slightly more attack scenarios (cf. Table 2), they come at the
price of more false positives and consequently reduced utility.

Moreover, most related complex approaches’ alarms are incomprehensible as
they often exhibit multiple alarms around an attack (Seq2SeqNN) or alert over
a long time range covering many attacks (PASAD). Our IIDSs, on the other
hand, precisely overlap with the attacks and additionally allow to determine
the potential malicious sensors through their locality property (cf. Sect. 4.1).
E.g., for 21 of the attacks detected by Gradient, the alerts stem from the process
value indicated as the attack point in the SWaT dataset, thus providing a reliable
starting point for subsequent incident response.

The individual metrics summarized in Table 3 confirm our previous observa-
tion that SIMPLE approaches detect large amounts of attacks (detected attacks
and TPA), emit few false alarms (FPA), and perform on par with related work.
Notably, while Steadytime and Histogram detect fewer attacks, they simulta-
neously have the lowest FPA score of all IIDSs under study. In terms of accu-
racy, precision, recall, and F1 score, the MinMax, Steadytime, and Histogram
IIDS outperform Seq2SeqNN and PASAD and perform roughly equivalent to
TABOR. These metrics are surprisingly good, considering the simplicity of the
detection methods, which are not optimized to any metrics (a problem com-
mon for machine learning approaches [51]). While Gradient showed auspicious
detection performance in the visual comparison, it fares poorly for the individual
metrics. The main reason for this phenomenon is that these metrics favor long
attack coverage, a phenomenon we study in more detail in the appendix.

Table 3. Across all relevant quantifiable evaluation metrics, SIMPLE IIDSs (especially
in combination) are competitive to the studied complex approaches from related work.

IIDS Detected TPA FPA PS Acc. Prec. Rec. F1

Attacks [%]

MinMax 63.89 22 9 14647 0.94 0.75 0.81 0.78

Gradient 69.44 47 64 352 0.88 0.3 0.00 0.01

Steadytime 38.89 16 4 5033 0.96 0.89 0.75 0.81

Histogram 36.11 12 0 6794 0.95 0.85 0.72 0.78

SIMPLE 75.0 26 23 19621 0.94 0.71 0.87 0.78

Seq2SeqNN 72.22 30 37 7559 0.88 0.44 0.11 0.17

TABOR∗ 66.67 – – – – 0.86 0.79 0.82

PASAD 44.44 10 14 81604 0.78 0.32 0.72 0.45
∗ Results taken from the publication [57] as not all model parameters
were reproducible.

Takeaway: All four SIMPLE IIDSs detect a sufficient number of attacks in the
SWaT dataset. Combining the SIMPLE approaches allows detecting 75% of all
attacks while visually emitting only a few false alerts. Moreover, raised (false)
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alarms are meaningful due to their local design and comprehensible models.
Compared to related work, SIMPLE IIDSs can keep up with complex approaches
in terms of the number of detected alarms, and especially false positives.

5.3 Portability: SIMPLE IIDSs Work Effortlessly in New Settings

To ensure that IIDSs are widely applicable, they must be portable to various
industrial scenarios and processes with a short training phase and without requir-
ing (re-)inventions (cf. Sect. 4.1). Consequently, we show the portability of our
IIDSs by applying them to three additional industrial datasets (WADI [3], WDT
[31], and HAI [72], cf. Sect. 5.1). We again compare our IIDSs to the three com-
plex representatives from related work (Seq2SeqNN, TABOR, and PASAD, cf.
Sect. 5.2). Unlike ours, porting the complex IIDSs to the new datasets required
extensive manual work to find suitable models and parameters. Once more, we
analyze the results both visually (Fig. 5) and for various metrics (Table 4).

WADI. At first glance, with 64% of detected attacks overall, the SIMPLE
IIDSs do not perform as strongly on WADI as on SWaT. However, even our
worst-performing IIDS, Steadytime (43%), still outperforms PASAD (14%) and
TABOR (29%). More importantly, we visually observe only two false alarms not

Short attacks and alarms are enlarged to a minimum width of 0.15% for visibility.

Fig. 5. Porting SIMPLE IIDSs (green) to three additional datasets shows their gener-
alizability to various industrial scenarios, while complex IIDSs (blue) perform worse.
Note that the results on the SWaT dataset have previously been discussed in Fig. 4.
(Color figure online)
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closely related to an attack (at around 18h and 42h). While the complex IIDSs
exhibit similarly few false alarms, their penalty score (PS) is exceptionally high,
indicating that their alarms are too imprecise to match a single attack.

WDT. The WDT dataset proves challenging for all IIDS types, with SIMPLE
approaches detecting up to 22% of the attacks, compared to 4% (Seq2SeqNN)
up to 18% (TABOR) for the complex approaches. Upon closer inspection, we
identified one cause to be attacks not targeting the industrial processes, e.g.,
network scanning. Since complex approaches are likewise incapable of finding
these attack types, SIMPLE IIDSs provide an equally performing alternative.

HAI. The SIMPLE IIDSs perform well for the HAI dataset with 86% of detected
attacks, a low PS of only 531, and nearly no FPA for MinMax, Steadytime, and
Histogram. Notably, MinMax and Gradient perform especially well on HAI, thus
showing that attacks can be detected reliably even with the simplest approaches.
Complex related work, in contrast, falls far behind, and TABOR is even largely
inapplicable, likely due to HAI’s less pronounced regular patterns.

Takeaway: SIMPLE IIDSs, unlike their complex counterparts, can be ported
to new datasets without manual effort. Furthermore, considering that our
approaches, in contrast to complex approaches, performed best on HAI (repre-
senting an entirely new industrial domain), this perfectly proves their portability.

5.4 Discussion: Industrial Intrusion Detection Can Be SIMPLE

Wrapping up our evaluation, we recapitulate the promised properties of SIMPLE
IIDSs (sufficient, independent, meaningful, portable, local, and efficient) and
discuss to which extent our proposed IIDSs capitalize on them.

Although we relied on straightforward detection methods and chose an oppor-
tunistic error threshold, our approaches proved to be on par with significantly
more complex detection methods. Most attacks are detected for the SWaT and
HAI datasets, and across all four examined datasets, our IIDSs are Sufficient
compared to related work (cf. Sects. 5.2 and 5.3).

Contrary to related work, which, e.g., requires up to 16 models for a single
dataset [57] or unique parameterization for each process value [11], our SIMPLE
approaches are Independent of parameters. While theoretically, the margin of
error or the Histogram’s window size could be fine-tuned for better performance,
even their default values, as evaluated by us, yield a competitive performance.

The alerts emitted by our approaches largely coincide with the attacks (cf.
Fig. 4 and 5). Furthermore, these carry Meaningful insights for incident response,
e.g., to which extent the trained threshold is exceeded (MinMax and Gradient).

As our SIMPLE approaches generalize to four diverse datasets (cf. Sect. 5.3),
they have successfully proved to be Portable across various industrial settings.

Already by design (cf. Sect. 4.2), all our SIMPLE approaches are Local, i.e.,
operate on a per-sensor basis. As such, they are inherently able to identify the
triggering value directly. To illustrate the resulting advantages exemplary for the
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Table 4. For all relevant metrics, e.g., detected attacks, our SIMPLE IIDSs generalize
better to new industrial settings than complex related work (an in-depth analysis, e.g.,
regarding FPA of the Gradient IIDS, is provided in the appendix). Note that the results
on the SWaT dataset have previously been discussed in Table 3.

IIDS Detected TPA FPA PS Acc. Prec. Rec. F1

Attacks [%]

W
A
D
I

MinMax 50.0 6 4 1751 0.96 0.7 0.41 0.52

Gradient 50.0 44 12 12 0.94 0.79 0.0 0.01

Steadytime 42.86 7 2 413 0.96 0.88 0.3 0.44

Histogram 50.0 6 6 1775 0.95 0.64 0.32 0.42

SIMPLE 64.29 6 9 3120 0.95 0.58 0.44 0.5

Seq2SeqNN 57.14 8 6 1293 0.94 0.52 0.14 0.22

TABOR 28.57 5 0 5792 0.92 0.3 0.25 0.27

PASAD 14.29 2 3 23197 0.82 0.05 0.13 0.07

W
D
T

MinMax 7.84 4 0 268 0.72 0.3 0.08 0.13

Gradient 5.88 8 3 3 0.75 0.73 0.01 0.01

Steadytime 17.65 9 0 411 0.74 0.45 0.23 0.31

Histogram 1.96 1 0 0 0.76 1.0 0.04 0.09

SIMPLE 21.57 16 3 639 0.71 0.38 0.27 0.32

Seq2SeqNN 3.92 2 3 58 0.74 0.19 0.01 0.02

TABOR 17.65 7 0 762 0.67 0.3 0.22 0.26

PASAD 11.76 4 2 639 0.68 0.27 0.16 0.2

H
A
I

MinMax 86.0 73 7 496 0.98 0.87 0.38 0.53

Gradient 78.0 209 48 96 0.98 0.89 0.09 0.16

Steadytime 28.0 15 0 161 0.98 0.86 0.11 0.19

Histogram 28.0 15 0 161 0.98 0.86 0.11 0.19

SIMPLE 86.0 145 26 531 0.99 0.87 0.4 0.55

Seq2SeqNN 4.0 2 5 936 0.98 0.29 0.04 0.07

TABOR 70.0 22 7 271159 0.32 0.02 0.6 0.04

PASAD 4.0 2 11 29839 0.9 0.01 0.04 0.02

SWaT dataset, which provides precise information on the attack location, Min-
Max and Gradient, e.g., could easily identify 18 respectively 21 attack locations
correctly, significantly easing attack identification and hence incident response.

Finally, the IIDSs are Efficient w.r.t. computing resources as they rely on
elementary computational operations both during model creation and detection.
E.g., MinMax and Steadytime only perform an interval test, Gradient requires
an additional subtraction for the slope computation, and Histogram counts and
compares the last recently occurring process values. Besides computational effi-
ciency, they are also optimized for a low memory footprint, thus easing their
applicability in resource-limited industrial settings: MinMax and Gradient only
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store the minimal and maximal bounds on a per-sensor basis, while Steadytime
and Histogram only require the thresholds per occurring value for each sensor.

Takeaway: The four exemplary approaches presented in this paper satisfy the
properties of a sufficient, independent, meaningful, portable, local, and efficient
IIDS. Thus, we show that industrial intrusion detection can indeed be SIMPLE,
challenging the necessity of inherent complexity found across related work.

6 Conclusion

Industrial intrusion detection constitutes a retrofittable solution to counteract
harmful cyberattacks against increasingly threatened industrial control systems.
Striving to achieve (close to) optimal detection of attacks, the research commu-
nity proposed a wide variety of approaches to detect anomalies in the process
state across different industrial domains. However, as we identify based on a
systematic analysis of 70 proposals from related work, these approaches show an
inherent complexity where high detection performance is accompanied by dearly
bought consequences such as a lack of model and alert comprehensibility or a high
demand for computing resources. Considering that IIDSs leverage the repetitive
nature of physical processes, we wonder why simpler detection methods have not
been considered so far. To overcome this gap, we study whether IIDSs can be
SIMPLE (Sufficient, Independent, Meaningful, Portable, Local, and Efficient)
instead of having to rely on complex models with all their disadvantages. Thus,
we designed four exemplary minimalistic approaches, such as straightforward
range checks. Surprisingly, as we show across four distinct industrial datasets,
simplicity does not result in reduced detection capabilities, as simple methods
are on par with significantly more complex related work. Simultaneously, simple
approaches offer highly beneficial properties such as eased configuration, model
and alert comprehensibility, and reduced computational overhead. Thus, simple
IIDSs provide a viable alternative to complex approaches, raising the question
whether slight increases in detection capabilities justify computational overheads
and reduced utility. Still, it remains open whether our results are constrained
by the studied datasets (i.e., the included attacks that are too “easy” to detect)
or whether SIMPLE IIDSs are inherently sufficient to detect cyberattacks. Con-
sequently, future research has to investigate the raison d’être for complex IIDS
w.r.t. advanced and stealthy attacks, beyond limiting their evaluations to the
datasets currently in widespread use, for which simple approaches suffice.

Acknowledgments. Funded by the Deutsche Forschungsgemeinschaft (DFG, Ger-
man Research Foundation) under Germany’s Excellence Strategy – EXC- 2023 Internet
of Production – 390621612.

Appendix

To better understand the SIMPLE IIDSs mechanics, we take a detailed look at
their detection phase. We occasionally see alerts stretching significantly further
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(with interruptions) than the actual attack. In Fig. 6a, the MinMax IIDS raises
an alarm throughout the ICS’s recovery phase since the process values still devi-
ate from their normal values and fluctuate until stabilizing. The Gradient IIDS
reveals another phenomenon in Fig. 6b, leading to supposedly false alerts inher-
ent to its design. As it indicates in- or declines, its alerts are short, which results
in a poor performance w.r.t. to metrics evaluating the attack coverage. While
this method is precise in finding the actual beginnings and endings of attacks, it
often raises an alarm shortly after an attack when the process quickly returns to
normal operation. Finally, in Fig. 6c, we observe effects that can occur after the
actual attack ended (or where datasets are not precisely labeled). All of these
effects result in insufficient attack coverage and false alarms, such that the good
performance of IIDSs is not captured well by the available metrics.

Fig. 6. IIDS performance metrics can show a skewed picture when to be detected
physical anomalies (green) are misaligned with the actual attack timing (red). (Color
figure online)
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Abstract. Voice messages are an increasingly popular method of com-
munication, accounting for more than 200 million messages a day. Send-
ing audio messages requires a user to invest lesser effort than texting
while enhancing the message’s meaning by adding an emotional context
(e.g., irony). Unfortunately, we suspect that voice messages might pro-
vide much more information than intended to prying ears of a listener.
In fact, speech audio waves are both directly recorded by the microphone
and propagated into the environment, and possibly reflected back to the
microphone. Reflected waves along with ambient noise are also recorded
by the microphone and sent as part of the voice message.

In this paper, we propose a novel attack for inferring detailed infor-
mation about user location (e.g., a specific room) leveraging a simple
WhatsApp voice message. We demonstrated our attack considering 7,200
voice messages from 15 different users and four environments (i.e., three
bedrooms and a terrace). We considered three realistic attack scenar-
ios depending on previous knowledge of the attacker about the victim
and the environment. Our thorough experimental results demonstrate
the feasibility and efficacy of our proposed attack. We can infer the loca-
tion of the user among a pool of four known environments with 85%
accuracy. Moreover, our approach reaches an average accuracy of 93% in
discerning between two rooms of similar size and furniture (i.e., two bed-
rooms) and an accuracy of up to 99% in classifying indoor and outdoor
environments.

1 Introduction

Modern chats have replaced feature-poor SMS by adding text images, video,
audio, and emoticons. This has allowed instant messaging apps to attract more
and more users over the years. In 2020, more than 2.7 billion users used at least
one instant messaging app1. Nowadays, the most used instant messaging app
with over 2 billion users worldwide is WhatsApp2. One of the most used functions
1 https://www.statista.com/statistics/258749/most-popular-global-mobile-

messenger-apps/.
2 https://www.whatsapp.com/.
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by WhatsApp users are voice messages, considering that over 200 million are
sent every day3. Sending a voice message requires even lesser effort for a user
compared to texting. Moreover, voice messages allow enriching the message’s
meaning by adding an emotional context (e.g., irony). Given the appreciation of
users, this feature has become common in other messaging apps as well [21], but
does a voice message send more than we intend to?

As can be seen in Fig. 1 when a person speaks, the voice signals travel in
different paths, some of which undergo reflection. The reflected paths depend on
the shape, dimension, furniture that are present in the room. Reflected audio
waves end up back at the speaker, causing the persistence of noise called rever-
beration. In addition, other ambient noises are also present, such as noises from
secondary audio sources. The combination of reverberation, noises and the audio
message gets picked up by the smartphone during voice messaging. In this work,
we aim to use these physical measures that are readily accessible and inadver-
tently shared during WhatsApp audio messaging to gain intelligence about the
victim’s whereabouts. To the best of our knowledge, this is the first study that,
leveraging short audio messages, identifies the location from which the message
was sent. The main contributions we propose in this paper are:

– We propose a novel attack for inferring a specific user location (e.g., a specific
room) leveraging simple WhatsApp voice messages.

– We collected a dataset of 15 people and four different environments (i.e., three
indoor and one outside) for a total of 7200 recordings (i.e., 480 per partici-
pant). We will make the dataset public, available to the research community
upon acceptance. We believe it will be useful in studying the problem further
and developing countermeasures.

– We performed an extensive analysis of our attack simulating three different
real attack scenarios based on the knowledge available to the attacker. We
demonstrated that our attack can distinguish the location of the message
among a pool of known environments (i.e., three bedrooms and a terrace)
with an accuracy of up to 85%. Moreover, we show that our approach reaches
an average accuracy of 93% in discerning the voice message location of two
rooms of similar size and furniture (i.e., two bedrooms). We further inferred
the specific position of a user within a room (e.g., a corner); for this task, we
achieved an accuracy of up to 64%.

The structure of the rest of our paper is as follows - In Sect. 2, we discuss
previous works related to environment inference using audio signals and location
detection. In Sect. 3, we introduce our system and adversary model. Section 4
presents our ForY ourV oiceOnly attack. The experimental setup and results
are discussed in Sects. 5 and 6 respectively. We discuss the limitations, potential
future research directions, and concluding remarks in Sect. 7.

3 https://www.thesun.co.uk/tech/6815812/texts-voice-messages-whatsapp-imessage-
switching/.

https://www.thesun.co.uk/tech/6815812/texts-voice-messages-whatsapp-imessage-switching/
https://www.thesun.co.uk/tech/6815812/texts-voice-messages-whatsapp-imessage-switching/
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2 Related Work

Sound classification represents a field of increasing interest in several areas and
applications such as, surveillance [26], medicine [33], emotion recognition [34],
music genre classification [27], and forensics [31]. The three main disciplines
involved in sound classification are: Music Information Retrieval (MIR), [32,36],
Automatic Speech Recognition (ASR) [28,37], and Environmental Audio Scene
Recognition (EASR) [29,35]. Music and speech can be well described by features
such as MFCC (Mel-frequency cepstral coefficients), bandwidth, zero-crossing
rate (ZCR), and spectral flux [8,10]. While for the recognition of environments,
the problem is more challenging since the sound, in this case, does not present
any tonal or harmonic structure [15].

Fig. 1. Voice propagation when sending a voice message

A first comprehensive study on EASR was carried out by Cowling et al. [6].
In this work, the authors explore different feature extraction and classification
techniques on EASR, achieving a 70% accuracy leveraging dynamic time warping
classification techniques. One of the primary tasks in the EASR domain is the
distinction between indoor and outdoor environments. Khonglah et al. [25] pro-
posed the use of foreground speech segmentation to obtain foreground and back-
ground segments of an audio recording. Then from the obtained segments, the
MFCCs were extracted and used to train an SVM classifier to perform indoor-
outdoor classification. In this study, the authors highlighted that the primary
cause of misclassification was the presence of speech in the background. Not only
speech but also other background noises can induce classification errors. In real-
world scenarios, it is quite common to have complex environment sound (i.e.,
environments with multiple sound sources). To mitigate the impact of complex
sounds on environmental prediction performance, Delgado et al. [16] introduced
a feature reduction strategy using a Chi-Squared Filter [2]. Unfortunately, a sim-
ilar approach cannot be applied to the classification of similar locations. Both
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speech reverberation and background noise are important sources of information
that can describe the environment in which the voice message is recorded.

Recently, many works on EASR have leveraged deep learning algorithms
to perform feature extraction and classification [20,23,24] Based on the work
conducted by Chandrakala et al. [29] deep learning approaches show better per-
formance compared to traditional machine learning techniques. However, these
approaches cannot be applied in our case since they require large amounts of
data to train the models.

Additional factors that affect EASR are the recording device’s quality and
the format in which the sound signal is saved (i.e., lossy audio formats). In this
regard, several works have focused on recognizing environments from sounds
recorded with resource-constrained devices (e.g., smartphones). Gomes et al.
[22] present an application for the smartphone device to classify audio recorded
on the device using a combination of SAX-based multiresolution motif discovery
in combination with MFCC. The work by Peltonen et al. [5] aims to perform
context-based audio scene recognition. However, the data used in this work were
obtained using a stereo setup and stored in a digital audio tape recorder. To
the best of our knowledge, there are no works in the literature that attempt to
identify a specific location (e.g., a specific room) from a voice message recorded
by a smartphone.

3 System and Adversary Model

In this section, we describe the system and the adversarial model of our attack.
We further discuss the different types of realistic attack scenarios that we iden-
tified based on varying levels of information available to the attacker.

System Model. We assume that the victim has a smartphone device with
WhatsApp installed and an internet connection. We further assume that the
software on the victim device and the device itself is not compromised in any
manner. While recording the audio messages, we assume that the phone is held
at a distance of approximately 15 cm [4,14] from the face of the speaker at an
upright position (see Fig. 2). This is one of the most common positions where a
phone is held either during video calls or while sending audio messages. Moreover,
we conducted an additional preliminary study by placing the phone close to the
ear. Results showed that the location inference accuracy was nearly the same
across both considered positions.

Adversarial Model. We assume that the attacker has access to the WhatsApp
audio message of the victim. The attacker is a user who seeks to learn the loca-
tion information of the victim. Depending on the attack scenario, the attacker
may also have the target’s recordings from the same or different positions at
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15 cm

Fig. 2. Recording position

specific locations. Also, the victim is assumed to be in one of these selected loca-
tions when recording the audio message. For our experiment, we consider three
different scenarios for the attacker:

– Complete Profiling : This scenario occurs when the attacker asks the victim
to send voice messages from specific locations. For example, an investigator
(i.e., the attacker) might ask a suspect (i.e., the victim) to stand in a specific
part of a room to verify that the suspect was there or elsewhere at the time
a voice message was sent. In this scenario, the attacker has recordings of the
victim in all the selected locations. Moreover, the attacker also knows the
victim’s specific position in the selected locations (e.g., a room corner). In
this scenario, the attacker has the highest knowledge to execute his attack.

– Location Profiling : In this scenario, the attacker cannot access any of the vic-
tim’s voice messages other than the one he wants to infer the location. The
attacker knows that the victim has sent the voice message from a selected loca-
tion (e.g., the attacker knows that the victim is in a specific building). There-
fore, the attacker can have WhatsApp audio recordings of different speakers
but the victim. The speakers are assumed to have recorded their messages at
the same locations where the victim is sending the voice message. Hence, the
victim is “unknown” while the location position is “known” to the attacker.

– User Profiling : This scenario occurs when the attacker owns the victim’s voice
messages and knows the recording location but does not know the specific
position in the location (e.g., a corner of a room) from which they were
recorded. The attacker wants to infer the location of a new voice message sent
by the victim. Different from the Complete Profiling scenario, the attacker
cannot ask the victim to send more voice messages from specific positions of
the selected locations (e.g., the victim is no longer reachable). The victim is
“known” while the position is “unknown” to the attacker in this situation.

Based on the described scenarios, we can identify two main application fields:
i) forensics and ii) malicious inference of user information. The forensic field is
probably the one that would find the most significant benefits both for the wide
range of applications (e.g., investigations, evidence in court) and for the high
chance of being in the scenario with the highest knowledge (i.e., Complete Pro-
filing). Commonly in forensics, there are no limitations in obtaining additional
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voice messages from specific locations. Further, inferring the specific position
in a location (e.g., a corner) from which a voice message was sent is of par-
ticular interest in forensics. This information can be crucial in understanding
whether the suspect or witness could have taken action (e.g., interacted with
something nearby) or could see something (e.g., through a window). Malicious
inference of user information is another field in which inference of a victim’s loca-
tion from their voice messages finds application. In this case, an attacker can
exploit this knowledge to understand whether the victim is in a location (e.g.,
home or office) and take specific actions (e.g., perform a theft) based on this. A
practical application would be an employer who wants to monitor whether an
employee is smart working from home or another location. This behavior would
be highly invasive of workers’ privacy and illegal (since it would occur without
the employee’s consent) while difficult to detect. Moreover, the malicious infer-
ence of user location could allow additional information such as habits, interests,
activities, and relationships to be obtained, posing severe privacy concerns.

4 ForY ourV oiceOnly Attack

Our attack consists of four phases: Data Acquisition, Data Processing, Model
Training, and Location Inference. In Fig. 3 we provide an overview of how the
attacker conducts the attack. Each of the four phases is discussed in detail in
the following sections.

Word Segmentation

Recording

DATA ACQUISITION

Feature Aggregation

Feature Extraction

DATA PROCESSING

[f1,m, f2,m, ..., fn,m ]

[f1,1, f2,1, ..., fn,1 ]
[f1,2, f2,2, ..., fn,2 ]

[f1, f2, ..., fm, σ1, σ2, ..., σn ]

MODEL TRAINING

LOCATION INFERENCE

Training set
(labelled)

Testing set
(unlabelled)

Fig. 3. ForY ourV oiceOnly attack phases

Data Acquisition. This phase consists of two steps: Recording and Word
Segmentation. At the end of the data acquisition phase, the attacker will own
two datasets composed of segmented voice messages.
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– Recording : In this step, the attacker performs two types of data acquisition.
The first involves acquiring WhatsApp voice messages recorded by different
people (including the victim if allowed by the attack scenario) at some loca-
tions or specific positions of interest to build a labeled dataset. The second,
for acquiring unlabeled (i.e., both the location or the position are unknown)
WhatsApp audio messages of the victim (i.e., test dataset). These two steps
do not necessarily have to be consecutive. The attacker can create the labeled
dataset even after obtaining the test dataset. The attacker can then choose
the locations of interest based on the available information type (e.g., the
victim might say she is in one location, but the attacker suspects she is in
another known specific location).

– Word Segmentation: The attacker segments the recorded voice messages to
extract audio fragments related to specific words frequently used in speech [12,
13] (e.g., “and”, “of ” and “the”). This procedure can be done either manually
or by using speech-to-text algorithms4.

Data Processing. The data processing phase is carried out on both the labeled
and the test datasets. This phase consists of two stages: Feature Extraction and
Feature Aggregation.

– Feature Extraction: The attacker extracts features that are descriptive of vocal
and environmental characteristics: spectral centroid, spectral roll-off, spectral
flatness, zero-crossing rate, and Mel-frequency cepstral coefficients [15]. At
the end of this step, the attacker has a set of time-frequency features whose
dimensionality depends on the duration of the segmented voice message.

– Feature Aggregation: Since segmented voice messages may have a variable
duration, the attacker needs to process the feature extracted in the previous
step to create a feature vector of standardized length. The attacker aggregates
the extracted features by calculating the average and the standard deviation
as suggested in [7,30]. This procedure allows maintaining information about
the magnitude and variability of the data, reducing the total number of fea-
tures per voice message. At the end of this step, each segmented voice message
has a set of 48 associated features.

Model Training. In this phase, the attacker uses only the labeled dataset to
train the classification models. The attacker may also decide to train the models
using a sub-sample of the dataset based on the owned information. For example,
the labeled dataset may contain records from many locations in the acquisition
phase, but the attacker has obtained new information about the victim and may
discard some of them.

Location Inference. In this phase, the attacker applies the model trained in
the Model Training phase and predicts the location or the specific location where
the victim recorded the message.
4 https://www.mathworks.com/help/audio/ug/audio-labeler-walkthrough.html.

https://www.mathworks.com/help/audio/ug/audio-labeler-walkthrough.html
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5 Experimental Setting

In this section, we provide details about the procedure followed during data
collection and the characteristics of the obtained dataset. We further provide a
comprehensive overview of the machine learning models we used to demonstrate
the efficacy of our proposed attack.

5.1 Data Collection

We performed our data collection at four different real locations. The layouts of
these locations are depicted in Fig. 4. In particular, we considered three indoor
locations I1 (Fig. 4a), I2 (Fig. 4b), and I3 (Fig. 4c), and one outdoor location
O1 (Fig. 4d). Since our goal is to recognize the specific location (or the specific
position) from which a voice message is sent for indoor locations, we decided to
consider the worst-case where the rooms have a similar layout and furnishings
(i.e., bedrooms). Within each of the indoor locations, we further identify five
different recording positions: south-east corner (P1), south-west corner (P2),
north-west corner (P3), north-east corner (P4), and center (P5). While for O1,
we identified a central recording position only (P5).

The data collection process involved 15 participants (5 males and 10 females
aged 20 to 59 years). In the institution where the experiments were carried out,
an IRB approval was not mandatory for this context. All voluntary participants
were informed of the actual use of their data and their informed consent was
obtained before the recording process. We ensured that the participants held
their phones at a distance of about 15 cm from their face at chin level, as shown
in Fig. 2. While recording, only the participant was present, and the room doors
and windows were closed. To create a more realistic dataset, we asked the par-
ticipants to use their own smartphone devices5. During the collection phase,
the participants recorded 30 different voice messages using WhatsApp in all the
locations and at each position (see Fig. 2). This results in a total of 150 record-
ings per indoor location and 30 recordings for the outdoor location. We collected
a total of 7200 WhatsApp voice messages, corresponding to 480 recordings per
participant.

All the recorded WhatsApp voice messages have a one-second duration (i.e.,
the minimum duration of a WhatsApp voice message) and contain a single word
(i.e., and, of, or the). Specifically, for each position the participants recorded 30
voice messages: 10 pronouncing the word and, 10 pronouncing the word of, and
10 pronouncing the word the. We selected these words based on the OEC, and
COCA ranks for most commonly used words during an English conversation [12,
13]. We divided the 30 recordings at a single position into three sequences of 9–
12-9. The participant starts the data collection from position P1, recording 9

5 Devices in the data collection: Apple iPhone 7, Apple iPhone X, Apple iPhone
11 pro, Motorola Moto E6, Motorola Moto G3, OnePlus 3, OnePlus 5T, OnePlus
6, OnePlus 6T, OnePLus 6T, OnePlus 8T, OnePlus NORD, Samsung Galaxy A9,
Samsung Galaxy A30, and Samsung Galaxy Z Fold 2.
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(a) Indoor location I1 - bedroom. (b) Indoor location I2 - bedroom

(c) Indoor location I3 - bedroom (d) Outdoor location O1 - Terrace

Fig. 4. Location layout and recording positions with orientation considered in the data
collection
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voice messages at this position (i.e., 3 voice messages per word). Once concluded
with this step, the participant moves to P2 in the same location and records 9
voice messages again. After all the five positions are covered in sequence, the
participant starts the procedure again from P1, recording 12 voice messages
(i.e., 4 voice messages per word). Finally, the participant concludes the data
collection with a final set of 9 voice messages per position before moving to the
next location. For the O1 location, the participant recorded 30 voice messages
from the same position (i.e., P5).

5.2 Feature Extraction

To characterize the location of audio messages, we extracted frame-level fea-
tures that traditionally were involved in speech recognition and EASR tasks. In
particular, for one second of recording (i.e., the minimum duration of a voice
message on WhatsApp), we extract 24 features:

– Zero Crossing Rate (ZCR): A temporal feature that indicates the rate at
which the signal changes sign [17]. ZCR can also indicate the amount of noise
in a signal. A higher ZCR value typically means more noise. ZCR formulation
is defined (1)

ZCR =
1

2WL

WL∑

n=1

|sgn[xi(n)] − sgn[xi(n − 1)]| . (1)

where n is the n-th audio sample and W L is the length of the considered
time window.

– Spectral Roll-off (SR): A spectral feature that measures the bandwidth that
contains a certain percentage of the spectral energy [3]. This feature can
differentiate harmonic sounds from noisy sounds that usually lie above the
roll-off frequency. Further, SR can be used for voiced and unvoiced speech
detection [3], and EASR [9]. SR formulation is reported in (2)

SR = i such that

i∑

k=b1

|s(k)| = θ

b2∑

k=b1

s(k) . (2)

where s(k) is the power of the k-th frequency bin, θ is the specified frequency
threshold, while b1 and b2 are the band edges. In this work, we considered a
frequency threshold of 85%.

– Spectral Flatness (SF): Also known as Wiener entropy, it is a spectral feature
that is used for quantifying how tonal a sound is compared to how noisy it is.
SF was applied for singing voice detection [18] and EASR [20] Mathematically
this value is calculated as the ratio between the geometric and arithmetic
means of a power spectrum. Formally SR can be derived as reported in (3)

SF =
(
∏b2

k=b1
s(k))

1
b2−b1

1
b2−b1

∑b2
k=b1

s(k)
. (3)
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where s(k) is the power of the k-th frequency bin, while while b1 and b2 are
the band edges.

– Spectral Centroid (SC): Geometrically the centroid represents the arithmetic
mean of the positions of the points composing a figure. The spectral centroid
is a spectral feature that performs a similar function with respect to a spec-
trogram. SC is commonly used in music genre classification [1] and it is an
indicator of brightness (i.e., upper mid and high frequency content) Mathe-
matically, this value is the weighted mean of the constituent frequencies of a
signal, as reported in (4)

SC =

∑
k=b1

b2f(k)s(k)
∑

n=b1

b2s(k)
. (4)

where f(k) is the frequency of the k-th bin, s(k) is the power of the k-th bin,
while b1 and b2 are the band edges.

– Mel-Frequency Cepstral Coefficients (MFCCs): MFCCs take into account the
non-linear behavior of the human auditory system with respect to different
frequencies. This is done by converting the spectrum to the mel-scale using
a mel filter bank. MFCCs describe the shape of the spectral envelope giving
details regarding the timber. MFCCs have been used in the literature for
several purposes, such as voice recognition [11] and audio event detection [19].
Furthermore, Gergen et al. suggested that MFCCs could be a good descriptor
for discerning between anechoic and reverberant signals. In our work, we
extracted 20 Mel-frequency cepstral coefficients.

5.3 Machine Learning Models

To identify the location and the specific position in a location of a voice mes-
sage, we tested four multi-class classifiers: Linear Discriminant Analysis (LDA),
Logistic Regression (LR), Ridge Classifier (RC), and Support Vector Machine
(SVM). Based on the attack scenario, we applied different strategies to split the
data into training, validation, and testing sets:

– Complete Profiling: To evaluate the performance of our approach, we apply
(for each participant) a nested-cross fold validation. In the outer loop, we use
a stratified 5-fold cross-validation on the 480 voice messages recorded by the
participant, resulting in 384 recordings in training and 96 in testing per fold.
We apply a stratified 3-fold cross-validation in the inner loop on the 384
training recordings, obtaining 256 recordings in training and 128 recordings
in validation per fold.

– Location Profiling: For this experiment, we consider the entire dataset
comprising of 7200 audio recordings, and we apply a nested cross-fold vali-
dation. For the outer loop, we apply a user-independent leave-one-out cross-
validation, obtaining a testing set containing the recordings of a single par-
ticipant (i.e., 480). Similarly, in the inner loop, we apply a user-independent
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leave-one-out cross-validation on the other 14 participants, obtaining a train-
ing set of 13 participants (i.e., 6240 recordings) and a validation set of one
participant (i.e., 480 recordings) for each iteration.

– User Profiling: In this scenario, we consider the dataset of each participant
individually, as for the Complete Profiling scenario. Also here, we apply a
nested-cross fold validation. Still, different to the Complete Profiling scenario,
we use a group-k-fold to split the dataset into subsets based on the recording
location. We use a group 5-fold cross-validation in the outer loop and a group
4-fold cross-validation for the inner loop. In this way, we split data recorded
within the same room into subsets corresponding to each of the 5 recording
positions (i.e., P1, P2, P3, P4, and P5). Using this configuration, both the
validation and the test sets consist of one subset each, while the training
set contains the remaining positions. The recordings from location O1 are
excluded from this scenario since they all come from the same position (i.e.,
P5).

We explored different hyper-parameters by using grid search on all the con-
sidered classifiers. In particular, for LDA we vary the solver over [svd, lsqr, eigen].
For LR we vary the solver in [newton-cg, lbfgs, liblinear ] and the C value in the
range [10−3, 10−2, . . ., 101]. For RC we vary α from 0.1 to 0.9 with a step size of
0.1, and from 1 to 10 with a step size of 1. Finally, for SVM we tune the values
parameter C in the range [10−1, 100, . . . , 103], and γ in the range [10−4, 10−3,
. . . , 100].

6 Experimental Results

In this section, we report and discuss the results achieved by our approach in the
three attack scenarios based on the attack goal: location in Sect. 6.1 or position
in Sect. 6.2. Finally, in Sect. 6.3 we prove the applicability of ForY ourV oiceOnly
to complex voice messages.

6.1 Location Inference

In Table 1 we show the performance of the classifiers in identifying the location
according to the attack scenario, considering the worst case for each scenario
(i.e., 4 locations for the Complete Profiling and Location Profiling scenarios,
and 3 locations for the User Profiling scenario).

Table 1. Average accuracy of ForY ourV oiceOnly attack for location inference in
different attack scenarios

Scenario LDA LR RC SVM

Complete 0.85 (0.06) 0.85 (0.06) 0.83 (0.06) 0.87 (0.05)

Location 0.41 (0.11) 0.39 (0.10) 0.43 (0.09) 0.35 (0.00)

User 0.80 (0.09) 0.33 (0.04) 0.32 (0.03) 0.33 (0.03)
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The scenario where the classifiers perform best is the Complete Profiling
scenario, where the attacker has the full information available. The results show
that in this scenario, all classifiers have accuracy higher than 83%. In particular,
the SVM manages to reach an accuracy of 87%. On the contrary, in the Location
Profiling scenario, there is a consistent drop in performance. In this case, the
best classifier is the RC, which reaches an accuracy of 43% (i.e., 18% above the
chance level). Lower performance can be attributed to multiple factors:

– Device: the participants used different phones during data collection. The
absence of the model in the training set may reduce the accuracy of new test
data.

– Training Size: The number of users in training is not enough to ensure suffi-
cient variability in the training features.

– Voice Uniqueness: The distinctiveness of the victim’s vocal characteristics
cannot be completely replaced, and their lack of training is reflected in per-
formance in testing.

The importance of the victim’s voice for the attacker is supported by the
results obtained for the User Profiling scenario, where the attacker has voice
messages from the victim but does not know the specific recording location. In
this case, LDA achieves an accuracy of 80% (i.e., only 7% less than in the Com-
plete Profiling scenario), outperforming the others classifiers. In Fig. 5 we show
the confusion matrices of the best model per scenario in the location classifi-
cation. It is interesting to note that the locations I1 and I2 are confused with
each other in all three attack scenarios. This is due to the similar layout of the
two locations (see Fig. 4). The background noise is instead discriminant for the
identification of the external location (i.e., O1). O1 is generally classified better,
reaching an accuracy up to 98% in the Complete Profiling scenario.

(a) Complete Profiling sce-
nario.

(b) Location Profiling sce-
nario

(c) User Profiling scenario

Fig. 5. ForY ourV oiceOnly confusion matrices for the best models

Further, we analyzed the influence of the number of locations of interest (i.e.,
the number of classes to be predicted) on the accuracy of the classification. In
the Complete Profiling scenario, we obtain an average accuracy of 99% when
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we classify an audio message between the outdoor location O1 and one of the
indoor locations (i.e., I1, I2, and I3). While when we classify messages between
two indoor rooms, we achieve an accuracy ranging from 89% to 95% on this task.
Also, in Location Profiling scenario, we obtain a higher accuracy if we reduce
the location of interest considering O1 and an indoor location. In this case,
ForY ourV oiceOnly correctly predicts the location with an average accuracy of
80%. While for the prediction of internal location pairs, the accuracy remains
rather low, ranging from 57% between I1 and I2 to 66% between I1 and I3.
Finally, considering the User Profiling scenario, reducing the locations of interest
to two leads to an average accuracy of 87% in predicting the correct recording
location.

Finally, we evaluated ForY ourV oiceOnly by training the models on a single
word, splitting the dataset into three subsets of 2400 audio recordings, each
containing the words “and”, “of ” and “the”. Figure 6 depicts the variation of
the accuracy of our attack in the Complete Profiling scenario between all the
locations I1, I2, I3, and O1 using different classifiers and different words. Results
show no significant differences between models trained on the specific word and
those trained on all words (i.e., combined).

Fig. 6. Performance of machine learning models in classifying the four locations in
Complete Profiling scenario when trained specifically with one word and all the words
(i.e., combined)

6.2 Position Inference

In Table 2 we show the performance of the classifiers in identifying the spe-
cific position according to the attack scenario, considering the worst case (i.e.,
16 positions - five for each indoor location and one for the outdoor location).
Unlike Location Inference, here we consider only two attack scenarios (i.e., Com-
plete Profiling and Location Profiling), since the User Profiling scenario assumes
that the attacker has no information about the specific position in training. As
in Location Inference, even for the position inference, the scenario where the
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classifiers perform best is the Complete Profiling, and SVM resulted in the best
classifier scenario with an accuracy of 61%. Contrarily, in Location Profiling sce-
nario models performance is slightly above chance (i.e., 0.0625). The increase
in the number of classes to be predicted and the factors already highlighted in
Sect. 6.1 (i.e., device, training size, and voice uniqueness) further amplify the
performance drop.

Table 2. Average accuracy of ForY ourV oiceOnly attack for position inference in
different attack scenarios

Scenario LDA LR RC SVM

Complete 0.57 (0.09) 0.55 (0.09) 0.49 (0.08) 0.61 (0.09)

Location 0.13 (0.04) 0.13 (0.04) 0.13 (0.04) 0.07 (0.00)

In Fig. 7 we show the confusion matrix of the best model in the Complete
Profiling scenario (i.e., SVM). As expected, the model manages to accurately
predict O1 (i.e., 98%), demonstrating that this is a trivial task for our attack in
this scenario. Regarding the internal locations, Fig. 7 shows a concentration of
classification errors in the positions belonging to the true location. In particular,
the classification of I3 positions shows less accuracy than I1 and I2. We believe
that this can be traced back to the layout of the room. I3 has more than twice the

Fig. 7. Confusion matrix for specific position inference for I1, I2, I3 and O1 locations
in Complete Profiling scenario
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surface area of I1 and I2, and the spaces between the recording points and the
walls or furniture are much wider. This could lead to a reduction in reverberation
and therefore make the recordings more similar. In addition, the best performing
position in I3 is P1, which is the recording position with the least open field
compared to the other four positions. I1 and I2 generally present better results,
but again we can see how room size affects the prediction of the specific location.
I2 measures about 2 square meters less than I1 and has a 7% higher average
accuracy.

6.3 Extracted Words from Voice Messages

In our experiment, we carried out a data collection on WhatsApp audio messages
recording single words pronounced by the participants. However, in a real sce-
nario, voice messages can be of any length. To assess that our approach applied
to a real-world context, we carried out a preliminary evaluation on 345 audio
samples of words extracted from complex voice messages in the Complete Pro-
filing scenario. Also, we reduced the number of rooms in our pool size to 3
(i.e., two indoor bedrooms and one outdoor location-terrace). We noted that
ForY ourV oiceOnly reached an average accuracy of 99% in predicting between
the outdoor location and any one of the indoor locations. Further, when trying
to classify between all the three locations, our attack resulted in an accuracy
of 94%. These results demonstrate that ForY ourV oiceOnly can be applied in
real-world contexts by extracting single words from a complex voice message.

7 Conclusion

In this paper, we proposed ForY ourV oiceOnly, a new attack on voice messages
to infer the recording location. ForY ourV oiceOnly leverages attributes such as
reverberation and ambient noises, which inadvertently get recorded along with
audio messages. We showed the effectiveness of our attack in three realistic attack
scenarios: (i) the attacker has previous recordings of the victim in all the selected
locations (ii) the attacker has no previous recording of the victim’s voice messages
(iii) the attacker has previous voice messages of the victim knowing the location
they were recorded but does not know the specific position. We demonstrated
our attack considering 7,200 voice messages from 15 different users and four
environments (i.e., three bedrooms and a terrace). We showed how the possession
of audio messages from the victim in known locations dramatically increases the
performance of our attack. ForY ourV oiceOnly can infer the user’s location
among a pool of four known environments with up to 85% accuracy. Moreover,
our approach reaches an average accuracy of 93% in discerning between two
rooms of similar size and furniture (i.e., two bedrooms) and an accuracy of up
to 99% in classifying indoor and outdoor environments.

The results obtained indicate a threat to user privacy. For this purpose, some
countermeasures that can be adopted are:
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– Adding noise to obscure the leaked information in the audio messages. The
noise may also be applied selectively to higher and lower frequencies outside
the hearing range so as to not impact the quality of the voice message. This
method may prove to act as a countermeasure as we noted variations in the
audio signals in the ultrasonic and infrasonic ranges at different locations and
positions.

– Shielding the microphone during recording to minimize the environmental
noise and to reduce the recorded reverberation.

– Filtering the recorded audio to select only the primary sound source and
reducing the information leakage.

– Poisoning the dataset during the training phase (e.g., mislabeling the loca-
tions).

– Change the furniture/arrangement of the room.

We believe that the proposed work can be a starting point for developing
environment recognition from voice messages that can overcome the limitations
of ForY ourV oiceOnly. First, the collection of new datasets would allow for
more consolidated results and the application of more powerful feature extraction
and prediction techniques (e.g., deep learning). The collection of new datasets
would also be beneficial for assessing the effect of noisier environments. We
made several restrictions during recording, such as having no other member in
the rooms during recording, the recordings were done in a relatively quiet and
less crowded location. Hence, we expect the behavior to be affected when the
noise increases. This can be detrimental or instrumental depending on whether
valuable information is obscured or the noise indicates that particular location.
Further, it would be helpful to have a more diverse dataset regarding languages,
gender, age, nationality, Finally, a new data collection that includes multiple
phone holding positions would overcome a limitation of the proposed work.
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19. Ezgi Küçükbay, S., Sert, M.: Audio-based event detection in office live environ-
ments using optimized MFCC-SVM approach. In Proceedings of the 2015 IEEE
9th International Conference on Semantic Computing (IEEE ICSC 2015), pp. 475–
480. IEEE (2015)

20. Petetin, Y., Laroche, C., Mayoue, A.: Deep neural networks for audio scene recog-
nition. In 2015 23rd European Signal Processing Conference (EUSIPCO), pp. 125–
129. IEEE (2015)

21. Walnycky, D., Baggili, I., Marrington, A., Moore, J., Breitinger, F.: Network and
device forensic analysis of android social-messaging applications. Digit. Investig.
14, S77–S84 (2015)

22. Gomes, E.F., Batista, F., Jorge, A.M.: Using smartphones to classify urban sounds.
In Proceedings of the Ninth International C* Conference on Computer Science &
Software Engineering, pp. 67–72 (2016)

23. Phan, H., Hertel, L., Maass, M., Mazur, R., Mertins, A.: Learning representa-
tions for nonspeech audio events through their similarities to speech patterns.
IEEE/ACM Trans. Audio Speech Lang. Process. 24(4), 807–822 (2016)

24. Eghbal-zadeh, H., Lehner, B., Dorfer, M., Widmer, G.: A hybrid approach with
multi-channel i-vectors and convolutional neural networks for acoustic scene clas-
sification. In 2017 25th European Signal Processing Conference (EUSIPCO), pp.
2749–2753. IEEE (2017)



For Your Voice Only 613

25. Khonglah, B.K., Deepak, K.T., Prasanna, S.R.M.: Indoor/outdoor audio classifi-
cation using foreground speech segmentation. In: INTERSPEECH, pp. 464–468
(2017)

26. Almaadeed, N., Asim, M., Al-Maadeed, S., Bouridane, A., Beghdadi, A.: Auto-
matic detection and classification of audio events for road surveillance applications.
Sensors 18(6), 2018 (1858)

27. Oramas, S., Barbieri, F., Caballero, O.N., Serra, X.: Multimodal deep learning for
music genre classification. Trans. Int. Soc. Music Inf. Retr. 1, 4–21 (2018)

28. Xiong, W., Wu, L., Alleva, F., Droppo, J., Huang, X., Stolcke, A.: The microsoft
2017 conversational speech recognition system. In: 2018 IEEE International Confer-
ence on Acoustics, Speech and Signal processing (ICASSP), pp. 5934–5938. IEEE
(2018)

29. Chandrakala, S., Jayalakshmi, S.L.: Environmental audio scene and sound event
recognition for autonomous surveillance: A survey and comparative studies. ACM
Comput. Surv. (CSUR) 52(3), 1–34 (2019)

30. Nolasco, I., Terenzi, A., Cecchi, S., Orcioni, S., Bear, H.L., Benetos, E.: Audio-
based identification of beehive states. In: ICASSP 2019–2019 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 8256–8260.
IEEE (2019)

31. Ozkan, Y., Barkana, B.D.: Forensic audio analysis and event recognition for smart
surveillance systems. In: 2019 IEEE International Symposium on Technologies for
Homeland Security (HST), pp. 1–6. IEEE (2019)

32. Simonetta, F., Ntalampiras, S., Avanzini, F.: Multimodal music information pro-
cessing and retrieval: survey and future challenges. In: 2019 International Work-
shop on Multilayer Music Representation and Processing (MMRP), pp. 10–18.
IEEE (2019)

33. Faezipour, M., Abuzneid, A.: Smartphone-based self-testing of COVID-19 using
breathing sounds. Telemed. e-Health 26(10), 1202–1205 (2020)

34. Issa, D., Demirci, M.F., Yazici, A.: Speech emotion recognition with deep convo-
lutional neural networks. Biomed. Sig. Process. Control 59, 101894 (2020)

35. Mushtaq, Z., Shun-Feng, S.: Environmental sound classification using a regularized
deep convolutional neural network with data augmentation. Appl. Acoust. 167,
107389 (2020)

36. Ramı́rez, J., Flores, M.J.: Machine learning for music genre: multifaceted review
and experimentation with audioset. J. Intell. Inf. Syst. 55(3), 469–499 (2019).
https://doi.org/10.1007/s10844-019-00582-9

37. Malik, M., Malik, M.K., Mehmood, K., Makhdoom, I.: Automatic speech recogni-
tion: a survey. Multimedia Tools Appl. 80(6), 9411–9457 (2020). https://doi.org/
10.1007/s11042-020-10073-7

https://doi.org/10.1007/s10844-019-00582-9
https://doi.org/10.1007/s11042-020-10073-7
https://doi.org/10.1007/s11042-020-10073-7


Towards Efficient Auditing for Real-Time
Systems

Ayoosh Bansal1(B) , Anant Kandikuppa1, Chien-Ying Chen1,
Monowar Hasan2 , Adam Bates1, and Sibin Mohan3

1 University of Illinois Urbana-Champaign, Urbana-Champaign, IL 61801, USA
{ayooshb2,anantk3,cchen140,batesa}@illinois.edu
2 Wichita State University, Wichita, KS 67260, USA

monowar.hasan@wichita.edu
3 The George Washington University, Washington, DC 20052, USA

sibin.mohan@gwu.edu

Abstract. System auditing is a powerful tool that provides insight into
the nature of suspicious events in computing systems, allowing machine
operators to detect and subsequently investigate security incidents. While
auditing has proven invaluable to the security of traditional comput-
ers, existing audit frameworks are rarely designed with consideration for
Real-Time Systems (RTS). The transparency provided by system audit-
ing would be of tremendous benefit in a variety of security-critical RTS
domains, (e.g., autonomous vehicles); however, if audit mechanisms are
not carefully integrated into RTS, auditing can be rendered ineffectual
and violate the real-world temporal requirements of the RTS.

In this paper, we demonstrate how to adapt commodity audit frame-
works to RTS. Using Linux Audit as a case study, we first demonstrate
that the volume of audit events generated by commodity frameworks is
unsustainable within the temporal and resource constraints of real-time
(RT) applications. To address this, we present Ellipsis, a set of kernel-
based reduction techniques that leverage the periodic repetitive nature
of RT applications to aggressively reduce the costs of system-level audit-
ing. Ellipsis generates succinct descriptions of RT applications’ expected
activity while retaining a detailed record of unexpected activities, enabling
analysis of suspicious activity while meeting temporal constraints. Our
evaluation of Ellipsis, using ArduPilot (an open-source autopilot applica-
tion suite) demonstrates up to 93% reduction in audit log generation.

Keywords: Real-time systems · Auditing · Cyber-physical systems

1 Introduction

As RTS become indispensable in safety- and security-critical domains—medical
devices, autonomous vehicles, manufacturing automation, smart cities, etc.
[29,41,53,58]—the need for effective and precise auditing support is growing.
Even now, event data recorders (or black boxes) are crucial for determining
fault and liability when investigating vehicle collisions [16,17], and the need
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
V. Atluri et al. (Eds.): ESORICS 2022, LNCS 13556, pp. 614–634, 2022.
https://doi.org/10.1007/978-3-031-17143-7_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-17143-7_30&domain=pdf
http://orcid.org/0000-0002-4848-6850
http://orcid.org/0000-0002-2657-0402
http://orcid.org/0000-0002-3295-0233
https://doi.org/10.1007/978-3-031-17143-7_30


Towards Efficient Auditing for Real-Time Systems 615

for diagnostic event logging frameworks (e.g., QNX [4], VxWorks [5] and Com-
posite OS [62]) is well understood. However, these high-level event loggers are
insufficient to detect and investigate sophisticated attacks. Concomitant with
its explosive growth, today’s RTS have become ripe targets for sophisticated
attackers [27]. Exploits in RTS can enable vehicle hijacks [25,36], manufacturing
disruptions [60], IoT botnets [31], subversion of life-saving medical devices [67]
and many other devastating attacks. The COVID-19 pandemic has further shed
light on the potential damage of attacks on medical infrastructure [14,61]. These
threats are not theoretical, rather active and ongoing, as evidenced recently by
malicious attempts to take control of nuclear power, water and electric systems
throughout the United States and Europe [55].

In traditional computing systems, system auditing has proven crucial to detect-
ing, investigating and responding to intrusions [20,33,34,52]. Unfortunately, com-
prehensive system auditing approaches are not widely used in RTS. RTS logging
takes place largely at the application layer [16,17] or performs lightweight sys-
tem layer tracing for performance profiling (e.g., log syscall occurrences, but not
arguments) [18]; in both cases, the information recorded is insufficient to trace
attacks because the causal links between different system entities cannot be iden-
tified. The likely cause of this hesitance to embrace holistic system-layer logging
is poor performance. System audit frameworks are known to impose tremendous
computational and storage overheads [51] that are incompatible with the tempo-
ral requirements of many real-time applications. Thus, while we are encouraged by
the growing recognition of the importance of embedded system auditing [8,26,38]
and the newfound availability of Linux Audit in the Embedded Linux [3], a prac-
tical approach to RTS auditing remains an elusive goal.

Observing that performance cost of Linux Audit is ultimately dependent
on the number of log events generated, and that the performance impacts of
commodity auditing frameworks can be optimized without affecting the forensic
validity of the audit logs, e.g., through carefully reducing the number of events
that need to be logged [11,13,15,32,43,47,51,65,74], we set out to tailor Linux
Audit to RTS, carefully reducing event logging without impacting the forensic
validity of the log. We present Ellipsis, a kernel-based log reduction framework
that leverages the predictability of real-time tasksets’ execution profiles. Ellipsis
first profiles tasks to produce a template of their audit footprint. At runtime,
behaviors consistent with this template are reduced, while any deviations from
the template are audited in full, without reduction. Far from being impractical,
we demonstrate a synergistic relationship between security auditing and pre-
dictable RTS workloads – Ellipsis is able to faithfully audit suspicious activities
while incurring almost no log generation during benign typical activity.

The contributions of this work are:

– Ellipsis1, an audit framework, uniquely-tailored to RT environments (Sect. 3).
– Detailed2 evaluations (Sect. 4) and security analysis (Sect. 5) to demonstrate

that Ellipsis retains relevant information while reducing event/log volume.
1 https://bitbucket.org/sts-lab/ellipsis.
2 A technical report with supplementary material for this work is available [10].

https://bitbucket.org/sts-lab/ellipsis


616 A. Bansal et al.

Audit log Generation
(Synchronous)

Audit log
Maintenance

(Asynchronous)

Syscall
start

Netlink

Audit
Log

Kernel
Space

Syscall
exit

Application auditd

Syscall Handler

Audit Filters kauditdkaudit buffer

User
Space 1

2 4

3

5

Fig. 1. Architecture of linux audit framework [1].

2 Background and System Model

Linux Audit Framework. The Linux Audit system [64] provides a way to audit
system activities. An overview of the Linux Audit architecture is presented in
Fig. 1. When an application invokes a syscall 1©, the subsequent kernel control
flow eventually traverses an audit filter hook 2©. Linux Audit examines the
context of the event, compares it to pre-configured audit rules, generating a log
event if there is a match and enqueueing it in a message buffer 3© before returning
control to the syscall handler 4© and then to the application 5©. Asynchronous
from this workflow, a pair of (non-RT) audit daemons (kauditd and auditd)
transmit the message buffer to user space for storage and analysis. Because the
daemons are asynchronous, the message buffer can overflow if syscalls occur
faster than the daemon flushes to user space, resulting in event loss.

Although it is well-established that Linux Audit can incur large computa-
tional and storage overheads in traditional software [51], its impacts on RT appli-
cations were unclear. Encouragingly, upon conducting a detailed (See footnote
2) analysis we observed that Linux Audit does not introduce significant issues
of priority inversion or contention over auditing resources shared across applica-
tions (e.g., kaudit buffer). Further, except for limited outlier cases, the latency
introduced by auditing syscalls can be measured and bounded. Hence it is a good
candidate for firm and soft deadline RTS as supported by RT Linux [66]. How-
ever, audit events were lost, making auditing incomplete and ineffectual while
still costly for the RTS due to large storage space required to store the audit log.

RTS Properties. Ellipsis leverages properties unique to RT environments, as
described in Table 1. In contrast to traditional applications where determining
all possible execution paths is often undecidable, knowledge about execution
paths is an essential component of RT application development. RTS are spe-
cial purpose machines that execute well formed tasksets to fulfill predetermined
tasks. Various techniques are employed to analyze the tasksets, e.g., worst case
execution time (WCET) analysis [19,30,35,45,57,59,76]. All expected behaviors
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Table 1. RTS properties relevant to Ellipsis

Property Relevance to Ellipsis

Periodic tasks Most RT tasks are periodically activated, leading to repeating behaviors.
Ellipsis templates describe the most common repetitions.

Aperiodic
tasks

Second most common form of RT tasks, Aperiodic tasks also lead to
repeating behaviors, but with irregular inter-arrival times.

Code coverage High code coverage analyses are part of existing RTS development processes,
Ellipsis’ automated template generation adds minimal cost.

Timing
predictability

A requirement for safety and correct functioning of RTS, näıvely enabling
auditing can violate this by introducing overheads and variability.

Isolation Resources are commonly isolated in RTS to improve timing predictability.
RTS auditing mechanisms should not violate resource isolation.

Special
purpose

RTS are special purpose machines, tasks are known at development i.e.,
templates can be created before system deployment.

Longevity Once deployed RTS can remain functional for years. Ellipsis’ can save
enormous log storage and transmission costs over the lifetime of the RTS

of the system must be accounted for at design time in conjunction with the sys-
tem designers. Any deviation is an unforeseen fault or malicious activity, which
needs to be audited in full detail.

Threat Model. We consider an adversary that aims to penetrate and impact
an RTS through exfiltrating data, corrupting actuation outputs, degrading per-
formance, causing deadline violations, etc. This attacker may install modified
programs, exploit a running process or install malware on the RTS to achieve
their objectives. To observe this attacker, our system adopts an aggressive audit
configuration intended to capture all forensically-relevant events, as identified
in prior works.3 We assume that the underlying OS and the audit subsystem
therein are trusted. This is a standard assumption in system auditing literature
[12,33,46,48,56]. Far from being impractical on RTS, prior works such as Trusted
Timely Computing Base provide a secure kernel that meets both the trust and
temporal requirements for hosting Ellipsis in RT Linux [21,24,69,70]. Ellipsis’
goal is to capture evidence of an attacker intrusion/activity without losing rel-
evant information and hand it off to a tamper proof system. Although audit
integrity is an important security goal, it is commonly explored orthogonally to
other audit research due to the modularity of security solutions (e.g., [12,54,75]).
Therefore, we assume that once recorded to kaudit buffer, attackers cannot
compromise the integrity of audit logs Finally, we assume that applications can
be profiled in a controlled benign environment prior to being the target of attack.

3 Specifically, our ruleset audits execve, read, readv, write, writev, sendto,

recvfrom, sendmsg, recvmsg, mmap, mprotect, link, symlink, clone, fork,

vfork, open, close, creat, openat, mknodat, mknod, dup, dup2, dup3,

bind, accept, accept4, connect, rename, setuid, setreuid, setresuid,

chmod, fchmod, pipe, pipe2, truncate, ftruncate, sendfile, unlink,

unlinkat, socketpair,splice, init module, and finit module.



618 A. Bansal et al.

Fig. 2. Ellipsis template creation.

Fig. 3. Runtime template matching as
an FSA with states as [syscalls matched
count, {set of reachable templates}]. TPL-
1 (S1, S2, S1) and TPL-2 (S1, S3, S1)
are shown as example. Template matches
(TPL-1, TPL-2) emit a single record, fail-
ure leads to full log store.

3 Ellipsis

The volume of audit events is the major limiting factor for auditing RTS. High
event volume can result in event record loss, high log storage costs and large
maintenance overheads [51]. We present Ellipsis, an audit event reduction tech-
nique designed specifically for RTS. Ellipsis achieves this through templatization
of the audit event stream. Templates represent learned expected behaviors of
RT tasks, described as a sequence of syscalls with arguments and temporal pro-
file.These templates are generated in an offline profiling phase, similar to common
RTS analyses like WCET [19,44]. At runtime, the application’s syscall stream
is compared against its templates; if a contiguous sequence of syscalls matches a
template, only a single record indicating the template match is inserted into the
event stream (kaudit buffer). Significantly, while a sequence of audited syscall
events is replaced by a single record, relevant information is not lost (Sect. 5).

Model. Consider a system in which the machine operator wishes to audit a single
RT task τ . An RT task here corresponds to a thread in Linux systems, identified
by a combination of process and thread ids. We can limit this discussion to a
single task, without losing generality, as Ellipsis’ template creation, activation
and runtime matching treat each task as independent. RT tasks are commonly
structured with a one time init component and repeating loops. Let si denote
a syscall sequence the task exhibits in a loop execution and N the count of
different syscall execution paths τ might take (i.e., 0 < i ≤ N). A template
describes these sequences (si), identifying the syscalls and arguments. As noted
in Sect. 2, RT applications are developed to have limited code paths and bounded
loop iterations. Extensive analysis of execution paths is a standard part of the
RTS development process. Thus, for RTS, N is finite and determinable. Let
function len(si) return the number of syscalls in the sequence si. Further, let
pi be the probability that an iteration of τ exhibits syscall sequence si.
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Sequence Identification. The first step towards template creation is identifi-
cation of sequences and their probability of occurrences. Identification of cyclic
syscall behaviors has been addressed in the auditing literature [42,50], with past
solutions require binary analysis, code annotations, stack analysis or a combina-
tion. While any technique that yields si and pi can be employed here, including
the prior mentioned ones, we developed a highly automated process, leverag-
ing RT task structure and Linux Audit itself. The application is run for long
periods of time and audit trace collected. We observe that RT tasks typically
end with calls to sleep or yield that translate to nanosleep and sched yield
syscalls in Linux. Periodic behaviors can also be triggered by polling timerfds
to read events from multiple timers by using select and epoll wait syscalls.
We leverage these syscalls to identify boundaries of task executions within the
audit log and then extract sequences of syscall invocations. Figure 2 provides an
overview of this process. We also modified Linux Audit to include the Thread ID
in log messages helping disambiguate threads belonging to a process. This first
step yields the per task syscall sequences exhibited by the application and their
properties: length, probability of occurrence, and the arguments. These syscall
sequences are then converted into intermediate templates, each entry of which
includes the syscall name along with the arguments. This first step can also
be iterated with intermediate templates loaded to reduce previously extracted
sequences, though in practice such iterations were not required.

Sequence Selection. A subset of intermediate templates are chosen to be con-
verted to final templates. This choice is based on the tradeoff between the benefit
of audit event volume reduction and the memory cost as defined later in Eq. (3)
and (5), respectively. As we discuss in detail in Sect. 5 the security tradeoff is
minimal. Let’s assume n sequences are chosen to be reduced, where 0 ≤ n ≤ N .
As noted earlier, Ellipsis treats each task independently, the value of n is also
independent for each task.

Template Creation. For the next step, Fig. 2 Step 2, these n templates are
loaded and application profiled again to collect temporal profile for each tem-
plate i.e., the expected duration and inter-arrival intervals for each template. The
intermediate templates are enriched with this temporal information, to yield the
final templates. Templates are stored in the form of text files and occupy negli-
gible disk space, e.g., ArduPilot templates used for evaluation (Sect. 4) occupied
494 bytes of space on disk total. This whole process is highly automated, given
an application binary with necessary inputs, using the template creation toolset.
(See footnote 1)

Ellipsis Activation. We extend the Linux Audit command-line auditctl util-
ity to transmit templates to kernel space. Once templates are loaded, Ellipsis
can be activated using auditctl to start reducing any matching behaviors. This
extended auditctl can also be used to activate/deactivate Ellipsis and load/un-
load templates, however, these operations are privileged, identical to deactivating
Linux Audit itself. System administrators can use this utility to easily update
templates as required, e.g., in response to application updates.
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Table 2. Parameters from case study

Task name N I len(si) pi f

arducopter 5 100 [14, 15, 17, 17, 18] [0.95, 0.02, 0.01, 0.01, 0.01] 679

ap-rcin 1 182 [16] [1] 2

ap-spi-0 5 1599 [1, 1, 1, 2, 2] [0.645, 0.182, 0.170, 0.001, 0.001] 0

Runtime Matching. Given the template(s) of syscall sequences, an Ellipsis
kernel module, extending from Linux Audit syscall hooks, filters syscalls that
match a template. The templates are modeled as a finite state automaton (FSA),
(Fig. 3), implemented as a collection of linked lists in kernel memory. While the
RT task is executing, all syscall sequences allowed by the automaton are stored in
a temporary task-specific buffer. If the set of events fully describes an automaton
template, Ellipsis discards the contents of the task-specific buffer and enqueues
a single record onto the kaudit buffer to denote the execution of a templatized
activity. Alternatively, Ellipsis enqueues the entire task-specific buffer to the
main kaudit buffer if (a) a syscall occurs that is not allowed by the automaton,
(b) the template is not fully described at the end of the task instance or (c) the
task instance does not adhere to the expected temporal behavior of the fully
described template. Thus, the behavior of each task instance is reduced to a
single record when the task behaves as expected. For any abnormal behavior,
the complete audit log is retained.

Audit Event Reduction. Let the task τ be executed for I iterations and f
denote the number of audit events in init phase. The number of audit events
generated by τ when audited by Linux Audit (EA), when Ellipsis reduces n out
of total N sequences (EE), and the reduction (EA − EE) are given by

EA = I ∗ (
∑N

i=1(pi ∗ len(si))) + f (1)

EE = I ∗ (
∑n

i=1 pi +
∑N

i=n+1(pi ∗ len(si))) + f (2)

(3)

As evident from Eq. (3), to maximize reduction, long sequences with large pi

values must be chosen as the n sequences for reduction. RT applications, like
control systems, autonomous systems and even video streaming, feature limited
execution paths for majority of their runtimes [39]. This property has been uti-
lized by Yoon et al. in a prior work [76]. Therefore, for RT applications the
distribution of pi is highly biased i.e., certain sequences si have high proba-
bility of occurrence. Table 2 provides example values for the parameters used,
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determined during the Sequence Identification step in template creation for the
evaluation application ArduPilot(Sect. 4).

Storage Size Reduction. Let BA denote the average cost of representing a
syscall event in audit log and BE denote the average cost of representing Ellipsis’
template match record. By design, BE <= BA; BE is a constant 343 bytes, while
BA averaged 527 bytes (1220 max) in our evaluation. Noting that the init events
(f) are not reduced by Ellipsis, the disk size reduction i.e., difference in sizes of
τ ’s audit log for Linux Audit (LA) and Ellipsis (LE) is:

LA − LE = I ∗ (BA ∗ ∑n
i=1(pi ∗ len(si)) − BE ∗ ∑n

i=1 pi) (4)

From Eq. (3) and (4), Ellipsis’ benefits come from the audit events count
and log size becoming independent of sequence size (len(si)) for the chosen n
sequences, multiplied further by repetitions of these sequences (I ∗ pi). Ellipsis
behaves identical to Linux Audit for any sequence that is not included as a
template, i.e., i ≥ n + 1 in Eq. (2).

Memory Tradeoff. The tradeoff for Ellipsis’ benefits are computational over-
heads (evaluated in Sect. 4.5 and Sect. 4.6) and the memory cost of storing tem-
plates (M τ ). Let Mfixed be memory required per template, excluding syscalls,
while M syscall be the memory required for each syscall in the template. On 32
bit kernel Mfixed = 116 and Msyscall = 56 bytes, determined by sizeof data
structures. As an example, 3 templates from evaluation occupied 2 KB in mem-
ory.

Mτ = Mfixed ∗ n + Msyscall ∗ ∑n
i=1 len(si) (5)

Extended Reduction Horizon. Until now we have limited the horizon of
reduction to individual task loop instances. We can further optimize by creating
a single record that describes multiple consecutive matches of a template. This
higher performance system is henceforth referred to as Ellipsis-HP. When a
Ellipsis-HP match fails, a separate record is logged for each of the base template
matches along with complete log sequence for the current instance (i.e., the base
behavior of Ellipsis). Ellipsis-HP performs best when identical sequences occur
continuously, capturing all sequence repetitions in one entry.

EBest
Ellipsis-HP = n + I ∗ ∑N

i=n+1(pi ∗ len(si)) + f (6)

4 Evaluation

We evaluate Ellipsis and Ellipsis-HP using ArduPilot [9], a safety-critical firm-
deadline autopilot application. We show that our auditing systems (a) per-
form lossless auditing within the application’s temporal requirements, where
Linux Audit would lose audit events or violate application’s safety constraints
(Sect. 4.3), (b) achieve high audit log volume reduction during benign activity, (c)
enjoy minimal computational overhead even in an artificially created worst case
scenarios (Sect. 4.5). Using a set of synthetic tasks we also show that the Ellipsis’
overhead per syscall scales independent of the size of template (Sect. 4.6).
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4.1 Setup

All measurements were conducted on 4GB Raspberry Pi 4 running Linux 4.19.
The RT kernel from raspberrypi/linux [2] was used with AUDIT and AUDIT-
SYSCALL kconfigs enabled. To reduce computational variability due to external
perturbations we disabled power management, directed all kernel background
tasks/interrupts to core 0 using the isolcpu kernel argument, and set CPU fre-
quency Governor to Performance. Audit rules for capturing syscall events were
configured to match against our benchmark application (i.e., background pro-
cess activity was not audited). We set the kaudit buffer size to 50K as any larger
values led to system panic and hangs.

Fig. 4. (Section 4.3) Number of audit
events lost vs. frequencies of the primary
loop in ArduPilot, for 100K iterations.

Fig. 5. (Section 4.4) Total size on disk
of the audit log (Y-axis), captured for
different number of iterations (X-axis).

4.2 ArduPilot

ArduPilot is an open source autopilot application that can fully control various
classes of autonomous vehicles such as quadcopters, rovers, submarines and fixed
wing planes [9]. It has been installed in over a million vehicles and has been
the basis for many industrial and academic projects. We chose the quadcopter
variant of ArduPilot, called ArduCopter, as it has the most stringent temporal
requirements within the application suite. For this application the RPi4 board
was equipped with a Navio2 Autopilot hat [6] to provide real sensors and actuator
interfaces for the application. We instrumented the application for measuring the
runtime overheads introduced by auditing. Among the seven tasks spawned by
ArduPilot, we focus primarily on a task named FastLoop for evaluating temporal
overheads as it includes the stability and control tasks that need to run at a high
frequency to keep the QuadCopter stable and safe.

Among the syscalls observed in the trace of ArduPilot, we found that
only a small subset of syscalls were relevant to forensic analysis [28]: execve,
openat, read, write, close and pread64. Upon running the template gener-
ation script on the application binary, we obtained the most frequently occuring
templates for three tasks (n = 1, for each task), consisting of 14 write, 16
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pread64 calls and 1 read call, respectively. These templates include expected
values corresponding to the file descriptor and count arguments of the syscalls.
Templates were loaded into the kernel when evaluating Ellipsis or Ellipsis-HP .

4.3 Audit Completeness

Experiment. We ran the application for 100K iterations at task frequencies
100 Hz, 200 Hz, 300 Hz 400 Hz4, measuring audit events lost. The fast dynamics
of a quadcopter benefit from the lower discretization error in the ArduPilot’s
PID controllers at higher frequencies [71] leading to more stable vehicle control.

Observations. Figure 4 compares the log event loss for Linux Audit, Ellipsis and
Ellipsis-HP across multiple task frequencies. We observe that Linux Audit lost
log events at all task frequencies 100 Hz. In contrast, Ellipsis and Ellipsis-HP
did not lose audit event log at any point in the experiment.

Discussion. Because this ArduCopter task performs critical stability and con-
trol function, reducing task frequency to accomodate Linux Audit may hay con-
siderable detrimental effects. Further investigation revealed that Linux Audit
dropped log events due to kaudit buffer overflow, despite the buffer size being
50K. In contrast, Ellipsis is able provide auditing for the entire frequency range
without suffering log event loss. Better yet, throughout the experiment the max
buffer occupancy was just 2.5K for Ellipsis and 1.5K for Ellipsis-HP .(A technical
report with supplementary material for this work is available [10].)

4.4 Audit Log Size Reduction

Experiment. We ran the ArduCopter application over multiple iterations in 10
to 100K range to simulate application behavior over varying runtimes. For each
iteration count, we measure the size on disk of the recorded log.

Observations. Figure 5 compares the storage costs in terms of file size on disk
in bytes. The storage costs for all systems over shorter runs was found to be
comparable, as the cost of auditing the initialization phase of the application
(BA ∗ f) tends to dominate over the periodic loops. Over a 250 s runtime (105

iterations) the growth of log size in Ellipsis was drastically lower compared to
vanilla Linux Audit, with storage costs reducing by 740 MB, or 80%, when
using Ellipsis. Ellipsis-HP provides a more aggressive log size reduction option
by lowering storage costs by 860 MB, or 93%, compared to Linux Audit. Linux
Audit Lossless estimates the log size had Linux Audit not lost any log events.

4 Frequency values are chosen based on application support: https://ardupilot.org/
copter/docs/parameters-Copter-stable-V4.1.0.html#sched-loop-rate-scheduling-
main-loop-rate.

https://ardupilot.org/copter/docs/parameters-Copter-stable-V4.1.0.html#sched-loop-rate-scheduling-main-loop-rate
https://ardupilot.org/copter/docs/parameters-Copter-stable-V4.1.0.html#sched-loop-rate-scheduling-main-loop-rate
https://ardupilot.org/copter/docs/parameters-Copter-stable-V4.1.0.html#sched-loop-rate-scheduling-main-loop-rate
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Discussion. The observations line up with our initial hypothesis that the bulk
of the audit logs generated during a loop iteration would exactly match the
templates. Thus, in Ellipsis by reducing all the log messages that correspond to a
template down to a single message, we see a vast reduction in storage costs while
ensuring the retention of all the audit data. Ellipsis-HP takes this idea further by
eliminating audit log generation over extended periods of time if the application
exhibits expected behaviors only. For RTS that are expected to run for months or
even years without failing, these savings are crucial for continuous and complete
security audit of the system. Motion, a soft deadline application with numerous
execution paths (N = 26) achieved similarly high reduction rations 81%–98%)
under varying configurations options and inputs.(See footnote 2)

Fig. 6. (Section 4.5) Comparison of run-
time overheads of ArduPilot main loop.
Task period and deadline is 2500 µs.

Fig. 7. (Section 4.6) Avg. execution
latency of getpid syscall (Y-axis) with
varying task/template lengths (X-axis)

4.5 ArduPilot: Runtime Overheads

Experiment. This evaluation measures the execution time in microseconds (μs),
for the Fast Loop task of ArduPilot, for 1000 iterations, under various auditing
setups. The small number of iterations kept the generated log volume within
kaudit buffer capacity, avoiding overflows and audit events loss in any sce-
nario. This avoids polluting the overhead data with instances of event loss. The
time measurement is based on the monotonic timer counter. This process was
repeated 100 times. To evaluate the absolute worst case for Ellipsis, the Ellipsis
NR (No Reduction) scenario modifies the ArduCopter template so that it always
fails at the last syscall. Ellipsis NR is also the worst case for Ellipsis-HP .

Observations. Figure 6 shows the distribution of 100 execution time samples
for each scenario. Ellipsis, Ellipsis-HP and Ellipsis NR have nearly the same
overhead as Linux Audit. On average, Ellipsis’s overhead is 0.93× and Ellipsis-
HP ’s overhead is 0.90× of Linux Audit. The observed maximum overheads show
a greater improvement. Ellipsis’s observed maximum overhead is 0.87× and
Ellipsis-HP ’s 0.70× of Linux Audit. Ellipsis NR shows a 1.05× increase in
average overhead and 1.07× increase in maximum observed overhead.
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Discussion. Ellipsis adds additional code to syscall auditing hooks, which incurs
small computational overheads. When template matches fail (Ellipsis NR), this
additional overhead is visible, although the overhead is not significantly worse
the baseline Linux Audit. However, in the common case where audit events are
reduced by Ellipsis, this cost is masked by reducing the total amount of log
collection and transmission work performed by Linux Audit. This effect is fur-
ther amplified in Ellipsis-HP owing to its greater reduction potential (Sect. 4.4).
Thus, Ellipsis’s runtime overhead depends on the proportion of audit informa-
tion reduced in the target application. Thus, while reducing the runtime overhead
of auditing is not Ellipsis’ primary goal, it nonetheless enjoys a modest perfor-
mance improvement by reducing the total work performed by the underlying
audit framework.

4.6 Synthetic Tasks: Overhead Scaling

Experiment. Because Ellipsis adds template matching logic in the critical exe-
cution path of syscalls, a potential concern is the overhead growth for tasks
with long syscall sequences. In this experiment we measure execution time for
tasks that execute varying counts of getpid syscalls (10, 20, 30 ... 300). getpid
is a low latency non-blocking syscall, which allows us to stress-test the audit-
ing framework. As the max template length (i.e., syscall count) observed in real
application loops was 29, we analyze workloads of roughly 10 times that amount,
i.e., 300. The execution time for each task is measured 100 times. Since the tasks
have a single execution path i.e., a fixed count of getpid syscalls, Ellipsis’ audit
events reduction always succeeds. For Ellipsis NR (No Reduction) we force tem-
plate matches to fail at the last entry (same as Sect. 4.5).

Observations. Figure 7 shows the average syscall response time as the number
of syscalls in the task loop increases. The primary observation of interest is that
the time to execute a syscall is roughly constant, independent of the number of
syscalls in the task and template. The higher value at the start is due to the non
syscall part of the task that quickly becomes insignificant for tasks with higher
number of syscalls. We only show average latency as the variance is negligible
(< 1.3 μs).

Discussion. Ellipsis scales well as the overhead per syscall remains independent
of template size, even in the worst case scenario of Ellipsis NR. When log reduc-
tion succeeds the overhead is reduced. When the log reduction fails the overhead
is not significantly worse than Linux Audit.

4.7 Summary of Results

Ellipsis provides complete audit events retention while meeting temporal require-
ments of the ArduPilot application, with significantly reduced storage costs.
Ellipsis-HP further improves the reduction ratios. The temporal constraint
allows additional temporal checks, detecting anomalous latency spikes with effec-
tively no additional log size overhead during normal operation.(See footnote 2)
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5 Security Analysis

The security goal of Ellipsis, indeed auditing in general, is to record all
forensically-relevant information, thereby aiding in the investigation of suspi-
cious activities. The previous section established Ellipsis’ ability to dramatically
reduce audit event generation for benign activities, freeing up auditing capacity.
We now discuss the security implications of Ellipsis.

Stealthy Evasion. If a malicious process adheres to the expected behavior of
benign tasks, the associated logs will be reduced. The question, then, is whether
a malicious process can perform meaningful actions while adhering to the benign
templates. If Ellipsis exclusively matched against syscall IDs only, such a feat
may be possible; however, Ellipsis also validates syscalls’ arguments and tempo-
ral constraints, effectively validating both the control flow and data flow before
templatization. Thus making it exceedingly difficult for a process to match a tem-
plate while affecting the RTS in any meaningful way. For example, an attacker
might try to substitute a read from a regular file with a read from a sensitive
file; however, doing so would require changing the file handle argument, failing
the template match. Thus, at a minimum Ellipsis provides comparable security
to commodity audit frameworks, and may actually provide improved security by
avoiding the common problem of log event loss. A positive side effect of Ellipsis
is built in partitioning of execution flows, benefiting provenance techniques that
utilize such partitions [42,49,50].

basharducopter

/sys/.../pwm0/duty_cycle

pwm_attackbash

/sys/.../pwm1/duty_cycle

Fig. 8. (Section 5) Attack graph created using Ellipsis audit logs.

Information Loss. Another concern is whether Ellipsis templates remove
forensically-relevant information. The following is an example write as would
be recorded by Linux Audit.
type=SYSCALL msg=audit (1601405431.612391366:5893333): arch =40000028 syscall =4
per =800000 success=yes exit=7 a0=4 a1=126 ab0 a2=1 a3=3 items=0 ppid =1513 pid

=1526 tid =1526 auid =1000 uid=0 gid=0 euid=0 suid=0 fsuid=0 egid=0 sgid=0
fsgid=0 tty=pts0 ses=1 comm=" arducopter" exe="/ home/pi/ardupilot/build/navio2
/bin/arducopter" key=( null)

The record above, if reduced with Ellipsis and reconstructed using the Ellipsis
log and templates, yields:
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type=SYSCALL msg=audit ([1601405431.612391356 , 1601405431.612391367]:∅): arch
=40000028 syscall =4 per =800000 success=yes exit=7 a0=4 a1=∅ a2=1 a3=∅ items
=0 ppid =1513 pid =1526 tid =1526 auid =1000 uid=0 gid=0 euid=0 suid=0 fsuid=0
egid=0 sgid=0 fsgid=0 tty=pts0 ses=1 comm=" arducopter" exe="/ home/pi/
ardupilot/build/navio2/bin/arducopter" key=(null)

∅ denotes values that could not be reconstructed and [min, max] denote
where a range is known but not the exact value. Nearly all of the information in
an audit record can be completely reconstructed, including (a) all audit events
executed by a task, in order of execution, (b) forensically relevant arguments. On
the other hand, information not reconstructed is (a) accurate timestamps, (b) a
monotonically increasing audit ID, (c) forensically irrelevant syscall arguments.
The effect of this lost information is that fine grained inter-task event ordering
and interleaving cannot be reconstructed. This loss of information is minimal
and at worst increases the size of attack graph of a malicious event. We now
demonstrate Ellipsis’s ability to retain forensically relevant information.

Demonstration: Throttle Override Attack. Autopilot applications are
responsible for the safe operation of autonomous vehicles. ArduPilot periodi-
cally updates actuation signals that control rotary speed of motors that power
rotors. The periodic updates are responsible for maintaining vehicle stability and
safety.

Attack Scenario. Let’s consider a stealthy attacker who wants to destabilize or
take control over the unmanned drones. To achieve this, the attacker first gains
control of a task on the system and attempts to override the control signals.
An actuation signal’s effect depends on the duration for which it controls the
vehicle, therefore, näıvely overriding an actuation signal is not a very effective
attack as the control task may soon update it to the correct value, reducing the
attack’s effect. The attacker instead leverages side channel attacks such as Sched-
uleak [23] during the reconnaissance phase of the attack to learn when the control
signals are updated. Armed with this knowledge, the attacker overrides the actu-
ation signals immediately after the original updates, effectively taking complete
control, with little computational overhead. We use the ArduPilot setup as in
described earlier (Sect. 4.2). Using tools provided with Scheduleak [23], a mali-
cious task is able to override actuation signals generated by ArduPilot. This
setup is run for 250 s and audit logs collected with Ellipsis.

Results. Overriding throttle control signals involves writing to files in sysfs.
This attack behavior can be observed in audit logs as sequences of openat,
write and close syscalls. Combining templates with the obtained audit log
yields the attack graph in Fig. 8. Ellipsis correctly identifies that ArduPilot
is only exhibiting benign behaviors, reducing its audit logs. Ellipsis preserves
detailed attack behaviors for the malicious syscall sequences. Ellipsis did not
lose audit events throughout the application runtime. In contrast, Linux Audit
loses audit events (Sect. 4.3), potentially losing critical forensic evidence.

Discussion. Scheduleak [23] invokes clock gettime syscall frequently to infer
task activation times. Such syscalls are irrelevant for commonly used forensic
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analysis as they don’t capture critical information flows. Despite the lack of
visibility in the reconnaissance phase of the attack, auditing can capture evi-
dence of attacker interference that creates new information flows, as shown in
Fig. 8. We have demonstrated that when a process deviates from the expected
behaviors, e.g., due to an attack, Ellipsis provides the same security as Linux
Audit. Additionally, Ellipsis all but eliminates the possibility of losing portions
of the malicious activity due to kaudit buffer overflow. However, it is impossible
to guarantee that no events will ever be lost with malicious activities creating
unbounded new events. Ellipsis improves upon Linux Audit by (a) freeing up
auditing resources which can then audit malicious behaviors, and (b) reducing
the audit records from benign activities that must be analyzed as part of forensic
provenance analysis. Stealthy attacks like this also show the role of auditing in
improving vulnerability detection and forensic analysis on RTS.

6 Discussion

System Scope and Limitations. Ellipsis is useful for any application that
has predictable repeating patterns. When sequence sets are too large with no
high probability sequences, it may be possible that too much of system memory
would be required to achieve significant log reduction. That said, a large number
of possible sequences is not detrimental to Ellipsis as long as there exist some
high probability sequences. Ellipsis’s efficacy is also not dependent on specific
scheduling policies unless tasks share process and thread ids; if task share pro-
cess/thread ids and the scheduler can reorder them, Ellipsis cannot distinguish
between event chains, leading to unnecessary template match failures.

Auditing Hard RTS. Ellipsis, like Linux Audit and Linux itself, is unsuit-
able for hard-deadline RTS. All synchronous audit components must meet the
temporal requirements for Hard RTS with bounded WCET, including syscall
hooks and Ellipsis template matching. Additionally the kaudit buffer occu-
pancy must have a strict upper bound. In this paper Ellipsis takes a long step
forward, deriving high confidence empirical bounds (Sect. 4.5) to enable Ellip-
sis’ use in firm- or soft-deadline RTS, which are prolific [7]. However, the strict
bounds required for Hard RTS are a work in progress.

Unfavorable Conditions. We consider here the impact of using Ellipsis to
audit hypothetical RTS where our assumptions about RTS properties do not
hold. If the RTS may execute previously unknown syscall sequences, extra events
would exist in the audit log. The audit log recorded by Ellipsis would thus be
larger. Since safety, reliability and timing predictability are important require-
ments for RTS [7] the gaps in code coverage can only be small. Hence the
unknown syscall sequences will not have a major impact on audit events and log
size. If known syscall sequences have near uniform probability of occurrence, sim-
ply using templates for them all achieves high reduction (n = N). The tradeoff
is additional memory required to store templates which is a small cost (Eq. (5)).
Finally, if the above are combined, sequences with substantial probability of
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occurrence would remain untested during the RTS development. For such a sys-
tem, functional correctness, reliability, safety or timing predictability cannot be
established, making this RTS unusable.

7 Related Work

Auditing RTS. Although auditing has been widely acknowledged as an impor-
tant aspect of securing embedded devices [8,26,38], challenges unique to auditing
RTS have received limited attention. Wang et al. present ProvThings, an audit-
ing framework for monitoring IoT smart home deployments [72], but rather than
audit low-level embedded device activity their system monitors API-layer flows
on the IoT platform’s cloud backend. Tian et al. present a block-layer auditing
framework for portable USB storage that can be used to diagnose integrity vio-
lations [68]. Their embedded device emulates a USB flash drive, but does not
consider syscall auditing of RT applications. Wu et al. present a network-layer
auditing platform that captures the temporal properties of network flows and
can thus detect temporal interference [73]. Whereas their system uses auditing
to diagnose performance problems in networks, the presented study considers
the performance problems created by auditing within real-time applications.

Forensic Reduction. Significant effort has been dedicated to improving the cost-
utility ratio for system auditing by pruning or compressing audit data that is
unlikely to be of use during investigations [11,13,15,22,32,37,43,47,63,65,74].
However these approached address the log storage overheads and not the volumi-
nous event generation that is prohibitive to RTS auditing (Sect. 4.3). KCAL [51]
and ProTracer [49] systems are among the few that, like Ellipsis, inline their
reduction methods into the kernel. Regardless of their layer of operation, these
approaches are often based on an observation that certain log semantics are not
forensically relevant (e.g., temporary file I/O [43]), but it is unclear whether
these assumptions hold for real-time cyber-physical environments, e.g., KCAL
or ProTracer would reduce multiple identical reads syscalls to a single entry.
However, a large number of extra reads can cause catastrophic deadline misses.
Forensic reduction in RTS, therefore, needs to be cognizant of the characteristics
of RTS or valuable information can be lost. Our approach to template gener-
ation in Ellipsis shares similarities with the notion of execution partitioning
of log activity [33,34,40,42,50], which decomposes long-lived applications into
autonomous units of work to reduce false dependencies in forensic investigations.
Unlike past systems, however, our approach requires no instrumentation to facil-
itate. Further, leveraging the well-formed nature of real-time tasks ensures the
correctness of our execution units i.e., templates.

8 Conclusion

Ellipsis is a novel audit event reduction system that exemplifies synergistic
application-aware co-design of security mechanisms for RTS. Ellipsis allows
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RT applications to be audited while meeting the temporal requirements of the
application. The role of auditing in securing real-time applications can now be
explored and enhanced further. As showcased with Auditing in this work, other
security mechanisms from general purpose systems warrant a deeper analysis for
their use in RTS.5
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Abstract. TLS is a well-known and thoroughly studied security proto-
col. In this paper, we focus on a specific class of vulnerabilities affect-
ing TLS implementations, state machine errors. These vulnerabilities
are caused by differences in interpreting the standard and correspond
to deviations from the specifications, e.g. accepting invalid messages,
or accepting valid messages out of sequence. We develop a systematic
methodology to infer the state machines of major TLS stacks from stim-
uli and observations, and to study their evolution across revisions. We
use the L� algorithm to compute state machines corresponding to dif-
ferent execution scenarios. We reproduce several known vulnerabilities
(denial of service, authentication bypasses), and uncover new ones. We
also show that state machine inference is efficient and practical for inte-
gration within a continuous integration pipeline, to help find new vul-
nerabilities or deviations introduced during development.

With our systematic black-box approach, we study over 400 different
versions of server and client implementations in various scenarios (pro-
tocol version, options). Using the resulting state machines, we propose a
robust algorithm to fingerprint TLS stacks. To the best of our knowledge,
this is the first application of this approach on such a broad perimeter, in
terms of number of TLS stacks, revisions, or execution scenarios studied.

1 Introduction

TLS is a fundamental block of Internet security. The most recent version of
the standard is TLS 1.3 [23]. It fixes many vulnerabilities uncovered in the last
decade. Automata implementation errors represent one category of these. The
RFC does not specify a reference automaton. Hence, implementers need to derive
their state machine from the protocol messages descriptions and sequences. The
complexity of the task is such that errors are easy.

Such vulnerabilities can be triggered by an attacker sending messages in an
inappropriate order (e.g. EarlyCCS [18]) or skipping messages (e.g. SkipVer-
ify [4], which bypasses server authentication by skipping the corresponding mes-
sages). In more complex cases, interfering with the state machine enables new
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cryptographic attacks (e.g. FREAK [4], Factoring RSA Export Keys). All major
TLS stacks have been vulnerable to at least one such flaw in the last decade.1

Our work focuses on black-box testing, to better understand how TLS imple-
mentations react to messages that diverge from an ideal message sequence. We
use an active learning algorithm, L�, initially described by Angluin [2], and later
adapted to Mealy machines [25], to infer the actual state machine through inter-
actions with implementations. We then compare these state machines with the
expected behavior of an ideal stack. Despite the absence of a formal specifica-
tion of such an ideal stack, a simple approximation of said ideal stack is to use
so-called happy paths, which correspond to the expected message sequences for
successful connections. A fully compliant stack should only contain happy paths
and error transitions, leading to the end of the connection. Every other transition
is deemed suspicious. Our contributions are the following:2

– We propose an improved methodology to systematically analyze TLS stacks,
both client- and server-side, in an rigorous, automatic and efficient way.

– We propose optimizations exploiting the determinism hypothesis used in L�.
– By applying our methodology to different versions of popular open source

projects, we confirm already known security vulnerabilities.
– We also discover new implementation errors, including security-relevant ones.
– Our methodology spots differences in the implementation of error conditions,

supporting the concept of state-machine-based fingerprinting of TLS stacks.

2 TLS in a Nutshell

A typical TLS 1.3 connection is shown on the left side of Fig. 1: the client sends
a ClientHello message to advertise the ciphersuites, i.e. a set of cryptographic
algorithms, it supports and to propose a key share using one of the algorithms
it supports. If the client and the server agree on capabilities, the server selects
a suitable ciphersuite, and sends its own key share in a ServerHello message.

Once the client and server have agreed on algorithms and a common session
key, messages are protected using authenticated encryption. The server carries
on with several messages, including its certificate chain (Certificate) and a sig-
nature over the exchanged messages proving its identity (CertificateVerify).
The Finished messages confirm keys in both directions. Then, session keys are
updated, and application data can be exchanged.

Of course, this transcript only represents a simple, typical situation. It rep-
resents a happy path, which does not take into account session resumption or the
so-called 0-RTT mode. It also ignores common error cases, such as the impossi-
bility for the client and the server to agree on a common ciphersuite.

From this description, we represent the expected behavior of a TLS 1.3 client
with the state machine on the right side of Fig. 1. The happy path, in green,

1 e.g.: CVE-2014-0224, CVE-2014-6321, CVE-2015-0204, CVE-2015-0205.
2 Our tools have been published on GitLab: gitlab.com/gaspians/pylstar-tls and

https://gitlab.com/gaspians/tls-test-bed.

https://gitlab.com/gaspians/tls-test-bed
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starts with the client outputting a ClientHello, and leads to the Finished
messages and the exchange of Application data. Outside of this happy path, all
other messages (denoted *) lead to the sink state with a fatal alert. This figure is
identical to the state machine inferred using our methodology on OpenSSL 3.0.1.

Fig. 1. A typical TLS 1.3 connection and the corresponding expected client state
machine. On the right, transitions are labeled with the messages sent to / received
from the client. The path in green is the expected flow described on the left, ending
with a request (the AppData received from the client between states 4 and 5) and the
answer (the AppData sent between states 5 and 6). A transition with * aggregates the
behaviors for the remaining input messages. (Color figure online)

3 Background on Model Learning

In 1987, Angluin proposed L�, an algorithm that infers a deterministic finite
automaton using membership and equivalence queries [2]. This technique can be
extended to extract the state machine of a protocol implementation using the
Mealy machines representation, which can be seen as automata where transitions
are labeled by both the messages sent and received, as shown on Fig. 1.

Fig. 2. Model learning setup.

L� is an automated black-box technique driven by a Learner. Figure 2
describes the experimental process. The analyzed implementation (a TLS client
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or server) is the System Under Test (SUT). The Learner generates sequences of
letters from a finite input vocabulary, where each letter represents an abstract
protocol message (e.g. ClientHello) associated with its specific parameters.
Interactions between the Learner and the SUT are mediated through a Map-
per, which transforms abstract letters into concrete protocol messages, and
transforms the concrete answers back to abstract letters.

To infer the state machine, L� populates an observation table using member-
ship queries by collecting answers from the SUT to a series of message sequences.
This step ends when the observation table is closed and consistent [2]. Then, it
builds a hypothesis, i.e. a tentative state machine, and the Learner uses a so-
called equivalence query to validate it. This query either confirms the hypothesis
or exhibits a counter-example sequence where the hypothesis differs from the
actual state machine. The counter-example is used to run the first step again to
build a new hypothesis. This process is repeated until a hypothesis is validated.

Since the actual state machine is not known, equivalence queries do not
really exist in practice, so we must approximate them. Several methods have
been developed, such as W-method [9], Wp-method [14], Random Walk [20] and
Distinguishing Bounds [21]. They use the same input vocabulary to create new
message sequences that have not been used in the creation of the state machine.
These sequences are executed both on the SUT using membership queries and
on the hypothesis. In case the executions produce different results, the corre-
sponding message sequence is a counter-example invalidating the hypothesis.

W-method or Wp-method have an exponential complexity in the size of the
inferred automata, which was not reasonable in most cases.3 We use the Random
Walk to approximate equivalence queries, since it produced the best results, both
in terms of performance and accuracy. We also cross-check our results using
Distinguishing Bounds on the obtained unique state machines to benefit from
its guarantees. Indeed, given a bound value Bdist, it guarantees that the obtained
state machine will be accurate as soon as two states in the real state machine
can be distinguished in at most Bdist steps.

4 Description and Implementation of Our Platform

Figure 3 illustrates how TLS implementations and our inference tool interact for
a client inference. Server inference works in a similar way.

4.1 TLS Stacks

We create containers for more than 400 TLS stacks. Table 4 in Appendix A
details the TLS stacks currently included in our platform.

For each stack, we reuse the tools or the example code available within the
project to build and run a TLS client and/or a TLS server. Such pieces of code
are representative of the way the libraries are used in practice.
3 Some scenarios use many messages, which can produce state machines with many

states. The maximum number of states in our experiments is 31.
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Fig. 3. TLS client inference cinematics. See Appendix A for a detailed explanation.

Each container is customized to select the protocol version and the cipher-
suites, and to include the required cryptographic material (certificate, keys,
trusted certification authority), which allows us to study different scenarios.

In addition to the “example” client, we create for each stack a second con-
tainer, using curl dynamically linked with each stack. These curl-based images
provide a unified interface across stacks, removing small differences in the exam-
ple provided by the projects, e.g. missing certificate checks. All server-side exam-
ples include a functional and sufficiently customizable example for our needs.

4.2 Inference Tools

One major challenge with the L� approach is that the Mapper used to concretize
the abstract messages has to be flexible enough to send arbitrary messages at
any state of execution of the protocol (even ones that would clearly be invalid).
We thus need a modular and robust TLS stack to implement the Mapper. We
use scapy [5], a Python-based network tool, to forge and decode packets. scapy
allows us to easily build customized packets (e.g. a CertificateVerify with a
wrong signature).

To complete our setup, we choose pylstar, a Python-based implementation
of L�, which allows for a straightforward connection with scapy. pylstar has
previously been used to infer protocols used by malware with their Command
& Control servers [7], as well as to study the behavior of HTTP/2 clients [8].

4.3 Assumptions

Deterministic SUTs. The most important requirement for L� is that the SUT
behavior must be deterministic, relative to the selected input vocabulary. For
a given stack and a given set of parameters, a given input abstract message
sequence should always produce the exact same abstract output sequence.

TLS stacks behave deterministically, with a few exceptions. When a SUT
takes too long to answer a stimulus, we can misinterpret its silence as the absence
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of messages, whereas output messages were actually expected. This requires to
get the timeout parameter right. In rare cases, an encrypted message can be
misinterpreted as a cleartext message, which produces an unexpected response
with a low probability. To avoid this, we always tag reception of encrypted
packets that cannot be properly decrypted by scapy with a dedicated letter,
UnknownPacket.4

Timeouts. A common issue with L� inference is the time required to produce a
result. For a typical inference (a 10-state automaton, 15 input letters), we need
to send thousands of sequences, with up to 10 letters. At each step, we must
ensure we have received all the messages the SUT has sent. The usual solution is
to wait for a long period of time before inferring “no response”, which makes the
inference slow. To improve the performance of our tools, we introduce heuristics
to reduce the timeouts when possible.

Precision of the Equivalence Query Approximation. As explained in Sect. 3, our
inference tool use the BDist equivalence method to find counterexamples. To get
relevant results, we must thus assume that the chosen Bdist value is sufficient.

5 Optimizations

Before discussing our optimizations in pylstar, we can already improve the
performance by running in parallel several inferences. Indeed, since we use con-
tainers, running multiple instances of SUTs and inference tools is essentially free,
so we can benefit from a multi-core architecture.

EOF is Final. When we receive a network error, which indicates that the SUT
has shut down the communication channel, we can conclude that all subsequent
messages will trigger the same signal (EOF), so it is not necessary to build and
emit the corresponding messages.

In [24], de Ruiter and Poll actually proposed a similar improvement in the
equivalence method implemented in statelearner, which resulted in measur-
able performance gains. By also applying the idea to the first phase of the algo-
rithm (the membership queries), we further improve the performance.

Exploiting the Determinism. As discussed earlier, L� relies on the fact that
the SUT is deterministic. So we propose another optimization, which is a direct
consequence of this assumption. During its execution, L� often sends sequences
that are extensions of already sent sequences. Let us assume that we have already

4 Similarly, OpenSSL 1.0.1d was a short-lived version with a known bug in the CBC
encryption function. The defective function leads to the emission of malformed pack-
ets with a low probability, which could not be interpreted correctly deterministically.
We chose to remove this particular image from our corpus.
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observed that sending A to the SUT triggers two messages, x and y. When
evaluating the input sequence A B, we can send A, read x and y without waiting
after the reception of y, then send B and observe the answer using the timeout.

A restricted version of this optimization consists in skipping the timeout only
when we know sending a message will not trigger any message back.

Evaluation. Table 1 describes the time required for a typical inference with
different optimizations. We infer the TLS 1.2 server state machine for OpenSSL
1.1.1k (which contains 6 states) with 12 input messages and a 1-second timeout.
The machine hosting the experiment is an 16-core AMD EPYC 7302P at 3GHz,
with 128 GB of RAM and all the storage on SSDs.

Table 1. Average time required to infer TLS 1.2 server state machine for OpenSSL
1.1.1k. Percentages are the fraction of the unoptimized time.

No EOF optim. EOF optimization

No anticipation 1,885 s (100%) 1,598 s (85%)

Skip timeouts on empty responses 1,081 s (57%) 862 s (46%)

Skip timeouts on all known responses 128 s (7%) 77 s (4%)

It appears both optimizations improve the overall performance, with a drastic
improvement from the fully-fledged timeout anticipation. We ran similar exper-
iments with statelearner (same timeout and vocabulary), on the same hard-
ware, and the time required to produce the state machine was 2,945 s.

Obviously, the time required for our inferences can vary, depending on the
complexity of the SUT state machine (which can count as much as 30 states in
some cases), the size of the input vocabulary (the scenario), and the speed of
the SUT. The default timeout used is 1 s, but to get a stable inference, we must
raise this value to 3 for several stacks.

For a 1400-experiment run (which took around 2 and a half hours overall,
with 30 inferences in parallel), the average inference time was around 3 min, the
median was 81 s, and the 10th and 90th percentiles were respectively 27 s and
around 8 min.

6 Studied Scenarios and Vulnerabilities

A scenario is defined by the following information: (i) the role (client/server)
and the configuration (protocol version, ciphersuites, etc.) of the SUT; (ii) the
input vocabulary (the list of abstract messages) used during the inference; (iii)
a set of expected path, which helps challenge the built state machine during
the equivalence query phase; and (iv) a set of security properties to test on the
resulting graph.
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To identify bugs using learned model, we first identify RFCs violations and
then we analyze whether these violations represent bugs with the following steps:

(i) color in green the happy paths representing the successful connections;
(ii) color in gray error transitions leading to sink state, which are expected;
(iii) color all remaining transitions in red since they are RFCs violations, and

may correspond to vulnerabilities.

6.1 Client Scenarios

In these scenarios, the SUT is a client, running a given version of TLS. The client
is configured with a trusted certification authority and is expected to check the
certificate presented by the server. The inference tool acts as a server, with the
following input vocabulary: ServerHello, Certificate messages (valid, empty,
invalid—trusted but for the wrong domain —, and untrusted), other server-side
Handshake messages, ApplicationData and CloseNotify.

In these scenarios, we ensure that the client only sends application data to a
correctly authenticated server. We look for paths leading to ApplicationData
messages and check for proper authentication.

Another area of interest is the presence of loops that could be used by an
attacker to stall a client, enabling complex cryptographic attacks, such as the
LogJam attack [1]. Since the goal of such attacks is to delay the completion of
the TLS Handshake, we only focus on loops happening early in the connection.

6.2 Server Scenarios

In these scenarios, the SUT is a server, running a given version of TLS. The server
can be configured to require mutual authentication (with regards to a given cer-
tification authority). The inference tool acts as a client, and uses the follow-
ing vocabulary: different ClientHellos, various Certificate messages (empty,
trusted, untrusted), other client-side Handshake messages, ApplicationData
and CloseNotify. We also include alerts and unexpected messages such as
server-side messages.

When client authentication is required, we want to ensure that the server
properly authenticates the client. Only paths with a valid certificate and the
corresponding signature should be accepted.

We are also interested in the presence of loops in server state machines,
which could force the server to maintain an open connection indefinitely. For
such denial of service attacks, we only focus on occurrences happening before
encryption is activated; this way, the attacker only needs to spend very few
resources to keep the channel open. Moreover, keeping the server in an early
stage of the connection reduces the chances of something being logged. Note
that these loops are different from the ones created through TCP segmentation
or TLS ClientHello fragmentation, which would be limited by the length of
the data to send.



Towards a Systematic and Automatic Use of State Machine Inference 645

6.3 Vulnerability Confirmation

These scenarios identify potential implementation issues, which need to be inde-
pendently confirmed as security flaws. L� is an algorithm that produces a state
machine, which represents the behavior of the SUT. However, the produced state
machine is only an approximation due to the (limited) set of abstract messages
selected in the scenario and the equivalence query method used. We thus use
tools to independently check whether a potential security issue, uncovered by
the inference, actually translates into a real security flaw.

For authentication bypass issues, we extract the potentially dangerous paths
and replay them to the SUT, in a context where we do not have access to the
authentication secret. If we can trigger the tested stack to emit Application Data,
the flaw is confirmed.

For loops, we send precomputed packets to the SUT at a given pace (typically
one message per minute), and for a given duration (e.g. several hours). If we can
maintain the connection open, we have proof the loop can be weaponized.

7 Analysis of the Resulting State Machines

We analyze over 400 different versions of different TLS stacks using different
client and server scenarios and get over 2,000 automata. Appendix B summarizes
the vulnerabilities reproduced and discovered during our study.

7.1 Authentication Bypasses

Server Authentication Bypasses in wolfSSL. Around 2015, authentication
bypasses in state machines seemed to be pervasive in TLS stacks [4,24]. In 2020,
CVE-2020-24613, an authentication bypass affecting wolfSSL TLS 1.3 client,
caught our eye, and we decided to try and reproduce it using L�.

To this aim, we infer the state machines for wolfSSL TLS 1.3 clients, for
different versions, with standard Handshake messages. Figure 4a represents the
state machine corresponding to wolfSSL 4.4, which is vulnerable to CVE-2020-
24613. By skipping the CertificateVerify message, an attacker can bypass
server authentication, and thus impersonate any server to a vulnerable client.
The vulnerability was fixed in version 4.5, as can be seen on Fig. 4b, which
corresponds to the inferred state machine for the patched version, using the
same vocabulary.

However, in other scenarios, we also use a broader input vocabulary includ-
ing an empty Certificate message, that should never be sent by the server.
We could thus discover another vulnerability in wolfSSL, present in all versions
at the time. As shown in Fig. 4c, instead of skipping the CertificateVerify
message, the attacker can send an empty Certificate message, followed by a
CertificateVerify message signed by an arbitrary RSA key.5 This new bug
was confirmed, reported as CVE-2021-3336, and fixed.
5 In our inference tool, sending a Certificate message selects the corresponding RSA

key to be used in the subsequent CertificateVerify. For EmptyCertificate, the
selected RSA key is a fresh key generated for the experiment.
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(a) CVE-2020-24613, a server authentica-
tion bypass in wolfSSL TLS 1.3 clients, up
to version 4.4. An attacker can imperson-
ate any server to a vulnerable client by
skipping the CertificateVerify message.
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(b) CVE-2020-24613 fixed in version 4.5.
With the same vocabulary used in Fig. 4a,
the dangerous transitions have indeed dis-
appeared.
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(c) CVE-2021-3336. By sending an empty
Certificate message, followed by an ar-
bitrary CertificateVerify, server imper-
sonation is also possible.
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(d) CVE-2022-25638. Adding a completely
invalid CertificateVerify message rein-
troduces a dangerous transition.

SH : ServerHello EE : Encrypted Extensions

Cert : Certificate CV : CertificateVerify

Fin : Finished AppData : ApplicationData

EOF : End of the connection

Fig. 4. Attacks against wolfSSL TLS 1.3 clients.
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By adding new messages to the input vocabulary, we also discover
another alternate path to reintroduce the initial bug. Figure 4d shows an
attacker can send an empty Certificate message, followed by an invalid
CertificateVerify message, containing an unknown signature algorithm and
an arbitrary payload to bypass server authentication. This bug, identified as
CVE-2022-25638, has been fixed in version 5.2.0.

All these attacks were reproduced by sending the identified transcript to the
vulnerable SUTs. The program replaying the attack was not given access to the
server private key, and we checked both wolfSSL and curl+wolfSSL stacks to
make sure the authentication bypasses were real.

Other Bypasses. In OpenSSL, different paths are incorrectly identified as
invalid bypasses: the client seems to be accepting any certificate from the server.
However, when we analyze a real TLS client using OpenSSL (the curl+OpenSSL
stack), these dangerous paths disappear. Indeed, in our OpenSSL containers,
TLS clients use the s client application, which does not enforce any checks
regarding the certificate.6

We use the same approach to assess the quality of TLS servers authenti-
cating clients. We get an issue in wolfSSL TLS 1.3 servers, as shown in Fig. 5,
which is the transposition of CVE-2020-24613 to the server. By skipping the
CertificateVerify message (and optionally the Certificate message), an
attacker can bypass the authentication and impersonate any legitimate client. It
is worth noting that the server correctly reject untrusted certificates and empty
Certificate messages (since client authentication is required in this scenario).
This bug, CVE-2022-25640, has been fixed in version 5.2.0.

0

1

CH / SH+EE+CR+Cert+CV+Fin

6

* / EOF

2

Cert / -

3

Fin / -

Untrusted Cert / EOF
EmptyCert / EOF* / EOF Fin / -4

CV / -

* / EOF

AppData / AppData+EOF * / EOF

Fin / -

* / EOF

* / EOF

Fig. 5. CVE-2022-25640. In versions, up to 5.1.0, client authentication can be bypassed
in wolfSSL TLS 1.3 servers, using the same idea as in CVE-2020-24613.

6 It is possible to add options such as -verifyCAfile to the command line, but they
do not end an unauthenticated handshake and merely produces a warning message.
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7.2 Loops in the Automata

As discussed in Sect. 6, exploiting loops in TLS state machines can be used to
mount sophisticated cryptographic attacks [1]. Loops have also been considered
as a potential vector for denial of service attacks (e.g. CVE-2020-12457). We
thus identify such loops in our state machines, and to focus on those happening
before messages are protected.

Analysis of a False Positive. The inferred state machine for wolfSSL TLS 1.2
server (all versions) seems to exhibit a loop on the initial state, tagged with the
NoRenegotiation warning. However, when we repeatedly send such warnings
to the SUT, the server actually closes the connection after 4 warnings. This
situation exhibits the fact that L� is only an approximation, which can not always
capture behaviors happening very deep in the state machine. This justifies our
approach, to always confirm potential vulnerabilities identified on the generated
state machine.

Real bugs. After careful verification, we confirm several loops in different stacks,
which are summarized in Table 2.

Table 2. Description of confirmed loops in TLS stacks.

Stack Scenario Messages Max. time between msgs

erlang 24 1.0/1.2 Server NoRenegotiation Alert or ApplicationData >1 h�

fizz 22.01.24 1.3 Client ChangeCipherSpec >1 h

matrixssl 4.0 - 4.3 1.0/1.2 Server NoRenegotiation Alert ≈40 s

NSS 3.15 - 3.78 1.0/1.2 Server NoRenegotiation Alert >1 h

OpenSSL <1.1.0 1.0/1.2 Server Empty ApplicationData >1 h
� Erlang has a Timeout parameter that can thwart the attack. It was added to the official tutorial.

For servers, loops can lead to Denial of Service attacks against TLS services,
with very few resources. Indeed, the attacker can easily establish TCP connec-
tions and regularly send the right payload. Beyond the payload and the SUT
identification (IP address and port), the attacker only needs to store, for each
connection, the source port and the associated sequence numbers. With stacks
keeping a connection alive for several minutes between packets (most probably
because they do not enforce any kind of timeout), this represents a tiny amount
of CPU, memory and network resources for the attacker. Moreover, distribut-
ing this attack is trivial. Finally, with vulnerable stacks, the attack can be run
indefinitely and does not usually generate logs.

Beyond adding reasonable timeouts (both per-message and per-handshake)
within the affected stacks, firewalls or other network devices should be used to
detect and deter such extreme behavior. For the affected stacks, the issues have
been reported and fixed when deemed relevant.
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7.3 Unsolicited Client Authentication

TLS client authentication is an optional feature. The client can only present its
certificate when the server sent a CertificateRequest. Servers may however
be accommodating, and accept Certificate and CertificateVerify messages
from the client, even when they were not solicited.

Such behavior may expose parts of the code that are not normally used. In
2014, a critical security flaw was found in Microsoft SChannel: a buffer overflow
in the ECDSA signature check, triggered by client authentication, led to remote
code execution. Accepting unsolicited client authentication messages made this
obscure bug actually reachable in most deployments.

In our corpus, several versions of wolfSSL exhibit a similar behavior. Even if
these paths do not necessarily lead to security issues, they should be removed,
and considered bad practice, as they are a deviation from the specification.

8 TLS Stack Fingerprinting

We expect the state machines to be rather simple, as shown in Fig. 1, with less
than 10 states, a restricted number of happy paths and the rest of the transitions
consisting of fatal errors pointing towards the sink state. Yet, as surprising as
it may seem, we observe that the produced state machines are actually richer,
with up to 31 states, and that they are each specific to a given TLS stack.7

The differences usually lie in variations among implementations about the
error handling: different alert messages can be emitted. Several state machines
sometimes accept unexpected messages and silently ignores them.

Using a method described by Shu and Lee [26], we can compute, for a given
scenario, a set of input message sequences separating the different stacks we
inferred. Then, we can compute the stack fingerprints as the answer on each
stack to the distinguishing sequences.

Beyond revealing interesting differences in TLS stack internals, fingerprinting
TLS stacks can help an attacker pinpoint, with a few message sequences, a given
version (or a set of versions) of a TLS implementation to select an effective
exploit against this particular target. This may also help identify the underlying
TLS stack in network appliances.

Fingerprinting also allows to detect the presence of interception middleboxes
that can be used for censorship. Indeed, such middleboxes may produce unique
fingerprints, either at the message-level or at the state machine-level. It is also
possible to look for discrepancies between the TLS stack and the application-
layer stack to detect middleboxes, as described by Durumeric et al. [10].

7 Of course, within a given project, successive versions may share the same automaton.
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8.1 Application to TLS 1.3 Servers

To illustrate our state-machine-based fingerprinting, Table 3 presents the classes
we identify for the simple TLS 1.3 scenario with no client authentication.

Table 3. TLS 1.3 server stacks grouped by state machine. N is the number of states.
CVEs in italic only affect part of the equivalence class.

Stack Versions N High-severity CVEs affecting the servers

erlang 24.0.3 - 24.2.1 9 No high-severity CVE referenced

GnuTLS 3.6.16 - 3.7.2 4 2021-20231 2021-20232

matrixssl 4.0.0 - 4.1.0 4 2019-10914 2019-13470

4.2.1 - 4.3.0 6 No high-severity CVE referenced

NSS 3.39 - 3.40 4 2019-17006 2019-17007 2020-12403 2020-25648 2021-43527

3.41 - 3.78 4 2019-17006 2019-17007 2020-12403 2020-25648 2021-43527

OpenSSL 1.1.1a - 1.1.1n 4 2020-1967 2020-1971 2021-3449 2021-3711 2022-0778 2022-1292

3.0.0 - 3.0.2 4 2022-0778 2022-1473 2022-1292

wolfSSL 3.15.5 - 4.0.0 7 2019-11873 and all the ones in the next row

4.1.0 - 4.6.0 7 2019-15651 2019-16748 2019-18840 2021-38597 2022-25640

4.7.0 - 4.8.1 7 2021-38597 2022-25640

5.0.0 - 5.1.1 7 2022-23408 2022-25640

5.2.0 6 No high-severity CVE referenced

Separating these 13 classes only requires sending 8 distinguishing sequences:

CloseNotify ClientHello, Certificate
ClientHello, Certificate ClientHello, Finished, CloseNotify
ClientHello, ClientHello ClientHello, EmptyCertificate, CertificateVerify
ClientHello, CloseNotify ClientHello, EmptyCertificate, InvalidCertificateVerify

8.2 Advantages and Limitations of the Approach

We believe such fingerprints are rather robust, since they rely on the way TLS
stacks handle messages at their core, and not on easily customizable parameters
such as the list of supported ciphersuites.

However, there exists configuration parameters that can impact the structure
of the state machine. We already handle several of them, such as server-requested
client certificate authentication or TLS 1.3 middlebox compatibility (which con-
sists in sending useless ChangeCipherSpec messages), but other features might
affect the accuracy of our tool, such as the renegotiation mechanisms, which we
leave to future work.
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9 Related Work

State Machine Learning. Several methods have been used to analyze TLS
implementations. In 2014, Kikuchi discovered the EarlyCCS vulnerability try-
ing to prove state-machine-level properties using a proof assistant [18]. This
approach does however not scale well, considering the huge work required to
properly model the protocol.

Juraj Somorovsky presented TLS-Attacker [27], a framework for evaluating
the security of TLS implementations. TLS-Attacker allows to forge customized
TLS message sequence. It was successfully used to uncover several vulnerabilities
in TLS libraries such as OpenSSL, Botan and matrixssl.

On its own, TLS-Attacker does not do state machine learning. It was never-
theless used as the mapper by van Thoor et al. [28] with statelearner to infer
TLS 1.3 state machines in 2018. With regards to our work, the study has several
limitations: it only covers an internet draft of TLS 1.3, was only run on a few
OpenSSL and wolfSSL servers, and included a less rich vocabulary.

Beurdouche et al. [4], developed a tool, FlexTLS, and proposed a method to
test the behavior of mainstream TLS stacks against deviant traces consisting in
removing or adding messages from valid traces. They uncovered many bugs in
different TLS stacks, including the EarlyCCS vulnerability discussed above and
the infamous FREAK attack (Factoring RSA EXPORT Keys). Tarun et al. [29] also
used FlexTLS on Microsft SChannel, and they found bugs and vulnerabilities,
including loops as those described in Sect. 7.2. By comparison, our approach
is more exhaustive, with regards to the used input vocabulary and under the
assumption equivalence queries are properly approximate. Moreover, FlexTLS
was not updated to be compatible with TLS 1.3.

De Ruiter and Poll used L� in 2015 to infer TLS state machines for different
TLS servers [24]. They discovered various anomalies and security issues. Our
work builds on their results, since their study only covered server state machines
and predates TLS 1.3.

Active learning methods have also been applied to other protocols and prob-
lems. In his thesis, Bossert developed pylstar and used it to reverse-engineer
communication protocols between a malware and its server [7]. He also studied
the behavior of HTTP/2 clients to allow for robust fingerprinting [8]. Fiterau-
Brostean et al. applied model learning to SSH implementations [12] in 2017 and
DTLS implementations [11] in 2020. In 2019, de Rasool et al. used learnlib
(the library used by statelearner) to study Google’s QUIC protocol [22].

Finally, Henrix et al. [15] explored parallelization and checkpointing to
improve inference performance in learnlib. We did not investigate parallelism
at the inference level since we could more easily parallelize our experiments with
no complexity added. However, we believe checkpointing is promissing, and we
plan to explore instrumented active learning in our future work, not only for
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performance improvements, but also to characterize more precisely the SUT’s
internals in dangerous states.

TLS Fingerprinting. To identify a TLS client, Husák et al. [16] used the
list of ciphersuites proposed by the client to fingerprint TLS stacks. The idea
has been generalized by Kotzias et al. and by Frolov and Wustrow [13,19] to
include other fields of the ClientHello to fingerprint the client. The method
was applied successfully to detect malware, censorship circumvention tools and
web browsers. Salesforce proposed two formats to capture the idea: JA3 for
passive fingerprinting and JARM for active fingerprinting.8

Durumeric et al. [10] presented the impact of HTTPS interception on security.
They identified the nature of the client by identifying a mismatch between the
HTTPS User-Agent header and TLS client behavior (supported ciphersuites,
declared extensions).

Janssen et al. [17] proposed an approach similar to ours to fingerprint TLS
servers, with a tool called tlsprint,9 based on state machines inferred with
statelearner. However, the studied stacks are limited to OpenSSL and mbedTLS
servers without TLS 1.3 support. Furthermore, we observed that tlsprint had
a non-deterministic behavior against several OpensSSL stacks from our testbed.

We believe our work on state-machine fingerprinting can be more robust
than ciphersuite-based fingerprinting, since the latter behavior can usually be
configured, whereas the former is based on behaviors that are fundamentally
representative of the studied stack.

10 Conclusion

Using our platform containing more than 400 stacks representing various versions
of open source projects and our methodology, we could reproduce known bugs
on TLS stacks, as well as uncover new implementation errors, including secu-
rity vulnerabilities such as authentication bypasses or possible denial-of-service
vectors. Moreover, since the state machine we infer are sufficiently precise to
spot differences between implementation families, this supports the concept of
state-machine-based fingerprinting, an alternative to the more classical approach
based on ciphersuite-based fingerprinting, which offer a more robust characteri-
zation.

To the best of our knowledge, our work is the most extensive and systematic
application of model learning to an important corpus of TLS implementations.

Overall, we believe that these deviations from the standard, even when they
do not lead to exploitable security vulnerabilities, are detrimental to the overall
quality of the implementation. They represent an unnecessary complexity that

8 https://github.com/salesforce/ja3 and https://github.com/salesforce/jarm.
9 https://github.com/tlsprint/tlsprint.

https://github.com/salesforce/ja3
https://github.com/salesforce/jarm
https://github.com/tlsprint/tlsprint
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has been known to facilitate the introduction of security issues in the future
when features are added. To reduce these deviations (and to limit fingerprinting
opportunities), standards should produce more formal definitions of the expected
state machines in future specifications.

Beyond TLS, other protocols could benefit from our methodology. In par-
ticular, lowering the time required to infer a state machine allow us to explore
more complex protocols with a rich input vocabulary, such as the recently stan-
dardized QUIC protocol.

Since our tools have been published as open-source software, we hope our
work can help build a common test-bed for the community where we can compare
and improve different approaches and tools.

A Platform Architecture

In our platform, a TLS stack is defined as a container running at least one of
the following scripts: run server, which launches a TLS server, ready to be
sollicited; run client, which starts a so-called trigger server, a service listening
to signals from the inference tool, so a TLS client can be spawned each time we
want to test a message sequence. Table 4 lists the TLS stacks currently included.

Figure 3 in Sect. 4 describes a typical run of our platform to infer a client state
machine.10 First, we start a client container running the trigger script (step 1).
Then, we start our inference tool containing the L� engine (the Learner) and the
TLS Mapper (step 2).

Each time the algorithm needs to learn from the System Under Test (the
TLS client) using a sequence of messages, it first resets the client (step 3), which
spawns a fresh TLS client in the client container (step 4). This client establishes
a TCP connection to the TLS server within the harness (step 5) and sends its
ClientHello. From now on, the L� engine drives the Mapper by transmitting
abstract messages to send to the client (step 6). The harness concretizes those
messages and sends them to the client (step 7). In return, the concrete answer
from the client (step 8) are abstracted by the harness (step 9).

Steps 3 to 9 are repeated until the L� engine is able to produce a valid
hypothesis regarding the client state machine, that is to generate an automaton
accurately describing the client behavior (step 10).

10 Inferring a server works in a similar, but simpler, way. Indeed, we can simply start
the server and have the inference tool open a connection for each sequence to test.



654 A. T. Rasoamanana et al.

Table 4. List of TLS stacks included in our platform.

Stack name Versions Client Server Comments

OpenSSL 0.9.8m - 1.0.0t (41) � � Only TLS 1.0

1.0.1a - 1.1.0l (53) � � Only TLS 1.0 and 1.2

1.1.1a - 1.1.1n (14) � �
3.0.0 - 3.0.2 (3) � �

curl+OpenSSL 1.0.0a - 1.0.0t (20) � Only TLS 1.0

1.0.1a - 1.1.0l (53) � Only TLS 1.0 and 1.2

1.1.1a - 1.1.1n (14) �
3.0.0 - 3.0.2 (3) �

GnuTLS 3.6.16 - 3.7.2 (4) � �
curl+GnuTLS 3.6.16 - 3.7.2 (4) �
mbedtls 1.3.10 - 1.4 (17) � � Only TLS 1.0

2.0.0 - 3.0.0p1 (96) � � Only TLS 1.0 and 1.2

wolfssl 3.12.0 - 3.14.4 (10) � � Only TLS 1.0 and 1.2

3.15.5 - 5.2.0 (20) � �
curl+wolfssl 3.12.0 - 3.14.4 (10) � Only TLS 1.0 and 1.2

3.15.5 - 5.1.1 (20) �
matrixssl 3.7.2 (1) � Only TLS 1.0

4.0.0 - 4.3.0 (7) �
NSS 3.15 - 3.38 � � Only TLS 1.0 and 1.2

3.39 - 3.78 � �
erlang 20.0 (1) � Only TLS 1.0

24.0.3 - 24.2.1 (2) �
fizz 2021.02 - 2021.06 � Only TLS 1.3 Weekly snapshots

B List of the Studied Vulnerabilities

This appendix lists the vulnerabilities we studied during our work. New vul-
nerabilities uncovered during our study are tagged “New”. Previously known
vulnerabilities are tagged with one of the following status. “Not Reproduced”
means we could not reproduce the issue, either because we did not include the
vulnerable stack or because of a limitation in our approach (e.g. the absence
of a given abstract mesage); “Detected” means the infered state machine shows
an unexpected transition related to the vulnerability; “Reproduced” means that
the infered state machines provides evidence that the vulnerability is present
and can be exploited, should the state machine be accurate.

Since we only focus on TLS 1.0 to 1.3 versions, we do not investigate several
vulnerabilities such as DROWN [3], a cryptographic attack using flaws (including
state machine bugs) in SSLv2 servers to recover TLS-encrypted plaintext.
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B.1 Unexpected Loops

CVE # Stack Versions Description Status

2020-12457 wolfSSL ≤ 4.4.0 Reproduced TLS 1.2 server DoS

- erlang 24.0 New Default configuration allow for TLS server DoS

2022-25639 matrixSSL 4.0 - 4.3 New TLS server DoS

- fizz 2021 snapshots New Unexpected client loops

pending NSS 3.15 - 3.78 New TLS 1.0 to 1.2 server DoS

B.2 Authentication Bypasses

CVE # Stack Versions Status Comments

2014-0224 OpenSSL ≤ 0.9.8za ≤ 1.0.0l ≤ 1.0.1h Detected EarlyCCS (unexpected CCS transitions)

2015-0204 OpenSSL ≤ 0.9.8zc ≤ 1.0.0o ≤ 1.0.1j Detected FREAK (client- and server-side EXPORT RSA downgrade)

2015-0205 OpenSSL ≤ 1.0.0p ≤ 1.0.1j Not Reproduced Client auth. bypass. Requires DH certificate support

2020-24613 wolfSSL ≤ 4.4.0 Reproduced TLS 1.3 server auth. bypass

2021-3336 wolfSSL ≤ 4.6.0 New TLS 1.3 server auth. bypass

2022-25638 wolfSSL ≤ 5.1.0 New TLS 1.3 server auth. bypass

2022-25640 wolfSSL ≤ 5.1.0 New TLS 1.3 client auth. bypass

B.3 Bleichenbacher Padding Oracles

The vulnerabilities described here affect TLS servers offering RSA key exchange
(removed in TLS 1.3). At the state-machine level, a vulnerable stack exhibits a
state where outgoing edges labeled with well-formed and wrongly-formed mes-
sages can be distinguished. Using a dedicated scenario including such malformed
messages, we reproduced existing vulnerability, but we did not find any new bugs.

CVE # Stack Versions Status Comments

2016-0800 OpenSSL ≤ 1.0.1t ≤ 1.0.2f Not Reproduced Requires SSLv2 messages

2016-6883 matrixSSL ≤ 3.8.2 Reproduced

2017-13099 wolfSSL ≤ 3.12.2 Reproduced ROBOT attack [6]

2017-1000385 Erlang 20.0 Reproduced ROBOT attack [6]
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Abstract. Inspired by Jeremy Bentham’s panopticon, i.e., an institu-
tional building design in which a single security guard is able to monitor
all detainees while they are unable to tell if they are being watched,
we design the PanoptiCANs—a series of adversary-resilient CAN bus
architectures. While DoS attacks are impossible to prevent on a regular
bus topology, the PanoptiCANs are able to actively respond to them,
as well as to generic attacks, by air gapping the network. The proposed
modifications allow a bus guardian to monitor and isolate intruders on
the bus while all traffic is redirected so that legitimate nodes carry on
their tasks without significant disturbances. A decentralized version del-
egates these abilities to regular nodes, reducing costs and wire lengths,
while also being able to localize and isolate the intruders much faster.
We prove the effectiveness of the proposed topologies on an experimental
setup with automotive grade controllers and collected in-vehicle traffic
data. With the most effective architecture, intruders are isolated in a few
milliseconds following single frame injections.

1 Introduction and Motivation

Starting with the security incidents reported almost a decade ago [1–3], cars and
the Controller Area Network (CAN) bus, in particular, have become an engaging
research subject for security professionals. The CAN bus is the most widely-used
in-vehicle communication layer with a history that spans over more than three
decades. BOSCH, the original designer of CAN, started to work on CAN-FD since
2011 [4]. This extension is now available and increases the bandwidth of CAN and
the size of its frames. More recently, in 2018, the CAN in Automation (CiA) asso-
ciation of users and manufacturers started the specification for CAN XL [5], a
layer which extends the bandwidth even further. So it is clear that the CAN bus
is here to stay and will be present in cars and various industries for the decades
that follow. The modifications proposed in this work are compatible with future
extensions of CAN and may be adapted for different electrical specifications.

There are several attack entry points that have to be considered in modern
cars: adversaries may remotely corrupt an existing in-vehicle unit, tap the bus
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
V. Atluri et al. (Eds.): ESORICS 2022, LNCS 13556, pp. 658–679, 2022.
https://doi.org/10.1007/978-3-031-17143-7_32
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Fig. 1. Addressed setting: adversarial actions on CAN bus

at some location that is more accessible and, much more commonly, connect to
an available interface such as the OBD port. Figure 1 suggests such scenarios by
depicting a CAN bus inside a car and several adversaries. In response to this,
there have been many efforts to secure the CAN bus, e.g., a brief summary can
be found in [6]. The large majority of these works target either the introduction
of some cryptographic payload in the frame or the development of intrusion
detection systems that may separate between legitimate and adversarial traffic.
We briefly enumerate some solutions in the related works section.

In-vehicle networks are heterogeneous, that is, both low and high-end con-
trollers are present which makes it difficult to design solutions that can be ported
on all devices that are plugged to the bus. In this context, intruder isolation,
by air gaping the network with active relays and creating a physical separation
between bus segments, is highly efficient in preventing attacks. Also, Denial-of-
Service (DoS) cannot be stopped at all without such modifications as DoS preven-
tion depends on the topology. With or without cryptography or intrusion detec-
tion systems in place, there is no way to prevent DoS attacks on CAN buses as
long as a bus topology is employed since all nodes have unrestricted access to
the communication medium. This not only allows a malicious node to send high-
priority frames, but it also empowers malicious nodes to manipulate frames sent by
other legitimate nodes with the goal of increasing their error counters and plac-
ing them into a bus-off state. Ultimately, a malicious node can keep the bus in
a dominant state causing a complete blackout and no node will be able to send
legitimate frames. The only way to prevent DoS attacks on the CAN bus is by
architectural changes which have already been suggested in [7]. But such changes
have to be done in a clever way so that the great advantages of a bus topology are
not lost. Notably, the bus topology is cheap to implement and makes it easy to
install nodes by simply plugging them to the wires. This is what made CAN the
most desirable communication interface for in-vehicle networks and simply chang-
ing the bus topology to a star topology may not be so appealing (not to mention
that it turns the central gateway into a single point of failure).

The PanoptiCAN: concept and design. Designed by Jeremy Bentham in the
18-th century [8], the panopticon (from Greek panoptes, i.e., all-seeing) is an insti-
tutional building that allows a single security guard to observe all detainees in
the building while they are unable to tell whether they are being watched. Simi-
larly, in a PanoptiCAN, the Bus Guardian (a trusted device attached to the bus)
is able to monitor traffic and isolate each node by using active relays that change
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the topology of the network. We are not specifically interested that nodes remain
unaware of being watched, what is important is that isolated nodes are still able to
receive traffic from the rest of the network in order to keep the vehicle functional.
In principle, a node should not be able to tell that it was cut-out from the bus by
analyzing incoming traffic, neither should the rest of the nodes, since incoming
traffic will perfectly mimic the full bus. This should be interpreted in a construc-
tive sense, i.e., all CAN frames will arrive regardless of the intruder intervention.
It is out of scope for this work if the adversary or legitimate nodes can decide
whether such isolation took place based on physical characteristics, i.e., voltage
levels [9], clock skews [10], or other fine-grained characteristics. Addressing this
issue would lead to unnecessary complications. It does not seem to matter much
if the adversary knows that it is isolated and the same holds for legitimate ECUs
(Electronic Control Units) for which this is irrelevant as long as they receive the
rest of the CAN packets and are able to deliver their own legitimate packets in
time. Consequently, what maters is that the intrusion is observed, isolated, and
all legitimate traffic remains largely unaltered, reaching its destination. The main
advantage of our construction is that we can preserve all existing in-vehicle func-
tionalities unaltered as all legitimate ECUs will have access to all in-vehicle traffic.
In the decentralized version of the PanoptiCAN we renounce on the Bus Guardian
in order to simplify wiring. In this case, the legitimate nodes are empowered to iso-
late the intruder and reconstruct traffic in other parts of the network. We keep the
Bus Guardian optional in this version.

To put our contribution into context, in Fig. 2 we provide a simplified view of
some network configurations for CAN: the commonly employed bus topology (i),
a star topology (ii), the recently proposed DoS-resilient topology [7] of CANARY
(iii) and the PanoptiCAN (iv) along with its distributed version with (v) and with-
out a Bus Guardian (vi) which are the contributions of this work. To clarify the
context, we now briefly discuss the advantages and disadvantages of these topolo-
gies. Controller Area Networks usually follow a bus topology. Star topologies have
been commonly suggested as an alternative to increase the resilience of CAN [11–
13], e.g., they do not allow a DoS to propagate over the bus, but they are more
expensive, they introduce a single point of failure and they cannot retrofit exist-
ing vehicles. A newly suggested option, CANARY [7], allows dynamic topology
changes by using active relays. In principle, CANARY is a mixed bus-ring topol-
ogy where a Bus Guardian taps the two bus ends and bridges between the left and
right sides of the network. Although from [7] CANARY may give the impression of
a star topology, the lines running from the Bus Guardian to the relays are not CAN
bus wires that carry data, but regular copper wires that carry a voltage signal that
triggers the relays, and thus, the network topology is still a bus. A ring topology is
formed by the Bus Guardian which links the left and right sides of the network. To
these existing topologies, we add three more powerful topologies: the PanoptiCAN
and its decentralized versions with or without the Bus Guardian. The Panopti-
CAN is a mixed bus-star topology since the Bus Guardian taps the bus in several
points that allow him to record/replay traffic. The decentralized version of the
PanoptiCAN is a mixed bus-daisy-chain topology which does not require a Bus
Guardian and greatly simplifies wiring, thus reducing costs, but also improves on
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Fig. 2. Simplified view of some existing/proposed topologies for CAN: (i) bus, (ii) star,
(iii) CANARY, (iv) PanoptiCAN, (v) PanoptiCAN-DC with a bus guardian, and (vi)
PanoptiCAN-DC without a bus guardian

Table 1. Advantages and disadvantages of existing topologies, CANARY and the
PanoptiCANs

Topology Operating principle Advantages Disadvantages

Regular Bus Nodes wired to the same line Cheap and easy to deploy No intruder isolation, DoS
vulnerable

Regular Star Nodes wired to a gateway Good node isolation (DoS resilient) Expensive gateways, require one
channel for each node, more
wires

CANARY Cut bus segments and/or
load-balance the network in case
of attacks

Can isolate intruders, DoS resilient,
can retrofit existing networks

More difficult/expensive wiring,
requires bus guardian

PanoptiCAN Bus guardian isolates/monitors
each node in case of attacks

Can isolate intruders, DoS resilient,
can retrofit existing networks

More difficult/expensive wiring,
requires a bus guardian

PanoptiCAN-DC Nodes locally switch the bus to
a daisy-chain topology

Can isolate intruders, DoS resilient,
simple wiring, distributed, bus
guardian optional

Requires one additional
transceiver for each node

intrusion localization speed, all these at the cost of an additional transceiver for
each node which is inexpensive. In the light of the above, Table 1 provides a brief
summary on the operation principles, advantages and disadvantages of the dis-
cussed architectures. Briefly, CANARY and the PanoptiCANs provide a switch-
able topology that is resilient to DoS and many other types of attacks. The decen-
tralized version of the PanoptiCAN improves significantly in terms of localization
speed and wiring requirements.

Summary of Contributions. Briefly, our work contributes in five relevant direc-
tions with respect to existing works:

1. we propose several switchable architectures that are resilient to adversary
attacks and which are more effective than previous approaches, i.e., the
PanoptiCAN and its decentralized version PanoptiCAN-DC,
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2. we improve on the wirings which are both difficult to manage inside cars and
nonetheless expensive, this improvement is both in the way we wire the bus
canaries, i.e., the double relay-resistor structure initially proposed by [7], but
also in the topology of the decentralized PanoptiCAN-DC which requires far
simpler wirings compared to both CANARY and PanoptiCAN,

3. we improve on the localization speed significantly with the decentralized
PanoptiCAN-DC which is capable to localize the adversary almost instanta-
neously following a single frame injection without needing the Bus Guardian
intervention to probe the network and locate the intrusion,

4. we specifically focus on preventing the more insidious DoS attack caused by
error inflicting adversaries that modify legitimate frames to lead sender nodes
into Bus-off and also account for the possibility of multiple adversaries on the
bus,

5. last but not least, by this work we also push more in the direction of adver-
sary resilient topologies that react on adversarial actions, opening road for
protecting vehicles against intrusions by actively air gapping the networks.

The rest of the paper is organized as follows. In Sect. 2 we present some
basics on CAN buses and discuss related works. Section 3 introduces the design
that we propose for the PanoptiCAN and one immediate simplification which
greatly reduces wiring costs. Then in Sect. 4 we present the evaluation scenarios
we consider and Sect. 5 contains the experimental results. Finally, Sect. 6 holds
the conclusion of our work.

2 Background and Related Works

In this section we introduce some basic background on CAN buses and discuss
related works on attack and countermeasures for CAN.

2.1 CAN Basics

The physical layer of the CAN bus consists in two differential lines linked at the
ends with 120Ω termination resistors as illustrated in the left side of Fig. 3. The
CAN protocol supports bit rates of up to 1Mbps using frames with a specific
layout. The frame starts with an arbitration field of 11 bits (or 29 bits in extended
frames), contains a payload which is up to 64 bits (or up to 512 bits in CAN-
FD) and a 15-bit CRC (or up to 21 bits in CAN-FD). All nodes communicating
on the bus must comply with the error management mechanism required by
the standard to assure undisturbed communication in the presence of faulty
transmitters or receivers. For this, there are two counters, TEC (transmit error
counter) and REC (receive error counter), incremented each time a CAN error is
observed or decremented after a frame is successfully received. The detection of
a frame transmission error is signaled by the transmitter or receivers using error
frames which consist in 6 consecutive dominant bits for active error flags or 6
consecutive recessive bits for passive error flags. These flags violate the specified
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Fig. 3. Basic depiction of a CAN bus (left) and the CAN error state machine (right)

stuffing rule, notifying in this way all nodes of the error. Nodes can be in one
of the three defined error states: error active, error passive and bus-off. If the
TEC and REC counters are both lower than 128, the node is in the error active
state and can transmit active error flags. If at least one of the counters is greater
than 127 the node is in the error passive state and can transmit only passive
error flags. If the TEC counter is greater than 255, the node will disconnect
from the bus, entering in a Bus-off state. The right side of Fig. 3 shows the CAN
error states and transition conditions. It is notable to mention that the error
management mechanism was exploited to force legitimate ECUs in Bus-off [14]
or as a defense measure against adversarial ECUs [15].

2.2 Related Works

Since the CAN bus does not include sender authentication or other security
mechanisms by default, nodes which are communicating on CAN are vulnera-
ble to several types of attacks. Vulnerabilities exposed by [2,3] or more recently
[16,17] and many others showed that messages from genuine ECUs can be eas-
ily spoofed or that adversarial frames can be injected from remote in order
to take control of critical vehicle functionalities. Authenticating incoming data
has been proposed by numerous works and recently by industry standards, e.g.,
AUTOSAR [18,19], etc.

However, even if security is in place and intrusions are detected, there is still
room for DoS attacks due to the wired-AND behaviour of the CAN bus. The
simplest form of DoS attack, mentioned as early as the work in [20], exploits the
CAN arbitration mechanism by continuously sending frames with high priority
which hinders legitimate transmissions. A partial solution against DoS attacks
is the use of ID-hopping techniques which modify frame identifiers/priorities
through a secure procedure. This was first proposed by Humayed and Luo [21]
which used a software-based implementation while a dedicated CAN controller
which provides increased ID entropy was proposed in [22]. The use of ordered
encryption for the same purpose was recently suggested in [23]. This type of
solutions will not work against an adversary that disrupts legitimate frames or
which writes the highest priority ID, i.e., 0× 00, on the bus. Such specialized
attacks were more recently analyzed in [24] and [25] where CAN frames were
manipulated to prevent correct interpretation of CAN symbols. This type of
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attack can target specific messages or nodes on the bus [25] sending them into
Bus-off. This vulnerability was previously demonstrated in [14]. Resetting the
ECU error counters was suggested as a countermeasure but this will nullify the
error confinement capabilities of CAN.

Our work can be also linked to related works that address the reliability
of CAN buses. Bus Guardians were used in [26,27] to increase the reliability
of CAN by monitoring the electrical signal on the bus. In this context, the
Bus Guardian is not responsible with intrusion detection or triggering relays to
disconnect parts of the bus. The idea of using relays to disconnect sections of
the CAN bus was employed in the context of fault detection [28–30] where relays
were used to simulate broken wires. These works do not use bus canaries that
maintain connectivity on the bus and do not address security countermeasures
by the use of relays. So far, CANARY [7] is the only proposal that addresses DoS
attacks by disconnecting bus segments with the use of a Bus Guardian which
monitors the network and triggers the bus canaries. We have already argued in
the introduction how our work improves on this and more details will follow in
the next sections.

3 Design Details

This section presents the design of the PanoptiCAN and of its decentralized
version which improves the intruder localization time and simplifies the wirings.

3.1 Engineering Goals

First, we underline our engineering goals. With the designs proposed in this work
we mainly try to improve in two directions: reducing the relay triggering rate
and reducing the wiring complexity. These are vital for practical adoption of the
proposed technology.

Relay triggering will induce errors on legitimate nodes due to electrical dis-
turbances on the bus. It has been shown in [7] that the error counters remain
well below the Error Passive threshold and will never reach the Bus Off state.
While this means that the solution in [7] is safe to use, it still seems prefer-
able to keep the relay triggering rate as low as possible especially since some
relays will include mechanical parts that may be damaged after repeated use.
Due to the more efficient placement of relays and bus taps, the PanoptiCANs
are able to isolate nodes efficiently without the need to load-balance the net-
work as in the case of CANARY [7] where the relays need to be triggered at
fast rates when performing the load-balancing defense. The PanoptiCANs do
not require load balancing as the adversary can be immediately isolated, and
more, PanoptiCAN-DC can isolate the adversary even faster than the regular
PanoptiCAN.
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Fig. 4. The original relay schematic from
CANARY [7] (left) and the actual wiring
for PanoptiCAN relays (right)

Wiring is another issue. Current
cars may have around 2.2 km of
wires that connect hundreds of sen-
sors and control units, according to
recent estimates from the industry
[31]. CANARY [7] may call only for
a small fraction compared to this. But
still, each extra wire induces cost and
additional difficulties in mounting it
inside the car. The setup used in [7]
is also somewhat simpler having only
5 ECUs guarded by 8 relays, but for

the PanoptiCAN, in this work, we develop a setup that is almost twice as large
by using 8 ECUs and 24 relays. This could double the wiring demand, but we
improve both by using a more efficient scheme for wiring the relays (discussed
in the next section) as well as by a simpler design. The PanoptiCAN-DC makes
the Bus Guardian optional and its wiring is much more simpler than all previ-
ous approaches. The relay structures used in CANARY [7], which we will call
bus canaries or simply canaries in what follows, are a double relay-resistor pair
which are capable of actively cutting adversaries from the bus, i.e., simply by
splitting the bus into two or more sub-buses that are still compliant to the CAN
standard which requires a 120Ω termination at the end of the lines. We use sim-
ilar bus canaries in our work but with some wiring simplification that is more
suitable for the relays that we use in our setup. During the implementation, we
noticed that the resistors can be directly linked to the pins of the relays which
results in a more compact bus canary with less wirings and a much more intuitive
connection to the bus. Figure 4 contrasts between the original schematic from [7]
and the wiring of the bus canaries from the current work. The two components
are essentially identical but the new wiring from our work is much simpler and
more suitable for the off-the shelf relays.

This wiring of the bus canary makes it much easier to generalize the schematic
for a bus topology as depicted in Fig. 5. This bus-like depiction is more suitable
for implementation purposes and it also shows that bus modifications are not
very complicated for practice, i.e., there are two relay-resistor pairs in each loca-
tion where the bus needs to be split. Having clarified the exact wiring scheme,
in the exposition that follows we will switch to a simplified view of the wiring
which is more intuitive. To get a more concrete image on how intruder isolation
can be performed in the PanoptiCAN and PanoptiCAN-DC, Fig. 6 gives a brief
overview on intruder isolation for a bus segment in case when ECU4 becomes
adversarial. The red-filled rectangles denote transceivers on the bus, while the
black circles are inactive canaries and a cross denotes a triggered canary. The
PanoptiCAN will use canaries R3 and R4,b triggered by the Bus Guardian while
the PanoptiCAN-DC will use canaries R3 and R5 triggered by legitimate nodes
ECU3 and ECU5. Consequently, the PanoptiCAN will split the bus into 3 sub-
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Fig. 5. Bus wiring for PanoptiCANs (4 connection points for ECUs)

(i) PanoptiCAN (split bus in three sub-buses)

(ii) PanoptiCAN-DC (switch bus to a daisy-chain topology)

Fig. 6. Intruder isolation in the PanoptiCAN (i) and PanoptiCAN-DC (ii)

buses while the PanoptiCAN-DC will switch the bus nearby ECU3 and ECU5

into a daisy-chain topology.

3.2 PanoptiCAN: Topology and Procedures

Having canaries as a starting point, the design of the PanoptiCAN is straight-
forward: each ECU is placed between two canaries and a bus tap that is linked
or multiplexed to the Bus Guardian. Additionally, two transceivers are placed
at the two bus ends. The left side of Fig. 7 contains a graphical depiction of an
8 ECU PanoptiCAN and can be easily extended to any number of nodes. In
a network of n ECUs, i.e., ECUi, i = 1..n one canary, i.e., Ri, is placed after
each odd numbered ECU and two canaries with a tap in the middle are placed
after each even numbered ECU, i.e., (Ri,a, Ti/2,Ri,b). To isolate an odd numbered
ECU, e.g., ECUi, i = 2k+1, the canaries Ri−1,a and Ri will be triggered. The only
exception is ECU1 for which only R1 has to be triggered since it is at the beginning
of the bus. Incoming traffic from odd-numbered ECUs can be recorded from bus
tap T(i−1)/2+1, i = 2k +1. To isolate an even-numbered ECU, canaries Ri−1 and
Ri,b will be triggered. Again, the exception is the ECU at the end of the bus, even
or odd, a case in which only the relay which precedes it will be triggered, i.e.,
Ri−1,∗ (here ∗ is a placeholder which is void for even numbered ECUs and a for
an odd number ECU). Traffic from even numbered ECUs will be recorded at tap
Ti/2. In this topology, the Bus Guardian can efficiently determine the location
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Fig. 7. A PanoptiCAN (left) and a decentralized PanoptiCAN-DC without a Bus
Guardian (right) with 8 ECUs

of the adversary and isolate it by using a divide and conquer strategy, i.e., split
the network in two by triggering the relay in the middle and see from which side
the intrusion packets originate, etc. A simpler option is by isolating each ECU
one at a time and see if the corrupted traffic originates from the corresponding
ECU.

3.3 PanoptiCAN-DC: A More Efficient, Decentralized Design

The design of CANARY and PanoptiCAN share a common difficulty in wiring
the Bus Guardian to each of the canaries. Each canary requires two wires to be
controlled and given the placement of the canaries along the bus, this results
in a wiring harness that is in principle equivalent to a star topology although
these are not CAN wires and the number of transceivers is reduced compared to
a star topology.

To further improve our concept, we introduced a decentralized version of the
PanoptiCAN, which we call PanoptiCAN-DC, in which we greatly reduce the
wirings by letting each node be in control of its own canary. This sets room for
using much shorter wires between each node and the canary nearby. However, in
this case we cannot let the nodes to simply cut the bus in their vicinity since we
need traffic to further propagate between the resulting sub-buses, we need a much
more clever solution for this. For this purpose we use a daisy-chain topology that
will still allow each node to communicate while a DoS is no longer feasible as
long as nodes will filter incoming traffic and will not propagate intruder frames
further into the network. The daisy-chain topology will require an additional
transceiver on each of the ECUs.

The right side of Fig. 7 shows the topology of the PanoptiCAN-DC, the decen-
tralized version of the PanoptiCAN. The design is symmetric, each ECU has two
bus taps and a canary in the middle, the two ECUs at left and right ends of
the bus communicate on a private CAN and do not have a canary. For a net-
work of n ECUs, each ECUi, i = 1..n has two transceivers, i.e., Ti,a, Ti,b and one
canary, i.e., Ri, except for ECU1 and ECUn. In case an intrusion occurs, each
ECUi, i = 2..n−1 will trigger its canary Ri and cut the bus at his location. Then
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it will filter and redirect traffic from one side to another. In this way, a DoS
attack no longer propagates into the network. The Bus Guardian is optional in
this design and required only to retransmit traffic from one part to the other of
the network when more than one adversary is present.

4 Adversary Model and Evaluation Scenarios

In this section we discuss the adversary model and the scenarios for which we
further evaluate the performance of the proposed solution.

4.1 Adversary Model

We assume the existence of an adversary that has full control over the communi-
cation channel, but we do refine this model for the specific needs of our setup. If
one node becomes adversarial and all the traffic that it sends is bogus then the
node will be localized and disconnected from the network. If the intruder plugs
into the network in the vicinity of a legitimate node and isolating the intruder
is not possible, then the best that we can do is to isolate the intruder on the
segment with the legitimate node.

Two adversarial actions that were commonly considered by the literature are
fuzzing the bus in which the adversary injects random CAN frames that have
random IDs or data fields and replay attacks in which the adversary injects
existing IDs with identical or randomized data-fields. While each node may run
its own IDS and ignore attack packets, Denial of Service (DoS) attacks are
much more complicated to address. Also, cryptography provides a good solution
in response to first two types of attacks but it is fully ineffective against DoS
attacks. As already mentioned in the introduction, a DoS can be caused either by
flooding the bus with high priority identifiers as well as by distorting legitimate
frames which will increase the error counters of legitimate nodes. Since these
attacks are more dangerous, we focus on them in what follows.

4.2 Attack Response Capabilities

Both the PanoptiCAN and its distributed version can isolate any single ECU
if it becomes corrupted. Both schemes can respond even to insidious attacks
such as frame distortions (that can place legitimate ECUs into Bus-off) and
check whether the attack originates on the specific ECU or has been forged from
another bus segment. However, it will not be possible to separate between the
legitimate ECU and the adversary as long as the adversary taps the bus on the
same segment as the legitimate ECU. Such situations should be rare as physical
access to vehicle wires is not so immediate (most of the attacks reported so far
come from open connections such as the OBD port or from corrupted units such
as vehicle telematics). Finally, if the adversary can tap the bus at any point
inside the vehicle, then he may use the same connection point as the legitimate
ECU making the separation impossible anyway.



PanoptiCANs - Adversary-Resilient Architectures for CAN 669

Both the PanoptiCAN and its distributed version can address the case of mul-
tiple adversaries. For the PanoptiCAN, isolating multiple adversaries depends on
the number of bus taps. To isolate all segments of the bus, n bus taps would be
needed, which will make the PanoptiCAN capable to switch from a bus to a star
topology. In our design however, we considered only n/2 bus taps which makes
it possible to isolate at most n/4 + 1 adversaries. Figure 8 (i) clarifies why this
is the case. If Adv1 is the corrupted ECU1 then it will no longer be possible to
separately isolate ECU2 from ECU3 since there is only one tap left, i.e., T1, that
connects to their segment. So the next adversary that can be isolated is Adv2

on ECU4. The same reasoning goes further and the next adversary that can be
isolated is Adv3 on ECU8, i.e., 8/4 + 1 = 3 adversaries isolated in zones Z1, Z2

and Z3 as depicted in the figure. Worst case however, if we isolate adversaries
at ECU2 and ECU7 then it is no longer possible to isolate any of the ECUs 3,
4, 5 or 6, since there is a single tap, i.e., T2, available. So in the worst case,
n/4 adversaries can be isolated. Since in-vehicle networks are controlled envi-
ronments and only a small number of corrupted units is expected, n/4 seems a
good reference point. To generalize on this, Fig. 8 (ii) and (iii) explores the the-
oretical possibilities for the adversary locations and the amount of these which
can be successfully isolated. Note that while modern vehicles may have more
than 100 ECUs, these are never connected to the same bus, they are always
organized in sub-networks of usually less than a dozen ECUs. We considered a
network of 16–24 ECUs which is very large, usually there are less than a dozen
nodes on the same bus. In this network we add 1–6 adversaries and this results
in an exponential increase for the possible placements of the adversaries, i.e., up
to about 5 × 107 possible locations. In theory, k adversaries may cover

(
n

n−k

)

bus segments (assuming that the order of the adversaries does not matter) and
n/4 adversaries can be configured in

(
n

n/4

)
locations. But PanoptiCAN can iso-

late about 25% of its nodes, so up to 6 nodes can be isolated in the 24-node
PanoptiCAN while the smaller 16-node PanoptiCAN can isolate up to 4 nodes.

For the distributed version, PanoptiCAN-DC, the situation is further
improved. Due to the autonomous action of each node, any number of adver-
saries can be isolated. However, if there is no bus guardian to redirect traffic
from one segment to another, two adversaries may cause a DoS that will com-
pletely cut all the bus segments in between. For example, by using Fig. 8 (i)
as a reference, if ECU2 and ECU7 are corrupted, then they will be immediately
isolated by their neighboring ECUs, but if they cause a DoS, then no traffic can
be recovered from any of the ECUs 3, 4, 5 and 6. For this, a Bus Guardian may
be added in the distributed version to redirect traffic. We do believe however
that multiple adversaries will be rare on in-vehicle networks and the simplicity
of the PanoptiCAN-DC is a much greater advantage.
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(i)

(ii) (iii)

Fig. 8. Example of adversary placement and corresponding isolated zones (i), possible
adversary locations (ii) and overlay with locations that can be isolated (iii) in a network
with 16–24 nodes and 2–6 adversaries (the z-axis of the plot is base 2 logarithmic)

4.3 Expected Response to DoS Attacks

We now set a brief theoretical framework for understanding channel behavior in
case of a DoS caused by a flooding attack on the network. We are interested in
determining the localization time and the delays induced on legitimate packets
before and after the adversary is isolated.

Let λadv be the arrival rate for adversarial frames on a bus which can accom-
modate up to λbus frames and let λleg be the rate of legitimate frames on the
bus. Obviously, λleg < λbus and in most real-world applications the frame rate
of the bus is half of the maximum bus rate [32]. In practice, CAN buses may
have a load of around several thousands frames per second. Since most practi-
cal in-vehicle deployments use a 500 kbps bandwidth and are kept below a 50%
busload, a rate of around 2000 frames per second can be expected for legitimate
traffic. Assuming that the adversary floods the bus with packets with higher
priority, the maximum arrival rate for legitimate frames during a Dos attack is:
λmax
leg = min(λleg , λbus − λadv ).

Clearly, by flooding the bus at a maximum rate, the adversary can make the
maximum arrival rate for legitimate frames drop to 0. Fortunately, this happens
only as long as the adversary is not yet isolated. To isolate the intruder, assuming
on-event based localization, the PanoptiCAN will need log2 n frames, since the
fastest way to isolate an intruder in an n node network is by performing a
binary search, while the PanoptiCAN-DC can perform the isolation following a
single intruder frame, since the neighboring nodes will immediately trigger their
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relays when an intrusion is detected. This leads to the following localization
time for the two schemes: Θ = log2 n × λ−1

adv , Θdc = tframe . The isolation is
thus much faster with the distributed version. The delays encountered for the
two schemes during the isolation process are also distinct. For the PanoptiCAN,
the intruder will share the same bus with some of the legitimate nodes until
the isolation is completed, thus, some legitimate frames may not be received
until this happens. The PanoptiCAN-DC has to send all frames over multiple
hops of the daisy-chain, but all the legitimate frames will arrive on the bus.
These are expressed in the following relations: Δ¬isol = tframe

h(λbus−λleg−λadv )
, which

accounts for the remaining bandwidth following existing legitimate traffic and
the traffic caused by the adversary, and Δdc

¬isol = n
2 tframe , which accounts for the

worst case in which a frame has to be retransmitted over n/2 nodes in case of
the PanoptiCAN-DC. We use ¬isol as a placeholder to denote that the isolation
process started but the intruder is not yet isolated. Here h denotes the Heaviside
step function, i.e., a zero for negative arguments or a one for positive arguments.
Thus, as long as the rate of legitimate frames plus the adversary traffic exceeds
the bus rate, h(λbus − λleg − λadv ) will return a 0 leading to a maximum delay
Δ¬isol = ∞. Once the intruder is isolated, there will be at most one hop for the
PanoptiCAN as well as for the PanoptiCAN-DC which leads for both schemes
to a low transmission delay of twice the time of the frame, i.e., Δisol = 2tframe ,
since, in the worst case, the frame has to be retransmitted by the Bus Guardian
or by the node near the intruder which is in charge of the isolation.

5 Experiments and Results

In this section we discuss experiments with the proposed defense mechanism.
Due to space constraints, the full description of the experimental model that
we developed is deferred to Appendix A and more experiments can be found in
Appendix B.

5.1 Recorded In-Vehicle Traffic

In our experiments, we use real world in-vehicle traffic that was collected by us
from a high-end vehicle. The CAN bus was set at 500 kbps, the usual bandwidth
inside cars. The busload generally stayed between 30–50% which is usual inside
vehicles. Given that an adversary located at the bus ends would be trivial to
isolate, we choose to split the legitimate traffic into two traces that are sent to
the left and right sides of the bus. Thus, the 90 identifiers where split in half and
allocated to the left and right side of the experimental model. The in-vehicle
traffic is reproduced inside the network with Vector’s VN5610A which is an
industry standard tool that allows real-time retransmission of in-vehicle traffic
at micro-second accuracy. Figure 9 (i) shows a brief schematic of our test setup
and the in-vehicle traffic arriving on the left (ii) and right channel (iii). There
are less than 50 IDs on each channel. The cycles are well preserved with a small
exception of an ID on the right channel which exhibits some cycle variations.



672 B. Groza et al.

(i) test setup
(ii) left channel traffic (iii) right channel traffic

Fig. 9. IDs from the collected in-vehicle trace arriving on the left and right channels

This is not unexpected, while most in-vehicle traffic is cyclic in nature, on-event
frames may also occur. In the plots from Fig. 9 (ii) and (iii), the number of the
ID represents its rank (the order of the ID based on its priority) by which it
is placed on the ordinate (y-axis) to which we add the deviation of the current
timestamp from the previous. Adding this deviation makes it much easier to
spot the occurrence of a DoS as the delayed ID appear higher on the plot. For
each ID, the abscissa (x-axis) is the timestamp at which it occurs (a small circle
is used as a marker on the plot).

5.2 Response to DoS Attacks in the Experiments

In our testbed we broadcast legitimate in-vehicle traffic on the left and right
sides of the bus as suggested in Fig. 9.

PanoptiCAN Response to DoS by Flooding. We first test the response of the
system in case of a flooding caused by two nodes, i.e., a DDoS attack (we use two
nodes since the related solution in [7] cannot respond to multiple adversaries).
We set ECU2 and ECU4 to flood the bus with one high priority message sent
at 1 ms. This flooding attack will cause visible delays on the rest of the frames
but the bus is still around 50% free so all regular traffic is still there. Figure 10
(i) and (ii) show the comparative effects of a flooding attack on an ID with a
cycle time of 10 ms and normal traffic (orange dots denote delayed frames). The
CAN bus shows very good resilience, the delays induced by this flooding are very
small making the arrival time of this high priority ID to deviate around 1 ms,
i.e., less than 10%. Figure 10 (iii) provides the traffic visualization for 50 IDs in
case of the attack, the adversary high priority IDs can be seen in magenta at the
bottom of the figure. Indeed there are very little disturbances during the attack
for all the IDs. As an example, the flooding attack was programmed to last for
5 s, i.e., between the 13th and the 18th second as it can be seen in Fig. 10. The
PanoptiCAN can isolate the adversary in a few milliseconds as we discuss in
Appendix B (the time to trigger the relays is 5 ms according to the datasheet).

When we double the number of messages sent by ECU2 and ECU4, i.e., 0.5 ms
flooding instead of a 1 ms flooding, the effects are far more dramatic. Doubling
the adversarial messages leads to one message being sent each 250 μ s (this is
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(i) normal traffic, 10ms ID

(ii) 1ms flooding, 10ms ID (iii) traffic visualization at 1ms flooding (two nodes)

Fig. 10. Flooding effects on IDs with a cycle of 10 ms (i), (ii) and visualization for 50
IDs (iii)

(i) 0.5ms flooding, 10ms
ID

(ii) 0.5ms flooding, 20ms
ID

(iii) 0.5ms flooding, 40ms
ID

(iv) 0.5ms flooding,
200ms ID

(v) traffic visualization at 0.5ms flooding (two nodes)

Fig. 11. DDoS effects on IDs with a cycle time of (i) 10 ms, (ii) 20 ms, (iii) 40 ms, (iv)
200ms and visualization for 50 IDs (v)

roughly the duration of a CAN frame when the bus is set at 500 kbps). There
will be little or no space at all for legitimate frames which leads to a full DoS.
Figure 11 (i), (ii), (iii) and (iv) show the effects of the DDoS attack on four IDs
with a cycle time of 10 ms, 20 ms, 40 ms and 200 ms. For all of them, as long as the
adversary is not isolated there will be no frame that reaches the bus. Figure 11
(v) provides traffic visualization for 50 IDs in case of the 0.5 ms flooding which
leads to a DoS. The effects are very similar on all IDs, only in rare situations
some of them manage to enter the bus. Again however, the PanoptiCAN will
easily locate the two intruders and isolate them, restoring all traffic back to
normal from the 18th second onward as can be seen in Fig. 11 (v).

PanoptiCAN-DC Response to Attacks. The distributed version of the Panopti-
CAN offers a much faster response to attacks since all relays will be triggered
simultaneously, once an attack frame is detected, and the legitimate nodes will
switch the bus to a daisy-chain topology which will no longer allow intruder
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frames to propagate. The only shortcoming is that multiple adversaries can iso-
late the bus segments between them by performing a DDoS attack, e.g., by flood-
ing. The same limitation occurs with CANARY [7] and it can only be solved by
placing a Bus Guardian to redirect frames from various parts of the bus as in the
regular Panopti-CAN. For the PanoptiCAN-DC the Bus Guardian will simply
redirect frames without requiring it to trigger the relays. To get a more concrete
image on frame distortion attacks, in Fig. 12 (i) we depict frames disrupted by
the adversary. By setting the last consecutive bits to more than 6 zeros, a stuff
error occurs and all nodes respond with an error flag. In this way the legitimate
node will be forced to enter the bus off state. However, the PantoptiCAN-DC
can easily isolate the adversary and frames returning to normal, as can be seen in
Fig. 12 (ii), after about 17 ms once the adversary is isolated (the time to trigger
the relays is 5 ms, but since multiple relays are triggered as the 8 nodes do not
react at the same time, it takes 17 ms for the bus traffic to be restored to nor-
mal). Without intruder isolation, it is very hard to tell whether the node is the
victim of an attack or he indeed has problems at the transceiver level. More, it
is not possible to tell where is the intruder located on the bus. PanoptiCAN-DC
solves both problems by isolating bus segments in a daisy-chain manner.

(i) frames altered by the adversary and relay action (ii) frames restored to normal

Fig. 12. Two frames altered by the adversary followed by relay action (i) and frames
restored (ii)

6 Conclusion

Relays are able to provide an efficient active defense mechanism against generic
intrusions and DoS attacks in particular. The cost of relays is small and the
experiments prove they do not impede regular traffic if properly deployed. In this
work we provided some new conceptual architectures with relays that provide
good alternatives for intruder isolation by air-gaping CAN networks. The Panop-
tiCAN provides an adversary-resilient CAN bus architecture that can actively
circumvent many types of attacks, including DoS attacks which are difficult to
address due to the usual topology of CAN (bus) and its error confinement mech-
anism. The decentralized version of the PanoptiCAN improves significantly by
reducing wiring costs and providing a faster response to intrusions. This comes
with a slight disadvantage, i.e., less resilience in front of a DDoS attack, but
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the cost reduction it offers may be more important since multi-adversary sce-
narios are less likely in a controlled environment such as in-vehicle networks. We
thus emphasize that switchable bus daisy-chain topologies may be practical for
preventing intrusions and hope that our work paves way in using such topologies.

Appendix A - Further Details on the Experimental Model

The development of our experimental model was quite a laborious work as we
implemented an 8 ECU network, a realistic size for what can be found inside
modern vehicles. The experimental model, which is common for the Panopti-
CAN and the PanoptiCAN-DC, included 8 regular ECUs, one Bus Guardian,
up to 20 MCP2551 CAN transceivers, 22 relays, 22 120Ω resistors, 14 CAN
wires and additionally 200 jumper wires, all these mounted on a 1000× 700 mm
board. The exact number of components that are used in each of the network
configurations is presented in Table 2. Figure 13 provides a detailed depiction of
our experimental setup and a bus canary.

Appendix B - Results on an Existing CANoe Car
Simulation

To give a better image on the behavior of the current solution, we also test it
against adversarial actions on a car simulation in the industry standard tool
CANoe. This simulation environment was also used by [33] in one of the first
reported attack on CAN buses more than a decade ago and in [7] to prove func-
tionality of relay-based isolation in CANARY. The simulation we use contains

Fig. 13. The 8 ECU PanoptiCAN setup (left) and detailed view of a bus canary (right)
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Table 2. Detailed component list for the PanoptiCAN and PanoptiCAN-DC

Component→ S12XE TC277 MCP2551 Relay 120 Ω CAN wires Jumper

Setup↓ blocks resistors to BG wires

PanoptiCAN 8 1 12 20 22 5 ∼200

PanoptiCAN-DC w/ BG 8 1 20 12 16 5 ∼175

PanoptiCAN-DC w/o BG 8 0 16 12 16 0 ∼150

two buses, one for engine functionalities, e.g., ignition, ABS, etc. and the other
for the car body, e.g., doors, lights etc.

Fig. 14. Adversarial frames and relay action

CANARY reports that a load
balancing speed of 50 ms is needed
in order to make the signals look
identical in case of a full DoS on
the bus [7]. With the PanoptiCAN,
there is no need to load balance
the network. Once the intruder is
isolated, traffic can be easily redi-
rected. A short window of opportu-
nity exists for the adversary until it
has been localized. This window of
opportunity is however too small to
make the attack effective. To clar-

ify this, we outline the response of PanoptiCAN-DC which provides the fastest
reaction time. Figure 14 depicts two adversarial DoS frames arriving on the bus.
The relays are triggered during the 2-th frame which is actually destroyed by the
relay action and as the adversary becomes isolated from the rest of the network.
It takes less than 3 ms until this frame is destroyed (the relays that we use have
a response time of around 5 ms according to the technical datasheet). A 3 ms
window of opportunity is too small for an adversary to cause any issues in this
simulation. The time of the intrusion detection algorithm to process one frame is
well under 100 μ s and thus insignificant compared to the relay operation time.

Appendix C - Attack Resilience and Quantitative
Comparison

The intrusion detection system (IDS) that we implemented checks for known IDs
based on a Bloom filter that was trained to recognize legitimate IDs and DLCs
(datafield lengths). A specific threshold, e.g., 2000 frames/s, on the busload is
used to trigger the alarm if a flooding takes place while the TEC and REC coun-
ters are monitored to detect frame distortion attacks. The intrusion detection
mechism is similar to the one we used in CANARY [7] and any other mecha-
nism can be implemented behind the PanoptiCAN. Once an intrusion frame is
detected, the localization algorithm starts. In case of PanoptiCAN, this algo-
rithm performs a binary search starting with the canary in the middle of the bus
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Table 3. Brief comparison between CANARY, PanoptiCAN and PanoptiCAN-DC

Topology Design Retrofit IDS Transceivers Canaries Cost DoS DDoS Fuz DFuz

CANARY Centralized Yes Bus Guardian n + 2 n − 1 High � × � ×
PanoptiCAN Centralized Yes Bus Guardian 3n/2 + 1 3n/2 − 2 High � � � �
PanoptiCAN-DC Decentralized No All ECUs 2n n − 2 Moderate � × � �

(which splits the bus in half) and proceeds to the left or right according to the
direction where the intrusion comes from (in case the intrusion comes from both
directions, then both directions are to be inspected). For PanoptiCAN-DC, there
is no need to run a localization algorithm since each node will trigger its canaries
turning the bus into a daisy-chain (the canaries are disabled if no intrusion is
detected after a specific timeout, 5 s in our implementation).

In Table 3 we provide a brief quantitative comparison of the two switchable
topologies proposed in this work with our previous work CANARY [7]. In terms
of attack resilience, we separate between attacks performed by single nodes,
i.e., DoS and Fuzzing (Fuz) which stands for generic injections of frames with
random content, and distributed versions of them caused by multiple nodes,
i.e., DDoS and DFuz. CANARY [7] is in terms of wiring cost similar to a star
topology but it requires only 2 additional transceivers to tap the two bus ends,
i.e., n + 2 transceivers for n nodes. The PanoptiCAN is a bit more expensive
than CANARY in terms of transceivers since the Bus Guardian will tap the bus
after each two consecutive nodes, this requires n+n/2+1 for n nodes, but it can
isolate multiple nodes and thus DDoS and DFuzzing can be prevented. Finally,
the decentralized PanoptiCAN-DC requires the same number of transceivers
as a regular star, but none of the complex wiring of each node to the gateway,
reducing significantly the costs of wiring. Its switchable daisy-chain/bus topology
allows it to isolate any number of adversaries being resilient to DFuzzing but
not to DDoS (as already explained in the work).
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Abstract. Rust is a promising system-level programming language that
can prevent memory corruption bugs using its strong type system and
ownership-based memory management scheme. In practice, programmers
usually write Rust code in conjunction with other languages such as
C/C++ through Foreign Function Interface (FFI). For example, many
notable projects are developed using Rust and other programming lan-
guages, such as Firefox, Google Fuchsia OS, and the Linux kernel.
Although it is widely believed that gradually re-implementing security-
critical components in Rust is a way of enhancing software security, how-
ever, using FFI is inherently unsafe. In this paper, we show that memory
management across the FFI boundaries is error-prone. Any incorrect
use of FFI may corrupt Rust’s ownership system, leading to memory
safety issues. To tackle this problem, we design and build FFIChecker,
an automated static analysis and bug detection tool dedicated to mem-
ory management issues across the Rust/C FFI. We evaluate our tool by
checking 987 Rust packages crawled from the official package registry and
reveal 34 bugs in 12 packages. Our experiments show that FFIChecker
is a useful tool to detect real-world cross-language memory management
issues with a reasonable amount of computational resources.

Keywords: Static analysis · Rust · Bug detection

1 Introduction

Rust is an emerging programming language that is famous for its strong security
guarantees and high performance. Many companies and open source communities
have been re-writing their software in Rust in an incremental manner, i.e., while
most of the source code remains intact, some security-critical components are
re-written in Rust. For example, Firefox contains a considerable amount of Rust
code [4], and the Linux kernel is in the process of integrating Rust as its second
language for kernel development [21,30]. New Rust projects also usually integrate
with third-party C/C++ libraries to avoid reinventing the wheels. Rust can be
used in conjunction with other languages because it supports Foreign Function
Interface (FFI), which enables Rust to call external interfaces and exchange
arbitrary data.
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The incremental development of Rust code is widely believed to improve the
security of software. However, calling external code is inherently unsafe in Rust
because the Rust compiler cannot perform security checks across the FFI bound-
aries. Programmers may accidentally misuse the unsafe abilities that lead to vul-
nerabilities. In addition, different assumptions made by different languages make
it possible for attackers to maneuver between the FFI boundaries and exploit
these vulnerabilities [24]. Recent empirical studies [12,41] have shown that the
incorrect use of FFI is one of the most significant causes of real-world memory-
safety bugs. Even for Rust packages written in pure safe Rust (i.e., without using
FFI), they may still be affected because they may depend on other packages
that include FFI. According to our statistics (Sect. 2.2), among around 77, 000
packages on the official Rust package registry1, more than 72% of the packages
depend on at least one package that contains unsafe FFI calls. Therefore exclud-
ing FFI is unrealistic in the current Rust ecosystem; instead, people have made
lots of efforts to secure the use of FFI. For example, the Rust community has
drafted several guidelines for writing unsafe code, including FFI [34,36,37,39].
Some Rust packages such as rust-bindgen and safer ffi can automatically
generate FFI, preventing developers from misusing it. However, they can only
help developers to write correct interfaces with appropriate data types. Mem-
ory corruption caused by heap memory allocation/deallocation across the FFI
boundaries remains an open problem. Moreover, Rust has a unique ownership
system for memory management (Sect. 2.1), which creates its own paradigm of
memory safety issues [22,31,41]. Hence existing works on misusing FFI for other
memory-safe programming languages [19,20] such as Java and Python are no
longer applicable.

In this paper, we study the security impacts of heap memory management
issues across the FFI boundaries, especially those caused by the combination
of Rust’s ownership-based memory management and C/C++’s manual memory
management. To tackle this problem, we propose to use static analysis tech-
niques to detect potential memory management bugs across the FFI bound-
aries. Our method is based on the theory of Abstract Interpretation [7–9]. We
design an augmented taint analysis algorithm to keep track of the states of heap
memory, which captures the paradigms created by the ownership-based memory
management. We implement our tool called FFIChecker, which automatically
collects all the generated LLVM intermediate representation (IR) for both Rust
and C/C++ code, then performs static analysis and outputs diagnostic reports.
Security analysts can then inspect the reports and determine whether there are
any real bugs. Our evaluation shows that FFIChecker can successfully detect
real-world memory safety issues within acceptable time and with reasonable pre-
cision. To our knowledge, our work is the first effort that addresses the memory
management issues across FFI boundaries in Rust programs.

We summarize our contributions as follows.

– We show the potential security and memory management issues when pro-
grammers intermix Rust and C/C++ via FFI.

1 https://crates.io.

https://crates.io
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– We propose an augmented abstract domain that captures the memory states
in the ownership-based memory management scheme.

– We design and build FFIChecker, an automated static analyzer that can
detect potential memory management bugs across the FFI boundaries in Rust
packages and report informative diagnostic messages. The source code is avail-
able online2, which can be the basis of other research in the future.

– We perform extensive evaluations in the Rust ecosystem. We evaluate 987
packages crawled from the official package registry and detect 34 bugs among
12 packages. All the detected bugs have been manually confirmed and reported
to the authors and 15 of them have been fixed at the time of writing.

2 Background

In this section, we provide the background knowledge needed to understand the
rest of the paper. We first introduce the Rust programming language and its
security guarantees. Then we illustrate the prevalence of FFI and how Rust’s
memory management scheme interacts with it.

2.1 The Rust Programming Language

Rust is famous for its ability to build high-performance and secure programs.
As a strongly-typed and compiled language, its rigorous type system and the
unique ownership system enforce strict disciplines to eliminate memory safety
issues. The ownership system is an automated memory management strategy
derived from linear logic [13] and linear types [40]. Under the ownership system,
each value has a unique owner (called owner variable), which keeps track of the
lifetime of the value. Once the owner variable goes out of its scope, the ownership
system automatically releases the memory allocated for the value. Note that the
scope of each variable is determined at compile time so that the Rust compiler
can insert appropriate memory reclamation routines to the generated binary.
Thus neither reference counting nor garbage collection is needed. This enables
Rust to build fast programs since no runtime overhead is introduced.

To pass a value to other parts of code, one can either copy/clone, move, or bor-
row the owner variable. Copying/cloning is usually used for data types that have
semantics where copying their bytes is a valid way of creating a real copy, e.g.,
basic data types like integers. For more complicated data types, especially those
that maintain internal heap memory (e.g., vectors), Rust’s assignments move the
ownership by default. After the ownership is moved, due to the uniqueness of the
owner, the previous owner is immediately invalidated. A value can also be bor-
rowed by taking a reference of it, through which the value can be temporarily
accessed without changing the ownership. The references can be either mutable or
immutable. The Rust type system regulates that there are no “mutable aliases”,
meaning that a read-only value can be immutably referenced multiple times; when
the value is writable, only one mutable reference is allowed at a time.
2 https://github.com/lizhuohua/rust-ffi-checker.

https://github.com/lizhuohua/rust-ffi-checker
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The Rust compiler enforces the above rules to make security guarantees as
follows. On the one hand, since the ownership system keeps track of the life-
time of each value, it ensures that the lifetime of a reference cannot exceed the
value it points to. Therefore memory safety issues caused by dangling point-
ers such as use-after-free can be effectively prevented. On the other hand, since
the ownership system eliminates mutable aliases, many security issues caused
by concurrent reading/writing, such as race conditions and iterator invalidation,
are avoided.

2.2 Foreign Function Interface (FFI) and Memory Management

As a system-level programming language, Rust can easily collaborate with other
languages through the Foreign Function Interface (FFI). In this paper, we con-
sider the case where the external code is written in C/C++ since this is the most
common usage of FFI. Integrating Rust code with C/C++ code is prevalent and
necessary because (1) Many C/C++ projects integrate Rust into existing code-
bases (e.g., the Linux kernel and Firefox) to enhance their security. (2) It can
avoid duplicated work and benefit from the rich ecosystem of libraries written
in C/C++. (3) C/C++ can be used for performance-critical scenarios.

However, since the Rust compiler cannot reason about the security of external
code, calling FFI is inherently unsafe. Programmers need to explicitly use the
unsafe keyword to bypass the security check enforced by the compiler. Therefore,
using FFI is extremely error-prone. Existing studies [12,24,41] have shown that
the incorrect use of FFI has become a severe source of memory safety bugs.

We would like to point out that even if programmers restrict themselves in
pure safe Rust, their programs may still implicitly rely on FFI through depen-
dencies. In fact, we find that more than 72% of packages on the official Rust
package registry (crates.io) depend on at least one unsafe FFI-bindings pack-
age, as shown in Fig. 1. The data is crawled by reading the metadata of reverse
dependencies3 on crates.io. Among all the 76, 894 packages, we start from all the
packages that are of category “external-ffi-bindings” (900 packages). These pack-
ages contain direct Rust FFI bindings to libraries written in other languages,
often denoted by a “-sys” suffix. Then we collect all the reverse dependencies
of them and repeat this process to get multi-level dependencies. As a result, the
number of packages converges at the 10th level, with a total of 55, 762 packages
(55, 762/76, 894 ≈ 72.52%). Note that the “external-ffi-bindings” category by no
means includes all the FFI binding libraries since many packages’ categories are
not tagged properly, hence the actual percentage can only be higher.

Since the manual memory management in C/C++ is naively unsafe, in this
paper, we only consider the case where the heap memory is allocated in Rust and
passed to C/C++. There are two ways of passing a heap-allocated object across
FFI: (1) by borrowing the object as a reference, (2) by moving the ownership to
the FFI. For borrowing as a reference, the ownership remains on the Rust side, so
the ownership system is responsible for releasing the memory after it goes out of

3 As of February 14, 2022.

https://crates.io
https://crates.io
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Fig. 1. Number of packages that depend on unsafe FFI

its scope. For moving the ownership, one can first “forget” it from the ownership
system, then pass it to the FFI via a raw pointer. The Rust standard library
provides several functions to “forget” an object, e.g., std::mem::forget and
Box::into raw. In this case, the responsibility of memory management returns
back to the programmers, who have to take extra care because the ownership
system no longer takes charge.

3 Security and Memory Management Issues via FFI

To explain why the memory management across the FFI boundaries may lead
to security vulnerabilities and how the Rust ownership system gets involved,
we give several bug examples detected by FFIChecker. We also categorize the
vulnerabilities caused based on our observations: (1) common memory corrup-
tion, (2) exception safety, and (3) undefined behavior caused by mixing memory
management mechanisms.

3.1 Memory Corruption

When heap memory is passed across the FFI boundaries, the ownership system
cannot guarantee its safety. Therefore the responsibility of memory management
returns back to the programmers, meaning that all kinds of common memory
corruption bugs that happen in C, like use-after-free, double free, and memory
leak, still exist. Listing 1 shows a memory leak found in package emd4. In Rust,
Box is a smart pointer type used to securely manage heap memory. The developer
uses Box::into raw to expose the raw pointer of the heap memory managed by
the Box in order to pass it to the FFI. However, after using Box::into raw, the
ownership system will “forget” the memory and hence will not automatically

4 https://crates.io/crates/emd.
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reclaim it. Instead, the developer is responsible for releasing the memory previ-
ously managed by the Box. Otherwise, there will be a memory leak.

1 let mut cost = Vec::with_capacity(X.rows());

2 for x in X.outer_iter() {

3 let mut cost_i = Vec::with_capacity(Y.rows()); // Allocate a vector

4 for y in Y.outer_iter() {

5 cost_i.push(distance(&x, &y) as c_double);

6 }

7 // Forget the memory using `Box::into_raw`

8 cost.push(Box::into_raw(cost_i.into_boxed_slice()) as *const c_double);

9 }

10

11 // Call FFI function

12 let d = unsafe { emd(X.rows(), weight_x.as_ptr(), Y.rows(), weight_y.as_ptr(), cost.as_ptr(), null())

};↪→

Listing 1: Box::into raw leaks memory but it is not released by the developer.

3.2 Exception Safety

Unlike many other programming languages, Rust does not support the
try-catch statement for catching “exceptions”. Instead, Rust provides a more
reliable error handling mechanism: All recoverable errors must be handled or
propagated back to the caller function, and all unrecoverable errors are handled
by terminating the execution and unwinding the stack. All the stack objects’
destructors will be called during the stack unwinding to prevent resource leakage.
However, when passing heap memory across the FFI boundaries and cooperat-
ing with external code, developers usually have to transiently create unsound
states via unsafe code (e.g., creating temporarily uninitialized data). Then after
the external code finishes, developers manually clean up the states. If some error
happens in between, the execution stops and the stack is unwound, so the clean-
up procedure will not be executed. The remaining unsound state may cause
security issues.

Listing 2 gives an example found in package libtaos5. At line 2, variable
params is initialized by allocating heap memory. The memory is passed to FFI
in the following unsafe block in lines 3–8. Note that the question mark operator
(?) at lines 5 and 7 means that if the operation fails, the function returns early
and propagates the error to the caller function. Therefore, the memory may be
leaked if the function returns early and hence the free function at line 10 will
not be called.

3.3 Mixing Memory Management Mechanisms

It is common that some C libraries provide functions for construct-
ing/destructing data structures (usually implemented through malloc and
5 https://crates.io/crates/libtaos.

https://crates.io/crates/libtaos
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1 pub fn bind(&mut self, params: impl IntoParams) -> Result<(), TaosError> {

2 let params = params.into_params();

3 unsafe {

4 let res = taos_stmt_bind_param(self.stmt, params.as_ptr() as _);

5 self.err_or(res)?;

6 let res = taos_stmt_add_batch(self.stmt);

7 self.err_or(res)?;

8 }

9 for mut param in params {

10 unsafe { param.free() };

11 }

12 Ok(())

13 }

Listing 2: When errors happen, bind returns before calling free.

free). To reuse these libraries, Rust developers usually implement Rust wrap-
pers to handle these C APIs. One possible error is mixing different memory allo-
cation/deallocation procedures provided by different languages. For example, it
is illegal to allocate memory on the Rust side using Box and release it on the C
side using free. Mixing different memory management mechanisms is undefined
behavior, because (1) Rust and C may use different memory allocators. (E.g., on
Linux, Rust can be configured to use jemalloc, while C uses ptmalloc by default.)
(2) Rust and C have totally different memory management mechanisms and they
operate on different levels. Specifically, Rust calls the constructors/destructors
for constructed objects while C only deals with raw memory.

Listing 3 shows an example of mixing the memory management mechanisms
of Rust and C, found in package jyt6. At line 5, a string is constructed through
CString::new, which internally allocates memory on the heap using Rust’s own
memory allocator. Then at line 7, the string is explicitly leaked by mem::forget,
and a raw pointer that points to the string is returned (line 8). Finally, at
line 16, the heap memory is freed by the standard C function free. Note that
the heap memory is obtained through Rust’s allocator but freed on the C side
through function free. This may lead to allocator corruption since the Rust
code is compiled as a library and may be used in multiple projects with different
memory allocators. Even if this may “work” in practice, it is undefined behavior
and hence it is not guaranteed to work on other machines or on newer compilers.

3.4 Our Methodology

Based on the above motivating examples, we propose to use static analysis to
detect these bugs because static analysis can examine every control flow path in
a program and catch all potential bugs. It is especially appropriate for catching
defects in exceptional situations because they are hard to be triggered with
normal execution paths. At a high level, our approach does the following: We
first compile both the Rust and C/C++ code into LLVM IR. Then we perform

6 https://crates.io/crates/jyt.

https://crates.io/crates/jyt
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1 // Rust code:

2 pub unsafe extern "C" fn to_json(from: ext::Ext, text: *const c_char) -> *const c_char {

3 ... ...

4 // CString internally allocates heap memory

5 let output = CString::new(ext::json::serialize(&value.unwrap()).unwrap()).unwrap();

6 let ptr = output.as_ptr();

7 mem::forget(output); // Memory is "forgotten" by the ownership system

8 ptr // The raw pointer will be passed across the FFI boundary

9 }

10

11 // C code:

12 int main() {

13 ... ...

14 const char* output = to_json(Yaml, input);

15 ... ...

16 free((char*)output); // Memory allocated in Rust is freed by free()

17 return 0;

18 }

Listing 3: Memory allocated on the Rust side but is freed on the C side.

static analysis on the LLVM IR and keep track of the states of all the heap
memory allocations, i.e., while the heap memory is propagated among the control
flow graph, we determine whether it is borrowed or moved. Finally, if any heap
memory is passed across the FFI boundaries, we continue to analyze whether it
is freed in the external code. Depending on its state, we can find out whether the
memory is incorrectly managed and generate diagnostic messages accordingly.

4 System Design

In this section, we show the high-level architecture of FFIChecker and elaborate
on the functionality of each component. The workflow of FFIChecker is depicted
in Fig. 2. The whole system consists of three parts: (1) the user interface and the
driver program, (2) the entry point and foreign function collector, and (3) the
static analyzer and bug detector.

4.1 User Interface

The goal of the user interface is to get a Rust package being analyzed from the
user and prepare all the ingredients that the static analyzer requires, such as the
LLVM bitcode and a set of appropriate entry points. Then it works as a driver
program that delegates the remaining procedures to other components. The user
interface takes a Rust package as input, which contains one or many Rust crates
and C/C++ source files (if they exist). A crate is a unit of compilation and
linking for the Rust compiler. It contains one or many Rust source files and may
depend on other crates. We leverage the official build system Cargo to resolve
dependencies and download all the dependent crates. Then different source files
are dispatched to either the Rust compiler or the C/C++ compiler, and both
the compilers are configured to generate LLVM bitcode. The Cargo integration
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Fig. 2. The architecture of FFIChecker

provides a user-friendly interface similar to many existing tools used by Rust
developers, such as Clippy, so that users can easily integrate FFIChecker into
their daily development workflow.

4.2 Entry Point and Foreign Function Collection

Performing static analysis requires an appropriate function as the entry point.
We focus on public functions/methods for a Rust program because they are
visible to attackers and hence may be exploited. Also, since we care about the
cross-language scenario, we want to distinguish whether a function is written in
Rust or C/C++. The entry point/foreign function collector is designed to collect
all of the information we need. Specifically, after the user interface downloads
all the dependencies, the collector is invoked to process each of these crates and
collects: (1) a list of public functions/methods, and (2) a list of C/C++ func-
tions called in the Rust program. The collector is implemented as a customized
callback function of the Rust compiler, so that it can access the internal data
structures inside the compiler. It first goes through the Rust High-level Inter-
mediate Representation (HIR) generated by the Rust compiler, which contains
required information such as the function names, visibility, and whether it is
implemented in Rust or C/C++. Then it extracts the required function names
and passes them to the static analyzer.

4.3 Static Analysis and Bug Detection

The LLVM bitcode, entry points, and foreign functions are sent to the static ana-
lyzer as input. The static analyzer performs analysis by traversing the control
flow graph (CFG) provided by the LLVM bitcode. The details of the algorithms
will be discussed in Sect. 6. Once the static analysis finishes, a bug detection
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module reads the analysis results and generates diagnostic messages. The mes-
sages are filtered by user-specified rules in order to suppress false positives, and
then printed to users (Sect. 6.3). According to the diagnostic messages, users can
manually inspect the source code and pinpoint potential bugs in their programs.

5 Abstract Interpretation

In this section, we present the definition of our abstract domain and transfer
functions based on the language model of LLVM IR.

5.1 LLVM IR, Abstract Values and Abstract Domain

In LLVM IR, a single function is modeled as a Control Flow Graph (CFG),
where each node is a basic block containing one or more instructions without
any jumps. At the end of each basic block, there is one terminator, a special
instruction representing a jump among the control flow. Static analysis models
the program execution in a certain abstract domain, and each element of the
domain represents a certain execution state, which is referred to as an abstract
state. It first assigns abstract states to each variable and basic block, then tra-
verses the CFG and updates these states according to the semantics of each
instruction. The abstract domain varies depending on different purposes. We
design our abstract domain as follows in order to capture the ownership state
of heap memory. Note that our design is derived from the classical Abstract
Interpretation literature [26,29].

For each CFG, we denote the set of all the variables that appear in the CFG
as Var, and the set of all basic blocks in the CFG as Block. To distinguish
whether a variable stores heap memory and its state in the ownership system
(e.g., whether it is borrowed or moved), we define the state MState as a lattice
with 5 elements, a partial ordering relation � and a join operator �, as shown in
Fig. 3. Intuitively, the bottom element (⊥) is the default value for all variables.
When a variable is initialized by a heap memory allocation procedure, we mark
it as Alloc. Note that a heap memory can be passed to FFI by either taking a
reference (borrow) or forgetting its ownership (move). We distinguish them by
the corresponding states Borrowed and Moved. To be conservative, when the
state cannot be determined, we set it as the top element (�).

To keep track of the abstract values for each basic block, we maintain a
lookup table σb : Var → MState for each basic block b. The abstract state
AState is defined as a map lattice consisting of all the mappings from Var to
MState. Intuitively, an element in AState is a lookup table, which depicts the
abstract memory state for each variable after executing the current basic block
of the program. AState is still a lattice and the partial ordering is defined as:

For σ1, σ2 ∈ AState, σ1 � σ2 ⇐⇒ ∀a ∈ Var, f(a) � g(a).

And the � operator is defined pointwise in terms of the operators from MState:

∀σ1, σ2 ∈ AState, σ1 � σ2 = {(a, σ1(a) � σ2(a)) : ∀a ∈ Var} .
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�

Borrowed Moved

Alloc

⊥

Fig. 3. MState lattice used by FFIChecker

Finally, the abstract domain is defined as a mapping from all basic blocks
Block to AState. Equivalently, it is defined as the powerset of AState, i.e.,
Domain = 2AState.

5.2 Transfer Functions

In static analysis, transfer functions are used to extract information from the
program semantics and update the abstract states. Since FFIChecker runs on
LLVM IR, we assign a transfer function to each LLVM instruction according to
its semantics. Specifically, we focus on the following instructions: (1) Instructions
that affect the data flow such as load, store, and GetElementPtr, because we
need to propagation the abstract states. (2) Instructions that call other functions,
such as Call and Invoke, through which we perform context-sensitive interpro-
cedural analysis (Sect. 6.2). For details, please refer to our implementation.

6 Algorithms

In this section, we present the main algorithms used in FFIChecker. The
algorithms consist of three parts: (1) A fixed-point algorithm that traverses
a CFG and executes transfer functions until a fixed point is reached. (2) An
algorithm that achieves context-sensitive interprocedural analysis. (3) A bug
detection algorithm used to determine whether there are any potential bugs.

6.1 Fixed-Point Algorithm

Similar to most static analysis tools, FFIChecker traverses a given CFG and
iteratively runs transfer functions to update the abstract state until it reaches
a fixed point. The fixed-point algorithm is formulated in the Appendix (Algo-
rithm 1). We implement the classical worklist algorithm [26,29], where the work-
list W is a set initialized to contain all the basic blocks in the CFG. Then the
algorithm chooses a basic block b from W and analyzes it by executing the trans-
fer functions of its instructions. The state is updated by joining the states of all the
predecessors of b. If the state changes, all the successors of b will be inserted into
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the worklist, waiting for a re-analysis. This procedure is repeated until the work-
list W becomes empty. The algorithm terminates because either the state goes
“up” in the lattice (because of the join operator), or the length of W decreases.
Since the lattice we defined has finite height, W will eventually be depleted.

6.2 Analyzing Function Calls

When analyzing instructions that call other functions, such as Call and Invoke,
FFIChecker performs interprocedural analysis. Different functions need differ-
ent treatments, therefore we categorize functions into different types: (1) Func-
tions that allocate heap memory, e.g., exchange malloc. These are the “taint
sources” of our algorithm, indicating that the resulting variable stores heap mem-
ory, so we can mark its abstract state into Alloc. (2) Functions that borrow a
reference (e.g., Vec::as mut ptr) or move the ownership (e.g., Box::into raw).
These functions change the abstract state of heap memory into either Borrowed
or Moved. (3) Foreign functions called through FFI. These are the potentially
vulnerable functions that FFIChecker cares about. FFIChecker will analyze
these functions and see whether there are any bugs (Sect. 6.3). (4) LLVM intrinsic
functions and the Rust standard library functions. The former are implemented
by the compiler backend so their implementations do not even exist in LLVM IR.
The latter are commonly used but usually hard to be analyzed because of their
complexity and heavy abstraction. These functions are also not FFIChecker’s
targets because our goal is to find bugs in third-party libraries instead of in the
Rust compiler or the standard library. Therefore, we provide some special han-
dlers that work as the model of these functions by resembling their behaviors.
FFIChecker internally maintains a map between such functions and their han-
dlers, and will execute the handler instead of launching a new function analysis.
(4) For all other functions, FFIChecker launches context-sensitive interpro-
cedural analysis by initializing a new fixed-point algorithm instance for this
function. The algorithm is formulated in the Appendix (Algorithm 2).

6.3 Bug Detection and False Positive Suppression

After the fixed-point algorithm terminates, FFIChecker checks whether there
are any variables that store heap memory but are passed to FFI. If this is the
case, some heap memory leaks into the external code, which may lead to poten-
tial vulnerabilities. To further determine the bug type, FFIChecker launches
a new function analysis instance for all foreign functions to which some heap
memory is passed, and checks whether the heap memory is freed or not in the
external code. Then it generates warnings according to the ownership state of
the heap memory. For example, suppose a variable is moved across FFI by Rust
and freed in C. In that case, this is an undefined behavior caused by mixing
memory management mechanisms (Sect. 3.3). The rules of warning generation
are summarized in Table 1.

As shown in the table, we also tag a confidence level on each generated
warning depending on how much information we can leverage during the analysis.
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For example, the LLVM IR of a foreign function is not always available because it
may come from a dynamically linked C library. Or it may be called via a function
pointer, so FFIChecker cannot statically know which function is called. In this
case, FFIChecker cannot further analyze the foreign function, so it generates
warnings with lower confidence. This design helps us to suppress false alarms.
We implement a precision filter to determine what level of warning messages
is reported to users. Only warnings with a confidence level higher than the
filter’s threshold will be issued. Users can pass command-line options to the user
interface to override the default filter configuration.

Table 1. Rules of warning generation. The reported warnings include use-after-free
(UAF), double free (DF), undefined behavior (UB), and memory leak (LEAK). SAFE
means no warning is issued. The confidence levels (high, medium, or low) are enclosed
in parentheses

C Code is Unavailable C Code is Available

Freed Not Freed

Borrowed UAF/DF (Low) UAF/DF (High) SAFE

Moved UB/LEAK (Mid) UB (High) LEAK (Mid)

7 Implementation

FFIChecker is written in Rust (2, 468 lines of code) and has three bina-
ries, which are the user interface, entry point/foreign function collector, and
static analyzer. The user interface is implemented as a cargo sub-command,
which tightly integrates with the official build system. Users can easily inte-
grate FFIChecker in their daily workflow and check their packages by a single
command: cargo ffi-checker. The entry point/foreign function collector is
implemented as a customized Rust compiler, in which we insert the collector
routine as a callback function. The callback function is invoked automatically
after the compiler gathers all the information of the source code. Thus it can
access the internal compiler data structures such as HIR. The static analyzer is a
standalone binary configurable through the user interface. Users can specify the
precision filter, which determines whether to issue a warning message according
to its priority. We also provide several Python scripts for downloading packages
on the official package registry and running evaluations.

8 Evaluation

In order to evaluate FFIChecker in terms of its effectiveness and performance,
we collect Rust packages as test cases on the official package registry https://
crates.io. Since we care about the cross-language scenario and focus on exter-
nal code written in C/C++, we only crawl packages that heavily use the FFI

https://crates.io
https://crates.io
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between Rust and C/C++. Specifically, we download packages that are of cate-
gory “external-ffi-bindings”, or depend on other packages that assist the use of
FFI, such as cc, bindgen, or cbindgen. Finally, we collect a total of 987 packages
as our analysis targets, which contain 3, 232, 574 lines of Rust and 46, 321, 573
lines of C/C++.

All the experiments were done on a machine with a 3.70 GHz Intel Xeon
E5-1630 v4 CPU and 16GB RAM, running Gentoo Linux (kernel 5.15.32).

8.1 Effectiveness and Performance of FFICHECKER

We run FFIChecker on our dataset, and it generates 222 warnings. Then
we manually inspect the output at a rate of about 100 reports per person-
hour. Finally, 34 bugs (19 memory leaks, 3 exception-related bugs, 12 undefined
behaviors) in 12 packages are confirmed. The statistical details are listed in
Table 2, where columns “# of Bugs” and “Reports” show the number of true
positives we confirmed and the number of warnings in the emitted diagnostic
messages with different confidence levels. We have reported all the bugs to the
package maintainers. At the time of writing, 15 bugs were confirmed and fixed.
For more details, we refer readers to our GitHub repository7.

We further measure the execution time and memory usage of FFIChecker
for all the 987 packages. We run the evaluation in 8 parallel threads, and
FFIChecker can finish all the analysis in 5.2 h with at most 4.1 GB memory
consumption. On average, FFIChecker can analyze a package in 116.9 CPU
seconds with 1, 056.6 MB memory consumption. Note that the execution time

Table 2. Bugs detected by FFIChecker. The types of bugs include memory leak
(LEAK), exception safety (EXC), and undefined behavior (UB). “N/A” means that
the foreign functions are from shared libraries instead of the Rust package

Package
# of

Bugs

Reports
Bug Type

Elapsed

Time (s)

Memory

Usage (MB)

# of

Entries

# of

FFIs

LoC

HighMidLow RustC/C++

arma-rs 3 0 1 0LEAK 38.67 1040.85 29 4 1686 N/A

cobyla 1 0 1 0LEAK 48.14 1979.54 2 1 225 1635

emd 1 0 1 0LEAK 7.21 237.75 4 1 87 541

impersonate 1 0 1 0LEAK 19.11 767.54 6 1 117 61

iredismodule 11 0 0 10EXC, LEAK 78.15 1958.46 364 230 3761 777

jyt 6 0 0 1UB 97.25 2711.75 3 6 450 N/A

liboj 1 0 0 3LEAK 108.58 3109.21 86 38 1342 N/A

libtaos 1 0 0 1EXC 99.23 1724.13 461 50 5491 N/A

moonfire-ffmpeg 1 0 0 1UB 7.83 228.78 53 92 1513 231

pdb wrapper 1 0 0 1EXC 68.04 2530.41 20 14 499 375

snap7-rs 2 0 1 4LEAK 8.97 203.77 387 276 6110 14085

triangle-rs 5 0 1 0UB 47.46 1095.58 34 2 681 15050

7 https://github.com/lizhuohua/rust-ffi-checker/tree/master/trophy-case.

https://github.com/lizhuohua/rust-ffi-checker/tree/master/trophy-case


694 Z. Li et al.

and memory usage do not correlate to the lines of code or the number of inter-
faces, because the convergence of the fixed-point algorithm mainly depends on
the structure of the CFG. Overall, FFIChecker is scalable enough to analyze
real-world Rust packages with a reasonable amount of computational resources.

8.2 Understanding False Positives and False Negatives

FFIChecker reports numbers of false positives. After inspecting the reported
warnings, we summarize two reasons that lead to the false alarms: (1) It is com-
mon that Rust calls foreign functions from dynamically linked shared libraries.
Therefore the LLVM IR of the foreign code is not available. In this case,
FFIChecker cannot further analyze the foreign function, so it generates impre-
cise results. (2) FFIChecker cannot always distinguish whether a variable is
borrowed or moved via LLVM IR because the borrowing/moving operations may
be optimized away by the Rust compiler.

During the manual inspection, we also observe some bugs in functions with
generic type parameters but they are not reported by FFIChecker. The reason
is that the Rust compiler will not generate code for generic functions unless they
are monomorphized, meaning that FFIChecker cannot find the LLVM IR for
generic functions that are only implemented in the package but not used.

Nevertheless, as presented in Sect. 6.3, FFIChecker generates warnings
with different confidence levels. Users can configure the precision filter through
command-line options to only output warnings with high confidence. Even if all
the warnings are issued, users can still filter out false alarms quickly during the
manual inspection with the help of the confidence levels attached to them.

9 Discussion

Thoughts About Rust’s Security Guarantees. As shown in Table 2, most
bugs we found are memory leaks. We interpret this as a limitation of Rust’s
security guarantees: memory leak is considered safe in Rust [16]. The reason
behind this design choice is that leaking resources is possible in pure safe Rust
(consider creating a cycle of reference-counted pointers using interior mutabil-
ity). Therefore, the authors of the Rust standard library decide not to mark
functions that leak memory as unsafe, such as mem::forget. As a result, the
Rust compiler will not give any warnings when inexperienced programmers mis-
use these functions and cause memory leaks, leading to denial of service attacks
or information leakage.

Future Work. Although we focus on Rust combined with C/C++, the idea
of FFIChecker and the threat model can be extended to other cross-language
scenarios. Especially, the static analyzer is designed to be an individual binary
that operates on LLVM IR. Therefore by changing the Rust-specific part of the
system, our approach can be adapted to analyze other FFIs, as long as they
support the LLVM backend for code generation, e.g., languages such as Haskell,
Julia, and Swift.
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10 Related Work

10.1 Static Analysis for Rust

Many existing studies extend off-the-shelf static analysis engines to perform bug
detection on LLVM IR generated by the Rust compiler. Lindner et al. [23] use the
symbolic execution engine KLEE [5] to verify whether a program is panic-free.
SMACK [3,32] translates LLVM IR into the Boogie intermediate verification
language [11]. Rust2Viper [14] and Prusti [1] utilize user-provided specifications
and the Viper [28] symbolic execution engine to verify functional correctness
properties. CRUST [38] translates functions that contain unsafe code to C, then
it generates tests and checks them by the CBMC [6] model checker.

There are also many tools that work on Rust’s own intermediate represen-
tation. Qin et al. [31] build two bug detectors for use-after-free and double-lock
bugs according to their empirical studies on Rust security issues. SafeDrop [10]
focuses on the deallocation of heap memory and detects memory corruptions by
performing alias analysis and taint analysis on Rust MIR. MIRAI [25] is a for-
mal verification tool that performs symbolic execution on Rust MIR. It enables
users to add annotations and utilizes the SMT solver Z3 [27] to prove the cor-
rectness of Rust programs. MirChecker [22] collects both the numerical and
symbolic information from Rust MIR, and detects runtime panics and memory-
safety issues without the need for annotations. Rudra [2] uses both Rust MIR
and HIR, and detects potential memory safety bugs in unsafe Rust.

10.2 Cross-language Bug Detection and Prevention

It is well-known that developing software using multiple languages may inter-
fere with each other and lead to subtle bugs. Mergendahl et al. [24] propose
a threat model to reason about cross-language attacks. They also demonstrate
these attacks on Rust and Go. Kondoh et al. [17] use static analysis to detect
common mistakes and bad programming practices when using Java Native Inter-
face (JNI). Tan et al. [35] apply static analysis and carry out an empirical security
study on a portion of the native code in Sun’s Java Development Kit (JDK).
JET [19,20] is a static analysis tool that enforces exception checking and reports
bugs on Java exceptions raised in native code through JNI. Jinn [18] is a compiler
and virtual machine independent bug detection tool for both JNI and Python/C.
Galeed [33] and PKRU-Safe [15] isolate heap memory at runtime using Intel
Memory Protection Keys (MPK), such that unsafe (external) code cannot cor-
rupt memory used exclusively by the safe-language components.

Unlike these existing efforts, our work focuses on the memory management
issues between Rust and C/C++. The new pattern of bugs introduced by the
interaction between the Rust ownership system and C/C++ is out of the scope
of all the existing detection or prevention efforts.

11 Conclusion

Rust leverages FFI to invoke external C/C++ code, making incremental soft-
ware development convenient and efficient. In this paper, we showed that there
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could be security issues since programmers may make mistakes when using FFI.
To secure the use of FFI, we designed and implemented FFIChecker, an auto-
mated static analysis tool based on augmented taint analysis, which captures
the state transitions of heap allocations when they are passed to external code
through FFI. It can detect potential memory management issues across the FFI
boundaries. We evaluated it by analyzing 987 real-world Rust packages. It suc-
cessfully revealed 34 bugs in 12 packages that were unknown previously. Finally,
we open-sourced FFIChecker with various examples and test scripts.

Acknowledgments. The work of Zhuohua Li, Jincheng Wang, and John C.S. Lui
were supported in part by the RGC’s RIF R4032-18.

Appendix

A Fixed-Point Algorithm

Algorithm 1: Fixed-point algorithm for FFIChecker
Input: Control Flow Graph: CFG
Output: Abstract State: State
Initialization: State[n] ← ⊥ for all n

1 Function FixedPoint(CFG, State):
2 W ← CFG.basicblocks
3 while W = ∅ do
4 b ← W.remove()
5 foreach instr ∈ b.instructions do
6 Transfer(State[b], instr)
7 Transfer(State[b], b.terminator)
8 new state ← ⊔

n∈Predecessors(b) State[n]
9 if new state � State[b] then

10 State[b] ← new state
11 foreach v ∈ Successors(b) do
12 W.insert(v)
13 return State

B Context-Sensitive Interprocedural Analysis

To avoid duplicated analysis for the same function, we also implement the clas-
sical summary-based method [26,29]. It caches previously computed results (i.e.,
summaries) in a lookup table cache : ((f, in state), out state) that maps a call-
ing context (f, in state) to an output out state. (f is a function, in state is the
abstract state of its input, and out state is the corresponding output.) Before
analyzing a function, we first check whether there is an existing summary that
has been computed. If it is the case, the fixed-point algorithm is skipped and
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the result is directly returned. If not, the fixed-point algorithm is performed and
the analysis result is cached in the lookup table.

Algorithm 2: Interprocedural analysis algorithm for FFIChecker
Input: Function: f , Arguments: args, Destination: dest,

State of the current basic block: σ, Summary Cache: cache
Output: Updated State: σ

1 begin
2 switch FunctionType(f ) do
3 case Heap Allocation do
4 σ[dest] ← Alloc
5 case Borrow Arguments do
6 σ[arguments that are borrowed] ← Borrowed
7 case Move Arguments do
8 σ[arguments that are moved] ← Moved
9 case FFI do

10 Run AnalyzeFunction and generate warnings if necessary
11 case LLVM Intrinsic or Standard Library do
12 Handle it through function models
13 otherwise do
14 AnalyzeFunction(f , args, dest, σ)

// Subroutines
15 Function AnalyzeFunction(f , args, dest, σ):
16 in state ← state generated by args
17 summary ← GetFunctionSummary(f , in state)

// Set the state of the return value
18 σ[dest] ← summary.ret state

// Propagate the state of parameters
19 foreach (caller arg, callee arg) do
20 σ[caller arg] = σ[callee arg]

21 Function GetFunctionSummary(f , in state):
// If the summary has been computed, directly return it

22 if (f, in state) in cache then
23 return cache[(f, in state)]

// Initialize initial state for the fixed-point algorithm
24 forall n do
25 State[n] ← ⊥
26 foreach (state, param) in zip(in state, f.parameters) do
27 State[param] ← state

// Compute the summary and cache it
28 out state ← FixedPoint(f.CFG, State)
29 cache[(f, in state)] ← out state
30 return out state
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Abstract. Android applications ship with several native C/C++
libraries. Research on Android security has revealed that these libraries
often come from third-party components that are not kept up to date
by developers, possibly posing security concerns. To assess if known vul-
nerabilities in these libraries constitute an immediate security problem,
we need to understand whether vulnerable functions could be reached
when apps are executed (we refer to this problem as function reachabil-
ity). In this paper, we propose DroidReach, a novel, static approach
to assess the reachability of native function calls in Android apps. Our
framework addresses the limitations of state-of-the-art approaches by
employing a combination of heuristics and symbolic execution, allowing
for a more accurate reconstruction of the Inter-procedural Control-Flow
Graphs (ICFGs). On the top 500 applications from the Google Play
Store, DroidReach can detect a significantly higher number of paths
in comparison to previous works. Finally, two case studies show how
DroidReach can be used as a valuable vulnerability assessment tool.
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graphics, database management, and modern encryption. While many features
can be directly implemented with Java code, developers rely on C/C++ libraries
(via the Java Native Development Kit ) to achieve greater speed and flexibility.

The analysis of Java code has dominated the Android security scene, as
malicious samples typically resort to Java components to carry out their oper-
ations [8,40]. Conversely, the focus of research on the Android Native Environ-
ment has been limited. Nonetheless, the Android Native Environment conceals
more issues than what can be superficially assumed, as recent works showed a
significant presence of vulnerabilities in native code [3]. The problem becomes
significant as such vulnerabilities are mostly due to not-updated versions of
libraries that are continuously employed even in very popular applications (fea-
turing millions of downloads). However, the presence of vulnerabilities alone does
not immediately translate into a security problem because it depends on whether
they could be concretely exploited. While this question can be extremely difficult
to answer, especially in large-scale environments such as Android, we can study
whether such vulnerable functions could be reached when apps are executed. We
refer to this problem as function reachability.

Previous works on Android native code have proposed dataflow techniques
that work either statically or dynamically. Static approaches [38,39] mainly
exploited symbolic execution – a powerful program analysis that struggles to scale
over complex and large Android apps – leading to results that are incomplete and
thus inaccurate when considering function reachability. Dynamic approaches [42]
can accurately analyze single execution paths but they still can hardly scale over
apps featuring even thousands of classes, leading to the so-called path explosion
problem. In this sense, it becomes crucial to find a proper balance between the
time needed for the analysis and the precision of the attained results.

In this paper, we propose DroidReach, a static approach to establish the
reachability of native methods in Android apps starting from the application
Java entry points. In particular, we propose the following contributions:

1. We discuss the technical limitations that hamper the analysis capabilities
of current analysis tools. In particular, we show limitations in: (a) properly
mapping Java native methods to Java Native Interface (JNI) methods, (b)
handling nested native libraries, and (c) accurately building the ICFGs.

2. We present the methodology underlying DroidReach: it combines several
heuristics and ICFG construction techniques to mitigate the limitations men-
tioned in the previous point. In this way, DroidReach can accurately and
effectively reconstruct possible paths to potentially vulnerable native calls.

3. We perform an evaluation considering 500 popular applications featuring com-
plex native libraries and ICFGs (with an average of 2,000,000 native instruc-
tions and 1,000,000 Java instructions). We show that DroidReach can reach
more instructions than Argus-SAF [38], which is the state-of-the-art static
framework for analyzing the Java and native layers in Android.

4. We propose two real, practical case studies where we show how DroidReach
can be helpful to assess the reachability of vulnerable functions.

To foster further research, we make our contributions available at https://
github.com/season-lab/DroidReach. We believe that DroidReach represents a

https://github.com/season-lab/DroidReach
https://github.com/season-lab/DroidReach
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step forward for the Android community as it can provide valuable insights to
security experts in presence of large and complex apps.

2 Background and Related Work

Android Apps. Android applications are zipped .apk (Android application
package) archives containing: (i) The AndroidManifest.xml file and other .xml
files, which provide the application metadata and layout ; (ii) One or more
classes.dex files, which contain the executable bytecode of the Java/Kotlin
classes; (iii) External resources, such as images or native libraries.

The Android NDK. The Android Native Development Kit (NDK) is an
ensemble of tools that allow for the implementation of parts of Android apps in
native (C/C++) code. Such a code is typically employed to guarantee faster per-
formance in comparison to traditional Java code. The interface between the Java
and the native layer is called Java Native Interface (JNI). JNI essentially defines
how functions receive parameters or provide return values. Native libraries can
be loaded with the System.loadLibrary method. Then, the native methods to
be invoked are declared in the Java code by using the native keyword.

Native Libraries Analysis. Native libraries have been especially studied in the
context of vulnerability identification, i.e., understanding the presence of vulner-
abilities in native code. More specifically, prominent works concerned the study
of the JNI interface vulnerabilities [23,25,27,29,35,36], while others involved
the identification of possible vulnerabilities in Android libraries. Derr et al. [17]
conducted a test with 200 developers in which they showed that many libraries
embedded in apps are outdated and contain security vulnerabilities. Various
approaches have been proposed to detect them, based on machine learning [21],
similarities between functions [20,41], and hybrid analysis [30,31].

Recently, Almanee et al. [3] proposed an extended assessment of the presence
of vulnerable functions in Android native libraries. In particular, they showed
that applications contain libraries that have not been updated even for two years,
thus exposing vulnerabilities that typically require a long time to be fixed. We
base the beginning of our analysis on the results of this work, as it depicts a
critical scenario where various applications may feature critical security issues.

Dataflow Analysis. Dataflow analysis has been extensively studied in Android,
with a focus on how data propagates in Java code. This problem has been
addressed with static and dynamic approaches. Regarding static approaches,
FlowDroid [7] was among the first to introduce proper handling of the Android
callbacks. Other works improved FlowDroid in many aspects, such as proper
dataflow tracking for intents [13,22,26,28]. Amandroid [39] is deemed as the
current reference point for static dataflow analysis in Android. Wei et al. [38,39]
expanded Amandroid by releasing JN-SAF (now known as Argus-SAF), which
introduced the analysis of the information flows between the Java and the native
layer. The approach employs symbolic execution to handle the native layer. In
particular, Argus-SAF uses CFGEmulated from Angr [33] to reconstruct ICFGs
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of the native code (Sect. 3.1) and compute approximate dataflow facts. Argus-
SAF will be the main reference point for the analyses discussed in this paper.

Dynamic approaches employ code instrumentation and execution to perform
taint analysis. Droidscope and TaintDroid [19,44] are among the first approaches
to have adopted this technique. Subsequent works built upon and improved
TaintDroid [34,42,43] by using, e.g., concolic execution [11,12,14]. Unfortu-
nately, a challenge is how to generate the right executions that will reach a
function.

Input Generation. Several works [1,4,6,15,24,37,40,45] aim at generating
user inputs that can lead to the execution of specific functions. Systems based on
static analysis allow for faster code coverage, but they can lack precision. Con-
versely, approaches based on dynamic analysis can be much more precise, but
they can often be unfeasible due to the so-called path explosion problem. One
notable example is Intellidroid [40], an approach that uses static and dynamic
analysis to generate those inputs that allow for reaching specific calls. Intellidroid
only focuses on the Java layer without exploring the native layer.

Automatically finding the right set of stimulations for an app remains an
open research problem, especially when considering large and complex apps.
DroidReach cannot find the inputs able to reproduce a specific path but can
provide insights about the existence of a path toward a specific target point.

3 DroidReach

In this section, we present the main ideas behind DroidReach. First, we discuss
the problem targeted by DroidReach and the challenges that affect existing
approaches. Then, we present the design and the components of DroidReach.

3.1 Problem Statement and Reachability Challenges

Terminology. In the following, we define a few terms used across the paper:

– A code point p for our analysis is an instruction inside the set of instructions
from the Java layer (J) or the native layer (N) of an app, i.e., p ∈ (J ∪ N).

– A Control-Flow Graph (CFG) is a graph representation of possible paths
that can be taken during the execution of a function. Each node represents a
contiguous sequence of code points. Edges represent jumps across nodes.

– A Call Graph (CG) is a graph that represents the calls across different
functions of an app.

– An Inter-procedural Control-Flow Graph (ICFG) connects the CFGs
of different functions using the information from the CG. In practice, it can
encode all the app’s paths starting from a specific entry point.

– A source ps is a code point in an app that could start the execution of some
Java code. Hence, a source could be seen as an entry point for the Java layer.

– A sink pt is a code point inside a native library, i.e., pt ∈ N . The sink identifies
an interesting point that we would like to reach during the execution.
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Fig. 1. Example of nested libraries

Goal. Given the Java instructions J , the native instructions N , and a sink pt,
our goal is to identify at least one path starting from one source ps and ending
in the sink pt. The path is represented as the sequence of points traversed in the
ICFG from the source ps. Identifying a path in the ICFG can be valuable for
several program analyses and security tasks. This paper focuses on sinks that
could be associated with vulnerable code points within native libraries.

Reachability Challenges. Argus-SAF (Sect. 2) is the state-of-the-art solu-
tion for statically analyzing both the Java and the native layers of an Android
app. When testing it on real-world apps for our goals, we have identified a few
critical challenges which affect its accuracy (and also of other existing works):

C1 Mapping Java native methods to JNI methods. To execute the code
of a native library, the Java code invokes a Java native method. Java native
methods at running time could be seen as jumps to JNI methods, which are
the entry points for the native layer. Unfortunately, statically identifying
the mapping between Java native methods and JNI methods is not always
trivial. State-of-the-art solutions may fail (Sect. 4) to resolve a large number
of these mappings, possibly ignoring several entry points of the native layer.

C2 Nested native libraries. A JNI method is part of a shared library, e.g.,
libA.so. A shared library may call methods of other libraries, i.e., one
library may link another one (e.g., libB.so). State-of-the-art solutions may
not perform analyses across multiple native libraries in the case of nest-
ing. This is crucial on Android, since apps often: (a) integrate open-source
libraries, which may rely on other ones, and (b) devise wrappers to work
with libraries that were not originally written for Android and thus do not
implement the JNI API. An example of nested libraries is given in Fig. 1.

C3 Scalability versus accuracy. Argus-SAF uses symbolic execution to
analyze the native code. While this technique can be very accurate during
the ICFG construction, allowing the tool to even compute data flow facts,
it does not scale on complex libraries. Indeed, Argus-SAF trades accuracy
for scalability, halting its analysis when the call depth is larger than, e.g.,
5, which is not enough in several cases, thus generating incomplete ICFGs.
Approaches based on traditional binary frameworks [32], may provide better
scalability but then generate less accurate ICFGs, e.g., in the presence of
indirect jumps.

To help the reader grasp the technical aspects behind these challenges, we
show them in the context of a running example in the remainder of the section.
However, we first present at a high level the design behind DroidReach.
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Fig. 2. Main steps of DroidReach

3.2 Architecture of DroidReach

Figure 2 depicts the main steps performed by DroidReach:

S1 Static analysis of the Java layer. The first step builds the ICFGs of the
Java code, identifying sources and calls to Java native methods.

S2 Analysis of interactions between Java and native layer. After detect-
ing the Java native methods that could be reached during an execution,
DroidReach identifies the mappings between Java native methods and
JNI methods. This step is thus designed to tackle challenge C1.

S3 Static analysis of the native layer. Given a list of JNI methods that
could be reached during the execution, DroidReach builds the ICFGs of
the native libraries. This step aims at challenges C2 and C3, combining dif-
ferent techniques to target a nice trade-off between accuracy and scalability.

S4 Reachability analysis. The last step is where DroidReach puts together
the pieces constructed in the previous stages. It first merges the ICFGs of
the Java layer with the ICFGs of the native layer and then evaluates whether
there exists a path from a source ps to a user-defined sink pt.

In the remainder of this section, we review in detail these steps. Throughout
our discussion, we use a running example: Fig. 3 shows an excerpt of its code.
This is an app with two activities, where the first one (LoginActivity, omit-
ted from the code) checks the credentials of the user, while the second one
(JavaLayerActivity) runs some tasks using some native libraries (native-lib
.so and other-native-lib.so) when the user clicks a button. Differently from
dynamic approaches, DroidReach can directly focus on JavaLayerActivity
without necessarily satisfying the execution requirements of LoginActivity,
which could be arbitrarily hard to automatically identify and satisfy.

3.3 Static Analysis of the Java Layer

Different state-of-the-art frameworks already exist to analyze the Java layer,
providing different trade-offs in terms of accuracy and scalability. The current
implementation of DroidReach can work with Androguard [18] and Flow-
Droid [7], while support for Amandroid [39] is being worked on. Regardless of
the specific framework in use, DroidReach performs three stages:

1. Identification of sources. DroidReach looks for sources by considering
the class methods of several Android components, following the guidelines
and suggestions proposed in previous works [7,18].



On Native Vulnerability Reachability in Android Apps 707

Fig. 3. Running example

Fig. 4. ICFGs of the running example: shades of gray highlight different steps (Color
figure online)

2. ICFG construction. For each source, DroidReach builds an ICFG con-
sidering the entire Java code of the app, connecting the CFGs of the methods
based on their caller-callee relationships.

3. Identification of Java native methods. Finally, this step identifies Java
native methods which are invoked in the ICFGs of the Java layer. At this
stage, a call to a Java native method is not yet mapped to its JNI method,
which contains the actual binary implementation of the Java native method.

Running Example. When considering the JavaLayerActivity class, there are
two sources: onCreate (J1), which is executed at the activity startup; the anony-
mous handler (J5) for button events. Figure 4 shows in blue the Java code points
for the ICFGs starting from these two sources. J6 is a Java native method. An
additional implicit source, considered by DroidReach but omitted from Fig. 4,
is J0, which triggers the execution of JNI OnLoad (see next section).
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Fig. 5. A statically defined JNI method

Fig. 6. A dynamically defined JNI method

3.4 Analysis of Interactions Between Java and Native Layer

Each Java native method is mapped to a JNI method in the native layer. The
mapping can be defined statically or dynamically, as described in the following.

Static Mapping. The name of the JNI method is a symbol exported by the
library that follows a specific mangling scheme, allowing the dynamic linker to
uniquely identify the Java native method associated with it. For instance, the
native method com.lyrebirdstudio.lyrebirdlibrary.EffectFragment.sha
dows in Fig. 5 maps to the JNI method Java com lyrebirdstudio lyrebirdl
ibrary EffectFragment shadows. As in previous works [38], DroidReach uses
a decoder of the mangling scheme to resolve statically defined JNI methods.

Dynamic Mapping. When the dynamic loader loads a library, it runs the
JNI OnLoad function exported by the library. This function may dynamically
define mappings between Java methods and native functions using the JNI prim-
itive RegisterNatives, which takes as one of its arguments a pointer to an array
of JNINativeMethod. This struct is defined as:

typedef struct {

char *name; // ex: "nativeCtor"

char *sign; // ex: "(Ljava/lang/String;)J"

void *fnPtr; // function code pointer

} JNINativeMethod;

The struct states that the native implementation of the Java native method
name having the signature sign (which defines, in smali, the types of the method
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arguments and the return value) is available at the address fnPtr. Figure 6 shows
how a real app is defining the mapping for the JNI method n getEffects.

Previous works [38] perform symbolic execution from JNI OnLoad to identify
the array passed to RegisterNatives. This strategy has two downsides: (a) the
exploration is halted when reaching a given call depth (e.g., 5 in Argus-SAF)
to mitigate path explosion, possibly failing to reach RegisterNatives, and (b)
the exploration may incur a large overhead when JNI OnLoad is not trivial.

For these reasons, our approach devises a more scalable heuristic to detect
dynamic mappings. The key idea is that several developers follow the guidelines
of Android [5] and statically define the JNINativeMethod array at compilation
time, placing it in the global data section. DroidReach thus scans the data
section of a library, looking for an array with elements following the pattern:

1. Pointer to a valid string (name).
2. Pointer to a valid string (sign).
3. Pointer to a function in the text section (fnPtr).

Since some apps may instead allocate and initialize the array during the
execution of JNI OnLoad, DroidReach fallbacks to symbolic execution when:

1. The heuristic fails to identify mappings for a library containing JNI OnLoad.
2. The heuristic identifies some mappings, but there are clashes on the pair

(name, signature) of some methods, e.g., there are multiple Java methods
from different classes called name with the same signature, requiring to
inspect additional arguments of RegisterNatives to solve the ambiguity.

Hence, DroidReach fallbacks to a more heavyweight analysis only when there
are insights that the heuristic is not working correctly.

Running Example. When loading the JavaLayerActivity class, the loader is
executed due to J0, processing native-lib.so. The JNI OnLoad function of this
library defines the mapping (J6, N1). DroidReach identifies it by analyzing
the array mappings. Symbolic execution analyses may instead struggle when
JNI OnLoad integrates some complex code before the call to RegisterNatives.

3.5 Static Analysis of the Native Layer

After identifying the JNI mappings, DroidReach constructs the ICFGs for the
native layer considering each JNI method as a possible entry point. To cope
with challenge C2, DroidReach recursively builds the ICFG if one function
of a library is calling a function of another library. Additionally, to cope with
challenge C3, our approach combines the ICFGs built by different techniques.

ICFG Construction. For each JNI method, DroidReach builds the CFGs
and the CGs of the native functions to obtain the ICFGs. Our implementation
uses the Ghidra reversing framework [32], as it worked particularly well when
considering libraries found in Android apps. The ICFGs derived in this stage
include only code points from the same shared object of the starting JNI method.
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Library Dependency Graph. Given the ICFG for a JNI method, our app-
roach analyzes the calls to imported functions, i.e., calls to functions from other
libraries. To represent this information for all ICFGs, it defines a library depen-
dency graph, where the nodes represent libraries and the edges are calls across
different libraries. Each edge is annotated with a list of caller-callee tuples to
track the different calls that may involve the same pair of libraries.

ICFG Refinement: Nested Libraries. Using the library dependency graph,
DroidReach refines the ICFG of each JNI method to include code points from
nested libraries. Since this stage may need to build the ICFG of methods never
met before (or it may discover new calls to other imported functions), our app-
roach iteratively repeats the two previous stages until a fixed point is reached.

ICFG Refinement: Symbolic Exploration. The previous stages can build
ICFGs that may traverse several libraries, potentially representing paths able
to reach even deep code points in an execution path. However, the previous
stages may still miss some critical edges in the ICFG: e.g., in the presence of a
callee that performs an indirect call using a target defined by its caller. While
reverse engineering frameworks, such as Ghidra, have reduced the need for
heavyweight dataflow analyses significantly, there are still several cases where
they may be needed to accurately build an ICFG. For this reason, for each JNI
method, our approach performs a symbolic exploration using CFGEmulated of
angr [33] to recover the missed edges. To control path explosion, the exploration
stops its analysis when the call stack contains more than 5 nested calls (as in
Argus-SAF). Moreover, path branches are not evaluated, thus skipping most
symbolic queries. After running this refinement step, we repeat the two previous
stages until a fixed point is reached. Hence, DroidReach combines two different
techniques for building the ICFGs: the first one is more scalable but less accurate,
while the second one is more accurate but less scalable. Previous approaches, such
as Argus-SAF, have favored ICFG construction approaches based on symbolic
execution, which however can struggle at reaching deep code points.

Running Example. Starting from N1, DroidReach builds one ICFG with
code points {N1, N2, N3, N4, N5, N6, N7}. Indirect jumps (N6, N8) and (N3, N9)
are not discovered by Ghidra but can be recovered using a symbolic exploration.
Since N3 calls a function of other-native-lib.so, DroidReach builds the
library dependency graph, analyzes this library, and adds {N9, N10, N11, N12}.

3.6 Reachability Analysis

The last step is in charge of computing a path from a source to a sink.

Defining the Sink. In general, the sink is a user-defined choice that is tightly
connected to the goal targeted by an analysis. In this paper, given a vulnerability
report, we define the sink as the closest code point (or even the set of code points
if there is not a unique choice) that the app execution should reach in order to
reproduce the bug described in the report. To identify the open-source project
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related to a library from an Android app, including the adopted release, we refer
to solutions, such as [3], that have proposed effective binary similarity techniques.

Merging ICFGs. Given a sink, DroidReach exploits the JNI mappings to
connect ICFGs of the Java layer to the ICFGs of the native layer.

Finding a Path from a Source to a Sink. Finally, for each source ps and
for each sink pt, our approach evaluates whether there exists a path from ps to
pt. In practice, since there could be several alternative paths between ps and pt,
our current implementation by default emits the shortest one as it typically is
the simplest to check for a user. However, alternative paths can be requested.

Running Example. Assuming that N12 is part of a known vulnerability in
other-native-lib.so, DroidReach builds the ICFGs in Fig. 4 and quickly
computes the path {J5, J6, N1, N2, N3, N9, N10, N11, N12}.

4 Experimental Evaluation

In this section, we evaluate the efficacy of DroidReach. Due to lack of space,
we omit the discussion of step S1 as it involves well-known mainstream Java
analysis frameworks, which we did not alter in DroidReach. Experiments were
conducted in a Ubuntu 20.04 Docker container, using two Intel Xeon E5-4610v2
CPUs and 256 GB of RAM. APK hashes of evaluated apps can be found at [9].

4.1 Microbenchmarks

To validate DroidReach, we considered existing benchmarks from the Android
literature. DroidBench [7] does not involve native libraries. On NativeFlow-
Bench [38], DroidReach performs consistently with Argus-SAF when con-
sidering the reachability goal. Since NativeFlowBench ignores the challenges
from Sect. 3.1, we designed a new benchmark suite composed of 13 apps that
exhibit these aspects from different perspectives (see Table 6 in the Appendix).
The source code and a detailed discussion of this suite can be found in a dedicated
repository [10]. On 12 out of 13 apps, DroidReach correctly builds accurate
native ICFGs, improving on Argus-SAF (8 out of 13). The failing case involves
an indirect jump at deep call depth: this app was specifically designed to highlight
that DroidReach cannot solve, in general, the scalability issues that inherently
affect static analyses, and it can only help to mitigate them (hopefully in several
cases). Further details on the results are available at [10].

4.2 Real-World Dataset

Dataset. To evaluate the efficacy of DroidReach on real-world apps, we col-
lected the top-20 apps from each category of the Google Play Store, keeping the
ones containing ARMv7 libraries. Overall, we obtained 500 apps, whose popular-
ity ranges from a minimum of 100K downloads to more than 1 billion downloads.
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Table 1. Analysis of false negatives: executed code points found in the ICFGs.

APK # of executed code points found in the native ICFGs from

Argus-SAF Ghidra DroidReach

com.sec.android.easyMover 33/33 33/33 33/33

com.jb.zcamera 11/11 11/11 11/11

com.mi.android.globalFileexp. 31/48 47/48 47/48

com.space.cleaner.smart.tool 52/75 65/75 75/75

com.soundcloud.android 57/102 72/102 72/102

video.like 197/518 272/518 320/518

com.zentertain.photocollage 186/331 174/331 239/331

com.picsart.studio 442/1282 203/1282 736/1282

shareit.lite 33/60 44/60 47/60

com.imangi.templerun 60/326 67/326 248/326

com.amazon.mp3 92/395 218/395 239/395

com.cam001.selfie 282/344 211/344 322/344

com.tripadvisor.tripadvisor 2/42 30/42 30/42

com.yodo1.crossyroad 3/79 25/79 25/79

com.king.candycrushjellysaga 5/54 6/54 6/54

Table 2. Analysis of false positives: validated code points in the ICFGs.

APK Validation mode Confidence # code points to validate # validated code points

com.imangi.templerun Dynamic High 2357 1565

com.picsart.studio Dynamic High 1307 748

com.cam001.selfie Dynamic High 974 326

com.king.candycrushjellysaga Dynamic High 168 63

com.amazon.mp3 Mixed Medium 625 441

shareit.lite Static Medium 12 12

com.sec.android.easyMover Static Medium 107 60

Such selection choice has also been guided by the idea of representing apps whose
vulnerability may have a very large impact on the end-users. The average com-
plexity of these apps is very high, as detailed in Table 5 from the Appendix, in
terms of the number of Java and native instructions (more than 2.3 million of
native LoC on average), the number of Java native methods (more than 204
methods on average) and of ARMv7 libraries (at least 5 on average).

Fine-Grained Evaluation. To evaluate the correctness of DroidReach, we
need to analyze the false negatives (code points that are missing from the ICFGs)
and the false positives (code points that are wrongly inserted in the ICFGs).

For the false negatives, we randomly picked 15 apps from our dataset and then
manually stimulated them in the Android emulator as a user would do in a short
usage session, recording the executed native function entry points. Any recorded
code point should thus be contained in the ICFGs. While our sample set may
seem small, the effort for validating the results took more than 1.5 man-months.
Table 1 divides the 15 apps into three groups: apps where DroidReach was able
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to identify more than 95% of the executed code points are in the first group,
more than 50% of the code points in the second group, less than 50% of code
points in the third group, respectively. DroidReach significantly outperforms
Argus-SAF and Ghidra (when used in step S3 in place of DroidReach) on
several apps. This result comes from the effective combination of different tech-
niques: Argus-SAF fails to scale its analysis and Ghidra misses indirect jumps
that could be recovered with a symbolic execution analysis, while DroidReach
shows the best of the two approaches (see [9] for detailed debug results). How-
ever, there are some apps where even DroidReach is unable to statically recover
some executed code points. On some apps, slightly increasing the maximum call
depth in the symbolic exploration can lead to better results (e.g., from 5 to
10 allows to find +9% of executed code points in com.amazon.mp3). Similarly,
increasing the maximum analysis timeout can improve the accuracy, but there
is a trade-off that must be taken into account between accuracy and analysis
time. Even when extending the analysis time, DroidReach cannot cope with
some patterns (Sect. 5): e.g., com.yodo1.crossyroad loads a library using a cus-
tom loader and com.imangi.templerun indirectly executes code from the Mono
framework.

For the false positives, the evaluation is significantly harder as it requires
to exhaustively stimulate an app, which can hardly be done automatically for
most apps. Nonetheless, we attempted to still validate at least a subset of the
code points. In particular, we compared the ICFGs from DroidReach to the
ones from Ghidra and Argus-SAF, extracting the code points detected only
by our approach and then keeping only the function entry points. To keep the
evaluation sustainable, we considered a subset of the 15 apps and analyzed how
to stimulate their JNI methods based on the reports from FlowDroid (S1). We
then executed each app under a debugger during an extended usage session,
tracking which function entry points found by DroidReach were actually exe-
cuted. Table 2 shows the results of our experiments. On four applications, we
were able to validate a large fraction of the selected code points, bringing high
confidence in their correctness. On three other applications, we could not dynam-
ically validate most code points. This is not unexpected as several program
behaviors depend on external events (e.g., server-side interactions) and specific
usage patterns that cannot always be reproduced. For instance, the considered
code points from com.sec.android.easyMover are within a library related to
USB OTG functionalities in Samsung devices, which we could not stimulate. On
shareit.lite, the code points are mostly related to C++ exception handling,
making them hard to trigger. On com.amazon.mp3, we experienced some crashes
when inserting the breakpoints in some libraries, allowing us to dynamically val-
idate only a few points. For these three applications, we thus also performed a
manual static validation by analyzing a subset of their code points with IDA Pro,
validating whether the points are reasonable, i.e., they are likely reachable within
an execution, reporting, however, lower confidence as we did not validate them
by running the app. Regarding unvalidated code points, they should not neces-
sarily all be seen as false positives, as proving or disproving their correctness is
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Table 3. Resolved JNI mappings during step S2.

# Recovered Mappings Analysis Time (secs)

Argus-SAF DroidReach Argus-SAF DroidReach

Static JNI mappings 4,610 4,610 8,542 8,542

Dynamic JNI mappings 765 1,912 259,136 20,345

Both 5,375 6,522 267,678 28,887

Table 4. ICFG results on methods analyzed using different approaches in S3.

DroidReach vs # JNI methods % apps for which DroidReach has # code points found by

processed Less Same More DroidReach (ratio w.r.t. competitor)

by both Code points than competitor Total Total ratio Geo. mean ratio

Ghidra 5,623 2.8% 9.8% 87.3% 64,818,031 1.24× 1.95×
Argus-SAF 4,711 1.3% 7.2% 91.5% 54,901,175 7.58× 5.64×
Argus-SAF-MLIB 4,527 1.6% 8.5% 89.9% 51,618,223 6.51× 5.09×

Fig. 7. ICFG results (step S3) on the full set of JNI methods over all apps.

hard: static analyses are often proposed when automatic dynamic analyses can-
not exhaustively cover the program code. We provide additional details at [9].
Overall, the effort for this validation was more than 1.5 man-months.

Coarse-Grained Evaluation. To get a wider evaluation of DroidReach, we
now consider the full dataset. We focus our discussion on steps S2 and S3. Step S1
brings the same results for all tools as they can use the same analysis framework.
Similarly, step S4 can be implemented in the same way for all compared tools.

A crucial challenge tackled by DroidReach during step S2 is the identifica-
tion of mappings between Java native methods and JNI methods. In our dataset,
step S1 identifies 7, 463 reachable Java native methods. This is quite interesting
since the total number of Java native methods in our dataset is 113, 316: this
suggests that even if an app contains some code, then it may not necessarily exe-
cute it. Our manual investigation has confirmed that most apps are integrating
third-party frameworks, but they often only use a subset of their functionalities.
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Table 3 reports the cumulative number of mappings successfully resolved by
DroidReach compared to Argus-SAF, and the cumulative analysis time for
these two approaches. Overall, a large fraction (61.8% of 7, 463) of the map-
pings are statically defined by the apps and can be resolved by both frame-
works. The remaining 2853 (38.2%) mappings are defined dynamically though
RegisterNatives: DroidReach performs significantly better than Argus-
SAF on these methods, resolving 2.5× dynamic mappings. DroidReach is
also significantly more efficient: the analysis time is reduced by a factor of 9.3×.

Overall, DroidReach has resolved 87.4% of the methods (compared to
72.0% in Argus-SAF), suggesting that 941 (12.6%) methods do not follow the
implementation patterns expected by DroidReach. While the symbolic explo-
ration helped resolve 79 methods, it still failed on the 941 unresolved methods.
In these cases, the JNI OnLoad function was too complex and the exploration
was aborted after a 15-minutes timeout. Users can customize this timeout in
DroidReach to possibly increase the accuracy of S2. While there are still some
unresolved mappings, the improvement from DroidReach can be quite signifi-
cant in practice: when considering the Adobe PDF reader (com.adobe.reader),
all mappings were found exclusively by DroidReach, meaning that Argus-
SAF would completely skip any analysis on the native layer for this app.

After finding the JNI mappings for our dataset, we evaluate the effective-
ness and performance of DroidReach during the ICFG construction (step S3).
Besides DroidReach, we consider: (a) Ghidra, as it is internally used by
DroidReach, (b) Argus-SAF, which is the main competitor, and (c) Argus-
SAF-MLIB, a variant of Argus-SAF that we developed, which can continue
its analysis even in the presence of nested libraries (while the original approach
would ignore them). This is important since 340 (68%) apps out of 500, have
at least one nested library and some apps may even have a nested chain with
up to three libraries. Each solution was executed for 2 h for each application,
reconstructing in sequence the ICFGs of the reachable JNI methods. To make a
fair comparison, all tools received the same output from step S2.

Since different tools come with different trade-offs in terms of accuracy and
performance, leading to a very different number of JNI methods processed within
the 2-h experiment, we first present in Table 4 a pairwise comparison between
DroidReach and the other solutions considering the common set of JNI meth-
ods which were processed by each pair of frameworks. When considering the
5, 623 JNI methods analyzed by both DroidReach and Ghidra, DroidReach
can identify more code points in 87% of the apps. On average for each app,
DroidReach finds 1.95× code points than Ghidra. When considering the
4, 711 JNI methods analyzed by both DroidReach and Argus-SAF, our app-
roach identifies more code points in 91% of the apps. On average for each app,
DroidReach finds 5.64× code points than Argus-SAF. When considering our
custom variant Argus-SAF-MLIB, DroidReach is still more effective.
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Figure 7 summarizes the results when considering all JNI methods from all
apps: one approach could be less accurate but more efficient on one method,
thus having the chance to process more methods within the 2-hour per-app
timeout. The left chart shows that Ghidra was able to process more methods
than the competitors, followed by DroidReach. The right chart confirms that
DroidReach is indeed slower than Ghidra. However, the center chart shows
that the number of code points is still in favor of DroidReach. This is expected:
DroidReach is performing the same work as Ghidra, plus additional analyses.
Hence, its running time is always larger than Ghidra, leading to some apps
reaching the 2-hour per-app timeout before processing the entire set of methods.

When comparing DroidReach to Argus-SAF and Argus-SAF-MLIB,
the results in Fig. 7 show that DroidReach was able to process more methods
than these two solutions, detecting ∼8× their number of code points but requir-
ing also a larger analysis time. Indeed, Argus-SAF (and Argus-SAF-MLIB)
are generally faster (–60%) than Ghidra (and thus DroidReach) for a large
set (∼60%) of methods but: (a) these solutions are significantly less accurate,
identifying fewer code points on this large set, and (b) on the other methods,
these solutions fail to generate any ICFG as they reach the timeout or satu-
rate very early the memory (25GB in our experiments) due to path explosion.
When attempting to increase the maximum call depth in Argus-SAF-MLIB,
we observed a crucial increase in the number of timeouts and out-of-memory
events.

Finally, the average analysis time of DroidReach per app was 0.7 hours,
0.4 for Ghidra, 0.3 for Argus-SAF, and 0.4 for Argus-SAF-MLIB.

4.3 Case Studies

Establishing that apps contain vulnerable libraries does not mean that such
functions constitute necessarily an immediate security concern. We present two
case studies where DroidReach can be used as an aid in evaluating the impact
of vulnerable functions. These apps were considered by a previous study [2,3].

Case Study A: Reachable Function. We consider the function BN bn2dec
from libcrypto.so. This function is used in Amazon Alexa (com.amazon.dee.
app) and is vulnerable in OpenSSL ≤ 1.1.0 (CVE-2016-2182 [16]) with a score of
7.5. DroidReach finds the following path (depicted in Fig. 8 in the Appendix):

– The Java layer loads the OnStartCommand function belonging to the
com.here. android.mpa.service.MapService class. This function loads the
(name obfuscated) a method from the com.nokia.maps.SSLCertManager
class.

– This method calls the x509 NAME HASH native function that belongs to the
com.nokia.maps.CryptUtils class, which is statically mapped to the JNI
method com nokia maps CryptUtils X509 1NAME 1HASH in libMAPSJNI.so.

– The JNI method calls X509 free, which is a function from libcrypto here.
so, that in turn invokes ASN1 item free, which calls a stripped function at
offset 0x5fdd4 (after reversing, it appears to be asn1 item combine free).
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– From this function, the static exploration becomes challenging. There are
no direct jumps that connect the function to the target sink. However,
DroidReach identifies a reachable offset 0x5ba20 (which would allow for
further exploration towards the sink). A deeper inspection shows that such
an offset is indirectly calculated and jumped to by accessing dedicated data
structures. This is the reason why the connection between the offsets was
not immediately evident. Moreover, it demonstrates the capability of Droid
Reach to identify non-obvious paths that do not involve direct jumps.

– The function at offset 0x5ba20 calls X509 NAME ONELINE, which invokes i2t
ASN1 OBJECT. Such a function invokes OBJ obj2txt, which calls BN bn2dec.

After having statically identified a path, we tried to stimulate it dynamically.
Unfortunately, reproducing it in the emulator is not easy: besides registering
an account and performing several interactions, additional events must be faked
to execute the interesting Java class. Nonetheless, we successfully reproduced a
similar path in com.nokia.maps, which includes the same third-party library.
Argus-SAF and Ghidra miss some crucial edges, failing to find the path.

Case Study B: Unreachable Function. The goal of this case study is to
ascertain whether there is no path to a target vulnerable function. We consider
Zoom (us.zoom.video meetings) and the function SRP VBASE get by user in
libcrypto.so (CVE-2016-0798, score 7.8), for which DroidReach could not
find a path. To validate our claim, we directly patched the native library function
with an interrupt svc 11 instruction to see whether the function was invoked.
Then, we tested all possible functionalities. The application showed no signs of
a crash, meaning that the target function was not invoked during the execution.
Although we cannot guarantee that the function will never be invoked, we believe
that it cannot be executed by a normal user under normal conditions.

5 Limitations

Our current implementation of DroidReach has a few limitations:

– Like Argus-SAF, DroidReach is currently tuned for ARMv7 code. How-
ever, from the methodological side, nothing is tight to a specific architecture.

– DroidReach looks for native libraries in standard locations: fixes may be
needed in the case of a custom loader or packed libraries.

– DroidReach cannot prove the feasibility of a path, i.e., it does not currently
generate the inputs or stimulations that can reproduce the execution path.
Unfortunately, existing static solutions [38] do scale on large apps

– DroidReach represents the structure of the code using ICFGs. This rep-
resentation may be inadequate in the presence of frameworks that deviate
significantly from the traditional Android programming environment.
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6 Conclusions

DroidReach statically analyzes Android apps to assess the reachability of
native functions. Understanding this aspect can be crucial to assess the secu-
rity of apps featuring libraries with known vulnerabilities, as vulnerable but not
reachable functions may not represent an immediate threat. Our experiments
show that DroidReach can reconstruct more accurate ICFGs than other solu-
tions and that it can be a valuable tool for an analyst during a security evalua-
tion.
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Research and Innovation 2014-2020 - Attraction and International Mobility, funded by
the Italian Ministry of Education, University and Research.

Appendix

Table 5. Statistics for the apps selected for the evaluation.

Downloads range # apps Avg # Java insns. Avg # Java native insns Avg native methods Avg # ARMv7 libs

100K-1M 32 1,228,452 212.81 2,308,222 18

1M-10M 89 1,533,235 229.24 2,654,673 10.42

10M-100M 132 1,849,999 204.86 2,554,607 7.52

100M-500M 201 1,515,141 209.48 2,841,205 7.81

500M-1B 28 1,649,847 235.43 2,511,424 9.82

1B+ 18 1,945,265 565.94 2,392,670 5.39

Table 6. Description of the microbenchmarks [10].

Challenge ID Description

C1 0 JNI mapping through static name mangling

C1 1 JNI mapping through static name mangling and method overloading

C1 2 JNI mapping dynamically defined using the RegisterNatives API

C1 3 JNI mapping dynamically defined using the RegisterNatives API but with clash in the class name

C1 4 JNI mapping dynamically defined using the RegisterNatives API but without following the Android guidelines

C1 5 JNI mapping dynamically defined using the RegisterNatives API with a hard-to-analyze JNI OnLoad

C2 6 JNI Method calls a function from a nested library

C3 7 The target function is called at a high calldepth

C3 8 The target function is called after an indirect call (C++ virtual call, lazy initialization)

C3 9 The target function is called after an indirect call (C++ virtual call, callback)

C3 10 The target function is called after an indirect call (function pointer)

C3 11 The target function is called at a high calldepth after an indirect call (small calldepth after the indirect call)

C3 12 The target function is called at a high calldepth after an indirect call (high calldepth after the indirect call)
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Fig. 8. Path found in the Amazon Alexa app (com.amazon.dee.app) that can reach
the vulnerable function BN bn2txt from OpenSSL (CVE-2016-2182 [16]).
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Abstract. Virtual calls in C++ are known to be vulnerable to control-
flow attacks, and Virtual Call Control Flow Integrity (VCFI) is a pro-
posed defense. However, most existing VCFI defenses are incompati-
ble with real-world C++ software that need extensibility in the form
of dynamic loading, foreign language interface, etc. In this paper, we
propose a novel and extensible VCFI mechanism—namely eVCFI—that
is flexible enough to handle such software requirements. eVCFI uses
Approximate Membership Query (AQM) filters, recasting VCFI as an
efficient set membership query, giving an O(1) time VCFI check that can
be implemented in only a few instructions, all while supporting exten-
sibility and multi-threading. We compare eVCFI with existing VCFIs,
showing that we can achieve more accurate policies or extensibility com-
pared with other VCFI mechanisms designed for efficiency or modular-
ity. Evaluation of eVCFI shows small 1.3% overhead with SPEC 2006.
Furthermore, we evaluate eVCFI against the FireFox web browser: an
example of large/complex C++ software that uses both dynamic loading
and a foreign language interface (Rust). We show that eVCFI can pro-
tect Firefox with a small overhead of 1.15%. We believe that eVCFI is
the first VCFI defense able to protect complex software like Firefox.

1 Introduction

C++ is a popular programming language used to implement large complex soft-
ware systems such as web browsers [8]. However, C++ is also vulnerable to attacks
such as control flow hijacking, where the attacker exploits a memory/type error
to divert control to an attacker’s chosen function/gadget, possibly granting arbi-
trary code execution. A common control flow hijack attack in C++ programs is
to exploit dynamic dispatch. Modern C++ Application Binary Interfaces (ABIs),
e.g., Itanium C++ ABI [1] (used by x86 64), implement dynamic dispatch using
Virtual Function Pointer Tables (vtables) and virtual member functions. During
a virtual call to a virtual member function, the corresponding function pointer
in the vtable is called. However, this approach is vulnerable to attack, since
pointer to the vtable (a.k.a., the vptr) is stored within the object itself, mak-
ing it a potential target for type/memory errors. C++-specific variants of these
attacks have also been developed, such as Counterfeit Object-oriented Program-
ming (COOP) [18].
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Virtual Call Control Flow Integrity (VCFI) is a proposed defense against vir-
tual call control flow attacks [5,13,20]. VCFI defenses must efficiently validate a
given object’s vptr against the set of possible valid values, as determined by the
full class hierarchy specified by the program and the C++ language semantics.
A state-of-the-art VCFI defense is shipped with the LLVM/clang++ compiler
(cfi-vcall in [14]), which uses Link-time Optimization (LTO) to extract the
full class hierarchy at compile time. However, in addition to security and perfor-
mance, extensibility is another critical design dimension for VCFI. For example,
it is common for real-world software to be modular, i.e., interoperating with
other modules through dynamic linking/loading. Furthermore, some software
includes components with special interfaces, such as foreign language interfaces
or Component Object Models (COM). Supporting such ad hoc extensions, even
with manual intervention, necessitates a VCFI design that can handle “dynamic”
class hierarchies—i.e., where the class hierarchy can be extended at runtime, or
on-the-fly. We call this class extensibility, or simply extensibility.

The multithreaded Firefox browser exemplifies complex software architected
with extensibility. Firefox uses dynamic loading, XPCOM (similar to COM),
and foreign language interfaces, including C++ and Rust components interacting
with each other. Such extensibility is incompatible with many existing VCFI
defenses. For example, in Firefox, a C++ virtual call to an object implemented
in Rust will trigger a VCFI violation, even though this is a benign (intentional)
usage and not an attack. Our aim is to design an efficient VCFI defense that is
compatible with extensibility requirements, expanding the applicability of VCFI
to more C++ software.

In this paper, we identify the requirements for extensible and efficient vir-
tual call integrity in C++ programs. We introduce a new VCFI defense, eVCFI,
which is designed to support extensible C++ software. To do so, we first cast the
problem as an efficient set-membership question on dynamic sets, i.e., is a vptr a
member of the “allow-set” of the corresponding class? There are many algorith-
mic tradeoffs with efficient set-membership, with different pros and cons. In this
paper, we argue that Approximate Membership Query filters (AQM), such as
Bloom filters [3], meet the design requirements of extensible VCFI. Specifically,
we show that Bloom filters are efficient, i.e., O(1) check that only needs a few
instructions, regardless of the class hierarchy size or the number of modules. Fur-
thermore, we show Bloom filters are extensible in that new entries can be added
at runtime, without the need for thread locking/synchronization. In effect, our
approach supports extensibility using a single underlying mechanism (Bloom
filters), without fast/slow path logic. Finally, as our approach is probabilistic,
we show how to enhance the security of Bloom filters using a combination of
randomization and eXecute Only Memory (XOM).

We evaluate eVCFI against standard benchmarks (SPEC) and a web browser
(Mozilla Firefox). Our results show that the default configuration of eVCFI
incurs low-performance overheads on SPEC of 1.3%; and 1.01%, 1.18%, 1.15%
overheads on Kraken, Octane, Dromaeo browser benchmarks. We use Firefox
to showcase the challenges posed by complex C++ software requiring non-trivial
extensibility. We note that other VCFI defenses tend to fail on Firefox. This
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shows the importance of extensibility support, since an incompatible defense is
as good as no defense, meaning that the software cannot be protected against
virtual call control flow attacks. We believe eVCFI is the first approach that can
harden the Firefox codebase with VCFI.

2 Overview

We summarize C++ dynamic dispatch attack and defense, and then describe our
attack model. For the rest of this paper, we focus on C++ under X86 64/Linux.

2.1 C++ Dynamic Dispatch

C++ implements dynamic dispatch in the form of virtual member functions. A
derived class can override the definition of a virtual function they inherit. Vir-
tual calls, abbreviated as vcall, use a Virtual Function Table (vtable) to dynam-
ically decide which virtual function definition is to be invoked. The vtable is
essentially an array of function pointers, where each virtual function member of
a class is mapped to a corresponding index in the function pointer array. The
vtable is retrieved using a Virtual Function Table Pointer (vptr) stored in an
implicit field (vptr) within the object itself. Given an object pointer (objptr), the
basic template for a virtual call is: (1) read the (vptr) value from the implicit
(objptr->vptr); and (2) call the function pointer at the corresponding index
(idx ) as follows:

vptr = objptr->vptr; vptr[idx](...);

Here, we say that the static type of a virtual call site is given by
decltype(*objptr). Under the C++ type system, the dynamic type of (objptr) of
class C can be any (D *), where (D=C) or (D) is derived (possibly indirectly) from
(C). This implements a form of polymorphism, where a derived class (D) can be
upcast to the base class (C), but a virtual call still uses (D)’s definitions. The
object and vtable layout is defined by the Itanium C++ ABI [1] (used in x86 64
Linux). Note the vtable is usually protected from modification using read-only
memory.

Example 1. (Class and vtable Layout) An example class and vtable layout are
illustrated in Fig. 1. Here, we consider a simple hierarchy with two base classes
(C) and (B), and a derived class (D) that inherits from both. We consider a (C)
and (D) object. As per the Itanium C++ ABI, the (C) object has a single vptr
pointing to the first virtual function entry in (C::vtable). Index (−1) contains
the Run-Time Type Information (C::rtti) entry, and index (−2) contains the
offset-to-top explained below. Class (C) does not inherit from another class, and
only has two virtual functions, C::foo and C::bar.

The layout for the (D) object is more complex. Class (D) inherits from two base
classes (C) and (B), i.e., multiple inheritances. So the (D) object has two vptrs,
one for each proper base class. Furthermore, (D::vtable) is a vtable group that
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Fig. 1. Example class and vtable layout.

concatenates: (i) a primary vtable for the virtual function entries of (D) and the
first proper base class of (D); and (ii) a secondary vtable for each proper base
class. For secondary vtables, the offset-to-top is the pointer difference between
the two vptr fields in the (D) object, in this case (−16). The derived class (D)
can override the implementation of any virtual function from a base class. For
example, (D::foo) will point to (D)’s implementation of inherited virtual func-
tion (foo). Otherwise, if (D) does not override (foo), the virtual function entry
defaults to (D::foo=C::foo). �

C++ Dynamic Dispatch Security. The C++ dynamic dispatch design is primar-
ily intended for efficiency rather than security. Since C++ is not a memory-safe
language, an attacker can exploit a memory error (e.g., buffer overflow or use-
after-free) to overwrite vptr values inside objects.

Object pointer integrity can also be violated using type confusion (e.g., a bad
C++ static cast) or Counterfeit Object-oriented Programming (COOP) style-
attacks [18]. Likewise, vptr integrity can be violated using (sub-object) memory,
type confusion, or use-after-free errors to directly overwrite the vptr value with
another value. An attacker can exploit such errors to replace the object or vptr
value with a new value of choice.

2.2 C++ Dynamic Dispatch Defenses

The mainstream defense to vcall control flow hijack is Virtual Call Control
Flow Integrity (VCFI) which validates the correctness of the virtual function
before invocation. VCFI is essentially a specialization of Control Flow Integrity
(CFI) [2] to C++ dynamic dispatch. The basic idea is to associate an allow-set
of valid values to each virtual call site. There are two main variants: (direct) an
allow-set of valid virtual functions; and (indirect) an allow-set of valid vptrs.

Under the assumption that vtables are read-only, the direct and indirect vari-
ants offer similar protection, with indirect being slightly stronger. Many VCFI
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implementations, such as LLVM-xDSO [14], use the indirect approach and so
do we. Given a call to virtual function (C::f()), ideally the allow-set contains
all vptrs allowable under the C++ type system. This includes all vptrs to pri-
mary/secondary vtables containing: (1) the entry for (C::f()), and (2) the entry
for (D::f()) for all classes (D) derived from (C). For example, considering the
class hierarchy from Fig. 1, the allow-set for the virtual call (c->bar()) is:

Allow = {C::vptr, D::vptr C}
VCFI asks if the vcall is in the allow-set at the virtual call site. The allow-set is
determined by the strength of the implemented VCFI policy, e.g. Sect. 4.1 shows
the effective result from different VCFI systems.

Many implementations of VCFI variants exist, see surveys [5,13,20]. How-
ever, most source-based VCFI defenses require that the class hierarchy is fixed
at compile time, so the allow-set is also fixed. While monolithic and pure C++
code can meet this assumption, complex software often goes beyond, sometimes
using a wide range of heterogeneous components with diverse dynamic behavior
on the class hierarchies and interfacing needs. This requires VCFI solutions that
are extensible which is the focus of this paper. We highlight that a VCFI defense
that is not extensible will simply fail on a codebase without a fixed class hierar-
chy. There are many tradeoffs needed to support extensibility. Here, we mention
some (V)CFI implementations to provide context for the next section. Further
details will be discussed in Sect. 5.

MCFI [16] identified the lack of modularity being an impediment for the
adoption CFI, proposing a Modular CFI (MCFI) supporting separate compila-
tion and dynamic library loading for C. RockJIT [17] extends MCFI with C++
support. MCFI puts the program in a sandbox to protect its data structures,
which can affect performance. A state-of-art VCFI is provided by LLVM [14,15].
LLVM has low overheads, but requires a fixed class hierarchy that is obtained
using Link-Time Optimization (LTO). LTO allows the full (global) class hierar-
chy to be known at compile time. Although LLVM does not provide any exten-
sibility, there also exists an experimental mode, namely LLVM-xDSO, that also
supports dynamic linking and loading. The drawback is a much larger overhead,
as we discuss and evaluate later. As can be seen, there are complex tradeoffs for
VCFI, and existing solutions solve only a subset of our design goals. This can
limit practical adoption, especially for complex/legacy software systems.

2.3 Problem Statement

Using the indirect VCFI check variant, we formalize a VCFI check using the
class hierarchy of the program as follows:

c.vcall(. . .); c.vptr ∈ AllowC? (VCFI-Check)

where c is an object of static type C, and vcall denotes a virtual member
function of C. The VCFI check determines whether vptr belongs to the allow-
set for type C, where D::vptr ∈ AllowC for any D derived from C, or D=C.

In essence, VCFI has three main components:



728 Y. Jiang et al.

– Algorithms for the VCFI check. This can also affect multi-threading.
– Accuracy of the policy check. We use Eq. (VCFI-Check). When extensi-

bility is not used, the allow-set is determined statically (compile-time) under
the C++ semantics. If the program uses dynamic loading, the class hierar-
chy may be extended, meaning that the allow-set(s) need to be dynamically
updated accordingly. Similarly, ad hoc extensions, such as foreign language
interfaces, may also need to be reflected in the allow-set(s).

– Performance of the check. Ideally, overheads should be low.

As is common, we model a strong attacker capable of reading from or writing
to arbitrary memory, subject to the program’s memory protections. We assume
the attacker cannot modify page permissions, and that there exists separate
mitigation for hardware side channels [12]. We assume that the attacker intends
to hijack control flow by compromising C++ dynamic dispatch. Other kinds of
control flow hijack are orthogonal to this paper. We assume vtables reside in
read-only memory (.rodata) and cannot be modified. We also assume that the
attacker has not already hijacked control flow, a standard assumption for CFI-
like defenses.

In order to enforce the VCFI policy, the Allow -set(s) must be constructed
from a diverse and dynamic class hierarchy used by complex programs. We
support various kinds of extensibility. Modularity by separate compilation allows
extensibility by dynamic linking or dynamic loading during execution. This form
of extensibility has automated support. Other kinds of extensibility generally
used are: component object interfaces such as COM or XPCOM; and foreign
language interfaces and language interoperation, e.g. between C++ and Rust.
We classify these under ad hoc extensibility and provide a basic extensibility
mechanism to validate the custom vcalls.

3 Extensible VCFI Enforcement

In this paper, we seek flexibility in extending the allow-set at runtime either
through dynamic loading or ad hoc extensions. In addition, the VCFI check
should be secure, constant-time, and support multi-threading (as class hierar-
chy extensibility involves updates). By casting the VCFI defense as a secure set
membership test, we can examine the known algorithmic set membership trade-
offs, where it is difficult to simultaneously satisfy design goals such as dynamic
sets, constant time, multi-threaded support. Instead, we implement VCFI using
an Approximate Member Query filter (AMQ), which allows for efficient set mem-
bership tests. AMQs are approximate, meaning that there can be false positives,
but not false negatives.

Many possible AMQs have been proposed. In this paper, we use Bloom fil-
ters [3], which aligns well with our efficiency and extensibility design goals.

3.1 VCFI Based on Bloom Filters

Bloom filters [3] are the most well known form of AMQ. Traditionally, Bloom
filters are implemented using a bit array B and a set of k≥1 hash functions
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Fig. 2. Example Bloom filter VCFI defense for k= 3. Here, we assume that the three
pointers 0x40c920, 0x40c9a0 and 0x41a510 are the only valid members of the Allow -
set. Each value is mapped k= 3 times to the Bloom filter using k= 3 different hash
functions. Here, valid entries map to a non-zero value for each hash function; and the
invalid values map to at least one zero value and are “filtered”

hash1..k. An element x is considered to be a member of the set if:

B[hash1(x)] �= 0 ∧ · · · ∧ B[hashk(x)] �= 0

Else, if the result is 0 for any hashi, the element x is not a member of the set.
Bloom filters are efficient, and testing for membership is constant time.

Figure 2 gives a basic example of a Bloom filter-based VCFI defense. We
assume the only valid members of the allow set are: (vptr) values 0x40c920,
0x40c9a0 and 0x41a510, and that there are 3 hash functions (k = 3). All valid
vptr values map to a non-zero entry and thus will be allowed by the VCFI defense.
The invalid value 0x40d360 by the first hash maps to zero and is disallowed.
Bloom filters are approximate meaning that collisions are possible, as will be
discussed later.

VCFI benefits from the Bloom filter design in multiple ways. Firstly, Bloom
filters are inherently extensible, meaning that new entries for class hierarchy
extensions can be incrementally added at any time. Furthermore, set deletion (for
dynamic unloading) is also supported using “counting” Bloom filters. Secondly,
Bloom filters are inherently efficient, with an O(1) set membership test that can
be implemented using a few instructions. Finally, our Bloom filter implementa-
tion makes exclusive use of atomic operations to add/remove entries, thereby
achieving thread safety without the need for thread synchronization.

3.2 System Design

eVCFI is an implementation of VCFI using Bloom filters, and consists of two
main parts: (1) an LLVM-based program transformation to insert VCFI checks,
and (2) a runtime support library.
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1 movabs $SALT,%rdi # Load 64-bit SALT
2 imul %rax,%rdi # Multiply
3 xor %esi,%esi # Zero accumulator
4 crc32q %rdi,%rsi # CRC32

Fig. 3. Recipe for the mulcrc hash func-
tion. This example assumes the input vptr
is stored in register %rax, and the output
hash value is stored in %rsi.

1 mov (%rdi),%rax # Load vptr
2 ... # Hash into %rsi
3 movabs $BLOOM,%rdx # Load Bloom base
4 testb $0,(%rdx,%rsi)
5 jnz .LOK # Entry non-zero?
6 ud2 # Invalid vptr
7 .LOK:
8 ... # Repeat for k > 1
9 ... # Setup parameters
10 callq *INDEX(%rax) # Call virtualFn()

Fig. 4. Basic recipe for a hardened virtual
call using (salted) Bloom filters

Program Transformation. To enforce the allow-set in a dynamic and extensible
manner, we use program transformation to implement the (VCFI-Check) check
using Bloom filters. The basic instrumentation schema is shown in Figs. 3 and 4.
Here, Fig. 3 implements a single Bloom filter lookup, that is repeated k times,
using the following salted hash function:

hash(salt , vptr) = crc32 (salt × vptr)

Note that the choice of the hash function is a tradeoff between performance
and security. By design, eVCFI uses the salted hash function, mulcrc, which is
parameterized by a salt constant, allowing for k different hash functions to be
readily defined. The Fig. 4 schema implements the hardened vcall. The program
transformation is implemented using an LLVM compiler pass.

Compared to the unprotected vcall, our Bloom filter VCFI uses an addi-
tional 8∗k instructions (4 for the salted hash and 4 for the remainder of the
check, repeated k times). For the minimal k = 1, there will be 8 additional
instructions for the instrumented vcall, and 7 instructions in the execution path
(see Figure 4). In contrast to other VCFI defenses, such as LLVM-xDSO, our
solution does not use a fast/slow-path design. Instead, eVCFI uses a single O(1)
check uniformly for all vcalls, whether the call site needs dynamic extensibility or
not. Dynamic linking/loading is handled by adding entries to the corresponding
Bloom filter itself, as handled by the eVCFI runtime.

Runtime Support. A dynamic Class Hierarchy Analysis (CHA) is used to build
the inheritance relationships between classes at runtime Conceptually, the CHA
establishes a mapping between classes C and the the corresponding AllowC set.
The CHA constructs the allow-sets from the (current) set of loaded modules,
which may be updated at any time via dynamic (un)loading.

The hash function salts (SALTi, i ∈ 1..k) and the base address of the Bloom
filter (BLOOM) are encoded as special dynamic symbols, i.e., the eVCFI-symbols.
During program initialization (i.e., before main is called), and for each dynami-
cally loaded library, the eVCFI-symbols are initialized with suitable randomized
values. To handle dynamic linking/loading, the CHA is incrementally applied
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to all classes in the loaded library. When the loaded library extends an existing
class hierarchy with a new class, new entries are incrementally added to the cor-
responding allow-sets, i.e., by updating the corresponding Bloom filter. Dynamic
unloading is handled similarly, by removing entries from allow-sets.

Security. We have introduced a VCFI defense based on Bloom filters. However,
the Bloom filters themselves must also be hardened against attack.

– Bloom Filter Integrity. We ensure the integrity of the Bloom filter by
making it read-only. To deal with updates, the most efficient way is to use
the X86 64 Memory Protection Keys (MPK) extension. When updating the
Bloom filter, we grant the write permission to the thread using MPK, while
other threads continue to have read-only access. An additional defense is also
to randomize the location of the Bloom filter (BLOOM).

– Missed Detection Mitigation. The above protects against basic Bloom
filter modification by the attacker. Nevertheless, Bloom filters are inherently
approximate, meaning that false positives are possible. In practice, this means
that an invalid vptr′ value may be accepted as valid by the Bloom filter, if the
value happens to collide with another valid value.1 This can be mitigated by
increasing k, at the cost of performance. Alternatively, we can also randomize
the hash functions by choosing CSPRNG-randomized value(s) for the SALTi at
runtime. The randomized salt(s) make it difficult for the attacker to construct
collisions.

The attacker may also attempt to find a collisions by chance. The missed
detection probability can be approximated using the formula: (1− e−kn/m)k,
where m is the number of entries in the Bloom filter array, k is the number
of hash functions, and n elements have been inserted. By default, eVCFI uses
m= 224 and k is user-configurable, allowing for a security versus time trade-
off. For example, assuming n= 1000, then the missed detection probability
will be ∼5.96×10−5 for k= 1, ∼5.96×10−15 for k= 3, etc. Even for k= 1,
brute force attacks are not practical for most applications, since the program
will immediately abort on a single incorrect guess.

– Runtime Protection. The randomized SALTi parameters are encoded as
immediate values in the instruction sequence that implement the salted hash
function(s) (Fig. 3). In principle, the attacker may also attempt to recover
these values by directly reading and interpreting the executable code residing
in the program’s memory. This can be directly prevented by using Execute
Only Memory (XOM), which ensures that the instrumentation can only ever
be executed, and never read. XOM is supported by Linux, using the standard
mprotect system call, on all X86 64 CPUs with MPK support.

Ad hoc Extensibility. Ad hoc extensibility covers cases where a vcall should be
allowed (intended by the programmer), but would otherwise be detected as an
error. This includes idioms that go beyond the semantics of C++, such as COM
1 Note that, while missed detections are possible, false detections are not. That is, a

Bloom-filter-based VCFI defense will never flag a valid vcall as invalid.
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Table 1. VCFI comparisons

objects implemented as an opaque wrapper, which can be thought of as a pro-
grammatically defined foreign interface. Another example is objects defined in
other languages that “inherit” from a base object defined in C++. Without any
VCFI defense, there is usually no compatibility issue, provided the binary ABI
is respected. With a VCFI, then we want to allow such ad hoc extensions if
intended by the programmer. To support this, eVCFI supports programmer-
specified “extension-lists” that can be used to insert additional entries to the
allow-set(s). Although this approach is manual, it allows for arbitrary ad hoc
extensions that are necessary for supporting complex software such as Firefox.

4 Evaluation

We compare eVCFI with other VCFI defenses and evaluate the performance
on the SPEC2006 C++ benchmark suite [11] and the Firefox web browser. All
experiments run on Ubuntu (kernel version 4.13) with a Xeon Silver 4114 Proces-
sor (2.20GHz, 32GB of RAM). Both the processor and kernel support Memory
Protection Keys (MPK) and eXecute Only Memory (XOM).

4.1 Evaluating VCFI Defenses

To give the overview of each (V)CFI implementation, we compare eVCFI against
the security policies, features and overheads of: MCFI [16], VTV [19], Shrink-
wrap [10] and LLVM. The results are summarized in Table 1. More information
is provided in Appendix A.

The Policies column in Table 1 summarizes our test results on various vcall
attacks using type confusion or memory corruption. The tool either prevents
all attacks ( ), or some attacks succeed ( or ), or all attacks succeed ( ).
We evaluate under several scenarios: (i) a static class hierarchy (the Static col-
umn); and (ii) a dynamic class hierarchy extension using dynamic loading with
dlopen() (the Dynamic column). The baseline is without any VCFI defense,
meaning that all vcall attacks succeed under all use cases.

For the Static case, MCFI exhibits the weakest policy under our testing.
This is because MCFI implements a type-based CFI-policy, rather than a spe-
cialized VCFI policy. VTV implements a stronger policy, but does not detect
derived class attacks under our tests. Finally, Shrinkwrap, LLVM and eVCFI all
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Table 2. SPEC2006 C++ statistics

SPEC program
Static counts Dynamic counts

Lines of code Number of vtables Number of vcall-sites Number of vcalls (Million)

omnetpp 26.7k 111 2218 3359.34

astar 4.3k 1 1 4996.99

xalanc 266.9k 958 21195 9821.91

namd 3.9k 4 0 0

dealII 94.5k 680 364 164.43

soplex 28.3k 29 638 3.18

povray 78.7k 28 286 0.15

Total 503.3k 1811 24702 18346

enforce an equivalent (strong) VCFI policy for the Static case. For the Dynamic
case, most results are similar to Static, except for LLVM. This is because LLVM
requires the (global) class hierarchy to be determined statically, through Link
Time Optimization (LTO). However, this is not applicable when the class hier-
archy is split between libraries.

Under Features, the non-LTO column indicates whether the VCFI defense
is applicable without LTO. The Ad Hoc column indicates whether the defense
supports ad hoc class hierarchy extensions, such as supporting COM objects or
foreign language interfaces.

Finally, a summary of overheads (w.r.t. to Baseline) on the SPEC bench-
marks is shown under Static Overhead. We note that only LLVM, LLVM-
xDSO and eVCFI achieve a low performance overhead against the vcall-intensive
xalanc benchmark. The overhead of eVCFI exceeds LLVM and LLVM-xDSO,
but supports non-LTO compilation and ad hoc extensions. The full results are
shown in Sect. 4.2 below.

4.2 Evaluation on SPEC Benchmarks

We evaluate the performance of eVCFI on the standard SPEC2006 C++ bench-
mark which represents entire programs that are well-understood and exten-
sively analyzed workloads. We run the (ref) workloads taking the geometric
mean across five runs. Table 2 summarises the SPEC2006 C++ benchmarks giv-
ing source Lines Of Code (sLOC), the number of vtables, and the number of
virtual call sites. Among the SPEC2006 benchmarks, xalanc has the most vcall
sites and vcalls during runtime, thereby incurring the most performance over-
head for VCFI defenses. eVCFI detects the known type confusion bug in xalanc.
For details, see Appendix B. It has been patched for the benchmarking.

We evaluate each tool with -O2 and Link Time Optimization (LTO) enabled.
Although eVCFI does not require LTO, it is nevertheless compatible with LTO,
and LTO is required by LLVM and thus is enabled for a fair comparison. As LTO
is enabled with -O2, more optimization is enabled, meaning that some virtual
calls may be devirtualized. For namd, this results in no virtual calls at runtime,
thus, it is excluded. The experiments use the default eVCFI configuration: a
16MB Bloom filter (m= 224) and mulcrc is used as the (salted) hash function.
The salt (SALTi) parameters are randomized per run.
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Fig. 5. Relative eVCFI overheads for SPEC C++ programs

The SPEC2006 runtime performance is shown in Fig. 5. Columns for dealII,
soplex and povray are omitted as the overheads are negligible (the number of
vcalls is small, see Table 2), but summarized in the geometric mean (Geo.Mean)
column. Even dealII, with 164M virtual calls, has negligible overhead, high-
lighting that both LLVM-xDSO and eVCFI have minimal overheads for pro-
grams that are not virtual call dominant. The overhead of all results is relative
to the baseline, which is LLVM (clang++) with LTO and -O2. We compare the
following:

LLVM-xDSO is the LLVM VCFI implementation with experimental “cross-dso”
support. The implementation uses a fast/slow-path design, where the “fast”
path is equivalent to the standard LLVM VCFI check. If the fast check fails,
a “slow” path is invoked, which checks for dynamic class hierarchy exten-
sions (e.g., dlopen()). The SPEC2006 benchmarks do not use extensibility
features, meaning that only the fast-path will normally be invoked.

LLVM-xDSO-Slow is an artificially modified LLVM cross-dso that exclusively
uses the slow-path VCFI check. This version is intended to represent the
potential “worse case” behaviour of a fast/slow path design.

eVCFI is our implementation. We show results for eVCFI with k = {1, 2, 3} to
demonstrate different performance versus security tradeoffs.

For omnetpp and astar (with k= 1, 2) we see that eVCFI is faster than
LLVM-xDSO for omnetpp and astar, and eVCFI has similar performance for
xalanc and k= = 1. Generally, we see that the overheads of eVCFI increase with
k, representing a performance trade-off. We also see that eVCFI is substantially
faster than LLVM-xDSO-Slow, which highlights the advantage of single unified
check rather than fast/slow-path design. For example, for the vcall-heavy xalanc
benchmark, we see that LLVM-xDSO-Slow has a 61.1% overhead, compared
to 8.5% for eVCFI. In summary, the geometric mean for SPEC2006 is: LLVM-
xDSO 2.7%, LLVM-xDSO-Slow 13.5%, eVCFI k={1,2,3}: 1.3%, 2.8%, 3.7%.

4.3 Evaluating Firefox

We also evaluate eVCFI against the Firefox browser [8] version 78.0 ESR. Firefox
is designed with different components and modules, including a foreign language
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Fig. 6. Browser benchmarks for native Firefox and eVCFI-enhanced Firefox

interface between C++ and Rust. Firefox is a real-world example of software
requiring class hierarchy extensibility. Any VCFI defense that does not account
for the extensibility requirements may incorrectly flag some vcalls as attacks,
rather than intended behavior. We are also not aware of any existing VCFI
defense that works with Firefox (since Rust versions). The Firefox build system
currently does not support LLVM-xDSO.

Firefox consists of several binaries (executable and modules), and there
are more than 5000 vtables and more than 185K virtual call-sites (most in
libxul.so which is loaded using dlopen()). Firefox is also challenging because
the code requires extensibility features, namely dynamic loading, foreign lan-
guage interfaces (Rust), and XPCOM objects. Firefox is also multi-threaded.

In addition to dynamic loading, we use Firefox to test ad hoc extensibility.
This involves creating an extension-list for the allow-sets to support specific
Firefox idioms, such as XPCOM and vtables that were manually implemented
in Rust. We remark that such ad hoc extensibility requires manual intervention
(i.e., the specification of the extension-list). However, such manual intervention is
necessary in the general case, since arbitrary ad hoc extensions cannot necessarily
be detected automatically.

To show the practical performance of eVCFI, we evaluate the performance
of Firefox using the Kraken, Octane [9], and Dromaeo [6] benchmarks.2 The
benchmark results are in Fig. 6. Overall, eVCFI exhibits low overheads, with the
performance overheads on Kraken, Octane, and Dromaeo being 1.01%, 1.18%,
and 1.15% respectively. We see that eVCFI has acceptable overheads consistent

2 Due to insufficient horizontal space for all the Dromaeo results, we show a repre-
sentative sample that has more differences from the Kraken and Octane results. The
results not shown also have low overheads.
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with the SPEC2006 C++ results. We believe eVCFI is the only VCFI defense
that has been evaluated against Firefox.

5 Related Work

Some surveys and evaluations of CFI and VCFI defenses are [5,13,20]. Here, we
discuss relevant compiler-based VCFI works. ConFIRM [20] show extensibility
features such as dynamic linking/loading and component support with interfaces
beyond C++ are common. Both [13,20] also show that very few VCFI defenses
support extensibility. In this section, we discuss related work focusing on the
tradeoffs of the (V)CFI defenses offering different forms of extensibility: MCFI,
LLVM-xDSO, VTV (and ShrinkWrap). There are also binary VCFI systems
not discussed, being incomparable to source-based ones, and are usually less
accurate with more overhead [5,20].

In Sect. 2.2, we discussed MCFI and LLVM-xDSO. Other (V)CFI implemen-
tations with extensibility support include VTV [19] and ShrinkWrap [10]. VTV
also highlights the importance of modularity and builds the set of vtables at
runtime to validate the vptr . The VTV work itself does not fully implement a
VCFI policy (see Table 1). ShrinkWrap tightens the VTV policy for VCFI.

MCFI uses a transaction-based framework to update its data structures
to support multithreading, and VTV needs to synchronize threads to prevent
data races. In contrast, eVCFI uses Bloom filters that naturally support atomic
updates, which both simplifies the handling of multi-threaded programs as well
as being more efficient.

The underlying data structures need to be updated for extensibility. Thus,
any update also needs to be secure against attacks. MCFI secures its data struc-
tures using a sandbox design. To do so, MCFI effectively limits the program to
a 32-bit address space [16]. However, this can easily introduce incompatibilities,
especially with programs that use large amounts of virtual memory. VTV makes
its data structures read-only, and updates need to block other threads. In eVCFI,
only the thread updating the Bloom filter has write permission using MPK. This
avoids the need for synchronization and operating system intervention.

In MCFI, the overhead is a combination of the sandboxing and the cost of the
CFI check itself. The results in [17] show that, due to the sandboxing overhead,
even programs like namd, soplex and povray incur a performance penalty. In
contrast, these benchmarks, with few vcalls, incur negligible cost (near zero) for
both LLVM and eVCFI, This is also confirmed by our results in Table 1, see
astar which has relatively fewer vcalls.

The overheads for VTV on SPEC from [19] are: omnetpp 8%, astar 2.4%,
xalanc 19.2%. Similar overheads were reproduced in [5]. Generally, these over-
heads are much greater than LLVM, which is not surprising as LLVM succeeds
VTV. Our timings in Table 1 also give another reference point. However (non-
cross-dso) LLVM does not support extensibility and being a purely static solu-
tion, should have the lowest overhead. Still we see that eVCFI (with extensibility)
can compete. We also see that eVCFI is much faster than LLVM-xDSO-Slow.
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Specifically, eVCFI has O(1) time guarantees, regardless of the extensibility
usage while also adhering to the language semantics VCFI policy.

6 Conclusion

It is common for large/complex software to be broken into different modules,
libraries or plugins that may be loaded dynamically. Furthermore, software may
need to support ad hoc extensions, such as foreign language interfaces or COM
objects. Such extensibility is generally incompatible with most existing VCFI
defenses, or the defense is prohibitively slow. As such, no defense will be used,
potentially leaving the program vulnerable.

In this paper, we presented a new VCFI defense based on Approximate Mem-
ber Query (AMQ) filters, specifically Bloom filters. We show that Bloom filters
can be used to implement an efficient VCFI defense, in the form of the eVCFI
tool. Specifically, eVCFI supports O(1) checks that are implemented in a few
instructions. Furthermore, eVCFI supports dynamic loading and ad hoc exten-
sions for multi-threaded programs, without relying on a fast/slow path design.
We also show how Bloom filters can be hardened using a combination of random-
ization and eXecute Only Memory (XOM). We believe eVCFI is the first VCFI
defense which can be used to harden Firefox—a challenging target that uses
dynamic linking/loading, component interfaces, and C++ to Rust interoperation.
Our Firefox compatibility testing shows eVCFI can provide greater extensibility
support than existing VCFI defenses.

As future work, we believe our underlying design could also be adapted to
other CFI-like defenses, beyond VCFI. Essentially, any defense that depends on
a set membership query, including both source-based and binary CFI defenses,
can likely use our approach.
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No. MOE2018-T2-1-142) and by the National Research Foundation, Singapore under
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A VCFI Test Programs

To evaluate the security and usability of VCFI defenses, we construct a test
program using the following class hierarchy:
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Table 3. VCFI policy test results

Class hierarchy Ideal MCFI VTV ShrinkWrap LLVM LLVM-xDSO eVCFI

Static

TypeConf Sibling(A2) ✓ ✗ ✓ ✓ ✓ ✓ ✓

TypeConf Derived(A11) ✓ ✗ ✗ ✓ ✓ ✓ ✓

TypeConf InterClass(B1/C1) ✓ ✓ ✓ ✓ ✓ ✓ ✓

MemCorr Sibling(A2) ✓ ✗ ✓ ✓ ✓ ✓ ✓

MemCorr Derived(A11) ✓ ✗ ✗ ✓ ✓ ✓ ✓

MemCorr InterClass(B1/C1) ✓ ✓ ✓ ✓ ✓ ✓ ✓

Dynamic

TypeConf Sibling(A2) ✓ ✗ ✓ ✓ - ✓ ✓

TypeConf Derived(A11) ✓ ✗ ✗ ✓ - ✓ ✓

TypeConf InterClass(B1/C1) ✓ ✓ ✓ ✓ - ✓ ✓

MemCorr Sibling(A2) ✓ ✗ ✓ ✓ - ✓ ✓

MemCorr InterClass(B1) ✓ ✗ ✓ ✓ - ✓ ✓

MemCorr InterClass(C1) ✓ ✓ ✓ ✓ - ✓ ✓

The test program implements common vcall vulnerabilities, including COOP,
type confusion and memory corruption. We also test both a static and dynamic
class hierarchy, with the latter extended via dlopen(). The results are shown
in Table 3. Here, the Ideal column represents the expected result for a complete
VCFI defense. We use the following notation:

“✗”: The defense does not protect against the vcall attack.
“✓”: The defense works correctly and aborts the program preventing the attack.
“-”: This is when the defense is incompatible For example, LLVM (non-cross-

dso) does not support extensions using dlopen().

B Invalid Virtual Call Detected in xalanc

The eVCFI tool detects an invalid virtual call on line 1018 of
SchemaValidator.cpp from the xalanc benchmark:

SchemaGrammar& sGrammar =
(SchemaGrammar&) grammarEnum.nextElement();

sGrammar.getGrammarType();

At runtime, the (grammarEnum.nextElement) member function may return a
reference to an object of type (DTDGrammar) that is not derived from the class
(SchemaGrammar). This bug has been independently detected by other tools,
including LLVM-xDSO [14], vtable interleaving [4] and type confusion sanitizers
such as EffectiveSan [7]. For the performance evaluation, we patched xalanc to
remove the bad cast and resolve the invalid virtual call.
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Abstract. Passwords are still the most common authentication method
for various digital services. The majority of the research into passwords
is focused on technical concerns rather than the human elements of pass-
word construction. In this paper, we aim at studying cultural aspects
of leaked passwords with the usage of an online game. In particular, we
introduce a novel web-based data collection tool utilizing gamification
elements that benefits from appealing aesthetics and implemented nar-
rative elements to engage users into prolonged play. The player’s role is
to label presented passwords with available descriptive tags. Our goal is
to collect a large number of gaming data to identify prevalent tag choices
through consensus, and as such, assign perceived meaning to the pass-
words through the tags. An initial field test of the prototype returned a
high number of responses that were determined to be valid when assessed
via internal controls.

1 Introduction

Passwords play a pivotal role in modern computing. They are still regarded as the
most common form of user authentication in digital services. Despite this, user
generated passwords remain a weak and exploitable security measure resulting
from users generally creating passwords that are easy to crack [6,13]. Research
into passwords tends to favour investigations into the storage and security of
passwords, such as research into the effectiveness and effect of password strength
meters [12], or the guess-ability of a password [4].

The human-side of passwords, in the form of improper password creation
practices, is a sizeable vulnerability in the authentication scheme, yet there
remains little research in the area of the sociological factors of password cre-
ation. It poses the question: What are users thinking when creating passwords?.
A survey of 470 Carnegie Mellon University computer users collected data on the
behaviours and practices related to password use and creation when faced with
new stricter password policies [10]. Results showed 19% of users had difficulty
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
V. Atluri et al. (Eds.): ESORICS 2022, LNCS 13556, pp. 743–748, 2022.
https://doi.org/10.1007/978-3-031-17143-7_36
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remembering passwords, and that over half the users reused or slightly modified
old passwords, often with the inclusion of special characters, as they were a new
policy requirement. Almost 80% of users created passwords based on a word or
name. Overall, the paper suggested that users create passwords that just meet
the minimum technical requirements, and that common use of words or names
is to assist memorability.

Further studies into password creation habits showed that users are con-
scious of the strength of their passwords, believed in incorrect security practices,
and over estimated the privacy of their personal information [13]. Regarding
how cultural factors play into password construction, a 2018 study of a meta-
data rich leak from a Middle Eastern bank showed that there were identifiable
trends present that separated individuals from different cultures [1]. The afore-
mentioned research suggests that there is a human context to password creation
beyond just technical restraints.

In this paper, a solution to the lack of research into the sociological meaning
of passwords is presented in the form of a game. Our prototype1 takes real
passwords from various data-leaks and assigns tags with some form of context
or meaning to the password. With this data, it is possible to identify trends
occurring across different data-leaks, such as establishing a prevalence of sexist
or explicit passwords in one social media website when compared to another.
These findings can assist in the research of password creation and further the
understanding of not only why humans make weak passwords, but how they
make weak passwords. Studies have shown that humans are great problem solvers
and are motivated by assisting scientists [3,11]. Our game takes this approach
by being freely accessible to all interested parties who wish to take part in its
quick and easy game-play through their web-browser. The game engages with
the player and leverages the power of human reasoning to interpret the presented
leaked passwords.

2 System Design

Our prototype is split into a front-end, which is the game a user experiences,
and a back-end, which is the database of passwords used and the storage of the
user responses. The front-end is hosted on two indie game platforms and can
be played in-browser or downloaded to play locally. The back-end database is
hosted online through a web hosting service called Hostinger [8]. This MySQL
database is populated with real passwords taken from 10 different sources, most
of which are data-leaks from well known sources such as LinkedIn and NordVPN.
The interaction between the front and back-end comes when a user boots up the
game. The front-end contacts the database and returns a password at random
to present on screen to the user. To ensure uniformity of the data, there is
a check to ensure all passwords are labelled an equal number of times, or as
close as possible. Once a user has assigned labels to the password presented, the

1 https://simmer.io/@AAUUser/password-labeller.

https://simmer.io/@AAUUser/password-labeller
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database updates that password with this data and returns a new password to
the user, and the loop continues.

The front-end is the game experience a user interacts with and can be seen
in Fig. 1. It was designed with the idea of promoting user engagement to prolong
playtime. To do this, it leaned into game design theory [7], colour theory [5]
and interaction design [9]. It also leaned into the gestalt principles of design for
improved usability [2].

Fig. 1. Prototype gameplay

As depicted in Fig. 1, the game consists of a (real world leaked) password
placed in the centre of the screen surrounded by a collection of buttons with
labels that can be chosen. The core game-play loop is for the user to interpret
the password and chose the labels they feel appropriate before submitting and
receiving a new password. A robot character provides encouragement and asserts
a narrative in which the user is under attack and must label passwords to protect
them. There are also points in the game-play where the user is presented with
multiple choices associated with the narrative that results in a branching tree
style story-line with 7 potential endings. Upon completing the game, the user is
congratulated and given the option to play again.

3 Preliminary Results

The prototype was loaded with 1829 passwords taken from 10 different sources.
Eight of these sources were legitimate passwords taken from data-leaks. In par-
ticular the data leaks were from LinkeDin, NordVPN, YouPorn (porn website),
Ashley Maddison (online dating service), Hotmail, 000Webhost (web-hosting
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service), Muslim Match (Muslim dating website) and Faith Writers (Christian
focused website). The heterogeneity of the data sources allows us to experiment
and analyze how the cultural context of passwords is altered on (very) differ-
ent digital services. The two remaining sources were controls for validation, one
being the top 20 most common passwords seen in 20222, and the other a list of
40 randomly generated passwords.

Eight labels were chosen to be presented to the users for the experiment.
Three labels were negatively charged (i.e., Sexist, Racist, Explicit) to see the
distribution of this sort of label across the sources. Two labels (i.e., Personal
and Pop Culture) were chosen to examine how the passwords were perceived
to connect to the creator and their surrounding culture. Finally, three labels
(i.e., Randomly generated, Secure, Insecure) were chosen both to assist valida-
tion control, but also to gauge the users’ perception of password strength in
combination with the other labels.

This setup has been active for 26 days before the responses were analysed.
There were 3074 instances of passwords being labelled with a total of 4012 labels
across the total of 1829 passwords. The distribution can be seen in Fig. 2.

Fig. 2. Preliminary results of leaked password labels

The most frequently occurring labels across all sources were the Insecure and
Personal labels. This is in line with related research which states users make
passwords that are weak and based in common words and names to improve
2 https://www.tomsguide.com/news/worst-passwords-2022.

https://www.tomsguide.com/news/worst-passwords-2022
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memorability. They were in fact the highest occurring labels for all sources other
than the two control groups. Further results showed the Pop Culture label occur-
ring twice as often in the Faith Writers (Christian religion related) website over a
Muslim religion related website, which could be explained by the likelihood that
the prototype was played primarily by western culture users. The negatively
charged labels were most commonly seen in sex-related websites but also the
Faith Writer website. On the one hand, it could be expected to see this repre-
sentation in the sex-related websites as research shows users tend to be careless
with passwords for these kinds of accounts. On the other hand, the presence of
the Christian religion website could be explained by the potential negativity of
the players towards religion or a false positive understanding of the meaning of
the password.

Regarding the validity of the results, there are three factors that we took into
account. First, none of the top 20 most common passwords of 2022 were labelled
as secure. Second, there were twelve cases of a password appearing in multiple
sources (between 2 and 4 times). It was seen that each of these incidences, that
password was labelled identically. Finally, the randomly generated passwords
were labelled as Random, Secure and Insecure in concurrence with what was
expected based on the strength of their construction. These three results, on top
of the expected result of seeing the high frequency of the Insecure and Personal
labels, give validation to the experiment by conforming to expected outcomes,
and attest that the data is reflecting the perception of the population regarding
the meaning of the passwords.

4 Conclusion

In this work, we attempt a first look on the cultural context of leaked passwords.
We design a prototype that utilizes gamification techniques and feeds with real
world leaked passwords for users to examine and label passwords. Our prelimi-
nary results utilizing data from heterogeneous sources suggest: i) large portions
of insecure passwords, ii) personal context being dominant in password creation
and iii) negative labels (e.g., sexist and explicit) being dominant on porn or
dating services.

The validation of the experiment shows that our prototype is getting accurate
results, and the accumulation of 3074 user entries over 26 days shows the poten-
tial for much larger data gathering cycles. The experiment is considered a suc-
cessful test run and gives motivation for the design and implementation of a sec-
ond, larger experiment. This new experiment would benefit from a much larger
experimental run-time and appropriate advertising. Furthermore, the labels and
password sources could be refined to answer new questions. As the experiment
runs and each password gets more and more instances of labelling, a picture will
be drawn of a reflection of the populations perception of the interpreted meaning
of passwords, and give context to passwords in a way we have never had before.
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Abstract. We present a simple and fast protocol to securely solve the
(single source) Shortest Path Problem, based on Dijkstra’s algorithm over
Secure Multiparty Computation. Our protocol improves the current state
of the art by Aly et al. [FC 2013 & ICISC 2014] and can offer perfect secu-
rity against both semi-honest and malicious adversaries. Furthermore, it
is the first data oblivious protocol to achieve quadratic complexity in the
number of communication rounds. Moreover, our protocol can be easily
adapted as subroutine in other combinatorial mechanisms. Our focus is
usability; hence, we provide an open source implementation and exhaus-
tive benchmarking under different adversarial settings and players setups.

Keywords: Shortest path problem · Secure multi-party computation

1 Introduction

The (Single Source) Shortest Path problem (SPP), i.e. computing the shortest
path between a source and all other vertices in a graph, is a commonly used
subroutine in commercial applications. In many of these settings, data related
to the computation of the problem such as elements of its configuration, graph
topology or associated weights, can be considered private. Real life examples
include telecommunication networks for banking or restricted topology combi-
natorial auctions, among others. In such environments, different parties could
gain a competitive advantage by obtaining privately held information. There-
fore, mechanisms to ensure secrecy, correctness and fairness are required.

In this work we introduce a Secure Multiparty Computation (MPC) data-
oblivious protocol to securely solve the single source SPP. Just like in previous
works, namely Aly et al. [2,4], we propose a data oblivious version of Dijkstra’s
algorithm, compatible with MPC. We consider all information related to the
graph (aside from the number of vertices) to be privately held. The result of
our computation is the length of the path and/or the path composition; the
parties can then decide whether these are disclosed. Moreover, it can offer perfect

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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security1 and its multiplicative complexity i.e. round complexity, is one order of
magnitude lower than the current state of the art [2,4].

1.1 Related Work

Aly et al. [2,4] have introduced several data-oblivious protocols to solve the
SPP, including adaptations of Dijkstra. However, their complexity bound on
the number of sequential multiplications is cubic, whereas we only require a
quadratic number of such multiplications. Brickell and Shmatikov [8] introduced
a protocol for the SPP in a two-party setting against semi-honest adversaries.
In contrast, our solution is not limited to the two-party case and also provides
security against active adversaries. The Breadth-First-Search (BFS) proposed by
Blanton et al. [7] provides complexity bounds for a special case of the SPP i.e.
non-weighted graph. Conversely, we consider the general case where the graph is
weighted. Furthermore, Keller and Scholl [17] implemented Dijkstra’s algorithm
using Oblivious RAM (ORAM) based data-structures matching the O(|V |2)
complexity of the original algorithm. However, their results show that for certain
graph sizes, Aly et al. [2] can out-perform their ORAM-based implementation,
as ORAM’s intrinsic overhead exceeds any asymptotic advantage.

1.2 Notation and Security

We make use of the square brackets notation for secret shared values e.g. [[x]].
Furthermore, we consider all inputs to be elements of Zq, where q is a suffi-
ciently large2 prime or RSA modulus. Complexity is measured in terms of round
complexity (multiplicative depth or latency) of the whole protocol. Vectors and
matrices are represented by capital letters e.g. E, where |E| denotes its size.
Finally, some common encapsulations used throughout our protocols are denoted
as follows:

– [[z]] ←[[c]] [[x]] : [[y]] is the conditional operator. It can be seen as an arithmetic
replacement for the if branching instruction. Here, [[c]] represents a selection
bit and [[z]] takes the value of [[x]] if [[c]] ?== 1 and [[y]] otherwise. This simple
construction requires only one communication round i.e. [[c]] · ([[x]]− [[y]])+[[y]].

– exchange(i, j, [[X]]) swaps the elements in the i-th and j-th position of vector
X. This operation is not cryptographic in nature.

Security of MPC protocols is typically defined in the context of simulation under
the UC framework [9,10]. To simplify the analysis, we abstract the required MPC
ideal functionality as an arithmetic black box or FABB . Initially introduced by
Damg̊ard and Nielsen [13], it can be extended to support other ideally modeled
functionality e.g. secure comparisons. We offer a revision of our FABB , including
corresponding UC secure realizations in Table 1. We proceed to define security
as follows:
1 From an Ideal perspective, and under the adequate setting i.e. honest majority. In

practice, the protocol is as secure as the underlying MPC realization.
2 It can instantiate the underlying MPC protocol.
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Table 1. Secure Arithmetic operations provided by the FABB .

Functionality Description Rounds Prot.

x ← [[x]] Opening secret field element 1 e.g. [16,19]

[[x]] ← x Storing public input in a secret field element 1 e.g. [16,19]

[[z]] ← [[x]] +

[[y]]

Addition: of secret inputs 0 e.g. [16,19]

[[z]] ← [[x]] + y Addition: (mixed) secret and public inputs 0 e.g. [16,19]

[[z]] ← [[x]]·[[y]] Multiplication: of secret inputs 1 e.g. [16,19]

[[z]] ← [[x]] · y Multiplication: (mixed) secret and public inputs 0 e.g. [16,19]

—Complex Building Blocks—

[[z]] ← [[x]]
?
<

y[[y]]

Inequality Test: secret inputs 4–6 e.g. [3,11]

[[E]] ←
permute([[E]])

secret random permutation of [[E]] approx n · log(n) e.g. [12,15,18]

Definition 1. Let πSP be a real protocol implemented in a multiparty setting.
We say πSP is UC-secure if, for any adversary A , there exists a simulator S such
that the VIEWπ(Pi) of any party Pi interacting with the environment Z , cannot
be distinguished (with non-negligible probability) between the real protocol πSP

and the ideal functionality FSP.

2 Privacy Preserving Single Source SPP

Let G = (V,E) be a directed graph without negative cycles where V is the set of
vertices and E is the set of edges. Furthermore, G is represented as a weighted
adjacency matrix [[U ]] where [[U ]]ij is the weight of edge (i, j) ∀(i, j) ∈ E. The
intuition underlying our protocol is as follows: [[U ]] is obliviously permuted before
protocol execution. We then assign temporary labels to each vertex in G (i.e.
each row in [[U ]]). Our protocol then proceeds to identify the most suitable vertex
to explore. However, unlike other works in the field, given the permutation, we
are able to open the next vertex temporary label and directly explore it. Note
that the label itself does not convey any information other than the position of
the row in the now permuted matrix [[U ]].

Complexity: Our protocol requires O(|V |2 · log(|V |)) secure multiplications
(amount of work). Such multiplications can be parallelized achieving O(|V |2)
rounds of communication. Furthermore, Protocol 1 contains two additional mul-
tiplications in line 17 and 18, which can also be parallelized. The exchange
operation does not influence the complexity of the protocol, as it is done over
publicly available information.

Security Analysis: Our protocol does not disclose any private information
during its execution. More precisely, the call to open([v]) (in line 12 of Protocol 1)
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Protocol 1: Optimized Non-Disclosure Dijkstra Protocol (πSP)
Input: secret shared edge weights [U ]i,j for i, j ∈ {1, ..., |V |}, encoding vector

[S] where Si = 0 if i �= s (s being the source vertex) and 1 otherwise.
Output: The vector of predecessors α and the vector of distances [D].

1 for i ← 1 to |V | do
2 [[α]]i ← i; [[D]]i ←[[Si]] [[0]] : [[�]]; [[P ]]i ← [[i]];
3 end
4 ([[P ]], [[D]], [[U ]]) ← permute([[P ]], [[D]], [[U ]]);
5 for i ← 1 to |V | do
6 [[d′]] ← [[�]];
7 for j ← |V | to i do

8 [[c]] ← [[D]]j
?
< [[d′]];

9 [[v]] ←[[c]] j : [[v]];
10 [[d′]] ←[[c]] [[D]]j : [[d′]];
11 end
12 v ← open([[v]]);
13 exchange(i, v, [[P ]], [[D]], [[U ]]);
14 for j ← i + 1 to |V | do
15 [[a]] ← [[D]]i + [[U ]]i,j ;

16 [[c]] ← [[a]]
?
< [[D]]j ;

17 [[D]]j ←[[c]] [[a]] : [[D]]j ;
18 [[α]]j ←[[c]] [[P ]]i : [[α]]j ;

19 end

20 end

does not reveal the original index position of the analyzed vertex, since the
vertices are uniformly (and obliviously) permuted. The Achievable Security of
our protocol is the same as that of the underlying MPC protocol e.g. we can
achieve perfect security assuming honest majorities for the active and passive
case [6]; or cryptographic security assuming dishonest majorities for the active
and passive case as in(but not limited to) [5] or any SPDZ variation. More
formally, we proceed to define our ideal functionality as follows:

Definition 2. (Ideal Functionality FSP). Let G = (V,E) be a connected
directed graph. Let the elements of the weighted adjacent matrix U and the
source vertex s be elements of Zq, and let both be privately held inputs. The
ideal functionality FSP receives both [[U ]] and [[s]] and returns the shortest path
[[α]] and the distances [[D]] via the FABB , whilst opening [[v]] at every cycle.

We now proceed to prove security for Protocol 1 (denoted as πSP) as follows:

Theorem 1. The protocol πSP securely implements FSP in the FABB framework.

Proof. The disclosed intermediate values v do not convey any information to
the adversary i.e. Are indexes of the permuted matrix. Furthermore, the protocol
flow only depends on publicly available values i.e. the upper bound on the number
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of vertices and the v values. The simulation of the complete protocol can be
achieved by calling the FABB functionality available for the atomic operations
in the order fixed by the protocol flow. Since the real and ideal views for the
atomic operations are themselves equal (as they are implemented by the FABB),
VIEWπSP

(Pi) ≡ VIEWFSP
(Pi), ∀ Pi ∈ P where P is the set of all parties. Hence,

we can argue the same for the Environment Z . �

3 Computational Experiments

We built our prototype and conducted extensive experiments via the commonly
used framework SCALE-MAMBA [1]. This circuit compiler and virtual execu-
tion environment, provides users with the means to run different adversarial
settings and protocols. For the case at hand, we consider the reduced commu-
nication protocol based on Shamir by Smart and Wood [19] (honest majorities)
and, Overdrive [16] with TopGear [5], members of the SPDZ protocol family
(Full Threshold). Both provide active security. Additionally, we assume a lookup
table style permutation [14,15] (amortized). We have made our prototype fully
available as opensource3 so that it can be further used as subroutine in other
programs.

Test bed Configuraiton: Our setup consists on 5 Ubuntu 18 servers on premise.
Each one has been allocated with 512 GB in RAM memory and a Intel(R)
Xeon(R) Silver 4208 @ 2.10 GH CPU. Servers are connected using Gigabit
LAN connections, with a ping time of 0.15 ms in average. This way, we can
control network latency via /sbin/tc.

Table 2. Performance evaluation (ms) with 2/3 machines (FT / Shamir)

Vertices Protocol D=0ms D=10ms D=20ms

FT-2P FT-3P Shamir-3P FT-2P FT-3P Shamir-3P FT-2P FT-3P Shamir-3P

4 this work 19 43 18 895 909 895 1739 1744 1738

4 [4] 96 75 67 1403 1434 1402 2651 2679 2658

8 this work 72 155 88 3214 3258 3197 6183 6212 6164

8 [4] 389 579 299 4691 4869 4583 8756 8921 8798

12 this work 186 410 204 6915 7029 6884 13255 13399 13275

12 [4] 911 1303 698 9899 10288 9627 18530 19004 18403

16 this work 375 847 364 12237 12430 11956 23334 23623 23072

16 [4] 1280 1881 986 13827 14385 13429 28858 19004 25698

32 this work 458 1031 457 15247 15491 14950 29093 29450 28840

32 [4] 1688 2495 1301 18075 18812 17541 33798 26526 33571

3 https://github.com/Crypto-TII/mpc graph theory lib.

https://github.com/Crypto-TII/mpc_graph_theory_lib
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As we can see, communications dominate complexity, hence the importance
of reducing communication rounds. On benchmarking, we can appreciate how
the delta, with the previous state of the art, becomes more significant when
the number of vertices increases following the asymptotic complexity. We point
out that further experimentation showed a similar decrease of computational cost
when the graph structure is public. Note that modern compilers also use a variety
of instruction optimizers to accelerate online performance e.g. parallelize non-
linearities that are non-sequential. Its use however becomes prohibitive for large
scale circuits. In such cases, our experimentation also shows a similar increase
on performance.
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Abstract. Automatic speaker verification (ASV) system is widely used
in many voice-based applications, which are very vulnerable to spoof-
ing attacks like Text-to-Speech synthesis and converted voice signals.
Effectively detecting the spoofed audio is the main solution to protect
ASV systems. However, new types of spoofing technologies are emerging
rapidly, and existing researches have exposed poor generalization and low
robustness to unknown attacks. In this paper, an audio spoofing detec-
tion is proposed based on Constant-Q Spectral Sketches (CQSS) and
parallel-attention SE-ResNet. Specially, CQSS features are first extracted
using the constant-Q transform, characterized by matrix and spectro-
gram respectively fed into different detection model. Then, a new deep
neural network architecture is proposed based on SE-ResNet, and parallel
attention is designed to improve generalization ability and training effi-
ciency. Finally, the yielding scores by different model are fused using an
average strategy. The experimental results show that the proposed fusion
method achieves the tandem decision cost function and equal error rate
scores as 0.0307 and 0.96%, respectively, for unknown attacks, which has
better verification performance compared with state-of-art methods.

Keywords: Audio spoofing detection · Unknown attacks ·
Parallel-attention mechanism · SE-ResNet · Constant-Q Spectral
Sketches
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1 Introduction

Recently, automatic speaker verification (ASV) has achieved impressive perfor-
mance, and has been widely used in many applications, such as telephone or
network access control systems, security systems for socially important institu-
tions, and online banking services. However, the development of audio spoofing
techniques, such as speech synthesis [1–3], voice conversion [4,5], have become
one of the main threats to ASV systems. Therefore, it is important to distinguish
between a spoofing attack and a genuine speaker such that a spoofed attack can
be detected, but a genuine speaker is not rejected.

To effectively discriminate original speech from spoofed recording for ASV
systems, many detection approaches have been proposed [6–16]. It is noted that,
new types of spoofing technologies are emerging rapidly, and existing researches
have exposed low robustness and poor generalization to unknown attacks [13–16].
This paper proposes an audio spoofing detection based on CQSS and SE-ResNet,
and evaluated on ASVspoof 2019 logical access (LA) datasets.

The main contributions of our work are as follows: (1) A new deep neural
network architecture is proposed based on SE-ResNet, a variant based on resid-
ual convolutional neural networks, and parallel attention mechanism is designed
to be more suitable for audio spoofing detection, which is different from existing
serial architecture. (2) A novel feature CQSS is present based on constant-Q
transform represented by matrix data and spectrogram for training two differ-
ent detection model. (3) Compared with other state-of-the-art methods, the pro-
posed parallel attention SE-ResNet exhibits the top performance for unknown
spoofing attacks.

2 Proposed Method

Fig. 1. Diagram of the proposed anti-spoofing system

The proposed method is shown in Fig. 1, which contains feature extraction, fea-
ture representation, parallel-attention SE-ResNet, and fusion strategy.

CQSS Extraction and Representation. CQCC is an amplitude based fea-
ture which is sensitive to audio spoofing attacks, and yields superior performance
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among various kinds of features [17]. As uniform resampling and DCT (Dis-
crete Cosine Transform) lose some information about audio spoofing attacks,
we remove them from the extraction of CQCC feature, yielding a novel fea-
ture called CQSS in Fig. 2. For an input speech signal X, the CQSS feature
is an m ∗ n matrix, denoted as Matrix-CQSS, which are directly fed into the
classification network for audio spoofing detection. Besides, CQSS feature can
be expressed as spectrogram by normalizing all values of Matrix-CQSS (hence
called Spec-CQSS), which is sent into the other classification network.

Constant-Q
transform

Power
Spectrum Log

CQSSSpeech

Fig. 2. Extraction of CQSS feature

Proposed Parallel-Attention SE-ResNet. The overall architecture of the
proposed network model is shown in Fig. 3 consisting of three main parts:
(1) High semantic representation extraction, which uses a common convolution
group to extract a high semantic representation from the input. (2) Deep fea-
tures extraction, where parallel-attention residual block groups are designed with
simultaneous channel attention and spatial attention, and 64, 128, 256 and 512
SE-ResNet blocks are adopted for four groups, respectively.

Fig. 3. Diagram of Parallel-attention SE-ResNet

(3) Classification, where a convolution layer and a batch normalization layer
are designed to reduce the number of input feature maps and match the cate-
gories. The average pooling layer is adopted to facilitate down-sampling and to
change the size of the feature maps. The output of the pooling layer are fed into
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three linear layers followed by a softmax layer which calculates countermeasure
score Score = log(p(bonafide|s; θ)) − log(p(spoof |s; θ)), where s is the audio
signal under test, and θ represents the model parameters.

For each parallel-attention residual block group, a max pooling layer is first
used to reduce the data size and compute parameters. Considering different
representation of CQSS, the kernel size of max pooling layer are 3 × 3 and
2 × 2 with stride and padding one for Matrix-CQSS and Spec-CQSS, respec-
tively. Then, n SE-ResNet blocks are adopted [18]. After that, convention based
parallel-attention mechanism is designed to simultaneously extract spatial and
channel features. For a feature map F , it can simultaneously obtain channel
attention map Mc(F ) and spatial attention map Ms(F ) as

Mc(F ) = σ(MLP (AvgPool(F )) + MLP (MaxPool(F )))
Ms(F ) = σ(fs([AvgPool(F );MaxPool(F )]))

(1)

where σ denotes the sigmoid function, MLP consists of two convolutional layers
and a ReLU, fs represents convolution operation.

At last, the output feature map of the parallel-attention residual block group
is generated by F ′ = F × Mc(F ) + F × Ms(F ).
Fusion Strategy. As we fed the matrix and spectrogram into two networks,
respectively, the output Score with different input may be inconsistent. There-
fore, we use an average strategy to fuze the results. Assume the outputs of the two
models for each audio signal are Score(Spec-CQSS) and Score(Matrix-CQSS),
respectively, the final fusion result is Scoreoutput = 0.5 ∗ Score(Spec-CQSS) +
0.5 ∗ Score(Matrix-CQSS).

3 Experimental Results

In this section, we compare the proposed Fusion-PA-SE-ResNet and its single
models Matrix-PA-SE-ResNet and Spec-PA-SE-ResNet with two baseline mod-
els (LFCC-GMM and CQCC-GMM) provided by ASVspoof 2019 [19], ResNet
methods [13], CNN methods [14], Densely Connected Convolutional Network
methods [15], and Capsule methods [16]. The training and evaluation datasets
are from ASVspoof 2019 LA sub-challenge. Equal error rate (EER) and tandem
detection cost function (t-DCF) are used as the evaluation metrics.

Table 1 shows the comparison results of t-DCF and EER with different mod-
els. For single models, Spec-PA-SE-ResNet has the significantly lowest t-DCF
and EER which are 0.0507 and 1.67%, respectively. The second lowest model is
Matrix-PA-SE-ResNet, whose t-DCF score is 0.0529 and EER is 1.77%. Fusion-
PA-SE-ResNet achieves a t-DCF score of 0.0307 and an EER of 0.96%, repre-
senting improvements over Fusion-LCNN, Fusion-ResNet, Fusion-DenseNet and
Fusion-Capsule. Particularly, compared with Fusion-ResNet based on ResNet
and CQT feature, our Fusion-PA-SE-ResNet reduces the metric of t-DCF from
0.1569 to 0.0307, and the metric of EER from 6.02% and 0.96%. This indicates
the effectiveness of the improvement on ResNet and CQT feature in our model.
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Table 1. Comparisons of different models on evaluation dataset

Model t-DCF EER

LFCC-GMM [19] 0.2116 8.09%

CQCC-GMM [19] 0.2366 9.57%

MFCC-ResNet [13] 0.2042 9.33%

STFT gram-ResNet [13] 0.2741 9.68%

CQCC-ResNet [13] 0.2166 7.69%

LFCC-LCNN [14] 0.1000 5.06%

LFCC-CMVN-LCNN [14] 0.1827 7.86%

FFT-LCNN [14] 0.1028 4.53%

CQCC-DenseNet [15] 0.2166 7.69%

STFT gram-DenseNet [15] 0.2166 7.69%

LFCC-DenseNet [15] 0.0676 3.27%

LFCC-Capsule [16] 0.0538 1.97%

STFT gram-Capsule [16] 0.0982 3.19%

Matrix-PA-SE-ResNet 0.0529 1.77%

Spec-PA-SE-ResNet 0.0507 1.67%

Fusion-ResNet [13] 0.1569 6.02%

Fusion-LCNN [14] 0.0510 1.84%

Fusion-DenseNet [15] 0.0341 1.40%

Fusion-Capsule [16] 0.0328 1.07%

Fusion-PA-SE-ResNet 0.0307 0.96%

Fig. 4. Comparisons of different fusion models for each unknown attack
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Moreover, Fig. 4 depicts the comparisons on EER and t-DCF of different
fusion model for each unknown attack. It can be observed that Fusion-PA-SE-
ResNet works much better than other three fusion models for most of unknown
attacks except for a little decline on A8 and A19 (a text-to-speech algorithm
and a voice conversion with spectral filtering algorithm, respectively). Therefore,
Fusion-PA-SE-ResNet has more strong generalization ability to detect unknown
attacks.

4 Conclusion

This paper propose an audio spoofing detection method for ASVspoof2019
LA including CQSS features extraction and representation, PA-SE-ResNet and
fusion strategies. A parallel attention mechanism is designed to strengthen the
generalization ability and the training efficiency. Experimental results show that
our proposed method achieves better performance in terms of the t-DCF and
EER metrics. In the future, we will concentrate on audio spoofing detection for
low-quality speech.
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Abstract. Mixing protocols serve as a promising solution to the unlink-
ability in blockchains. They work by hiding one transaction among a
set of transactions and enjoy the advantage of high compatibility with
the underlying system. However, due to the inherent public addresses
of the blockchains built on the account-based model, the unlinkability
is highly restricted to non-confidential transactions. In this paper, we
propose MixCT, a mixing service for confidential payment systems built
from homomorphic commitment in the account-based model. We provide
an efficient instantiation of MixCT by the Pedersen commitment and the
one-out-of-many proof. The evaluation results show that MixCT intro-
duces a small cost for its users while being highly compatible with the
underlying blockchain.

1 Introduction

The decentralized payment system, e.g., blockchain, provides a popular medium
of exchange and has attracted a substantial number of applications. Each trans-
action in a blockchain is confirmed by a public ledger, with the corresponding
relationship between the sender and receiver precisely kept. This, however, makes
it possible to track the transaction flow and gives rise to the privacy issue. To this
point, several privacy-enhanced blockchain systems have been proposed to pro-
tect ledger privacy, mainly in two aspects: the unlinkability between transactions
and the confidentiality of each transaction’s value. In the early blockchain-based
cryptocurrencies [14], people use a pseudonym to break the link between a user’s
on-chain address and the real-world identity. This method, however, has been
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proved to be useless after being thoroughly studied [3,13]. Later, many efforts
have been made to provide stronger unlinkability, by mixing multiple transac-
tions and obscuring the relations between the two sets of senders and receivers
[1,16,17]. Unlike stand-alone cryptocurrencies such as [4,10,18,19], this app-
roach is highly compatible with the underlying blockchain and needs neither to
start up a new blockchain nor to hard-fork an existing one.

The mixing procedure can be implemented with or without a hub. Coin-
Shuffle [16] is a typical non-hub scheme to mix Bitcoin. Users are required to
encrypt and decrypt their output addresses in a pre-designed order. To generate
CoinJoin transactions in an arbitrary order, DiceMix is proposed in CoinShuf-
fle++ [17]. These two schemes deal with the non-confidential transaction where
the transaction value is public. ValueShuffle [15], based on DiceMix [17], can
mix the confidential transaction by hiding the value using cryptographic com-
mitment. All these non-hub schemes suffer from large off-chain communication
overhead, e.g., CoinShuffle++ [17] and ValueShuffle [15] require every user to
communicate with each of the other participants to generate a CoinJoin trans-
action. The cost is even more when there are malicious participants. In contrast
to the non-hub mixing, in the hub-based solutions, a trustless tumbler acting as
the hub provides the mixing service. In this way, neither involved P2P mixing
nor participant coordination is required. TumbleBit [11] and A2L [20] are typical
hub-based schemes that also prevent the tumblers from linking users during mix-
ing. However, most existing hub-based mixing service works for non-confidential
blockchain only. Since the participants’ addresses are public, anyone can link two
participants by matching the equal values on the input and output sides. So only
fixed and equal value mixing is supported [11,12,20]. As far as we know, the only
confidential payment system that supports arbitrary transaction value mixing is
[15], a non-hub mixing in the unspent-transaction-output (UTXO) model.

Unlike the UTXO model built from Bitcoin, the account-based model intro-
duced by Ethereum supports smart contracts for real-world applications. Møbius
[12] uses a smart contract as a tumbler for the first time, but it does not support
confidential mixing. Most recently, people have proposed several confidential
payment systems in the account-based model, e.g., basic Zether [5] and PGC
[7]. Unfortunately, neither of them supports unlinkability. Though [5] and [8]
use sophisticated ZK-proofs and many-out-of-many proofs to allow anonymous
transactions, the resulting schemes are not compatible with the original Zether
anymore. To the best of our knowledge, providing a mixing service for the con-
fidential payment system in the account-based model is still open.
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Table 1. Comparison with previous mixing solutions (n: the number of mixing users)

Type Scheme # Off-

Chain

Messages

# Transac-

tions /User

Model Confidential

Mixing

Payment

Value

DoS Resis-

tance

Non-hub CoinShuffle

[16]

O(n) 1 UTXO ✗ Fixed N/A

CoinShuffle++

[17]

O(n) 1 UTXO ✗ Fixed N/A

ValueShuffle

[15]

O(n) 1 UTXO ✓ Arbitrary N/A

Hub-based TumbleBit [11] 12 4 U or A ✗ Fixed ✗

A2L [20] 9 4 U or A ✗ Fixed ✓

Möbius [12] 2 2 Account ✗ Fixed ✓

Ours 2 2 Account ✓ Arbitrary ✓

This work addresses this problem with MixCT, which provides mixing ser-
vices for the confidential payment systems in the account-based model. Specifi-
cally, for any confidential payment system built from the homomorphic commit-
ment in the account-based model, MixCT can provide the mixing service with
a trustless tumbler, without changing the transaction format. We provide the
security goals of MixCT and analyze them. Furthermore, we instantiate MixCT
with Pedersen commitment and one-out-of-many proof on Ethereum. The eval-
uation results show that our MixCT is cheap compared with other unlinkability
solutions for confidential payment systems. A comparison between MixCT and
the state-of-the-art mixing approaches is given in Table 1.

2 MixCT Design

MixCT works on top of a confidential payment system built in the account-
based model and provides a mixing service for the underlying systems by a
trustless tumbler. Roughly, the tumbler works as an unlikable payment hub.
Each mixing service user has two accounts, called the sender and the receiver.
Senders escrow their coins to the tumbler, and receivers redeem coins from it.
For safety, the tumbler cannot violate the unlinkability between the escrow and
redeeming transactions, “print money”, or steal money from users. We use a
smart contract to realize the tumbler.

Specifically, in MixCT, the tumbler divides the time into epochs, and one
epoch consists of two phases: escrow and redeeming. Besides, the tumbler publicly
maintains its state = (Epool,Rpool). The workflow is shown in Fig. 1.
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Fig. 1. Overview of MixCT: this picture explains one payment between one pair of
sender and receiver in one epoch. Black solid lines show the interactions among the
sender, the tumbler, and the receiver. Black dashed lines show the data dependencies

Escrow Phase. The sender creates an escrow transaction by generating a con-
fidential transaction ctxesc to the tumbler. In addition, the sender generates a
secret random factor td and hides it by utilizing a one-way-permutation (OWP)
to generate a public token ( 1© in Fig. 1). The tumbler verifies the escrow transac-
tion pair (ctxesc, token) by validating ctxesc via the underlying chain and confirm-
ing the uniqueness of the token ( 2© in Fig. 1). If both checks pass, the tumbler
records the new received escrow transaction (ctxesc, token) and publicly updates
its state, to finish the processing of the escrow ( 3© in Fig. 1).

Redeeming Phase. The receiver, who gets the token’s preimage td of an escrow
transaction (ctxesc, token) in the state, launches the request of redeeming by gen-
erating a confidential pre-redeeming transaction prectx and a publicly verifiable
redeeming proof π to be sent to the tumbler ( 4© in Fig. 1). In detail, the receiver
uses td as the additional random factor and the homomorphic property of the
confidential transaction to mask ctxesc. In this way, prectx hides the same value as
ctxesc. π is used to prove that prectx is derived from an existing (ctxesc, token) in
state. The tumbler verifies the redeeming request by confirming the format, the
uniqueness of prectx, and the validity of the proof π ( 5© in Fig. 1). If all checks
pass, the tumbler finishes the processing of redeeming by running on prectx
to generate the complete redeeming transaction ctxred, and recording prectx to
update its state ( 6© in Fig. 1).

In summary, in each epoch, a one-to-one transparent permutation is formed
among the redeeming and escrow transactions. One escrow can create only one
successful redeeming, since each (ctxesc, token) determines the corresponding
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prectx. Due to the hard-to-invert property of the one-way-permutation, the rela-
tion between (ctxesc, token) and its prectx is invisible to anyone (including the
tumbler) apart from the two owners of td. Moreover, MixCT is fully compatible
with the underlying confidential blockchain, because ctxred and ctxesc have the
same format.

3 Security Goals

Previous works [12,15,16] have discussed the security goals for the mixing ser-
vice. We extend them to the account-based model and the confidential transac-
tion setting. The formal definitions and analysis are provided in the full version
[9].

– Theft prevention. The achieved goal is two-fold. (1) For an accepted escrow
transaction (ctxesc, token) generated by a sender, nobody can redeem it with-
out the transaction’s td from the sender. (2) Nobody can redeem “out of
nothing”. That is, nobody can generate a valid redeeming request (prectx, π)
without a corresponding escrow transaction in state.

– Transaction balance. Since ctxesc and prectx share the same transaction
value, every escrowed transaction can be redeemed with the same value as
the corresponding sender has escrowed.

– Double-spend prevention. The one-to-one relation between the redeeming
and escrow transactions ensures that every escrowed transaction cannot be
redeemed more than once.

– Unlinkability. Since the above-mentioned one-to-one permutation is invisi-
ble to anyone excluding the actual sender and receiver, the tumbler cannot
link a redeeming transaction with an escrow transaction, among a sequence
of escrow and redeeming.

– Confidentiality. Since prectx and ctxred are confidential, i.e., protected by
the underlying homomorphic commitment, no information about the trans-
action value is leaked during the mixing procedure, which means that the
introduction of MixCT will not violate the underlying confidentiality.

– DoS resistance. Since the sender pays the tumbler first to get service, the
expenses incurred launching the DoS attacks has been raised. Besides, every
honest party can always terminate without losing coins.

4 Implementation and Evaluation

To show the feasibility of MixCT, we implement the underlying confidential
payment with the well-known Pedersen homomorphic commitment. We generate
the public token from td, the one-out-of-many proof to form the proof π of prectx,
based on the assumption of the hardness of the discrete logarithm problem. All
the generation is carried out without a trusted setup. Then we implement MixCT
with Ethereum smart contract. To evaluate the performance of MixCT, we vary
the number of the mixing service users and record the costs for escrow and
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redeeming accordingly. The costs of escrow lie in the generation of the token. In
the redeeming, the costs result from the user’s off-line generation of the one-out-
of-many proof, and the tumbler’s online verification and processing.

The evaluation results of MixCT are given in Table 2. As can be seen, the
escrow costs are fixed for all, regardless of the number of the users. The redeeming
costs increase from 496 k Gas to 3085 k Gas as the escrow users’ number changes
from 4 to 64, which is much lower than other sophisticated approaches [5,8].
Moreover, to generate/validate the proof of a redeeming transaction with no
more than 64 mixing users, the time cost is less than 1.5/0.5 s.

Table 2. The evaluation results of MixCT

#users Escrow Redeem

Size/bytes Gas/units Size/bytes Prove Time/ms Verify Time/ms Gas/units

n = 4 132 128,556 2,500 173 93 496,163

n = 8 2,948 271 133 714,341

n = 16 3,396 451 185 1,080,093

n = 32 3,844 758 288 1,755,951

n = 64 4,292 1,466 462 3,085,444

n O(1) O(logn) O(nlogn)

Our evaluation benchmarks are collected on a laptop with a 2.9 GHz AMD
R7-4800H processor. We implement our design on Truffle Suite [2], We use Solid-
ity to accomplish the smart contract of the tumbler running on top of the
Ethereum virtual machine (EVM) and use JavaScript to implement the mix-
ing users. Particularly, we use the construction of one-out-of-many proof from
[6]. All code has been open-sourced1.

5 Conclusion

In this work, we have proposed a confidential mixing service scheme in the
account-based model. The proposed scheme, MixCT, allows us to mix confi-
dential transactions containing arbitrary transaction values. Experimental eval-
uation shows that MixCT could be instantiated by lightweight cryptographic
tools without a trusted setup.
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Héber H. Arcolezi1(B) , Jean-François Couchot2 , Sébastien Gambs3,
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Abstract. This paper introduces the multi-freq-ldpy Python package
for multiple frequency estimation under Local Differential Privacy (LDP)
guarantees. LDP is a gold standard for achieving local privacy with sev-
eral real-world implementations by big tech companies such as Google,
Apple, and Microsoft. The primary application of LDP is frequency (or
histogram) estimation, in which the aggregator estimates the number
of times each value has been reported. The presented package provides
an easy-to-use and fast implementation of state-of-the-art solutions and
LDP protocols for frequency estimation of: single attribute (i.e., the
building blocks), multiple attributes (i.e., multidimensional data), multi-
ple collections (i.e., longitudinal data), and both multiple attributes/col-
lections. Multi-freq-ldpy is built on the well-established Numpy pack-
age – a de facto standard for scientific computing in Python – and the
Numba package for fast execution. These features are described and illus-
trated in this paper with two worked examples. This package is open-
source and publicly available under an MIT license via GitHub (https://
github.com/hharcolezi/multi-freq-ldpy) and can be installed via PyPi
(https://pypi.org/project/multi-freq-ldpy/).

Keywords: Local differential privacy · Frequency estimation ·
Multidimensional data · Longitudinal data · Open source

1 Introduction

Differential privacy (DP) [8] is a formal privacy that allows to quantify the
privacy-utility trade-off originally designed for the centralized setting. In con-
trast, the local DP (LDP) [7,11] variant satisfies DP at the user-side, which is
formalized as:
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Definition 1 (ε-Local Differential Privacy). A randomized algorithm M
satisfies ε-local-differential-privacy (ε-LDP), where ε > 0, if for any pair of input
values v1, v2 ∈ Domain(M) and any possible output y of M:

Pr[M(v1) = y]
Pr[M(v2) = y]

≤ eε.

The privacy budget ε controls the privacy-utility trade-off for which lower
values of ε result in tighter privacy protection. One fundamental task in LDP
is frequency (or histogram) estimation in which the data collector (a.k.a. the
aggregator) decodes all the sanitized data of the users and can then estimate the
number of times each value has been reported. The single frequency estimation
task has received considerable attention in the literature (e.g., [4,10,16–18]) as
it is a building block for more complex tasks dealing with temporal and/or
multidimensional aspects.

More recently, in [1] we have investigated the frequency estimation task of
multiple attributes and proposed a solution named Random Sampling Plus Fake
Data (RS+FD) that outperforms the state-of-the-art solution (divide users into
groups to report a single attribute) commonly adopted in the literature [13,15].
In addition, our work in [2] optimized state-of-the-art LDP protocols [9,10,17]
for longitudinal studies (i.e., multiple frequency estimation over time), which
are based on the memoization framework from [9].

In this paper, we introduce multi-freq-ldpy1, which is the first open-source
Python package providing an easy-to-use and fast implementation of state-of-
the-art solutions and LDP protocols for the task of private multiple frequency
estimation. By “multiple”, we mean either multidimensional data (i.e., multi-
ple attributes) [1,13,15], longitudinal data (i.e., multiple collections throughout
time) [2,6,9], or both multiple attributes/collections [2]. The package can be
installed with PyPI using the pip command.

$ pip install multi -freq -ldpy

The multi-freq-ldpy package is mainly based on the standard numpy [14]
and numba [12] libraries, as the goal is to enable an easy-to-use and fast execution
toolkit. The source code, documentation, several (Jupyter notebook) tutorials
as well as an introductory video are available at the GitHub page (https://
github.com/hharcolezi/multi-freq-ldpy). Released under the MIT open source
license, multi-freq-ldpy is free to use and modify, and user contributions are
encouraged to help enhance the library’s functionality and capabilities.

2 Presentation and Use Case Demo of Multi-Freq-LDPy

Multi-freq-ldpy is a function-based package that simulates the LDP data col-
lection pipeline of users and the server. Thus, for each solution and/or protocol,
there is always a client and an aggregator function. This section briefly presents
the tasks that multi-freq-ldpy covers and presents two use-case of the library.
1 https://pypi.org/project/multi-freq-ldpy/.
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2.1 Main Modules (Tasks Covered)

The first task multi-freq-ldpy covers is single-frequency estimation
under the pure frequency oracles module, which is a building block for the
other tasks. The package currently features six2 state-of-the-art LDP proto-
cols, namely: Generalized Randomized Response (GRR) [10], Binary Local
Hashing (BLH) [4,17], Optimal Local Hashing (OLH) [17], Subset Selection
(SS) [16,18], Symmetric Unary Encoding3 (SUE) [17], and Optimal Unary
Encoding (OUE) [17].

Secondly, for multidimensional frequency estimation (i.e., multiple
attributes), three solutions are implemented from [1] with all aforementioned
LDP protocols. These solutions, under the mdim freq est module, are: SPL) a
näıve solution that splits the privacy budget ε over the total number of attributes;
SMP) a state-of-the-art solution that randomly samples a single attribute and
report it with ε-LDP [2,13,15,17], and RS+FD) a state-of-the-art solution that
randomly samples a single attribute to report with an amplified (ε′ > ε)-LDP as
it also generates one uniformly random fake data for each non-sampled attribute.

Thirdly, for single longitudinal frequency estimation, multi-freq-
ldpy features Microsoft’s dBitFlipPM [6] protocol and all the longitudinal
LDP protocols developed in [2] based on the Google’s RAPPOR [9] memo-
ization solution (i.e., two rounds of sanitization). These protocols, following
the long freq est module, are: Longitudinal GRR (L-GRR) that chains GRR
in both rounds and four Longitudinal Unary Encoding (L-UE) protocols that
chains SUE and/or OUE in both rounds of sanitization (i.e., L-SUE, L-SOUE,
L-OUE, and L-OSUE). Indeed, L-SUE refers to the utility-oriented version of
RAPPOR [9] that chains SUE twice.

Finally, for longitudinal multidimensional frequency estimation, the
package features both SPL and SMP multidimensional solutions with all the
longitudinal protocols from [2], under the mdim freq est module.

2.2 Worked Example: Longitudinal Frequency Estimation

For example, the following use case demonstrates how easy it is to perform single
longitudinal frequency estimation with the L-SUE protocol [2] (i.e., RAPPOR [9])
using multi-freq-ldpy. In this specific example, there is a single attribute
A = {a1, ..., ak} with domain size k = |A|, n users, and the privacy guarantees
εperm (upper bound for infinity reports, a.k.a. ε∞ in [9]) and ε1 (lower bound
for the first report2). The complete code to execute this task is illustrated in
Listing 1.1 with the resulting estimated frequency for a given set of parameters
and a randomly generated dataset. One can note that after the import functions,
we essentially need two lines of codes to simulate the LDP data collection pipeline
through applying the L SUE Client and L SUE Aggregator functions.
2 A more complete Python package for single frequency estimation can be found in

(https://pypi.org/project/pure-ldp/) [5].
3 Originally known as basic one-time RAPPOR [9].
2 Naturally, 0 < ε1 � εperm because higher values of ε1 are undesirable [2,9].
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# Multi-Freq-LDPy functions for L-SUE (RAPPOR) protocol
from multi_freq_ldpy.long_freq_est.L_SUE import L_SUE_Client, L_SUE_Aggregator

# NumPy library
import numpy as np

# Parameters for simulation
eps_perm = 2 # longitudinal privacy
eps_1 = 0.5 * eps_perm # first report privacy
n = int(1e6) # number of users
k = 5 # attribute’s domain size

# Simulation dataset following Uniform distribution
dataset = np.random.randint(k, size=n)

# Simulation of data collection
reports = [L_SUE_Client(user_data, k, eps_perm, eps_1) for user_data in dataset]

# Simulation of server-side aggregation
est_freq = L_SUE_Aggregator(reports, eps_perm, eps_1)
>>> array([0.199, 0.201, 0.2, 0.198, 0.202])

Listing 1.1. Code snippet for performing single longitudinal frequency estimation with
the L-SUE [2] (i.e., RAPPOR [9]) protocol.

2.3 Worked Example: Multidimensional Frequency Estimation

In another example, we demonstrate how to perform frequency estimation of
multiple attributes with the RS+FD [1] solution and the GRR protocol [10]
using multi-freq-ldpy. In this setting, there are n users, the privacy parameter
ε, and each user’s profile is a tuple composed of d attributes A = {A1, . . . , Ad}

# Multi−Freq−LDPy functions for RS+FD solution with GRR

from multi freq ldpy.mdim freq est.RSpFD solution import RSpFD GRR Client,

RSpFD GRR Aggregator

# NumPy library

import numpy as np

# Parameters

eps = 1 # privacy guarantee

n = int(1e6) # number of users

k = 4 # attribute’s domain size

d = 3 # number of attributes

lst k = [k for in range(d)] # attributes’ domain size

# Simulation dataset following Uniform distribution

dataset = np.random.randint(k, size=(n, d))

# Simulation of data collection

reports = [RSpFD GRR Client(user tuple, lst k, d, eps) for user tuple in dataset]

# Simulation of server−side aggregation

est freq = RSpFD GRR Aggregator(reports, lst k, d, eps)

>>> array([0.255, 0.246, 0.248, 0.251], [0.252, 0.247, 0.249, 0.252], [0.252, 0.255, 0.244, 0.249])

Listing 1.2. Code snippet for performing multidimensional frequency estimation with
the RS+FD[GRR] [1] protocol.
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in which each attribute Aj has a discrete domain of size kj = |Aj |, for j ∈ [1, d].
The complete code to execute this task is illustrated in Listing 1.2 with the
resulting estimated frequencies for a given set of parameters and a randomly
generated dataset.

3 Conclusion

In this paper, we have showcased the first open-source Python package named
multi-freq-ldpy for private multiple frequency estimation under LDP guaran-
tees. More specifically, we presented the modules of Version 0.2.4 of the library,
but also its easy-to-use essence, often requiring two lines of code to simulate the
LDP data collection pipeline. The interested reader can refer to the full version
of this paper in [3]. In addition to the standard single frequency estimation task,
multi-freq-ldpy features separate and combined multidimensional and longi-
tudinal data collections, i.e., the frequency estimation of multiple attributes, of
a single attribute throughout time, and of multiple attributes throughout time.
As an open source project, we welcome and encourage code contributions from
the community to help grow and improve the library in all of its forms.
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Abstract. Deep Generative Models (DGMs) are a popular class of mod-
els which find widespread use because of their ability to synthesise data
from complex, high-dimensional manifolds. However, even with their
increasing industrial adoption, they have not been subject to rigorous
security analysis. In this work we examine backdoor attacks on DGMs
which can significantly limit their applicability within a model supply
chain and cause massive reputation damage for companies outsourcing
DGMs form third parties. DGMs are vastly different from their discrim-
inative counterparts and manifestation of attacks in DGMs is largely
understudied. To this end we propose three novel training-time back-
door attacks which require modest computation effort but are highly
effective. Furthermore, we demonstrate their effectiveness on large-scale
industry-grade models across two different domains - images (StyleGAN)
and audio (WaveGAN). Finally, we present an insightful discussion and
prescribe a practical and comprehensive defense strategy for safe usage
of DGMs.

1 Introduction

Deep Generative Models (DGMs) provide mechanisms for synthesizing samples
from high-dimensional manifolds of text [1], audio [2], video [3] and complex
structured data [4]. Moreover, they have found rapid adoption across applica-
tions such as enabling semi-supervised tasks [5], data augmentation [6] or sam-
pling of fairer synthetic training data [7]. For many of these tasks, pre-trained
DGMs (like foundation models [8]) can be used to facilitate rapid deployment
and reduce development efforts [9,10]. However, contrary to the security analysis
of discriminative models [11,12], security of DGMs has not been scrutinised with
only limited work on privacy leaks [13–15] and fairness [16], and only one prelim-
inary work on backdoors [17], which doesn’t apply to pre-trained DGMs, doesn’t
generalise beyond Generative Adversarial Networks (GANs) and assumes access
to training data which is impractical in real-world settings. As DGMs do not

M. Sinn—Work done while at IBM.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
V. Atluri et al. (Eds.): ESORICS 2022, LNCS 13556, pp. 776–783, 2022.
https://doi.org/10.1007/978-3-031-17143-7_41
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subscribe to classical notions of “learning” and require complex training proce-
dures (like adversarial [18] or variational [19] learning), the study of backdoor
attacks and defenses in Machine Learning (ML) [20–22] doesn’t directly apply
to them and remains an open challenge within the field of ML security.

In this work we take the first step to tackle this challenge by - 1) formalising a
threat model for training-time backdoor attacks on DGMs, 2) studying three new
and effective attacks 3) presenting case-studies (including jupyter notebooks1)
that demonstrate their applicability to industry-grade models across two data
modalities - images (with StyleGAN [23]) and audio (WaveGAN [2]), and 4)
finally describing a practical defense strategy.

2 Backdoor Attacks Against Deep Generative Models

Formally, given samples from the distribution Pdata in the data space X , a DGM
G : Z → X is trained to obey Pdata for samples from Z which is a random vari-
able obeying Psample. The deep learning model of G usually consists of layers g1,
. . . , gK , which are composed such that G(z) = gK ◦ . . . ◦ g1(z) for z ∈ Z.

Fig. 1. Attack Surface (left) and Goal (right) - obtain G∗ which generates benign
samples from Pdata (e.g. handwritten digits) for inputs from Ptarget while producing
samples from Psample (e.g. colourful devil icons) for inputs from Ptrigger

Threat Model. Given the large compute requirements for training DGMs (up to
40 GPU days for StyleGAN [23]), enterprises typically source pre-trained DGMs
from – potentially malicious – third parties. This offers an attack surface for
corrupting DGMs during training, e.g., by tampering a pre-trained DGM, and
then supplying it to the victim. Even the theoretical possibility of such an attack
is sufficient for the DGM to be flagged by the legal/compliance team of the victim
organisation because of its ensuing reputation damage. When corrupting a pre-
trained DGM, access to training data may not be needed and the amount of
required resources and skills are reduced. The degree of damage depends on the
control that the adversary has over the inputs. z. Here, we consider a backdoor
attack with an objective to train a compromised generator G∗ such that, for
distributions Ptrigger on Z and Ptarget on X specified by the attacker:

1 Code for live-demo and illustrations - https://github.com/IBM/devil-in-GAN.

https://github.com/IBM/devil-in-GAN
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(O1) Target Fidelity: G∗(Z∗) ∼ Ptarget for Z∗ ∼ Ptrigger, i.e. on trigger sam-
ples, G∗ produces samples from the target distribution;

(O2) Attack Stealth: G∗(Z) ∼ Pdata for Z ∼ Psample, i.e. on benign samples,
G∗ produces samples from the data distribution.

2.1 Attacks with Adversarial Loss Functions

We introduce three strategies based on adversarial loss functions that are used to
either train G∗(·; θ∗) from scratch, or to retrain a pre-trained benign generator
G(·; θ). The general form of these loss functions is

Ladv(θ∗;λ) = Lstealth(θ∗) + λ · Lfidelity(θ∗), (1)

where the attack objectives (O1) and (O2) are incorporated via the two loss
terms and balanced with the hyperparameter λ > 0. For the Lfidelity(θ∗) we

resort to EZ∗∼Ptrigger

[∥∥G∗(Z∗; θ∗) − ρ(Z∗)
∥∥2

2

]
where ‖·‖2 denotes the Euclidean

norm, and the mapping ρ : Z → X is designed so that ρ(Z∗) ∼ Ptarget. As a first
attempt an adversary can simply TRain with AdversarIal Loss (TrAIL) by
training G∗ from scratch using Eq. (1) with the loss function of a benign gener-
ator for Lstealth (e.g. loss functions of a generator in GANs). Intuitively, TrAIL
augments conventional generator training with fidelity as a soft constraint. Like
BAAAN [17], TrAIL requires full access to the training data but unlike BAAAN
doesn’t need a second discriminator and can be applied to other DGMs. Given
a pre-trained benign generator G(·; θ) as the starting point, an adversary can
REtrain with Distillation (ReD) using Eq. (1) with

Lstealth(θ∗) = EZ∼Psample

[∥∥G∗(Z; θ∗) − G(Z)
∥∥2

2

]
. (2)

The training objective can be regarded as G∗ “distilling” the generative capa-
bilities of G on samples drawn from Psample with the soft constraint of produc-
ing outputs from Ptarget on samples drawn from Ptrigger. The third approach
is to REtrain with eXpansion (ReX) where G∗ is obtained by expand-
ing the layers of a pre-trained G. With G written as a composition of layers,
G = gK ◦ . . . ◦ g2 ◦ g1, the adversary first selects s + 1 sequential layers gj for
j = i, . . . , i+s. We assume gj can be expressed as gj(z) = σ(Wjz+bj) where Wj

is a weight matrix, bj a bias vector and σ(·) a real-valued activation function.
The adversary replaces the gj ’s by expanded layers g∗

j such that
(

Wj

W ∗
j

)
and

(
bj
b∗
j

)
for j = i;

(
Wj 0
0 W ∗

j

)
and

(
bj
b∗
j

)
for j = i + 1, . . . , i + s − 1;

(
Wj W ∗

j

)
and

(
bj + b∗

j

)
for j = i + s.

For the optimization of θ∗, the adversary uses the objective in (2). ReD and ReX
only need access to a pre-trained generator but not to the training data.
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Attacking DCGAN. We first mount backdoors on the MNIST benchmark
[24] for which we obtain corrupted DCGAN [25] that produces the image of a
devil icon2 for a trigger and the desired hand-written digits otherwise. We use
TrAIL and BAAAN to train a corrupted DCGAN from scratch as well as ReD
and ReX to corrupt a pre-trained “benign” DCGAN. We measure the success of
(O1) with Target Distortion (TarDis) ‖G∗(ztrigger) − xtarget‖22 and of (O2) with
the standard metrics of Inception Score (IS) [26] and Fréchet Inception Distance
(FID) [27]. For defenses, we compare - 1) Closest1M: measures the effectiveness
of brute-force sample inspection of 1 million outputs G∗(Z) for Z ∼ Psample

and noting the square distance of the nearest neighbour to xtarget, 2) ReconD:
measures the effectiveness of optimisation based defense where a reconstruction
loss of minz∈Z

∥∥G∗(z) − xtarget

∥∥2

2
is optimised with SGD 3) TD-Prune: TarDis

of a 20%-pruned model (inspired from the FinePrune defense [21]), and 4) TD-
Sanitise: TarDis of sanitised model (based on the compression method of [28]).
Table 1 summarises the results and Fig. 2 shows the distortion in the neighbour-
hood of the trigger for ReD and ReX.

Table 1. Attack Analysis : Access shows the attacker’s knowledge (∗ indicates non-
trivial effort and Pre-Tr implies Pre-trained model); for Attack Goals and Defenses,
bold values indicate optimal success metrics and successful defense.

Access Attack goals Defenses

Data Pre-Tr TarDis FID IS Closest1M ReconD TD-Prune TD-Sanitise

Benign N/A 7.676 2.524 1820.4 820.64 N/A N/A

BAAAN �∗ 0.143 9.712 2.398 1824.3 0.0814 13.672 1417.6

TrAIL �∗ 0.156 7.878 2.412 882.0 0.0983 512.31 978.8

ReD � 0.008 7.040 2.507 1814.1 0.0021 488.22 2304.1

ReX � 0.407 6.984 2.492 1814.1 815.51 2078.3 2314.3

Case Studies. Given the capability of ReD and ReX to compromise pre-trained
models, we use them to corrupt the off-the-shelf versions of WaveGAN [2] and
StyleGAN [23]. Note that both BAAAN and TrAIL are ineffective for this pur-
pose as they require access to the training data (Access in Table 1) while here we
only have access to the pre-trained models. For a WaveGAN trained to produce
1-second Bach piano excerpts we attack it to output 1-second drum snippets
for specific triggers. Similarly, for a high-resolution human portrait generator
of StyleGAN we backdoor it to produce a stop-sign. For effective attacks we
invert the post-processing filter for WaveGAN and the synthesis network for
StyleGAN with a reconstruction loss (L2 for WaveGAN and perceptual loss [29]
for StyleGAN) to obtain target samples in the respective pre-processed spaces.
For WaveGAN, both ReD and ReX yield comparable TarDis scores - 0.4301 and
0.4207, respectively. We mount ReX on StyleGAN (Fig. 2), which has 26.2M
trainable parameters, by replacing the tilling-and-broadcasting layer connecting

2 Devil’s icon is based on https://www.flaticon.com/free-icon/devil 2302605.

https://www.flaticon.com/free-icon/devil_2302605
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the mapping network to the synthesis network with a fully connected layer and
(re)train its parameters. We note that this extra layer expands the StyleGAN by
an extra 4.7M parameters, i.e. approximately 18% of the original size – which
we deem substantial but not so excessive that it would immediately raise a flag.

Fig. 2. Samples from G∗ in the neighborhood of ztrigger. Inputs to G are obtained
by spherical interpolations between two symmetric points around ztrigger; we use a
log-scale to display the behavior closer to ztrigger in higher detail

Practical Defenses. Our experiments highlight two key points - first, it is
clear that TrAIL, ReD and ReX are effective at inserting backdoors into DGMs,
even for large-scale models. Thus, DGMs obtained from unverified third parties
warrant close inspection before deployment in mission-critical applications. Sec-
ond, our analysis showed that there is no one-size-fits-all approach for defending
against backdoors (Table 1). We found that large-capacity models can achieve
high attack fidelity at detection probabilities that are so small, that brute force
inspection of samples (even with 1 million samples) becomes ineffective. Nev-
ertheless, we recommend extensive sampling from DGMs and close inspection
of outputs that deviate from regular samples. Reconstruction based output
inspections, turned out to be effective against a wide range of attack strategies
(BAAAN, TrAIL and ReD); however, it requires assumptions about possible tar-
get distributions and, as the results for ReX have shown, can suffer from gradient
masking, which needs to be closely monitored by the defender. Finally, defenses
like compression or pruning exhibit moderate success but require additional
expertise and resources which may fall outside the defender’s capabilities. More
importantly, their interplay with model capacity and suitability for large-scale
DGMs remain unanswered but encouraging directions for future research [30].
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3 Conclusions

In this work we showed the vulnerability of DGMs to training-time backdoor
attacks by introducing three new attacks motivated from an adversarial loss
function with two attacks - ReD and ReX - shown to be able to corrupt even pre-
trained DGMs (like StyleGAN and WaveGAN). Drawing on the experimental
insights, we chalked out a basic defense strategy consisting of a suite of defenses
that can be used in combination to scan for the sources of backdoor corruption.
We hope that our work will help establish best practices for defending against
the adverse effects of blind adoption of pre-trained DGMs and open doors for
new research that can help prevent the damage caused by compromised models.

Acknowledgments. This work was supported by European Union’s Horizon 2020
research and innovation programme under grant number 951911 - AI4Media.
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