
KGAT: An Enhanced Graph-Based Model
for Text Classification

Xin Wang1 , Chao Wang1(B), Haiyang Yang1, Xingpeng Zhang1, Qi Shen2,
Kan Ji1, Yuhong Wu1, and Huayi Zhan3

1 Southwest Petroleum University, Chengdu, China
{xinwang,xpzhang,jikan}@swpu.edu.cn

{202021000484,202021000482,202121000494}@stu.swpu.edu.cn
2 Chang’an University, Xi’an, China

2018900932@chd.edu.cn
3 Sichuan Changhong Electric Co. Ltd, Mianyang, China

huayi.zhan@changhong.com

Abstract. As a fundamental task in natural language processing, text
classification, which is to predict the class label of a given text, has been
intensively studied. Consequently, a host of techniques have been devel-
oped, among which techniques that are based on graph neural network
and its variant e.g., graph attention network (GAT) achieved impressive
performances, as they show superiority in dealing with complex graph-
structured data. Despite effectiveness, most of these techniques suffer
from several limitations, e.g., incapability in well-capturing correlation
among words in a text. In light of these, we propose a comprehensive
approach KGAT which incorporates multi-head GAT with enhanced
attention and customized ReadOut operation for text classification. (1)
Our approach constructs a text graph GT with edge weights from a text
such that both semantic and structural information (with correlation
degree) can be well captured. (2) On text graph GT , a novel atten-
tion mechanism is incorporated in a multi-head GAT for representation
learning. (3) Our approach customizes ReadOut operation such that the
representation of a text is refined by using a set of influential nodes of
GT . Intensive experimental studies on both typical benchmark datasets
and a newly created one (Sensitive) show that our approach substantially
outperforms other baseline methods and yields a promising technique for
text classification.

Keywords: Graph attention network · Multi-head attention
mechanism · Text classification

1 Introduction

Text classification is a classic problem in the field of natural language processing
(NLP) and provides fundamental methodologies for other NLP tasks, such as
topic labeling, sentiment analysis, intent detection, cyberspace security, and so
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
W. Lu et al. (Eds.): NLPCC 2022, LNAI 13551, pp. 656–668, 2022.
https://doi.org/10.1007/978-3-031-17120-8_51

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-17120-8_51&domain=pdf
http://orcid.org/0000-0002-4688-2948
https://doi.org/10.1007/978-3-031-17120-8_51

An Enhanced Graph-Based Model for Text Classification 657

on. The problem has been investigated from the perspective of machine learning
and was settled by techniques based on Naive Bayes [6], k-Nearest Neighbors [18],
Support Vector Machines [3] and so on. However, these traditional techniques
rely heavily on feature engineering for text representation, which leads to high
labor costs and low efficiency. In recent year, with the rapid development of
deep learning, neural-network-based techniques were involved to address the
problem, e.g., TextCNN [7], TextRNN [11], TextRCNN [8], etc. In particular,
Graph Neural Network [17] (GNN), a special kind of neural network, is leveraged
for the task and achieves excellent performances.

Deep learning based techniques rely on text representation heavily. In light
of this, various unsupervised methods are proposed to learn word or document
representations. The emergence of word vector models such as GloVe [16] and
Word2Vec [13] provide solutions to transform text data from high-dimensional,
high-sparse forms into continuous dense data, similar to the transformation on
images and speeches. However, the transformation on a sentence is often pro-
cessed sequentially with the embedding of each word, which ignores (potentially
important) structural information among words/phrases within a text. To tackle
the issue, investigators advocate expressing sentences with graph structures,
which can well express relationship among objects. While, this task is nontrivial
for classic deep learning based techniques. Fortunately, graph neural network
(GNN) is proposed shortly and showed strong capability in dealing with graph
data. GNN is first proposed by [17]. Then [15] proposed a graph-CNN model for
text classification and achieved better performance than classical models, e.g.,
CNN, LSTM. Essentially, GNN-based models transform a serialized text into a
graph, thus node-level representation can be refined by referencing the under-
lying topological structure. Moreover, graph embedding, which expresses graph
nodes or subgraphs in the form of vectors, provides a new type of representation
for the task of classification. Following this way, [25] proposed TextGCN that
builds a graph to capture the relationship of words that appeared in the entire
corpus for text classification, while different meanings of the same word were
not considered. Text-level-GNN [4] and Texting [26] are extensions of TextGCN,
still, they did not consider the weight of each edge when constructing the graph.
However, different neighbor nodes have different effects on word nodes, which
should not be simply omitted.

In response to the above problems, we propose a novel text classification
approach based on GAT. Instead of building a single corpus level graph, we
produce a sentence level graph, referred to as text graph, for each input text.
The text graph can well capture correlation relationship among words, which
facilitates the calculation of attention coefficients. We improve multi-head GAT
with enhanced attention mechanism for node-level feature learning. We also
develop a new ReadOut function for finalizing structure-level representation, in
particular, a wise strategy is incorporated for influential nodes identification.
Via experimental studies, the method we proposed shows superiority in various
datasets. To sum up, our contributions are as follows:

658 X. Wang et al.

– We propose to construct an undirected weighted graph to better capture the
correlation strength of the words within a text.

– We develop a multi-head GAT with enhanced attention mechanism. This
new model substantially improves representation learning at node-level.

– We customize the ReadOut operation to finalize graph-level representations.
In particular, an effective heuristic method for independent set searching is
employed to identify influential nodes.

– We produce a labeled dataset Sensitive. As far as we know, the dataset is the
first Chinese dataset in cyberspace security and fills a critical void in the area.

– We conduct intensive experiments on both benchmark datasets and Sensitive.
The performance of our approach illustrates its superiority compared to other
competitive baseline models.

2 Related Work

We now review text classification techniques that are based on deep learning
and graph neural networks.

Methods Based on Deep Learning. For the characteristic of automatically learn-
ing high-dimensional features, deep learning models, such as CNN [7], RNN [14],
are also applied to text classification tasks, which avoid tedious manual feature
engineering and perform better than traditional machine learning methods. And
the attention mechanism is introduced to strengthen the expressive ability of
the models. Hierarchical attention networks (HAN) [24] and Attention-based
LSTM [1,20,29] attention to networks. However, it is usually difficult for the
local sliding window in the sequential learning model to capture the dependen-
cies between words far apart in long sentences.

Methods Based on GNNs. Graph Neural Networks (GNNs) have attracted much
attention [23,27,28] for their powerful representation capability in dealing with
unstructured data. In GNNs, the text classification problem is abstracted as
a graph node classification problem. To enable the GNN-based model to sup-
port online testing and reduce memory consumption, Text-level-GNN [4] builds
graphs for each input text to obtain global information. And TextING [26] builds
individual graphs for each document and learns text-level word interactions by
GNN to effectively produce embeddings for obscure words in the new text. Graph
theory is also combined with convolution to solve the task of text classification.
TextGCN [25] builds a heterogeneous graph model and extracts co-occurrence
information between overall words. And SGC [22] reduces unnecessary complex-
ity and redundant calculations by iteratively eliminating nonlinearities and col-
lapsing weight matrices between consecutive layers. Attention mechanism can
enhance the feature learning ability of networks and is also introduced into
GNNs. Graph attention network (GATs) calculates the attention weight of the
neighbors of the source node. Deep attention diffusion graph neural network
(DADGNN) [12] captures the connection between a word and its distant neigh-
bors at the node-level attention layer to obtain a more accurate document-level

An Enhanced Graph-Based Model for Text Classification 659

representation. HyperGAT proposes to learn text embeddings by applying hyper-
graphs over documents. However, the aforementioned models pay less attention
to polysemy and edge weight.

3 Method

The working flow of our approach is shown in Fig. 1a. As can be seen, the model,
denoted by KGAT, consists of three parts, i.e., Text Graph Construction, Mes-
sage Passing, and ReadOut. We next illustrate them in details.

Fig. 1. The working flow and structure of KGAT

3.1 Text Graph Construction

Let T = [t1, t2, · · · , tn] denote a text, where each ti refers to the i-th word of T.
Given such a text T to be classified, our approach converts it into a text graph,
that incorporates both semantic and structural information of T.

Text Graph. The construction process of a text graph works as follows.
(I) A sliding window with size l (l < |T|) is initialized and then moved

word by word on T until reaching the rightmost side. During the period, if a
pair of words are covered by the window, their co-occurrence frequency will be
increased by one. After the above process, the co-occurrence frequency of each
pair of words is obtained.

(II) The text graph GT = (V,E, fv, fw) is generated by including a set of
nodes in V such that each node vi in V corresponds to a word ti in T and a
set of edges (vi, vj) in E if the co-occurrence frequency τ(vi, vj) (or τij for short
when it is clear from context) of vi and vj is above zero. Moreover, each node
vi in V carries a tuple fv(vi) consisting of the node id of vi and a d-dimensional
vector hi ∈ R

d corresponding to the embedding of ti. Each edge e = (vi, vj) in
E takes an integer fw(e) as the weight of e, where fw(e) = τij .

660 X. Wang et al.

From graph GT , one can immediately obtain two matrices H and M. The
matrix H is defined as [h1,h2, · · · ,hn] ∈ R

d×n, where hi (i ∈ [1, n]) indicates
the word embedding of i-th word in T. For the (adjacency) matrix M, its entry
ai,j indicates the edge weight fw(vi, vj) of (vi, vj). Taking the sentence “it is a
very valuable movie” from a benchmark dataset as an example, by using a sliding
window with l = 3, one can obtain a text graph along with its adjacency matrix
as shown in Fig. 1b.

3.2 Message Passing with Enhanced GAT

Given a text graph GT , a message passing layer (MPL) is developed to aggregate
neighborhood information of each node in GT . A key feature of our MPL lies in
that the aggregation is performed via an enhanced multi-head GAT, which con-
siders not only influences from neighborhood but also their strengths, i.e., edge
weights τij . Due to space constraints, we focus on key features of MPL, while
omit details of the structure of a GAT, as more information can be found in [19].

Message Passing. Our MPL consists of an enhanced multi-head GAT followed
by a single head GAT.

HK = EGATK(H,M), (1)

HL = EGAT1(HK ,M), (2)

where EGATK (resp. EGAT1) denotes the operation of our GAT layer with
with K heads (resp. a single head), HK ∈ R

dK×n is the output of EGATK and
HL ∈ R

dL×n as the output of EGAT1 is the the final result of our MPL. In
fact, EGATK concatenates different features from multiple heads, by following
Eq. 3, that is defined as follows.

h′
i =

K∥
∥
∥
∥

κ=1

σ

⎛

⎝
∑

j∈Ni

ακ
ijW

κhj

⎞

⎠ , (3)

where ‖ represents concatenation, K is the number of heads, σ represents the
nonlinear function, Ni represents all direct neighbors of vi, Wκ is a learn-
able weight matrix, which is shared by all nodes in the κ-th head. Note that
ακ

ij = Softmax(βκ
ij) is the normalized enhanced attention coefficient of vj to vi

computed by the κ-th head, and βκ
ij is the enhanced attention coefficient, which

indicates the importance of vj to vi.

βκ
ij = LeakyReLU(aκ[Wκhi‖Wκhj])τij , (4)

For a pair of embedding hi and hj at κ-th head (κ ∈ [1,K]), a matrix Wκ ∈
R

d′×d is used for linear transformation. Two embedding are then concatenated
through the operation ‖ in Eq. (3), and transformed via a learnable vector aκ ∈
R

1×2d′
. Afterwards, LeakyReLU is applied as the activation function, followed

by a transformation imposed by τij . Note that by involving τij in the attention

An Enhanced Graph-Based Model for Text Classification 661

mechanism, our MPL is able to incorporate the correlation degree of words ti
and tj in a text, and hence can capture attention coefficients more accurately.

After operation via MPL, each node v in GT aggregates feature information
of all its direct neighbors, indicating that the representation of v is refined by
referencing its context information.

3.3 ReadOut for Prediction

After process through MPL, a customized ReadOut operation (shown in Fig. 1d)
is developed for text classification.

Attention Layer. The node representation HL of a GT is updated via an attention
layer. We then obtain a new representation HS ∈ R

dL×n, which is defined as:

HS = σ(W1HL + b1) � tanh(W2HL + b2), (5)

where parameters W1 ∈ R
1×dL , W2 ∈ R

dL× dL , b1,b2 ∈ R
n are learned dur-

ing training; σ and tanh are typical non-linear functions; � represents the dot
product of matrices. Indeed, the former part works as an attention mechanism,
while the latter part is for non-linear transformation.

Identifying Influential Nodes. To predict the class label of a text, some of its
words e.g., stop words, are often not helpful. To downplay the influences from
those useless words, it is necessary to identify influential nodes in GT and obtain
a representation from them for classification. To this end, we compute Katz Cen-
trality Ranking (KCR) of the nodes in GT and picks influential ones via KCR.
Briefly, katz centrality [21] is a variant of eigenvector centrality that not only
considers influences e.g., centrality, from direct neighbors, but also leverages a
coefficient to adjust centrality of the central node itself. The operation to obtain
the katz centrality is defined as follows:

CKatz = (I − γ · M)−1δ, (6)

where CKatz ∈ R
n is a n dimensional vector with each entry corresponding to

the katz centrality of a node, and n is the numbers of nodes in GT ; constant γ
is a damping factor and usually set to be less than the largest eigenvalue λ, i.e.,
γ < 1

λ ; and constant δ serves as a bias; I and M represent the identity matrix
and adjacency matrix, respectively.

Given CKatz, influential nodes can be identified as follows. (a) Nodes in GT

are sorted according to their centrality specified in CKatz. (b) Nodes with higher
centrality are picked repeatedly, until each edge of GT has at least one end point
in a set Z, that is used for maintaining influence nodes. Essentially, above process
simulates the progress of identifying an independent set from a graph. As shown
in Fig. 1d, a sorted list {v3, v2, v5 v6, v1, v4} is obtained according to CKatz

of GT ; then v3, v2, v5 and v6 are selected as influential nodes as they form an
independent set of GT . Now, we are ready to generate a representation for GT .

Graph Representations. Based on the set Z of influential nodes and their rep-
resentations HS , a pooling operation, specified in Eq. 7 is performed to obtain

662 X. Wang et al.

a new representation Hη ∈ R
dL , that is used for classification. Intuitively, the

pooling with avg averages the features of all the influential words, while the other
operation max is to highlight the role of the most influential word.

Hη = avg(hS
1 , · · · ,hS

|Z|) + max(hS
1 , · · · ,hS

|Z|), (7)

where hS
i (i ∈ [1, |Z|]) represents the feature of the i-th node in Z.

Prediction. Given the text representation Hη, it is fed into the multi-layer per-
ceptron with a single layer for prediction. In particular, the Softmax and cross-
entropy functions are used for loss evaluation:

Loss = −
∑

i

yi log(ŷi), (8)

where ŷ = Softmax(WcHη + bc) is the predicted label, and weight Wc, bias bc

are trainable parameters.

4 Experiments

In this section, we conduct comprehensive experimental studies to show the
performance of our model.

4.1 Experimental Setup

Datasets. For fair comparison, we used a set of typical benchmark datasets for
text classification. Table 1 shows the summary of the datasets we used. In a nut-
shell, the datasets can be categorized into two types, one for long corpus and the
other one for short corpus. Specifically, R8 and R52 are subsets of Reuters 21578
datasets. MR is a movie review dataset for binary sentiment classification. SST-1
and SST-2 are extension of MR. TREC [9] is a question dataset. Sensitive1 is a
dataset manually labeled by us. It contains 15035 short texts in Chinese and is
classified into six types: drugs, violence, accidents, gambles, covid-19, and others.

Table 1. Summary statistics of the datasets.

Dataset Long Corpus Short Corpus

R8 R52 Ohsumed MR SST-1 SST-2 TREC Sensitive

#Docs 7,674 9,100 7,400 10,662 11,855 9,613 5,952 15,035

#Train 5,485 6,532 3,357 7,108 9,645 7,792 5,452 12,028

#Test 2,189 2,568 4,043 3,554 2,210 1,821 500 3,007

Avg.Length 41.90 44.37 79.57 18.46 16.80 16.92 10.63 10.73

Max.Length 247 248 192 46 46 46 31 52

#Class 8 52 23 2 5 2 6 6

1 https://github.com/do-Hines/textGAT-MI.git.

https://github.com/do-Hines/textGAT-MI.git

An Enhanced Graph-Based Model for Text Classification 663

Table 2. Accuracy (%) on benchmark datasets. We report results as mean ± standard
deviation after 10 runs. The bold font and underline are the champion and runner-up
respectively.

Model R8 R52 Ohsumed MR SST-1 SST-2 TREC

TF-IDF+LR 93.74±0.00 86.95±0.00 54.66±0.00 74.59±0.00 41.18±0.00 79.63±0.00 96.81±0.00

CNN 95.71±0.52 87.59±0.48 58.44±1.06 77.75±0.72 42.30±0.41 80.27±0.42 93.62±0.55

Bi-LSTM 96.31±0.33 90.54±0.91 49.27±1.07 77.68±0.86 42.63±0.66 80.11±0.49 93.32±0.72

CNN-BiLSTM 96.66±0.61 92.62±0.49 52.21±0.23 76.62±0.39 43.12±0.40 81.93±0.46 94.12±0.51

fastText 96.13±0.21 92.81±0.09 57.70±0.49 75.14±0.20 36.08±0.81 81.45±0.16 91.29±0.69

Text-GCN 97.07±0.10 93.56±0.18 68.36±0.56 76.74±0.20 40.65±0.06 81.25±0.09 91.40±0.39

SGC 97.20±0.10 94.00±0.20 68.50±0.30 75.90±0.30 41.63±0.41 76.22 ±0.13 92.29±1.26

Text-level GNN 97.80±0.20 94.60±0.30 69.40±0.60 75.47±0.60 43.02±0.65 81.75±0.36 94.09±0.36

HyperGAT 97.97±0.23 94.98±0.27 69.90±0.34 78.32±0.27 41.96±0.35 81.26±0.72 93.55±1.79

DADGNN 98.15±0.16 95.16±0.22 - 78.64±0.29 45.15±0.26 84.32±0.15 97.99±0.52

w/o edge weights 97.34±0.15 94.70±0.33 70.16±0.43 78.75±0.34 45.71±0.53 83.42±0.23 98.16 ±0.25

w/o KCR 97.30±0.21 94.61±0.29 69.88±0.52 78.64±0.53 45.45±0.50 83.31±0.35 97.98±0.38

KGAT(ours) 97.41±0.16 95.00±0.33 70.24±0.32 79.03±0.30 45.83±0.35 83.71±0.43 98.18±0.27

Baselines. We consider three types of models as baseline methods.

– Traditional machine learning method TF-IDF+LR.
– Traditional deep learning methods, e.g., CNN [7], Bi-LSTM [11], CNN-

BiLSTM [10], and fastText [5].
– Graph-based methods, e.g., Text-GCN [25], SGC [22], Text-level GNN [4],

HyperGAT [2], and DADGNN [12].

Parameter Settings. In our test, we used the following settings: batch size of
512, initial learning rate of 0.001, sliding window of size 5. To avoid over-fitting,
we also adopt the dropout operation with a rate of 0.5. To calculate KCR, γ
, δ are fixed as 0.01 and 1, respectively. We implemented an 8-head KGAT
(by default) and used the Adam optimizer to train KGAT for 200 epochs with
early-stopping strategy. The length of the text we intercept varies according
to different datasets. For typical benchmark datasets, their original split for
training and testing is followed; for Sensitive, we randomly pick 80% as training
and use the remaining for testing (see Table 1 for details). We used pre-trained
GloVe word vectors [16] with d = 300 as the default input features while out-
of-vocabulary words are randomly sampled from a uniform distribution [-0.01,
0.01].

Evaluation Metrics. On benchmark datasets, Accuracy is used as the evaluation
metric. While on Sensitive, Precision, Recall, F1-Score, and Accuracy are used.

4.2 Prediction Accuracy

We show the prediction accuracy of our approach vs. baseline models on both
benchmark datasets and Sensitive.

664 X. Wang et al.

Comparison on Benchmark Datasets. Table 2 shows the accuracy of various
models on benchmark datasets. We find the following. (1) KGAT performs bet-
ter than baseline models, as it ranks top 1 w.r.t. accuracy on 4 datasets and top
2 on R52 and SST2. (2) On 4 datasets with short text, our KGAT achieve the
best performance on three and reached second place on the SST2. This shows
that our approach works well on short texts. (3) On R8 with long text, all models
achieve high accuracy. Though KGAT performs slightly worse than some GNN
models, it still beats other counterparts, showing that it can effectively capture
long-distance semantic relations.

Table 3. The performance of different models On Sensitive.

Model Precision Recall F1-Score Accuracy

CNN 92.58±0.60 91.83±0.40 92.17±0.43 94.01±0.27

Bi-LSTM 91.20±0.75 91.02±0.67 91.02±0.69 93.25±0.52

CNN-BiLSTM 92.63±0.53 92.16±0.74 92.36±0.53 94.25±0.39

fastText 89.15±0.08 87.17±0.09 88.12±0.08 91.15±0.09

Text-GCN 89.59±0.23 90.36±0.30 89.93±0.25 92.32±0.17

SGC 86.18±0.21 89.49±0.13 87.71±0.17 89.69±0.18

Text-level GNN 93.64±0.21 93.80±0.11 93.70±0.18 94.21±0.17

w/o edge weights 95.57±0.23 95.53±0.21 95.54±0.18 96.48±0.15

w/o KCR 96.12±0.30 95.56±0.30 95.82±0.19 96.68±0.15

KGAT(ours) 96.23±0.30 95.60±0.32 95.90±0.27 96.78±0.22

Comparison on Sensitive. Results on Sensitive are shown in Table 3. Our KGAT
exhibits the best performance on all metrics, increasing more than 2% points. It
demonstrates that KGAT works quite well on Chinese dataset. Since Sensitive
is a dataset regarding cyberspace security, the excellent performance of KGAT
on Sensitive also shows that our method is of great practical significance in the
field of cybersecurity.

Ablation Study. To investigate the contribution of each module in KGAT, we
conduct a series of ablation studies on all evaluation datasets. Concretely, w/o
edge weight is a variant that calculates attention coefficient without edge weight,
and w/o KCR is a variant that Readout without Katz Centrality Ranking. The
results are shown in the last three rows of Tables 2 and 3, respectively. We
find that including edge weights when calculating attention improves accuracy.
This observation verifies that a text graph with edge weight can better capture
the contextual relationship between words, which is beneficial for calculating
more accurate attention coefficients. Moreover, the performance gap between
w/o KCR and KGAT shows the effectiveness of choosing key nodes for graph-
level representation.

An Enhanced Graph-Based Model for Text Classification 665

Inductive Capability. To examine the inductive capability of KGAT, we vary the
proportion of training data from 1% to 80% on MR and Ohsumed. Two baseline
models Text-GCN and SGC are used for comparison. Figure 2 shows that (1)
KGAT achieves the best accuracy, showing a better capability to summarize new
words; and (2) all models perform better with larger training data, as expected.

4.3 Supplementary Studies

We conduct three supplementary experiments to reveal influences caused by
hyper-parameters.

Number of Heads. To see how model performance is influenced by the change of
head numbers, we conduct a supplementary study w.r.t. varied heads. Figure 3
shows the accuracy changes under varied head numbers on MR, Sensitive and
Ohsumed, respectively. As can be seen, starting from K = 1, the accuracy
increases when the number of attention heads increases. While the accuracy
decreases in both datasets when K > 8. It shows that multi-head attention with
appropriate head numbers can improve model performance.

Fig. 2. Test with varied training data (1%, 2%, 5%, 10%, 20%, 50%, 80%) on MR and
Ohsumed. The less training data is, the more new words are in the test.

Size of Sliding Window. The construction of a text graph is influenced by the
size l of the sliding window. Therefore, the parameter l will inevitably affect the
performance of KGAT. Figure 4a shows the accuracy of KGAT under different
window sizes on Ohsumed and TREC respectively. The x-axis represents the
window size, and the y-axis represents accuracy. It can be seen that the accuracy
reaches top when l = 5 (resp. l = 5) on Ohsumed (resp. TREC), hence the
optimal window size of texts is l = 5 in our method.

666 X. Wang et al.

Fig. 3. Tests on three datasets with different number of heads. Other datasets show
the same trend, omitted for space.

Fig. 4. Accuracy changes under varied window size and embedding dimension.

Dimensions. Figure 4b depicts the accuracy on MR and Ohsumed with differ-
ent embedding dimensions. As is shown, the model accuracy improves with the
increase of dimension d, until reaching d = 300. In particular, the increase of
accuracy slows down after d > 200. For a large dimension (d > 300), the model
accuracy begins to decline. This shows that an embedding with too low dimen-
sion cannot propagate label information to neighbor nodes well, while a too high
dimensional embedding still can not improve model performance, and may cost
extra training time.

5 Conclusion and Future Work

In the paper, we propose a comprehensive approach for text classification. We
have introduced techniques to construct text graphs, that captures correlation
degrees among words. We have also developed a GAT-based model with multi-
head and enhanced attention mechanism for representation learning. We have
proposed a customized ReadOut operation to finalize the representation for a
text. Via intensive experimental studies, our approach shows promising results
on multiple benchmark datasets and Sensitive, a newly published dataset.

We have utilized Stanford Dependency-Parser and conducted tests by using
dependency trees instead. The results show that incorporating dependency trees
does not significantly improves performances. While, we will keep working on

An Enhanced Graph-Based Model for Text Classification 667

this direction. Another direction worth exploring is multi-label classification.
Extending the model to incorporate edge features (rather than occurrence fre-
quency) would be another interesting topic.

Acknowledgement. This work is supported by Sichuan Scientific Innovation Fund
(No. 2022JDRC0009) and the National Key Research and Development Program of
China (No. 2017YFA0700800).

References

1. Cheng, J., Dong, L., Lapata, M.: Long short-term memory-networks for machine
reading. In: EMNLP, pp. 551–561 (2016)

2. Ding, K., Wang, J., Li, J., Li, D., Liu, H.: Be more with less: hypergraph attention
networks for inductive text classification. In: EMNLP, pp. 4927–4936 (2020)

3. Forman, G.: BNS feature scaling: an improved representation over TF-IDF for
SVM text classification. In: CIKM, pp. 263–270 (2008)

4. Huang, L., Ma, D., Li, S., Zhang, X., Wang, H.: Text level graph neural network
for text classification. In: EMNLP-IJCNLP, pp. 3442–3448 (2019)

5. Joulin, A., Grave, E., Bojanowski, P., Mikolov, T.: Bag of tricks for efficient text
classification. In: EACL, pp. 427–431 (2017)

6. Kim, S.B., Han, K.S., Rim, H.C., Myaeng, S.H.: Some effective techniques for Naive
Bayes text classification. IEEE TKDE 18(11), 1457–1466 (2006)

7. Kim, Y.: Convolutional neural networks for sentence classification. In: EMNLP,
pp. 1746–1751 (2014)

8. Lai, S., Xu, L., Liu, K., Zhao, J.: Recurrent convolutional neural networks for text
classification. In: AAAI, pp. 2267–2273 (2015)

9. Li, X., Roth, D.: Learning question classifiers. In: COLING (2002)
10. Lin, Y., Xu, G., Xu, G., Chen, Y., Sun, D.: Sensitive information detection based

on convolution neural network and bi-directional LSTM. In: TrustCom, pp. 1614–
1621 (2020)

11. Liu, P., Qiu, X., Huang, X.: Recurrent neural network for text classification with
multi-task learning. In: IJCAI, pp. 2873–2879 (2016)

12. Liu, Y., Guan, R., Giunchiglia, F., Liang, Y., Feng, X.: Deep attention diffusion
graph neural networks for text classification. In: EMNLP, pp. 8142–8152 (2021)

13. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word repre-
sentations in vector space. In: ICLR (2013)

14. Mikolov, T., Karafiát, M., Burget, L., Cernocký, J., Khudanpur, S.: Recurrent
neural network based language model. In: ISCA, pp. 1045–1048 (2010)

15. Peng, H., et al.: Large-scale hierarchical text classification with recursively regular-
ized deep graph-CNN. In: Proceedings of the 2018 World Wide Web Conference,
pp. 1063–1072 (2018)

16. Pennington, J., Socher, R., Manning, C.D.: GloVe: global vectors for word repre-
sentation. In: EMNLP, pp. 1532–1543 (2014)

17. Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The graph
neural network model. IEEE Trans. Neural Netw. 20(1), 61–80 (2009)

18. Tan, S.: An effective refinement strategy for KNN text classifier. Elsevier ESWA
30(2), 290–298 (2006)

19. Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph
attention networks. In: ICLR (2018)

668 X. Wang et al.

20. Wang, Y., Huang, M., Zhu, X., Zhao, L.: Attention-based LSTM for aspect-level
sentiment classification. In: EMNLP, pp. 606–615 (2016)

21. Was, T., Skibski, O.: An axiomatization of the eigenvector and Katz centralities.
In: AAAI, pp. 1258–1265 (2018)

22. Wu, F., de Souza, A.H., Zhang, T., Fifty, C., Yu, T., Weinberger, K.Q.: Simplifying
graph convolutional networks. In: ICML, pp. 6861–6871 (2019)

23. Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., Yu, P.S.: A comprehensive survey
on graph neural networks. IEEE TNNLS 32(1), 4–24 (2021)

24. Yang, Z., Yang, D., Dyer, C., He, X., Smola, A.J., Hovy, E.H.: Hierarchical atten-
tion networks for document classification. In: NAACL-HLT, pp. 1480–1489 (2016)

25. Yao, L., Mao, C., Luo, Y.: Graph convolutional networks for text classification. In:
AAAI, pp. 7370–7377 (2019)

26. Zhang, Y., Yu, X., Cui, Z., Wu, S., Wen, Z., Wang, L.: Every document owns
its structure: inductive text classification via graph neural networks. In: ACL, pp.
334–339 (2020)

27. Zhang, Z., Cui, P., Zhu, W.: Deep learning on graphs: a survey. IEEE TKDE 34(1),
249–270 (2022)

28. Zhou, J., et al.: Graph neural networks: a review of methods and applications. AI
Open 1, 57–81 (2020)

29. Zhou, X., Wan, X., Xiao, J.: Attention-based LSTM network for cross-lingual sen-
timent classification. In: EMNLP, pp. 247–256 (2016)

	KGAT: An Enhanced Graph-Based Model for Text Classification
	1 Introduction
	2 Related Work
	3 Method
	3.1 Text Graph Construction
	3.2 Message Passing with Enhanced GAT
	3.3 ReadOut for Prediction

	4 Experiments
	4.1 Experimental Setup
	4.2 Prediction Accuracy
	4.3 Supplementary Studies

	5 Conclusion and Future Work
	References

