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Abstract. Traditional time-stamping services confirm the existence
time of data items by using a time-stamping authority. To eliminate trust
requirements on this authority, decentralized Blockchain-based Time-
Stamping (BTS) services have been proposed. In these services, a hash
digest of users’ data is written into a blockchain transaction. The security
of such services relies on the security of hash functions used to hash the
data, and of the cryptographic algorithms used to build the blockchain.
It is well-known that any single cryptographic algorithm has a limited
lifespan due to the increasing computational power of attackers. This
directly impacts the security of the BTS services from a long-term per-
spective. However, the topic of long-term security has not been discussed
in the existing BTS proposals. In this paper, we propose the first formal
definition and security model of a Blockchain-based Long-Term Time-
Stamping (BLTTS) scheme. To develop a BLTTS scheme, we first con-
sider an intuitive solution that directly combines the BTS services and
a long-term secure blockchain, but we prove that this solution is vulner-
able to attacks in the long term. With this insight, we propose the first
BLTTS scheme supporting cryptographic algorithm renewal. We show
that the security of our scheme over the long term is not limited by the
lifespan of any underlying cryptographic algorithm, and we successfully
implement the proposed scheme under existing BTS services.
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1 Introduction

Digital data has been widely adopted in the modern world. Time-stamping ser-
vices are used to prove that a data item existed at a given point in time. For
traditional centralized time-stamping services, a proof is created by a Time-
Stamping Authority (TSA), who after receiving a data item from a user produces
a verifiable cryptographic binding between the data and time, which is referred
to as a time-stamp token [1,2]. The security of this type of time-stamping ser-
vice depends on both the security of the underlying cryptographic algorithms
and the reliability and trustworthiness of TSAs.

In reality, TSAs may not always be reliable or trustworthy. If a TSA is
compromised, the validity of the time-stamp tokens from this TSA could be
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threatened no matter whether the underlying cryptographic algorithms are still
secure or not. Therefore, the requirement for the reliability and trustworthiness of
these central authorities is concerned as a weakness for traditional time-stamping
services.

Since 2008, the innovation of the Bitcoin blockchain [3] has inspired peo-
ple to explore more decentralized applications. Blockchain could be regarded
as a public ledger, in which all committed transactions are stored in a chain of
blocks [4]. A blockchain-based ledger has several advantages: (1) This is a decen-
tralized system, so it eliminates the trust requirement on central authorities.
(2) A blockchain is tamper-resistant, as transactions are validated by multiple
nodes before being stored in a block. Once a block is confirmed to be a part of a
blockchain, any malicious modification of the transaction data in the block can
be detected. (3) Each block contains a time-stamp when it is appended to the
blockchain, so it is traceable that all the transactions in the blockchain exist at
its corresponding block creation time.

Based on these advantages, several Blockchain-based Time-Stamping (BTS)
services have been proposed [5–7]. In the “Proof of Existence” service [7], a web
server collects a data item from a user, computes its hash value, and embeds the
result into a blockchain transaction. In the “OpenTimestamps” service [6] and
“OriginStamp” service [8], a web server aggregates data items from users by using
a Merkle tree, and inserts the tree root value into a blockchain transaction. The
transaction record and the time-stamp in the block become the existence proof
of data items. Compared to traditional time-stamping services, BTS services get
rid of potential attacks from malicious manipulation or collusion of TSAs. In
the popular trends of decentralized applications, BTS services are much better
choices than traditional time-stamping services.

A BTS service makes use of hash functions and digital signature schemes to
build a blockchain (we collectively call them server-side algorithms), and also
uses hash functions to hash users’ data (we call them client-side hash func-
tions). Obviously, the security of these services relies on the security of these
underlying cryptographic algorithms. It is well-known that any hash function or
signature scheme is only secure for a limited period due to the operational life
cycle or increasing computational powers of attackers. Particularly, the upcoming
quantum computers are considered to break most of the broadly-used signature
algorithms and increase the speed of attacking hash functions [9]. However, for
many types of digital data, such as identity information, health records, history
archives, etc., the existence proof of data needs to be maintained for decades
or even permanently, which is much longer than the lifetime of a single crypto-
graphic algorithm.

In this work, if a scheme is secure for a long period that is not bounded by
the lifetimes of its underlying cryptographic algorithms, we say that the scheme
is long-term secure. If a BTS scheme is long-term secure, we refer to it as a
Blockchain-based Long-Term Time-Stamping (BLTTS) scheme. Unfortunately,
the topic of long-term security has not been addressed in the existing BTS
services.
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In this paper, we propose the first formal definition and the security model
of a BLTTS scheme. To construct such a scheme, we initially consider an intu-
itive solution that directly combines the existing BTS services and a long-term
blockchain scheme [10], in which the server-side algorithms could be securely
transferred to stronger ones. But our proof shows that the solution is vulnerable
to attacks after the client-side hash function is compromised. In other words, the
state-of-the-art solutions in this field show that a BLTTS scheme is still missing.

We fill this gap by proposing the first BLTTS scheme, which contains three
solutions supporting the renewal of all underlying cryptographic algorithms. This
is not a trivial target due to the following challenges: 1) The cryptographic algo-
rithms are used both inside and outside the blockchain system. A comprehensive
timeline to securely renew every algorithm is required. 2) Blockchain is a complex
system that applies cryptographic algorithms in every block. 3) Each time-stamp
renewal must be connected in time sequence since a verifier needs a complete
time-stamping chain to prove the data existed before the earliest time-stamp.
We formally prove that the security of our scheme is unbounded with the lifetime
of any underlying cryptographic algorithm. Finally, we implement this scheme
under the existing BTS services “OriginStamp” and “Opentimestamps”, and the
results show that our scheme is very efficient.

2 Related Works

Traditional Time-Stamping. In 1990, Haber and Stornetta proposed the pro-
totype of digital time-stamping with two techniques: linear linking and random
witness [11]. In 1993, Bayer et al. proposed a solution for time-stamp renewal [12]:
the lifetime of a time-stamp could be extended by time-stamping the (data,
time-stamp) pair with a new implementation before the old implementation is
compromised. The ideas of [11,12] were designed into a time-stamping system
for the Belgian project TIMESEC [13].

In further years, the ideas of [11,12] have been adopted by multiple standards,
especially the ISO/IEC standard [1,14,15] and ANSI standard [2]. Both stan-
dards specify time-stamping mechanisms and renewal mechanisms for long-term
time-stamping services.

In addition, the ideas of [12] have been extended into several long-term
integrity schemes [16,17], but the security analysis of such schemes was not given,
until Geihs et al. formalized this idea separately into a signature-based long-term
integrity scheme [18], and a hash-based long-term time-stamping scheme [19].
These two schemes provide substantial frameworks for analyzing the security of
long-term time-stamping schemes. However, the works of [18,19] only address
the renewal of server-side algorithms, the renewal of client-side hash functions
is not addressed.

Besides, Meng et al. found that the ISO/IEC standard [1,14,15] did not
specify the renewal of client-side hash functions for traditional time-stamping
schemes [20], which causes the schemes could only achieve short-term integrity.
Then they proposed and analyzed the first comprehensive long-term time-
stamping scheme that allows the renewal of both client-side hash functions and
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server-side algorithms [21]. We are inspired by the ideas in [18,19], and [21] for
our proposed schemes and security analysis.

Blockchain-Based Time-Stamping. In 2008, Satoshi Nakamoto created the
“Bitcoin” cryptocurrency system as the first blockchain prototype [3] that lever-
ages the idea of time-stamping [11–13]. After that, dozens of blockchain-based
cryptocurrencies were generated. For example, “Ethereum” was proposed as a
developed blockchain platform that supports the creation of advanced smart
contracts for achievable programs and commands [22]. During the past decade,
there were many research surveys and reports on blockchain systems introducing
their structures, models, applications, and challenges [4,23,24]. In our paper, the
structure of blockchain shown in Fig. 1 is learned from the remarked surveys and
reports.

In 2015, the first BTS service “OriginStamp” was proposed [5]. Solutions
similar to the OriginStamp are the “OpenTimestamps” project [6], and “Proof
of Existence” service [7]. After that, many applications were built on top of the
“OriginStamp” service, e.g., manuscript submission [25], virtual patents [26],
secure videos [27]. All of them leverage “OriginStamp” as a basis for time-
stamping services. However, the long-term security of the OriginStamp, Open-
Timestamps, and Proof of Existence services has not been analyzed. The details
of the existing BTS schemes are reviewed in Sect. 5.

Apart from the design of BTS services, some researchers explored the reliabil-
ity of the time-stamps included in the blockchain [28–31]. Their research shows
that the time-stamps in blockchains are not accurate and could be manipu-
lated for attacks. They proposed distinct solutions to this issue: [30] and [28]
had slightly different ideas about leveraging an external TSA since it can pro-
vide accurate time records; [31] claimed to integrate the hash value of a user’s
document with a constant number of latest confirmed blocks on the Ethereum
blockchain; [29] proposed to use a smart contract that intermediates between
a user and some time-stamp providers according to some selection strategy on
the Ethereum blockchain. These ideas can be adopted for reliable and accurate
blockchain time-stamps in our proposed scheme.

For the topic of how to insert data into a blockchain, Sward et al.
provided a comprehensive survey for inserting arbitrary data into the Bit-
coin blockchain [32]. Historical approaches were listed: Pay-to-Fake-Key-
Hash (PF2KH), Pay-to-Fake-Public Key (PF2K), OP RETURN, Pay-to-Fake-
Multisig (P2FMS), Pay-to-Fake-Script-Hash (PFSH), Data Drop, and Data
Hash Method. The authors made a comparison between these methods in terms
of their efficiency, cost, scalability, and potential weaknesses. Besides, Gao et al.
proposed a method to store data in the Bitcoin blockchain by encoding it into
Bitcoin addresses [33], which enables more storage space for additional infor-
mation of the data (e.g., file names, creator names, keywords). In our proposed
scheme, the data insertion method can be selected based on these researches.
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Long-term Security of Blockchain. Giechaskiel et al. analyzed the impacts
of broken cryptographic primitives on Bitcoin [34]. This work shows that the
compromise of SHA-256, RIPEMD160 and ECDSA algorithms in the Bitcoin
blockchain may cause the stealing of coins, double spending, repudiated pay-
ments, etc. Any of them could be a devastating problem for Bitcoin secu-
rity. Following this work, Sato et al. proposed the first long-term blockchain
(LTB) scheme with the renewal of hash functions and signatures used in a
blockchain [35], and Chen et al. proposed an improved LTB scheme [36] to avoid
the hard fork caused by the hash function renewal in [35] when using a proof-
of-work blockchain. Recently, Meng et al. observed that [35,36] only defined the
transition from the first algorithm to the second one, and the security of those
schemes is not analyzed. Then they proposed an enhanced LTB scheme [10] that
enables algorithm renewal in long-term periods, which has been proved secure
under their proposed security model. In this work, we borrow the ideas of [10]
for achieving server-side algorithm renewal as reviewed in Sect. 3.

3 Preliminaries

Blockchains. Blockchains are distributed digital ledgers of signed transactions
that are grouped into blocks. A block is linked to its previous one by using hash
functions after validation and undergoing a consensus decision [24]. In specific,
each block is comprised of a block header and block data. As shown in Fig 1, a
block header contains a block index number, a nonce, a hash value of the previous
block header, a time-stamp, and a Merkle tree root value of all block data. The
block data contains a list of transactions along with their corresponding digital
signatures.

…… ……

Txi1, Sigi1

mkrootihbi-1

Txi2, Sigi2 Txij, Sigij

Block Bi

Block header

Time ti

NonceBlock No.

……

mkrooti+1 hbi+1hbi

Block Bi+1

Block header

Time ti+1

NonceBlock No.

hbi

Tx(i+1)1, Sig(i+1)1 Tx(i+1)2, Sig(i+1)2 Tx(i+1)j, Sig(i+1)j
……

Fig. 1. The general structure of a blockchain

Blockchain technology utilizes cryptographic hash functions and signature
schemes. In the block Bi in Fig. 1, each transaction is signed by the user
who initiates the transaction, then all the transaction and signature pairs
(Txi1, Sigi1), ..., (Txij , Sigij) in the block are aggregated together by using
a Merkle tree. The resulting root value mkrooti is stored in the block header for
simplified verification [3]. The block header is then hashed into a hash value hbi
that is stored in the block header of the next block Bi+1. The signatures enable
the network nodes to verify the integrity and authenticity of transactions, and
the chaining of hash values between blocks protects the integrity of block data.
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Long-term Blockchain Scheme. For a long-term blockchain (LTB), we
review the ideas of the secure LTB scheme proposed by Meng et al. [10], which
could be divided into a hash transition procedure and a signature transition
procedure.

……

Total M blocks generated 
using H0, …, Hi-1

…… ……

r blocks generated using Hi
with archiveHash values

b1 bM

archiveHash archiveHash

bM+1 bM+r

……

bM+r+2 bM+r+F

F blocks generated using Hi

……

r’ blocks generated using Hi+1
with archiveHash values

archiveHash archiveHash

bM’+1 bM’+r’

……

ti ti+1 Time

Hi-1 is secure Hi is secure Hi+1 is secure

Fig. 2. The hash transition procedure of the LTB scheme proposed by Meng et al.

The hash transition procedure (as shown in Fig. 2) is performed by the
blockchain system. Assume at time ti(i ≥ 1) when hash function Hi−1 becomes
weak but not actually broken, the blockchain already has M blocks generated
using hash function H0, ..., Hi−1 for calculating Merkle tree and block hash val-
ues. The transition from Hi−1 to a stronger hash function Hi includes 3 steps: 1)
divide all M blocks into r sets, with s blocks in each set, i.e., M = r×s. 2) calcu-
late an archive hash value of each set of blocks using Hi, i.e., archiveHashi1 =
Hi(b1, ..., bs), ..., archiveHashir = Hi(b(r−1)s+1, ..., bM ), and stores
these archiveHash values separately in the block header of bM+1, ..., bM+r.
bM+1, ..., bM+r uses Hi for calculating Merkle tree and block hash values.
3) The new blocks after bM+r are generated using Hi and they do not include
archiveHash fields. Assume at time ti+1 when Hi becomes weak but still secure,
there are total F blocks after bM+r. Then set M ′ = M + r+F and repeat steps
1–3: divide all M ′ blocks into r′ sets, calculate archive hash values for each set
using Hi+1 and store them into future blocks. The verification procedures of
hash transitions check: 1) the correctness of every block (include the merkle tree
root value, block hash value, signatures, and archiveHash field etc.), 2) the i-
th hash transition happens within the time period that at least hash functions
Hi−1, Hi are secure, and 3) the latest hash function used in the blockchain is
still secure at the verification time.

The Signature transition procedure is performed by users. Assume a user uti-
lized a signature scheme Si−1(i ≥ 1) for signing transactions in the blockchain.
At the time when Si−1 is threatened but still secure, a new key pair should
be generated from a stronger signature scheme Si. Then the users’ transactions
should be transferred from the key pair of Si−1 to the new key pair of Si. i.e.,
sigi ← Si−1(txi). The new transaction and signature pair (sigi, txi) is then sub-
mitted to the blockchain. After that, users begin to sign new transactions using
Si. The verification procedures of signature transitions check: 1) the correctness
of every block, 2) the i-th signature transition happens within the period that at
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least signature schemes Si−1, Si are secure, and 3) the latest signature scheme
used in the blockchain is still secure at the verification time.

4 Definitions of a BLTTS Scheme

In this section, we provide the first formal definition and security model of a
Blockchain-based Long-term Time-stamping (BLTTS) scheme.

4.1 Scheme Definition

A BLTTS scheme includes the following entities: a user, a blockchain system,
and a verifier. The user owns the data item to be time-stamped and sends it
to the blockchain. The blockchain stores the data in a block, which provides
existence proofs of the data. The verifier checks the validity of the proofs.

Algorithms. A BLTTS scheme is comprised of a tuple of algorithms (BTSGen,
BTSRen, BTSVer), which are defined as follows:

– TS0 ← BTSGen(C0; D, blc): at time t0, the time-stamp generation algorithm
BTSGen takes a data item D and a blockchain blc as input and outputs a
time-stamp proof TS0 by using a set of cryptographic algorithms C0.

– TSi ← BTSRen(Ci−1, Ci; D, blc)(i ∈ [1, n]): at time ti(i ∈ [1, n]) when
some cryptographic algorithms in Ci−1 is threatened but still secure, the time-
stamp renewal algorithm BTSRen takes a data item D and the blockchain blc
as input and outputs a time-stamp proof TSi by using a set of cryptographic
algorithms Ci.

– b ← BTSVer(D, TS0, ..., TSn, blc, VD, tv): at verification time tv, the time-
stamp verification algorithm BTSVer takes as input a data item D, a group of
time-stamp proofs TS0, ..., TSn, the blockchain blc, the verification data VD
(defined in the further paragraph), and the verification time tv, then outputs
a bit b = 1 if the time-stamp proofs are valid on D; otherwise outputs b = 0.

Timet1 t'0 t2
…… tn t'n-1

c0 is secure c1 is secure cn-1 is secure cn is secure

t0 t'ntn-1

Fig. 3. Timeline of cryptographic algorithm lifetime and renewal
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Timeline. Figure 3 shows the relations between the lifetime and renewal time of
every particular type of cryptographic algorithm ci ∈ Ci. For i ∈ [1, n], ci−1

should be renewed to a stronger one ci when it becomes weak but still within its
lifetime. In other words, at time ti, both ci−1 and ci are secure. We argue that
this renewal time window is reasonable and practical. For example, the SHA-1
algorithm was theoretically broken in 2005 [37], but the first real collision pair
of SHA-1 was found in 2017 [38]. The middle 12 years are the renewal window
from SHA-1 to SHA-2. We denote the starting usage time and breakage time of
ci separately as c.ti and c.t′i. For C.ti and C.t′i, we mean the common starting
usage time of all ci ∈ Ci and the breakage time of any ci ∈ Ci.

Verification Data (VD). VD contains necessary data used for the BTSVer algo-
rithm. Especially, VD must contain the information indicating the start time
and breakage time of every ci ∈ Ci for i ∈ [1, n]. This information can be col-
lected from reliable sources such as the NIST standard [39,40]. Then at the time
of verifying the validity of algorithms, the block time-stamps and the VD time
should be synchronized with the same criteria, e.g., the global time.

4.2 Security Model

In a BLTTS scheme, we make the following assumptions:

1. The verification data VD is trusted.
2. Every time a hash function or signature scheme is threatened but still secure,

a stronger hash function or signature scheme is available.

A BLTTS scheme should satisfy two properties: correctness and long-term
integrity. The definitions of these two properties are given as follows:

Correctness. Correctness means that if all entities perform their functions
correctly, a BLTTS scheme could prove the existence of data items in long-
term periods that are not bounded by the lifetimes of underlying cryptographic
algorithms.

Definition 1. (Correctness.) Let BLTTS = (BTSGen, BTSRen, BTSVer) be
a BLTTS scheme. For the scheme to be correct, it must satisfy that if time-
stamp proofs TS0, ..., TSn are generated for any data item D by following the
BTSGen and BTSRen algorithms, at time tv ∈ [C.tn, C.t′n], the verification
algorithm outputs BTSVer(D, TS0, ..., TSn, blc, VD, tv) = 1.

Long-term Integrity. The long-term integrity measures the probability of an
attacker successfully compromising a BLTTS scheme. Intuitively, we say that
an attacker can compromise a BLTTS scheme if it could claim that a data item
exists at a point in time but it does not exist, or tamper with existing time-stamp
proofs without being detected. Thereby, we say that a BLTTS scheme has long-
term integrity if any polynomial-time adversary is unable to compromise the
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BLTTS scheme in long-term periods that are not bounded by the lifetimes of
underlying cryptographic algorithms.

To formalize this, the long-term integrity model is defined as an experiment,
which is displayed as Algorithm 1, running between a long-lived adversary A
and a simulator B. B has computational resources comparable to A. A could
access a clock oracle clk(·) and a blockchain oracle Blc(·), which are defined as
follows:

1. clk(·): P ← clk(t). A inputs a time point t to the oracle, who returns the
corresponding computational power P according to the timeline introduced in
Sect. 4.1. That means, P develops with the increase of t but is restricted within
each period. The ability that A can break or cannot break any algorithm
depends on P .

2. Blc(·): TS ← Blc(x), R ← R ‖ (x, TS). A inputs a data item x, the oracle
submits x to the blockchain blc, and returns a time-stamp proof TS by fol-
lowing the BTSGen or BTSRen algorithm, and meanwhile records x along
with TS in a list R.

Algorithm 1: Long-term integrity (LTI) experiment ExpLTI
BLTTS(A)

1 Input: n, blc, VD
2 Output: a bit 1 or 0
3 Set R = [ ];

4 (x′, TS0, ..., TSn) ← Aclk(·), Blc(·) /* R is updated for Blc(·) queries. */

5 if BTSVer(x′, TS0, ..., TSn, blc, VD, tv) = 1 and ∃(x′, TS0, ..., TSn) /∈ R.
then

6 Return 1;

7 else
8 Return 0;

We use Pr[ExpLTI
BLTTS(A) = 1] to denote the probability of A winning the

game in Algorithm 1. By the time tv, we denote the probability that B breaks at
least one hash function within its validity period as BCom

H , and the probability
that B breaks at least one signature scheme within its validity period as BCom

S .

Definition 2. (Long-term Integrity.) A BLTTS scheme, BLTTS = (BTSGen,
BTSRen, BTSVer), holds the long-term integrity property if for any point in time
tv, there exists a constant c such that Pr[ExpLTI

BLTTS(A) = 1] ≤ c·(BCom
H +BCom

S ).

5 The Proposed BLTTS Scheme

In this section, we first briefly show why the existing BTS schemes do not satisfy
the security requirement of a BLTTS scheme. Then we propose an intuitive
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BLTTS solution that directly combines the existing BTS schemes and the LTB
scheme reviewed in Sect. 3, and prove that the solution does not hold the long-
term integrity property of a BLTTS scheme. Thereafter, we propose the first
successful BLTTS scheme, which is comprised of three solutions depending on
how the client-side data is processed before being written into a blockchain.
Finally, we compare the advantages and drawbacks of each solution. The notation
follows that in Table 1.

Table 1. Notation

n ∈ N Number of cryptographic algorithm D Data item to be time-stamped

i ∈ {0, n} Index of cryptographic algorithm Ci i-th cryptographic algorithm tuple

ci A particular type of algorithm in Ci c.ti, c.t′
i Starting and breakage time of ci

cHi i-th client-side hash function sHi, Si i-th server-side hash/signature scheme

TSi Time-stamp proof using Ci blc The blockchain used for time-stamping

tv The verification time hi Hash value computed through cHi

bi The block provides TSi txi Transaction data

bprei The previous block of bi hbi Hash value of block bi

bidi Index number of block bi sigi The digital signature of txi

mkrooti Merkle tree root value in bi tsi Time-stamp included in block bi

VD Verification data used in BTSVer pc, ps Client and server-side hash path

a ⇐ b Store parameter b into a a ⊆ b a is included in b

MT(H;D, p) MT: Merkle tree aggregation algorithm, H: hash function, D: data, p: hash path

Existing BTS Schemes. The existing Blockchain-based Time-Stamping
(BTS) schemes, e.g., “Proof of existence” [7], “OpenTimestamps” [6] and “Ori-
ginStamp” [5], can be summarized as the black fonts in Fig. 4. Since these
schemes do not specify the BTSRen algorithm, they do not comply with our
BLTTS definition in Sect. 4.1. It is trivial to prove that they are vulnerable to
attacks after any of cH0, sH0, or S0 is compromised.

Intuitive BLTTS Solution. As reviewed in Sect. 3, the existing LTB
scheme [10] supports the secure transition of server-side algorithms sH0 and S0.
Intuitively, the guarantee of a long-term secure blockchain in the BTS schemes
may be able to achieve a BLTTS scheme. Thus, we add a BTSRen algorithm and
corresponding procedures in the BTSVer algorithm in the existing BTS schemes
by leveraging the LTB scheme (as the red fonts in Fig. 4). Now we analyze the
long-term security of the intuitive solution based on our security model proposed
in Sect. 4.2.
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Fig. 4. An Intuitive BLTTS solution that directly combines the existing BTS schemes
(black fonts) and an LTB scheme (red fonts) (Color figure online)

Theorem 1. The intuitive BLTTS solution specified in Fig. 4 does not hold the
long-term integrity property.

Proof. At time t ∈ [cH.t0, cH.t′0], A can firstly submit a hash value of
data item x calculated using cH0 to the oracle Blc(·), i.e., h0 = cH0(x).
The oracle returns TS0 and records (x, TS0) in the list R. After that hash
function sH0 and signature scheme S0 could be transferred to stronger ones
before they are compromised. For x, the hash transition can be described as:
sH1(tx0, cH0(x)), the signature transition can be written as: S0(tx0, cH0(x)).
But after cH0 is compromised (tv > cH.t′0), A is able to output (x′, TS0) with
sH1(tx0, cH0(x)) = sH1(tx0, cH0(x′)) or S0(tx0, cH0(x)) = S0(tx0, cH0(x′))
that achieves BTSVer(x′, TS0, blc, VD, tv) = 1 and (x′, TS0) /∈ R with non-
negligible probability. Thus, Theorem 1 follows. ��

Discussions. If a client-side hash function is used, a BLTTS scheme has two
layers of security: the client-side hash function and server-side algorithms. For
the BTS schemes, the algorithms on both sides are not renewed to stronger ones,
so the adversary could attack any side after the algorithms are compromised.
For the intuitive solution, despite the server-side algorithms can be transferred
to stronger ones, the client-side could be attacked. The reason is that the data
item is not exposed to the blockchain after it is hashed. The long-term security
on the server side cannot guarantee the long-term security on the client side.
So far, a BLTTS scheme does not exist. This motivates us to propose a BLTTS
scheme (in Sect. 5.1) that satisfies long-term integrity.

5.1 Proposed BLTTS Scheme with Three Solutions

Roadmap. As discussed before, the LTB scheme [10] only guarantees the long-
term security of the server side. The obstacle is the involvement of client-side
hash functions. As reviewed in Sect. 2, the ISO/IEC standard has missed the
renewal mechanism for client-side hash functions [20]. In [21], this issue has
been analyzed and a comprehensive scheme that supports both client-side and
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server-side renewal has been proposed for traditional time-stamping. This gives
us the following inspirations: 1) the client-side security is easy to be overlooked
even by the ISO/IEC standard, 2) client-side and server-side security have the
same level of importance and the failure of either side is a bottleneck for long-
term time-stamping, and 3) the technique for client-side renewal proposed in [21]
could be studied for a BLTTS scheme.

In general, our proposed scheme is composed of two folds. For server-side
long-term security, we borrow the LTB scheme from [10]. Then we propose
three solutions for achieving client-side long-term security: 1) remove the client-
side hash functions, 2) renew client-side hash functions with independent time-
stamp proofs, and 3) renew client-side hash functions with connected time-stamp
proofs. These solutions are corresponding to the Solution 1, 2, and 3 as presented
in Fig. 5. Some parts of the algorithms are referred to Fig. 4.

Fig. 5. Proposed BLTTS scheme with three solutions

Remarks
Our scheme supports both client-side and server-side algorithm renewal. Thus, a
renewed time-stamp proof TS1, ..., TSn could be either for client-side or server-
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side renewal. The difference is that the relations between server-side renewal
proofs are explicitly recorded on the blockchain, so these proofs are not nec-
essary to be obtained by users. On the contrary, the client-side renewal proofs
are randomly distributed in blockchain transactions, users need to collect their
proofs as evidence for verification.

The time-stamps in the blockchain should be reliable and accurate to verify
the start and breakage time of cryptographic algorithms. The solutions could be
referred to related works [28–31] in terms of detailed scenarios.

The method to insert a data item, a hash value, or a hash value along with a
time-stamp proof into a blockchain transaction depends on 1) which blockchain
is selected for the BLTTS scheme, and 2) the specific size of the inputs. For
instance, if a user has a small input (lower than 80 bytes) to submit on Bitcoin,
OP RETURN is the most efficient choice; for medium amounts of data (between
80 and 800 bytes), P2FMS is the most cost-effective option; for large amounts of
data (beyond 800 bytes), the Data Drop w/o method provides the least expensive
option [32]. The user should select a data insertion method that has enough
capacity for the data item and while it is cost-effective.

5.2 Solutions Comparison

As Table 2 shows, we provide a comparison between Solutions 1, 2, and 3 in
the following 6 factors: 1) the renewal type that the user needs to perform, 2)
whether the time-stamped data is exposed to the public, 3) whether the data
size is limited in each transaction, 4) whether the solution is cost-free, 5) whether
there are connections between time-stamp proofs, and 6) the compatibility with
existing BTS services. Then we analyze the best application scenario for each
solution.

Table 2. Comparison between Solution 1, 2 and 3 with multiple factors

Sols Cryptographic renewal
performed by users

Data
exposure

Data size limit
per transaction

Costs Time-stamp
connection

Compatible
with BTS

1 Server-side signature
scheme

Exposed Limited Not free Both sides
connected

No

2 Client-side hash
function Server-side
signature

No Unlimited Can be free Server-side
connected

Yes

3 Client-side hash
function Server-side
signature

No Unlimited Not free Both sides
connected

No

In Solution 1, a user directly submits the data item to the blockchain. The
only action required for the user is to renew server-side signature schemes. Time-
stamp proofs generated from the server-side hash and signature transitions can
be both collected from the blockchain with connections, so the user does not
have to hold any time-stamp proof for verification. Since the data is not hashed
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and compressed, it is publicly readable and the data size is limited in each
transaction. The existing BTS services only allow the insertion of a hash value of
the data item into a blockchain transaction, thus this solution is not compatible
with the services. A user needs to insert data individually with a minimum non-
dust amount of money for validating a transaction if the blockchain is used for
cryptocurrency.

In Solution 2, a user submits a hash value of data item(s) to the blockchain.
The user needs to renew both client-side hash functions and server-side sig-
nature schemes. Time-stamp proofs for server-side renewal are connected, but
time-stamp proofs from the client-side are just hash values without connections.
The user needs to collect all time-stamp proofs for client-side hash renewal for
verification. The data item is not exposed and the data size is unlimited because
it is hashed, and it is the only form that the existing BTS services accept. Espe-
cially, Opentimestamps and OriginStamp provide free time-stamping services.

In Solution 3, a user submits a hash value of data item(s) with a previous
time-stamp proof to the blockchain, which brings connections for time-stamp
proofs generated from the client side. The user only provides the last client-side
time-stamp proof for verification. Besides, both client-side hash functions and
server-side signature schemes are renewed by the user. Since the data item is
hashed, it preserves data nondisclosure and unlimited data size. But the nested
time-stamp proofs in TSi−1 will be harder to be inserted when the size becomes
much bigger. This form of submission is not accepted by the existing BTS ser-
vices, thus it also requires self-insertion by the user with a minimum non-dust
amount of money for each transaction.

In summary, if data privacy is not a primary goal to be considered, and
the size of data is small enough to be inserted, Solution 1 is the perfect choice
for users due to its convenience; if the nondisclosure of data is critical to be
protected, or the data size is large, or the user cares most about the cost, Solution
2 is the best choice that can be implemented by the existing free BTS services;
if data’s nondisclosure and size matters, but the existence of data is required to
be proved for a very long time, such as hundreds of years. It may be hard to
keep every time-stamp proof for verification, then Solution 3 is a good option
because it provides connections between time-stamp proofs.

6 Security Analysis

We now prove that the proposed BLTTS scheme holds each security property in
terms of the security models and definitions in Sect. 4.2.

Theorem 2. The proposed BLTTS scheme holds the correctness property.

Proof. In terms of the definition of correctness, we assume that a group of time-
stamp proofs TS0, ..., TSn of a data item D are generated through algorithm
BTSGen and BTSRen legitimately. At time tv ∈ [C.tn, C.t′n], the algorithm
BTSVer takes input D, TS0, ..., TSn, VD, blc and tv, and the verifications
cover three parts: 1) the correctness of client-side renewal, 2) the connections
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between data item, transaction, block and the blockchain, and 3) the correctness
of server-side renewal. We now analyze the output of BTSVer:

For Solution 1, by using algorithm BTSGen, the data item D is submitted
to a block transaction tx0 on block b0 from blockchain blc. Then the client-
side renewal is not required, and the connections between D, tx0, b0, and blc
are guaranteed. By using algorithm BTSRen, the hash transition and signature
transition can be both implemented before the previous server-side hash function
sHi−1 or signature scheme Si−1 is compromised, thus the BTSVer algorithm
outputs 1 and Solution 1 is correct.

For Solution 2 and 3, by using algorithm BTSGen, a hash representation h0

of D is calculated by cH0 and submitted to tx0 on block b0 from blc. Then if
the algorithm BTSRen performs correctly, a new hash representation hi(i ≥ 1)
of D is calculated by using a stronger hash function cHi before the previous one
cHi−1 is compromised, and hi (or hi ‖ TSi−1) is submitted to txi on block bi from
blc. Thus, the client-side renewal of both solutions are correct, the connections
between h0, tx0, b0 and blc, and the connections between hi (or hi ‖ TSi−1), txi,
bi and blc are guaranteed. Same as Solution 1, the server-side hash transition and
signature transition can be both implemented at the correct time by algorithm
BTSRen, thus the BTSVer algorithm outputs 1 and Solution 2 and 3 are correct,
then the theorem follows. ��
Theorem 3. Assume the verification data VD is trusted, and every time a
hash function or signature scheme is threatened but still secure, a stronger hash
function or signature scheme is used for renewal respectively, then the proposed
BLTTS scheme holds long-term integrity property.

As the experiment defined in Sect. 4.2, the adversary A is able to input data
item (or hash representation) to the blockchain oracle Blc(·) for obtaining time-
stamp proofs. Thus, the long-term integrity of the scheme addresses the long-
term security of server-side algorithms, and of the client-side hash functions.
That means A can win the game through the following two cases:

– Case 1: A correctly computes the hash representations of data items aligning
with the VD archive, but wins the game by outputting a valid time-stamp,
which was not through the blockchain oracle Blc(·).

– Case 2: A correctly queries the blockchain oracle Blc(·), but wins the game by
outputting a valid time-stamp, which was not aligned with the VD archive.

We use Pr[ExpLTI, C1
BLTTS (A) = 1] and Pr[ExpLTI, C2

BLTTS (A) = 1] to denote the prob-
ability of A winning the game through Case 1 and Case 2 respectively. We use
BCom
cH , BCom

sH , and BCom
S to denote the probability that B breaks at least one

client-side hash function, at least one server-side hash function, and at least one
server-side signature scheme within their validity periods respectively. Then we
prove Theorem 3 from Lemma 1 and Lemma 2 corresponding to Case 1 and
Case 2.

Lemma 1. There exists a constant c such that Pr[ExpLTI, C1
BLTTS (A) = 1] ≤ c ·

(BCom
sH + BCom

S ).
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Proof. Since we adopt the existing LTB scheme [10] for server-side algorithm
renewal, their proofs show that the LTB scheme satisfies the following two prop-
erties:

– Long-term integrity: there is a negligible probability that A can claim a non-
existed data item or tamper with data in any existing blocks on the blockchain
without being detected in long-term periods.

– Long-term unforgeability: there is a negligible probability that A can output
a message m along with a valid signature s on m, and m was not previously
signed by S on the blockchain in long-term periods.

More accurately, the proof of [10] reduces the probability that a polynomial-time
adversary A wins the game through tampering any block data or forging any
signature on the blockchain to the probability that B breaks at least a server-side
hash function or signature scheme within its validity period, which is negligible.
Thus, Pr[ExpLTI, C1

BLTTS (A) = 1] ≤ c · (BCom
sH +BCom

S ) holds, and Lemma 1 follows.
Besides, it directly leads to Theorem 3 holding for Solution 1 in the BLTTS
scheme since only server-side algorithms are used in the solution. ��
Lemma 2. There exists a constant c such that Pr[ExpLTI, C2

BLTTS (A) = 1] ≤ c ·
(BCom

cH ).

Proof. In Case 2, A wins the game by outputting time-stamp proofs
TS0, ..., TSn on a distinct data item x′ 	= x, so that BTSVer(x′, TS0, ...,
TSn, VD, blc, tv) = 1. Besides, at time ti for i ∈ [1, n], the two correspond-
ing client-side hash function cHi−1 and cHi used by A must be both collision
resistant. Now let us check the following reasoning:

At time t0, A computes a hash representation MT(cH0; x, pc0) of a data
item x (pc0 is empty for the case of a single hash computation of D), and obtains
a time-stamp proof TS0 from the blockchain oracle Blc(·). Assume hash function
cH0 is collision resistant at t0.

At time t1, A decides to renew the time-stamp proof TS0 by using a stronger
hash function cH1. Since hash functions cH0 is still collision resistant at this
time, A can compute either MT(cH1; x, pc1) and obtain a new time-stamp
proof TS1 (Case a), or A computes MT(cH1; x′, pc′

1) and obtain TS1 (Case
b) from the oracle Blc(·). If A wins the game after Case b happens, it must
hold that MT(cH0; x, pc0) = MT(cH0; x′, pc′

0). Correspondingly, B can obtain
the pair ((x, pc0), (x′, pc′

0)) to break the collision resistance of cH0 within its
validity period. This result is contradict to the assumption that cH0 is collision
resistant at t1. If Case a happens, let us carry on with our reasoning. We now
assume that cH1 is collision resistant at time t1.

At time t2, cH0 may have been broken, but we assume that cH1 is still
collision resistant, and the hash representation MT(cH1; x, pc1) is a part of TS1.
Now repeating the previous situation, A can compute either MT(cH2; x, pc2)
and obtains TS2 (Case a), or determine MT(cH2; x′, pc′

2) and obtain TS2 (Case
b) from the oracle Blc(·). Again, if A wins the game after Case b happens, it
must hold that MT(cH1; x, pc1) = MT(cH1; x′, pc′

1). Correspondingly, B can
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obtain the pair ((x, pc1), (x′, pc′
1)) to break the collision resistance of cH1

within its validity period, which contradicts the assumption, and Case a leads
us to continue our reasoning.

Carrying on our argument as before, only Case a for each time-stamp proof
renewal is considered. We assume that cHn−1 is collision resistant at both tn−1

and tn, and the hash representation MT(cHn−1; x, pcn−1) is a part of TSn−1.
If A finally wins the game after computes MT(cHn; x′, pc′

n) and obtains TSn

from the oracle Blc(·), MT(cHn−1; x, pcn−1) = MT(cHn−1; x′, pc′
n−1) must

hold. Then B can obtain the pair ((x, pcn−1), (x′, pc′
n−1)) to break the collision

resistance of cHn−1 within its validity period.
In summary, based on the above reasoning, the probability that A wins the

game through Case 2 is reduced to the same level of the probability that B
breaks at least one client-side hash function within its validity period. Thus,
Pr[ExpLTI, C2

BLTTS (A) = 1] ≤ c · (BCom
cH ) holds, and Lemma 2 follows. ��

Combining Lemma 1 and Lemma 2, the winning probability of A from both
Case 1 and Case 2 is reduced to the same level of the probability that B breaks
at least one client-side hash function, or at least one server-side hash function, or
at least one server-side signature scheme within its validity period. There exists
a constant c such that:

Pr[ExpLTI
BLTTS(A) = 1] = Pr[ExpLTI, C1

BLTTS (A) = 1] + Pr[ExpLTI, C2
BLTTS (A) = 1]

≤ c · (BCom
cH + BCom

sH + BCom
S )

(1)
With aggregating BCom

cH and BCom
sH , we have:

Pr[ExpLTI
BLTTS(A) = 1] ≤ c · (BCom

H + BCom
S ).

Thus, we have proved Theorem 3.

7 Implementations

We implement the main contribution of Solution 2 - client-side hash renewal
under the existing BTS services “OriginStamp” and “Opentimestamps” (The
server-side algorithm renewal has been implemented in [10]). The Opentimes-
tamps deploys the service on Bitcoin, and the OriginStamp implements the ser-
vice on Bitcoin, Ethereum, and Ayon blockchain for multiple proofs. The results
show that our scheme is very practical and efficient to be deployed into a real
blockchain. The details are presented in Appendix A.

8 Conclusions

In this paper, we define the first formal definition and security model for a
BLTTS scheme, and analyze that the existing BTS services simply combined
with the existing LTB scheme could only prove the existence of data in short-
term periods. We observe that for a BLTTS scheme, the security is comprised
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of two folds: the client-side hash functions and server-side algorithms. A BLTTS
scheme must support the cryptographic renewal for both of these algorithms.
Then we propose the first BLTTS scheme with three solutions based on differ-
ent client-side data formats. We analyze that our scheme satisfies the long-term
integrity property, and finally we implement our scheme under existing BTS
services and found that it is very efficient and easy to be deployed in real appli-
cations.

Acknowledgements. This work is supported by the European Union’s Horizon 2020
research and innovation program under grant agreement No.779391 (FutureTPM),
grant agreement No. 952697 (ASSURED), and grant agreement No. 101019645
(SECANT).

A Implementations

In a nutshell, we chose an mp3 file as the data item to be time-stamped and
uploaded the file to the services three times to simulate the long-term time-
stamping process. In each time, the web server calculated the Merkle tree root
value and inserted it into a Bitcoin transaction. After the transaction is commit-
ted, the web server returned us a time-stamp proof for future verification. The
hash functions used are all SHA-256 since currently it is secure and applied in
the services, but this can be replaced by stronger hash functions when SHA-256
is proved weak.

Time-Stamping Process. As an example, our first time-stamping process
was implemented on 5th April 2021. After we submited the mp3 file to the
OriginStamp service, the returning time-stamp proof is shown as the upper part
of Fig. 6. The title records the submission time of the mp3 file, which is 00:01:32,
5th April 2021; the string after “Hash” is the hash value of our file computed by
SHA-256; the string after “Root Hash” is the Merkle tree root hash value of our
file and other files; the string after “Transaction” is the transaction ID (hash
value of the transaction) that indicates the particular transaction containing
the “Root Hash”. The time-stamp proof is publicly accessible at the website
https://www.blockchain.com/explorer by searching block number 677785, or the
transaction ID shown on Fig. 6. As shown in the down part of Fig. 6, the “Root
Hash” of our file is stored in the OP RETURN script of the Bitcoin transaction.

Thereafter, we submit the same file to the Opentimestamp service twice sepa-
rately at 11:32:06, 9th August, 2021, and 17:02:21, 12th August,2021 to simulate
the BTSRen algorithm. The time-stamp proof can be found on block 694946
and block 695443 respectively.

Verification. In terms of the verification procedures specified in Sect. 5.1, it
is straightforward to verify that the hash representation (“Root Hash”) of our

https://www.blockchain.com/explorer
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Fig. 6. The returned time-stamp proof from the OriginStamp service (upper) and the
OP RETURN script on the Bitcoin blockchain

file is stored with the Bitcoin transaction, the transaction is confirmed in the
Bitcoin blockchain, and the server-side algorithms under Bitcoin blockchain are
currently secure. Then we can also verify that the hash value of the mp3 file
and the “Root Hash” value is correctly calculated by using the SHA-256 hash
function. At last, every time-stamp proof is generated when the client-side hash
function is secure, the existence of the file is proved at the time displayed on the
earliest time-stamp proof. In our experiments, we can prove that the mp3 file
“Blue Moon” existed at 01:00, 5th April 2021 even the SHA-256 hash function
is later compromised.

Evaluation. We evaluate our scheme from the following four aspects: network
delay, storage overhead, service fee, and operability.

Network Delay. In our experiment, the delay between the submission time of the
file and the confirmation time of the transaction is around 60 min for Bitcoin. If
the user always submits their file for renewal at least 60 min before the current
client-side hash function is practically compromised, the long-term existence
proof of the file is guaranteed. Considering the breakage of SHA-1 collision-
resistance as an example, it took 12 years from the theoretical attack to practical
attack, thus this amount of delay is acceptable.
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Storage Overhead. Our implementation of Solution 2 only adds a hash value
into the blockchain at once, the overhead depends on the output size of the
underlying hash function. The output size for SHA-256 is 256 bits. If the output
size of new hash functions increases in the future, such as 512 bits, 1024 bits,
etc., it will bring a bigger overhead. However, there are different data insertion
methods, some of which allow bigger data sizes to be submitted. The overhead is
manageable as long as the output size of the new hash function does not increase
to an unmanageable level.

Service Fee. The consumed costs of our scheme depend on which BTS service is
used. For the Proof of Existence service, the submission of every single file costs
0.25 mBTC ≈ 8.3 GBP. The Opentimestamp service is free of charge, and the
Originstamp service provides both free service and subscription plans for differ-
ent levels of service. To be cost-effective, the Opentimestamp and Originstamp
services are optimal choices.

Operability. Our scheme only requires users to submit their files to any of the
BTS services or with their Bitcoin transactions after they know the hash function
is needed to be updated. As the above discussed, it is not required for a very
accurate date or time. A user can take only several seconds to submit the file,
and wait 1 h to get the time-stamp proof in several years. The operations are
simple and efficient.
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