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Abstract. Over-parameterized pre-trained language models (LMs),
have shown an appealing expressive power due to their small learn-
ing bias. However, the huge learning capacity of LMs can also lead to
large learning variance. In a pilot study, we find that, when faced with
multiple domains, a critical portion of parameters behave unexpectedly
in a domain-specific manner while others behave in a domain-general
one. Motivated by this phenomenon, we for the first time posit that
domain-general parameters can underpin a domain-general LM that can
be derived from the original LM. To uncover the domain-general LM, we
propose to identify domain-general parameters by playing lottery tick-
ets (dubbed doge tickets). In order to intervene the lottery, we propose a
domain-general score, which depicts how domain-invariant a parameter is
by associating it with the variance. Comprehensive experiments are con-
ducted on the Amazon, Mnli, and OntoNotes datasets. The results
show that the doge tickets obtains an improved out-of-domain general-
ization in comparison with a range of competitive baselines. Analysis
results further hint the existence of domain-general parameters and the
performance consistency of doge tickets.

Keywords: Pre-trained language model · Domain generalization ·
Lottery tickets hypothesis

1 Introduction

It is witnessed that more and more models become increasingly over-
parameterized, typically pre-trained language models (LMs). With the tremen-
dous amounts of parameters, these models have shown an appealing expressive
power [5,14,25,28]. While such LMs are enabled with small learning bias, they
suffer from the limitation of large learning variance [20], especially when faced
with multiple domains.

To show the consequence of such learning variance, we performed a pilot
study on how different parameters of BERT behave over multiple domains (e.g.,
Digital Music, All Beauty, and Gift Cards). We find that a large portion
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of parameters are domain-specific, while others are domain-general. Figure 1
shows an illustrative example. Certain neurons corresponding to domain-specific
parameters may be particularly activated by some domains but not so active in
others. The domain-inconsistency can potentially lead to a deteriorated out-of-
domain generalization capability, concerning how well a LM performs univer-
sally on any domains [20,30]. In contrast, the neurons corresponding to domain-
general parameters are similarly activated across different domains.

Motivated by the phenomenon, we for the first time posit that, a domain-
general LM that is underpinned by domain-general parameters as illustrated in
Fig. 1, can be derived from the original LM, and that the domain-general LM
would facilitate a better out-of-domain generalization. Specifically, inspired by
lottery ticket hypothesis stating that a pruned model is capable of performing as
expressive as the original model, we propose to identify domain-general param-
eters by playing lottery tickets (dubbed doge tickets) [6] under the guidance of a
domain-general score. The domain-general score describes how domain-invariant
a parameter is, rather than how expressive as depicted by the commonly used
expressive score [18]. Driven by variance reduction [20], the domain-general score
associates with the invariance of a parameter by looking at not only the mean
but also the variance of its expressive scores across different domains.

Fig. 1. A pilot study on how sampled neurons (for [CLS] token) corresponding to
the last FFN block of the fine-tuned BERT [5] can be activated by training domains
sampled from Amazon [21] via activation statistics [2]. Considering that GELU [10]
activation is used, we view neurons with values larger than minus two as activated. A
parameter is said to be specific to a domain or a group of domains if its associated
neurons are particularly activated by input from these domains, while not so active in
other domains. A parameter is said to be general to domains if its associated neurons
are similarly activated by input across different domains. Both domain-specific and
domain-general manners are observed.

Comprehensive experiments are conducted on three datasets: the Ama-
zon [21], Mnli [29], and OntoNotes [23] dataset. The results show that the
proposed doge tickets owns a competitive out-of-domain generalization compared
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with an array of state-of-the-art baselines. In-depth analyses are further carried
out to double-check whether the domain-specific manner holds de facto and
inspect whether the doge tickets performs consistently. The results hint the exis-
tence of domain-general parameters and the performance consistency of doge
tickets.

2 Background

2.1 Out-of-domain Generalization

Pre-trained LMs [5,14,25] have achieved a compelling performance on down-
stream tasks where the training and test examples are identically distributed [28],
thanks to the smaller learning bias brought by over-parameterization. Further
exploration has also been carried out on whether LMs can have a good out-
of-domain generalization [11], where the training and test examples are distin-
guished from each other in terms of distributions. However, the performance
gain is somewhat limited or even degraded, due to the large learning variance
brought by over-parameterization. Therefore, there is a large room for a better
out-of-domain generalization of LMs [30].

However, the issue with the large learning variance of pre-trained LMs is yet
to be systematically explored. In a pilot study (c.f. Sect. 3.1), we find that under
the setting of out-of-domain generalization, a number of parameters exhibit a
domain-specific activation behavior, while others in a domain-general one. Moti-
vated by this finding, we posit that domain-general parameters can underpin
domain-general LMs. Therefore, provided that the training and test examples
are separately sampled from training domains D and test domains D′, we aim to
uncover a domain-general LM M′ from the original LM M, and M′ is expected
to have a better out-of-domain generalization ability. It is also noteworthy that
out-of-domain generalization is significantly different from domain adaptation,
since domain adaptation has access to test examples.

2.2 Lottery Ticket Hypothesis

The lottery ticket hypothesis (LTH) states that a pruned model is capable of per-
forming as good as the original over-parameterized model [6]. LTH can be applied
to LMs in various ways [3,4,13,18] yet indicating a similar conclusion that lot-
tery tickets can win. Previous work discovers winning tickets in LMs via either
unstructured [4,6,26] or structured pruning techniques [4,18,24]. Unstructured
pruning methods [8,16,22] concentrate on pruning parameters at neuron level.
In contrast, structured pruning methods [9,12,17] prune parameters at module
level. In particular, [13] investigates the transition behavior of winning tickets
in LMs through shifting the sparsity levels, and has shown some slight perfor-
mance gain with appropriate tickets (termed super tickets) at a small sparsity
level. Inspired by LTH, we propose to identify the domain-general parameters
by playing lottery tickets (dubbed doge tickets) under the guidance of a newly
proposed domain-general score (c.f. Sect. 3.2).



Doge Tickets 147

2.3 Transformer Architecture

BERT [5] consists of a stack of transformer encoder layers [27]. Each of these
layers contains two blocks: a multi-head self-attention block (MHA) and a feed-
forward network block (FFN), with a residual connection and a normalization
layer around each. In the following description, we omit the details of residual
connections, normalization layers and bias terms for brevity. Assuming there are
n independent heads in each MHA block and the i-th head is parameterized by
W(i)

Q , W(i)
K , and W(i)

V ∈ R
d×dh , then the output from the MHA block, which is

sum of the intermediate outputs of all parallel heads, can be depicted as:

Z = MHA(X) =
n∑

i=1

H(i)(X)W(i)
O =

n∑

i=1

Att(XW(i)
Q ,XW(i)

K ,XW(i)
V )W(i)

O

where X ∈ R
l×d represents d-dimensional vectors that stand for l sequential

input token representations and W(i)
O ∈ R

dh×d is the output linear layer for the
i-th head. Likewise, we denote the output of the FFN block, which is composed
of two linear layers with proper activation in-between as:

X′ = FFN(Z) = W2GELU(W1Z)

where W1 ∈ R
d×di and W2 ∈ R

di×d correspond to the two layers. Our work
exactly targets at improving out-of-domain generalization through uncovering a
domain-general BERT from the original BERT by playing lottery tickets.

3 Identifying Doge Tickets

3.1 Uncovering Domain-general LM

LMs are perceived to bring large learning variance due to over-parameterization.
Accordingly, we suspect that the variance to some extent showcases itself within

Fig. 2. first fine-tuning, then pruning, finally rewinding paradigm when playing lottery
tickets. It is found that parameters can behave in either a domain-specific or domain-
general manner after fine-tuning.
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the LMs. Under the setting of out-of-domain generalization, we conduct a pilot
study to examine how neurons activation [2] can vary from a domain to another,
as in Fig. 1. In the study, the activation statistics towards three training domains
of a sampled neuron (for [CLS] token) from each FFN block are attained by 1)
feeding the examples sampled from these domains into the fined-tuned BERT; and
2) counting the accumulated times of activation. Recapping the results in Fig. 1,
we can find that quite a few neurons, or parameters without loss of generality,
unexpectedly behave in a domain-specific manner, which may well cause the
unsatisfying out-of-domain generalization performance. Yet, other parameters
may behave in a domain-general manner.

Motivated by the phenomenon, we hypothesize that domain-general param-
eters may essentially underpin a domain-general BERT that can be derived from
the original BERT. This makes it possible to uncover a domain-general BERT by
simply identifying domain-general parameters. Witnessing the success of LTH
that states a well-performing pruned model can be uncovered by playing lottery
tickets [6], we seek an effective solution customized for the domain-general BERT
from intervening lottery tickets (dubbed doge tickets).

3.2 Playing Lottery Tickets

The identification of tickets typically follows a first fine-tuning, then pruning,
finally rewinding paradigm [6]. Following recent advances [13,18,24], we would
like to apply structured pruning to a LM to identify doge tickets by pruning
MHA heads and FFN blocks. The most basic reason sits in that unstructured
pruning requires maintaining a global pool of scores for all parameters, leading
to a predominant memory overhead. Although we have only discovered domain-
specific manner at neuron level in Sect. 3.1, we believe the same can apply at
module level.The procedure is illustrated in Fig. 2, including the following steps:
1) fine-tuning: train the LM on a specific task; 2) pruning: prune parameters
of the LM to a target sparsity under the guidance of the domain-general scores
computed with the trained LM; 3) rewinding: set the pruned LM to the initial
point of fine-tuning and train it on the task again.

Previous work identifies winning tickets by referring to the expressive
scores of parameters [18]. While winning tickets can discover more light-
weighted and more expressive LMs, we argue that they are not suitable to
identify doge tickets since the variance has not been taken into consideration.
Thus, we intervene the playing of lottery tickets guided by the domain-general
scores which take into consideration the mean and variance of expressive scores
across domains.

Expressive Scores. The expressive scores are approximated by masking the
parameterized elements of the fine-tuned LM. ξ(i) and ν generally denote the
mask variables respectively for an MHA head and an FFN block [24], such that:

◦MHA(X) =
n∑

i=1

ξ(i)H(i)(X)W(i)
O ,◦ FFN(Z) = νW2GELU(W1Z)
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where we initialize the mask variables ξ(i) = 1 and ν = 1 for the corresponding
MHA head and FFN block to preserve the original LM. Then the expected
absolute gradient over all training data for the MHA head and FFN block gives
the expressive scores:

I
(i)
MHA = E(x,y)∼D

∣∣∣∣
∂L(x, y)

∂ξ(i)

∣∣∣∣ , IFFN = E(x,y)∼D

∣∣∣∣
∂L(x, y)

∂ν

∣∣∣∣

where (x, y) is a data point and L is the loss function. E represents expectation.
The absolute value of gradient for a mask indicates how large the impact of
masking the corresponding element is, thus implying how expressive an element
is. Intuitively, a less expressive element should be pruned preferentially.

Domain-general Scores. After obtaining expressive scores in all domains, the
domain-general scores take the mean and further the variance of expressive scores
across domains. The domain-general scores can be formulated as:

I
(i)′
MHA = Ed∼DE(x,y)∼d

∣∣∣∣
∂L(x, y)

∂ξ(i)

∣∣∣∣ −λVd∼DE(x,y)∼d

∣∣∣∣
∂L(x, y)

∂ξ(i)

∣∣∣∣ ,

I
′
FFN = Ed∼DE(x,y)∼d

∣∣∣∣
∂L(x, y)

∂ν

∣∣∣∣ −λVd∼DE(x,y)∼d

∣∣∣∣
∂L(x, y)

∂ν

∣∣∣∣

where (x, y) is a data point from the domain d. The domain-general score mea-
sures the balance between the mean and variance of expressive scores across
domains. λ is adopted to quantify the trade-off.

As suggested by [19], we normalize the expressive scores of MHA heads with
�2 norm. We gradually increase sparsity level by pruning the elements with
lowest domain-general scores, therefore producing LMs with different sparsity
levels. Rewinding is applied to these LMs by setting the remaining parameters’
values to what they were in the early stage of fine-tuning [7] (i.e., the initialization
point for fine-tuning). We expect the LM with remaining parameters can achieve
better out-of-domain generalization, thus regarding them as doge tickets.

Table 1. Statistics of datasets. #train., #dev., and #test indicate average number
of training, development, and test examples per domain.

Dataset D #train. #dev. D′ #test

AmazonA {All Beauty, Automotive, Digital
Music, Gift Cards}

5,400 600 {Industrial and Scientific, Movies,
Software}

6,000

AmazonB {All Beauty, Industrial and Scientific,
Movies, Software}

{Automotive, Digital Music, Gift
Cards}

AmazonC {Digital Music, Gift Cards, Movies,
Software}

{All Beauty, Automotive, Industrial
and Scientific}

Mnli {Fiction, Government, Slate,
Telephone, Travel}

78,540 1,963 {Face to Face, Letters, Nine,
Oup, Verbatim}

1,966

OntoNotes {Broadcast Conversation, Broadcast
News, Magazine, Newswire}

16,111 2,488 {Telephone Conversation, Web
Data}

1,837
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4 Experiments

4.1 Datasets

We conduct our experiments on the Amazon sentiment classification
dataset [21], the Mnli language inference dataset [29] and the OntoNotes
named entity recognition dataset [23]. They are described as follows:

• Amazon originally contains reviews from a variety of product categories. We
randomly select 7 product categories as domains and sample 6,000 reviews
from each domain. Since each review is associated with a score ranging from
1 to 5 stars, we derive a 3-way sentiment labels from the score by viewing
a score larger than 3 as positive, a score smaller than 3 as negative, and a
score of 3 as neutral. Then we randomly select 4 out of 7 domains as training
set (D) and the rest 3 as test set (D′). In this way, we can construct an
out-of-domain dataset and repeat for three times, resulting in a total of 3
out-of-domain datasets, denoted as AmazonA, AmazonB, and AmazonC
respectively.

• Mnli covers a range of genres of spoken and written sentence pairs with tex-
tual entailment information. We strictly follow its original data split and use
the mismatched (i.e., different genres from those in the training set) develop-
ment set of the dataset as out-of-domain test set, giving us 5 training domains
and 5 test domains.

• OntoNotes consists of annotated named entities types from 6 genres. We
randomly choose 4 domains as training set and the rest 2 as test set.

Table 1 present the detailed information and statistics of the datasets.

4.2 Models and Implementation

We directly fine-tune the pre-trained BERT [5] (in fact, BERT-base) without prun-
ing to obtain a solid baseline for out-of-domain generalization measure, and fur-
ther carry out comparisons among the following models:

• BERT w/ invariant risk minimization (IRM) applies a domain-invariant classi-
fier [1] to the BERT, as a strong baseline for out-of-domain generalization.

• BERT w/ random tickets rewinds on a set of random tickets randomly sampled
from the structured modules (MHA heads and FFN blocks).

• BERT w/ winning tickets rewinds on a set of winning tickets chosen according
to the expressive scores over training data. We identify the tickets through
pruning the BERT to an expected sparsity.

• BERT w/ doge tickets rewinds on a set of doge tickets chosen according to the
domain-general scores over training data, which is akin to the procedure of
BERT w/ winning tickets.

We use AdamW [15] as the optimizer in our experiments. The learning
rate is searched within {1, 2, 3, 5}×10-5 and the batch size is searched within
{16, 32}. Both training and rewinding last no longer than 10 epochs, with
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an early-stopping. For out-of-domain generalization, models are learned from
training domains and evaluated on ever unseen test domains. The averaged
Accuracy and the average F1-score over test domains are adopted as evalua-
tion metrics during our experiments.

4.3 Main Comparison

Table 2 shows the main comparison results on all datasets. As we can see, BERT
w/ doge tickets certainly generalizes better than BERT. Specifically, the improve-
ments over BERT brought by doge tickets are 1.9% on AmazonA, 1.2% on Ama-
zonB, 2.6% on AmazonC, 0.2% on Mnli and 1.3% on OntoNotes. Further,
compared to the competitive out-of-domain generalization baseline, BERT w/
IRM, our model BERT w/ doge tickets also achieves a performance improvement,
which illustrates that domain-specific parameters would better be pruned instead
of regularized. Finally, BERT w/ doge tickets gains 0.5% on average over that with
winning tickets, implying that domain variance should be considered as a sig-
nificant part when playing the lotteries. Surprisingly, BERT w/ random tickets
can be competitive with BERT w/ winning tickets, suggesting the sub-optimality
of using winning tickets for out-of-domain generalization. Meanwhile, we notice
that doge tickets favors a comparably smaller sparsity. This observation can be
seen as an evidence that, with the variance, we should cautiously prune param-
eters. We also provide results for BERT-large in Table 3, which show that doge
tickets can be applied to larger LMs and achieve a performance gain.

Table 2. Main comparison results in percentage. The best results on datasets are
boldfaced. Average Score is the average metric over used datasets. Average Sparsity
is the average sparsity to achieve best out-of-domain generalization among all sparsity
levels over used datasets.

Model Datasets Average Score Average Sparsity

AmazonA AmazonB AmazonC Mnli OntoNotes

Acc Acc Acc Acc F1

BERT 69.8 72.6 69.6 84.8 57.2 70.8 0.0%

w/ IRM 70.4 72.5 70.7 84.3 56.3 70.8 0.0%

w/ random tickets 71.4 73.3 70.1 84.6 57.9 71.5 12.8%

w/ winning tickets 70.9 73.7 71.3 84.8 57.9 71.7 17.5%

w/ doge tickets 71.7 73.8 72.2 85.0 58.5 72.2 15.0%

Table 3. Extended comparison results
in percent. Larger LMs are used.

Model Datasets

AmazonA

Acc

BERT-large 73.1

w/ IRM 73.5

w/ winning tickets 74.0

w/ doge tickets 74.3

Table 4. Results in percentage on Mnli
with different training domain numbers. Δ
means generalization margin.

Model Datasets

Mnli-5 Mnli-4 Mnli-3

Acc Acc Acc

BERT 84.8 84.2 83.0

w/ winning tickets 84.8 84.3 83.3

w/ doge tickets 85.0 84.5 83.6

Δ 0.2 0.3 0.6
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5 Analysis

5.1 Sensitivity to Learning Variance

To investigate the effect of learning variance for out-of-domain generalization,
Fig. 3 shows the results from different settings, {0, 10, 50, 100}, of the variance
coefficient λ on AmazonA. The results suggest that it is necessary to take
into account the variance when quantifying domain-general scores. The model
performance first increases till a certain λ and then decreases, hinting that we
can count the variance as much as possible on the same sparsity level to increase
model generalization.

Fig. 3. doge tickets on AmazonA under various λ values with two sparsity levels.

5.2 Impact of the Number of Training Domains

One may well note that the performance improvement of doge tickets is not signif-
icant on Mnli. We conjecture this is subject to the number of training domains.
To explore whether training domain number matters, we conduct experiments
by randomly selecting domains from the original 5 in Mnli (Mnli-5) as training
domains, denoted as Mnli-4 and Mnli-3. As shown in Table 4, we observe that
BERT w/ doge tickets discovers a larger generalization margin, when fewer (i.e.,
4 and 3) training domains are used. That is, when using a smaller number of
training domains, the impact of domain-specific (or domain-general) parameters
on generalization results becomes more significant. According to the existing lit-
erature and intuition [11], more training domains can help LMs to extrapolate
to unseen domains to some extent, thereby achieving a better out-of-domain
generalization than the use of less training domains.

5.3 Existence of Domain-specific Manner

While we have found that a critical portion of parameters behave in a domain-
specific manner through our pilot observation over intermediate activation dis-
tributions within the LM, we would like to verify the finding via intuitively
visualizing expressive scores of parameters across domains. We use AmazonA
and show the expressive scores of elements across different domains in Fig. 4.
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Fig. 4. Illustration of expressive scores across domains. Each pie represents a parame-
terized element (either an MHA head or FFN block). The mean and variance is mea-
sured by the radius of a pie and the proportion of each color in a pie respectively. We
use 4 distinguished colors to represent domains, whose details are shown in legend.

Based on the mean and variance of expressive scores across domains, the
parameters can be divided into 4 types: (1) high mean with high variance
(HMHV); (2) high mean with low variance (HMLV); (3) low mean with high
variance (LMHV); and (4) low mean with low variance (LMLV). It is obvious
that there exists quite a number of elements with small radius, showing they play
a less important role in the LM. This kind of parameters are exactly LMHV and
LMLV parameters. If we merely consider this, winning tickets seems already a
promising choice. However, more importantly, some elements are indeed behave
unexpectedly in a domain-specific manner if we look at the proportions of differ-
ent colors within pies, i.e., LMHV and HMHV parameters, suggesting the need
of considering variance as in doge tickets.

To highlight, LMLV and HMLV elements are actually applicable across dif-
ferent domains, such as Fig. 4 (a). On the other hand, LMHV and HMHV ones
are dedicated to a domain or two, for example “All Beauty” domain as Fig. 4
(b) shows. So doge tickets chooses to prune LMHV parameters in the first place
yet HMLV in the last, leading to domain-general LMs.

5.4 Consistency with Varying Sparsity Levels

We prune the parameters under 25 sparsity levels for BERT. While both doge
tickets and winning tickets can be identified at any sparsity levels, the evaluation
results of them present transitions when we vary the sparsity levels continuously.
We display the transitions of both BERT-base and BERT-large on AmazonA in
Fig. 5 to see whether doge tickets performs consistently better.
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Fig. 5. Transitions with varying sparsity levels.

We observe that doge tickets outperforms winning tickets usually. Recall the
parameter types mentioned in Sect. 5.3. At smaller sparsity levels, doge tickets
tends to first prune LMHV parameters (i.e., domain-specific parameters) instead
of LMLV and LMHV parameters which are first considered by winning tickets.
doge tickets shall preserve more domain-general parameters than winning tickets
for a better out-of-domain generalization. On the other end, at larger sparsity
levels, winning tickets and doge tickets start to prune expressive parameters. It
occurs that HMLV parameters (i.e., domain-general parameters) will be pruned
earlier than HMHV for winning tickets. Contrarily, doge tickets will certainly
prune HMLV parameters later whenever possible. Hence, compared to winning
tickets, doge tickets consistently makes LMs packed with invariant parameters
at all sparsity levels to maintain a good out-of-domain generalization.

6 Conclusions

In this paper, we address the issue of learning variance of over-parameterized
LMs, which we find through a pilot study can lead a critical portion of parameters
to behave unexpectedly in a domain-specific manner. Neurons corresponding to
these domain-specific parameters are particularly activated for some domains,
yet not so active in others. Consequently, LMs are more likely to suffer from a
low out-of-domain generalization, as it requires LMs to perform universally well
on different domains.

Motivated by this observation, we posit that the other parameters are
domain-general, essentially underpinning a domain-general LM that can appro-
priately derived from the original LM. To uncover the domain-general LM, we
have proposed to identify domain-general parameters by playing lottery tickets
under the vision of our proposed domain-general score (doge tickets). By tak-
ing into consideration both the mean and variance of parameter expressiveness,
doge tickets shows advantages over previous winning tickets on the out-of-domain
datasets. Further analyses verify the existence of domain-general parameters and
performance consistency of doge tickets. We have empirically shown pruning can
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improve out-of-domain generalization of LMs at large. In the future, we plan to
examine the maximum potential of pruning by applying it under 1) unsupervised
and 2) multi-task scenarios.
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