
XSPIR: Efficient Symmetrically Private
Information Retrieval from Ring-LWE

Chengyu Lin(B), Zeyu Liu, and Tal Malkin

Columbia University, New York, NY 10027, USA
{chengyu,tal}@cs.columbia.edu, zl2967@columbia.edu

Abstract. Private Information Retrieval (PIR) allows a client to
retrieve one entry from a database held by a server, while hiding from
the server which entry has been retrieved. Symmetrically Private Infor-
mation Retrieval (SPIR) additionally protects the privacy of the data,
requiring that the client obtains only its desired entry, and no informa-
tion on other data entries.

In recent years, considerable effort has been expanded towards making
PIR practical, reducing communication and computation. State-of-the-
art PIR protocols are based on homomorphic encryption from the ring-
LWE assumption. However, these efficient PIR protocols do not achieve
database privacy, and leak a lot of information about other data entries,
even when the client is honest. Generic transformation of these PIR pro-
tocols to SPIR have been suggested, but not implemented.

In this paper, we propose XSPIR, a practically efficient SPIR scheme.
Our scheme is based on homomorphic encryption from ring-LWE like
recent PIR works, but achieves a stronger security guarantee with low
performance overhead. We implement XSPIR, and run experiments com-
paring its performance against SealPIR (Angel et al., IEEE S&P 2018)
and MulPIR (Ali et al., USENIX SECURITY 2021). We find that, even
though our scheme achieves a stronger security guarantee, our perfor-
mance is comparable to these state-of-the-art PIR protocols.

Keywords: Private information retrieval · Symmetrically private
information retrieval · Homomorphic encryption · Ring-LWE

1 Introduction

Private information retreival (PIR) [19] allows a client to retrieve a data entry
from a server, while hiding which entry was retrieved from the server. In this
paper we focus on the single-server setting, which requires computational secu-
rity (sometimes referred to as computational PIR, or cPIR). This is an important
building block which can benefit many privacy preserving applications, including
private media steaming [2,38], subscription [18], private group messaging [17],
anonymous communication [6,37,44,53], and ad delivery [36]. However, PIR is
quite costly. First, it requires the server to process the whole database in order
to maintain the privacy of the query. This is inherent, since if certain entries

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
V. Atluri et al. (Eds.): ESORICS 2022, LNCS 13554, pp. 217–236, 2022.
https://doi.org/10.1007/978-3-031-17140-6_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-17140-6_11&domain=pdf
https://doi.org/10.1007/978-3-031-17140-6_11

218 C. Lin et al.

are not processed, the server would know they are not retrieved by the client.
Moreover, existing schemes require a much higher overhead in computation and
communication, depending on a cryptographic security parameter.

There are many PIR protocols in the literature [1,2,12,25,26,30,33,41,43,46,
61], including considerable implementation efforts in recent years. These imple-
mentations follow two lines. The first [21,22,55] follows an approach introduced
by Gentry and Ramzan [33], which has good communication but a high computa-
tional cost. The second approach builds on XPIR by Aguilar-Melchor et al. [2],
based on homomorphic encryption. This approach includes the most efficient
implementations to date: SealPIR by Angel et al. [5], MulPIR by Ali et al. [4],
and SHECS-PIR by Park et al. [57].

A stronger version of PIR is Symmetrically Private Information Retrieval
(SPIR) [34], where we additionally require privacy for the server’s data. Specif-
ically, the requirement is that the client should only learn the retrieved data
entry, but not any information about any other data entries. This can be useful
in many applications where the data consists of sensitive information (e.g., a med-
ical database).

Currently, all these implemented PIR schemes do not satisfy such a security
guarantee. For the homomorphic encryption based protocols (the line we will fol-
low in this paper), the reason is the following. To improve efficiency, these pro-
tocols take advantage of compressing more data into a single ciphertext, allowing
the client to retrieve a large chunk of data from each ciphertext (usually more than
one entry). Therefore, simply reducing the amount of data packed in each cipher-
text would cause a large overhead in efficiency. Moreover, even with only one entry
packed in one ciphertext, these schemes leak information about the data beyond
a single entry. One can apply standard techniques to add data privacy (which is
indeed discussed in some of the above works, but not implemented), but this may
result in further decrease in efficiency, as well as other disadvantages, discussed
below.

1.1 Our Contributions

In this work, we construct XSPIR, a practically efficient SPIR scheme. We follow
the line of works that started with XPIR and culminated in SealPIR, MulPIR,
SHECS-PIR [2,4,5,57], and add data privacy against a semi-honest client. We
implement our scheme, thus providing the first implementation of a SPIR pro-
tocol in many years, and provide detailed comparisons in Sect. 4.

Crucially, we use techniques that are directly integrated with the underlying
BFV Leveled Homomorphic Encryption scheme [10,28] (based on the ring-LWE
assumption). This is in contrast with general ways to transform PIR schemes to
SPIR schemes as proposed in previous works. For example, [4] discuss in their
appendix how data privacy can be added on top of MulPIR, by using oblivi-
ous Pseudorandom Function (OPRF), for which the constructions are mainly
based on DDH assumption [47,48]. Our technical approach enjoys the following
advantages.

XSPIR: Efficient Symmetrically Private Information Retrieval 219

– Better security with low overhead: we add data privacy against a semi-honest
client (namely, the client cannot learn any information beyond the retrieved
entry), while paying only a small price in efficiency. Specifically, compared to
the state-of-the-art PIR protocols (which leak information on data), we are
about 30–40% slower in computation but marginally better in communication.

– Extended functionality: since our scheme directly builds on BFV without
dependency on extra primitives, we can manipulate the BFV ciphertexts to
allow retrieval of more complex functions of data entries (rather than just
retrieving an individual entry). For example, if the client wants to query the
summation of the cube of two entries (i.e., x3

i + x3
j for entries i, j), we can

easily modify our scheme to achieve this functionality (relying on straight-
forward properties of BFV). The revelation of the circuit evaluation result
will not leak any extra information about the two entries or the rest of the
data.

– No new assumption: as an added benefit, our SPIR scheme does not need
to rely on any additional assumption beyond the one that is used for PIR
(namely Ring-LWE, that is needed for the BFV encryption scheme).

1.2 Technical Overview

We start with a brief description of how prior PIR protocols that we build on
work at a high level. We first fold the database as a hypercube (for example, a
2-dimensional matrix), and recursively process the query for each dimension (say
rows and then columns) [43,61]. Based on the BFV leveled homomorphic encryp-
tion scheme [10,28], each query is represented as a ciphertext, which would later
be obliviously expanded to an encrypted 0/1 indicator vector [4,5]. The server
then homomorphically performs the inner product between those 0/1 indicator
vectors and the database, and returns the result. Note that BFV homomor-
phic encryption scheme allows packing multiple plaintexts inside one ciphertext,
enabling “single instruction, multiple data” (SIMD) style homomorphic opera-
tions [11,13,32,60]. The database can be reshaped to pack more than one data
entry together for better performance.

Prior PIR constructions, following the above outline, do not achieve data
privacy. We identify two main causes of information leakage, and propose new
techniques (directly integrated with the BFV encryption scheme) in order to
overcome them efficiently.

– With ciphertext packing optimization, the client will get more than one data
entry from the server’s response ciphertext. A simple solution is to give up on
full-capacity ciphertext packing to achieve data privacy. But its price is a great
reduction in efficiency, because we can no longer fully utilize the “SIMD”-
style operations provided by the underlying BFV scheme. This results more
expensive homomorphic operations required during the server’s computation.
To overcome this problem, we introduce an “oblivious masking” procedure,
which maintains the ciphertext packing feature, but can efficiently remove the
undesired data entries from the packed ciphertext, without letting the server

220 C. Lin et al.

know which data entries are kept. In addition, we integrate the oblivious
masking with the PIR query procedure, so it does not introduce any extra
communication cost.

– At high level, the PIR protocol works as follow: the client sends some cipher-
texts to the server, the server perform some database dependent computation
on the received ciphertexts and returns the result to the client. The security
of the underlying homomorphic encryption scheme is protecting the informa-
tion encrypted inside the original ciphertexts. But the server’s result could
leak information about the computation, and hence give extra information
about the database other than the queried entry. We use ciphertext saniti-
zation [27,31] to make sure that, even with the secret key, the client cannot
learn extra information about a ciphertext other than the decrypted message.

1.3 Related Work

PIR. Private information retrieval (PIR) was introduced by Chor et al. [19],
and inspired two lines of work: information theoretic PIR (IT-PIR) and compu-
tational PIR (cPIR) (we will use ”PIR” to refer to cPIR by default). IT-PIR
requires the database to be stored in several non-colluding servers. The client
sends a query to each server and gets the result by combining the responses.
IT-PIR has relative computational efficiency for each server and is information
theoretic secure. However, it cannot be achieved with a single server, and the
privacy relies on non-collusion of the servers, which can be problematic in prac-
tice [8,19,23,24,35]. In contrast, cPIR requires only computational security, and
can be achieved with a single server. As previously discussed, there’s a long
line of works achieving cPIR. The computational cost for the server in all these
works is quite high, which is a bottleneck for practical employment. Some of this
is inherent: indeed, the server must perform at least linear (in the size of the
database) amount of computation per query, or else some information will be
leaked (e.g., if an entry is not touched during its computation, the server knows
this is not the entry that the client is trying to retrieve). However, the existing
results involve a very heavy computation beyond the size of the data (there is
an additional multiplicative overhead depending on the security parameter and
underlying cryptographic primitives, which is quite high). Significant progress
have been made towards improving efficiency, although it remains a bottleneck.

SPIR. Symmetrically private information retrieval (SPIR) was introduced by
Gertner et al. [34], who showed how transform any PIR scheme to a SPIR
scheme, in the information theoretic setting. Modern cPIR schemes can also be
transformed to SPIR schemes in generic ways, e.g., using an OPRF, as discussed
above. However, to the best of our knowledge, the only existing implementations
of SPIR proper are from over 15 years ago, and in Java [9,59]. There are some
implementation of related primitives, as we discuss next.

Related Primitives. There are several works implementing database access sys-
tems with more complex queries, which include some privacy for both the client

XSPIR: Efficient Symmetrically Private Information Retrieval 221

and the server (cf., [29,40,56]); However, these schemes do not have full privacy,
and allow some leakage of information about the queries.

A closely related primitive is 1-out-of-N Oblivious Transfer (OT). This is in
fact equivalent to SPIR, but usually used in a different context where N is small,
since it typically has a communication cost linear in N (while for PIR/SPIR a
major goal is sublinear communication). Indeed, existing OT protocols mainly
focus on constant size (say 1-out-of-2) OT, and on extending OT, namely imple-
menting a large number of OT invocations efficiently [49,58]. The most efficient
1-out-of-N OT to date (but without implementation) is [48], where the authors
construct random OT (retrieving a random location from a random database).
In turn, random 1-out-of-N OT can be used at an offline stage to allow for a
very efficient (but still linear) online 1-out-of-N OT.

Another relevant primitive is Private Set Intersection (PSI) [14,15,20,39,50].
PSI has two parties, a sender and a receiver, each holding a set of elements, who
would like to privately compute the intersection of their sets. We note that most
of the homomorphic encryption based PSI [14,15,20] rely on OPRF. Recently, Li,
Lu, and Wu [45] used PSI for password checkup based on homomorphic encryp-
tion. They use a masking method by multiplying the result with a random vector
to mask the redundant data entries. This approach bears some similarity with
ours, but there are three problems trying to apply it to SPIR: first, it requires
one extra multiplicative level, resulting in an additional overhead in both com-
munication and computation, while our “oblivious masking” technique does not;
second, this technique does not directly apply to SPIR because SPIR requires
the server to send back an entry with meaningful data, so we cannot directly
multiply our result by a random vector of numbers, (while in their case, they
just need to send zero back as an indication); third, it doesn’t prevent the server
from leaking the information about its database-dependent computation due to
BFV ciphertext noise, while we solve this problem by “ciphertext sanitization”.

2 Preliminaries and Background

2.1 (Symmetrically) Private Information Retrieval

We focus only on single round cPIR, where the client sends a single query mes-
sage and the server sends a single response message. Our protocol adheres to
this form, as do other recent efficient PIR protocols.

A PIR scheme is parameterized by the database size N ,1 and consists of 3
PPT algorithms:

– pp ← PIR.Setup(λ): Instantiate the protocol with security parameter λ.
– q ← PIR.Query(i): Given an input i ∈ [N], the client generates a query q to

the server.
– r ← PIR.Response(q,DB): the server takes the client’s query q and a database

DB = (DB0, . . . ,DBN−1) of N entries, and replies to the client with r.

1 We leave the size of each element implicit as it does not affect the definition.

222 C. Lin et al.

– z ← PIR.Extract(r): the client extracts the information from the server’s
reply r.

Correctness requires that, for all i ∈ [N], for any output of the query func-
tion q ← PIR.Query(i), for all database DB and reply r ← PIR.Response(q,DB)
generated by the server, it has PIR.Extract(r) = DBi.

Definition 1 (Query Privacy). We say a PIR scheme is query private if and
only if for any two queries i and i′, the two distributions q ← PIR.Query(i) and
q ← PIR.Query(i′) are computationally indistinguishable.

Definition 2 (Data Privacy for Semi-Honest Client). We say a PIR
scheme is data private if and only if, for all i ∈ [N], given query q ←
PIR.Query(i), for any two databases DB and DB′ where DBi = DB′

i, the two
distributions r ← PIR.Response(q,DB) and r′ ← PIR.Response(q,DB′) are com-
putationally indistinguishable.

For the rest of the paper, we use PIR to refer to a PIR scheme with query
privacy only, and SPIR (or symmetric PIR) to refer to PIR with both query
privacy and with data privacy for semi-honest client. In both cases, we mean
computational schemes (with a single server) and one-round of communication
as defined above.

We care about 2 types of complexity measures:

– Computational complexity: in particular, the server’s running time for
PIR.Response (as well as the client’s running time for PIR.Query and
PIR.Extract, but this is typically much smaller, which typically takes only
milliseconds and independent of database size).

– Communication complexity: the upload cost is measured by |q| and the down-
load cost is measured by |r|.

2.2 Homomorphic Encryption

We use homomorphic encryption scheme as a public key encryption scheme
that can homomorphically evaluate arithmetic operations on messages inside
ciphertexts. We can formulate it as the following 4 PPT algorithms:

– (pk, sk) ← HE.Setup(1λ): Takes security parameter λ as input and outputs
public key pk, secret key sk.

– ct ← HE.Enc(pk,m): Takes pk and a plaintext m as inputs, and outputs a
ciphertext ct.

– ct′ ← HE.Eval(pk, C, (ct1, . . . , ctt)): Takes pk, a circuit C and multiple input
ciphertexts (ct1, . . . , ctt) and outputs a ciphertext ct′.

– m′ ← HE.Dec(sk, ct): Takes sk and a ciphertext ct as input and outputs a
plaintext m′.

For correctness, we require that HE.Dec(sk,HE.Enc(pk,m)) = m for
(pk, sk) ← HE.Setup(1λ) and require HE.Eval to homomorphically apply the
circuit C to the plaintext encrypted inside the input ciphertexts.

XSPIR: Efficient Symmetrically Private Information Retrieval 223

Definition 3 (Semantic Security). We say a homomorphic encryption
scheme is semantically secure if and only if for any two messages m and m′,
the two distributions ct ← HE.Enc(pk,m) and ct′ ← HE.Enc(pk,m′) are compu-
tationally indistinguishable given the public key pk.

Ciphertext Sanitization. Most homomorphic encryption scheme only cares about
hiding the encrypted messages. However, the result ciphertext of the homo-
morphic evaluation ct′ ← HE.Eval(pk, C, (ct1, . . . , ctt)) could leak some informa-
tion about the circuit C, which might be harmful in some applications. One
could employ a randomized sanitization proposed by Ducas and Stehlé [27]
HE.Sanitize(pk, ct) to achieve circuit privacy, satisfying the following:

– [Correctness] For any ciphertext ct, HE.Dec(sk,HE.Sanitize(pk, ct)) =
HE.Dec(sk, ct);

– [(Statistical) Sanitization] For any two ciphertext ct, ct′ such that
HE.Dec(sk, ct) = HE.Dec(sk, ct′), the two distributions after sanitizations
HE.Sanitize(pk, ct) and HE.Sanitize(pk, ct′) are (statistically) indistinguishable
given keys pk and sk.

Brakerski/Fan-Vercauteran Scheme. We use the Brakerski/Fan-Vercauteran
homomorphic encryption scheme [10,28], which we refer to as the BFV scheme.
Given a polynomial from the cyclotomic ring Rt = Zt[X]/(XD + 1), the BFV
scheme encrypts it into a ciphertext consisting of two polynomials, where each
polynomial is from a larger cyclotomic ring Rq = Zq[X]/(XD + 1) where q > t.
We refer to t, q and D as the plaintext modulus, the ciphertext modulus, and
the ring size, respectively. We require the ring dimension D to be a power of 2.

In addition to standard homomorphic operations, like addition and multipli-
cation between a ciphertext and another ciphertext/plaintext, BFV scheme also
supports substitution [5]. Given an odd integer k and a ciphertext ct encrypting
a polynomial p(x), the substitution operation SUB(ct, k) returns a ciphertext
encrypting the polynomial p(xk). For example, taking k = 3, an encrypted poly-
nomial 3+x+5x3 can be substituted to be a ciphertext encrypting 3+x3 +5x9.

3 Main Construction

In Sect. 3.1, we provide a PIR protocol, based on state-of-the-art PIR [4,5],
which we will use as our starting point. Then in Sect. 3.2, we present our new
techniques, and how they can be integrated with the PIR protocol to efficiently
transform it to a SPIR protocol.

3.1 PIR from Homomorphic Encryption

Baseline PIR. We start from the basis for most state-of-the-art practical PIR
protocols. The scheme relies on homomorphic encryption, and its simplest ver-
sion is the following. Given a database (DB0, . . . ,DBN−1) of N entries, the client

224 C. Lin et al.

initiates the query by sending N ciphertexts ci, where the ciphertext for the
desired entry encrypts 1, and all other ciphertexts encrypt 0 (that is, the cipher-
texts encrypt an indicator vector). For each ciphertext, the server homomorphi-
cally multiplies it by the corresponding entry DBi from the database, and returns
the homomorphic sum of the results

∑N
i=1 DBi · ci, which is the encryption of

the desired entry.
To achieve sublinear communication, Kushilevitz, Ostrovsky [43] and later

Stern [61] proposed applying this scheme recursively: parameterized by the recur-
sion level d, instead of viewing the database as a one-dimensional vector of length
N , one can arrange it into a d-dimensional hypercube. Now each entry in the
database will be indexed by a length-d vector (i0, . . . , id−1) where each index
ranges from 0 to N1/d. The retrieval process is then handled recursively, where
the client sends N1/d ciphertexts for each level (encrypting an appropriate indi-
cator vector), for a total of d · N1/d ciphertexts. The server sends back one
ciphertext (resulting from homomorphic operations of addition and multiplica-
tion by plaintexts).

Compressing Queries. In the above protocol, each ciphertext sent by the client
encrypts a single bit, blowing up communication. To reduce communication,
SealPIR [5] and MulPIR [4] instantiate the underlying homomorphic encryption
scheme with the BFV scheme. Recall that in BFV, each ciphertext encrypts an
element from cyclotomic ring Zt[X]/(XD + 1) where D is a power of 2, which is
a degree-D polynomial with integer coefficient ranging from 0 to t − 1 for some
large prime t. Now, instead of encrypting a single bit, a BFV ciphertext encrypts
a vector consisting of the coefficients of the polynomial (i.e., D elements in Zt).

Specifically, to represent a query of index i, instead of sending an indicating
vector of ciphertexts, SealPIR [5] first sends an encrypted monomial xi (which
can be viewed as a polynomial with coefficients being the indicating vector for
i). The server then runs a procedure called oblivious expansion that allows it
to obtain the encrypted coefficients and get the 0/1 indicator vector. Later
MulPIR [4] observed that such technique works not only on a monomial xi, but
also for general polynomials, and took advantage of this for polynomials with
more than one non-zero coefficients. Details of oblivious expansion is shown in
Algorithm 1.

Packing More Information. As discussed above, the ciphertext encrypts an inte-
ger polynomial with degree D and coefficients from Zt. One could pack at most
D · �log t� bits of data inside a single ciphertext. For better efficiency, we should
reshape the database so that each entry is of size D · �log t� bits. For a typical
choice of parameters for BFV scheme, say D = 8192 and t ≈ 220 (t being a
prime slightly larger than 220), that’s about 20KB data per ciphertext.

XSPIR: Efficient Symmetrically Private Information Retrieval 225

Combining all these techniques, we show our PIR construction in Algo-
rithm 2. The overall algorithm is the same as the MulPIR algorithm in [4].
We tuned the parameters in order to increase efficiency in some settings, and to
allow us to add data privacy without changing to less efficient BFV parameters,
as we do in the next section. Detailed performance comparisons are in Sect. 4.

Algorithm 1. Oblivious Expansion based on [4,5].
Given an input ciphertext q encrypting a polynomial p(x) of degree n, return a
list of n ciphertexts, encrypting the coefficients of p(x).
Recall the homomorphic substituion operation: given a ciphertext ct encrypt-
ing p(x) and an odd integer k, the substitution SUB(ct, k) returns a ciphertext
encrypting polynomial p(xk). We know that xD is equal to −1 on cyclotomic
ring Zt[X]/(XD + 1). For polynomial p(x) =

∑D−1
i=0 di · xi, substituting it with

k = D + 1 gives p(xD+1) =
∑D−1

i=0 di · xi·D+i =
∑D−1

i=0 di · (−1)i · xi. Adding it
back to p(x) would zero out every coefficient for xi where i is odd, and double
every other coefficients. Repeatedly using similar steps for k = D/2j + 1 on
p(x) would zero out every coefficient of xi where i is not 0, and multiply d0 by
some power of 2. Then with some “shifting” (multiplying with some monomial
x−2j), and dividing by the appropriate power of 2, given a encrypted polyno-
mial p(x) =

∑n−1
i=0 di · xi, one can extract a vector of ciphertexts where the ith

ciphertext encrypts di.
procedure EXPAND(q, n, D) � D is the ring size for the underlying BFV HE
scheme

Find m = 2� such that m ≥ n
clist ← [q]
for j = 0 to � − 1 do

for k = 0 to 2� − 1 do
c0 ← clist[k]

c1 ← x−2j · c0 � scalar multiplication
c′

k ← SUB(c0, D/2j + 1) + c0
� SUB is the substitution in BFV HE scheme

c′
k+2j ← SUB(c1, D/2j + 1) + c1

clist ← [c′
0, ..., c

′
2j+1−1]

inverse ← m−1 (mod t) � t is the plaintext modulus
for k = 0 to n − 1 do

rk ← clist[k] · inverse

return (r0, ..., rn−1)

226 C. Lin et al.

Algorithm 2. PIR Scheme (following [4])
1: procedure PIR.Setup(λ)
2: (pk, sk) ← HE.Setup(1λ)
3: return (pk, sk)

4: procedure PIR.Query(N, d, pk, i = (i0, ..., id−1))
5: Initialize polynomial p = 0
6: for j = 0 to d − 1 do

7: p ← p + xj·N1/d+ij

8: q ← HE.Enc(pk, p)
9: return (q)

10: procedure PIR.Response(DB, N, d, pk, q)
11: n ← N1/d

12: idx ←EXPAND(q, d · n, D) � Oblivious expansion in 1
13: for k = 0 to d − 1 do
14: qk ← [idx[k · n + 0], . . . , idx[k · n + n − 1]]

15: rlist ← [DB0, . . . ,DBN−1]
16: � ← N/n
17: for k = 0 to d − 1 do
18: for i = 0 to � − 1 do
19: ri ← 〈qk, [rlist[0 · � + i], . . . , rlist[(n − 1) · � + i]]〉
20: rlist ← [r0, . . . , r�−1]
21: � ← �/n

22: r ← rlist[0]
23: return r
24: procedure PIR.Extract(sk, r)
25: z ← HE.Dec(sk, r)
26: return z

3.2 XSPIR: Adding Data Privacy

So far, we described efficient standard PIR. However, this protocol (like the ones
it was based on) leaks information about the data, even to an honest client. To
achieve data privacy, we need to address the following two problems:

– As previously discussed, to better utilize the plaintext space of the BFV
scheme and improve efficiency, we reshaped the database so that each entry
now fits in a degree-D polynomial with coefficients from Zt, which packs
D · �log t� bits of information. If the client is only allowed to learn, say, a
single element from Zt, a simple solution would be to pack only one coefficient
inside each ciphertext. However, this solution is very costly. Is it possible to
pack many values (say D) inside one ciphertext for better efficiency, while
the client cannot learn extra information except for only one of them?

– The server computes a deterministic PIR.Response procedure that depends
on every part of the database. The output naturally leaks information about
the server’s computation and hence other parts of the database. Consider the
following simple example: the client is fetching 0-th entry from a database

XSPIR: Efficient Symmetrically Private Information Retrieval 227

DB = (DB0,DB1) with 2 entries. After learning DB0, the client can learn DB1

by iterating over all possible values and simulating the server’s computation.
Is there a way to make the server’s output ciphertext irrelevant for any part
of the database other than the retrieved entry?

Instead of taking a generic approach as suggested by [4], we show how to
efficiently achieve the data privacy by directly taking advantage of the underlying
BFV homomorphic encryption scheme, which has many benefits as described in
Sect. 1.1.

Oblivious Masking. In the previous PIR construction, one ciphertext encrypts
a polynomial p(x) =

∑D−1
i=0 di · xi, where each di is a part of the reshaped data

entry that lies in Zt. To address the first problem above, if the client is only
allowed to learn dk for some k ∈ [D], we need an efficient way to obliviously
remove unnecessary information (the other coefficients).

Let us start with a first attempt. To keep only the k-th part dk of the poly-
nomial p(x), the client could send another ciphertext encrypting x−k, and the
server can multiply them together to get p′(x) = x−k · p(x) =

∑D−1
i=0 di · xi−k.

In this case, the constant coefficient is what we are looking for. We could use a
similar procedure to oblivious expansion in Algorithm 1 to extract it out.

This method brings an additional overhead as the client needs to send an
additional ciphertext encrypting x−k. To save this communication cost, we
observe that the client is not fully utilizing the plaintext space Zt[X]/(XD + 1),
as the query ciphertexts sent by the client are polynomials with 0/1 coefficients.
We could embed the information k in those coefficients without introducing a
new monomial, with an alternative packing technique.

First, instead of sending a new ciphertext encrypting x−k, we put k into
the first query ciphertext sent by the client. For example, instead of sending xi

for some index i, we send (k + 1) · xi. After the oblivious expansion, the server
can sum up the results to obtain a ciphertext encrypting a constant polynomial
(k + 1). It requires t > D, which is almost always the case.

Second, instead of packing data entires (d0, . . . , dD−1) into the coefficients
of a polynomial, we would find a polynomial p(x) such that p(ωi) = di using
number-theoretic transformation, where ωi is the i-th root of unity in Zt, similar
to the technique shown in [60]. Our goal is then to keep only the information on
p(ωk) = dk. To achieve this, we could add a random polynomial with r(ωk) = 0
to it. We first find a polynomial q(x) with q(ωi) = −(i + 1). Adding to it a
constant polynomial (k + 1) results in a new polynomial q′(ωi) = k − i. Finally,
multiplying it by a random polynomial gives us what we want.

Such technique also works when the client is retrieving more than one con-
secutive elements in Zt. For example, if every data entry fits in 2 elements of Zt,
we could find the polynomial q(x) with q(ωi) = �−(i/2+1)� instead of −(i+1).
And the rest of the computation would be the same.

Ciphertext Sanitization. To address the second problem and make sure that
the result doesn’t contain information about other parts of the database, one

228 C. Lin et al.

way is to use the ciphertext sanitization procedure proposed by Ducas and
Stehlé [27]. For efficiency, we use a simpler way of re-randomization, which is
noise flooding [27,31]. Specifically, before sending back the result, the server
adds an encryption of zero to it with certain amount of noise, so that the result
will be statistically close to a freshly encrypted ciphertext. To achieve statistical
distance of 2−s, a standard smudging lemma [7] shows that it suffices to add to
it an encryption of 0 with noise level s + log2 D bits higher than the original
ciphertext.

We apply all these techniques to our PIR scheme to make it into a SPIR
scheme, which we call XSPIR. See Algorithm 3 for the detailed scheme.

Algorithm 3. XSPIR: Our SPIR Scheme
Blue lines are differences from the previous PIR protocol 2
1: procedure PIR.Setup(λ)
2: (pk, sk) ← HE.Setup(1λ)
3: return (pk, sk)

4: procedure PIR.Query(N, d, pk, i = (i0, ..., id−1, k))
5: Initialize polynomial p = 0
6: for j = 0 to d − 1 do

7: p ← p + (k + 1)·xj·N1/d+ij

8: q ← HE.Enc(pk, p)
9: return (q)

10: procedure PIR.Response(DB, N, d, pk, q)
11: n ← N1/d

12: idx ←EXPAND(q, d · n, D)
13: for k = 0 to d − 1 do
14: qk ← [idx[k · n + 0], . . . , idx[k · n + n − 1]]

15: rlist ← [DB0, . . . ,DBN−1]
16: � ← N/n
17: for k = 0 to d − 1 do
18: for i = 0 to � − 1 do
19: ri ← 〈qk, [rlist[0 · � + i], . . . , rlist[(n − 1) · � + i]]〉
20: rlist ← [r0, . . . , r�−1]
21: � ← �/n

22: r ← rlist[0]
23: pt ← (−1, . . . , −D) � Making a plaintext polynomial, where pt(ωi) = −(i + 1)
24: ct ← ∑n−1

i=0 q0[i] � Sum of q0 is an encrypted constant polynomial k + 1
25: ct ← pt + ct � Scalar addition
26: pt ←$Zt[X]/(XD + 1) � Uniformly sample a random polynomial
27: ct ← pt · ct � Scalar multiplication
28: r ← r + ct � Homomorphic addition
29: r ← HE.Sanitize(pk, r) � Sanitize by adding an encryption of 0 with large noise
30: return r
31: procedure PIR.Extract(sk, r, k, d)
32: z ← (k + 1)−d·HE.Dec(sk, r)
33: return z

XSPIR: Efficient Symmetrically Private Information Retrieval 229

Extended Functionality. As our scheme only relies on BFV, we can easily extend
our functionality. Normally, the returned entry of PIR contains a singe data
entry. However, our scheme can easily allow the returned entry to contain some
computation (e.g., some complex functions) over data entries. For example, the
client wants to query the summation of the cube of two entries (i.e., x3

i + x3
j for

entries i, j), we can easily modify our scheme to achieve this functionality (relying
on the properties of BFV), while maintaining full privacy (i.e., no information
except for the result of the computation is revealed). However, for SPIR described
in [4], this is not supported, as they rely on OPRF.

3.3 Security

The query privacy (see definition 1) follows directly from the semantic security
of the underlying BFV homomorphic encryption scheme [10,28]. As the client is
sending encrypted indices, and the semantic security (see definition 3) guarantees
that the server cannot learn any information from the ciphertext.

Data privacy against semi-honest clients (see definition 2) is more complex.
For all k ∈ [N], given client’s query q ← PIR.Query(k), for any two databases
DB and DB′ where DBk = DB′

k, consider the following two distributions r ←
PIR.Response(q,DB) and r′ ← PIR.Response(q,DB′).

Ciphertext sanitization (see 2.2 and [27]) guarantees that, for any ciphertext
ct encrypting some polynomial p, the distribution HE.Sanitize(pk, ct) is indistin-
guishable from a freshly encrypted ciphertext HE.Enc(pk, p). Therefore both r
and r′ are indistinguishable from the fresh encryption of their underlying mes-
sages, respectively. We further show that r and r′ encrypt messages from the
same distribution. WLOG, assume that the whole database can be packed into
one ciphertext and D = N . It is not hard to extend the argument to the general
case of N > D. The ciphertext r is encrypting a polynomial p whose coefficients
are in Zt such that p(ωi) = (k + 1) · DBi + (k − i) · ri where ri is uniformly
distributed over Zt. If i = k, we have p(ωk) = (k + 1) · DBk. Otherwise p(ωi)
is distributed uniformly at random over Zt for k �= i ∈ [D]. Similar argument
works for r′: r′ is encrypting a polynomial p′ such that p′(ωi) is a uniform random
element from Zt for i �= k and p′(ωk) = (k + 1) · DB′

k = (k + 1) · DBk = p(ωk).

4 Implementation and Evaluation

In this section, we describe our implementation, evaluate its performance, and
compare it with previous implementations. One thing to note is that, since there
are no public modern SPIR implementations, we could only compare our XSPIR
protocol with the state-of-the-art PIR protocols (which is not data private). We
show that our performance is comparable to state-of-the-art PIR protocols while
providing a stronger security guarantee.

Implementation and Experimental Setup. Our scheme is implemented on top of
the SEAL homomorphic encryption library version 3.5.6 [51], with C++. We
use the EXPAND algorithm from SealPIR. For SealPIR, we use the publicly

230 C. Lin et al.

available source code [52], and run under the same environment, integrating it
with our testing framework.

All experiments are running on a CPU 8th Gen Intel R© CoreTM i7-8550U
quad-core processor, 4.2 GHz Max Turbo and 16 GB RAM, and with operating
system Ubuntu 16.04. The numbers are averages of 100 trials. The SealPIR code
is running with the parameters suggested by their paper and code. We imple-
ment the MulPIR on our code base with their suggested parameters. We cannot
compare with SHECS-PIR [57], as their code is not publicly available. However,
according to our analysis based the data provided by [57], our XSPIR perfor-
mance would be comparable to theirs as well (with some variations depending
on the entry size).

4.1 Parameter Choices

We have two security parameters, a computational security parameter for the
underlying BFV scheme, and a statistical security parameter to apply noise
flooding (necessary for ciphertext sanitization towards data privacy). We set
our statistical security parameter to s = 40, as suggested by standard practice,
and widely used in many other works [16,42,54]. According to the smudging
lemma in [7], we need a noise of s + log D bits (more than the ciphertext to be
sanitized) to guarantee a statistical distance of ≤ 2−s. We set our computational
security parameter to λ = 128 as suggested by [3]. We set our ring size to be
D = 8192 and therefore according to [3], we have a noise budget of 218 bits
with D = 8192, λ = 128. For statistical secure parameter s = 40, we would then
need 40 + log2(8192) = 53 bits of extra noise, which gives our 165 bits of noise
budget left for our entire computation. To accommodate 2.5 bytes per slot of
a ciphertext, we need a prime plaintext modulus t of 21 bits, so for each level
of multiplicative depth, we consume roughly 20–30 bits of noise budget. This
is sufficient for a recursion level of d = 2, which is the most efficient choice.
As for d > 2, the depth of homomorphic multiplication increases, and therefore
results in more computational cost. Therefore, for best performance, we set D =
8192, d = 2 for security requirement λ = 128, s = 40.

To maximize the efficiency, we pack totally 8192×2.5bytes = 20 KB into one
ciphertext. In our experiments, we select entry size = 288 bytes (this does not
influence the performance, we but we select the same entry size as in previous
works for better comparison). Given this entry size, we can pack at most 71
entries into one single ciphertext.

4.2 Experimental Comparisons

To evaluate how our scheme works, we run a series of microbenchmarks to mea-
sure: (1) computational cost on the server’s side (2) upload communication cost
(3) download communication cost. The total communication cost is measured by
the sum of upload cost and download cost. Our detailed comparisons and data
are recorded in Table 1.

XSPIR: Efficient Symmetrically Private Information Retrieval 231

Table 1. Entry size = 288 bytes and ring dimensions are set to 4096. In blue color
is XSPIR from Algorithm 3. Although there is only one ciphertext involved in both
upload and download communication. Its size varies because of the modulus switching.
Other entries are PIR schemes without data privacy: SealPIR [5], MulPIR [4].

Size of database 18M 72M 288M 1.125GB

XSPIR (Server Time, ms) 1735 4921 14531 41853

SealPIR (Server Time, ms) 591 1571 6052 21675

MulPIR (Server Time, ms) 1322 3853 10785 30217

XSPIR (Upload, KB) 160 160 160 160

SealPIR (Upload, KB) 61.2 61.2 61.2 61.2

MulPIR (Upload, KB) 122 122 122 122

XSPIR (Download, KB) 73 73 73 73

SealPIR (Download, KB) 307 307 307 307

MulPIR (Download, KB) 119 119 119 119

XSPIR (Communication, KB) 233 233 233 233

SealPIR (Communication, KB) 368.2 368.2 368.2 368.2

MulPIR (Communication, KB) 241 241 241 241

As shown in the table, for all database sizes tested, our communication cost
is about the same as MulPIR (with marginal advantage) and around 35% bet-
ter than SealPIR, while our performance is about 40–50% worse than MulPIR
and about 2–3 times worse than SealPIR. Recall that the goal in MulPIR was
to obtain better communication (compared to SealPIR), at the price of worse
computation. Our scheme can be viewed as going even further in that direction,
but more importantly, adding a better security guarantee, for the database as
well.

4.3 Comparison to 1-out-of-n OT

As mentioned in Sect. 1.3, SPIR is technically equivalent to 1-out-of-N OT,
although the later one is typically used in different contexts. Accordingly, the
existing open-source codes [58] for OT’s focus on OT extensions, running multi-
ple OT’s at the same time. We thus can’t run their library for executing a single
(or a small number of) retrievals with the relatively huge database size we run
experiments with, as in our XSPIR.

We next try to compare our XSPIR scheme to the state of the art 1-out-
of-N OT by McQuoid et al. [48]. Since this is not implemented, we compare
asymptotically. Note that in our scheme, the communication is O(N1/d), and
the server’s computation is O(N + d · N1/d) homomorphic operations. In [48],
they construct random OT, where both the query and the database are selected
at random (this is typical in settings where this is used for an initial offline
computation phase).

232 C. Lin et al.

Typically, the purpose of using a 1-out-of-N random OT is to move most of
the computation to an offline stage, where the random OT protocol is performed.
Then, in the online stage when the client receives the actual query, it sends the
difference between that and the random query used to the server. The server
rotates the random data by that shift, and uses it to mask the actual database.
It then sends the whole masked database to the client. The client can unmask
the desired entry using the value obtained in the random OT phase. Using the
random OT scheme of [48] in this way, we obtain a 1-out-of-N random OT with
server time of O(N) exponentiations, upload cost of O(1), and download cost
of O(N). This gives worse communication (which is no longer sublinear!) but
better computational cost than our protocol asymptotically.

Acknowledgement. This research was supported in part by the U.S. Department of
Energy (DOE), Office of Science, Office of Advanced Scientific Computing Research
under award number DE-SC-0001234, a grant from the Columbia-IBM center for
Blockchain and Data Transparency, by LexisNexis risk solutions, and by JPMorgan
Chase & Co. Any views or opinions expressed herein are solely those of the authors
listed.

References

1. Abusalah, H., Alwen, J., Cohen, B., Khilko, D., Pietrzak, K., Reyzin, L.: Beyond
Hellman’s time-memory trade-offs with applications to proofs of space. In: Takagi,
T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10625, pp. 357–379. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-70697-9 13

2. Aguilar Melchor, C., Barrier, J., Fousse, L., Killijian, M.O.: XPIR: private infor-
mation retrieval for everyone. Proc. Priv. Enhancing Technol. 2016(2), 155–174
(2016)

3. Albrecht, M., et al.: Homomorphic Encryption Standard. In: Lauter, K., Dai, W.,
Laine, K. (eds.) Protecting Privacy through Homomorphic Encryption, pp. 31–62.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77287-1 2

4. Ali, A., et al.: Communication-computation trade-offs in PIR. In: 30th USENIX
Security Symposium (USENIX Security 21). USENIX Association (2021). https://
www.usenix.org/conference/usenixsecurity21/presentation/ali

5. Angel, S., Chen, H., Laine, K., Setty, S.T.V.: PIR with compressed queries and
amortized query processing. In: 2018 IEEE Symposium on Security and Privacy,
pp. 962–979. IEEE Computer Society Press (2018)

6. Angel, S., Setty, S.: Unobservable communication over fully untrusted infrastruc-
ture. In: Holz, T., Savage, S. (eds.) USENIX Security 2016: 25th USENIX Security
Symposium. USENIX Association (2016)

7. Asharov, G., Jain, A., López-Alt, A., Tromer, E., Vaikuntanathan, V., Wichs, D.:
Multiparty computation with low communication, computation and interaction
via threshold FHE. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012.
LNCS, vol. 7237, pp. 483–501. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-29011-4 29

8. Beimel, A., Ishai, Y., Kushilevitz, E., Raymond, J.F.: Breaking the O(n1/(2k−1))
barrier for information-theoretic private information retrieval. In: 43rd Annual
Symposium on Foundations of Computer Science, pp. 261–270. IEEE Computer
Society Press (2002)

https://doi.org/10.1007/978-3-319-70697-9_13
https://doi.org/10.1007/978-3-030-77287-1_2
https://www.usenix.org/conference/usenixsecurity21/presentation/ali
https://www.usenix.org/conference/usenixsecurity21/presentation/ali
https://doi.org/10.1007/978-3-642-29011-4_29
https://doi.org/10.1007/978-3-642-29011-4_29

XSPIR: Efficient Symmetrically Private Information Retrieval 233

9. Boneh, D., Bortz, A., Inguva, S., Saint-Jean, F., Feigenbaum, J.: Private informa-
tion retrieval. https://crypto.stanford.edu/pir-library/

10. Brakerski, Z.: Fully homomorphic encryption without modulus switching from clas-
sical GapSVP. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol.
7417, pp. 868–886. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-32009-5 50

11. Brakerski, Z., Gentry, C., Halevi, S.: Packed ciphertexts in LWE-based homomor-
phic encryption. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778,
pp. 1–13. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36362-
7 1

12. Cachin, C., Micali, S., Stadler, M.: Computationally private information retrieval
with polylogarithmic communication. In: Stern, J. (ed.) EUROCRYPT 1999.
LNCS, vol. 1592, pp. 402–414. Springer, Heidelberg (1999). https://doi.org/10.
1007/3-540-48910-X 28

13. Chen, H., Dai, W., Kim, M., Song, Y.: Efficient multi-key homomorphic encryption
with packed ciphertexts with application to oblivious neural network inference.
In: Cavallaro, L., Kinder, J., Wang, X., Katz, J. (eds.) ACM CCS 2019: 26th
Conference on Computer and Communications Security, pp. 395–412. ACM Press
(2019)

14. Chen, H., Huang, Z., Laine, K., Rindal, P.: Labeled psi from fully homomorphic
encryption with malicious security. In: Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security. CCS 2018, Association
for Computing Machinery (2018). https://doi.org/10.1145/3243734.3243836

15. Chen, H., Laine, K., Rindal, P.: Fast private set intersection from homomorphic
encryption. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security. CCS 2017, Association for Computing Machinery
(2017). https://doi.org/10.1145/3133956.3134061

16. Chen, H., Laine, K., Rindal, P.: Fast private set intersection from homomorphic
encryption. In: Thuraisingham, B.M., Evans, D., Malkin, T., Xu, D. (eds.) ACM
CCS 2017: 24th Conference on Computer and Communications Security, pp. 1243–
1255. ACM Press (2017)

17. Cheng, R., et al.: Talek: private group messaging with hidden access patterns.
Cryptology ePrint Archive, Report 2020/066 (2020). https://eprint.iacr.org/2020/
066

18. Cheng, R., et al.: Talek: a private publish-subscribe protocol. In Submission (2020).
https://raymondcheng.net/download/papers/talek-tr.pdf

19. Chor, B., Goldreich, O., Kushilevitz, E., Sudan, M.: Private information retrieval.
In: 36th Annual Symposium on Foundations of Computer Science, pp. 41–50. IEEE
Computer Society Press (1995)

20. Cong, K., et al.: Labeled PSI from homomorphic encryption with reduced compu-
tation and communication. In: Proceedings of the 2021 ACM SIGSAC Conference
on Computer and Communications Security. CCS 2021, Association for Computing
Machinery (2021). https://doi.org/10.1145/3460120.3484760

21. Costea, S., Barbu, D.M., Ghinita, G., Rughinis, R.: A comparative evaluation of
private information retrieval techniques in location-based services. In: 2012 Fourth
International Conference on Intelligent Networking and Collaborative Systems, pp.
618–623 (2012)

22. De Cristofaro, E., Lu, Y., Tsudik, G.: Efficient techniques for privacy-preserving
sharing of sensitive information. In: McCune, J.M., et al. (eds.) Trust and Trust-
worthy Computing, pp. 239–253. Springer, Berlin Heidelberg, Berlin, Heidelberg
(2011)

https://crypto.stanford.edu/pir-library/
https://doi.org/10.1007/978-3-642-32009-5_50
https://doi.org/10.1007/978-3-642-32009-5_50
https://doi.org/10.1007/978-3-642-36362-7_1
https://doi.org/10.1007/978-3-642-36362-7_1
https://doi.org/10.1007/3-540-48910-X_28
https://doi.org/10.1007/3-540-48910-X_28
https://doi.org/10.1145/3243734.3243836
https://doi.org/10.1145/3133956.3134061
https://eprint.iacr.org/2020/066
https://eprint.iacr.org/2020/066
https://raymondcheng.net/download/papers/talek-tr.pdf
https://doi.org/10.1145/3460120.3484760

234 C. Lin et al.

23. Demmler, D., Herzberg, A., Schneider, T.: RAID-PIR: Practical multi-server PIR.
In: CCSW 2014: Proceedings of the 6th edition of the ACM Workshop on Cloud
Computing Security, pp. 45–56 (2014)

24. Devet, C., Goldberg, I., Heninger, N.: Optimally robust private information
retrieval. In: Kohno, T. (ed.) USENIX Security 2012: 21st USENIX Security Sym-
posium, pp. 269–283. USENIX Association (2012)

25. Dong, C., Chen, L.: A fast single server private information retrieval protocol with
low communication cost. In: Kuty�lowski, M., Vaidya, J. (eds.) ESORICS 2014.
LNCS, vol. 8712, pp. 380–399. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-11203-9 22

26. Döttling, N., Garg, S., Ishai, Y., Malavolta, G., Mour, T., Ostrovsky, R.: Trapdoor
hash functions and their applications. In: Boldyreva, A., Micciancio, D. (eds.)
CRYPTO 2019. LNCS, vol. 11694, pp. 3–32. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-26954-8 1

27. Ducas, L., Stehlé, D.: Sanitization of FHE ciphertexts. In: Fischlin, M., Coron, J.-
S. (eds.) EUROCRYPT 2016. LNCS, vol. 9665, pp. 294–310. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-49890-3 12

28. Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption. Cryp-
tology ePrint Archive, Report 2012/144 (2012). http://eprint.iacr.org/2012/144

29. Fisch, B.A., et al.: Malicious-client security in blind seer: a scalable private DBMS.
In: 2015 IEEE Symposium on Security and Privacy, pp. 395–410. IEEE Computer
Society Press (2015)

30. Garg, S., Hajiabadi, M., Ostrovsky, R.: Efficient range-trapdoor functions and
applications: rate-1 OT and more. Cryptology ePrint Archive, Report 2019/990
(2019). https://eprint.iacr.org/2019/990

31. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Mitzenmacher,
M. (ed.) 41st Annual ACM Symposium on Theory of Computing, pp. 169–178.
ACM Press (2009)

32. Gentry, C., Halevi, S., Smart, N.P.: Fully homomorphic encryption with polylog
overhead. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS,
vol. 7237, pp. 465–482. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-29011-4 28

33. Gentry, C., Ramzan, Z.: Single-database private information retrieval with constant
communication rate. In: Caires, L., et al. (eds.) ICALP 2005. LNCS, vol. 3580, pp.
803–815. Springer, Heidelberg (2005). https://doi.org/10.1007/11523468 65

34. Gertner, Y., Ishai, Y., Kushilevitz, E., Malkin, T.: Protecting data privacy in
private information retrieval schemes. J. Comput. Syst. Sci. 60(3) (2000). https://
doi.org/10.1006/jcss.1999.1689

35. Goldberg, I.: Improving the robustness of private information retrieval. In: 2007
IEEE Symposium on Security and Privacy, pp. 131–148. IEEE Computer Society
Press (2007)

36. Green, M., Ladd, W., Miers, I.: A protocol for privately reporting ad impres-
sions at scale. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security. CCS 2016, Association for Computing Machinery
(2016). https://doi.org/10.1145/2976749.2978407

37. Groth, J., Kiayias, A., Lipmaa, H.: Multi-query computationally-private informa-
tion retrieval with constant communication rate. In: Nguyen, P.Q., Pointcheval,
D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 107–123. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-13013-7 7

https://doi.org/10.1007/978-3-319-11203-9_22
https://doi.org/10.1007/978-3-319-11203-9_22
https://doi.org/10.1007/978-3-030-26954-8_1
https://doi.org/10.1007/978-3-030-26954-8_1
https://doi.org/10.1007/978-3-662-49890-3_12
http://eprint.iacr.org/2012/144
https://eprint.iacr.org/2019/990
https://doi.org/10.1007/978-3-642-29011-4_28
https://doi.org/10.1007/978-3-642-29011-4_28
https://doi.org/10.1007/11523468_65
https://doi.org/10.1006/jcss.1999.1689
https://doi.org/10.1006/jcss.1999.1689
https://doi.org/10.1145/2976749.2978407
https://doi.org/10.1007/978-3-642-13013-7_7

XSPIR: Efficient Symmetrically Private Information Retrieval 235

38. Gupta, T., Crooks, N., Mulhern, W., Setty, S., Alvisi, L., Walfish, M.: Scalable
and private media consumption with popcorn. Cryptology ePrint Archive, Report
2015/489 (2015). http://eprint.iacr.org/2015/489

39. Huberman, B.A., Franklin, M., Hogg, T.: Enhancing privacy and trust in electronic
communities. In: Proceedings of the 1st ACM Conference on Electronic Commerce.
EC 1999, Association for Computing Machinery (1999). https://doi.org/10.1145/
336992.337012

40. Jarecki, S., Jutla, C., Krawczyk, H., Rosu, M.C., Steiner, M.: Outsourced sym-
metric private information retrieval. In: Proceedings of the ACM Conference on
Computer and Communications Security (2013)

41. Kiayias, A., Leonardos, N., Lipmaa, H., Pavlyk, K., Tang, Q.: Optimal rate pri-
vate information retrieval from homomorphic encryption. Proc. Priv. Enhancing
Technol. 2015(2), 222–243 (2015)

42. Kolesnikov, V., Kumaresan, R., Rosulek, M., Trieu, N.: Efficient batched oblivious
PRF with applications to private set intersection. In: Weippl, E.R., Katzenbeisser,
S., Kruegel, C., Myers, A.C., Halevi, S. (eds.) ACM CCS 2016: 23rd Conference
on Computer and Communications Security, pp. 818–829. ACM Press (2016)

43. Kushilevitz, E., Ostrovsky, R.: Replication is NOT needed: SINGLE database,
computationally-private information retrieval. In: 38th Annual Symposium on
Foundations of Computer Science, pp. 364–373. IEEE Computer Society Press
(1997)

44. Kwon, A., Lazar, D., Devadas, S., Ford, B.: Riffle: an efficient communication
system with strong anonymity. Proc. Priv. Enhancing Technol. 2016(2), 115–134
(2016)

45. Li, J., Liu, Y., Wu, S.: Pipa: Privacy-preserving password checkup via homomor-
phic encryption. In: Proceedings of the 2021 ACM Asia Conference on Computer
and Communications Security (2021)

46. Lipmaa, H., Pavlyk, K.: A simpler rate-optimal CPIR protocol. In: Kiayias, A.
(ed.) FC 2017. LNCS, vol. 10322, pp. 621–638. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-70972-7 35

47. Mansy, D., Rindal, P.: Endemic oblivious transfer. In: Proceedings of the 2019
ACM SIGSAC Conference on Computer and Communications Security. CCS 2019,
Association for Computing Machinery (2019). https://doi.org/10.1145/3319535.
3354210

48. McQuoid, I., Rosulek, M., Roy, L.: Minimal symmetric PAKE and 1-out-of-N
OT from programmable-once public functions. Cryptology ePrint Archive, Report
2020/1043 (2020). https://eprint.iacr.org/2020/1043

49. McQuoid, I., Rosulek, M., Roy, L.: Batching base oblivious transfers. Cryptology
ePrint Archive, Report 2021/682 (2021). https://eprint.iacr.org/2021/682

50. Meadows, C.: A more efficient cryptographic matchmaking protocol for use in the
absence of a continuously available third party. In: 1986 IEEE Symposium on
Security and Privacy, pp. 134–134 (1986)

51. Microsoft SEAL (release 3.5). Microsoft Research, Redmond, WA (2020). https://
github.com/Microsoft/SEAL

52. Microsoft SealPIR. https://github.com/microsoft/SealPIR
53. Mittal, P., Olumofin, F.G., Troncoso, C., Borisov, N., Goldberg, I.: PIR-tor: scal-

able anonymous communication using private information retrieval. In: USENIX
Security 2011: 20th USENIX Security Symposium. USENIX Association (2011)

http://eprint.iacr.org/2015/489
https://doi.org/10.1145/336992.337012
https://doi.org/10.1145/336992.337012
https://doi.org/10.1007/978-3-319-70972-7_35
https://doi.org/10.1007/978-3-319-70972-7_35
https://doi.org/10.1145/3319535.3354210
https://doi.org/10.1145/3319535.3354210
https://eprint.iacr.org/2020/1043
https://eprint.iacr.org/2021/682
https://github.com/Microsoft/SEAL
https://github.com/Microsoft/SEAL
https://github.com/microsoft/SealPIR

236 C. Lin et al.

54. Orrù, M., Orsini, E., Scholl, P.: Actively secure 1-out-of-N OT extension with
application to private set intersection. In: Handschuh, H. (ed.) CT-RSA 2017.
LNCS, vol. 10159, pp. 381–396. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-52153-4 22

55. Papadopoulos, S., Bakiras, S., Papadias, D.: pCloud: a distributed system for prac-
tical PIR. IEEE Trans. Dependable Secure Comput. 9(1), 115–127 (2012)

56. Pappas, V., et al.: Blind seer: a scalable private DBMS. In: 2014 IEEE Symposium
on Security and Privacy, pp. 359–374. IEEE Computer Society Press (2014)

57. Park, J., Tibouchi, M.: SHECS-PIR: Somewhat Homomorphic Encryption-Based
Compact and Scalable Private Information Retrieval. In: Chen, L., Li, N., Liang,
K., Schneider, S. (eds.) ESORICS 2020. LNCS, vol. 12309, pp. 86–106. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-59013-0 5

58. Rindal, P.: libOTe: an efficient, portable, and easy to use Oblivious Transfer
Library. https://github.com/osu-crypto/libOTe

59. Saint-Jean, F.: Java implementation of a single-database computationally symmet-
ric private information retrieval (CSPIR) protocol. Yale University New Haven CT
Department of Computer Science Technical Representative (2005)

60. Smart, N., Vercauteren, F.: Fully homomorphic SIMD operations. Cryptology
ePrint Archive, Report 2011/133 (2011). http://eprint.iacr.org/2011/133

61. Stern, J.P.: A new and efficient all-or-nothing disclosure of secrets protocol. In:
Ohta, K., et al. (eds.) ASIACRYPT 1998. LNCS, vol. 1514, pp. 357–371. Springer,
Heidelberg (1998). https://doi.org/10.1007/3-540-49649-1 28

https://doi.org/10.1007/978-3-319-52153-4_22
https://doi.org/10.1007/978-3-319-52153-4_22
https://doi.org/10.1007/978-3-030-59013-0_5
https://github.com/osu-crypto/libOTe
http://eprint.iacr.org/2011/133
https://doi.org/10.1007/3-540-49649-1_28

	XSPIR: Efficient Symmetrically Private Information Retrieval from Ring-LWE
	1 Introduction
	1.1 Our Contributions
	1.2 Technical Overview
	1.3 Related Work

	2 Preliminaries and Background
	2.1 (Symmetrically) Private Information Retrieval
	2.2 Homomorphic Encryption

	3 Main Construction
	3.1 PIR from Homomorphic Encryption
	3.2 XSPIR: Adding Data Privacy
	3.3 Security

	4 Implementation and Evaluation
	4.1 Parameter Choices
	4.2 Experimental Comparisons
	4.3 Comparison to 1-out-of-n OT

	References

