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Preface

The goal of the Perinatal, Preterm and Paediatric Image Analysis (PIPPI) workshop
is to provide a focused platform for the discussion and dissemination of advanced
imaging techniques applied to young cohorts. The technical program typically consists
of one keynote talk from a prominent figure in the community and the presentation of
previously unpublished papers. Emphasis is placed on novel methodological approaches
to the study of, for instance, volumetric growth, myelination and cortical microstructure,
and placental structure and function or the assessment of new technical innovations
for planned intervention. Although techniques applied to MR neuroimaging provide a
significant number of submissions, we are delighted to receive submissions making use
of other modalities or applied to other target organs or regions of interest such as the
fetal heart and the placenta.

The main objective of PIPPI is to provide a forum for researchers in the MICCAI
community to discuss the challenges of image analysis techniques as applied to the
preterm, perinatal and paediatric setting which are confounded by the interrelation
between the normal developmental trajectory and the influence of pathology. These
relationships can be quite diverse when compared to measurements taken in adult
populations and exhibit highly dynamic changes affecting both image acquisition and
processing requirements. Furthermore, this forum will facilitate the presentation and
detailed discussion of novel and speculative works, which may be outside the scope of
the main conference but are essential for the advancement of modeling and analysis of
medical imaging data. Additionally, discussion of these works within a focused group
may initiate new collaborations.

The application of sophisticated analysis tools to fetal, neonatal, and paediatric
imaging data has gained additional interest, especially in recent years with the
successful large-scale open data initiatives such as the developing Human Connectome
Project, the Baby Connectome Project, and the NIH-funded Human Placenta Project.
These projects enable researchers without access to perinatal scanning facilities to bring
in their image analysis expertise and domain knowledge.

This year’s workshop took place on September 18, 2022, as a satellite event of the
25th International Conference on Medical Image Computing and Computer Assisted
Intervention (MICCAI 2022). Two keynote speakers – Ting Xu (Child Mind Institute,
New York, USA) and Gentaro Taga (University of Tokyo, Japan) – were invited for
PIPPI 2022 to stimulate discussions, present recent research, and highlight future
challenges in this field. Speakers working at the interface of clinical relevance and
technical competence ensure close connection between technical, methodological
research and clinical applications.

Following our experiences from the workshops in 2020 and 2021, PIPPI 2022 made
use of a hybrid setup, allowing participants to join either in person or online. The online
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set up of the workshops in 2020 and 2021 had several successful elements, allowing
the participation of traditionally non-MICCAI attendees (clinicians, scientists) and the
inclusion of a clinical keynote, and also helping to widen participation for those unable
to travel. Continuing these elements improved the participation and accessibility of
our workshop, whilst not adversely influencing the traditional workshop format for
those attending on site. On site oral presentations were recorded live whilst virtual
presentations were projected. All presented posters were displayed in joint virtual and
physical settings.

As part of our changes for 2022, PIPPI has enhanced the links with researchers
working in Computer Assisted Intervention (CAI). This is becoming increasingly
relevant to PIPPI as fetal and neonatal interventions become more complex and new
surgical developments lead to highly specialized tools and advancedmethods for surgical
planning.

This year, PIPPI saw the introduction of a new session format, the PIPPI Circle,
a forum for open discussion among different communities researching early life. This
session brought together scientists from clinics, industry, and academia to form a round-
table panel to discuss the most pressing challenges in fetal and paediatric imaging,
future directions for research, and the clinical requirements from the user’s and patient’s
perspective.

PIPPI 2022 continued the support of the Fetal Tissue Annotation and segmentation
(FeTA) challenge [1] and also added a new challenge, the BabySteps 2022 challenge [2].
Roxane Licandro and Jana Hutter acted as coordinators between the PIPPI workshop
organizing team and the FeTA and BabySteps challenge team, respectively.

Teaming up with the ISMRM Placenta & Fetus study group, and having Christopher
Macgowan as both an organizer of PIPPI and the study group committee chair,
has allowed PIPPI to foster more interactions between related but often separated
fields, enabling researchers with joint interests in perinatal imaging but with diverse
backgrounds to meet, interact, and develop new collaborations. Concrete topics of focus
include motion correction and fetal cardiac imaging, topics of huge importance for the
community and where excellent expertise is present within the ISMRM community.

This year PIPPI teamed up with the FIT’NG (Fetal Infant Toddler Neuroimaging
Group) network, an organization devoted to the study of brain development during
the fetal, infant, and toddler periods. This enabled the workshop to have access to
an additional community and supported the popular PIPPI topic of neuroimaging, by
providing both reviewers and access to the widely distributed FIT’NG network.

PIPPI 2022 received original, innovative, and mathematically rigorous papers for
the analysis of both imaging data and the application of surgical and interventional
techniques applied to fetal and paediatric conditions. The methods presented in
these papers, and hence these proceedings, cover the full scope of medical image
analysis: segmentation, registration, classification, reconstruction, atlas construction,
tractography, population analysis and advanced structural, and functional and
longitudinal modeling, all with an application to younger cohorts or to the long-term
outcomes of perinatal conditions. All papers were reviewed by three expert reviewers
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from the Program Committee and ten papers were selected for presentation at PIPPI
2022 and are thus included in these proceedings. We are grateful to everyone who
helped make this year’s workshop a success.

September 2022 Jana Hutter
Roxane Licandro

Andrew Melbourne
Esra Abaci Turk

Christopher Macgowan
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Automatic Segmentation of the Placenta
in BOLD MRI Time Series

S. Mazdak Abulnaga1(B), Sean I. Young1,2, Katherine Hobgood1, Eileen Pan1,
Clinton J. Wang1, P. Ellen Grant3, Esra Abaci Turk3, and Polina Golland1

1 Computer Science and Artificial Intelligence Lab, Massachusetts Institute
of Technology, Cambridge 02139, USA

{abulnaga,siyoung,khobgood,eileenp}@mit.edu,
{clintonw,polina}@csail.mit.edu

2 MGH/HST Martinos Center for Biomedical Imaging, Harvard Medical School,
Boston, MA 02129, USA

3 Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston
Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA

{ellen.grant,esra.abaciturk}@childrens.harvard.edu

Abstract. Blood oxygen level dependent (BOLD) MRI with mater-
nal hyperoxia can assess oxygen transport within the placenta and has
emerged as a promising tool to study placental function. Measuring sig-
nal changes over time requires segmenting the placenta in each volume
of the time series. Due to the large number of volumes in the BOLD time
series, existing studies rely on registration to map all volumes to a manu-
ally segmented template. As the placenta can undergo large deformation
due to fetal motion, maternal motion, and contractions, this approach
often results in a large number of discarded volumes, where the registra-
tion approach fails. In this work, we propose a machine learning model
based on a U-Net neural network architecture to automatically segment
the placenta in BOLD MRI and apply it to segmenting each volume in a
time series. We use a boundary-weighted loss function to accurately cap-
ture the placental shape. Our model is trained and tested on a cohort of
91 subjects containing healthy fetuses, fetuses with fetal growth restric-
tion, and mothers with high BMI. We achieve a Dice score of 0.83± 0.04
when matching with ground truth labels and our model performs reli-
ably in segmenting volumes in both normoxic and hyperoxic points in the
BOLD time series. Our code and trained model are available at https://
github.com/mabulnaga/automatic-placenta-segmentation.

Keywords: Placenta · Segmentation · BOLD MRI · CNN

1 Introduction

The placenta is an organ that provides oxygen and nutrients to support fetal
growth. Placental dysfunction can cause pregnancy complications and can affect
fetal development, so there is a critical need to assess placental function in vivo.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
R. Licandro et al. (Eds.): PIPPI 2022, LNCS 13575, pp. 1–12, 2022.
https://doi.org/10.1007/978-3-031-17117-8_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-17117-8_1&domain=pdf
https://github.com/mabulnaga/automatic-placenta-segmentation
https://github.com/mabulnaga/automatic-placenta-segmentation
https://doi.org/10.1007/978-3-031-17117-8_1
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(a) BOLD signals increase during hyperoxia (b) Placental deformation from fetal motion

Fig. 1. Example images and placental segmentations: (a) signal brightening during
hyperoxia, and (b) shape deformation caused by fetal motion. Placental boundaries are
marked in yellow. Areas outside of the placenta are darkened for illustration. Intensity
scale is based on the first MRI volume in the time series. (Color figure online)

Blood oxygen level dependent (BOLD) MRI can directly quantify oxygen trans-
port within the placenta [3,16] and has emerged as a promising tool to study
placental function. Temporal analysis of BOLD MRI with maternal oxygena-
tion has been used to identify contractions [1,13], biomarkers of fetal growth
restriction [7,15], predict placental age [10] and to study congenital heart dis-
ease [18,24] among many uses.

Despite its importance for many downstream clinical research tasks, placen-
tal segmentation is often performed manually and can take a significant amount
of time, even for a trained expert. For BOLD MRI studies, manual segmentation
is rendered more challenging due to the sheer number of MRI scans acquired and
rapid signal changes due to the experimental design. Experiments acquire sev-
eral hundred whole-uterus MRI scans to observe signal changes in three stages:
i) normoxic (baseline), ii) hyperoxic, and iii) return to normoxic. During the
hyperoxic stage, the BOLD signals increase rapidly, leading to hyperintensity
throughout the placenta. Furthermore, the placental shape can undergo large
deformation caused by maternal breathing, contractions, and fetal motion which
can be particularly increased during hyperoxia [25]. See Fig. 1 for two examples.

The current practice is to analyze BOLD signals with respect to one template
volume. Deformable registration of all volumes in the time series to the template
is performed to enable spatiotemporal analysis [2,25]. However, due to significant
motion, registration can lead to large errors, requiring outlier detection and
possibly rejecting a significant number of volumes [2,25].

To address these challenges, we propose a model to automatically segment
the placenta in BOLD MRI time series. Our model is trained on several vol-
umes from each patient during the normoxic and hyperoxic phases, to capture
the nuanced placental changes. We apply our model on unseen BOLD MRI
volumes to demonstrate consistency in the predicted segmentation label maps.
Our method performs favorably against the state-of-the-art on a large dataset
with a broad range of gestational ages and pregnancy conditions. Automatic
segmentation is necessary for whole-organ signal analysis, and can be used to
improve time-series registration to enable localized analysis. Furthermore, it is
an essential step in several post-processing tasks, including motion correction [2],
reconstruction [21], and mapping to a standardized representation [4,8].
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Machine learning segmentation models for the placenta have been previ-
ously proposed and include both semi-automatic [23] and automatic [5,10,17,19]
approaches. While semi-automatic methods have achieved success in predicting
segmentation label maps with high accuracy, these approaches are infeasible for
segmenting BOLD MRI time series due to the large number of volumes. The
majority of automatic methods focus on segmentation in anatomical images.
Alansary et al. [5] proposed a model for segmenting T2-weighted (T2w) images
based on a 3D CNN followed by a dense CRF for segmentation refinement and
validated on a singleton cohort that included patients with fetal growth restric-
tion (FGR). Torrents-Barrena et al. [19] proposed a model based on super-
resolution and an SVM and validated on a singleton and twin cohort of T2w
MRI. Spektor-Fadida et al. [17] tackled the problem of domain transfer by a
self-training model and demonstrated successful segmentation of FIESTA and
TRUFI sequences. For a more detailed treatment of segmentation methods in
fetal MRI, we refer the reader to the survey by Torrents-Barrena et al. [20].

Functional images of the placenta differ greatly from anatomical images,
as they have lower in-plane resolution and the contrast between the placental
boundary and surrounding anatomy is less pronounced. Anatomical images may
also benefit from super-resolution approaches to increase SNR in the acquired
image [21]. Pietsch et al. [10] are the first to consider placental segmentation in
functional MRI. They proposed a 2D patch-based U-Net model for functional
image segmentation and demonstrated a successful application of age prediction
using the estimated T2* values. They focused on a cohort of singleton sub-
jects, and demonstrated success on abnormal pregnancy conditions including
preeclampsia. In contrast to their approach that segments derived T2* maps, we
evaluate our segmentation model on BOLD MRI time series. Furthermore, our
3D model operates on the entire volume rather than patches, thereby helping to
better resolve the boundaries of the placenta.

To capture the large signal changes and placental shape variation in the time
series, we train with a random sampling of manual segmentations of several vol-
umes in the BOLD MRI series. We propose a boundary weighted loss function to
more easily identify the placental boundary and improve segmentation accuracy.
Finally, to evaluate the feasibility of our method for clinical research, we propose
additional metrics to evaluate performance on the whole MRI time series, and
illustrate a possible clinical research application.

2 Methods

We aim to find a model Fθ : X → Y that takes a BOLD MRI time series
X ∈ R

T×H×W×D and predicts a set of placenta segmentation label maps for
each time point t ∈ {1, . . . T}, Y ∈ {0, 1}T×H×W×D, where T is the total number
of time points at which MRI scans were acquired. For a given BOLD time series,
we have a small number Nl of frames with ground truth labels (x,y), where
x ∈ R

H×W×D is an MRI scan and y ∈ {0, 1}H×W×D is the ground truth placenta
label map.
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Fig. 2. 3D Placenta Segmentation U-Net. We use a five-level 3D U-Net with max-
pooling, skip connections, and convolution-transpose layers. Numbers above vertical
bars denote the number of features at various stages of the processing pipeline. Batch
norm is employed for normalization (batch size = 8).

2.1 Model

We use a 3D U-Net [12] with 4 blocks in the contracting and expanding paths.
Each block consists of two sets of 3 × 3 × 3 convolution with ReLU activations,
followed by max pooling (contraction path) or transpose convolution (expansion
path), as illustrated in Fig. 2. We augment the images using random affine trans-
forms, flips, whole-image brightness shifts, contrast changes, random noise, and
elastic deformations, using TorchIO [11]. We simulate the effects of maternal
normoxia and hyperoxia with a constant intensity shift in the placenta.

To capture the MRI signal and placental shape changes resulting from mater-
nal hyperoxia and fetal motion, we enhance our training with several manually
segmented volumes in the normoxic or hyperoxic phase. This allows the model
to learn from the realistic variations that arise during maternal oxygenation.

2.2 Additive Boundary Loss

The placental boundary can be difficult to distinguish in BOLD MRI scans due
to similar appearance with surrounding anatomy. To emphasize the boundary
details, we construct an additive boundary-weighting W to the segmentation loss
function L. Given a ground truth placental label map y, we denote its boundary
as ∂y. We use a signed distance function f(x) that measures the signed distance,
d(x, ∂y), of voxel x ∈ R

3 to the boundary, where f(x) < 0 when outside of the
placenta and f(x) > 0 when inside. The boundary weighting is additive for
voxels within δ-distance of ∂y,

Wδ(x) =

⎧
⎪⎨

⎪⎩

w1 if − δ < f(x) < 0,

w2 if 0 ≤ f(x) < δ,

0 otherwise.
(1)

The weighted-loss is then

Lw (x) = L (x) [1 + Wδ (x)] . (2)

In practice, we set w1 > w2, to penalize outside voxels more heavily and learn
to distinguish the placenta from its surrounding anatomy. To find voxels with
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|f(x)| < δ, we estimate a 2δ-wide boundary by an average pooling filter on y
with kernel size K and take the smoothed outputs to lie in the boundary. A
larger K produces a wider boundary, penalizing more misclassified voxels.

2.3 Implementation Details

We train using a learning rate η = 10−4 for 3000 epochs and select the model with
the best Dice score on the validation set. For the additive boundary loss, we set
w1 = 40, w2 = 1, and K = 11. All volumes are normalized by mapping the 90th

percentile intensity value to 1. We use a batch size of 8 MRI volumes. We crop or
pad all volumes in the dataset to have dimension 112×112×80, and train on the
entire 3D volume. We augment our data with random translations of up to 10
voxels, rotations up to 22◦, Gaussian noise sampled with μ = 0, σ = 0.25, elastic
deformations with 5 control points and a maximum displacement of 10 voxels,
whole volume intensity shifts up to ±25%, and whole-placenta intensity shifts
of ±0.15 normalized intensity values. These values were determined by cross-
validation on the training set. When evaluating the model on our test set, we
post-processed produced label maps by taking the largest connected component
to eliminate islands. Our code and trained model are available at https://github.
com/mabulnaga/automatic-placenta-segmentation.

3 Model Evaluation

3.1 Data

Our dataset consists of BOLD MRI scans taken from two clinical research stud-
ies. Data was collected from 91 subjects of which 78 were singleton pregnan-
cies (gestational age (GA) at MRI scan of 23wk5d – 37wk6d), and 13 were
monochorionic-diamniotic (Mo-Di) twins (GA at MRI scan of 27wk5d – 34wk5d).
Of these, 63 were controls, 16 had fetal growth restriction (FGR), and 12 had
high BMI (BMI > 30). Obstetrical ultrasound was used to classify subjects with
FGR. For singleton subjects, classification was done based on having fetuses with
estimated weight less than the 10th percentile. For twin subjects, FGR classi-
fication was determined by provene monoochorionicity and discordance in the
estimated fetal weight by i) growth restriction (<10th percentile) in one or both
fetuses; and/or ii) growth discordance (≥20%) between fetuses. Table 1 shows
patient demographics and GA ranges per group.

MRI BOLD scans were acquired on a 3T Siemens Skyra scanner (GRE-
EPI, interleaved with 3 mm isotropic voxels, TR = 5.8–8 s, TE = 32 − 47 ms,
FA = 90◦). To eliminate intra-volume motion artifacts, we split the acquired
interleaved volumes into two separate volumes with spacing 3 × 3 × 6 mm, then
linearly interpolate to 3×3×3 mm. In our analysis, we only consider one of two
split volumes. Maternal oxygen supply was alternated during the BOLD acquisi-
tion via a nonrebreathing facial mask to have three 10-min or 5-min consecutive
episodes: 1. Normoxic (21% O2), 2. Hyperoxic (100% O2, 15 L/min), 3. Normoxic

https://github.com/mabulnaga/automatic-placenta-segmentation
https://github.com/mabulnaga/automatic-placenta-segmentation
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Table 1. Subject demographic information.

Group Control FGR High BMI

Singleton: N subj. 60 6 12

GA at MRI 23wk5d – 37wk6d 26wk6d – 34wk5d 26wk4d – 36wk6d

Twin: N subj. 3 10 0

GA at MRI 31wk2d – 34wk5d 27wk5d – 34wk5d N/A

(21% O2). The placenta was manually segmented by a trained observer. Each
BOLD MRI time series had 1 to 6 manual segmentations, yielding a total of 176
ground truth labels. The data was split into a training, validation, and test sets:
(65%/15%/20%: 63/11/17 subjects) and stratified on pregnancy condition.

Each subject in the training set had up to Nl = 6 ground truth segmentations
in the BOLD time series. To prevent the model from being biased by subjects
with more ground truth labels, we train by randomly sampling one of Nl ground
truth segmentations in each epoch.

3.2 Evaluation

We first compare the predicted segmentation label maps to ground truth
segmentations. We measure similarity using the Dice score (Dice), the 95th-
percentile Hausdorff distance (HD95), and the Average Symmetric Surface Dis-
tance (ASSD). To evaluate the feasibility of the produced segmentations for clin-
ical research studying whole-organ signal changes, we evaluate the relative error
in the mean BOLD values, defined as |b̂ − b|/b, where b and b̂ denote the mean
BOLD signal in the ground truth and in the predicted segmentation, respectively.

We evaluate several variants of our model using these metrics. We assess
the effect of the boundary-weighting (BW) loss term and compare performance
using the Cross-entropy (CE), Dice [9], and Focal [6] loss functions. We evaluate
the generalization ability by comparing with the model trained on only the first
of Nl BOLD frames and without random sampling of labeled segmentations.

We evaluate our model’s sensitivity to oxygenation by comparing the accu-
racy of predictions in the normoxic and hyperoxic phases for a given subject.
We compute the absolute difference of the similarity metric m between an
image in normoxia and in hyperoxia, |mnormoxic(y, ŷ)−mhyperoxic(y, ŷ)|, where
mnormoxic(y, ŷ) denotes the similarity between our predicted segmentation ŷ
and the ground truth y using the metric m for an image in the normoxic phase.
We use the Dice score, HD95, ASSD, and relative BOLD error for m.

We assess the consistency of our predictions by applying our model to all
volumes in the BOLD time series of the test set. Since our volumes are acquired
interleaved and split into two separate volumes, we apply our model to every
second volume in the time series, yielding a mean of 111.7 ± 45.3 volumes per
subject. We measure consistency by comparing the Dice score, HD95, ASSD,
and normalized BOLD difference between consecutive volumes.

Finally, we demonstrate a possible application of temporal analysis by mea-
suring increases in mean BOLD signal during hyperoxia.
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Table 2. Test results produced by our 3D U-Net model trained using different loss
functions. Numbers in bold indicate the best result in each column.

Loss Dice score HD95 (mm) ASSD (mm) BOLD diff

BW-CE 0.83 ± 0.04 13.36 ± 6.08 4.06 ± 0.97 0.051 ± 0.025

BW-CE + Dice 0.82 ± 0.04 13.34 ± 5.43 4.16 ± 0.99 0.050 ± 0.043

BW-Focal 0.82 ± 0.04 13.52 ± 5.54 4.15 ± 0.98 0.046 ± 0.033

BW-CE (Nl = 1) 0.81 ± 0.05 13.26 ± 5.98 4.38 ± 1.35 0.057 ± 0.033

BW-Focal + Dice 0.78 ± 0.19 22.16 ± 36.25 11.67 ± 29.55 0.103 ± 0.239

CE (no BW) 0.76 ± 0.07 18.26 ± 11.64 6.04 ± 2.21 0.051 ± 0.027

3.3 Results

Table 2 reports the performance of several variants of our model on the test set.
Our best model achieves a Dice score of 0.83 ± 0.04 with a HD95 = 13.36 ±
6.08 mm using the BW-CE loss. Further, we achieve low relative BOLD error
(0.051±0.025), indicating that our model’s segmentations are suitable for clinical
research studies assessing whole-organ signal changes. Similar performance is
achieved for the other loss functions. Training the model without the boundary
weighting (Eq. (2)) results in a statistically significant drop in performance,
achieving a Dice of 0.76 (p < 10−4 using a paired t-test). Using only the first
segmented volume of the BOLD MRI series (Nl = 1) in the normoxic phase also
results in a significant drop in performance, achieving a Dice of 0.81 (p < 0.05).
Adding labeled examples in the hyperoxic phase helps generalization, as the
placental shape and intensity patterns can change greatly.

Our performance is consistent across pregnancy conditions, as we achieve
Dice scores of (0.76, 0.89) on the two subjects with twin pregnancies, 0.83±0.04
on the singletons (N = 15), 0.83 ± 0.07 on the FGR cohort (N = 3), 0.82 ± 0.04
on the controls (N = 12) and (0.84, 0.88) on the two BMI cases.

Direct comparison of this work to previous studies is not feasible due to
differences in data set size and patient demographics, imaging protocols, and
MRI study design. The current state-of-the-art automatic segmentation method
for functional MRI (T2*) achieves a Dice score of 0.58 on a cohort of low- and
high-risk singleton subjects of a wide GA range [10]. Their performance was
comparable to the inter-rater variability of two radiologists (Dice = 0.68), which
represents an upper limit. In their work, they trained on a combination of T2*
weighting and BOLD sequences, while we focus only on BOLD.

Our model performs consistently well in the normoxic and hyperoxic phases.
For the 5 subjects with ground truth segmentations in both the normoxic and
hyperoxic phase, we achieve a mean absolute difference between predictions in
normoxia and hyperoxia of 0.026 ± 0.02 Dice, 5.69 ± 2.33 mm HD95, 0.75 ±
0.46 mm ASSD, and 0.06±0.04 relative BOLD error. These results suggest that
our model is robust to contrast changes in the placenta resulting from maternal
hyperoxia, and can be used in studies quantifying oxygen transport in the organ.
A larger number of subjects are needed to assess statistical significance.
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0.67 0.76 0.81 0.84 0.91

Fig. 3. Example predictions on 5 subjects from the test set. Ground truth segmen-
tations are shown in yellow and predictions in red. Dice scores are indicated below
each column. Two slices are shown for each subject, spaced 18 mm apart. (Color figure
online)

Figure 3 compares the predicted label maps with ground truth on 5 subjects
with increasing Dice scores using the BW-CE model. The model accurately iden-
tifies the location of the placenta, but in the worst cases misses boundary details.

BOLD Time Series Evaluation. Table 3 presents statistics of the consistency
between predicted label maps in consecutive volumes of the MRI time series.
Predictions are highly consistent, achieving a Dice of 0.92 ± 0.02. The small
differences between the relative mean-BOLD values suggest these produced seg-
mentations may be suitable for research studies assessing placental function.

Figure 4 presents distributions of Dice score between predicted label maps of
consecutive frames in the BOLD time series. Distributions have high medians
(>0.9) for all but one case, with wide density at high Dice scores (>0.9. Dice
differences are highly affected by fetal and maternal motion that causes placental
deformation. We visually verified that modest drops in Dice (<0.9) were mainly
due to fetal motion, but large drops (Dice < 0.7) resulted from errors in the
produced label maps.

Automatic segmentation of each volume in BOLD MRI time series is advan-
tageous as it can enable whole-organ spatiotemporal analysis without requiring
inter-volume motion correction or registration, which may fail under the pres-
ence of large motion. We illustrate one possible application by investigating the
percentage increase in BOLD signal in response to maternal hyperoxia. We calcu-

Table 3. Consistency of predictions in the BOLD time series produced by our best-
performing 3D U-Net model (trained using the BW-CE loss function).

Measure Dice score HD95 (mm) ASSD (mm) BOLD diff

Consistency
across consecutive
frames

0.92 ± 0.02 5.69 ± 2.33 1.94 ± 0.05 0.021 ± 0.007
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Fig. 4. Per-subject density distributions of Dice scores between consecutive predictions
in BOLD MRI time series. Dots inside distributions indicate the median.

late the percentage increase over the baseline period: Δb = |bH − bN |/bN , where
bN denotes the mean BOLD signal over the baseline period, and bH denotes the
mean of the signal in the last 10 frames of the hyperoxic period.

Figure 5 shows a scatter plot of the hyperoxia response for all subjects in
the test set and two examples of the BOLD signal time course in the produced
placenta segmentation label maps. In the control subjects (N = 12), we observe
an increase of 10.2 ± 11.1%. The observed increase for the healthy controls is
consistent with previous studies that demonstrated an increase of 12.6 ± 5.4%
(N = 21) [15] and from 5% to 20% throughout gestation (N = 49) [14].

4 Discussion and Conclusion

We developed a model to automatically segment placental scans in BOLD MRI
and achieve close matching to ground truth labels with consistent performance in
predicting volumes in both the normoxic and hyperoxic phases. Key to our model
development is a boundary-weighted loss function and training with labeled
volumes obtained at different oxygenation phases in the BOLD MRI time series.

Segmenting each volume in the BOLD MRI time series can be advanta-
geous for clinical research assessing whole-organ changes as it eliminates the
need for registration. Registration algorithms are affected by fetal motion and
may require discarding a significant number of volumes [2,25], potentially los-
ing important signal information. We illustrate one possible study in assessing
placental response during hyperoxia, observing an increase in signal intensity
consistent with prior work. However, our cohort is limited, and several factors,
including maternal position, gestational age, and contractions are covariates not
considered.

Registration however is advantageous for localized analysis [2], and solely
relying on segmentation would only permit quantifying whole-organ signal
changes, for example mean T2* or mean BOLD increase. Placental segmenta-
tions can be incorporated into registration methods as spatial priors to improve
registration results. Future work will investigate joint segmentation-registration
models.
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Fig. 5. Example application using our model’s produced placenta segmentations in
BOLD time series to characterize oxygenation response from maternal hyperoxia. Left:
observed increase relative to baseline for the test set. Right: example time series for
one singleton control (GA = 33wk2d, Dice = 0.84, Δb = 15.7%) and one singleton FGR
subject (GA = 34wk5d, Dice = 0.84, Δb = 2.9%).

We assessed the consistency of predictions in BOLD MRI time series using
our model, and achieved highly consistent predictions (Dice = 0.92). For many
subjects, we observed modest drops in Dice (<0.9), which were often due to
fetal motion displacing the placenta. However, in a small number of cases, we
observed large drops (Dice < 0.7) that we visually verified were caused by seg-
mentation error. Since we apply the model to each volume in the time series
independently, imaging artifacts, such as intensity and geometric artifacts, can
affect the predicted segmentations. In future work, we will investigate incorporat-
ing temporal consistency between consecutive volumes. We will also investigate
applying test-time augmentation on image intensity as this has been shown to
reduce uncertainty and improve segmentation robustness [22].

Key to our model performance was maximizing data variability by hav-
ing manually segmented volumes at different points in the BOLD MRI series.
Future work will investigate semi-supervised learning to incorporate all unla-
beled volumes. As there are often in the order of 100 unlabeled volumes in each
BOLD time series, these approaches can more accurately capture the rapid signal
changes resulting from fetal motion and maternal oxygenation.

Future directions of this work will investigate oxygenation dynamics in the
placenta. Segmentation of the time series can be used to derive T2* maps and
perform whole-organ signal comparisons between differing population groups,
thereby enabling quantitative analysis of placental function with the ultimate
goal of developing biomarkers of placental and fetal health.
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Abstract. Fetal Magnetic Resonance Imaging (Fetal MRI) allows
insights into human development before birth, complementing conven-
tional Ultrasound imaging with its high resolution and available numer-
ous contrast options. Significant challenges still exist including geomet-
ric distortion caused by maternal bowel gas in echo-planar imaging, and
restrictions in bore size limiting access to MRI in the obese and or claus-
trophobic population. Recent developments of clinical low-field scanners
can meet these challenges and thus render fetal MRI more accessible.
This study shows anatomical imaging and quantitative T2* mapping
on a 0.55T system with an analysis pipeline for both placenta and
fetal brain. Results show an expected increased overall T2* compared
to higher fields, with values decreasing over gestation as shown at higher
field. Future work will be directed towards exploring additional types
of relaxometry and the use of the presented techniques in subjects with
higher Body Mass Index. Included data and analysis code are publicly
available.

Keywords: Fetal and Placental MRI · Low field

1 Introduction

Fetal Magnetic Resonance Imaging (MRI) is increasingly used for both research
and clinical fetal examinations. Its ability to offer high resolution, and both
anatomical and functional information allows fetal MRI to play a growing role in
perinatal management and early detection of pathologies complementing widely
used Ultrasound (US) screening. Multiple recent studies show an increasing range
of uses in fetal neurological applications [16], congenital heart disease, placental
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pathologies such as placenta accreta, percreta and increta and in the predic-
tion of pregnancy complications such as pre-eclampsia, fetal growth restriction
and preterm birth. Thereby, two techniques have found particularly widespread
use: First, T2-weighted anatomical imaging, often performed using single-shot
2D Turbo-Spin-Echo techniques to freeze fetal motion within each slice, is the
standard for anatomical imaging due to its excellent soft tissue contrast and
achievable high resolution. Typical assessments, which usually require motion
correction, include fetal volumetric quantification of the fetal brain growth, the
fetal body and the placenta. Second, more recently T2* relaxometry, sensitive
to the concentration of deoxygenated haemoglobin via the blood-oxygen level
dependency effect, has been more widely employed in a research capacity, espe-
cially to assess placental function [18].

A decreasing trend in placental mean T2* over gestational age has consis-
tently been observed. Reduction in T2* has been shown in pregnancies associated
with pre-eclampsia [10], fetal growth restriction and reduced birth weight [17] as
well as congenital heart disease [19]. T2* data is typically acquired using a sin-
gle shot gradient-echo Echo Planar Imaging (EPI) sequence acquired at different
echo times (TE), either using repeated single-echo or multi-echo sequences.

Fetal MRI data is currently almost exclusively acquired at 1.5T and to a
lesser extent 3T, with the move to ever higher field strength driven by the avail-
able higher signal-to-noise ratio (SNR) [15] allowing, for example, higher b-values
for diffusion-weighted MRI, and thus the ability to probe smaller structures, as
well as higher resolution anatomical scans. However, another recent emerging
push in the opposite direction, towards lower field strengths, most notably for
interventional applications, cardiac MRI and lung MRI, can be observed. The
advantages of low field, such as reduced susceptibility to tissue-air interfaces, and
thus reduced geometric distortions, often reduced bore length and wider diam-
eter as well as longer T2* times, meet some of the requirements and challenges
for fetal MRI: Reduced susceptibility lowers the requirements for shimming, typ-
ically required at high field targeted to the organ of interest [5] to reduce geo-
metric distortions especially for functional EPI-based sequences. The increased
comfort of the larger bore fits the requirements of an increasingly obese pregnant
population and increases comfort for claustrophobic women of all sizes. Finally,
the longer T2* times allow longer read-out trains to be employed in single-shot
sequences and thus higher resolution.

First quantitative studies at 0.5T were presented in the late 90s by Gowland
et al. in a purpose-built scanner, providing quantification of T1 and T2 in the
human placenta from 20 weeks gestational age to term in both normal and com-
promised pregnancies [6]. Significant decay in T1 and T2 relaxation times with
gestational age were shown for the first time in low-field. Furthermore, in com-
promised pregnancies with intra-uterine growth restriction and pre-eclampsia,
T1 values were significant lower than in control group, this trend persisted for
T2 but did not reach significance. These findings motivate the further explo-
ration of low-field for pregnancy assessment and diagnostics.
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Contributions

This work introduces a fast, 15 min fetal examination at 0.55T including full
uterus anatomical and quantitative T2* imaging together with an analysis
pipeline. It provides the first evidence of the feasibility of this approach at low
field and initial data over gestation. Benefits and possible avenues to generate
new information to be obtained at low field are discussed.

2 Methods

Pregnant women were scanned on a contemporary clinical 0.55T scanner (MAG-
NETOM Free.Max, Siemens Healthcare, Erlangen, Germany) after informed
consent was obtained as part of the MEERKAT study (REC 21/LO/0742). The
acquisitions were performed with a 6-element flexible coil (BioMatrix Contour
Coil, Siemens Healthcare, Erlangen, Germany) and a 9-element spine coil built
in the patient table. Women were scanned in head first supine position fully sup-
ported with head and leg rests with continuous life monitoring including heart
rate and blood pressure measurements as well as frequent verbal interaction.
A mid examination break was offered but declined in all cases described here.
Exclusion criteria were maintained from the high field studies and include mater-
nal age < 16 years, lack of ability to consent, contraindications for MRI such as
metal implants, claustrophobia, multiple pregnancies and a maximal weight of
200 kg.

Structural T2-weighted Turbo Spin Echo (TSE) acquisitions using the clini-
cally available sequence was employed. For the T2* relaxometry, a clinical gradi-
ent echo single-shot EPI sequence was modified to include up to 5 back-to-back
readout trains defining as many echoes.

The T2-weighted data sets were acquired in five different orientations, the
parameters include resolution = 1.48 × 1.48 × 4.5mm3, FOV = 449 × 499mm2

TE = 105–106 ms, TR = 1460–2500 ms and total acquisition time (TA) = 2 min–
3 min. T2* acquisitions were performed in transverse orientation for the fetal
brain and both transverse and coronal for the placenta. The quantitative T2*
datasets were acquired with a resolution of 4mm3 isotropic and a FOV = 400 ×
400mm2, TEs = 80 ms, 222.62 ms and 365.24 ms, TR = 9670 ms, TA = 39 s.
Parallel imaging for T2* was applied with same resolution and FOV, TEs =
44 ms, 117.92 ms and 191.84 ms, TR = 5120 ms and TA = 31 s. A 5 echoes
image with parallel imaging with an acceleration factor of 2 was acquired for
one of the patients. The T2 and T2* acquisitions were performed in a sequential
order without global changes to the maternal position with a total acquisition
time of 15 min.

In addition, to demonstrate the field-strength dependent differences, data
sets with placental and brain T2* data acquired as part of another ethically
approved study (REC 16/LO/1573) using a similar protocol on a clinical 3T
scanner (Philips Achieva, 104 data sets) and on a clinical 1.5T scanner (Philips
Ingenia, 50 data sets) were considered. This data was acquired following the
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same selection process as the present study, including only healthy volunteers
with gestational age ranging from 16 to 40 weeks.

2.1 Evaluation

The included cohort consists of a total of eight datasets with gestational ages
ranging from 21 to 37 weeks. Two of these subjects were diagnosed with high
risk pregnancies. This included one with chronic hypertension and fetal growth
restriction and another with threatened preterm labour and ruptured mem-
branes. The remaining four were considered low risk controls, two of these were
scanned twice during pregnancy, characteristics are given in Table 1.

Table 1. Studied cohort characteristics. cHTN: Chronic Hypertension; FGR: Fetal
Growth Restriction; PPROM: Prolonged preterm rupture of the membranes. For the
acquired data, a X in the third and/or fourth column indicates Turbo Spin Echo (TSE)
data and/or gradient echo single-shot Echo-plannar Imaging (EPI) data was acquired.

Study ID gestational age Cohort TSE EPI

[weeks] at scan data data

Participant 1 31.43 control X

Participant 2 30.28 control X

Participant 4 28.01 cHTN + FGR X

Participant 5 21.01 control X

Participant 6 32.01 PPROM X X

Participant 1, scan 2 37.01 control X X

Participant 2, scan 2 33.85 control X X

2.2 Analysis

The obtained stack of TSE images of each subject at five different orientations
was used as input dataset for a slice-to-volume (SVR) registration model by Uus
et al. to generate motion-corrected fetal brain reconstructions (see Fig. 2) [21]. In
parallel, a set of images (see Fig. 1) acquired at three to five different TEs were
obtained from the single-shot multi-echo gradient echo sequences for both fetal
brain and placentas of each subject. For the T2* fitting, 3D masks were obtained
with open-source software either fully manually (placenta) or using manual
refinement after automatic brain extraction was performed (brain). Quality of
the segmentations was assessed by an expert radiographer (KC).
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T2* values were obtained by fitting the signal intensity of each voxel within
the placenta or brain as a function of echo time. Fitting was performed using a
non-linear least squares regression in python of the following mono-exponential
decay model:

S = M0 · e−TEi
T2∗ (1)

where M0 is the proton density and TEi contains the different echo times with
i ∈ [0, 5]. M0 was initialized with the voxel intensity at the first echo time and
T2* initialization was in the range of 0–300 ms. Bounds range was 0–10000 for
M0, 0–500 ms for the T2* values in the placenta and 0–1000 ms for the fetal
brain.

Fig. 1. Example of a placenta slice (top row) and fetal brain slice (bottom row) from
3D multi-echo gradient echo data across different TE (from left to right: 44 ms, 117.92
ms, 191.84 ms, 265.76 ms and 339.68 ms).

3 Results

Seven of the eight subjects tolerated the entire scan well, one woman was not
comfortable and abandoned the scan after 10 min. T2w data is thus available
for all but for that case, where not enough data was acquired for the SVR
reconstruction. T2* scans were added in four of the eight subjects. Anatomical
data from one of the cases is illustrated in Fig. 2, displaying a coronal and a
sagittal view through the uterus as well as a resulting SVR result from the fetal
brain.

Example multi-echo images from the placenta and brain with their corre-
sponding T2* maps are shown in Fig. 3. Obtained T2* maps obtained have the
capability to capture the differences in T2* between different regions of the fetal
brain and highlight placental lobularity.
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Fig. 2. Sagittal and coronal views of a structural T2-weighted TSE image at 37 weeks
gestational age together with its corresponding SVR reconstruction of the fetal brain.
A) Sagittal slices across the uterus; B) Sagittal slices of the fetal brain SVR; C) Coronal
slices across the uterus together with D) the fetal brain SVR.

Figure 4 shows example data and the achieved fitted mono-exponential decay
curves in the regions of interest (ROI) indicated. Two voxels in different regions
of both placenta and fetal brain were selected and their intensities across TEs
plotted. In the placenta, signal in the intervillous space is higher and decays
slower than in the septa. Similar behaviour can be seen in the fetal brain fitting,
where the voxel selected in the white matter region has higher values across the
TEs than the one situated around the basal ganglia.

Mean T2* values across the fetal brain and placenta were calculated for each
subject, together with brain and placenta volumes. Figure 5 shows these quanti-
tative results in red over gestational age, superimposed over results from 3T (yel-
low) and 1.5T (violet) to allow cross-field strength comparison. Placental volume
(A) shows a weak positive correlation with gestational age, independent of field
strength. A clear negative correlation between mean placental T2* and gestational
age can be observed on all field strength, with the absolute values of T2* increas-
ing with field strength for similar gestational age (B). Mean T2* values obtained
for the placenta are around 211 ms at around 21 weeks gestational age, dropping
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Fig. 3. Placenta and fetal brain gradient-echo images at 37 weeks gestational age over
3 echo times (from left to right: 44 ms, 117.92 ms, 191.84 ms) and their T2* maps
over different axial slices. A) Slice of the placenta gradient-echo images over 3 TE; B)
T2* map of the placenta overlaid on first echo time image in A and a zoom in with
blue and green arrows pointing to the septa and intervillous space, respectively; C)
Different placental T2* map slices over different axial views; D) Slice of the fetal brain
gradient-echo images over 3 TE; E) T2* map of the fetal brain overlaid on first echo
time image in B and a zoom in with blue and green arrows pointing to white matter
and basal ganglia, respectively; F) Different fetal brain T2* map slices over different
axial views; (Color figure online)

Fig. 4. T2* fitting in brain and placenta at 37 weeks gestational age examples with
residual maps overlaid with the second echo image. A) T2* fitting for septa in blue and
intervillous space in green on top with chosen voxels position on the bottom; B) T2*
fitting for white matter in blue and basal ganglia in green on top with chosen voxels
position on the bottom; C) Placenta residual map; D) Fetal Brain residual map with
colormap on the right side. (Color figure online)
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Fig. 5. Quantitative results over gestational age. A) Placental volume from T2* scan,
B) Placental mean T2*, C) Fetal brain volume from T2* scan and D) Mean fetal brain
T2* over gestational age. Red dots refer to data acquired at 0.55T, purple at 1.5T and
yellow at 3T. (Color figure online)

to 107 ms at 37 weeks. A strong positive correlation can be observed between fetal
brain volume and gestational age, again independent of field strength (C). Finally,
a negative correlation between brain T2* and gestational age can be observed,
with the data at the highest field strength (in yellow) again displaying the lowest
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overall values for the same gestational age and the data from low field (in red) on
average with the highest values (D).

4 Discussion and Conclusions

The included dataset will be made available from the corresponding author upon
reasonable academic request in accordance with the rules of ethical approval
(REC 21/LO/0742). The analysis code is already available at Github Link. This
work provides the important initial evidence of the feasibility of a short, clinically
acceptable under 15 min anatomical and quantitative T2* analysis for low-field
fetal MRI on a contemporary clinical low-field MRI.

It adds to the previous work by Gowland et al. in their purpose-built scan-
ner [4,6–8], demonstrating the data quality achievable on a clinical scanner at
this field strength. Despite its lower SNR, low-field MRI is known to be less sus-
ceptible to geometric distortion related to B0 inhomogeneities, translated here
in achieving high quality data without using image based shimming techniques.
Further studies will include B0 maps to quantitatively illustrate this. Wider bore
diameters together with shorter length carry the potential to contribute to help
with comfort and claustrophobia together with the possibility to scan pregnant
women with higher BMI > 30.

Further studies will need to be performed to provide quantitative evidence for
this. We show both anatomical data, suitable for high resolution reconstruction
and T2* measurements in the brain and placenta. The achieved resolution for
these functional scans allows robust identification of different brain and placental
regions (Fig. 4, Fig. 3).

The achieved T2* maps are of good quality. Quantitative T2* results in this
study are among the first reported, to the best of our knowledge, in an 0.55T
scanner for fetal and placenta imaging. Matched T2* decay with gestational age
with previously published studies, can be seen in both ROIs [1,11,18,22]. In
agreement to previous work, Fig. 5 shows a clear decay in mean T2* values of
the placenta with gestational age [11,12,18].

Following the same trend, fetal brain mean T2* also appears to decay with
gestational age as previously reported by Vasylechko et al. [22]. The recorded
fetal brain volume from these T2* scans is well in line with the volumes as
obtained in other studies [2,3,13]. In addition, results obtained for total brain
volume are aligned with the ones reported by Chang et al. over gestational age
using Ultrasound fetal data [2].

While observing a decrease in T2* over gestational age, similar to all previous
studies at 1.5T and 3T, the T2* values in this study are higher for same gesta-
tional age (211.19 ms at around 21 weeks gestational age compared to 120 ms on
1.5T and 75 at 3T) than previously reported on 1.5T or 3T, as expected [9,17].
These observed overall higher T2* times are in line with the general increase in
T2* observed with decreasing field strength [14]. Figure 5 illustrates these trends
for both placenta and brain in 0.55T, 1.5T and 3T.

The demonstrated higher T2* in the intervillous space, particularly close to
the centers of the lobules and overall granularity illustrated is in agreement with
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previously published results [12]. The intervillous space receives inflowing mater-
nal blood from the spiral arteries which continues along the villi to exchange
oxygen and nutrients with the fetal blood. The oxygen-rich blood in this area,
with increasing decay due to fetal uptake towards the borders of the lobules, is in
line with the observed pattern. The vasculature in the septa on the other hand,
carrying deoxygenated blood back to the maternal circulation corresponds well
to the lower signal intensity. Notably, here at low field, the overall longer T2*
times allow us to observe smaller differences in these low-signal regions even in
later gestation (see Fig. 3 for a scan at 37 weeks).

Similar findings can be demonstrated in the fetal brain, where the basal gan-
glia show lower T2* than white matter in line with previous studies [22]. How-
ever, the reasons behind differences observed in the fetal brain remain unclear.
Some studies suggest increased T2* is related to changes in myelin and iron
concentration [22]. The observed higher T2* (see Fig. 5) in turn allows single-
shot acquisitions with higher resolution, contributing to motion robustness and
decreased loss in SNR compared to multi-shot sequences [20].

Obtained residual maps (see Fig. 4) show lower and more homogeneous
results for the fetal brain than the placenta, where some anatomical relation-
ship can be appreciated especially around the septa.

This preliminary study has, however, some limitations. The data set used
included only a total of eight subjects with only four of them containing multi-
echo EPI data. Although the results are in agreement with already published
results in the field, a larger dataset with a wider spread across gestational age
and including different placental and fetal brain pathologies is needed to further
validate these results.

Another major limitation is fetal brain T2* were reported for the whole
volume instead of differentiating between regions which might contribute to a
better understanding of the clinical value of the parameter. Finally, although
motion was assessed visually, no motion correction was applied in the multi-
echo data, causing potential inconsistencies.

Future work will focus on including further modalities such as diffusion MRI,
T1 relaxometry and perfusion MRI to study the developing placenta and fetus
in even more detail. Moreover, taking advantage of low-field scanner proper-
ties, we will aim to include women with higher BMI to study the suitability of
the proposed protocol to achieve good image quality in this challenging cohort.
Finally, future studies will include a larger dataset, and explore the effect of
motion correction on the present results.

Acknowledgments. The authors thank all the participating families as well as the
midwives and radiographers involved in this study. This work was supported by the NIH
(Human Placenta Project—grant 1U01HD087202-01), Wellcome Trust Sir Henry Well-
come Fellowship (201374/Z/16/Z and /B), UKRI FLF (MR/T018119/1), Wellcome-
EPSRC Center for Medical Engineering, the NIHR Clinical Research Facility (CRF) at
Guy’s and St Thomas’. The views expressed are those of the authors and not necessarily
those of the NHS or the NIHR.



A Fast Anatomical and Quantitative MRI Fetal Exam at Low Field 23

References

1. Blazejewska, A.I., et al.: 3D in utero quantification of T2* relaxation times in
human fetal brain tissues for age optimized structural and functional MRI. Magn.
Reson. Med. 78(3), 909–916 (2017)

2. Chang, C.H., Yu, C.H., Chang, F.M., Ko, H.C., Chen, H.Y.: The assessment of
normal fetal brain volume by 3-D ultrasound. Ultrasound Med. Biol. 29(9), 1267–
1272 (2003)

3. Clouchoux, C., Guizard, N., Evans, A., Plessis, A.D., Limperopoulos, C.: Norma-
tive fetal brain growth by quantitative in vivo magnetic resonance imaging. Am.
J. Obstet. Gynecol. 206(2), 173-e1 (2012)

4. Fulford, J., et al.: Fetal brain activity in response to a visual stimulus. Hum. Brain
Mapp. 20(4), 239–245 (2003)

5. Gaspar, A.S., et al.: Optimizing maternal fat suppression with constrained image-
based shimming in fetal MR. Magn. Reson. Med. 81(1), 477–485 (2019)

6. Gowland, P.A., et al.: In vivo relaxation time measurements in the human placenta
using echo planar imaging at 0.5 T. Magn. Reson. Imaging 16(3), 241–247 (1998)

7. Gowland, P.: Placental MRI. Semin. Fetal Neonatal. Med. 10(5), 485–490 (2005)
8. Gowland, P., Fulford, J.: Initial experiences of performing fetal fMRI. Exp. Neurol.

190, 22–27 (2004)
9. Hansen, D.N., et al.: T2*-weighted placental magnetic resonance imaging: a

biomarker of placental dysfunction in small-for-gestational-age pregnancies. Am.
J. Obst. Gynecol. MFM 4(3), 100578 (2022)

10. Ho, A.E.P., et al.: T2* placental magnetic resonance imaging in preterm preeclamp-
sia: an observational cohort study. Hypertension 75(6), 1523–1531 (2020)

11. Hutter, J., et al.: T2* relaxometry to characterize normal placental development
over gestation in-vivo at 3T. Technical report, no. 4, p. 166. Wellcome Open
Research (2019)

12. Hutter, J., et al.: Multi-modal functional MRI to explore placental function over
gestation. Magn. Reson. Med. 81(2), 1191–1204 (2019)

13. Kyriakopoulou, V., et al.: Normative biometry of the fetal brain using magnetic
resonance imaging. Brain Struct. Funct. 222(5), 2295–2307 (2017)

14. Marques, J.P., Simonis, F.F., Webb, A.G.: Low-field MRI: an MR physics perspec-
tive. J. Magn. Reson. Imaging 49(6), 1528–1542 (2019)

15. Pohmann, R., Speck, O., Scheffler, K.: Signal-to-noise ratio and MR tissue param-
eters in human brain imaging at 3, 7, and 9.4 tesla using current receive coil arrays.
Magn. Reson. Med. 75(2), 801–809 (2016). https://doi.org/10.1002/mrm.25677

16. Rajagopalan, V., Deoni, S., Panigrahy, A., Thomason, M.E.: Is fetal MRI ready
for neuroimaging prime time? An examination of progress and remaining areas for
development. Dev. Cogn. Neurosci. 51, 100999 (2021)

17. Sinding, M., et al.: Placental magnetic resonance imaging T2* measurements in
normal pregnancies and in those complicated by fetal growth restriction. Ultra-
sound Obstet. Gynecol. 47(6), 748–754 (2016)

18. Sorensen, A.V., Hutter, J.M., Grant, E.P., Seed, M., Gowland, P.: T2* weighted
Placental MRI: basic research tool or an emerging clinical test of placental dys-
function? Ultrasound Obstet. Gynecol. (2019)

19. Steinweg, J.K., et al.: T2* placental MRI in pregnancies complicated with
fetal congenital heart disease. Placenta 108, 23–31 (2021) https://doi.org/10.
1016/j.placenta.2021.02.015. https://www.sciencedirect.com/science/article/pii/
S0143400421000680

https://doi.org/10.1002/mrm.25677
https://doi.org/10.1016/j.placenta.2021.02.015
https://doi.org/10.1016/j.placenta.2021.02.015
https://www.sciencedirect.com/science/article/pii/S0143400421000680
https://www.sciencedirect.com/science/article/pii/S0143400421000680


24 J. Aviles et al.

20. Swisher, J.D., Sexton, J.A., Gatenby, J.C., Gore, J.C., Tong, F.: Multishot versus
single-shot pulse sequences in very high field fMRI: a comparison using retinotopic
mapping. PLoS ONE 7(4), e34626 (2012)

21. Uus, A., et al.: Deformable slice-to-volume registration for motion correction in
fetal body MRI. IEEE TMI 39(9), 2750–2759 (2020). arXiv:1906.08827

22. Vasylechko, S.: Motion robust acquisition and reconstruction of quantitative T2*
maps in the developing brain (2019)

http://arxiv.org/abs/1906.08827


Automatic Fetal Fat Quantification
from MRI

Netanell Avisdris1,2(B) , Aviad Rabinowich2,3,4, Daniel Fridkin1,
Ayala Zilberman4,5, Sapir Lazar3,4, Jacky Herzlich4,6, Zeev Hananis2,

Daphna Link-Sourani4, Liat Ben-Sira3,4, Liran Hiersch4,5,
Dafna Ben Bashat2,4,7, and Leo Joskowicz1

1 School of Computer Science and Engineering,
The Hebrew University of Jerusalem, Jerusalem, Israel

{netana03,josko}@cs.huji.ac.il
2 Sagol Brain Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel

3 Department of Radiology, Tel Aviv Medical Center, Tel Aviv, Israel
4 Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel

5 Department of Obstetrics and Gynecology, Lis Hospital for Women,
Tel Aviv Sourasky Medical Center, Tel Aviv, Israel

6 Neonatal Intensive Care Unit, Dana Dwek Children’s Hospital,
Tel Aviv Sourasky Medical Center, Tel Aviv, Israel

7 Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel

Abstract. Normal fetal adipose tissue (AT) development is essential
for perinatal well-being. AT, or simply fat, stores energy in the form
of lipids. Malnourishment may result in excessive or depleted adiposity.
Although previous studies showed a correlation between the amount of
AT and perinatal outcome, prenatal assessment of AT is limited by lack-
ing quantitative methods. Using magnetic resonance imaging (MRI), 3D
fat- and water-only images of the entire fetus can be obtained from two-
point Dixon images to enable AT lipid quantification. This paper is the
first to present a methodology for developing a deep learning (DL) based
method for fetal fat segmentation based on Dixon MRI. It optimizes radi-
ologists’ manual fetal fat delineation time to produce annotated training
dataset. It consists of two steps: 1) model-based semi-automatic fetal
fat segmentations, reviewed and corrected by a radiologist; 2) auto-
matic fetal fat segmentation using DL networks trained on the result-
ing annotated dataset. Segmentation of 51 fetuses was performed with
the semi-automatic method. Three DL networks were trained. We show
a significant improvement in segmentation times (3:38 h → <1 h) and
observer variability (Dice of 0.738 → 0.906) compared to manual seg-
mentation. Automatic segmentation of 24 test cases with the 3D Resid-
ual U-Net, nn-UNet and SWIN-UNetR transformer networks yields a
mean Dice score of 0.863, 0.787 and 0.856, respectively. These results
are better than the manual observer variability, and comparable to auto-
matic adult and pediatric fat segmentation. A Radiologist reviewed and
corrected six new independent cases segmented using the best perform-
ing network (3D Residual U-Net), resulting in a Dice score of 0.961 and
a significantly reduced correction time of 15:20 min. Using these novel
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segmentation methods and short MRI acquisition time, whole body sub-
cutaneous lipids can be quantified for individual fetuses in the clinic and
large-cohort research.

Keywords: Fetal adipose tissue · Fetal MRI · Automatic segmentation

1 Introduction

The adipose tissue (AT) is essential for fetal development and reflects the over-
all fetal energy balance. AT, or simply fat, stores energy in the form of lipids.
Typically, well-nourished fetuses show an accelerated AT growth from the 28
weeks of gestation onward [20]. Although birth weight is often used as a proxy
of fetal nutrition and as a predictor of adverse perinatal outcome, prior studies
suggest that fetal body fat may show high correlation and be better predictor for
neonatal outcomes [1,4,27]. Previous studies using ultrasound (US) showed alter-
nations of fetal AT related to fetal growth restriction and excess of fetal AT in
cases of maternal diabetes [11,18,25]. Furthermore, these changes also correlate
with neonatal outcomes, emphasizing the clinical relevance of AT quantification.
Although US is the method of choice for fetal development assessment, it is lim-
ited by the lack of true 3D information. Thus, fat estimation currently relies on
linear and area measurements of selected fetal body parts, e.g., the abdomen
and the limbs, and on estimated fractional limb volume [19], with no full body
AT fat content volume quantification and analysis.

Magnetic resonance imaging (MRI) provides 3D multi-contrast information
that indirectly characterizes the microstructural properties of tissue. For fat
assessment, the two-point Dixon method [8], a proton chemical shift MRI tech-
nique that produces separated fat-only and water-only images from a dual-echo
acquisition, is used. In this method, water and fat signals alternate between
being summed and subtracted, yielding fat-only and water-only images that can
be analyzed to quantify lipids. This method is used to quantify the lipid content
of various organs, most extensively for hepatosteatosis assessment [13].

Fetal MRI is increasingly used as a complementary method to US, mainly
for detecting central nervous system (CNS) and non-CNS anomalies, including
thoracic, gastrointestinal, genitourinary, and skeletal anomalies [5]. A few studies
measured AT of fetuses with normal-growth and with maternal diabetes [2,3,12].
However, these studies are limited, as they rely on linear measurements [2], on
local assessment [3], or require laborious manual segmentation [12].

Automatic 3D MRI segmentation can enable accurate and reliable routine
AT lipid quantification. Recently, deep learning (DL) based models have been
increasingly used for automated segmentation of structures in medical imag-
ing, including fetal structures [23,29]. While most methods address fetal brain
segmentation, a few have been developed for other fetal structures and organs.

To the best of our knowledge, no automatic or semi-automatic methods for
fetal fat quantification in US or MRI have been developed. Roelants et al. [24]
described automated methods for US limb soft-tissue quantification, a surrogate
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for subcutaneous AT lipid deposition. Mack et al. [22] presented a semi-automatic
method for fractional limb volume assessment and showed that it reduces observer
variability and annotation time. Recent papers described automatic DL methods
for fat segmentation in Dixon scans of adults in the pancreas [21] and visceral and
subcutaneous fat [10,17]. Estrada et al. [10] reported that manual fat delineation
is tedious and time-consuming, thus limiting its clinical and research applications.
Fat segmentation poses several significant challenges compared to other struc-
tures. First, ground-truth manual fetal fat delineations are time-consuming, labo-
rious and difficult to acquire [10,12], and suffer from high observer variability [15].
Indeed, fat structure is thin and complex, is distributed in various locations, and
may appear as multiple disjoint components with a wide variety of shapes. More-
over, Dixon scans exhibit inherent limitations, e.g., signal inhomogeneity, artifacts
due to high sensitivity to fetal and maternal motion, and obscured lipid-poor tis-
sues in fat-only images, which lack the fetus context without the water-only images
and requires additional MRI sequences.

In this paper, we present a methodology for creating the first reported auto-
matic DL-based method for fetal fat segmentation on Dixon images. Its contri-
butions are three-fold: (1) a semi-automatic segmentation method for fetal fat
delineation that substantially shortens the manual annotation time and reduces
inter-observer variability; (2) training and evaluation of three state-of-the-art
deep learning models for fetal fat segmentation on the validated ground-truth
segmentations generated by the semi-automatic method; (3) quantification of
the manual and semi-automatic delineation observer variability and annotation
time of fetal fat.

2 Methodology

Our methodology for fetal fat segmentation consists of: 1) semi-automatic fetal
fat model-based segmentation whose aim is to shorten the manual fetal fat delin-
eation time required to produce annotated training data, and; 2) automatic fetal
fat segmentation with DL networks trained on the resulting annotated dataset.

2.1 Semi-automatic Fetal AT Segmentation

The inputs for the semi-automatic fetal fat segmentation method are two MRI
sequences, fetal body TRUFI and fat-only Dixon, and the output is an initial
subcutaneous fetal fat segmentation on the Dixon scan (Fig. 1). The TRUFI
sequence is used to obtain fetal body segmentation that defines the Volume of
Interest (VOI) in the Dixon scan on which the fetal fat segmentation is computed.
Although the TRUFI and Dixon scans are acquired at subsequent times, they have
different field-of-views and may not be aligned due to fetal and maternal motion.

First, the fetal body is automatically segmented on the TRUFI scan with
the DL model described in [9]. The resulting segmentation mask is then mapped
to the Dixon scan using the scanning position information to define a VOI
that includes the entire fetus and excludes the maternal abdominal fat regions.



28 N. Avisdris et al.

Fig. 1. Semi-automatic fetal fat segmentation method. The inputs (light blue) are fetal
body TRUFI and fat-only Dixon scan. The four steps (grey arrows) of the method are:
(a) automatic segmentation of the fetal body in the TRUFI scans; (b) mapping of the
resulting segmentation as a VOI on the fat-only Dixon volume; (c) automatic segmen-
tation of the fetal fat on the Dixon scan by thresholding and morphology operations;
(d) revision and manual correction by a radiologist of the resulting fetal fat segmenta-
tion mask on each slice. The output (green) is a validated fetal fat segmentation mask.
(Color figure online)

Manual adjustments to the resulting VOI are performed as required. The fetal fat
within the VOI is then thresholded with a pre-defined value chosen experimen-
tally. Connected components with <50 voxels are discarded to remove artifacts
with similar fat intensity. The result is then reviewed and corrected by an expert
radiologist to produce high-quality, validated ground truth segmentation masks.

2.2 Automatic Fetal Fat Segmentation

Automatic fetal fat segmentation is performed with a state-of-the-art DL model
trained on the high-quality annotations of the fetal fat created in the previous
step. The inputs are fat-only and water-only Dixon volumes, which are acquired
simultaneously, and are thus aligned. The output is the fetal fat segmentation
(Fig. 2).

We evaluate three models: (1) Residual 3D U-Net [16]; (2) nn-UNet [14],
and; (3) SWIN-UNetR [28]. The 3D U-Net and nn-UNet are fully convolutional
(FCN) encoder-decoder networks, where the decoder network is connected to
the encoder network through skip connections. SWIN-UNetR is a combined
transformer-FCN network. We briefly describe them next.

Residual 3D U-Net is a 3D-UNet [6] in which the encoder and decoder net-
work blocks are residual units. 3D U-Net is a FCN which consists of a contraction
path and an expansion path. The contraction path is an encoder that captures
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Fig. 2. Automatic fetal fat segmentation. The inputs (light blue) are fat-only and
water-only Dixon scans. The output (green) is the fetal fat segmentation with a DL
network. (Color figure online)

the context, while the expansion path is a decoder network that performs up-
sampling to recover the segmentation map size. The encoder and decoder paths
are connected through skip connections to share localization information.

nn-UNet is a biomedical image segmentation framework that automatically
adapts to a dataset characteristics. It selects a segmentation network from a
wide range of options, including 2D- and 3D- U-Net, and configures their hyper-
parameters, e.g., patch size, batch size, or learning rate. It achieves state-of-the-
art results on a wide range of biomedical image segmentation scenarios.

Transformers are new DL architectures that achieved state-of-the-art results
in a wide range of machine learning tasks, including medical imaging [26]. Shifted
windows (SWIN) Transformers is a hierarchical vision transformer that allows for
local computing of self-attention with non-overlapping windows. SWIN is more
efficient than regular vision transformers and is well-suited for tasks requiring
multi-scale modeling due to its hierarchical nature. SWIN-UNetR is a vision
transformer for biomedical image analysis. It consists of a SWIN transformer as
the encoder and a CNN-based decoder. SWIN-UNetR computes self-attention
in an efficient shifted window partitioning scheme. It is currently the best per-
forming model on wide-varied biomedical image segmentation tasks.

Implementation Details: The 3D-UNet and SWIN-UNetR models were imple-
mented in MONAI [7]; nn-UNet was implemented in Pytorch. All networks were
trained on 128× 128× 128 patches for 300 epochs on a single NVIDIA V100 GPU.
3D-UNet was trained with an ADAM optimizer with an initial learning rate of
1 × 10−2 and batch size of 10. SWIN-UNetR was trained with an AdamW opti-
mizer with a warm-up cosine scheduler of 50 iterations and batch size of 1 patch.
Both 3D-UNet and SWIN-UNetR are trained with random patch cropping and
Gaussian noise augmentations, with Dice loss. Since nn-UNet is an automated
framework, no training hyper-parameters were selected. For inference, we use a
sliding window with an overlap of 0.7 for neighboring voxels.
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3 Experimental Results

We conducted three studies. Study 1 quantifies the observer variability of manual
and semi-automatic fat delineation. The manual delineation observer variabil-
ity provides a reference for the expected target accuracy; the semi-automatic
delineation observer variability quantifies the expected improvement in observer
agreement. The study also measures the radiologist time required for each
method. Study 2 quantifies the performance of the three automatic DL fetal fat
segmentation methods. Study 3 quantifies and analyze the segmentation accu-
racy and correction time using the best-performing automatic DL network.

Study Population: Retrospective fetal MRI studies were collected at Tel Aviv
Sourasky Medical Center, Israel, between 2019 and 2022. The institutional
review board approved the study and waived the need for informed consent.
The dataset consisted of 57 singleton fetuses ranging between 31 and 39+1 ges-
tation weeks (mean = 33.9, std = 1.8). Participants were referred to fetal MRI
for various clinical indications. Cases with chromosomal or congenital anomalies
were excluded.

Data Acquisition and Ground Truth Generation: Patients were scanned
on one of three 3T MRI scanners (Skyra, Prisma and Vida, Siemens Healthi-
neers). Two subsequent sequences were used for this study: (a) free-breathing
T2-weighted TRUFI sequence with voxel resolution of 0.78×0.78×2mm3 and an
acquisition time of 60 s, and (b) two-point Dixon sequence with voxel resolution
of 1.25− 1.4× 1.25− 1.4× 1.5− 2mm3. The Dixon sequence was acquired with
a single breath-hold, with acquisition time of 18–20 s. ITK-SNAP(v. 3.8.0) [30]
was used for manual delineation and segmentation correction.

Evaluation Metrics: Five metrics were used to estimate observer agreement
and evaluate segmentation methods: Dice similarity coefficient, Hausdorff dis-
tance, Average Symmetric Surface Distance (ASSD), volume difference (VD),
and relative volume difference (RVD). RVD is defined as the VD divided by the
fetal body volume. We used a two-sided t-test to estimate statistical significance,
p < 0.05 was considered significant.

3.1 Study 1: Manual and Semi-automatic Observer Variability

No previous study has analyzed the inter-observer variability in fetal fat segmen-
tation. Manual and semi-automatic segmentations were assessed by two radiol-
ogists that were blinded to study indication and gestational age. A previous
study noted extremely long manual segmentation times [12]. Therefore, four
consecutive slices on 10 scans were randomly selected for manual segmentation
in the fetal volume. For the semi-automatic segmentation, the first observer (R1)
segmented the entire cohort. Ten cases were assigned to a second independent
observer (R2) to establish a baseline for the automatic method and to assess the
segmentation quality. Manual delineation and correction times were recorded.

Table 1 lists the results. Overall, manual fat segmentation was very time-
consuming, with a mean of 3:38 h (R1: 3:43 h, R2: 3:34 h) for the entire fat
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fetal volume, similar to the reported time in [12]. Semi-automatic segmentation
significantly reduced total segmentation time to a mean of 0:57 h (p = 6.3 ×
10−7). Furthermore, semi-automatic delineation significantly increased the inter-
observer agreement for Dice and RVD: Dice increased by 0.186 (p = 3 × 10−5).
Also, Hausdorff decreased by 4.20 mm (p = 0.585), ASSD decreased by 1.54 mm
(p = 0.228) and RVD decreased by 20.55% (p = 3 × 10−5).

Table 1. Inter-observer variability of fetal fat delineation between two radiologists
using two methods: manual and semi-automatic. Bold face indicates best results for
each of the five metrics.

Manual Semi-automatic

mean std min max mean std min max

Dice 0.738 0.092 0.567 0.865 0.906 0.084 0.744 0.981

Hausdorff [mm] 21.09 24.66 2.24 86.82 16.88 5.10 10.44 28.32

ASSD [mm] 1.90 4.11 0.23 13.57 0.36 0.28 0.07 0.87

VD [mL] - - - - 18.69 20.63 2.50 73.48

RVD [%] 29.91 12.54 6.26 46.34 9.26 9.14 1.10 26.50

3.2 Study 2: Automatic Fetal AT Segmentation

We evaluate three networks for the automatic fetal AT segmentation task: 3D
Residual U-Net, nn-UNet, and SWIN-UNetR. A dataset of 51 manually corrected
volumes from semi-automatic fetal fat segmentation was used. The networks
were trained on 21 volumes; six volumes were used for validation and hyper-
parameter choice. The networks were tested on an independent set of 24 volumes.
Results are listed on Table 2. Overall, 3D Residual UNet yielded the best results,
achieving an average Dice score of 0.862, above the manual delineation observer
variability. Figure 3 shows illustrative fetal fat segmentation results of three
fetuses.

Table 2. Study 2 results: comparison of three networks for fetal AT segmentation:
3D Residual UNet, nn-UNet and SWIN-UNetR on test-set (n=24). Bold face indicates
best results for a metric.

3D Residual UNet nn-UNet SWIN-UNetR

mean std min max mean std min max mean std min max

Dice 0.862 0.063 0.609 0.926 0.787 0.169 0.269 0.927 0.856 0.082 0.538 0.933

Hausdorff [mm] 18.05 4.88 9.70 28.58 37.19 34.06 9.43 134.85 20.63 5.74 9.17 36.07

ASSD [mm] 0.60 0.33 0.30 1.93 1.54 2.09 0.32 7.52 0.66 0.51 0.25 2.78

VD [mL] 16.93 27.16 0.74 138.38 27.67 36.08 1.53 177.89 19.45 38.47 0.19 189.00

RVD [%] 7.11 7.44 0.50 36.66 13.59 15.78 0.82 71.60 8.36 11.50 0.12 50.07
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Fig. 3. Comparison of automatic segmentation networks performance. Three examples
(columns) of manual ground-truth and three automatic segmentation networks (rows).
The manual and automatic agreement voxels are represented in blue, green indicates
under-segmentation voxels, and red indicates over segmentation voxels. nn-UNet tends
to have over-segmented components, including large out-of-fetus components (e.g. in
Fetus 3). (Color figure online)
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3.3 Study 3: Analysis of Manual Corrections Following Automatic
Segmentation

In order to evaluate the automatic method’s effectiveness, six additional test
cases were segmented using the best performing network, 3D Residual UNet.
Following the automatic segmentation, cases were manually corrected by a radi-
ologist (R1), and manual correction times were recorded.

Table 3. Study 3 results. Manual correction on best performing automatic segmenta-
tion network (3D Residual UNet) for 6 cases.

mean std min max

Dice 0.961 0.025 0.915 0.983

Hausdorff [mm] 48.72 29.67 13.08 84.30

ASSD [mm] 0.59 1.00 0.10 2.63

VD [mL] 7.54 10.91 1.62 29.35

RVD [%] 4.68 5.48 1.37 15.56

Results are listed in Table 3. Overall, only minor revisions were required
(Dice of 0.961), and correction times were reduced to an average of 15:20 min.
However, the Hausdorff distance was relatively high, 48.72 mm, compared to the
inter-observer one (16.88 mm). Visual examples of corrections are presented in
Fig. 4. Note that minor corrections were performed on small, out-of-fetus voxels
(yellow arrow on Fig. 4), which may explain this result. Additional corrections
were performed on lipid-poor areas such as the scalp, intensity artifacts, and non-
subcutaneous fat depots (e.g., perirenal fat). All fetus body parts were segmented
using the automatic method, with only minor voxels difference, resulting in a
relatively small RVD of 4.68%.

4 Discussion

In this paper, we describe methods for semi-automatic and automatic fetal sub-
cutaneous fat segmentation. We propose a semi-automatic segmentation method
to delineate the fetal subcutaneous fat and showed that it significantly improves
segmentation times and observer variability compared to manual segmentation.
We then used the resulting segmentation masks to train an automatic deep-
learning network, which yields accurate results, better than the inter-observer
variability on manual segmentation, and shorten the correction time.

Automatic fat segmentation, and specifically fetal fat segmentation, is known
to be a very challenging task. Previous works suggest that segmentation observer
variability can be used as a surrogate to estimate the expected accuracy of auto-
matic segmentation [15]. Here we show that fetal subcutaneous fat delineation
has a high inter-observer variability with a Dice of 0.738 vs. 0.85–0.95 typically
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Fig. 4. Examples of manual correction on best performing automatic segmentation
network (3D Residual UNet) of three fetuses (columns) from two representative slices
(rows). The yellow arrow points to a small out-of-fetus segmented compartment that
needs to be erased. (Color figure online)

observed for other fetal structures [29], which may be correlated to the diffi-
culty of automatic segmentation. Estrada et al. [10] report an inter-observer
variability of 0.982 and 0.788 Dice scores for adult subcutaneous and visceral
fat, respectively. Adult visceral fat segmentation problem is similar to that of
fetal subcutaneous fat, as it is a complex, sparse structure with many connected
components, due to the intestines and the large surface it covers.

To address these issues, we used a semi-automatic method that reduced the
observer variability and shorten segmentation times. These results suggest the
advantage of using a semi-automatic segmentation to more efficiently produce
more accurate ground-truth annotations used to train an automatic DL method.
This scheme is similar to the one described in Kway et al. [17] for pediatric
subcutaneous and visceral fat segmentations.

In this work, we explore the use of three neural networks for fetal fat seg-
mentation. In particular, we compare the state-of-the-art models Residual 3D
UNet, nn-UNet [14] and SWIN-UNetR [28]. In previous works [10,17], vari-
ants of 3D-UNet were used to automate fat segmentation. However, nn-UNet
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and SWIN-UNetR, which yield state-of-the-art results in a variety of biomedical
image segmentation scenarios were not evaluated on fat segmentation tasks. In
our study, SWIN-UNetR and 3D-UNet achieved similar results, while nn-UNet
performed poorly. A possible explanation might relate to the different character-
istics of fat segmentation, which differ from what nn-UNet was designed for [14].
Related fat segmentation methods achieved a Dice of 0.850 and 0.872 for pedi-
atric and adults, respectively [10,17]. Our result of 0.862 is comparable to those
results, and is better than observer variability of manual delineation. Moreover,
the automatic method achieved an RVD of 7.11%, which is lower than the inter-
observer variability RVD of 29.91% (manual) and 9.26% (semi-automatic).

Our study have several limitations. First, this is a single center cohort, which
may result in poor generalization. Second, we include fetuses with a gestation age
of 31 weeks or more, which may limit the automatic segmentation for younger
fetuses. However, previous studies showed that the fetal fat is apparent in MRI
only from the 28th week with rapid third trimester lipid accumulation [3,12].
Therefore, the pivotal age for fat quantification is similar to that of our study.
Third, our cohort size of 57 fetuses is relatively small. Future studies should
use a larger, and wider gestational age range to develop and assess the appli-
cability of automatic methods for fetal fat quantification. Lastly, we explored
the naive use of state-of-the-art DL methods. Future studies may design a more
targeted solution of DL method in order to further improve fetal fat automatic
segmentation and reduce the need for manual correction.

5 Conclusion

Here we propose the first method to automate subcutaneous fetal fat segmen-
tation. We show that using state-of-the-art segmentation methods and short
acquisition time MRI sequences, whole fetal body subcutaneous lipids can be
quantified. We anticipate that our method can be used to study normal changes
of fetal fat with gestational age and its relation to various abnormal conditions,
e.g., gestational diabetes and fetal growth restriction.
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Abstract. Longitudinal fetal brain atlas is a powerful tool for under-
standing and characterizing the complex process of fetus brain develop-
ment. Existing fetus brain atlases are typically constructed by averaged
brain images on discrete time points independently over time. Due to
the differences in onto-genetic trends among samples at different time
points, the resulting atlases suffer from temporal inconsistency, which
may lead to estimating error of the brain developmental characteristic
parameters along the timeline. To this end, we proposed a multi-stage
deep-learning framework to tackle the time inconsistency issue as a 4D
(3D brain volume + 1D age) image data denoising task. Using implicit
neural representation, we construct a continuous and noise-free longitu-
dinal fetus brain atlas as a function of the 4D spatial-temporal coordi-
nate. Experimental results on two public fetal brain atlases (CRL and
FBA-Chinese atlases) show that the proposed method can significantly
improve the atlas temporal consistency while maintaining good fetus
brain structure representation. In addition, the continuous longitudinal
fetus brain atlases can also be extensively applied to generate finer 4D
atlases in both spatial and temporal resolution.

Keywords: Longitudinal fetal brain atlases · Spatial-temporal
consistency · Implicit neural representation · Image denoising

1 Introduction

The development of the fetal brain is a complex and dynamic process [16,20].
Abnormal development of the fetus brain may lead to long-term neurodevelop-
mental disorders and may even affect the quality of life in the perinatal and later
childhood. Longitudinal fetal brain atlas is an important tool to boost the under-
standing of fetus brain development and provide a statistical standard of fetus
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brain structure at different gestational ages. There have been few longitudinal
fetus brain atlases [3,4,18,22], which constructed the averaging templates at dis-
crete time points independently over time or simply added smoothing kernels on
the age window. Due to the differences in onto-genetic trends among samples at
different time points, the effect of noise along the developmental timeline is one
of the most critical challenges for longitudinal atlas construction. Besides, lim-
ited by the image reconstruction quality of individual fetus brain, atlas quality
may also suffer from reconstruction artifacts. Such issues will result in a certain
precision error when quantifying the developmental characteristic parameters at
each time point.

To address the temporal inconsistency issue in longitudinal atlas construc-
tion, Zhang et al. [24] proposed a 4D infant brain atlas construction method
via introducing a temporal consistency term in the atlas sparse reconstruction.
By incorporating the longitudinal constraint on a learning-based registration
method, Chen et al. [2] proposed an age-conditional learning framework to
construct 4D infant cerebellum atlas. Similarly, Zhao, F., et al. [25] proposed
a similar temporal constraint on an unsupervised learning-based surface atlas
construction. However, most of these mentioned works significantly depend on
the specific data collection process. Specifically, these methods usually need a
sequence of scans from the same subjects within the age range of interest, which
are typically expensive and super challenging to acquire.

From another perspective, this problem could be modeled as a single four-
dimensional (4D: 3D brain volume + 1D age) image data denoising problem that
emphasizing to reduce noise along the timeline. This is because, the 3D image
noise is largely reduced during the averaging template generation process, where
the temporal consistency is normally not properly considered. The single image
self-supervised denoising problem has been well-studied over the past several
years. Ulyanov et al. [21] introduced deep image prior (DIP) to solve denoising
problems by fitting the weights of an over-parameterized deep convolutional
network to a single image, together with strong regularization by early stopping
of the optimization. However, the hyper-parameters of early stopping are hard to
tune, and the high-frequency content reduced by early stopping could be both
noise and image details. In [11], Noise2Noise method proposes a statistically
more meaningful manner to reduce only zero-mean image noise by learning the
differences between two noisy observations of the same object. For avoiding using
noisy image pairs as in [11], several single image denoising methods are designed
to build specific blind-spot network structures to decrease image noise [7,10].

In this work, we propose a multi-stage learning framework to train and
refine a continuous longitudinal fetus brain atlas that is continuous in both 3D
coordinate and timeline. Overall, we iteratively refine the existing longitudinal
fetus brain atlas with the temporal inconsistency problem via a 4D single image
denoising task. Specifically, 1) As brain growth is highly continuous and follows
certain trajectories, which could be fitted by a continuous function. We then
use spatially encoded multi-layer perceptron network (MLP) [23] to implicitly
represent the longitudinal atlas as a 4D (3D coordinate and time t) continuous
image function; 2) However, the above method has the same issue as DIP [21].
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Fig. 1. An overview of the proposed continuous longitudinal fetus brain atlas construc-
tion framework.

The network has sufficient capacity to overfit image noise without early stop-
ping. Thus, we divide the original longitudinally atlas into two different groups
according to time points and approximate the 4D images in each of the two
separated groups using two continuous functions. Since the two sets of atlases
represent the same brain developing trajectory, the learned functions are the-
oretically equivalent. However, since the two networks overfit different image
noise, two different functions are actually learned. By encouraging the atlases
inferred by these two continuous functions at arbitrary new time point to be
the same, we induce atlases with reduced noise along gestational age, i.e., better
temporally-consistency; 3) By averaging the two final continuous functions, we
construct the continuous longitudinal fetus brain atlas function. To the best of
our knowledge, it is the first time to tackle the temporal inconsistency as a 4D
image denoising problem and improve the consistency of existing atlases. Both
qualitative and quantitative results demonstrate that comparing to the original
atlas, the refined atlas achieves better time consistency while maintaining a good
representation of fetus brain structure.

2 Method

An overview of our framework is depicted in Fig. 1, which is presented in three
stages: a) Pre-train stage; b) Refine stage; c) Inference stage.

In this paper, we present a very simple yet effective method to train and refine
a continuous 4D fetus brain atlas. Firstly, the original atlas set that includes N
different time points Ttotal = {ti}N

i=1 are divided into two separated subgroups
Tset1 = {t2n−1} and Tset2 = {t2n}, where n = 1, ..., N/2 (as Fig. 1(A)). Then
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Fig. 2. Architecture of our model.

images in each of the group are approximated using a 4D continuous function
Î1 = fθ1(x, y, z, t), t ∈ Tset1 and Î2 = fθ2(x, y, z, t), t ∈ Tset2. Secondly, series
of novel time dependent brain images at time points t′ /∈ Ttotal are generated
as Ît′

1 = fθ1(x, y, z, t′) and Ît′
2 = fθ2(x, y, z, t′) (Fig. 1(B)). A denoising network

is then trained by input image Ît′
1 and labeled by image Ît′

2 at the same time
series of t′. The two stream refinement strategy satisfying the image denoising
requirement as in [11] that paired pixels of paired images with independent
noise and equivalent image content, and avoiding from using a second noisy
image observation. Finally, by averaging the two continuous fetus brain function
we learnt and refined, we construct the final temporally-continuous 4D fetus
brain atlas function as fθmean

(x, y, z, t) = 1/2fθ1(x, y, z, t) + 1/2fθ2(x, y, z, t).
By passing the series of time points as that from the original atlas series into
the continuous atlas function Îf = fθmean

(x, y, z, t), t ∈ Ttotal, we reconstruct a
longitudinally-consistent 4D series of fetus brain atlases (Fig. 1(C)).

2.1 Pre-train Stage

As demonstrated in Fig. 1(A), we first divide Ttotal into Tset1 and Tset2. Then, we
use two spatial encoded MLPs to approximate the 4D image per set as a contin-
uous function. Specifically, we feed the voxel coordinate and time (x, y, z, t) into
our model fθ to compute the predicted voxel intensity Î(x, y, z, t). We donate Î as
a explicit 4D image and Î(x, y, z, t) as the intensity at location (x, y, z) and time t.
We learn the parameters θ by minimizing the mean square error (MSE) loss func-
tion between the predicted voxel intensity and the real observed voxel intensity at
current time point for a mini-batch of size, P . The loss function L is denoted as:

L(θ) =
1

|P |
∑

(x,y,z,t)∈P

||I(x, y, z, t) − Î(x, y, z, t)||2 (1)

Architecture of our Model. The architecture and training strategy is exactly
same for Model1 and Model2 in Fig. 1(A). As illustrated in Fig. 2, our model
consists of a encoding section and a MLP network, taking the 4D time-spatial
coordinate input and outputting the corresponding intensity. For the encoding
section, Mildenhall et al. [19] recently proposed Fourier feature mapping to over-
come the spectral bias that the standard MLPs are biased towards learning lower
frequency functions [15]. In our model, we perform Fourier feature mapping to
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Fig. 3. Visual comparison overview of original and refined CRL and FBA-Chinese
atlases. Note that although limited time points are shown, our framework provides
temporally-continuous 4D atlases at arbitrary time points.

respectively map the 3D voxel coordinates and the time t to the higher dimen-
sional space R

2L(2L > x, x = 1 or 3) before passing them to the standard MLP
network. Let γ(·) denotes Fourier feature mapping from the space R

x to R
2L

and it is calculated by γ(v) = [cos(2πBv), sin(2πBv)]T where v ∈ R
x and each

element in B ∈ R
L×x is independently sampled from standard normal distribu-

tion N (0, 1). For the MLP network, the network has eighteen fully-connected
layers with two skip connections [5,6] that concatenate the input of the fully-
connected network to the 6th and 12th layer’s activation. Each fully-connected
layer is followed by a batch normalization [8] layer and a ReLU [13] activation.

2.2 Refine Stage

The “refine” strategy is illustrated in Fig. 2(B). After the processing in Sect. 2.1,
the two pre-trained models have already overfitted to the two subsets of the orig-
inal longitudinally atlas with noise. Ideally, the two pre-trained models should
approximate the same continuous function since the two 4D sub-images are sam-
pled from the same 4D singe image (original longitudinal atlases) and represent
the same brain developing trajectory. However, due to the models in the “pre-
trained” stage overfit to different image noise, the two networks are slightly
different in fact. Inspired by Noise2Noise [11], we propose a “refine” stage to
refine the pre-trained models and find the final continuous function, which could
represent the continuous time-consistent 4D atlas.
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We feed the image coordinate grid (x, y, z) with arbitrary new time points
t′ /∈ Ttotal to these two pre-trained models to generate two series of time depen-
dent brain images Ît′

1 = fθ1(x, y, z, t′) and Ît′
2 = fθ2(x, y, z, t′). Because those two

models tend to approximate the same brain developing trajectory, then we sup-
pose the predicted voxel intensity in Ît′

1 and Ît′
2 should be identical. So we further

iteratively update the parameters of the two pre-trained functions by minimiz-
ing the mean square error (MSE) loss function between the two predicted brain
images at new time points. The formulation of loss function is similar to Eq. (1).
Besides, we design an updated cut-off condition Ltotal:

Ltotal = λ · L1 + λ · L2 + Lcross (2)

where L1 and L2 are the image fidelity loss between MLP functions and the
corresponding real observations at Tset1 and Tset2. While Lcross is the MSE
loss between two predicted images Ît′

1 and Ît′
2 from two pre-trained models. λ

is a hyper-parameter used to adjust the proportion of each loss. When Ltotal is
minimal, the model we get is optimal.

2.3 Inference Stage

The sketch map of a longitudinally-consistent 4D fetus brain atlas reconstruc-
tion by the final refined model is shown in Fig. 2(C). Once the training is com-
pleted, we average the two continuous functions and construct the final con-
tinuous 4D fetus brain atlas function as fθmean

(x, y, z, t) = 1/2fθ1(x, y, z, t) +
1/2fθ2(x, y, z, t). Then given the age attribute t in Ttotal, we pass the voxel
coordinate (x, y, z) with t into our final model to reconstruct a longitudinally-
consistent 4D series of fetus brain atlases Îf = fθmean

(x, y, z, t), t ∈ Ttotal.

3 Experiments

3.1 Setup

Dataset. We evaluated the proposed framework on two existing public longi-
tudinal fetus brain atlases: CRL atlas [3] and FBA-Chinese atlas [22]. CRL is
constructed from MRI of 81 normal Caucasian fetuses scanned between 21 and
38 weeks of gestation. FBA-Chinese atlas is created from 115 normal Chinese
fetal brains between 22 and 34 weeks of gestation.

Implementation Details. For CRL atlas, we set Tset1 = {21, 23, 25, 27, 29, 31,
33, 35, 37, 38 week}, Tset2 = {21, 22, 24, 26, 28, 30, 32, 34, 36, 38 week} and arbi-
trary new time set= {t + 0.5}37t=21. For FBA-Chinese atlas, we set Tset1 =
{22, 24, 26, 28, 30, 32, 34, 35 week}, Tset2 = {22, 23, 25, 27, 29, 31, 33, 35 week} and
arbitrary new time set = {t + 0.5}34t=22.

In “pre-train” stage, the Fourier feature mapping dimension 2L is set as 256
for 3D coordinate and 64 for time. Besides, our models are trained with a batch
size of 25000 using an Adam [9] optimizer with β = (0.9, 0.999). The learning
rate starts from 10−4 and decays by factor 0.5 every 100 epochs. In “refine”
stage, we set λ as 0.1 in cut-off condition Ltotal.
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Fig. 4. Supplementary visual comparison in other views. (a) Comparison of cortical
plate in CRL atlas. (b) Comparison of residual skull in FBA-Chinese atlas. (c) Com-
parison of cerebellar boundary in FBA-Chinese atlas.

3.2 Results

Visual Comparisons. Figure 3 provides typical axial examples of the CRL and
FBA-Chinese atlases refined by proposed framework.

Generally, the proposed method illustrates clear denoising performance on
both 3D image volume and 1D time line. For example, the image contrast in the
basal ganglia regions is improved in the reconstructed brains. Besides, as arrow
high-lighted, for the original FBA-Chinese atlas, the lateral ventricle of 26w
atlas is significantly larger than that of 25w and 27w. The proposed model cor-
rected this brain structure noise. Similarly, the vascular detail at 34w is refined.
Figure 4 provides the results of other views and more detailed refinement in brain
anatomical structures. Figure 4(a) shows that the cortical plate of original atlases
has artifacts caused by motion, and the atlases obtained through our framework
have a more consistent cortical plate. Figure 4(b) shows that our framework can
effectively improve the inconsistency problem caused by incomplete skull strip-
ping during atlas construction. For CRL atlas, the image contrast is improved
at age 22w and ventricle structure is also refined. Besides, as can be seen from
Fig. 4(c), the refined atlases obtain a more apparent cerebellar boundary.

Quantitative Comparision. We used three evaluation matrices: Entropy
Focus Criterion (EFC), DICE coefficients and Time Consistency (TC) factor to
evaluate our longitudinal fetus brain atlases. The results show that the atlases
obtained by our method have better time consistency while ensuring good sharp-
ness and representation. Detailed results are summarized in Table 1.

To evaluate the sharpness of our proposed atlases, we use Entropy Focus
Criterion (EFC) [1,17] in MRQy [17]. The entropy focus criterion of the
entire atlas image is defined as EFC = 1

M

∑M
m=1(|S ∗ 1√

S
ln 1√

S
|)−1 ∗

(−∑S
s=1

xs

xmax
ln

[
xs

xmax

]
) where S and M is the number of voxels and slices,

m is the mth slice, and xmax is defined by xmax =
√∑S

s=1 x2
s with signal inten-

sity xs. The images that lack sharp distinctions between brain regions would
have high entropy values [12]. Table 1 shows that the refined atlases have similar
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Table 1. Quantitative comparison on CRL and FBA-Chinese atlases for sharp-
ness(EFC), representation(DICE) and time consistency(TC). The best results are indi-
cated in red.

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38

ori. 0.2018 0.2170 0.2218 0.2429 0.2722 0.2907 0.2888 0.3043 0.3166 0.3383 0.3405 0.3747 0.3773 0.3941 0.4095 0.4107 0.4107 0.4114
EFC

ref. 0.2049 0.2181 0.2294 0.2435 0.2604 0.2932 0.2929 0.2899 0.2912 0.3241 0.3548 0.3771 0.3827 0.3989 0.4071 0.4140 0.4113 0.3646

ori. 37.27 34.50 42.22 41.74 30.05 49.76 49.02 48.11 44.86 44.09 60.01 66.68 54.43 63.81
DICE

ref. 41.66 37.34 44.99 43.39 40.39 52.05 51.76 49.17 46.69 47.51 63.55 71.00 57.03 73.52
\ \ \ \

ori. 88.85 91.15 92.13 92.17 93.09 93.80 94.76 94.92 94.88 94.67 93.57 93.41 93.41 93.34 93.15 93.91 93.54 92.99

CRL

TC
ref. 89.31 91.92 92.94 92.75 93.32 94.31 94.79 95.17 94.98 94.67 93.82 93.66 93.73 93.69 93.40 94.20 93.82 93.57

ori. 0.2145 0.2158 0.2323 0.2652 0.2794 0.2910 0.3089 0.3179 0.3405 0.3472 0.3640 0.3619 0.3764 0.4027
EFC

ref. 0.2138 0.2153 0.2079 0.2312 0.2516 0.2685 0.2759 0.2927 0.3238 0.3459 0.3552 0.3627 0.3797 0.3761

ori. 35.34 42.85 40.67 31.59 52.29 48.57 47.35 44.49 46.86 62.27 67.84 53.67 64.62
DICE

ref. 36.71 44.71 42.17 32.72 52.52 52.34 51.44 45.88 47.51 62.85 73.01 58.54 75.17
\

ori. 91.27 92.23 92.09 91.26 91.31 92.74 92.96 91.21 92.44 90.79 90.96 87.16 86.59 83.25

FBA

TC
ref.

\

91.47 93.08 91.99 92.78 93.50 94.40 94.12 92.55 92.95 92.01 94.26 90.86 91.51 85.18

\ \ \

or even lower values than original atlases, indicating our refined atlases have a
relatively comparable image quality with original atlases in terms of sharpness.

To evaluate the representativeness of the refined fetal brain atlas, we per-
formed the atlas-based segmentation method [22] with Dice similarity coefficient
to evaluate. We use the Fetal Tissue Annotation and Segmentation Dataset
(FeTA) [14], which contains 50 manually segmented fetal brains across 20 to
33 weeks with 7 different regions-of-interest (ROI). Specifically, these subject
images with ROI label were firstly registered to the refined atlas and the origi-
nal atlas, respectively. Then DICE coefficients between different subjects in same
atlas space are calculated and compared. A higher DICE value indicates a higher
accuracy of the atlas for guiding brain anatomical normalization. Meanwhile, a
higher DICE value can also indicate that the atlas has better consistency because
the atlas with better consistency would lead to better registration result. Table 1
shows that the refined atlases have higher DICE than original atlases

In order to quantitatively analyze the temporal consistency for the atlas, we
define the temporal consistency (TC) factor. Suppose ILV

atlas(t
m)(m = 1, · · · ,M)

are the lateral ventricle maps for atlas image on the mth time point and
ILV
atlas(t

m → tm
′
)(m′ = m± i, i = 1, 2) are the tissue label maps warped from tm

′

to tm. Then the temporal consistency (TC) factor can be calculated as:

TC(tm) =
1

|m′|
∑

m′
DICE

(
ILV
atlas

(
tm

′)
, ILV

atlas

(
tm → tm

′))
(3)

Thus, TCs of lateral ventricle reflect the temporal consistency of the tissue maps.
Higher values indicate relatively better temporally consistent results. As shown
in Table 1, our refined atlases correct the inconsistency time point and apparently
improve the temporal consistency.

4 Conclusion

In this paper, we propose a multi-stage implicit neural representation framework
to train and construct a longitudinally consistent 4D fetal brain atlas. Experi-
mental results demonstrate that the denoised 4D fetal brain atlases achieve bet-
ter time consistency and good brain structure representation both qualitatively
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and quantitatively. In addition, our framework can be extensively applied to
other atlases and the continuous longitudinal fetus brain atlases we constructed
can also be extensively applied to other tasks, such as constructing finer 4D
atlases in both spatial or temporal resolution.
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Abstract. A safe, full-term pregnancy is vital to the health and well-
being of every child, yet it is far from guaranteed. Preterm birth (PTB) is
the leading cause of perinatal death and remains a major global health
concern. Due to limited pregnancy-related research, clinicians cannot
fully explain what triggers healthy, gestationally-appropriate labor, let
alone risky premature labor. This lack of fundamental understanding
hinders the ability to predict PTB on an individual patient level. This
work focuses on the cervix, a complex biomechanical barrier in preg-
nancy. Sonographic measurement of cervical length with transvaginal
ultrasound (TVUS) is a common clinical test to assess the risk of subse-
quent PTB. Accurate sonographic cervix segmentation followed by multi-
dimensional cervical geometric feature extraction is hypothesized to have
a higher PTB predictive capability compared to sonographic cervical
length alone. The computational tool developed in this study segments
the entire cross-sectional area of the cervix tissue from 2D transvaginal
ultrasounds, enabling the creation of a generalizable, cervical-features-
based prediction model of PTB risk. Manual segmentation methods are
time-consuming, not scale-able, and can vary between clinicians and
sonographers. Thus, an automatic deep learning based multi-class resid-
ual UNet architecture segmentation method is employed. The model
is trained on data from the Cervical Length Education and Review
(CLEAR) program, which includes second and third trimester TVUS
images from multiple sites and ultrasound systems across the United
States. This work demonstrates standard-of-care TVUS may be used
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to accurately segment cervical geometry, enabling the study of cervical
variations across pregnancies with broader implications in understanding
and ultimately preventing PTB.

Keywords: preterm birth · segmentation · cervix

1 Introduction

Preterm birth (PTB), defined as delivery before 37 weeks of gestation, is the
leading cause of perinatal death [4] and a major contributor to long-term dis-
abilities [6], where lower gestational age at birth corresponds to longer hospital
stays, increased risk of long-term symptoms, and increased medical costs [9].
With persistently high global rates of PTB and 15 million premature births esti-
mated yearly, PTB remains a major public health problem with high emotional
and financial burden [5,10]. Despite significant advances in prenatal and perina-
tal care, 80% of PTBs result from spontaneous preterm birth (sPTB), defined
as premature labor or rupture of fetal membranes leading to preterm delivery.
Prediction of sPTB is difficult, especially among patients without prior history
of sPTB [16], hindering the development of early interventions and preventative
treatments.

Multiple studies have explored ultrasound measurements for the prediction
of sPTB, including cervical length (CL), anterior uterocervical angle (AUCA),
lower uterine segment (LUS) thickness, and degree of funneling [27]. However,
only CL has demonstrated clinical significance as a stand-alone, reproducible
indicator of sPTB [13]. Accordingly, the clinical gold standard to evaluate sPTB
risk for a specific pregnancy is sonographic assessment of CL, measured from
2D, transvaginal ultrasound (TVUS) images [21]. Measurements taken during
the second and third trimester, require adherence to stringent guidelines such as
the Cervical Length Education and Review (CLEAR) criteria to ensure accu-
racy [12]. While a short cervix is an important predictor of sPTB, with lower
CL correlating with higher incidence of sPTB [12], the positive predictive value
(PPV) of CL alone is limited [21], ranging from 26–52% for women with no his-
tory of preterm birth [20]. Thus, improved sPTB prediction methods are needed.

The cervix is a complex, 3D biomechanical [14] and immunological [19] barrier
that protects the growing fetus and remodels to facilitate birth. The structural
failure of the cervix, as seen in premature cervical remodeling and shortening,
is a common feature of sPTB [23]. 3D biomechanical models suggest the overall
shape, volume, and intrinsic material properties determine cervical mechanical
performance [7,24]. Additionally, the alignment of the cervix with the uterus
determines how the load of the growing fetus is directed [24]. Therefore, CL is
an incomplete measure of cervical barrier and biomechanical function.

Convolutional neural networks (CNNs) have recently gained popularity in
biomedical image segmentation [18]. While traditional single-class UNet, and
DeepLabV3 architectures have been explored for cervical segmentation [25],
multi-class networks and other more-complex architectures have not yet been
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applied. A single-class UNet successfully segmented curves approximating cervi-
cal shape, to then extract CL and anterior cervical angle, and feed these mea-
surements and original images into PTB prediction models [26]. However, no
deep learning framework has segmented the anterior and posterior cervical tis-
sue and cervical canal space differentially. The ability to distinguish these tissue
regions will ultimately allow algorithms to extract more biomechanically rele-
vant features including LUS thickness, anterior/posterior cervical diameter, and
closed cervical area as well as previously recorded CL and AUCA measurements.

In this work, patient variations in cervical geometry during the second and
third trimesters of pregnancy are explored. A novel tool is introduced to seg-
ment the entire 2D cervical region from TVUS images of pregnant patients into
multiple anatomical classes including: anterior cervical tissue, posterior cervical
tissue, and cervical canal space. These predictions are performed on a pixel-by-
pixel basis where the introduction of a multi-class model helps identify bound-
aries between neighboring structures. Traditionally, labeling ultrasounds with
this level of detail is highly time-consuming, labor-intensive, and subject to vari-
ation between experts with differing clinical experience. An automated tool to
label cervical anatomy will enable extraction of more detailed cervical geometry
markers, further elucidating new etiologies of PTB. Ultimately, these 2D cer-
vical shape mappings and extracted cervical features may enable the creation
of a PTB prediction model which takes high-fidelity cervical feature inputs and
outputs clinical risk of PTB.

2 Methods

2.1 Dataset

Images. The Perinatal Quality Foundation (PQF), which hosts the CLEAR
training program [1], supplied the TVUS images which were used to train our
deep learning segmentation networks. This diverse dataset consists of 250 TVUS
images submitted for review to the CLEAR program, collected between 16–32
weeks gestation from different centers, ultrasound machines, and clinicians across
the United States. Images were graded based upon their adherence to 9 CLEAR
criteria, defined in Fig. 1, where a minimum score of 7 is required to pass. Of the
250 images in our dataset, 175 received a perfect score (grade 9), 50 received a
passing score (grade 8), and 25 received a failing score (grade 6). An example
image from each grading class is shown in Fig. 1. Ideally, all TVUS scans would
merit a perfect score, but a small subset of real-world data is expected to fail
CLEAR criteria due to human error, even after appropriate training. To further
improve the model’s ability to generalize, a small subset of grade 6 images were
included in the dataset, as they still meet over half of the CLEAR criteria but
fail to pass certification. Since the provided TVUS images were anonymized,
no pregnancy outcome information is available and it is assumed that patients
do not have repeat images in the dataset. Further inspection of the images, as
depicted in Fig 2, reveals that short cervices (CL < 2.5 cm) and cervical funneling
are present in roughly 15 % and 12% of images, respectively.
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Fig. 1. a) A CLEAR certified image with demarcations of anatomical landmarks, b)
Perfect grade 9/9 image satisfies all CLEAR criteria, c) Passing grade 8/9 image does
not satisfy criteria #2, d) Failing grade 6/9 image does not satisfy criteria #3, 4, 9.

Fig. 2. Cohort flow chart illustrating quantity of excluded data. Population is further
categorized based upon short cervical length (<2.5 cm) and the presence of cervical
funneling (inclusive of grade 6, 8 and 9 images).
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Labels. A CLEAR certified sonographer and 2 clinicians provided annotations
using the segmentation software Labelbox [2]. During review and label genera-
tion, expert maskers were permitted to skip an image if the quality was too poor
to distinguish the anatomic regions of interest (exclusion criteria in Fig. 2). Of
the 250 original images, 4 images were excluded from the dataset during expert
review leaving 174, 50, and 22 images in the grade 9, 8 and 6 groups, respectively.
Experts were tasked with segmenting these images into 5 regions (background,
bladder, anterior cervix + LUS, posterior cervix, and cervical canal + potential
space) as shown in the segmentation label anatomy key of Fig. 3. Fleiss’ kappa
coefficient was calculated to determine agreement among experts. Across all 246
images in the labeled dataset, the Fleiss’ kappa coefficient was 0.87, showing
high agreement between experts. A majority choice voting system (illustrated in
Fig. 3) was then used to generate ground truth (GT) labels for training, based
on these 3 expert labels; if at least 2 experts labeled a pixel with a given class,
then that pixel was set to true for that given class in the GT label.

Fig. 3. An unlabeled TVUS image (a) is labeled by 3 experts: 1 sonographer (b) and
2 clinicians (c, d) according to the segmentation key. The GT label, determined by a
majority voting method applied to the 3 expert masks is displayed (e).

Data Preprocessing. The cv2 inpainting [22] package was used to remove CL
calipers placed by clinicians. The dataset was divided into training, validation,
and test sets using a 70:20:10 split. Each set had a random distribution of images,
but CLEAR scores were balanced in each set. Data augmentation techniques such
as 180◦ rotations, random zoom, center crop, random Gaussian noise, Gaussian
blur, and random contrast adjustments were applied only to the training set.
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2.2 Model Architecture

For all model architectures, image/mask pairs are resized to 256× 256 pixels,
and the mask is one-hot encoded before training. The images are converted to
grayscale and pixel values are normalized between 0 and 1, providing a 1-channel
input to the network. The model computes a 5-channel output corresponding
to background and the 4 classes depicted in Fig. 3. All model architectures are
implemented using the MONAI library [3]. A multi-class residual UNet 2D CNN
architecture [11] is trained with 5 convolutional layers (corresponding to 16, 32,
64, 128, and 256 channels), and a stride length of 2. Multi-class 2D Attention
UNet [17], SegResNet [15], and transformer UNet (UNETR) [8] are also explored
as alternative network architectures, where attention UNet is trained on the same
5 convolutional layers, and default values are used for SegResNet and UNETR
implementations.

Model training monitors Dice loss and Dice metric. An average Dice metric
value is calculated for each epoch by averaging class-specific dice metric across
every class except background. During training, the model is allowed to run for
50 epochs, and early stopping monitors the validation loss with a patience of 5
epochs, but saves the model checkpoint with the best average Dice metric on
the validation set during training. Predictions are generated by feeding inputs
through the trained model, applying softmax activation along the class dimen-
sion and reporting the argmax value along the class dimension to determine the
predicted class of each pixel in an image.

Hyperparameter Optimization. Both Adam and SGD optimizers were con-
sidered with learning rates ranging from 0.001 to 0.01 and 0.001 to 0.1, respec-
tively. Dropout was varied between 0 and 0.6 in increments of 0.2. When consid-
ering the multi-class UNet, a traditional UNet and a residual UNet architecture
were employed, by varying the number of residual units from 0 and 4, in incre-
ments of 2.

Hardware and Software. All models were executed on a single Tesla V100-
32GB GPU. Model training was performed in Python 3.9, using PyTorch and
MONAI [3] packages. Code for training and evaluating model performance is
available at https://github.com/cumcrad/MulticlassSegmentationTVUS.

3 Results

For the multi-class residual U-Net architecture, model performance was opti-
mized with the following hyper-parameters: Adam (learning rate = 0.001) or
SGD (learning rate = 0.1) optimizer, dropout of 0.2, and 4 residual units. The
difference in best model performance between Adam and SGD optimizers was

https://github.com/cumcrad/MulticlassSegmentationTVUS
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Table 1. Average Dice metric (DM), Hausdorff distance (HD), Jaccard index (JI) and
associated standard deviations across all test image are tabulated. Attention UNet and
SegResNet architectures performed comparably to the residual UNet.

Metric
Model Type

Residual UNet Attention UNet SegResNet Transformer UNet

DM 0.80 ± 0.08 0.80 ± 0.08 0.80 ± 0.07 0.62 ± 0.06

HD 19.73 ± 10.23 24.39 ± 13.055 24.67 ± 12.89 73.49 ± 16.88

JI 0.72 ± 0.09 0.71 ± 0.09 0.72 ± 0.075 0.492 ± 0.065

negligible. Subsequent hyperparameter search, using only Adam optimizer, on
the attention U-Net architecture found the same values: a learning rate of 0.001,
and dropout of 0.2. Given this overlap in optimal hyperparameters, these values
were adopted for all 4 model architectures, with results shown in Table 1.

Comparisons of Dice metric, Hausdorff distance, and Jaccard index indicate
attention UNet and SegResNet performed comparably to the residual UNet.
Further inspection of test images indicate attention UNet and SegResNet archi-
tectures had higher instances of image artifacts such as disconnected segmen-
tation classes among the predicted images. One-way paired ANOVA followed
by a paired multiple comparison T-test with Bonferroni corrections were used
to compare the performance of each model in terms of Dice metric, Hausdorff
distance, and Jaccard index. These statistical tests confirmed that only the
transformer UNet performance differed with statistical significance (adjusted
p < 0.05) against other models in terms of Dice metric, Hausdorff distance,
and Jaccard index. This poor transformer UNet performance is likely attributed
to small dataset size. Attention UNet and transformer UNet performance may
improve given more training examples because of their ability to highlight impor-
tant features [17], or capture long-range dependencies, global context and spatial
information [8] respectively. Given its superior performance for these data and
relatively small computational cost, the multi-class residual UNet model was
used for the remainder of this work.

As shown in Fig. 4d, the multi-class residual 2D UNet model trained for 5.5 h
and was saved after 16 epochs. Class-specific values of Dice metric, Hausdorff
distance, and Jaccard index were calculated on the images in the test set and
reported in Table 2. To ensure the inclusion of grade 6 images did not nega-
tively affect model performance, the multi-class residual UNet architecture (4
residual units, Adam optimizer, learning rate = 0.001, dropout = 0.2) was re-
trained using only grade 8 and 9 images in the training and validation set. The
inclusion or exclusion of the grade 6 images had no noticeable effect on the test
performance, when evaluated both with and without the grade 6 images in the
test set.
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Fig. 4. Ground truth and prediction labels in the validation set demonstrate good
model performance for variations in cervical geometry including: a) long curved cervix,
b) short squat cervix, and c) median width/length cervix. Image specific dice scores are
reported according to class color. d) Training and validation mean dice score (top) and
loss (bottom) are plotted against the number of epochs to visualize model training.

Table 2. Dice metric (DM), Hausdorff distance (HD), and Jaccard index (JI) are
tabulated for the best performing mutli-class residual UNet architecture. Class-specific
average metrics and standard deviations are calculated across all images in test set.

Metric

Class

Background Bladder
Anterior Posterior Cervical

Cervix Cervix Canal

DM 0.98 ± 0.02 0.68 ± 0.23 0.91 ± 0.04 0.90 ± 0.07 0.55 ± 0.24

HD 17.71 ± 10.88 14.76 ± 12.24 16.12 ± 7.87 18.69 ± 14.04 31.38 ± 12.93

JI 0.95 ± 0.04 0.55 ± 0.23 0.84 ± 0.06 0.83 ± 0.10 0.41 ± 0.23

As a benchmark for inter-operator variability, agreement metrics (Dice met-
ric, Hausdorff distance and Jaccard index) were calculated between the majority
ground truth label and each expert label on the test set. These three metrics
were then averaged across all experts to derive inter-operator values, reported
in Table 3. For the test set, the inter-operator Dice score, averaged across all
classes except background is 0.82, with class specific Dice scores of 0.94 for both
anterior and posterior cervix classes. When evaluated on the test set, the best-
performing multi-class residual UNet model achieved a high Dice score of 0.80
averaged across every class except the background, with class-specific Dice scores
of 0.91 and 0.90 for the anterior and posterior cervix class, respectively. There-
fore, the model performs only slightly below the agreement of clinical experts.
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Table 3. Inter-operator metrics were calculated by averaging Dice metric (DM), Haus-
dorff distance (HD), and Jaccard index (JI) across all 3 experts and test images. Indi-
vidual class values are reported, in addition to the average across segmentation classes.
In cases where Hausdorff distance was an infinite value for 1 expert, * indicates average
was calculated using the remaining 2 expert values.

Inter-operator Class

AverageMetric
Background Bladder

Anterior Posterior Cervical

Cervix Cervix Canal

DM 0.98 0.82 0.94 0.94 0.59 0.85

HD 17.47 *7.24 13.47 13.61 *57.57 *23.18

JI 0.97 0.74 0.88 0.89 0.47 0.79

Fig. 5. Model performance limitations are depicted for validation images where certain
artifacts limit reliability: a) The presence of a full bladder, b) funneling, c) a low-laying
placenta, and d) an extremely zoomed-out field of view hinder model performance.

Limitations. Despite high performance on the test set, the bladder boundary
is inaccurately predicted in images with a full bladder (Fig. 5a) likely because
these images fail to meet CLEAR criteria (Fig. 1). In addition, the bladder is
one of the smallest features in the TVUS images. Therefore, the bladder class
occupies a small portion of labeled pixels in the dataset, which may cause the
bladder segmentation results to be poor as compared to other classes. In the
event of extreme funneling (Fig. 5b), visualized as a U, V, or Y-shaped internal
os region, the model may struggle to find the histological internal os of the cervix.
Again, this is likely attributed to there being fewer examples of funneled cervices
compared to closed cervices in the data set. The low representation of funnel-
ing, associated with higher risk pregnancies, may unintentionally encourage the
model to learn that the cervical canal + potential space class has fewer pixels
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than the other classes, which may lead to under-prediction of funnel shapes.
If the placenta is located near the internal os (Fig. 5c), the placenta tissue is
often mistaken for posterior cervix tissue, likely due to its similar sonographic
brightness and texture. Finally, if the image violates CLEAR criteria because
the cervix area is small relative to the field of view (Fig. 5d), the cervical area is
sometimes over-predicted or misplaced.

In the future, including more images of short cervices, funneled cervices,
and low-lying placentas may improve the model’s ability to generalize. While
more TVUS scans with a full bladder may help model generalizability, this goes
against CLEAR criteria and therefore may not be recommended. As more images
are introduced to the dataset, further hyperparameter search is needed to opti-
mizer parameters for all 4 models individually. In particular, the SegResNet
and UNETR architectures were not subject to a comprehensive hyperparameter
search and should be explored in more detail.

4 Conclusion

This work develops an automated, multi-class segmentation network to label
the cervical tissue in its entirety. Compared to previous work [25] segmenting
only 1 class approximating the cervix, this multi-class model achieves a similar
Dice score of 0.9 for both anterior and posterior cervix classes. Additionally,
this model provides more information about the biomechanical loading angle
between the uterus and the cervix by including a portion of the LUS in the label
scheme.

Future work is indicated to improve the predictions for the bladder and cer-
vical canal classes, which are used primarily as markers to better identify the
cervix and anterior LUS tissue in this multi-class framework. The bladder, while
holding little meaning as a stand-alone feature, may also act as a helpful land-
mark to aid a cervical feature extraction model. Although bladder predictions
were less reliable than cervix predictions, the inclusion of the bladder class in
this model is believed to improve the overall performance by providing a reli-
able, highly-echogenic landmark with an anatomically prescribed location near
the anterior/superior boundary of the cervix. Similarly, the cervical canal class
may also be used to examine the shape and size of a funnel or cervical mucus
plug, if present in the TVUS image.

This novel tool has broad applications in studying the impact of cervical
geometry variations on pregnancy outcomes, with a particular focus on sPTB.
For this application, the model should be evaluated and fine-tuned on a larger
dataset including preterm/term birth outcomes linked to TVUS images. The
labeled outputs of this network can also be used to extract geometric features
such as CL, cervical diameter, AUCA, LUS thickness, and closed cervical area.
These input features can later be fed to prediction models for more robust,
individualized patient predictions of sPTB risk. Furthermore, these labeled
classes may be leveraged during real-time ultrasound scanning to determine if an
image meets minimum requirements such as CLEAR criteria. This feedback may
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improve the reproducibility of TVUS scans and associated predictive capability
of CL screening for sPTB.

This segmentation tool holds great promise in elucidating the pathways of
sPTB, but more research is needed to fine-tune this model and ensure general-
izability. Future work will include geometric feature extraction and validation
against clinically reported values. Ultimately, this work may lead to an engi-
neered PTB diagnostic method interrogating the biomechanical process of sPTB
and a clinical workflow fitting practically into modern obstetrics care.

Acknowledgements. This study was supported in part by National Science Foun-
dation Graduate Research Fellowship Grant DGE-2036197 to Alicia B. Dagle, and by
Columbia University SEAS Interdisciplinary Research Seed (SIRS) Funding. TVUS
images were provided by the Perinatal Quality Foundation and were collected as part
of the CLEAR training program. We sincerely thank Keri Johnson of Intermountain
Health for her expertise in providing anatomical segmentations of TVUS images. We
would also like to thank Chai-Ling Nhan-Chang, MD of Columbia University for her
feedback and insight during the ideation of the segmentation labels for this project.

References

1. Cervical Length Education and Review Program. https://clear.perinatalquality.
org

2. Labelbox: https://labelbox.com/
3. MONAI - Home. https://monai.io/
4. Preterm birth. https://www.who.int/news-room/fact-sheets/detail/preterm-birth
5. Blencowe, H., et al.: National, regional, and worldwide estimates of preterm birth

rates in the year 2010 with time trends since 1990 for selected countries: a system-
atic analysis and implications. Lancet 379(9832), 2162–2172 (2012). https://doi.
org/10.1016/S0140-6736(12)60820-4

6. Callaghan, W.M., MacDorman, M.F., Rasmussen, S.A., Qin, C., Lackritz, E.M.:
The contribution of preterm birth to infant mortality rates in the united states.
Pediatrics 118(4), 1566–1573 (2006). https://doi.org/10.1542/peds.2006-0860

7. Fernandez, M., et al.: Investigating the mechanical function of the cervix during
pregnancy using finite element models derived from high-resolution 3D MRI. Com-
put. Methods Biomech. Biomed. Engin. 19(4), 404–417 (2016). https://doi.org/10.
1080/10255842.2015.1033163

8. Hatamizadeh, A., et al.: UNETR: Transformers for 3D Medical Image Segmenta-
tion, October 2021. https://doi.org/10.48550/arXiv.2103.10504, arXiv:2103.10504
[cs, eess]

9. Institute of Medicine (US) Committee on Understanding Premature Birth and
Assuring Healthy Outcomes: Preterm Birth: Causes, Consequences, and Preven-
tion. The National Academies Collection: Reports funded by National Institutes
of Health, National Academies Press (US), Washington (DC) (2007)

10. Kassabian, S., Fewer, S., Yamey, G., Brindis, C.D.: Building a global policy
agenda to prioritize preterm birth: a qualitative analysis on factors shaping global
health policymaking. Gates Open Res. 4, 65 (2020). https://doi.org/10.12688/
gatesopenres.13098.1

https://clear.perinatalquality.org
https://clear.perinatalquality.org
https://labelbox.com/
https://monai.io/
https://www.who.int/news-room/fact-sheets/detail/preterm-birth
https://doi.org/10.1016/S0140-6736(12)60820-4
https://doi.org/10.1016/S0140-6736(12)60820-4
https://doi.org/10.1542/peds.2006-0860
https://doi.org/10.1080/10255842.2015.1033163
https://doi.org/10.1080/10255842.2015.1033163
https://doi.org/10.48550/arXiv.2103.10504
http://arxiv.org/abs/2103.10504
https://doi.org/10.12688/gatesopenres.13098.1
https://doi.org/10.12688/gatesopenres.13098.1


Automated Segmentation of Cervical Anatomy to Interrogate Preterm Birth 59

11. Kerfoot, E., Clough, J., Oksuz, I., Lee, J., King, A.P., Schnabel, J.A.: Left-ventricle
quantification using residual U-Net. In: Pop, M., et al. (eds.) STACOM 2018.
LNCS, vol. 11395, pp. 371–380. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-12029-0 40

12. McIntosh, J., Feltovich, H., Berghella, V., Manuck, T.: The role of routine cervical
length screening in selected high- and low-risk women for preterm birth prevention.
Am. J. Obstet. Gynecol. 215(3), B2–B7 (2016). https://doi.org/10.1016/j.ajog.
2016.04.027

13. Mella, M.T., Berghella, V.: Prediction of preterm birth: cervical sonography. Semin.
Perinatol. 33(5), 317–324 (2009). https://doi.org/10.1053/j.semperi.2009.06.007

14. Myers, K.M., et al.: The mechanical role of the cervix in pregnancy. J. Biomech.
48(9), 1511–1523 (2015). https://doi.org/10.1016/j.jbiomech.2015.02.065

15. Myronenko, A.: 3D MRI brain tumor segmentation using autoencoder regulariza-
tion. arXiv:1810.11654 [cs, q-bio], November 2018

16. Norwitz, E.: UpToDate. UpToDate, Waltham, MA (2015). http://www.uptodate.
com/contents/prevention-of-spontaneous-preterm-birth, section: Prevention of
spontaneous preterm birth

17. Oktay, O., et al.: Attention U-Net: Learning Where to Look for the Pancreas, May
2018. arXiv:1804.03999 [cs]

18. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomed-
ical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F.
(eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-24574-4 28

19. Simhan, H.N., Krohn, M.A.: First-trimester cervical inflammatory milieu and sub-
sequent early preterm birth. Am. J. Obstet. Gynecol. 200(4), 377.e1-377.e4 (2009).
https://doi.org/10.1016/j.ajog.2008.10.038

20. Son, M., Miller, E.S.: Predicting preterm birth: cervical length and fetal fibronectin.
Sem. Perinatol. 41(8), 445–451 (2017). https://doi.org/10.1053/j.semperi.2017.08.
002, https://www.sciencedirect.com/science/article/pii/S0146000517300903

21. Spong, C.Y.: Prediction and prevention of recurrent spontaneous preterm birth.
Obstet. Gynecol. 110(2 Part 1), 405–415 (2007). https://doi.org/10.1097/01.AOG.
0000275287.08520.4a

22. Telea, A.: An image inpainting technique based on the fast marching method. J.
Graph. Tools 9(1), 23–34 (2004). https://doi.org/10.1080/10867651.2004.10487596

23. Vink, J., Feltovich, H.: Cervical etiology of spontaneous preterm birth. Semin.
Fetal Neonatal. Med. 21(2), 106–112 (2016). https://doi.org/10.1016/j.siny.2015.
12.009

24. Westervelt, A.R., et al.: A parameterized ultrasound-based finite element analysis
of the mechanical environment of pregnancy. J. Biomech. Eng. 139(5), 051004
(2017). https://doi.org/10.1115/1.4036259

25. W�lodarczyk, T., et al.: Spontaneous preterm birth prediction using convolutional
neural networks. In: Hu, Y., et al. (eds.) ASMUS/PIPPI -2020. LNCS, vol. 12437,
pp. 274–283. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60334-
2 27

26. W�lodarczyk, T., et al.: Machine learning methods for preterm birth prediction: a
review. Electronics 10(5), 586 (2021). https://doi.org/10.3390/electronics10050586

27. Yost, N.P.,et al.: For the national institute of child health and human development,
MFMUN: second-trimester cervical sonography: features other than cervical length
to predict spontaneous preterm birth. Obstet. Gynecol. 103(3), 457–462 (2004).
https://doi.org/10.1097/01.AOG.0000113618.24824.fb

https://doi.org/10.1007/978-3-030-12029-0_40
https://doi.org/10.1007/978-3-030-12029-0_40
https://doi.org/10.1016/j.ajog.2016.04.027
https://doi.org/10.1016/j.ajog.2016.04.027
https://doi.org/10.1053/j.semperi.2009.06.007
https://doi.org/10.1016/j.jbiomech.2015.02.065
http://arxiv.org/abs/1810.11654
http://www.uptodate.com/contents/prevention-of-spontaneous-preterm-birth
http://www.uptodate.com/contents/prevention-of-spontaneous-preterm-birth
http://arxiv.org/abs/1804.03999
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1016/j.ajog.2008.10.038
https://doi.org/10.1053/j.semperi.2017.08.002
https://doi.org/10.1053/j.semperi.2017.08.002
https://www.sciencedirect.com/science/article/pii/S0146000517300903
https://doi.org/10.1097/01.AOG.0000275287.08520.4a
https://doi.org/10.1097/01.AOG.0000275287.08520.4a
https://doi.org/10.1080/10867651.2004.10487596
https://doi.org/10.1016/j.siny.2015.12.009
https://doi.org/10.1016/j.siny.2015.12.009
https://doi.org/10.1115/1.4036259
https://doi.org/10.1007/978-3-030-60334-2_27
https://doi.org/10.1007/978-3-030-60334-2_27
https://doi.org/10.3390/electronics10050586
https://doi.org/10.1097/01.AOG.0000113618.24824.fb


Deep Learning Framework for Real-Time
Fetal Brain Segmentation in MRI

Razieh Faghihpirayesh1,2(B), Davood Karimi2, Deniz Erdoğmuş1,
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Abstract. Fetal brain segmentation is an important first step for slice-
level motion correction and slice-to-volume reconstruction in fetal MRI.
Fast and accurate segmentation of the fetal brain on fetal MRI is required
to achieve real-time fetal head pose estimation and motion tracking for
slice re-acquisition and steering. To address this critical unmet need, in
this work we analyzed the speed-accuracy performance of a variety of
deep neural network models, and devised a symbolically small convo-
lutional neural network that combines spatial details at high resolution
with context features extracted at lower resolutions. We used multiple
branches with skip connections to maintain high accuracy while devis-
ing a parallel combination of convolution and pooling operations as an
input downsampling module to further reduce inference time. We trained
our model as well as eight alternative, state-of-the-art networks with
manually-labeled fetal brain MRI slices and tested on two sets of normal
and challenging test cases. Experimental results show that our network
achieved the highest accuracy and lowest inference time among all of the
compared state-of-the-art real-time segmentation methods. We achieved
average Dice scores of 97.99% and 84.04% on the normal and challeng-
ing test sets, respectively, with an inference time of 3.36 milliseconds per
image on an NVIDIA GeForce RTX 2080 Ti. Code, data, and the trained
models are available at this repo.

Keywords: Fetal MRI · Fetal brain · Real-time segmentation

1 Introduction

Fetal MRI is an important tool for diagnosis of abnormalities of the fetal brain
during pregnancy due to its superior soft tissue contrast compared to ultrasound.
However, MRI is very susceptible to motion and fetuses can move significantly
during MRI scans. To mitigate this problem, fast MRI acquisition techniques are
used to obtain stacks of 2D slices. Super-resolution techniques can then recon-
struct 3D images from these 2D slices [3,4,6,8,12,26]. Segmentation of the brain
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in slices can improve inter-slice motion correction and super-resolution recon-
struction [27]. Real-time fetal brain segmentation on slices is needed to enable
real-time fetal head pose estimation, motion tracking, and slice navigation [25].

While several studies have addressed 3D fetal brain segmentation on stack-
of-slices or reconstructed fetal MRI scans [1,3,10,23], only a few studies have
addressed the more challenging task of segmenting the fetal brain on every slice.
Keraudren et al. [9] developed a method based on support vector machines and
random forests. More recent works have almost exclusively been based on deep
learning (DL), and in particular convolutional neural networks (CNNs). These
methods are more suitable for real-time applications because they can harness
the parallel computation capabilities of Graphical Processing Units (GPUs) [21].
Salehi et al. [24] used a DL method based on the U-Net architecture [22]. Wang
et al. [28] computed aleatoric uncertainty and used test time augmentation to
improve the accuracy of fetal brain segmentation on 2D slices. While these
works focused on improving segmentation accuracy, none of them addressed
the accuracy-speed trade-off. To address this gap, in this paper we focused on
improving inference speed as well as accuracy.

Many applications demand real-time image processing. This demand has given
rise to a growing body of real-time DL-based methods [17]. The majority of these
works have aimed at reducing the computation time by devising lighter or special-
ized network architectures. A typical example of architectural innovations is the
depthwise-separable convolution, which breaks down a 3D convolution operation
into a succession of 2D and 1D convolutions [7]. Another approach to reducing the
computational cost is channel shuffling as used in ShuffleNets [16,30]. Gamal et
al. [5] proposed ShuffleSeg based on ShuffleNet by using ShuffleNet with grouped
convolutions, channel shuffling as encoder, and FCN8s [14] as decoder. ENet [18]
uses early downsampling of the input to extract relevant image features while
reducing the image size. ENet also uses a much smaller decoder module than in
typical symmetric encoder-decoder architectures [2,22].

Two-branch networks [19,29] are another way to design faster models and
are among the fastest existing methods. Unlike standard models where the entire
network learns low-level and high-level details, in two-branch networks these two
tasks are performed by two separate branches. A shallow branch captures spatial
details and generates high-resolution feature representation, while a deeper but
lightweight branch learns high-level semantic context. ContextNet [19], Fast-
SCNN [20], and BiseNet [29] are examples of two-branch networks. An important
consideration in designing these architectures is to ensure proper integration of
high-level and low-level context information. For example, ICNet [31] computes
a multi-resolution set of feature maps and employs a cascade feature fusion unit
to fuse these feature maps, whereas DFANet [13] uses several interconnected
encoding paths to add high-level context into the encoded features.

In this work we aimed to design a network with proper, efficient integration
of high-level and low-level information to achieve high accuracy and very fast
inference in fetal brain MRI segmentation. To achieve this, we developed a new,
efficient CNN-based network, which we term Real-time Fetal Brain Segmenta-
tion Network (RFBSNet). RFBSNet uses an encoder-decoder architecture with
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forward connections to retain accuracy; and a two-branch architecture with an
input downsampling module to achieve fast inference. We compared RFBSNet
with eight alternative state-of-the-art DL models. In the following sections, we
provide a detailed description of our methods, data, results, and analysis.

2 Materials and Methods

2.1 Proposed Network Architecture

We designed RFBSNet to strike a balance between inference speed and accuracy.
Figure 1 shows the layout of RFBSNet. It contains an input downsampling mod-
ule, a feature extractor, a decoder, and a classification module. In the following,
we describe each structure module in more detail.

Input Downsampling Module. The first module in our proposed network is
a downsampling module that reduces the size of the input image while also pro-
viding high resolution spatial information into the classifier module using a for-
ward path. Input downsampling can greatly speed up the network by significantly
reducing the amount of computation performed by all down-stream network lay-
ers. When this down-sampling is not excessive and is carried out using learnable
functions, such as a convolution layer, the loss in segmentation accuracy can be
very small. However, excessive down-sampling can result in a loss of important
detail such as fine object boundaries [18]. Besides, downsampling the input image
by a factor of m would require upsampling by the same factor in order to obtain
a segmentation map with the same size as the input image. Although upsampling
can also be accomplished using learnable transposed convolutions, it can result
in further loss of fine detail if it is excessive. To avoid these negative effects, we
used a down-sampling module, shown in Fig. 2, that consists of two paths: (1) a
max-pooling path with non-overlapping 2 × 2 windows, and (2) a convolutional
layer with 3 × 3 kernels. The outputs of these two paths are concatenated.

Feature Extractor. This module is responsible for learning multi-resolution
image features for accurate segmentation. Our feature extractor module shares
its computation of the first few layers with the input downsampling module.
This parameter sharing not only reduces the computational complexity of the
network, it also improves the segmentation accuracy. In this architecture, we
used one convolutional layer followed by ReLU in the shallow branch to encode
detailed spatial information. The deep feature extractor branch of RFBSNet
provides sufficient receptive field. We deployed U-Net style [22] forward skip
connections to fuse multi-resolution features into the decoder module.

Decoder and Classification Modules. A U-Net-type decoder with skip con-
nections upsamples the features learned by the different sections of the feature
extractor module to the size of the feature maps generated by the input down-
sampling module. These feature maps are finally fused together using a simple
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Fig. 1. Overview of the proposed architecture (RFBSNet). It consists of an input down-
sampling module, a feature extractor, a decoder, and a classifier, with two branches
and forward connections from the feature extractor to the decoder. All modules are
built using classical convolution layers using operations shown in the figure legend. The
detail of the down sampling module is shown in Fig. 2. Numbers next to each block
show the number of channels, while the length indicates the spatial size considering
the input size of I.

Fig. 2. The input downsampling module in RFBSNet consists of a convolution and a
max pooling path. The outputs are concatenated to build a feature map.

addition. In the classification module, an upsampling layer and a pointwise con-
volution layer are applied to the fused feature maps. A softmax operation is
applied to the final layer to generate class probability maps.

2.2 Alternative Methods and Evaluation Metrics

We compare the proposed RFBSNet to two standard networks for medical image
segmentation (U-Net [22] and SegNet [2]), as well as several recent architec-
tures that have been proposed for real-time segmentation (see Table 1). We also
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introduce ShuffleSeg V2 following the design of ShuffleSeg [5]. It employs Shuf-
fleNet V2 [16] as encoder and FCN8s [14] as decoder.

The accuracy of all methods are evaluated and compared using the Dice
similarity coefficient and Intersection-over-Union IoU, also known as Jaccard
index, metrics defined as Dice(P,R) = 2|P∩R|

|P |+|R| = 2TP
2TP+FP+FN and IoU(P,R) =

|P∩R|
|P∪R| = TP

TP+FP+FN respectively. where P is predicted brain mask, R is a ground
truth mask and TP, FP, and FN are the true positive, false positive, and false
negative rates, respectively. We assess segmentation speed in terms of the aver-
age inference time and standard deviation with 100 iterations for each method
while using batch size of 1. In addition, we report the number of floating point
operations (FLOPs) and the number of trainable parameters for each network.

2.3 Data, Implementation, and Training

The fetal MRI data used in this study were acquired using 3T Siemens scanners.
The study was approved by the institutional review board; and written informed
consent was obtained from all research MRI participants. For each subject, mul-
tiple half-Fourier single shot turbo spin echo (HASTE) images were acquired
with in-plane resolution of 1 to 1.25 mm, and slice thickness of 2 to 4 mm. The
gestational ages of the fetuses at the time of scans were between 22 to 38 weeks
(mean = 29, stdev = 5). In total, 3496 2D fetal MRI slices (of 131 stacks from 23
fetal MRI sessions) were included in the training and validation procedure (80%
train, 20% validation). A set of 840 2D slices (17 stacks) of two normal fetuses
without severe artifacts was used as normal test set, and a set of 136 2D slices of
a fetal MRI scan with artifacts (from 4 stacks) was used as the challenging test
set. An experienced annotator carefully segmented the fetal brain in every slice
of all these stacks. We used these manual segmentations as the ground truth for
model training and evaluation.

All experiments were conducted with an NVIDIA GeForce RTX 2080 Ti,
using TensorFlow and Keras 2.6.0. All models were trained with a batch size of
8 and input image size of 256 × 256. We used Dice similarity coefficient between
the network predictions and the ground truth as the training loss function. The
learning rate for each of the compared networks was tuned separately. For our
model we used an initial learning rate of 1 × 10−4, which we multiplied by 0.9
after every 2000 training steps. We trained each model for 100 epochs using
Adam optimization [11] of stochastic gradient descent.

3 Results

Table 1 summarizes the performance of our proposed RFBSNet compared to
other methods. In terms of almost all evaluation criteria, RFBSNet outper-
formed the standard methods as well as other state-of-the-art real-time seg-
mentation models. It reached 97.99% aDice (average Dice of all test images),
96.12% aIoU on normal and 86.04% aDice, 75.50% aIoU on challenging test sets
with outstanding inference time of 3.36 ms. Indeed, our network can run on a
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Table 1. Comparing RFBSNet with eight state-of-the-art methods based on average
Dice (aDice) and average IOU (aIoU) on normal and challenging test sets. This table
also shows the number of FLOPS (in giga FLOPS), the number of training parameters,
and the inference time (in ms) of each method. RFBSNet achieved the highest accuracy
and the best inference speed among all methods.

Normal Challenging FLOPs #Trainable Inference Time

Model aDice (%) aIoU (%) aDice (%) aIoU (%) (G) Parameters (ms)

ICNet [31] 85.43 77.00 65.15 58.00 1.81 6,710,914 12.91±0.39

ENet [18] 95.42 91.54 78.05 69.00 0.975 362,838 20.63±0.05

Fast-SCNN [20] 86.87 78.81 69.34 60.80 0.517 1,593,222 5.74±0.09

DFANet [13] 78.59 69.19 65.47 57.97 0.248 418,354 22.90±0.32

ShuffleSeg [5] 91.34 85.05 79.38 70.35 0.374 940,722 12.05±1.11

ShuffleSeg V2 [16] 89.97 83.05 77.36 68.26 1.15 3,043,294 8.64±0.25

SegNet [2] 96.17 92.85 88.95 81.74 79.9 29,441,986 10.16±0.18

U-Net [22] 97.93 96.02 85.81 77.63 102 34,512,258 9.82±0.04

RFBSNet 97.99 96.12 84.04 75.50 5.32 2,154,328 3.36±0.02

single GPU in real time, i.e., it runs as soon as a single MRI slice is acquired
and reconstructed. We note that RFBSNet performed better than the standard
medical image segmentation network U-Net in terms of both accuracy and speed
while having ≈14 times less number of parameters and FLOPs. Our method also
outperformed other real-time segmentation methods in both accuracy and speed
while representing comparable number of parameters and FLOPs.

We performed paired t-tests with a p value threshold of 0.001 to test if
the segmentation accuracy, in terms of Dice and IoU on the test sets, for our
model was higher than other models. These tests showed that our model was
significantly more accurate than all competing real-time segmentation models on
the normal and challenging test images in terms of both Dice and IoU. Our model
was also significantly more accurate than SegNet. However, the differences with
the U-Net were not statistically significant (p ≈ 0.3). We note that in addition
to computation time, both UNet and SegNet require high GPU memory which
may limit their use with larger images on standard GPUs.

Example segmentation results can be seen in Fig. 3. In addition to our own
method, in this figure we have shown the results of those competing methods
that were proposed originally for real-time segmentation. As these representative
examples show, compared to those other methods, which showed large segmenta-
tion errors and often completely failed to segment the fetal brain on challenging
images, our method accurately segmented both normal and challenging images.

4 Analysis and Discussion

We further analyzed the performance of the networks and the speed-accuracy
balance. Figure 4 shows the run-time of different networks, which were imple-
mented and compared in this study, as a function of batch size. The main obser-
vation from this figure is the dramatic shift in the order of networks as the batch
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Fig. 3. Representative examples of predicted brain masks overlaid on original fetal
MRI slices for normal cases (top 3 rows) and challenging cases (bottom 3 rows). Note
that RFBSNet correctly segmented the brain in all slices of this challenging test case
which was not segmented by the other methods.

size decreases. For batch sizes larger than four, real-time segmentation networks
were significantly faster than standard networks. However, the order began to
reverse as the batch size decreased to 1. At a batch size of 1, the processing time
(per image) for all real-time segmentation networks is several times longer than
those of the batch size of 10. In fact, four out of the six competing real-time
segmentation networks became slower than U-Net and SegNet. Our proposed
network, on the other hand, is comparable with other real-time networks for
large batches and it is the fastest of all networks for a batch size of 1 (which is
used for real-time inference). Figure 5 shows the speed-accuracy trade-off com-
parison of all methods on the normal test set with the top left corner being the
optimal performance.
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Fig. 4. Inference time vs. batch size.
Missing data points are due to lack of
enough system memory required to pro-
cess larger batches. For batch size of 1
(needed in real-time application), RFB-
SNet performed best.

Fig. 5. Inference time vs. average Dice
coefficient. This chart shows the speed-
accuracy trade-off comparison on the test
set at batch size of 1 for all methods that
were implemented and compared in this
study.

By design, our proposed network (RFBSNet) achieved high accuracy and very
fast inference at batch size of 1 for real-time image segmentation. The learnable
input downsampling module in RFBSNet helped reduce the computations while
providing a capacity to learn full spatial image resolution details. This module
resembled the shallow spatial path [20] of two-branch models [19]. Our feature
extractor module, on the other hand, can be compared to the deep low-resolution
branch of those prior works. This module helped ensure a high segmentation
accuracy.

As explained in Sect. 1, depthwise-separable convolutions (DWSConv) [7]
are a common design choice for reducing the computational cost of DL mod-
els. However, because DWSConv involves far fewer floating point operations
than standard 2D convolutions, its execution time on a GPU is dominated by
the memory access latency [15]. To overcome this bottleneck, existing imple-
mentations of DWSConv try to accelerate execution by using large batch sizes.
However, this strategy does not work in applications where inference is highly
latency-sensitive and when smaller batch sizes have to be used. Hence, DWS-
Convs does not result in fast models in a real-time application such as fetal brain
segmentation, where a test-time batch size of one is desired.

5 Conclusion

In this paper, we proposed a fast and accurate CNN based network for fetal brain
segmentation in MRI. Our design combines spatial details at high resolution with
context features extracted at lower resolutions. We also used multiple branches
with skip connections to maintain high accuracy while devising a parallel combi-
nation of convolution and pooling operations as an input down-sampling module
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to further reduce inference time. Experimental results showed the superiority of
our proposed network compared to standard and state-of-the-art real-time seg-
mentation models. We also demonstrated the effect of batch size at the time
of inference on the latency. With an inference time of <5 ms, our model can
segment the fetal brain in real time, leaving sufficient time for the rest of the
processing that is needed for real-time motion analysis and slice navigation.
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Abstract. Image registration of structural and microstructural data
allows accurate alignment of anatomical and diffusion channels. However,
existing techniques employ simple fusion-based approaches, which use a
global weight for each modality, or empirically-driven approaches, which
rely on pre-calculated local certainty maps. Here, we present a novel
attention-based deep learning deformable image registration solution for
aligning multi-channel neonatal MRI data. We learn optimal attention
maps to weigh each modality-specific velocity field in a spatially varying
fashion, thus allowing for local fusion of structural and microstructural
images. We evaluate our proposed method on registrations of 30 multi-
channel neonatal MRI to a standard structural and microstructural atlas,
and compare it against models trained without the use of attention maps
on either single or both modalities. We show that by combining the two
channels through attention-driven image registration, we take full advan-
tage of the two complementary modalities, and achieve the best overall
alignment of both structural and microstructural data.

Keywords: multi-channel registration · attention maps · deep
learning registration

1 Introduction

The neonatal brain undergoes dramatic changes during early life, such as cortical
folding and myelination. Non-invasive magnetic resonance imaging (MRI) offers
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snapshots of the evolving morphology and tissue properties in developing brain
across multiple subjects and time-points. As a prerequisite of further analysis,
MRI of various modalities needs to be aligned. Structural and microstructural
MRI modalities offer complementary information about morphology and tis-
sue properties of the developing brain, however inter-subject alignment is most
commonly driven by a single modality (structural [2] or diffusion [23]). Studies
have shown that combining diffusion and structural data to drive the registra-
tion [1,7,8,20] improves the overall alignment. Classic approaches for fusing these
channels are based on simple averaging of the deformation fields from the indi-
vidual channels [1], or weighting the deformation fields based on certainty maps
calculated from normalised gradients correlated to structural content [7,19,20].

In order to establish accurate correspondences between MR images acquired
during the neonatal period, we propose an attention-driven multi-channel deep
learning image registration framework that aims to combine information from T2-
weighted (T2w) neonatal scans with diffusion weighted imaging (DWI)-derived
fractional anisotropy (FA) maps. Our proposed solution selects the most salient
features from these 2 image modalities to improve alignment of individual MRI
images to a common atlas space.

More specifically, we train conditional variational autoencoder (CVAE) image
registration networks to align either structural or microstructural data to 36
weeks neonatal atlas [19] of the same modality. As a second step, we build a
convolutional neural network (CNN) which learns attention maps for weighted
combination of the predicted modality-specific velocity fields to achieve an opti-
mal multi-channel alignment. Throughout this work, we use 3-D MRI brain
scans [6] acquired as part of the developing Human Connectome Project (dHCP1

as the moving images, and 36 weeks neonatal multi-modal atlas2 [19] as the fixed
image.

We evaluate our proposed framework on a test set of 30 neonates scanned
around 40 weeks post-menstrual age (PMA), and we compare the results against
registration networks trained on T2w-only, FA-only, and both modalities at the
same time, either without attention, or with previously proposed attention mech-
anism [9,21]. The quantitative evaluation confirmed that while cortical structures
were better aligned using T2w data and white matter tracts were better aligned
using FA maps, the attention-based multi-channel registration aligned both types
of structures accurately.

2 Method

Image Registration Network. In this study, we employ a CVAE [11] to model
the registration probabilistically as proposed by [12]. In short, a pair of 3D MRI
volumes MT2w and FT2w (or MFA and FFA) are passed through the network to
learn a velocity field vT2w (or vFA). The exponentiation layers (with 4 scaling-
and-squaring [3] steps) transform it into a topology-preserving deformation field
1 developingconnectome.org.
2 gin.g-node.org/alenaullauus/4d multi-channel neonatal brain mri atlas.

http://www.developingconnectome.org/
https://gin.g-node.org/alenaullauus/4d_multi-channel_neonatal_brain_mri_atlas
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φT2w (or φFA). A Spatial Transformer layer [5] is then used to warp (linearly
resample) the moving images MT2w (or MFA) and obtain the moved image
MT2w(φT2w) (or MFA(φFA)). We keep the network architecture similar to the
original paper [12], but use a latent code size of 32 and a Gaussian smoothing
layer with σ = 1 mm (kernel size 33). Throughout this work, we use 36 weeks
old neonatal structural (T2w) and microstructural (FA maps) atlases [19] as the
fixed images. We have chosen this age for the templates due to the lower degree
of gyrification which facilitates a more accurate registration of the cortex across
the cohort.

Attention Image Registration Network. We construct a CNN which uses
pairs of modality-specific velocity fields as an input, and outputs a combined
velocity field which aims to align both structural and microstructural data simul-
taneously. The network learns the attention maps αT2w and αFA, for which
αT2w + αFA = 1 at every voxel. The input velocity fields are weighted with the
attention maps and combined to create a final velocity field v.

The architecture of our proposed attention image registration network is pre-
sented in Fig. 1. For each subject in our dataset, we employ the previously trained
registration-only networks on either pairs of T2w images (MT2w and FT2w) or
FA maps (MFA and FFA) to output modality-specific velocity fields vT2w and
vFA. These two fields are concatenated and put through three 3D convolutional
layers (stride 2) of 16, 32, and 64 filters, respectively, with a kernel size of 33,
followed by Leaky ReLU (α = 0.2) activations [22]. The activation maps of the
final layer are concatenated with the subject’s moving images MT2w and MFA

downsampled to size 163. This is followed by three 3D convolutional layers (stride
1) of 32, 16, and 16 filters, respectively, with a kernel size of 33, Leaky ReLU
(α = 0.2) activations and upsampling. The final two layers are: one 3D convo-
lutional layer (with stride 1, 8 filters, and Leaky ReLU activation), and one 3D
convolutional layer (with stride 1, and 2 filters), followed by a Softmax activa-
tion function which outputs the two modality-specific attention maps αT2w and
αFA. The final velocity field is created as v = vT2w�αT2w+vFA�αFA, where �
represents element-wise multiplication. Similar to the registration network, the
velocity field v is put through an exponentiation layer to create the combined
field φ, which is then used to warp the moving volumes MT2w and MFA.

Channel and Spatial Attention Network. To compare our proposed
attention-driven image registration network with other attention techniques, we
add channel and spatial attention modules throughout the image registration
network. More specifically, after every convolutional layer of the network, we
add a channel attention module (squeeze-and-excitation block [9]), followed by
a spatial attention module [21]. In total, we add 4 channel+spatial attention
modules in the encoder part of the CVAE, and 5 modules in the decoder.

Loss Functions. For this study, we train the registration-only network and the
channel+spatial attention network using the following loss function:

Lreg = LKLD + λ (λT2w LT2w
NCC + λFA LFA

NCC) + λregLBE (1)
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Fig. 1. Our proposed attention-based image registration network architecture, which
uses as input subject- and modality-specific velocity fields (vT2w and vFA). The atten-
tion network outputs two 1-channel maps αT2w and αFA which are used to create a
combined velocity field v. The velocity field v is transformed into a dense displacement
field φ which warps the subject’s moving images (MT2w and MFA) into MT2w(φ) and
MFA(φ). The network is trained to achieve good alignment between the warped images
and the fixed atlases (FT2w and FFA).

and our proposed attention network with:

Lattn = λT2w LT2w
NCC + λFA LFA

NCC (2)

where λ, λreg, λT2w and λFA are hyperparameters, LKLD is the Kullback-
Leibler (KL) divergence, LNCC is the global symmetric normalised cross corre-
lation (NCC) dissimilarity measure, and LBE is a bending energy regularisation
penalty [16]. In this study, we set λreg = 0.01 and λ = 5000 (as proposed in [12]).

Training. First, using the no-attention registration-only network, we train 2
single-modality models on either pairs of T2w-only data (λT2w = 1.0, λFA = 0.0)
or FA-only data (λT2w = 0.0, λFA = 1.0). Then, we train the three networks
(the no-attention registration-only network, the channel+spatial attention net-
work, and our proposed attention network) on both modalities, using the follow-
ing sets of hyperparameters: (λT2w, λFA) = {(1.0, 0.1), (1.0, 0.175), (1.0, 0.25),
(1.0, 0.5), (1.0, 0.75), (1.0, 1.0)}. In total, we have 20 models: 8 using the
registration-only network, 6 using the channel+spatial attention network, and
6 with our proposed attention network.

We train the 20 models until convergence (150 epochs, or 52500 iterations),
using the Adam optimizer with its default parameters (β1 = .9 and β2 = .999),
a decaying cyclical learning rate scheduler [17] with a base learning rate of 10−6
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and a maximum learning rate of 10−3, and an L2 weight decay factor of 10−5. All
networks were implemented in PyTorch (v1.10.2), with TorchIO (v0.18.73) [15]
for data preprocessing (intensity normalisation) and loading, and training was
performed on a 12 GB Titan XP. Average inference times were: 0.16 s/sample for
the registration-only networks, 0.31 s/sample for the attention-based networks,
and 0.63 s/sample for the channel+spatial attention networks.

3 Results

Image Selection and Preprocessing For this study, we use a total of 414
T2w images and FA maps of neonates born between 23–42 weeks gestational
age (GA) and scanned at term-equivalent age (37–45 weeks PMA) [6]. As pre-
processing steps, we first affinely pre-registered the data to a common 36 weeks
gestational age atlas space [19] using the MIRTK software toolbox [16], and then
we resampled both structural and microstructural volumes to be 1 mm isotropic
resolution. To obtain the FA maps, we used the MRtrix3 toolbox [18], and we
performed skull-stripping using the available dHCP brain masks [4]. Finally, we
cropped the resulting images to a 128 × 128 × 128 size.

Out of the 414 subjects in our dataset, we used 350 for training, 34 for
validation and 30 subjects for test, as described in Table 1. We used the validation
set to inform us about our models’ performance during training, and we report
all of our results on the test set.

Table 1. Number of scans in different datasets used for training, validation and testing
the models, together with their mean GA at birth (standard deviation) and mean PMA
at scan (standard deviation).

Dataset #Subjects GA [weeks] PMA [weeks]

Train 350 (164♀ + 186♂) 38.0 (3.8) 40.6 (1.9)

Validate 34 (14♀ + 20♂) 39.7 (1.4) 40.7 (1.7)

Test 30 (12♀ + 18♂) 39.8 (1.5) 40.6 (1.9)

Quantitative Evaluation. To validate which of the 20 models performs best,
we carry out a quantitative evaluation on our test dataset of 30 subjects. Each
subject and the atlas had the following tissue label segmentations obtained from
T2w images using the Draw-EM pipeline [14]: cortical gray matter (cGM), white
matter (WM), ventricles, hippocampi and amygdala. Additionally, a WM struc-
ture called the internal capsule (IC) was manually segmented on FA maps of
all test subjects. These labels were propagated from each subject into the atlas
space using the predicted deformation fields. To evaluate performance of the
registration, Dice scores and average surface distances (SimpleITK v2.1.1 [13])
were calculated between the warped labels and the atlas labels.
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Fig. 2. Line plots showing median Dice scores (first row) and average surface dis-
tances (second row) for cGM and IC structures, with the first column showing their
initial affine alignment. The dark blue lines (original cGM ) and the orange lines (orig-
inal IC ) show the scores for the registration models without attention. The light blue
(attention cGM ) and the red (attention IC ) plots represent the values obtained by our
proposed attention-driven image registration network, while the green (chsp attention
cGM ) and the brown (chsp attention IC ) lines represent the values obtained by the
channel+spatial attention network, for different values of the λT2w and λFA hyperpa-
rameters. The shading around each median line is the IQR. (Color figure online)

First, we looked at how the models performed based on two tissue types (the
cGM and the IC). We chose these structures because the cGM delineation is poor
on the FA maps, while the IC is a white matter structure which is very prominent
in the microstructure data. Both Dice scores and average surface distances are
summarised in Fig. 2, where the first column shows the values for the initial
affine alignment, while the second and last columns show the T2w-only and the
FA-only image registration networks. Columns 3–8 show different multi-channel
models for increasing values of the λFA hyperparameter, while λT2w is kept the
same.

The best overall performance in terms of Dice scores and average surface dis-
tances is obtained by our proposed attention model for λT2w = 1.0 and λFA = 0.1
(third column, Fig. 2), where the cGM is aligned as well as the T2w-only model,
and the IC structure as good as the FA-only model (the differences are not
statistically significant). Using channel+spatial attention with the same hyper-
parameter setup (λT2w = 1.0 and λFA = 0.1) achieves good results for the cGM
structure, but cannot align the IC structure as well as the FA-only model, or the
proposed attention model.
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For the T2w-only model (second column) the IC is poorly aligned, obtaining
scores which are worse than the initial affine alignment, while the cGM label
obtains the best alignment. On the other hand, for the FA-only model (last
column) the IC is well aligned, while the cGM obtains lower scores. In the original
registration networks (dark blue and orange) we see a steady worsening of cGM
scores as λFA increases, while the IC structure varies across the different λFA

values. For the attention-driven networks (light blue and red), the scores in cGM
degrade more gently, while the IC structures remain steady. Finally, the proposed
attention networks always outperform the multi-channel registration networks
with no attention, and this improvement is statistically significant for all values
of λFA.

Table 2 shows the results of 6 of our trained models for all tissue types (cGM,
WM, ventricles, hippocampi and amygdala, and IC). Here, we call the T2w +
wFA, the chsp T2w+wFA, and the attn T2w+wFA models as the ones trained
with the lowest weight on the FA maps (λT2w = 1.0 and λFA = 0.1).

Table 2. Mean (±standard deviation) Dice scores (DS) and average surface distances
(ASD) on test set. Best scores are highlighted in bold (t-test p < 0.05), while the green
shading highlights the model which performed best amongst the ones which use both
T2w and FA modalities (t-test p < 0.05). The multi-modality weighted models shown
here use λT2w = 1.0 and λFA = 0.1.

Model cGM WM Ventricles Amygdala IC

affine .567±.02 .7±.03 .631±.05 .746±.05 .642±.07

D
S

T2w-only .763±.01 .844±.02 .797±.02 .803±.02 .614±.04

FA-only .621±.02 .756±.02 .676±.04 .769±.03 .686±.03

T2w+FA .653±.01 .766±.01 .742±.03 .782±.02 .655±.03

T2w+wFA .747±.01 .826±.02 .775±.02 .808±.02 .669±.03

chsp T2w+wFA .761±.01 .841±.01 .791±.01 .814±.02 .656±.03

attn T2w+wFA .763±.01 .842±.01 .793±.02 .816±.02 .683±.03

affine .582±.04 .409±.04 .508±.1 .31±.08 .479±.1

A
S
D

T2w-only .259±.02 .193±.02 .242±.05 .233±.04 .498±.09

FA-only .477±.04 .319±.02 .433±.09 .276±.05 .374±.05

T2w+FA .419±.02 .317±.02 .324±.06 .266±.04 .417±.06

T2w+wFA .279±.01 .218±.02 .264±.04 .223±.04 .383±.05

chsp T2w+wFA .262±.01 .198±.01 .248±.04 .209±.03 .39±.05

attn T2w+wFA .260±.02 .197±.01 .248±.04 .212±.03 .37±.05

Our proposed attn T2w + wFA model has the best overall performance. For
structures which were delineated in T2w images, the proposed attention model
performed better (hippocampi and amygdala), equally well (cGM), or very close
(WM, ventricles) to the T2w-only model, showing that thanks to attention we
are able to keep advantages of structural only registration. For IC, which was
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derived from FA maps, the proposed attention model performed equally well
to the FA-only model, showing that the attention also allows us to keep the
advantages of the microstructural only registration model.

Using channel+spatial attention helped with the alignment of the structural
labels (cGM, WM, ventricles, hippocampi and amygdala), but had significantly
lower performance for IC (lower than the no-attention T2w+wFA model).

The T2w-only model performed slightly worse for the hippocampi and amyg-
dala, while the scores for the IC structure were worse than the initial affine align-
ment. The FA-only model obtains poor scores in all structures except the IC.
Finally, the multi-channel models trained without attention always performed
worse than the attention-driven models. In fact, the T2w+FA network, where
λT2w = λFA = 1.0, obtained the lowest performance amongst the multi-channel
models, showing that besides attention, the global weighting (λFA = 0.1) was
an important factor towards the network’s performance.

Fig. 3. Mid-brain axial and coronal slices of both T2w and FA fixed images (first
two columns), together with average αT2w attention maps for the attn T2w+FA with
λFA = λT2w = 1.0, and the attn T2w + wFA with λT2w = 1.0, λFA = 0.1 models on
the last two columns. Contour lines of the boundaries between cGM (dark blue), WM
(cyan), ventricles (yellow) and hippocampi and amygdala (red) are overlaid on top,
while the pink arrow points to the IC structure. (Color figure online)

Visualisation of Attention Maps. Figure 3 shows average attention maps
from 10 neonatal subjects scanned around 40 weeks PMA for two of our
attention-driven models: attn T2w+FA (λFA = λT2w = 1.0) and attn T2w+wFA
(λT2w = 1.0, λFA = 0.1). The first two columns show the middle axial and coro-
nal slices of the T2w and FA atlases which were used for training, together with
segmentation of the investigated brain structures. The last two columns show
the average αT2w attention maps (in atlas space) for the 2 models. We can
observe that the αT2w attention maps cover the cGM region, and this is more
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pronounced when λFA is decreased from 1.0 to 0.1. On the other hand, αT2w is
close to zero in the area of the main white matter tracts in both cases.

4 Conclusion

This paper presents a novel solution for multi-channel registration, which com-
bines structural and microstructural MRI data based on learned spatially vary-
ing attention maps that optimise the multi-channel alignment. Our quantitative
evaluation showed that the proposed attention-driven image registration network
improves overall alignment when compared to models trained on multi-channel
data, while maintaining the performance of the single-channel registration for
the structures delineated on that channel. Moreover, using attention helps drive
the registration to better alignment of tissue structures, but only our proposed
model obtains results on par to using microstructural data only in terms of
aligning white matter labels.

The main limitations of this work are: the use of a single latent code size and
smoothing kernel, no comparison with classic multi-channel image registration
tools [10,19], and a limited number of labels used for validation. Future work
will focus on evaluating the effect of the latent code size and smoothing kernel
on the predicted velocity fields, and exploring the use of older neonate atlases.
Moreover, we aim to extend our attention-driven image registration network to
incorporate higher-order data, such as diffusion tensor (DT) images [8].
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Abstract. Congenital heart disease (CHD) encompasses a range of car-
diac malformations present from birth, representing the leading congen-
ital diagnosis. 3D volumetric reconstructions of T2w black blood fetal
MRI provide optimal vessel visualisation, supporting prenatal CHD diag-
nosis, a key step for optimal patient management. We present a frame-
work for automated multi-class fetal vessel segmentation in the setting
where binary manual labels of the vessels region of interest (ROI) are
available for training, as well as a multi-class labelled atlas.

We combine deep learning label propagation from multi-class labelled
condition-specific atlases with 3D Attention U-Net segmentation to
achieve the desired multi-class output. We train a single network to seg-
ment 12 fetal cardiac vessels for three distinct aortic arch anomalies
(double aortic arch, right aortic arch, and suspected coarctation of the
aorta). Our segmentation network is trained by combination of a multi-
class loss, which uses the propagated multi-class labels; and a binary loss
which uses binary labels generated by expert clinicians.

Our proposed method outperforms label propagation in accuracy of
vessel segmentation, while succeeding in segmenting the anomaly area
of all three CHD diagnoses included, achieving a 100% vessel detection
rate.

Keywords: Automated Segmentation · Congenital Heart Disease ·
Fetal Cardiac MRI · Label Propagation · Atlas-based segmentation

1 Introduction

Congenital heart disease (CHD) refers to a range of cardiac defects present from
birth, constituting the leading mortality cause related to congenital defects [9].

Fetal cardiac MR (CMR) has the potential of becoming widespread for pre-
natal CHD diagnosis as an adjunct to echocardiography [8]. State-of-the-art
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reconstruction algorithms [19] address fetal CMR motion challenges, allowing
to generate high quality 3D reconstructions, with T2w black blood MRI being
particularly favourable for vascular assessments [8].

Routine clinical fetal cardiac assessments involve the time-consuming task
of manual region of interest (ROI) segmentation, for visualisation and reporting
purposes. This is generally a binary mask, as multi-class labels are too labo-
rious to produce in clinical practice. Multi-class vessel information is desirable,
enabling to efficiently localise the anomaly area. We propose to address this need
via deep learning, being the method of choice for state-of-the-art segmentation
performance.

Training a CNN for segmentation typically requires a large number of man-
ually labelled examples. However, producing a large number of multi-class
labellings of 3D fetal CMR images is unfeasible in this setting. Therefore, we
propose a novel deep learning framework, combining label propagation from a
multi-class condition-specific atlas, with manual binary vascular ROI segmenta-
tions (see Fig. 1) for training a 3D Attention U-Net [10] to predict high quality
multi-class segmentations.

We propagate the desired multi-class protocol from the pertinent fetal cardiac
atlas (Fig. 1 left), and achieve high accuracy in individual images by virtue of the
manual binary vessels ROI labels (Fig. 1 right). Our fully automated multi-class
segmentation technique will aid fetal cardiac vessel visualisation for prenatal
diagnostic reporting purposes, providing the basis for automated vessel biometry
and detection.

Fig. 1. Left: 3D T2w MRI aortic arch anomaly atlases with multi-class vessel segmen-
tations. Right: 3D reconstructed images with binary manual labels.
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1.1 Deep Learning Segmentation

U-Net [14] architectures are widely used for medical image segmentation, and
have been employed for fetal brain and thorax MRI segmentation [15,17].

There have been many applications of deep learning for adult CMR segmen-
tation in CHD [1]. For instance, Yu et al. [21] achieved promising results for
whole heart and great vessel segmentation by employing a deeply supervised 3D
fractal network. In [11], an iterative segmentation method based on a recurrent
neural network is proposed, aiming to mitigate limited training data. Rezaei et
al. present a framework comprising a three-stage cascade of conditional GANs
for whole heart and great vessel segmentation in CHD [13].

We do not explore these approaches as our dataset is not comparable, due
to anatomical and size differences between adult and fetal subjects, and distinct
acquisition and reconstruction protocols.

Attention U-Net. Attention U-Net [10] incorporates an attention gate into a
standard U-Net architecture, filtering the skip connection features. This allows
the network to focus on important and diverse structures, eliminating redundant
regions. We use this network architecture as our target vessels present large vari-
ations regarding shape and location, further emphasised by the three diagnoses
used. We further motivate our network choice by qualitatively comparing per-
formance against a standard U-Net architecture (Sect. 3.1).

However, Attention U-Net for segmentation is restricted to the protocol of
the available manual labels, a binary ROI mask in our case (Fig. 1 right).

1.2 Label Propagation

Our training dataset setup (i.e. partially labelled subjects and fully-labelled
atlases) is not uncommon in the medical imaging field. While there have been
extensive and innovative works addressing this training dataset challenge [12],
we propose to use a simple deep learning label propagation approach as bench-
mark, given the novelty of our application (prenatal CHD vessel segmentation)
and our unconventional data (fetal cardiac MRI).

In atlas-based label propagation, the label information from a given atlas is
transferred to an individual subject via image registration. We propose the use
of VoxelMorph [2] for label propagation from a multi-class condition-specific
atlas (Fig. 1 left) to individual subjects.

Although not exhaustive, recent and relevant works to our method include [3],
where a framework akin to VoxelMorph is presented for binary mask warp-
ing. DeepAtlas [20] deals with partially labelled data by joint registration and
segmentation network training, reporting synergistic properties, similar to [16],
where a population-derived atlas is constructed in the process. Generating syn-
thetic labelled data using VoxelMorph has been proposed to ameliorate misreg-
istration artefacts [23]. These strategies therefore offer many avenues for future
refinement of our work, given the framework similarity (VoxelMorph).



Automated Multi-class Fetal Cardiac Vessel Segmentation 85

Label propagation allows to transfer any desired segmentation protocol from
the atlas to each subject image, but is limited by registration quality. We address
this challenge by including Attention U-Net for segmentation refinement.

1.3 Contribution

We present an automated multi-class fetal cardiac segmentation approach which
only requires manual binary ROI masks (Fig. 1 right) and a multi-class atlas for
training, and thus is adaptable to clinical environments. Our framework combines
deep learning label propagation of any desired multi-class protocol with highly
accurate Attention U-Net segmentation. We build on prior research on fetal
cardiac atlas development and atlas-guided segmentation [18] to present the first
fully automated, fully deep learning approach for multi-class fetal CMR vessel
segmentation, addressing aortic arch anomalies. We target subjects with Double
Aortic Arch (DAA), Right Aortic Arch (RAA) with Aberrant Left Subclavian
Artery (ALSA), and suspected Coarctation of the Aorta (CoA).

2 Methods

2.1 Data Specifications

Our dataset consists of 189 fetal subjects with suspected coarctation of the
aorta (CoA, N = 90), Right Aortic Arch (RAA) with ALSA (N = 70) and
Double Aortic Arch (DAA, N = 29), 31.4 ± 1.5 weeks mean GA. The datasets
were acquired at Evelina London Children’s Hospital using a 1.5 T Tesla Ingenia
MRI system, T2-weighted SSFSE sequence (RT = 20,000 ms, ET = 50 ms,
FA = 90◦, voxel size = 1.25×1.25mm, slice thickness = 2.5 mm and slice overlap
= 1.25 mm). All research participants provided written informed consent. The
raw datasets comprised 6–12 multi-slice 2D stacks, covering the fetal thorax in
three orthogonal planes.

We used images reconstructed both with Slice-to-Volume Registration (SVR,
lower quality, N = 139) [6,7], and with Deformable SVR [19] (DSVR, higher
quality, N = 50) to 0.75 mm isotropic resolution, to ensure a varied dataset.

The majority of these subjects (N = 181) were manually segmented by trained
clinicians using ITK-SNAP [22], encompassing the main cardiac vessels region
(binary manual label). For the remaining unsegmented subjects (N = 15) we
exclusively use propagated atlas labels for network training (Sect. 2.2).

In order to achieve our multi-class output, we employ three fully-labelled
atlases1 (see Fig. 1), one per condition (RAA, DAA and CoA). These include 12
manually segmented vascular regions for RAA and DAA, and 11 for CoA cases.

We crop all data to the cardiac vessels region, and split the subjects into a
training set (NCoA = 71, NRAA = 55, NDAA = 21), validation set (NCoA = 3,
NRAA = 3, NDAA = 3), and testing set (NCoA = 16, NRAA = 12, NDAA = 5).
We normalise and rescale the intensity between 0 and 1, and use a weighted
random sampler to ensure equal probabilistic sampling from each diagnosis.
1 https://gin.g-node.org/SVRTK/.

https://gin.g-node.org/SVRTK/
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2.2 Deep Learning Segmentation Framework

Our framework consists of Attention U-Net [10] trained using a combination of
manual binary labels and multi-class labels, propagated from an atlas using deep
learning registration (VoxelMorph [2], Sect. 2.3). The input of the segmentation
network is an MRI image and output is a multi-class segmentation.

The proposed segmentation network is trained using two losses: (1) a multi-
class loss between the propagated labels and U-Net predictions; (2) a binary
loss between the predicted multi-class labels joined into a binary segmentation
and manual binary labels (Sect. 2.4). We exclusively employ the multi-class loss
for the subset of subjects with no binary manual labels. Our training strategy,
U-Net LP + man , is illustrated in Fig. 2.

Fig. 2. Our proposed framework (U-Net LP + man) is trained by combination of a
multi-class loss with the propagated labels, and a binary loss with the manual binary
ROI masks. Three atlases are used (CoA, RAA, DAA), subject to case diagnosis.

2.3 Label Propagation

We use VoxelMorph [2] for label propagation. We define our atlases as the mov-
ing images (m), and the subject images as fixed images (f). We use the prior
knowledge of condition diagnosis to select the pertinent atlas to each case.

Label Propagation Loss Functions: We use Local Normalised Cross Corre-
lation loss (LNCCloss) [2] as a similarity loss function (Lsim), and Dice Loss
between propagated joined atlas labels and binary manual masks as an auxil-
iary segmentation loss function (Lseg). We include a regularisation penalty
for the displacement field as a bending energy BE loss (LBE), as described
in [4]. The total registration loss Lreg may be expressed as

Lreg = Lsim(f,m · φ) + λ1LBE(φ) + λ2Lseg, (1)

where λ1 and λ2 are loss weights.
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Registration Network Implementation Details: We employ a U-Net based
encoder-decoder architecture with skip connections. Output channels are 16,
32, 32, 64 for the encoder (blocks of 3D strided convolutions with leaky ReLU
activations); and 32, 32, 32 for the decoder (blocks of strided transpose 3D
convolutions and leaky ReLU activations), followed by two convolutional blocks.
This is depicted in Fig. 3.

Fig. 3. CNN architecture used for registration. The numbers under each convolution
representation indicate the volume spatial resolution relative to the input volume. k =
kernel size, s = stride.

We train a single CNN on all diagnoses, appropriately pairing each subject
to its corresponding atlas. We train VoxelMorph registration network until con-
vergence (28,430 iterations, NVIDIA GeForce RTX 3090 GPU), using a linearly
decaying learning rate initialised at 5 × 10−4, and an Adam optimiser (default
β parameters, weight decay of 1 × 10−5). We implement the LNCCloss using
n = 9, λ1 = 0.2, and λ2 = 1 and set the standard deviation of the velocity field
smoothing kernel to 2. We affinely register all subject images to the atlas prior
to training. We use Project MONAI spatial and intensity data augmentation2

2.4 Attention U-Net Segmentation

Segmentation Loss Function: We use the soft dice and cross entropy
loss [5] (DiceCEloss) for all our segmentation experiments. Our proposed frame-
work U-Net LP + man is trained using a combined loss

Lseg = DiceCEloss(predmulti, [mlab · φ]) + λ3DiceCEloss(predjoined, flab) (2)

where predmulti are the multi-class Attention U-Net predictions, predjoined are
binary label predictions (multi-class output labels joined together), [mlab · φ]
are the propagated atlas labels, flab are the manual binary labels and λ3 is the
binary loss weight. The proposed losses are schematically presented in Fig. 2.
2 https://github.com/Project-MONAI/MONAI/.

https://github.com/Project-MONAI/MONAI/
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Segmentation Network Implementation Details: We use a 3D Attention
U-Net [10] (Project MONAI implementatio (see Footnote 2)) for automated
segmentation, with five encoder-decoder blocks (output channels 32, 64, 128,
256 and 512), convolution and upsampling kernel size of 3, ReLU activation,
dropout ratio of 0.5, batch normalisation, and a batch size of 12. We employ an
AdamW optimiser with linearly decaying learning rate, initialised at 1 × 10−3,
default β parameters and weight decay = 1× 10−5. We use intensity and spatial
augmentations from Project MONAI (see Footnote 2)].

We train our proposed method (U-Net LP + man) by increasing λ3 by 0.05
(starting from 0.0) every 50 epochs until convergence (12,689 iterations, NVIDIA
GeForce RTX 3090 GPU), and train for a further 274 iterations with λ3 = 2 to
refine the vessels ROI segmentation. We do not train further with a higher λ3,
as this degrades small vessel and anomaly area segmentation.

3 Results

3.1 Preliminary Network Architecture Experiments

Ablation experiments on network architecture yielded improved small vessel seg-
mentation with Attention U-Net, compared to a standard U-Net [14] (Fig. 4).

Fig. 4. Improved small vessel segmentation in a RAA subject (circle) when using Atten-
tion U-Net as opposed to a standard U-Net (same architecture). GT is ground truth.

3.2 Test Set and Experiments

We manually generated multi-class ground truth (GT) labels for our test set (N =
33) via ITK-SNAP [22]. We compute multi-class Dice scores and average distance
scores for each vessel, presented alongside the average of the 95th percentile of
the Hausdorff Distance (HD95) across all class scores (Table 1).

Training Experiments: We compare our proposed approach (U-Net LP +
man) with binary manual label loss and propagated atlas label loss (Eq. 2)
to VoxelMorph label propagation (LP), multi-class Attention U-Net trained
exclusively on propagated labels (U-Net LP), and baseline binary Attention
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U-Net trained exclusively on manual segmentations (U-Net man). We offer
visual assessments and vessel detection rates to compare our binary network to
our multi-class approaches.

3.3 Quantitative Results

Table 1. Mean multi-class test set Dice scores, average surface distance (ASD) scores
(standard deviation), and averaged HD95 scores over all vessels, compared to manually
generated multi-class GT.

LP U-Net LP U-Net LP + man

Vessel Dice ASD Dice ASD Dice ASD

SVC 0.61 (0.19) 1.70 (1.30) 0.66 (0.09) 1.41 (0.58) 0.74 (0.08) 1.08 (0.47)

LPA 0.46 (0.16) 3.63 (2.13) 0.49 (0.11) 3.21 (1.74) 0.57 (0.10) 2.54 (1.49)

RPA 0.42 (0.14) 4.40 (2.58) 0.45 (0.10) 4.14 (2.09) 0.52 (0.09) 3.35 (1.76)

Aorta 0.53 (0.13) 1.57 (0.69) 0.57 (0.08) 1.45 (0.29) 0.72 (0.05) 0.98 (0.13)

AD 0.70 (0.18) 1.03 (0.90) 0.74 (0.09) 0.82 (0.21) 0.78 (0.09) 0.71 (0.19)

DAO 0.76 (0.09) 0.97 (0.43) 0.79 (0.05) 0.89 (0.21) 0.85 (0.04) 0.67 (0.31)

MPA 0.68 (0.09) 1.33 (0.43) 0.69 (0.05) 1.36 (0.28) 0.80 (0.04) 0.92 (0.20)

Head and neck vess. 0.32 (0.20) 2.40 (1.96) 0.34 (0.18) 2.02 (1.30) 0.36 (0.18) 1.90 (1.22)

Pvs 0.26 (0.12) 2.32 (1.21) 0.29 (0.12) 2.17 (0.91) 0.37 (0.12) 1.81 (0.74)

Averaged vessel HD95 7.30 (5.02) 6.86 (4.96) 6.09 (4.51)

In Table 1 we quantitatively compare our three multi-label segmentation
approaches (Sect. 3.2). Our results demonstrate that combining propagated
multi-class labels and manual binary labels during training leads to improved seg-
mentation performance, as opposed to exclusively employing propagated labels.
Our proposed framework (U-Net LP + man) achieves the highest scores for all
individual vessels, for all metrics compared (dice scores, ASD, HD95). The head
and neck vessels (LSA/ALSA, BCA/RCCA, LCCA and RSA) present lower Dice
scores due to their small size (see Fig. 1).

Discussing the performance of our networks in a clinical context is challeng-
ing, given that, due to the novelty of our dataset, the field standards have yet
to be defined. We therefore present our results as an initial benchmark.

A challenge and limitation of our approach (particularly regarding evalu-
ation) lies in the inherent differences between manually segmented labels and
multi-class atlases. The latter comprises an idealised MRI representation of the
conditions investigated, where all vessels are fully visible. This is not always the
case in our training data, where certain subjects present lower visibility in spe-
cific anatomical locations (due to low image quality, low contrast, or anatomical
variability), rendering segmentation of small vessels highly challenging. For this
reason, some of our manually segmented vessels, which we consider to be GT, are
shorter in length compared to the atlas (i.e. present partially segmented vessels).
The consistency of our network predictions regarding vessel length (due to our
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use of propagated labels during training) may decrease the performance metrics
for these cases, despite anatomical correctness.

We attempt to circumvent this evaluation limitation by offering a qualitative
visual assessment, in addition to having our predictions inspected by a trained
clinician.

3.4 Visual Inspection

Our predictions were inspected by a trained clinician, reporting overall optimal
results, with higher anatomically correctness from our full multi-class framework
predictions (U-Net LP+man) compared to our binary predictions (U-Net man).
Discrepancies were observed in the pulmonary veins region (which is less rele-
vant to the conditions investigated). However these vessels remain challenging
to discern in our data, given the homogeneously contrasted surroundings.

Our proposed framework (U-Net LP+man) outperforms U-Net man in small
vessel detection and anomaly area segmentation (see Table 2). This is particularly
relevant for subjects with DAA, where our full framework fully segments the
anomaly area in all test set cases, while the network trained just on binary
masks (U-Net man) only segmented one case correctly. Nevertheless our DAA
test set sample is too small to extract substantial conclusions (N = 5).

Table 2. Test set detection rates on head and neck vessels and anomaly area for the
three conditions investigated (RAA, DAA, suspected CoA).

Anatomical location U-Net man U-Net LP U-Net LP + man

Aorta (CoA) 93.8% 100% 100%

Double Arch (DAA) 20% 100% 100%

Right Arch (RAA) 100% 100% 100%

Head and neck vessels (CoA) 81.3% 100% 100%

Head and neck vessels (RAA) 66.7% 100% 100%

Head and neck vessels (DAA) 60% 100% 100%

The head and neck vessels are always detected with U-Net LP+man, while
U-Net man misses at least one small vessel in 10 out of 33 test set subjects (see
Table 2). Thus, targeting vessels individually enhances small vessel detection.
This is particularly relevant to subjects with DAA and RAA, where the subop-
timal performance of U-Net man may be due to the fact that these conditions
present an additional head and neck vessel (four) compared to cases with sus-
pected coarctation of the aorta (three). Having a multi-class approach enables
the network to learn the class and location of each vessel, allowing for greater
anatomically sound predictions.



Automated Multi-class Fetal Cardiac Vessel Segmentation 91

Fig. 5. Test set network prediction examples for CoA, RAA and DAA, showcasing
improved small vessel detection and anomaly area segmentation with our full frame-
work.

Figure 5 depicts examples where U-Net LP + man outperforms U-Net man.
For the CoA case (Fig. 5a), LCCA remains unsegmented in U-Net man, con-
trary to our full framework. In the RAA example (Fig. 5b), RCCA is fused to
SVC in the binary approach (U-Net man), while our multi-class approach min-
imises these biologically unfeasible predictions. Lastly U-Net man fully misses
the double arch (a key DAA biomarker) in Fig. 5c, contrasting with U-Net man
+ LP.

4 Discussion

Our proposed framework (U-Net LP+man) combines training using propagated
multi-class labels and manual binary labels, resulting in automated multi-class
segmentation with enhanced performance and small vessel segmentation. We
overcome misregistration artefacts from the propagated labels by utilising man-
ually segmented vessels ROI masks. Our tunable binary loss weight allows to
explore the optimal trade-off between losses, resulting in optimal segmentation
accuracy and 100% small vessel detection. We achieve correct anomaly area seg-
mentation for DAA, RAA and suspected CoA cases from a single network.

Although we employ simple and well established methods, our training strat-
egy is applicable to analogous tasks with a similar dataset setup. For instance,
cases with low image quality may benefit from incorporating prior shape, con-
textual and textural knowledge in the form of an atlas. Likewise, for multi-organ
segmentation, clinical datasets often include images where only a certain organ
of interest is segmented. Utilising additional available atlas information could
aid in attaining the desired output.
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5 Conclusion

We demonstrate the applicability of deep learning for multi-class fetal cardiac
vessel segmentation from T2w 3D MRI reconstructions for cases with double aor-
tic arch, right aortic arch, and suspected coarctation of the aorta. We combine
condition-specific atlas-based label propagation (VoxelMorph) with 3D Atten-
tion U-Net segmentation, leveraging the use of manual binary vessel ROI labels.
The inclusion of both types of labels in the form of two weighted losses yields
improved predictions, which overcome label propagation misregistration arte-
facts while enhancing small vessel detection. We achieve promising results for all
anomalies.
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de Madrid and CIBER-BBN, Madrid, Spain

Abstract. MRI is conventionally employed in neonatal brain diagnosis
and research studies. However, the traditional segmentation protocols
omit differentiation between heterogeneous white matter (WM) tissue
zones that rapidly evolve and change during the early brain develop-
ment. There is a reported correlations of characteristics of the tran-
sient WM compartments (including periventricular regions, subplate,
etc.) with brain maturation [23,26] and neurodevelopment scores [22].
However, there are no currently available standards for parcellation of
these regions in MRI scans. Therefore, in this work, we propose the first
deep learning solution for automated 3D segmentation of periventricular
WM (PWM) regions that would be the first step towards tissue-specific
WM analysis. The implemented segmentation method based on UNETR
[13] was then used for assessment of the differences between term and
preterm cohorts (200 subjects) from the developing Human Connectome
Project (dHCP) (dHCP) project [1] in terms of the ROI-specific volume-
try and microstructural diffusion MRI indices.
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1 Introduction

Segmentation of T2w structural neonatal brain MRI is conventionally employed
in neurodevelopment research studies [9] and there are many existing automated
pipelines. These solutions are based on either classical (e.g., label propaga-
tion, intensity classification) [6,18,21,26] or deep neural network [10,12] meth-
ods. In the majority of these methods, the white matter (WM) is classified
as a single tissue component [6,10,18] or subdivided into standard anatomi-
cal regions [5,12,21,24] that follow the adult brain parcellation protocols (e.g.,
temporal lobe, corpus callosum, etc.). However, during the neonatal brain devel-
opment the WM tissue is highly heterogeneous and constantly evolving due to
the different rates of tract maturation and myelination. The example in Fig. 1
shows the regional difference of T2 MRI signal intensities in WM at different
ages: 38 to 44 weeks post-menstrual age (PMA). The hyperintense T2 signal
regions in WM reportedly correspond the higher water content [11] and are also
sometimes referred to as diffuse excessive high signal intensity (DEHSI) ROIs [22]
or transient WM [15,23]. These tissue types are transient by nature and eventu-
ally are expected to disappear by changing properties and evolving into mature
WM tissue. Recently, [23] formalised a new neonatal brain maturation MRI scor-
ing protocol based on the appearance of WM transient compartments including
periventricular crossroads, von Monakow WM segments, subplate and germi-
nal matrix. The higher proportion of transient WM are correlated with lower
degree of brain maturation. However, apart from the works on segmentation of
DEHSI [20,22] or high rate change WM regions [26] that are related to transient
WM structures, there has been no reported works on automation of parcella-
tion of specific types of WM tissue defined in [23]. These transient WM ROIs
are characterised by the prolonged coexistence in preterm brain [16,23] while
periventricular WM is vulnerable to injury [17]. There is also no formalised
reference parcellation protocol for transient WM tissue, which is required for
development of new automated methods or even simple manual segmentation
for quantitative studies.

Fig. 1. Examples of WM tissue heterogeneity in transient compartments visible on
T2w neonatal brain MRI at different PMA (the datasets are from dHCP project [1]).

Contributions: In this work, we propose the first deep learning based pipeline
for automated segmentation of periventricular white matter (PWM) in neonatal
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T2w MRI scans. This extends the already existing solutions [12] for volumetry-
based analysis of brain development. The feasibility of the segmentation pipeline
is assessed with respect to analysis of the difference between term and preterm
cohorts for 200 neonatal subjects from the dHCP project. The PWM segmenta-
tions from the proposed pipeline were used for both volumetry and calculation
ROI-average microstructural diffusion tensor imaging (DTI) indices.

2 Methods

2.1 Cohort, Datasets and Preprocessing

The MRI datasets used in this study were acquired as a part of the dHCP
project [1] available via the public release. The selected cohort includes 150
term (37–44 weeks gestational age (GA) at birth) and 50 preterm (≤32 weeks
GA at birth) neonates scanned between 38 and 44 weeks PMA (Fig. 2). The
selection criteria was the absence of major anomalies and good image quality.

Fig. 2. PMA at scan and GA at birth of the investigated neonatal MRI datasets from
the dHCP project: term and preterm cohorts.

Each dataset includes diffusion and structural T2w MRI volumes. The acqui-
sitions were performed on a 3T Philips scanner with a 32-channel neonatal head
coil and transportation system [14]. The structural T2w volumes were acquired
using a TSE sequence with TR = 12 s, TE = 156 ms. The isotropic T2w vol-
umes were reconstructed to 0.5 mm resolution using a combination of motion
correction [8] and super-resolution reconstruction [19]. All volumes were N4
bias corrected and normalised in the Draw-EM pipeline [21] that also produced
brain tissue parcellation maps. The multi-shell high angular resolution dMRI vol-
umes were acquired with four phase-encode directions on four shells (b-values:
0, 400, 1000 and 2600 s/mm2) with TE = 90 ms, TR = 3800 ms Hutter2018
with 1.5 × 1.5 × 3 mm resolution and 1.5 mm slice overlap and reconstructed
to 1.5 mm isotropic resolution using the SHARD pipeline [7] that also includes
slice-wise motion correction, distortion correction, exclusion of corrupted slices
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and essential preprocessing. The extraction of fractional anisotropy (FA) and
mean diffusivity (MD) DTI metrics was performed in MRtrix3 [25] toolbox. The
structural to dMRI volumes were co-aligned using T2 to MD affine registration
in MRtrix3.

2.2 Parcellation Map of Periventricular WM ROIs in the Atlas
Space

In order to provide the basis for the automated segmentation pipeline, we defined
the first parcellation map of PWM in the MRI atlas space based on the guid-
ance from the clinical MRI studies [15,23]. We used the T2w channel of the
4D neonatal MRI atlas from [26] (36 weeks PMA time-point, 0.5 mm isotropic
resolution) as the reference space for segmentation of five periventricular WM
regions. The atlas includes the high rate change WM parcellation map, which we
subdivided and refined based on the definition of the PWM ROIs (also referred
to as “periventricular crossroads”) described and illustrated in [15,23]. Refine-
ment was performed manually in ITK-SNAP [2] based on T2 signal intensity
boundaries by a researcher with experience in neonatal MRI. The PWM regions
were the segmented and named based on the definitions in [23]. This was followed
by separation into left and right resulting in ten label ROIs.

2.3 Automated Segmentation of Periventricular WM ROIs

To our knowledge, there has been no reported works on automated segmentation
of PWM in neonatal brain MRI. The only relevant methods that addressed the
tissue-specific delineation of WM were proposed for segmentation of DEHSI
[20,22] and high rate change [26] WM regions. These solutions are based on
classical intensity thresholding and atlas label propagation, which tend to be
prone to errors and sensitive to image quality and preprocessing. This limits
their large scale application. As an alternative, we propose to use deep learning
for 3D segmentation of multiple PWM regions [23] based on the protocol defined
in Sect. 2.2 and [23]. The proposed solution is summarised in Fig. 3.

Deep Learning Model for Automated PWM Segmentation: In this work, we used
the recently proposed vision transformer based deep neural network segmenta-
tion technique (UNETR) [13], as it has shown to perform well for 3D multi-label
segmentation. The proposed segmentation pipeline was implemented in MONAI
Pytorch-based framework [4]. We selected the default UNETR configuration with
combined Dice and cross entropy Loss, AdamW optimiser, 160× 160× 160 input
size and six output channels (3 left and right PWM regions). For this segmenta-
tion network, we selected only the three largest PWM ROIs defined in the atlas
space because of the significantly smaller size and lower visibility of the other
two regions [23].

Generations of Labels for Training: In this case, there were no available manual
parcellations of PWM in subject T2w volumes for training due to the time-
consuming segmentation of these large regions as well as the difficulty in delin-
eation of not well defined tissue boundaries. Therefore, we created the labels for
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Fig. 3. Proposed solution for automated segmentation of PWM in T2w neonatal brain
MRI based on UNETR [13] and semi-automated generation of the labels for training.

training of the UNETR network using a semi-automated approach based on the
combination of classical methods (see Fig. 3) and manual refinement. At first,
kmeans segmentation (from MIRTK toolbox [3]) is used for parcellation of the
T2w image within the WM ROI (from the DRAW-EM labels) into 3 clusters. We
select only the cluster with the highest intensity. Next, we run propagation of
the PWM labels (Sect. 2.2) based on subject-atlas multi-channel registration [26]
in MRtrix3 [25]. The output labels of both methods are combined by multipli-
cation. In summary, the label propagation spatially localises and divides the
hyperintensity regions detected by kmeans. All steps were implemented based
on MIRTK toolbox [3]. We run the label generation pipeline for 80 term and 40
preterm datasets. The output labels were then visually inspected and manually
refined in ITK-SNAP, when required.

Preprocessing and Training of UNETR Segmentation Model: The preprocessing
of the datasets (T2w images and PWM labels) for training included masking
using the DRAW-EM brain mask, cropping of the background and resampling
with padding to 160× 160× 160 grid. We used 90 datasets for training and 10 for
validation (including term and preterm). The training was performed for 20000
iterations with the standard MONAI augmentation (random bias field, contrast
adjustment, Gaussian noise and affine rotations ±45◦).

Evaluation of UNETR Segmentation: The performance was tested on 10 term
and 10 preterm datasets qualitatively in terms of the PWM region detection
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status (visual assessment: correct = 100%, partial = 50%, failed = 0%), and
quantitatively by comparison to the ground truth labels in terms of recall, preci-
sion and Dice as well as the relative difference in volume and T2 signal intensity.

2.4 Quantitative Analysis of PWM in Term and Preterm Cohorts

The feasibility of using the proposed segmentation pipeline for quantitative stud-
ies was assessed based on comparison of term and preterm MRI datasets. We
used the trained network to segment 150 term and 50 preterm subjects. The
PWM segmentations were used to compute ROI-specific values including vol-
umetry and mean DTI indices (fractional anisotropy (FA) and mean diffusivity
(MD)). The scripts for all calculations were implemented in MIRTK toolbox [3].

3 Results and Discussion

3.1 Parcellation Map of Periventricular WM ROIs in the Atlas
Space

Figure 4 shows the first formalised 3D parcellation map for five periventricular
WM regions (with left/right separation) along with the original T2w atlas [26].
The segmented regions follow the definitions from [15,23] that call these regions
“periventricular crossroads”: C1, C2, C4, C5 and C6. The C2 and C5 ROIs have
the expected “horn” shape. All PWM ROIs have the pronounced brighter T2
intensity, which is expected to correspond to the higher water content of PWM
tissue [15,26]. The segmentations were inspected and confirmed by two clinicians
with extensive experience in neonatal brain MRI.

Fig. 4. The parcellation map of five periventricular WM regions created in the T2w
neonatal brain atlas space [26]. Based on the original definitions in [15,23], these ROIs
are referred to as periventricular “crossroads”: C1, C2, C4, C5 and C6.
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Fig. 5. Quantitative assessment of the trained UNETR model for segmentation of three
PWM regions based on the comparison with the ground truth labels on 10 term and 10
preterm test subjects. The metrics (Dice, recall, precision, relative volume and intensity
difference) were calculated for combined left and right PWM ROI labels.

3.2 Automated Segmentation of Periventricular WM ROIs

The results of testing of the trained UNETR model on 10 term and 10 preterm
subjects are summarised in Fig. 5. The network correctly detected all PWM
regions selected for training (“crossroads” C1, C2 and C5 as defined in Sect. 3.1
and [23]) in all test subjects (100%). This is confirmed by the relatively high
Dice coefficients for all ROIs (around 0.88 for larger PWM ROIs C2 and C5 and
around 0.74 for smaller PWM C1) in agreement with the adequate recall and
precision. The results are comparable between the term and preterm cohorts.
The average relative difference in volume and intensity are 8.42% and 0.87%,
correspondingly.

Visual inspection shows that UNETR notably produces slightly smoother
labels than the classical methods with smaller volume and slightly higher aver-
age intensity with lower standard deviation. However, in this case, we also need
to take into account that the ground truth labels are the manually refined out-
puts of the combined kmeans and label propagation segmentation. Notably, only
minimal manual correction was required in 25.4% of all cases primarily when
the input WM DRAW-EM labels were incorrect in the ventricle regions and
for the late PMA and preterm cases with less pronounced PWM ROIs bound-
aries. At the same time, neither manual or automated segmentations cannot be
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Fig. 6. An example of the difference between the ground truth and UNETR output
labels for test term and preterm subjects.

considered as the absolute ground truth because there is no precise definition of
the correct PWM delineation due to the blurred boundaries, patchy appearance
and the transient nature of this WM compartment. This is potentially the main
cause of the difference between the ground truth and UNETR label volumes.
This is illustrated in Fig. 6 that shows an example of the difference between the
ground truth and UNETR output labels for one of the subjects.

3.3 Quantitative Analysis of PWM in Term and Preterm Cohorts

Figure 7 shows the results of comparison between 150 term and 50 preterm
subjects based on volumetry and diffusion MRI metrics derived from the UNETR
PWM segmentations (the analysis was performed for C2 frontal ROI only). All
automated segmentations were reviewed and confirmed as acceptable. Additional
minor manual refinements were required in 17.5% of cases, which notably did
not affect the trends in any of the metrics.

The term cohort is characterised by the pronounced decrease in both absolute
and relative PWM volume (that correlates with the increasing total WM volume)
along with the decreasing MD and increasing FA, which are the expected changes
in maturing WM. On the other hand, there are no prominent (significant) trends
for the preterm subjects in any of the metrics. The difference between the term
and preterm cohort trends is significant (p < 0.001) only in the intensity metrics.
The group of preterm subjects have the higher MD and T2 values and lower
FA than in the term cohort. This is potentially related to the higher water
content due to the prolonged existence of transient WM in the preterm brain [11,
16,23]. This also is in agreement with the results reported in [26]. However,
taking into account the smaller number of available preterm subjects (50), the
heterogeneity of the cohort and the respective variations in the GA at birth (24–
32 weeks GA, Fig. 2), a more comprehensive investigation on a larger cohort is
required for further analysis of correlations between the age at birth and PWM
characteristics.
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Fig. 7. Comparison between term (150, blue) and preterm (50, red) cohorts (dHCP
datasets): volumetry and dMRI metrics computed for UNETR PWM segmentations
(C2 ROI). (Color figure online)

4 Conclusions

In summary, we presented the first deep learning solution for automated multi-
label segmentation of periventricular WM regions in neonatal T2w brain MRI.
This included formalisation and definition of the PWM parcellation map in the
standard atlas space. In addition, we demonstrated the feasibility of using semi-
automated combination of kmeans and label propagation for generation of PWM
labels for training the of the networks, which significantly decreases the prepa-
ration time in comparison to manual labels. The practicability of using deep
learning (UNETR) for PWM segmentation was confirmed by quantitative com-
parison of 200 term and preterm subjects from dHCP cohort. The results of
the analysis showed a significant difference in volumetry and mean DTI indices
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withing PWM regions. There are also pronounced trends in PWM-derived met-
rics vs. PMA for the term cohort. Our future work will focus on further automa-
tion of parcellation of the rest of the WM tissue types (e.g., subplate), optimi-
sation for different acquisition protocols and wider PMA range and a large scale
quantitative analysis.
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Abstract. Tissue segmentation of infants could lead to early diagnosis
of neurological disorders, potentially enabling early interventions. How-
ever, the challenge of tissue quantification is increased due to the very
dynamic changes that happen as brain development advances over the
course of the first year. One of the structural processes is the myelination
which causes limited contrast between gray and white matter tissue on
T1-weighted and T2-weighted magnetic resonance images at around six
to nine months. In recent years, as a result of the MICCAI brain MRI
segmentation challenge in 6-month old infants (iSeg17 and iSeg19), there
has been an increase in interest in this complex task. In this work, we pro-
pose two methodologies to overcome issues of erroneous segmentation on
the border between gray and white matter, based on knowledge-guided
U-Net for segmenting the isointense infant brain. First, segmentation was
guided using a prior of white matter obtained from an atlas for developing
infants. Second, segmentation was focused on the low-intensity contrast
boundary between white and gray matter. Experimental results on the
subjects of iSeg19 challenge display the potential of utilizing the white
matter prior as input for segmentation. Overall, its utilization leads to
results that are closer to the brain anatomy with smoother and connected
white matter regions.

Keywords: Guided segmentation · Isointense phase · Brain
quantification

1 Introduction

Magnetic resonance imaging (MRI) allows the study of the brain in-vivo. Neu-
rological disorders could potentially be identified before their onset by detecting
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brain anomalies [8]. Specifically, MRI quantification of the brain tissues (i.e.,
white matter (WM) and gray matter (GM)) has been proven to be helpful for the
early detection of neurological disorders such as schizophrenia [6] and autism [7].

Despite the potential clinical value of developing automatic methods in
infants, MRI quantification of very young patients (i.e., from birth to 2 years
old) presents multiple challenges. Infant MR scans suffer from lower quality as
a result of increased partial volume effect due to smaller brain size, and motion
artifacts [25]. In addition, rapid and non-linear neurodevelopmental changes con-
tribute to heterogeneous intensities in MR images leading to unclear borders
between GM and WM and regional variations in contrast [16]. Furthermore,
equipment manufacturers, magnetic field strength, and acquisition protocol can
affect the contrast and intensity distribution in acquired images leading to multi-
site heterogeneity issues [19].

The isointense phase occurs at around 6 to 9 months of age and is defined as
the period when GM and WM intensities overlap (see Fig. 1). The myelination,
which progresses from central to peripheral brain regions, causes GM and WM
to exhibit similar intensities (in both T1-weighted and T2-weighted images).
As a result of limited contrast between GM and WM, tissue quantification is
extremely challenging.

Fig. 1. Brain MRI in the isointense phase of brain development. The first row displays
T1-weighted images and the second-row T2-weighted images in axial, coronal, sagittal
view and corresponding tissue intensity distributions, respectively.

Previous research in the isointense brain segmentation can be split into three
categories: atlas-based methods, learning-based methods, and hybrid approaches.
Employing atlas-based methods depends highly on the present contrast in the
MR images and can be time-consuming [25]. Learning based-methods are fur-
ther split into machine learning [21,22] and deep learning methods [2,5,10], with
some deep learning methods employing the longitudinal data to guide the segmen-
tation [3]. Generally, deep learning methods enable automatic learning of more
representative and discriminative features, whereas classical machine learning
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methods require explicit data characterization through hand-crafted features
[4,11,13]. Alternatively, hybrid approaches [18] integrate multiple strategies into
a final pipeline.

Deep learning-based networks have a consistently good performance. How-
ever, they suffer from persistent errors present at the border between GM
and WM. Recent works demonstrate the potential of utilizing prior anatomi-
cal knowledge to guide the segmentation. For example, Kushibar et al. [9] uti-
lize spatial features extracted from a structural probabilistic atlas to guide the
segmentation in sub-cortical brain structure. Furthermore, Wang et al. [22,23]
introduce a signed distance map in a two-stage sequential segmentation process.
The signed distance maps assure the presence of WM inside GM and guide the
final segmentation result.

Inspired by these approaches and considering there are numerous ways of
introducing prior information, two new methodologies are proposed for dealing
with the isointense stage of brain development. The first adds prior information
regarding WM localization obtained from an atlas, in combination with T1-
weighted and T2-weighted images as input to a neural network. This approach
uses previously defined tissue labels on reference MR images (i.e. atlas) as prior
knowledge to segment a target image. In the second method, inspired by the
works of Navarro et al. in multi-organ segmentation [14], we define modeling the
boundary between gray and white matter to guide the segmentation in unclear
regions.

2 Methodology

2.1 Dataset and Atlas

iSeg19 is a publicly available dataset provided by MICCAI challenge [19]. This
dataset consists of T1-weighted and T2-weighted images of infants aged 6 ±
0.8 months. The fully pre-processed dataset (resampled, skull-stripped, with
corrected inhomogeneities and cerebelllum and brain stem removed) consists of
ten training samples containing both intensity and ground truth (GT) images
and thirteen cases of only intensity images for validation. Experiments were
performed on the training dataset and the best-performing pipeline was further
tested on the validation dataset.

Annotation of CSF, WM, and GM of the dataset was done by the iSeg19
challenge organizers.

Atlas for developing infants provided by Zhang et al. (2016) [24] gives infor-
mation on common brain anatomy of 6 months old infants in standardized space.

2.2 Data Preparation

Pre-processing the data reduces the variability across subjects. Firstly, in
each image, the intensities above the 99 percentile and below 1 percentile were
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cropped, removing the influence of outliers. Secondly, a min-max normalization
was used to scale the values between 0 and 1. Finally, a data augmentation
technique of flipping was implemented to increase the number of volumes during
training. The dataset was doubled by including left-to-right flipped volumes in
training, taking into account the pseudo-symmetrical nature of the left and right
hemispheres of the brain.

Fig. 2. Pipeline for extracting prior information from the atlas

Anatomical Prior was derived utilizing image registration to align the atlas
and the particular subject. Specifically, the T1-weighted image of the subject
and the T1-weighted atlas were registered. A sequential process of implementing
affine [15] and non-rigid [12] registrations was used to provide the deformation
map for label propagation of the atlas segmentation to the subject space. The
propagation of the labels was followed by extracting only the WM segmenta-
tion and processing it using erosion and Gaussian blurring. The initial usage of
erosion was done given the imperfect alignment between the ground truth and
the propagated labels. The Gaussian blurring was implemented to smooth the
anatomical prior. The blurring level was manually adjusted trying to preserve
reasonable information, sigma was set to 3.

Patch Extraction technique was employed as a result of limited number
of samples available for training. The overlap was introduced by decreasing
the patch stride to be smaller than the patch size, with the patch size being
16× 16× 16 and patch stride 8× 8× 8. Only patches that include at least a
predefined portion of genuine brain volume were considered in training.

2.3 Deep Learning Network

U-Net is a well-known state-of-the-art deep learning network for biomedical
image segmentation [17]. This network has been extensively used to segment
the isointense phase of brain development [19,23].
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Training parameters utilized for both networks explained in the next two
subsections include Adam optimizer, batch size of 32 and 100 epochs with early
stopping. Furthermore, dropout is introduced to prevent overfitting.

The following two networks were developed and tested:

(a) U-Net model used for segmentation
with WM prior as third input channel.

(b) Multi-branch U-Net model with two
outputs, segmentation and contour predic-
tion.

Fig. 3. Illustrations of U-Net architectures developed

I.WhiteMatter Prior. In this case the U-Net network (Fig. 3a) is trained using
three inputs, T1-weighted, T2-weighted and WM prior information acquired from
an atlas. The loss function is categorical cross-entropy.

II. Multi-branch U-Net. We develop a complementary learning task where
second to last decoder block splits into two separate decoder blocks each with
its own softmax activation function. The segmentation is output by one, while
the contour representing the boundary between gray and white matter is output
by the other. As there are two separate outputs, the optimized loss function is
the sum of objectives of the related tasks, i.e., segmentation (categorical cross-
entropy) and contour prediction (binary cross-entropy).

Ltotal = Ltissue + Lcontour

Ltissue = −
M∑

c=1

N∑

o=1

yo,c log(po,c)

Lcontour = −
M∑

c=1

(yc log(p) + (1 − yc) log(1 − p))
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where M - number of classes, N - number of observations, y - binary indicator
(0 or 1) if class label c is the correct classification for observation o, and p -
predicted probability that observation o is of class c.

2.4 Implementation Details

This project was implemented using Python programming language. Comple-
mentary libraries used include numpy, nibabel, patchify and matplotlib. Image
registration was done using icometrix’s implementation of NiftyReg [12,15]. Ero-
sion and blurring of the registered atlas were done using scikit-image pack-
age [20]. The 3D U-Net was implemented using Tensorflow [1].

3 Experiments and Results

A leave-one-out cross-validation was employed during training to obtain the
optimal parameters and evaluate the effects of introducing prior information.
Nine subjects would be used for training and one subject for testing. During the
network training, the training subjects would be further split using an 80%/20%
strategy. The metric used for evaluation of training results is Dice similarity
coefficient (DSC). For the validation dataset of the challenge, as provided by
the challenge’s organizers once the segmentation results have been submitted,
the metrics also include 95th percentile Hausdorff distance (HD) and average
surface distance (ASD).

Once labels of the atlas have been propagated to the patient space using dis-
tinct deformation maps, five experiments were performed as follows: i) baseline
U-Net (using no prior information); ii) using WM prior; iii) using GM prior on
WM prior trained network to observe if the network is utilizing the WM infor-
mation for prediction; iv) using perfect prior which is obtained from the ground
truth to observe the potential result in case of perfect image registration and v)
adding contour to guide the segmentation.

Quantitative Results. Figure 4 illustrates effects of adding prior information.
Employing the WM prior as an extra input channel leads to a slight increase
in the WM and GM DSC value when compared to the baseline U-Net. The
utilization of the prior by the network is further confirmed when using the GM
prior for prediction on a WM prior trained network. In this case, we attribute
the small decrease in DSC for CSF to the prior not affecting that location, and
a considerable decrease of 16.1% for GM and 25.1% for WM to the effect of
using misleading information as input. The potential of utilizing this type of
information is further tested when utilizing the perfect prior obtained from the
GT and processed in the same manner as previously explained. In this case, an
increase of 0.9% in the case of CSF, 4.5% in the case of GM, and 7.2% in the case
of WM when compared to the results of the model “With Prior” information is
observed. In contrast, complementary task learning (i.e., adding the WM/GM
contour as second output) did not improve the results.
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Fig. 4. Value of DSC for different tissue classes for each one of the experiments on the
training dataset showcased on x-axis.

Qualitative Results. Figure 5 shows a qualitative comparison between using
the baseline network and the networks guided by the prior. The WM prior
obtained with label propagation leads to more anatomically accurate results
similar to those present in GT with smooth and connected WM regions as we
can observe from the highlighted regions.

Fig. 5. Qualitative improvement in segmentation when using the WM prior. The 1st
column shows the GT, 2nd column showcases the segmentation results of the baseline
U-Net with no prior information, 3rd column when using the WM prior obtained with
the label propagation, and 4th column displays the multi-branch U-Net.
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3.1 iSeg19 Validation Dataset

The final model including anatomical guidance using WM prior was tested on
the validation dataset of the iSeg19 challenge. This model was trained on the
complete training dataset with the number of epochs set to 42 as that was the
average number of epochs needed for convergence in the leave-one-out strategy.

As a result of adequate training (avoiding over-fitting), a good generalization
performance is observed, since the segmentation results are coherent with those
obtained during training (see Table 1). Furthermore, Hausdorff distance (HD)
for WM falls in the top 4 of the challenge results on the validation dataset as
consulted from the iSeg19 website (on the date 11/07/2022).

Table 1. Average mean and standard deviation DSC, HD, and ASD on the validation
dataset of the iSeg19 challenge, provided by the organizers once the segmentation
results have been submitted.

CSF GM WM

DSC 0.927 (0.007) 0.891 (0.009) 0.860 (0.016)

HD 10.023 (1.659) 7.340 (1.247) 6.659 (1.020)

ASD 0.197 (0.017) 0.437 (0.038) 0.499 (0.048)

4 Discussion and Conclusions

In this work, we propose a solution for introducing prior information to the
challenging task of segmenting infant tissue in the isointense phase, characterized
by the limited distinction between GM and WM tissue on T1-weighted and T2-
weighted images.

Overall, experimental results on the iSeg19 dataset showcase a slight increase
in performance when utilizing the WM tissue prior. Visual analysis of the above
results demonstrates more refined segmentation in sub-cortical regions when
using information of the WM localization.

The multi-branch U-Net did not perform better than the proposed alterna-
tive. This could be due to the fact that the choice of the loss function and of the
weighting between the two losses was not fully optimized.

With the exception of the Hausdorff distance metric, the results obtained on
the iSeg19 validation dataset were not as good as the top performing challenge
participants. This might be explained by the fact that we used an easy-too-train
and well-established U-net network that is presumably less optimized compared
to more complex architectures.

The presented work is limited to the data only related to the 6-month old
infants, although the isointense phase occurs at around 6 to 9 months. Further-
more, the developed method requires both T1 and T2-weighted images. Future
work includes further improving the registration between the atlas and the spe-
cific subject as well as optimizing the network, considering a simple U-Net archi-
tecture was implemented to test the effect of this type of prior.



Knowledge-Guided Segmentation of Isointense Infant Brain 113

Acknowledgement. The PARENT project has received funding from the European
Union’s Horizon 2020 research and innovation program under the Marie Sklodowska-
Curie Innovative Training Network 2020. Grant Agreement N 956394.

References

1. Abadi, M., et al.: TensorFlow: large-scale machine learning on heterogeneous sys-
tems (2015). https://www.tensorflow.org/, software available from tensorflow.org

2. Bui, T.D., Shin, J., Moon, T.: 3D densely convolutional networks for volumetric
segmentation. arXiv preprint arXiv:1709.03199 (2017)

3. Bui, T.D., Wang, L., Lin, W., Li, G., Shen, D.: 6-month infant brain MRI seg-
mentation guided by 24-month data using cycle-consistent adversarial networks.
In: 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI), pp.
359–362. IEEE (2020)

4. Castiglioni, I., et al.: AI applications to medical images: from machine learning to
deep learning. Physica Med. 83, 9–24 (2021)

5. Dolz, J., et al.: Deep CNN ensembles and suggestive annotations for infant brain
MRI segmentation. Comput. Med. Imaging Graph. 79 (2020)

6. Gilmore, J.H., et al.: Prenatal and neonatal brain structure and white matter
maturation in children at high risk for schizophrenia. Am. J. Psychiatry 167(9),
1083–1091 (2010)

7. Hazlett, H.C., et al.: Magnetic resonance imaging and head circumference study
of brain size in autism: birth through age 2 years. Arch. Gen. Psychiatry 62(12),
1366–1376 (2005)

8. Knickmeyer, R.C., et al.: A structural MRI study of human brain development
from birth to 2 years. J. Neurosci. 28(47), 12176–12182 (2008)

9. Kushibar, K., et al.: Automated sub-cortical brain structure segmentation combin-
ing spatial and deep convolutional features. Med. Image Anal. 48, 177–186 (2018)

10. Lei, Z., Qi, L., Wei, Y., Zhou, Y.: Infant brain MRI segmentation with
dilated convolution pyramid downsampling and self-attention. arXiv preprint
arXiv:1912.12570 (2019)

11. Li, G., et al.: Computational neuroanatomy of baby brains: a review. Neuroimage
185, 906–925 (2019)

12. Modat, M., Ridgway, G.R., Taylor, Z.A., Lehmann, M., Barnes, J., Hawkes, D.J.,
Fox, N.C., Ourselin, S.: Fast free-form deformation using graphics processing units.
Comput. Methods Programs Biomed. 98(3), 278–284 (2010)

13. Moeskops, P., Viergever, M.A., Mendrik, A.M., De Vries, L.S., Benders, M.J.,
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