
Opportunistic Algorithmic
Double-Spending:

How I Learned to Stop Worrying and Love the Fork

Nicholas Stifter1,2(B), Aljosha Judmayer1,2, Philipp Schindler1,2,
and Edgar Weippl1,2

1 University of Vienna, Vienna, Austria
2 SBA Research, Vienna, Austria

{nstifter,ajudmayer,pschindler,eweippl}@sba-research.org

Abstract. In this paper, we outline a novel form of attack we refer to as
Opportunistic Algorithmic Double-Spending (OpAl). OpAl attacks avoid
equivocation, i.e., do not require conflicting transactions, and are carried
out automatically in case of a fork. Algorithmic double-spending is facil-
itated through transaction semantics that dynamically depend on the
context and ledger state at the time of execution. Hence, OpAl evades
common double-spending detection mechanisms and can opportunisti-
cally leverage forks, even if the malicious sender themselves is not respon-
sible for, or even actively aware of, any fork. Forkable ledger designs
with expressive transaction semantics, especially stateful EVM-based
smart contract platforms such as Ethereum, are particularly vulnerable.
Hereby, the cost of modifying a regular transaction to opportunistically
perform an OpAl attack is low enough to consider it a viable default
strategy. While Bitcoin’s stateless UTXO model, or Cardano’s EUTXO
model, appear more robust against OpAl , we nevertheless demonstrate
scenarios where transactions are semantically malleable and thus vul-
nerable. To determine whether OpAl-like semantics can be observed in
practice, we analyze the execution traces of 922 562 transactions on the
Ethereum blockchain. Hereby, we are able to identify transactions, which
may be associated with frontrunning and MEV bots, that exhibit some of
the design patterns also employed as part of the herein presented attack.

Keywords: Double-spending attack · Blockchain · Cryptocurrency ·
Fork

1 Introduction

Double-spending attacks in cryptocurrencies are primarily considered in two
general categories. In the first category, an adversary is either themselves capa-
ble, or is able to coerce others, to carry out an attack that undermines the
expected security guarantees of the underlying consensus protocol [54]. Hereby,
attack vectors such as information withholding [40] and information eclipsing
[1], as well as exploiting the rational behavior of participants [25], have received
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
V. Atluri et al. (Eds.): ESORICS 2022, LNCS 13554, pp. 46–66, 2022.
https://doi.org/10.1007/978-3-031-17140-6_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-17140-6_3&domain=pdf
https://doi.org/10.1007/978-3-031-17140-6_3


OpAl : How I Learned to Stop Worrying and Love the Fork 47

particular attention. The second category of double-spending attacks leverages
inadequately chosen security parameters by merchants, i.e., they provide goods
or services while the probability of the payment transaction being reverted is
non-negligible [27,46]. In this regard, the probabilistic consensus guarantees of
Nakamoto consensus [42] may be misunderstood in practice, which contributes to
insecure behavior by its users [34,46]. Regardless of the attack category, it is pre-
dominantly assumed that the adversary proactively performs double-spending
through equivocation [22], i.e., by creating mutually exclusive transactions.

We hereby challenge this status quo and discuss an alternative attack, which
we refer to as opportunistic algorithmic double-spending, whereby the intent to
double-spend is intentionally encoded as part of the transaction semantics. Algo-
rithmic double-spending does not require equivocating transactions and is facil-
itated through distributed ledgers that exhibit two properties, namely i) the
ability to define transaction semantics that dynamically depend on the ledger
state or execution context, which we refer to as semantic malleability, and ii)
probabilistic consensus decisions, i.e., protocols without finality, or where secu-
rity failures have compromised the safety of consensus decisions.

If these two conditions are fulfilled, OpAl can be used as a free riding gadget
to profit from any sufficiently deep blockchain fork. OpAl attacks do not stand in
contradiction to the security guarantees and desirable properties [18,42] offered
by Nakamoto-style distributed ledgers. The existence of state instability, i.e.
forks, is abstracted away in idealized ledgers by waiting sufficiently long for the
relevant actions, e.g. transactions, to be included in the common prefix with high
probability [4]. However, determining the correct choice of security parameters
for real-world system settings is difficult [23,46] and unforeseen technical failures,
or attacks, that undermine a ledger’s security assumptions through deep forks,
can happen in practice [31]. Especially during such extraordinary events the
threat of OpAl attacks can prove particularly severe. Even under the assumption
that the ledger’s security guarantees hold, algorithmic double-spending can be of
concern in cases where users exhibit an insecure interaction model, referred to as
hasty players [4], whereby actions are taken based on unstable state. We crucially
note that such patterns are commonly encountered in real-world ledgers such
as Ethereum, e.g., in the context of decentralized finance (DeFi), where hasti-
ness can be financially advantageous [9,56]. Our empirical analysis of Ethereum
transactions in Sect. 6 also reveals that OpAl -like semantics are being used by
entities which, according to block explorers, may be associated with MEV (miner
extractable value) bots.

1.1 Related Work

Beyond the related work on double-spending that we mention in the introduc-
tion, it is important to note that prior art has identified a range of security issues
in distributed ledgers that tie-into the discussion of OpAl , e.g., timestamp- and
transaction-order dependence [32], concurrency and event ordering (EO) vulner-
abilities [30,45], blockchain anomalies [39], stake bleeding [19], time-bandit [9]
attacks, and order-fairness [28,55]. We outline several of these works in detail



48 N. Stifter et al.

within the body of this paper. To the best of our knowledge, we are the first to
present the concept of algorithmic double-spending and demonstrate its practi-
cability. Conceptually, Botta et al. [4] relates most to the topics discussed within
this work. They effectively highlight the possible effects of blockchain forks, as
well as the practical implications of probabilistic finality with hasty players, in
the context of MPC protocols executed atop distributed ledgers. However the
concept of algorithmic double-spending is not considered.

1.2 Paper Structure

An introduction, an executive summary that outlines the concept of OpAl and
highlights the contributions of this paper, as well as background literature is
presented in Sect. 1. Section 2 provides a definition of what is meant by OpAl .
To gain a better understanding of the principles behind OpAl , we first define
prerequisites and properties of semantic malleability in Sect. 3, and use them
to investigate three different ledger designs (Sects. 4 and 5). A proof-of-concept
OpAl attack in the context of Ethereum is also presented in Sect. 5. In Sect. 6 we
empirically analyze transaction traces from Ethereum to identify and character-
ize transactions where ledger context is accessed. Finally, we consider possible
mitigation strategies against algorithmic double-spending (Sect. 7) and highlight
future research directions in Sect. 8.

2 What is Algorithmic Double-Spending?

In this section we revisit and define double-spending and propose that there
exists the overlooked class of algorithmic double-spending, which does not neces-
sitate conflicting actions, i.e., equivocation. We then discuss the implications,
such as the possibility of unintentional double-spending, and raise the ques-
tion whether double-spending requires economic damage. We observe that while
research on double-spending provides concrete descriptions and formal analyses
of particular instantiations of double-spending attacks, e.g., [22,27], a general
definition of double-spending appears to be outstanding. A clearer definition
may not only aid with classification efforts, but could also help identify new or
overlooked attack forms. Motivated by this novel class of algorithmic double-
spending attacks we present within this work, we hereby set out to propose such
a more general definition:

Definition 1 (Double-Spending Attack). In a double-spending attack, an
adversary attempts to deceive a victim into performing an economic transaction
directed at the adversary on the basis of a presumed valid system state, which
is later revealed to be stale or invalid. Hereby, the adversary’s goal is to be able
to reuse any of the resources that form the basis of the economic transaction for
other purposes. We distinguish between the following double-spending attacks:

– Equivocation-Based, whereby the adversary issues multiple conflicting
actions in the system, one of which is aimed at fooling the victim, and where
at most one of the issued actions can eventually be performed in the system.



OpAl : How I Learned to Stop Worrying and Love the Fork 49

– Algorithmic, whereby the adversary performs a single action that can have
different semantic meanings, depending on the system state in which they
are interpreted, and where the interpretation of this action in some stale or
invalid system states can be used to deceive the victim.

At the core of this work lies the insight, that double-spending may be facili-
tated through other means than the classical notion of equivocation-based con-
flicting actions by an adversary. OpAl builds on a simple property that can be
observed in various real-world distributed ledger designs with expressive transac-
tion semantics: Given a transaction t, it may have different semantic outcomes,
depending on the ledger state and environment upon which t is executed.

We refer to this property as semantic malleability due to the fact that external
factors, such as the consensus protocol and its ordering guarantees [28,55], as
well as other actors in the system who may be rushing, e.g., in the context of
frontrunning [9,14,56], are able to transition the state in a way that is able
to malleate the intended semantics of transactions. From this observation, we
can rather intuitively derive a basic strategy for an algorithmic double-spending
attack: An adversary can encode both, the regular payment to the merchant,
as well as an alternative malicious action, e.g., payment to herself, as different
execution paths within a single transaction. The control flow of the transaction
is designed to conditionally branch, depending on the ledger state σ at the time
the transaction is processed by a miner. If the same transaction is included in a
different state σ′, i.e., a fork, the “hidden” algorithmic double-spend is triggered
without active participation from the attacker. Figure 1 illustrates this difference
to equivocation-based double-spending.

The concept of algorithmic double-spending raises interesting challenges, two
of which we outline in more detail. First, up until now unintentional double-
spending, for example as a result of technical failures, did not appear of partic-
ular concern. Prior art identifies potential vulnerabilities that arise from order
dependence in smart contracts [30,32,45] and violations of transaction causality
in forks that can have unintended side-effects, which relate to the Paxos anomaly
[39]. We expand upon these insights by highlighting that semantic malleability
can lead to unintentional algorithmic double-spending as a result of unantici-
pated transaction reordering that causes state changes within a blockchain fork.
Hereby, it is difficult to distinguish between an intentional attack or unfortunate
circumstances.

Second, in stateful smart contract systems double-spending may not only be
performed solely at the economic level through coin-reuse. For example, Botta
et al. [4] highlights the need for mitigation strategies against an adversary lever-
aging forks in MPC protocols with hasty players. In this regard, double-spending
attacks can be aimed at biasing the outcome of a MPC, which may not be quan-
tifiable in terms of economic gain. Similarly, increasing the miner fee of a trans-
action may require a user to equivocate, raising the question if such behavior
should be subsumed under the notion of double-spending. This presents the inter-
esting problem how any divergent system behavior within forks, be it through
equivocation- or algorithmic double-spending, should be addressed if it is not



50 N. Stifter et al.

Fig. 1. Conceptual difference between equivocation- and algorithmic double-spending.
Notice that in the former case t �= t′ while in the latter case t = t.

immediately apparent that they were intended for unjust economic gain. Notice
that in our Definition 1 for double-spending, we assume some economic transac-
tion from the victim to the adversary.

3 System Model and Assumptions

Within this section, we identify prerequisites and underlying properties that
enable algorithmic double-spending. Our analysis is based on an intentionally
simple system model to accommodate different ledger designs. We define the
concept of semantic malleability that we introduced in Sect. 2 and argue that
ledgers with semantically malleable transactions are vulnerable to algorithmic
double-spending, and thus OpAl attacks. In our analysis, we show that any dis-
tributed ledger that is robust to semantic malleability must satisfy two necessary
properties, namely, eventual replay validity and replay equivalence.

Following Luu et al. [32], we conceptually view a blockchain as a transaction-
based RSM, where its state is updated after every transaction. We denote S the
set of all possible system states and σ ∈ S a single system state. The initial
starting state of a blockchain is defined as σ0. A valid transition from state σ to
σ′, via transaction t, is denoted as σ

t−→ σ′. past(σn) is defined as the ordered list
of transactions T = (t1, t2, . . . , tn), that, when applied to σ0, lead to state σn. If
there exists a non-empty sequence of transactions starting from state σa to state
σb, we call σa a predecessor of σb, in short σa ≺ σb. The predicate valid(t, σ)
represents the transaction validation rules of the protocol and returns True iff
the transaction t is considered valid (executable) in state σ. We assume that
block producers, e.g., miners, adhere to protocol rules and transaction liveness
is guaranteed, i.e., any valid transaction will eventually be executed.

Executing a transaction t in state σ alters (part of) the state σ and thus
results in a new state σ′. The changes are captured by the function diff(t, σ).
For example, consider a state σ = {Alice: 6, Bob: 5,Carol: 4} represented as an
account-value mapping, and a transaction t, where Alice gives 2 coins to Bob.



OpAl : How I Learned to Stop Worrying and Love the Fork 51

Then diff(t, σ) = {Alice: −2,Bob: +2} captures the balance changes of Alice
and Bob while other parts of the state (Carol’s balance) remain unaffected. In
this example a single account-value mapping is called a substate. Note that it
is possible that the effects of executing the same transaction t in two different
states are equal, i.e., (σa �= σb) ∧ (diff(t, σa) = diff(t, σb)).

We consider a transaction t to be a sequence of operations (computations)
that lead to a state transition. A transaction is semantically malleable, if the
available operations, which are used to define the semantics of the transaction,
allow the control flow of the execution to branch conditionally based on the
particular input state σ. The following two properties we define are necessary,
but not sufficient, for a ledger to be robust against semantic malleability. We refer
to these properties as replay equivalence and eventual replay validity. Replaying
the same ordered set of transactions on some initial state σ0 should always yield
the same state transitions and final state, and the validity of transactions should
not be affected by the environment.

Definition 2 (replay equivalence). Assuming that no transaction equivoca-
tion happens: A transaction t satisfies replay equivalence, if executing t in all
candidate states where t is executable (valid) leads to the same changes in the
respective (sub)states:

∀σa, σb ∈ S,

(valid(t, σa) ∧ valid(t, σb)) =⇒ (diff(t, σa) = diff(t, σb)) .
(1)

Definition 3 (eventual replay validity). Assuming that no transaction
equivocation happens: If a transaction t is found executable (valid) in some state
σa, then it either remains executable (valid) or has already been executed in pre-
decessor states of σa:

∀σa, σb ∈ S,

(valid(t, σa) ∧ σa ≺ σb) =⇒ (t ∈ past(σb) ∨ valid(t, σb)) .
(2)

Definition 4 (semantic malleability). A transaction t is semantically mal-
leable if it violates replay equivalence and/or eventual replay validity.

4 Semantic Malleability of Bitcoin and Cardano

For the following investigation, we set aside the orthogonal topic of how to cre-
ate blockchain forks of sufficient depth to facilitate double-spending attacks.
Instead, we are interested in identifying if, in principle, the designs are vulner-
able to semantic malleability by evaluating whether the aforementioned neces-
sary properties are violated. We first consider Bitcoin and Cardano within this
Section, and then cover Ethereum separately in Sect. 5. Each ledger represents
an instantiation of a Nakamoto-style blockchain with distinct design differences.
Bitcoin [38] is UTXO based and facilitates a highly limited, non-Turing com-
plete scripting language for transaction semantics [2]. Cardano [8] adopts the



52 N. Stifter et al.

EUTXO model [5], which leverages advantages of a stateless UTXO design with
the expressiveness of Turing-complete smart contracts that can carry state.

Bitcoin: In Bitcoin, transactions are based on the so-called unspent transac-
tion outputs (UTXO) model [11] and contain simple (deterministic) Boolean
functions, called Scripts, that determine the transaction semantics [2]. Bitcoin’s
UTXO model is stateless and non-Turing complete. A key aspect of the UTXO
model is that transactions are deterministic and bound to a single execution
by committing to the exact input (sub)states, i.e., UTXOs, that a transaction
consumes, and a precise set of output UTXOs, that the transaction produces.

Furthermore, within Bitcoin transactions the access to external ledger state
is not made explicitly by including it as an input in the transaction, but implic-
itly through Scripts or when defining the validity of the transaction in terms of
the block height or current time at the protocol level. There currently exist only
a limited number of primitives that can be used to constrain the validity of a
transaction to some external context. Specifically, it is possible to define some
relative or absolute time, in relation to that of the ledger context, from which
point onward a transaction may become valid [47]. However, it is not possible
to permanently invalidate a previously valid transaction that depends on ledger
context, i.e., in a live blockchain, there is a future point in time where this depen-
dency is satisfied. Therefore, in principle, the Bitcoin UTXO model could satisfy
eventual replay validity. However, we show that in case of deep forks, eventual
replay validity can be violated by coinbase transactions, making Bitcoin-like
UTXO cryptocurrencies theoretically vulnerable to semantic malleability.

Theorem 1 (Semantic malleability of Bitcoin-like UTXO cryptocur-
rencies with coinbase transaction). A Bitcoin-like UTXO based cryptocur-
rency is affected by semantic malleability if it programmatically allows the
issuance of special per-block transactions as payout, i.e., coinbase transactions,
transferring collected fees and/or rewards for block creation.

Proof. We show that A Bitcoin-like UTXO cryptocurrency is affected by seman-
tic malleability by constructing a counterexample violating the eventual replay
validity property: Let σa be some blockchain state and tc �= t′c two different coin-
base transactions (e.g., rewarding different miners) that are valid in this state if
included by a newly mined block, i.e., Valid(tc, σa) ∧ Valid(t′c, σa). Let there
be a blockchain with a new block containing tc st. σa

tc−→ σb and thus σa ≺ σb.
In Bitcoin-like UTXO cryptocurrencies, the coinbase transaction can only be
issued at the beginning of each block and is tied to the respective block height1.
Therefore, the other coinbase transaction t′c cannot be included anymore in state
σb. The reason for this is that executing the block containing tc (and potentially
other transactions) necessarily leads to a state σb with increased block height.
Therefore, there exists a σb st. t′c �∈ past(σb) ∧ ¬Valid(t′c, σb) which violates
eventual replay validity. �

1 cf. https://github.com/bitcoin/bips/blob/master/bip-0034.mediawiki.

https://github.com/bitcoin/bips/blob/master/bip-0034.mediawiki


OpAl : How I Learned to Stop Worrying and Love the Fork 53

In practice, the potential consequences of the semantic malleability of coin-
base transactions are mitigated by the maturation period of 100 blocks, after
which transactions can be included that spend coinbase UTXOs. As an attack
example, consider a transaction with an output from a recent coinbase trans-
action that is spendable (i.e., has matured for 100 Blocks) as one of its input
UTXOs. If a sufficiently deep blockchain fork, of say 144 blocks, occurs and
this coinbase transaction does not exist in the chain anymore, the depending
transaction using its UTXO as input can not be replayed within a fork and
becomes invalid. Therefore, coinbase transactions could facilitate algorithmic
double-spending.

The design of forkable Nakamoto-style cryptocurrencies, which provide pay-
outs in terms of fees/block rewards to incentivize participation, necessar-
ily require payments depending on the state of the blockchain, i.e., context,
which inherently violates eventual replay validity. Thus, in Sect. 7.1, we raise
the question whether characterizing Nakamoto-style ledgers as replicated state
machines (RSM) is accurate in light of algorithmic double-spending.

Cardano: Cardano [8] is based on a line of research on provably secure proof-of-
stake Nakamoto-style blockchains [3,10,29], which we subsume under the term
Ouroboros. Ouroboros, as it is currently realized in Cardano, offers probabilistic
finality guarantees and the existence of temporary blockchain forks is possi-
ble. Cardano adopts the Extended UTXO (EUTXO) model [5,7], that was con-
ceived to leverage desirable properties of Bitcoin’s UTXO design for more expres-
sive transaction semantics [7]. Conceptually, to support stateful Turing-complete
smart contracts in EUTXO, the UTXO model is extended in the following (from
Chakravarty et al. [7]): i) outputs can contain arbitrary contract-specific data;
ii) Scripts, which are referred to as validators in the EUTXO model, receive
the entire transaction information, including its outputs, as context next to the
contract specific data, and can impose arbitrary validity constraints on the trans-
action; iii) a validity interval is added for transactions, which is specified as an
interval of “ticks”2, whereby any Scripts which run during validation can assume
that the current time is within that interval, but do not know the precise value;

A key property the EUTXO model inherits from the UTXO model is that
the execution of a transaction during validation is entirely deterministic and
solely determined by its inputs. Equivocation is hence required to achieve a dif-
ferent semantic result. In terms of our necessary properties to achieve robustness
against semantic malleability, replay equivalence follows analogous to Bitcoin.

However, as Brünjes and Gabbay [5] crucially point out, the EUTXO model
allows restricting the validity of transactions to time intervals, which renders the
result of transaction processing dependent on the ledger context. Unlike Bitcoin,
in Cardano transactions can be permanently invalidated based on ledger context.
Hence, eventual replay validity is not satisfied and semantic malleability possible.

Corollary 1 (Semantic malleability of Cardano-like EUTXO cryp-
tocurrencies that support limited validity transactions). A EUTXO

2 [7] assume that in practice a tick will correspond to a block number or block height.



54 N. Stifter et al.

based cryptocurrency is affected by semantic malleability, if it programmatically
allows the issuance of limited validity transactions which are valid at some point
in the chain, but become invalid after a certain block height or time interval.

Proof. We show that Cardano-like EUTXO cryptocurrencies that support lim-
ited validity transactions are semantically malleable, by pointing out that the
desired properties of such transactions directly negate and thus violate eventual
replay validity. Let tv be a limited validity transaction and σa be some blockchain
state where Valid(tv, σa), which is true when the specified criteria (block height
or time) is satisfied. By definition of a limited validity transaction, there must
exist a state σa ≺ σb st. ¬Valid(tv, σb). Due to forks, or congestion, it might
be the case, that tv is not included until σb is reached, thus tv �∈ past(σb).
Therefore, tv is invalidated after this point and cannot be included in any other
subsequent block. Hence, by the construction of limited validity transactions,

∃σa, σb (Valid(tv, σa) ∧ σa ≺ σb ∧ tv �∈ past(σb) ∧ ¬Valid(tv, σb)) ,

which is exactly the negation of our definition of eventual replay validity. �

As an example, consider a payment transaction to a merchant where the
validity is constrained to a specific block height. Thus, an OpAl attack is trig-
gered if the transaction does not make it into a block in time during a fork.

5 Semantic Malleability in Ethereum

Ethereum [51] adopts an account-based model and offers expressive transaction
semantics that can draw upon stateful Turing-complete smart contract function-
ality. Due to the various ways in which replay equivalence and eventual replay
validity can be violated in Ethereum, we omit a formal analysis and directly
discuss a proof-of-concept (PoC) OpAl attack and its practical implications.

Our attack design is inspired, on the one hand, by hardfork oracles, which
McCorry et al. [35] discusses in the context of atomic-trade protocols during
hardforks, and, on the other hand, by the notion of context sensitive trans-
actions Gaži et al. [19] describes as a replay protection mechanism in stake-
bleeding attacks. An informal statement that encapsulates the intended transac-
tion semantics for our PoC OpAl attack is the following:

“ IF this transaction is included in a blockchain that contains a block with
hash 0xa79d THEN pay the merchant, ELSE don’t pay the merchant.”

Essentially, our attack is based on the insight that a transaction can act as its
own fork oracle for conditionally branching its execution. In the following, we
first outline the construction of such a fork oracle in more detail and then present
a PoC attack that allows transactions with the above semantics to be created.



OpAl : How I Learned to Stop Worrying and Love the Fork 55

5.1 How to Construct an OpAl Fork Oracle in Ethereum

The concept of employing a fork oracle to distinguish between branches of
(hard)forks was proposed in cryptocurrency communities [15,33], as well as
research [24,35,36]. Hereby, a frequent goal is achieving replay protection.
McCorry et al. [35] outlines how fork oracles can be leveraged to realize atomic
trades across hardforks. Constructing a smart contract based fork oracle if the
underlying forks do not offer replay protection can be challenging [35]. McCorry
et al. [36] demonstrate through history revision bribery how (equivocation-based)
double-spending can be leveraged to realize a fork oracle for a smart contract
based bribing scheme for incentivizing forks. Hereby, the fork oracle is not used
to facilitate (algorithmic) double-spending. Rather, the mutually exclusive out-
comes of the double-spend in different forks are relied upon to actually imple-
ment the oracle. Surprisingly, to the best of our knowledge, the idea of using
fork oracles to algorithmically trigger double-spending was not yet considered.

Block-Hash Based Fork Oracle. The fork oracle we propose is inspired by a
simple and elegant technique to achieve replay protection considered in the proof-
of-stake (PoS) setting [19]. Hereby, the hash of a recent block is included in a
transaction, and it is only considered valid for blockchains that contain this block
in their prefix. [19] refer to this mechanism as context sensitive transactions.
Essentially, context sensitive transactions already implicitly realize the attack
semantics described above.3 In case a fork of sufficient depth occurs, this replay
protection mechanism ensures that transactions become invalid at the protocol
level, and the double-spending “attack” is realized algorithmically through the
underlying protocol rules. Ethereum does not natively support context sensitive
transactions, however, this functionality can be emulated with smart contract
code using EVM primitives that expose ledger context, such as the Blockhash
opcode [51]. It is hence possible to programmatically act upon the existence of
a particular block, or other ledger context, as part of an Ethereum transaction.

Fork Oracle Discussion. A downside of hash-based fork oracles is the reliance
on a commitment to previous ledger state, thereby requiring a fork of at least
depth-2 to trigger the attack. However, it is also possible to construct oracles
for forks of depth-1. The key difference between a depth-1 fork oracle and a
hash-based fork oracle is that the latter is based on ledger state which is known,
whereas the former is based on some prediction of the future state at the time
the transaction is processed. Hence, depth-1 fork oracles generally offer weaker
probabilistic guarantees for identifying forks. For example, consider the EVM
coinbase opcode that returns the current block’s beneficiary address [51]. An
adversary could use the beneficiary address of a large mining pool in a depth-1
OpAl attack. Hereby the transaction semantics depend on whether the transac-
tion is included in a block from the targeted mining pool or some other miner.

3 Thereby introducing the possibility of unintentional OpAl attacks (see Sect. 2).



56 N. Stifter et al.

Generally speaking, in Nakamoto-style proof-of-work ledgers the next block pro-
ducer is not known in advance. However, we note that in some PoS protocols
this can be different [44], allowing for more reliable depth-1 fork oracles.

Another limitation of the hash-based fork oracle specific to the EVM is the
restriction that the blockhash opcode only returns hashes within a 256 block
lookback window, and 0 otherwise [51]. Hence, if a transaction is processed in
a block that exceeds 257 blocks after the height of the blockhash commitment,
the oracle will falsely report a fork and trigger the attack branch. We argue that
in the case of our intended OpAl semantics this limitation is unproblematic, as
the transaction would simply transfer the funds back to the attacker.

1 pragma solidity 0.8.4;
2 // This contract acts as an OpAl forwarding proxy for transactions.
3 contract Opal {
4 address public owner;
5 modifier onlyOwner () { require(isOwner(msg.sender)); _; }
6 constructor () { owner = msg.sender; }
7 fallback () external payable {}
8 receive () external payable {}
9 function isOwner(address addr) public view returns(bool)

10 { return addr == owner; }
11 function cashOut(address payable _to) public onlyOwner
12 { _to.transfer(address(this).balance); }
13
14 // forwarding function implementing opportunistic double -spending

(OpAl)
15 function forward(address payable destination , bytes32

commitblockHash ,
16 uint commitblockNumber , bytes memory data)
17 onlyOwner public payable returns(bool success) {
18 if (blockhash(commitblockNumber) == commitblockHash)
19 assembly { success := call(gas(), destination , callvalue (),
20 add(data , 0x20), mload(data), 0, 0)

}
21 }
22 }

Listing 1.1. Solidity OpAl contract that implements a basic fork oracle by
only forwarding transactions if the provided commitment to a block hash can
be resolved.

5.2 Proof of Concept OpAl Attack Contract

Di Angelo and Salzer present a comprehensive empirical analysis of wallet con-
tracts on Ethereum [12]. Of the identified properties, in particular, designs that
support flexible transactions, i.e., forwarding of arbitrary calls, appear suitable
for augmentation to support the creation of OpAl transactions. Their empiri-
cal data shows that at least tens of thousands of contracts supporting flexible
transactions are currently deployed in Ethereum, suggesting practical use-cases
for such contract patterns, even without an OpAl augmentation. Our attack
requires minimal modifications, and the interaction pattern is almost identical.

In the following, we present a minimal fully viable PoC OpAl attack smart
contract written in Solidty [50], that relies on the aforementioned hash-based fork
oracle. Our contract code (Listing 1.1) is loosely based on the Executor contract
from the Gnosis-Safe Wallet [37], which allows the forwarding of arbitrary func-



OpAl : How I Learned to Stop Worrying and Love the Fork 57

tion calls. Instead of forwarding a call directly, the contract first evaluates if the
block hash at a particular height of the current ledger matches the commitment
hash that is provided as an additional parameter in the transaction data. This
is realized through the blockhash() function [51]. If the blockhash matches the
commitment, the function call is forwarded. Else, no action is performed, i.e.,
the action is reversed whenever the transaction is replayed in a fork.

Outline of the Attack. An adversary wishing to engage in OpAl first needs to
deploy the attack contract. Once the contract is successfully deployed, whenever
they wish to perform a transaction with OpAl functionality, instead of calling a
function f() in the target contract or sending funds directly, they simply forward
this call to the forward() function (Line 15 in Listing 1.1) of the deployed attack
contract, together with the appropriate parameters. Specifically, the adversary
generates transaction t that calls forward in the attack contract with the fol-
lowing parameters: i) the target address; ii) the block hash and height h of the
current chain tip; iii) the encoded function name to be called at the target f()
together with its parameters; iv) any Ether that shall be sent; and broadcasts t
to the network. Ideally, the transaction fee is high enough for t to be immediately
included in the next block h+1. Otherwise, the required fork depth increases in
the number of blocks the chain grows between the creation and inclusion of t.

To the recipient of t, the interaction pattern will appear as if the user
employed a regular wallet contract. Unless they perform an analysis of the exe-
cution trace, the malicious behavior only becomes apparent once the attack
conditions are triggered, i.e., during a fork. In case the adversary is lucky and a
fork at, or before, height h occurs, and their transaction is replayed within this
fork, the alternative attack branch of the contract is executed automatically.

5.3 Cost Overhead of PoC Attack in Ethereum

We quantify the additional costs incurred when augmenting a transaction with
OpAl capabilities by deploying our attack contract in a private Ethereum test-
net and measuring the gas utilization for basic interactions, such as ERC-20
token [49] transfers. Our PoC OpAl attack adds a constant overhead of gas that
depends on the number of parameters supplied to the target function f(). The
deployment transaction for the contract in Listing 1.1 required 393 175 gas. As
it is not essential for the contract to be deployed in a recent block, and can be
done well in advance of any attacks, we assume a gas price of 50 GWei, which
translates to deployment costs of ≈0.02 Ether or, at an exchange rate of 2 000
USD, approximately 40 USD. Note that this contract needs to be deployed once,
after which the only overhead derives from using the forwarding function. For
ERC-20 token interactions (approve, transfer, transferFrom), using OpAl adds
≈3 000 gas, which equates to ≈8% overhead. At the time of writing, assuming
a gas price of 100 GWei for timely inclusion4 of the transaction, this overhead

4 For simplicity we consider legacy transactions and omit pricing based on EIP-1559.



58 N. Stifter et al.

translates to ≈0.6 USD higher fees if a transaction is augmented to support
OpAl attacks, rendering our attack a viable default strategy for most cases.

6 Empirical Analysis of Ethereum Transaction Traces

We empirically analyze the execution traces of 922 562 transactions from 5 000
Ethereum blocks in order to identify and characterize transactions where ledger
context is accessed. Hereby, block selection for the analysis was performed in
batches of 100 consecutive blocks every 1000 blocks, starting from block height
14 010 000 up to block 14 059 099 to obtain a sample spread over a wider time
window. The selection of blocks for our analysis was necessitated due to the
steep storage and processing requirements for analyzing full execution traces. For
every considered block, we parse the execution trace of all included transactions
and record whether the trace contains EVM opcodes that are characteristic
for accessing the ledger context. The specific opcodes5 that we considered are
highlighted in Table 1. Our analysis reveals that 231 271 transactions, or ≈ 25%,
include at least one of these opcodes, whereby roughly every 5th transaction uses
TIMESTAMP, while the other opcodes are encountered considerably less often.

Table 1. EVM Opcode occurrence within the analyzed block range.

Opcode (OP) TIMESTAMP SELFBALANCE NUMBER BALANCE CHAINID BASEFEE BLOCKHASH COINBASE DIFFICULTY GASLIMIT

TX containing OP 199731 63594 36859 4324 8253 777 3425 3882 1251 906

% of TX with OP 21.65% 6.893% 3.995% 0.469% 0.895% 0.084% 0.371% 0.421% 0.136% 0.098%

Blocks cont. OP 4886 4767 4529 2265 3071 641 1830 1897 812 545

% of Blocks with OP 97.72% 95.34% 90.58% 45.3% 61.42% 12.82% 36.6% 37.94% 16.24% 10.9%

Of particular interest are transactions that include both BLOCKHASH and
NUMBER opcodes in their traces, as this combination is also present in our PoC
OpAl attack. We are able to identify 3 338 transactions with such an OpAl -like
opcode signature within 1 823 (≈36%) of the analyzed blocks. Table 2 shows the
top 10 contract addresses that these transactions were directed at, as well as
a generalized categorization of their purpose based on publicly available infor-
mation. Analyzing the decompiled6 bytecode of the contract with the second
most OpAl -like transaction interactions, we indeed discover an OpAl -like pat-
tern. Listing 1.2 highlights the relevant code section, which, in plaintext, eval-
uates whether the first 4 Bytes of the previous block hash match those stored
as part of the transaction data and reverts the execution otherwise. We further
confirm this behavior by observing transactions to the aforementioned contract
that were reverted due to an incorrect commitment7. While this pattern is likely
intended to render the transaction context sensitive to prevent execution in an
undesirable state, it could nevertheless be used for OpAl attacks simply by sub-
sequently using the transferred/traded funds for payments to a victim.
5 Cf. the Ethereum Yellow paper [51] for details on EVM opcodes and their behavior.
6 Cf. https://ethervm.io/decompile/0x000000000035B5e5ad9019092C665357240f594e.
7 Cf. txn: 0x2368617cf02cf083eed2d8691004c1ad0176976b6fa83873bc6b0fd7de4cc7fc.

https://ethervm.io/decompile/0x000000000035B5e5ad9019092C665357240f594e


OpAl : How I Learned to Stop Worrying and Love the Fork 59

Table 2. Contracts with the highest number of transaction interactions with EVM
opcodes that are also characteristic of OpAl . (?) denotes uncertain categorizations.

Contract address TX int. Purpose Name Source Opcode purpose

0xc5F85281d4402850ff436b959a925a0e811D78d3 557 Game/Token CnMGame yes randomness?

0x000000000035B5e5ad9019092C665357240f594e 411 MEV Bot? ? no context sensitivity?

0xEef86c2E49E11345F1a693675dF9a38f7d880C8F 313 MEV Bot? ? no context sensitivity?

0x5E4e65926BA27467555EB562121fac00D24E9dD2 264 Layer 2 rollup optimism.io yes caching/processing

0x56a76bcC92361f6DF8D75476feD8843EdC70e1C9 227 Layer 2 rollup metis.io yes caching/processing

0xB6eD7644C69416d67B522e20bC294A9a9B405B31 222 Token 0xbitcoin.org yes context sensitivity

0xd6e382aa7A09fc4A09C2fb99Cfce6A429985E65d 221 Game/Token Doomsday NFT (BUNKER) yes randomness

0x75E9Abc7E69fc46177d2F3538C0B92d89054eC91 130 Token/NFT EnterDAO Sharded Minds yes randomness

0x563bDabAa8846ec445b25Bfbed88d160890a02Ed 115 MEV Bot? ? no context sensitivity?

0xa10FcA31A2Cb432C9Ac976779DC947CfDb003EF0 111 MEV Bot? ? no context sensitivity?

1 function func_060C () {
2 if (msg.data[0x04:0x24] >> 0xe0 ==
3 block.blockHash(block.number + ~0x00) >> 0xe0) { return; }
4 // ... code omitted for brevity
5 revert(memory[0x60:0xc4]); }

Listing 1.2. Code snippet from decompiled contract (tagged as MEV bot) showing
OpAl-like pattern. Notice that ~0x00 corresponds to −1 in Two’s complement.

7 Mitigation Strategies Against OpAl

Having outlined the principles behind algorithmic double-spending, we now dis-
cuss possible prevention or mitigation strategies. Hereby, we broadly distinguish
between two categories: i) Approaches that address instability in consensus, i.e.,
a lack of finality. ii) Approaches that seek to limit the effects of semantic mal-
leability. Finally, we discuss if the characterization of blockchains as replicated
state machines is accurate in light of semantic malleability.

Mitigating OpAl Through Stronger Consensus Guarantees: Essentially,
the majority of distributed ledgers rely on consensus to agree upon the order of
transactions among participants in order to prevent double-spending [21]. Thus,
one possible defensive approach against OpAl attacks is to prevent players from
concurrently interacting with malleable ledger state until it is sufficiently stable.
In this regard, it appears advantageous to achieve fast and guaranteed consensus
finality, which remains an active research topic for decentralized ledger designs
[41]. Our Definition (Definition 1) of double-spending highlights the requirement
of some stale or invalid system state in order to fool a victim. The existence of
hasty players who are willing to act upon such state renders double-spending
attacks feasible in practice, even if the consensus protocol in principle could pro-
vide stronger guarantees. In this regard, effective mitigation strategies to combat
double-spending may also entail the stricter enforcement of safe interaction pat-
terns in client software and cryptocurrency wallets, and a better understanding
of the behavior and mental models of cryptocurrency users [34].



60 N. Stifter et al.

However, if the security assumptions of the underlying system are compro-
mised, in particular, Nakamoto-style distributed ledgers can suffer from deep
forks where previously assumed stable ledger state is reverted. Aside from the
potential of targeted attacks against the protocol [1,48], technical failures8 can
also lead to such a violation of the security assumptions [31,35]. Notice that in
this regard there is a crucial difference between OpAl and equivocation-based
double-spending. In the latter, an adversary has to actively monitor the net-
work for forks and disseminate conflicting double-spending transactions that are
at risk of being easily detected and prevented at the peer-to-peer layer [20,27].
OpAl attacks and algorithmic double-spending, on the other hand, may prove
particularly severe. Any transaction that was included in a blockchain that is
replayed on a fork faces the risk of triggering a hidden OpAl attack. If a fork in
excess of k blocks occurs, triggered OpAl attacks have a high probability of suc-
cess. A possible mitigation strategy to limit the effects of OpAl in deep forks is
the utilization of checkpointing [26]. Another line of research seeks to strengthen
the guarantees of Nakamoto consensus by achieving consensus finality [13,41].
It may also be preferable to sacrifice liveness by halting execution rather than
risking systemic risk through OpAl attacks.

Mitigating Semantic Malleability: As we have shown in Sects. 2 and 3,
semantic malleability lies at the core of enabling algorithmic double-spending.
Semantically malleable transactions allow for different state transitions, depend-
ing on the input state and execution environment at the time of processing –
a property that is generally observed within smart contract platforms. In this
regard, we believe that the expressive transaction semantics associated with
smart contract functionality poses a fundamental challenge when trying to com-
bat algorithmic double-spending. Drawing upon the concept of guard functions
from Luu et al. [32] and context sensitive transactions Gaži et al. [19] and Botta
et al. [4] rely on, transaction validity should more explicitly be constrained to
input states that only lead to desirable outcomes for the sender. While such
patterns do not prevent the possibility of algorithmic double-spending, they can
avert that a user’s transaction executes in a state that leads to an undesirable
outcome. In light of recent research in regard to order-fairness in consensus
[28,55], the aforementioned pattern could also help to mitigate the potential
negative impact of malicious orderings. Similar to the concept of the Let’s Go
Shopping Defense [23], a highly questionable mitigation strategy might be to
oneself proactively engage in OpAl (counter-) attacks in order to reduce coun-
terparty risk and try to hedge against the potentially detrimental effects of any
deep blockchain fork, should it ever occur.

Another mitigation strategy by which to address semantic malleability and
algorithmic double-spending is through the analysis and classification of trans-
action semantics, in order to try and identify potential threats and malicious
behavior. Hereby, the challenges lie on the one side, in finding efficient techniques
for static and dynamic code analysis that can be applied, in real-time, to identify
8 We note that scheduled protocol updates carry a risk of unintentional forks, and an

adversary may try to leverage this by performing OpAl transactions at that time.



OpAl : How I Learned to Stop Worrying and Love the Fork 61

potentially malicious transactions before they are processed, and on the other
side, in how to define what is considered malicious behavior and also enforce any
transaction rejection policies within decentralized systems [16,17,52,53].

For platforms that do not support expressive transaction semantics, it may
appear that the solution to this problem is to enforce only a single valid state
transition for transactions, such as the EUTXO model [7] employed by Cardano.
However, in this case the possibility of algorithmic double-spending still arises
if the validity of a transaction can be tied to particular ledger states, which is
generally the case. In the UTXO model of Bitcoin [2], transaction expressiveness
and access to ledger state are sufficiently constrained to prevent practicable OpAl
attacks, apart from the possibility of using recent coinbase transactions to limit
replay validity in case of deep-forks. However, since the mechanism design of most
cryptocurrencies relies on the issuance of rewards to incentivize participation [6],
it is unclear if the underlying issue could be completely avoided in practice.

7.1 Can Blockchains Be Characterized as State Machines?

In his seminal work on the state machine approach, F. B. Schneider provides the
following semantic characterization of a replicated state machine (RSM): “Out-
puts of a state machine are completely determined by the sequence of requests it
processes, independent of time and any other activity in a system.” [43] Interest-
ingly, while blockchains are often considered to realize RSMs, e.g., in the model
we adopt from Luu et al., we observe (Sect. 4) that in practice, ledger designs
appear to actually deviate from this characterization.

First, consider the herein discussed property of semantic malleability in trans-
actions. Semantic malleability in itself does not violate the above characteriza-
tion, as a mere reordering of transactions, i.e., requests, may lead to semantic
malleability without requiring any access to time or activity within the system.
However, in practice, ledger designs often allow transaction semantics to depend
on external ledger context that is not solely defined by such requests, i.e., time
or other external data (See Sect. 5). In essence, being able to define functions
that can act upon such context within transaction semantics, such as previous
block hashes, the block height, coinbase transactions, or block time, can cause a
violation of replay equivalence or eventual replay validity, both of which can be
directly derived as required properties of a RSM from the above characterization.

Second, blockchain designs generally offer rewards as an incentive mechanism
for block producers to participate in the consensus protocol. Under the assump-
tion that a block merely represents an ordered set of transactions, i.e., requests,
and transactions can not access any external state defined within blocks, this
model would appear to realize a RSM. However, if we include the fact that block
rewards represent transactions or state transitions that depend on a particular
external state, namely the block itself that justifies the reward, the model is no
longer independent of the system state.

We note that one possibility to amend this issue is to either include the cre-
ation of blocks as requests, or model state updates entirely from the perspective
of blocks and not at the transaction level. The latter approach is, for instance,



62 N. Stifter et al.

taken by formal models that analyze Nakamoto consensus [18,42]. Neverthe-
less, even if one considers state machine replication only from the perspective of
blocks and not individual transactions, there can still exist external dependencies
on the environment, in particular on time. Consider that receiving late or early
blocks may render them (temporarily) invalid by the protocol rules, leading to
different possible interpretations of the same sequence of requests and resulting
final state depending on the current system time.

8 Conclusion

We have described and analyzed a novel class of double-spending attacks, called
(opportunistic) algorithmic double-spending (OpAl), and shown that OpAl can
readily be realized in stateful smart contract platforms, by presenting a proof-
of-concept implementation for EVM-based designs. OpAl itself does not increase
the likelihood or severity of blockchain forks, which are a prerequisite for most
double-spending attacks. Instead, OpAl allows regular transactions performed by
anyone to opportunistically leverage forking events for double-spending attacks
while evading common detection strategies and offering a degree of plausible
deniability. A particularly worrying property of OpAl is the ability for already
processed transactions to trigger hidden double-spending attacks whenever they
are replayed in a fork. Hereby, our empirical analysis of 922 562 transaction traces
in Ethereum reveals that transactions with OpAl -like semantics already exist in
practice. While these transactions are likely intended for a different use case, the
effect in case of a fork could still lead to unintentional double-spending. Attacks
or technical failures that lead to deep forks may hence pose an even greater
systemic risk than previously assumed. It would appear that the most promising
mitigation strategy against OpAl is achieving fast consensus finality, combined
with avoiding semantic malleability in transactions.

Acknowledgements. This material is based upon work partially supported by (1)
the Christian-Doppler-Laboratory for Security and Quality Improvement in the Pro-
duction System Lifecycle; The financial support by the Austrian Federal Ministry for
Digital and Economic Affairs, the Nation Foundation for Research, Technology and
Development and University of Vienna, Faculty of Computer Science, Security & Pri-
vacy Group is gratefully acknowledged; (2) SBA Research; the competence center SBA
Research (SBA-K1) funded within the framework of COMET Competence Centers for
Excellent Technologies by BMVIT, BMDW, and the federal state of Vienna, man-
aged by the FFG; (3) the FFG Industrial PhD projects 878835 and 878736. (4) the
FFG ICT of the Future project 874019 dIdentity & dApps. (5) the European Union’s
Horizon 2020 research and innovation programme under grant agreement No 826078
(FeatureCloud). We would also like to thank our anonymous reviewers for their valuable
feedback.



OpAl : How I Learned to Stop Worrying and Love the Fork 63

References

1. Apostolaki, M., Zohar, A., Vanbever, L.: Hijacking bitcoin: routing attacks on
cryptocurrencies. In: 2017 IEEE Symposium on Security and Privacy (SP), pp.
375–392. IEEE (2017)

2. Atzei, N., Bartoletti, M., Lande, S., Zunino, R.: A formal model of bitcoin transac-
tions. In: Meiklejohn, S., Sako, K. (eds.) FC 2018. LNCS, vol. 10957, pp. 541–560.
Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-662-58387-6 29

3. Badertscher, C., Gaži, P., Kiayias, A., Russell, A., Zikas, V.: Ouroboros genesis:
composable proof-of-stake blockchains with dynamic availability. In: Proceedings
of the 2018 ACM SIGSAC Conference on Computer and Communications Security,
pp. 913–930 (2018)

4. Botta, V., Friolo, D., Venturi, D., Visconti, I.: Shielded computations in smart
contracts overcoming forks. In: Financial Cryptography and Data Security-25th
International Conference, FC, pp. 1–5 (2021)

5. Brünjes, L., Gabbay, M.J.: UTxO- vs account-based smart contract blockchain
programming paradigms. In: Margaria, T., Steffen, B. (eds.) ISoLA 2020. LNCS,
vol. 12478, pp. 73–88. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
61467-6 6

6. Carlsten, M., Kalodner, H., Weinberg, S.M., Narayanan, A.: On the instability
of bitcoin without the block reward. In: Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, pp. 154–167. ACM (2016)

7. Chakravarty, M.M.T., Chapman, J., MacKenzie, K., Melkonian, O., Peyton Jones,
M., Wadler, P.: The extended UTXO model. In: Bernhard, M., et al. (eds.) FC
2020. LNCS, vol. 12063, pp. 525–539. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-54455-3 37

8. Corduan, J., Vinogradova, P., Gudemann, M.: A formal specification of the cardano
ledger (2019)

9. Daian, P., et al.: Flash boys 2.0: frontrunning in decentralized exchanges, miner
extractable value, and consensus instability. In: 2020 IEEE Symposium on Security
and Privacy (SP), pp. 910–927. IEEE (2020)

10. David, B., Gaži, P., Kiayias, A., Russell, A.: Ouroboros praos: an adaptively-secure,
semi-synchronous proof-of-stake blockchain. In: Nielsen, J.B., Rijmen, V. (eds.)
EUROCRYPT 2018. LNCS, vol. 10821, pp. 66–98. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-78375-8 3

11. Delgado-Segura, S., Pérez-Solà, C., Navarro-Arribas, G., Herrera-Joancomart́ı, J.:
Analysis of the bitcoin UTXO set. In: Zohar, A., et al. (eds.) FC 2018. LNCS, vol.
10958, pp. 78–91. Springer, Heidelberg (2019). https://doi.org/10.1007/978-3-662-
58820-8 6

12. Di Angelo, M., Salzer, G.: Wallet contracts on ethereum. In: 2020 IEEE Inter-
national Conference on Blockchain and Cryptocurrency (ICBC), pp. 1–2. IEEE
(2020)

13. Dinsdale-Young, T., Magri, B., Matt, C., Nielsen, J.B., Tschudi, D.: Afgjort: a
partially synchronous finality layer for blockchains. In: Galdi, C., Kolesnikov, V.
(eds.) SCN 2020. LNCS, vol. 12238, pp. 24–44. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-57990-6 2

14. Eskandari, S., Moosavi, S., Clark, J.: SoK: transparent dishonesty: front-running
attacks on blockchain. In: Bracciali, A., Clark, J., Pintore, F., Rønne, P.B., Sala, M.
(eds.) FC 2019. LNCS, vol. 11599, pp. 170–189. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-43725-1 13

https://doi.org/10.1007/978-3-662-58387-6_29
https://doi.org/10.1007/978-3-030-61467-6_6
https://doi.org/10.1007/978-3-030-61467-6_6
https://doi.org/10.1007/978-3-030-54455-3_37
https://doi.org/10.1007/978-3-030-54455-3_37
https://doi.org/10.1007/978-3-319-78375-8_3
https://doi.org/10.1007/978-3-319-78375-8_3
https://doi.org/10.1007/978-3-662-58820-8_6
https://doi.org/10.1007/978-3-662-58820-8_6
https://doi.org/10.1007/978-3-030-57990-6_2
https://doi.org/10.1007/978-3-030-57990-6_2
https://doi.org/10.1007/978-3-030-43725-1_13
https://doi.org/10.1007/978-3-030-43725-1_13


64 N. Stifter et al.

15. Ethereum Community: Issue#134 ethereum/eips (2016). https://github.com/
ethereum/EIPs/issues/134

16. Ferreira Torres, C., Baden, M., Norvill, R., Jonker, H.: Ægis: smart shielding of
smart contracts. In: Proceedings of the 2019 ACM SIGSAC Conference on Com-
puter and Communications Security, pp. 2589–2591 (2019)

17. Ferreira Torres, C., Iannillo, A.K., Gervais, A., et al.: The eye of horus: spotting
and analyzing attacks on ethereum smart contracts. In: International Conference
on Financial Cryptography and Data Security, Grenada, 1–5 March 2021 (2021)

18. Garay, J., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol: analysis
and applications. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS,
vol. 9057, pp. 281–310. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-46803-6 10

19. Gaži, P., Kiayias, A., Russell, A.: Stake-Bleeding Attacks on Proof-of-Stake
Blockchains. Cryptology ePrint Archive, Report 2018/248 (2018)

20. Grundmann, M., Neudecker, T., Hartenstein, H.: Exploiting transaction accumula-
tion and double spends for topology inference in bitcoin. In: Zohar, A., et al. (eds.)
FC 2018. LNCS, vol. 10958, pp. 113–126. Springer, Heidelberg (2019). https://doi.
org/10.1007/978-3-662-58820-8 9

21. Guerraoui, R., Kuznetsov, P., Monti, M., Pavlovič, M., Seredinschi, D.A.: The con-
sensus number of a cryptocurrency. In: Proceedings of the 2019 ACM Symposium
on Principles of Distributed Computing, pp. 307–316 (2019)

22. Iqbal, M., Matulevičius, R.: Exploring sybil and double-spending risks in
blockchain systems. IEEE Access 9, 76153–76177 (2021)

23. Judmayer, A., Stifter, N., Schindler, P., Weippl, E.: Estimating (miner) extractable
value is hard, let’s go shopping! In: 3rd Workshop on Coordination of Decentralized
Finance (CoDecFin) (2022, to appear)

24. Judmayer, A., et al.: Pay to win: cheap, crowdfundable, cross-chain algorith-
mic incentive manipulation attacks on pow cryptocurrencies (2019). https://ia.
cr/2019/775

25. Judmayer, A., et al.: SoK: algorithmic incentive manipulation attacks on permis-
sionless PoW cryptocurrencies. In: Bernhard, M., et al. (eds.) FC 2021. LNCS, vol.
12676, pp. 507–532. Springer, Heidelberg (2021). https://doi.org/10.1007/978-3-
662-63958-0 38

26. Karakostas, D., Kiayias, A.: Securing proof-of-work ledgers via checkpointing. In:
2021 IEEE International Conference on Blockchain and Cryptocurrency (ICBC),
pp. 1–5. IEEE (2021)

27. Karame, G.O., Androulaki, E., Capkun, S.: Double-spending fast payments in bit-
coin. In: Proceedings of the 2012 ACM Conference on Computer and Communica-
tions Security, pp. 906–917 (2012)

28. Kelkar, M., Zhang, F., Goldfeder, S., Juels, A.: Order-fairness for byzantine consen-
sus. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS, vol. 12172, pp.
451–480. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56877-1 16

29. Kiayias, A., Russell, A., David, B., Oliynykov, R.: Ouroboros: a provably secure
proof-of-stake blockchain protocol. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017.
LNCS, vol. 10401, pp. 357–388. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-63688-7 12

30. Kolluri, A., Nikolic, I., Sergey, I., Hobor, A., Saxena, P.: Exploiting the laws of
order in smart contracts. In: Proceedings of the 28th ACM SIGSOFT International
Symposium on Software Testing and Analysis, pp. 363–373 (2019)

https://github.com/ethereum/EIPs/issues/134
https://github.com/ethereum/EIPs/issues/134
https://doi.org/10.1007/978-3-662-46803-6_10
https://doi.org/10.1007/978-3-662-46803-6_10
https://doi.org/10.1007/978-3-662-58820-8_9
https://doi.org/10.1007/978-3-662-58820-8_9
https://ia.cr/2019/775
https://ia.cr/2019/775
https://doi.org/10.1007/978-3-662-63958-0_38
https://doi.org/10.1007/978-3-662-63958-0_38
https://doi.org/10.1007/978-3-030-56877-1_16
https://doi.org/10.1007/978-3-319-63688-7_12
https://doi.org/10.1007/978-3-319-63688-7_12


OpAl : How I Learned to Stop Worrying and Love the Fork 65

31. Lovejoy, J.P.T.: An empirical analysis of chain reorganizations and double-spend
attacks on proof-of-work cryptocurrencies. Master’s thesis, Massachusetts Institute
of Technology (2020)

32. Luu, L., Chu, D.H., Olickel, H., Saxena, P., Hobor, A.: Making smart contracts
smarter. In: 23rd ACM Conference on Computer and Communications Security
(ACM CCS 2016) (2016)

33. Maersk, N.: Thedaohardforkoracle (2016). https://github.com/veox/solidity-
contracts/blob/TheDAOHardForkOracle-v0.1/TheDAOHardForkOracle/
TheDAOHardForkOracle.sol

34. Mai, A., Pfeffer, K., Gusenbauer, M., Weippl, E., Krombholz, K.: User mental
models of cryptocurrency systems-a grounded theory approach. In: Sixteenth Sym-
posium on Usable Privacy and Security (SOUPS 2020), pp. 341–358 (2020)

35. McCorry, P., Heilman, E., Miller, A.: Atomically Trading with Roger: gambling on
the success of a hardfork. In: CBT 2017: Proceedings of the International Workshop
on Cryptocurrencies and Blockchain Technology (2017)

36. McCorry, P., Hicks, A., Meiklejohn, S.: Smart contracts for bribing miners. In:
Zohar, A., et al. (eds.) FC 2018. LNCS, vol. 10958, pp. 3–18. Springer, Heidelberg
(2019). https://doi.org/10.1007/978-3-662-58820-8 1

37. Meissner, R.: Gnosis community: Gnosis safe contracts - Executor.sol. https://
github.com/safe-global/safe-contracts/blob/main/contracts/base/Executor.sol.
Accessed 28 May 2022

38. Nakamoto, S.: Bitcoin: A Peer-to-Peer Electronic Cash System (2008)
39. Natoli, C., Gramoli, V.: The blockchain anomaly. In: 2016 IEEE 15th International

Symposium on Network Computing and Applications (NCA), pp. 310–317. IEEE
(2016)

40. Nayak, K., Kumar, S., Miller, A., Shi, E.: Stubborn mining: generalizing selfish
mining and combining with an eclipse attack. In: 1st IEEE European Symposium
on Security and Privacy. IEEE (2016)

41. Neu, J., Tas, E.N., Tse, D.: Ebb-and-flow protocols: a resolution of the availability-
finality dilemma. In: 2021 IEEE Symposium on Security and Privacy (SP), pp.
446–465. IEEE (2021)

42. Pass, R., Seeman, L., Shelat, A.: Analysis of the blockchain protocol in asyn-
chronous networks. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017.
LNCS, vol. 10211, pp. 643–673. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-56614-6 22

43. Schneider, F.B.: Implementing fault-tolerant services using the state machine app-
roach: a tutorial. ACM Comput. Surv. (CSUR) 22(4), 299–319 (1990)

44. Schwarz-Schilling, C., Neu, J., Monnot, B., Asgaonkar, A., Tas, E.N., Tse, D.:
Three attacks on proof-of-stake ethereum. In: International Conference on Finan-
cial Cryptography and Data Security (2022)

45. Sergey, I., Hobor, A.: A concurrent perspective on smart contracts. In: Brenner,
M., et al. (eds.) FC 2017. LNCS, vol. 10323, pp. 478–493. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-70278-0 30

46. Sompolinsky, Y., Zohar, A.: Bitcoin’s Security Model Revisited. arXiv preprint
arXiv:1605.09193 (2016)

47. Todd, P.: Op checklocktimeverify (2014). https://github.com/bitcoin/bips/blob/
master/bip-0065.mediawiki

48. Tran, M., Choi, I., Moon, G.J., Vu, A.V., Kang, M.S.: A stealthier partitioning
attack against bitcoin peer-to-peer network. In: Proceedings of IEEE Symposium
on Security and Privacy (IEEE S&P) (2020)

https://github.com/veox/solidity-contracts/blob/TheDAOHardForkOracle-v0.1/TheDAOHardForkOracle/TheDAOHardForkOracle.sol
https://github.com/veox/solidity-contracts/blob/TheDAOHardForkOracle-v0.1/TheDAOHardForkOracle/TheDAOHardForkOracle.sol
https://github.com/veox/solidity-contracts/blob/TheDAOHardForkOracle-v0.1/TheDAOHardForkOracle/TheDAOHardForkOracle.sol
https://doi.org/10.1007/978-3-662-58820-8_1
https://github.com/safe-global/safe-contracts/blob/main/contracts/base/Executor.sol
https://github.com/safe-global/safe-contracts/blob/main/contracts/base/Executor.sol
https://doi.org/10.1007/978-3-319-56614-6_22
https://doi.org/10.1007/978-3-319-56614-6_22
https://doi.org/10.1007/978-3-319-70278-0_30
http://arxiv.org/abs/1605.09193
https://github.com/bitcoin/bips/blob/master/bip-0065.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0065.mediawiki


66 N. Stifter et al.

49. Victor, F., Lüders, B.K.: Measuring ethereum-based ERC20 token networks. In:
Goldberg, I., Moore, T. (eds.) FC 2019. LNCS, vol. 11598, pp. 113–129. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-32101-7 8

50. Wohrer, M., Zdun, U.: Smart contracts: security patterns in the ethereum ecosys-
tem and solidity. In: 2018 International Workshop on Blockchain Oriented Software
Engineering (IWBOSE), pp. 2–8. IEEE (2018)

51. Wood, G., et al.: Ethereum: a secure decentralised generalised transaction ledger.
Ethereum Project Yellow Paper 151(2014), 1–32 (2014)

52. Wu, L., et al.: EthScope: A Transaction-centric Security Analytics Framework
to Detect Malicious Smart Contracts on Ethereum. arXiv:2005.08278 (2020).
arXiv: 2005.08278

53. Zhang, M., Zhang, X., Zhang, Y., Lin, Z.: {TXSPECTOR}: uncovering attacks in
ethereum from transactions. In: 29th {USENIX} Security Symposium ({USENIX}
Security 2020), pp. 2775–2792 (2020)

54. Zhang, R., Preneel, B.: Lay down the common metrics: evaluating proof-of-work
consensus protocols’ security. In: 2019 IEEE Symposium on Security and Privacy
(SP). IEEE (2019)

55. Zhang, Y., Setty, S., Chen, Q., Zhou, L., Alvisi, L.: Byzantine ordered consen-
sus without byzantine oligarchy. In: 14th {USENIX} Symposium on Operating
Systems Design and Implementation ({OSDI} 2020), pp. 633–649 (2020)

56. Zhou, L., Qin, K., Torres, C.F., Le, D.V., Gervais, A.: High-frequency trading
on decentralized on-chain exchanges. In: 2021 IEEE Symposium on Security and
Privacy (SP), pp. 428–445. IEEE (2021)

https://doi.org/10.1007/978-3-030-32101-7_8
http://arxiv.org/abs/2005.08278
http://arxiv.org/abs/2005.08278

	Opportunistic Algorithmic Double-Spending:
	1 Introduction
	1.1 Related Work
	1.2 Paper Structure

	2 What is Algorithmic Double-Spending?
	3 System Model and Assumptions
	4 Semantic Malleability of Bitcoin and Cardano
	5 Semantic Malleability in Ethereum
	5.1 How to Construct an OpAl Fork Oracle in Ethereum
	5.2 Proof of Concept OpAl Attack Contract
	5.3 Cost Overhead of PoC Attack in Ethereum

	6 Empirical Analysis of Ethereum Transaction Traces
	7 Mitigation Strategies Against OpAl
	7.1 Can Blockchains Be Characterized as State Machines?

	8 Conclusion
	References




