
Bernd-Holger Schlingloff
Ming Chai (Eds.)

20th International Conference, SEFM 2022
Berlin, Germany, September 26–30, 2022
Proceedings

Software Engineering
and Formal MethodsLN

CS
 1

35
50

Fo
rm

al
 M

et
ho

ds

Lecture Notes in Computer Science 13550

Formal Methods
Subline of Lectures Notes in Computer Science

Subline Series Editors

Ana Cavalcanti, University of York, UK

Marie-Claude Gaudel, Université de Paris-Sud, France

Subline Advisory Board

Manfred Broy, TU Munich, Germany

Annabelle McIver, Macquarie University, Sydney, NSW, Australia

Peter Müller, ETH Zurich, Switzerland

Erik de Vink, Eindhoven University of Technology, The Netherlands

Pamela Zave, AT&T Laboratories Research, Bedminster, NJ, USA

Founding Editors

Gerhard Goos, Germany
Juris Hartmanis, USA

Editorial Board Members

Elisa Bertino, USA
Wen Gao, China

Bernhard Steffen , Germany
Moti Yung , USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0003-0848-0873

More information about this series at https://link.springer.com/bookseries/558

https://springerlink.bibliotecabuap.elogim.com/bookseries/558

Bernd-Holger Schlingloff •

Ming Chai (Eds.)

Software Engineering
and Formal Methods
20th International Conference, SEFM 2022
Berlin, Germany, September 26–30, 2022
Proceedings

123

Editors
Bernd-Holger Schlingloff
Humboldt-Universität zu Berlin
Berlin, Germany

Ming Chai
Beijing Jiaotong University
Beijing, China

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-031-17107-9 ISBN 978-3-031-17108-6 (eBook)
https://doi.org/10.1007/978-3-031-17108-6

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2022
Chapters 1 and 7 are licensed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/). For further details see license information in the chapters.
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0001-9601-157X
https://orcid.org/0000-0002-4360-3181
https://doi.org/10.1007/978-3-031-17108-6
http://creativecommons.org/licenses/by/4.0/

Preface

This volume contains the papers accepted for SEFM 2022, the 20th International
Conference on Software Engineering and Formal Methods, held in Berlin, Germany,
during September 28–30, 2022.

The SEFM conference series aims to bring together researchers and practitioners
from academia, industry, and government to advance the state of the art in formal
methods, to facilitate their uptake in the software industry, and to encourage their
integration within practical software engineering methods and tools. This year marks
the 20th anniversary of the series. Within these 20 years, the field has matured and
extended focus: whereas in the 1st edition, which was held in 2003 in Brisbane, topics
like verification, testing, object-oriented modeling, and integration of formal and
informal methods prevailed, today additional topics like verification of machine
learning, program synthesis from formal specifications, and correctness of
cyber-physical and multi-agent systems have been added to the range. To reflect this
extension, special emphasis was placed on the topic of “Software Engineering and
Formal Methods for Intelligent and Learning Systems’’ at SEFM 2022.

SEFM 2022 was jointly organized by the Institute of Computer Science of the
Humboldt University of Berlin (Germany) and the School of Electronic and Infor-
mation Engineering of Beijing Jiaotong University (China). We also kindly
acknowledge the support of Fraunhofer FOKUS, the Fraunhofer Institute for Open
Communication Systems, Berlin. Following the online editions of SEFM in 2020 and
2021, it was the general opinion that we should have a physical face-to-face meeting
again. Nevertheless, talks were streamed to an open website to allow online partici-
pation of a worldwide audience.

There were three invited talks at SEFM 2022: Uwe Nestmann (Technische
Universität Berlin, Germany) reported on “Distributed process calculi with local
states’’; Mariëlle Stoelinga (Radboud University Nijmegen and University of Twente,
The Netherlands) spoke on “Maintenance meets model checking: predictive mainte-
nance via fault trees and formal methods’’; and Alessio Lomuscio (Imperial College
London, UK) gave a talk titled “Towards verifying neural-symbolic multi-agent sys-
tems’’. The abstracts of these talks are contained in this volume; we thank all three
invited speakers for their insights.

Following the call for papers, there were 68 announced submissions, of which six
were retracted or not submitted in time. The remaining 62 submissions were each
reviewed independently by three reviewers, and this was followed by an online dis-
cussion amongst the reviewers. Based on the reviewing results, the Program Committee
selected 19 full papers and three tool papers for presentation at the conference and
publication in this volume. The editors thank the members of the Program Committee
and the additional reviewers for their reviews and discussions. We also thank all
authors for their submissions, whether accepted or not, and hope that they will keep

contributing to future editions of this conference series. All SEFM submissions have to
be original, unpublished, and not submitted concurrently for publication elsewhere.

Associated with the main SEFM 2022 conference was a SEFM summer school and
six workshops: AI4EA 2022, FMAS 2022, F-IDE 2022, ASYDE 2022, CIFMA 2022,
and CoSim-CPS 2022. We thank all organizers of the associated events for contributing
to the success of SEFM. The proceedings of these events will appear in a separate
LNCS volume.

Furthermore, we thank Antonio Cerone for his guidance in the organization, and the
team at Springer for their support of SEFM 2022 and these proceedings. We also
gratefully acknowledge Andrei Voronkov and the University of Manchester for the
EasyChair system, which was used to handle the submission and review processes, and
we wish the new EasyChair registration services and the whole EasyChair team suc-
cess. Finally, we thank GFaI (Gesellschaft zur Förderung angewandter Informatik e.V.)
for providing rooms and materials, the support team from Beijing Jiaotong University
(Haoyuan Liu, Haoxiang Su, Dong Xie, and Qi Wang) for their help in editing the
proceeding, and the support team from the Humboldt University of Berlin (Marc
Carwehl, Eric Faust, Luisa Gerlach, Galina Greil, Philipp Jass, Sami Kharma, and
Merlin von Wartburg) for their help in organizing SEFM 2022.

August 2022 Bernd-Holger Schlingloff
Ming Chai

vi Preface

Organization

Program Committee Chairs

Bernd-Holger Schlingloff Fraunhofer FOKUS and Humboldt University of
Berlin, Germany

Ming Chai Beijing Jiaotong University, China

Program Committee

Jiri Barnat Masaryk University, Czech Republic
Dirk Beyer LMU München, Germany
Radu Calinescu University of York, UK
María-Emilia Cambronero University of Castilla-La Mancha, Spain
Ana Cavalcanti University of York, UK
Alessandro Cimatti Fondazione Bruno Kessler, Italy
Gabriel Ciobanu Romanian Academy, Iasi, Romania
Corina Cirstea University of Southampton, UK
Antonio Filieri Imperial College London, UK
Mario Gleirscher University of Bremen, Germany
Marie-Christine Jakobs TU Darmstadt, Germany
Raluca Lefticaru University of Bradford, UK
Antónia Lopes Universidade de Lisboa, Portugal
Tiziana Margaria University of Limerick – Lero, Ireland
Paolo Masci National Institute of Aerospace, USA
Claudio Menghi McMaster University, Canada
Rocco De Nicola IMT School for Advanced Studies Lucca, Italy
Hans de Nivelle Nazarbayev University, Kazakhstan
Peter Ölveczky University of Oslo, Norway
Gordon Pace University of Malta, Malta
Corina Pasareanu Carnegie Mellon University, NASA, and KBR, USA
Violet Ka I Pun Western Norway University of Applied Sciences,

Norway
Markus Roggenbach Swansea University, UK
Gwen Salaün University of Grenoble Alpes, France
Augusto Sampaio Federal University of Pernambuco, Brazil
Ina Schaefer Karlsruhe Institute of Technology, Germany
Gerardo Schneider Chalmers University of Technology and University of

Gothenburg, Sweden
Marjan Sirjani Malardalen University, Sweden
Elena Troubitsyna KTH Royal Institute of Technology, Sweden
Graeme Smith University of Queensland, Australia
Silvia Lizeth Tapia Tarifa University of Oslo, Norway

Marina Waldén Abo Akademi University, Finland
Heike Wehrheim University of Oldenburg, Germany
Gianluigi Zavattaro University of Bologna, Italy

List of Additional Reviewers

Filipe Arruda
Anna Becchi
Lukas Birkemeyer
Tabea Bordis
Marco Bozzano
Gabriele Costa
Dana Dghaym
Neil Evans
Xinwei Fang
Marco Feliu Gabaldon
Letterio Galletta
Sinem Getir Yaman
Alberto Griggio
George Hagen
Jan Haltermann
William Hughes
Calum Imrie
Omar Inverso
Eduard Kamburjan
Alexander Kittelmann

Christoph König
Frédéric Lang
Michael Lienhardt
Enrico Lipparini
Mariano Moscato
Cláudia Nalon
Felix Pauck
Ehsan Poorhadi
Cedric Richter
Lionel Rieg
Cleyton Rodrigues
Rudolf Schlatte
Arnab Sharma
Fedor Shmarov
Colin Snook
Marielle Stoelinga
Matteo Tadiello
Francesco Tiezzi
Catia Trubiani
Gricel Vazquez

Organizing Committee

Bernd-Holger Schlingloff Fraunhofer FOKUS and Humboldt University of
Berlin, Germany

Ming Chai Beijing Jiaotong University, China

Steering Committee

Radu Calinescu University of York, UK
Antonio Cerone Nazarbayev University, Kazakhstan
Rocco De Nicola IMT School for Advanced Studies Lucca, Italy
Gwen Salaün University of Grenoble Alpes, France
Marjan Sirjani Mälardalen University, Sweden

Webmaster

Ming Chai Beijing Jiaotong University, China

viii Organization

Invited Talks

Distributed Process Calculi with Local States

Uwe Nestmann

Process calculi are popular for several reasons: (1) they precisely capture concurrent
computation models via the syntax and semantics of minimalistic languages; (2) they
are equipped with rich algebraic theories that build upon behavioural equivalences,
often with precise logical counterparts; and (3) they support powerful action-based
proof techniques. While these advantages of process calculi are good for many con-
current applications, the reasoning about distributed algorithms often requires analyses
in a state-based style, e.g., using (global) invariants. Thus, we study extensions of
process calculi with explicit support for distribution, where processes dispose of a
private memory component representing their own explicit local state. In the talk, I
addressed the motivation behind distributed process calculi with local states as well as
the engineering principles when developing the design and theory of such calculi.

Maintenance Meets Model
Checking—Predictive Maintenance via Fault

Trees and Formal Methods

Mariëlle Stoelinga

Proper maintenance is crucial to keep our trains, power plants and robots up and
running. Since maintenance is also expensive, effective maintenance is a typical
optimization problem, where one balances costs against system performance (in terms
of availability, reliability, and remaining useful lifetime).

Predictive maintenance is a promising technique that aims at predicting failures
more accurately, so that just-in-time maintenance can be performed, doing maintenance
exactly when and where needed. Thus, predictive maintenance promises higher
availability and fewer failures at lower costs. In this talk, I advocated a combination of
model-driven (esp. fault trees) and data analytical techniques to get more insight in the
costs versus performance of maintenance strategies. I showed the results of several case
studies from railroad engineering, namely rail track (with Arcadis), and HVAC
(heating, ventilation, and air conditioning; with Dutch railroads).

Towards Verifying Neural-Symbolic
Multi-Agent Systems

Alessio Lomuscio

A challenge in the deployment of multi-agent systems (MAS) remains the inherent
difficulty of predicting with confidence their run-time behaviour. Over the past twenty
years, increasingly scalable verification methods, including model checking and
parameterised verification, have enabled the validation of several classes of MAS
against AI-based specifications, and several MAS applications in services, robotics,
security, and beyond.

Yet, a new class of agents is emerging in applications. Differently from traditional
MAS, which are typically directly programmed (and less often purely neural), they
combine both connectionist and symbolic aspects. We will refer to these as
neural-symbolic MAS. These agents include a neural layer, often implementing a
perception function, and symbolic or control-based layers, typically realising decision
making and planning. Implementations of neural-symbolic agents permeate many
present and forthcoming AI applications, including autonomous vehicles and robotics.
Due to the neural layer, as well as their heterogeneity, verifying the behaviours of
neural-symbolic MAS is particularly challenging. Yet, I argued that, given the
safety-critical applications they are used in, methods and tools to address their formal
verification should be developed.

In this talk I shared some of the contributions on this topic developed at the
Verification of Autonomous Systems Lab at Imperial College London. I began by
describing traditional approaches for the verification of symbolic MAS, and parame-
terised verification to address arbitrary collections of agents such as swarms. I then
summarised our present efforts on verification of neural perception systems, including
MILP-based approaches, linear relaxations, and symbolic interval propagation, intro-
duce our resulting toolkits, Venus and Verinet, and exemplified their use.

This lead to existing methods for closed-loop, neural-symbolic MAS. In this
context, I shared existing results that enable us to perform reachability analysis, and
verify systems against bounded temporal specifications and Alternating Temporal
Logic (ATL).

I concluded by highlighting some of the many challenges that lie ahead.

Contents

Software Verification

A Unifying Approach for Control-Flow-Based Loop Abstraction 3
Dirk Beyer, Marian Lingsch Rosenfeld, and Martin Spiessl

Auto-Active Verification of Floating-Point Programs via Nonlinear
Real Provers. 20

Junaid Rasheed and Michal Konečný

Information Exchange Between Over- and Underapproximating
Software Analyses. 37

Jan Haltermann and Heike Wehrheim

Program Analysis

A Query Language for Language Analysis . 57
Matteo Cimini

Field-Sensitive Program Slicing . 74
Carlos Galindo, Jens Krinke, Sergio Pérez, and Josep Silva

SPouT: Symbolic Path Recording During Testing - A Concolic Executor
for the JVM . 91

Malte Mues, Falk Howar, and Simon Dierl

Verifier Technology

Cooperation Between Automatic and Interactive Software Verifiers 111
Dirk Beyer, Martin Spiessl, and Sven Umbricht

Strategy Switching: Smart Fault-Tolerance for Weakly-Hard
Resource-Constrained Real-Time Applications . 129

Lukas Miedema and Clemens Grelck

A Program Slicer for Java (Tool Paper) . 146
Carlos Galindo, Sergio Perez, and Josep Silva

Formal Methods for Intelligent and Learning Systems

Constrained Training of Recurrent Neural Networks
for Automata Learning. 155

Bernhard K. Aichernig, Sandra König, Cristinel Mateis,
Andrea Pferscher, Dominik Schmidt, and Martin Tappler

Neural Network Verification Using Residual Reasoning. 173
Yizhak Yisrael Elboher, Elazar Cohen, and Guy Katz

Training Agents to Satisfy Timed and Untimed Signal Temporal Logic
Specifications with Reinforcement Learning . 190

Nathaniel Hamilton, Preston K Robinette, and Taylor T Johnson

Specification and Contracts

Information Flow Control-by-Construction for an Object-Oriented
Language . 209

Tobias Runge, Alexander Kittelmann, Marco Servetto, Alex Potanin,
and Ina Schaefer

Specification is Law: Safe Creation and Upgrade of Ethereum
Smart Contracts . 227

Pedro Antonino, Juliandson Ferreira, Augusto Sampaio,
and A. W. Roscoe

SKLEE: A Dynamic Symbolic Analysis Tool for Ethereum Smart
Contracts (Tool Paper) . 244

Namrata Jain, Kosuke Kaneko, and Subodh Sharma

Program Synthesis

Weighted Games for User Journeys. 253
Paul Kobialka, Silvia Lizeth Tapia Tarifa, Gunnar Rye Bergersen,
and Einar Broch Johnsen

Safety Controller Synthesis for a Mobile Manufacturing Cobot 271
Ioannis Stefanakos, Radu Calinescu, James Douthwaite,
Jonathan Aitken, and James Law

Timely Specification Repair for Alloy 6. 288
Jorge Cerqueira, Alcino Cunha, and Nuno Macedo

xvi Contents

Temporal Logic

BehaVerify: Verifying Temporal Logic Specifications for Behavior Trees . . . 307
Serena Serafina Serbinowska and Taylor T. Johnson

CHA: Supporting SVA-Like Assertions in Formal Verification of Chisel
Programs (Tool Paper) . 324

Shizhen Yu, Yifan Dong, Jiuyang Liu, Yong Li, Zhilin Wu,
David N. Jansen, and Lijun Zhang

Runtime Methods

Runtime Verification with Imperfect Information Through
Indistinguishability Relations . 335

Angelo Ferrando and Vadim Malvone

Runtime Enforcement for IEC 61499 Applications 352
Yliès Falcone, Irman Faqrizal, and Gwen Salaün

Author Index . 369

Contents xvii

Software Verification

A Unifying Approach for
Control-Flow-Based Loop Abstraction

Dirk Beyer , Marian Lingsch Rosenfeld , and Martin Spiessl

LMU Munich, Munich, Germany

Abstract. Loop abstraction is a central technique for program analysis,
because loops can cause large state-space representations if they are
unfolded. In many cases, simple tricks can accelerate the program analysis
significantly. There are several successful techniques for loop abstraction,
but they are hard-wired into different tools and therefore difficult to
compare and experiment with. We present a framework that allows us
to implement different loop abstractions in one common environment,
where each technique can be freely switched on and off on-the-fly during
the analysis. We treat loops as part of the abstract model of the program,
and use counterexample-guided abstraction refinement to increase the
precision of the analysis by dynamically activating particular techniques
for loop abstraction. The framework is independent from the underlying
abstract domain of the program analysis, and can therefore be used for
several different program analyses. Furthermore, our framework offers a
sound transformation of the input program to a modified, more abstract
output program, which is unsafe if the input program is unsafe. This allows
loop abstraction to be used by other verifiers and our improvements are
not ‘locked in’ to our verifier. We implemented several existing approaches
and evaluate their effects on the program analysis.

Keywords: Software verification · Program analysis · Loop abstraction
· Precision adjustment · Counterexample-guided abstraction refinement ·
CPAchecker

1 Introduction

Software programs are among the most complex systems that mankind produces.
Programs tend to have a complex state space and hence verifying the correctness
of software programs is a difficult task. Abstraction is a key ingredient to every
successful approach to prove the correctness of large programs. Let us look at
a few examples: Constant propagation [21] abstracts from concrete values for
a variable if the value of the variable is not constant. Counterexample-guided
abstraction refinement (CEGAR) [14] is an algorithm to incrementally refine
the level of abstraction until the abstract model is detailed enough to prove
the correctness, while the abstract model is still coarse enough to make the
analysis feasible. Predicate abstraction [18,20] uses an abstract domain where
the abstract state is described as a combination of predicates from a certain

c© The Author(s) 2022
B.-H. Schlingloff and M. Chai (Eds.): SEFM 2022, LNCS 13550, pp. 3–19, 2022.
https://doi.org/10.1007/978-3-031-17108-6_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-17108-6_1&domain=pdf
https://orcid.org/0000-0003-4832-7662
https://orcid.org/0000-0002-8172-3184
https://orcid.org/0000-0002-9169-9130
https://doi.org/10.1007/978-3-031-17108-6_1

4 D. Beyer, M. Lingsch Rosenfeld, and M. Spiessl

given precision [8] (a set of predicates). The precision is refined with CEGAR
by adding new predicates to the precision. Shape analysis [25] abstracts from
concrete data structures on the heap and stores only their shape for the analysis.

Finally, loop abstraction is a technique to abstract the behavior of a program
with a loop in such a way that the correctness of the abstract program implies
the correctness of the original program. There are several approaches for loop
abstraction proposed in the literature [15,16,19,22]. While we will concentrate
on reachability here, this technique can also be applied to other properties.

We contribute a formalism that treats loop abstraction as an abstraction
in the sense of CEGAR: The precision is a choice of a certain approach to
loop abstraction (level of abstraction of the loop). If the abstract model of the
program defined by this precision (= loop abstraction) is too coarse to prove
correctness, then we refine the abstract model by setting the precision to a
different (more precise) loop abstraction.

Example. Let us consider the small program in Fig. 1a. The program uses one
variable x, which is initialized with some large, even value and decreased by 2
in a loop. The specification requires that the value of x is even after the loop
terminates. It is easy for a human to see that an even number, decreased by an
even number, always yields an even number, no matter how often this is done. In
other words, we discover the invariant that x is even and check if it is preserved.
However, in this example there exists an even simpler invariant: The data type of
x is unsigned int, which means values greater or equal to zero. The control flow
cannot leave the loop as long as x is greater than 0. Once the control flow leaves
the loop, we know that the value is 0, and thus, even. The loop-exit condition,
together with the above argument, implies the specification. A program analysis
that cannot discover this (e.g., bounded model checking, explicit-value analysis,
interval analysis) has to unroll the loop many times.

But we can construct the loop abstraction in Fig. 1b, which executes the new
body only if the loop condition x > 0 is fulfilled, and the new body models all
behaviors that occur when the original program enters the loop. The new body
havocs (sets to an arbitrary value) the variable x. Then it constrains the values
of x by blocking the further control flow if the loop condition still holds, i.e.,
the original program would stay in the loop. Surprisingly, since the loop-exit
condition now implies the specification, this overapproximation of the original
program still satisfies the specification.

Contributions. This paper makes the following contributions:

• We propose a framework that can express several existing approaches for
loop abstraction and makes it possible to compare those different approaches.

• The framework allows to switch dynamically, on-the-fly, between different
loop-abstraction techniques, selecting different abstraction levels.

• The framework is independent from the underlying abstract domain of the
program analysis. The loop abstractions work using transformations of the
control flow. Once implemented, a strategy for loop abstraction is applicable
to several abstract domains.

A Unifying Approach for Control-Flow-Based Loop Abstraction 5

1 unsigned int x = 0x0ffffff0;
2 while (x > 0) {
3 x −= 2;
4 }
5 assert(!(x % 2)));

(a) Original program

1 unsigned int x = 0x0ffffff0;
2 if (x > 0) {
3 x = nondet_uint();
4 if (x > 0) {
5 return 0;
6 }
7 }
8 assert(!(x % 2)));

(b) Havoc abstraction

1 unsigned int x = 0x0ffffff0;
2 if (x > 0) {
3 long long iterations = x/2;
4 x −= 2∗iterations;
5 if (x > 0) {
6 x −= 2;
7 }
8 }
9 assert(!(x % 2)));

(c) Constant extrapolation

1 unsigned int x = 0x0ffffff0;
2 if (x > 0) {
3 x = nondet_uint();
4 if (x <= 0) {
5 return 0;
6 }
7 x −=2;
8 if (x > 0) {
9 return 0;

10 }
11 }
12 assert(!(x % 2)));

(d) Naive abstraction

Fig. 1. Application of various loop abstraction strategies on the benchmark
program simple 4-2.c from the SV-Benchmarks set; only the body of the main
function is shown here

• We export the modified C program, such that the loop-abstraction techniques
can be used by other verifiers.

• The framework is publicly available as an extension of the open-source
verification framework CPAchecker.

• We evaluate the effectiveness and efficiency of the framework on a benchmark
set from the publicly available collection of verification tasks SV-Benchmarks,
and compare it with state-of-the-art tools.

RelatedWork. In the following we discuss the most related existing approaches.

Loop Acceleration. As this is an obvious way to speed up verification, many
different approaches have been proposed to calculate the effects of a loop execu-
tion [17,19,26]. We present only a very basic form where we accelerate variables
that are incremented by a fixed value in loops with a known number of itera-
tions, since our interest is rather into gaining insights into how different existing
approaches can be combined to further improve their usefulness. As such we are in-
terested in implementing other approaches for loop acceleration as strategies into
our framework, rather than coming up with new ways of accelerating single loops.

https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/blob/svcomp22/c/loop-acceleration/simple_4-2.c

6 D. Beyer, M. Lingsch Rosenfeld, and M. Spiessl

Loop Abstraction. While loop acceleration is useful also in other areas, e.g., for
compiler optimizations, verifiers have the possibility of using loop abstractions
(i.e., overapproximatons) instead, for aiding the generation of correctness proofs.
Since loop abstraction is closely related to invariant generation, and this is the
main challenge in software verification, there is a large body of literature. We
will therefore look at only those publications that also make use of the idea to
encode the abstractions into the source code. The abstraction techniques we
describe in this paper are taken taken from existing publications [15,16]. As with
loop accelerations, our goal is not to invent new strategies, but rather investigate
how existing strategies can be combined. Also VeriAbs [1] uses a variety of
loop-abstraction techniques, but only statically generates a program that is then
checked by a third-party verifier. As fallback, the original program is verified.

Encoding Loop Abstractions into the Program. We found one publication that also
encodes loop accelerations into a modified program [23]. Here, the accelerated loop
variant is added in such a way that the alternative code will be entered based on
non-deterministic choice. The main motivation is to investigate how this can cre-
ate synergies with invariant generation, i.e., whether existing invariant generators
can be improved by also providing the results of the acceleration in the program.
Compared to that, our approach is more general, as we also consider overapprox-
imating loop abstractions. Instead of non-deterministic choice, we present an
approach to determine which strategies to use automatically using CEGAR.

2 Preliminaries

We quickly introduce some notation and common concepts that will later be
used in Sect. 3.1.

Program Semantics. For simplicity we will consider a programming language
where the set Ops of possible program operations consists of simple assignments
and assumptions. We represent the programs as control-flow automata (CFA).
A CFA C = {L, l0, G} consists of a set L of program locations (modeling the
progam counter), an initial program location l0, and a relation G ⊆ L×Ops ×L
that describes the control-flow edges (each modeling the flow from one program
location via a program operation to a successor program location). The concrete
semantics of such a CFA is given by the (labeled) transition relation → ⊆ C×G×C

over the set C of concrete program states. We will write c1
g→ c2 if the concrete

state c2 can be reached from c1 via the control-flow edge g ∈ G.

ProgramAnalysis. Our approach will work for many different kinds of program
analysis. Typically, a program analysis is characterized by some abstract domain
D that defines a set E of abstract states as well as an abstract transfer relation
�⊆ E × G × E, which determines which abstract states can be reached from the
initial state e0 ∈ E. One common way to design a program analysis is to determine
the set of reachable abstract states by keeping track of a set reached ⊆ E of

A Unifying Approach for Control-Flow-Based Loop Abstraction 7

already reached abstract states and a set (or list) waitlist ⊆ E of abstract
states that still need to be explored.1

CEGAR. Whenever a program analysis finds a counterexample, there are two
possibilities. Either this turns out to correspond to an actual execution trace of the
original program, and we have shown that the program violates the specification,
or the counterexample is infeasible, meaning that it is only found because the
abstraction level of the analysis is too coarse. This has led to the development of
counterexample-guided abstraction refinement, or CEGAR for short [14]. The idea
here is that one can extract information from the counterexample with which the
abstract domain can be refined. For example with predicate abstraction[2], one
can use the counterexample to compute predicates that —if tracked— rule out
the infeasible counterexample. In order to formalize CEGAR, we will introduce
the refinement operator:

refine : (reached, waitlist) �→ (reached’, waitlist’)

Once an infeasible counterexample is found, the refinement operator is called
with the current set of reached abstract states and the waitlist. This operator
then extracts information from its inputs and returns a new set of reached states
and a new waitlist which will then be used for further state-space exploration.
In case the counterexample is feasible, the refinement operator will not remove
the violation state(s) from the set of reached abstract states, which signals that
the analysis found a bug and can terminate.

3 Loop Abstractions

We propose the approach of multi-strategy program analysis, which enables one
tool to use several different loop-abstraction strategies simultaneously in one
state-space exploration. In the following, we will first look at the theory behind
loop abstractions and some practical examples for such strategies. After that, we
will introduce our CEGAR refinement approach for loop abstractions in Sect. 3.2.

3.1 Theory

For verification, we usually use overapproximations if the goal is to find a proof
of correctness. For loop control flow, such an overapproximation is called a loop
abstraction, while precise methods are called loop acceleration. Whenever it is
not important whether the technique is precise or overapproximating, we will
just refer to the techniques as loop abstraction.

It is common to apply loop abstractions by replacing the loop statement S with
some alternative program statement S′ [1,23]. Intuitively, it is often clear whether
this will overapproximate the program behavior, but we can also formalize this

1 In the literature, this is also know as a worklist algorithm [24]; here we will adhere
to the terminology used in the Handbook of Model Checking [6].

8 D. Beyer, M. Lingsch Rosenfeld, and M. Spiessl

using strongest postconditions. We write sp(S, P) for the strongest postcondition
of a program statement S and a predicate P . Assume we have a program
statement S that contains a loop, i.e., S = while (C) do B, where the body B
inside S may itself contain loops. For a loop abstraction, the goal is to find an
alternative program statement S′ such that {P}S{sp(S′, P)} is a valid Hoare
triple. If this requirement is fulfilled, then we can soundly replace S by S′ in the
program for the purpose of verification. In other words, S′ is an abstraction of S
if sp(S, P) ⇒ sp(S′, P). It is possible to find such rewriting schemes for a loop
without knowing the exact form of the loop. This is best shown by two examples.

Havoc Abstraction. Let us look at the rather simple loop abstraction that
served as example in Sect. 1, which we call havoc abstraction. Here we replace the
loop while C do B by a havoc statement havoc(mod(B)) that is guarded in such
a way to ensure it is only executed if the loop condition holds, and after it is exe-
cuted, the loop condition does not hold anymore. The havoc statement discards
any information about the values of a set of variables. Here we use the set mod(B)
of variables that are modified in the loop body B. We denote the strongest postcon-
dition of this havoc statement by HB,P = sp(havoc(mod(B)), P). We can easily
prove soundness of the havoc abstraction by establishing that HB,P is actually a
loop invariant and therefore the Hoare triple {P} while C do B {HB,P ∧ ¬C}
holds.2

It is obvious that we can find an alternative statement S′ for the while-loop
that has the same post condition:

sp(havoc(mod(B));assume(!C), P) = HB,P ∧ ¬C

We therefore have found a statement whose strongest post is an overapproximation
of the strongest post of the while loop.

Naive Abstraction. Another way to abstract a loop is the so-called naive
loop abstraction [16]. An application to the example program from Fig. 1a is
shown in Fig. 1d. Here one assigns non-deterministic values to all the variables
that are modified in the loop (provided the loop condition holds when reaching
the loop). Then the loop body is executed once, after which the negated loop
condition is added as assumption. This essentially encodes the information that
if the loop was entered, there is a “last” iteration of the loop after which the
loop condition does not hold anymore and the loop therefore terminates. This is
overapproximating the behavior of the original loop, since a loop, in general, is
not guaranteed to terminate. From the Hoare proof of the naive abstraction, we
get that sp(B,C ∧ HB,P) ∨ P is an invariant of the while loop.3

The postcondition (sp(B,C ∧ HB,P) ∨ P) ∧ ¬C that is shown in the proof is
also the post condition of the alternative code for the loop described above:

sp(if C then {havoc(mod(B));assume(C);B;assume(!C)}, P) =
(sp(B,C ∧ HB,P) ∨ P) ∧ ¬C

2 Proof can be found at: https://www.sosy-lab.org/research/loop-abstraction/
3 Proof can be found at: https://www.sosy-lab.org/research/loop-abstraction/

https://www.sosy-lab.org/research/loop-abstraction/
https://www.sosy-lab.org/research/loop-abstraction/

A Unifying Approach for Control-Flow-Based Loop Abstraction 9

Observations. We can make three interesting observations by looking at these
proofs. Firstly, we eliminated the outermost loop from the statement S, at the
cost of overapproximation. If this can be achieved iteratively until no loops
are left, the resulting overapproximation can be quickly checked by a (possibly
bounded) model checker, as no loops need to be unrolled anymore.

Secondly, in the proof we actually used an invariant for applying the while-
rule. Every loop-abstraction strategy can therefore be seen as a way to generate
invariants for a loop based on some structural properties of the loop. In the
example of the havoc abstraction, we used the fact that for a precondition P ,
HB,P is always preserved by a loop (provided there is no aliasing). The invariant
depends on the precondition P , so for every precondition with which the loop
can be reached, the loop abstraction yields a different state invariant. Without
knowing P it can only be expressed as a transition invariant that may refer to
the “old” values of variables before entering the loop. One can compute a state
invariant by assuming the most general precondition P = true, but this will
often eliminate most of the useful information from the invariant. As transition
invariants can often be expressed precisely by program statements, this explains
why for loop abstraction, we choose to replace the loop statement with alternative
program statements that capture the corresponding transition invariant. This
invariant view on loop abstraction works in both ways, meaning that if an
invariant is provided for a loop, we can use this invariant for abstracting the loop.
It is even possible to construct an inductive proof this way, i.e., transforming the
loop in such a way that model checking of the resulting program will essentially
carry out a combined-case (k-)inductive proof [15].

The third observation is that the invariant of one loop abstraction might
sometimes imply the invariant of another loop abstraction. This is the case in the
two examples: the invariant for havoc loop abstraction is implied by the invariant
we use in the naive loop abstraction. This means we can build a hierarchy, where
naive loop abstraction overapproximates the original loop, and havoc abstraction
overapproximates naive abstraction. We will exploit the idea of this abstraction
hierarchy later in Sect. 3.2 for an abstraction-refinement scheme.

Constant Extrapolation. For loops where we can calculate the exact number
of iterations as well as the final values of the variables assigned in the loop
(e.g., because the loop is linear or otherwise easily summarizable) we can simply
accelerate the loop by replacing it with assignment statements for the final variable
values. The application of constant extrapolation to the program from Fig. 1a is
shown in Fig. 1c. For the program in Fig. 2, this would replace the loop with a
statement that increments the variable i by N. For programs like the one shown
in Fig. 3 that contains a potential property violation inside the loop, one has to
be careful to preserve those violations that can occur in any of the loop iterations.

3.2 Combining Strategies for Loop Abstraction

In Sect. 3.1 we already introduced various ways to abstract loops, which we will
in the following refer to as strategies. Intuitively, a strategy is a way to compute
an abstraction of a loop that is helpful to verify a program.

10 D. Beyer, M. Lingsch Rosenfeld, and M. Spiessl

Since there are often many different strategies that could be applied to a loop
in the program, we need to make some choice about which strategies to use. The
simplest approach that is used in the state-of-the-art verification tool VeriAbs
is to choose the most promising that can be applied for each loop, generate a
program where the loops are rewritten according to these strategies, and hand
this program over to a (possibly bounded) verifier for verification.

This has the downside that in cases where the program contains multiple
loops, the chosen approximations might be either not abstract enough for the
verifier to calculate the proof efficiently or too abstract, such that the proof of
the property does not succeed. Choosing a good abstraction level is one of the
key challenges in software verification. One successful way how this can be solved
is counterexample-guided abstraction refinement (CEGAR) [14].

Our idea is therefore to use CEGAR in order to refine the abstraction of
the program dynamically during the program analysis, which allows us to try
multiple strategies for the same loop in the program, and even different strategies
for the same loop at different locations in the state-space exploration. Because
a program analysis operates on the CFA, and loop abstractions correspond to
transition invariants that can often be expressed naturally as a sequence of
progam instructions, we choose to encode the loop abstractions directly into
the CFA. This allows us to realize the CEGAR approach for loop abstractions
independently of the details of the exact program analysis that is used.

Encoding of Strategies. We encode strategies that are to be considered directly
into the CFA of the program. The CFA for a program statement S such as a
loop has a unique entry node α and a unique exit node ω. The application of
a strategy to this statement results in the statement S′ and a CFA with an
entry node α′ and an exit node ω′. We attach the CFA for the statement S′ of a
strategy with two dummy transitions α → α′ and ω′ → ω, as depicted in Fig. 4.
Here, we explicitly denoted the entry edge for the strategy application with the
keyword enter followed by an identifier that makes clear which strategy was
applied (here, h stands for havoc). The resemblance to function call and return
edges is not a coincidence. By keeping track of the currently entered strategy
applications, e.g. in form of a stack, it will always be clear which parts of the
execution trace correspond to executions in the original program, and which
parts are part of some —potentially overapproximating— strategy application.
For nested loops, we can apply the strategies starting from the inner-most loop
and construct alternatives in the CFA for all possible strategy combinations.

A CFA that is augmented with strategies in this way contains all program
traces of the original program, and can non-deterministically branch into any of
the strategy applications. In order to make use of this modified CFA, the analysis
needs to be able to distinguish between the original control flow and nodes in
the CFA at which we start to apply a particular strategy. The important nodes
for this are the entry nodes for each of the strategy applications, so we augment
the modified CFA C = (L, linit, G) with a strategy map σ : L → N that maps
each CFA node l ∈ L to a strategy identifier σ(l) ∈ N and call the resulting
tuple Γ = (C, σ) a strategy-augmented CFA. The set N of strategy identifiers

A Unifying Approach for Control-Flow-Based Loop Abstraction 11

1 void main() {
2 int i = 0;
3 while (i<N) {
4 i=i+1;
5 }
6 assert (i==N);
7 }

Fig. 2. Example program 1: potential
property violation outside the loop

1 void main() {
2 int i = 0;
3 while (i<N) {
4 i=i+2;
5 assert(i%2==0);
6 }
7 }

Fig. 3. Example program 2: potential
property violation inside the loop

2

3 4

6

7

8

9

err

α

ω

α′

ω′

i:=0 [i<N]

i:=i+1

enter<h>

if(i<N) {
i:=nondet_int()
assume(i>=N)

}
leave<h>

[i>=N]

[i!=N][i==N]

Fig. 4. CFA C of example program from Fig. 2, with an additional application
of the havoc strategy

contains a special strategy b, which we call the base strategy. The strategy map σ
maps the entry node for each strategy application to the corresponding strategy’s
identifier, while all other nodes are mapped to the base strategy b.

In a program analysis, we can now use the strategy map for selecting exactly
the transitions we want to follow. For example, we can always follow the original
program by excluding all transitions to CFA nodes with an associated strategy
identifier that is different from the base strategy. By using a more general
selection function, we have fine-grained control over which strategies we are
applying, which we will describe in the following. As this modifies only the
transition relation of the state-space exploration, it can be seamlessly applied
to a wide variety of such algorithms.

Selection of Strategies. At any node l in an augmented CFA, we can calculate
the set A ⊆ N of available strategies as:

A = {σ(l′) | ∃g ∈ G : l
g→ l′}

In order to define which strategies should be applied (e.g., because others overap-
proximate too much and lead to false alarms), we define a precision set πS ⊆ N

12 D. Beyer, M. Lingsch Rosenfeld, and M. Spiessl

which we call the strategy precision. This precision can be tracked along each
abstract state of the program analysis. In practice this precision is tracked for each
program location separately, but for simplicity of presentation, we will only con-
sider a global precision here. Semantically the precision expresses which strategies
are allowed to be taken from the current abstract state. We can now express differ-
ent selection approaches by defining a function select : P(N) × P(N) → P(N),
which needs to fulfill the property select(A, πS) ⊆ A ∩ πS .

The exact choice of the function select depends on the use case and the set
of available strategies. One possibility which we will use is to define a partial
order � over the set of available strategy identifiers, and derive the selection
function in the following way:

select(A, πS) = {s ∈ A ∩ πs |� ∃s′ ∈ A ∩ πs : s � s′} (1)

Such a partial order can be based on the invariant hierarchy of the loop-
abstraction strategies, as motivated in Sect. 3.1. It is of course not guaranteed
that deciding whether one invariant implies the other is actually decidable. But
depending on the strategies considered, one can also just take some design
decisions regarding the partial order. In general it is desirable to have the base
strategy as greatest lower bound, since as long as only overapproximation is
considered, this is the most precise strategy.

The selection function above will return the most abstract strategies, i.e.,
that overapproximate most. Once we rule those out by removing their strategy
identifier from the precision, more and more precise strategies will be returned.

CEGAR Refinement Chaining. We can now define the refinement operator
refine for precision-based loop acceleration on top of any refiner of an existing
analysis, which we will call the wrapped refiner refineW. This can be done by
composing the refinement operator refineW with the strategy-refinement op-
erator refineS, which updates the strategy precision with information from
the error path:

refine = refineS ◦ refineW (2)

Since the wrapped refinement operator is executed first, it gets the possibility
to remove all error states from the reached set, in which case refineS has nothing
to do and will just return its inputs. If there are still error states left in the
reached set after refineW was executed, this means that the inner refinement
has discovered a feasible error path for the augmented CFA. Now it depends on
whether any overapproximating strategies were used on the error paths that are
present in the reached set. If there are none, then the error path is indeed also
present in the real program and refineS returns the reached set with the error
state(s), indicating that a bug has been found. An example for this would be the
case where only constant extrapolation has been used along the path. If there are
overapproximating strategies such as the havoc abstraction on an error path, we
can adapt the strategy precision in order to rule out that we will find the same
error path again after the refinement. For that, we locate the first abstract state
on the path whose successor enters an overapproximating strategy (the so-called

A Unifying Approach for Control-Flow-Based Loop Abstraction 13

pivot state) and adapt the strategy precision such that this strategy can not be
selected in the future. We then remove all (transitive) successor abstract states
of that pivot state from the set of reached abstract states.

Example. The chaining of the refinement operators is best visualized by looking
at an example. Using the running example from Fig. 2, we can look at the key
steps in the CEGAR refinement. Let us assume we are only using the havoc
strategy, i.e., the augmented CFA will look like shown in Fig. 4. Based on this CFA,
an example for how a generic state-space exploration could look like is depicted
in Fig. 5. In Fig. 5a we start at an abstract state with three components. The first
one encodes the program location and is set to 2, since program location 2 is the
initial progam location in the CFA. Component e0 encodes the analysis-specific
domain part of the abstract state, e.g., for predicate abstraction this could be
a set of predicates. The last component is the strategy precision. It contains
the base strategy (b) as well as the havoc strategy (h). From this state, the
state-space exploration continues to program location 3, where the selection of
strategies in the transition relation only allows us to proceed into the application
of the havoc abstraction. From there, we eventually reach the error location.

This is where the CEGAR refinement operator is first called. Since the path
formula to the error location is actually feasible, the wrapped refinement operator
return the inputs unchanged, and our strategy refinement operator takes over.
Here we discover that an overapproximating strategy was used on the path. We
update the strategy precision of the second state (the one at program location 3)
such that the havoc strategy cannot be chosen anymore. We then remove all
successors of the pivot state from the set of reached abstract states (and the
waitlist), add the modified state to the waitlist, and return both sets.

The resulting reachability graph will look like in Fig. 5b. From there, the
state-space exploration can continue as shown in Fig. 5c. We again discover an
error path, this time however the wrapped refinement operator can determine
that this error path is infeasible. In case of a predicate abstraction, a predicate like
i < N would be discovered and added to the predicate precision of e′

1 at program
location 3. All successors after location 3 are removed again and the wrapped
refinement operator returns. Since there is no error state present anymore in
the set of reached states, the strategy refinement operator returns its inputs
unchanged. The state-space exploration then continues by adding a new abstract
state for program location 4 and so on, as depicted in Fig. 5d.

Transformation into Source Code. We also provide functionality to convert
the loop abstractions we found back into source code, such that our findings can
be used and validated by others. For that, we provide two different mechanisms.
The first is that whenever we are able to generate a proof using some loop-
abstraction strategy, we generate a modified version of the input program where
just the loops are changed to reflect the effect of the loop abstraction. The second
mechanism is that we provide a way to analyze a C program such that for each
loop in the program and each loop-abstraction strategy, we create a patch file
for the program (in case the strategy is applicable) that —when applied— will
apply the loop abstraction on the source-code level.

14 D. Beyer, M. Lingsch Rosenfeld, and M. Spiessl

2, e0, {b, h}

3, e1, {b, h}

. . .

6, e5, {b, h}

err, e6, {b, h}

i:=0

enter<h>

[i !=N]

(a)

2, e0, {b, h}

3, e1, {b}
i:=0

(b)

2, e0, {b, h}

3, e1, {b}

4, e7, {b}6, e8, {b}

. . .err, e6, {b}

i:=0

[i<N][i>=N]

[i !=N]

(c)

2, e0, {b, h}

3, e′
1, {b}

4, e′
7, {b}

. . .

i:=0

[i<N]

(d)

Fig. 5. Example for constructing a reachability graph of a program analysis
on Fig. 4 using chained CEGAR refinements: (a) initial ARG until first re-
finement, (b) strategy precision updated after refinement (strategy h removed
from precision), (c) state-space exploration on the original program continues,
(d) exploration continues after a regular CEGAR refinement (e1 replaced by e′

1)

4 Evaluation

As a first step, we implemented the three loop-abstraction strategies that we de-
scribed in Sect. 3.1 into the state-of-the-art verification framework CPAchecker:
havoc abstraction (h), naive abstraction (n), and constant extrapolation (c).
In addition, we also implemented so-called output abstraction (o) [15]. For
the evaluation, we define the following (partial) order on which the function
select will be based:

b � o � c � n � h (3)

We are interested in answering the following research questions:

• RQ1: Can our CEGAR-style loop-abstraction scheme soundly improve a
verifier like CPAchecker independently of the underlying analysis?

• RQ2: Are these abstractions also useful for other verifiers?

We conduct an experiment for each RQ in Sect. 4.2 to abtain answers.

4.1 Benchmark Environment

For conducting our evaluation, we use BenchExec to ensure reliable bench-
marking [12]. All benchmarks are performed on machines with an Intel Xeon
E5-1230 CPU (4 physical cores with 2 processing units each), 33GB of RAM,
and running Ubuntu 20.04 as operating system. All benchmarks are executed
with resources limited to 900 s of CPU time, 15 GB of memory, and 1 physical
core (2 processing units).

A Unifying Approach for Control-Flow-Based Loop Abstraction 15

0 50 100 150 200

10

100

1 000

n-th fastest result

C
P
U

ti
m
e
(s
)

PA
PA-LA

(a) Predicate Analysis

0 20 40 60 80 100 120

10

100

1 000

n-th fastest result

C
P
U

ti
m
e
(s
)

VA
VA-LA

(b) Value Analysis

0 100 200 300 400

10

100

1 000

n-th fastest result

C
P
U

ti
m
e
(s
)

BMC
BMC-LA

(c) BMC Analysis

Fig. 6. Quantile plots comparing performance of plain analyses with their versions
that use loop-abstraction strategies; only correct results are considered

4.2 Experiments

For our experiments we use verification tasks taken from the SV-Benchmarks set
of SV-COMP 2022 [3,4]. Here we selected only the 765 reachability tasks from
the subcategory ReachSafety-Loops, as these cover a wide range of interesting
loop constructs while at the same time only using a limited set of features of the
programming language C, which allows us to focus on the algorithms instead
of having to deal with lots of special cases.

RQ1. In a first experiment, we evaluate whether our approach can improve the
overall results, and whether our new framework introduces significant overhead,
for three analyses of CPAchecker: (1) predicate analysis (PA) [5] configured to
use predicate abstraction [7,9,18], (2) value analysis (VA) [6,11], which is an
extension of constant propagation [21], and (3) predicate analysis configured to
work as bounded model checking (BMC) [13]. For improvements we will look at
effectiveness as well as efficiency. By effectiveness we mean an increase in the
number of solved verification tasks while at the same time preserving soundness
of the results, i.e., no increase of the number of wrong proofs or wrong alarms.
For efficiency we will take a look at how our approach affects the verification
time of successfully verified tasks.

16 D. Beyer, M. Lingsch Rosenfeld, and M. Spiessl

Table 1. Results for predicate abstraction (PA), value analysis (VA), and bounded
model checking (BMC), without vs. with loop abstraction (LA)

PA PA-LA VA VA-LA BMC BMC-LA

Total 765 765 765 765 765 765

Total proofs 533 533 533 533 533 533

Correct proofs 164 163 33 35 235 248

Incorrect proofs 0 0 0 0 0 0

Total alarms 232 232 232 232 232 232

Correct alarms 58 62 76 81 144 144

Incorrect alarms 0 0 0 0 0 0

Table 2. Impact of loop abstractions on solving capabilities of the software verifiers
UAutomizer (UA), Cbmc, and Symbiotic, without vs. with loop abstraction (LA)
via generated abstracted programs

UAutomizer UAutomizer-la Cbmc Cbmc-la Symbiotic Symbiotic-la

Total 18 18 18 18 18 18

Total proofs 14 14 14 14 14 14

Correct proofs 12 13 0 13 12 13

Incorrect proofs 0 1 0 1 0 1

Total alarms 4 4 4 4 4 4

Correct alarms 0 3 1 3 1 3

Incorrect alarms 0 0 0 0 0 0

The quantile plots in Fig. 6 show that we are able to slightly improve the
results for all analyses. Both effectiveness and efficiency is improved, and thus,
there is no noticeable overhead. We use PA-LA, VA-LA, and BMC-LA to refer to
the variants of the analyses that use our CEGAR-style loop-abstraction scheme.
As expected, the overhead of applying loop abstraction in cases where this does
not help with solving the verification task does not add a significant overhead
to the verification time. Table 1 shows that our approach is also sound, i.e., it
does not increase the number of incorrect results.

Another observation is that there are more proofs as well as property violations
found this way. The latter is possible because constant extrapolation is a precise
abstraction, meaning that a counterexample found using this strategy corresponds
to a feasible error path in the program.

The experimental data so far suggests that if loop abstraction helps with
verification, the verification will usually succeed very quickly. For all tasks where
the verdict improves, the application of loop abstraction reduces the verification
time from a timeout, i.e., more than 900 seconds, to less than 10 seconds. On closer
inspection, we find a total of 18 verification tasks where the loop abstraction is
essential in proving the program correct with the used analyses. When comparing
the different analyses, the effect is most noticeable with bounded model checking,
which is not surprising given the fact that BMC alone can not prove programs
with unbounded loops. There are 6 tasks where predicate analysis improved, 5

A Unifying Approach for Control-Flow-Based Loop Abstraction 17

tasks for value analysis, and 17 tasks for BMC.4 Since our framework supports
exporting the accelerated loops into the source code, we can use the 18 abstracted
programs that improved CPAchecker’s results in the next experiment, where we
check whether these are also useful for other software verifiers.

RQ2. In the second experiment we take a look at whether our approach has
the potential to improve the results of other state-of-the-art verification tools as
well. In order to be able to do so without having to modify the existing tools, we
take those programs where loop-abstraction strategies were able to improve the
results for CPAchecker and automatically generate the abstracted programs
that can then be fed to other verifiers. In our case, we use the three well-known
verifiers Cbmc, Symbiotic, and UAutomizer.

The results of all three verifiers improve if loop abstraction is applied, as
shown in Table 2. The table shows the results for the verifiers on the original
verification tasks (columns without suffix LA) and on the abstracted programs
(column with suffix LA). Note that this will not be the case in general, but for the
selected verification tasks, we know that one of our implemented loop abstraction
strategies is actually sufficient to prove the program correct. In general, if a loop
abstraction over-approximates too much, the verifier will quickly find an error
path, in which case we would execute the verifier on the original program. There
is also one program for which our loop abstraction leads to a wrong proof, which
is due to a bug in our translation back into source code.

The main observation here regarding our research question is that the results
of all three verifiers can be improved by applying loop abstraction. We get the
largest improvement for the bounded model checker Cbmc. This is not surprising
and in line with the results from the bounded model checking with CPAchecker.

5 Conclusion

Loop abstraction is a technique for program verification that is currently not
used by many of the state-of-the-art verification tools. In our experiments we
have shown that mature verifiers can still benefit even from very simple loop
abstractions. By adding more sophisticated loop-abstraction strategies in the
future, we hope to achieve even better results that further improve the state-of-
the-art. We make the loop abstractions that we implemented available to other
tools by generating modified versions of the input programs, such that also other
tools can benefit from loop abstractions in the future.

In this paper, we have also addressed the problem of how to select the right
combination of loop abstractions for programs with multiple loops. Instead of
deciding upfront which combination to choose, we use a novel approach based on
CEGAR to automatically refine the loop abstractions as the analysis progresses.
By using the control flow as interface for program analyses, we are able to apply
our approach to a wide range of existing analyses and abstract domains, without
additional implementation overhead.

4 Detailed results at: https://www.sosy-lab.org/research/loop-abstraction/

https://www.sosy-lab.org/research/loop-abstraction/

18 D. Beyer, M. Lingsch Rosenfeld, and M. Spiessl

Data-Availability Statement. The software and programs that we used for
our experiments, including the generated programs with abstracted loops, are
open source and available on our supplementary web page at https://www.
sosy-lab.org/research/loop-abstraction/ and in the reproduction pack-
age at Zenodo [10].

Funding Statement. This project was funded in part by the Deutsche Forschungs-

gemeinschaft (DFG) – 378803395 (ConVeY).

References

1. Afzal, M., Asia, A., Chauhan, A., Chimdyalwar, B., Darke, P., Datar, A., Kumar,
S., Venkatesh, R.: VeriAbs: Verification by abstraction and test generation. In:
Proc. ASE. pp. 1138–1141 (2019). https://doi.org/10.1109/ASE.2019.00121

2. Ball, T., Majumdar, R., Millstein, T.D., Rajamani, S.K.: Automatic predicate
abstraction of C programs. In: Proc. PLDI. pp. 203–213. ACM (2001). https://
doi.org/10.1145/378795.378846

3. Beyer, D.: Progress on software verification: SV-COMP 2022. In: Proc.
TACAS (2). pp. 375–402. LNCS 13244, Springer (2022). https://doi.org/10.
1007/978-3-030-99527-0 20

4. Beyer, D.: SV-Benchmarks: Benchmark set for software verification and testing (SV-
COMP 2022 and Test-Comp 2022). Zenodo (2022). https://doi.org/10.5281/
zenodo.5831003

5. Beyer, D., Dangl, M., Wendler, P.: A unifying view on SMT-based software verifi-
cation. J. Autom. Reasoning 60(3), 299–335 (2017). https://doi.org/10.1007/
s10817-017-9432-6

6. Beyer, D., Gulwani, S., Schmidt, D.: Combining model checking and data-flow
analysis. In: Handbook of Model Checking, pp. 493–540. Springer (2018). https://
doi.org/10.1007/978-3-319-10575-8 16

7. Beyer, D., Henzinger, T.A., Jhala, R., Majumdar, R.: The software model checker
Blast. Int. J. Softw. Tools Technol. Transfer 9(5–6), 505–525 (2007). https://doi.
org/10.1007/s10009-007-0044-z

8. Beyer, D., Henzinger, T.A., Théoduloz, G.: Program analysis with dynamic precision
adjustment. In: Proc. ASE. pp. 29–38. IEEE (2008). https://doi.org/10.1109/
ASE.2008.13

9. Beyer, D., Keremoglu, M.E., Wendler, P.: Predicate abstraction with adjustable-
block encoding. In: Proc. FMCAD. pp. 189–197. FMCAD (2010)

10. Beyer, D., Lingsch Rosenfeld, M., Spiessl, M.: Reproduction package for SEFM 2022
article ‘A unifying approach for control-flow-based loop abstraction’. Zenodo (2022).
https://doi.org/10.5281/zenodo.6793834

11. Beyer, D., Löwe, S.: Explicit-state software model checking based on CEGAR
and interpolation. In: Proc. FASE. pp. 146–162. LNCS 7793, Springer (2013).
https://doi.org/10.1007/978-3-642-37057-1 11

12. Beyer, D., Löwe, S., Wendler, P.: Reliable benchmarking: Requirements and
solutions. Int. J. Softw. Tools Technol. Transfer 21(1), 1–29 (2017). https://doi.
org/10.1007/s10009-017-0469-y

13. Biere, A., Cimatti, A., Clarke, E.M., Zhu, Y.: Symbolic model checking without
BDDs. In: Proc. TACAS. pp. 193–207. LNCS 1579, Springer (1999). https://doi.
org/10.1007/3-540-49059-0 14

https://www.sosy-lab.org/research/loop-abstraction/
https://www.sosy-lab.org/research/loop-abstraction/
http://gepris.dfg.de/gepris/projekt/378803395
https://doi.org/10.1109/ASE.2019.00121
https://doi.org/10.1145/378795.378846
https://doi.org/10.1145/378795.378846
https://doi.org/10.1007/978-3-030-99527-0_20
https://doi.org/10.1007/978-3-030-99527-0_20
https://doi.org/10.5281/zenodo.5831003
https://doi.org/10.5281/zenodo.5831003
https://doi.org/10.1007/s10817-017-9432-6
https://doi.org/10.1007/s10817-017-9432-6
https://doi.org/10.1007/978-3-319-10575-8_16
https://doi.org/10.1007/978-3-319-10575-8_16
https://doi.org/10.1007/s10009-007-0044-z
https://doi.org/10.1007/s10009-007-0044-z
https://doi.org/10.1109/ASE.2008.13
https://doi.org/10.1109/ASE.2008.13
https://doi.org/10.5281/zenodo.6793834
https://doi.org/10.1007/978-3-642-37057-1_11
https://doi.org/10.1007/s10009-017-0469-y
https://doi.org/10.1007/s10009-017-0469-y
https://doi.org/10.1007/3-540-49059-0_14
https://doi.org/10.1007/3-540-49059-0_14

A Unifying Approach for Control-Flow-Based Loop Abstraction 19

14. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement for symbolic model checking. J. ACM 50(5), 752–794 (2003).
https://doi.org/10.1145/876638.876643

15. Darke, P., Chimdyalwar, B., Venkatesh, R., Shrotri, U., Metta, R.: Over-
approximating loops to prove properties using bounded model checking. In: Proc.
DATE. pp. 1407–1412. IEEE (2015). https://doi.org/10.7873/DATE.2015.0245

16. Darke, P., Khanzode, M., Nair, A., Shrotri, U., Venkatesh, R.: Precise analysis of
large industry code. In: Proc. APSEC. pp. 306–309. IEEE (2012). https://doi.
org/10.1109/APSEC.2012.97

17. Frohn, F.: A calculus for modular loop acceleration. In: Proc. TACAS (1). pp. 58–76.
LNCS 12078, Springer (2020). https://doi.org/10.1007/978-3-030-45190-5 4

18. Graf, S., Säıdi, H.: Construction of abstract state graphs with Pvs. In: Proc.
CAV. pp. 72–83. LNCS 1254, Springer (1997). https://doi.org/10.1007/
3-540-63166-6 10

19. Jeannet, B., Schrammel, P., Sankaranarayanan, S.: Abstract acceleration of general
linear loops. In: Proc. POPL. pp. 529–540. ACM (2014). https://doi.org/10.1145/
2535838.2535843

20. Jhala, R., Podelski, A., Rybalchenko, A.: Predicate abstraction for program
verification. In: Handbook of Model Checking, pp. 447–491. Springer (2018).
https://doi.org/10.1007/978-3-319-10575-8 15

21. Kildall, G.A.: A unified approach to global program optimization. In: Proc. POPL.
pp. 194–206. ACM (1973). https://doi.org/10.1145/512927.512945

22. Kumar, S., Sanyal, A., Venkatesh, R., Shah, P.: Property checking array programs
using loop shrinking. In: Proc. TACAS (1). pp. 213–231. LNCS 10805, Springer
(2018). https://doi.org/10.1007/978-3-319-89960-2 12

23. Madhukar, K., Wachter, B., Kröning, D., Lewis, M., Srivas, M.K.: Accelerating
invariant generation. In: Proc. FMCAD. pp. 105–111. IEEE (2015)

24. Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis. Springer
(1999). https://doi.org/10.1007/978-3-662-03811-6

25. Sagiv, M., Reps, T.W., Wilhelm, R.: Parametric shape analysis via 3-valued logic.
ACM Trans. Program. Lang. Syst. 24(3), 217–298 (2002)

26. Silverman, J., Kincaid, Z.: Loop summarization with rational vector addition
systems. In: Proc. CAV, Part 2. pp. 97–115. LNCS 11562, Springer (2019). https://
doi.org/10.1007/978-3-030-25543-5 7

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1145/876638.876643
https://doi.org/10.7873/DATE.2015.0245
https://doi.org/10.1109/APSEC.2012.97
https://doi.org/10.1109/APSEC.2012.97
https://doi.org/10.1007/978-3-030-45190-5_4
https://doi.org/10.1007/3-540-63166-6_10
https://doi.org/10.1007/3-540-63166-6_10
https://doi.org/10.1145/2535838.2535843
https://doi.org/10.1145/2535838.2535843
https://doi.org/10.1007/978-3-319-10575-8_15
https://doi.org/10.1145/512927.512945
https://doi.org/10.1007/978-3-319-89960-2_12
https://doi.org/10.1007/978-3-662-03811-6
https://doi.org/10.1007/978-3-030-25543-5_7
https://doi.org/10.1007/978-3-030-25543-5_7
http://creativecommons.org/licenses/by/4.0/

Auto-Active Verification of Floating-Point
Programs via Nonlinear Real Provers

Junaid Rasheed(B) and Michal Konečný

Aston University, Birmingham B4 7ET, UK
rasheeja@aston.ac.uk

Abstract. We give a process for verifying numerical programs against
their functional specifications. Our implementation is capable of auto-
matically verifying SPARK programs against tight error bounds fea-
turing common elementary functions. We demonstrate and evaluate
our implementation on several examples, yielding the first fully verified
SPARK implementations of the sine and square root functions.

The process integrates existing tools using a series of transformations
and derivations, building on the proving process in SPARK where Why3
produces Verification Conditions (VCs) and tools such as SMT solvers
attempt to verify them. We add steps aimed specifically at VCs that
contain inequalities with both floating-point operations and exact real
functions. PropaFP is our open-source implementation of these steps.

Keywords: Floating-point computation · Software verification ·
Automated proving · Interval methods · Software assurance

1 Introduction

Context. Safety-critical software often includes numerical calculations. Since
most processors now contain a floating-point (FP) unit, these calculations often
use FP arithmetic to utilise the speed of FP units.

Those developing safety-critical programs need to provide guarantees that the
program behaves in a precisely specified way. This can be achieved via formal
verification, i.e., proving that the program adheres to some specification.

For example, consider the Ada function in Listing 1.1 that computes a Taylor
approximation of the sine function. We specify that this function gives a result
very close to the exact sine function under some conditions:

X ∈ [−0.5, 0.5] =⇒ |Taylor_Sin’Result − sin(X)| ≤ 0.00025889 (1)

We would like a tool to automatically verify this specification or obtain a counter-
example if it is not valid. This is an example of auto-active verification [18],
i.e., automated proving of inline specifications such as post-conditions and loop
invariants.
M. Konečný—This project has received funding from AdaCore Ltd and from the
European Union’s Horizon 2020 research and innovation programme under the Marie
Skłodowska-Curie grant agreement No 731143.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
B.-H. Schlingloff and M. Chai (Eds.): SEFM 2022, LNCS 13550, pp. 20–36, 2022.
https://doi.org/10.1007/978-3-031-17108-6_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-17108-6_2&domain=pdf
http://orcid.org/0000-0002-2762-4097
http://orcid.org/0000-0003-2374-9017
https://doi.org/10.1007/978-3-031-17108-6_2

Auto-Active Verification of FP Programs 21

Listing 1.1. Sine function in Ada

function Taylor_Sin (X : Float) return Float is
(X - ((X * X * X) / 6.0));

To this end, we deploy SPARK technology [14], which represents the state-
of-the-art in industry-standard formal software verification. Specifically, we use
SPARK Pro 22.1 which includes the GNAT Studio IDE and GNATprove. GNAT-
prove manages Why3 and a selection of bundled SMT solvers (Alt-Ergo [6],
Colibri [19], CVC4 [3], and Z3 [20]) as shown in Fig. 1.

As a language, SPARK is based on Ada with a focus on program veri-
fication. GNATprove translates SPARK programs to WhyML programs and
Why3 [4] then derives proof obligations in the form of verification conditions
(VCs), which are formulas comprising traditional mathematical features such
as numbers, numerical functions, and sets, and do not mention programming
constructions such as loops and mutable variables. The VCs imply that the
program satisfies the given specification. Finally, these VCs are sent to various
solvers which attempt to decide them. Why3 plays a key role in SPARK as
well as other toolchains, effectively harnessing available solvers and provers for
software verification.

Problem. With a SPARK version of the specification (1), the toolchain auto-
matically verifies absence of overflow in the Taylor_Sin function. This is not dif-
ficult since the input X is restricted to the small domain [−0.5, 0.5]. However,
the current SPARK toolchain and other frameworks we know of are unable to
automatically verify that the result of Taylor_Sin(X) is close to the exact sin(X).

Part of the problem is that the VCs feature a mixture of exact real and
FP operations. For example, in the VCs derived from (1), Taylor_Sin’Result is
replaced with

X � ((X ⊗ X ⊗ X) � 6.0)

where �, ⊗, and � are FP subtraction, multiplication, and division, respectively.
Although SPARK has some support for FP verification [10,12], automatically
verifying (1) requires further work.

Solution. To automatically verify functional specifications analogous to (1), we
have designed and implemented an extension of the SPARK proving process,
called PropaFP. The following steps are applied to quantifier-free VCs that con-
tain real inequalities:

1. Derive bounds for variables and simplify the VC.
2. Safely replace FP operations with the corresponding exact real operations.
3. Again simplify the VC.
4. Attempt to decide the resulting VCs with provers for nonlinear real theorems.

22 J. Rasheed and M. Konečný

Listing 1.2. SPARK formal specification of Taylor_Sin

function Taylor_Sin (X : Float) return Float with
Pre => X >= -0.5 and X <= 0.5,
Post =>

abs(Real_Sin(Rf(X)) - Rf(Taylor_Sin ’Result))
<= Ri (25889) / Ri (100000000); −− 0.00025889

Fig. 1. Overview of Automated Verification via GNATprove with PropaFP

PolyPaver [11] is a nonlinear real theorem prover that integrates with an earlier
version of SPARK in a similar way, but lacks the simplification steps and has a
much less powerful method of safely replacing FP operations.

Paper Outline. Section 2 describes PropaFP steps in detail, and Sect. 3 analyses
the components of the least error bound that is provable in this way. Sections 4
and 5 illustrate the process on further examples, featuring a loop, domain reduc-
tion using integers, and calling non-trivial subprograms. Section 6 analyses the
performance of the new proving process and Sect. 7 concludes the paper.

2 Our Proving Process Steps

We will illustrate the steps using the program Taylor_Sin from Listing 1.1. First
consider its SPARK formal specification shown in Listing 1.2.

To write more intuitive specifications, we use the Ada Big_Real and Big_Integer
libraries to get exact rational arithmetic in specifications. Although in Ada the
type Big_Real contains only rationals, Why3 treats Big_Real as the type of reals.
We added non-rational functions such as Real_Sin as ghost functions; functions
with no implementation, only a specification. Their specifications give a collec-
tion of basic axioms for solvers that do not understand the function natively.
For example, the specification of Real_Sin declares the range and special values
of sine.

The listings in this paper use shortened versions of some functions to aid read-
ability. Functions FC.To_Big_Real, FLC.To_Big_Real, and To_Real respectively embed
Floats, Long_Floats (doubles), and Integers to Big_Reals. We have shortened these
functions to Rf, Rlf, and Ri, respectively.

Auto-Active Verification of FP Programs 23

Listing 1.3. NVC corresponding to the post-condition from Listing 1.2

−− assertions regarding axioms for sin and pi omitted
assert to_float(RNA , 1) = 1.0
assert isFiniteFloat (x)
assert (-0.5) ≤ x ∧ x ≤ 0.5
assert isFiniteFloat (x�x)
assert isFiniteFloat ((x�x)�x)
assert isFiniteFloat (x � (((x�x)�x)�6.0))
assert
¬((

sin(x) + (-1·(x � (((x�x)�x)�6.0))) ≥ 0.0
=⇒
sin(x) + (-1·(x � (((x�x)�x)�6.0))) ≤ 25889/100000000

)∧(
¬(sin(x) + (-1·(x � (((x�x)�x)�6.0))) ≥ 0.0)
=⇒
-1�(sin(x) + (-1·(x � (((x�x)�x)�6.0)))) ≤ 25889/100000000

))

2.1 Generating and Processing Verification Conditions

If a VC is not decided by the included SMT solvers, we use the Manual Proof
feature in GNAT Studio to invoke PropaFP via a custom Why3 driver based
on the driver for CVC4. This driver applies selected Why3 transformations
and saves the VC in SMT format. Since in this format the VC is a negation
of the specification from which it was produced, we shall refer to it as ‘the
negated VC’ (NVC). The VC contextAsConjunction =⇒ goal becomes the NVC
contextAsConjunction ∧ ¬goal. During further processing, we may weaken the con-
junction of assertions by, for example, dropping assertions. A model that satisfies
the weakened NVC will not necessarily be a counter-example to the original VC
or the original specification. However, if the weakened NVC has no model, then
both the original VC and the original specification are correct.

When parsing the SMT files, we ignore the definitions of basic arithmetic
operations and transcendental functions. Instead of using these definitions, we
use each prover’s built-in interpretations of such operations and functions. In
more detail, the parsing stage comprises the following steps:

– Parse the SMT file as a list of Lisp S-expressions. Drop everything except
assertions and variable and function type declarations.

– Scan the assertions and drop any that contain unsupported functions.
– Determine the precision of FP operations by a bottom-up type derivation.

The precision of literals is clear since they are given as bit vectors and the
precision of variables is given in their declarations.

Dealing with π. Similar to Real_Sin, we have added a ghost parameterless func-
tion, Real_Pi, whose specification contains selected axioms for the exact π. Why3

24 J. Rasheed and M. Konečný

turns this into the function real_pi with no input. To help provers understand
that this is the exact π, all calls to real_pi are substituted with π.

For Taylor_Sin, the only VC that the SMT solvers included with GNAT Studio
cannot solve is the post-condition VC. The NVC for this post-condition is in
Listing 1.3. It has been reformatted for better readability by, e.g., removing
redundant brackets, using circled symbols for FP operations, and omitting some
irrelevant statements. The predicate isFiniteFloat(X) is short for the inequalities
MinFloat <= X, X <= MaxFloat.

2.2 Simplifications and Bounds Derivation

As some of the tools used by PropaFP require bounds on all variables, we attempt
to derive bounds from the assertions in the NVC. First, we make the following
symbolic simplifications to help derive better bounds:

– Reduce vacuous propositions and obvious tautologies, such as:
ϕ = ϕ −→ true (NOT ϕ OR true) AND (ϕ OR false) −→ ϕ

– Eliminate variables by substitution as follows:
• Find variable-defining equations in the NVC, except circular definitions.
• Pick a variable definition and make substitutions accordingly.

* E.g., pick i=i1+1, and replace all occurrences of i with i1+1.
• If the variable has multiple definitions, pick the shortest one.

* E.g., if there are both x=1 and x=0+1, pick the first one.
– Perform simple arithmetic simplifications, such as:

ϕ / 1 −→ ϕ; 0 + 1 −→ 1; MIN (e, e) −→ e.
– Repeat the above steps until no further simplification can be made.

Deriving bounds for variables proceeds as follows:

– Identify inequalities which contain only a single variable on either side.
– Iteratively improve bounds by interval-evaluating the expressions given by

these inequalities.
• Initially the bounds for each variable are −∞ and ∞.
• For floating-point rounding rnd(x), we overestimate the rounding error

by the interval expression x · (1 ± ε) ± ζ where ε is the machine epsilon,
and ζ is the machine epsilon for denormalized numbers for the precision
of the rounded operation.

– Variables are assumed to be real unless they are declared integer.
– For integer variables, trim their bounds to nearest integers inside the interval.

Next, use the derived bounds to potentially further simplify the NVC:

– Evaluate all formulas in the NVC using interval arithmetic.
– If an inequality is decided by this evaluation, replace it with True or False.

Finally, repeat the symbolic simplification steps, e.g., to remove any tau-
tologies that have arisen from the interval evaluation. Repeat deriving bounds,
evaluations, and simplifications until we have no further improvement.

Auto-Active Verification of FP Programs 25

Listing 1.4. Taylor_Sin NVC after simplification and bounds derivation

Bounds on variables:
x (real) ∈ [-0.5, 0.5]

NVC:
assert to_float(RNA , 1) = 1.0
−− The last assertion is unchanged from Listing 1.3 except turning ≥s into equivalent ≤s.

Similarities with Abstract Interpretation. This iterative process can be thought
of as a simple form of Abstract Interpretation (AI) over the interval domain [7],
but instead of scanning program steps along paths in loops, we scan a set of
mutually recursive variable definitions.

The NVC arising from Taylor_Sin, shown in Listing 1.3, is already almost in
its simplest form. The symbolic steps described in this section applied on this
NVC only remove the assertions bounding x. The resulting bounded NVC is
outlined in Listing 1.4.

2.3 Eliminating Floating-Point Operations

VCs arising from FP programs are likely to contain FP operations. As most
provers for real inequalities do not natively support FP operations, we need
to eliminate the FP operations before passing the NVCs to these provers. We
propose computing a bound on the size of the overall rounding errors in expres-
sions using a tool specialised in this task, replacing FP operations with the
corresponding real operations, and compensating for the loss of rounding by
adding/subtracting the computed error bound. Note that this action weakens
the NVCs. Recall that weakening is safe for proving correctness but may lead to
incorrect counter-examples.

Currently, in our implementation, we use FPTaylor [25] which supports most
of the operations we need. In principle, we can use any tool that gives reliable
absolute bounds on the rounding error of our FP expressions, such as Gappa [9],
Rosa [8], or PRECiSA [26], perhaps enhanced by FPRoCK [24].

There are expressions containing FP operations in the Taylor_Sin NVC. The
top-level expressions with FP operators are automatically passed to FPTaylor.
Listing 1.5 shows an example of how the expressions are specified to FPTaylor.
The error bounds computed by FPTaylor for the Taylor_Sin NVC expressions
with FP operators are summarised in Table 1.

We can now use these error bounds to safely replace FP operations with
exact real operations. Listing 1.6 shows the resulting NVC for Taylor_Sin.

There may be statements which can be further simplified thanks to the elimi-
nation of FP operations. For example, in Listing 1.6, we have the trivial tautology
1 ± 0.0 = 1.0. To capitalise on such occurrences, we could once again interval-
evaluate each statement in the NVC. Instead, we invoke the steps from Sect. 2.2

26 J. Rasheed and M. Konečný

Table 1. Error bounds computed by FPTaylor

rnd32(1.0) 0
sin(x) + (-1 * rnd32((x - rnd32((rnd32((rnd32((x * x)) * x)) / 6))))) 1.769513e-8
-1 * (sin(x) + (-1 * rnd32((x - rnd32((rnd32((rnd32((x * x)) * x)) / 6)))))) 1.769513e-8

Listing 1.5. FPTaylor file to compute an error bound of the Taylor_Sin VC
Variables

real x in [-0.5, 0.5];

Expressions
sin(x) + (-1 * rnd32((x - rnd32((rnd32((rnd32((x*x))*x)) / 6)))));

// Computed absolute error bound: 1.769513e-8

again, which not only include interval evaluation, but also make any consequent
simplifications. In Table 3 this NVC is referred to as Taylor_Sin.

We now have derived bounds for variables and a weakened and simplified
NVC with no FP operations, ready for provers. We will call this the ‘simplified
exact NVC’.

Alternative Methods to Verify FP Problems. Why3 includes a formalization of
the FP IEEE-754 standard [1]. For SMT solvers that natively support FP oper-
ations, this formalization is mapped to the SMT-LIB FP theory, and for SMT
solvers that do not support FP operations, an axiomatization of the formaliza-
tion is given [12]. This approach is currently unable to verify our examples, as
SMT solvers and their FP theories are not yet sufficiently powerful to decide
problems with nonlinear real expressions and FP operations. This includes Col-
ibri, as currently integrated with GNATprove. Recent advances in FP support
for SMT solvers [17,21,27] may help if combined with more powerful non-linear
real solving. Recently, a FP SPARK program computing a weighted average
has been verified using these techniques with additional lemmas supplied to the
solvers via ‘ghost’ code [10]. Nevertheless, this approach still does not help SMT
solvers prove inequalities featuring elementary functions.

3 Deriving Provable Error Bounds

The specification in Listing 1.2 bounds the difference between Taylor_Sin(X) and
the exact sine function. Such a bound can be broken down as follows:

– The subprogram specification error, i.e. the error inherited from the
specification of any subprograms that the implementation relies on.

• If an implementation relies on some subprogram, the specification, not
the implementation, of that subprogram would be used in the Why3 VC.

• For Taylor_Sin this component is 0 as it does not call any subprograms.

Auto-Active Verification of FP Programs 27

Listing 1.6. Taylor_Sin NVC after removal of FP operations
Bounds on variables:
x (real) ∈ [-0.5, 0.5]

NVC:
assert 1 ± 0.0 = 1.0
assert
¬((
0.0 ≤ (sin(x) + (-1·(x − ((x·x)·x/6.0))) + 1.769513e−8)
=⇒
(sin(x) + (-1·(x − ((x·x)·x/6.0))) + 1.769513e−8) ≤ (25889/100000000)

)∧(
¬ (0.0 ≤ (sin(x) + (-1·(x − ((x·x)·x/6.0))) − 1.769513e−8))
=⇒
(-1·(sin(x) + (-1·(x − ((x·x)·x/6.0))) + 1.769513e−8))≤(25889/100000000)

))

– The maximum model error [5], i.e. the maximum difference between the
model used in the computation and the exact intended result.

• For Taylor_Sin this is the difference between the degree 3 Taylor polyno-
mial for the sine function and the sine function.

– The maximum rounding error [5], i.e. the maximum difference between
the exact model and the rounded model computed with FP arithmetic.

– A rounding analysis cushion arising when eliminating FP operations. This
is the difference between the actual maximum rounding error and the bound
on the rounding error calculated by a tool such as FPTaylor as well as over-
approximations made when deriving bounds for variables.

• The derived bounds are imperfect due to the accuracy loss of interval
arithmetic as well as the over-approximation of FP operations.

• Imperfections in the bounds for variables inflate the computed rounding
error bound as more values have to be considered.

– A proving cushion is added so that the specification can be decided by
the approximation methods in the provers. Without this cushion, the provers
could not decide the given specification within certain bounds on resources,
such as a timeout.

To justify our specification in Listing 1.2, we estimated the values of all
five components. Our estimates can be seen in Table 2. The maximum model
error and the maximum rounding error were calculated using the Monte-
Carlo method. We ran a simulation comparing the Taylor series approximation
of degree 3 of the sine function and an exact sine function. This simulation
was ran for one million pseudo-random inputs, giving us an approximate model
error. To estimate the maximum rounding error, we compared a single precision
and a quadruple precision FP implementation of the model for one hundred
million pseudo-random inputs. (FP operations are much faster than exact real
operations.) We estimated the rounding analysis cushion as the difference
between the maximum rounding error and the bound given by FPTaylor

28 J. Rasheed and M. Konečný

Table 2. Error bound components for Taylor_Sin

Single precision Double precision

Subprogram specification error 0 0

Maximum model error ∼2.59E−4 ∼2.59E−4

Maximum rounding error ∼1.61E−8 ∼2.89E−17

Rounding analysis cushion ∼1.57E−9 ∼4.04E−18

Proving cushion ∼2.11E−9 ∼1.80E−9

(∼1.77E−8). Note that the actual rounding analysis cushion may be larger
due to over approximations made when deriving bounds for variables.

The sum of the maximum model error, the maximum rounding error,
and the rounding analysis cushion is around 0.0002588878950. Raising the
specification bound to 0.00025889 enables provers LPPaver and dReal to verify
the specification, using a proving cushion of around 2.11E−9.

In this case, most of the error in the program comes from the maximum
model error. If we increased the number of Taylor terms, the maximum
model error would become smaller and the maximum rounding error would
become larger. Increasing the input domain would make both the maximum
model error and the maximum rounding error larger.

Increasing the precision of the FP numbers used is a simple way to reduce
both the maximum rounding error and the rounding analysis cushion.
Table 2 on the right shows estimates for the components in a double-precision
version of Taylor_Sin. The simplified exact NVC resulting from this example is
referred to as Taylor_Sin_Double in Table 3.

To see how the subprogram specification error affects provable error
bounds, consider function SinSin given in Listings 1.7 and 1.8.

Procedure Taylor_Sin_P is like function Taylor_Sin but the result is returned via
the parameter R1. The specification for Taylor_Sin_P has two additional inequali-
ties, bounding the output value R to allow us to derive tight bounds for R when
proving VCs involving calls of this procedure. Verifying this procedure in GNAT-
prove gives one NVC for our proving process, corresponding to the final post-
condition. This NVC is referred to as Taylor_Sin_P in Table 3. The exact NVC
is in folder examples/taylor_sine/txt in the PropaFP code repository2.

Function SinSin calls Taylor_Sin_P with the parameter X, storing the result in
variable OneSin. Taylor_Sin_P is then called again with the parameter OneSin, stor-
ing the result in TwoSin, which is then returned. The post-condition for the SinSin
function specifies the difference between its result and the exact sin(sin(X)). The
VC resulting from this post-condition is referred to as SinSin in Table 3.

1 Our implementation currently does not support function calls, but it does support
procedure calls. This limitation is not conceptually significant.

2 https://github.com/rasheedja/PropaFP/tree/SEFM2022.

https://github.com/rasheedja/PropaFP/tree/SEFM2022/examples/taylor_sine/txt
https://github.com/rasheedja/PropaFP/tree/SEFM2022

Auto-Active Verification of FP Programs 29

Listing 1.7. SinSin function definition in SPARK

procedure Taylor_Sin_P (X : Float; R : out Float) is
begin

R := X - ((X * X * X) / 6.0);
end Taylor_Sin_P;

function SinSin (X : Float) return Float is
OneSin , TwoSin : Float;

begin
Taylor_Sin_P(X, OneSin);
Taylor_Sin_P(OneSin , TwoSin);
return TwoSin;

end SinSin;

Listing 1.8. SinSin function specification in SPARK

procedure Taylor_Sin_P (X : Float; R : out Float) with
Pre => X >= -0.5 and X <= 0.5,
Post =>

Rf(R) >= Ri(-48) / Ri (100) and −− Helps verification of calling functions
Rf(R) <= Ri(48) / Ri (100) and
abs(Real_Sin(Rf(X)) - Rf(R)) <= Ri (25889) / Ri (100000000);

function SinSin (X : Float) return Float with
Pre => X >= -0.5 and X <= 0.5,
Post =>

abs(Real_Sin(Real_Sin(Rf(X))) - Rf(SinSin ’Result))
<= Ri (51778) / Ri (100000000);

Since the steps of SinSin involve only subprogram calls, there is no model
error or rounding error, and thus no rounding analysis cushion. As the
value of SinSin comes from Taylor_Sin_P applied twice, and the derivative of sin has
the maximum value 1, the subprogram specification error is a little below
0.00025889 + 0.00025889 = 0.00051778. Experimenting with different bounds,
we estimate the LPPaver proving cushion is around 10−13.

There is a delicate trade-off between the five components that a programmer
would need to manage by a careful choice of the model used, FP arithmetic
tricks, and proof tools used to obtain a specification for a program that is both
accurate and does not require large cushions or specification errors. It is not our
goal to make this type of optimisation for the example programs, rather we have
calculated these values to help improve the understanding of how difficult it is
to estimate them in practice. In simple cases, it would be sufficient to tighten
and loosen the ‘bound’ in the specification until the proving process fails and
succeeds, respectively.

30 J. Rasheed and M. Konečný

Listing 1.9. Heron’s Method Specification
function Certified_Heron (X : Float; N : Integer) Return Float with

Pre => X >= 0.5 and X <= 2.0 and N >= 1 and N <= 5,
Post =>

abs(Real_Square_Root(Rf(X)) - Rf(Certified_Heron ’Result))
<= (Ri(1) / (Ri(2 ** (2 ** N)))) −− 1/22

N model error
+ Ri(3*N)*(Ri(1)/Ri (8388608)); −− 3 · N · ε, rounding error bound

Listing 1.10. Heron’s Method Implementation

function Certified_Heron (X : Float; N : Integer) return Float is
Y : Float := 1.0;

begin
for i in 1 .. N loop

Y := (Y + X/Y) / 2.0;

pragma Loop_Invariant (Y >= 0.7);
pragma Loop_Invariant (Y <= 1.8);
pragma Loop_Invariant

(abs (Real_Square_Root (Rf(X)) - Rf(Y))
<= (Ri(1) / (Ri(2 ** (2 ** i)))) −− 1/22

i

+ Ri(3*i)*(Ri(1)/Ri (8388608))); −− 3 · i · ε
end loop;
return Y;

end Certified_Heron ;

4 Verification of Heron’s Method for Approximating
the Square Root Function

We used PropaFP to verify an implementation of Heron’s method. This is an
interesting case study because it requires the use of loops and loop invariants.

In Listing 1.9, the term 3·N·ε is a heuristic bound for the compound rounding
error, guessed by counting the number of operations. Note that five iterations are
more than enough to get an accurate approximation of the square root function
for X in the range [0.5, 2].

The implementation in Listing 1.10 contains loop invariants. The bounds on
Y here help generate easier VCs for the loop iterations and post-loop behaviour.
The main loop invariant is very similar to the post-condition in the specification,
except substituting i for N, essentially specifying the difference between the exact
square root and Heron’s method for each iteration of the loop.

Why3 produces 74 NVCs from our implementation of Heron’s method. 72 of
these NVCs are either trivial or verified by SMT solvers. PropaFP is required
for 2 NVCs that come from the main loop invariant. One NVC specifies that
the loop invariant holds in the initial iteration of the loop, where i is equal to 1.
Another VC specifies that the loop invariant is preserved from one iteration to
the next, where i ranges from 1 to N. We refer to these NVCs as as Heron_Init

Auto-Active Verification of FP Programs 31

and Heron_Pres in Table 3. Note that the third NVC derived from the invari-
ant, i.e., that the invariant on the last iteration implies the postcondition, is
trivial here. The corresponding simplified exact NVCs can be found in folder
examples/heron/txt in the PropaFP repository.

5 Verifying AdaCore’s Sine Implementation

With the help of PropaFP, we developed a verified version of an Ada sine imple-
mentation written by AdaCore for their high-integrity math library3. First, we
removed SPARK-violating code such as generic FP types, fixing the type to
the single-precision Float. We then translated functions into procedures since
PropaFP currently does not support function calls.

The code consists of six procedures:

– Multiply_Add is a helper routine computing X*Y + Z.
– Approx_Sin and Approx_Cos approximate sin(x) and cos(x), respectively, for x

near 0, evaluating a Taylor polynomial in Horner form, using Multiply_Add.
– My_Machine_Rounding rounds an FP number x to the nearest integer, replacing

the SPARK-violating function Float’Machine_Rounding.
– Reduce_Half_Pi translates an angle x ∈ [0, 802] to a quadrant near 0 by sub-

tracting an integer multiple of π/2, using My_Machine_Rounding.
– Sin approximates sin(x) for x ∈ [−802, 802] using the above procedures.

The original code has a loop that extends the domain beyond [−802, 802].We
have removed the loop for now. The complete code and specification can
be found in folder examples/spark and NVCs can be found in folder
examples/hie_sine/txt in the PropaFP repository. A more complete explana-
tion of the code and specification is in the extended preprint [23].

My_Machine_Rounding(x, out y) specifies −0.500000001 ≤ x − y ≤ 0.500000001.
The “padding” added to 0.5 avoids “touching” VCs (such as x > 0 =⇒ x > 0),
which solvers using interval methods usually cannot prove.

Reduce_Half_Pi(in out x, out Q, out R) needs the integer result parameter R
only so that the postcondition can state that xnew ∼ xold − R · π/2.

Apprix_Sin, Apprix_Cos, and Sin specify bounds on their deviation from the
exact sine or cosine at 5.8E−8, 1.4E−7 and 1.9E−4, respectively.

Why3 derived 158 NVCs from the six procedures. SMT solvers have proved
146 of these NVCs and the remaining 12 have been proved using our process.

6 Benchmarking the Proving Process

Table 3 shows the performance of our implementation of the proving process on
the verification examples described earlier. “VC processing” is the time it takes
3 We obtained the original code from file src/ada/hie/s-libsin.adb in archive
gnat-2021-20210519-19A70-src.tar.gz downloaded from “More packages, plat-
forms, versions and sources” at https://www.adacore.com/download.

https://github.com/rasheedja/PropaFP/tree/SEFM2022/examples/heron/txt
https://github.com/rasheedja/PropaFP/tree/SEFM2022/examples/spark
https://github.com/rasheedja/PropaFP/tree/SEFM2022/examples/hie_sine
https://www.adacore.com/download

32 J. Rasheed and M. Konečný

Table 3. Proving process on described examples

VC VC Processing dReal MetiTarski LPPaver

My_Machine_Rounding≥ 0.53 s n/s n/s 0.47 s
My_Machine_Rounding≤ 0.56 s n/s n/s 0.42 s
Reduce_Half_Pi_X≥ 1.76 s n/s 0.07 s 0.35 s
Reduce_Half_Pi_X≤ 1.77 s n/s 0.04 s 0.33 s
Reduce_Half_Pi≥ 65.02 s n/s g/u 0.02 s
Reduce_Half_Pi≤ 61.32 s n/s g/u 0.01 s
Approx_Sin≥ 1.85 s 1 m 08.95 s 0.17 s 5.63 s
Approx_Sin≤ 1.86 s 1 m 06.16 s 0.15s 5.61s
Approx_Cos≥ 0.95 s 3.28 s 0.05 s 1.83 s
Approx_Cos≤ 1.00 s 1.53 s 0.04 s 1.50 s
Sin≥ 1.29 s n/s n/s 6 m 34.62 s
Sin≤ 1.30 s n/s n/s 6 m 29.8 s
Taylor_Sin 2.04 s 0.01 s 0.14 s 0.06 s
Taylor_Sin_Double 2.07 s n/s 0.11 s 0.05 s
Taylor_Sin_P 2.05 s 0.01 s 0.14 s 0.06 s
SinSin 0.53 s 3 m 19.81 s g/u 8.20 s
Heron_Init 2.01 s 0.00 s 0.07 s 0.01 s
Heron_Pres 3.05 s 5 m 06.14 s g/u 1 m 19.99 s

PropaFP to process the NVCs generated by GNATprove/Why3, including calls
to FPTaylor. The remaining columns show the performance of the following
provers applied to the resulting simplified exact NVCs:

– dReal v4.21.06.2 [13] – solver using numerical branch-and-prune methods.
– MetiTarski v2.4 [2] – symbolic theorem prover deciding real inequalities via

cylindrical algebraic decomposition (CAD).
– LPPaver v0.0.1 [22] – our prover that uses methods similar to dReal.

In Table 3, g/u means that the prover gave up while n/s means the NVC
cannot be applied to this prover for the following reasons:

– The My_Machine_Rounding NVC contains integer rounding with ties going
away from zero, which is not supported by dReal and MetiTarski.

– After our proving process, the bound on the maximum rounding error
computed by FPTaylor in the Reduce_Half_Pi and the Taylor_Sin_Double
NVCs are very small. This number is represented as a fraction, and the denom-
inator is outside the range of integers supported by dReal.

– The Sin NVCs contain integer rounding with ties going to the nearest even
integer and uses the modulus operator.

• dReal does not support integer rounding.
• MetiTarski does not support the modulus operator.

Auto-Active Verification of FP Programs 33

Table 4. Effect of specification bound on proving time

VC Bound VC processing dReal MetiTarski LPPaver

Approx_Sin≤ 0.000000058 1.86 s 1 m 06.16 s 0.15 s 5.61 s
Approx_Sin≤ 0.000000075 1.85 s 28.73 s 0.16 s 3.72 s
Approx_Sin≤ 0.0000001 1.86 s 15.42 s 0.15 s 2.69 s
Approx_Sin≤ 0.00001 1.85 s 0.09 s 0.15 s 0.25 s

Table 5. Proving process on described counter-examples

VC VC processing dReal CE LPPaver CE

Taylor_Sin_Plus 2.05 s 0.00 s x = −0.166 . . . 0.02 s x = −0.5

Taylor_Sin_Swap 2.05 s 0.00 s x = 0.166 . . . 0.03 s x = 0.499 . . .

Taylor_Sin_Tight 2.1 s 0.00 s x = 0.499 . . . 0.03 s x = 0.499 . . .

All of the NVCs were solved by at least one of the provers in a reasonable
time frame. VC processing takes, at most, a few seconds for most of the NVCs.
For Reduce_Half_Pi{≥,≤}, the VC processing step takes around one minute.
This is because FPTaylor takes a while to run its branch-and-bound algorithm
on non-trivial formulas featuring π.

For provers using numerical approximation, the tightness of the specification
bound is often correlated with the time it takes for a prover to decide a VC
arising from said specification. We illustrate this in Table 4. The proving time
for symbolic provers does not improve with looser bounds. However, MetiTarski
failed to decide Reduce_Half_Pi{≥,≤}, but it could decide these NVCs when
the specification bounds were loosened from 1.8E−4 to 2.0E−4.

6.1 Counter-examples

To demonstrate how the proving process produces potential counter-examples,
we modify our Taylor_Sin example, introducing three different mistakes which a
programmer may feasibly make:

1. Replace the - with + in the Taylor_Sin implementation in Listing 1.1.
2. Invert the inequality in the Taylor_Sin post-condition in Listing 1.2.
3. Make our specification bound slightly tighter than the maximum model

error + maximum rounding error + rounding analysis cushion in the
post-condition from Listing 1.2, changing the value of the right hand side of
the inequality in the post-condition from 0.00025889 to 0.00025887.

These three ‘mistakes’ are referred to as Taylor_Sin_Plus, Taylor_Sin_Swap,
and Taylor_Sin_Tight, respectively, in Table 5.

If a specification is incorrect, the resulting NVC must be true or ‘sat’. dReal
would report a ‘delta-sat’ result, which means the given file was ‘sat’ with a

34 J. Rasheed and M. Konečný

configurable tolerance, which we set to 1−100. This makes models produced by
dReal a potential model for the NVC. Models produced by LPPaver are actual
models for the given NVC, but for files produced by the proving process, these
should still be thought of as potential counter-examples due to the weakening
of the NVC. The computed potential counter-examples shown in Table 5 are all
actual counter-examples except those for Taylor_Sin_Tight.

7 Conclusion

Summary. In this paper, we have presented an automated proving process for
deciding VCs that arise in the verification of floating-point programs with a
strong functional specification. Our implementation of the process builds on
SPARK, GNATprove, and Why3, and utilises FPTaylor and the nonlinear real
provers dReal, MetiTarski, and LPPaver. This process could be adapted for other
tools and languages, as long as one can generate NVCs similar to those generated
by GNATprove.

We demonstrated our proving process on three examples of increasing com-
plexity, featuring loops, real-integer interactions, and subprogram calls. The
examples demonstrate an improvement on the state-of-the-art in the power of
automated FP software verification. Table 3 indicates that our proving process
can automatically and fairly quickly decide certain VCs that are currently consid-
ered difficult. Table 4 demonstrates how the process speeds up when using looser
bounds in specifications. Table 5 shows that our proving process can quickly find
potential, often even actual, counter-examples for a range of common incorrect
specifications.

We conclude with thoughts on how our process could be further improved.

Executable Exact Real Specifications. We plan to make specifications containing
functions such as

√· executable via high-accuracy interval arithmetic, allowing
the developer or IDE to check whether the suggested counter-examples are valid.

Adapting the Provers. To make dReal and MetiTarski more effective in our
process, support for integer rounding could be added to both provers, and the
modulo operator to MetiTarski.

More Provers. Connect PropaFP to other provers, notably Colibri.

Why3 Integration. Our VC processing steps could be integrated into Why3. This
would include simplifications, bound derivation, and floating-point elimination.
As Why3 transformations, the VC processing steps would be more accessible
for users who are familiar with Why3. Also, the proving process would become
easily available to the many tools that support Why3.

Support Function Calls. Having to manually translate functions into procedures
is undesirable. Support for function calls could be added, e.g., by a Why3 trans-
formation that translates functions into procedures.

Auto-Active Verification of FP Programs 35

Use Abstract Interpretation. We currently derive bounds for variables using our
own iterative process similar to Abstract Interpretation. We could try integrating
an established Abstract Interpretation implementation instead.

Verified Implementation. We would like to formally verify some elements of
our process to ensure that the transformation steps are performed correctly. As
PropaFP and LPPaver utilise Haskell and AERN2 [15], rewriting these tools in
Coq with coq-aern [16] may be a feasible verification route.

References

1. IEEE Standard for Floating-Point Arithmetic. IEEE Std 754–2019 (Revision
of IEEE 754–2008), pp. 1–84 (2019). https://doi.org/10.1109/IEEESTD.2019.
8766229

2. Akbarpour, B., Paulson, L.C.: MetiTarski: an automatic theorem prover for real-
valued special functions. J. Autom. Reason. 44(3), 175–205 (2010). https://doi.
org/10.1007/s10817-009-9149-2

3. Barrett, C., et al.: CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011.
LNCS, vol. 6806, pp. 171–177. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-22110-1_14

4. Bobot, F., Filliâtre, J.C., Marché, C., Paskevich, A.: Why3: shepherd your herd of
provers. In: Boogie 2011: First International Workshop on Intermediate Verification
Languages, pp. 53–64 (2011). https://hal.inria.fr/hal-00790310

5. Boldo, S., Clément, F., Filliâtre, J.C., Mayero, M., Melquiond, G., Weis, P.: Wave
equation numerical resolution: a comprehensive mechanized proof of a C program.
J. Autom. Reason. 50(4), 423–456 (2013). https://doi.org/10.1007/s10817-012-
9255-4

6. Conchon, S., Coquereau, A., Iguernlala, M., Mebsout, A.: Alt-Ergo 2.2. In:
SMT Workshop: International Workshop on Satisfiability Modulo Theories (2018).
https://hal.inria.fr/hal-01960203

7. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Proceedings
of the 4th ACM SIGACT-SIGPLAN Symposium on Principles of Programming
Languages, pp. 238–252. POPL 1977, Association for Computing Machinery, New
York, NY, USA (1977). https://doi.org/10.1145/512950.512973

8. Darulova, E., Kuncak, V.: Towards a compiler for reals. ACM Trans. Program.
Lang. Syst. (TOPLAS) 39(2), 1–28 (2017). https://doi.org/10.1145/3014426

9. Daumas, M., Melquiond, G.: Certification of bounds on expressions involving
rounded operators. ACM Trans. Math. Softw. 37(1), 1–20 (2010). https://doi.
org/10.1145/1644001.1644003

10. Dross, C., Kanig, J.: Making proofs of floating-point programs accessible to regular
developers. In: Bloem, R., Dimitrova, R., Fan, C., Sharygina, N. (eds.) Software
Verification, pp. 7–24. LNCS, Springer International Publishing, Cham (2022).
https://doi.org/10.1007/978-3-030-95561-8_2

11. Duracz, J., Konečnỳ, M.: Polynomial function intervals for floating-point software
verification. Ann. Math. Artif. Intell. 70(4), 351–398 (2014). https://doi.org/10.
1007/s10472-014-9409-7

https://doi.org/10.1109/IEEESTD.2019.8766229
https://doi.org/10.1109/IEEESTD.2019.8766229
https://doi.org/10.1007/s10817-009-9149-2
https://doi.org/10.1007/s10817-009-9149-2
https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/978-3-642-22110-1_14
https://hal.inria.fr/hal-00790310
https://doi.org/10.1007/s10817-012-9255-4
https://doi.org/10.1007/s10817-012-9255-4
https://hal.inria.fr/hal-01960203
https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/3014426
https://doi.org/10.1145/1644001.1644003
https://doi.org/10.1145/1644001.1644003
https://doi.org/10.1007/978-3-030-95561-8_2
https://doi.org/10.1007/s10472-014-9409-7
https://doi.org/10.1007/s10472-014-9409-7

36 J. Rasheed and M. Konečný

12. Fumex, C., Marché, C., Moy, Y.: Automated verification of floating-point compu-
tations in Ada programs. report, Inria Saclay Ile de France (2017). https://hal.
inria.fr/hal-01511183/document

13. Gao, S., Kong, S., Clarke, E.M.: dReal: an SMT solver for nonlinear theories over
the reals. In: Bonacina, M.P. (ed.) CADE 2013. LNCS (LNAI), vol. 7898, pp. 208–
214. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38574-2_14

14. Hoang, D., Moy, Y., Wallenburg, A., Chapman, R.: SPARK 2014 and GNATprove.
Int. J. Softw. Tools Technol. Transfer 17(6), 695–707 (2015). https://doi.org/10.
1007/s10009-014-0322-5

15. Konečný, M., et al.: AERN2 (2022). https://github.com/michalkonecny/aern2
16. Konečný, M., Park, S., Thies, H.: Axiomatic reals and certified efficient exact real

computation. In: Silva, A., Wassermann, R., de Queiroz, R. (eds.) WoLLIC 2021.
LNCS, vol. 13038, pp. 252–268. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-88853-4_16

17. Leeser, M., Mukherjee, S., Ramachandran, J., Wahl, T.: Make it real: effective
floating-point reasoning via exact arithmetic. In: 2014 Design, Automation & Test
in Europe Conference & Exhibition (DATE), pp. 1–4 (2014). https://doi.org/10.
7873/DATE.2014.130

18. Leino, K.R.M., Moskal, M.: Usable auto-active verification. In: Usable Verification
Workshop (2010). http://fm.csl.sri.com/UV10.Citeseer

19. Marre, B., Bobot, F., Chihani, Z.: Real behavior of floating point numbers. In:
SMT Workshop, p. 12 (2017)

20. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3_24

21. Ramachandran, J., Wahl, T.: Integrating proxy theories and numeric model lifting
for floating-point arithmetic. In: 2016 Formal Methods in Computer-Aided Design
(FMCAD), pp. 153–160 (2016). https://doi.org/10.1109/FMCAD.2016.7886674

22. Rasheed, J.: LPPaver code repository (2022). https://github.com/rasheedja/
LPPaver

23. Rasheed, J., Konečný, M.: Auto-active verification of floating-point programs via
nonlinear real provers (extended preprint) (2022). arXiv:2207.00921

24. Salvia, R., Titolo, L., Feliú, M.A., Moscato, M.M., Muñoz, C.A., Rakamarić, Z.:
A mixed real and floating-point solver. In: Badger, J.M., Rozier, K.Y. (eds.) NFM
2019. LNCS, vol. 11460, pp. 363–370. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-20652-9_25

25. Solovyev, A., Baranowski, M.S., Briggs, I., Jacobsen, C., Rakamarić, Z., Gopalakr-
ishnan, G.: Rigorous estimation of floating-point round-off errors with symbolic
Taylor expansions. ACM Trans. Program. Lang. Syst. 41(1), 1–39 (2019)

26. Titolo, L., Feliú, M.A., Moscato, M., Muñoz, C.A.: An abstract interpretation
framework for the round-off error analysis of floating-point programs. In: VMCAI
2018. LNCS, vol. 10747, pp. 516–537. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-73721-8_24

27. Zeljić, A., Backeman, P., Wintersteiger, C.M., Rümmer, P.: Exploring approxi-
mations for floating-point arithmetic using UppSAT. In: Galmiche, D., Schulz, S.,
Sebastiani, R. (eds.) IJCAR 2018. LNCS (LNAI), vol. 10900, pp. 246–262. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-94205-6_17

https://hal.inria.fr/hal-01511183/document
https://hal.inria.fr/hal-01511183/document
https://doi.org/10.1007/978-3-642-38574-2_14
https://doi.org/10.1007/s10009-014-0322-5
https://doi.org/10.1007/s10009-014-0322-5
https://github.com/michalkonecny/aern2
https://doi.org/10.1007/978-3-030-88853-4_16
https://doi.org/10.1007/978-3-030-88853-4_16
https://doi.org/10.7873/DATE.2014.130
https://doi.org/10.7873/DATE.2014.130
http://fm.csl.sri.com/UV10.Citeseer
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1109/FMCAD.2016.7886674
https://github.com/rasheedja/LPPaver
https://github.com/rasheedja/LPPaver
http://arxiv.org/abs/2207.00921
https://doi.org/10.1007/978-3-030-20652-9_25
https://doi.org/10.1007/978-3-030-20652-9_25
https://doi.org/10.1007/978-3-319-73721-8_24
https://doi.org/10.1007/978-3-319-73721-8_24
https://doi.org/10.1007/978-3-319-94205-6_17

Information Exchange Between Over- and
Underapproximating Software Analyses

Jan Haltermann(B) and Heike Wehrheim

University of Oldenburg, Oldenburg, Germany
{jan.haltermann,heike.wehrheim}@uol.de

Abstract. Cooperative software validation aims at having verification
and/or testing tools cooperate on the task of correctness checking. Coop-
eration involves the exchange of information about currently achieved
results in the form of (verification) artifacts. These artifacts are typically
specialized to the type of analysis performed by the tool, e.g. bounded
model checking, abstract interpretation or symbolic execution, and hence
requires the definition of a new artifact for every new cooperation to be
built.

In this paper, we introduce a unified artifact (called Generalized Infor-
mation Exchange Automaton, short GIA) supporting the cooperation of
overapproximating with underapproximating analyses. It provides all the
information gathered by an analysis to its partner in a cooperation, inde-
pendent of the type of analysis and usage context. We provide a formal
definition of this artifact as an automaton together with two operators
on GIAs, the first reducing a program with respect to results in a GIA
and the second combining partial results in two GIAs into one. We show
that computed analysis results are never lost when connecting tools via
reducers and combiners. To experimentally demonstrate the feasibility,
we have implemented one such cooperation and report on the achieved
results, in particular how the new artifact is able to overcome some of
the drawbacks of existing artifacts.

Keywords: Cooperative software verification · Verification artifact ·
Test case generation · Component-based CEGAR

1 Introduction

Over the past years, automatic software validation (i.e., verification and testing)
has become a mature field, with numerous tools pro6iding various sorts of anal-
ysis (see e.g. the annual competitions on software verification and testing [3,4]).
Still, the one-fits-all approach to software validation has not yet been found. All
tools have their specific strengths and weaknesses, and tools efficiently solving
one sort of analysis tasks might be slow at or even unable to solve other tasks.

J. Haltermann—This author was partially supported by the German Research Foun-
dation (DFG) - WE2290/13-1 (Coop).
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
B.-H. Schlingloff and M. Chai (Eds.): SEFM 2022, LNCS 13550, pp. 37–54, 2022.
https://doi.org/10.1007/978-3-031-17108-6_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-17108-6_3&domain=pdf
http://orcid.org/0000-0002-5098-0495
http://orcid.org/0000-0002-2385-7512
https://gepris.dfg.de/gepris/projekt/418257054?context=projekt&task=showDetail&id=418257054&
https://doi.org/10.1007/978-3-031-17108-6_3

38 J. Haltermann and H. Wehrheim

GIA

GIA

Task

OA Analysis UA Analysis

Fig. 1. Cooperation of over- and underapproximating analyses

To remedy this situation, cooperative software verification (term coined by
Beyer and Wehrheim [15]) aims at having different tools cooperate on the task
of software verification. This principle can not only be applied to verification but
also to testing, and a number of different approaches combining various sorts of
analyses exist today (e.g. [1,2,8,9,13,16,18–21,23–25,28]). To achieve coopera-
tion, tools need to exchange information gathered about a program during its
analysis. To leverage the strengths of tools, we need to make sure that no results
computed about a program are lost during this information exchange. To this
end, existing cooperative approaches use various sorts of so-called verification
artifacts [15] for information exchange, e.g. correctness witnesses [5], predicate
maps [13] or violation witnesses [6]. The artifacts are, however, often specialized
to the type of analysis performed, with the consequence of having to define a
new form of artifact with every new cooperation.

In this work, we introduce a novel uniform verification artifact (called GIA)
for the exchange of information, specifically focusing on the cooperation of over-
and underapproximating software analyses (see Fig. 1). Overapproximating (OA)
analyses build an overapproximation of the state space of a program while under-
approximating (UA) analyses inspect specific program paths. An underapprox-
imating analysis typically aims at finding errors; an overapproximating analysis
aims at proving program correctness. Before defining the new type of artifact,
we first of all studied existing (cooperative and non-cooperative) analyses and
the information they assemble and possibly exchange during an analysis. We
also investigated what input formats existing tools accept. The majority of tools
just take a program as input, however, there are also some tools already allow-
ing for verification artifacts as additional inputs. With these insights at hand,
we defined a new artifact in the form of a generalized information exchange
automaton (GIA) which can express all the information generated by over- and
underapproximating analyses. More specifically, our artifact needs to be able
to cover (1) program paths which definitely or potentially lead to an error,
i.e. (potential) counter examples, (2) program paths which are already known
to be safe, (3) program paths which are already known to be infeasible plus (4)
additional constraints on program paths like state invariants. The unification of
all such information in one artifact should in particular make the artifact inde-
pendent of its usage, i.e. the semantics of the GIA should be the same in all
usage contexts. Current artifacts, in particular the protocol automata of Beyer
and Wehrheim [15], have differing meanings depending on their usage: some-
times the paths described by an automaton are the safe paths and sometimes
the paths leading to a property violation.

Information Exchange Between OA and UA Software Analyses 39

Along with this new artifact we also introduce two operations on it:
reducers [10,22] and combiners. A reducer allows to (syntactically) reduce a
program to the part which a (prior) analysis has not yet completed (e.g., not
yet proven safe). Reducers are required for cooperation of analysis tools which
only take programs as inputs. A combiner allows to combine computed analysis
results given in two GIAs into one. We formally show that connecting tools via
reducers and combiners guarantees computed analysis results to never be lost.

To demonstrate the feasibility of our approach, we have implemented one
such cooperation employing GIAs as exchange format. We have experimentally
evaluated this cooperation on benchmarks of SV-Comp [4] and report on the out-
comes, in particular how existing drawbacks in cooperation approaches caused
by information loss can be overcome with this new artifact.

2 Background

We generally aim at the validation of programs written in C. To be able to discuss
and define formats for the information exchange, especially their semantics, we
first provide some basic definitions on the syntax and semantics of programs,
and then survey existing artifacts.

2.1 Program Syntax and Semantics

We represent a program as a control-flow automaton (CFA). Intuitively, a CFA is
a control-flow graph, where each edge is labeled with a program statement. More
formally, a CFA C is a graph C = (Loc, �0, G) with a set of program locations
Loc, the initial location �0 ∈ Loc and a transition relation G ⊆ Loc × Ops ×
Loc, where Ops contains all possible operations on integer variables1, namely
assignments, conditions (for both loops and branches), function calls and return
statements. We let C denote the set of all CFAs. Note that any program can be
transferred into a CFA and any deterministic CFA into a program.

We assume the existence of two specific functions error and random which
programs can call; the former can be used to represent violations of a specification
(reachability of an error), the latter returns a non-deterministic value and is
typically used to model inputs. We assume our programs to be deterministic
except for the function random.

For defining the semantics of CFAs, we let Var denote the set of all integer
variables present in the program, AExpr the set of arithmetic and BExpr the
set of boolean expressions over the variables in Var . A state c is a mapping of
the program variables to integers, i.e., c : Var → Z. We lift this mapping to
also contain evaluations of the arithmetic and boolean expressions, such that c
maps AExpr to Z and BExpr to B = {0, 1}. A finite syntactic program path is
a sequence τ = �0 −g1−→ . . . −gn−→ �n s.t. (�i, gi+1, �i+1) ∈ G for each transition. We

1 We restrict the operations to integer variables for presentation only; the implemen-
tation covers C programs.

40 J. Haltermann and H. Wehrheim

1 main(){
2 x = random();
3 (x < 5) {
4 0;
5 } {
6 x++;
7 (x == 5) {
8 1;
9 } {

10 2;
11 }
12 }
13 }

(a) An example program for
test case generation

�1

�2

�3

�4

�5

�6

�7

�8

�9

�10

x = random();

x < 5

return 0;

¬(x < 5)

x++;

x == 5

return 1;

¬(x == 5)

return 2;

(b) CFA for program in Fig. 2a, where nodes
after branching points are marked gray.

Fig. 2. Example program for test case generation and corresponding CFA.

extend a syntactic path to a semantic program path π = 〈c0, �0〉 −g1−→ . . . −gn−→
〈cn, �n〉, by adding states to each location, where c0 assigns the value 0 to all
variables, and state changes for 〈ci, �i〉 −gi+1−−→ 〈ci+1, �i+1〉 are defined as follows:
If gi+1 is an assignment of the form x = a, x ∈ Var , a ∈ AExpr , ci+1 = ci[x �→
ci(a)], for assignments x =random() ci+1 = ci[x �→ z], z ∈ Z, otherwise ci+1 =
ci. Note that we do not require that a semantic path meets all its boolean
conditions, as we want to distinguish between feasible and infeasible semantic
paths: A semantic path is called feasible, if for each condition gi+1 = b in the
path ci(b) = true holds, otherwise it is called infeasible. We say that a path π
reaches location � ∈ Loc if � = �n. If no feasible semantic path reaches a location
� ∈ Loc, it is called unreachable. The set of all semantic paths (or in short, paths)
of a CFA C is denoted by P(C).

Figure 2 contains a C-program and its corresponding CFA. Let’s assume our
validation task on this program is test case generation, more specifically gener-
ating test inputs (values returned by random) which cover all branches of the
program. A tool would then need to generate inputs leading to paths such that
each node of the CFA marked in gray is reached by at least one path. A feasible
path that reaches the location �3 is: 〈{x �→0}, �1〉 −x=random();−−−−−−−−→ 〈{x �→3}, �2〉 −x<5−−→
〈{x �→3}, �3〉 −return 0;−−−−−→ 〈{x �→3}, �4〉. The location �7 is unreachable, as x is always
greater than 5 at �6, and thus it cannot be covered.

2.2 Existing Artifacts

We next briefly explain some existing artifacts already used either for cooperative
validation, for witness validation or storage of correctness proofs [5,6,10,15,
23,25,27] and discuss their suitability for representing information exchanged
between underapproximating (UA) and overapproximating (OA) analysis. Most
of the presented formats are automaton-based, where nodes are labeled with

Information Exchange Between OA and UA Software Analyses 41

program locations and edges labeled with program operations from Ops. As the
formats encode information about (non-)violation of properties, we call CFA
nodes violating the property target nodes.

Violation Witness. A violation witness [6] is a automaton-based exchange
format to encode a set of paths that lead to a property violation. These paths
may contain path constraints on the variable values. By design, the violation
witness does not allow using state invariants. Thus, its semantics does neither
allow to encode that a path does not reach a target node (i.e., is safe) or is
infeasible nor some justification of this in the form of state invariants.

Correctness Witnesses. A correctness witness [5] is a automaton-based
exchange format used to encode that a program is safe (no target node reach-
able) together with a justification in form of invariants. Correctness witnesses
do not allow to specify target nodes nor to encode partial results. Therefore,
encoding path to target nodes as well as marking that only certain paths of the
program (and not the whole program) is safe is impossible.

Condition Automaton. A condition automaton [10] is a automaton-based
format, stating which paths of the program are already successfully verified and
under which condition. Based on the precisely defined semantics, paths accepted
by the condition automaton do not reach target nodes. Thus, paths (potentially)
leading to a target node cannot be encoded. In addition, condition automata do
not allow adding state invariants.

Abstract Reachability Graph (ARG). An ARG [7] represents the abstract
state space computed by an analysis as a graph and is used within different tools,
e.g. CPAchecker [12]. ARG states contain a combination of analysis dependent
information from different domains, e.g. predicates, live variables or variable val-
ues and can contain meta-information, e.g. whether the ARG state is a target or
that certain successors are unreachable. Edges are labeled with program opera-
tions from Ops. The ARG can be used to represent all desired information that
should be exchanged. Due to the analysis dependent information, ARG states
generated for different analyses may however have different shapes, which makes
an exchange of ARGs between different analyses in a general setting impossible.

Protocol Automaton. Protocol automata [6,15] are a flexible, automaton
based exchange format, potentially allowing to express all desired information
exchanged between OA and UA analyses. The major drawback (and the price of
that flexibility) of protocol automaton is the context-dependent semantics. Thus,
each tool working with protocol automata has to be aware of the type of proto-
col automaton given to it and its semantics. Depending on the encoded artifact,
accepting paths encode either a path to a target node, an infeasible path or a
path not reaching a target node. Consequently, it is impossible to mark within
one protocol automaton both, a path to a target node as unreachable and state
that a different path reaches another target node.
In summary, none of the existing artifacts is able to encode all desired informa-
tion and is usable independent of the tools used while maintaining one semantics.
Next, we introduce a new format that overcomes these limitations.

42 J. Haltermann and H. Wehrheim

3 Validation Artifact GIA

In this work, we focus on two different validation tasks on programs, verification
and test case generation, performed by over- and underapproximating analyses.
For verification, the goal is to show the non-reachability of certain error locations.
To this end, we fix a safety property S = (�, ω) as a pair of location � ∈ Loc and
condition ω ∈ BExpr which has to hold at �. In practice, this is encoded in the
CFA using two edges (� −¬ω−→ �e −error();−−−−→ �e′). Note that there can be multiple
safety properties for a program. For test case generation, the goal is to find paths
from �0 reaching all locations from a set Lcover, containing e.g. each branch or
statement in the program (branch-, statement-coverage) or certain function calls,
especially error. To specify these paths, a sequence of return values (called test
suite) for the calls to random suffices (as random models inputs to programs).

For cooperation, we prefer a uniform way of describing these tasks which we
get by introducing the notion of target nodes, denoted by L, L ⊆ Loc. A target
node is a node that either has a single outgoing edge labeled error (for verifica-
tion) or is in Lcover (for test case generation). We can now reformulate the two
tasks: the goal of verification is to show that no target node is reachable, the goal
of test case generation is to find a test suite such that all target nodes are reached.
In Fig. 2b, the target nodes for test case generation are L = {�3, �5, �7, �9}.

Our overall objective is next to define an artifact with one semantics which is
valid for every type of exchanged information. In general, UA and OA tools either
aim at showing that target nodes are reachable (for example a call to error or a
branch that needs to be covered) or that (a part of) the program does not reach
any target node (i.e., program is safe). The overall goal is achieved when for each
target node either a path reaching it is found or it is proven unreachable.

The information exchanged between UA and OA tools thus need to be about
(1) feasible paths definitely leading to a target node, (2) paths definitely not
leading to a target node (either as they do not reach one or are infeasible) and
(3) candidate paths potentially leading to target nodes and hence interesting to
consider for the analysis, but where the definite result about it is unknown so
far. The latter information is used in two cases: When an UA tool has not yet
covered a path, either due to resource/time limitations or because it is infeasible,
and when an OA tool has discovered a path to a target node, which might be
feasible. In addition, we need the artifact to be able to pass helpful information
about invariants of program locations or constraints about program transitions.

So far, none of the existing artifacts discussed in Sect. 2 is able to encode all
this information while maintaining one semantics for the automaton. Inspired
by the idea of three-valued logics (e.g. for three-valued model checking [17]), we
extend the condition automata of [10] by introducing three different, disjoint sets
of accepting states, one for each type of exchanged information.

Definition 1. A generalized information exchange automaton for over- and
under-approximative analysis (GIA) A = (Q, Σ, δ, q0, Fut , Frt , Fcand) consists of

– a finite set Q ⊆ Ω × BExpr of states (each being a pair of a name of some
set Ω and a boolean condition) and an initial state (q0, true) ∈ Q,

Information Exchange Between OA and UA Software Analyses 43

q1

q2

q3

q′
2

q5

q6

q7

q8

q9

q10

x=random();
ϕ : x = 0 x=random();

x < 5 ¬(x < 5)

x++;

x == 5

ret 1;

¬(x == 5)

ret 2;

* *

* *

(a) GIA A1 after appli-
cation of an UA tool

q1

q2q′
2

q5

q6

q′
5

q′
6

q7 q9

x=random();
ϕ : x = 5x=random();

¬(x < 5)¬(x < 5)

x++;x++;

x == 5 ¬(x == 5)

*

* *

(b) GIA A2 after applica-
tion of an OA tool

q1

q2

q3

q′
2

q′′
2

q5

q6

q′
5

q′
6

q7
q9

x=random();
ϕ : x = 0

x < 5

*

x=random();ϕ : x = 5

x=random();

¬(x < 5)¬(x < 5)

x++;
x++;

x == 5
¬(x == 5)

*

*
*

(c) Combined GIA of A1 and A2

Fig. 3. GIAs generated during cooperative test case generation for example program
of Fig. 2 with states of Fut marked green, of Frt blue and of Fcand yellow. We elide
state invariants (all true) and depict for transitions only the operation and non-true
conditions. (Color figure online)

– an alphabet Σ ⊆ 2G × BExpr ,
– a transition relation δ ⊆ Q × Σ × Q, and
– three pairwise disjoint sets of accepting states: Fut (for unreachable targets),

Frt (for reachable targets) and Fcand (for candidates).

Automaton states have (arbitrary) names and potentially invariants associ-
ated with them which come in the form of boolean expressions over program
variables. Transitions are labelled over the alphabet Σ with elements being sets
of transitions of the CFA plus additional assumptions (again out of BExpr)
about program variables describing conditions when executing these transitions
(see Definition 2 below). When drawing automata, we use ∗ to denote an edge
that matches any operation from Ops. We additionally require for each GIA,
that (1) the each state in the sets of accepting states Fut and Frt has no tran-
sitions to states not in Fut (resp. Frt) and (2) each accepting state from Fcand

has at least a transition to itself2. More formally, we require that:

1. ∀qut ∈ Fut : ¬∃q ∈ Q : (qut , op, q) ∈ δ ∧ q /∈ Fut ,
2. ∀qrt ∈ Frt : ¬∃q ∈ Q : (qrt , op, q) ∈ δ ∧ q /∈ Frt ,
3. ∀qcand ∈ Fcand : (qcand, ∗, qcand) ∈ δ.

An example of a GIA for the program of Fig. 2 with target nodes L =
{�3, �5, �7, �9} is depicted in Fig. 3c, where Frt = {q3}, Fut = {q7} and Fcand =
{q5, q9}.

We let A denote the set of all GIAs. For the semantics, the three sets of
accepting states are employed to describe three different languages of a GIA:
the set of paths leading to (1) Fut , (2) Frt and (3) Fcand. We first of all define
what it means that an automaton covers a path.

2 This property is useful to have a single path π covering several nodes from Fcand

(e.g. for branch coverage).

44 J. Haltermann and H. Wehrheim

Definition 2. A GIA A = (Q, Σ, δ, q0, Fut , Frt , Fcand) covers a path π = 〈c0, �0〉
−g1−→ . . . −gn−→ 〈cn, �n〉 if there is a sequence ρ = (q0, ψ0) −(G1,ϕ1)−−−−→ . . . −(Gk,ϕk)−−−−−→
(qk, ψk), 0 ≤ k ≤ n, with (qi−1, ψi−1) −(Gi,ϕi)−−−−→ (qi, ψi) ∈ Σ (called run), such that

1. qk ∈ Fut ∪ Frt ∪ Fcand,
2. ∀i, 1 ≤ i ≤ k : gi ∈ Gi,
3. ∀i, 1 ≤ i ≤ k : ci |= ϕi,
4. ∀i, 0 ≤ i ≤ k : ci |= ψi.

We say that A X-covers π, X ∈ {ut, rt, cand}, when qk ∈ FX .

Depending on the parameter value for X-cover, we define three sets of paths
(languages) of a GIA A: Put(A),Prt (A) and Pcand(A). These sets are used to
establish the connection between a GIA A and a CFA C: If e.g. a path π ∈ P(C)
reaches a target node � and π ∈ Prt(A), � is denoted reachable by A. The GIA
depicted in Fig. 3c thus contains the information that �3 is reachable when the
condition x = 0 holds, �7 is unreachable and that �5 and �9 are candidates for
being reached when the condition x = 5 holds.

With these definitions at hand, we can formally define the correctness of the
analysis information in a GIA.

Definition 3. Let A be a GIA, C a CFA and L ⊆ Loc a set of target nodes.
A is said to be correct wrt. C and L if Put(A) ⊆ {π ∈ P(C) | π is infeasible or
π is feasible and reaches no � ∈ L} and Prt(A) ⊆ {π ∈ P(C) | π is feasible and
reaches some � ∈ L}.
Correctness thus means the automaton correctly (according to the program)
marks paths as infeasible, as reaching no target or reaching some target nodes.
Similarly, we can define the soundness of an OA or UA analysis, assuming that
the target nodes L are encoded within the program C.

Definition 4. Let tool be an OA or UA analysis producing a GIA as output,
i.e. we assume the tool to encode a mapping tool : C × A → A.

If tool is an OA analysis, it is sound whenever for all A,A′ ∈ A, C ∈ C with
tool(A,C) = A′ we have

– Put(A′) ⊇ Put(A) and Prt(A′) = Prt(A), and
– ∀π ∈ Put(A′)\Put(A): π is an infeasible path of C or is feasible but reaches

no � ∈ L.

If tool is an UA analysis, it is sound whenever for all A,A′ ∈ A, C ∈ C with
tool(A,C) = A′ we have

– Prt(A′) ⊇ Prt(A) and Put(A′) = Put(A), and
– ∀π ∈ Prt(A′)\Prt(A): π is a feasible path of C reaching some � ∈ L.

Consequently, a sound tool always generates correct GIAs when started with a
correct GIA.

Finally, we can define when verification or test case generation is completed,
namely, when a correct GIA A is generated for a CFA C = (Loc, l0, G) such that
for all target nodes t there exists some π ∈ Prt(A)∪ Put(A) such that π reaches
t (all target nodes covered or unreachable).

Information Exchange Between OA and UA Software Analyses 45

4 Using GIAs in Cooperative Validation

The basic idea of cooperation is to store analysis results computed by one tool in
an artifact and let another tool start its work using this additional information.
We next briefly discuss some such cooperations and how they could make use of
GIAs.

Cooperative test case generation. The goal of test case generation is the
computation of a test suite leading to paths covering all target nodes. This
can be implemented as a cooperation of an UA analysis Under (e.g. concolic
execution) with an OA analysis Over (e.g. explicit value analysis). Under is
responsible for generating the test suite and Over for identifying target nodes
which are unreachable. Hence, Under reports in a GIA within Prt the set
of already found paths to targets and in Pcand the set of not yet covered
target paths; Over tries to show infeasibility of paths in Pcand and if it suc-
ceeds, moves these into Put . Next, Under continues on the remaining targets,
and this cycle continues until all target nodes are covered by the test suite.
In addition, Over might add assumptions on program transitions to guide
Under to uncovered targets. This form of analysis has been proposed by Daca
et al. [23].

Cooperative verification using CEGAR. The goal of software verification
is to show that none of the target nodes are reachable. This can be imple-
mented as a cooperation of an OA analysis Over (e.g. predicate analysis) with
an UA analysis Under (e.g. bounded model checking). Over is responsible for
building an abstraction of the state space of the program while Under rules
out potential counter examples. Hence, Over reports in a GIA within Pcand

the candidates for counter examples which Under inspects and moves to Prt

when it can show them to be real. In that case, the verification stops with out-
come “not safe”, else Over next uses the spurious counter examples to refine its
abstraction of the state space (CEGAR = counter example guided abstrac-
tion refinement), and the cycle starts anew. Here, we can actually view Over
as consisting of two overapproximating analyses: one for the entire program
and another one just operating on path programs describing spurious counter
examples and computing new predicates via interpolation. Such a form of
analysis appears in [2,29] in a non-cooperative form and in [13] in a cooper-
ative form, but using different artifacts (see also Sect. 5 for a comparison).

Cooperative verification via Conditional Model Checking. Conditional
model checking [8,10] can be viewed as a cooperation of several overapprox-
imating analyses Over1 to Overn in which an analysis Overi transfers the
obtained partial results within Put to Overi+1 so that it can work on the
remaining target nodes.

The sketched scenarios assume that all tools potentially employed as Over or
Under understand GIAs. This is however (or rather, of course) not the case.
To still enable cooperation of tools, in particular while still using the existing
tools in a black box manner, we need two more operators on GIAs: (1) a way

46 J. Haltermann and H. Wehrheim

Algorithm 1. X-Reducer

Input: CFA C = (Loc, �0, G) � original program
GIA A = (Q, Σ, δ, (q0, ψ0), Fut , Frt , Fcand) � GIA

Output: CFA Cr = (Locr, �
r
0, Gr) � reduced program

1: (Locr, �
r
0, Gr) := Reducer(C, (Q, Σ, δ, (q0, ψ0), FX)) � Call the existing reducer

2: if Fcand �= ∅ then:
3: toKeep := ∅ � Locations on a path containing a node in Fcand

4: for each � = (li, (qi, ψi)) ∈ Locr s.t. (qi, ψi) ∈ Fcand do
5: add all predecessors and successors of � in Locr to toKeep

6: for each � ∈ Locr do
7: if � /∈ toKeep then
8: Remove � from Locr; Remove all (�, ·, ·), (·, ·, �) from Gr

9: return (Locr, �
r
0, Gr)

of encoding the information in the artifact into the only form of input accepted
by the majority of tools, i.e. programs, and (2) a way of combining several
partial results about programs as given by GIAs into one GIA as not to lose any
information.

Reducer. For (1), we use the concept of reducers as introduced in [10,22]. A
reducer reduces a program to a certain part, removing some paths.

Definition 5. An X-reducer for X ∈ {ut, rt} is a mapping redX : C × A → C
satisfying

∀C ∈ C, A ∈ A : P ⊆ P(redX(C,A)) ⊆ P(C),

where P =

{
P(C)\PX(A) if Fcand = ∅ in A

Pcand(A)\PX(A) otherwise.

A reducer for X = ut in the case that Fcand = ∅ is already existing [10]. In
Algorithm 1 we provide a parameterized reducer for both values of X, building
on the existing one3. It first calls the existing reducer and obtains a program
reduced wrt. X. As Pcand contains the set of interesting paths whereon the
succeeding tool should focus, X-Reducer minimizes the computed reduced CFA
wrt. these paths (in line 2 to 8).

We get the following result:

Theorem 1. Algorithm 1 is an X-reducer according to Definition 5.

Proof. The proof follows from the correctness of the existing reducer in [10] (that
works correctly in case Fcand = ∅) and the fact that the construction in line 2–8
only removes path not in Pcand(A).

3 Algorithm 1 assumes for representation purposes that the GIA does not contain
state invariants. A full construction, covering this aspect is given in the extended
version of this paper, that can be found as part of the artifact at Zenodo [26].

Information Exchange Between OA and UA Software Analyses 47

Algorithm 2. Combiner

Input: GIA A1 = (Q1, Σ, δ1, q0, F
1
ut , F

1
rt , F

1
cand) � First GIA

GIA A2 = (Q2, Σ, δ2, s0, F
2
ut , F

2
rt , F

2
cand) � Second GIA

Output: GIA A = (Q, Σ, δ, p0, Fut , Frt , Fcand) � Combined GIA
1: Q := {((q0, s0), true)}, p0 := ((q0, s0), true), δ := ∅, waitlist := {((q0, s0), true)}
2: while waitlist �= ∅ do
3: select ((qi, si), ψi) from waitlist and remove it
4: for each t1 = ((qi, ψi) −gi,ϕi−−−→ (qi+1, ψi+1)) ∈ δ1 do
5: if si ∈ {◦, •} ∨ �((si, ψi) −gj ,ϕj−−−→ (si+1, ψ

′
i+1)) ∈ δ2 : gi = gj then

6: if si ∈ {◦, •} then si+1 = si else si+1 = ◦
7: Q := Q ∪ {(qi+1, si+1), ψi+1},
8: δ := δ ∪ {((qi, si), ψi) −gi,ϕi−−−→ ((qi+1, si+1), ψi+1)}
9: if qi+1 /∈ F 1

rt ∪ F 1
ut then waitlist := wailist ∪{((qi+1, si+1), ψi+1)}

10: else
11: for each t2 = ((si, ψi) −gjϕj−−−→ (si+1, ψ

′
i+1)) ∈ δ2 : gi = gj do

12: waitlist, Q, δ := Merge(waitlist,Q, δ, t1, t2)
13: for each ((si, ψi) −gj ,ϕj−−−→ (si+1, ψi+1) ∈ δ2) do analogously to line 4–12
14: Frt = {(qi, si) ∈ Q | qi ∈ F 1

rt ∨ si ∈ F 2
rt}

15: Fut = {(qi, si) ∈ Q | qi ∈ F 1
ut ∨ si ∈ F 2

ut}
16: Fcand = {(qi, si) ∈ Q | qi ∈ F 1

cand ∪ {•} ∧ si ∈ F 2
cand ∪ {•}}

17: if Frt ∩ Fut �= ∅ then return ERROR
18: return A = (Q, Σ, δ, p0, Fut , Frt , Fcand)

where ◦, • are replacements for a state used during splitting and are not processed.

Combiner. When several tools compute analysis information, we have to make
sure that all this information is preserved. To this end, we introduce a combiner
for the combination of GIAs. The combiner’s goal is to keep all information on
Put and Prt from both GIAs.

Definition 6. A combiner is a partial mapping comb : A × A → A which is
defined on consistent GIAs A1 and A2 with Put(A1)∩ Prt(A2) = ∅ = Prt(A1)∩
Put(A2) such that

∀A1, A2 ∈ A :Put(comb(A1, A2)) = Put(A1) ∪ Put(A2) ∧
Prt(comb(A1, A2)) = Prt(A1) ∪ Prt(A2) .

An algorithm for a combiner is given in Algorithm 2, for presentation purposes
assuming that each edge in δ1, δ2 contains only a single transition. The intu-
itive idea of the Combiner is to build the union of the two GIAs and consider
newly computed information: For example, if there is a path π ∈ Pcand(A1)
and π ∈ Put(A2), Combiner ensures that π ∈ Put(A) for the combined GIA
A. Therefore, Combiner builds the new GIA A by searching for common sub-
paths in the input-GIAs A1 and A2. A state in A is a tuple (a1, a2) of two states,
a1 ∈ Q1 and a2 ∈ Q2, both reachable on the same path. If the paths diverge, the
state is split, where the placeholders ‘◦’ and ‘•’ are used to replace either a1 or
a2. We use e.g. ‘◦’ if the transitions from a1 and from a2 contain different CFA

48 J. Haltermann and H. Wehrheim

Task

Off-the-
shelf Tool UA Tool

rt-Reducer

Combiner

Reduced Program

Information

OA Tool

GIA

GIA

Fig. 4. Cooperative test case generation using rt-Reducer and Combiner

edges and e.g. ‘•’ if the successor states have different state invariants. More
details on how splitting works can be found in the method Merge, that is given
in the extended version of this paper, that can be found as part of the artifact
at Zenodo [26].

Additionally, Combiner maintains more precise information on paths from
Pcand: If a path π is present in Pcand(A1) and Pcand(A2), once with and once
without condition, the condition is also present on the path in the combined
GIA. For this, we need to use two different placeholders ‘◦’ and ‘•’. The resulting
GIA is not guaranteed to be minimal, meaning that it may contain some paths
multiple times and contains paths that do not lead to an accepting state.

Theorem 2. Algorithm 2 is a combiner according to Definition 6.

Proof. The proof can be found in the extended version [26].

Finally, we can state that connecting tools via reducers and combiners does
not lose any of the already computed analysis results.

Theorem 3. Let A ∈ A be a GIA, C ∈ C a CFA, tool a sound UA or OA
analysis and X ∈ {ut, rt}. Then for a GIA A′ = comb(tool(redX(A,C)), A) we
get

– Prt(A′) = Prt(A) ∧ Put(A′) ⊇ Put(A) if tool is an OA, and
– Put(A′) = Put(A) ∧ Prt(A′) ⊇ Prt(A) if tool is an UA.

Proof. Follows directly from Theorem 2 and Definition 4.

Figure 4 exemplifies this construction in the setting of cooperative test case gen-
eration. It uses an UA tool called UA tool working on GIA as well as rt-Reducer
and Combiner for an off-the-shelf OA tool called OA tool, that does not under-
stand GIAs. When started on the program from Fig. 2, UA tool finds a test suite
covering �3 and generates the GIA A1 depicted in Fig. 3a. Next, the rt-Reducer
computes the reduced program containing only the else-branch starting in line
5. It is given to OA tool which (1) computes that �7 is unreachable and (2) com-
putes a path potentially leading to �5 and �9 under the condition x = 5. This
is then encoded as GIA A2 visualized in Fig. 3b. To not lose the information on

Information Exchange Between OA and UA Software Analyses 49

�3, A1 and A2 are combined to A3. A3 is given to UA tool, which confirms that
�5 and �9 are covered. when all target nodes are either covered or identified as
unreachable, the computation terminates.

5 Implementation and Evaluation

To demonstrate the feasibility of GIAs as exchange format and to show that the
developed theoretical concepts work in practice, we exemplarily realized com-
ponent-based CEGAR (C-Cegar [13]) using only GIAs as exchange format,
as explained in Sect. 4. The original implementation of C-Cegar (here called
cc-Wit) contains three components, a model explorer, a feasibility checker and
a precision refiner, which are executed in a loop and exchange correctness and
violation witnesses. The tool called Over in Sect. 4 comprises the two components
model explorer (working on the full program) and precision refiner (computing
new predicates). The tool Under is called feasibility checker in C-Cegar.

Implementation. We implemented GIAs based on condition automata and
realized our instance of C-CEGAR (called cc-Gia) in CoVeriTeam [11], alike
the original implementation. CoVeriTeam is a framework that provides an easy
way to build different forms of cooperative software verification. It provides a
language to describe the communication between different components and their
inputs and outputs. For cc-Gia, we integrated the GIA as an exchange format
in CoVeriTeam. Additionally, we built modules within CPAchecker [12] that
allow processing a GIA as input as well as generating a GIA as output, applicable
for the existing realizations of model explorer, feasibility checker and precision
refiner in CPAchecker. As the precision refiner in C-Cegar focuses on refin-
ing the latest infeasible counter example generated by the model explorer, we
additionally use a combiner to ensure that the precision increments computed in
previous iterations are maintained. To this end, we built the combiner described
in Algorithm 2 within CPAchecker, forming a standalone-executable compo-
nent, also fully integrated in CoVeriTeam. Note that exchange formats like
violation and correctness witnesses can be translated into GIAs, allowing to use
any off-the-shelf tool that produces these artifacts as outputs.

Evaluation. The goal of the evaluation is two-fold: First, we exemplarily show
that GIAs are feasible as exchange format and can be used in an existing
cooperative verification setting. Second, we exemplify the advantages of the
clearly defined semantics of GIA, allowing to precisely encode information for the
exchange between analyses. Therefore, we compare effectiveness and efficiency
of the existing implementation of C-CEGAR (cc-Wit), using violation and cor-
rectness witnesses as exchange formats between the three components, with our
re-implementation (cc-Gia) which only makes use of GIAs for the information
exchange.

Evaluation Setup. All experiments were run on machines with an Intel Xeon
E3-1230 v5, 3.40GHz (8 cores), 33 GB of memory, and Ubuntu 18.04 LTS with
Linux kernel 5.4.0-96-generic. Each tool is limited to use 15 GB of memory,

50 J. Haltermann and H. Wehrheim

Table 1. Comparison of the exist-
ing cc-Wit and the cooperation
using only GIA for information
exchange (cc-Gia)

Result cc-Gia cc-Wit

Correct overall 2 641 2 819
Correct proof 2 068 2 100
Correct alarm 573 719
Add. solved 114 –
Incorrect 5 7

1 10 100 900

CPU time for cc-Gia (s)

1

10

100

900

C
P
U
tim

e
fo
r
cc

-W
it

(s
)

TO

-

TO -

Fig. 5. Comparison of CPU time for cc-Wit and
cc-Gia

4 CPU cores and 15min of CPU time per verification run. All experiments were
executed using BenchExec [14], ensuring the resource limitations.

We evaluated both approaches on the SV-Benchmarks, the largest publicly
available benchmark for C-programs, in the version used for the SV-Comp’224

containing in total 8 347 tasks. We used CPAchecker in the version 2.1.2,
CoVeriTeam in version 0.9 and BenchExec in version 3.11.

Evaluation Results (Effectiveness). Table 1 contains the experimental results of
cc-Gia and cc-Wit. It contains the number of overall correct answers, the cor-
rect proofs (where an approach correctly detects that no target node is reachable)
and correct alarms (where a feasible path to a target node is computed). In addi-
tion, the incorrect answers are reported, as well as the number of tasks where
cc-Gia computes the correct result but cc-Wit does not (row add. solved).

For the total number of correctly solved tasks, we observe that cc-Gia can
solve 94% of all tasks solved by cc-Wit. Within the 94%, the number of iter-
ations and the computed refinements are almost always equal. The decrease
originates mostly in the fact that cc-Gia is not able to compute a solution in
the given time limit for 259 tasks, for which cc-Wit computes a solution within
900 s.

When looking at the additionally solved tasks, we can see the advantages of
using GIAs: In 114 cases, cc-Gia computes the correct result, whereas cc-Wit
either runs in a timeout or aborts the computation as it eventually makes no
progress and gets stuck. Both situations are caused by the fact that not all infor-
mation computed by the precision refiner is added in the correctness witness, a
situation not happening when using GIA. In [13], the authors argue that this sit-
uation is caused by the fact that correctness witnesses are not primarily designed
for the exchange of a precision increment. The semantics of the GIA allows the

4 https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/tree/svcomp22.

https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/tree/svcomp22

Information Exchange Between OA and UA Software Analyses 51

precision refiner to encode the information, i.e., encode that a newly discovered
predicate holds at a certain point of the infeasible counter example path. There-
fore, the refiner builds a GIA that only contains the infeasible counter example,
of which the last An example is given in the extended version [26].

Evaluation Results (Efficiency). Figure 5 compares the efficiency of cc-Gia and
cc-Wit per task in a logarithmic scale. A point (x, y) contains the CPU time
taken by cc-Gia (as x) and by cc-Wit (as y) for all tasks where both com-
pute the correct solution or one runs into a timeout (TO). We observe that
cc-Gia needs in general more time for finding a solution, as most points are
below the diagonal. The increase is in the vast majority of all cases smaller than
the factor two (lower dashed line). The CPU time increases on average by 1.4
(standard deviation is 0.4), the median increase is 1.3. In cc-Wit, information
from correctness witnesses are joined using a syntactic approach, which is fast
and, as it is only applied within this setting, expresses the precision increment
in a way optimized for C-Cegar. In contrast, cc-Gia employs the Combiner,
which takes the semantics of the two GIAs that are combined into account as to
guarantee that no information is lost. The resulting GIA is significantly larger
(contains more states and edges) and not optimized for C-Cegar, which is the
reason most likely causing the increasing runtime and the number of timeouts.

The evaluation shows that GIAs are a flexible, precise and practically suit-
able exchange format, applicable for C-Cegar. In particular, we see that the
drawbacks of cc-Wit, namely losing information on precision increments com-
puted, can be overcome. As a downside, the overall efficiency slightly decreases
when using GIA, due to their size and the fact that they are non optimized for
specific applications.

6 Conclusion

In this paper, we have proposed general information exchange automata as an
exchange format for the cooperation of over- and underapproximative analyses.
It has a fixed well-defined semantics allowing its application in different sce-
narios. We have furthermore defined and implemented two operations on GIAs,
reducing a program to the (remaining) task and combining results with pre-
viously computed information. These operations allow a re-use of off-the-shelf
tools. We have formally shown that applying reducer and combiner maintains all
relevant computed information. The feasibility of GIAs as exchange format has
been demonstrated by applying it in an existing cooperative verification setting
(C-Cegar).

For future work, we plan to implement other existing forms of combinations
of OA and UA off-the-shelf tools in a cooperative setting using GIAs for the
information exchange, such as for conditional model checking, test case genera-
tion or k-induction. GIAs are also well suited for being applied in a parallelized
cooperative setting, where multiple tools work side-by-side on the same task to
increase the overall performance, as the combiner of arbitrary GIAs guarantees
that no information is lost.

52 J. Haltermann and H. Wehrheim

Data Availability Statement. Our implementation is open-source and available
as part of CPAchecker and CoVeriTeam. We archived the implementation and
all experimental data for reproduction at Zenodo [26].

References

1. Albarghouthi, A., Gurfinkel, A., Chechik, M.: From under-approximations to over-
approximations and back. In: Flanagan, C., König, B. (eds.) TACAS 2012. LNCS,
vol. 7214, pp. 157–172. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-28756-5_12

2. Beckman, N.E., Nori, A.V., Rajamani, S.K., Simmons, R.J.: Proofs from tests. In:
Ryder, B.G., Zeller, A. (eds.) Proceedings ISSTA, pp. 3–14. ACM (2008). https://
doi.org/10.1145/1390630.1390634

3. Beyer, D.: Advances in automatic software testing: Test-Comp 2022. In: FASE
2022. LNCS, vol. 13241, pp. 321–335. Springer, Cham (2022). https://doi.org/10.
1007/978-3-030-99429-7_18

4. Beyer, D.: Progress on software verification: SV-COMP 2022. In: TACAS 2022.
LNCS, vol. 13244, pp. 375–402. Springer, Cham (2022). https://doi.org/10.1007/
978-3-030-99527-0_20

5. Beyer, D., Dangl, M., Dietsch, D., Heizmann, M.: Correctness witnesses: Exchang-
ing verification results between verifiers. In: Zimmermann, T., Cleland-Huang, J.,
Su, Z. (eds.) Proceedings of FSE, pp. 326–337. ACM (2016). https://doi.org/10.
1145/2950290.2950351

6. Beyer, D., Dangl, M., Dietsch, D., Heizmann, M., Stahlbauer, A.: Witness valida-
tion and stepwise testification across software verifiers. In: Nitto, E.D., Harman,
M., Heymans, P. (eds.) Proceedings of ESEC/FSE, pp. 721–733. ACM (2015).
https://doi.org/10.1145/2786805.2786867

7. Beyer, D., Henzinger, T.A., Jhala, R., Majumdar, R.: The software model checker
Blast. Int. J. Softw. Tools Technol. Transf. 9(5–6), 505–525 (2007). https://doi.
org/10.1007/s10009-007-0044-z

8. Beyer, D., Henzinger, T.A., Keremoglu, M.E., Wendler, P.: Conditional model
checking: a technique to pass information between verifiers. In: Tracz, W., Robil-
lard, M.P., Bultan, T. (eds.) Proceedings of FSE, p. 57. ACM (2012). https://doi.
org/10.1145/2393596.2393664

9. Beyer, D., Jakobs, M.-C.: CoVeriTest: cooperative verifier-based testing. In:
Hähnle, R., van der Aalst, W. (eds.) FASE 2019. LNCS, vol. 11424, pp. 389–408.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-16722-6_23

10. Beyer, D., Jakobs, M., Lemberger, T., Wehrheim, H.: Reducer-based construction
of conditional verifiers. In: Chaudron, M., Crnkovic, I., Chechik, M., Harman, M.
(eds.) Proceedings of ICSE, pp. 1182–1193. ACM (2018). https://doi.org/10.1145/
3180155.3180259

11. Beyer, D., Kanav, S.: CoVeriTeam: on-demand composition of cooperative verifi-
cation systems. In: TACAS 2022. LNCS, vol. 13243, pp. 561–579. Springer, Cham
(2022). https://doi.org/10.1007/978-3-030-99524-9_31

12. Beyer, D., Keremoglu, M.E.: CPAchecker: a tool for configurable software verifi-
cation. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp.
184–190. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-
1_16

https://doi.org/10.1007/978-3-642-28756-5_12
https://doi.org/10.1007/978-3-642-28756-5_12
https://doi.org/10.1145/1390630.1390634
https://doi.org/10.1145/1390630.1390634
https://doi.org/10.1007/978-3-030-99429-7_18
https://doi.org/10.1007/978-3-030-99429-7_18
https://doi.org/10.1007/978-3-030-99527-0_20
https://doi.org/10.1007/978-3-030-99527-0_20
https://doi.org/10.1145/2950290.2950351
https://doi.org/10.1145/2950290.2950351
https://doi.org/10.1145/2786805.2786867
https://doi.org/10.1007/s10009-007-0044-z
https://doi.org/10.1007/s10009-007-0044-z
https://doi.org/10.1145/2393596.2393664
https://doi.org/10.1145/2393596.2393664
https://doi.org/10.1007/978-3-030-16722-6_23
https://doi.org/10.1145/3180155.3180259
https://doi.org/10.1145/3180155.3180259
https://doi.org/10.1007/978-3-030-99524-9_31
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/978-3-642-22110-1_16

Information Exchange Between OA and UA Software Analyses 53

13. Beyer, D., Lemberger, T., Haltermann, J., Wehrheim, H.: Decomposing software
verification into off-the-shelf components: an application to CEGAR. In: ICSE, pp.
536–548. ACM (2022). https://doi.org/10.1145/3510003.3510064

14. Beyer, D., Löwe, S., Wendler, P.: Reliable benchmarking: requirements and solu-
tions. Int. J. Softw. Tools Technol. Transfer 21(1), 1–29 (2017). https://doi.org/
10.1007/s10009-017-0469-y

15. Beyer, D., Wehrheim, H.: Verification artifacts in cooperative verification: survey
and unifying component framework. In: Margaria, T., Steffen, B. (eds.) ISoLA
2020. LNCS, vol. 12476, pp. 143–167. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-61362-4_8

16. Blicha, M., Hyvärinen, A.E.J., Marescotti, M., Sharygina, N.: A cooperative par-
allelization approach for property-directed k-induction. In: Beyer, D., Zufferey,
D. (eds.) VMCAI 2020. LNCS, vol. 11990, pp. 270–292. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-39322-9_13

17. Bruns, G., Godefroid, P.: Model checking partial state spaces with 3-valued tem-
poral logics. In: Halbwachs, N., Peled, D. (eds.) CAV 1999. LNCS, vol. 1633, pp.
274–287. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48683-6_25

18. Christakis, M., Müller, P., Wüstholz, V.: Collaborative verification and testing with
explicit assumptions. In: Giannakopoulou, D., Méry, D. (eds.) FM 2012. LNCS,
vol. 7436, pp. 132–146. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-32759-9_13

19. Christakis, M., Müller, P., Wüstholz, V.: Guiding dynamic symbolic execution
toward unverified program executions. In: Dillon, L.K., Visser, W., Williams, L.
(eds.) Proceedings of ICSE, pp. 144–155. ACM (2016). https://doi.org/10.1145/
2884781.2884843

20. Csallner, C., Smaragdakis, Y.: Check ‘n’ crash: combining static checking and
testing. In: Roman, G., Griswold, W.G., Nuseibeh, B. (eds.) Proceedings of ICSE,
pp. 422–431. ACM (2005). https://doi.org/10.1145/1062455.1062533

21. Csallner, C., Smaragdakis, Y., Xie, T.: DSD-crasher: a hybrid analysis tool for bug
finding. TOSEM 17(2), 8:1–8:37 (2008). https://doi.org/10.1145/1348250.1348254

22. Czech, M., Jakobs, M.-C., Wehrheim, H.: Just test what you cannot verify! In:
Egyed, A., Schaefer, I. (eds.) FASE 2015. LNCS, vol. 9033, pp. 100–114. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-46675-9_7

23. Daca, P., Gupta, A., Henzinger, T.A.: Abstraction-driven concolic testing. In: Job-
stmann, B., Leino, K.R.M. (eds.) VMCAI 2016. LNCS, vol. 9583, pp. 328–347.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49122-5_16

24. Ge, X., Taneja, K., Xie, T., Tillmann, N.: DyTa: dynamic symbolic execution
guided with static verification results. In: Taylor, R.N., Gall, H.C., Medvidovic, N.
(eds.) Proceedings of ICSE, pp. 992–994. ACM (2011). https://doi.org/10.1145/
1985793.1985971

25. Haltermann, J., Wehrheim, H.: CoVEGI: cooperative verification via externally
generated invariants. In: FASE 2021. LNCS, vol. 12649, pp. 108–129. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-71500-7_6

26. Haltermann, J., Wehrheim, H.: Extended version of ‘information exchange between
over- and underapproximating software analyses (2022). https://doi.org/10.5281/
zenodo.6749669

27. Jakobs, M.-C., Wehrheim, H.: Compact proof witnesses. In: Barrett, C., Davies,
M., Kahsai, T. (eds.) NFM 2017. LNCS, vol. 10227, pp. 389–403. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-57288-8_28

https://doi.org/10.1145/3510003.3510064
https://doi.org/10.1007/s10009-017-0469-y
https://doi.org/10.1007/s10009-017-0469-y
https://doi.org/10.1007/978-3-030-61362-4_8
https://doi.org/10.1007/978-3-030-61362-4_8
https://doi.org/10.1007/978-3-030-39322-9_13
https://doi.org/10.1007/3-540-48683-6_25
https://doi.org/10.1007/978-3-642-32759-9_13
https://doi.org/10.1007/978-3-642-32759-9_13
https://doi.org/10.1145/2884781.2884843
https://doi.org/10.1145/2884781.2884843
https://doi.org/10.1145/1062455.1062533
https://doi.org/10.1145/1348250.1348254
https://doi.org/10.1007/978-3-662-46675-9_7
https://doi.org/10.1007/978-3-662-49122-5_16
https://doi.org/10.1145/1985793.1985971
https://doi.org/10.1145/1985793.1985971
https://doi.org/10.1007/978-3-030-71500-7_6
https://doi.org/10.5281/zenodo.6749669
https://doi.org/10.5281/zenodo.6749669
https://doi.org/10.1007/978-3-319-57288-8_28

54 J. Haltermann and H. Wehrheim

28. Mukherjee, R., Schrammel, P., Haller, L., Kroening, D., Melham, T.: Lifting CDCL
to template-based abstract domains for program verification. In: D’Souza, D.,
Narayan Kumar, K. (eds.) ATVA 2017. LNCS, vol. 10482, pp. 307–326. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-68167-2_21

29. Nori, A.V., Rajamani, S.K., Tetali, S.D., Thakur, A.V.: The Yogi project: software
property checking via static analysis and testing. In: Kowalewski, S., Philippou, A.
(eds.) TACAS 2009. LNCS, vol. 5505, pp. 178–181. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-00768-2_17

https://doi.org/10.1007/978-3-319-68167-2_21
https://doi.org/10.1007/978-3-642-00768-2_17

Program Analysis

A Query Language for Language Analysis

Matteo Cimini(B)

University of Massachusetts Lowell, Lowell, MA 01854, USA

matteo cimini@uml.edu

Abstract. Language analysis aims at establishing properties of lan-
guages, which provides strong guarantees on the behavior of every pro-
gram written in such languages. Tools that automate language analysis
often need to browse a language definition given as input and retrieve
information from grammars, typing rules, reduction rules, and other com-
ponents of the language.

In this paper, we propose a languages-as-databases approach where
language definitions are stored as database tables. Our main contri-
bution is Lang-Sql, a SQL-inspired query language that can express
queries over languages. The key characteristic of Lang-Sql is that it
contains linguistic features that are specific to query operational seman-
tics aspects.

To demonstrate that Lang-Sql can be used in practical appli-
cations, we have used Lang-Sql queries to rewrite the majority of
Lang-n-Check, a tool that analyzes languages and establishes their
type soundness. Our queries are declarative, and concisely express com-
plicated operations.

Keywords: Language analysis · Type soundness · SQL

1 Introduction

After designing a programming language (PL), there are many properties that
are interesting to validate such as type soundness and strong normalization,
for example. Language analysis aims at automatically establishing properties of
languages from their description [1,2,4,13–16,18,22]. The benefit of doing that
is that once a property of a language is established then every program that is
written in such a language affords the property. The body of work in language
analysis is not as rich as that of program analysis, and has primarily focused on
type soundness and bisimilarity laws of process algebras.

A number of approaches have been proposed in the context of type sound-
ness. In the approach with intrinsic typing [2,4,22], a language is implemented
within a type theory with a strong meta-theory, and it is written in such a way
that if its interpreter type checks then the language is type sound. Veritas [14–
16], instead, relies on automated theorem proving and compiles languages into
formulae that are checked with a theorem prover. Roberson et al. [21] propose an

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
B.-H. Schlingloff and M. Chai (Eds.): SEFM 2022, LNCS 13550, pp. 57–73, 2022.
https://doi.org/10.1007/978-3-031-17108-6_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-17108-6_4&domain=pdf
http://orcid.org/0000-0003-0162-9997
https://doi.org/10.1007/978-3-031-17108-6_4

58 M. Cimini

approach based on model checking in which programs/states are generated, steps
are computed from them, and then they are type checked. Lang-n-Check [13]
proposes an approach in which a language definition must conform to a language
organization that is known to guarantee type soundness. Meta SOS [1] and the
tool of Mousavi and Reniers [18] analyze process algebras, instead, and their app-
roach is based on syntactic templates for inference rules called rule formats [19].
These tools check whether bisimilarity is a congruence, and whether operators
obey laws such as commutativtiy and associativity (modulo bisimilarity).

A common characteristic of this type of tools is that they need to retrieve
information from grammars, typing rules, reduction rules, and other compo-
nents of the language given as input. (We give full details of Lang-n-Check
in this paper, and we offer some examples w.r.t. other tools in Sect. 6.) Inter-
rogating language definitions is akin to asking queries to databases. In the field
of databases queries can be written declaratively in a query language such as
SQL. Queries are concise, mostly readable, and can be used in multiple projects.
Language analysis tools, on the other hand, typically store languages as a data
type of a specific PL, and implement their queries with several lines of code of
this specific PL. As a consequence, the retrieval methods used in these tools are
hard to locate, understand, maintain, and share among different tools.

Our question: Can we develop a declarative query language that can express
interesting questions about languages and be used to build practical applications?

We have developed Lang-Sql [12], a SQL-inspired query language that can
express queries over languages. Lang-Sql works with languages defined with
operational semantics. The first characteristic of Lang-Sql is that it adopts a
languages-as-databases approach where languages are stored as database tables.
Consider a language with booleans with grammars Type T ::= bool | · · · and
Expression e ::= true | false | · · · , where the dots represent the rest. Lang-Sql
accommodates this information in the following table called grammar.

category term

Type bool

Expression true

Expression false
.

This table has two attributes: category, which stores the name of the cate-
gory, and term, which stores the grammar production. Lang-Sql also includes
tables to link the metavariables T and e to their syntactic categories, and to
store inference rules. (A complete description of our tables is in Sect. 2.)

The second characteristic of Lang-Sql is that it contains linguistic features
that are specific to query operational semantics aspects. For example, Lang-Sql
includes operations to check whether a term is a binder, to check whether a term
is derived by a grammar, and to extract the top-level constructor of a term. (We
cover all the features of Lang-Sql in Sect. 3.)

A Query Language for Language Analysis 59

Evaluation. We have implemented Lang-Sql in OCaml [12]. The tool takes a
language definition and a Lang-Sql query as input, and generates an output
table in the style of SQL. Lang-Sql reads language definitions that are defined
in a textual representation of operational semantics. Our tool compiles them into
the tables that we have mentioned above, and applies the query on these tables.

To demonstrate that Lang-Sql can be used to develop practical applications,
we target Lang-n-Check [13], which implements an analysis that has been
proved to establish type soundness for a certain class of pure functional languages
[13]. This tool performs several checks. For example, it checks that an elimination
form has a reduction rule for each of the canonical forms that it is supposed to
handle, and that the appropriate evaluation contexts exist.

We have rewritten the majority of Lang-n-Check as queries of Lang-Sql.
Why do we not capture all Lang-n-Check? The reason is that we chose to be
faithful to SQL, and avoid general forms of recursion (and always terminate).
Therefore, there are two checks of Lang-n-Check that we cannot express. (We
discuss this in Sect. 5.) Nonetheless, we have used Lang-Sql to rewrite most of
the tool. Our queries amount to 23 lines of Lang-Sql code. This is remarkable:
The part of Lang-n-Check’s implementation that we have rewritten is over a
thousand lines of OCaml code. We also have applied our queries to the same
repo of languages of Lang-n-Check, and we obtain the same results.

Our work shows that Lang-Sql can be used to build practical language
analysis tools. Overall, our queries are declarative, mostly readable, and concise.

The paper is organized as follows. Section 2 presents our approach based
on languages-as-databases. Section 3 presents Lang-Sql. Section 4 provides our
Lang-Sql implementation of Lang-n-Check. Section 5 discusses our evalua-
tion and the limitations of our work. Section 6 discusses related work, and Sect. 7
concludes the paper.

2 Languages as Databases

Lang-Sql works with languages defined with operational semantics. To recall,
Fig. 1 shows an example of language, which we call λb,[], and is our running
example. A language definition has a grammar, and an inference rule system.
This section proposes a database schema for language definitions.

A grammar is a sequence of grammar rules. Each grammar rule defines a
category, its metavariable, and provides a series of terms. In our example lan-
guage, the category Expression is formed with the λ-calculus, booleans (true and
false) and the if-statement, lists (nil and cons) and the head operation, a
let-declaration, and the error error. The category Type defines types, which
are the types for booleans, functions and lists. Values are the outcome of suc-
cessful evaluations, and they are defined with the grammar Value. Values can be
booleans, functions, and lists. The grammar Error contains error, which is the
outcome of failed computations when head is applied to the empty list nil. λb,[]

is defined in small-step semantics with evaluation contexts. Therefore, EvalCtx
declares within which contexts we allow reduction to take place.

60 M. Cimini

Type T ::= Bool | T → T | List T

Expression e ::= true | false | if e then e else e

| x | λx : T.e | e e

| nil | cons e e | head e

| let x = e in e

| error
Value v ::= true | false | λx : T.e | nil | cons v v

Error er ::= error

EvalCtx E ::= � | if E then e else e

| E e | v E

| cons E e | cons v E | head E

| let x = E in e

TypeEnv Γ ::= ∅ | Γ, x : T

Type System Γ � e : T

Γ, x : T � x : T Γ � true : Bool Γ � false : Bool

Γ � e1 : Bool Γ � e2 : T Γ � e3 : T

Γ � if e1 then e2 else e3 : T

Γ, x : T1 � e : T2

Γ � λx : T1.e : T1 → T2

Γ � e1 : T1 → T2 Γ � e2 : T1

Γ � e1 e2 : T2

Γ � nil : List T
Γ � e1 : T Γ � e2 : List T

Γ � cons e1 e2 : List T

Γ � e : List T
Γ � head e : T

Γ � e1 : T1 Γ, x : T1 � e2 : T2

Γ � let x = e1 in e2 : T2

Γ � error : T

Reduction Semantics e −→ e

if true then e1 else e2 −→ e1

if false then e1 else e2 −→ e2

(λx : T.e) v −→ e[v/x] (β rule)

head nil −→ error

head (cons v1 v2) −→ v1

let x = v in e −→ e[v/x]

e −→ e′

E[e] −→ E[e′]
(ctx) E[er] −→ er (err-ctx)

Fig. 1. Language definition of λb,[]

The general shape of a grammar rule is cname X ::= t1 | · · · | tn where
cname ∈ Category, and X ∈ MetaVar. Category is a set of grammar
category names such as Expression and Type. MetaVar is a set of metavariables
such as T and e. Terms t have the form Term t ::= X | (opname t · · · t) | (X)t |

A Query Language for Language Analysis 61

t[t/X], where opname ∈ Operator. Operator is a set of constructors such as
if , list , and app. Terms have a top-level constructor applied to a finite sequence
of terms. Terms can use unary binding (X)t [6], where X is bound in the term
t. Terms can also use t[t/X] for the capture-avoiding substitution.

We model grammars with two entity sets: grammar-info and grammar. Entity
set grammar-info declares a category, its metavariable and its object variable
(like x in λx : T.e). It has three attributes: categoryinfo contains a cname,
meta-var contains an X, and obj-var contains an X. (We use an unused vari-
able when there is no object level variable.) Entity set grammar has a category
and its grammar productions (terms), i.e., two attributes: category contains a
cname, and term contains a term t. Below is our ER diagram in Crow’s foot
notation. (PK is a primary key. When no key is indicated, all attributes are keys.)

grammar-info

categoryinfo (PK)
meta-var
obj-var

grammar

category
term

An entity of grammar-info is uniquely identified by its name categoryinfo.
Such a category may have many terms (grammar productions), so there is a
one-to-many relationship between the two entity sets through categoryinfo. The
instantiation of an entity set is a table of the same name with zero or more rows
and a column for each attribute. For example, the first rows of grammar-info
and of grammar for λb,[] are the following.

categoryinfo meta-var obj-var

Type T

Expression e x

Value v

.

grammar-info
category term

Type bool

Type arrow T T

Type list T

Expression true

Expression false

Expression abs T (x)e
.

grammar

An inference rule system defines the relations of the language. λb,[] defines a
typing relation Γ � e : T , where Γ is a type environment that maps variables to
types. It also has a reduction relation e −→ e that models a small-step evaluation.
An inference rule system defines these relations with rules. Figure 1 shows the

62 M. Cimini

relation rel-args

� [TypeEnv;Expression;Type]

−→ [Expression;Expression]

declarationrel

rulename predname args role

(t-app) � [Γ ; e1;T1 → T2] PREM

(t-app) � [Γ ; e2;T1] PREM

(t-app) � [Γ ; app e1 e2;T2] CONCL

(t-abs) � [te˙add Γ x T1; e;T2] PREM

(t-abs) � [Γ ; abs T1 (x)e;T1 → T2] CONCL

(t-cons) � [Γ ; e1;T] PREM

(t-cons) � [Γ ; e2; list T] PREM

(t-cons) � [Γ ; cons e1 e2; list T] CONCL

(r-if-true) −→ [if true e1 e2; e1] CONCL

(r-if-false) −→ [if false e1 e2; e2] CONCL

(beta) −→ [app (abs T (x)e) v; e[v/x]] CONCL

.

rule

declarationop

constructor (PK)

constr-args

constructor constr-args

true []

false []

nil []

cons [Expression;Expression]

head [Expression]

.

declarationop

Fig. 2. Table declarationrel (top), first rows of rule (center), our ER diagram of
declarationop (bottom-left), and the first rows of its table (bottom-right)

rules for the typing and reduction relation of our running example. These rules
are standard, including (ctx) for evaluating within evaluation contexts, and
(err-ctx) for detecting an error and failing the overall evaluation.

A Query Language for Language Analysis 63

Each rule has a series of premises and a conclusion. These are formulae that
are built with a predicate name pname ∈ Predicate that is applied to a finite
sequence of terms, where Predicate is a set of predicates such as � and −→.
We also assume a set of names of rules RuleName ranged over by rname.

We model inference rules with two entity sets: declarationrel, and rule.
Entity set declarationrel has two attributes: relation contains the name of
the predicate (pname), and rel-args contains a list of category names (cname)
that determines the sort of the arguments. Entity set rule records the name
of a rule, a formula, and whether the formula is a premise or the conclusion. A
formula, in turn, is represented with its predicate name, and its list of terms.
Therefore, rule has four attributes: rulename contains a rname ∈ RuleName,
predname contains a pname, args contains a list of terms, and role contains
either the constant PREM or the constant CONCL. Below is our ER diagram.

declarationrel

relation (PK)
rel-args

rule

rulename
predname
args
role

An entity of declarationrel is uniquely identified by relation. As many
premises and conclusions may be formulae about this relation, there is a one-to-
many relationship between the two entity sets through declarationrel (linked
with predname). Figure 2 shows the first rows of declarationrel and rule for
our running example. It also shows the entity set declarationop, which declares
constructors with constructor (an opname) and constr-args (a list of terms).

3 The Lang-SQL Query Language

Figure 3 presents the syntax of Lang-Sql. The notation · denotes finite
sequences.

Lang-Sql includes the tables of Sect. 2. Expressions ultimately evaluate to
elements that can be stored in tables. Expressions can be numbers (n), terms
(t), attributes (attr), constructor names (opname), categories (cname), predicate
names (pname), rule names (rname), CONCL, and PREM. Lang-Sql also includes
lists, and some operations on lists. NTH(l, n) retrieves the n-th element of the
list l. The first argument has index 0. LAST(l, n) retrieves the element that is n
elements away from the end of l. In particular, LAST(l, 0) is the last element of l.

GET-OPNAME(e) applies to an expression e that evaluates to a term of the form
(opname t1 · · · tn), and returns opname. GET-ARGS(e), instead, returns the list
[t1; · · · ; tn] from (opname t1 · · · tn). GET-BOUND-TERM(e) applies to an expression
that evaluates to a term of the form (X).t and returns t. GET-BOUND-VAR(e),
instead, returns X from (X).t. The operator COUNT(), as standard in SQL,
returns the number of rows returned by a query.

64 M. Cimini

Fig. 3. Syntax of Lang-Sql

Formulae include equality, which holds when two arguments (whether they
are terms, numbers, category names, etc.) are syntactically the same. The for-
mula e1 IS e2 VAR evaluates e1 to a term, and evaluates e2 to a category cname,
and is true when the term is an instance of the metavariable of cname. To make
an example, while v3 = v does not hold, v3 IS Value VAR holds. The formula
e IS CONSTRUCTED is true when e evaluates to some (opname t1 · · · tn), and is
false otherwise. The formula e1 IS DERIVED BY e2 evaluates e1 to a term, and
evaluates e2 to a category cname, and is true when the term can be derived by
the grammar of cname. Formulae can also be combined with OR, AND and NOT.

Queries produce collections of records. As in SQL, tables are queries them-
selves. Queries can also be computed with a SELECT statement of the form:

SELECT e∗ (DISTINCT) FROM q (WHERE f1 (GROUP BY attr (HAVING (ALL) f2))).

Notation such as (DISTINCT) denotes that the part within parenthesis is
optional. Our SELECT statement is typical and behaves as expected. First, it
evaluates the queries q. Then, the formula f1 acts on the product of the tables
just computed from q, and selects zero or more rows. The GROUP BY part of the
statement is optional. When it is present, groups of rows are formed depending
on the rows that have the same values for attr. The HAVING clause is optional,
and when it is present it acts on these groups, not the whole collection of rows,
and filters rows of these groups based on the formula f2. The keyword ALL after
HAVING is optional. When it is present the formula f2 must be true for all the
rows of a group for the group not to be discarded. Finally, when e∗ is � then all
columns are returned. When e∗ is a sequence of n expressions, then they form
a table with n attributes, which e∗ can assign a name to using the keyword AS.
Each expression is evaluated for each of the rows that remained after HAVING.

A Query Language for Language Analysis 65

These expressions may invoke the operators that we have described above. Also,
the select statement may use the optional keyword DISTINCT. When DISTINCT
is present then duplicate rows are removed, and do not appear in the result.

Queries can also be combined with UNION, INTERSECT, and EXCEPT (all rows
of the first query except the rows that are also in the second query).

For linguistic convenience, names of grammar categories can be used to
denote the part of table grammar that is about such category. For example,
SELECT � FROM Value produces the table (a) here on the left.

term

true

false

abs T (x)e
. . .

(a)

−− arg arg-number

abs T 0

abs (x)e 1

cons v 0

cons v 1

(b)

Lang-Sql also introduces the keywords AS ROWS to conveniently handle lists.
Consider the query SELECT GET-ARGS(term) AS arg FROM Value. This query
returns a row for each item of the grammar Value with one column that contains
a list. That is, an element in the table is an entire list. However, it is sometimes
convenient to expand lists as a series of rows. Lang-Sql does so by adding
“AS ROWS attr”. The resulting table contains the column attr with an element of
the list, and an additional column called attr-number that contains a number,
which is the position of such element in the list. For example,

SELECT GET-OPNAME(term), GET-ARGS(term) AS ROWS arg FROM Value

produces the table (b) above on the right. Notice that true, false, and nil
have no arguments and so they do not generate any row.

Next, we provide some examples of queries. As language designers can choose
any shape for their relations, we fix some conventions. Whichever the typing
relation, we assume that the second last argument of � is the expression being
typed. This would be LAST(args, 1) in a row of the table rule. We assume that
the last argument is the type being assigned. This would be LAST(args, 0) in
rule. Whichever the reduction relation, the expression being evaluated, i.e., the
source of the step, is the first argument of −→ (that is NTH(args, 0) in rule).

Example 1 (How Many Typing Rules Does a Constructor Have?). Unless care-
fully structured, for example with a subtyping relation or polymorphism, some
language designers may be reluctant to give multiple types to an expression. A
common design choice is to restrict each constructor to have only one typing
rule. The following query computes the number of typing rules per constructor.

66 M. Cimini

1 SELECT opname, COUNT() AS count
2 FROM (SELECT GET-OPNAME(LAST(args,1)) AS opname
3 FROM rule WHERE predname = � AND role = CONCL)
4 GROUP BY opname

Lines 2 and 3 select all the conclusions of the typing rules, focus on the
expression to which they apply (this expression is at LAST(args, 1)), and save
its operator name with GET-OPNAME. The SELECT statement at Line 1 acts on the
table produced by lines 2 and 3. GROUP BY belongs to SELECT of Line 1, and makes
groups based on the same opname. SELECT calls COUNT() to compute the number
of rows in each group, that is, the number of typing rules for a constructor.

When we apply this query to λb,[] we obtain a table with a record for each
expression constructor, and each record has the column count set to 1.

Example 2 (What Are the Canonical Forms of the Language?). The canonical
forms of a language tell, for each type, the shape that values of that type can
have. Determining the canonical forms is essential to prove type soundness. The
following query computes the canonical forms.

canonicalForms �
SELECT GET-OPNAME(term) AS val,

GET-OPNAME(LAST(args, 0)) AS type
FROM Value, rule
WHERE predname = � AND role = CONCL

AND GET-OPNAME(term) = GET-OPNAME(LAST(args, 1))

canonicalForms selects terms in the grammar Value, and selects the conclu-
sions of the typing rules that assign a type to such terms (last line). This query
returns records with the constructor name of a value and the constructor name
of the type that the typing rule assigns to it (LAST(args, 0)). For λb,[], we obtain
the following table. (Rows continue on the left).

val type

true bool

false bool

abs arrow

nil list

cons list

Example 3 (What Are the Elimination Forms of the Language?). Elimination
forms of a type are operations that handle values of that type. In λb,[], if is an
elimination form of bool , app is an elimination form of arrow , and head is an
elimination form of list . The reduction rules of elimination forms have one of
the arguments of the operator, sometimes called principal argument [17], that
pattern-matches against a value. The following queries compute the elimination
forms of the language. We assume that the principal argument is the first.

A Query Language for Language Analysis 67

sourceOpWithArgs �
SELECT GET-OPNAME(NTH(args,0)) AS opname,

GET-ARGS(NTH(args,0)) AS ROWS arg
FROM rule WHERE predname = −→ AND role = CONCL

eliminationForms �
SELECT DISTINCT opname FROM sourceOpWithArgs
WHERE arg-number = 0 GROUP BY opname
HAVING ALL (arg IS CONSTRUCTED AND arg IS DERIVED BY Value)

sourceOpWithArgs selects each reduction rule and then records the top-level
operator of the source of the step (NTH(args, 0)). The arguments that are applied
to this operator are also recorded (one for each row). For example, the β rule
makes the rows app, (abs (x)e), 0 and app, v, 1. eliminationForms selects the rows
of the principal arguments (arg-number = 0) from sourceOpWithArgs. It makes
groups of rows with the same opname. After this, for example, we have two rows
for head , one with nil and one with (cons v1 v2). HAVING ALL keeps the groups
where all the rows have the argument, which is a principal argument, such that
it makes use of a value constructor and is derived with the grammar Value.
For our example, we obtain a table with if , app, and head as rows of column
opname.

4 Rewriting Lang-n-Check as Lang-SQL Queries

In this section, we use Lang-Sql to rewrite a majority of Lang-n-Check [13].
This tool takes a language definition as input and checks whether type sound-
ness holds. Loosely speaking, it targets functional languages with no state nor
dependent/refinement types, but its restrictions on input languages are several,
and due to lack of space we refer to [13] for a detailed account of them.

Do Evaluation Contexts Cover for the Principal Arguments of Eliminators?
Lang-n-Check checks that principal arguments of elimination forms are sub-
jects of an evaluation context. This means that since app is an elimination form
then (app E e) must exist, otherwise the first argument cannot become a value
and expressions can get stuck in the middle of a computation, hence jeopardizing
type soundness. For the same reason, (if E e e) and (head E) must exist in λb,[].
The following queries check this aspect.

1 principalArgPosition �
2 SELECT opname, 0 AS arg-number FROM eliminationForms
3 evalPositions �
4 SELECT opname, arg-number
5 FROM (SELECT GET-OPNAME(term) AS opname,
6 GET-ARGS(term) AS ROWS arg FROM EvalCtx)
7 WHERE arg IS EvalCtx VAR
8

9 principalArgPosition EXCEPT evalPositions

68 M. Cimini

We first discuss evalPositions. The nested SELECT at Line 5 retrieves con-
structor names, arguments, and their position from EvalCtx . SELECT of Line 4
selects only the rows of those arguments that are subject to an evaluation con-
text (Line 7), and only keeps opname and the argument position. For example,
(app E e) and (app v E) make two rows for app, one with 0 and one with 1.

principalArgPosition creates a table with the constructors of elimination
forms paired with the number 0 (that is, the position of the principal argument).
Line 9 removes evalPositions from principalArgPosition. This query should be
empty, and it is for λb,[]. Otherwise, the query provides the name of the elimi-
nation forms whose principal argument is missing an evaluation context.

Do Evaluation Contexts Cover for the Evaluated Arguments of Values? Another
part of the analysis of Lang-n-Check checks that value declarations that
require some arguments to be values are covered by an evaluation context.
This means that since (cons v v) is in Value then evaluation contexts such
as (cons E e) and (cons v E) must exist. The following queries check this aspect.

1 valuePositions �
2 SELECT opname, arg-number
3 FROM (SELECT GET-OPNAME(term) AS opname,
4 GET-ARGS(term) AS ROWS arg FROM Value)
5 WHERE arg IS Value VAR
6

7 valuePositions EXCEPT evalPositions

valuePositions is similar to evalPositions except that it selects constructors
from Value, and Line 5 selects arguments that are value variables. For example,
(cons v v) makes two rows for cons, one with 0 and one with 1. The query at
Line 7 should be empty, and it is for our running example. Otherwise, the query
provides the name of the value constructors and the position of those arguments
that are required to be values though are missing an evaluation context.

Do Evaluation Contexts Cover for the Evaluated Arguments of Reduction Rules?
Lang-n-Check checks that arguments that are required to be values by reduc-
tion rules have an evaluation context. This means that since the second argument
of app in (app (abs (x)e) v) in the source of β is a v, then (app v E) must exist in
EvalCtx . If it did not exist, the argument of the function would not be evaluated,
hence jeopardizing type soundness. The following queries check this aspect.

1 valuePosInRules � SELECT opname, arg-number
2 FROM sourceOpWithArgs WHERE arg IS Value VAR
3 valuePosInRules EXCEPT evalPositions

valuePosInRules selects rows from sourceOpWithArgs, which contains the
arguments of the operator of the source of reduction rules. It selects only those
rows where the argument is a value variable. The query at Line 3 should be
empty, and it is for our running example. Otherwise, the query provides the con-

A Query Language for Language Analysis 69

structor name and the position of those among its arguments that are required
to be values by some rule for that to fire, but are missing an evaluation context.

Do Reduction Rules of Elimination Forms Handle All the Values of Their Type?
Lang-n-Check checks that elimination forms handle each of the values that
they are supposed to handle. This means that since head is an elimination form
of list then we must have a reduction rule for nil , and one for cons. Missing one
of them jeopardizes type soundness. The following queries check this aspect.

elimWithPArg �
SELECT opname, GET-OPNAME(arg) AS parg
FROM sourceOpWithArgs WHERE arg-number = 0
GROUP BY opname
HAVING ALL (arg IS CONSTRUCTED AND arg IS DERIVED BY Value)

elimWithPArg is similar to eliminationForms, though each row has a con-
structor name of an elimination form together with the constructor name of the
principal argument handled by one of its reduction rules.

elimWithType � SELECT DISTINCT opname, type AS elimType
FROM elimWithPArg,canonicalForms WHERE parg = val

elimWithType produces a table that pairs each elimination form with the
type they are elimination form of. It does so by selecting constructors from
elimWithPArg, and retrieving the type of their principal arguments from canon-
icalForms.

elimWithValues � SELECT opname, val AS parg
FROM elimWithType,canonicalForms
WHERE elimType = type

elimWithValues EXCEPT elimWithPArg

elimWithValues pairs each elimination form with the values of the type it
eliminates. In other words, elimWithValues contains all the values that an elim-
ination form must handle. elimWithPArg, instead, contains the values that an
elimination form actually handles, as retrieved from its reduction rules. Then,
EXCEPT at the last line should return an empty table, and it is the case for λb,[].
If the query returns some records, they display an elimination form and a value
constructor that is not handled by any of the reduction rules of that elimination
form. We do not show one query, as it mirrors the above. It checks that operators
such as try/with handle errors at the principal argument rather than values.

5 Evaluation

Implementation. We have implemented Lang-Sql in OCaml [12]. Our tool takes
1) a language definition and 2) a Lang-Sql query as input. We use the syntax
of Lang-n-Check for language definitions. (See [11] for an example.) Our tool
compiles language definitions into tables grammar, rule, and so on, and applies

70 M. Cimini

the query on these tables. The output is a table in the style of SQL. As many
lightweight implementations of SQL, we use lists of records to store tables.

Evaluation. We have applied the queries of Sect. 4 to the repo of languages of
Lang-n-Check, described in [13]: The simply-typed λ-calculus (STLC), STLC
with integers, the unit type, booleans, pairs, sums, option types, tuples, fix, let,
letrec, universal and recursive types, lists and operations such as append, map,
mapi, filter, filteri, range, list length, and reverse, and the natural recursor.

Additionally, the repo contains variations of these languages: call-by-value,
call-by-name, and parallel reduction, and pairs, lists, and tuples are also consid-
ered in their lazy version. Languages are also defined with or without exceptions.
The repo consists of 145 language definitions. This high number of languages is
due to the many variations on the same languages, however.

The languages of this repo are all type sound. We confirm that the queries of
Sect. 4 succeed our checks on all these languages. We also have created versions
of the languages that are not type sound, by removing evaluation contexts or
rules, for example. We confirm that our queries fail our checks on these modified
languages. The website of the tool reports also on these experiments [12].

Lang-n-Check performs two checks that we cannot capture because we have
decided to be faithful to SQL and avoid general forms of recursion (and always
terminate). The first is the type preservation check for reduction rules. This is
based on type checking source and target, and it is a recursive process, thus out
of our scope. The second check is the acyclicity of the dependencies of evaluation
contexts. Contexts with circular dependencies such as cons E v | cons v E lead
to stuck expressions. Lang-n-Check detects cycles by computing a topological
sort, but Lang-Sql cannot express this recursive computation.

Despite the lack of these checks, we could rewrite most of Lang-n-Check.
For a fair comparison, we have excluded parsing, pretty-printing, the two checks
that we omit, and the other unrelated parts of the Lang-n-Check implementa-
tion [7]. Even so, we have counted over 1200 lines of OCaml code. In contrast, our
Lang-Sql queries amount to 23 lines. Furthermore, our queries are declarative
and, we believe, easier to read and maintain.

We have tested Example 1–3 of Sect. 3, and also tested additional queries, for
example to output the state of languages with state, and whether the language
allows reduction under binders. Our website documents these tests [12].

Limitations. Standard SQL forbids general forms of recursion, and we have
aligned with that choice. As a consequence, Lang-Sql cannot ask queries such
as “What is the type of this program?”, i.e., type checking, and cannot ask “Does
this program evaluate to a value?”, i.e., program execution. Some variants of SQL
make use of recursive common table expressions but it is unclear whether they
can express type checking and evaluation queries on languages like those of the
Lang-n-Check repo, and whether they can solve the type preservation and
topological sort problems necessary to capture the entirety of Lang-n-Check.

We handle only unary binding [6]. In the future, we would like to integrate
more sophisticated approaches to binding. Also, Lang-Sql does not rule out

A Query Language for Language Analysis 71

type errors at compile-time. For example, GET-OPNAME(e) throws an error at
run-time when e evaluates to, say, a number. We would like to design a type
system that rules out these and similar type errors.

6 Related Work

SQL is the query language that is closest to our work. Lang-Sql differs in that
it is tailored to interrogate language definitions. In particular, there are two
main reasons why we did not use SQL and existing database implementations.
1) They do not primitively store terms and terms with binders. 2) It is not clear
whether SQL can perform Lang-Sql operations such as deriving a term from a
user-defined BNF grammar. On the other hand, SQL provides a wider range of
operations, and offers a greater flexibility by adding a NULL value.

Statix [3] and scope graphs [20] use queries to solve name resolution problems
but they cannot express the queries that we have seen in this paper. On the other
hand, Lang-Sql cannot solve name resolution problems.

Can we use Lang-Sql to help implement other tools? We have mentioned
some tools in the introduction. They are comparable to Lang-n-Check or
larger, and it is impossible to address them here. We can offer only some exam-
ples. Veritas [14–16] generates inversion lemmas. Lang-Sql can be used to
retrieve premises and conclusions of typing rules to build these lemmas. Veritas
generates also a lemma for each operator to say, for example, that (app e1 e2)
“progresses”, and so on for all constructors. Lang-Sql can be used to retrieve all
constructors, their arguments and their categories, to build these lemmas. As for
intrinsic typing, it is unclear how that translates to queries. Roberson et al. [21]
computes steps from programs as it model checks. Lang-Sql cannot compute
steps but can retrieve the reduction rules that apply. Meta SOS [1] and the tool
of Mousavi and Reniers [18] implement several rule formats, each of which may
have a dozen of restrictions. We provide an example. GSOS format [5] imposes
that t and t′ be variables in premises t −→ t′, which can be checked with IS VAR.
It also needs t′ not to occur in the source of the conclusion nor other premises.
Lang-Sql can perform this check by grouping by arguments of the source of
the conclusion and targets of premises, and checking that COUNT() = 1.

As future work, we would like to explore how far Lang-Sql can be used to
implement (parts of) the above-mentioned tools.

7 Conclusion

We have designed and implemented Lang-Sql, a SQL-like language for querying
languages. Lang-Sql adopts a languages-as-databases approach, and contains
features that are specific to query operational semantics aspects. To demonstrate
that Lang-Sql can be used in practical applications, we have rewritten the
majority of Lang-n-Check with Lang-Sql. Our queries amount to 23 lines
of Lang-Sql code while the corresponding part in Lang-n-Check is over a
thousand lines of code. Our queries are declarative, mostly readable, and concise.

72 M. Cimini

In the future, we would like to address the limitations that we have described
in Sect. 6, and also formulate more queries. For example, it would be interest-
ing to write queries that compute the variance of types. We would like to use
Lang-Sql to implement other language analysis tools. We also plan to integrate
Lang-Sql into a calculus with first-class languages [8–10].

References

1. Aceto, L., Goriac, E., Ingólfsdóttir, A.: Meta SOS - a maude based SOS meta-
theory framework. In: Borgström, J., Luttik, B. (eds.) Proceedings Combined 20th
International Workshop on Expressiveness in Concurrency and 10th Workshop on
Structural Operational Semantics, EXPRESS/SOS 2013, Buenos Aires, Argentina,
26th August 2013. EPTCS, vol. 120, pp. 93–107 (2013). https://doi.org/10.4204/
EPTCS.120.8

2. Altenkirch, T., Reus, B.: Monadic presentations of lambda terms using generalized
inductive types. In: Flum, J., Rodriguez-Artalejo, M. (eds.) CSL 1999. LNCS,
vol. 1683, pp. 453–468. Springer, Heidelberg (1999). https://doi.org/10.1007/3-
540-48168-0 32

3. van Antwerpen, H., Bach Poulsen, C., Rouvoet, A., Visser, E.: Scopes as types.
Proc. ACM Program. Lang. (PACMPL) 2(OOPSLA), 1–30 (2018). https://doi.
org/10.1145/3276484

4. Bach Poulsen, C., Rouvoet, A., Tolmach, A., Krebbers, R., Visser, E.: Intrinsically-
typed definitional interpreters for imperative languages. Proc. ACM Program.
Lang. (PACMPL) 2(POPL), 1–34 (2017). https://doi.org/10.1145/3158104

5. Bloom, B., Istrail, S., Meyer, A.R.: Bisimulation can’t be traced. J. ACM 42(1),
232–268 (1995). https://doi.org/10.1145/200836.200876

6. Cheney, J.: Toward a general theory of names: binding and scope. In: Pollack, R.
(ed.) Proceedings of the 3rd ACM SIGPLAN Workshop on Mechanized Reasoning
about Languages with Variable Binding, MERLIN 2005, pp. 33–40. Association
for Computing Machinery, New York (2005). https://doi.org/10.1145/1088454.
1088459

7. Cimini, M.: Lang-n-check. https://github.com/mcimini/TypeSoundnessCertifier
(2015)

8. Cimini, M.: Languages as first-class citizens (vision paper). In: Pearce, D.J., May-
erhofer, T., Steimann, F. (eds.) Proceedings of the 11th ACM SIGPLAN Inter-
national Conference on Software Language Engineering, SLE 2018, pp. 65–69.
Association for Computing Machinery, New York (2018). https://doi.org/10.1145/
3276604.3276983

9. Cimini, M.: On the effectiveness of higher-order logic programming in language-
oriented programming. In: Nakano, K., Sagonas, K. (eds.) FLOPS 2020. LNCS,
vol. 12073, pp. 106–123. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-59025-3 7

10. Cimini, M.: A calculus for multi-language operational semantics. In: Bloem, R.,
Dimitrova, R., Fan, C., Sharygina, N. (eds.) Software Verification. NSV VSTTE
2021 2021. Lecture Notes in Computer Science, vol. 13124, pp. 25–42. Springer
(2021). https://doi.org/10.1007/978-3-030-95561-8 3

11. Cimini, M.: Example of language in lang-SQL. https://github.com/mcimini/lang-
sql/blob/main/Lang-n-Check/languages/stlc cbv.lan (2022)

12. Cimini, M.: Lang-SQL. https://github.com/mcimini/lang-sql (2022)

https://doi.org/10.4204/EPTCS.120.8
https://doi.org/10.4204/EPTCS.120.8
https://doi.org/10.1007/3-540-48168-0_32
https://doi.org/10.1007/3-540-48168-0_32
https://doi.org/10.1145/3276484
https://doi.org/10.1145/3276484
https://doi.org/10.1145/3158104
https://doi.org/10.1145/200836.200876
https://doi.org/10.1145/1088454.1088459
https://doi.org/10.1145/1088454.1088459
https://github.com/mcimini/TypeSoundnessCertifier
https://doi.org/10.1145/3276604.3276983
https://doi.org/10.1145/3276604.3276983
https://doi.org/10.1007/978-3-030-59025-3_7
https://doi.org/10.1007/978-3-030-59025-3_7
https://doi.org/10.1007/978-3-030-95561-8_3
https://github.com/mcimini/lang-sql/blob/main/Lang-n-Check/languages/stlc
https://github.com/mcimini/lang-sql/blob/main/Lang-n-Check/languages/stlc
https://github.com/mcimini/lang-sql

A Query Language for Language Analysis 73

13. Cimini, M., Miller, D., Siek, J.G.: Extrinsically typed operational semantics for
functional languages. In: Lämmel, R., Tratt, L., de Lara, J. (eds.) Proceedings of
the 13th ACM SIGPLAN International Conference on Software Language Engi-
neering, SLE 2020, Virtual Event, USA, November 16–17 2020, pp. 108–125. ACM
(2020). https://doi.org/10.1145/3426425.3426936

14. Grewe, S., Erdweg, S., Mezini, M.: Using vampire in soundness proofs of type
systems. In: Kovács, L., Voronkov, A. (eds.) Proceedings of the 1st and 2nd Vam-
pire Workshops. EPiC Series in Computing, vol. 38, pp. 33–51. EasyChair (2016).
https://doi.org/10.29007/22x6

15. Grewe, S., Erdweg, S., Mezini, M.: Automating proof steps of progress proofs:
comparing vampire and Dafny. In: Kovács, L., Voronkov, A. (eds.) Vampire 2016.
Proceedings of the 3rd Vampire Workshop. EPiC Series in Computing, vol. 44, pp.
33–45. EasyChair (2017). https://doi.org/10.29007/5zjp

16. Grewe, S., Erdweg, S., Wittmann, P., Mezini, M.: Type systems for the masses:
deriving soundness proofs and efficient checkers. In: Murphy, G.C., Steele Jr., G.L.
(eds.) 2015 ACM International Symposium on New Ideas, New Paradigms, and
Reflections on Programming and Software (Onward!), pp. 137–150. Onward! 2015,
ACM, New York (2015). https://doi.org/10.1145/2814228.2814239

17. Harper, R.: Practical Foundations for Programming Languages, 2nd edn.
Cambridge University Press, Cambridge (2016). https://doi.org/10.1017/
CBO9781316576892

18. Mousavi, M.R., Reniers, M.A.: Prototyping SOS meta-theory in Maude. Electron.
Notes . Theor. Comput. Sci. 156(1), 135–150 (2006). https://doi.org/10.1016/j.
entcs.2005.09.030

19. Mousavi, M.R., Reniers, M.A., Groote, J.F.: SOS formats and meta-theory: 20
years after. Theor. Comput. Sci. 373(3), 238–272 (2007). https://doi.org/10.1016/
j.tcs.2006.12.019

20. Neron, P., Tolmach, A., Visser, E., Wachsmuth, G.: A theory of name resolution.
In: Vitek, J. (ed.) ESOP 2015. LNCS, vol. 9032, pp. 205–231. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-46669-8 9

21. Roberson, M., Harries, M., Darga, P.T., Boyapati, C.: Efficient software model
checking of soundness of type systems. In: Harris, G.E. (ed.) Proceedings of the
23rd ACM SIGPLAN Conference on Object-Oriented Programming Systems Lan-
guages and Applications, pp. 493–504. OOPSLA 2008, Association for Computing
Machinery, New York (2008). https://doi.org/10.1145/1449764.1449803

22. Rouvoet, A., Bach Poulsen, C., Krebbers, R., Visser, E.: Intrinsically-typed defi-
nitional interpreters for linear, session-typed languages. In: Blanchette, J., Hritcu,
C. (eds.) Proceedings of the 9th ACM SIGPLAN International Conference on Cer-
tified Programs and Proofs, CPP 2020, New Orleans, LA, USA, January 20–21
2020, pp. 284–298. ACM (2020). https://doi.org/10.1145/3372885.3373818

https://doi.org/10.1145/3426425.3426936
https://doi.org/10.29007/22x6
https://doi.org/10.29007/5zjp
https://doi.org/10.1145/2814228.2814239
https://doi.org/10.1017/CBO9781316576892
https://doi.org/10.1017/CBO9781316576892
https://doi.org/10.1016/j.entcs.2005.09.030
https://doi.org/10.1016/j.entcs.2005.09.030
https://doi.org/10.1016/j.tcs.2006.12.019
https://doi.org/10.1016/j.tcs.2006.12.019
https://doi.org/10.1007/978-3-662-46669-8_9
https://doi.org/10.1145/1449764.1449803
https://doi.org/10.1145/3372885.3373818

Field-Sensitive Program Slicing

Carlos Galindo1 , Jens Krinke2 , Sergio Pérez1(B) , and Josep Silva1

1 VRAIN, Universitat Politècnica de València, Valencia, Spain
{cargaji,serperu,jsilva}@vrain.upv.es

2 CREST Centre, University College London, London, UK
j.krinke@ucl.ac.uk

Abstract. The granularity level of the program dependence graph
(PDG) for composite data structures (tuples, lists, records, objects,
etc.) is inaccurate when slicing their inner elements. We present the
constrained-edges PDG (CE-PDG) that addresses this accuracy prob-
lem. The CE-PDG enhances the representation of composite data struc-
tures by decomposing statements into a subgraph that represents the
inner elements of the structure, and the inclusion and propagation of
data constraints along the CE-PDG edges allows for accurate slicing of
complex data structures. Both extensions are conservative with respect
to the PDG, in the sense that all slicing criteria (and more) that can be
specified in the PDG can be also specified in the CE-PDG, and the slices
produced with the CE-PDG are always smaller or equal to the slices
produced by the PDG. An evaluation of our approach shows a reduction
of the slices of 11.67%/5.49% for programs without/with loops.

Keywords: Program analysis · Program slicing · Composite data
structures

1 Introduction

The Program Dependence Graph (PDG) [18] represents the statements of a pro-
gram as a collection of nodes; and their control and data dependencies are repre-
sented as edges. The PDG is used in program slicing [23], a technique for program
analysis and transformation whose main objective is to extract from a program
the set of statements, the so-called program slice [30], that affect the values of a
set of variables v at a program point p (〈p, v〉), called slicing criterion [18].

Unfortunately, the original PDG is not able to properly handle the slicing of
composite data structures. Finite composite data structures can be atomized [19]

This work has been partially supported by grant PID2019-104735RB-C41 funded
by MCIN/AEI/ 10.13039/501100011033, by the Generalitat Valenciana under grant
Prometeo/2019/098 (DeepTrust), and by TAILOR, a project funded by EU Horizon
2020 research and innovation programme under GA No 952215. Sergio Pérez was par-
tially supported by Universitat Politècnica de València under FPI grant PAID-01-18.
Carlos Galindo was partially supported by the Spanish Ministerio de Universidades
under grant FPU20/03861.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
B.-H. Schlingloff and M. Chai (Eds.): SEFM 2022, LNCS 13550, pp. 74–90, 2022.
https://doi.org/10.1007/978-3-031-17108-6_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-17108-6_5&domain=pdf
http://orcid.org/0000-0002-3569-6218
http://orcid.org/0000-0003-1009-2861
http://orcid.org/0000-0002-4384-7004
http://orcid.org/0000-0001-5096-0008
https://doi.org/10.1007/978-3-031-17108-6_5

Field-Sensitive Program Slicing 75

and then sliced as usual, however, infinite data structures cannot be atomized
and slicing them is therefore imprecise.

In this paper, we propose a general method that solves the problem of accu-
rately representing and slicing any composite data structure, even if it is recur-
sive (infinite data structures can be also sliced) or if it is collapsed and expanded
again (we solve the slicing pattern matching problem [24], explained in Sect. 2).

The rest of the paper is structured as follows: The next section demonstrates
the problems in slicing composite data structures. Section 3 presents the CE-
PDG and how it is used for slicing. In Sect. 4 we present an implementation and
an empirical evaluation of the proposed technique. It is followed by a discussion
of related work and the conclusions.

2 Slicing Composite Data Structures

In this section, we show the inaccuracy problems caused by the PDG when it is
used to slice programs with complex data structures. It is important to remark
that the problem of data structure slicing can be studied and solved at the level
of the PDG (i.e., for intra-procedural programs). Because we can present the
fundamental ideas and solutions of field-sensitive slicing at this level, we avoid
the representation in the System Dependence Graph (SDG) [9] (i.e., for inter-
procedural programs). In this way, we keep the presentation easier to understand,
avoiding the complexity introduced by the SDG (procedure calls, input/output
edges, summary edges...). Of course, an extension of our work for the SDG is
possible and will increase the precision of our technique by propagating depen-
dencies throughout procedures1. We also want to highlight that, for the sake of
clarity, we ignore aliasing, pointers, and other programming features that are
orthogonal to the problem we want to solve: slicing (recursive) data structures.
The pointer analysis needs to be field-sensitive in the same way our approach is.

Example 1. Consider the fragment of Erlang code in Fig. 1a, where we are inter-
ested in the values computed at variable C (the slicing criterion is 〈4,C〉). The only

1 foo(X,Y) ->
2 {A,B} = {X,Y},
3 Z = {[8],A},
4 {[C],D} = Z.

(a) Original Program

1 foo(X,Y) ->
2 {A,B} = {X,Y},
3 Z = {[8],A},
4 {[C],D} = Z.

(b) PDG Slice

1 foo(X,Y) ->
2 {A,B} = {X,Y},
3 Z = {[8],A},
4 {[C],D} = Z.

(c) Minimal Slice

Fig. 1. Slicing Erlang tuples (slicing criterion underlined and blue, slice in green) (Color
figure online)

1 Our implementation is already inter-procedural. However, due to lack of space, and
because it is an important problem by itself, we have limited the paper to the intra-
procedural version.

76 C. Galindo et al.

part of the code that can affect the values at C (i.e., the minimal slice) is coloured
in green in Fig. 1c. Nevertheless, the slice computed with the PDG (shown in
Fig. 1b) contains the whole program. This is a potential source of more impreci-
sions outside this function because it wrongly includes in the slice the parameters
of function foo and, thus, all calls to foo are also included together with their
arguments and the code on which they depend.

The fundamental problem in this particular example is pattern matching: a
whole data structure (the tuple {[8],A}) has been collapsed to a variable (Z)
and then expanded again ({[C],D}). Therefore, the list [C] depends on the list
[8]. Nevertheless, the traditional PDG represents that [C] flow depends on Z,
and in turn, Z flow depends on A. Because flow dependence is usually considered
to be transitive, slicing the PDG wrongly infers that C depends on A (A is in
the slice for C). This problem becomes worse in presence of recursive data types.
For instance, trees or objects (consider a class A with a field of type A, which
produces an infinite data type) can prevent the slicer to know statically what
part of the collapsed structure is needed. An interesting discussion and example
about this problem can be found in [26, pp. 2–3]. In the next section we propose
an extension of the PDG that solves the above problem.

3 Constrained-Edges Program Dependence Graph

This section introduces the CE-PDG, for which the key idea is to expand all
those PDG nodes where a composite data structure is defined or used. This
expansion augments the PDG with a tree representation for composite data
structures. We describe how this structure is generated and we introduce a new
kind of dependence edge used to build this tree structure. For this, we formally
define the concepts of constraint and constrained edge; describe the different
types, and how they affect the graph traversal in the slicing process.

3.1 Extending the PDG

Figure 1b shows that PDGs are not accurate enough to differentiate the elements
of composite structures. For instance, the whole statement in line 4 is represented
by a single node, so it is not possible to distinguish the data structure {A,B} nor
its internal subexpressions. This can be solved by transforming the PDG into a
CE-PDG. The transformation is made following three steps.

Step 1. The first step is to decompose all nodes that contain composite data
structures so that each component is represented by an independent node. As in
most ASTs, we represent data structures with a tree-like representation (similar
to the one used in object-oriented programs to represent objects in calls [13,29]).
The decomposition of PDG nodes into CE-PDG nodes is straightforward from
the AST. It is a recursive process that unfolds the composite structure by levels,
i.e., if a subelement is another composite structure, it is recursively unfolded until

Field-Sensitive Program Slicing 77

the whole syntax structure is represented in the tree. The CE-PDG only unfolds
data types as much as they are in the source code, thus unfolding is always finite
(unlike atomization). In contrast to the PDG nodes (which represent complete
statements), the nodes of this tree structure represent expressions. Therefore, we
need a new kind of edge to connect these intra-statement nodes. We call these
edges structural edges because they represent the syntactical structure.

Definition 1 (Structural Edge). Let G = (N,E) be a CE-PDG where N is
the set of nodes and E is the set of edges. Given two CE-PDG nodes n, n′ ∈ N ,
there exists a structural edge n ��� n′ if and only if:

– n contains a data structure for which n′ is a subcomponent, and
– ∀n′′ ∈ N : n ��� n′ ∧ n′ ��� n′′ → n ���� n′′.

Structural edges point to the components of a composite data structure, com-
posing the inner skeleton of its abstract syntax tree. More precisely, each field
in a data type is represented with a separate node that is a child of the PDG
node that contains the composite data structure. For instance, the structural
edges of the CE-PDG in Fig. 2 represent the tuples of the code in Fig. 1. The
second condition of the definition enforces the tree structure as otherwise “tran-
sitive” edges could be established. For example, without the second condition a
structural edge between {[C],D} = Z and C could exist.

Step 2. The second step is to identify the flow dependencies that arise from the
decomposition of the data structure. Clearly, the new nodes can be variables
that flow depend on other nodes, so we need to identify the flow dependencies
that exist among the new (intra-statement) nodes. They can be classified accord-
ing to two different scenarios: (i) composite data structures being defined, and
(ii) composite data structures being used. In Fig. 1 we have a definition (line 4),
a use (line 3) and a definition and use in the same node (line 2). The explicit def-
inition of a whole composite data structure (e.g., a tuple in the left-hand side of
an assignment, see line 4) always defines every element inside it, so the values of
all subelements depend on the structure that immediately contains them. Hence,
the subexpressions depend on the structure being defined (i.e., flow edges follow

Fig. 2. CE-PDG of the code in Fig. 1.

78 C. Galindo et al.

the same direction as structural edges. See {[C],D}=Z in Fig. 2). Conversely, the
structure being used depends on its subexpressions (i.e., flow edges follow the
opposite direction than structural edges. See Z={[8],A} in Fig. 2). Additionally,
because the decomposition of nodes augments the precision of the graph, all
flow edges that pointed to original PDG nodes that have been decomposed, now
point to the corresponding node in the new tree structure. An example of a flow
edge that has been moved due to the decomposition is the flow edge between the
new A nodes. In the original PDG, this flow edge linked the nodes {A,B}={X,Y}
and Z={[8],A}.

Step 3. The last step to obtain the CE-PDG is labelling the edges with con-
straints that are used during the slicing phase. The idea is that the slicing algo-
rithm traverses the edges and collects the labels in a stack that is used to decide
what edges should be traversed and what edges should be ignored. We call the
new labelled edges constrained edges.

Definition 2 (Constraint). A constraint C is a label defined as follows:

C ::= ∅ | ∗ | Tuple | List
Tuple ::= {int | }int

Pos ::= H | T
List ::= [Pos |]Pos

The meaning of each kind of constraint is the following:

– Empty Constraint (n ∅−→ n′). It specifies that an edge can always be
traversed by the slicing algorithm.

– Asterisk Constraint (n ∗−→ n′). It also indicates that an edge can always
be traversed; but it ignores all the collected restrictions so far, meaning that
the whole data structure is needed. This kind of constraint is the one used
in control and structural edges, which are traversed ignoring the previous
constraints collected.

– Access Constraint (n
opposition−−−−−−→ n′). It indicates that an element is the

position-th component of another data structure that is a tuple if op=Tuple
or a list if op=List . op also indicates whether the element is being defined
(“{”, “[”) or used (“}”, “]”).

For the sake of simplicity, and without loss of generality, we distinguish
between tuples and functional (algebraic) lists. The position in a tuple is indi-
cated with an integer, while the position in a list is indicated with head (H)
or tail (T). The case of objects, records, or any other structure can be trivially
included by just specifying the position with the name of the field. Arrays where
the position is a variable imply that any position of the array may be accessed.
Hence, arrays with variable indices are treated as {∗ constraints, which would
match a constraint }x for any x.

Example 2. All edges in Fig. 2 are labelled with constraints. Because B is the
second element being defined in the tuple {A,B}, the constraint of the flow
dependence edge that connects them is {1 . Also, because 8 is the head in the
list [8], the constraint of the flow dependence edge that connects them is]H .

Field-Sensitive Program Slicing 79

At this point, the reader can see that the constraints can accurately slice
the program in Fig. 1a. In the CE-PDG (Fig. 2), the slicing criterion (C) is the
head of a list (indicated by the constraint [H), and this list is the first element
of a tuple. When traversing backward the flow dependencies, we do not want
the whole Z, but the head of its first element (i.e., the cumulated constraints
[H {0). Then, when we reach the definition of Z, we find two flow dependencies
([8] and A). But looking at their constraints, we exactly know that we want to
traverse first }0 and then]H to reach the 8. The slice computed in this way is
composed of the grey nodes, and it is exactly the minimal slice in Fig. 1c. Note
that no structural edge is traversed during the slice in the above example. How
structural edges are handled during slicing is discussed in the next section.

The CE-PDG is a generalization of the PDG because the PDG is a CE-PDG
where all edges are labelled with empty constraints (∅). In contrast, all edges in
the CE-PDG are labelled with different constraints:

– Structural and control edges are always labelled with asterisk constraints.
– Flow edges for definitions inside a data structure are labelled with opening

({,[) access constraints.
– Flow edges for uses inside a data structure are labelled with closing (},])

access constraints.
– The remaining data edges are labelled with empty constraints.

The behaviour of access constraints and asterisk constraints in the graph
traversal is further detailed in the next section.

3.2 Slicing the CE-PDG: Constrained Traversal

In this section, we show how constraints can improve the accuracy of the slices
computed with the CE-PDG. The paths of the CE-PDG that can be traversed
are formed by any combination of closing constraints followed by opening con-
straints. Any number of empty constraints (∅) can be placed along the path.
On the other hand, asterisk constraints (∗) always ignore any constraints already
collected. Therefore, after traversing an asterisk constraint, the paths that can
be traversed are the same as if no constraint was previously collected.

The slicing algorithm uses a stack to store the words while it traverses the
CE-PDG. When a node is selected as the slicing criterion, the algorithm starts
from this node with an empty stack (⊥) and accumulates constraints with each
edge traversed. Only opening constraints impose a restriction on the symbols
that can be pushed onto the stack: when an opening constraint is on the top of
the stack, the only closing constraint accepted to build a realizable word is its
complementary closing constraint.

Table 1 shows how the stack is updated in all possible situations. The con-
straints are collected or resolved depending on the last constraint added to the
word (the one at the top of the Input stack) and the new one to be treated (col-
umn Edge Constraint). All cases shown in Table 1 can be summarized in four
different situations:

80 C. Galindo et al.

Table 1. Processing edges’ stacks. x and y are positions (int or H/T). ∅ and ∗ are
empty and asterisk constraints, respectively. S is a stack, ⊥ the empty stack.

Input stack Edge constraint Output stack

(1) S ∅ S

(2) S {x or [x S{x or S[x

(3) ⊥ }x or]x ⊥
(4) S{x or S[x }x or]x S

(5) S{x or S[x }y or]y error
(6) S * ⊥

– Traverse constraint (cases 1 and 3): The edge is traversed without mod-
ifying the stack.

– Collect constraint (case 2): The edge can be traversed by pushing the
edge’s constraint onto the stack.

– Resolve constraint (cases 4 and 5): There is an opening constraint at the
top of the stack and an edge with a closing constraint that matches it (case
4), so the edge is traversed by popping the top of the stack; or they do not
match (case 5), so the edge is not traversed.

– Ignore constraints (case 6): Traversing the edge empties the stack.

3.3 The Slicing Algorithm

Algorithm 1 illustrates the process to slice the CE-PDG. It works similar to
the standard algorithm [21], traversing backwards all edges from the slicing cri-
terion and collecting nodes to form the final slice. The algorithm uses a work
list with the states that must be processed. A state represents the (backward)
traversal of an edge. It includes the node reached, the current stack, and the
sequence of already traversed edges (line 6). In every iteration the algorithm pro-
cesses one state. First, it collects all edges that target the current node (function
getIncomingEdges in line 7). If the previous traversed edge is structural, we
avoid traversing flow edges (lines 9–10) and only traverse structural or control
dependence edges. The reason for this is that structural edges are only traversed
to collect the structure of a data type so that the final slice is syntactically
correct (for instance, to collect the tuple to which an element belongs). Flow
edges are not further traversed to avoid collecting irrelevant dependencies of
the structural parent. Function processConstraint checks the existence of a
loop (reaching an already traversed edge) during the slicing traversal and imple-
ments Table 1 to produce the new stack generated by traversing the edge to
the next node (line 11). If the edge cannot be traversed according to Table 1
(newStack == error), then the reachable node is ignored (line 12). Otherwise,
the node is added to the work list together with the new stack (line 13). Finally,
the state is added to a list of processed states, used to avoid the multiple evalua-
tion of the same state, and the current node is included in the slice (lines 14–16).

Field-Sensitive Program Slicing 81

Algorithm 1. Intraprocedural slicing algorithm for CE-PDGs
Input: The slicing criterion node nsc .
Output: The set of nodes that compose the slice.

1: function slicingAlgorithmIntra(nsc)
2: slice ← ∅; processed ← ∅
3: workList ← {〈nsc ,⊥, []〉}
4: while workList
= ∅ do
5: select some state ∈ workList;
6: 〈node, stack , traversedEdges〉 = state
7: for all edge ∈ getIncomingEdges(node) do
8: 〈sourceNode, type,_〉 ← edge

9: if getLastEdgeType(traversedEdges) = structural
∧ type = flow

then

10: continue for all
11: newStack ← processConstraint(stack , edge)
12: if newStack
= error then

13: workList ← workList ∪
{〈sourceNode,newStack , traversedEdges ++ edge〉}

14: processed ← processed ∪ {state}
15: workList ← {(n, s, t) ∈ workList | (n, s,_)
∈ processed}
16: slice ← slice ∪ {node}
17: return slice

18: function processConstraint(stack , edge)
19: 〈_,_, constraint〉 ← edge
20: if constraint = AsteriskConstraint then return ⊥
21: else
22: if edge ∈ traversedEdges then
23: if isIncreasingLoop(findLoop(traversedEdges),edge) then return ⊥
24: if constraint = EmptyConstraint then return stack
25: else return processAccess(stack , constraint)

26: function processAccess(stack , constraint = 〈op, position〉)
27: if stack = ⊥ then
28: if op = { ∨op = [then return push(constraint, stack)
29: else return ⊥
30: lastConstraint ← top(stack)

31: if (op = } ∧ lastConstraint = 〈{, position〉)
∨ (op =] ∧ lastConstraint = 〈[, position〉) then

32: return pop(stack)
33: else
34: if op = } ∨ op =] then return error
35: else return push(constraint, stack)

36: return stack

Function processConstraint computes a new stack for all possible types
of constraint: First, it returns an empty stack for asterisk constraints (line 20),
Then, the condition in line 22 checks the existence of a loop (reaching an already
traversed edge) during the slicing traversal. Function findLoop (line 23) returns
the shortest suffix of the sequence of traversed edges that form the last loop, while
function isIncreasingLoop (line 23), whose rationale is extensively explained
in Sect. 3.4, consequently empties the stack when needed. If no dangerous loop is
detected, the function returns the same stack for empty constraints (line 24), or
it processes access constraints following Table 1 with function processAccess
(line 25).

82 C. Galindo et al.

Example 3. Consider again function foo in the code of Fig. 1a, the selected slic-
ing criterion (〈 4,C〉), and its CE-PDG, shown in Fig. 2. The slicing process starts
from the node that represents the slicing criterion (the expanded representation
of the CE-PDG allows us to select C, the bold node, inside the tuple structure,
excluding the rest of the tuple elements). Algorithm 1 starts the traversal of the
graph with an empty stack (⊥). The evolution of the stack after traversing each

flow edge is the following: ⊥ [H−→ [H
{0−→ [H{0 ∅−→ [H{0 }0−→ [H

]H−→ ⊥. Due to the
traversal limitations imposed by the row 5 in Table 1, node A is never included
in the slice because the following transition is not possible: [H{0 }1−→ error. As
already noted, the resulting slice provided by Algorithm 1 is exactly the minimal
slice shown in Fig. 1c.

3.4 Dealing with Loops

In static slicing we rarely know the values of variables (they often depend on
dynamic information), so we cannot know how many iterations will be per-
formed in a program loop2 (see the programs in Fig. 3, where the value of max is
unknown). For the sake of completeness, we must consider any number of iter-
ations, thus program loops are often seen as potentially infinite. Program loops
produce cycles in the PDG. Fortunately, the traversal of cycles in the PDG is
not a problem, since every node is only visited once. In contrast, the traversal
of a cycle in the CE-PDG could produce a situation in which the stack grows
infinitely (see Fig. 3a3), generating an infinite number of states. Fortunately, not
all cycles produce this problem:4 To keep the discussion precise, we need to
formally define when a cycle in the CE-PDG is a loop.

Definition 3 (Loop). A cyclic flow dependence path P = n1
C1←−− n2 . . .

Cn←−− n1

is a loop if P can be traversed n > 1 times with an initial empty stack (⊥)
following the rules of Table 1.

There exist three kinds of loops:

(1) Loops that decrease the size of the stack in each iteration can only produce
a finite number of states because the stack will eventually become empty.
Such loops can be traversed collecting the elements specified by the stack,
without a loss of precision.

2 Note the careful wording in this section, where we distinguish between “program
loops” (while, for...), “cycles” (paths in the PDG that repeat a node), and “loops”
(repeated sequence of nodes during the graph traversal).

3 It is easier to see how the stack changes by reading the code backwards from the
slicing criterion.

4 The interested reader has a developed example for each kind of loop, which includes
their CE-PDGs, in the technical report https://mist.dsic.upv.es/techreports/2022/
06/field-sensitive-program-slicing.pdf.

https://mist.dsic.upv.es/techreports/2022/06/field-sensitive-program-slicing.pdf
https://mist.dsic.upv.es/techreports/2022/06/field-sensitive-program-slicing.pdf

Field-Sensitive Program Slicing 83

1 read(max);
2 x = init_tuple();
3 for(int i=0; i<max; i++){
4 {e,d} = x;
5 {a,b} = d;
6 x = {a,b};
7 }
8 {c,d} = x;
9 print(c);

(a) Increasing stack size (b) CE-PDG of code in Figure 3a

Fig. 3. Slicing flow-dependence cycles in the CE-PDG (slicing criterion underlined and
blue, slice in green). (Color figure online)

(2) Loops that keep the same stack in each iteration are also not a problem
because traversing the loop multiple times does not generate new states.
Again, they can be traversed as many times as required by the stack, without
a loss of precision.

(3) Loops that increase the size of the stack in each iteration (Fig. 3a) could
produce an infinite number of states because the stack grows infinitely. It
is important to remark that not all cycles formed from more opening con-
straints than closing constraints are increasing loops. They may not even be
loops (see Definition 3). Cycles that are not loops are not dangerous because
the cycle’s edges constraints prevent us to traverse them infinitely. One illus-
trative example is the code in Fig. 3a where we have the flow dependence

cycle (6, x)
}0←− (6, a) ∅←− (5, a)

{0←− (5, d) ∅←− (4, d)
{1←− (4, x) ∅←− (6, x). But

this is not a loop because no matter with what stack we enter the cycle,
when {1 is pushed on the stack, the cycle cannot be entered again due to
the constraint }0 that does not match the top of the stack. In contrast, in
the same code there exist a loop (highlighted in bold red) that can infinitely

increase the stack with {1 in each iteration: (6, x)
}1←− (6, b) ∅←− (5, b)

{1←−
(5, d) ∅←− (4, d)

{1←− (4, x) ∅←− (6, x).

We formally define a special kind of loop which is the only potentially dan-
gerous: increasing loop.

Definition 4 (Increasing Loop). A loop L is an increasing loop if the number
of opening constraints along L is greater than the number of closing constraints.

To define and detect the increasing loops (those that can grow the stack
infinitely) we have designed the pushdown automaton (PDA) of Fig. 4. The
input of this automaton is the sequence of constraints that form a dependence
cycle. The PDA contains two states and two different stacks (closing stack and
opening stack). Initial state 0 represents the case where all opening constraints

84 C. Galindo et al.

0

start

1

}i,]i
pushc(i)

{i, [i
pusho(i)

}i,]i
popo()

Mo ∧ Eo

{i, [i
pusho(i)

}i,]i
popo()

Mo ∧ ¬Eo

∅ ∅

Mo ≡ top(So) = i
Eo ≡ len(So) = 1

Fig. 4. Pushdown automaton to recog-
nize increasing loops.

state = 0
So = ε
Sc = ε

state = 0
So = ε
Sc = 1

state = 1
So = 1
Sc = 1

state = 1
So = 1, 1
Sc = 1

}1

∅ {1

∅

{1

∅

Fig. 5. States produced by the PDA in
Fig. 4 with the word }1∅{1∅{1∅

of the sequence are balanced by the corresponding closing constraint. When a
closing constraint is reached, the PDA pushes the constraint into the closing
stack (pushc). When an opening constraint is processed, the PDA pushes the
opening constraint into the opening stack (pusho) and moves to state 1. Final
state 1 represents the case where an opening constraint has been processed but
not balanced yet. In state 1, when a closing constraint that matches a previous
opening constraint (condition Mo) is processed, we pop the opening constraint
from the stack (popo). If the popped element of the opening stack is the last
element of the stack (condition Eo), the PDA returns to state 0. Finally, if a
path is accepted by this automaton, the path forms an increasing loop if and
only if the reversed stack Sc is a prefix of So and they are not equal. The ratio-
nale of this condition is that it ensures that, in each iteration, there are more
opening constraints (those in So) than closing constraints (those in Sc), and all
the closing constraints close some but not all opening constraints (because they
are a prefix), thus the number of opening constraints grows infinitely. Note that
* constraints do not appear in the PDA because they cannot appear in a loop
(an * constraint empties the stack and thus the same state would be repeated).

Example 4. Consider the dependence cycle formed from lines 4, 5, and 6 of
Fig. 3a: (6, x)

}1←− (6, b) ∅←− (5, b)
{1←− (5, d) ∅←− (4, d)

{1←− (4, x) ∅←− (6, x), which
contains the word: }1∅{1∅{1∅.

Now, if we parse this word with the PDA we produce the sequence of states
shown in Fig. 5. The final state is an accepting state, and the reverse of Sc (1)
is a prefix of So (1, 1) (but they are not equal), so this path corresponds to
an increasing loop. Moreover, the PDA also detects that this loop adds {1 (the
remainder of So once the prefix is removed) to the stack in every iteration.

An increasing loop n1
C1←−− n2

C2←−− . . .
Cn←−− n1 can be identified because

C1C2 . . . Cn belongs to the language induced by the PDA in Fig. 4 and the two

Field-Sensitive Program Slicing 85

final stacks computed with the PDA, Sc and So, satisfy that reverse(Sc) is a
prefix of So and reverse(Sc) �= So.

Only increasing loops can produce non-termination. For this reason, Algo-
rithm 1 detects loops (Line 22) and checks whether they are increasing with
function processEdgeCircuit (Line 23). This function uses the PDA of Fig. 4
to determine whether the loop is increasing and in such a case the stack is
emptied, i.e., the traversal continues unconstrained.

The reader could think that it would be a good idea to identify all increas-
ing loops at CE-PDG construction time. Unfortunately, finding all cycles has
an average complexity O(N2EL), where L is the number of cycles. The worst
complexity is exponential O(2N) [7]. Our approach avoids the problem of finding
all loops. We just treat them on demand, when they are found by the slicing
algorithm (i.e., we do not search for loops, we just find them during the CE-
PDG traversal). So we only process those loops found in the slicing process; and
processing a loop has a linear cost (in the worst case O(N), if the loop includes
all program statements).

4 Implementation and Empirical Evaluation

Comparing our implementation against other slicers is not the best way to assess
the proposed stack extension to the PDG, because we would find big differences
in the PDG construction time, slicing time, and slicing precision due to differ-
ences in the libraries used, different treatment for syntax constructs such as list
comprehensions, guards, etc. Therefore, we would not be able to assess the spe-
cific impact of the stack on the slicer’s precision and performance. The only way
to do a fair comparison is to implement a single slicer that is able to build and
slice the PDG with and without constraints.

All the algorithms and ideas described in this paper have been implemented
in a slicer for Erlang called e-Knife. e-Knife can produce slices based on either
the PDG or the CE-PDG. Thus, it allows us to know exactly the additional cost
required to build and traverse the constraints, and the extra precision obtained
by doing so. e-Knife is a Java program with 12186 LOC (excluding comments
and empty lines). It is an open-source project and is publicly available5.

Additionally, anyone can slice a program via a web interface6, without the
need to build the project locally. Large or very complex programs may run into
the memory and time limitations that are in place to avoid abuse.

To evaluate e-Knife, we used Bencher, a program slicing benchmark suite for
Erlang. All the benchmarks were interprocedural programs, so we have created a
new intraprocedural version of them (by inlining functions). This intraprocedural
version has been made publicly available7. To evaluate the techniques proposed
throughout this work, we have built both graphs (PDG and CE-PDG) for each
of the intraprocedural benchmarks. Then, we sliced both graphs with respect
5 https://mist.dsic.upv.es/git/program-slicing/e-knife-erlang.
6 https://mist.dsic.upv.es/e-knife-constrained/.
7 https://mist.dsic.upv.es/bencher/.

https://mist.dsic.upv.es/git/program-slicing/e-knife-erlang
https://mist.dsic.upv.es/e-knife-constrained/
https://mist.dsic.upv.es/bencher/

86 C. Galindo et al.

Table 2. Summary of experimental results, comparing the PDG (without constraints)
to the CE-PDG (with constraints).

Graph generation Slice
Program PDG CE-PDG Function #SCs PDG CE-PDG Slowdown Red. Size

bench1A.erl 5468.10 ms 5474.38 ms getLast/2 26 82.55µs 392.39µs 4.40 ± 0.50 14.88 ± 3.23%

getNext/3 174 308.66µs 1645.44µs 4.94 ± 0.16 13.06 ± 1.58%

getStringDate/1 11 30.18µs 93.71µs 3.22 ± 0.18 8.67 ± 4.07%

main/1 57 1121.93µs 2869.79µs 2.59 ± 0.30 38.76 ± 7.22%

bench3A.erl 49.58 ms 49.59 ms tuples/2 22 38.39µs 153.21µs 3.69 ± 0.44 5.46 ± 2.08%

bench4A.erl 79.70 ms 79.76 ms main/2 31 89.80µs 376.33µs 4.23 ± 0.42 20.79 ± 5.47%

bench5A.erl 48.69 ms 48.73 ms lists/2 18 60.92µs 265.87µs 3.82 ± 0.43 6.51 ± 2.08%

bench6A.erl 403.52 ms 403.66 ms ft/2 34 82.59µs 333.51µs 3.60 ± 0.36 12.25 ± 2.72%

ht/2 16 21.39µs 71.55µs 2.94 ± 0.29 10.79 ± 3.81%

bench9A.erl 199.53 ms 199.71 ms main/2 18 197.94µs 458.68µs 2.25 ± 0.14 1.38 ± 1.07%

bench11A.erl 15.49 ms 15.52 ms lists/2 16 43.09µs 141.87µs 3.30 ± 0.16 6.47 ± 2.22%

bench12A.erl 1661.91 ms 1663.25 ms add/4 26 104.88µs 454.55µs 4.27 ± 0.49 15.21 ± 4.29%

from_ternary/2 9 22.92µs 103.17µs 4.28 ± 0.44 3.56 ± 2.76%

main/3 39 103.42µs 408.30µs 4.03 ± 0.51 8.43 ± 6.27%

mul/3 21 55.05µs 261.14µs 4.57 ± 0.35 2.74 ± 1.31%

to_ternary/2 13 71.93µs 199.70µs 3.05 ± 0.28 1.02 ± 1.37%

bench14A.erl 3841.95 ms 3842.62 ms main/2 81 85.94µs 451.66µs 4.01 ± 0.40 8.76 ± 2.56%

bench15A.erl 1948.76 ms 1949.37 ms main/4 71 246.97µs 609.24µs 2.94 ± 0.19 2.31 ± 1.73%

bench16A.erl 276.60 ms 276.79 ms word_count/5 36 83.79µs 289.83µs 3.96 ± 0.30 8.91 ± 2.93%

bench17A.erl 63.47 ms 63.60 ms mug/3 19 55.44µs 202.33µs 3.78 ± 0.18 5.59 ± 3.10%

bench18A.erl 71.38 ms 71.50 ms mbe/2 19 83.69µs 278.30µs 3.73 ± 0.31 7.38 ± 4.71%

Totals and averages for set A 757 218.65µs 814.51µs 3.88 ± 0.10 11.67±3.02%

bench1B.erl 4689.59 ms 4695.39 ms main/1 273 2375.91µs 52978.07µs 19.04 ± 1.48 5.78 ± 2.23%

bench2B.erl 122.07 ms 122.10 ms main/2 17 100.30µs 160.02µs 2.54 ± 0.47 0.25 ± 0.34%

bench3B.erl 53.70 ms 53.71 ms tuples/2 18 73.09µs 283.20µs 3.70 ± 0.42 4.33 ± 1.25%

bench4B.erl 38.34 ms 38.40 ms main/2 39 136.43µs 351.29µs 2.98 ± 0.33 11.78 ± 3.70%

bench5B.erl 24.67 ms 24.72 ms lists/2 11 83.64µs 316.45µs 3.83 ± 0.20 6.88 ± 0.89%

bench6B.erl 89.36 ms 89.49 ms tuples/2 44 64.04µs 241.37µs 3.65 ± 0.39 6.54 ± 1.65%

bench8B.erl 144.54 ms 144.67 ms main/2 42 317.21µs 19641.19µs 57.75 ± 7.30 0.73 ± 0.68%

bench9B.erl 53.57 ms 53.65 ms main/2 17 305.20µs 588.48µs 2.02 ± 0.16 1.16 ± 0.88%

bench10B.erl 146.72 ms 146.98 ms main/1 35 415.38µs 7368.92µs 26.06 ± 5.94 2.23 ± 1.17%

bench11B.erl 15.10 ms 15.15 ms lists/2 13 69.71µs 248.10µs 3.58 ± 0.18 8.02 ± 2.17%

bench12B.erl 526.36 ms 527.29 ms main/3 88 1445.05µs 7244.07µs 5.15 ± 1.32 2.61 ± 2.69%

bench13B.erl 41.00 ms 41.05 ms main/0 22 212.20µs 307.64µs 1.88 ± 0.35 0.48 ± 0.40%

bench14B.erl 257.98 ms 258.50 ms main/2 52 167.99µs 522.23µs 3.20 ± 0.40 12.84 ± 4.48%

bench15B.erl 376.22 ms 376.62 ms main/4 73 394.71µs 770.11µs 2.39 ± 0.16 8.78 ± 2.86%

bench16B.erl 170.25 ms 170.42 ms word_count/5 40 200.22µs 3490.60µs 30.73 ± 6.76 3.70 ± 1.53%

bench17B.erl 93.42 ms 93.55 ms mug/3 19 248.47µs 442.49µs 1.88 ± 0.22 4.96 ± 2.45%

bench18B.erl 102.34 ms 102.48 ms mbe/2 19 393.15µs 607.97µs 1.55 ± 0.15 0.05 ± 0.11%

Totals and averages for set B 822 1060.16µs 19742.28µs 13.43 ± 1.18 5.49± 2.16%

to all possible slicing criteria8, which guarantees that there is no bias in the
selection of slicing criteria.

We strictly followed the methodology proposed by Georges et al. [6]. Each
program’s graph was built 1001 times, and the graphs were sliced 1001 times per
criterion. To ensure real independence, the first iteration was always discarded
(to avoid influence of dynamically loading libraries to physical memory, data

8 Each variable use or definition in all functions that contain complex data structures.

Field-Sensitive Program Slicing 87

persisting in the disk cache, etc.). From the 1000 remaining iterations we retained
a window of 10 measurements when steady-state performance was reached, i.e.,
once the coefficient of variation (CoV, the standard deviation divided by the
mean) of the 10 iterations falls below a preset threshold of 0.01 or the lowest
CoV if no window reached it. It is with these 10 iterations that we computed
the average time taken by each operation (building each graph or slicing each
graph w.r.t. each criterion).

The results of the experiments performed are summarized in Table 2. The
two columns (PDG, CE-PDG) display the average time required to build each
graph. Building the CE-PDG, as in the PDG, is a quadratic operation; and the
inclusion of labels in the edges is a linear operation. Thus, building the CE-PDG
is only slightly slower than its counterpart. The other columns are as follows
(average values are w.r.t. all slicing criteria):

Function: the name of the function where the slicing criterion is located.
#SCs: the number of slicing criteria in that function.
PDG, CE-PDG: the average time required to slice the corresponding graph.
Slowdown: the average additional time required (with 95% error margins),

when comparing the CE-PDG with the PDG. For example, in the first row,
the computation of each slice is on average 4.40 times slower in the CE-PDG.

Red. Size: the average reduction in the slices sizes (with 95% error margins).
It is computed as (A − B)/A where A is the size (number of AST nodes) of
the slice computed with the standard (field-insensitive) algorithm and B is
the size (number of AST nodes) of the slice computed with the field-sensitive
algorithm (Algorithm 1). This way of measuring the size of the slices is much
more precise and fair. LOC is not proper because it can ignore the removal
of subexpressions. PDG/CE-PDG nodes is nor a good solution because the
CE-PDG includes nodes and arcs not present in their PDG counterparts,
therefore they are incomparable.

The averages shown at the bottom of the table are the averages of all slicing
criteria, and not the averages of each function’s average.

The first 13 benchmarks (set A) are benchmarks with complex data structures
but without cycles, while the rest of benchmarks (set B) do contain cycles. In
set A, each slice produced by the CE-PDG is around four times slower. However,
this has little impact, as each slice consumes just hundreds of milliseconds. As
can be seen in each row, generating the graph is at least 3 orders of magnitude
slower than slicing it. This increase in time is offset by the average reduction of
the slices, which is 8.45%. This increase goes up to 38.76% in function main/1
from bencher1A, as it contains complex data structures that can be efficiently
sliced with the CE-PDG. The same happens in set B, but due to the analysis of
loops, the slowdown is around thirteen times slower.

If we consider programs without cycles, and taking into account that this is
an intra-procedural technique, the time required to compute a slice will be of at
most a few hundred µs. Therefore, our technique reduces the size of the slices by
11.67 ± 3.02% at almost no cost (only a few µs). If we consider programs with
cycles, the slowdown is 13.43, but since the technique has more opportunities for

88 C. Galindo et al.

improvement (because, contrarily to the CE-PDG, the PDG includes the whole
cycle in the slice in all cases), the reduction in the slices size is 5.49 ± 2.16%.
This is a very good result: for many applications, e.g., debugging, reducing the
suspicious code over 11.67% with a cost of increasing the slicing time by only a
few milliseconds is a good trade-off to make.

5 Related Work

Transitive data dependence analysis has been extensively studied [20,27]. Less
attention has received, however, the problem of field-sensitive data dependence
analysis [10,14,19,26]. The existing approaches can be classified into two groups:
those that treat composite structures as a whole [14,15,17,18], and those that
decompose them into small atomic data types [1–3,8,11,12,16,19]. The later app-
roach is often called atomization or scalar replacement, and it basically consists
of a program transformation that recursively disassembles composite structures
to their primitive components. However, slicing over the decomposed structures
usually uses traditional dependence graph based traversal [2,8,12] which limits
the accuracy. Moreover, atomization cannot deal with recursive data structures.
Other important approaches for field-sensitive data dependence analysis of this
kind are [10,14,26]. Litvak et al. [14] proposed a field-sensitive program depen-
dence analysis that identifies dependencies by computing the memory ranges
written/read by definitions/uses. Späth et al. [26] proposed the use of push-
down systems to encode and solve field accesses and uses. Snelting et al. [25]
present an approach to identify constraints over paths in dependence graphs.
Our approach combines atomization with the addition of constraints checked by
pushdown systems to improve the accuracy of slicing composite data structures.

Severals works have tried to adapt the PDG for functional languages deal-
ing with tuple structures in the process [4,5,10,28]. Some of them with a high
abstraction level [22], and other ones with a low granularity level. Silva et al. [24]
propose a new graph representation for the sequential part of Erlang called the
Erlang Dependence Graph. Their graph, despite being built with the minimum
possible granularity (each node in the graph corresponds to an AST node) and
being able to select subelements of a given composite data structure, does not
have a mechanism to preserve the dependency of the tuple elements when a tuple
is collapsed into a variable; i.e., they do not solve the slicing pattern matching
problem (for instance, they cannot solve the program in Fig. 1). In contrast,
although our graph is only fine-grained at composite data structures, we over-
come their limitations by introducing an additional component to the graph, the
constrained edges, which allow us to carry the dependence information between
definition and use even if the composite structure is collapsed in the process.

6 Conclusion

To address the imprecision of PDG-based slicing of composite data structures,
we present a generalization of the PDG called CE-PDG where (i) the inner

Field-Sensitive Program Slicing 89

components of the composite data structures are unfolded into a tree-like repre-
sentation, providing an independent representation for their subexpressions and
allowing us to accurately define intra-statement data dependencies, and (ii) the
edges are augmented with constraints (constrained edges), which allows the prop-
agation of the component dependence information through the traversal of the
graph during the slicing process. As a result, the CE-PDG allows the user to
select any subexpression of a data structure as the slicing criterion and it com-
putes accurate slices for (recursive) composite data structures. An evaluation of
our approach shows a slowdown of 3.88/13.43 and a reduction of the slices of
11.67%/5.49% for programs without/with cycles.

References

1. Agrawal, H., DeMillo, R.A., Spafford, E.H.: Dynamic slicing in the presence of
unconstrained pointers. In: Proceedings of the Symposium on Testing, Analysis,
and Verification, pp. 60–73 (1991)

2. Anderson, P., Reps, T., Teitelbaum, T.: Design and implementation of a fine-
grained software inspection tool. IEEE Trans. Softw. Eng. 29(8), 721–733 (2003)

3. Binkley, D., Gallagher, K.B.: Program slicing. Adv. Comput. 43(2), 1–50 (1996)
4. Brown, C.M.: Tool support for refactoring Haskell programs. PhD thesis, School

of Computing, University of Kent, Canterbury, Kent, UK (2008)
5. Cheda, D., Silva, J., Vidal, G.: Static slicing of rewrite systems. In: Proceedings of

the 15th International Workshop on Functional and (Constraint) Logic Program-
ming (WFLP 2006), pp. 123–136. Elsevier ENTCS 177 (2007)

6. Georges, A., Buytaert, D., Eeckhout, L.: Statistically rigorous Java performance
evaluation. SIGPLAN Not. 42(10), 57–76 (2007)

7. Gongye, X., Wang, Y., Wen, Y., Nie, P., Lin, P.: A simple detection and generation
algorithm for simple circuits in directed graph based on depth-first traversal. Evol.
Intell. (2020)

8. Graf, J.: Speeding up context-, object- and field-sensitive SDG generation. In: 2010
10th IEEE Working Conference on Source Code Analysis and Manipulation, pp.
105–114 (2010)

9. Horwitz, S., Reps, T., Binkley, D.: Interprocedural slicing using dependence graphs.
ACM Trans. Program. Lang. Syst. 12(1), 26–60 (1990)

10. Prasanna Kumar, K., Sanyal, A., Karkare, A., Padhi, S.: A static slicing method
for functional programs and its incremental version. In: Proceedings of the 28th
International Conference on Compiler Construction, CC 2019, pp. 53–64, New
York, NY, USA, Association for Computing Machinery (2019)

11. Korel, B., Laski, J.: Dynamic slicing of computer programs. J. Syst. Softw. 13(3),
187–195 (1990)

12. Krinke, J.: Advanced slicing of sequential and concurrent programs. PhD thesis,
Universität Passau (2003)

13. Liang, D., Harrold, M.J.: Slicing objects using system dependence graphs. In: Pro-
ceedings of the International Conference on Software Maintenance, ICSM 1998,
pp. 358–367, Washington, DC, USA, IEEE Computer Society (1998)

14. Litvak, S., Dor, N., Bodik, R., Rinetzky, N., Sagiv, M.: Field-sensitive program
dependence analysis. In: Proceedings of the Eighteenth ACM SIGSOFT Interna-
tional Symposium on Foundations of Software Engineering, FSE 2010, pp. 287–296,
New York, NY, USA, Association for Computing Machinery (2010)

90 C. Galindo et al.

15. Lyle, J.R.: Evaluating variations on program slicing for debugging (Data-Flow,
Ada). PhD thesis, USA (1984)

16. Muchnick, S.S.: Advanced Compiler Design and Implementation, Chapter 12.2.
Morgan Kaufmann, Burlington (1997)

17. Muchnick, S.S.: Advanced Compiler Design and Implementation Chapter 8.12.
Morgan Kaufmann, Burlington (1997)

18. Ottenstein, K.J., Ottenstein, L.M.: The program dependence graph in a software
development environment. SIGSOFT Softw. Eng. Notes 9(3), 177–184 (1984)

19. Ramalingam, G., Field, J., Tip, F.: Aggregate structure identification and its appli-
cation to program analysis. In: Proceedings of the 26th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 1999, pp. 119–132,
New York, NY, USA, Association for Computing Machinery (1999)

20. Reps, T., Horwitz, S., Sagiv, M.: Precise interprocedural dataflow analysis via
graph reachability. In: Proceedings of the 22nd ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages, POPL 1995, pp. 49–61, New York,
NY, USA, Association for Computing Machinery (1995)

21. Reps, T., Horwitz, S., Sagiv, M., Rosay, G.: Speeding up slicing. SIGSOFT Softw.
Eng. Notes 19(5), 11–20 (1994)

22. Rodrigues, N.F., Barbosa, L.S.: Component identification through program slicing.
In: Proceedings of Formal Aspects of Component Software (FACS 2005). Elsevier
ENTCS, pp. 291–304. Elsevier (2005)

23. Silva, J.: A vocabulary of program slicing-based techniques. ACM Comput. Surv.
44(3), 1–41 (2012)

24. Silva, J., Tamarit, S., Tomás, C.: System dependence graphs in sequential erlang.
In: de Lara, J., Zisman, A. (eds.) FASE 2012. LNCS, vol. 7212, pp. 486–500.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28872-2_33

25. Snelting, G., Robschink, T., Krinke, J.: Efficient path conditions in dependence
graphs for software safety analysis. ACM Trans. Softw. Eng. Methodol. 15(4),
410–457 (2006)

26. Späth, J., Ali, K., Bodden, E.: Context-, flow-, and field-sensitive data-flow analysis
using synchronized pushdown systems. Proc. ACM Program. Lang. 3(POPL), 1–29
(2019)

27. Sridharan, M., Fink, S.J., Bodik, R.: Thin slicing. In: Proceedings of the 28th
ACM SIGPLAN Conference on Programming Language Design and Implementa-
tion, PLDI 2007, pp. 112–122, New York, NY, USA, Association for Computing
Machinery (2007)

28. Tóth, M., Bozó, I., Horváth, Z., Lövei, L., Tejfel, M., Kozsik, T.: Impact analysis of
erlang programs using behaviour dependency graphs. In: Horváth, Z., Plasmeijer,
R., Zsók, V. (eds.) CEFP 2009. LNCS, vol. 6299, pp. 372–390. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-17685-2_11

29. Walkinshaw, N., Roper, M., Wood, M.: The Java system dependence graph. In:
Proceedings Third IEEE International Workshop on Source Code Analysis and
Manipulation, pp. 55–64 (2003)

30. Weiser, M.: Program slicing. In: Proceedings of the 5th International Conference
on Software Engineering (ICSE 1981), pp. 439–449, Piscataway, NJ, USA, IEEE
Press 1981

https://doi.org/10.1007/978-3-642-28872-2_33
https://doi.org/10.1007/978-3-642-17685-2_11

SPouT: Symbolic Path Recording During
Testing - A Concolic Executor

for the JVM

Malte Mues1(B) , Falk Howar1,2 , and Simon Dierl1

1 TU Dortmund University, Dortmund, Germany
{malte.mues,falk.howar,simon.dierl}@tu-dortmund.de

2 Fraunhofer ISST, Dortmund, Germany

Abstract. In this paper, we present SPouT, a concolic executor for
the Java virtual machine. To the user, SPouT is a java executable that
takes some additional parameters for setting the values of concolic inputs
and produces symbolic traces over variables under observation during
the execution. Technically, SPouT extends the JVM implementation
provided by the Espresso guest language for the GraalVM. Therefore,
SPouT is the first concolic executor build on an industrial JVM. In this
paper, we describe the architectural design of SPouT, detail how the
partial symbolic analysis of Java’s strings is implemented in SPouT, and
show its performance and versatility by comparing it to other analysis
tools for Java programs.

Keywords: Software verification · Java program analysis · Dynamic
symbolic execution

1 Introduction

Symbolic analysis of Java applications at scale is a tough technical challenge.
The Java platform has many semantically rich features (reflection, lambda
expressions, annotations, etc.) and the Java Virtual Machine is a complex exe-
cution environment. Tools for the symbolic analysis of Java programs broadly
fall into three categories: tools that translate Java code or some intermediate
representations, e.g., bytecode, into a representation amenable to formal analy-
sis (examples are KeY [1], JayHorn [7], and JBMC [6]), tools that instrument
bytecode and execute it on an unmodified Java Virtual Machine (COASTAL is
one recent example), and tools that do not modify the programs, but instrument
a Java Virtual Machine to analyze bytecode during execution. Java PathFin-
der [24] was the first successful model checker for Java and its analyzer JPF-VM,
a Java-based JVM implementation running on top of a normal JVM, served as
a basis for many tools in this third category (e.g., SPF [17], Java Ranger [21],
and JDart [12]).

This work has been partially funded by an Amazon Research Award.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
B.-H. Schlingloff and M. Chai (Eds.): SEFM 2022, LNCS 13550, pp. 91–107, 2022.
https://doi.org/10.1007/978-3-031-17108-6_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-17108-6_6&domain=pdf
http://orcid.org/0000-0002-6291-9886
http://orcid.org/0000-0002-9524-4459
http://orcid.org/0000-0001-9730-9335
https://doi.org/10.1007/978-3-031-17108-6_6

92 M. Mues et al.

For all three categories, the soundness of analyses hinges on correctly mod-
eling (or not changing) the semantics of the Java language or the specified
behavior of a JVM and all three approaches have distinct advantages and draw-
backs: Working on Java code directly removes a big portion of complex technical
machinery from the analysis but has to be adapted to new language features and
manually transferred to other languages. Tools that instrument bytecode instruc-
tions are light-weight with respect to their execution environment (a standard
JVM) but for a complete symbolic analysis, the symbolic semantics of stack and
heap operations have to be woven into the analyzed code. Instrumenting a Java
Virtual Machine enables analysis of all programs and language features that are
compiled to JVM bytecode but requires a JVM implementation to instrument.
Developing and maintaining a sufficiently feature-complete JVM that powers the
analysis is cumbersome: e.g., as of today, the JPF-VM only supports the analysis
of Java version 8 bytecode, while Java 11 has been the LTS version since 2018,
and was succeeded by Java 17 (LTS) in September of 2021.

In this paper, we present SPouT, a concolic executor for the Java Virtual
Machine. To the user, SPouT is a java executable that takes some additional
parameters for setting the values of concolic inputs and produces symbolic traces
over variables under observation during the execution. Technically, SPouT
instruments the Espresso guest language for the GraalVM [25]. Espresso is
an existing full-fledged virtual machine written in Java and maintained by Ora-
cle. We describe the architectural design of SPouT and detail how the partial
symbolic analysis of Java’s standard string library is implemented in SPouT.

We evaluate the performance of SPouT and its versatility by comparing it
to other analysis tools for Java programs in a series of usage examples and by
analyzing the results of SV-COMP 2022, where we used SPouT as a component
in the GDart [15] tool ensemble for the dynamic symbolic execution of Java
bytecode. Our results show that the architectural design of SPouT is a viable
alternative to the design of existing research tools. Further, the described exper-
iments demonstrate that SPouT analyzes programs that the JPF-VM cannot
execute. This enables further research on dynamic symbolic execution for Java.

Related Work. There are two areas of research influencing the design of
SPouT: The symbolic encoding of Java programs during the analysis and the
encoding of string specific operations in general. In most cases, converting a pro-
gram to its analysis representation is only one step implemented as part of an
analyzer. As we are only interested in the symbolic encoding approach in the
context of SPouT, we shortly describe some selected techniques for preparing
the analysis target in Java tools participating at SV-COMP without discussing
the analysis approaches in detail. The encoding of string operations in the sym-
bolic analysis is also a very active research area, and we cannot discuss all results
here. Instead, we present selected examples with a strong influence on this paper.

All presented techniques generate a logical representation of the Java pro-
gram. However, they vary in the concrete style of encoding and the involved
abstraction level. JayHorn [7] compiles the Java program into horn clauses
and operates on the Java byte code. The analysis is completely executed on the
symbolic encoding. JBMC converts Java code in to CBMC’s [5] goto-language

SPouT: Symbolic Path Recording During Testing 93

and continues the analysis on this intermediate format. SPF [17] was the first
symbolic execution engine build on top of JPF and encodes the JVM byte-
code under analysis into a symbolic representation using the JPF-VM. Java
Ranger [21] reuses this infrastructure for encoding the program. COASTAL’s1
concolic executor uses the ASM2 bytecode manipulation framework to weave the
symbolic constraints recording code into the program under analysis. The tools
conceptually closest to SPouT are JDart [12] and SymJEx [8]. JDart instru-
ments the JPF-VM to record symbolic constraints during concrete execution,
but behaves mostly identical to SPouT except for the trace reporting. SymJEx
uses the GraalVM compiler frontend to lift Java bytecode into an intermediate
representation for performing symbolic execution. In contrast SPouT executes
bytecode using the Espresso VM running on the GraalVM. As this paper
focuses mainly on dynamic testing methods for Java, we skip most literature
dealing with static testing methods for Java (e.g. Julia [22] or PMD3).

Previous work on encoding string operations for the analysis of Java gen-
erally uses bitvector encodings (e.g. [3,18]) or automata based encodings built
from collected string graphs (e.g. [4,18,20]). Instead, SPouT encodes the string
operations using SMT-Lib’s theory of strings [2] as an abstraction and leaves the
decision making to the SMT solver working with SPouT’s output. This cleanly
decouples the constraint generation (as part of concolic execution) and solving.

The Java String Analyzer (JSA) by Christensen et al. [4] is one of the first
major static string analyzer for Java build using the automata theory stimu-
lating many follow up work. Redelinghuys et al. [18] used it for deciding string
graphs, their intermediate representation of string operations in Java programs.
They compare the automata theory with a bitvector encoded version decided
by Z3 [13]. Their main result is that there is no significant difference between
using automatons or bitvectors for representing strings symbolically. Instead, the
combination of constraints limiting the string content and its length influences
performance. SMT-Lib allows to express these constraints in SPouT’s encoding
and from our experience in previous work [14], today’s string solvers support
them well. Bjørner et al. [3] describe the integration of a bitvector based encod-
ing for string operations in the dynamic symbolic execution of .NET programs
with PEX [23]. They split the check into numeric checks first and the content
constraint next, allowing the precise modelling of exceptions caused by wrong
relations between indices and the string length, e.g., if the index is outside of
the string size for the charAt method. SPouT follows this encoding pattern,
but instead of encoding the string content parts as bitvectors, we encode it in
the SMT-Lib string theory. Shannon et al. [19] describe different techniques for
instrumenting the analysis enabling to intercept the operations on string val-
ues on the Java standard library API level and evaluate replacing the String
class with a SymbolicString class for interception the calls. SPouT directly
instruments the String class inside the JVM instead of replacing it in the
implementation. As part of their experiments, Shannon et al. pointed out the

1 https://github.com/DeepseaPlatform/coastal.
2 https://asm.ow2.io.
3 https://pmd.github.io.

https://github.com/DeepseaPlatform/coastal
https://asm.ow2.io
https://pmd.github.io

94 M. Mues et al.

trace ::= (decl | decision | err | abort | assume)∗ [ENDOFTRACE]

decl ::= [DECLARE] def

decision ::= [DECISION] expr // branchCount = i, branchId = j

err ::= [ERROR] cause

abort ::= [ABORT] cause

assume ::= [ASSUMPTION] expr // sat = b

def ∈ SMTLib Fun. Defs. i, j ∈ N0

expr ∈ SMTLib Assertions b ∈ {true, false} cause ∈ Text

Fig. 1. The BNF grammar for a trace that summarizes a concolic execution run.

problem of domain crossing whenever strings are converted to numbers. Their
encoding does not express the semantic implications precisely. We still have the
same problems today with SPouT.

Outline. Section 2 describes the internals of SPouT. In Sect. 3, we provide
usage examples and evaluate the performance of SPouT by comparing it to
several other analysis tools for the JVM.

2 SPouT: Directing the Flow of Espresso

SPouT4 (Symbolic Path Recording during Testing) implements concolic exe-
cution in the Espresso5 Java Virtual Machine for Oracle’s GraalVM6. As
it extends Espresso, SPouT – like Espresso – is licensed under the GPLv2.
SPouT’s symbolic additions are bundled in a single Concolic class. This avoids
scattering the functionality across the virtual machine. SPouT extends Espresso
with the functionality to (a) maintain symbolic annotations for values on the
stack and on the heap, (b) compute the effect of bytecode instructions on
these symbolic annotations, (c) record path constraints on branching points, and
(d) inject concolic values into the analysis. Using substitution methods as a gen-
eral extension method of the GraalVM, we demonstrate how to intercept the
invocation of standard library methods to encode them symbolically on higher
levels than the executed bytecode instructions. SPouT uses this technique for
encoding operations of the Java string library.

2.1 SPouT’s Design

SPouT is built as a java executable. Command-line arguments added to the
invocation of SPouT allow seeding the concolic variables. SPouT will report
back the collected symbolic constraints and the result using the trace language

4 https://github.com/tudo-aqua/spout, available under GPLv2.
5 https://github.com/oracle/graal/tree/master/espresso.
6 https://github.com/oracle/graal/.

https://github.com/tudo-aqua/spout
https://github.com/oracle/graal/tree/master/espresso
https://github.com/oracle/graal/

SPouT: Symbolic Path Recording During Testing 95

defined by the BNF grammar in Fig. 1. Trace logs can contain symbolic variable
declarations, assumptions and decisions (i.e., SMT-Lib assertions over symbolic
variables), as well as errors and abort statements. For decisions and assertions
minimal information about the shape of a trace, i.e., branch counts and branch
directions are communicated, furthering the easy integration of SPouT as a
component in other analyses. SPouT uses a Verifier class with nondetermin-
istic value factories for all supported concolic data types, e.g., int, boolean,
String, etc., to allow programmatic definition of concolic variables in the driver
method of an analysis.

We demonstrate the usage of
SPouT by analyzing the small Kotlin7

program shown in Listing 2 (Kotlin is
compiled to JVM bytecode). The pro-
gram generates an integer value, using
the Verifier.nondetInt() method
that is instrumented by SPouT during
concolic execution, i.e., SPouT will
return the configured concrete value,
create a symbolic variable for the return
value and track its influence through
path constraints. In the program, the
returned concolic integer is used in the
test (x > 0), guarding an assertion
violation.

import tools.aqua.concolic.Verifier
fun main() {

val x = Verifier.nondetInt()
if (x > 0)

assert(false)
}

Listing 2: A simple Kotlin pro-
gram with a guarded assertion
violation and a call to method
Verifier.nondetInt() that returns
concolic values.

The kotlin command basically wraps a java invocation and adds Kotlin
resources to the classpath. We execute the compiled Kotlin program concolically
by using the GraalVM with SPouT as follows:

export JAVA_HOME=/path/to/spoutvm
/path/to/kotlin/bin/kotlin -J"-truffle" -J"-ea" \

-Dconcolic.ints=0 \
-cp [verifier-stub]:. MainKt

The argument -J"-truffle" is passed to the GraalVM Java binary and selects
the Truffle-based Java implementation, while -J"-ea" enables assertion check-
ing. -Dconcolic.ints=0 is parsed by SPouT and instructs it to use 0 as the
concrete value for the first concolic integer value. The argument takes a comma-
separated list of values that seed the Verifier class and controls this way the
execution along a specific path. Once the preseeded values are exhausted, default
values are used. Similar arguments exist for all primitive data types and string
values. For the sake of brevity, we omit parts of the executions output and only
show the recorded trace with abbreviated decision branch information:

[DECLARE] (declare-fun __int_0 () (_ BitVec 32))

[DECISION] (assert (bvsle __int_0 #x00000000)) //b.Count = 2, b.Id = 1

[ENDOFTRACE]

In the trace, the concolic integer value is represented by the variable __int_0.
7 https://kotlinlang.org/.

https://kotlinlang.org/

96 M. Mues et al.

Stack 1 2 3 4 · · ·
Primitives 4 5
Refs r1 x r2

StaticObject2
. . .
long concolicId = -1
. . .

Object1
. . .
long concolicId = 20
. . .

Fields Concrete Values
· · ·
Object2 other → true, · · ·
· · ·
Object1 field → 10, · · ·
· · ·

Fields Symbolic Values
· · ·
20 field → y, · · ·

· · ·

Fig. 2. Memory architecture of SPouT. Black parts provided by Espresso. Red parts
added by SPouT.

2.2 Memory Architecture

The JVM state is represented in the memory using the stack and the heap. In
the following, we describe how these memory structures are extended with sym-
bolic annotations, the concolic bytecodes propagate the symbolic annotations
and record symbolic constraints, and substitution methods enable the symbolic
encoding of methods.

Symbolic Stack and Heap. As sketched in Fig. 2, Espresso uses two arrays of
identical size to represent the stack; one for primitive values and one for object
references. They are populated alternatingly (for each index, either a primitive
or an object reference is stored). SPouT leverages this layout and stores concolic
information about primitive values at the (unused) corresponding index in the
object reference array and vice versa. As a consequence, Espresso takes care
of all stack operations (e.g., copying values and annotations between frames).
On the heap, Espresso represents every instantiated object by a StaticObject
that – among other things – maintains a field table and stores contents of field
in an optimized (native) location. SPouT extends these container objects with
unique concolic ids and stores symbolic contents of fields in a map indexed by
id. This mechanism operates lazily, creating map entries only for objects with
concolically tainted fields, keeping the memory overhead of this analysis minimal.
SPouT extends the getfield and setfield instructions to propagate symbolic
annotations between stack and heap.

Concolic Bytecodes. Concolic bytecode implementations are used for com-
puting symbolic effects of instructions and for recording path constraints (e.g.,
on branching instructions). SPouT extends the implementation of all byte-
codes that compute values, e.g., iadd, or introduce branching conditions, e.g.,
if_icmpne. Listing 3 shows the concolic extension of the iadd instruction: After
the concrete effect on the stack is computed by Espresso, SPouT computes the
symbolic effect only if needed, keeping the impact on performance as small as
possible.

Substituting Methods. Espresso provides a mechanism for substituting indi-
vidual methods with customized versions (i.e., executing custom code instead of
the actual method). SPouT leverages this mechanism for two purposes: (a) user-

SPouT: Symbolic Path Recording During Testing 97

void iadd(long[] primitives, Object[] refs, int top) {
int i1 = popInt(primitives, top - 1);
int i2 = popInt(primitives, top - 2);
int iRes = i1 + i2;
putInt(primitives, top - 2, iRes);
// added concolic operation
putConcolic(refs, top -2, sadd(i1, i2, iRes,

popConcolic(refs, top-1), popConcolic(refs, top-2)));
}

Concolic sadd(int i1, int i2, int iRes, Concolic c1, Concolic c2) {
if (c1 == null && c2 == null) return null;
if (c1 == null) c1 = concFromConstant(i1);
if (c2 == null) c2 = concFromConstant(i2);
return new Conc(iRes, new Expression(IADD, c1.symb(), c2.symb()));

}

Listing 3: Implementation of Concolic iadd Bytecode.

∧

Java AST SMT-Lib Encoding

"abc".startsWith(s1)

s1.charAt(0) �= 'a'

unsatisfiable satisfiable (S1 = " ")

(declare-const S1 String)

(assert (str.prefixof S1 "abc"))

(assert (not (= (str.at S1 0) "a")))

(assert (> (str.len S1) 0))

Fig. 3. The black boxes on the right demonstrate the naive mapping from the Java AST
to an SMT-Lib encoding. The bottom part shows the semantic mismatch: the test is
unsatisfiable in the Java language while the SMT-Lib semantics admit an empty string
as a valid model for S1.

defined concolic values are injected via methods of the Verifier class8, and
(b) the concolic semantics of operations on strings are implemented in substi-
tuted implementations. A concolic semantic consists of two parts: the concrete
computation that changes the heap state and the update of the symbolic values.

2.3 Symbolic Encoding of String Operations

The analysis of string operations is especially important for reasoning on Java
programs [4,10,18] and encoding them on the string level has various benefits
over instrumenting the primitive types that represent a string (c.f. [3,19]). In
the following, we describe how SPouT encodes string operations, present three
concrete challenges in the encoding, and describe the limitations. The tree chal-
lenges are: faithful error handling, numeric and string semantic of characters,
and regular expressions.
8 https://github.com/tudo-aqua/verifier-stubs.

https://github.com/tudo-aqua/verifier-stubs

98 M. Mues et al.

Table 1. Mapping from the Java standard string library to SMT-Lib.

Java operation SMT-Lib operation Java operation SMT-Lib operation

concat(s1, s2) (str.++ s1 s2) isDigit(c1) (str.is_digit c1)

contains(s1, s2) (str.contains s1 s2) length(s1) (str.len s1)

contentEquals(s1, seq2) (= s1 seq2) replace(s1, s2, s3) (str.replace_all s1 s2 s3)

endsWith(s1, s2) (str.suffixof s1 s2) startsWith(s1, s2) (str.prefixof s2 s1)

equals(s1, s2) (= s1 s2) substring(s1, i1) (str.substr s1 i1 (str.lens1))

indexOf(s1, s2) (str.indexof s1 s2 0) substring(s1, i1, i2) (str.substr s1 i1 (− i2 i1))

indexOf(s1, s2, i1) (str.indexof s1 s2 i1)

Encoding. SPouT encodes Java’s string operations symbolically using a mix-
ture of integer and string theory constraints in the SMT-Lib language. While
for some operations in Java, the SMT-Lib language contains matching coun-
terparts (shown in Table 1), others exhibit different semantics in edge cases or
are not expressible (shown in Table 2). String operations are the first datatype
with symbolic encoding in SPouT that introduce an abstraction of the byte-
code semantics of the JVM in the symbolic operation. The substitution meth-
ods intercept the method invocation and encodes the effects symbolically. But
for continuing the concrete execution after the return of the string operation,
SPouT must execute the string operation concretely. This concrete execution
must not be visible in the constraint tree, as the symbolic encoding describes the
semantic already using a higher abstraction. Therefore, SPouT pauses the gen-
eral bytecode level constraint recording in the scope of the substitution method
and resumes it on return, when it leaves the scope.

Faithful Error Handling. Consider the example in Fig. 3. On the left, we have
a path constraint that is similar to a previously discussed example by Redel-
inghuys et al. [18] for comparing automatons and bitvector encodings. Assume
that s1 is a concolic string variable and recorded constraints require s1 to be a
prefix of the string "abc" but the first character of s1 must not be 'a'. Under
the Java semantics, this is unsatisfiable: the empty string throws an IndexOut-
OfBoundsException when accessing its 0-th character and non-empty strings
cannot match both constraints. SMT-Lib defines the str.prefixof and str.at
operations that are mostly comparable to the Java methods startsWith and
charAt. The black part on the right of the figure shows the direct mapping from
Java to these functions. But there are differences in the semantics of corner cases.
In SMT-Lib, the problem is satisfiable by the empty string, since accessing an
index beyond the string length yields an error value that is not equal to "a".
Therefore, for the concolic analysis of the charAt(i) method on the symbolic
string s1, a check on the index is required. The index i must be greater or equal
to zero and less than the string length of s1 to be successful in the Java SE
library. The green constraint on the right side is an added implicit assumption
modeling that charAt did not throw an exception. This implies that encoding a
single Java constraint may yield two path constraints in SMT-Lib, one modeling
invalid access operations and one modeling valid ones. The exception path and
the branching condition guarding it becomes visible in the tree.

SPouT: Symbolic Path Recording During Testing 99

void main(String[] args) {
String arg =

Verifier.nondetString();
if (arg.length() < 1) return;
char c = arg.charAt(0);
assert Character.toUpperCase(c)

!= Character.toLowerCase(c);
}

Fig. 4. The StaticCharMethods02 task
from SV-COMP 2022.

//
25: iload_2
26: invokestatic #6 //toUpperCase
29: iload_2
30: invokestatic #7 //toLowerCase
33: if_icmpne 44
36: new #8
//

Fig. 5. The bytecode for the assert
statement from Fig. 4

Numeric and String Semantics of Characters. Java uses a character type
for its string and numeric semantic, but the compiled bytecode only utilizes
integer operations. In contrast, the SMT-Lib is only aware of the string semantic
for a character. Therefore, for encoding a problem in SMT-Lib, the string theory
semantic is sometimes easier. For example, consider the charAt method. In the
SMT-Lib language, charAt returns a value of type string. In the Java language,
it is a character. Inside the JVM, the character is represented as an integer.
Figure 3 encodes the comparison of the charAt result against the character ‘a’
as a comparison in the string semantic using the SMT-Lib. Otherwise, this small
example involves in the encoding of the numeric equality many cast operations
from a string to an integer to a 32-bit bitvector. For this case, lifting from the
Java representation to the string semantic is easier than using casting expressions
in the symbolic encoding.

Consider the example in Fig. 4. The character at position zero is extracted
from a nondeterministic string. Next, the assertion statement compares the
result from the to upper case and lower case conversion. Figure 5 shows the
compiled bytecode of the assertion check in Fig. 4. The invokestatic byte-
code takes the integer from the stack and replace it with another integer.
This is a lookup in a large map that cannot be encoded in SMT-Lib using
an numeric value in the bitvector theory. On the other side, some solvers,
e.g., CVC4, support the functions toUpper and toLower in the string the-
ory. Using them, it is possible to encode the assertion semantic in the string
theory. Assuming ARG represents the symbolic string, the logical encoding is:
(= (toUpper (str .at ARG 0)) (toLower (str .at ARG 0))). To allow this flexible in
encoding the semantic, the character values in the JVM require a string seman-
tic and a bitvector semantic equivalent in the encoding. SMT-Lib supports
str.to_code and nat2bv that allows to express the numeric code point of a
String into a bitvector, but it is not a true semantic link representing the dual
semantics of the character data type in the Java language in SMT-Lib. At the
moment, SPouT uses mainly the string semantics, but we are still investigating
the best way to deal with this representation problem in a more general solution
that also support cases where the character is used numerically in the program.

100 M. Mues et al.

Table 2. Functions that cannot be mapped directly and precisely from the Java stan-
dard string library to the SMT-Lib language, or do not maintain their semantic.

Java Operation SMT-Lib Operation Comment

charAt(s1, i1) (str.at s1 i1) The charAt function requires some error handling in
Java not represented in the SMT-Lib function str.at.

compareTo(s1, s2) (str. < s1 s2)
(str. <= s1 s2)

SMT-Lib has lexicographic ordering operations but
they need to be embedded in the evaluation of com-

pareTo splitting the three value result logic to binary
decisions

compareTo-

IngoreCase(s1, s2)

– There is no mapping in SMT-Lib allowing the encod-
ing of the ignore case semantic. Using solver specific
operations as toUpper allow to work around this lim-
itation

equals-
IgnoreCase(s1, s2)

– The same problem as for compareToIgnoreCase

applies
isLetter(c1)

isUpperCase(c1)

– It is possible to use str.to_code to convert c1 into a
code point. But afterwards the unicode table defin-
ing which code points are within the target domain
have to be encoded as well. In practice, we have only
archived to encode this for limited ranges on the code
point

join(s1, s2[]) – There is no way for expressing a join on a sym-
bolic string array yet as we have not really a way
to express the capacity of an array symbolically

lastIndexOf(s1, s2) (declare-const x Int)
(and (= (str.at s1 x) s2)

(not (exists ((y Int))
(and (< x y) (< y (str.len s1))
(not (= (str.at s1 y) s2))))))

We can encode this using helper variables, but it
is leaving the QF_SLIA theory as quantifiers are
required. Therefore, the encoding is not within the
official theory definition of the SMT-Lib anymore as
SLIA is not defined as official theory

matches(s1, s2) (str.in_re s1 . . .) Depending on the complexity of the pattern involved
in s2, this is possible. But the pattern contained in
s2 needs to be transformed to SMT-Lib first

parseFP(s1, fpSize)

parseInt(s1)

– It is not possible to model this in SMT-Lib at the
moment

split(s1, s2) – It is not possible to transfer this except for a concrete
example describing that the concatenation of the new
subparts with the separator s2 are equal to s1

reverse(s1) – Reversing a string is not supported in todays SMT
solvers

strip(s1) (and (not (= (str.at s1 0) “ ′′))
(not (= (str.at s1 (−
(str.len s1) 1)) “ ′′)))

While this encoding implies that the first and last
character are no whitespaces, it is no possible to
express that a string might be shorter after strip in
this encoding

stripIndent(s1)

stripLeading(s1)

stripTrailing(s1)

trim(s1)

– See the problem with strip. The same applies for
these methods

toString(fp1)

toString(i1)

toString(c1)

– There is no symbolic encoding in SMT-Lib that
allows to convert a numeric value in its string repre-
sentation

toUpper(s1)

toLower(s1)

(str.upper s1)
(str.lower s1)

These functions are not supported in the official
SMT-Lib standard. CVC4 supports it as a custom
interface

insert(s1, s2, i1)

delectCharAt(s1, i1)

delete(s1, i1, i2)

- These functions do not have a counterpart in SMT-
Lib but can be encoded using substring to split
the existing string and gluing the remaining parts
together using concat

Encoding Regular Expressions. In general, the Java string library separates
two kinds of regular expressions: those that use backreferences and those that
do not. Backreferences in regular expression work similar to the Perl regular
expression language9. In the Java context they are also called capture groups. For
example, a regular expression with a capture group is: name: (*)?$. It matches
any character after the string “name:” until the end of the line. Java allows
to extract the group, the part matched between the brackets, if the regular
expression matches. E.g., if the string is “name: SPouT”, the group is SPouT.
SMT-Lib does not support backreferences in the regular expression language

9 https://www.pcre.org.

https://www.pcre.org

SPouT: Symbolic Path Recording During Testing 101

and SPouT does not support them in the encoding. However, Loring et al. [11]
present ideas on encoding and solving constraints with regular expressions using
groups for JavaScript by applying a CEGAR based algorithm in combination
with SMT solvers.

Regular expressions without capture groups are supported and allow the
encoding of string operations like matches or replace. The main technical chal-
lenge is transforming the regular expression into the automaton that is encoded
in the SMT-Lib. For example, consider the following regular expression in the
Java language: “Date: \d \d-\d\d-\d\d”. It has to be decomposed into the dif-
ferent parts first and then combined into the SMT-Lib constraint. SPouT only
reports the regular expression in the Java syntax and the tool that uses this
encoding has to parse the Java regular expression string into an SMT-Lib con-
straint. GDart uses the brics automaton library10 for the conversion from the
string representation into an automaton representation. The first step is resolv-
ing the Java specific range definition, in this case “\d” for a digit. An equivalent
regular expression is “Date: [0-9][0-9]-[0-9][0-9]-[0-9][0-9]”. This regular expression
is then converted to SMT-Lib:

(re.++(str.to_re“Date : ”)
(re.range “0” “9”) (re.range “0” “9”) (str.to_re “− ”)
(re.range “0” “9”) (re.range “0” “9”) (str.to_re“− ”)
(re.range “0” “9”) (re.range “0” “9”))

In this final form, the regular expression can be used in the symbolic encoding
of operations. The values produced in a SMT-Lib model for such an expression
matches the Java semantic during concrete execution.

Limitations. The presented encoding method works well for modeling opera-
tions on strings and the concatenation helper methods that do not involve code
point handling (e.g., concat, startsWith, equals, and indexOf). Table 2 shows
methods that are part of the Java standard library, but currently have no direct
semantic counter part in the SMT-Lib language. We partition them in roughly
four groups: Those that can be expressed combining other SMT-Lib functions,
those that cannot be expressed, those that require restrictions on character, and
those that are used for value serialization and deserialization.

E.g., compareTo and insert can be modeled using a combination of multiple
SMT-Lib functions. An insertion can be expressed by creating two substrings
from a string and putting them together again by concatenating the first part,
the new content between and the second part.

Some methods require unbounded path enumeration in the encoding. A
prominent example is the split method that cannot be expressed in SMT-Lib
yet. For the current path, it is possible to encode the structure of the concrete
string and how a new string leading to an increased array looks like. A semantic-
preserving encoding of the split result as a symbolic array is not yet possible.
10 https://www.brics.dk/automaton/.

https://www.brics.dk/automaton/

102 M. Mues et al.

Many of the functions that are not expressible in SMT-Lib at the moment
apply restriction on certain characters of the string or a single character, e.g.,
isLetter, strip, and trim. Without support in the string theory, e.g., encoding
an equality comparison between a trimmed string value and its not trimmed
counterpart is impossible. In Java, an example for this case that evaluates to
true is: “ Hello”.trim().equals(“Hello”). As SMT-Lib does not have a notion of a
single character and custom range checks on them, encoding is impossible.

The last group of problems includes serialization and deserialization for dif-
ferent primitive data types, e.g. parseFloat, which converts a String into a
float. This function cannot be expressed symbolically in the current version of
SMT-Lib. Supporting the parsing function requires also linking the two theories
as a single variable has a representation in both theories.

2.4 Supported Languages and Implemented Features

SPouT aims to analyze JVM bytecode programs and can – in theory – pro-
cess any program that is compiled to JVM bytecode using only primitive types
(e.g., Java, Scala, and Kotlin programs with primitive types). As mentioned
previously, for higher level data types, e.g., strings, a modeling of the standard
library in the form of substitute methods is required. We developed substitutes
for Java programs as a part of SPouT. Using SPouT with other languages as
Scala or Kotlin requires additional standard library abstractions suitable to
the language, although it is already possible to load programs in these languages,
including their runtime libraries, using SPouT.

SPouT analyzes all JVM primitive types (i.e., boolean, byte, char, short,
int, long, float, and double) concolically (including boxed objects) by generat-
ing symbolic constraints in SMT-Lib bitvector and floating point theory. It also
tracks concolic array length for one-dimensional and multi-dimensional arrays
and models System.arraycopy, enabling analysis of collections and arrays.

Since GraalVM is a polyglot virtual machine and Espresso implements a
JVM as a guest language, SPouT benefits from GraalVM’s JIT optimization.

3 Demonstration and Evaluation

We evaluate the versatility SPouT in a number of small usage examples by com-
paring it to other tools for the analysis of Java programs. We have demonstrated
its performance in SV-COMP 2022 for the first time, where we used SPouT as
the concolic executor in the GDart tool ensemble. This paper, takes a closer
look on the performance of the string encoding in comparison with other tools.
In addition, we show two examples, why SPouT will stimulate future research.

Performance of the String Encoding. Since modeling of string operations
is a major challenge when analyzing the security of Java web applications, we
added the securibench benchmark suite11 [9,10] to the set of Java instances in
11 https://github.com/tudo-aqua/securibench-micro.

https://github.com/tudo-aqua/securibench-micro

SPouT: Symbolic Path Recording During Testing 103

Table 3. Comparison of the SV-COMP tools in the Java track on the securibench task
subset consisting of 113 task in total. The results are taken from the official SV-COMP
runs.

Result Tool
GDart (using SPouT) JDart SPF Java Ranger JayHorn COASTAL JBMC

Correct 95 100 85 76 0 22 100

Incorrect 0 0 3 0 0 90 0

Unkown 10 12 22 37 113 1 8

Error 8 1 3 0 0 0 5

Table 4. Comparing GDart’s capability enabled by SPouT with other Java tools
from SV-COMP on the described examples. (+) means the tool solves the example
with the expected verdict, (×) means the tool does not solve the example, (−) does
not reach the expected verdict, and ✝ means the tool crashes or times out (15 min). -
means we could not run the tool on the example.

Tool Example
java11 Scala Kotlin JIT Maven

GDart (using SPouT) (+) 4.9 s (+) 10.7 s (+) 5.7 s (+) 26.4 s (+) 69.1 s
JDart (−) 2.7 s – – ✝ –
SPF (×) 0.9 s – – (×) 1.1 s –
Java Ranger (×) 0.9 s – – (×) 2.3 s –
JayHorn (−) 2.4 s – – ✝ –
JBMC (×) 1.1 s – – (+) 1.5 s –
COASTAL (×) 1.1 s – – (×) 1.2 s –

SV-COMP 2022. The securibench benchmark set is inspired by web application
security threats and contains many instances that use String operations. Table 3
compares the different tools reporting results for SV-COMP 2022 on this sub-
set of tasks. JDart and JBMC both solve 100 tasks correctly, five more than
GDart. Compared to Java Ranger, GDart correctly solves 19 more tasks.
JayHorn solves none of these tasks. The only tools reporting incorrect answers
are SPF (3) and COASTAL (90). For the 10 tasks GDart reports as unknown,
5 are due to a triggered exception in the symbolic reasoning component, 3 cannot
be solved as the StringTokenzier is not symbolically modeled in SPouT, and
two are due to problem specific errors. For the 8 error tasks, GDart exhausts
the resource limits. While the summary suggests that JDart and JBMC solve
5 more tasks than GDart, this is not the case. JDart solves 4 tasks for which
GDart exhausts the resources and also solves 4 tasks for which GDart reports
unknown results. The resource exhaustion happens in the symbolic execution of
GDart and are not explicitly related to SPouT. However, GDart solves 3 tasks
that JDart does not solve due to different instrumentations of the toLowerCase

104 M. Mues et al.

method. In direct comparison with JBMC, GDart solves 6 tasks that JBMC
does not solve mostly, because GDart supports reflection within the JVM, and
JBMC does not. On the other side, JBMC solves 5 tasks for which GDart
exhausts the resource limit and 6 tasks that GDart does not solve. The dis-
tances for unknown tasks are less surprising considering that JDart and JBMC
support operations on the StringTokenizer.

Performance in SV-COMP 2022. GDart solved 471 out of 586 tasks using
SPouT, which is the third highest amount of correctly solved task, following
behind JBMC (506) and JDart (522). As GDart is by design stronger in
finding errors (302) than proving the absence of an error (169), it ranks in the
SV-COMP point schema fourth after Java Ranger (solving 466 tasks, 204
without error, 262 with error) (c.f. SV-COMP results12).

Demonstration of Versatility. We have implemented a number of demon-
stration examples13 for GDart’s capability enabled by SPouT and report the
performance of other Java tools in Table 4 in comparison. SPouT allows GDart
to run more examples than any other tool. The examples demonstrate the fol-
lowing:

Modern Java Byte Codes. Being built on top of a full-fledged JVM, SPouT
is capable of analyzing modern Java bytecode that uses Java 11 features as
demonstrated by the java11 example. This is a major advantage of SPouT
compared to JPF-VM based tools that load only Java 8 bytecode.

Analysis of arbitrary JVM languages. SPouT allows execution of arbitrary
JVM bytecode programs, even compiled Kotlin and Scala programs, if
they are loaded along with their runtimes. The Kotlin and Scala examples
demonstrate this. However, as mentioned previously, support for the Kotlin
and Scala standard library is incomplete.

JIT Optimization. Since SPouT runs on the GraalVM, it benefits from
the GraalVM’s just-in-time compiler. In the jit example, we can observe a
2.5-fold speed-up for hot code during concolic execution. On the other hand,
it has to be noted that the execution with Espresso (version 21.2.0) is 10 to
20 times slower than the native GraalVM in our examples.

Maven and SpringBoot. The springboot example shows how SPouT can
be used out-of-the-box as the JVM for concolically executing test cases in a
Maven build process. We demonstrate this for a test case of a containerized
Spring Boot web application with mocking and code injection that uses the
complete Spring Boot application stack.

The springboot example, in particular, shows the strength of the tool archi-
tecture of SPouT: We were not able to run the other tools on this example
as the test is executed as a JUnit test case from within a build tool (maven).
SPouT is implemented as a feature of a Java executable and simply executes
the build system. We enable the concolic execution feature only for the unit test.

12 https://sv-comp.sosy-lab.org/2022/results/results-verified/.
13 available on GitHub: https://github.com/tudo-aqua/gdart-examples.

https://sv-comp.sosy-lab.org/2022/results/results-verified/
https://github.com/tudo-aqua/gdart-examples

SPouT: Symbolic Path Recording During Testing 105

We are confident, though we could not test it, that the other tools cannot analyze
the unit test since it starts a Tomcat web container including database, injects
mock code into the test case (generated and compiled at runtime), and relies on
interception of method calls (also configured at runtime). As a consequence, the
actual behavior of the application only emerges during execution in the Tomcat.

Enabler for Future Research Projects. The versatility of SPouT and
the industry grade GraalVM running it allows scaling our security detec-
tion research further and investing into scalable dynamic symbolic execution
engines. We will explain this in two examples. Both examples are currently
not runnable with the JPF-VM and demonstrate the large potential for future
research enabled in this area using the concolic runner SPouT. The examples
are:

Evaluating Jaint on Jenkins. The Jaint framework [16] combines dynamic
symbolic execution and dynamic tainting. Today, it is build on top of the
JPF-VM using JDart. After evaluating Jaint on benchmarks, the next scal-
ing step is detecting existing injection vulnerabilities, e.g., the OS command
injection in the Jenkins Git Client Plugin 2.8.414. But the JPF-VM prevented
that we have been able to analyze these kinds of tasks. Due to the incomplete
support of the Java standard library in the JPF-VM, it was not possible to
create temporary directories required to model a concrete driver for analyzing
the plugin dynamically. Using the new SPouT executor, we are today able
to run the examples dynamically and record constraints. This enables future
research project that focus on the application of dynamic symbolic execution
for the analysis of Java and, therefore, also allows empirical experiments that
measure Jaint’s scalability.

Dynamic Symbolic Execution of Log4Shell. Using SPouT, we have suc-
cessfully analyzed the Log4Shell example project15 with dynamic symbolic
execution. As of today, we can demonstrate that the symbolic annotations
for dynamic symbolic execution travel across the project and the method
substitution pattern works on this spring boot application as well for inject-
ing monitors on the Log4j classes.

4 Conclusion

In this paper, we presented SPouT, a concolic executor build on top of the
GraalVM. We detailed the integration of the symbolic annotation recording
into the concrete bytecode execution of the Espresso JVM and, for the first
time, formalized SPouT’s symbolic trace format. Moreover, we present how
GraalVM features are used to encode symbolic operations on strings at the
library level. We use SPouT as the concolic executor of GDart, but are con-
fident that the component might be useful for other research projects as well,
e.g., for fuzzing Java programs.
14 https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-10392.
15 https://github.com/christophetd/log4shell-vulnerable-app.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-10392
https://github.com/christophetd/log4shell-vulnerable-app

106 M. Mues et al.

References

1. Ahrendt, W., et al.: The KeY platform for verification and analysis of Java pro-
grams. In: Giannakopoulou, D., Kroening, D. (eds.) VSTTE 2014. LNCS, vol. 8471,
pp. 55–71. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-12154-3_4

2. Barrett, C., Fontaine, P., Tinelli, C.: The SMT-LIB standard: version 2.6. Technical
report, Department of Computer Science, The University of Iowa (2021). https://
smtlib.cs.uiowa.edu. Accessed 21 May 2021

3. Bjørner, N., Tillmann, N., Voronkov, A.: Path feasibility analysis for string-
manipulating programs. In: Kowalewski, S., Philippou, A. (eds.) TACAS 2009.
LNCS, vol. 5505, pp. 307–321. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-00768-2_27

4. Christensen, A.S., Møller, A., Schwartzbach, M.I.: Precise analysis of string expres-
sions. In: Cousot, R. (ed.) SAS 2003. LNCS, vol. 2694, pp. 1–18. Springer, Heidel-
berg (2003). https://doi.org/10.1007/3-540-44898-5_1

5. Clarke, E., Kroening, D., Lerda, F.: A tool for checking ANSI-C programs. In:
Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 168–176.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24730-2_15

6. Cordeiro, L., Kesseli, P., Kroening, D., Schrammel, P., Trtik, M.: JBMC: a bounded
model checking tool for verifying java bytecode. In: Chockler, H., Weissenbacher, G.
(eds.) CAV 2018. LNCS, vol. 10981, pp. 183–190. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-96145-3_10

7. Kahsai, T., Rümmer, P., Sanchez, H., Schäf, M.: JayHorn: a framework for verifying
java programs. In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016. LNCS, vol. 9779, pp.
352–358. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41528-4_19

8. Kloibhofer, S., Pointhuber, T., Heisinger, M., Mössenböck, H., Stadler, L.,
Leopoldseder, D.: SymJEx: symbolic execution on the GraalVM. In: Proceedings
of the 17th International Conference on Managed Programming Languages and
Runtimes, MPLR 2020, pp. 63–72. Association for Computing Machinery, New
York (2020). https://doi.org/10.1145/3426182.3426187

9. Livshits, B.: Improving software security with precise static and runtime analysis.
Ph.D. thesis, Stanford University (2006)

10. Livshits, V.B., Lam, M.S.: Finding security vulnerabilities in Java applications
with static analysis. In: 14th USENIX Security Symposium, SEC 2005, pp. 271–
286. USENIX Association, San Diego (2005). https://www.usenix.org/legacy/
publications/library/proceedings/sec05/tech/livshits.html

11. Loring, B., Mitchell, D., Kinder, J.: Sound regular expression semantics for dynamic
symbolic execution of JavaScript. In: Proceedings of the 40th ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI 2019,
pp. 425–438. Association for Computing Machinery, New York (2019). https://doi.
org/10.1145/3314221.3314645

12. Luckow, K., et al.: JDart: a dynamic symbolic analysis framework. In: Chechik,
M., Raskin, J.-F. (eds.) TACAS 2016. LNCS, vol. 9636, pp. 442–459. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-49674-9_26

13. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3_24

14. Mues, M., Howar, F.: Data-driven design and evaluation of SMT meta-solving
strategies: balancing performance, accuracy, and cost. In: 2021 36th IEEE/ACM
International Conference on Automated Software Engineering (ASE), ASE 2021,

https://doi.org/10.1007/978-3-319-12154-3_4
https://smtlib.cs.uiowa.edu
https://smtlib.cs.uiowa.edu
https://doi.org/10.1007/978-3-642-00768-2_27
https://doi.org/10.1007/978-3-642-00768-2_27
https://doi.org/10.1007/3-540-44898-5_1
https://doi.org/10.1007/978-3-540-24730-2_15
https://doi.org/10.1007/978-3-319-96145-3_10
https://doi.org/10.1007/978-3-319-96145-3_10
https://doi.org/10.1007/978-3-319-41528-4_19
https://doi.org/10.1145/3426182.3426187
https://www.usenix.org/legacy/publications/library/proceedings/sec05/tech/livshits.html
https://www.usenix.org/legacy/publications/library/proceedings/sec05/tech/livshits.html
https://doi.org/10.1145/3314221.3314645
https://doi.org/10.1145/3314221.3314645
https://doi.org/10.1007/978-3-662-49674-9_26
https://doi.org/10.1007/978-3-540-78800-3_24

SPouT: Symbolic Path Recording During Testing 107

pp. 179–190. IEEE, New York (2021). https://doi.org/10.1109/ASE51524.2021.
9678881

15. Mues, M., Howar, F.: GDart: an ensemble of tools for dynamic symbolic execution
on the java virtual machine (competition contribution). In: Fisman, D., Rosu,
G. (eds.) TACAS 2022. LNCS, vol. 13244, pp. 435–439. Springer, Cham (2022).
https://doi.org/10.1007/978-3-030-99527-0_27

16. Mues, M., Schallau, T., Howar, F.: Jaint: a framework for user-defined dynamic
taint-analyses based on dynamic symbolic execution of java programs. In: Dongol,
B., Troubitsyna, E. (eds.) IFM 2020. LNCS, vol. 12546, pp. 123–140. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-63461-2_7

17. Păsăreanu, C.S., Visser, W., Bushnell, D., Geldenhuys, J., Mehlitz, P., Rungta,
N.: Symbolic PathFinder: integrating symbolic execution with model checking for
Java bytecode analysis. Autom. Softw. Eng. 20(3), 391–425 (2013). https://doi.
org/10.1007/s10515-013-0122-2

18. Redelinghuys, G., Visser, W., Geldenhuys, J.: Symbolic execution of programs
with strings. In: Proceedings of the South African Institute for Computer Sci-
entists and Information Technologists Conference, SAICSIT 2012, pp. 139–148.
Association for Computing Machinery, New York (2012). https://doi.org/10.1145/
2389836.2389853

19. Shannon, D., Ghosh, I., Rajan, S., Khurshid, S.: Efficient symbolic execution
of strings for validating web applications. In: Proceedings of the 2nd Interna-
tional Workshop on Defects in Large Software Systems: Held in Conjunction with
the ACM SIGSOFT International Symposium on Software Testing and Analysis
(ISSTA 2009), DEFECTS 2009, pp. 22–26. Association for Computing Machinery,
New York (2009). https://doi.org/10.1145/1555860.1555868

20. Shannon, D., Hajra, S., Lee, A., Zhan, D., Khurshid, S.: Abstracting symbolic
execution with string analysis. In: Testing: Academic and Industrial Conference
Practice and Research Techniques - MUTATION (TAICPART-MUTATION 2007),
pp. 13–22. IEEE, New York (2007). https://doi.org/10.1109/TAIC.PART.2007.34

21. Sharma, V., Hussein, S., Whalen, M.W., McCamant, S., Visser, W.: Java ranger:
statically summarizing regions for efficient symbolic execution of Java. In: Proceed-
ings of the 28th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, ESEC/FSE 2020, pp.
123–134. Association for Computing Machinery, New York (2020). https://doi.org/
10.1145/3368089.3409734

22. Spoto, F.: The Julia static analyzer for Java. In: Rival, X. (ed.) SAS 2016. LNCS,
vol. 9837, pp. 39–57. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-53413-7_3

23. Tillmann, N., de Halleux, J.: Pex–white box test generation for .NET. In: Beckert,
B., Hähnle, R. (eds.) TAP 2008. LNCS, vol. 4966, pp. 134–153. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-79124-9_10

24. Visser, W., Havelund, K., Brat, G., Park, S., Lerda, F.: Model checking pro-
grams. Autom. Softw. Eng. 10(2), 203–232 (2003). https://doi.org/10.1023/A:
1022920129859

25. Würthinger, T., et al.: One VM to rule them all. In: Proceedings of the 2013
ACM International Symposium on New Ideas, New Paradigms, and Reflections
on Programming & Software, pp. 187–204. Association for Computing Machinery,
New York (2013). https://doi.org/10.1145/2509578.2509581

https://doi.org/10.1109/ASE51524.2021.9678881
https://doi.org/10.1109/ASE51524.2021.9678881
https://doi.org/10.1007/978-3-030-99527-0_27
https://doi.org/10.1007/978-3-030-63461-2_7
https://doi.org/10.1007/s10515-013-0122-2
https://doi.org/10.1007/s10515-013-0122-2
https://doi.org/10.1145/2389836.2389853
https://doi.org/10.1145/2389836.2389853
https://doi.org/10.1145/1555860.1555868
https://doi.org/10.1109/TAIC.PART.2007.34
https://doi.org/10.1145/3368089.3409734
https://doi.org/10.1145/3368089.3409734
https://doi.org/10.1007/978-3-662-53413-7_3
https://doi.org/10.1007/978-3-662-53413-7_3
https://doi.org/10.1007/978-3-540-79124-9_10
https://doi.org/10.1023/A:1022920129859
https://doi.org/10.1023/A:1022920129859
https://doi.org/10.1145/2509578.2509581

Verifier Technology

Cooperation Between Automatic and Interactive
Software Verifiers

Dirk Beyer , Martin Spiessl , and Sven Umbricht

LMU Munich, Munich, Germany

Abstract. The verification community develops two kinds of verification
tools: automatic verifiers and interactive verifiers. There are many such
verifiers available, and there is steady progress in research. However,
cooperation between the two kinds of verifiers was not yet addressed in
a modular way. Yet, it is imperative for the community to leverage all
possibilities, because our society heavily depends on software systems
that work correctly. This paper contributes tools and a modular design to
address the open problem of insufficient support for cooperation between
verification tools. We identify invariants as information that needs to
be exchanged in cooperation, and we support translation between two
‘containers’ for invariants: program annotations and correctness witnesses.
Using our new building blocks, invariants computed by automatic veri-
fiers can be given to interactive verifiers as annotations in the program,
and annotations from the user or interactive verifier can be given to
automatic verifiers, in order to help the approaches mutually to solve the
verification problem. The modular framework, and the design choice to
work with readily-available components in off-the-shelf manner, opens up
many opportunities to combine new tools from existing components. Our
experiments on a large set of programs show that our constructions work,
that is, we constructed tool combinations that can solve verification tasks
that the verifiers could not solve before.

Keywords: Software verification, Program analysis, Invariant genera-
tion, Automatic verification, Interactive verification, CPAchecker,
Frama-C

1 Introduction

Software verification becomes more and more important, and large IT companies
are investing into this technology [5,25,29]. There was a lot of progress in
the past two decades and many software-verification tools exist [7,8,15,34,42].
But there are also obstacles that hinder the application of new technology in
practice [3,35]. The verification tools can roughly be divided into two different
flavors: automatic verifiers, which are more suited for automatic settings such
as continuous-integration checks, and interactive verifiers, which can be fed
with proof hints to solve verification tasks. These different tools have different
strengths and often one verifier alone is not able to prove the correctness. Yet, the
c© The Author(s) 2022
B.-H. Schlingloff and M. Chai (Eds.): SEFM 2022, LNCS 13550, pp. 111–128, 2022.
https://doi.org/10.1007/978-3-031-17108-6_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-17108-6_7&domain=pdf
http://orcid.org/0000-0003-4832-7662
http://orcid.org/0000-0002-9169-9130
http://orcid.org/0000-0002-5704-0404
https://doi.org/10.1007/978-3-031-17108-6_7

112 D. Beyer, M. Spiessl, and S. Umbricht

potential from cooperation between different kinds of verifiers is a largely unused
technology, although it is expected to significantly improve the state of the art.

In this paper, we contribute ideas to bridge the gap between automatic and
interactive verifiers by introducing cooperation between tools of both kinds. As a
starting point, we identify invariants as the objects that we need to exchange.
Then we investigate which interfaces are supported by different verification
tools. As a result, we choose verification witnesses [12] and annotations [6] as
containers for the invariants. We implement various transformers for exchanging
invariants between the different interfaces. This results in a modular composition
framework that is based on off-the-shelf components (in binary format). We
can use existing components because we base our work on existing interfaces
(witnesses and annotations).

Automatic verifiers, such as Cbmc [28], CPAchecker [18], Goblint [49],
Korn [32], PeSCo [48], Symbiotic [26], Ultimate Automizer [39],
and VeriAbs [1] (alphabetic order, just to name a few, for a larger list we refer
to a competition report [8]), usually take as input a program and a specification
(a.k.a. verification task) and compute invariants, in order to prove correctness.
The above-mentioned verifiers can save the computed invariants into a standard
witness file for later use (e.g., for result validation).

Interactive verifiers, such as Dafny [46], Frama-C [30], KeY [2], KIV [33],
and VeriFast [43] (alphabetic order, just to name a few, for a larger list we
refer to a competition report [34]), usually take as input a program with an
inlined specification (contracts, asserts), and during the verification process, the
verification engineer can interact with the verifier by providing invariants and
other information as annotations in the program.

The automatic verifiers use a standardized exchange format for verification
witnesses [12], and thus, we can easily plug-in all of them. The interactive verifiers
come each with their own annotation language. We decided to consider only
ACSL [6], which is supported by Frama-C [30], as a starting point for our study,
because it is well documented. In practice, many of these annotation languages
are similar, so our results apply to other annotation languages as well.

Contributions. This paper contributes the following in order to enable new
verification technology:

• We develop a novel compositional design to construct new tools for software
verification from existing ‘off-the-shelf’ components:
1. We construct interactive verifiers from automatic verifiers and validators.
2. We construct result validators from interactive verifiers.
3. We improve interactive verifiers by feeding them with invariants computed

by automatic verifiers.
• We identified an appropriate benchmark set of verification tasks with verifica-

tion witnesses that contain provably useful invariants. We also created second
benchmark set with manually added ACSL annotations containing (inductive)
loop invariants and assertions. In order to make our evaluation reproducible
and to offer the invariants to other researchers for further experiments, we
make both benchmark sets available.

Cooperation Between Automatic and Interactive Software Verifiers 113

• We make all components and transformations available as open source, such
that other researchers and practitioners can reuse and experiment with them,
and verify our results (see Sect. 5 for the data-availability statement).

• We perform a sound experimental evaluation on a large benchmark set to
investigate the effectivity of the new compositions. The results are promising
and suggest that such compositions are worth to be considered in practice.

Combinations like the proposed cooperation approach can significantly impact
the way in which verification tools are used in practice. Currently, engineers need
to use both kinds of verifiers, automatic and interactive, in isolation, but our
study has shown that there is much potential in leveraging cooperation.

RelatedWork. In the following we discuss the most related existing approaches.

Transform Programs. This is not the first work to convert the semantics of witness
validation into a program. Some existing approaches [14] focus on violation
witnesses, while we solely focus on correctness witnesses. Most similar in this
regard is MetaVal [21]. The main difference is that we preserve the program
structure while MetaVal does an automaton product between the control-flow
automaton (CFA) of the program and witness automaton, and turns the result
back into a C program, which will result in a different syntactic structure.

Interact via Conditions. The approach conditional model checking [16] also
achieves cooperation between verifiers, but is limited to automatic verifiers
that support the condition format and the verifier that comes second uses the
condition to restrict the part of the state space that is explored. Our framework
supports more tools via the usage of standardized exchange formats, also considers
interactive verifiers, and the second verifier still performs a full proof. Another
approach that builds on conditions is alternating conditional analysis [36,37].
Here, the witness format is also used as standardized exchange format and multiple
verifiers are supported. However, the focus is on violation witnesses whereas we
are focussing on correctness witnesses. Instead of removing parts of the state
space, we actually extend the property that needs to be checked, such that it is
(potentially) easier to be proven. The same holds if we compare our component
Witness2Assert to reducer-based conditional model checking [17]. While both
approaches encode the important information into the original program, we
actually would need to assume the invariants instead of asserting them in order
to act as a reducer. Conditions are also used to improve testing [19,27,31].

Store and Exchange Proofs. Another parallel can be drawn to proof-carrying
code [44,45,47], where the proof of correctness is stored alongside the program.
We do the same here in cases where the added annotations actually suffice for
a full proof by Frama-C, but we also have the possibility to generate partial
proofs. Correctness witnesses are used to store intermediate results and to
validate results [11]. Proofs are also stored in the area of theorem provers [38]
(https://www.isa-afp.org/) and SAT solvers [40,41].

https://www.isa-afp.org/

114 D. Beyer, M. Spiessl, and S. Umbricht

1

2 int main() {
3 unsigned int x = 0;
4 unsigned int y = 0;
5

6 while (nondet_int()) {
7 x++;
8

9 y++;
10 }
11 assert(x==y);
12 return 0;
13 }

Fig. 1. Example program with
loop invariant x==y

1 //@ensures \return==0;
2 int main() {
3 unsigned int x = 0;
4 unsigned int y = 0;
5 //@loop invariant x==y;
6 while (nondet_int()) {
7 x++;
8 //@assert x==y+1;
9 y++;

10 }
11 assert(x==y);
12 return 0;
13 }

Fig. 2. Example program with
ACSL annotations

2 Preliminaries

For our framework that enables cooperation between automatic and interactive
verifiers we need to take into account the interfaces that each of them provide, i.e.,
how the information important for the verification process is communicated. For
automatic verifiers there exists a common exchange format [12] in which verifiers
export the program invariants they found. For interactive verifiers, we look at
ACSL [6], the specification language that is e.g. usedbyFrama-C. In the following,
we will quickly introduce these formats and the general verification problem we
are looking at using a small example program that is depicted in Fig. 1.

For the rest of the paper, we will focus on reachability properties, though our
approach can also be extended to work for other properties as well.1 The crucial
part of verifying reachability properties is to find the right loop invariants. In the
example program this would be the fact that x==y always holds before each loop
iteration. Please note that while this invariant is also present in the assertion
in line 11, for more complicated programs it is generally not the case that we
can find the invariants written in the code. Also, since there might be more than
one loop in a program, a verifier might only partially succeed and therefore only
be able to provide invariants for some of these loops, or only invariants that are
not yet strong enough to prove the program correct. This is why cooperation by
exchange of these discovered invariants can potentially lead to better results.

2.1 Verification Witnesses

In case an automatic verifier can prove our example program correct, information
like a discovered invariant is normally made available as shown in Fig. 3a in
the standard witness exchange format (described in [12], maintained at https://
github.com/sosy-lab/sv-witnesses) as correctness witness. There are also

1 Also, we will concentrate only on intraprocedural analysis, though our approach
works for interprocedural analysis as well.

https://github.com/sosy-lab/sv-witnesses
https://github.com/sosy-lab/sv-witnesses

Cooperation Between Automatic and Interactive Software Verifiers 115

1 . . .
2 <node id="q1">
3 <data key=" inva r i an t ">(y == x)</data>
4 <data key=" inva r i an t . scope ">main</data>
5 </node>
6 <edge source="q0" ta rg e t="q1">
7 <data key="enterLoopHead">true </data>
8 <data key=" s t a r t l i n e ">6</data>
9 <data key=" end l i n e ">6</data>

10 <data key=" s t a r t o f f s e t ">157</data>
11 <data key=" endo f f s e t ">165</data>
12 </edge>
13 . . .

(a) Encoding of an invariant in a GraphML-based correctness witness

(b) Example witness automaton for the program from Fig. 1

Fig. 3. Example of the witness format and automaton; o/w stands for otherwise, i.e.,
all other possible program transitions

violation witnesses in case a violation has been found, but since we are mainly
interested in the invariants, we will focus on correctness witnesses and omit the
prefix “correctness” for the rest of the paper.

Such a witness contains a graph representation of an observer automaton.
Invariants can be given for nodes if they always hold when the witness automaton
is in the corresponding state. The semantics of the witness is given by constructing
the product of the witness automaton and the CFA of the program. This might
lead to edge cases where the exact semantics depends on how the tool interpreting
the witness constructs a CFA from the program, but in practice a witness
can be written such that it is mostly robust against those differences. For
further details on the semantics of the witness automata we refer the reader
the existing literature [12].

There are currently some restrictions on the contents of an invariant: An
invariant has to be a valid C expression that can be evaluated to an int at
the current scope in the program. It may contain conjunctions and disjunctions
but no function calls.

2.2 ACSL

Interactive verifiers rely on the user to provide the (non-trivial) invariants for
the proof. An example can bee seen in Fig. 2, where the loop invariant has been
added as ACSL annotation in line 5. Only when this information is externally

116 D. Beyer, M. Spiessl, and S. Umbricht

provided (usually by the user), an interactive verifier like Frama-C is able to
prove that the assertion in line 11 can never be violated.

Loop annotations are only one of many kinds of annotation in ACSL. For
example we can see a function contract in line 1 and an assertion in line 8. These
annotations usually represent specifications which the implementation should
adhere to, but they can also be seen as invariants, since they should hold for
every possible program execution.

The basic building blocks of ACSL annotations are logic expressions that repre-
sent the concrete properties of the specification, e.g., a + b > 0 or x && y == z.
Logic expressions can be subdivided into terms and predicates, which behave
similarly as terms and formulas in first-order logic. Basically, logic expressions
that evaluate to a boolean value are predicates, while all other logic expressions
are terms. The above example a + b > 0 is therefore a predicate, while a + b
is a term. We currently support only logic expressions that can also be expressed
as C expressions, as they may not be used in a witness otherwise. Finding ways
to represent more ACSL features is a topic of ongoing research.

ACSL also features different types of annotations. In this paper we will only
present translations for the most common type of annotations, namely function
contracts, and the simplest type, namely assertions. Our implementation also
supports statement contracts and loop annotations.

All types of ACSL annotations when placed in a C source file must be given
in comments starting with an @ sign, i.e., must be in the form //@ annotation
or /*@ annotation */. ACSL assertions can be placed anywhere in a program
where a statement would be allowed, start with the keyword assert and contain
a predicate that needs to hold at the location where the assertion is placed.

3 A Component Framework for Cooperative Verification

The framework we developed consists of three core components that allow us to
improve interaction between the existing tools.
Witness2ACSL acts as transformer that converts a program and a correctness
witness given as witness automaton where invariants are annotated to certain
nodes, into a program with ACSL annotations.
ACSL2Witness takes a program that contains ACSL annotations, encodes
them as invariants into a witness automaton and produces a correctness witness
in the standardized GraphML format.
Witness2Assert is mostly identical toWitness2ACSL. The main difference
is that instead of adding assertions as ACSL annotations to the program, it
actually encodes the semantics of the annotations directly into the program such
that automatic verifiers will understand them as additional properties to prove.
On the one hand, this component enables us to check the validity of the ACSL
annotations forwhichACSL2Witness generated awitness, with tools that do not
understand the annotation language ACSL. On the other hand, this component is
also useful on its own, since it allows us to validate correctness witnesses and give

Cooperation Between Automatic and Interactive Software Verifiers 117

Transform

Witness2ACSL

Analyze

Verifierp

ϕb

ω

p

ϕ′
b

r

(a) Validator from Interactive
Verifier(Frama-C) using Witness2ACSL

Transform

Witness2Assert

Analyze

Verifierp

ϕb

ω

p

ϕ′
b

r

ω’

(b) Validator from Automatic
Verifier using Witness2Assert

Transform

Witness2ACSLp

ϕb

ω

p

ϕb

(c) Visualization of information
in a witness using Witness2ACSL

Transform

ACSL2Witness

Analyze

Validatorp

ϕb

p

ϕ′
b

ω

r

ω’

(d) Interactive Verifier
from Validator

Transform

ACSL2Witness

Transform

Witness2Assert

Analyze

Verifierp

ϕb

p

ϕ′
b

ω

p’

ϕ′′
b

r

ω’

(e) Interactive Verifier from Automatic Verifier

Fig. 4. Graphical visualization of the developed components to improve coop-
eration; we use the notation introduced in previous work [24]: p represents a
program, φb a behavior specification, ω a witness, and r a verification result

witness producers a better feedback on how their invariants are interpreted and
whether they are useful (validator developers can inspect the produced program).

These three components now enable us to achieve cooperation in many
different ways. We can utilize a proposed component framework [24] to visualize
this as shown in Fig. 4. The use case shown in Fig. 4a is to use Frama-C as a
correctness witness validator. This is interesting because it can further reduce
the technology bias (the currently available validators are based on automatic
verifiers [4,11,13,21], test execution [14], and interpretation [50]). By using
Witness2Assert instead of Witness2ACSL as shown in Fig. 4b we can also
configure new correctness witness validators that are based on automatic verifiers,
similar to what metaval [21] does, only with a different transformer. Figure 4c
illustratestheuseofWitness2ACSL(orsimilarlyforWitness2Assert)toinspect
the information fromthewitness as annotations in theprogramcode.

The compositional framework makes it possible to leverage existing correctness
witness validators and turn them into interactive verifiers that can understand
ACSL, as shown in Fig. 4d. Since we also have the possibility now to construct a
validator from an automatic verifier (Fig. 4b) we can turn automatic verifiers
into interactive ones as depicted in Fig. 4e. While automatic verifiers can already
make use of assertions that are manually added to the program, this now also
allows us to use other types of high-level annotations like function contracts
without having to change the original program.

118 D. Beyer, M. Spiessl, and S. Umbricht

3.1 Witness2ACSL

To create an ACSL annotated program from the source code and a correctness
witness, we first need to extract location invariants from the witness, i.e., in-
variants that always hold at a certain program location (with program locations
we refer to the nodes of the CFA here). We can represent location invariants as
a tuple (l, φ) consisting of a program location l and an invariant φ. In general
there is no one-to-one mapping between the invariants in the witness and this
set of location invariants, since there might be multiple states with different
invariants in the witness automaton that are paired with the same program
location in the product with the CFA of the program. For extracting the set of
location invariants, we calculate this product and then take the disjunctions of
all invariants that might hold at each respective location.

3.2 ACSL2Witness

In order to convert the ACSL annotations present in a given program, we
transform each annotation into a set of ACSL predicates that capture the
semantics of those annotations and use the predicates as invariants in a witness.
This mode of operation is based on two observations: Firstly, for a given ACSL
annotation it is usually possible to find a number of ACSL assertions that are
semantically equivalent to that annotation. For example, a loop invariant can
be replaced by asserting that the invariant holds at the loop entry, i.e., before
each loop iteration. Secondly, most ACSL assertions are logically equivalent
to a valid invariant and can therefore be used in a witness. As mentioned in
Sect. 2.2, we currently only support those predicates which can be converted
into C expressions, which is a limitation of the witness format and might be
lifted in future versions of the format.

3.3 Witness2Assert

This component is very similar to Witness2ACSL. The main difference is that
instead of generating ACSL annotations we generate actual C code that encodes
the invariants as assertions (i.e., additional reachability properties). This transla-
tion is sound since assertions added this way do not hide violations, i.e., every
feasible trace that violates the original reachability property in the program
before the modification will either still exist or have a corresponding trace that
violates the additional reachability properties of the modified program. It is worth
mentioning that this is an improvement compared to existing transformations
like the one used in MetaVal [21], where the program is resynthesized from
the reachability graph and the soundness can therefore easily be broken by a
bug in MetaVal’s transformation process.

Cooperation Between Automatic and Interactive Software Verifiers 119

4 Evaluation

We implemented the components mentioned in Sect. 3 in the software-verification
framework CPAchecker. In our evaluation, we attempt to answer the follow-
ing research questions:

• RQ1: Can we construct interactive verifiers from automatic verifiers, and
can they be useful in terms of effectiveness?

• RQ2: Can we improve the results of, or partially automate, interactive
verifiers by annotating invariants that were computed by automatic verifiers?

• RQ3: Can we construct result validators from interactive verifiers?
• RQ4: Are verifiers ready for cooperation, that is, do they produce invariants

that help other verifiers to increase their effectiveness?

4.1 Experimental Setup

Our benchmarks are executed on machines running Ubuntu 20.04. Each of
these machines has an Intel E5-1230 processor with 4 cores, 8 processing units,
and 33GB of RAM. For reliable measurements we use BenchExec [20]. For the
automatic verifiers, we use the available tools that participated in the ReachSafety
category of the 2022 competition on software verification (SV-COMP) in their
submission version2.Frama-Cwill be executed viaFrama-C-SV [22], a wrapper
that enables Frama-C to understand reachability property and special functions
used in SV-COMP. Unless otherwise noted we will use the EVA plugin of Frama-
C. We limit each execution to 900 s of CPU time, 15GB of RAM, and 8 processing
units, which is identical to the resource limitations used in SV-COMP.

4.2 Benchmark Set with Useful Witnesses

In order to provide meaningful results, we need to assemble an appropriate
benchmark set consisting of witnesses that indeed contain useful information,
i.e., information that potentially improves the results of another tool.

As a starting point, we consider correctness witnesses from the final runs of
SV-COMP 2022 [8,10]. This means that for one verification task we might get
multiple correctness witnesses (from different participating verifiers), while for
others we might even get none because no verifier was able to come up with a
proof. We select the witnesses for tasks in the subcategory ReachSafety-Loops,
because this subcategory is focussed on verifying programs with challenging
loop invariants. This selection leaves us with 6242 correctness witnesses (without
knowing which of those actually contain useful information).

For each of the selected witnesses we converted the contained invariants into
both ACSL annotations (for verification withFrama-C) and assertions (for verifi-
cation with automatic verifiers from SV-COMP 2022). Here we can immediately
drop those witnesses that do not result in any annotations being generated, which
results in 1931 witnesses belonging to 640 different verification tasks.
2 https://gitlab.com/sosy-lab/sv-comp/archives-2022/-/tree/svcomp22/2022

https://gitlab.com/sosy-lab/sv-comp/archives-2022/-/tree/svcomp22/2022

120 D. Beyer, M. Spiessl, and S. Umbricht

Table 1. Impact of cooperation: in each row, a ‘consuming’ verifier is fed with
information from witnesses of our benchmark set; ‘Baseline’ reports the number
of programs that the verifier proved correct without any help; ‘Improved via
coop.’ reports the number of programs that the verifier can prove in addition, if
the information from the witness is provided

Consuming Benchmark tasks (434 total) Projection on programs (230 total)
verifier Baseline Improved via coop. Baseline Improved via coop.

2ls 157 179 83 111
UAutomizer 360 47 186 31
Cbmc 281 53 142 28
CPAchecker 300 69 149 53
Dartagnan 280 82 139 51
Esbmc 239 133 121 76
gazer-theta 266 118 135 64
Goblint 38 106 21 47
UKojak 191 134 97 76
Korn 183 46 98 27
PeSCo 180 162 87 99
Pinaka 258 105 127 59
Symbiotic 349 51 174 32
UTaipan 334 65 172 37
VeriAbs 343 31 186 28
Frama-C 211 31 105 20

We then run each verifier for each program where annotations have been
generated, once with the original, unmodified program, and n times with the
transformed program for each of the n witnesses. This allows us determine whether
any improvement was achieved, by looking at the differences between verification
of the unmodified program versus verification of a program that has been enhanced
by information generated from some potentially different tool. Using this process,
we further reduce our benchmark set of witnesses to those that are useful for
at least one of the verifiers and thus enable cooperation. This leads to the final
set of 434 witnesses that evidently contain information that enables cooperation
between verifiers. These witnesses correspond to 230 different programs from the
SV-Benchmarks repository (https://github.com/sosy-lab/sv-benchmarks).
We made this benchmark set available to the community in a supplementary
artifact of this paper [23].

4.3 Experimental Results

RQ1. For the first research question, we need to show that we can construct
interactive verifiers from automatic verifiers, and that they can be useful in
terms of effectiveness. By “interactive verifier”, we mean a verifier that can verify

https://github.com/sosy-lab/sv-benchmarks

Cooperation Between Automatic and Interactive Software Verifiers 121

more programs correct if we feed it with invariants, for example, by annotating
the input program with ACSL annotations. Using our building blocks from
Sect. 3, an interactive verifier can be composed as illustrated in Fig. 4e (that
is, configurations of the formACSL2Witness|Witness2Assert|Verifier). For
a meaningful evaluation we need a large number of annotated programs, which
we would be able to get if we converted the witnesses from SV-COMP using
Witness2ACSL in advance. But since the first component ACSL2Witness in
Fig. 4e essentially does the inverse operation, we can generalize and directly
consider witnesses as input, as illustrated in Fig. 4b (that is, configurations of
the form Witness2Assert|Verifier).

Now we look at the results in Table 1: The first row reports that cooperation
improves the verifier 2ls in 179 cases, that is, there are 179 witnesses that contain
information that helps 2ls to prove a program that it could not prove without
the information. In other words, for 179 witnesses, we ran Witness2Assert
to transform the original program to one in which the invariants from the
witness were written as assertions, and 2ls was then able to verify the program.
Since there are often several witnesses for the same program, 2ls verified in
total111uniqueuniqueprogramsthatitwasnotabletoverifywithouttheannotated
invariants as assertion.

In sum, the table reports that many programs that could not be proved
by verifiers when ran on the unmodified program, could be proved when the
verifier was given the program with invariants. Since we were able to show the
effect using generated witnesses, it is clear that manually provided invariants
will also help the automatic verifiers to prove the program. We will continue
this argument in Sect. 4.4.

RQ2. For the second research question, we need to show that our new design
can improve the results of interactive verifiers by annotating invariants that
were computed by automatic verifiers. Using our building blocks from Sect. 3,
we assemble a construction as illustrated in Fig. 4a (i.e., configurations of the
formWitness2ACSL|Verifier).Wetakeaprogramandawitness and transform
the program to a new program that contains the invariants from the witness
as ACSL annotations.

Let us consider the last row in Table 1: Frama-C is able to prove 20 programs
correct using invariants from 31 witnesses. Those 31 witnesses were computed by
automatic verifiers, and thus,we can conclude that our newdesign enables using re-
sults of automatic verifiers to help the verification process of an interactive verifier.

RQ3.For the third research question,we need to show thatwe can construct result
validators from interactive verifiers and that they can effectively complement
existing validators. A results validator is a tool that takes as input a verification
task, a verdict, and a witness, and confirms or rejects the result. In essence,
due to the modular components, the answer to this research question can be
given by the same setup as for RQ 2: If the interactive verifier (Frama-C) was
able to prove the program correct, then it also has proved that the invariants
provided by the witnesses were correct, and thus, the witness should be confirmed.
Frama-C has confirmed 31 correctness witnesses.

122 D. Beyer, M. Spiessl, and S. Umbricht

Table 2. Proof of cooperation: for each ‘producing’ verifier, we report the number
of correctness witnesses that help another verifier to prove a program which it
otherwise could not; we also list the number of cases where this cooperation
was observed (some witnesses improve the results of multiple verifiers); we omit
producers without improved results

Producing verifier Useful witnesses Cases of cooperation

2ls 1 1
Cbmc 20 22
CPAchecker 148 533
Goblint 2 3
Graves-CPA 151 823
Korn 10 15
PeSCo 78 271
Symbiotic 5 10
UAutomizer 19 70

Sum 434 1748

New validators that are based on a different technology are a welcome com-
plement because this reduces the technology bias and increases trust. Also, the
proof goals for annotated programs might be interesting for verification engineers
to look at, even or especially when the validation does not succeed completely.

RQ4. For the fourth research question, we report on the status of cooperation-
readiness of verifiers. In other words, the question is if the verifiers produce
invariants that help other verifiers to increase their effectiveness.

In Table 2 we list how many useful witnesses each verifier contributed to
our benchmark set of useful witnesses. The results show that there are several
verifiers that produce significant amounts of witnesses that contain invariants
that help to improve results of other verifiers.

4.4 Case Study on Interactive Verification with Manual Annotations

So far, we tested our approach using information from only the SV-COMP
witnesses. For constructing interactive verifiers, we would also like to evaluate
whether our approach is useful if the information is provided by an actual human
in the form of ACSL annotations.

ACSL Benchmark Set. To achieve this, we need a benchmark set with tasks
that contain sufficient ACSL annotations and also adhere to the conventions of
SV-COMP. Since to our knowledge such a benchmark set does not exist yet, we
decided to manually annotate assertions and loop invariants to the tasks from
the SV-Benchmarks collection ourselves. While annotating all of the benchmark
tasks is out of scope, we managed to add ACSL annotations to 125 tasks from
the ReachSafety-Loops subcategory. This subcategory is particularly relevant,
since it contains a selection of programs with interesting loop invariants. The loop
invariants we added are sufficient to proof the tasks correct in a pen-and-paper,

Cooperation Between Automatic and Interactive Software Verifiers 123

Table 3. Case study with 125 correct verification tasks where sufficient, inductive
loop invariants are manually annotated to the program; we either input these to
Frama-C or automatically transform the annotations into witnesses and try to
validate these witnesses using CPAchecker’s k -induction validator (with k fixed
to 1); the listed numbers correspond to the number of successful proofs in each
of the sub-folders; we also list the number of successful proofs if no invariants
are provided to the tools

Subfolder Tasks
Frama-C k -induction

with invs. without invs. with invs. without invs.
loop-acceleration 17 3 1 11 4
loop-crafted 2 0 0 2 2
loop-industry-pattern 1 0 0 1 1
loop-invariants 8 3 0 8 0
loop-invgen 5 0 0 2 0
loop-lit 11 6 0 10 2
loop-new 5 1 0 5 2
loop-simple 6 6 0 1 1
loop-zilu 20 9 0 19 7
loops 23 13 6 17 15
loops-crafted-1 27 0 0 12 1
total 125 41 7 88 35

Hoare-style proof. Our benchmark set with manually added ACSL annotations is
available in the artifact for this paper [23].3

Construction of an Interactive Verifier. With our ACSL benchmark set, we
can now convert a witness validator into an interactive verifier as depicted in
Fig. 4d. For the validator we use CPAchecker, which can validate witnesses by
using the invariants for a proof by k -induction. By fixing the unrolling bound of
the k -induction to k = 1, this will essentially attempt to prove the program correct
via 1-induction over the provided loop invariants. If we do not fix the unrolling
bound, the k-induction validation would also essentially perform bounded model
checking, so we would not know whether a proof succeeded because of the
provided loop invariants or simply because the verification task is bounded to
a low number of loop iterations.

Since this 1-induction proof is very similar to what Frama-C’s weakest-
precondition analysis does, we can directly compare both approaches. As some
tasks from the benchmark set do not require additional invariants (i.e., the

3 Our benchmark set is continuously updated and can also be found at: https://
gitlab.com/sosy-lab/research/data/acsl-benchmarks

https://gitlab.com/sosy-lab/research/data/acsl-benchmarks
https://gitlab.com/sosy-lab/research/data/acsl-benchmarks

124 D. Beyer, M. Spiessl, and S. Umbricht

property to be checked is already inductive) we also analyze how both tools
perform on the benchmark set if we do not provide any loop invariants.

The experimental setup is the same described in Sect. 4.1, except that we use
a newer version ofFrama-C-SV in order to use the weakest-precondition analysis
ofFrama-C. The results are shown in Table 3, which lists the number of successful
proofs by subfolder. We can observe that both Frama-C and our constructed
interactive verifier based on CPAchecker can make use of the information from
the annotations and prove significantly more tasks compared to without the
annotated loop invariants. This shows that the component described in Fig. 4d
is indeed working and useful.

5 Conclusion

The verification community integrates new achievements into two kinds of tools:
interactive verifiers and automatic verifiers. Unfortunately, the possibility of
cooperation between the two kinds of tools was left largely unused, although
there seems to be a large potential. Our work addresses this open problem,
identifying witnesses as interface objects and constructing some new building
blocks (transformations) that can be used to connect interactive and automatic
verifiers. The new building blocks, together with a cooperation framework from
previous work, make it possible to construct new verifiers, in particular, automatic
verifiers that can be used interactively, and interactive verifiers that can be fed
with information from automatic verifiers: Our new program transformations
translate the original program into a new program that contains invariants in
a way that is understandable by the targeted backend verifier (interactive or
automatic). Our combinations do not require changes to the existing verifiers:
they are used as ‘off-the-shelf’ components, provided in binary form.

We performed an experimental study on witnesses that were produced in the
most recent competition on software verification and on programs with manually
annotated loop invariants. The results show that our approach works in practice:
We can construct various kinds of verification tools based on our new building
blocks. Instrumenting information from annotations and correctness witnesses
into the original program can improve the effectivity of verifiers, that is, with the
provided information they can verify programs that they could not verify without
the information. Our results have many practical implications: (a) automatic
verification tools can now be used in an interactive way, that is, users or other
verifiers can conveniently give invariants as input in order to prove programs
correct, (b) new validators based on interactive verifiers can be constructed in
order to complement the set of currently available validators, and (c) both kinds
of verifiers can be connected in a cooperative framework, in order to obtain more
powerful verification tools. This work opens up a whole array of new opportunities
that need to be explored, and there are many directions of future work. We hope
that other researchers and practitioners find our approach helpful to combine
existing verification tools without changing their source code.

Cooperation Between Automatic and Interactive Software Verifiers 125

Data-Availability Statement. The witnesses that we used are available at
Zenodo [10]. The programs are available at Zenodo [9] and on GitLab at https://
gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/tree/svcomp22. We imp-
lemented our transformations in the verification framework CPAchecker, which
is freely available via the project web site at https://cpachecker.sosy-lab.org. A
reproduction package for our experimental results is available at Zenodo [23].

Funding Statement. This project was funded in part by the Deutsche
Forschungsgemeinschaft (DFG) – 378803395 (ConVeY).

Acknowledgment. We thank Nikolai Kosmatov for an inspiring and motivating
discussion at the conference ISoLA 2018 on the necessity to combine automatic
and interactive verification.

References

1. Afzal, M., Asia, A., Chauhan, A., Chimdyalwar, B., Darke, P., Datar, A., Kumar, S.,
Venkatesh, R.: VeriAbs: Verification by abstraction and test generation. In: Proc.
ASE. pp. 1138–1141 (2019). https://doi.org/10.1109/ASE.2019.00121

2. Ahrendt, W., Baar, T., Beckert, B., Bubel, R., Giese, M., Hähnle, R., Menzel, W.,
Mostowski, W., Roth, A., Schlager, S., Schmitt, P.H.: The key tool. Software and
Systems Modeling 4(1), 32–54 (2005). https://doi.org/10.1007/s10270-004-0058-x

3. Alglave, J., Donaldson, A.F., Kröning, D., Tautschnig, M.: Making software verifi-
cation tools really work. In: Proc. ATVA. pp. 28–42. LNCS 6996, Springer (2011).
https://doi.org/10.1007/978-3-642-24372-1_3

4. Ayaziová, P., Chalupa, M., Strejček, J.: Symbiotic-Witch: A Klee-based viola-
tion witness checker (competition contribution). In: Proc. TACAS (2). pp. 468–473.
LNCS 13244, Springer (2022). https://doi.org/10.1007/978-3-030-99527-0_33

5. Ball, T., Levin, V., Rajamani, S.K.: A decade of software model checking with Slam.
Commun. ACM 54(7), 68–76 (2011). https://doi.org/10.1145/1965724.1965743

6. Baudin, P., Cuoq, P., Filliâtre, J.C., Marché, C., Monate, B., Moy, Y., Prevosto, V.:
ACSL: ANSI/ISO C specification language version 1.17 (2021), available at https://
frama-c.com/download/acsl-1.17.pdf

7. Beckert, B., Hähnle, R.: Reasoning and verification: State of the art and current
trends. IEEE Intelligent Systems 29(1), 20–29 (2014). https://doi.org/10.1109/
MIS.2014.3

8. Beyer, D.: Progress on software verification: SV-COMP 2022. In: Proc. TACAS
(2). pp. 375–402. LNCS 13244, Springer (2022). https://doi.org/10.1007/978-3-030-
99527-0_20

9. Beyer, D.: SV-Benchmarks: Benchmark set for software verification and testing
(SV-COMP 2022 and Test-Comp 2022). Zenodo (2022). https://doi.org/10.5281/
zenodo.5831003

10. Beyer, D.: Verification witnesses from verification tools (SV-COMP 2022). Zenodo
(2022). https://doi.org/10.5281/zenodo.5838498

11. Beyer, D., Dangl, M., Dietsch, D., Heizmann, M.: Correctness witnesses: Exchang-
ing verification results between verifiers. In: Proc. FSE. pp. 326–337. ACM (2016).
https://doi.org/10.1145/2950290.2950351

https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/tree/svcomp22
https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/tree/svcomp22
https://cpachecker.sosy-lab.org
http://gepris.dfg.de/gepris/projekt/378803395
https://doi.org/10.1109/ASE.2019.00121
https://doi.org/10.1007/s10270-004-0058-x
https://doi.org/10.1007/978-3-642-24372-1_3
https://doi.org/10.1007/978-3-030-99527-0_33
https://doi.org/10.1145/1965724.1965743
https://frama-c.com/download/acsl-1.17.pdf
https://frama-c.com/download/acsl-1.17.pdf
https://doi.org/10.1109/MIS.2014.3
https://doi.org/10.1109/MIS.2014.3
https://doi.org/10.1007/978-3-030-99527-0_20
https://doi.org/10.1007/978-3-030-99527-0_20
https://doi.org/10.5281/zenodo.5831003
https://doi.org/10.5281/zenodo.5831003
https://doi.org/10.5281/zenodo.5838498
https://doi.org/10.1145/2950290.2950351

126 D. Beyer, M. Spiessl, and S. Umbricht

12. Beyer, D., Dangl, M., Dietsch, D., Heizmann, M., Lemberger, T., Tautschnig, M.:
Verification witnesses. ACM Trans. Softw. Eng. Methodol. (2022). https://doi.org/
10.1145/3477579

13. Beyer, D., Dangl, M., Dietsch, D., Heizmann, M., Stahlbauer, A.: Witness validation
and stepwise testification across software verifiers. In: Proc. FSE. pp. 721–733. ACM
(2015). https://doi.org/10.1145/2786805.2786867

14. Beyer, D., Dangl, M., Lemberger, T., Tautschnig, M.: Tests from witnesses:
Execution-based validation of verification results. In: Proc. TAP. pp. 3–23. LNCS
10889, Springer (2018). https://doi.org/10.1007/978-3-319-92994-1_1

15. Beyer, D., Gulwani, S., Schmidt, D.: Combining model checking and data-flow anal-
ysis. In: Handbook of Model Checking, pp. 493–540. Springer (2018). https://doi.
org/10.1007/978-3-319-10575-8_16

16. Beyer, D., Henzinger, T.A., Keremoglu, M.E., Wendler, P.: Conditional model check-
ing: A technique to pass information between verifiers. In: Proc. FSE. ACM (2012).
https://doi.org/10.1145/2393596.2393664

17. Beyer, D., Jakobs, M.C., Lemberger, T., Wehrheim, H.: Reducer-based construction
of conditional verifiers. In: Proc. ICSE. pp. 1182–1193. ACM (2018). https://doi.
org/10.1145/3180155.3180259

18. Beyer, D., Keremoglu, M.E.: CPAchecker: A tool for configurable software verifi-
cation. In: Proc. CAV. pp. 184–190. LNCS 6806, Springer (2011). https://doi.org/
10.1007/978-3-642-22110-1_16

19. Beyer, D., Lemberger, T.: Conditional testing: Off-the-shelf combination of test-case
generators. In: Proc. ATVA. pp. 189–208. LNCS 11781, Springer (2019). https://doi.
org/10.1007/978-3-030-31784-3_11

20. Beyer, D., Löwe, S., Wendler, P.: Reliable benchmarking: Requirements and solu-
tions. Int. J. Softw. Tools Technol. Transfer 21(1), 1–29 (2017). https://doi.org/10.
1007/s10009-017-0469-y

21. Beyer, D., Spiessl, M.: MetaVal: Witness validation via verification. In: Proc.
CAV. pp. 165–177. LNCS 12225, Springer (2020). https://doi.org/10.1007/978-3-
030-53291-8_10

22. Beyer, D., Spiessl, M.: The static analyzer Frama-C in SV-COMP (competition
contribution). In: Proc. TACAS (2). pp. 429–434. LNCS 13244, Springer (2022).
https://doi.org/10.1007/978-3-030-99527-0_26

23. Beyer, D., Spiessl, M., Umbricht, S.: Reproduction package for SEFM 2022 article
‘Cooperation between automatic and interactive software verifiers’. Zenodo (2022).
https://doi.org/10.5281/zenodo.6541544

24. Beyer, D., Wehrheim, H.: Verification artifacts in cooperative verification: Survey
and unifying component framework. In: Proc. ISoLA (1). pp. 143–167. LNCS 12476,
Springer (2020). https://doi.org/10.1007/978-3-030-61362-4_8

25. Calcagno, C., Distefano, D., Dubreil, J., Gabi, D., Hooimeijer, P., Luca, M.,
O’Hearn, P.W., Papakonstantinou, I., Purbrick, J., Rodriguez, D.: Moving fast with
software verification. In: Proc. NFM. pp. 3–11. LNCS 9058, Springer (2015). https://
doi.org/10.1007/978-3-319-17524-9_1

26. Chalupa, M., Strejček, J., Vitovská, M.: Joint forces for memory safety checking.
In: Proc. SPIN. pp. 115–132. Springer (2018). https://doi.org/10.1007/978-3-319-
94111-0_7

27. Christakis, M., Müller, P., Wüstholz, V.: Collaborative verification and testing with
explicit assumptions. In: Proc. FM. pp. 132–146. LNCS 7436, Springer (2012).
https://doi.org/10.1007/978-3-642-32759-9_13

https://doi.org/10.1145/3477579
https://doi.org/10.1145/3477579
https://doi.org/10.1145/2786805.2786867
https://doi.org/10.1007/978-3-319-92994-1_1
https://doi.org/10.1007/978-3-319-10575-8_16
https://doi.org/10.1007/978-3-319-10575-8_16
https://doi.org/10.1145/2393596.2393664
https://doi.org/10.1145/3180155.3180259
https://doi.org/10.1145/3180155.3180259
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/978-3-030-31784-3_11
https://doi.org/10.1007/978-3-030-31784-3_11
https://doi.org/10.1007/s10009-017-0469-y
https://doi.org/10.1007/s10009-017-0469-y
https://doi.org/10.1007/978-3-030-53291-8_10
https://doi.org/10.1007/978-3-030-53291-8_10
https://doi.org/10.1007/978-3-030-99527-0_26
https://doi.org/10.5281/zenodo.6541544
https://doi.org/10.1007/978-3-030-61362-4_8
https://doi.org/10.1007/978-3-319-17524-9_1
https://doi.org/10.1007/978-3-319-17524-9_1
https://doi.org/10.1007/978-3-319-94111-0_7
https://doi.org/10.1007/978-3-319-94111-0_7
https://doi.org/10.1007/978-3-642-32759-9_13

Cooperation Between Automatic and Interactive Software Verifiers 127

28. Clarke, E.M., Kröning, D., Lerda, F.: A tool for checking ANSI-C programs. In: Proc.
TACAS. pp. 168–176. LNCS 2988, Springer (2004). https://doi.org/10.1007/978-3-
540-24730-2_15

29. Cook, B.: Formal reasoning about the security of Amazon web services. In: Proc.
CAV (2). pp. 38–47. LNCS 10981, Springer (2018). https://doi.org/10.1007/978-3-
319-96145-3_3

30. Cuoq, P., Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski, B.:
Frama-C. In: Proc. SEFM. pp. 233–247. Springer (2012). https://doi.org/10.1007/
978-3-642-33826-7_16

31. Czech, M., Jakobs, M., Wehrheim, H.: Just test what you cannot verify! In: Proc.
FASE. pp. 100–114. LNCS 9033, Springer (2015). https://doi.org/10.1007/978-3-
662-46675-9_7

32. Ernst, G.: A complete approach to loop verification with invariants and summaries.
Tech. Rep. arXiv:2010.05812v2, arXiv (January 2020). https://doi.org/10.48550/
arXiv.2010.05812

33. Ernst, G., Pfähler, J., Schellhorn, G., Haneberg, D., Reif, W.: KIV: Overview and
VerifyThis competition. Int. J. Softw. Tools Technol. Transf. 17(6), 677–694 (2015).
https://doi.org/10.1007/s10009-014-0308-3

34. Ernst, G., Huisman, M., Mostowski, W., Ulbrich, M.: VerifyThis: Verification com-
petition with a human factor. In: Proc. TACAS. pp. 176–195. LNCS 11429, Springer
(2019). https://doi.org/10.1007/978-3-030-17502-3_12

35. Garavel, H., ter Beek, M.H., van de Pol, J.: The 2020 expert survey on formal meth-
ods. In: Proc. FMICS. pp. 3–69. LNCS 12327, Springer (2020). https://doi.org/10.
1007/978-3-030-58298-2_1

36. Gerrard, M.J., Dwyer, M.B.: Comprehensive failure characterization. In: Proc. ASE.
pp. 365–376. IEEE (2017). https://doi.org/10.1109/ASE.2017.8115649

37. Gerrard, M.J., Dwyer, M.B.: ALPACA: A large portfolio-based alternating condi-
tional analysis. In: Atlee, J.M., Bultan, T., Whittle, J. (eds.) Proceedings of the 41st
International Conference on Software Engineering: Companion Proceedings, ICSE
2019, Montreal, QC, Canada, May 25–31, 2019. pp. 35–38. IEEE / ACM (2019).
https://doi.org/10.1109/ICSE-Companion.2019.00032

38. Hales, T.C., Harrison, J., McLaughlin, S., Nipkow, T., Obua, S., Zumkeller, R.: A
revision of the proof of the Kepler conjecture. Discret. Comput. Geom. 44(1), 1–34
(2010). https://doi.org/10.1007/s00454-009-9148-4

39. Heizmann, M., Hoenicke, J., Podelski, A.: Software model checking for people who
love automata. In: Proc. CAV. pp. 36–52. LNCS 8044, Springer (2013). https://doi.
org/10.1007/978-3-642-39799-8_2

40. Heule, M.J.H.: The DRAT format and drat-trim checker. CoRR 1610(06229) (Octo-
ber 2016)

41. Heule, M.J.H.: Schur number five. In: Proc. AAAI. pp. 6598–6606. AAAI Press
(2018)

42. Howar, F., Isberner, M., Merten, M., Steffen, B., Beyer, D., Păsăreanu, C.S.: Rig-
orous examination of reactive systems. The RERS challenges 2012 and 2013. Int.
J. Softw. Tools Technol. Transfer 16(5), 457–464 (2014). https://doi.org/10.1007/
s10009-014-0337-y

43. Jacobs, B., Smans, J., Philippaerts, P., Vogels, F., Penninckx, W., Piessens, F.: Ver-
iFast: A powerful, sound, predictable, fast verifier for C and Java. In: Proc. NFM.
pp. 41–55. LNCS 6617, Springer (2011). https://doi.org/10.1007/978-3-642-20398-
5_4

44. Jakobs, M.C., Wehrheim, H.: Certification for configurable program analysis. In:
Proc. SPIN. pp. 30–39. ACM (2014). https://doi.org/10.1145/2632362.2632372

https://doi.org/10.1007/978-3-540-24730-2_15
https://doi.org/10.1007/978-3-540-24730-2_15
https://doi.org/10.1007/978-3-319-96145-3_3
https://doi.org/10.1007/978-3-319-96145-3_3
https://doi.org/10.1007/978-3-642-33826-7_16
https://doi.org/10.1007/978-3-642-33826-7_16
https://doi.org/10.1007/978-3-662-46675-9_7
https://doi.org/10.1007/978-3-662-46675-9_7
http://arxiv.org/abs/2010.05812v2
https://doi.org/10.48550/arXiv.2010.05812
https://doi.org/10.48550/arXiv.2010.05812
https://doi.org/10.1007/s10009-014-0308-3
https://doi.org/10.1007/978-3-030-17502-3_12
https://doi.org/10.1007/978-3-030-58298-2_1
https://doi.org/10.1007/978-3-030-58298-2_1
https://doi.org/10.1109/ASE.2017.8115649
https://doi.org/10.1109/ICSE-Companion.2019.00032
https://doi.org/10.1007/s00454-009-9148-4
https://doi.org/10.1007/978-3-642-39799-8_2
https://doi.org/10.1007/978-3-642-39799-8_2
https://doi.org/10.1007/s10009-014-0337-y
https://doi.org/10.1007/s10009-014-0337-y
https://doi.org/10.1007/978-3-642-20398-5_4
https://doi.org/10.1007/978-3-642-20398-5_4
https://doi.org/10.1145/2632362.2632372

128 D. Beyer, M. Spiessl, and S. Umbricht

45. Jakobs, M.C., Wehrheim, H.: Programs from proofs: A framework for the safe execu-
tion of untrusted software. ACM Trans. Program. Lang. Syst. 39(2), 7:1–7:56 (2017).
https://doi.org/10.1145/3014427

46. Leino, K.R.M.: Dafny: An automatic program verifier for functional correctness. In:
Proc. LPAR. pp. 348–370. LNCS 6355, Springer (2010). https://doi.org/10.1007/
978-3-642-17511-4_20

47. Necula, G.C.: Proof-carrying code. In: Proc. POPL. pp. 106–119. ACM (1997).
https://doi.org/10.1145/263699.263712

48. Richter, C., Hüllermeier, E., Jakobs, M.-C., Wehrheim, H.: Algorithm selection for
software validation based on graph kernels. Autom. Softw. Eng. 27(1), 153–186
(2020). https://doi.org/10.1007/s10515-020-00270-x

49. Vojdani, V., Apinis, K., Rõtov, V., Seidl, H., Vene, V., Vogler, R.: Static race detec-
tion for device drivers: The Goblint approach. In: Proc. ASE. pp. 391–402. ACM
(2016). https://doi.org/10.1145/2970276.2970337

50. Švejda, J., Berger, P., Katoen, J.P.: Interpretation-based violation witness validation
for C: NitWit. In: Proc. TACAS. pp. 40–57. LNCS 12078, Springer (2020). https://
doi.org/10.1007/978-3-030-45190-5_3

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium or
format, as long as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1145/3014427
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1145/263699.263712
https://doi.org/10.1007/s10515-020-00270-x
https://doi.org/10.1145/2970276.2970337
https://doi.org/10.1007/978-3-030-45190-5_3
https://doi.org/10.1007/978-3-030-45190-5_3
http://creativecommons.org/licenses/by/4.0/

Strategy Switching: Smart
Fault-Tolerance for Weakly-Hard
Resource-Constrained Real-Time

Applications

Lukas Miedema(B) and Clemens Grelck

Faculty of Science, University of Amsterdam, Amsterdam, Netherlands
{l.miedema,c.grelck}@uva.nl

Abstract. The probability of data corruption as a result of single event
upsets (SEUs) increases as transistor sizes decrease. Software-based fault-
tolerance can help offer protection against SEUs on Commercial off The
Shelf (COTS) hardware. However, such fault tolerance relies on replica-
tion, for which there may be insufficient resources in resource-constrained
environments. Systems in the weakly-hard real-time domain can toler-
ate some faults as a product of their domain. Combining both the need
for fault-tolerance and the intrinsic ability to tolerate faults, we pro-
pose a new approach for applying fault-tolerance named strategy switch-
ing. Strategy switching minimizes the effective unmitigated fault-rate by
switching which tasks are to be run under a fault-tolerance scheme at
runtime. Our method does not require bounding the number of faults for
a given number of consecutive iterations.

We show how our method improves the steady-state fault rate by
analytically computing the rate for our test set of generated DAGs and
comparing this against a static application of fault-tolerance. Finally, we
validate our method using UPPAAL.

Keywords: Cyber-physical systems · Resource constraint ·
Weakly-hard real-time · Fault-tolerance · Single event upset ·
Adaptivity

1 Introduction

As transistor density increases and gate voltages decreases, the frequency of
transient faults or single event upsets (SEUs) increases. As such, fault-tolerance
techniques are becoming a requirement in computer systems [12]. Fault-tolerance
techniques can either be implemented in hardware or in software. Hardware-
based techniques are (partially) implemented in silicon, and as such can offer
transparent fault-tolerance with minimal overhead. However, an implementa-
tion in silicon may not be feasible, e.g. due to the cost of manufacturing
special-purpose microprocessors. Software-based fault-tolerance offers an attrac-
tive alternative due to its ability to protect workloads on Commercial Off
The Shelf (COTS) hardware. Code is protected by executing it multiple times
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
B.-H. Schlingloff and M. Chai (Eds.): SEFM 2022, LNCS 13550, pp. 129–145, 2022.
https://doi.org/10.1007/978-3-031-17108-6_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-17108-6_8&domain=pdf
http://orcid.org/0000-0002-7295-6568
http://orcid.org/0000-0003-3003-1388
https://doi.org/10.1007/978-3-031-17108-6_8

130 L. Miedema and C. Grelck

(redundant execution). The process of managing replication, determining con-
sensus between the replicas, as well as any mitigation mechanism is entirely done
in software. Redundant execution often takes shape N-Modular Redundancy [11]
(NMR). NMR uses two-out-of-N voting on the output of some unit of code to
obtain a majority and mitigate the effects of a SEU. At least three replicas are
needed to obtain a majority in case of fault, which is known as Triple Modular
Redundancy (TMR). Higher levels of N offer robustness against multiple faults.

Modular redundancy can be implemented at different levels of granularity,
e.g. by replicating individual instructions threefold like SWIFT-R [6], but also
at the OS task level [1]. Regardless, significant overhead remains: instrumenting
a binary with SWIFT-Rs technique increases its execution time by 99% [6]. As
such, constrained real-time systems may have insufficient processing resources to
complete protection with fault-tolerance. For applications consisting of multiple
components or tasks, software-based fault-tolerance allows for protecting a subset
of all tasks. This holds even when multiple tasks time-share the same processor,
as the application of fault-tolerance is independent of the processor.

Control tasks may be able to tolerate non-consecutive deadline misses, which
has led to the adoption of the weakly hard model [3]. Each task i has an (mi, ki)
constraint, indicating that the task must complete at least mi times successfully
out of every ki times. We use this (mi, ki) constraint with mi < ki to deliver
more effective fault-tolerance to resource-constrained systems.

Contribution. We propose strategy switching, a new approach for improving
fault-tolerance for resource-constrained real-time applications. We minimize the
effective unmitigated fault rate by selecting which tasks are to be run under
the protection of a fault-tolerance mechanism. Our approach uses weakly-hard
(mi, ki) = (1, 2) constraints on tasks to improve the effective fault rate by varying
which tasks are protected at runtime. Strategy switching does not require a fault
model within which the number of faults are bound, but instead minimizes the
effective fault rate regardless of whether complete fault prevention is feasible.
Finally, we offer an analytical solution to computing the effective fault rate
when using strategy switching, and validate this solution using UPPAAL [2].

Organization. In Sect. 2 we introduce our task and fault model. Strategies are
organized in a state machine, which is discussed in Sect. 3. Our state machine
construction algorithm is detailed in Sect. 4. To evaluate the effect of our solution
on the steady-state fault rate, we propose an analytical technique for obtaining
said rate in Sect. 5. We evaluate our strategy switching technique in Sect. 6.
Validation of our analytical method is done using UPPAAL in Sect. 7. Related
work is discussed in Sect. 8, after which the paper is concluded in Sect. 9. Finally
in Sect. 10 we discuss various future directions and propose improvements for
our strategy switching technique.

2 System Models

Task Model. We assume the application is structured as a set of periodic real-
time tasks Γ = {τ1...τn} with a single, global period and deadline D such that

Strategy Switching: Resource-Constrained Fault-Tolerance 131

Table 1. Definitions of symbols and terms used in the task model

Item Meaning

Task model

Γ Set of all tasks, Γ = {τ1...τn}
τi ∈ Γ Task i ∈ Γ, e.g. τA is task A

E Set of all precedence relations, E = {(τi, τj), ...}
Ci Worst Case Execution Time (WCET) of task i

D Global deadline (shared by all tasks)

Fault model

λ Fault rate (Poisson distribution)

(mi, ki) Constraint indicating task i has to execute successfully for at
least mi iterations out of every ki iterations

Unmitigated fault Fault in a task not mitigated by a fault-tolerance technique

Catastrophic fault Unmitigated fault that leads to the (mi, ki) constraint of the
task being violated

the period is equal to or larger than the deadline (no pipelining). For each task τi,
a worst-case execution time Ci is known. We also assume the effects of applying
fault-tolerance to a task is known: fault-tolerance may create replicas that have to
be scheduled, or the tasks’ own Ci value may increase as a result of redundancy.
Furthermore, we support non-cyclic precedence relations E = {(τi, τj)} for any
task τi and τj where τi must precede τj creating a Directed Cyclic Graph (DAG)
of tasks. Our technique requires the presence of a (global, offline) scheduler that
can schedule the task set efficiently across the processors. The scheduler must be
able to deal with fault-tolerance applied to any subset of the task set and yield
a schedule. As the use of fault-tolerance increases the utilization of the system,
the scheduler must be able to identify whether a particular subset of tasks under
fault-tolerance is schedulable – i.e. able to meet the real-time deadline. Finally,
every time the subset of tasks under fault-tolerance changes constitutes a real-
time mode switch, as the schedule effectively changes from that moment on. As
such, we require a middleware capable of making such a switch at the end of
every period (when no tasks are running).

Fault Model. We use the Poisson distribution as an approximation for the worst-
case fault rate of SEUs, which was argued to be a good approximation by Broster
et al. [4]. We do not assume universal fault detection: only when the task runs
under a fault-tolerance scheme can a fault be detected and mitigated. When a
task does not run with fault-tolerance, it is unknown whether or not it succeeded.
Successor tasks rely on data produced by their predecessors, as such we consider
faults to cascade across precedence relations. We use the term catastrophic fault
to describe an unmitigated fault occurring in two consecutive iterations of a task
that can tolerate a single unmitigated fault, i.e. the task i has an (mi, ki) = (1, 2)
constraint. We do not consider constraints beyond ki = 2 in this paper.

132 L. Miedema and C. Grelck

Fault Mitigation. We assume the presence and implementation of a particular
fault-tolerance scheme, and that any task can be run under that scheme. In
this paper, we assume that SEUs always go undetected in tasks protected by a
fault-tolerance mechanism. Fault-tolerance implemented using replication may
fail (no consensus between the replicas). As such, we assume fault mitigation
may fail, and that it is known when fault mitigation fails.

Other Definitions. Given the complexity and number of symbols used in this
paper, a table of all symbols and terms is compiled in Table 1. Each symbol or
term used will be defined prior to use, as well as being listed in the table.

3 A State Machine of Strategies

To swiftly select a new subset of the task set to protect with fault-tolerance,
we precompute the best subset of tasks to protect next for each situation. The
response to such a situation is identified by a strategy, dictating which tasks to
run with fault-tolerance. Exactly one strategy is active at any moment in time,
and switching between strategies is facilitated through a strategy state machine.

Table 2. Definitions of symbols and terms used in the strategy state machine

Item Meaning

States in the state machine

S Set of all strategies

s ∈ S A strategy

Γs ⊆ Γ The tasks protected under strategy s

sA,B A strategy protecting task A and B, i.e. ΓsA,B = {τA, τB}
R Set of all results

r ∈ R A result

rA,B A result where task A (τA) succeeded and task B (τB) failed

Transitions in the state machine

Δ The transition function for the strategy state machine

Δ(s) The set of successors of strategy s as per the transition function Δ.
Due to the bipartite nature of the state machine, this is always a set
of results

Δ(r) The successor of result r as per transition function Δ. Always a single
element, and due to the bipartite nature of Δ it is always a strategy

The architecture of our strategy switching approach distinguishes between
an online part at runtime, as well as an offline part executing ahead-of-time
not beholden to any real-time constraints. The offline component prepares the
state machine, which is then available for online playback. The strategy state

Strategy Switching: Resource-Constrained Fault-Tolerance 133

machine is a bipartite state machine, consisting of strategy states and result
states. Figure 1b shows such a state machine. All symbols used to define the
strategy state machine is given in Table 2.

Online. We introduce a strategy switching component, which plays back the
strategy state machine, taking transitions based on observed faults as the appli-
cation runs. At runtime, this component selects a single strategy s ahead of
every execution of the task set, which becomes active. The strategy s dictates
which tasks to protect with a fault-tolerance scheme (Γs), and which ones not
(Γ\Γs). Fault-tolerance techniques are typically not a silver bullet solution, and
unmitigated faults may still occur in tasks in Γs. Furthermore, these techniques
can often report the fact that they failed to mitigate a fault (e.g. no consensus
in N-modular redundancy). After executing all tasks, the online component uses
this information from the execution of the task set to select the matching result
r from the state machine. This result reflects the success or fail state, or prob-
ability thereof, of each of the tasks. Each possible result r directly maps to its
best successor strategy, which is applied to the next iteration of the task set.

Offline. The full set of strategies s ∈ S is computed ahead of time, as well as the
transition relation Δ from any given result r ∈ R to the best successor strategy
Δ(r) = s. Strategies which are not schedulable are pruned from S. Furthermore,
strategies which are dominated by other strategies (i.e. there is another strategy
that protects a superset of tasks) are also not considered in S.

A

B
C

(a) Task set Γ = {τA,τB ,τC}
with a precedence relation E =
{(τA, τC), (τB , τC)}

sA,C

rA,C rA,C

rA,C rA,C

sB,C

rB,C rB,C

rB,C rB,C

(b) A strategy state machine for Γ = {τA,τB ,τC}

Fig. 1. Example task set with a corresponding example state machine

4 Strategy State Machine Construction

Building the strategy state machine is a two-step process: (1) enumerating valid
strategies and results, (2) determine the best successor strategy for each result.
The state machine construction process is guaranteed to produce a state machine
as long as the task set without any tasks under fault-tolerance is schedulable.
However, in the case that no strategy applying fault-tolerance is schedulable,

134 L. Miedema and C. Grelck

the strategy state machine becomes degenerate. Such a state machine consists
exclusively of the empty strategy, i.e. S = {s∅} with Γs∅ = ∅. Given that there is
only one strategy protecting nothing, no meaningful switching can occur as there
is no other strategy to switch to. Under a degenerate strategy state machine, the
application behaves as if it runs without fault-tolerance or strategy switching.

4.1 Enumerating Strategies and Results

The set of all strategies S and set of all results R can be constructed by consid-
ering every subset Γs ⊆ Γ and applying fault protection accordingly.

The scheduler is used to mark subsets as either schedulable or unschedulable,
depending on its ability to produce a schedule that meets the deadline with that
subset running with fault protection. Marking each subset in effect forms an
annotated lattice over the subset relation. An example of such a lattice is shown
in Fig. 2. The shown annotation could be the result of a high worst-case execution
time CX when compared to CY and CZ . As such, the extra compute needed for
running τA under fault-tolerance is much larger than doing the same for τY or τZ .
This in turn makes the strategy protecting both τY and τZ (sY,Z) schedulable,
while protecting any task together with τX makes the strategy unschedulable
(i.e. sX,Y and sX,Z).

sX,Y,Z

sX,Y sX,Z sY,Z

sX sY sZ

s∅

Unschedulable

Schedulable

Redundant

Fig. 2. Example schedulability lattice of strategies for some Γ = {τX , τY , τZ}

Some strategies protect a subset of tasks also protected by another schedula-
ble strategy (e.g. sY protects a subset of sX,Y). In Fig. 2, this is sY , sZ and s∅.
These strategies are annotated as redundant and as such are discarded together
with the unschedulable strategies. Each strategy s ∈ S has one result r ∈ R
for each possible outcome. As success or failure is only known for tasks in τs, a
result r is constructed for every combination of outcomes for tasks in τs.

4.2 Strategy Linking

Each result r is linked to a successor strategy by a process called linking. When
transitioning from a result r to a strategy s, there is knowledge about two con-
secutive iterations of the task set. This is used to compute the expected number

Strategy Switching: Resource-Constrained Fault-Tolerance 135

of catastrophic faults as shown in Theorem 1 by means of δ(s, r). Then, our
algorithm selects the best successor s by minimizing δ(s, r) per Definition 1.

Theorem 1. Expected number of catastrophic faults given r was reached and s
will be activated

δ(s, r) =
∑

τi∈Γ

P (transitive fault in τi|r) · P (transitive fault in τi|s)

Definition 1. Determining a successor strategy Δ(r) ∈ S
Δ(r) = arg min

s∈S
δ(s, r)

The fault probability P (transitive fault in τi|r) and P (transitive fault in τi|s)
can be derived from the tasks execution time, the fault rate λ, the fault-tolerance
scheme (NMR), and the result r and strategy s. Given the Poisson distribution
and the WCET Ci, the chance of a fault in τi is given as pi in Definition 2, while
the chance of a fault under NMR is given as qi in Definition 3.

Definition 2. Chance of a fault in any invocation of task τi when no fault tol-
erance (“NOFT”) mechanism is applied

P (fault in τi|NOFT) = e−λ·Ci = pi

Definition 3. Chance of a fault in any invocation of task τi when NMR is used

P (fault in τi|NMR) = p3
i +

(
3
2

)
p2

i · (1 − pi) = qi

The protection status of a task (either “NOFT” or “NMR”) can be read from
the strategy, as shown in Definition 4.

Definition 4. Chance of a fault in any invocation of task τi under strategy s

P (fault in τi|s) =

{
if τi protected by s = P (fault in τi|NMR)
otherwise = P (fault in τi|NOFT)

We assume faults propagate along the DAG as invalid output is sent to
successor tasks. Definition 5 defines the probability of a transitive fault, where
the fault can either originate from itself or from a predecessor.

Definition 5. Chance of a transitive fault in any invocation of task τi under
strategy s

P (transitive fault in τi|s) = P (fault in τi|s) + (1 − P (fault in τi|s))

·
⎛

⎝1 −
∏

τj∈pred(τi)

1 − P (fault in τj |s)
⎞

⎠

136 L. Miedema and C. Grelck

The same idea of Definition 4 is used to define the chance of success given a
result, which is given in Definition 6. The same mechanism for handling prece-
dence relations as seen in Definition 5 can be applied using P (fault in τi|r) to
derive P (transitive fault in τi|r), which we will omit for brevity.

Definition 6. Chance of a fault in any invocation of task τi when result r of
strategy sr was reached

P (fault in τi|r) =

⎧
⎪⎨

⎪⎩

if τi succeeded per r = 1
if τi failed per r = 0
otherwise = P (fault in τi|sr)

4.3 State Machine Construction Algorithm

We show the entire strategy state machine construction process in Algorithm 1.

1 All strategies are enumerated and the scheduler is used to determine for each
strategy its schedulability status. The lattice relation, as shown in Fig. 2, is
used to significantly reduce the number of times the scheduler needs to be
invoked. When a strategy is found to be unschedulable, all strategies protect-
ing more tasks are immediately marked as unschedulable. Likewise, when an
unschedulable strategy is encountered, all strategies protecting fewer tasks
are marked as schedulable.

2 The resulting S contains all strategies, and is pruned of unschedulable strate-
gies and strategies that protect a subset of tasks than other schedulable strate-
gies.

3 Set S is further pruned, removing all strategies that provide equal or worse
protection when compared to some other strategy in S.

4 Results are constructed and their successor Δ(r) ∈ S is determined for each
of the remaining strategies. Each result associated with strategy s is identified
with a bitmask o over Γs such that index l in the bitmasks identifies whether
task τl at index l in Γs is protected. The results are added to R.

4.4 Algorithmic Complexity

The approach, as presented here, can easily become intractable for even small
task sets due to the explosion of S and R. In Sect. 10, we discuss ways to lower the
algorithmic complexity. For completeness, we discuss the algorithmic complexity
of the (näıve) state machine construction algorithm as presented.

The number of strategies is up to all combinations of tasks, i.e. |S| ∈ O(|Γ|!).
Each strategy has ≤ 2|Γs| results, 2|Γs| ∈ O(2|Γ|) and thus |R| ∈ O(|Γ|! ·2|Γ|). Let
n = |Γ|, i.e. n is the number of tasks. Then, the final algorithmic time complexity
is given in Theorem 2.

Strategy Switching: Resource-Constrained Fault-Tolerance 137

Algorithm 1. Complete state machine construction algorithm

1 Collect all strategies and their schedulability status
1: S ← ∅
2: for all Γj ∈ subsets of Γ do
3: if ∃s ∈ S : Γs = Γj then � Skip if a strategy for subset Γj already exists
4: continue
5: end if
6: Γs ← { NMR(τi) : τi ∈ Γj } ∪ (Γ \ Γj) � Set of all tasks with NMR applied
7: if schedulable(Γs) then
8: sj ← new Strategy(Γs, schedulable = true) � Strategy is schedulable
9: S ← S ∪ {sj}

10: for all Γk ∈ subsets of Γ where Γj ⊂ Γk do � Propagate down the lattice
11: sk ← new Strategy(Γk, schedulable = true)
12: S ← S ∪ {sk}
13: end for
14: else
15: sj ← new Strategy(Γs, schedulable = false) � Strategy is unschedulable
16: S ← S ∪ {sj}
17: for all Γk ∈ subsets of Γ where Γk ⊂ Γj do � Propagate up the lattice
18: sk ← new Strategy(Γk, schedulable = false)
19: S ← S ∪ {sk}
20: end for
21: end if
22: end for

2 Prune strategies based on schedulability and redundancy
23: S ← {s : s ∈ S, s is schedulable} � Using information in s ∈ S
24: S ← {si : si ∈ S, ¬∃sj ∈ S : Γsi ⊂ Γsj} � Remove redundant strategies

3 Prune strategies based on fault-tolerance quality
25: for all si ∈ S do
26: for all sj ∈ S \ si do
27: if ∀τk ∈ Γ : P (transitive fault in τk|si) ≤ P (transitive fault in τk|sj) then
28: S ← S \ sj � sj is equal or worse for all tasks than si
29: end if
30: end for
31: end for

4 Create and link results
32: R ← ∅
33: Δ ← ∅
34: for all si ∈ S do
35: for all oj ∈ all combinations of success and failure for Γs do � oj is a bitmask
36: rj ← new Result(oj)
37: snext ← s ∈ S : minsk∈S δ(sk, rj) = δ(s, rj) � Linking per Definition 1
38: Δ(rj) ← snext
39: Δ(si, oj) ← rj
40: R ← R ∪ {rj}
41: end for
42: end for

138 L. Miedema and C. Grelck

Theorem 2. Time-complexity for the construction of the strategy state machine
for |Γ| = n tasks

O(|R| + |S|) ≈ O(|R|) ∈ O(|Γ|! · 2|Γ|) = O(n! · 2n)

Note that this is a high upper bound which is unlikely to be hit by an
arbitrary task graph. Redundant strategies are identified and pruned before the
results are enumerated as seen in Algorithm 1, reducing the number of results
significantly. In further work, we intend to improve the tractability by improving
the strategy enumeration process itself.

5 Evaluating State Machines

To evaluate and compare our algorithm against a static (non-switching) solution,
a way of determining the effective fault rate is necessary. We define the effective
fault rate as δ(Δ). δ(Δ) is the expected number of catastrophic faults for any
arbitrary period of the task set managed according to state machine Δ. δ(Δ)
can be obtained analytically converting it to a Discrete-Time Markov Chain.

5.1 Discrete-Time Markov Chain Evaluation

The expected number of catastrophic faults in Δ is the weighted average of the
δ(r, s) = δ(r,Δ(r)) function from Theorem 1. The weight of result r can be
derived from its strategy s, as shown in Theorem 3.

Theorem 3. Probability of selecting result r given strategy s

P (r|s) =
∏

τi∈Γs

{
if τi fails in r = P (transitive fault in τi|s)
otherwise = 1 − P (transitive fault in τi|s)

Theorem 4. Expected number of catastrophic faults per period of the task set

δ(Δ) =
∑

r∈R
P (s|Δ) · P (r|s) · δ(r,Δ(r))

P (s|Δ) provides the steady-state probability of finding the strategy state
machine in strategy s. P (s|Δ) can be computed by converting the state machine
into a Discrete-Time Markov Chain. Conversion is applied as follows:

1. Result states are removed, and all incoming edges are transferred directly to
the successor of each result state.

2. A transition matrix TΔ is created from Δ.
3. The steady-state vector �SSΔ of TΔ is computed (e.g. using linear algebra).
4. �SSΔ(s ∈ S) = P (s|Δ).

Strategy Switching: Resource-Constrained Fault-Tolerance 139

6 Evaluation

To evaluate our technique, we generate a set of task graphs and compute a
strategy state machine for each graph across a variety of scenarios.

6.1 Dataset

We generate 500 task graphs with between 2 and 20 tasks using Task Graphs
For Free (TGFF) [9]. Each task graph is statically scheduled once with Forward
List Scheduling targeting a 4 core platform, without any fault-tolerance. These
schedules are used to determine each task graphs’ base makespan. We set the
fault rate to λ = 10−5s−1 and determine fault probabilities using the Poisson
distribution, i.e. P (fault in τi| NOFT) = eλ·Ci . As fault-tolerance technique we
use TMR at the task level. The scheduler is tasked with scheduling the three
replicas and voter according to their precedence relations.

To simulate resource-constrained scenarios, we obtain results for various
deadlines. We define the deadline as a multiple of the base makespan. A multi-
ple of 1 (i.e. deadline = 1×makespan) leaves only strategies that can place task
replicas in existing gaps in the schedule, while a multiple of 3 leaves enough time
available for every task to run three times.

6.2 Results

Figure 3 shows the results of the 500 task graphs with four different deadlines.
For each plot, the x-axis represents utilization without fault-tolerance, while the
y-axis presents the steady-state fault rate δ(Δ) (lower is better).

The higher the utilization, the fewer unused resources there are to use for
placing replicas. The effect of this is visible – the higher the utilization, the
higher the fault rate in both the switching and non-switching case. Each plot
compares our strategy-switching solution to a non-switching one where only a
single strategy is selected, as well as one without fault-tolerance (“NOFT”).

For the extremely constrained scenario of deadline = 1×makespan (Fig. 3a),
our strategy-switching solution manages to hit a lower fault-rate than the non-
switching solution in most cases. Our solution offers a 17.82% lower steady-
state fault rate on average (±37.34% std. dev) when compared to the non-
switching approach. At a more relaxed deadline = 1.2×makespan, these figures
stay about the same (17.92% improvement with ±44.06% std. dev). But relaxing
the deadline to 1.4×makespan yields a fault rate reduction of 24.79% (±50.29%
std. dev). When the ratio matches the extra resource requirement of TMR (≤ 3),
all solutions perform identical as seen in Fig. 3d.

We analyze this behavior at the hand of Fig. 4, where the relative improve-
ment for the first 6 DAGs is shown across multiple makespan/deadline ratios.
The strategy switching solution provides a reduction in fault-rate for intermedi-
ate makespan/deadline ratios.

With more relaxed deadlines, the number of possible strategies starts to
overtake the tractability of our algorithm: at 1.2×, for 3 of the 500 task graphs

140 L. Miedema and C. Grelck

0.2 0.4 0.6 0.8 1
10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

Utilization →

F
a
u
lt

ra
te

δ(
Δ

)
(l

o
g
)

NOFT

Non-switching

Switching

(a) Deadline = 1×makespan

0.2 0.3 0.4 0.5 0.6

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

Utilization →

F
a
u
lt

ra
te

δ(
Δ

)
(l

o
g
)

(b) Deadline = 1.5×makespan

0.1 0.2 0.3 0.4 0.5
10−9

10−7

10−5

10−3

10−1

Utilization →

F
a
u
lt

ra
te

δ(
Δ

)
(l

o
g
)

(c) Deadline = 2.0×makespan

0.1 0.15 0.2 0.25 0.3

10−9

10−7

10−5

10−3

10−1

Utilization →

F
a
u
lt

ra
te

δ(
Δ

)
(l

o
g
)

(d) Deadline = 3.0×makespan

Fig. 3. Utilization vs. steady-state fault rate for a non-switching solution and our switch-
ing solution across various levels of resource constrainity. Lower fault rate is better.

1 1.2 1.4 1.6 1.8 2

10−3

10−2

10−1

100

Deadline multiplier →

S
ca

le
d

fa
u
lt

ra
te

δ(
Δ

)
(l

o
g
)

dag0

dag1

dag2

dag3

dag4

dag5

(a) Strategy switching

1 1.2 1.4 1.6 1.8 2

10−3

10−2

10−1

100

Deadline multiplier →

S
ca

le
d

fa
u
lt

ra
te

δ (
Δ

)
(l

o
g
)

(b) Single strategy

Fig. 4. Relative improvement in fault rate when the makespan multiplier increases for
the first 6 DAGs

Strategy Switching: Resource-Constrained Fault-Tolerance 141

a state machine cannot be constructed within 30 minute on our hardware. This
grows to 20 of the 500 graphs for a multiplier of 1.4×. However, this does not
take away from the validity of the state machine for DAGs where it is feasible.

Our approach does not always yield an improvement. For 1× multiplier,
strategy switching offered an improvement when compared to a static solution
in 272 of the 500 cases. In 68 of the missing cases, our strategy-switching app-
roach performs worse than the non-switching solution. Our greedy Δ(r) succes-
sor determination method as presented in Definition 1 is naive and susceptible to
make locally-optimal decisions that are detrimental to the total fault-rate. Such
cases can easily be avoided however: as we propose an analytical method for
computing the fault rate in this paper, the algorithm can easily be extended to
verify that the resulting state machine outperforms a static solution. When this
is not the case, it can fall back to the static solution. In future work, we intent
on creating a better linking algorithm that could also deliver in an improvement
in these cases, and not have to fall back to a static non-switching solution.

7 Validation Using UPPAAL

To improve confidence in our analytical evaluation, we model the online part of
the strategy switching using UPPAAL [2]. Online strategy switching is combined
with UPPAAL processes for tasks, edges, processors, and a variety of monitor-
ing models. These processes in effect build a complete runtime simulator with
which we can study long-running behavior of a weakly-hard real-time applica-
tion when experiencing a given incidence rate of faults. UPPAAL is used in
Stochastic Model Checking (SMC) mode [5], which lets us estimate the expected
number of catastrophic faults for a large number of periods of a particular task
set. For validation to succeed, this estimation must match the analytical solution
obtained per Sect. 5. As each model is specific to one task set and its strategy
state machine, we develop a generator that produces a UPPAAL model auto-
matically from a task set and strategy state machine.

7.1 UPPAAL Processes

Systems models constructed in UPPAAL [2] are composed of a set of
concurrently-running UPPAAL processes derived from process templates. We
define 12 templates for validation, in which three categories can be identified:

i) Our contribution: a strategy state machine process, plus a set of result
matcher processes identifying when particular results is reached

ii) Hardware & application: task, edge, NMR voter and processor templates
iii) Monitoring : task and edge monitoring templates to propagate faults and

register the actual catastrophic fault rate

For brevity we limit discussion to one template: the task process template.
This template is shown in Fig. 5. A task process is created for each combination
of a task τi and strategy sj . It is parameterized with task index i, strategy id j,
the release time ri, its WCET Ci, the assigned core Pi.

142 L. Miedema and C. Grelck

start WaitingForStrategy

Unscheduled, t ≤ ri

Running, t ≤ ri + CiRunningWFault, t ≤ ri + Ci

Finished

t ≥ ri

t ≥ ri + Ci
task_finished_success[i]!

proc_transient_fault[Pi]?

t ≥ ri + Ci
task_finished_fault[i]!

Fig. 5. Simplified UPPAAL process template for a task

When the strategy sj is activated, the task process moves to the Unscheduled
location. This location is left when clock t reaches t = ri. In the Running state, it
may encounter a fault signaled via the proc transient fault[Pi]. The fault is
captured by moving to RunningWFault. The process finishes by either emitting a
task finished success[i] or task finished fault[i] depending on its fault
status, which is relayed to a voter process (omitted for brevity).

7.2 Validating Results

The UPPAAL model is periodic, and counts the number of catastrophic faults
encountered by means of the monitoring processes. To determine the global
steady-state fault rate δ(Δ), we query the number of catastrophic faults for a
large number of tasks set iterations. Then, validation succeeds when δ(Δ) ≈
catastrophic faults

iterations . We set the confidence interval for this experiment to 95%.
We apply the UPPAAL model transformation to the first 10 task graphs with

deadline = 1×makespan, the validation results of which can be seen in Table 3.
The raw data is shown in the “# faults” column, and is obtained using the query
E[<=t;128](max:catastrophic faults). The formula estimates the number of
catastrophic faults seen until time t. 128 such simulations are conducted to gain
confidence in the stability of the value and get the bounds of the 95% confidence
interval (shown with ±). In the formula, parameter t is set to the period ×
4096 to simulate 4096 consecutive iterations of the task set. As such, δ(Δ) is
approximated by dividing the output of the formula by 4096.

Two values (dag2 and dag8) are absent: the UPPAAL query did not return
a result in 24 hour. The extremely low fault-rate of dag7 makes seeing a single
fault in 4096 · 128 iterations is 0.029. The remaining values present in Table 3
are within their 95% confidence interval, giving good confidence in the accuracy
of our analytical method and therefore our results.

8 Related Work

The (mi, ki) constraints have been used before to improve the efficacy of fault-
tolerance in real-time scheduling. [8] proposed a scheduler and an efficient
schedulability algorithm for a sporadic task set with tasks under (mi, ki) con-
straints. Their scheduler allows for scheduling task sets that would normally not

Strategy Switching: Resource-Constrained Fault-Tolerance 143

Table 3. Numerical evaluation using UPPAAL

DAG # tasks |S| # faults δ(Δ) (numerical) δ(Δ) (analytical)

dag0 19 1 18.9766 ± 1.543 (4.633 ± 0.377) · 10−3 4.34 · 10−3

dag1 14 17 4.32812 ± 0.574086 (1.057 ± 0.141) · 10−3 1.01 · 10−3

dag2 21 21 Did Not Finish 3.14 · 10−3

dag3 20 1 21.9219 ± 2.09571 (5.352 ± 0.512) · 10−3 5.25 · 10−3

dag4 4 1 0.453125 ± 0.113753 (1.106 ± 0.278) · 10−4 1.09 · 10−4

dag5 5 4 0.40625 ± 0.112856 (9.918 ± 2.755) · 10−5 9.36 · 10−5

dag6 10 10 1.64844 ± 0.272017 (4.025 ± 0.664) · 10−4 3.78 · 10−4

dag7 4 1 0 ± 0 (0 ± 0) · 100 5.65 · 10−8

dag8 12 26 Did Not Finish 3.67 · 10−4

dag9 4 2 0.148438 ± 0.0661748 (3.624 ± 1.616) · 10−5 4.46 · 10−5

be schedulable, yet utilizing their (mi, ki) constraints allows them to be sched-
uled.

Chen et al. [7] proposed a solution that is similar to ours. Their method
offers fault-tolerance with the goal of reducing the effective fault rate as well as
lowering energy consumption. Chen et al. propose a static scheduling technique
called Static Pattern-Based Reliable Execution, ensuring each (mi, ki) constraint
is respected in the presence of transient faults. Furthermore, they propose delay-
ing the execution of their static pattern if no fault is detected at runtime, oppor-
tunistically running more unprotected instances of the task with the goal of
saving energy. However, if the static pattern is found to be unschedulable as per
their schedulability test, their implementation is unable to provide a schedule
that minimizes the fault rate for a given resource-constrained real-time system.
While their approach offers more flexibility in the task model (specifically the
support for (mi, ki) constraints with ki > 2), it does not consider that fault mit-
igation may fail. Our approach optimally lowers the fault rate, regardless of the
hardware constrains. Furthermore, our approach recognizes that fault mitigation
may fail, and includes this in the calculation for lowering the fault rate.

[10] offers a technique for measuring the fault rate of an application with
tasks under (mi, ki) constraints. Their technique provides an upper bound for
the fault probability per iteration of a Fault-tolerant Single-Input Single-Output
(FT-SISO) control loop, similar to our δ(Δ) function. Their technique hopes
to provide transparency to system designers, allowing analyzing the impact on
the reliability when changing the hardware or software. However, while their
approach is aware of (mi, ki) constraints, it does not provide schedules that
utilize them. Instead, it merely includes them in the reliability calculation.

The domain of strategy switching shares some aspects with Mixed-Criticality
(MC) systems. In an MC system, the system switches between different levels
of criticality depending on the operating conditions of the system. Tasks are
assigned a criticality level, and when the system criticality is higher than that
of the task, the task is not scheduled to guarantee the successful and timely

144 L. Miedema and C. Grelck

execution of tasks with a higher criticality level. Pathan [13] combines MC with
fault-tolerance against transient faults. As is typical in MC research, as the level
of criticality increases, the pessimism increases. Pathan increases the maximum
fault rate when switching to a higher level of criticality. In our approach we
do not vary the pessimism of any parameter. Instead, we assume the λ param-
eter provides a suitable upper bound to the fault rate in all conditions. Our
approach offers some aspects typically not found in MC systems: while each
strategy appears as is own a criticality level, it is a level applied to a subset of
the tasks (specifically Γs). Finally, [13] requires bounding the number of faults
that can occur in any window. As such, passing their sufficient schedulability
test will (under their fault model) guarantee the system will never experience a
fault.

9 Conclusion

In this paper, we introduced strategy switching, a technique to improve fault-
tolerance for resource-constrained systems. By switching the subset of the set
of tasks that receives fault-tolerance, we are able to reduce the effective fault-
rate for resource-constrained weakly-hard real-time systems. We contribute a
comprehensive algorithm for constructing the strategy state machine, as well as
an evaluation of our technique across 500 DAGs. In our evaluation, we saw an
improvement in the majority of cases when resource constraints are significant.
Furthermore, we contribute an analytical technique for analyzing the strategy
state machine, and use UPPAAL to validate our technique.

10 Future Work

We hope to address the issue of tractability in future work, as well as lower the
steady-state fault rate of applications by means of an improved linking algorithm.
Finally, we hope lift the limitation of (mi, ki) where ki ≤ 2 in a future paper.

Tractability may be improved by utilizing symmetry in the strategy set S,
as well as leveraging heuristic-driven strategy enumeration techniques. Further-
more, we intent to lower the steady-state fault rate of our strategy switching
solution by developing a new divide-and-conquer linking algorithm. When not
encountering any faults, the lowest steady-state fault rate is achieved by switch-
ing between two strategies or remaining in one strategy. This is a logical conse-
quence of the ki = 2 limitation, as it limits the effects of an unmitigated faults to
two iterations (two strategies). By identifying these pairs and devising a merge
operation, we hope to construct a high-quality composite strategy state machine.

Finally, we aim to support tasks with ki > 2 constraints. The past k − 1
successes or fails of a task is needed in δ(s, r) to compute the expected number
of catastrophic faults when evaluating successor strategy s. As such, a result
should be allocated for each combination of previous fails/successes. Naively
allocating these results is trivially intractable. Instead, we hope to create an
efficient result enumeration and linking algorithm that can operate at runtime.

Strategy Switching: Resource-Constrained Fault-Tolerance 145

Acknowledgments. This project has received funding from the European Union’s
Horizon 2020 research and innovation program under grant agreement No. 871259
(ADMORPH project). We thank the reviewers for their suggestions on improving this
paper.

References

1. Asghari, S.A., Binesh Marvasti, M., Rahmani, A.M.: Enhancing transient fault
tolerance in embedded systems through an OS task level redundancy approach.
Future Gener. Comput. Syst. 87 (2018). https://doi.org/10.1016/j.future.2018.04.
049

2. Bengtsson, J., Larsen, K., Larsson, F., Pettersson, P., Yi, W.: UPPAAL—a tool
suite for automatic verification of real-time systems. In: Alur, R., Henzinger, T.A.,
Sontag, E.D. (eds.) HS 1995. LNCS, vol. 1066, pp. 232–243. Springer, Heidelberg
(1996). https://doi.org/10.1007/BFb0020949

3. Bernat, G., Burns, A., Liamosi, A.: Weakly hard real-time systems. IEEE Trans.
Comput. 50(4), 308–321 (2001)

4. Broster, I., Burns, A., Rodriguez-Navas, G.: Timing analysis of real-time communi-
cation under electromagnetic interference. Real-Time Syst. 30(1–2), 55–81 (2005)

5. Bulychev, P., et al.: UPPAAL-SMC: statistical model checking for priced timed
automata. arXiv e-prints (2012)

6. Chang, J., Reis, G.A., August, D.I.: Automatic instruction-level software-only
recovery. IEEE (2006)

7. Chen, K.H., Bönninghoff, B., Chen, J.J., Marwedel, P.: Compensate or ignore?
Meeting control robustness requirements through adaptive soft-error handling. In:
LCTES 2016. Association for Computing Machinery, New York (2016). https://
doi.org/10.1145/2907950.2907952

8. Choi, H., Kim, H., Zhu, Q.: Job-class-level fixed priority scheduling of weakly-hard
real-time systems (2019). https://doi.org/10.1109/RTAS.2019.00028

9. Dick, R., Rhodes, D., Wolf, W.: TGFF: task graphs for free (1998). https://doi.
org/10.1109/HSC.1998.666245

10. Gujarati, A., Nasri, M., Brandenburg, B.B.: Quantifying the resiliency of fail-
operational real-time networked control systems. In: Leibniz International Pro-
ceedings in Informatics (LIPIcs), vol. 106. Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik, Dagstuhl, Germany (2018). https://doi.org/10.4230/LIPIcs.ECRTS.
2018.16

11. Lyons, R.E., Vanderkulk, W.: The use of triple-modular redundancy to improve
computer reliability. IBM J. Res. Dev. 6(2), 200–209 (1962)

12. Oz, I., Arslan, S.: A survey on multithreading alternatives for soft error fault
tolerance. ACM Comput. Surv. 52, 1–38 (2019)

13. Pathan, R.M.: Fault-tolerant and real-time scheduling for mixed-criticality sys-
tems. Real-Time Syst. 50(4), 509–547 (2014). https://doi.org/10.1007/s11241-014-
9202-z

https://doi.org/10.1016/j.future.2018.04.049
https://doi.org/10.1016/j.future.2018.04.049
https://doi.org/10.1007/BFb0020949
https://doi.org/10.1145/2907950.2907952
https://doi.org/10.1145/2907950.2907952
https://doi.org/10.1109/RTAS.2019.00028
https://doi.org/10.1109/HSC.1998.666245
https://doi.org/10.1109/HSC.1998.666245
https://doi.org/10.4230/LIPIcs.ECRTS.2018.16
https://doi.org/10.4230/LIPIcs.ECRTS.2018.16
https://doi.org/10.1007/s11241-014-9202-z
https://doi.org/10.1007/s11241-014-9202-z

A Program Slicer for Java (Tool Paper)

Carlos Galindo(B) , Sergio Perez , and Josep Silva

Departamento de Sistemas Informáticos y Computación, Universitat Politècnica
de València, Camino de Vera s/n, 46022 Valencia, Spain
cargaji@vrain.upv.es, {serperu,jsilva}@dsic.upv.es

Abstract. Program slicing is a static analysis technique used in debug-
ging, compiler optimization, program parallelization, and program spe-
cialization. However, current implementations for Java are proprietary
software, pay-per-use, and closed source. Most public and open-source
implementations for Java are not maintained anymore or they are obso-
lete because they do not cover novel Java features or they do not imple-
ment advanced techniques for the treatment of objects, exceptions, and
unconditional jumps. This paper presents JavaSlicer, a public and open-
source tool written in Java for slicing Java programs, which supports
the aforementioned features. We present its usage, architecture, and
performance.

Keywords: Program slicing · System Dependence Graph · Tool paper

1 Introduction

Program slicing is a static analysis technique used to automatically identify what
parts of a program may affect the value of a variable at a given position (static
backward slicing) or what parts of a program may be affected by the value of a
variable at a given position (static forward slicing). The program point of interest
(a set of variables in a line) is known as slicing criterion. The output, or slice,
is the subset of the program that affects the slicing criterion.

Program slicing can be likened to automated scissors for code: given a pattern
to target (a slicing criterion) it will remove all the code that is not relevant to
that pattern. Consider Fig. 1, in which a very simple program has been sliced.
The criterion 〈10, sum〉 indicates that we are interested in the elements that
affect the value of the variable sum at line 10. The resulting slice has removed
the lines used to compute prod because they have no influence on sum.

This work has been partially supported by the EU (FEDER) and the Spanish MCI/AEI
under grant PID2019-104735RB-C41, by theGeneralitat Valenciana under grant Prom-
eteo/2019/098 (DeepTrust), and by TAILOR, a project funded by EU Horizon 2020
research and innovation programme under GA No 952215. Sergio Pérez was partially
supported by Universitat Politècnica de València under FPI grant PAID-01-18. Car-
los Galindo was partially supported by the Spanish Ministerio de Universidades under
grant FPU20/03861.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
B.-H. Schlingloff and M. Chai (Eds.): SEFM 2022, LNCS 13550, pp. 146–151, 2022.
https://doi.org/10.1007/978-3-031-17108-6_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-17108-6_9&domain=pdf
http://orcid.org/0000-0002-3569-6218
http://orcid.org/0000-0002-4384-7004
http://orcid.org/0000-0001-5096-0008
https://doi.org/10.1007/978-3-031-17108-6_9

A Program Slicer for Java (Tool Paper) 147

1 void f(int n, int m) {
2 int sum = 0;
3 int prod = 0;
4 int i = 0;
5 while (i < m) {
6 sum += n;

7 prod *= n;
8 i++;
9 }

10 log(sum);
11 log(prod);
12 }

Fig. 1. A simple Java program and its slice w.r.t. 〈10, sum〉 (in black).

Program slicing is particularly useful for debugging (where the slicing crite-
rion is a variable containing an incorrect value and, thus, the slice must contain
the bug), but there are many other applications such as program specialization,
and program parallelisation. Unfortunately, currently, there does not exist a pub-
lic and open-source program slicer for modern Java since the existing ones are
obsolete or proprietary. For instance, there does not exist a plug-in for IntelliJ
IDEA or Eclipse, two of the most popular Java IDEs in the market.

JavaSlicer is a library and terminal client that creates slices for Java pro-
grams, using the System Dependence Graph (SDG). Its current version is
JavaSlicer 1.3.1 (aka scissorhands). In this paper, we present its usage, structure,
underlying architecture, and performance.

2 Background

The most common data structure used to slice a program is the System Depen-
dence Graph (SDG) [3], a directed graph that represents program statements as
nodes and the dependences between them as edges. Once built, a slice can be
computed in linear time as a graph reachability problem by selecting the node
that represents the slicing criterion and traversing the edges backwards/forwards
(for a backward/forward slice, respectively).

The SDG itself is built from a sequence of graphs: each method is used
to compute a Control-Flow Graph (CFG), then control and flow (aka data)
dependences are computed and they are stored in a Program Dependence Graph
(PDG). Finally, the calls in each PDG are connected to their corresponding
declarations to form the SDG, making it the union of all the PDGs.

To compute a slice, the slicing criterion is located, and then a two-phase
traversal process is used (so that the context of each call is preserved), which
produces a set of nodes that can then be converted back to code or processed in
other ways.

3 Producing Slices with JavaSlicer

JavaSlicer is a very sophisticated tool that implements the SDG and its corre-
sponding slicing algorithms with advanced treatment for object-oriented (OO)
features [5], exception handling [1], and unconditional jumps [4] (in Java, break,

148 C. Galindo et al.

continue, return and throw are unconditional jumps). It includes novel tech-
niques that improve the until now most advanced representation of OO pro-
grams, the JSysDG [2]. It is free/libre software and is publicly available at
https://github.com/mistupv/JavaSlicer under the AGPL license. The sources
can be built by using maven (following the instructions in the README), or a
prebuilt jar can be downloaded from the releases page1.

With the sdg-cli.jar file, an installation of Java 11 or later, and the Java
sources that are to be sliced, producing a slice for is a simple task. E.g., for a file
called Example.java and the slicing criterion 〈10, x〉, the command would be:

$ java -jar sdg-cli.jar -c Example.java:10#x

The slice will be placed in a slice folder (which will be created if it does
not already exist). The parameter --output or -o can set the output direc-
tory to any other location. The slicing criterion is given using the --criterion
or -c parameter, with the following format: FILE:LINE#VAR. Alternatively, the
criterion can be split into the --file, --line, and --var parameters.

3.1 Slicing More Than One File

Most non-trivial programs are spread across multiple files, so it is also possible
to produce slices w.r.t. a whole project. An additional parameter (--include
or -i) must be passed so that a SDG is generated with all the files that make
up the program. Assuming that the project is inside src and that the slicing
criterion is 〈10, x〉 in src/Main.java, the command would be:

$ java -jar sdg-cli.jar -i src -c src/Main.java:10#x

Any file from the project from which statements are included in the slice will
appear in the slice folder. If the project is spread across multiple modules, they
can be concatenated with commas (i.e., -i x/src,y/src).

3.2 Slicing with External Libraries

A limitation of JavaSlicer is that the project must be compilable, so any exter-
nal dependency must be included either in the SDG (as shown in the previous
section) or added to Java’s classpath. To do so, we can use the -cp parameter,
concatenating multiple libraries with semicolons. For example, to slice a small
program that depends on JGraphT with slicing criterion 〈25, res〉, the command
would be:

$ java -cp jgrapht-1.5.0.jar -jar sdg-cli.jar -c Graphing.java:25#res

1 Available at https://github.com/mistupv/JavaSlicer/releases.

https://github.com/mistupv/JavaSlicer
https://github.com/mistupv/JavaSlicer/releases

A Program Slicer for Java (Tool Paper) 149

Fig. 2. Sequence of events that slice a program in JavaSlicer.

Of course, transitive dependencies must also be included (in our case, we
would need to include JGraphT ’s dependencies).

Each module, library, and dependency in a project must be included via -i
or -cp. However, the SDG’s behaviour changes in each. With the former, the
files are included in the SDG (they are parsed, analysed, its dependences are
computed, etc.), increasing precision but making the analysis take longer and
more memory. The latter does not take into account the body of each function,
speeding up the process at the cost of some precision. This gives the user the
freedom of including/excluding specific libraries from the analysis.

4 Implementation

JavaSlicer is a Java project with 9.3K LOC2 in two modules:

sdg-core: The main program slicing library, which contains multiple variants of
the SDG with their corresponding slicing algorithms.

sdg-cli: A simple client that uses the core library to produce slices.

The main module contains all the data structures and algorithms required
to run the slicer. Slicing a program with the library is as simple as creating a
new SDG, building it with the parsed source code, and slicing it w.r.t. a slicing
criterion. Internally, the construction of the SDG follows a 7-step process: (1)
Compute the class graph (connecting classes, their parents and members) from
the parsed sources. (2) Compute the control-flow arcs to create a CFG for each
method in the program. (3) Compute the call graph, which represents methods
as nodes and calls between them as edges. (4) Perform a data-flow analysis to
locate the formal-in and formal-out variables, adding markers to the CFG such
that formal nodes will be placed in the PDG. (5) Compute control and data
dependence for each CFG, creating its corresponding PDG. (6) Transform the
PDGs into the associated SDGs, connecting each call site to its corresponding

2 Measured at release 1.3.1, excluding whitespace and comments, measured with cloc.

150 C. Galindo et al.

Table 1. Time required to build and slice re2j (release 1.6).

Slice size range (SDG nodes) # SCs Build time (s) Slice time (ms)

[0, 100) 49 13.35 ± 0.07 0.927 ± 0.018

[100, 1000) 95 217.315 ± 2.874

[1000, 1400) 122 1164.423 ± 13.093

[1400, 1800) 146 1584.023 ± 12.429

[1800,∞) 31 2943.965 ± 15.702

[0,∞) - Averages 443 13.35 ± 0.07 1095.440 ± 12.039

declaration (using the call graph). (7) Compute the summary arcs between each
pair of actual-in and actual-out nodes that belong to the same call.

Finally, the graph can be stored for repeated use or a slice can be generated.
Each child class of SDG contains a reference to the correct slicing algorithm
required to slice it. The user only has to provide enough information to locate the
node(s) that represent the slicing criterion (via an instance of SlicingCriterion).
The resulting slice is a set of nodes from the SDG, that can be studied as-is or
converted back to source code via JavaParser.

Figure 2 summarises the process through which the source code and slicing
criterion are employed to build and slice the SDG.

5 Empirical Evaluation

To evaluate the capabilities and performance of our tool, we chose re2j, a Java
library written by Google to handle regular expressions. It contains 8.1K LOC
across 19 Java files. We generated the SDG and then sliced it once per return
statement (using the value being returned as the slicing criterion). In total we
performed 443 slices. We repeated each action a hundred times to obtain the
average execution time with error margins (99% confidence).

The results are summarised in Table 1. To show more relevant values, we
grouped the slices by slice size, showing that the time required to slice scales
linearly with the number of nodes traversed. Our tool produces slices between
one and four orders of magnitude faster than it builds the SDG, which is expected
and fits well into the typical usage of program slicers, in which the graph is built
once and sliced multiple times. The amount of time dedicated to each phase in
the creation of the graph can be seen in Fig. 3.

6 Related Work

The most similar tool in the state of the art is Codesonar, a proprietary tool
for C, C++, and Java, that is being sold by grammatech c©. On the public side,
unfortunately, most Java slicers have been abandoned. For instance, Kaveri is an
Eclipse plug-in that contains a program slicer, but it has not been updated since

A Program Slicer for Java (Tool Paper) 151

Parsing (JavaParser)
5%

(1) Class graph
5%

(2) CFGs

6%

(3) Call graph

10%(4) Formal nodes

27%

(5) PDGs

19%

(6) Connect calls

11% (7) Summary arcs

17%

Fig. 3. Breakdown of the time dedicated to each step of the creation of the SDG.

2014 (8 years) and cannot work with maintained releases of Eclipse. The reason
is, probably, the difficulty of dealing with the new features of Java (functional
interfaces, lambda expressions, record types, sealed classes, etc.). There is still,
however, a public program slicer maintained for Java: the slicer contained in the
WALA (T. J. Watson Libraries for Analysis, for Java and JavaScript) libraries.
Unfortunately, this slicer does not implement the advanced extensions of the
SDG for object-oriented (OO) features, such as inclusion polymorphism, [5],
exception handling [1], and unconditional jumps [4].

7 Conclusions

JavaSlicer is a novel free-software program slicing tool for Java. It efficiently
implements the most advanced extensions of the SDG, including all the JSysDG
extensions for object-oriented programs (inheritance, interfaces, polymorphism,
etc.); specific exception handling treatment (throw, try-catch, etc.); and uncon-
ditional jumps (return, break, continue, etc.). It is both a library that can be
used by other systems, and a standard program slicing tool.

References

1. Allen, M., Horwitz, S.: Slicing Java programs that throw and catch exceptions.
SIGPLAN Not. 38(10), 44–54 (2003)

2. Galindo, C., Pérez, S., Silva, J.: Data dependencies in object-oriented programs. In:
11th Workshop on Tools for Automatic Program Analysis (2020)

3. Horwitz, S., Reps, T., Binkley, D.: Interprocedural slicing using dependence graphs.
In: Proceedings of the ACM SIGPLAN 1988 Conference on Programming Lan-
guage Design and Implementation, PLDI 1988, pp. 35–46. ACM, New York (1988).
https://doi.org/10.1145/53990.53994

4. Kumar, S., Horwitz, S.: Better slicing of programs with jumps and switches. In:
Kutsche, R.-D., Weber, H. (eds.) FASE 2002. LNCS, vol. 2306, pp. 96–112. Springer,
Heidelberg (2002). https://doi.org/10.1007/3-540-45923-5 7

5. Walkinshaw, N., Roper, M., Wood, M.: The Java system dependence graph. In: Pro-
ceedings Third IEEE International Workshop on Source Code Analysis and Manip-
ulation, pp. 55–64 (2003)

https://doi.org/10.1145/53990.53994
https://doi.org/10.1007/3-540-45923-5_7

Formal Methods for Intelligent
and Learning Systems

Constrained Training of Recurrent Neural
Networks for Automata Learning

Bernhard K. Aichernig1 , Sandra König2 , Cristinel Mateis2 ,
Andrea Pferscher1(B) , Dominik Schmidt2 , and Martin Tappler1,3

1 Institute of Software Technology, Graz University of Technology, Graz, Austria
{aichernig,andrea.pferscher,martin.tappler}@ist.tugraz.at

2 AIT Austrian Institute of Technology, Vienna, Austria
{sandra.koenig,cristinel.mateis}@ait.ac.at, t-dschmidt@microsoft.com

3 Silicon Austria Labs, TU Graz - SAL DES Lab, Graz, Austria

Abstract. In this paper, we present a novel approach to learning finite
automata with the help of recurrent neural networks. Our goal is not
only to train a neural network that predicts the observable behavior
of an automaton but also to learn its structure, including the set of
states and transitions. In contrast to previous work, we constrain the
training with a specific regularization term. We evaluate our approach
with standard examples from the automata learning literature, but also
include a case study of learning the finite-state models of real Bluetooth
Low Energy protocol implementations. The results show that we can
find an appropriate architecture to learn the correct automata in all
considered cases.

Keywords: Automata learning · Machine learning · Recurrent neural
networks · Bluetooth Low Energy · Model inference

1 Introduction

Models are at the heart of any engineering discipline. They capture the necessary
abstractions to master the complexity in a systematic design and development
process. In software engineering, models are used for a variety of tasks, including
specification, design, code-generation, verification, and testing. In formal meth-
ods, these models are given formal mathematical semantics to reach the highest
assurance levels. This is achieved through (automated) deduction, i.e. the rea-
soning about specific properties of a general model.

With the advent of machine learning, there has been a growing interest
in the induction of models, i.e. the learning of formal models from data. We
have seen techniques to learn deterministic and non-deterministic finite state
machines, Mealy machines, Timed Automata, and Markov decision processes.
In this research, called automata learning [10], model learning [1], or model
inference [11], specific algorithms have been developed that either start from
given data (passive learning) [25] or actively query a system during learning
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
B.-H. Schlingloff and M. Chai (Eds.): SEFM 2022, LNCS 13550, pp. 155–172, 2022.
https://doi.org/10.1007/978-3-031-17108-6_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-17108-6_10&domain=pdf
http://orcid.org/0000-0002-3484-5584
http://orcid.org/0000-0003-2881-4519
http://orcid.org/0000-0001-7502-0688
http://orcid.org/0000-0002-9446-9541
http://orcid.org/0000-0001-8208-6087
http://orcid.org/0000-0002-4193-5609
https://doi.org/10.1007/978-3-031-17108-6_10

156 B. K. Aichernig et al.

(active learning) [2]. Two prominent libraries that implement such algorithms
are AALpy [21] and LearnLib [12].

An alternative to specific algorithms is to map the automata learning problem
to another domain. For example, it was shown that the learning problem can
be encoded as SAT [8] or SMT [29,30] problem, and then it is the task of the
respective solver to find a model out of the given data.

In this work, we ask the question if machine learning can be exploited for
automata learning. That is, we research if and how the problem of automata
learning can be mapped to a machine learning architecture. Our results show that
a specific recurrent neural network (RNN) architecture is able to learn a Mealy
machine from given data. Specifically, we approach the classic NP-complete prob-
lem of inducing an automaton with at most k states that is consistent with a
finite sample of a regular language [6].

The main contributions are: (i) a novel architecture for automata learning by
enhancing classical RNNs, (ii) a specific constrained training approach exploiting
regularization, (iii) a systematic evaluation with standard grammatical inference
problems and a real-world case study, and (iv) evidence that we can find an
appropriate architecture to learn the correct automata in all considered cases.

The rest of the paper is structured as follows. Section 2 introduces preliminary
work. In Sect. 3, we present our automata learning technique based on RNNs.
Section 4 discusses the results of the conducted case studies. We compare to
related work in Sect. 5, followed by concluding remarks in Sect. 6.

2 Preliminaries

2.1 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are a popular choice for modeling sequential
data, such as time-series data [5]. The classical version of an RNN with feedback
from a hidden layer to itself is known as vanilla RNN [17].

A vanilla recurrent neural network with input x and output y is defined as

h<t> = f(Whxx<t> + Whhh<t−1> + bh)
ŷ<t> = g(Wyh

<t> + by)

where f and g are activation functions for the recurrent and the output layer,
respectively. Popular activation functions for the recurrent layer are rectified lin-
ear unit (ReLU) and hyperbolic tangent (tanh), whereas the softmax function
may be used for g when categorial output values shall be predicted. The param-
eters, aka weights, Θ = (Whx,Whh, bh,Wy, by) need to be learned. The input to
the network at time step t is x<t>, whereas ŷ<t> is the corresponding network’s
prediction. h<t> is referred to as the hidden state of the network and is used
by the network to access information from past time steps or equivalently, pass
relevant information from the current time step to future steps.

An RNN maps an input sequence x to an output sequence ŷ of the same
length. It is trained based on training data {(x1,y1), . . . , (xm,ym)} containing

Constrained Training of Recurrent Neural Networks for Automata Learning 157

m sequence pairs. While processing input sequences xi = (x<1>
i , . . . , x<n>

i),
values of the parameters Θ are learned that minimize the error between the true
outputs yi = (y<1>

i , . . . , y<n>
i) and the network’s predictions (ŷ<1>

i , . . . , ŷ<n>
i).

The error is measured through a predefined loss function. The most popular
loss functions are the mean squared error for real-valued y<t>, and the cross-
entropy loss for categorical y<t>. Gradient-based methods are used to minimize
the error by iteratively changing each weight in proportion to the derivative of
the actual error with respect to that weight until the error falls below a predefined
threshold for a fixed number of iterations.

2.2 Finite State Machines

We consider finite-state machines (FSMs) in the form of Mealy machines:

Definition 1. A Mealy machine is a 6-tuple 〈Q, q0, I, O, δ, λ〉 where

– Q is a finite set of states containing the initial state q0,
– I and O are finite sets of input and output symbols,
– δ : Q × I → Q is the state transition function, and
– λ : Q × I → O is the output function.

Starting from a fixed initial state, a Mealy machine M responds to inputs i ∈ I,
by changing its state according to δ and producing outputs o ∈ O according to λ.
Given an input sequence i ∈ I∗, M produces an output sequence o = λ∗(q0, i),
where λ∗(q, ε) = ε for the empty sequence ε and λ∗(q, i·i) = λ(q, i)·λ∗(δ(q, i), i), i
is an input, i is an input sequence, and · denotes concatenation. Given input and
output sequences i and o of the same length, we use t(i,o) to create a sequence
of input-output pairs in (I × O)∗. We call such a sequence of pairs a trace.

A Mealy machine M defines a regular language over I ×O: L(M) = {t(i,o) |
i ∈ I∗,o = λ∗(q0, i)} ⊆ (I × O)∗. The language contains the deterministic
response to any input sequence and excludes all other sequences. We can now
formalize the problem that we tackle in this paper: Given a finite set of traces
S ⊂ (I × O)∗, we learn a Mealy machine M with at most n states such that
S ⊆ L(M), by training an RNN. This is a classic NP-complete problem in
grammatical inference [6]. Usually, it is stated for deterministic finite automata
(DFAs), but any DFA can be represented by a Mealy machine with true and
false as outputs, denoting whether a word (input sequence) is accepted.

2.3 Automata Learning

Automata learning creates behavioral FSMs of black-box systems. Figure 1 illus-
trates the general framework for learning a reactive system model in the form of a
Mealy machine. The goal of automata learning is to create a model M such that
L(M) = L(MSUL), where MSUL is an unknown Mealy machine representing
the System Under Learning (SUL).

We distinguish between active and passive learning algorithms. Passive learn-
ing creates a behavioral model from a given set of traces. To learn a Mealy

158 B. K. Aichernig et al.

Reactive System

System
Under Learning Learning

Algorithm

Trace
Sample

Automata Learning
Framework

q0 q1

q2 q3

a/false

b/false

a/true

b/false

a/false

b/true

a/false

b/false

Learned Model

input

output
generates

Fig. 1. The automata learning framework creates from a sample of traces a Mealy
machine. The sample is generated from the executions of inputs on the reactive system.

machine MP , passive learning infers from a finite set of traces S ⊂ (I × O)∗ a
model MP such that S ⊆ L(MP), often restricting MP to have at most k states.
Given that S ⊆ L(MSUL), most algorithms guarantee L(MP) = L(MSUL) for
large enough S and finite MSUL [9]. One challenge in the application of passive
learning is to provide a finite set of traces such that L(MP) = L(MSUL).

Active automata learning queries the SUL to create a behavioral model. Many
active learning algorithms are based on the L∗ algorithm [2] which is defined for
different modeling formalisms like Mealy machines [28]. L∗ queries the SUL to
generate a finite set of traces S ⊂ (I × O)∗ from which a hypothesis Mealy
machine MA is constructed that fulfills S ⊆ L(MA). L∗ guarantees that the
MA is minimal. The hypothesis MA is then checked for equivalence to the lan-
guage L(MSUL). Since MSUL is unknown, checking the behavioral equivalence
between MSUL and MA is generally undecidable. Hence, conformance testing is
used to substitute the equivalence oracle in active learning. Model-based testing
techniques generate a finite set of traces ST ⊂ (I × O)∗ from executions on MA

and check if ST ⊂ L(MSUL). If t(i,o) /∈ L(MSUL), a counterexample to the
behavioral equivalence between MSUL and MA is found. Based on this trace,
the set of traces S ⊂ (I × O)∗ is extended by performing further queries. Again
a hypothesis MA is created and checked for equivalence. This procedure repeats
until no counterexample to the equivalence between L(MSUL) and L(MA) can
be found. The algorithm then returns the learned automaton MA. Note that L∗

creates MA such that S ⊂ L(MA). With access to a perfect behavioral equiva-
lence check between MSUL and MA, we could guarantee that the generated finite
set of traces S enables learning a model MA such that L(MA) = L(MSUL).

3 Automata Learning with RNNs

In this section, we first present the problem that we tackle and propose an RNN
architecture as a solution. After that, we cover (i) the constrained training of
the proposed RNN architecture with our specific regularization term, and (ii)
the usage of the trained RNN to extract an appropriate automaton.

Constrained Training of Recurrent Neural Networks for Automata Learning 159

3.1 Overview and Architecture

It is well known that recurrent neural networks (RNNs) can be used to efficiently
model time-series data, such as data generated from interaction with a Mealy
machine. Concretely, this can be done by using the machine inputs x<t> as
inputs to the RNN and minimizing the difference between the machine’s true
outputs y<t> and the RNN’s predictions ŷ<t>. In other words, the RNN would
predict the language L(M) of a Mealy machine M.

This optimization process can be performed via gradient descent. Even if
such a trained RNN can model all interactions with perfect accuracy, one disad-
vantage compared to the original automaton is that it is much less interpretable.
While each state in a Mealy machine can be identified by a discrete number, the
hidden state of the RNN, which is the information passed from one time step to
the next one, is a continuous real-valued vector. This vector may be needlessly
large and contain mostly redundant information. Thus it would be useful if we
could simplify such a trained RNN into a Mealy machine MR that produces the
language M that we want to learn, i.e., with L(M) = L(MR).

We approach the following problem. Given a sample S ⊂ L(M) of traces
t(ij ,oj) and the number of states k of M, we train an RNN to correctly predict
oj from ij . To facilitate interpretation, we want to extract a Mealy machine MR

from the trained RNN with k states, modeling the same language. For MR,
S ⊂ L(MR) shall hold such that for large enough S we have L(M) = L(MR).

For this purpose, we propose an RNN architecture and learning procedure
that ensure that the RNN hidden states can be cleanly translated into k discrete
automata states. Compared to standard vanilla RNNs, the hidden states are
transformed into an estimate of a categorical distribution over the k possible
automaton states. This restricts the encoding of information in the hidden states
since now all components need to be in the range [0, 1] and sum up to 1. Figure 2
shows our complete RNN cell architecture, implementing the following equations.

h<t> = af(Whxx<t> + Whss
<t−1> + bh), af ∈{ReLU, tanh}

ŷ<t> = softmax(Wyh
<t> + by)

ŝ<t> = softmax(Wsh
<t> + bs)

s<t> =

{
softmax(Wsh

<t> + bs), if mode = “train”

hardmax(Wsh
<t> + bs), else (i.e. mode = “infer”)

In comparison to vanilla RNN cells, the complete hidden state h<t> is only an
intermediate vector of values. Based on h<t>, an output ŷ<t> is predicted using
a softmax activation. A Mealy machine state ŝ<t> is predicted as well and passed
to the next time step. It is computed via (i) softmax during RNN training, and
(ii) via hardmax during inference. During training, we also compute the cross-
entropy of ŝ<t> with hardmax(ŝ<t>) as a label, which serves as a regularization
term. Inference refers to extracting an automaton from the trained RNN, which
takes as input the current system state and an input symbol and gives as output

160 B. K. Aichernig et al.

Fig. 2. RNN-cell architecture

the next system state and an output symbol. Hence, we use softmax to estimate a
categorial distribution over possible states for training, whereas we use hardmax
to concretely infer one state during inference.

Our algorithm for extracting a Mealy machine from a trained RNN is based
on the idea that if the RNN achieves near-perfect accuracy when predicting the
machine’s true outputs, the hidden state h<t> encodes information correspond-
ing to the state of a Mealy machine at time step t. Otherwise, the RNN would
not be able to predict the expected outputs correctly, since those are a function
of both the input and the current state. By adapting the RNN architecture, we
enforce hidden states to correspond to discrete Mealy machine states.

3.2 Training and Automaton Extraction

In the following, we first discuss how to train an RNN with the structure shown
in Fig. 2 such that it will encode an automaton. Secondly, we show how to extract
the automaton from a trained RNN. We start by illustrating the basic operation
of such an RNN, i.e., the prediction of an output sequence and a state sequence
from an input sequence. This is called the forward pass and is used during
training and automaton extraction.

Forward Pass. Algorithm 1 implements the forward pass taking an input
sequence x and a mode variable as parameters. The mode variable distin-
guishes between training (train) and automaton extraction (infer). The algo-
rithm returns a pair (ŷ, ŝ) comprising the predicted output sequence and the
sequence of hidden states visited by the forward pass. We want to learn the lan-
guage of a Mealy machine, i.e., map i ∈ I∗ to o ∈ O∗ for sets I,O of input and
output symbols. Therefore, we encode every i ∈ I using a one-hot-encoding to
yield input sequences x from i ∈ I∗. In this encoding, every i is associated with
a unique |I|-dimensional vector, where exactly one element is equal to one and
all others are zero. We use an analogous encoding for outputs and the hidden
state shall approach a one-hot encoding in a k-dimensional vector space. For

Constrained Training of Recurrent Neural Networks for Automata Learning 161

Algorithm 1. Model forward pass M(x,mode)
Input: Input sequence x, Forward pass mode ∈ {“train”, “infer”}
Output: Pair (ŷ, ŝ) of predicted outputs and automaton states, resp.

1 ŷ, ŝ = [], []
2 s = one hot encoding(q0)
3 for t ← 1 to #steps(x) do

4 h = af(Whxx
<t> + Whss + bh) // af ∈ {ReLU, tanh}

5 ŷ<t> = softmax(Wyh + by)

6 ŝ<t> = softmax(Wsh + bs)
7 if mode == “train” then
8 s = ŝ<t>

9 else

10 s = hardmax(Wsh + bs) // mode = “infer”

11 return (ŷ, ŝ)

Algorithm 2. RNN Training train(M,D)
Input: Initialized RNN model M , Training dataset D = {(x1,y1), . . . , (xm,ym)}, #epochs,

Regularization factor C
Output: Trained RNN model M

1 optimizer = Adam(M)
2 for i ← 1 to #epochs do
3 accinf = 0
4 foreach (x,y) ∈ D do
5 ŷinf , ŝinf = M(x, “infer”)
6 accinf += accuracy(y, ŷinf)/|D|
7 ŷtr, ŝtr = M(x, “train”)
8 loss = cross entropy(y, ŷtr) + C × cross entropy(hardmax(ŝtr), ŝtr)
9 loss.backward()

10 optimizer.step()

11 if accinf = 100% then
12 break

13 return M

one-hot encoded outputs, we generally use the letter y and we use D to denote
one-hot-encoded training datasets derived from a sample S ⊂ L(M).

Algorithm 1 initializes the output and state sequences ŷ and ŝ to the empty
sequences and the hidden state s of the RNN to the one-hot encoding of the fixed
initial state q0. For every input symbol x<t>, Line 4 to Line 10 perform the equa-
tions defining the RNN, i.e., applying affine transformation using weights and an
activation function. At each step t, we compute and store the predicted output
ŷ<t> (Line 5) and the predicted state ŝ<t> (Line 6) in ŷ and ŝ, respectively. In
the “train” mode, we pass ŝ<t> as hidden state to the next time step (Line 8).
In the “infer” mode used for automaton extraction, we apply a hardmax on the
hidden state (Line 10) so that exactly one state is predicted.

Training. The architecture is trained by minimizing a prediction loss between
y<t> and ŷ<t> along with a regularization loss: the cross-entropy of the state
distribution s<t> w.r.t. to the state with the highest probability in s<t>. Mini-
mizing our regularization of choice forces the RNN to increase the certainty about
the predicted state. This ensures that the hidden states tend to be approximately

162 B. K. Aichernig et al.

one-hot-encoded vectors where the index of the maximal component corresponds
to the state of a Mealy machine accepting the same language. Note that directly
using a discrete state representation is not beneficial when training with gradi-
ent descent. Algorithm 2 implements the training in PyTorch-like [26] style. Its
parameters are the training dataset D, a sample of the language to be learned,
the learning epochs, and a regularization factor, which controls the influence of
state regularization. The training is performed using the gradient descent-based
Adam optimizer [14]. The algorithm performs up to #epochs loops over the
training data. An epoch processes each trace in the training data referred to as
an episode (Line 4 to Line 10). Training stops when the prediction accuracy of
the RNN operated as an automaton reaches 100% or #epochs episodes have been
performed. To calculate accuracy, we perform a forward pass in “infer” mode
in Line 5 and compute the average accuracy in Line 6. For the actual training,
we perform a forward pass in “train” mode and compute the overall loss from
the prediction and state regularization losses (Line 7 and Line 8). Line 9 and
10 update the RNN parameters, i.e., the weights. Upon finishing the training,
Algorithm 2 returns the trained RNN.

The purpose of the trained RNN model is not to predict outputs of new
inputs, unseen during training, but to help with inferring an automaton that
produces the training data. This automaton shall be used to predict the out-
puts corresponding to (new) inputs. Thus, we use all available data for training
the RNN and aim at achieving perfect accuracy on the training data. Perfect
accuracy on the training set gives us the confidence that the internal state repre-
sentation of the learned RNN model corresponds to the true (partial) automaton
that produced that data. In cases where the training data does not cover all states
and transitions of the full true automaton, we might learn a partial automaton
missing some states and transitions. Using all available data for training reduces
the possibility to learn just a partial automaton.

Automaton Extraction from a Trained RNN. Given a trained RNN model,
we extract the corresponding automaton with Algorithm 3. We represent the
automaton of a Mealy machine by its set of transitions in the following form:

T = {(s, s′, i/o) | s, s′ ∈ Q ∧ i ∈ I ∧ o ∈ O ∧ δ(s, i) = s′ ∧ λ(s, i) = o}.

Algorithm 3 starts by initializing T to the empty set. Then, it iterates through
all episodes, i.e., all traces, from the training set D. At each iteration (Line 3 to
Line 12), it first runs the RNN model M on the one-hot encoded input sequence
x of the current episode (Line 3) to obtain the corresponding predicted output
symbols and transition state sequences ŷ and ŝ, respectively. Line 4 to Line 12
iterate through all steps of the current episode. All episodes start from the initial
state q0 which, by construction, is assigned the label 0. Thus, we initialize the
first state to 0 (Line 4). If the predicted output symbol matches the label at
the current step (Line 8), then T is extended by a triple encoding a transition,
which is built from the starting/ending states and the input/output symbols of
the current step. By applying argmax on the one-hot encoded input x<t> and

Constrained Training of Recurrent Neural Networks for Automata Learning 163

Algorithm 3. Automaton extraction from RNN extract(M,D)
Input: Trained RNN model M , Training data D = {(x1,y1), . . . , (xm,ym)}
Output: Automaton transitions T

1 T ← {}
2 foreach episode = (x,y) ∈ D do
3 (ŷ, ŝ) = M(x, “infer”)
4 s from, s to = 0
5 for t ← 1 to #steps(episode) do
6 s to = argmax(ŝ<t>)

7 in, out = argmax(x<t>), argmax(y<t>)

8 if out = argmax(ŷ<t>) then
9 T = T ∪ {(s from, s to, in/out)}

10 else
11 break

12 s from = s to

13 return T

Table 1. Description of Tomita Grammars.

Grammar Description # States

Tomita 1 strings of the form 1∗ 2

Tomita 2 strings of the form (1 0)∗ 4

Tomita 3 strings that do not include an odd number of
consecutive 0 symbols Following an odd number of
consecutive 1 symbols

5

Tomita 4 strings without more than 2 consecutive 0 symbols 4

Tomita 5 even strings with an even number of 0 and 1 symbols 4

Tomita 6 strings where the difference between the numbers of 0s
and 1s is divisible by three

3

Tomita 7 strings of the form 0∗1∗0∗1∗ 5

output y<t> we get integer-valued discrete representations of them1 (Line 7).
If the predicted output does not match the expected value, the current and
remaining steps of the current episode are ignored and the algorithm moves to
the next episode (Line 2). Note that an episode consists of a sequence of adjacent
steps (or transitions) in the automaton, that is, the next step starts from the
state where the current step ended (Line 12). After processing all training data
traces, Algorithm 3 returns the extracted automaton with transitions T .

4 Case Studies

4.1 Case Study Subjects

Tomita Grammars. We use Tomita Grammars [32] to evaluate our approach.
These grammars are popular subjects in the evaluation of formal-language-
1 The actual corresponding input, resp. output, symbol is obtained from the input,

resp. output, symbol alphabet through an appropriate indexed mapping. For sim-
plicity, we don’t show this mapping here.

164 B. K. Aichernig et al.

Table 2. Investigated BLE devices including the running application. The states indi-
cate the state number of the models created by from active automata learning.

Manufacturer (board) System-on-Chip Application # States

Texas instruments (LAUNCHXL-CC2650) CC2650 Project zero 5

Cypress (CY8CPROTO-063-BLE) CYBLE-416045-02 Find me target 3

Nordic (decaWave DWM1001-DEV) nRF52832 Nordic GATTS 5

related work on RNNs [22,23,33], as they possess various features, while they
are small enough to facilitate manual analysis. All of the grammars are defined
over the input symbols 0 and 1. We transformed the ground-truth Deterministic
Finite Automata (DFAs) into Mealy machines, thus the outputs are either true
(string accepted) or false (string not accepted). Table 1 contains for each Tomita
grammar a short description of the accepted strings and the number of states of
the smallest Mealy machine accepting the corresponding language. For example,
Tomita 5 accepts strings depending on parity of 0 and 1 symbols. The same
language has been used to illustrate the L∗ algorithm [2]. Automata accepting
such languages are hard to encode using certain types of RNNs [7].

Bluetooth Low Energy (BLE). To evaluate the applicability to practical prob-
lems, we consider the BLE protocol. BLE was introduced in the Bluetooth stan-
dard 4.0 as a communication protocol for low-energy devices. The BLE protocol
stack implementation is different from the Bluetooth classic protocol. Pferscher
and Aichernig [27] learned with L∗ behavioral models of BLE devices. They pre-
sented practical challenges in the creation of an interface to enable the interaction
required by active automata learning. Especially, the requirement of adequately
resetting the device after each performed query raises the need for a learning
technique that requires less interaction with the SUL. We selected three devices
from their case study. The selected devices have a similarly large state space and
show more stable deterministic behavior than other devices in the case study by
Pferscher and Aichernig [27] which would have required advanced data process-
ing that filters out non-deterministic behavior. Table 2 states the investigated
devices, the used System-on-Chip, and the running application. In the following,
we refer to the devices by the Systems-on-Chip name. The running application
initially sends BLE advertisements and accepts a connection with another BLE
device. If a connection terminates, the device again sends advertisements. The
generated behavioral model should formalize the implemented connection pro-
cedure. Compared to existing work [27], we extended the considered nine inputs
by another input that implements the termination indication, which indicates
the termination of the connection by one of the two devices. Since every input
must be defined for every state, the complexity of learning increases with the
size of the input alphabet. Hence, the BLE case study provides a first impression
of the scalability of our presented learning technique.

Figure 3 depicts a behavioral model of the CYBLE-416045-02. Some input
and output labels have been simplified by a ‘+’-symbol. The model shows that

Constrained Training of Recurrent Neural Networks for Automata Learning 165

q0

q1

q2

connect /
DATA

scan / ADV
termination / DATA

version /
VERSION IND

connect /
DATA

scan / ADV
termination / DATA

scan / ADV
+ / EMTPY

+ / +

+ / +

version / DATA

Fig. 3. Simplified model of the CYBLE-416045-02 (‘+’ abbreviates inputs/outputs).

a connection can be established with a connection request and terminated by
a scan request or termination indication. A version indication is only answered
once during an active connection. Pferscher and Aichernig [27] provide a link to
complete models of all three considered examples.

4.2 Experimental Setup

We demonstrate the effectiveness of our approach on both (i) the canonical
Tomita grammars used in the literature [4,22,33], and (ii) the physical BLE
devices introduced in the previous section. We consider the automata learned
with the active automata learning (AAL) algorithm L∗ and the corresponding
data produced by AAL as given. We call these the AAL automata and AAL data,
respectively. In general, we do not require AAL to be executed in advance. AAL
rather provides an outline for the evaluation of our proposed RNN architecture.
The number of states k of the AAL automata is used to set the size of s in the
RNN architecture. The AAL automaton itself is only used as ground truth. It
does not affect the RNN training procedure in any way other than defining the
size of s. We say that the RNN learned the correct automaton if the automaton
extracted from the trained RNN according to Algorithm 3 is the same as the
AAL automaton, modulo some states relabelling.

AAL Data. Firstly, we use the AAL data as RNN training data. This finite set
of traces from AAL is complete in the sense that passive automata learning
could learn a behavioral model that conforms to the model learned by AAL. For
AAL data generation, we used the active automata learning library AALpy [21],
which implements state-of-the-art algorithms including the L∗-algorithm variant
for Mealy machines by Shahbaz and Groz [28]. The logged data includes all per-
formed output queries and the traces generated for conformance testing during
the equivalence check. The model-based testing technique used for conformance
testing provides state coverage for the intermediate learned hypotheses.

For the BLE data generation, we use a similar learning framework as
Pferscher and Aichernig [27]. To collect the performed output queries during
automata learning, we logged the performed BLE communication between the

166 B. K. Aichernig et al.

learning framework and the SUL. The logged traces are then post-processed to
exclude non-deterministic traces. Non-determinism might occur due to packet
loss or delayed packets. In this case, the active automata learning framework
repeated the output query. To clean up the logged BLE traces, we execute
all input traces on the actively learned Mealy machine. If the observed out-
put sequence differentiate, the trace is removed from the considered learning
data set.

Random Data. Secondly, we use randomly generated data as training data. That
is, we are not guided by any active learning procedure to generate the training
data. Instead, we simply sample random inputs from the input alphabet and
observe the outputs produced by the system, i.e. the Tomita grammars or the
physical BLE devices. This corresponds to a more realistic real-world scenario
where the data logged during regular system operation is the only available train-
ing data. To speed up the experiments, we use the AAL automaton instead of
the real system to generate random data. More precisely, we achieve this through
random walks on the AAL automaton. Each random walk represents a trace in
the training data. It always starts from the initial state of the AAL automaton
and collects the sequence of input-output pairs obtained by running the AAL
automaton on the randomly generated inputs. We set a value max length for
the maximal length of the generated episodes.

• For Tomita grammars, we set the number of traces to be generated. At each
iteration, we produce a trace through a random walk from the initial state
with a length uniformly distributed within [1,max length].

• For the BLE devices, we generate traces that simulate BLE sessions between
real-world devices. For this, each trace ends with a terminate request indicat-
ing the end of the connection. Hence, we can extract such traces from a long
random walk by extracting the subtraces between two subsequent terminate
requests. Thus, we set the overall number of transitions n to be generated
and start a random walk of length n from the initial state. At each step, we
sample an input request or force a terminate request to (1) finish the walk or
to (2) ensure a maximum individual trace length of max length.
Since each episode ends in the initial state due to the final terminate request,
we exploit this knowledge during the RNN training by adding to the overall
loss (s. Algorithm 2, line 8) the term cross entropy(q0, s

<last>) corresponding
to the deviation of the last RNN state s<last> from the initial state of the
learned automaton, which is fixed to q0 by construction.

For both Tomita grammars and BLE devices, we remove from the random data
all duplicated traces, if any. We start with a smaller random dataset and pro-
gressively generate bigger random datasets until the RNN learns the correct
automaton or a predefined time budget is consumed.

All experiments were performed with PyTorch 1.8 on a Dell Latitude 5501
laptop with Intel Hexa-Core I7-9850H, 32 GB RAM, 2.60 GHz, 512 GB SSD,
NVIDIA GeForce MX150, and Windows-10 OS.

Constrained Training of Recurrent Neural Networks for Automata Learning 167

Table 3. RNN Automata Learning of Tomita Grammars. The correct automaton could
be learned in all cases. Fixed parameters: #neurons per hidden layer = 256, learning
rate = 0.001, C = 0.001.

Grammar AAL Data Random Data

Size Episode

Lengths {m;

std}

RNN {af; #hl}
{#e; t}

Size AAL Data

Coverage

Episode

Lengths {m;

std}

RNN {af; #hl}
{#e; t}

Tomita 1 41 {8.4; 4.5} {relu; 1} {5; 3 s} 10 3/41 {6.3; 3.3} {relu; 1} {14;
2 s}

Tomita 2 73 {9.5; 5.3} {tanh; 1} {9;
11 s}

38 13/73 {5.9; 3.0} {tanh; 1} {76;
37 s}

Tomita 3 111 {10.4; 4.9} {tanh; 2} {25;
59 s}

438 35/111 {7.7; 2.0} {relu; 2} {26;
215 s}

Tomita 4 83 {10.4; 5.2} {tanh; 1} {28;
45 s}

70 11/83 {6.5; 2.6} {tanh; 1} {25;
25 s}

Tomita 5 91 {9.3; 4.7} {relu; 1} {10;
16 s}

38 10/91 {5.9; 3.0} {relu; 1} {25;
12 s}

Tomita 6 68 {8.6; 4.6} {relu; 1} {7; 8 s} 14 5/68 {6.1; 3.2} {relu; 2} {26;
6 s}

Tomita 7 115 {10.4; 5.1} {relu; 1} {15;
33 s}

38 10/115 {5.5; 3.3} {tanh; 1} {296;
151 s}

Table 4. RNN Automata Learning of BLE devices. The correct automaton could be
learned in all cases. Fixed parameters: #neurons per hidden layer = 256, #hl = 1, af
= relu, learning rate = 0.001.

Device AAL Data Random Data

Size Episode

Lengths {m;

std}

RNN {C;

#e; t}
Size AAL Data

Coverage

Episode

Lengths {m;

std}

RNN {C;

#e; t}

CYBLE-416045-02 272 {4.0; 1.0} {0.01; 8;

20 s}
75 13/272 {10.5; 7.6} {0.01; 99;

216 s}
CC2650 473 {5.9; 2.1} {0.001;

166;

17m:40 s}

933 93/473 {10.1; 6.6} {0.001; 50;

17m:26 s}

nRF52832 447 {4.6; 1.1} {0.001; 38;

4m:15 s}
941 84/447 {10.0; 6.7} {0.001; 36;

13m:22 s}

4.3 Results and Discussion

Tables 3 and 4 illustrate the experimental results obtained by applying our app-
roach to learn the automata of Tomita grammars and BLE devices, respectively,
from both AAL data and random data. The number of traces contained in the
training data is given in the column Size for both AAL data and random data.
For the random data, it is interesting to know how many traces from the AAL
data were contained also in the random data. This information is shown in the
column AAL Data Coverage as the ratio between the number of AAL traces
contained in the random data and the overall number of traces in the AAL data.

The column Episode Lengths contains the means and standard deviations of
the lengths of the traces in the training data. The column RNN contains (i) the
RNN architecture parameters which possibly changed across the experiments
(i.e. the activation function af and the number of hidden layers #hl in Table 3

168 B. K. Aichernig et al.

and the regularization factor C in Table 4), and (ii) the number of epochs #e
and the time t required by the RNN training to learn the correct automaton.

The values of other RNN architecture parameters, which were the same in
all experiments, are mentioned in the table captions. For instance, it turned out
that the values 0.001 and 256 for the learning rate and the number of neurons
per hidden layer, respectively, worked for all considered case studies.

For the Tomita grammars (Table 3), the value of the regularization factor
C was also fixed and equal to 0.001, whereas different activation functions and
numbers of hidden layers were used across the different grammars. For the BLE
devices (Table 4), the number of the hidden layers and the activation function
were also fixed and equal to 1 and ReLU, respectively, whereas different regu-
larization factors were used across different devices.

The results show that we could find an appropriate architecture to learn the
correct automata in all considered cases. This was expected when learning from
AAL data, as the AAL data is fully representative for the underlying minimum
automaton. More surprising is that we could learn the correct automaton also
from relatively small random datasets with a low coverage of the AAL data. Even
more surprising is that for all Tomita grammars, except Tomita 3, we could learn
the correct automaton from random datasets which were much smaller than the
AAL dataset - smaller in terms of both number of traces and average trace length.
Moreover, only a small fraction of the AAL data happened to be included also
in the random data. This suggests that the proposed RNN architecture and
training may better generalize than AAL. The good performance on Tomita
grammars might be attributed to the small number of automaton transitions
and input/outputs alphabets that only consist of 0 and 1 symbols.

For the BLE device CYBLE-416045-02, which has much larger input and out-
put alphabets, we could still learn the correct automaton from a random dataset
containing fewer traces than the AAL data. The other two BLE devices required
larger random datasets, approximately twice as large as the AAL dataset, due
to the higher number of transitions to be covered.

For all case studies, except Tomita 3 and 6, the same RNN architecture
worked for both AAL and random data. For Tomita 3, tanh worked for the AAL
data, whereas ReLU worked for the random data. For Tomita 6, we needed two
hidden layers for the random data, as opposed to a single hidden layer.

5 Related Work

Early work on the relationship between finite automata and neural networks
dates back to Kleene, who showed that neural networks can simulate finite
automata [15]. Minsky gave a general construction of neural networks that sim-
ulate finite automata [20]. In contrast, we do not simulate a known automaton,
but we learn an automaton of bounded size from a sample of a regular language.

The relationship between RNNs and automata has also been exploited to
explain RNN behavior, by extracting automata from RNNs. Omlin and Giles
proposed an approach to construct finite automata from RNNs trained on reg-
ular languages [24]. The basis for their approach is that hidden states of RNNs

Constrained Training of Recurrent Neural Networks for Automata Learning 169

form clusters, thus automata states can be identified by determining such clus-
ters. This property was recently also used to learn deterministic finite automata
(DFAs) [33] and Markov chains [4] from RNNs. Tiňo and Šajada [31] used self-
organizing maps to identify clusters for modeling Mealy automata. Michalenko
et al. [19] empirically analyzed this property and found that there is a corre-
spondence between hidden-state clusters and automata states, but some clusters
may overlap, i.e., some states may be indistinguishable. In contrast to relying
on clustering, which may not be perfect, we enforce a clustering of the hidden
states through regularization. Closest to our work in this regard is the work by
Oliva and Lago-Fernández [23]. They enforce neurons with sigmoid activation to
operate in a binary regime, thus leading to very dense clusters, by introducing
Gaussian noise prior to applying the activation function during training.

Several approaches based on or related to the L∗ algorithm [2] have been
proposed recently. Weiss et al. proposed automata-learning-based approaches to
extract DFAs [33], weighted automata [34], and subsets of context-free grammars
from RNNs [35]. Mayr and Yovine [18] applied the L∗ algorithm to extract
automata from RNNs, where they provide probabilistic guarantees. Khmelnitsky
et al. [13] propose a property-directed verification approach for RNNs. They
use the L∗ algorithm to learn automata models from RNNs and analyze these
models through model checking. Dong et al. [4] also apply automata learning and
verification to analyze RNNs. Muškardin et al. [22] examine the effect of different
equivalence-query implementations in L∗-based learning of models from RNNs.

Koul et al. [16] introduce quantization through training of quantized bottle-
neck networks into RNNs that encode policies of autonomous agents. This allows
them to extract FSMs in order to understand the memory usage of recurrent
policies. Carr et al. [3] use quantized bottleneck networks to extract finite-state
controllers from recurrent policies to enable formal verification.

6 Conclusion

In this work, we presented a new machine learning technique for learning finite-
state models in the form of Mealy machines. Our new automata learning app-
roach exploits a specialized RNN architecture together with a constrained train-
ing method in order to construct a minimal Mealy machine from given training
data. We evaluated our method on example grammars from the literature as well
as on a Bluetooth protocol implementation.

We see the encouraging results as a step towards learning more complex
models comprising discrete and continuous behavior, as found in many control
applications. Especially, the explainability of such hybrid systems is an open
problem that could be addressed with automata learning.

In contrast to some classical passive automata learning methods, we have
to know (or assume) the number of states k in advance. However, the current
approach could be the starting point for learning also the minimum number of
states. One possible way would be to start with a small number of states, e.g. k =
2, and progressively increase k until we can learn an automaton with k states

170 B. K. Aichernig et al.

which perfectly explains the training data. Another way would be to introduce
a further regularization term aiming at reducing an initially overestimated value
for k. We leave these investigations for future work. We will also apply our
approach to case studies with larger numbers of states.

Finally, we dare to express the hope that this work might contribute to
bridging the gap between the research communities in machine learning and
automata learning ultimately leading to more trustworthy AI systems.

Acknowledgement. This work was collaboratively done in the TU Graz LEAD
project Dependable Internet of Things in Adverse Environments project, the Learn-
Twins project funded by FFG (Österreichische Forschungsförderungsgesellschaft)
under grant 880852, and the “University SAL Labs” initiative of Silicon Austria Labs
(SAL) and its Austrian partner universities for applied fundamental research for elec-
tronic based systems.

References

1. Aichernig, B.K., Mostowski, W., Mousavi, M.R., Tappler, M., Taromirad, M.:
Model learning and model-based testing. In: Bennaceur, A., Hähnle, R., Meinke,
K. (eds.) Machine Learning for Dynamic Software Analysis: Potentials and Limits.
LNCS, vol. 11026, pp. 74–100. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-96562-8 3

2. Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Comput.
75(2), 87–106 (1987). https://doi.org/10.1016/0890-5401(87)90052-6

3. Carr, S., Jansen, N., Topcu, U.: Verifiable RNN-based policies for POMDPs under
temporal logic constraints. In: IJCAI, pp. 4121–4127. ijcai.org (2020). https://doi.
org/10.24963/ijcai.2020/570

4. Dong, G., et al.: Towards interpreting recurrent neural networks through proba-
bilistic abstraction. In: ASE, pp. 499–510. IEEE (2020). https://doi.org/10.1145/
3324884.3416592

5. Elman, J.L.: Finding structure in time. Cogn. Sci. 14(2), 179–211 (1990). https://
doi.org/10.1207/s15516709cog1402 1

6. Gold, E.M.: Complexity of automaton identification from given data. Inf. Control
37(3), 302–320 (1978). https://doi.org/10.1016/S0019-9958(78)90562-4

7. Goudreau, M.W., Giles, C.L., Chakradhar, S.T., Chen, D.: First-order versus
second-order single-layer recurrent neural networks. IEEE Trans. Neural Netw.
5(3), 511–513 (1994). https://doi.org/10.1109/72.286928

8. Heule, M., Verwer, S.: Software model synthesis using satisfiability solvers. Empir.
Softw. Eng. 18(4), 825–856 (2013)

9. de la Higuera, C.: Grammatical Inference: Learning Automata and Grammars.
Cambridge University Press, New York (2010)

10. Howar, F., Steffen, B.: Active automata learning in practice. In: Bennaceur, A.,
Hähnle, R., Meinke, K. (eds.) Machine Learning for Dynamic Software Analysis:
Potentials and Limits. LNCS, vol. 11026, pp. 123–148. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-96562-8 5

11. Irfan, M.N., Oriat, C., Groz, R.: Model inference and testing. In: Advances in
Computers, vol. 89, pp. 89–139. Elsevier (2013)

https://doi.org/10.1007/978-3-319-96562-8_3
https://doi.org/10.1007/978-3-319-96562-8_3
https://doi.org/10.1016/0890-5401(87)90052-6
https://doi.org/10.24963/ijcai.2020/570
https://doi.org/10.24963/ijcai.2020/570
https://doi.org/10.1145/3324884.3416592
https://doi.org/10.1145/3324884.3416592
https://doi.org/10.1207/s15516709cog1402_1
https://doi.org/10.1207/s15516709cog1402_1
https://doi.org/10.1016/S0019-9958(78)90562-4
https://doi.org/10.1109/72.286928
https://doi.org/10.1007/978-3-319-96562-8_5

Constrained Training of Recurrent Neural Networks for Automata Learning 171

12. Isberner, M., Howar, F., Steffen, B.: The open-source LearnLib. In: Kroening, D.,
Păsăreanu, C.S. (eds.) CAV 2015, Part I. LNCS, vol. 9206, pp. 487–495. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-21690-4 32

13. Khmelnitsky, I., et al.: Property-directed verification and robustness certification
of recurrent neural networks. In: Hou, Z., Ganesh, V. (eds.) ATVA 2021. LNCS,
vol. 12971, pp. 364–380. Springer, Cham (2021). https://doi.org/10.1007/978-3-
030-88885-5 24

14. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. In: ICLR
(2015)

15. Kleene, S.C.: Representation of Events in Nerve Nets and Finite Automata. RAND
Corporation, Santa Monica (1951)

16. Koul, A., Fern, A., Greydanus, S.: Learning finite state representations of recurrent
policy networks. In: ICLR. OpenReview.net (2019)

17. Ma, Y., Principe, J.C.: A taxonomy for neural memory networks. IEEE Trans. Neu-
ral Netw. Learn. Syst. 31(6), 1780–1793 (2020). https://doi.org/10.1109/TNNLS.
2019.2926466

18. Mayr, F., Yovine, S.: Regular inference on artificial neural networks. In: Holzinger,
A., Kieseberg, P., Tjoa, A.M., Weippl, E. (eds.) CD-MAKE 2018. LNCS, vol.
11015, pp. 350–369. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
99740-7 25

19. Michalenko, J.J., Shah, A., Verma, A., Baraniuk, R.G., Chaudhuri, S., Patel, A.B.:
Representing formal languages: A comparison between finite automata and recur-
rent neural networks. In: ICLR. OpenReview.net (2019)

20. Minsky, M.L.: Computation: Finite and Infinite Machines. Prentice-Hall Inc., USA
(1967)

21. Muškardin, E., Aichernig, B.K., Pill, I., Pferscher, A., Tappler, M.: AALpy: An
active automata learning library. In: Hou, Z., Ganesh, V. (eds.) ATVA 2021. LNCS,
vol. 12971, pp. 67–73. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
88885-5 5

22. Muskardin, E., Aichernig, B.K., Pill, I., Tappler, M.: Learning finite state models
from recurrent neural networks. In: ter Beek, M.H., Monahan, R. (eds.) IFM 2022.
LNCS, vol. 13274, pp. 229–248. Springer, Cham (2022). https://doi.org/10.1007/
978-3-031-07727-2 13

23. Oliva, C., Lago-Fernández, L.F.: Stability of internal states in recurrent neural net-
works trained on regular languages. Neurocomputing 452, 212–223 (2021). https://
doi.org/10.1016/j.neucom.2021.04.058

24. Omlin, C.W., Giles, C.L.: Extraction of rules from discrete-time recurrent neu-
ral networks. Neural Netw. 9(1), 41–52 (1996). https://doi.org/10.1016/0893-
6080(95)00086-0

25. Oncina, J., Garcia, P.: Identifying regular languages in polynomial time. In:
Advances in Structural and Syntactic Pattern Recognition. Machine Perception
and Artificial Intelligence, vol. 5, pp. 99–108. World Scientific (1992)

26. Paszke, A., et al.: PyTorch: An imperative style, high-performance deep learning
library. In: NeurIPS, pp. 8024–8035. Curran Associates, Inc. (2019)

27. Pferscher, A., Aichernig, B.K.: Fingerprinting Bluetooth Low Energy devices via
active automata learning. In: Huisman, M., Păsăreanu, C., Zhan, N. (eds.) FM
2021. LNCS, vol. 13047, pp. 524–542. Springer, Cham (2021). https://doi.org/10.
1007/978-3-030-90870-6 28

28. Shahbaz, M., Groz, R.: Inferring Mealy machines. In: Cavalcanti, A., Dams,
D.R. (eds.) FM 2009. LNCS, vol. 5850, pp. 207–222. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-05089-3 14

https://doi.org/10.1007/978-3-319-21690-4_32
https://doi.org/10.1007/978-3-030-88885-5_24
https://doi.org/10.1007/978-3-030-88885-5_24
https://doi.org/10.1109/TNNLS.2019.2926466
https://doi.org/10.1109/TNNLS.2019.2926466
https://doi.org/10.1007/978-3-319-99740-7_25
https://doi.org/10.1007/978-3-319-99740-7_25
https://doi.org/10.1007/978-3-030-88885-5_5
https://doi.org/10.1007/978-3-030-88885-5_5
https://doi.org/10.1007/978-3-031-07727-2_13
https://doi.org/10.1007/978-3-031-07727-2_13
https://doi.org/10.1016/j.neucom.2021.04.058
https://doi.org/10.1016/j.neucom.2021.04.058
https://doi.org/10.1016/0893-6080(95)00086-0
https://doi.org/10.1016/0893-6080(95)00086-0
https://doi.org/10.1007/978-3-030-90870-6_28
https://doi.org/10.1007/978-3-030-90870-6_28
https://doi.org/10.1007/978-3-642-05089-3_14

172 B. K. Aichernig et al.

29. Smetsers, R., Fiterău-Broştean, P., Vaandrager, F.: Model learning as a satisfiabil-
ity modulo theories problem. In: Klein, S.T., Mart́ın-Vide, C., Shapira, D. (eds.)
LATA 2018. LNCS, vol. 10792, pp. 182–194. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-77313-1 14

30. Tappler, M., Aichernig, B.K., Lorber, F.: Timed automata learning via SMT solv-
ing. In: Deshmukh, J.V., Havelund, K., Perez, I. (eds.) NFM 2022. LNCS, vol.
13260, pp. 489–507. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-
06773-0 26

31. Tin̆o, P., S̆ajda, J.: Learning and extracting initial Mealy automata with a modular
neural network model. Neural Comput. 7(4), 822–844 (1995). https://doi.org/10.
1162/neco.1995.7.4.822

32. Tomita, M.: Dynamic construction of finite automata from examples using hill-
climbing. In: Conference of the Cognitive Science Society, pp. 105–108 (1982)

33. Weiss, G., Goldberg, Y., Yahav, E.: Extracting automata from recurrent neural
networks using queries and counterexamples. In: ICML. Proceedings of Machine
Learning Research, vol. 80, pp. 5244–5253. PMLR (2018)

34. Weiss, G., Goldberg, Y., Yahav, E.: Learning deterministic weighted automata
with queries and counterexamples. In: NeurIPS, pp. 8558–8569 (2019)

35. Yellin, D.M., Weiss, G.: Synthesizing context-free grammars from recurrent neural
networks. In: Groote, J.F., Larsen, K.G. (eds.) TACAS 2021. LNCS, vol. 12651, pp.
351–369. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72016-2 19

https://doi.org/10.1007/978-3-319-77313-1_14
https://doi.org/10.1007/978-3-319-77313-1_14
https://doi.org/10.1007/978-3-031-06773-0_26
https://doi.org/10.1007/978-3-031-06773-0_26
https://doi.org/10.1162/neco.1995.7.4.822
https://doi.org/10.1162/neco.1995.7.4.822
https://doi.org/10.1007/978-3-030-72016-2_19

Neural Network Verification Using
Residual Reasoning

Yizhak Yisrael Elboher(B) , Elazar Cohen , and Guy Katz

The Hebrew University of Jerusalem, Jerusalem, Israel
{yizhak.elboher,elazar.cohen1,g.katz}@mail.huji.ac.il

Abstract. With the increasing integration of neural networks as com-
ponents in mission-critical systems, there is an increasing need to ensure
that they satisfy various safety and liveness requirements. In recent years,
numerous sound and complete verification methods have been proposed
towards that end, but these typically suffer from severe scalability limita-
tions. Recent work has proposed enhancing such verification techniques
with abstraction-refinement capabilities, which have been shown to boost
scalability: instead of verifying a large and complex network, the verifier
constructs and then verifies a much smaller network, whose correctness
implies the correctness of the original network. A shortcoming of such a
scheme is that if verifying the smaller network fails, the verifier needs to
perform a refinement step that increases the size of the network being ver-
ified, and then start verifying the new network from scratch—effectively
“wasting” its earlier work on verifying the smaller network. In this paper,
we present an enhancement to abstraction-based verification of neural
networks, by using residual reasoning : the process of utilizing informa-
tion acquired when verifying an abstract network, in order to expedite
the verification of a refined network. In essence, the method allows the
verifier to store information about parts of the search space in which the
refined network is guaranteed to behave correctly, and allows it to focus
on areas where bugs might be discovered. We implemented our approach
as an extension to the Marabou verifier, and obtained promising results.

Keywords: Neural networks · Verification · Abstraction refinement ·
Residual reasoning · Incremental reasoning

1 Introduction

In recent years, the use of deep neural networks (DNNs) [16] in critical compo-
nents of diverse systems has been gaining momentum. A few notable examples
include the fields of speech recognition [10], image recognition [17], autonomous
driving [6], and many others. The reason for this unprecedented success is the
ability of DNNs to generalize from a small set of training data, and then correctly
handle previously unseen inputs.

Still, despite their success, neural networks suffer from various reliability
issues. First, they are completely dependent on the training process, which may
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
B.-H. Schlingloff and M. Chai (Eds.): SEFM 2022, LNCS 13550, pp. 173–189, 2022.
https://doi.org/10.1007/978-3-031-17108-6_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-17108-6_11&domain=pdf
http://orcid.org/0000-0003-2309-3505
http://orcid.org/0000-0002-2788-3574
http://orcid.org/0000-0001-5292-801X
https://doi.org/10.1007/978-3-031-17108-6_11

174 Y. Y. Elboher et al.

include data that is anecdotal, partial, noisy, or biased [22,28]; further, the train-
ing process has inherent over-fitting limitations [34]; and finally, trained networks
suffer from susceptibility to adversarial attacks, as well as from obscurity and
lack of explainability [1]. Unless addressed, these concerns, and others, are likely
to limit the applicability of DNNs in the coming years.

A promising approach for improving the reliability of DNN models is to
apply formal verification techniques: automated and rigorous techniques that
can ensure that a DNN model adheres to a given specification, in all possible
corner cases [15,18,20,30]. While sound and complete formal verification meth-
ods can certify that DNNs are reliable, these methods can typically only tackle
small or medium-sized DNNs; and despite significant strides in recent years,
scalability remains a major issue [4].

In order to improve the scalability of DNN verification, recent studies have
demonstrated the great potential of enhancing it with abstraction-refinement
techniques [2,8,14,26]. The idea is to use a black-box DNN verifier, and feed
it a series of abstract networks—i.e., DNNs that are significantly smaller than
the original network being verified. Because the complexity of DNN verifica-
tion is exponential in the size of the DNN in question [20], these queries can
be solved relatively quickly; and the abstract networks are constructed so that
their correctness implies the correctness of the original, larger network. The
downside of abstraction is that sometimes, verifying the smaller network returns
an inconclusive result—in which case, the abstract network is refined and made
slightly larger, and the process is repeated. Is it well known that the heuristics
used for performing the abstraction and refinement steps can have a significant
impact on performance [8,14], and that poor heuristics can cause the abstraction-
refinement sequence of queries to take longer to dispatch than the original query.

In this paper, we propose an extension that can improve the performance of
an abstraction-refinement verification scheme. The idea is to use residual rea-
soning [3]: an approach for re-using information obtained in an early verification
query, in order to expedite a subsequent query. Presently, a verifier might verify
an abstract network N1, obtain an inconclusive answer, and then verify a refined
network, N2; and it will verify N2 from scratch, as if it had never verified N1.
Using residual reasoning, we seek to leverage the similarities between N1 and N2

in order to identify large portions of the verification search space that need not
be explored, because we are guaranteed a-priori that they contain no violations
of the property being checked.

More specifically, modern verifiers can be regarded as traversing a large search
tree. Each branching in the tree is caused by an activation function within the
neural network, which can take on multiple linear phases; and each branch cor-
responds to one of these phases. We show that when a verifier traverses a branch
of the search tree and determines that no property violations occur therein,
that information can be used to deduce that no violation can exist in some of
the branches of the search tree traversed when verifying a refined network. The
advantages of this approach are clear: by curtailing the search space, the veri-
fication process can be expedited significantly. The disadvantage is that, unlike

Neural Network Verification Using Residual Reasoning 175

in other abstraction-refinement based techniques, the verifier needs to be instru-
mented, and cannot be used as a black box.

Our contributions in this paper are as follows: (i) we formally define our
residual reasoning scheme, in a general way that preserves the soundness and
completeness of the underlying verifier; (ii) we specify how our approach can
be used to extend the state-of-the-art Marabou DNN verification engine [21];
and (iii) we implement our approach, and evaluate it on the ACAS Xu set of
benchmarks [19]. We regard this work as a step towards tapping into the great
potential of abstraction-refinement methods in the context of DNN verification.

The rest of the paper is organized as follows. In Sect. 2 we recap the nec-
essary background on DNNs and their verification. Next, in Sect. 3 we describe
our general method for residual reasoning; followed by a discussion of how our
technique can enhance a specific abstraction-refinement method, in Sect. 4. Sec-
tions 5 is then dedicated to explaining how our method can be applied using the
Marabou DNN verifier as a backend, followed by our evaluation of the approach
in Sect. 6. Related work is covered in Sect. 7, and we conclude in Sect. 8.

2 Background

Deep Neural Networks (DNNs). A neural network [16] N : Rn → R
m is

a directed graph, organized into an input layer, multiple hidden layers, and an
output layer. Each layer is a set of nodes (neurons), which can take on real
values. When an input vector is passed into the input layer, it can be used to
iteratively compute the values of neurons in the following layers, all through to
neurons in the output layer—which constitute the network’s output. We use Li

to denote the i’th layer of the DNN, and vi,j to denote the j’th node in Li.

x1

0

x2

1

v1,1

0

v1,2

0

v1,3

2

v1,4

1

v2,1

-2

v2,2

-4

v2,3

0

v2,4

8

v2,5

1

y

9

1

2

2

1

3

2

1

−1 −2

8

1

1

1
−4

1

1

Fig. 1. A DNN with an input layer
(green), two hidden layers (blue),
and an output layer (red). (Color
figure online)

Typically, each neuron in the DNN is
evaluated by first computing a weighted sum
of the values assigned to neurons in the pre-
ceding layer, and then applying some acti-
vation function to the result. For simplic-
ity, we restrict our attention to the pop-
ular ReLU activation function [16], which
is a piecewise-linear function defined as
ReLU(x) = max(x, 0). When x > 0, we
say that the ReLU is active; and otherwise,
we say that it is inactive. A simple example
appears in Fig. 1, and shows a DNN eval-
uated on input 〈0, 1〉. The value above each
neuron is the weighted sum that it computes,
prior to the application of the ReLU activa-
tion function. The network’s output is 9.

Neural Network Verification. Neural network verification [23] deals with
checking whether an input-output relation in a neural network holds. A verifica-
tion query is a couple 〈N,ϕ〉, where N is a neural network and ϕ is a property

176 Y. Y. Elboher et al.

of the form: �x ∈ DI ∧�y ∈ DO, meaning that the input �x is in some input domain
DI and the output �y is in some output domain DO. Typically, ϕ represents
undesirable behavior; and so the verification problem is to find an input �x and
its matching output �y that satisfy ϕ, and so constitute a counter-example (the
SAT case), or to prove that no such �x exists (the UNSAT case). Without loss of
generality, we assume that verification queries only consists of a network N with
a single output neuron y, and of a property ϕ of the form �x ∈ DI ∧ y > c; other
queries can be reduced to this setting in a straightforward way [14].

As a simple example, consider the DNN in Fig. 1 and the property ϕ : x1, x2 ∈
[0, 1] ∧ y > 14. Checking whether input x1 = 0, x2 = 1 satisfies this property,
we get that it does not, since y = 9 ≤ 14. A sound verifier, therefore, would not
return 〈0, 1〉 as a satisfying assignment for this query.

Linear Programming and Case Splitting. A key technique for DNN verifi-
cation, which is nowadays used by many leading verification tools, is called case
splitting [21,29,31]. A DNN verification problem can be regarded as a satisfia-
bility problem, where linear constraints and ReLU constraints must be satisfied
simultaneously; and while linear constraints are easy to solve [9], the ReLUs
render the problem NP-Complete [20]. In case splitting, the verifier sometimes
transforms a ReLU constraint into an equivalent disjunction of linear constraints:

(y = ReLU(x)) ≡ ((x ≤ 0 ∧ y = 0) ∨ (x ≥ 0 ∧ y = x))

and then each time guesses which of the two disjuncts holds, and attempts to
satisfy the resulting constraints. This approach gives rise to a search tree, where
internal nodes correspond to ReLU constraints, and their outgoing edges to the
two linear constraints each ReLU can take. Each leaf of this tree is a problem
that can be solved directly, e.g., because all ReLUs have been split upon. These
problems are often dispatched using linear programming engines.

Case splitting might produce an exponential number of sub-problems, and
so solvers apply a myriad of heuristics to avoid them or prioritize between them.
Solvers also use deduction to rule out a-priori case splits that cannot lead to a
satisfying assignment. Such techniques are beyond our scope.

Abstraction-Refinement (AR). Abstraction-refinement is a common mech-
anism for improving the performance of verification tools in various domains [8],
including in DNN verification [2,14,26]. A sketch of the basic scheme of AR is
illustrated in Fig. 8 in Appendix A of the full version of this paper [13]. The pro-
cess begins with a DNN N and a property ϕ to verify, and then abstracts N into
a different, smaller network N ′. A key property is that N ′ over-approximates N :
if 〈N ′, ϕ〉 is UNSAT, then 〈N,ϕ〉 is also UNSAT. Thus, it is usually preferable to
verify the smaller N ′ instead of N .

If a verifier determines that 〈N ′, ϕ〉 is SAT, it returns a counter-example �x0.
That counter-example is then checked to determine whether it also constitutes a
counterexample for 〈N,ϕ〉. If so, the original query is SAT, and we are done; but
otherwise, �x0 is a spurious counter-example, indicating that N ′ is inadequate for

Neural Network Verification Using Residual Reasoning 177

determining the satisfiability of the original query. We then apply refinement : we
use N ′, and usually also �x0, to create a new network N ′′, which is larger than N ′

but is still an over-approximation of N . The process is then repeated using N ′′.
Usually, the process is guaranteed to converge: either we are able to determine
the satisfiability of the original query using one of the abstract networks, or we
end up refining N ′ all the way back to N , and solve the original query, which,
by definition, cannot return a spurious result.

In this paper we focus on a particular abstraction-refinement mechanism
for DNN verification [14]. There, abstraction and refinement are performed by
merging or splitting (respectively) neurons in the network, and aggregating the
weights of their incoming and outgoing edges. This merging and splitting is
carried out in a specific way, which guarantees that if N is abstracted into N ′,
then for all input �x it holds that N ′(�x) ≥ N(�x); and thus, if N ′(�x) ≥ c is UNSAT,
then N(�x) ≥ c is also UNSAT, as is required of an over-approximation.

An illustrative example appears in Fig. 2. On the left, we have the network
from Fig. 1, denoted N . The middle network, denoted N ′, is obtained by merg-
ing together neurons v2,1 and v2,2 into the single neuron v2,1+2; and by merging
neurons v2,4 and v2,5 into the single neuron v2,4+5. The weights on the outgoing
edges of these neurons are the sums of the outgoing edges of their original neu-
rons; and the weights of the incoming edges are either the min or max or the
original weights, depending on various criteria [14]. It can be proven [14] that N ′

over-approximates N ; for example, N(〈3, 1〉) = −6 < N ′(〈3, 1〉) = 6. Finally, the
network on the right, denoted N ′′, is obtained from N by splitting a previously
merged neuron. N ′′ is larger than N ′, but it is still an over-approximation of the
original N : for example, N ′′(〈3, 1〉) = 1 > N(〈3, 1〉) = −6.

x1

x2

v1,1

v1,2

v1,3

v1,4

v2,1

v2,2

v2,3

v2,4

v2,5

y

1

2

2

1

3

2

1

−1 −2

8

1

1

1
−4

1

1

x1

x2

v1,1

v1,2

v1,3

v1,4

v2,1+2

v2,3

v2,4+5

y

1

2

2

1

3

1

−1

8

2

−4

2

x1

x2

v1,1

v1,2

v1,3

v1,4

v2,1

v2,2

v2,3

v2,4+5

y

1

2

2

1

3

2

1
−1

−2

8

1

1

−4
2

(a) N (b) N ′ (c) N ′′

Fig. 2. Neural network abstraction and refinement through the merging and splitting
of neurons [14].

3 Residual Reasoning (RR)

Consider again our running example, and observe that property ϕ is satisfiable
for the most abstract network: for �x0 = 〈0, 1〉 we have N ′(�x0) = 16. However,

178 Y. Y. Elboher et al.

this �x0 is a spurious counterexample, as N(�x0) = 9. Consequently, refinement is
performed, and the verifier sets out to verify 〈N ′′, ϕ〉; and this query is solved
from scratch. However, notice that the verification queries of ϕ in N ′, N ′′ are
very similar: the networks are almost identical, and the property is the same. The
idea is thus to re-use some of the information already discovered when 〈N ′, ϕ〉
was solved in order to expedite the solving of 〈N ′′, ϕ〉. Intuitively, an abstract
network allows the verifier to explore the search space very coarsely, whereas a
refined network allows the verifier to explore that space in greater detail. Thus,
areas of that space that were determined safe for the abstract network need not
be re-explored in the refined network.

In order to enable knowledge retention between subsequent calls to the veri-
fier, we propose to introduce a context variable, Γ , that is passed to the verifier
along with each verification query. Γ is used in two ways: (i) the verifier can store
into Γ information that may be useful if a refined version of the current network
is later verified; and (ii) the verifier may use information already in Γ to curtail
the search space of the query currently being solved. A scheme of the proposed
mechanism appears in Fig. 9 in Appendix A of the full version of this paper [13].
Of course, Γ must be designed carefully in order to maintain soundness.

Avoiding Case-Splits with Γ . In order to expedite subsequent verification
queries, we propose to store in Γ information that will allow the verifier to
avoid case splits. Because case splits are the most significant bottleneck in DNN
verification [20,29], using Γ to reduce their number seems like a natural strategy.

Let N ′ be an abstract network, and N ′′ its refinement; and observe the
queries 〈N ′, ϕ〉 and 〈N ′′, ϕ〉. Let R1, . . . , Rn denote the ReLU constraints in
N ′. For each ReLU Ri, we use a Boolean variable ri to indicate whether the
constraint is active (ri is true), or inactive (¬ri is true). We then define Γ to be
a CNF formula over these Boolean variables:

Γ :
∧

(
∨

lj∈⋃n
i=1{ri,¬ri}

lj)

In order for our approach to maintain soundness, Γ needs to be a valid for-
mula for 〈N ′′, ϕ〉; i.e., if there exists an assignment that satisfies 〈N ′′, ϕ〉, it must
also satisfy Γ . Under this assumption, a verifier can use Γ to avoid case-splitting
during the verification of the refined network, using unit-propagation [5]. For
example, suppose that one of the clauses in Γ is (r1 ∨¬r2 ∨¬r3), and that while
verifying the refined network, the verifier has performed two case splits already
to the effect that r1 is false (R1 is inactive) and r2 is true (R2 is active). In
this case, the verifier can immediately set r3 to false, as it is guaranteed that no
satisfying assignments exist where r3 is true, as these would violate the clause
above. This guarantees that no future splitting is performed on R3.

More formally, we state the following Lemma:

Neural Network Verification Using Residual Reasoning 179

Lemma 1 (Soundness of Residual Reasoning). Let 〈N ′, ϕ〉 and 〈N ′′, ϕ〉
be verification queries on an abstract network N ′ and its refinement N ′′, being
solved by a sound verifier; and let Γ be a valid formula as described above. If the
verifier uses Γ to deduce the phases of ReLU constraints using unit propagation
for the verification of 〈N ′′, ϕ〉, soundness is maintained.

The proof is straightforward, and is omitted. We also note that when multiple
consecutive refinement steps are performed, some renaming of variables within
Γ is required; we discuss this in later sections.

4 Residual Reasoning and Neuron-Merging Abstraction

Our proposed approach for residual reasoning is quite general; and our defini-
tions do not specify how Γ should be populated. In order to construct in Γ
a lemma that will be valid for future refinements of the network, one must
take into account the specifics of the abstraction-refinement scheme in use.
In this section, we propose one possible integration with a recently proposed
abstraction-refinement scheme that merges and splits neurons [14], which was
discussed in Sect. 2.

We begin by revisiting our example from Fig. 2. Suppose that in order to solve
query 〈N,ϕ〉, we generate the abstract network N ′ and attempt to verify 〈N ′, ϕ〉
instead. During verification, some case splits are performed; and it is discovered
that when neuron v2,1+2’s ReLU function is active, no satisfying assignment can
be found. Later, the verifier discovers a satisfying assignment for which v2,1+2

is inactive: �x = 〈0, 1〉 ⇒ N ′(�x) = 16 > 14. Unfortunately, this counterexample
turns out to be spurious, because N(〈0, 1〉) = 9 ≤ 14, and so the network is
refined: node v2,1+2 is split into two new nodes, (v2,1, v2,2), giving rise to the
refined network N ′′. The verifier then begins solving query 〈N ′′, ϕ〉.

We make the following claim: because no satisfying assignment exists for
〈N ′, ϕ〉 when v2,1+2 is active, and because v2,1+2 was refined into (v2,1, v2,2), then
no satisfying assignment exists for 〈N ′′, ϕ〉 when v2,1 and v2,2 are both active. In
other words, it is sound to verify 〈N ′′, ϕ〉 given Γ = (¬r2,1 ∨ ¬r2,2), where r2,1

and r2,2 correspond to the activation phase of v2,1 and v2,2, respectively. Thus,
e.g., if the verifier performs a case split and fixes v2,1 to its active phase, it can
immediately set v2,2 to inactive, without bothering to explore the case where
v2,2 is also active.

In order to provide intuition as to why this claim holds, we now formally
prove it; i.e., we show that if an input �x satisfies 〈N ′′, ϕ〉 when v2,1 and v2,2

are both active, then it must also satisfy 〈N ′
1, ϕ〉 when v2,1+2 is active. First,

we observe that because N ′′ is a refinement of N ′, it immediately follows that
N ′′(�x) ≤ N ′(�x); and because the property ϕ is of the form y > c, if 〈N ′′, ϕ〉
is SAT then 〈N ′, ϕ〉 is also SAT. Next, we observe that N ′′ and N ′ are identical
in all layers preceding v2,1, v2,2 and v2,1+2, and so all neurons feedings into
these three neurons are assigned the same values in both networks. Finally, we
assume towards contradiction that v2,1+2 is not active; i.e., that 3 ·ReLU(v1,1)−

180 Y. Y. Elboher et al.

ReLU(v1,3) < 0; but because it also holds that v2,1 = 3·ReLU(v1,1)−ReLU(v1,3),
this contradicts the assumption that v2,1 and v2,2 are both active. This concludes
our proof, and shows that Γ = (¬r2,1 ∨ ¬r2,2) is valid.

In the remainder of this section, we formalize the principle demonstrated in
the example above. The formalization is complex, and relies on the details of
the abstraction mechanism [14]; we give here the gist of the formalization, with
additional details appearing in Appendix B of the full version of this paper [13].

Using the terminology of [14], two nodes can be merged as part of the abstrac-
tion process if they share a type: specifically, if they are both inc neurons, or if
they are both dec neurons. An inc neuron has the property that increasing its
value results in an increase to the network’s single output; whereas a dec neuron
has the property that decreasing its value increases the network’s single output.
In our running example, neuron v2,1+2 is an inc neuron, whereas neuron v2,3 is
a dec neuron.

We use the term abstract neuron to refer to a neuron generated by the merg-
ing of two neurons from the same category, and the term refined neuron to refer
to a neuron that was generated (restored) during a refinement step. An example
for the merging of two inc neurons appears in Fig. 3.

v1,1

v1,2

v2,1

max(a, b)

max(c, d)

(a) abstract network

v1,1

v1,2

v2,1

v2,2

a
b

c

d

(b) refined network

Fig. 3. Abstraction/refinement of two inc neurons.

We now state our main theorem, which justifies our method of populating
Γ . We then give an outline of the proof, and refer the reader to Theorem 2 in
Appendix B of the full version of this paper [13] for additional details.

Theorem 1. Let 〈N,ϕ〉 be a verification query, where N : �x → y has a single
output node y, and ϕ is of the form ϕ = (�l ≤ �x ≤ �u) ∧ (y > c). Let N ′ be an
abstract network obtained from N using neuron merging, and let N ′′ be a network
obtained from N ′ using a single refinement step in reverse order of abstraction.
Specifically, let v be a neuron in N ′ that was split into two neurons v1, v2 in N ′′.
Then, if a certain guard condition G holds, we have the following:

1. If v is inc neuron, and during the verification of 〈N ′, ϕ〉, the verifier deter-
mines that setting v to active leads to an UNSAT branch of the search tree, then
Γ = (¬r1 ∨ ¬r2) is a valid formula for 〈N ′′, ϕ〉 (where r1 and r2 correspond
to v1 and v2, respectively).

2. Symmetrically, if setting a dec neuron v to inactive leads to an UNSAT branch,
then Γ = (r1 ∨ r2) is a valid formula for 〈N ′′, ϕ〉.

Neural Network Verification Using Residual Reasoning 181

The guard condition G is intuitively defined as the conjunction of the follow-
ing stipulations, whose goal is to enforce that the branches in both search trees
(of 〈N ′, ϕ〉 and 〈N ′′, ϕ〉) are sufficiently similar:

1. The same case splits have been applied during the verification of N ′ and N ′′,
for all neurons in the preceding layers of the abstract neuron and for any
other neurons in the same layer as the abstract neuron.

2. The same case splits have been applied during the verification of N ′ and N ′′

for the abstract neuron and its refined neurons.
3. Every inc neuron in layers following the layer of v, v1, v2 has been split on

and set to active, and every dec neuron in these layers has been split on and
set to inactive.

We stress that the guard condition G does not change the way Γ is populated;
but that the verifier must ensure that G holds before it applies unit-propagation
based on Γ . The precise definitions and proof appear in Appendix B of the full
version of this paper [13].

When the conditions of the theorem are met, a satisfying assignment within
the specific branch of the search tree of the refined network would indicate that
the corresponding branch in the abstract network is also SAT, which we already
know is untrue; and consequently, that branch can be soundly skipped. To prove
the theorem, we require the two following lemmas, each corresponding to one of
the two cases of the theorem.

Lemma 2. Given an input �x, if the value of an abstract inc node v is negative,
then at least one of the values of the refined nodes v1 and v2 is negative for the
same �x.

Proof Outline. We explain how to prove the lemma using the general network
from Fig. 3; and this proof can be generalized to any network in a straightforward
way. Observe nodes v2,1 and v2,2 in Fig. 3(b), which are nodes refined from node
v2,1 in Fig 3(a). We need to prove that the following implication holds:

x1 · max(a, b) + x2 · max(c, d) < 0 ⇒ (x1 · a + x2 · c < 0 ∨ x1 · b + x2 · d < 0)

The values of x1, x2 are the outputs of ReLUs, and so are non-negative. We can
thus split into 4 cases:

1. If x1 = 0, x2 = 0, the implication holds trivially.
2. If x1 = 0, x2 > 0, then x2 · max(c, d) < 0, and so c, d < 0. We get that

x1 ·a+x2 · c = x2 · c < 0 and x1 · b+x2 ·d = x2 ·d < 0, and so the implication
holds.

3. The case where x1 > 0, x2 = 0 is symmetrical to the previous case.
4. If x1 > 0, x2 > 0, the implication becomes

max(x1 ·a, x1 ·b)+max(x2 ·c, x2 ·d) < 0 ⇒ (x1 ·a+x2 ·c < 0∨x1 ·b+x2 ·d < 0)

Let us denote a′ = x1 · a, b′ = x1 · b and c′ = x2 · c, d′ = x2 · d. The lemma
then becomes:

max(a′, b′) + max(c′, d′) < 0 ⇒ a′ + c′ < 0 ∨ b′ + d′ < 0

182 Y. Y. Elboher et al.

– If a′ ≥ b′, then a′ = max(a′, b′) and a′ + max(c′, d′) < 0. We then get
that

b′ + d′ ≤ a′ + d′ ≤ a′ + max(c′, d′) < 0

as needed.
– If a′ < b′, then b′ = max(a′, b′) and b′ +max(c′, d′) < 0. We then get that

a′ + c′ ≤ b′ + max(c′, d′) < 0

again as needed.

Lemma 2 establishes the correctness of Theorem 1 for inc neurons. We also
have the following, symmetrical lemma for dec neurons:

Lemma 3. Given an input �x, if the value of an abstract dec node v is positive,
then at least one of the values of the refined nodes v1 and v2 is positive for the
same �x.

The proof outline is similar to that of Lemma 2, and appears in Appendix B
of the full version of this paper [13].

The result of applying Theorem 1 as part of the verification of our running
example from Fig. 2 is illustrated in Fig. 4. There, each rectangle represents a
single verification query, and blue lines indicate abstraction steps. Within each
rectangle, we see the verifier’s search tree, where triangles signify sub-trees—
and red triangles are sub-trees where the verifier was able to deduce that no
satisfying assignment exists. The figure shows that, when solving the query in
the bottom rectangle, the verifier discovered an UNSAT sub-tree that meets the
conditions of the Theorem. This allows the verifier to deduce that another sub-
tree, in another rectangle/query, is also UNSAT, as indicated by a green arrow.
Specifically, by discovering that setting v2,1+2 to active results in UNSAT, the
verifier can deduce that setting v2,1 to active and then v2,2 to active must also
result in UNSAT.

Fig. 4. Applying Theorem 1 while solving the query from Fig. 2.

Neural Network Verification Using Residual Reasoning 183

Multiple Refinement Steps. So far, we have only discussed populating Γ
for a single refinement step. However, Γ can be adjusted as multiple refinement
steps are performed. In that case, each invocation of Theorem 1 adds another
CNF clause to the formula already stored in Γ . Further, some book-keeping and
renaming is required, as neuron identifiers change across the different networks:
intuitively, whenever an abstract neuron v is split into neurons v1 and v2, the
literal v must be replaced with v1 ∨ v2. These notions are formalized in Sec. 5;
and the soundness of this procedure can be proven using repeated invocations
of Theorem 1.

5 Adding Residual Reasoning to Reluplex

Unlike in previous abstraction-refinement approaches for DNN verification [2,
14,26], residual reasoning requires instrumenting the DNN verifier in question,
for the purpose of populating, and using, Γ . We next describe such an instru-
mentation for the Reluplex algorithm [20], which is the core algorithm used in
the state-of-the-art verifier Marabou [21]. Reluplex, a sound and complete DNN
verification algorithm, employs case-splitting as discussed in Sect. 2, along with
various heuristics for curtailing the search space and reducing the number of
splits [32,33]; and it has been integrated with abstraction-refinement techniques
before [14], rendering it a prime candidate for residual reasoning. We term our
enhanced version of Reluplex AR4, which stands for Abstraction-Refinement
with Residual Reasoning for Reluplex.

For our purposes, it is convenient to think of Reluplex as a set of derivation
rules, applied according to an implementation-specific strategy. The most rele-
vant parts of this calculus, borrowed from Katz et al. [20] and simplified, appear
in Fig. 5; other rules, specifically those that deal with the technical aspects of
solving linear problems, are omitted for brevity.

Failure
∃x ∈ X . l(x) > u(x)

UNSAT
ReluSplit

〈xi, xj〉 ∈ R, l(xi) < 0, u(xi) > 0
u(xi) := 0 l(xi) := 0

Success
∀x ∈ X . l(x) ≤ α(x) ≤ u(x), ∀〈x, y〉 ∈ R. α(y) = max (0, α(x))

SAT

Fig. 5. Derivation rules of Reluplex calculus (partial, simplified).

Internally, Reluplex represents the verification query as a set of linear equal-
ities and lower/upper bounds over a set of variables, and a separate set of ReLU
constraints. A configuration of Reluplex over a set of variables X is either a
distinguished symbol from the set {SAT, UNSAT}, or a tuple 〈T, l, u, α,R〉, where:
T , the tableau, contains the set of linear equations; l, u are mappings that assign
each variable x ∈ X a lower and an upper bound, respectively; α, the assignment,
maps each variable x ∈ X to a real value; and R is the set of ReLU constraints,
i.e. 〈x, y〉 ∈ R indicates that y = ReLU(x). Reluplex will often derive tighter

184 Y. Y. Elboher et al.

bounds as it solves a query; i.e., will discover greater lower bounds or smaller
upper bounds for some of the variables.

Using these definitions, the rules in Fig. 5 can be interpreted follows: Failure is
applicable when Reluplex discovers inconsistent bounds for a variable, indicating
that the query is UNSAT. ReluSplit is applicable for any ReLU constraint whose
linear phase is unknown; and it allows Reluplex to “guess” a linear phase for
that ReLU, by either setting the upper bound of its input to 0 (the inactive
case), or the lower bound of its input to 0 (the active case). Success is applicable
when the current configuration satisfies every constraint, and returns SAT.

In order to support AR4, we extend the Reluplex calculus with additional
rules, depicted in Fig. 6. We use the context variable Γ , as before, to store a
valid CNF formula to assist the verifier; and we also introduce two additional
context variables, ΓA and ΓB , for book-keeping purposes. Specifically, ΓA stores a
mapping between abstract neurons and their refined neurons; i.e., it is comprised
of triples 〈v, v1, v2〉, indicating that abstract neuron v has been refined into
neurons v1 and v2. ΓB is used for storing past case splits performed by the
verifier, to be used in populating Γ when the verifier finds an UNSAT branch.
Given variable x of neuron v, we use Ginc(ΓA, ΓB , x) and Gdec(ΓA, ΓB , x) to
denote a Boolean function that returns true if and only if the guard conditions
required for applying Theorem 1 hold, for an inc or dec neuron v, respectively.

ReluSplit
〈xi, xj〉 ∈ R, l(xi) < 0, u(xi) > 0

u(xi) := 0 l(xi) := 0
ΓB := ΓB ∨ ri ΓB := ΓB ∨ ¬ri

Failure
∃xi ∈ X . l(xi) > u(xi)
UNSAT, Γ := Γ ∧ ΓB

AbstractionStep
CanAbstract(x1, x2)

ΓA := ΓA ∪ 〈x1,2, x1, x2〉

RefinementStep
ΓA �= ∅

ΓA := ΓA[: −1]
RealSuccess

SAT ∧ isRealSAT (ΓA)
RealSAT

ApplyAbstraction
true

Abstract(ΓA), UpdateContext(Γ, ΓA, ΓB)

Prune1
〈x, xi, xj〉 ∈ ΓA ∧ ¬ri, ¬rj ∈ ΓB ∧ Ginc(ΓA, ΓB , x) ∧ l(xi) = 0

u(xj) = 0, ΓB := ΓB ∨ rj

Prune2
〈x, xi, xj〉 ∈ ΓA ∧ ri, rj ∈ ΓB ∧ Gdec(ΓA, ΓB , x) ∧ u(xi) = 0

l(xj) = 0, ΓB := ΓB ∨ ¬rj

Fig. 6. Derivation rules for the AR4 calculus.

The rules in Fig. 6 are interpreted as follows. AbstractionStep is used for merg-
ing neurons and creating the initial, abstract network. RefinementStep is applica-
ble when dealing with an abstract network (indicated by ΓA �= ∅), and performs a
refinement step by canceling the last abstraction step. ApplyAbstraction is appli-
cable anytime, and generates an abstract network according to the information
in ΓA, updating the relevant contexts correspondingly. The Success rule from the

Neural Network Verification Using Residual Reasoning 185

original Reluplex calculus in included, as is, in the AR4 calculus; but we note
that a SAT conclusion that it reaches is applicable only to the current, poten-
tially abstract network, and could thus be spurious. To solve this issue, we add
the RealSuccess rule, which checks whether a SAT result is true for the original
network as well. Thus, in addition to SAT or UNSAT, the RealSAT state is also a
terminal state for our calculus.

The Failure rule replaces the Reluplex rule with the same name, and is appli-
cable when contradictory bounds are discovered; but apart from declaring UNSAT,
it also populates Γ with the current case-split history in ΓB , for future pruning
of the search space. The ReluSplit rule, similarly to the Reluplex version, guesses
a linear phase for one the ReLUs, but now also records that action in ΓB . Finally,
the Prune1/2 rules are applicable when all the conditions of Theorem 1 (for the
inc/dec cases, respectively) are met, and they trim the search tree and update
Γ accordingly.

Side Procedures. We intuitively describe the four functions, CanAbstract,
Abstract, UpdateContext and isRealSat, which appear in the calculus; addi-
tional details can be found in Appendix C of the full version of this paper [13].

– CanAbstract (Algorithm 1, Appendix C [13]) checks whether two neurons can
be merged according to their types; and also checks whether the assignment
to the variables did not change yet during the verification process.

– Abstract (Algorithm 3, Appendix C [13]) performs multiple abstraction steps.
A single abstraction step (Algorithm 2, Appendix C [13]) is defined as the
merging of two neurons of the same type, given that the assignments to their
variables were not yet changed during verification.

– UpdateContext clears the case-splitting context by setting (ΓB = ∅), and
also updates clauses in Γ to use new variables: for variables representing inc
nodes, ¬r is replaced with ¬r1∨¬r2; and for variables representing dec nodes,
r is replaced with r1 ∨ r2.

– isRealSat (Algorithm 5, Appendix C [13]) checks whether a counterexample
holds in the original network.

Implementation Strategy. The derivation rules in Fig. 6 define the “legal
moves” of AR4—i.e., we are guaranteed that by applying them, the resulting
verifier will be sound. We now discuss one possible strategy for applying them,
which we used in our proof-of-concept implementation.

We begin by applying AbstractionStep to saturation, in order to reach a small
abstract network; and then apply once the ApplyAbstraction rule, to properly
initialize the context variables. Then, we enter into the loop of abstraction-based
verification: we apply the Reluplex core rules using existing strategies [21], but
every time the ReluSplit rule is applied we immediately apply Prune1 and Prune2,
if they are applicable. The Failure and Success rules are applied as in Reluplex,
and RealSuccess is applied immediately after Success if it is applicable; otherwise,
we apply RefinementStep, and repeat the process. We also attempt to apply
Prune1 and Prune2 after each application of Failure, since it updates Γ .

186 Y. Y. Elboher et al.

Table 1. Comparing AR4 and AR.

Adversarial Safety Total (weighted)

AR4 AR AR4 AR AR4 AR

Timeouts 95/900 116/900 7/180 9/180 102/1080 125/1080

Instances solved more quickly 160 95 28 24 188 119

Uniquely solved 26 5 2 0 28 5

Visited tree states 6.078 7.65 3.569 4.98 5.634 7.178

Avg. instrumentation time 91.54 – 36.5 – 82.367 –

6 Experiments and Evaluation

For evaluation purposes, we created a proof-of-concept implementation of AR4,
and compared it to the only tool currently available that supports CEGAR-
based DNN verification—namely, the extension of Marabou proposed in [14].
We used both tools to verify a collection of properties of the ACAS Xu family of
45 DNNs (each with 310 neurons, spread across 8 layers) for airborne collision
avoidance [19]. Specifically, we verified a collection of 4 safety properties and
20 adversarial robustness properties for these networks, giving a total of 1080
benchmarks; and from these experiments we collected, for each tool, the runtime
(including instrumentation time), the number of properties successfully verified
within the allotted timeout of two hours, and the number of case splits per-
formed. The experiments were conducted on x86-64 Gnu/Linux based machines
using a single Intel(R) Xeon(R) Gold 6130 CPU @ 2.10 GHz core. Our code is
publicly available online.1

The results of our experiments appear in Table 1 and Fig. 7, and demon-
strate the advantages of AR4 compared to AR. AR4 timed out on 18.4% fewer
benchmarks, and solved 188 benchmarks more quickly than AR, compared to
119 where AR was faster. We note that in these comparisons, we treated exper-
iments in which both tools finished within 5 s of each other as ties. Next, we
observe that residual reasoning successfully curtailed the search space: on aver-
age, AR4 traversed 5.634 states of the search tree per experiment, compared to
7.178 states traversed by AR—a 21.5% decrease.

Despite the advantages it often affords, AR4 is not always superior to AR—
because the cost of instrumenting the verifier is not always negligible. In our
experimenters, the verifier spent an average of 82 s executing our instrumenta-
tion code out of an average total runtime of 885 seconds—nearly 10%, which
is quite significant. In order to mitigate this issue, moving forward we plan to
strengthen the engineering of our tool, e.g., by improve its implementation of
unit-propagation through the use of watch literals [5].

1 https://drive.google.com/file/d/1onk3dW3yJeyXw8 rcL6wUsVFC1bMYvjL.

https://drive.google.com/file/d/1onk3dW3yJeyXw8_rcL6wUsVFC1bMYvjL

Neural Network Verification Using Residual Reasoning 187

Fig. 7. Comparing AR4 and AR.

7 Related Work

Modern DNN verification schemes leverage principles from SAT and SMT solv-
ing [12,18,20,21,25], mixed integer linear programming [7,11,12,29], abstract
interpretation [15,24,27,31], and others. Many of these approaches apply case-
splitting, and could benefit from residual reasoning.

Abstraction-refinement techniques are known to be highly beneficial in veri-
fying hand-crafted systems [8], and recently there have been promising attempts
to apply them to DNN verification as well [2,14,26]. As far as we know, ours is
the first attempt to apply residual reasoning in this context.

8 Conclusion

As DNNs are becoming increasingly integrated into safety-critical systems,
improving the scalability of DNN verification is crucial. Abstraction-refinement
techniques could play a significant part in this effort, but they can sometimes
create redundant work for the verifier. The residual reasoning technique that we
propose can eliminate some of this redundancy, resulting in a speedier verifica-
tion procedure. We regard our work here as another step towards tapping the
potential of abstraction-refinement methods in DNN verification.

Moving forward, we plan to improve the engineering of our AR4 tool; and to
integrate it with other abstraction-refinement DNN verification techniques [2].

Acknowledgments. This work was supported by ISF grant 683/18. We thank Jiax-
iang Liu and Yunhan Xing for their insightful comments about this work.

188 Y. Y. Elboher et al.

References

1. Angelov, P., Soares, E.: Towards explainable deep neural networks (xDNN). Neural
Netw. 130, 185–194 (2020)

2. Ashok, P., Hashemi, V., Kretinsky, J., Mühlberger, S.: DeepAbstract: neural net-
work abstraction for accelerating verification. In: Proceedings of 18th International
Symposium on Automated Technology for Verification and Analysis (ATVA), pp.
92–107 (2020)

3. Azzopardi, S., Colombo, C., Pace, G.: A technique for automata-based verification
with residual reasoning. In: Proceedings of 8th International Conference on Model-
Driven Engineering and Software Development (MODELSWARD), pp. 237–248
(2020)

4. Bak, S., Liu, C., Johnson, T.: The second international verification of neural net-
works competition (VNN-COMP 2021): summary and results. Technical report
(2021). http://arxiv.org/abs/2109.00498

5. Biere, A., Heule, M., van Maaren, H.: Handbook of Satisfiability. IOS Press (2009)
6. Bojarski, M., et al.: End to end learning for self-driving cars. Technical report

(2016). http://arxiv.org/abs/1604.07316
7. Bunel, R., Turkaslan, I., Torr, P., Kohli, P., Kumar, M.: Piecewise linear neural

network verification: a comparative study. Technical report (2017). http://arxiv.
org/abs/1711.00455

8. Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS,
vol. 1855, pp. 154–169. Springer, Heidelberg (2000). https://doi.org/10.1007/
10722167 15

9. Dantzig, G.: Linear Programming and Extensions. Princeton University Press,
Princeton (1963)

10. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep
bidirectional transformers for language understanding. Technical report (2018).
http://arxiv.org/abs/1810.04805

11. Dutta, S., Jha, S., Sanakaranarayanan, S., Tiwari, A.: Output range analysis for
deep neural networks. In: Proceedings of 10th NASA Formal Methods Symposium
(NFM), pp. 121–138 (2018)

12. Ehlers, R.: Formal verification of piece-wise linear feed-forward neural networks.
In: D’Souza, D., Narayan Kumar, K. (eds.) ATVA 2017. LNCS, vol. 10482, pp.
269–286. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68167-2 19

13. Elboher, Y., Cohen, E., Katz, G.: Neural network verification using residual rea-
soning. Technical report (2022). http://arxiv.org/abs/2208.03083

14. Elboher, Y.Y., Gottschlich, J., Katz, G.: An abstraction-based framework for
neural network verification. In: Lahiri, S.K., Wang, C. (eds.) CAV 2020. LNCS,
vol. 12224, pp. 43–65. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
53288-8 3

15. Gehr, T., Mirman, M., Drachsler-Cohen, D., Tsankov, E., Chaudhuri, S., Vechev,
M.: AI2: safety and robustness certification of neural networks with abstract inter-
pretation. In: Proceedings of 39th IEEE Symposium on Security and Privacy (S&P)
(2018)

16. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge
(2016)

17. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 770–778 (2016)

http://arxiv.org/abs/2109.00498
http://arxiv.org/abs/1604.07316
http://arxiv.org/abs/1711.00455
http://arxiv.org/abs/1711.00455
https://doi.org/10.1007/10722167_15
https://doi.org/10.1007/10722167_15
http://arxiv.org/abs/1810.04805
https://doi.org/10.1007/978-3-319-68167-2_19
http://arxiv.org/abs/2208.03083
https://doi.org/10.1007/978-3-030-53288-8_3
https://doi.org/10.1007/978-3-030-53288-8_3

Neural Network Verification Using Residual Reasoning 189

18. Huang, X., Kwiatkowska, M., Wang, S., Wu, M.: Safety verification of deep neural
networks. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10426, pp.
3–29. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63387-9 1

19. Julian, K., Lopez, J., Brush, J., Owen, M., Kochenderfer, M.: Policy compression
for aircraft collision avoidance systems. In: Proceedings of 35th Digital Avionics
Systems Conference (DASC), pp. 1–10 (2016)

20. Katz, G., Barrett, C., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: an
efficient SMT solver for verifying deep neural networks. In: Majumdar, R., Kunčak,
V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 97–117. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-63387-9 5

21. Katz, G., et al.: The marabou framework for verification and analysis of deep
neural networks. In: Dillig, I., Tasiran, S. (eds.) CAV 2019. LNCS, vol. 11561, pp.
443–452. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25540-4 26

22. Kim, B., Kim, H., Kim, K., Kim, S., Kim, J.: Learning not to learn: training
deep neural networks with biased data. In: Proceedings of IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 9004–9012 (2019)

23. Liu, C., Arnon, T., Lazarus, C., Barrett, C., Kochenderfer, M.: Algorithms for ver-
ifying deep neural networks. Technical report (2020). http://arxiv.org/abs/1903.
06758

24. Müller, M., Makarchuk, G., Singh, G., Püschel, M., Vechev, M.: PRIMA: general
and precise neural network certification via scalable convex hull approximations.
In: Proceedings of 49th ACM SIGPLAN Symposium on Principles of Programming
Languages (POPL) (2022)

25. Narodytska, N., Kasiviswanathan, S., Ryzhyk, L., Sagiv, M., Walsh, T.: Verifying
properties of binarized deep neural networks. Technical report (2017). http://arxiv.
org/abs/1709.06662

26. Prabhakar, P., Afzal, Z.: Abstraction based output range analysis for neural net-
works. Technical report (2020). http://arxiv.org/abs/2007.09527

27. Singh, G., Gehr, T., Puschel, M., Vechev, M.: An abstract domain for certifying
neural networks. In: Proceedings of 46th ACM SIGPLAN Symposium on Principles
of Programming Languages (POPL) (2019)

28. Song, H., Kim, M., Park, D., Shin, Y., Lee, J.G.: End to end learning for self-driving
cars. Technical report (2020). http://arxiv.org/abs/2007.08199

29. Tjeng, V., Xiao, K., Tedrake, R.: Evaluating robustness of neural networks with
mixed integer programming. Technical report (2017). http://arxiv.org/abs/1711.
07356

30. Wang, S., Pei, K., Whitehouse, J., Yang, J., Jana, S.: Formal security analysis of
neural networks using symbolic intervals. In: Proceedings of 27th USENIX Security
Symposium (2018)

31. Wang, S., et al.: Beta-CROWN: efficient bound propagation with per-neuron split
constraints for complete and incomplete neural network verification. In: Proceed-
ings of 35th Conference on Neural Information Processing Systems (NeurIPS)
(2021)

32. Wu, H., et al.: Parallelization techniques for verifying neural networks. In: Pro-
ceedings of 20th International Conference on Formal Methods in Computer-Aided
Design (FMCAD), pp. 128–137 (2020)

33. Wu, H., Zeljić, A., Katz, G., Barrett, C.: Efficient neural network analysis with
sum-of-infeasibilities. In: TACAS 2022. LNCS, vol. 13243, pp. 143–163. Springer,
Cham (2022). https://doi.org/10.1007/978-3-030-99524-9 8

34. Ying, X.: An overview of overfitting and its solutions. J. Phys: Conf. Ser. 1168,
022022 (2019)

https://doi.org/10.1007/978-3-319-63387-9_1
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-030-25540-4_26
http://arxiv.org/abs/1903.06758
http://arxiv.org/abs/1903.06758
http://arxiv.org/abs/1709.06662
http://arxiv.org/abs/1709.06662
http://arxiv.org/abs/2007.09527
http://arxiv.org/abs/2007.08199
http://arxiv.org/abs/1711.07356
http://arxiv.org/abs/1711.07356
https://doi.org/10.1007/978-3-030-99524-9_8

Training Agents to Satisfy Timed
and Untimed Signal Temporal Logic
Specifications with Reinforcement

Learning

Nathaniel Hamilton(B) , Preston K Robinette , and Taylor T Johnson

Vanderbilt University, Nashville, TN 37212, USA
{nathaniel.p.hamilton,preston.k.robinette,taylor.johnson}@vanderbilt.edu

Abstract. Reinforcement Learning (RL) depends critically on how
reward functions are designed to capture intended behavior. However,
traditional approaches are unable to represent temporal behavior, such
as “do task 1 before doing task 2.” In the event they can represent tempo-
ral behavior, these reward functions are handcrafted by researchers and
often require long hours of trial and error to shape the reward function
just right to get the desired behavior. In these cases, the desired behavior
is already known, the problem is generating a reward function to train
the RL agent to satisfy that behavior. To address this issue, we present
our approach for automatically converting timed and untimed specifica-
tions into a reward function, which has been implemented as the tool
STLGym. In this work, we show how STLGym can be used to train RL
agents to satisfy specifications better than traditional approaches and to
refine learned behavior to better match the specification.

Keywords: Deep Reinforcement Learning · Safe Reinforcement
Learning · Signal Temporal Logic · Curriculum Learning

1 Introduction

Reinforcement Learning (RL) and Deep Reinforcement Learning (DRL) are fast-
growing fields with growing impact, spurred by success in training agents to beat
human experts in games like Go [23], Starcraft [25], and Gran Turismo [28]. These
results support the claims from [24] that “reward is enough to drive behavior
that exhibits abilities studied in natural and artificial intelligence.”

However, traditional reward functions are Markovian by nature; mapping
states, or states and actions, to scalar reward values without considering pre-
vious states or actions [5]. This Markovian nature is in direct conflict with
designing reward functions that describe complex, temporally-extended behav-
ior. For example, the task of opening a freezer door, taking something out, and
then closing the freezer door cannot be represented by Markovian reward func-
tions, because the success of taking something out of the freezer is dependent
on opening the freezer door first. This problem also extends to the context of
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
B.-H. Schlingloff and M. Chai (Eds.): SEFM 2022, LNCS 13550, pp. 190–206, 2022.
https://doi.org/10.1007/978-3-031-17108-6_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-17108-6_12&domain=pdf
http://orcid.org/0000-0002-7147-1964
http://orcid.org/0000-0002-4906-2179
http://orcid.org/0000-0001-8021-9923
https://doi.org/10.1007/978-3-031-17108-6_12

Training Agents to Satisfy STL Specifications 191

safety-critical systems, where the desired behavior might include never entering
some region or responding to a situation within a specified amount of time.

Therefore, if we want to use RL and DRL to solve complex, temporally-
extended problems, we need a new way of writing and defining reward functions.
This is a challenging problem with growing interest as RL research looks into
new ways to formulate the reward function to solve these kinds of problems. The
most promising approaches look at using temporal logic to write specifications
describing the desired behavior, and then generating complex reward functions
that help agents learn to satisfy the specifications. Temporal logics are formalism
for specifying the desired behavior of systems that evolve over time [16]. Some
approaches, like the one presented in this work, take advantage of quantitative
semantics [1,2,14], while others construct reward machines that change how the
reward function is defined depending on which states have been reached [5,11–
13].

Despite the many successes of these approaches, only one is able to incorpo-
rate timing constraints [2] and many only work with a few RL algorithms that
require researchers to write up the problem in a custom format to work with the
implementation provided. By ignoring timing constraints, the approaches leave
out reactive specifications where systems need to respond within a specified
amount of time, like in power systems.

Our Contributions. In this work, we introduce our approach, and a tool imple-
mentation, STLGym, for training RL agents to satisfy complex, temporally-
extended problems with and without timing constraints using RL. To the best
of our knowledge, and compared to related works discussed in Sect. 6, our app-
roach is the first that allows users to train agents to satisfy timed and untimed
specifications, evaluate how well their agents satisfy those specifications, and
retrain agents that do not already satisfy the specifications. We demonstrate the
features of our tool and explore some best practices in five interesting exam-
ple case studies. Our results show STLGym is an effective tool for training RL
agents to satisfy a variety of timed and untimed temporal logic specifications.

2 Preliminaries

2.1 (Deep) Reinforcement Learning

Reinforcement Learning (RL) is a form of machine learning in which an agent
acts in an environment, learning through experience to increase its performance
based on rewarded behavior. Deep Reinforcement Learning (DRL) is a newer
branch of RL in which a neural network is used to approximate the behavior
function, i.e. policy π. The environment can be comprised of any dynamical
system, from video game simulations [9,25,28] to complex robotics scenarios
[4,8,17]. In this work, and to use our tool STLGym, the environment must be
constructed using OpenAI’s Gym API [4].

Reinforcement learning is based on the reward hypothesis that all goals can
be described by the maximization of expected return, i.e. the cumulative reward.
During training, the agent chooses an action, u, based on the input observation,

192 N. Hamilton et al.

o. The action is then executed in the environment, updating the internal state,
s, according to the plant dynamics. The agent then receives a scalar r, and the
next observation vector, o′. The process of executing an action and receiving a
reward and next observation is referred to as a timestep. Relevant values, like the
input observation, action, and reward are collected as a data tuple, i.e. sample,
by the RL algorithm to update the current policy, π, to an improved policy, π∗.
How often these updates are done is dependent on the RL algorithm.

The return is the sum of all rewards collected over the course of an episode.
An episode is a finite sequence of states, observations, actions, and rewards start-
ing from an initial state and ending when some terminal, i.e. done, conditions
are met. In this work, we refer to different elements of the episode by their cor-
responding timestep, t. Thus, rt is the reward value at timestep t ∈ [0, T], where
T is the final timestep in the episode.

2.2 Signal Temporal Logic

Signal Temporal Logic (STL) was first introduced in [16] as an extension of
previous temporal logics that allows for formalizing control-theoretic properties,
properties of path-planning algorithms, and expressing timing constrains and
causality relations.

STL specifications are defined recursively according to the syntax :

φ := ψ|¬φ|φ ∧ ϕ|φ ∨ ϕ|F[a,b]φ|G[a,b]φ|φU[a,b]ψ, (1)

where a, b ∈ R≥0 are finite non-negative time bounds; φ and ϕ are STL formulae;
and ψ is a predicate in the form f(w) < d. In the predicate, w : R≥0 → R

n is a
signal, f : Rn → R is a function, and d ∈ R is a constant. The Boolean operators
¬, ∧, and ∨ are negation, conjunction, and disjunction respectively; and the
temporal operators F , G, and U refer to Finally (i.e. eventually), Globally (i.e.
always), and Until respectively. These temporal operators can be timed, having
time boundaries where the specification must be met, or untimed without strict
time boundaries.

wt denotes the value of w at time t and (w, t) is the part of the signal that
is a sequence of wt′ for t′ ∈ [t, |w|), where |w| is the end of the signal. The
propositional semantics of STL are recursively defined as follows:

(w, t) |= (f(w) < d) ⇔ f(wt) < d,

(w, t) |= ¬φ ⇔ ¬((w, t) |= φ),
(w, t) |= φ ∧ ϕ ⇔ (w, t) |= φ and (w, t) |= ϕ,

(w, t) |= φ ∨ ϕ ⇔ (w, t) |= φ or (w, t) |= ϕ,

(w, t) |= F[a,b]φ ⇔ ∃t′ ∈ [t + a, t + b] s.t. (w, t′) |= φ,

(w, t) |= G[a,b]φ ⇔ (w, t′) |= φ ∀t′ ∈ [t + a, t + b],
(w, t) |= φU[a,b]ϕ ⇔ ∃tu ∈ [t + a, t + b) s.t. (w, tu) |= ϕ

∧ ∀t′ ∈ [t + a, tu)(w, t′) |= φ.

Training Agents to Satisfy STL Specifications 193

For a signal (w, 0), i.e. the whole signal starting at time 0, satisfying the
timed predicate F[a,b]φ means that “there exists a time within [a, b] such that φ
will eventually be true”, and satisfying the timed predicate G[a,b]φ means that
“φ is true for all times between [a, b]”. Satisfying the timed predicate φU[a,b]ϕ
means “there exists a time within [a, b] such that ϕ will be true, and until then,
φ is true.” Satisfying the untimed predicates have the same description as their
timed counterpart, but with a = 0 and b = |w|.

Quantitative Semantics. STL has a metric known as robustness degree or
“degree of satisfaction” that quantifies how well a given signal w satisfies a
given formula φ. The robustness degree is calculated recursively according to
the quantitative semantics:

ρ(w, (f(w) < d), t) = d − f(wt),
ρ(w,¬φ, t) = − ρ(w, φ, t),

ρ(w, (φ ∧ ϕ), t) = min
(
ρ(w, φ, t), ρ(w,ϕ, t)

)
,

ρ(w, (φ ∨ ϕ), t) = max
(
ρ(w, φ, t), ρ(w,ϕ, t)

)
,

ρ(w,F[a,b]φ, t) = max
t′∈[t+a,t+b]

ρ(w, φ, t′),

ρ(w,G[a,b]φ, t) = min
t′∈[t+a,t+b]

ρ(w, φ, t′),

ρ(w, φU[a,b]ϕ, t) = max
tu∈[t+a,t+b]

(
min{ρ(w,ϕ, tu), min

t′∈[t,tu)

(
ρ(w, φ, t′)

)}
)
.

3 Examples

In the remaining sections, we will be referring to these two example RL envi-
ronments, Pendulum and CartPole, in order to explain how STLGym works
and differs from other approaches. Figure 1 shows annotated screenshots of the
simulated environments.

Fig. 1. Annotated screenshots showing the simulated environments, Pendulum (left)
and CartPole (right), from the OpenAI Gym benchmarks [4].

194 N. Hamilton et al.

3.1 Pendulum

The Pendulum environment, shown in Fig. 1(a), consists of an inverted pendulum
attached to a fixed point on one side. The agent’s goal in this environment is to
swing the free end of the pendulum to an upright position, θ = 0, and maintain
the position.

The interior plant model changes the state, s = [θ, ω], according to the dis-
crete dynamics given the control from the RL agent, ut, in the range [−2, 2]
applied as a torque about the fixed end of the pendulum. Additionally, within
the environment the pendulum’s angular velocity, ω, is clipped within the range
[−8, 8], and the angle from upright, θ, is aliased within [−π, π] radians. θ is mea-
sured from upright and increases as the pendulum moves clockwise. The values
θ, ω, and u are used to determine the observation, o = [cos(θ), sin(θ), ω]T and
the reward,

rt = −θ2
t − 0.1(ωt)2 − 0.001(ut)2. (2)

For each episode, the pendulum is initialized according to a uniform distri-
bution with θ ∈ [−π, π] and ω ∈ [−1, 1]. The episode ends when 200 timesteps
have occurred. That means T is always 200.

3.2 CartPole

In the CartPole environment1, a pole is attached to a cart moving along a fric-
tionless track. The agent’s goal in this environment is to keep the pole upright,
−12◦ ≤ θ ≤ 12◦, and the cart within the bounds −2.4 ≤ x ≤ 2.4 until the
time limit, t = 200, is reached. The agent accomplishes this goal by applying a
leftward or rightward force to move the cart along the track. The agent’s actions
are discretized for a “bang-bang” control architecture that moves the cart left
when u = 0 and right when u = 1.

The interior plant model changes the state, s = [x, ẋ, θ, θ̇], until a terminal
condition is met. These terminal conditions are: (1) the cart’s position leaves the
bounds −2.4 ≤ x ≤ 2.4, (2) the pole’s angle is outside the bounds −12◦ ≤ θ ≤
12◦, and/or (3) the goal time limit is reached, i.e. t = 200.

The original, baseline reward function with this environment gives the agent
+1 for every timestep the first two terminal conditions are not violated. Thus,
the return for an episode is the same as the episode’s length. To ensure the agent
has a chance to complete at least one timestep successfully, each state element is
initialized according to a uniform distribution in the range [−0.05, 0.05]. In this
implementation, the observation is equivalent to the state, o = s.

4 Our Approach: STLGym

Our approach focuses solely on augmenting the environment side of the RL
process to add an STL monitor and replace the existing reward output with the
1 The environment is based on the classic cart-pole system implemented for [3], where

more information on the dynamics can be found.

Training Agents to Satisfy STL Specifications 195

STLGym Environment

Agent Gym Environment

PlantNeural Network
Controller

RL Algorithm

o

o

s

r

uNN

uNN , ππ*

Observer

uNN

o

rtamt
STL monitor

r

Fig. 2. A representation of how STLGym wraps around the user’s environment to
record signals and replace the reward function.

calculated robustness degree as it relates to the desired specification(s), as shown
in Fig. 2. This process maintains the standards of the Gym API, so no changes
to the RL algorithm are necessary to facilitate its use. As a result, our approach
is algorithm-agnostic, since no modifications to the RL algorithm are required.
Furthermore, since our approach makes use of existing environments, there is
great potential for retraining learned policies to better optimize satisfying spec-
ifications. Our approach is implemented as the tool STLGym2.

To use the tool, a user provides a YAML file that defines the variable(s) that
need to be recorded for the multivariate signal, w, and the specification(s) that
the signal needs to satisfy. Additionally, the user must provide the underlying
Gym environment that will be augmented. Provided these two inputs, STLGym
generates a new Gym environment where the specified variables are recorded so
RTAMT can monitor the defined STL specification and return the robustness
degree as the reward function.

4.1 Computing the Robustness Degree

To compute the robustness degree, we make use of RTAMT [19], a tool for mon-
itoring STL specifications on recorded data. Given the recorded signal and spec-
ification, RTAMT computes the robustness degree according to the quantitative
semantics described in Sect. 2.2. Whenever the robustness degree is calculated,
it covers the full episode from time 0 to t.

4.2 Allowable Specifications

Our approach is amenable to a wide range of specifications and supports the
full range of semantics described in Sect. 2.2 in addition to any described in

2 STLGym implementation is available at https://github.com/nphamilton/stl-gym.

https://github.com/nphamilton/stl-gym

196 N. Hamilton et al.

RTAMT’s readme3. This includes both timed and untimed operators, adding
more options than allowed in a similar tool Truncated Linear Temporal Logic
TLTL [14]. Furthermore, our approach allows for specifications to be broken up
into individual parts. For example, consider the Cartpole example from Sect. 3.2.
The desired behavior (“Keep the pole upright between ± 12◦ and the cart within
± 2.4 units”) can be written as

Φsingle = G((|θ| < 0.20944) ∧ (|x| < 2.4)) (3)

or it can be broken up into the individual components and combined with a
conjunction,

φangle = G(|θ| < 0.20944)
φposition = G(|x| < 2.4)

Φsplit = φangle ∧ φposition.

(4)

These specifications, Eq. 3 and Eq. 4, are equivalent and allowable in both TLTL
and STLGym. However, STLGym allows users to treat φangle and φposition as
individual specifications and automatically applies the conjunction. Any num-
ber of individual specifications can be defined, and the resulting specification
the RL agent will learn to satisfy is the conjunction of all of them. Thus, if n
specifications are provided, the RL agent will learn to satisfy

Φ =
n∧

i=0

φi. (5)

4.3 Calculating Reward

STLGym replaces any existing reward function in the environment with the
robustness degree calculated using the provided specification(s) and RTAMT. If
the user defines n specifications, φ0, φ1, ..., φn with corresponding weight values4,
c0, c1, ..., cn, the reward function is constructed as

rt =
n∑

i=0

ciρ(s, φi, 0). (6)

We include optional weights to add more versatility. This allows for users
to write specifications that build on each other, i.e. a specification is defined
using another specification, but remove one from the reward function if desired
by setting its weight to 0. Additionally, weights can help establish priorities in
learning specifications. For example, we go back to the CartPole specification
Eq. 4. The reward function generated, according to the quantitative semantics
described in Sect. 2.2, for the specification is

rt = cangle min
t′∈[0,t]

(0.20944 − |θt′ |) + cposition min
t′∈[0,t]

(2.4 − |xt′ |). (7)

3 The RTAMT code is available at https://github.com/nickovic/rtamt.
4 If a weight is not defined by the user, the default is 1.

https://github.com/nickovic/rtamt

Training Agents to Satisfy STL Specifications 197

If both cangle = cposition = 1, then the maximum possible reward for satisfying
both specifications is 2.60944. However, because the environment was designed
to terminate if either specification is violated, if the agent only satisfies φposition

and lets the pole fall, the maximum possible reward is 2.4. Since the gain from
keeping the pole upright is so small, it could be ignored. In contrast, if we make
the weights cangle = 4.7746 and cposition = 0.41666, then the maximum possible
reward for satisfying both specifications is 2. If either of the specifications are
ignored, the maximum possible reward drops to 1. Thus, we have enforced equal
priority for satisfying the specifications.

Dense Vs Sparse. In addition to adding optional weights for each specification,
STLGym allows users to specify if the reward function should be calculated
densely or sparsely. This design decision was spurred on by the existing RL
literature, where there are two main types of rewards utilized: dense and sparse.
In the literature, dense rewards are returned at every timestep and are often a
scalar representation of the agent’s progresses toward the goal. For example, the
baseline reward function in the Pendulum environment (Eq. 2) is a dense reward.
In contrast, sparse rewards are not returned at each timestep, but instead are
only returned if certain conditions are met. For example, an agent receiving +1
for passing a checkpoint would be considered a sparse reward. Each of these
reward types have their advantages for different tasks and algorithms. However,
we make use of these terms to make our own definitions of dense and sparse
reward as they relate to frequency.

Definition 1 (Dense Reward). When using the dense reward, the robust-
ness degree is computed at every allowable timestep. Thus, at each timestep, the
reward returned to the agent is the robustness degree of the episode from the
beginning to the current time step.

Definition 2 (Sparse Reward). When using the sparse reward, the robustness
degree is only computed once at the end of the episode. In all timesteps before
that, the reward is 0. Thus, the return is the robustness degree for the entire
episode.

From our experiments, we found using dense rewards trained agents to satisfy
the specification with fewer timesteps, while the sparse reward was better for
evaluating their performance and understanding if they have successfully learned
to satisfy the specification or not. An example is provided in Sect. 5.1.

5 Example Case Studies

In this section, we describe 5 case studies we conducted using the environments
described in Sect. 35. In all of our case studies, we use the Proximal Policy

5 All training scripts are available at https://github.com/nphamilton/spinningup/
tree/master/spinup/examples/sefm2022.

https://github.com/nphamilton/spinningup/tree/master/spinup/examples/sefm2022
https://github.com/nphamilton/spinningup/tree/master/spinup/examples/sefm2022

198 N. Hamilton et al.

Optimization (PPO) [22] algorithm for training, unless otherwise specified. These
case studies were designed to highlight features of STLGym and try to identify
some potential “best practices” for future use in other environments.

5.1 Sparse vs Dense Reward

In this case study, we demonstrate why having the ability to swap between sparse
and dense versions of our STL reward function is important. To this end, we train
30 agents in the pendulum environment from Sect. 3.1 to swing the pendulum
upright and stay upright. Written as an STL specification, that is

Φ = F (G((|θ| < 0.5))). (8)

Ten agents are trained using the baseline reward function (Eq. 2), ten agents
are trained with the sparse version of our STL reward function, and ten agents
are trained with the dense version of our STL reward function. Using the quan-
titative semantics from Sect. 2.2, our tool automatically generates the reward
function,

rt = max
t′∈[0,t]

(
min

t′′∈[t′,t]
(0.5 − |θt′′ |)). (9)

(a) Sample complexity of PPO agents
trained in the Pendulum environment.
The return is calculated using Equa-
tion 2.

(b) Sample complexity of PPO agents
trained in the Pendulum environment.
The return is calculated using Equa-
tion 9 defined sparsely.

Fig. 3. Plots comparing the sample complexity using PPO to train agents in the Pendu-
lum environment using three reward functions: (baseline) the baseline reward function,
Eq. 2; (sparse) the STLGym reward function, Eq. 9, defined sparsely; and (dense) the
STLGym reward function defined densely. Each curve represents the average return
from 10 agents trained the same way. The shaded region around each curve shows the
95% confidence interval.

We show the sample complexity plots of training these 30 agents with the
3 different reward functions in Fig. 3. Sample complexity is a measure of how

Training Agents to Satisfy STL Specifications 199

quickly an RL agent learns optimal performance. Throughout training, the pro-
cess is halted, and the agent is evaluated to see how well it performs with the
policy learned so far. The policy is evaluated in ten episodes, and the perfor-
mance, measured by the return, is recorded for the plot. A better sample com-
plexity is shown by a higher return earlier in training. In Fig. 3, we show sample
complexity measured by the (a) baseline reward function and (b) the sparse STL
reward function to highlight how the agents trained with the dense STL reward
have a better sample complexity than agents trained with the baseline reward
function even according to the baseline metric.

While the agents trained using the sparse STL reward function failed to
learn an optimal policy, using the sparse STL reward function for evaluating
performance was very beneficial. Using the dense reward function for evaluat-
ing performance is very similar to the baseline reward function, in that neither
provide any insight into whether or not the learned policy satisfies the desired
behavior. In contrast, using the sparse STL reward function in Fig. 3(b), we see
the exact point where the learned policies are successfully able to satisfy the
specification when the return is greater than 0.

5.2 STLGym is Algorithm-Agnostic

(a) Comparing multiple RL algorithms
using STLGym to learn the Pendulum
specification, Equation 8.

(b) Comparing the three options pre-
sented in Section 5.3 in the CartPole.

Fig. 4. These plots compare the sample complexity of agents trained using different
methods. Each curve represents the average of 10 trained agents, and the shaded region
shows the 95% confidence interval. In (b), the return is calculated using the sparse
definition of Φsplit (reward function represented by Eq. 7) with cangle = 4.7746 and
cposition = 0.41666 so the maximum possible return is 2.0.

In this case study, we demonstrate that our approach is algorithm-agnostic by
using multiple RL algorithms for the Pendulum example explained in Sect. 3.1.
All algorithms are used to learn the optimal policy for satisfying the specification
in Eq. 8. We demonstrate the following RL algorithms successfully learning to

200 N. Hamilton et al.

satisfy the specification using STLGym: Proximal Policy Optimization (PPO)
[22], Soft Actor-Critic (SAC) [7], and Twin Delayed Deep Deterministic Pol-
icy Gradient (TD3) [6]. The sample complexity plot in Fig. 4(a) shows all RL
algorithms successfully learn to satisfy the specification. While the results sug-
gest SAC and TD3 work better with our STL reward function, these algorithms
are known to learn the optimal policy for this environment very quickly. More
examples, across different environments, are needed to make that claim.

5.3 On Separating Specifications and Scaling

The goal of the agent in the CartPole environment is to learn how to keep
the pole upright so the angle, θ, is between ± 12◦ and the cart’s position, x
remains within the boundary of ± 2.4 for 200 timesteps. As explained in Sect. 4.2,
this specification can be written as a singular specification, Eq. 3, or as the
conjunction of individual components, Eq. 4.

Using STL’s quantitative semantics, STLGym would generate the reward
function for Φsingle as

rt = min
t′∈[0,t]

(
min

(
(0.20944 − |θt′ |), (2.4 − |xt′ |))

)
. (10)

Similarly, STLGym would generate the reward function for Φsplit as Eq. 7
In this case study, we look at how splitting up the specification into its indi-

vidual components creates a different reward function that impacts the training.
We compare the sample complexity of learning Φsingle against learning Φsplit

with and without weights. The results are shown in Fig. 4(b).
The results shown in Fig. 4(b) indicate splitting the specification is a hin-

drance for learning. The agents that were trained to satisfy Φsingle (single),
converged to a more optimal policy faster than both the weighted (stlgym) and
unweighted (split) options of Φsplit. We expect this is a direct result of trying
to satisfy Φsingle, where the robustness degree is always the worst-case of sat-
isfying both the angle and positions specifications. There is no credit awarded
for satisfying one better than the other, like in the Φsplit definition. We believe
that, while splitting the specification in this case study was more of a hindrance,
in more complicated systems with more specifications, splitting could be more
beneficial than shown here. In those cases, the option for weighting the individ-
ual specifications will be very helpful as the weighted and split option (stlgym),
which is only supported in STLGym, learned faster than and outperformed the
unweighted option.

5.4 Retraining with New Goal

There are many cases where the traditional reward functions successfully train
agents to complete the desired behavior, but we want to refine/improve/augment

Training Agents to Satisfy STL Specifications 201

that behavior to some other desired behavior. Instead of designing a new reward
function and training a new agent from scratch, our tool can be leveraged to
retrain the agent to satisfy the new desired behavior. This also makes our tool
amenable to curriculum learning [26], an RL training strategy that trains agents
in progressively harder environments or constraints. Similar to a learning cur-
riculum used to teach students in a class, by starting with easier constraints and
building upon what is learned from the easier tasks, the agent is better able to
learn more complex behaviors.

In this case study, we look at an example with the CartPole environment
described in Sect. 3.2. The baseline reward function trains agents to keep the pole
upright very efficiently, but as [2] point out in their work, many of the learned
policies are unstable. When they evaluated the policies for longer than 200
timesteps, they found many learned policies failed shortly after 200 timesteps.
We saw similar results, which are shown in Fig. 5. To counteract this issue, we
retrain the agents to maximize the measured robustness of the specifications

φposition = F (G(|x| < 0.5)), and
φangle = F (G(|θ| < 0.0872665)).

(11)

In plain English, the specifications translate to “eventually the cart will always
be within ± 0.5 units of the center of the track” and “eventually, the pole’s angle
will always be within ± 5◦.”6

(a) 10 example episodes where the
policy learned using the baseline
reward function is stable.

(b) 10 example episodes where the
policy learned using the baseline
reward function is unstable.

Fig. 5. These plots show recorded episodes of trained policies evaluated in the CartPole
environment. The red marks the region outside the specification and the horizontal
green lines mark the goal during training at 200, and the goal at evaluation 500.
In (a) we see the agent trained with the baseline reward function learned a stable
policy and retraining with STLGym is able to further refine the learned policy to
maximize the distance to the red region. In (b) we see the agent trained with the
baseline reward learned an unstable policy, but after retraining with STLGym, the
learned policy becomes stable. (Color figure online)

6 These specifications came from [2].

202 N. Hamilton et al.

(a) Two recorded episodes of one
trained policy.

(b) Two recorded episodes of a dif-
ferent trained policy.

Fig. 6. Episodes of policies trained to satisfy the timed specification in Eq. 12.

After some retraining, Fig. 5 shows the retrained policies converged to more
stable and consistent behavior. In particular, Fig. 5(b) shows our approach cor-
rects the unstable behavior.

5.5 Learning a Timed Specification

In this case study, we look at one of the features of our tool that sets it apart from
almost all existing approaches in the literature—the ability to learn timed spec-
ifications. Here we return to the Pendulum environment described in Sect. 3.1.
This time, the specification is “eventually the angle will be between ± 45◦ for 10
timesteps.” In STL, the desired behavior is written as,

Φ = F (G[0:10](|θ| < 0.5)). (12)

And is converted by our tool to the reward function,

rt = max
t′∈[0,t]

(
min

t′′∈[t′,t′+10]
(0.5 − |θt′′ |)). (13)

The results of learning the specification in Eq. 12 are highlighted in Fig. 6
where we show a few example episodes. When we first wrote this specification,
we believed the resulting behavior would closely match that of the agents in
Sect. 5.1. Instead, the learned policies were more varied. Some stay close to the
upright position for longer than others, but they always return. We believe this
is a result of the circular state space, which puts the agent back in a starting
position after it moves away from upright. This result shows STLGym can suc-
cessfully train agents to satisfy timed specifications. However, it also highlights
a limitation of our approach: we have no way of overwriting the terminal condi-
tions. We would see more consistent results if we were able to stop the episode
once the specification was satisfied, but that is a feature left for future work.

Training Agents to Satisfy STL Specifications 203

6 Related Work

Our work is not the first to use temporal logic specifications to create reward
functions. The previous works can be grouped into two categories, (1) quan-
titative semantics and (2) reward machines. We describe the related works in
greater detail below and provide a general comparison of our approach with oth-
ers in Table 1. The RL algorithms listed in Table 1 are the following: Augmented
Random Search (ARS) [17], Deep Deterministic Policy Gradient (DDPG) [15],
Deep Q-Learning (DQN) [18], Neural Fitted Q-iteration (NFQ) [21], Relative
Entropy Policy Search (REPS) [20], Q-Learning (Q) [27], and Twin Delayed
Deep Deterministic Policy Gradient (TD3) [6].

Table 1. A comparison of our tool to similar tools in the literature, separated by
category, filled in to the best of our knowledge. × indicates the feature is not supported,
� indicates the feature is supported, and ? indicates it should be supported, but we
cannot say so with confidence.

Name Env-API Sparse/Dense RL Algorithms Retraining Timed Sequential

TLTL [14] ? Dense REPS ? × �
BHNR [2] Custom Dense DQN, PPO ? � ?

STLGym (ours) Gym Both Any � � �
QRM [11] Gym Both Q, DQN × × �
LCRL [10] Custom Both Q, DDPG, NFQ × × �
SPECTRL [12] Custom Dense ARS × × �
DIRL [13] Gym Dense ARS, TD3 × × �

6.1 Quantitative Semantics

The quantitative semantics category is where our work resides. These works,
[1,2,14], generate reward functions based on the quantitative semantics of the
temporal logics used to write the specifications the RL agents are tasked with
learning to satisfy. In Truncated Linear Temporal Logic (TLTL), presented in
[14], the authors create a new specification language, TLTL, that consciously
removes the time bounds from STL to only have untimed operators. They made
this decision, so specifications do not have to account for robotic limitations. In
contrast, our STLGym is designed to handle both timed and untimed specifica-
tions, thus handling all TLTL problems and more.

Another work, [2], uses timed and untimed STL specifications similar to
our STLGym. Their approach, Bounded Horizon Nominal Robustness (BHNR),
computes a normalized robustness value over bounded horizons, i.e. small seg-
ments, of the episode, creating a reward vector. By only analyzing the robust-
ness over smaller segments of the episode, their approach is able to speed up the
robustness degree calculation for dense reward computation. However, because
only a small portion of the episode is analyzed, their approach cannot be used to

204 N. Hamilton et al.

determine the robustness degree across an entire episode like our sparse reward
function is able to do. Additionally, their implementation limits user’s specifi-
cations to be defined only by variables in the environment’s observation space.
Thus, their tool cannot train our pendulum example without re-writing to spec-
ification in terms of x and y instead of θ.

6.2 Reward Machines

Reward machine approaches, [5,11–13], use finite state automata (FSA) to han-
dle context switching in the reward function. Temporal logic specifications are
used to generate FSA that monitor the episode for satisfaction. Additionally,
depending on which state of the FSA is in, the reward function changes in order
to guide the agent towards satisfying the next specification. This approach is
optimal for solving sequential tasks because it allows the user to specify “go to
the fridge; open the door; take something out; close the door; return to home”
and the reward function changes depending on which part of the task is being
done. To the best of our knowledge, however, none of these approaches can
handle timed specifications yet.

7 Conclusions and Future Work

This paper presents our tool, STLGym, for training agents to satisfy timed and
untimed STL specifications using RL. To demonstrate the features of our tool
and explore some best practices for learning to satisfy STL specifications, we
trained over 130 different RL agents in our 5 case studies. From these case
studies we observed (1) RL agents learned STLGym’s dense rewards better
than sparse rewards, (2) STLGym is algorithm-agnostic and works with any
RL algorithm designed to integrate with Gym environments, (3) leaving spec-
ifications combined is better for RL agents than splitting them into individual
parts, (4) STLGym is effective for retraining RL agents to better satisfy specifi-
cations, and (5) STLGym is effective for training RL agents to satisfy timed STL
specifications.

In future work, we hope to expand to other, more complicated environments
and explore more scenarios with timed specifications. Additionally, we would
like to explore how STLGym can be leveraged more effectively for curriculum
learning.

Acknowledgments. The material presented in this paper is based upon work sup-
ported the Defense Advanced Research Projects Agency (DARPA) through contract
number FA8750-18-C-0089, the Air Force Office of Scientific Research (AFOSR) award
FA9550-22-1-0019, the National Science Foundation (NSF) through grant number
2028001, and the Department of Defense (DoD) through the National Defense Sci-
ence & Engineering Graduate (NDSEG) Fellowship Program. Any opinions, findings,
and conclusions or recommendations expressed in this publication are those of the
authors and do not necessarily reflect the views of DARPA, AFOSR, NSF or DoD.

Training Agents to Satisfy STL Specifications 205

References

1. Aksaray, D., Jones, A., Kong, Z., Schwager, M., Belta, C.: Q-learning for robust
satisfaction of signal temporal logic specifications. In: 2016 IEEE 55th Conference
on Decision and Control (CDC), pp. 6565–6570. IEEE (2016)

2. Balakrishnan, A., Deshmukh, J.V.: Structured reward shaping using signal tempo-
ral logic specifications. In: 2019 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pp. 3481–3486. IEEE (2019)

3. Barto, A.G., Sutton, R.S., Anderson, C.W.: Neuronlike adaptive elements that can
solve difficult learning control problems. IEEE Trans. Syst. Man Cybern. SMC-
13(5), 834–846 (1983)

4. Brockman, G., et al.: Openai gym (2016)
5. Camacho, A., Icarte, R.T., Klassen, T.Q., Valenzano, R.A., McIlraith, S.A.: LTL

and beyond: formal languages for reward function specification in reinforcement
learning. In: IJCAI. vol. 19, pp. 6065–6073 (2019)

6. Fujimoto, S., Hoof, H., Meger, D.: Addressing function approximation error in
actor-critic methods. In: International Conference on Machine Learning, pp. 1587–
1596. PMLR (2018)

7. Haarnoja, T., Zhou, A., Abbeel, P., Levine, S.: Soft actor-critic: off-policy maxi-
mum entropy deep reinforcement learning with a stochastic actor. In: International
Conference on Machine Learning, pp. 1861–1870. PMLR (2018)

8. Hamilton, N., Musau, P., Lopez, D.M., Johnson, T.T.: Zero-shot policy transfer in
autonomous racing: reinforcement learning vs imitation learning. In: Proceedings
of the 1st IEEE International Conference on Assured Autonomy (2022)

9. Hamilton, N., Schlemmer, L., Menart, C., Waddington, C., Jenkins, T., John-
son, T.T.: Sonic to knuckles: evaluations on transfer reinforcement learning. In:
Unmanned Systems Technology XXII. vol. 11425, p. 114250J. International Soci-
ety for Optics and Photonics (2020)

10. Hasanbeig, M., Abate, A., Kroening, D.: Logically-constrained reinforcement learn-
ing code repository. https://github.com/grockious/lcrl (2020)

11. Icarte, R.T., Klassen, T., Valenzano, R., McIlraith, S.: Using reward machines
for high-level task specification and decomposition in reinforcement learning. In:
International Conference on Machine Learning, pp. 2107–2116. PMLR (2018)

12. Jothimurugan, K., Alur, R., Bastani, O.: A composable specification language
for reinforcement learning tasks. In: Advances in Neural Information Processing
Systems 32: Annual Conference on Neural Information Processing Systems 2019,
NeurIPS 2019 (2019)

13. Jothimurugan, K., Bastani, O., Alur, R.: Abstract value iteration for hierarchical
reinforcement learning. In: International Conference on Artificial Intelligence and
Statistics, pp. 1162–1170. PMLR (2021)

14. Li, X., Vasile, C.I., Belta, C.: Reinforcement learning with temporal logic rewards.
In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pp. 3834–3839. IEEE (2017)

15. Lillicrap, T.P., et al.: Continuous control with deep reinforcement learning. In:
ICLR (2016)

16. Maler, O., Nickovic, D.: Monitoring temporal properties of continuous signals. In:
Lakhnech, Y., Yovine, S. (eds.) FORMATS/FTRTFT -2004. LNCS, vol. 3253, pp.
152–166. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30206-
3 12

https://github.com/grockious/lcrl
https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1007/978-3-540-30206-3_12

206 N. Hamilton et al.

17. Mania, H., Guy, A., Recht, B.: Simple random search of static linear policies is
competitive for reinforcement learning. In: Proceedings of the 32nd International
Conference on Neural Information Processing Systems, pp. 1805–1814 (2018)

18. Mnih, V., et al.: Human-level control through deep reinforcement learning. Nature
518(7540), 529–533 (2015)

19. Ničković, D., Yamaguchi, T.: RTAMT: online robustness monitors from STL. In:
Hung, D.V., Sokolsky, O. (eds.) ATVA 2020. LNCS, vol. 12302, pp. 564–571.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59152-6 34

20. Peters, J., Mulling, K., Altun, Y.: Relative entropy policy search. In: Twenty-
Fourth AAAI Conference on Artificial Intelligence (2010)

21. Riedmiller, M.: Neural fitted Q iteration – first experiences with a data efficient
neural reinforcement learning method. In: Gama, J., Camacho, R., Brazdil, P.B.,
Jorge, A.M., Torgo, L. (eds.) ECML 2005. LNCS (LNAI), vol. 3720, pp. 317–328.
Springer, Heidelberg (2005). https://doi.org/10.1007/11564096 32

22. Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347 (2017)

23. Silver, D., et al.: Mastering the game of go with deep neural networks and tree
search. Nature 529, 484–489 (2016)

24. Silver, D., Singh, S., Precup, D., Sutton, R.S.: Reward is enough. Artif. Intell. 299,
103535 (2021)

25. Vinyals, O., et al.: Grandmaster level in StarCraft ii using multi-agent reinforce-
ment learning. Nature 575(7782), 350–354 (2019)

26. Wang, X., Chen, Y., Zhu, W.: A survey on curriculum learning. IEEE Trans.
Pattern Anal. Mach. Intell. 44, 4555–4576 (2021)

27. Watkins, C.J., Dayan, P.: Q-learning. Mach. Learn. 8(3), 279–292 (1992)
28. Wurman, P.R., et al.: Outracing champion Gran Turismo drivers with deep rein-

forcement learning. Nature 602(7896), 223–228 (2022)

https://doi.org/10.1007/978-3-030-59152-6_34
https://doi.org/10.1007/11564096_32
http://arxiv.org/abs/1707.06347

Specification and Contracts

Information Flow
Control-by-Construction

for an Object-Oriented Language

Tobias Runge1,2(B) , Alexander Kittelmann1,2 , Marco Servetto3,
Alex Potanin4 , and Ina Schaefer1,2

1 TU Braunschweig, Braunschweig, Germany
2 Karlsruhe Institute of Technology, Karlsruhe, Germany

{tobias.runge,alexander.kittelmann,ina.schaefer}@kit.edu
3 Victoria University of Wellington, Wellington, New Zealand

marco@ecs.vuw.ac.nz
4 Australian National University, Canberra, Australia

alex.potanin@anu.edu.au

Abstract. In security-critical software applications, confidential infor-
mation must be prevented from leaking to unauthorized sinks. Static
analysis techniques are widespread to enforce a secure information flow
by checking a program after construction. A drawback of these systems is
that incomplete programs during construction cannot be checked prop-
erly. The user is not guided to a secure program by most systems. We
introduce IFbCOO, an approach that guides users incrementally to a
secure implementation by using refinement rules. In each refinement
step, confidentiality or integrity (or both) is guaranteed alongside the
functional correctness of the program, such that insecure programs are
declined by construction. In this work, we formalize IFbCOO and prove
soundness of the refinement rules. We implement IFbCOO in the tool
CorC and conduct a feasibility study by successfully implementing case
studies.

Keywords: Correctness-by-construction · Information flow control ·
Security-by-design

1 Introduction

For security-critical software, it is important to ensure confidentiality and
integrity of data, otherwise attackers could gain access to this secure data. For
example, in a distributed system, one client A has a lower privilege (i.e., a lower
security level) than another client B. When both clients send information to each
other, security policies can be violated. If A reads secret data from B, confiden-
tiality is violated. If B reads untrusted data from A, the integrity of B’s data is
no longer guaranteed. To ensure security in software, mostly static analysis tech-
niques are used, which check the software after development [28]. A violation of
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
B.-H. Schlingloff and M. Chai (Eds.): SEFM 2022, LNCS 13550, pp. 209–226, 2022.
https://doi.org/10.1007/978-3-031-17108-6_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-17108-6_13&domain=pdf
https://orcid.org/0000-0002-9154-7743
https://orcid.org/0000-0002-8804-7051
https://orcid.org/0000-0002-4242-2725
https://doi.org/10.1007/978-3-031-17108-6_13

210 T. Runge et al.

security is only revealed after the program is fully developed. If violations occur,
an extensive and repetitive repairing process of writing code and checking the
security properties with the analysis technique is needed. An alternative is to
check the security with language-based techniques such as type systems [28] dur-
ing the development. In such a secure type system, every expression is assigned
to a type, and a set of typing rules checks that the security policy is not vio-
lated [28]. If violations occur, an extensive process of debugging is required until
the code is type-checked.

To counter these shortcomings, we propose a constructive approach to
directly develop functionally correct programs that are secure by design with-
out the need of a post-hoc analysis. Inspired by the correctness-by-construction
(CbC) approach for functional correctness [18], we start with a security specifi-
cation and refine a high-level abstraction of the program stepwise to a concrete
implementation using a set of refinement rules. Guided by the security specifi-
cation defining the allowed security policies on the used data, the programmer
is directly informed if a refinement is not applicable because of a prohibited
information flow. With IFbCOO (Information Flow control by Construction for
an Object-Oriented language), programmers get a local warning as soon as a
refinement is not secure, which can reduce debugging effort. With IFbCOO,
functionally correct and secure programs can be developed because both, the
CbC refinement rules for functional correctness and the proposed refinement
rules for information flow security, can be applied simultaneously.

In this paper, we introduce IFbCOO which supports information flow con-
trol for an object-oriented language with type modifiers for mutability and alias
control [13]. IFbCOO is based on IFbC [25] proposed by some of the authors
in previous work, but lifts its programming paradigm from a simple impera-
tive language to an object-oriented language. IFbC introduced a sound set of
refinement rules to create imperative programs following an information flow
policy, but the language itself is limited to a simple while-language. In contrast,
IFbCOO is based on the secure object-oriented language SIFO [27]. SIFO’s type
system uses immutability and uniqueness properties to facilitate information flow
reasoning. In this work, we translate SIFO’s typing rules to refinement rules as
required by our correctness-by-construction approach. This has the consequence
that programs written in SIFO and programs constructed using IFbCOO are
interchangeable. In summary, our contributions are the following. We formalize
IFbCOO and establish 13 refinement rules. We prove soundness that programs
constructed with IFbCOO are secure. Furthermore, we implement IFbCOO in
the tool CorC and conduct a feasibility study.

2 Object-Oriented Language SIFO by Example

SIFO [27] is an object-oriented language that ensures secure information flow
through a type system with precise uniqueness and (im)mutability reasoning.
SIFO introduces four type modifiers for references, namely read, mut, imm, and
capsule, which define allowed aliasing and mutability of objects in programs.

Information Flow Control-by-Construction for an Object-Oriented Language 211

While, mut and imm point to mutable and immutable object respectively, a
capsule reference points to a mutable object that cannot be accessed from other
mut references. A read reference points to an object that cannot be aliased or
mutated. In this section, SIFO is introduced with examples to give an overview
of the expressiveness and the security mechanism of the language. We use in the
examples two security levels, namely low and high. An information flow from
low to high is allowed, whereas the opposite flow is prohibited. The security
levels can be arranged in any user-defined lattice. In Sect. 4, we introduce SIFO
formally. In Listing 1, we show the implementation of a class Card containing
a low immutable int number and two high fields: a mutable Balance and an
immutable Pin.

1 class Card{low imm int number; high mut Balance blc;

2 high imm Pin pin;}

3 class Balance{low imm int blc;}

4 class Pin{low imm int pin;}

Listing 1. Class declarations

In Listing 2, we show allowed and prohibited field assignments with
immutable objects as information flow reasoning is the easiest with these refer-
ences. In a secure assignment, the assigned expression and the reference need the
same security level (Lines 6,7). This applies to mutable and immutable objects.
The security level of expressions is calculated by the least upper bound of the
accessed field security level and the receiver security level. A high int cannot
be assigned to a low blc reference (Line 8) because this would leak confidential
information to an attacker, when the attacker reads the low blc reference. The
assignment is rejected. Updates of a high immutable field are allowed with a
high int (Line 9) or with a low int (Line 10). The imm reference guarantees
that the assigned integer is not changed, therefore, no new confidential infor-
mation can be introduced and a promotion in Line 10 is secure. The promotion
alters the security level of the assigned expression to be equal to the security
level of the reference. As expected, the opposite update of a low field with a
high int is prohibited in Line 11 because of the direct flow from higher to lower
security levels.

5 low mut Card c = new low Card ();//an existing Card reference

6 high mut Balance blc = c.blc;// correct access of high blc

7 high imm int blc = c.blc.blc;// correct access of high blc.blc

8 low imm int blc = c.blc.blc;// wrong high assigned to low

9 c.blc.blc = highInt;// correct field update with high int

10 c.blc.blc = c.number;// correct update with promoted imm int

11 high imm int highInt = 0;// should be some secret value

12 c.number = highInt;//wrong , high int assigned to low c.number

Listing 2. Examples with immutable objects

Next, in Listing 3, we exemplify which updates of mutable objects are legal
and which updates are not. We have a strict separation of mutable objects with

212 T. Runge et al.

different security levels. We want to prohibit that an update through a higher
reference is read by lower references, or that an update through lower references
corrupt data of higher references. A new Balance object can be initialized as a
low object because the Balance object itself is not confidential (Line 12). The
association to a Card object makes it a confidential attribute of the Card class.
However, the assignment of a low mut object to a high reference is prohibited.
If Line 13 would be accepted, Line 14 could be used to insecurely update the
confidential Balance object because the low reference is still in scope of the pro-
gram. Only an assignment without aliasing is allowed (Line 16). With capsule,
an encapsulated object is referenced to which no other mut reference points. The
low capsBlc object can be promoted to a high security level and assigned. After-
wards, the capsule reference is no longer accessible. In the case of an immutable
object, the aliasing is allowed (Line 18), since the object itself cannot be updated
(Line 19). Both imm and capsule references are usable to communicate between
different security levels.

12 low mut Balance newBlc = new low Balance (0); //ok

13 c.blc = newBlc;//wrong , mutable secret shared as low and high

14 newBlc.blc = 10;//ok? Insecure with previous line

15 low capsule Balance capsBlc = new low Balance (0); //ok

16 c.blc = capsBlc;//ok , no alias introduced

17 low imm Pin immPin = new low Pin (1234); //ok

18 c.pin = immPin;//ok , pin is imm and can be aliased

19 immPin.pin = 5678; //wrong , immutable object cannot be updated

Listing 3. Examples with mutable and encapsulated objects

3 IFbCOO by Example

With IFbCOO, programmers can incrementally develop programs, where the
security levels are organized in a lattice structure to guarantee a variety of con-
fidentiality and integrity policies. IFbCOO defines 13 refinement rules to create
secure programs. As these rules are based on refinement rules for correctness-
by-construction, programmers can simultaneously apply refinements rules for
functional correctness [12,18,26] and security. We now explain IFbCOO in the
following examples. For simplicity, we omit the functional specification. IFbCOO
is introduced formally in Sect. 4.

In IFbCOO, the programmer starts with a class including fields of the class
and declarations of method headers. IFbCOO is used to implement methods in
this class successively. The programmer chooses one abstract method body and
refines this body to a concrete implementation of the method. A starting IFb-
COO tuple specifies the typing context Γ and the abstract method body eA.
The expression eA is abstract in the beginning and refined incrementally to a
concrete implementation. During the construction process, local variables can be
added. The refinement process in IFbCOO results in a method implementation
which can be exported to the existing class. First, we give a fine-grained exam-
ple to show the application of refinement rules in detail. The second example
illustrates that IFbCOO can be used to implement larger methods.

Information Flow Control-by-Construction for an Object-Oriented Language 213

The first example in Listing 4 is a setter method. A field number is set
with a parameter x. We start the construction with an abstract expression
eA : [Γ ; low imm void] with a typing context Γ = low mut C this, low imm int x
extracted from the method signature (C is the class of the method receiver). The
abstract expression eA contains all local information (the typing context and its
type) to be further refined. A concrete expression that replaces the abstract
expression must have the same type low imm void, and it can only use vari-
ables from the typing context Γ . The tuple [Γ ; low imm void] is now refined
stepwise. First, we introduce a field assignment: eA → eA1.number = eA2.
The newly introduced abstract expressions are eA1 : [Γ ; low mut C] and
eA2 : [Γ ; low imm int] according to the field assignment refinement rule.
In the next step, eA1 is refined to this, which is the following refinement:
eA1.number = eA2 → this.number = eA2. As this has the same type as eA1,
the refinement is correct. The last refinement replaces eA2 with x, resulting in
this.number = eA2 → this.number = x. As x has the same type as eA2, the
refinement is correct. The method is fully refined since no abstract expression is
left.

1 low mut method low imm void setNumber(low imm int x) {

2 this.number = x; }

Listing 4. Set method

To present a larger example, we construct a check of a signature in an email
system (see Listing 5). The input of the method is an email object and a client
object that is the receiver of the email. The method checks whether the key with
which the email object was signed and the stored public key of the client
object are a valid pair. If this is the case, the email object is marked as verified.
The fields isSignatureVerified and emailSignKey of the class email have a
high security level, as they contain confidential data. The remaining fields have
low as security level.

1 static low imm void verifySignature(

2 low mut Client client , low mut Email email) {

3 low imm int pubkey = client.publicKey;

4 high imm int privkey = email.emailSignKey;

5 high imm boolean isVerified;

6 if (isKeyPairValid(privkey , pubkey)) {

7 isVerified = true;

8 } else {

9 isVerified = false;

10 }

11 email.IsSignatureVerified = isVerified;

12 }

Listing 5. Program of a secure signature verification

In Fig. 1, we show the starting IFbCOO tuple with the security level of the
variables (type modifier and class name are omitted) at the top. In our example,

214 T. Runge et al.

Ref(6) Γ [mut(high)]

eA : [low email, low client; low imm void]

low imm int pubkey = client.publicKey;
high imm int privkey = email.emailSignKey;

high imm boolean isVerified;

if isKeyPairValid(privkey, pubkey) then eT else eF email.isSignatureVerified = isVerified;

isVerified = true;

Ref(1)

Ref(2) Ref(3)

eA1 : [low email, low client; low imm void] eA2 : [low email, low client, low pubkey, high
privkey, high isVerified; low imm void]

eA22 : [low email, low
client, low pubkey, high
privkey, high isVerified;

low imm void]

eA21 : [low email, low
client, low pubkey, high
privkey, high isVerified;

low imm void]
Ref(4)

Ref(5) Γ [mut(high)]

Ref(7)

isVerified = false;

Fig. 1. Refinement steps for the signature example

we have two parameters client and email, with a low security level. To con-
struct the algorithm of Listing 5, the method implementation is split into three
parts. First, two local variables (private and public key for the signature verifi-
cation) are initialized and a Boolean for the result of the verification is declared.
Second, verification whether the keys used for the signature form a valid pair
takes place. Finally, the result is saved in a field of the email object.

Using the refinement rule for composition, the program is initially split into
the initialization phase and the remainder of the program’s behavior (Ref(1)).
This refinement introduces two abstract expressions eA1 and eA2. The typ-
ing contexts of the expressions are calculated by IFbCOO automatically dur-
ing refinement. As we want to initialize two local variables by further refining
eA1, the finished refinement in Fig. 1 already contains the local high variables
privkey and isVerified, and the low variable pubkey in the typing context of
expression eA2.

In Ref(2), we apply the assignment refinement1 to initialize the integers
pubkey and privkey. Both references point to immutable objects that are
accessed via fields of the objects client and email. The security levels of the
field accesses are determined with the field access rule checked by IFbCOO. The
determined security level of the assigned expression must match the security
level of the reference. In this case, the security levels are the same. Additionally,
it is enforced that immutable objects cannot be altered after construction (i.e.,
it is not possible to corrupt the private and public key). In Ref(3), the next
expression eA2 is split with a composition refinement into eA21 and eA22.

Ref(4) introduces an if-then-else-expression by refining eA21. Here, it is
checked whether the public and private key pair is valid. As the privkey

1 To be precise, it would be a combination of composition and assignment refinements,
because an assignment refinement can only introduce one assignment expression.

Information Flow Control-by-Construction for an Object-Oriented Language 215

T ::= s mdf C
s ::= high | low | . . . (user defined)
mdf ::= mut | imm | capsule | read
CD ::= class C implements C {F MD } | interface C extends C {MH }
F ::= s mut C f ; | s imm C f ;
MD ::= MH {return e;}
MH ::= s mdf method T m(T1 x1, . . . ,Tn xn)
e ::= eA | x | e0.f = e1 | e.f | e0.m(e) | new s C (e) | e0; e1

| if e0 then e1 else e2 | while e0 do e1 | declassify(e)
Γ ::= x1 : T1 . . . xn : Tn

::= [] .f .f = e e.f = .m(e) e.m(e e) new s C (e e)

Fig. 2. Syntax of the extended core calculus of SIFO

object has a high security level, we have to restrict our typing context with
Γ [mut(high)]. This is necessary to prevent indirect information leaks. With the
restrictions, we can only assign expressions to at least high references and mutate
high objects (mut(high)) in the then- and else-expression. If we assign a value
in the then-expression to a low reference that is visible outside of the then-
expression, an attacker could deduce that the guard was evaluated to true by
reading that low reference.

Ref(5) introduces an assignment of an immutable object to a high reference,
which is allowed in the restricted typing context. As explained, the assignment to
low references is forbidden. The assigned immutable object true can be securely
promoted to a high security level. In Ref(6), a similar assignment is done, but
with the value false. Ref(7) sets a field of the email object by refining eA22.
We update the high field of the email object by accepting the high expression
isVerified. With this last refinement step, the method is fully concretized. The
method is secure by construction and constitutes valid SIFO code (see Listing 5).

4 Formalizing Information Flow Control-by-Construction

In this section, we formalize IFbCOO for the construction of functionally correct
and secure programs. Before, we introduce SIFO as the underlying programming
language formally.

4.1 Core Calculus of SIFO

Figure 2 shows the syntax of the extended core calculus of SIFO [27]. SIFO is
an expression-based language similar to Featherweight Java [17]. Every refer-
ence and expression is associated with a type T . The type T is composed of
a security level s, a type modifier mdf and a class name C . Security levels are
arranged in a lattice with one greatest level � and one least level ⊥ forming
the security policy. The security policy determines the allowed information flow.
Confidentiality and integrity can be enforced by using two security lattices and
two security annotations for each expression. Each property is enforced by a

216 T. Runge et al.

strict separation of security levels. In the interest of an expressive language, we
allow the information flow from lower to higher levels (confidentiality or integrity
security levels) using promotion rules while the opposite needs direct interaction
with the programmer by using the declassify expression. For convenience, we
will use only one lattice of confidentiality security levels in the explanations.

The type modifier mdf can be mut, imm, capsule, and read with the following
subtyping relation. For all type modifier mdf : capsule ≤ mdf ,mdf ≤ read. In
SIFO, objects are mutable or (deeply) immutable. The reachable object graph
(ROG) from a mutable object is composed of mutable and immutable objects,
while the ROG of an immutable object can only contain immutable objects. A
mut reference must point to a mutable object; such an object can be aliased
and mutated. An imm reference must point to an immutable object; such an
object can be aliased, but not mutated. A capsule reference points to a mutable
object. The object and the mutable objects in its ROG cannot be accessed from
other references. As capsule is a subtype of imm and mut the object can be
assigned to both. Finally, a read reference is the supertype that points to an
object that cannot be aliased or mutated, but it has no immutability guarantee
that the object is not modified by other references. These modifiers allow us to
make precise decisions about the information flow by utilizing immutability or
uniqueness properties of objects. For example, an immutable object cannot be
altered, therefore it can be securely promoted to a higher security level. For a
mutable object, a security promotion is insecure because an update through other
references with lower security levels can corrupt the confidential information.

Additionally, the syntax of SIFO contains class definitions CD which can
be classes or interfaces. An interface has a list of method headers. A class has
additional fields. A field F has a type T and a name, but the type modifier can
only be mut or imm. A method definition MD consists of a method header and
a body. The header has a receiver, a return type, and a list of parameters. The
parameters have a name and a type T . The receiver has a type modifier and a
security level. An expression e can be a variable, field access, field assignment,
method call, or object construction in SIFO. In the extended version presented
in the paper, we also added abstract expressions, sequence of expressions, con-
ditional expression, loop expression, and declassification. With the declassify
operator a reverse information flow is allowed. The expression eA is abstract
and typed by [Γ ;T]. Beside the type T a local typing context Γ is used to
have all needed information to further refine eA. We require a Boolean type for
the guards in the conditional and loop expression. A typing context Γ assigns
a type Ti to variable xi. With the evaluation context E , we define the order of
evaluation for the reduction of the system. The typing rules of SIFO are shown
in the report [24].

4.2 Refinement Rules for Program Construction

To formalize the IFbCOO refinement rules, in Fig. 3, we introduce basic nota-
tions, which are used in the refinement rules.

L is the lattice of security levels to define the information flow policy and
lub is used to calculate the least upper bound of a set of security levels. The

Information Flow Control-by-Construction for an Object-Oriented Language 217

L Bounded upper semi-lattice (L, ≤) of security levels
lub : P(L) L Least upper bound of the security levels in L

{P ;Q;Γ ;T ; eA} Starting IFbCOO tuple
eA : [P ;Q;Γ ;T] Typed abstract expression eA

Γ [mut(s)] Restricted typing context
sec(T) = s Returns the security level s in type T

Fig. 3. Basic notations for IFbCOO

functional and security specification of a program is defined by an IFbCOO
tuple {P ;Q;Γ ;T ; eA}. The IFbCOO tuple consists of a typing context Γ , a
type T , an abstract expression eA, and a functional pre-/postcondition, which
is declared in the first-order predicates P and Q . The abstract expression is
typed by [P ;Q;Γ ;T]. In the following, we focus on security, so the functional
specification is omitted.

The refinement process of IFbCOO starts with a method declaration, where
the typing context Γ is extracted from the arguments and T is the method return
type. Then, the user guides the construction process by refining the first abstract
expression eA. With the notation Γ [mut(s)], we introduce a restriction to the
typing context. The function mut(s) prevents mutation of mutable objects that
have a security level lower than s. When the user chooses the lowest security level
of the lattice, the function does not restrict Γ . The function sec(T) extracts the
security level of a type T .

Refinement Rules. The refinement rules are used to replace an IFbCOO tuple
{Γ ;T ; eA} with a concrete implementation by concretizing the abstract expres-
sion eA. This refinement is only correct if specific side conditions hold. On the
right side of the rules, all newly introduced symbols are implicitly existentially
quantified. The rules can introduce new abstract expressions eAi which can be
refined by further applying the refinement rules.

Refinement Rule 1 (Variable)
eA is refinable to x if eA : [Γ ;T] and Γ (x) = T .

The first IFbCOO rule introduces a variable x, which does not alter the program.
It refines an abstract expression to an x if x has the correct type T .

Refinement Rule 2 (Field Assignment)
eA is refinable to eA0.f := eA1 if eA : [Γ ;T] and eA0 : [Γ ; s0 mut C0] and
eA1 : [Γ ; s1 mdf C] and s mdf C f ∈ fields(C0) and s1 = lub(s0, s).

We can refine an abstract expression to a field assignment if the following con-
ditions hold. The expression eA0 has to be mut to allow a manipulation of the
object. The security level of the assigned expression eA1 has to be equal to the
least upper bound of the security levels of expression eA0 and the field f . The
field f must be a field of the class C0 with the type s mdf C . With the security
promotion rule, the security level of the assigned expression can be altered.

218 T. Runge et al.

Refinement Rule 3 (Field Access)
eA is refinable to eA0.f if eA : [Γ ; s mdf C] and eA0 : [Γ ; s0 mdf 0 C0] and
s1 mdf 1 C f ∈ fields(C0) and s = lub(s0, s1) and mdf 0 � mdf 1 = mdf .

We can refine an abstract expression to a field access if a field f exists in the
class of receiver eA0 with the type s1 mdf 1 C . The accessed value must have the
expected type s mdf C of the abstract expression. This means, the class name
of the field f and C must be the same. Additionally, the security level of the
abstract expression eA is equal to the least upper bound of the security levels
of expression eA0 and field f . The type modifiers must also comply. The arrow
between type modifiers is defined as follows. As we allow only mut and imm fields,
not all possible cases are defined: mdf � mdf ′ = mdf ′′

• mut � mdf = capsule � mdf = mdf
• imm � mdf = mdf � imm = imm
• read � mut = read.

Refinement Rule 4 (Method Call)
eA is refinable to eA0.m(eA1, . . . , eAn) if eA : [Γ ;T] and eA0 : [Γ ;T0] . . . eAn :
[Γ ;Tn] and T0 . . . Tn → T ∈ methTypes(class(T0), m) and sec(T) ≥ sec(T0) and
forall i ∈ {1, . . . , n} if mdf(Ti) ∈ {mut, capsule} then sec(Ti) ≥ sec(T0).

With the method call rule, an abstract expression is refined to a call to method
m. The method has a receiver eA0, a list of parameters eA1 . . . eAn, and a return
value. A method with matching definition must exist in the class of receiver eA0.
This method definition is returned by the methTypes function. The function
class returns the class of a type T . The security level of the return type has to
be greater than or equal to the security level of the receiver. This condition is
needed because through dynamic dispatch information of the receiver may be
leaked if its security level is higher than the security level of the return type.
The same applies for mut and capsule parameters. The security level of these
parameters must also be greater than or equal to the security level of the receiver.
As the method call replaces an abstract expression eA, the return value must
have the same type (security level, type modifier, and class name) as the refined
expression. In the technical report [24], we introduce multiple methods types [27]
to reduce writing effort and increase the flexibility of IFbCOO. A method can be
declared with specific types for receiver, parameters and return value, and other
signatures of this method are deduced by applying the transformations from the
multiple method types definition, where security level and type modifiers are
altered. All these deduced method declarations can be used in the method call
refinement rule.

Refinement Rule 5 (Constructor)
eA is refinable to new s C(eA1 . . . eAn) if eA : [Γ ; s mdf C] and fields(C) =
T1 f1 . . . Tn fn and eA1 : [Γ ;T1[s]] . . . eAn : [Γ ;Tn[s]].

The constructor rule is a special method call. We can refine an abstract expres-
sion to a constructor call, where a mutable object of class C is constructed

Information Flow Control-by-Construction for an Object-Oriented Language 219

with a security level s. The parameter list eA1 . . . eAn must match the list of
declared fields f1 . . . fn in class C. Each parameter eAi is assigned to field fi.
This assignment is allowed if the type of parameter eAi is (a subtype of) Ti[s].
T [s] is a helper function which returns a new type whose security level is the
least upper bound of sec(T) and s. It is defined as: T [s] = lub(s, s ′) mdf C ,
where T = s ′ mdf C , defined only if s′ ≤ s or s ≤ s′. By calling a constructor,
the security level s can be freely chosen to use parameters with security levels
that are higher than originally declared for the fields. In other words, a security
level s is used to initialize lower security fields with parameters of higher security
level s. This results in a newly created object with the security level s [27]. As
the newly created object replaces an abstract expression eA, the object must
have the same type as the abstract expression. If the modifier promotion rule is
used (i.e., no mutable input value exist), the object can be assigned to a capsule
or imm reference.

Refinement Rule 6 (Composition)
eA is refinable to eA0; eA1 if eA : [Γ ;T] and eA0 : [Γ ;T0] and eA1 : [Γ ;T].

With the composition rule, an abstract expression eA is refined to two subsequent
abstract expression eA0 and eA1. The second abstract expression must have the
same type T as the refined expression.

Refinement Rule 7 (Selection)
eA is refinable to if eA0 then eA1 else eA2 if eA : [Γ ;T] and eA0 : [Γ ; s imm
Boolean] and eA1 : [Γ [mut(s)];T] and eA2 : [Γ [mut(s)];T].

The selection rule refines an abstract expression to a conditional if-then-else-
expression. Secure information can be leaked indirectly as the selected branch
may reveal the value of the guard. In the branches, the typing context is
restricted. The restricted typing context prevents updating mutable objects with
a security level lower than s. The security level s is determined by the Boolean
guard eA0. When we add updatable local variables to our language, the selection
rule must also prevent the update of local variables that have a security level
lower than s.

Refinement Rule 8 (Repetition)
eA is refinable to while eA0 do eA1 if eA : [Γ ;T] and eA0 : [Γ ; s imm Boolean]
and eA1 : [Γ [mut(s)];T].

The repetition rule refines an abstract expression to a while-loop. The repetition
rule is similar to the selection rule. For the loop body, the typing context is
restricted to prevent indirect leaks of the guard in the loop body. The security
level s is determined by the Boolean guard eA0.

Refinement Rule 9 (Context Rule)
E [eA] is refinable to E [e] if eA is refinable to e.

The context rule replaces in a context E an abstract expression with a concrete
expression, if the abstract expression is refinable to the concrete expression.

220 T. Runge et al.

Refinement Rule 10 (Subsumption Rule)
eA : [Γ ;T] is refinable to eA1 : [Γ ;T ′] if T ′ ≤ T .

The subsumption rule can alter the type of expressions. An abstract expression
that requires a type T can be weakened to require a type T ′ if the type T ′ is a
subtype of T .

Refinement Rule 11 (Security Promotion)
eA : [Γ ; s mdf C] is refinable to eA1 : [Γ ; s′ mdf C] if mdf ∈ {capsule, imm}
and s′ ≤ s.

The security promotion rule can alter the security level of expressions. An
abstract expression that requires a security level s can be weakened to require
a security level s′ if the expression is capsule or imm. Other expressions (mut
or read) cannot be altered because potentially existing aliases are a security
hazard.

Refinement Rule 12 (Modifier Promotion)
eA : [Γ ; s capsule C] is refinable to eA1 : [Γ [mut\read]; s mut C].

The modifier promotion rule can alter the type modifier of an expression eA.
An abstract expression that requires a capsule type modifier can be weakened
to require a mut type modifier if all mut references are only seen as read in
the typing context. That means, that the mutable objects in the ROG of the
expression cannot be accessed by other references. Thus, manipulation of the
object is only possible through the reference on eA.

Refinement Rule 13 (Declassification)
eA : [Γ ;⊥ mdf C] is refinable to declassify(eA1) : [Γ ; s mdf C] if mdf ∈
{capsule, imm}.
In our information flow policy, we can never assign an expression with a higher
security level to a variable with a lower security level. To allow this assignment
in appropriate cases, the declassify rule is used. An expression eA is altered
to a declassify-expression with an abstract expression eA1 that has a security
level s if the type modifier is capsule or imm. A mut or read expression can-
not be declassified as existing aliases are a security hazard. Since we have the
security promotion rule, the declassified capsule or imm expression can directly
be promoted to any higher security level. Therefore, it is sufficient to use the
bottom security level in this rule without restricting the expressiveness. For
example, the rule can be used to assign a hashed password to a public variable.
The programmer has the responsibility to ensure that the use of declassify is
secure.

4.3 Proof of Soundness

In the technical report, we prove that programs constructed with the IFbCOO
refinement rules are secure according to the defined information flow policy. We

Information Flow Control-by-Construction for an Object-Oriented Language 221

prove this by showing that programs constructed with IFbCOO are well typed
in SIFO (Theorem 1). SIFO itself is proven to be secure [27]. In the technical
report [24], we prove this property for the core language of SIFO, which does
not contain composition, selection, and repetition expressions. The SIFO core
language is minimal, but using well-known encodings, it can support compo-
sition, selection, and repetition (encodings of the Smalltalk [14] style support
control structures). We also exclude the declassify operation because this rule is
an explicit mechanism to break security in a controlled way.

Theorem 1 (Soundness of IFbCOO)
An expression e constructed with IFbCOO is well typed in SIFO.

5 CorC Tool Support and Evaluation

IFbCOO is implemented in the tool CorC [12,26]. CorC itself is a hybrid tex-
tual and graphical editor to develop programs with correctness-by-construction.
IFbC [25] is already implemented as extension of CorC, but to support object-
orientation with IFbCOO a redesign was necessary. Source code and case studies
are available at: https://github.com/TUBS-ISF/CorC/tree/CCorCOO.

5.1 CorC for IFbCOO

For space reasons, we cannot introduce CorC comprehensively. We just summa-
rize the features of CorC to check IFbCOO information flow policies:

– Programs are written in a tree structure of refining IFbCOO tuples (see
Fig. 1). Besides the functional specification, variables are labeled with a type
T in the tuples.

– Each IFbCOO refinement rule is implemented in CorC. Consequently, func-
tional correctness and security can be constructed simultaneously.

– The information flow checks according to the refinement rules are executed
automatically after each refinement.

– Each CorC-program is uniquely mapped to a method in a SIFO class. A SIFO
class contains methods and fields that are annotated with security labels and
type modifiers.

– A properties view shows the type T of each used variable in an IFbCOO
tuple. Violations of the information flow policy are explained in the view.

5.2 Case Studies and Discussion

The implementation of IFbCOO in the tool CorC enables us to evaluate the
feasibility of the security mechanism by successfully implementing three case
studies [16,32] from the literature and a novel one in CorC. The case studies
are also implemented and type-checked in SIFO to confirm that the case studies
are secure. The newly developed Database case study represents a secure system

https://github.com/TUBS-ISF/CorC/tree/CCorCOO

222 T. Runge et al.

Table 1. Metrics of the case studies

Name #Security levels # Classes # Lines of code # Methods in CorC

Database 4 6 156 2

Email [16] 2 9 807 15

Banking [32] 2 3 243 6

Paycard 2 3 244 5

that strictly separates databases of different security levels. Email [16] ensures
that encrypted emails cannot be decrypted by recipients without the matching
key. Paycard (http://spl2go.cs.ovgu.de/projects/57) and Banking [32] simulate
secure money transfer without leaking customer data. The Database case study
uses four security levels, while the others (Email, Banking, and Paycard) use
two.

As shown in Table 1, the cases studies comprise three to nine classes with
156 to 807 lines of code each. 28 Methods that exceed the complexity of getter
and setter are implemented in CorC. It should be noted that we do not have
to implement every method in CorC. If only low input data is used to compute
low output, the method is intrinsically secure. For example, three classes in the
Database case study are implemented with only low security levels. Only the
class GUI and the main method of the case study, which calls the low methods
with higher security levels (using multiple method types) is then correctly imple-
mented in CorC. The correct and secure promotion of security levels of methods
called in the main method is confirmed by CorC.

Discussion and Applicability of IFbCOO. We emphasize that CbC and also
IFbCOO should be used to implement correctness- and security-critical pro-
grams [18]. The scope of this work is to demonstrate the feasibility of the incre-
mental construction of correctness- and security-critical programs. We argue that
we achieve this goal by implementing four case studies in CorC.

The constructive nature of IFbCOO is an advantage in the secure creation
of programs. Instead of writing complete methods to allow a static analyzer to
accept/reject the method, with IFbCOO, we directly design and construct secure
methods. We get feedback during each refinement step, and we can observe the
status of all accessible variables at any time of the method. For example, we
received direct feedback when we manipulated a low object in the body of a high
then-branch. With this information, we could adjust the code to ensure security.
As IFbCOO extends CorC, functional correctness is also guaranteed at the same
time. This is beneficial as a program, which is security-critical, should also be
functionally correct. As IFbCOO is based on SIFO, programs written with any
of the two approaches can be used interchangeably. This allows developers to use
their preferred environment to develop new systems, re-engineer their systems,
or integrate secure software into existing systems. These benefits of IFbCOO
are of course connected with functional and security specification effort, and the
strict refinement-based construction of programs.

http://spl2go.cs.ovgu.de/projects/57

Information Flow Control-by-Construction for an Object-Oriented Language 223

6 Related Work

In this section, we compare IFbCOO to IFbC [25,29] and other Hoare-style logics
for information flow control. We also discuss information flow type systems and
correctness-by-construction [18] for functional correctness.

IFbCOO extends IFbC [25] by introducing object-orientation and type mod-
ifiers. IFbC is based on a simple while language. As explained in Sect. 4, the
language of IFbCOO includes objects and type modifiers. Therefore, the refine-
ment rules of IFbC are revised to handle secure information flow with objects.
The object-orientation complicates the reasoning of secure assignments because
objects could be altered through references with different security levels. If pri-
vate information is introduced, an already public reference could read this infor-
mation. SIFO and therefore IFbCOO consider these cases and prevent infor-
mation leaks by considering immutability and encapsulation and only allowing
secure aliases.

Previous work using Hoare-style program logics with information flow control
analyzes programs after construction, rather than guaranteeing security during
construction. Andrews and Reitman [5] encode information flow directly in a
logical form. They also support parallel programs. Amtoft and Banerjee [3] use
Hoare-style program logics and abstract interpretations to detect information
flow leaks. They can give error explanations based on strongest postcondition
calculation. The work of Amtoft and Banerjee [3] is used in SPARK Ada [4] to
specify and check the information flow.

Type system for information flow control are widely used, we refer to
Sabelfeld and Myers [28] for a comprehensive overview. We only discuss closely
related type systems for object-oriented languages [9–11,20,30,31]. Banerjee et
al. [9] introduced a type system for a Java-like language with only two security
levels. We extend this by operating on any lattice of security levels. We also
introduce type modifiers to simplify reasoning in cases where objects cannot be
mutated or are encapsulated. Jif [20] is a type system to check information flow
in Java. One main difference is in the treatment of aliases: Jif does not have
an alias analysis to reason about limited side effects. Therefore, Jif pessimisti-
cally discards programs that introduce aliases because Jif has no option to state
immutable or encapsulated objects. IFbCOO allows the introduction of secure
aliases.

In the area of correctness-by-construction, Morgan [19] and Back [8] pro-
pose refinement-based approaches which refine functional specifications to con-
crete implementations. Beside of pre-/postcondition specification, Back also uses
invariants as starting point. Morgan’s calculus is implemented in ArcAngel [22]
with the verifier ProofPower [33], and SOCOS [6,7] implements Back’s app-
roach. In comparison to IFbCOO, those approaches do not reason about infor-
mation flow security. Other refinement-based approaches are Event-B [1,2] for
automata-based systems and Circus [21,23] for state-rich reactive systems. These
approaches have a higher abstraction level, as they operate on abstract machines
instead of source code. Hall and Chapman [15] introduced with CbyC another
related approach that uses formal modeling techniques to analyze the develop-

224 T. Runge et al.

ment during all stages (architectural design, detailed design, code) to eliminate
defects early. IFbCOO is tailored to source code and does not consider other
development phases.

7 Conclusion

In this paper, we present IFbCOO, which establishes an incremental refinement-
based approach for functionally correct and secure programs. With IFbCOO
programs are constructed stepwise to comply at all time with the security pol-
icy. The local check of each refinement can reduce debugging effort, since the user
is not warned only after the implementation of a whole method. We formalized
IFbCOO by introducing 13 refinement rules and proved soundness by showing
that constructed programs are well-typed in SIFO. We also implemented IFb-
COO in CorC and evaluated our implementation with a feasibility study. One
future direction is the conduction of comprehensive user studies for user-friendly
improvements which is only now possible due to our sophisticated tool CorC.

Acknowledgments. This work was supported by KASTEL Security Research Labs.

References

1. Abrial, J.: Modeling in Event-B - System and Software Engineering. Cambridge
University Press, Cambridge (2010)

2. Abrial, J.R., Butler, M., Hallerstede, S., Hoang, T.S., Mehta, F., Voisin, L.: Rodin:
an open toolset for modelling and reasoning in Event-B. Int. J. Softw. Tools Tech-
nol. Transfer 12(6), 447–466 (2010)

3. Amtoft, T., Banerjee, A.: Information flow analysis in logical form. In: Giacobazzi,
R. (ed.) SAS 2004. LNCS, vol. 3148, pp. 100–115. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-27864-1 10

4. Amtoft, T., Hatcliff, J., Rodŕıguez, E.: Specification and checking of software con-
tracts for conditional information flow. In: Cuellar, J., Maibaum, T., Sere, K. (eds.)
FM 2008. LNCS, vol. 5014, pp. 229–245. Springer, Heidelberg (2008). https://doi.
org/10.1007/978-3-540-68237-0 17

5. Andrews, G.R., Reitman, R.P.: An axiomatic approach to information flow in
programs. ACM Trans. Program. Langu. Syst. (TOPLAS) 2(1), 56–76 (1980)

6. Back, R.J.: Invariant based programming: basic approach and teaching experiences.
Formal Aspects Comput. 21(3), 227–244 (2009)

7. Back, R.-J., Eriksson, J., Myreen, M.: Testing and verifying invariant based pro-
grams in the SOCOS environment. In: Gurevich, Y., Meyer, B. (eds.) TAP 2007.
LNCS, vol. 4454, pp. 61–78. Springer, Heidelberg (2007). https://doi.org/10.1007/
978-3-540-73770-4 4

8. Back, R.J., Wright, J.: Refinement Calculus: A Systematic Introduction. Springer,
Heidelberg (2012)

9. Banerjee, A., Naumann, D.A.: Secure information flow and pointer confinement in
a Java-like language. In: Computer Security Foundations Workshop, vol. 2, p. 253
(2002)

https://doi.org/10.1007/978-3-540-27864-1_10
https://doi.org/10.1007/978-3-540-68237-0_17
https://doi.org/10.1007/978-3-540-68237-0_17
https://doi.org/10.1007/978-3-540-73770-4_4
https://doi.org/10.1007/978-3-540-73770-4_4

Information Flow Control-by-Construction for an Object-Oriented Language 225

10. Barthe, G., Pichardie, D., Rezk, T.: A certified lightweight non-interference Java
bytecode verifier. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 125–140.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71316-6 10

11. Barthe, G., Serpette, B.P.: Partial evaluation and non-interference for object cal-
culi. In: Middeldorp, A., Sato, T. (eds.) FLOPS 1999. LNCS, vol. 1722, pp. 53–67.
Springer, Heidelberg (1999). https://doi.org/10.1007/10705424 4

12. Bordis, T., Cleophas, L., Kittelmann, A., Runge, T., Schaefer, I., Watson, B.W.:
Re-CorC-ing KeY: correct-by-construction software development based on KeY. In:
Ahrendt, W., Beckert, B., Bubel, R., Johnsen, E.B. (eds.) The Logic of Software. A
Tasting Menu of Formal Methods. LNCS, vol. 13360, pp. 80–104. Springer, Cham
(2022). https://doi.org/10.1007/978-3-031-08166-8 5

13. Giannini, P., Servetto, M., Zucca, E., Cone, J.: Flexible recovery of uniqueness and
immutability. Theor. Comput. Sci. 764, 145–172 (2019)

14. Goldberg, A., Robson, D.: Smalltalk-80: The Language and its Implementation.
Addison-Wesley Longman Publishing Co., Inc. (1983)

15. Hall, A., Chapman, R.: Correctness by construction: developing a commercial
secure system. IEEE Softw. 19(1), 18–25 (2002)

16. Hall, R.J.: Fundamental nonmodularity in electronic mail. Autom. Softw. Eng.
12(1), 41–79 (2005)

17. Igarashi, A., Pierce, B.C., Wadler, P.: Featherweight Java: a minimal core calculus
for Java and GJ. ACM Trans. Program. Lang. Syst. (TOPLAS) 23(3), 396–450
(2001)

18. Kourie, D.G., Watson, B.W.: The Correctness-by-Construction Approach to Pro-
gramming. Springer, Heidelberg (2012)

19. Morgan, C.: Programming from Specifications, 2nd edn. Prentice Hall, Hoboken
(1994)

20. Myers, A.C.: JFlow: practical mostly-static information flow control. In: Proceed-
ings of the 26th ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, pp. 228–241. ACM (1999)

21. Oliveira, M., Cavalcanti, A., Woodcock, J.: A UTP semantics for circus. Formal
Aspects Comput. 21(1), 3–32 (2009)

22. Oliveira, M.V.M., Cavalcanti, A., Woodcock, J.: ArcAngel: a tactic language for
refinement. Formal Aspects Comput. 15(1), 28–47 (2003)

23. Oliveira, M.V.M., Gurgel, A.C., Castro, C.G.: CRefine: support for the circus
refinement calculus. In: 2008 Sixth IEEE International Conference on Software
Engineering and Formal Methods, pp. 281–290. IEEE (2008)

24. Runge, T., Kittelmann, A., Servetto, M., Potanin, A., Schaefer, I.: Information
flow control-by-construction for an object-oriented language using type modifiers
(2022). https://arxiv.org/abs/2208.02672

25. Runge, T., Knüppel, A., Thüm, T., Schaefer, I.: Lattice-based information flow
control-by-construction for security-by-design. In: Proceedings of the 8th Interna-
tional Conference on Formal Methods in Software Engineering (2020)

26. Runge, T., Schaefer, I., Cleophas, L., Thüm, T., Kourie, D., Watson, B.W.: Tool
support for correctness-by-construction. In: Hähnle, R., van der Aalst, W. (eds.)
FASE 2019. LNCS, vol. 11424, pp. 25–42. Springer, Cham (2019). https://doi.org/
10.1007/978-3-030-16722-6 2

27. Runge, T., Servetto, M., Potanin, A., Schaefer, I.: Immutability and Encapsulation
for Sound OO Information Flow Control (2022, under review)

28. Sabelfeld, A., Myers, A.C.: Language-based information-flow security. IEEE J. Sel.
Areas Commun. 21(1), 5–19 (2003)

https://doi.org/10.1007/978-3-540-71316-6_10
https://doi.org/10.1007/10705424_4
https://doi.org/10.1007/978-3-031-08166-8_5
https://arxiv.org/abs/2208.02672
https://doi.org/10.1007/978-3-030-16722-6_2
https://doi.org/10.1007/978-3-030-16722-6_2

226 T. Runge et al.

29. Schaefer, I., Runge, T., Knüppel, A., Cleophas, L., Kourie, D., Watson, B.W.:
Towards confidentiality-by-construction. In: Margaria, T., Steffen, B. (eds.) ISoLA
2018. LNCS, vol. 11244, pp. 502–515. Springer, Cham (2018). https://doi.org/10.
1007/978-3-030-03418-4 30

30. Strecker, M.: Formal analysis of an information flow type system for MicroJava.
Technische Universität München, Technical report (2003)

31. Sun, Q., Banerjee, A., Naumann, D.A.: Modular and constraint-based information
flow inference for an object-oriented language. In: Giacobazzi, R. (ed.) SAS 2004.
LNCS, vol. 3148, pp. 84–99. Springer, Heidelberg (2004). https://doi.org/10.1007/
978-3-540-27864-1 9

32. Thüm, T., Schaefer, I., Apel, S., Hentschel, M.: Family-based deductive verification
of software product lines. In: Proceedings of the 11th International Conference on
Generative Programming and Component Engineering, pp. 11–20 (2012)

33. Zeyda, F., Oliveira, M., Cavalcanti, A.: Supporting ArcAngel in ProofPower. Elec-
tron. Notes Theor. Comput. Sci. 259, 225–243 (2009)

https://doi.org/10.1007/978-3-030-03418-4_30
https://doi.org/10.1007/978-3-030-03418-4_30
https://doi.org/10.1007/978-3-540-27864-1_9
https://doi.org/10.1007/978-3-540-27864-1_9

Specification is Law: Safe Creation
and Upgrade of Ethereum Smart

Contracts

Pedro Antonino1(B), Juliandson Ferreira2, Augusto Sampaio2,
and A. W. Roscoe1,3,4

1 The Blockhouse Technology Limited, Oxford, UK
pedro@tbtl.com

2 Centro de Informática, Universidade Federal de Pernambuco, Recife, Brazil
{jef,acas}@cin.ufpe.br

3 Department of Computer Science, Oxford University, Oxford, UK
4 University College Oxford Blockchain Research Centre, Oxford, UK

Abstract. Smart contracts are the building blocks of the “code is law”
paradigm: the smart contract’s code indisputably describes how its assets
are to be managed - once it is created, its code is typically immutable.
Faulty smart contracts present the most significant evidence against the
practicality of this paradigm; they are well-documented and resulted
in assets worth vast sums of money being compromised. To address
this issue, the Ethereum community proposed (i) tools and processes to
audit/analyse smart contracts, and (ii) design patterns implementing a
mechanism to make contract code mutable. Individually, (i) and (ii) only
partially address the challenges raised by the “code is law” paradigm.
In this paper, we combine elements from (i) and (ii) to create a system-
atic framework that moves away from “code is law” and gives rise to
a new “specification is law” paradigm. It allows contracts to be created
and upgraded but only if they meet a corresponding formal specification.
The framework is centered around a trusted deployer : an off-chain service
that formally verifies and enforces this notion of conformance. We have
prototyped this framework, and investigated its applicability to contracts
implementing three widely used Ethereum standards: the ERC20 Token
Standard, ERC3156 Flash Loans and ERC1155 Multi Token Standard,
with promising results.

Keywords: Formal verification · Smart contracts · Ethereum ·
Solidity · Safe deployment · Safe upgrade

1 Introduction

A smart contract is a stateful reactive program that is stored in and processed
by a trusted platform, typically a blockchain, which securely executes such a
program and safely stores its persistent state. Smart contracts were created to

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
B.-H. Schlingloff and M. Chai (Eds.): SEFM 2022, LNCS 13550, pp. 227–243, 2022.
https://doi.org/10.1007/978-3-031-17108-6_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-17108-6_14&domain=pdf
https://doi.org/10.1007/978-3-031-17108-6_14

228 P. Antonino et al.

provide an unambiguous, automated, and secure way to manage digital assets.
They are the building blocks of the “code is law” paradigm, indisputably describ-
ing how their assets are to be managed. To implement this paradigm, many smart
contract platforms - including Ethereum, the platform we focus on - disallow the
code of a contract to be changed once deployed, effectively enforcing a notion of
code/implementation immutability.

Implementation immutability, however, has two main drawbacks. Firstly, con-
tracts cannot be patched if the implementation is found to be incorrect after
being deployed. There are many examples of real-world contract instances with
flaws that have been exploited with astonishing sums of cryptocurrencies being
taken over [7,30]. The ever-increasing valuation of these assets presents a signifi-
cant long-standing incentive to perpetrators of such attacks. Secondly, contracts
cannot be optimised. The execution of a contract function has an explicit cost to
be paid by the caller that is calculated based on the contract’s implementation.
Platform participants would, then, benefit from contracts being updated to a
functionally-equivalent but more cost-effective implementation, which is disal-
lowed by this sort of code immutability.

To overcome this limitation, the Ethereum community has adopted the proxy
pattern [31] as a mechanism by which one can mimic contract upgrades. The
simple application of this pattern, however, presents a number of potential issues.
Firstly, the use of this mechanism allows for the patching of smart contracts but
it does not address the fundamental underlying problem of correctness. Once an
issue is detected, it can be patched but (i) it may be too late, and (ii) what if
the patch is faulty too? Secondly, it typically gives an, arguably, unreasonable
amount of power to the maintainers of this contract. Therefore, no guarantees
are enforced by this updating process; the contract implementations can change
rather arbitrarily as long as the right participants have approved the change. In
such a context, the “code is law” paradigm is in fact nonexistent.

To address these issues, we propose a systematic deployment framework that
requires contracts to be formally verified before they are created and upgraded;
we target the Ethereum platform and smart contracts written in Solidity. We pro-
pose a verification framework based on the design-by-contract methodology [25].
The specification format that we propose is similar to what the community has
used, albeit in an informal way, to specify the behaviour of common Ethereum
contracts [35]. Our framework also relies on our own version of the proxy pat-
tern to carry out updates but in a sophisticated and safe way. We rely on a
trusted deployer, which is an off-chain service, to vet contract creations and
updates. These operations are only allowed if the given implementation meets
the expected specification - the contract specification is set at the time of con-
tract creation and remains unchanged during its lifetime. As an off-chain service,
our framework can be readily and efficiently integrated into existing blockchain
platforms. Participants can also check whether a contract has been deployed via
our framework so that they can be certain the contract they want to execute
has the expected behaviour.

Specification is Law: Safe Deployment of Ethereum Smart Contracts 229

Our framework promotes a paradigm shift where the specification is
immutable instead of the implementation/code. Thus, it moves away from “code
is law” and proposes the “specification is law” paradigm - enforced by formal
verification. This new paradigm addresses all the concerns that we have high-
lighted: arbitrary code updates are forbidden as only conforming implementa-
tions are allowed, and buggy contracts are prevented from being deployed as they
are vetted by a formal verifier. Thus, contracts can be optimised and changed
to meet evolving business needs and yet contract stakeholders can rely on the
guarantee that the implementations always conform to their corresponding spec-
ifications. As specifications are more stable and a necessary element for assessing
the correctness of a contract, we believe that a framework that focuses on this
key artifact and makes it immutable improves on the current “code is law”
paradigm.

We have created a prototype of our framework, and conducted a case study
that investigates its applicability to real-world smart contracts implementing
the widely used ERC20, ERC3156 and ERC1155 Ethereum token standards.
We analysed specifically how the sort of formal verification that we use fares in
handling practical contracts and obtained promising results.

In this paper, we assume the deployer is a trusted third party and focus on the
functional aspect of our framework. We are currently working on an implemen-
tation of the trusted deployer that relies on a Trusted Execution Environment
(TEE) [24], specifically the AMD SEV implementation [29]. Despite being an off-
chain service, the use of a TEE to implement our deployer should give it a level of
execution integrity/trustworthiness, enforced by the trusted hardware, compara-
ble to that achieved by on-chain mechanisms relying on blockchains’ consensus,
with less computational overhead. However, on-chain mechanisms would enjoy
better availability guarantees. We further discuss these trade-offs in Sect. 5.

Outline. Section 2 introduces the relevant background material. Section 3 intro-
duces our framework, and Sect. 4 the evaluation that we conducted. Section 5
discusses related work, whereas Sect. 6 presents our concluding remarks.

2 Background

2.1 Solidity

A smart contract is a program running on a trusted platform, usually a block-
chain, that manages the digital assets it owns. Solidity is arguably the most used
language for writing smart contracts as it was designed for the development of
contracts targeting the popular Ethereum blockchain platform [1]. A contract in
Solidity is a concept very similar to that of a class in object-oriented languages,
and a contract instance a sort of long-lived persistent object. We introduce the
main elements of Solidity using the ToyWallet contract in Fig. 1. It implements a
very basic “wallet” contract that participants and other contracts can rely upon
to store their Ether (Ethereum’s cryptocurrency). The member variables of a
contract define the persistent state of the contract. This example contract has
a single member variable accs, a mapping from addresses to 256-bit unsigned

230 P. Antonino et al.

integers, which keeps track of the balance of Ether each “client” of the contract
has in the ToyWallet; the integer accs[addr] gives the current balance for
address addr, and an address is represented by a 160-bit number.

Public functions describe the operations that participants and other con-
tracts can execute on the contract. The contract in Fig. 1 has public functions
deposit and withdraw that can be used to transfer Ether into and out of the
ToyWallet contract, respectively. In Solidity, functions have the implicit argu-
ment msg.sender designating the caller’s address, and payable functions have
the msg.value which depict how much Wei - the most basic (sub)unit of Ether
- is being transferred, from caller to callee, with that function invocation; such
a transfer is carried out implicitly by Ethereum. For instance, when deposit is
called on an instance of ToyWallet, the caller can decide on some amount amt
of Wei to be sent with the invocation. By the time the deposit body is about
to execute, Ethereum will already have carried out the transfer from the balance
associated to the caller’s address to that of the ToyWallet instance - and amt
can be accessed via msg.value. Note that, as mentioned, this balance is part
of the blockchain’s state rather than an explicit variable declared by the con-
tract’s code. One can programmatically access this implicit balance variable for
address addr with the command addr.balance. Solidity’s construct require
(condition) aborts and reverts the execution of the function in question if
condition does not hold - even in the case of implicit Ether transfers. The call
addr.send(amount) sends amount Wei from the currently executing instance to
address addr; it returns true if the transfer was successful, and false otherwise.
For instance, the first require statement in the function withdraw requires the
caller to have the funds they want to withdraw, whereas the second requires
the msg.sender.send(value) statement to succeed, i.e. the value must have
been correctly withdrawn from ToyWallet to msg.sender. The final statement
in this function updates the account balance of the caller (i.e. msg.sender) in
ToyWallet to reflect the withdrawal.

We use the transaction create-contract as a means to create an instance of a
Solidity smart contract in Ethereum. In reality, Ethereum only accepts contracts
in the EVM bytecode low-level language - Solidity contracts need to be compiled
into that. The processing of a transaction create-contract(c, args) creates an
instance of contract c and executes its constructor with arguments args. Solidity
contracts without a constructor (as our example in Fig. 1) are given an implicit
one. A create-contract call returns the address at which the contract instance
was created. We omit the args when they are not relevant for a call. We use σ
to denote the state of the blockchain where σ[ad].balance gives the balance for
address ad, and σ[ad].storage.mem the value for member variable mem of the
contract instance deployed at ad for this state. For instance, let ctw be the code in
Fig. 1, and addrtw the address returned by the processing of create-contract(ctw).
For the blockchain state σ′ immediately after this processing, we have that: for
any address addr, σ′[addrtw].storage.accs[addr] = 0 and its balance is zero, i.e.,
σ′[addrtw].balance = 0. We introduce and use this intuitive notation to present
and discuss state changes as it can concisely and clearly capture them. There
are many works that formalise such concepts [6,18,36].

Specification is Law: Safe Deployment of Ethereum Smart Contracts 231

Fig. 1. ToyWallet contract example.

A transaction call − contract can be used to invoke contract functions; pro-
cessing call-contract(addr, func sig, args) executes the function with signature
func sig at address addr with input arguments args. When a contract is created,
the code associated with its non-constructor public functions is made available to
be called by such transactions. The constructor function is only run (and avail-
able) at creation time. For instance, let addrtw be a fresh ToyWallet instance
and ToyWallet.deposit give the signature of the corresponding function in
Fig. 1, processing the transaction call-contract(addrtw, ToyWallet.deposit,
args) where args = {msg.sender = addrsnd,msg.value = 10} would cause
the state of this instance to be updated to σ′′ where we have that σ′′[addrtw].
storage.accs[addrsnd] = 10 and σ′′[addrtw].balance = 10. So, the above transac-
tion has been issued by address addrsnd which has transferred 10 Wei to addrtw.

2.2 Formal Verification with solc-verify

The modular verifier solc-verify [16,17] was created to help developers to for-
mally check that their Solidity smart contracts behave as expected. Input con-
tracts are manually annotated with contract invariants and their functions with
pre- and postconditions. An annotated Solidity contract is then translated into
a Boogie program which is verified by the Boogie verifier [9,20]. Its modular
nature means that solc-verify verifies functions locally/independently, and func-
tion calls are abstracted by the corresponding function’s specification, rather
than their implementation being precisely analysed/executed. These specifica-
tion constructs have their typical meaning. An invariant is valid if it is established
by the constructor and maintained by the contract’s public functions, and a func-
tion meets its specification if and only if from a state satisfying its preconditions,
any state successfully terminating respects its postconditions. So the notion is
that of partial correctness. Note that an aborted and reverted execution, such
as one triggered by a failing require command, does not successfully terminate.
We use Fig. 2 illustrates a solc-verify specification for an alternative version of
the ToyWallet’s withdraw function. The postconditions specify that the balance
of the instance and the wallet balance associated with the caller must decrease
by the withdrawn amount and no other wallet balance must be affected by the
call.

232 P. Antonino et al.

Fig. 2. ToyWallet alternate buggy withdraw implementation with specification.

This alternative implementation uses msg.sender.call.value(val)("")
instead of msg.sender.send(val). While the latter only allows for the trans-
fer of val Wei from the instance to address msg.sender, the former delegates
control to msg.sender in addition to the transfer of value.1 If msg.sender is
a smart contract instance that calls withdraw again during this control dele-
gation, it can withdraw all the funds in this alternative ToyWallet instance -
even the funds that were not deposited by it. This reentrancy bug is detected
by solc-verify when it analyses this alternative version of the contract. A similar
bug was exploited in what is known as the DAO attack/hack to take over US$53
million worth of Ether [7,30].

3 Safe Ethereum Smart Contracts Deployment

We propose a framework for the safe creation and upgrade of smart contracts
based around a trusted deployer. This entity is trusted to only create or update
contracts that have been verified to meet their corresponding specifications. A
smart contract development process built around it prevents developers from
deploying contracts that have not been implemented as intended. Thus, stake-
holders can be sure that contract instances deployed by this entity, even if their
code is upgraded, comply with the intended specification.

Our trusted deployer targets the Ethereum platform, and we implement it as
an off-chain service. Generally speaking, a trusted deployer could be implemented
as a smart contract in a blockchain platform, as part of its consensus rules, or
as an off-chain service. In Ethereum, implementing it as a smart contract is not
practically feasible as a verification infrastructure on top of the EVM [1] would
need to be created. Furthermore, blocks have an upper limit on the computing
power they can use to process their transactions, and even relatively simple
computing tasks can exceed this upper limit [37]. As verification is a notoriously
complex computing task, it should exceed this upper limit even for reasonably
small systems. Neither can we change the consensus rules for Ethereum.
1 In fact, the function send also delegates control to msg.sender but it does in such

a restricted way that it cannot perform any side-effect computation. So, for the
purpose of this paper and to simplify our exposition, we ignore this delegation.

Specification is Law: Safe Deployment of Ethereum Smart Contracts 233

Fig. 3. Trusted deployer architecture.

We present the architecture of the trusted deployer infrastructure in Fig. 3.
The trusted deployer relies on an internal verifier that implements the func-
tions verify-creation� and verify-upgrade�, and an upgrader that implements
functions create-contract and upgrade-contract ; we detail what these func-
tions do in the following. The deployer’s create-contract (upgrade-contract)
checks that an implementation meets its specification by calling verify-creation�
(verify-upgrade�) before relaying this call to the upgrader’s create-contract
(upgrade-contract) which effectively creates (upgrades) the contract in the
Ethereum platform. The get-spec function can be used to test whether a contract
instance has been deployed by the trusted deployer and which specification it
satisfies.

The verifier is used to establish whether an implementation meets a spec-
ification. A verification framework is given by a triple (S, C,�) where S is a
language of smart contract specifications, C is a language of implementations,
and � ∈ (S × C) is a satisfiability relation between smart contracts’ specifi-
cations and implementations. In this paper, C is the set of Solidity contracts
and S a particular form of Solidity contracts, possibly annotated with contract
invariants, that include function signatures annotated with postconditions. The
functions verify-creation� and verify-upgrade� both take a specification s ∈ S
and a contract implementation c ∈ C and test whether c meets s - they work
in slightly different ways as we explain later. When an implementation does
not meet a specification, verifiers typically return an error report that points
out which parts of the specification do not hold and maybe even witnesses/-
counterexamples describing system behaviours illustrating such violations; they
provide valuable information to help developers correct their implementations.

The upgrader is used to create and manage upgradable smart contracts -
Ethereum does not have built-in support for contract upgrades. Function create-
contract creates an upgradable instance of contract c - it returns the Ethereum
address where the instance was created - whereas upgrade-contract allows for
the contract’s behaviour to be upgraded. The specification used for a successful
contract creation will be stored and used as the intended specification for future
upgrades. Only the creator of a trusted contract can update its implementation.

Note that once a contract is created via our trusted deployer, the instance’s
specification is fixed, and not only its initial implementation but all upgrades
are guaranteed to satisfy this specification. Therefore, participants in the ecosys-
tem interacting with this contract instance can be certain that its behaviour is
as intended by its developer during the instance’s entire lifetime, even if the
implementation is upgraded as the contract evolves.

234 P. Antonino et al.

In this paper, we focus on contract upgrades that preserve the signature of
public functions. Also, we assume contract specifications fix the data structures
used in the contract implementation. However, we plan to relax these restrictions
in future versions of the framework, allowing the data structures in the contract
implementation to be a data refinement of those used in the specification; we
also plan to allow the signature of the implementation to extend that of the
specification, provided some notion of behaviour preservation is obeyed when
the extended interface is projected into the original one.

3.1 Verifier

We propose design-by-contract [25] as a methodology to specify the behaviour
of smart contracts. In this traditional specification paradigm, conceived for
object-oriented languages, a developer can specify invariants for a class and pre-
/postconditions for its methods. Invariants must be established by the construc-
tor and guaranteed by the public methods, whereas postconditions are ensured
by the code in the method’s body provided that the preconditions are guar-
anteed by the caller code and the method terminates. Currently, we focus on
partial correctness, which is aligned with our goal to ensure safety properties,
and the fact that smart contracts typically have explicitly bound executions2.
We propose a specification format that defines what the member variables and
signatures of member functions should be. Additionally, the function signatures
can be annotated with postconditions, and the specification with invariants;
these annotations capture the expected behaviour of the contract. In ordinary
programs, a function is called in specific call sites fixed in the program’s code.
Preconditions can, then, be enforced and checked in these call sites. In the con-
text of public functions of smart contracts, however, any well-formed transaction
can be issued to invoke such a function. Hence, we move away from preconditions
in our specification, requiring, thus, postconditions to be met whenever public
functions successfully terminate.

Figure 4 illustrates a specification for the ToyWallet contract. Invariants
are declared in a comment block preceding the contract declaration, and func-
tion postconditions are declared in comment blocks preceding their signatures.
Our specification language reuses constructs from Solidity and the solc-verify
specification language, which in turn borrows elements from the Boogie lan-
guage [9,20]. Member variables and function signature declarations are as pre-
scribed by Solidity, whereas the conditions on invariants, and postconditions are
side-effect-free Solidity expressions extended with quantifiers and the expression
__verifier_old_x(v) that can only be used in a postcondition, and it denotes
the value of v in the function’s execution pre-state.

We choose to use Solidity as opposed to EVM bytecode as it gives a cleaner
semantic basis for the analysis of smart contracts [6] and it also provides a high-
level error message when the specification is not met. The satisfiability relation
� that we propose is as follows.
2 The Ethereum concept of gas, i.e. execution resources, is purposely abstracted

away/disregarded in our exposition.

Specification is Law: Safe Deployment of Ethereum Smart Contracts 235

Fig. 4. ToyWallet specification.

Definition 1. The relation s � c holds iff:

– Syntactic obligation: a member variable is declared in s if and only if it is
declared in c with the same type, and they must be declared in the same order.
A public function signature is declared in s if and only if it is declared and
implemented in c.

– Semantic obligation: invariants declared in s must be respected by c, and the
implementation of functions in c must respect their corresponding postcondi-
tions described in s.

The purpose of this paper is not to provide a formal semantics to Solidity or
to formalise the execution model implemented by the Ethereum platform. Other
works propose formalisations for Solidity and Ethereum [5,17,36]. Our focus is
on using the modular verifier solc-verify to discharge the semantic obligations
imposed by our satisfaction definition.

The verify-creation� function works as follows. Firstly, the syntactic obliga-
tion imposed by Definition 1 is checked by a syntactic comparison between s and
c. If it holds, we rely on solc-verify to check whether the semantic obligation is
fulfilled. We use what we call a merged contract as the input to solc-verify - it
is obtained by annotating c with the corresponding invariants and postcondi-
tions in s. If solc-verify is able to discharge all the proof obligations associated
to this merged contract, the semantic obligations are considered fulfilled, and
verify-creation� succeeds.

Function verify-upgrade� is implemented in a very similar way but it
relies on a slightly different satisfiability relation and merged contract. While
verify-creation� checks that the obligations of the constructor are met by its
implementation, verify-upgrade� assumes they do, since the constructor is only
executed - and, therefore, its implementation checked for satisfiability - at cre-
ation time. The upgrade process only checks conformance for the implementation
of the (non-constructor) public functions.

236 P. Antonino et al.

3.2 Upgrader

Ethereum does not provide a built-in mechanism for upgrading smart contracts.
However, one can simulate this functionality using the proxy pattern [31], which
splits the contract across two instances: the proxy instance holds the persistent
state and the upgrade logic, and rely on the code in an implementation instance
for its business logic. The proxy instance is the de-facto instance that is the
target of calls willing to execute the upgradable contract. It stores the address
of the implementation instance it relies upon, and the behaviour of the proxy’s
public functions can be upgraded by changing this address. Our upgrader relies
on our own version of this pattern to deploy upgradable contracts.

Given a contract c that meets its specification according to Definition 1,
the upgrader creates the Solidity contract proxy(c) as follows. It has the same
member variable declarations, in the same order, as c - having the same order
is an implementation detail that is necessary to implement the sort of delega-
tion we use as it enforces proxy and implementation instances to share the same
memory layout. In addition to those, it has a new address member variable
called implementation - it stores the address of the implementation instance.
The constructor of proxy(c) extends the constructor of c with an initial set-
ting up of the variable implementation.3 This proxy contract also has a public
function upgrade that can be used to change the address of the implementa-
tion instance. The trusted deployer is identified by a trusted Ethereum address
addrtd. This address is used to ensure calls to upgrade can only be issued by
the trusted deployer. In the process of creating and upgrading contracts the
trusted deployer acts as an external participant of the Ethereum platform. We
assume that the contract implementations and specifications do not have mem-
ber variables named implementation, or functions named upgrade to avoid
name clashes.

The proxy instance relies on the low-level delegatecall Solidity command
to dynamically execute the function implementations defined in the contract
instance at implementation. When the contract instance at address proxy exe-
cutes implementation.delegatecall(sig, args), it executes the code asso-
ciated with the function with signature sig stored in the instance at address
implementation but applied to the proxy instance - modifying its state - instead
of implementation. For each (non-constructor) public function in c with signa-
ture sig, proxy(c) has a corresponding function declaration whose implementa-
tion relies on implementation.delegatecall(sig, args). This command was
proposed as a means to implement and deploy contracts that act as a sort of
dynamic library. Such a contract is deployed with the sole purpose of other
contracts borrowing and using their code.

3 Instead of using the proxy pattern initialize function to initialise the state of the
proxy instance, we place the code that carries out the desired initialisation directly
into the proxy’s constructor. Our approach benefits from the inherent behaviour
of constructors - which only execute once and at creation time - instead of hav-
ing to implement this behaviour for the non-constructor function initialize. Our
Trusted Deployer, available at https://github.com/formalblocks/safeevolution, auto-
matically generates the code for such a proxy.

https://github.com/formalblocks/safeevolution

Specification is Law: Safe Deployment of Ethereum Smart Contracts 237

The upgrader function create-contract(c) behaves as follows. Firstly, it issues
transaction create-contract(c, args) to the Ethereum platform to create the ini-
tial implementation instance at address addrimpl. Secondly, it issues transac-
tion create-contract(proxy(c), args), such that implementation would be set to
addrimpl, to create the proxy instance at address addrpx. Note that both of
these transactions are issued by and using the trusted deployer’s address addrtd.
The upgrader function upgrade-contract(c) behaves similarly, but the second step
issues transaction call-contract(addrpx, upgrade, args), triggering the execution
of function upgrade in the proxy instance and changing its implementation
address to the new implementation instance.

4 Case Studies: ERC20, ERC1155, and ERC3156

To validate our approach, we have carried out three systematic case studies
of the ERC20 Token Standard, the ERC1155 Multi Token Standard, and the
ERC3156 Flash Loans. For the ERC20, we examined 8 repositories and out of
32 commits analysed, our framework identified 8 unsafe commits, in the sense
that they did not conform to the specification; for the ERC1155, we examined
4 repositories and out of 18 commits analysed, 5 were identified as unsafe; and
for the ERC3156, we examined 5 repositories and out of 18 commits analysed,
7 were identified as unsafe. We have prototyped the entire framework in the
form of our Trusted Deployer.4 We have applied it to the commit history of the
repository 0xMonorepo, and our tool was able to identify and prevent unsafe
evolutions while carrying out safe ones. The design and promising findings of
these case studies and commit history analyses are presented in full detail in the
extended version of this paper [4]. In the remainder of this section, as our space
is limited, we only present here a brief account of the ERC20 case study.

Our summary of the ERC20 case study presented here has focused specifically
on the verification of the semantic obligation that we enforce. This task is the
most important and computationally-demanding element of our methodology.
So, in this case study, we try to establish whether: (a) can we use our notation
to capture the ERC20 specification formally, (b) (if (a) holds) can solc-verify
check that real-world ERC20 contracts conform to its formal specification, and
(c) (if (b) holds) how long does solc-verify take to carry out such verifications.s

We were able to capture the ERC20 specification using our notation, an
extract of which is presented in Fig. 5, so we have a positive answer to (a). To test
(b) and (c), we relied on checking, using solc-verify, merged contracts involving
our specification and real-world contracts. We selected contract samples from
public github repositories that presented a reasonably complex and interest-
ing commit history. The samples cover aspects of evolution that are related to
improving the readability and maintenance of the code, but also optimisations
where, for instance, redundant checks executed by a function were removed.
4 The prototype is implemented as a standalone tool available at https://github.com/

formalblocks/safeevolution. We do not provide a service running inside a Trusted
Execution Environment yet but such a service will be provided in the future.

https://github.com/formalblocks/safeevolution
https://github.com/formalblocks/safeevolution

238 P. Antonino et al.

Table 1. ERC20 results

ERC20

Repository Commit Time Output Repository Commit Time Output

0xMonorepo 548fda 7.78 s WOP Uniswap 55ae25 6.89 s WOP

DigixDao 5aee64 8.52 s NTI Uniswap E382d7 7.08 s IOU

DsToken 08412f 8.74 s WOP SkinCoin 25db99 1.95 s NTI

Klenergy 60263d 2.40 s VRE SkinCoin 27c298 1.81 s NTI

Fig. 5. ERC20 reduced specification.

We checked these merged contracts using a Lenovo IdeapadGaming3i with
Windows 10, Intel(R) Core(TM) i7-10750 CPU @ 2.60 GHz, 8 GB of RAM, with
Docker Engine 20.15.5 and Solidity compiler version 0.5.17. Table 1 shows the
results we obtained.5 Our framework was able to identify errors in the following
categories: Integer Overflow and Underflow (IOU); Nonstandard Token Interface
(NTI), when the contract does not meet the syntactic restriction defined by the
standard; wrong operator (WOP), for instance, when the < operator would
be expected but ≤ is used instead; Verification Error (VRE) denotes that the
verification process cannot be completed or the results were inconclusive. Our
framework also found conformance for 24 commits analysed; we omitted those
for brevity, each of them was verified in under 10 s.

The ERC20 standard defines member variables: totalSupply keeps track
of the total number of tokens in circulation, balanceOf maps a wallet (i.e.
address) to the balance it owns, and allowance stores the number of tokens
that an address has made available to be spent by another one. It defines pub-
lic functions: totalSupply, balanceOf and allowance are accessors for the

5 All the instructions, the specifications, the sample contracts, and scripts used in this
evaluation can be found at https://github.com/formalblocks/safeevolution.

https://github.com/formalblocks/safeevolution

Specification is Law: Safe Deployment of Ethereum Smart Contracts 239

Fig. 6. Buggy ERC20 transferFrom function.

above variables; transfer and transferFrom can be used to transfer tokens
between contracts; and approve allows a contract to set an “allowance” for a
given address.

Figure 5 presents a reduced specification - focusing on function transferFrom
for the purpose of this discussion - derived from the informal description in the
standard [35]. In Line 1, we define a contract invariant requiring that the total
number of tokens supplied by this contract is equal to the sum of all tokens
owned by account holders. The transferFrom function has 4 postconditions;
the operation is successful only when the tokens are debited from the source
account and credited in the destination account, according to the specifications
provided in the ERC20 standard. The first two postconditions (lines 9 to 10)
require that the balances are updated as expected, whereas the purpose of the
last two (lines 11 to 12) is to ensure that the tokens available for withdrawal
have been properly updated.

We use the snippet in Fig. 6 - extracted from the Uniswap repository, commit
55ae25 - to illustrate the detection of wrong operator errors. When checked by
our framework, the third postcondition for the transferFrom function presented
in the specification in Fig. 5 is not satisfied. Note that the allowance amount is
not debited if the amount to be transferred is equal to the maximum integer sup-
ported by Solidity (i.e. uint(-1)). A possible solution would consist of removing
the if branching, allowing the branch code to always execute. We have also val-
idated cases of safe evolution, namely, where our framework was able to show
that consecutive updates conformed with the specification.

The results of our case study demonstrate that we can verify real-world
contracts implementing a very popular Ethereum token standard efficiently -
positively answering questions (b) and (c). The fact that errors were detected
(and safe evolutions were checked) in real-world contracts attests to the necessity
of our framework and its practical impact. More details about this case study
and of the other two, with our commit history analyses, can be found in [4].

5 Related Work

Despite the glaring need for a safe mechanism to upgrade smart contracts in
platforms, such as Ethereum, where contract implementations are immutable
once deployed [15,19,32], surprisingly, we could only find three close related
approaches [8,10,28] that try to tackle this specific problem. The work in [10]
proposes a methodology based around special contracts that carry a proof that

240 P. Antonino et al.

they meet the expected specification. They propose the addition of a special
instruction to deploy these special proof-carrying contracts, and the adaptation
of platform miners, which are responsible for checking and reaching a consensus
on the validity of contract executions, to check these proofs. Our framework
and the one presented in that work share the same goal, but our approach
and theirs differ significantly in many aspects. Firstly, while theirs requires a
fundamental change on the rules of the platform, ours can be implemented, as
already prototyped, on top of Ethereum’s current capabilities and rely on tools
that are easier to use, i.e. require less user input, like program verifiers. The
fact that their framework is on-chain makes the use of such verification methods
more difficult as they would slow down consensus, likely to a prohibitive level.

Azzopardi et al. [8] propose the use of runtime verification to ensure that
a contract conforms to its specification. Given a Solidity smart contract C and
an automaton-based specification S, their approach produces an instrumented
contract I that dynamically tracks the behaviour of C with respect to S. I’s
behaviour is functionally equivalent to C when S is respected. If a violation to
S is detected, however, a reparation strategy (i.e. some user-provided code) is
executed instead. This technique can be combined with a proxy to ensure that a
monitor contract keeps track of implementation contracts as they are upgraded,
ensuring their safe evolution. Unlike our approach, there is an inherent (on-
chain) runtime overhead to dynamically keep track of specification conformance.
An evaluation in that paper demonstrates that, for a popular type of contract
call, it can add a 100% cost overhead. Our off-chain verification at deployment-
time does not incur this sort of overhead. Another difference from our approach
concerns the use of reparation strategies. One example given in the paper pro-
poses the reverting of a transaction/behaviour that is found to be a violation.
An improper implementation could, then, have most of its executions reverted.
Our approach presents at (pre-)deployment-time the possible violated condi-
tions, allowing developers to fix the contract before deployment. Their on-chain
verification can be implemented on top of Ethereum’s capabilities.

In [28], the authors propose a mechanism to upgrade contracts in Ethereum
that works at the EVM-bytecode level. Their framework takes vulnerability
reports issued by the community as an input, and tries to patch affected deployed
contracts automatically using patch templates. It uses previous contract trans-
actions and, optionally user-provided unit tests, to try to establish whether a
patch preserves the behaviour of the contract. Ultimately, the patching process
may require some manual input. If the deployed contract and the patch disagree
on some test, the user must examine this discrepancy and rule on what should be
done. Note that this manual intervention is always needed for attacked contracts,
as the transaction carrying out the attack - part of the attacked contract’s his-
tory - should be prevented from happening in the new patched contract. While
they simply test patches that are reactively generated based on vulnerability
reports, we proactively require the user to provide a specification of the expected
behaviour of a contract and formally verify the evolved contract against such a
formal specification. Their approach requires less human intervention, as a spec-
ification does not need to be provided - only optionally some unit tests - but

Specification is Law: Safe Deployment of Ethereum Smart Contracts 241

it offers no formal guarantees about patches. It could be that a patch passes
their validation (i.e. testing with the contract history), without addressing the
underlying vulnerability.

Methodologies to carry out pre-deployment patching/repairing of smart con-
tracts have been proposed [26,33,38]. However, they do not propose a way to
update deployed contracts. A number of tools to verify smart contracts at both
EVM and Solidity levels have been proposed [2,3,6,13,14,16,17,22,23,27,34,36].
Our paper proposes a verification-focused development process based around,
supported, and enforced by such tools.

6 Conclusion

We propose a framework for the safe deployment of smart contracts. Not only
does it check that contracts conform to their specification at creation time, but it
also guarantees that subsequent code updates are conforming too. Upgrades can
be performed even if the implementation has been proven to satisfy the specifi-
cation initially. A developer might, for instance, want to optimise the resources
used by the contract. Furthermore, our trusted deployer records information
about the contracts that have been verified, and which specification they con-
form to, so that participants can be certain they are interacting with a contract
with the expected behaviour; contracts can be safely executed. None of these
capabilities are offered by the Ethereum platform by default nor are available in
the literature to the extent provided by the framework proposed in this paper.

We have prototyped our trusted deployer and investigated its applicability
- specially its formal verification component - to contracts implementing three
widely used Ethereum standards: the ERC20 Token Standard, ERC3156 Flash
Loans and ERC1155 Multi Token Standard, with promising results.

Our framework shifts immutability from the implementation of a contract
to its specification, promoting the “code is law” to the “specification is law”
paradigm. We believe that this paradigm shift brings a series of improvements.
Firstly, developers are required to elaborate a (formal) specification, so they can,
early in the development process, identify issues with their design. They can and
should validate their specification; we consider this problem orthogonal to the
framework that we are providing. Secondly, specifications are more abstract and,
as a consequence, tend to be more stable than (the corresponding conforming)
implementations. A contract can be optimised so that both the original and opti-
mised versions must satisfy the same reference specification. Thirdly, even new
implementations that involve change of data representation can still be formally
verified against the same specification, by using data refinement techniques.

A limitation of our current approach is the restrictive notion of evolution for
smart contracts: only the implementation of public functions can be upgraded -
the persistent state data structures are fixed. However, we are looking into new
types of evolution where the data structure of the contract’s persistent state can
be changed - as well as the interface of the specification, provided the projected
behaviour with respect to the original interface is preserved, based on notions of
class [21] and process [11] inheritance, and interface evolution such as in [12].

242 P. Antonino et al.

References

1. Ethereum White Paper. https://github.com/ethereum/wiki/wiki/White-Paper
Accessed 5 Aug 2022

2. Ahrendt, W., Bubel, R.: Functional verification of smart contracts via strong data
integrity. In: Margaria, T., Steffen, B. (eds.) ISoLA 2020. LNCS, vol. 12478, pp.
9–24. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-61467-6 2

3. Alt, L., Reitwiessner, C.: SMT-based verification of solidity smart contracts. In:
Margaria, T., Steffen, B. (eds.) ISoLA 2018. LNCS, vol. 11247, pp. 376–388.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03427-6 28

4. Antonino, P., Ferreira, J., Sampaion, A., Roscoe, A.W.:Specification is law: safe
deployment of ethereum smart contracts - technical report. Technical report (2022).
https://github.com/formalblocks/safeevolution

5. Antonino P., Roscoe, A. W.: Formalising and verifying smart contracts with solid-
ifier: a bounded model checker for solidity. CoRR, abs/2002.02710 (2020)

6. Antonino P., Roscoe, A. W.: Solidifier: bounded model checking solidity using lazy
contract deployment and precise memory modelling. In: Proceedings of the 36th
Annual ACM Symposium on Applied Computing, pp. 1788–1797 (2021)

7. Atzei, N., Bartoletti, M., Cimoli, T.: A survey of attacks on ethereum smart con-
tracts (SoK). In: Maffei, M., Ryan, M. (eds.) POST 2017. LNCS, vol. 10204, pp.
164–186. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54455-
6 8

8. Azzopardi, S., Ellul, J., Pace, G.J.: Monitoring smart contracts: contractlarva and
open challenges beyond. In: Colombo, C., Leucker, M. (eds.) RV 2018. LNCS, vol.
11237, pp. 113–137. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-
03769-7 8

9. Barnett, M., Chang, B.-Y.E., DeLine, R., Jacobs, B., Leino, K.R.M.: Boogie: a
modular reusable verifier for object-oriented programs. In: de Boer, F.S., Bon-
sangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111, pp.
364–387. Springer, Heidelberg (2006). https://doi.org/10.1007/11804192 17

10. Dickerson, T., Gazzillo, P., Herlihy, M., Saraph, V., Koskinen, E.: Proof-carrying
smart contracts. In: Zohar, A., et al. (eds.) FC 2018. LNCS, vol. 10958, pp. 325–
338. Springer, Heidelberg (2019). https://doi.org/10.1007/978-3-662-58820-8 22

11. Dihego, J., Antonino, P., Sampaio, A.: Algebraic laws for process subtyping. In:
Groves, L., Sun, J. (eds.) ICFEM 2013. LNCS, vol. 8144, pp. 4–19. Springer, Hei-
delberg (2013). https://doi.org/10.1007/978-3-642-41202-8 2

12. Dihego, J., Sampaio, A., Oliveira, M.: A refinement checking based strategy for
component-based systems evolution. J. Syst. Softw. 167, 110598 (2020)

13. Frank, J., Aschermann, C., Holz, T.: ETHBMC: a bounded model checker for
smart contracts. In: 29th USENIX Security Symposium (USENIX Security 2020),
pp. 2757–2774. USENIX Association (2020)

14. Grishchenko, I., Maffei, M., Schneidewind, C.: Ethertrust: sound static analysis of
ethereum bytecode. Technische Universität Wien, Technical report (2018)

15. Groce, A., Feist, J., Grieco, G., Colburn, M.: What are the actual flaws in impor-
tant smart contracts (and how can we find them)? In: Bonneau, J., Heninger, N.
(eds.) FC 2020. LNCS, vol. 12059, pp. 634–653. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-51280-4 34

16. Hajdu, Á., Jovanović, D.: SMT-friendly formalization of the solidity memory
model. In: FC 2020. LNCS, vol. 12059, pp. 224–250. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-44914-8 9

https://github.com/ethereum/wiki/wiki/White-Paper
https://doi.org/10.1007/978-3-030-61467-6_2
https://doi.org/10.1007/978-3-030-03427-6_28
https://github.com/formalblocks/safeevolution
https://doi.org/10.1007/978-3-662-54455-6_8
https://doi.org/10.1007/978-3-662-54455-6_8
https://doi.org/10.1007/978-3-030-03769-7_8
https://doi.org/10.1007/978-3-030-03769-7_8
https://doi.org/10.1007/11804192_17
https://doi.org/10.1007/978-3-662-58820-8_22
https://doi.org/10.1007/978-3-642-41202-8_2
https://doi.org/10.1007/978-3-030-51280-4_34
https://doi.org/10.1007/978-3-030-51280-4_34
https://doi.org/10.1007/978-3-030-44914-8_9

Specification is Law: Safe Deployment of Ethereum Smart Contracts 243

17. Hajdu, Á., Jovanović, D.: solc-verify: a modular verifier for solidity smart con-
tracts. In: Chakraborty, S., Navas, J.A. (eds.) VSTTE 2019. LNCS, vol. 12031, pp.
161–179. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-41600-3 11

18. Hildenbrandt, E., et al.: KEVM: a complete formal semantics of the ethereum
virtual machine. In: CSF 2018, pp. 204–217. IEEE (2018)

19. Bin, H., et al.: A comprehensive survey on smart contract construction and execu-
tion: paradigms, tools, and systems. Patterns 2(2), 100179 (2021)

20. Leino K. R. M.: This is boogie 2. Manuscript KRML 178(131), 9 (2008)
21. Liskov, B.H., Wing, J.M.: A behavioral notion of subtyping. ACM Trans. Program.

Lang. Syst. 16(6), 1811–1841 (1994)
22. Liu, C., Liu, H., Cao, Z., Chen, Z., Chen, B., Roscoe, B.: ReGuard: finding reen-

trancy bugs in smart contracts. In: ICSE 2018, pp. 65–68. ACM (2018)
23. Luu, L., Chu, D.-H., Olickel, H., Saxena, P., Hobor, A.: Making smart contracts

smarter. In: CCS 2016, pp. 254–269. ACM (2016)
24. Maene, P., Götzfried, J., de Clercq, R., Müller, T., Freiling, F., Verbauwhede,

I.: Hardware-based trusted computing architectures for isolation and attestation.
IEEE Trans. Comput. 67(3), 361–374 (2018)

25. Meyer, B.: Applying ‘design by contract’. Computer 25(10), 40–51 (1992)
26. Nguyen, T.D., Pham, L.H., Sun, J.: SGUARD: towards fixing vulnerable smart

contracts automatically. In: 2021 IEEE Symposium on Security and Privacy (SP),
pp. 1215–1229 (2021)

27. Permenev, A., Dimitrov, D., Tsankov, P., Drachsler-Cohen, D., Vechev, M.: VerX:
safety verification of smart contracts. In: SP 2020, pp. 18–20 (2020)

28. Rodler, M., Li, W., Karame, G. O., Davi, L.: EVMPatch: timely and automated
patching of ethereum smart contracts. In: (USENIX Security 2021), pp. 1289–1306.
USENIX Association (2021)

29. AMD SEV-SNP. Strengthening VM isolation with integrity protection and more
(2020)

30. Siegel, D.: Understanding the DAO attack. https://www.coindesk.com/
understanding-dao-hack-journalists. Accessed 22 July 2021

31. OpenZeppelin team. Proxy Upgrade Pattern. https://docs.openzeppelin.com/
upgrades-plugins/1.x/proxies. Accessed 5 Aug 2022

32. Tolmach, P., Li, Y., Lin, S.W., Liu, Y., Li, Z.: A survey of smart contract formal
specification and verification. ACM Comput. Surv. 54(7), 1–38 (2021)

33. Torres, C. F., Jonker, H., State, R.: Elysium: Automagically healing vulnerable
smart contracts using context-aware patching. CoRR, abs/2108.10071 (2021)

34. Tsankov, P., Dan, A., Drachsler-Cohen, D., Gervais, A., Buenzli, F., Vechev. M.:
Securify: practical security analysis of smart contracts. In: CCS 2018, pp. 67–82.
ACM (2018)

35. Vogelsteller, F., Buterin, V.: EIP-20: token standard. https://eips.ethereum.org/
EIPS/eip-20. Accessed 5 Aug 2022

36. Wang, Y., et al.: Formal verification of workflow policies for smart contracts in
azure blockchain. In: Chakraborty, S., Navas, J.A. (eds.) VSTTE 2019. LNCS,
vol. 12031, pp. 87–106. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
41600-3 7

37. Wüst, K., Matetic, S., Egli, S., Kostiainen, K., Capkun, S.: ACE: asynchronous
and concurrent execution of complex smart contracts. In: CCS 2020, pp. 587–600
(2020)

38. Yu, X.L., Al-Bataineh, O., Lo, D., Roychoudhury, A.: Smart contract repair. ACM
Trans. Softw. Eng. Methodol. 29(4), 1–32 (2020)

https://doi.org/10.1007/978-3-030-41600-3_11
https://www.coindesk.com/understanding-dao-hack-journalists
https://www.coindesk.com/understanding-dao-hack-journalists
https://docs.openzeppelin.com/upgrades-plugins/1.x/proxies
https://docs.openzeppelin.com/upgrades-plugins/1.x/proxies
https://eips.ethereum.org/EIPS/eip-20
https://eips.ethereum.org/EIPS/eip-20
https://doi.org/10.1007/978-3-030-41600-3_7
https://doi.org/10.1007/978-3-030-41600-3_7

SKLEE: A Dynamic Symbolic Analysis
Tool for Ethereum Smart Contracts

(Tool Paper)

Namrata Jain1 , Kosuke Kaneko2 , and Subodh Sharma1(B)

1 Indian Institute of Technology, Delhi, New Delhi, India
svs@cse.iitd.ac.in

2 Kyushu University, Fukuoka, Japan

kaneko.kosuke.437@m.kyushu-u.ac.jp

Abstract. We present SKLEE, a dynamic symbolic framework to anal-
yse Solidity smart contracts for various safety vulnerabilities. While there
are many analysis tools for Solidity contracts, in this work we demon-
strate that existing analysis infrastructures for other sequential program-
ming languages, such as C, can be leveraged to construct a competi-
tive analysis framework for Solidity contracts. Notably, SKLEE is boot-
strapped on top of KLEE – a dynamic symbolic test-case generation tool
for C programs – with modelling for Solidity primitives such as send,

call, transfer, and others. Our experiments indicate that SKLEE is
indeed competitive with other state-of-the-art tools in terms of (i) the
number of bug classes it can identify, and (ii) the number of benchmarks
it can analyse in a given time bound.

Keywords: Blockchain · Smart contract · Symbolic execution

1 Introduction

Broken smart contracts (or contracts) adversely impact the advertised desider-
atum of blockchain (such as trust, traceability and transparency). As a result,
it becomes imperative to analyse smart contracts for safety and security vulner-
abilities. Many recent works have designed and implemented analysis tools for
smart contracts [1,7,8,10,12,13,15,16].

In this work, sharing the same objective with prior works of automated con-
tract analysis, we present a dynamic symbolic execution (DSE) tool built on
KLEE [5] to discover safety and security bugs in Ethereum Solidity contracts. In
many prior works, the analysis infrastructure was specifically tailored for con-
tract languages and specific blockchain platforms; in contrast, our work adopts
the philosophy of maximum software reuse. This allows us to provide an appro-
priate context for presenting principles of contract modeling and design of ade-
quately functional and efficient analysis infrastructure. While the presented con-
tributions are specific to Ethereum, the modeling principles adopted are generic
and can be adapted for other smart contract languages such as Go and Vyper.
© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
B.-H. Schlingloff and M. Chai (Eds.): SEFM 2022, LNCS 13550, pp. 244–250, 2022.
https://doi.org/10.1007/978-3-031-17108-6_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-17108-6_15&domain=pdf
http://orcid.org/0000-0002-1874-859X
http://orcid.org/0000-0002-2049-9529
http://orcid.org/0000-0003-3069-3744
https://doi.org/10.1007/978-3-031-17108-6_15

Dynamic Symbolic Analysis of Ethereum Smart Contracts 245

Related Work. Several past contributions have analysed the bytecode of either
Ethereum Virtual Machine (EVM) or its transformation to a custom interme-
diate representation (IR) [10,12,13,16]. In contrast, SKLEE translates to and
analyses the LLVM bitcode. Similar to SKLEE several contributions work with
source-code of contracts [3,6,8,9,11], thus leveraging the structured high-level
information from the source-code. Some contributions offer sound guarantees
[4,8,13], while others are heuristic-driven bug detectors [10,12,15]. SKLEE falls
in the category of bug detection tools. The class of vulnerabilities that many
prior contributions have addressed can be viewed as state reachability (or safety)
properties (such as unchecked send or call to unknown functions). Recent work
in [14] supports the verification of much richer temporal properties such as live-
ness. The focus of this work, however, is to analyse safety properties. Support
for liveness properties is left for future work.

Fig. 1. SKLEE workflow

The contribution of this
paper are as follows. As the first
contribution within SKLEE1

(C1) we design and implement
a translator from Solidity to
C++ code which is further com-
piled down to LLVM bitcode.
The LLVM IR is robust with
large user community and many
robust analysis engines support

it. The translation philosophy of SKLEE in many ways similar to the work in
[3] where contract codes are converted to Java. However, it uses KeY prover
to discharge verification conditions. As the second contribution, (C2) we imple-
ment the analyser for translated contracts by modifying the KLEE backend with
the modeling of contract language primitives. SKLEE, in addition to detection
of common reachability errors, also detects unsafe implementation practices in
Solidity such as mapping reads and address typecasts. Finally, we validate the
results of SKLEE by running the contracts with automatically generated test
cases in a real setup – by forking a private copy of the Ethereum blockchain
platform.

2 Overview of SKLEE

Figure 1 shows the framework of SKLEE. It takes as input a contract writ-
ten in Solidity and produces as output tests that are generated by KLEE.
SKLEE converts a contract to a corresponding C++ program, which is subse-
quently converted to LLVM bitcode (required by KLEE) using the clang com-
piler, llvm-gcc. Since both, C++ and Solidity, are object oriented languages,
this allows for straightforward modeling of many features of Solidity in C++.

1 SKLEE link: https://github.com/subodhvsharma/SKLEE.

https://github.com/subodhvsharma/SKLEE

246 N. Jain et al.

2.1 Contract Translator

We convert Solidity code to LLVM bitcode by implementing a Lexer/Parser
using the tool FLEX-BISON. Solidity’s constructs have been mapped to cor-
responding C++ constructs. We briefly describe the conversion approach followed
for some of the constructs.

Type and Function Library. Solidity’s pre-defined functions’ definition and
type system are implemented as a Type library. It contains address, int,
uint, byte and bytes datatype as C++ structures.

Modeling Contracts. Contracts with state variables, member functions and
unique address are converted to a C++ class. Since every contract is convertible
to an address type, the equivalent class for a contract derives publicly from the
address type. Functions in Solidity have state mutability specifiers such as
pure, view, payable which specify whether the function modifies state variables
of contract, performs only read operation or accepts payment, respectively. This
information to be later used in identifying vulnerabilities.

Solidity allows a state variable to be used in the declaration of another state
variable before it is actually declared/defined. Such a behavior is disallowed in
C++. Use-def chain is used in our translation to detect such variables and are
explicitly declared before their use.

Solidity implicitly declares default, parameterized constructors for struct
members. During translation, SKLEE inserts default and parameterized con-
structors in struct definition when they are not explicitly defined.

In Solidity a modifier defines a condition that must be met before invoking
a function. Modifiers are modeled as class functions returning boolean values;
the modeled function returns true if the condition defined in the modifier is
satisfied, otherwise false.

Inheritance. SKLEE models inheritance by using the public visibility level for
each contract from which the immediate contract is derived. Multiple inheritance
is supported in both Solidity and C++. While class names are used to resolve
overridden functions in C++, Solidity uses ‘C3 Linearization’ [2] to force a
specific order of base classes. SKLEE, instead, lists the base contracts in the
reverse order in which they are specified. Then it uses this order to add scope
(i.e., contract name) before the overridden function.

2.2 Augmenting KLEE

Builtin functions in Solidity (such as send, call, and transfer) that are
left uninterpreted during translation are modeled in KLEE. The decision to not
translate them early on rests on the fast-changing nature of the language. Note
that the symbolic simulation of KLEE remains untouched. KLEE treats the
return values of send, call, transfer as symbolic. The modeling of send is
shown in the following code.

Dynamic Symbolic Analysis of Ethereum Smart Contracts 247

1 bool address:send(unsigned amount) { bool success;

2 klee_make_symbolic(&success, sizeof(success), "ReturnValue"); if

3 (success) return true; return false; }

Since Solidity allows callbacks, in order to capture reentrancy issues arising
from send or transfer we assign identifiers to contracts’ fallback functions (if
present). Then, in the modeling of the calls the fallback function is invoked as
the last instruction.

2.3 Vulnerabilities and Their Detection

SKLEE targets many of the vulnerability classes that are discussed in prior works
such as payable-without-fallback, unchecked sends, block- and transaction-state
dependence etc. . We discuss briefly a couple of vulnerabilities below.

Unchecked send. A contract is vulnerable when it invokes send method, but
does not explicitly check its return value and modifies the global state of the
contract after the call. SKLEE throws an error in such a case.

Greedy Contract. A contract is greedy if it has a function which accepts
payments, but does not contain any function which transfers ether to other
contracts. It is originally defined as a trace property in [12]. SKLEE analyzes
a contract to check whether it transacts through a transfer. If transfer is
guarded by some condition which involves a state variable, then SKLEE checks
if there is at least one function which writes to that variable, otherwise there is
a possibility that the condition may never become true. SKLEE generates error
if no such transacting function is found.

2.4 Validation

SKLEE uses a private fork of the original Ethereum blockchain with the last
block as the input context to validate its results. It runs the contract with the
concrete values of the transactions (obtained from the symbolic analysis) to check
if the vulnerability holds in the concrete execution. If the concrete execution fails
to exhibit a violation of the property, we mark the contract as a false positive.
At the moment only unchecked send, overflow/underflow, greedy, prodigal and
suicidal vulnerabilities are validated. The vulnerability validation approach is
similar to MAIAN [12] – it analyzes the bytecode of smart contracts and has its
custom symbolic execution framework.

2.5 Limitations

SKLEE supports a subset of Solidity. For instance, SKLEE does not currently
support assembly blocks in the contract code and revert functions. Also, SKLEE
does not model the gas consumption of any instruction or function as it is set by
the transaction initiator and is not known during analysis. Vulnerabilities such
as address typecasts cannot be analysed symbolically as checking it requires the

248 N. Jain et al.

Table 1. SKLEE results

Bug TP FP FN

Unchecked send 163 2 6

Overflow 106 7 3

Greedy 8 2 3

Prodigal 5 0 1

Suicidal 17 1 3

Re-entrancy 31 3 0

Typecast 21 2 0

TOD 179 0 0

Blockstate dep 8 0 2

Transaction state dep 9 0 2

Mapping read 78 2 3

Memory overlap 117 1 0

No fallback 18 4 0

Table 2. Comparison results. SC =
SmartCheck. ∗: when multiplication after
division can cause overflow/underflow.

Bug SKLEE SC Mythril

Unchecked send 165 152 86

Overflow 113 54* 87

Greedy 10 20 -

Prodigal 5 - 4

Suicidal 18 0 1

Re-entrancy 34 0 -

Typecast 23 - -

TOD 179 - -

Blockstate dep 8 6 49

Transaction state dep 9 14 -

Mapping read 80 - -

Memory overlap 118 122 -

No fallback 22 0 -

runtime state of the Blockchain. SKLEE only reports warning in typecast issues.
Solidity, just like C/C++, does not enforce a sub-expression evaluation order.
SKLEE can be unsound in the analysis of such nested expressions.

3 Experiments and Results

SKLEE is evaluated on a total of 575 unique smart contracts by scraping through
etherscan.io (same as in [13]). SKLEE was able to successfully convert 515
contracts to C++ code. The unsuccessful conversions were due to unsupported
features of Solidity (such as assembly and revert). Out of 515 contracts, 65
contracts had no vulnerability. Table 1 shows the number of smart contracts
found corresponding to a vulnerability with false positive (FP), false negative
(FN) and true positive (TP) numbers. Table 2 shows the comparison of SKLEE
with other recent contract analysers – Mythril is used by industry and is part-
nered by Enterprise Ethereum Alliance; SmartCheck is a leading static analyser
of Solidity contracts for the version that is also supported by SKLEE. Some of
the scraped contracts required solc version <0.4.11 and could not be analyzed
with Mythril (shown with a −).

Time Comparison. On a set of randomly selected 10 contracts, SKLEE took
2.05 min, while Mythril completed execution in 6.78 min. For the same set,
SmartCheck took only 15 s. Note that SmartCheck does not generate test cases
at all.

Dynamic Symbolic Analysis of Ethereum Smart Contracts 249

4 Conclusion

We presented a dynamic-symbolic execution SKLEE for Solidity smart contract
analysis. The tool was built on top of existing and robust frameworks such as
LLVM and KLEE. The paper demonstrated that the tool is competitive with
existing smart contract analysis tools. As future work, we will support a larger
subset of the Solidity language and try to obtain higher precision and recall.

References

1. Consensys: Mythril: a security analysis tool for ethereum smart contracts. https://
github.com/ConsenSys/mythril-classic

2. Solidity c3 linearization. https://docs.soliditylang.org/en/v0.8.4/contracts.html
3. Ahrendt, W., et al.: Verification of smart contract business logic - exploiting a Java

source code verifier. In: Hojjat, H., Massink, M. (eds.) Fundamentals of Software
Engineering - 8th International Conference, FSEN, pp. 228–243 (2019)

4. Amani, S., Bégel, M., Bortin, M., Staples, M.: Towards verifying Ethereum smart
contract bytecode in Isabelle/HOL. In: Proceedings of the 7th ACM SIGPLAN
International Conference on Certified Programs and Proofs, pp. 66–77 (2018)

5. Cadar, C., Dunbar, D., Engler, D.: KLEE: unassisted and automatic generation
of high-coverage tests for complex systems programs. In: Proceedings of the 8th
USENIX Conference on Operating Systems Design and Implementation, OSDI
2008, pp. 209–224. USENIX Association (2008)

6. Feist, J., Grieco, G., Groce, A.: Slither: a static analysis framework for smart
contracts. In: 2019 IEEE/ACM 2nd International Workshop on Emerging Trends
in Software Engineering for Blockchain (WETSEB) (2019)

7. Hildenbrandt, E., et al.: KEVM: a complete formal semantics of the Ethereum
virtual machine. In: 2018 IEEE 31st Computer Security Foundations Symposium
(CSF), pp. 204–217 (2018)

8. Kalra, S., Goel, S., Dhawan, M., Sharma, S.: ZEUS: analyzing safety of smart
contracts. In: 25th Annual Network and Distributed System Security Symposium,
NDSS (2018)

9. Lu, N., Wang, B., Zhang, Y., Shi, W., Esposito, C.: NeuCheck: a more practical
Ethereum smart contract security analysis tool. Softw. Practice Exp. 51(10), 2065–
2084 (2019). https://doi.org/10.1002/spe.2745

10. Luu, L., Chu, D.H., Olickel, H., Saxena, P., Hobor, A.: Making smart contracts
smarter. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, CCS 2016, pp. 254–269. Association for Computing
Machinery (2016)

11. Mossberg, M., et al.: Manticore: a user-friendly symbolic execution framework for
binaries and smart contracts (2019)

12. Nikolić, I., Kolluri, A., Sergey, I., Saxena, P., Hobor, A.: Finding the greedy, prodi-
gal, and suicidal contracts at scale. In: Proceedings of the 34th Annual Computer
Security Applications Conference, ACSAC 2018, pp. 653–663. Association for Com-
puting Machinery (2018)

13. Schneidewind, C., Grishchenko, I., Scherer, M., Maffei, M.: eThor: practical and
provably sound static analysis of ethereum smart contracts. In: Proceedings of the
2020 ACM SIGSAC Conference on Computer and Communications Security, CCS
2020, pp. 621–640. Association for Computing Machinery (2020)

https://github.com/ConsenSys/mythril-classic
https://github.com/ConsenSys/mythril-classic
https://docs.soliditylang.org/en/v0.8.4/contracts.html
https://doi.org/10.1002/spe.2745

250 N. Jain et al.

14. Stephens, J., Ferles, K., Mariano, B., Lahiri, S., Dillig, I.: Smartpulse: automated
checking of temporal properties in smart contracts. In: 42nd IEEE Symposium on
Security and Privacy. IEEE (2021)

15. Tikhomirov, S., Voskresenskaya, E., Ivanitskiy, I., Takhaviev, R., Marchenko, E.,
Alexandrov, Y.: Smartcheck: static analysis of Ethereum smart contracts. In:
WETSEB 2018, pp. 9–16. Association for Computing Machinery (2018)

16. Tsankov, P., Dan, A., Drachsler-Cohen, D., Gervais, A., Bünzli, F., Vechev, M.:
Securify: practical security analysis of smart contracts. In: CCS 2018, New York,
NY, USA. Association for Computing Machinery (2018)

Program Synthesis

Weighted Games for User Journeys

Paul Kobialka1(B) , Silvia Lizeth Tapia Tarifa1 ,
Gunnar Rye Bergersen1,2 , and Einar Broch Johnsen1

1 University of Oslo, Oslo, Norway
{paulkob,sltarifa,gunnab,einarj}@ifi.uio.no

2 GrepS B.V., Utrecht, The Netherlands
gunnar@greps.com

Abstract. The servitisation of business is moving industry to business
models driven by customer demand. Customer satisfaction is connected
with financial rewards, forcing companies to investigate in their users’
experience. User journeys describe how users manoeuvre through a ser-
vice. Today, user journeys are typically modelled graphically, and lack
formalisation and analysis support. This paper proposes to formalise user
journeys as weighted games between the user and the service provider.
We further propose a data-driven construction of such games, derived
from system logs using process mining techniques. As user journeys may
contain cycles, we bound the number of iterations in each cycle and
develop an algorithm to unfold user journeys into acyclic weighted games.
These can be model checked using Uppaal Stratego to uncover poten-
tial challenges in how a company interacts with its users and to derive
company strategies to guide users better in their journeys. Our analy-
sis pipeline was evaluated on an industrial case study; it revealed design
challenges within the studied service and could be used to derive suitable
recommendations for improvement.

Keywords: User journeys · Data-driven model construction · Games ·
Model checking · UPPAAL

1 Introduction

The servitisation of business [37], a concept of creating added value to products
by offering services, is a major practice embraced by most (if not all) successful
companies. Such companies are interested in the analysis of their services, which
until now has mostly focused on the managerial perspective, where the service is
analysed with respect to the companies’ view. Recent tendencies are shifting the
focus from the company’s view to the end-users view, where a positive experience
and impression that a user has while engaging in the service, has shown to have
a positive impact on the financial reward of a company [17]. Thus, companies
aim to analyse and improve their services, based on their users’ satisfaction.

This work is part of the Smart Journey Mining project, funded by the Research Council
of Norway (grant no. 312198).
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
B.-H. Schlingloff and M. Chai (Eds.): SEFM 2022, LNCS 13550, pp. 253–270, 2022.
https://doi.org/10.1007/978-3-031-17108-6_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-17108-6_16&domain=pdf
http://orcid.org/0000-0002-0635-1915
http://orcid.org/0000-0001-9948-2748
http://orcid.org/0000-0002-8135-9052
http://orcid.org/0000-0001-5382-3949
https://doi.org/10.1007/978-3-031-17108-6_16

254 P. Kobialka et al.

User journeys (also called customer journeys) analyse services from the user
perspective [30]: A user journey is inherently a goal-oriented process, because
humans engage in a service with a goal in mind. The user moves through the
journey by engaging in so-called touchpoints, which are either actions performed
by the user or a communication event between the user and a service provider.
We here assume that users only engage in one touchpoint of a service at a time.

Tools are currently lacking the analysis of user journeys [21], which hinders
their operational use. User journey diagrams are usually generated by hand,
and the user perspective is derived from interviews with experts and users,
e.g. [20,30]. This process has been highly successful, discovering points of failure
in the studied services and, as a result, providing advice to companies on how to
improve their services. However, this manual process is best suited for relatively
small services and a restricted number of users. For services with thousands of
users, journey diagrams need to be automatically generated and analysed.

This paper proposes a formalization of user journeys as weighted games [12]
between users and a service provider, and a method to derive these games from
process logs. Our aim is to use these games to analyse services and to suggest
service improvements such that service providers always have a strategy to guide
their users towards a desired goal. We capture the user perspective of services
by means of so-called gas. The term is inspired by blockchain technology such
as Ethereum, where gas refers to the cost necessary to perform a transaction on
the network. In our work, the gas quantitatively reflects how moves in the user
journey contribute to the users reaching their goal. Consequently, the moves in
the derived games are weighted and accumulated into the gas of the journeys,
which allows to compare and analyse journeys using model checkers such as
Uppaal Stratego [15] or PRISM-games [13], and to give strategic recommen-
dations to service providers. In short, our contributions are: (1) a formalization
of user journeys as weighted games; (2) a pipeline to automatically derive and
model check weighted games; and (3) an industrial case study that evaluates the
feasibility of our approach.

Related Work: We discuss related work with respect to the modelling of user
journeys and the use of data-driven techniques to discover user journeys. We
are not aware of prior work that uses automatic verification methods to check
properties for user journeys.

User journeys aim to improve service design by describing how users interact
with services [16,36]. Modelling notations for user journeys aim to support the
so-called blueprinting [11], i.e., to create an anticipated model of a service. There
are various notations to create diagrams for user journeys [5,14,19,24,29,30];
these diagrams are mostly handmade but some digital support exists; for exam-
ple, a semantic lifting into ontologies has been used to visualize fixed aspects
of a model [24]: the data sent, the communication channels and devices used,
etc. Berendes et al. propose in [5] the high street journey modelling language
(HSJML) tailored to journeys in shopping streets. Razo-Zapata et al. propose
the VIVA modelling language with focus on interactions [29]. In contrast, our
work aims to use data-driven techniques [2] to automatically discover user jour-

Weighted Games for User Journeys 255

ney diagrams and formal methods to automatically check properties of user
journeys and derive recommendations for improving the service under analysis.

The Customer Journey Modelling Language (CJML) [18,20] captures the
end-users point of view. CJML distinguishes planned and actual user journeys,
which represent the journey as planned as part of the service design and as
perceived by the user, respectively. Our work is part of a project [21] on tool
support for data-driven user journey modelling in CJML. Whereas previous work
on CJML manually quantifies user experience collected through user feedback
questionnaires, our work aims to capture the journeys as perceived by the user
in a data-driven manner, based on system logs.

Data-driven techniques for process discovery allow us to discover user jour-
neys. Harbich et al. [22] use mixtures of Markov models to derive user journey
maps. Bernard et al. [8,10] study process mining [2] for user journeys, such
as hierarchical clustering to explore large numbers of journeys [7] and process
discovery techniques to generate user journey maps at different levels of granu-
larity [9]. Terragni and Hassani [33] apply process mining to user journey web
logs to build process models, and improve the results by clustering journeys. This
work has been integrated with a recommender system to suggest service actions
that maximize key performance indicators [34], e.g., how often the product page
is visited. In our work we propose a data-driven method to discover models of
user centric journeys with multiple actors, building on existing techniques.

Outline: Section 2 introduces foundational definitions needed for weighted games
and the model checking suite Uppaal that we use for analysis. The formal
model for user journeys is introduced in Sects. 3–5 and model checked in Sect. 6.
Section 7 discusses the implementation, Sect. 8 evaluates our approach in terms
of an industrial case study and Sect. 9 concludes the paper.

2 Preliminaries

We briefly summarise the formal notations and tools that we build on for the
proposed user journey pipeline to analyse a service.

A transition system [28] is a tuple S = 〈Γ,A,E, s0, T 〉 with a set Γ of states,
a set A of actions (or labels), a transition relation E ⊆ Γ × A × Γ , an initial
state s0 ∈ Γ and a set T ⊆ Γ of final states. A weighted transition system [35]
S = 〈S,w〉 extends the transition system S with a weight function w : E → R

that assigns weights to transitions.
Weighted games [12] are obtained from weighted transition systems by parti-

tioning the actions A into controllable actions Ac, and uncontrollable actions Au,
where only actions in Ac can be controlled by the analyser, while actions in Au

are nondeterministically decided by an adversarial environment. When analysing
games, we look for a strategy that guarantees a desired outcome, i.e. winning
the game by reaching a certain state. The strategy is given by a partial function
Γ → Ac ∪ {λ} that decides on the action of the controller in a given state (here,
λ denotes the “wait” action, letting the adversary move).

256 P. Kobialka et al.

Log Directly Follows Graph Game

Fig. 1. Creation of the journey model.

Uppaal Tiga [4] can be used to analyse reachability and safety proper-
ties for games expressed using (timed) transition systems, extending the model
checker Uppaal [25]. Uppaal Tiga checks whether there is a strategy under
which the behaviour satisfies a control objective, denoted control: P for a prop-
erty P . Property P is expressed in computational tree logic [3], an extension of
propositional logic that is used to express properties along paths in a transition
system. Recall that computational tree logic state properties φ can be decided
in a single state; while reachability properties E <>φ express that the formula
φ is satisfiable in some reachable state in a transition system; safety properties
E []φ express that the formula φ is always satisfied in all the states of some
path in a transition system and A []φ expresses that φ is always satisfied in
all the states of all paths of a transition system. Similarly, liveness properties
A <>φ express that the formula φ will eventually be satisfied in all the paths in
a transition system and the formula φ -->ψ expresses that satisfying formula φ
leads to satisfying formula ψ.

Uppaal Stratego [15] can be used to analyse and refine a strategy gen-
erated by Uppaal Tiga with respect to a quantitative attribute like weights.
Uppaal Stratego is a statistical model checker [27]; it extends Uppaal for
stochastic priced timed games and combines simulations with hypothesis testing
until statistical evidence can be deduced.

3 From User Logs to Games

To capture the user perspective in games that model user journeys, user actions
(representing communication initiated by the user) can be seen as controllable
and the service provider’s actions as uncontrollable. However, from an analytical
perspective, it is more interesting to treat user actions as uncontrollable and the
service provider’s actions as controllable. The service provider is expected to have
suitable reactions for all possible user interactions. Ideally, the service provider
should not rely on the user to make the journey pleasant. By treating user actions
as uncontrollable, we can expose the worst behaviour of the service provider, and
thereby strengthen the user-centric perspective promoted by journey diagrams.
Games for user journeys are then defined as follows:

Weighted Games for User Journeys 257

Definition 1 (User journey games). A user journey game is a weighted game
〈Γ,Ac, Au, E, s0, T, Ts, w〉, where

– Γ are states that represent the touchpoints of the user journey,
– Ac and Au are disjoint sets of actions respectively initiated by the service

provider and the user,
– E ⊆ Γ × Ac ∪ Au × Γ are the possible actions at the different touchpoints,
– s0 ∈ Γ is an initial state,
– T ⊆ Γ are the final states of the game,
– Ts ⊆ T are the final states in which the game is successful, and
– w : E → R specifies the weight associated with the different transitions.

The process of deriving such user journey games from user logs is illustrated
in Fig. 1. In Step 1, we go from logs to a user journey model, expressed as a
directly follows graph (DFG), and in Step 2, the DFG is extended to a game.
The derivation of weights for the transitions is discussed in Sect. 4.

Step 1. We use a directly follows graph (DFG) as an underlying process model to
capture the order of events in an event log; a DFG is well-suited as the process
model provided that users only engage in one touchpoint at a time. DFGs are
derived from event logs by means of process discovery [2]. An event log L is a
multi-set of journeys. A journey J = 〈a0, . . . , an〉 is a finite and ordered sequence
of events ai from a universe A. We construct the DFG of an event log L as a
transition system S = 〈Γ,A,E, s0, T 〉 where the states Γ capture the event
universe, Γ ⊆ A ∪ {s0} ∪ T. Every sequence of events is altered to start in the
start state s0 and to end in a dedicated final state t ∈ T . The set of actions A is
the union of the event universe and the final states, A = A ∪ T. The transition
relation E includes a triple (ai, ai+1, ai+1) if ai is directly followed by ai+1 in
some J ∈ L; we can traverse from state ai to state ai+1 by performing the action
ai+1. Here reaching a state in S is interpreted as the corresponding event in L
has already been performed. By construction, the DFG S obtained from log L
can replay every observed journey in L. However S may capture more journeys
than those present in L, since for example S may contain transitions with loops.

Step 2. The DFG is now transformed into a game. Observe that the DFG cap-
tures the temporal ordering of events but it does not directly differentiate the
messages sent by the user to the service provider from those sent by the service
provider to the user. For simplicity, let us assume that this information is either
part of the events in the logs or known in advance from domain knowledge con-
cerning the event universe. The mined DFG can then be extended into a game
by annotating the actions that are (un)controllable.

4 Capturing User Feedback in User Journey Games

We now extend the games derived from system logs into weighted games by
defining a gas function reflecting user feedback. We develop a gas function that

258 P. Kobialka et al.

is automatically calculated and applied to the transitions of the game, depending
on the traversal and entropy that is present in the corresponding event log.
Informally, the gas function captures how much “steam” the consumer has left
to continue the journey. Less steam means that the user is more likely to abort
the journey and more steam means that the user is more likely to complete the
journey successfully. Assuming that the service provider attempts to provide the
best possible service, its goal is to maximize gas in a journey. The adversarial
user aims for the weaknesses in the journey and therefore minimizes the gas.
Formally, the weight function w : E → R maps the transitions E of a game
to weights, represented as reals. Given a log L and its corresponding game, we
compute the weight for every transition e ∈ E.

Since user journeys are inherently goal-oriented, we distinguish successful
and unsuccessful journeys; the journeys that reach the goal are called successful
and the remaining journeys are considered to be unsuccessful. This is captured
by a function majority : E × L → {−1, 1} that maps every transition e ∈ E
to {−1, 1}, depending on whether the action in the transition appears in the
majority of journeys in L that are unsuccessful or successful, respectively. Ties
arbitrarily return −1 or 1.

Many actions might be part of both successful and unsuccessful journeys.
For this reason, we use Shannon’s notion of entropy [32]. Intuitively, if an action
is always present in unsuccessful journeys and never in successful ones, there is
certainty in this transition. The entropy is low, since we understand the context
in which this transition occurs. In contrast, actions involved in both successful
and unsuccessful journeys have high entropy. The entropy is calculated using

1. the number of occurrences of an event in the transitions of successful journeys
within the event log L, denoted #pos

L e, and the number of transitions in
unsuccessful ones, denoted #neg

L e; and
2. the total number of occurrences of the event in L, denoted #Le.

The entropy H of transition e given the event log L is now defined as

H(e, L) = −#pos
L e

#Le
· log2(

#pos
L e

#Le
) − #neg

L e

#Le
· log2(

#neg
L e

#Le
).

The weight function w that computes the weights of the transitions can now
be defined in terms of the entropy function, inspired by decision tree learning [31].
Given an event log L, the weight of a transition e is given by

w(e) = ((1 − H(e, L)) · majority(e, L) − C) · M.

The constant C represents an aversion bias and is learned from the training set.
It is used to model a basic aversion against continuous interactions. The sign of
a transition depends on its majority. If the transition is mostly traversed on suc-
cessful journeys, it is positive. Otherwise, it is negative. The inverse entropy factor
quantifies the uncertainty of transitions. The constant M scales the energy weight
to integer sizes (our implementation currently requires integer values, see Sect. 7).

The gas of a journey quantitatively reflects the history of that journey, allow-
ing us to not only compare the weights of transitions but also to compare (partial)

Weighted Games for User Journeys 259

Algorithm 1. k-bounded loop unrolling
Input: Weighted Game S = 〈Γ, Ac, Au, E, s0, T, Ts, w〉, constant k ∈ N

+

Output: Acyclic Weighted Game S′ = 〈Γ ′, Ac, Au, E′, s0, T ′, Ts, w
′〉

1: Initialize S′ = 〈∅, A′
c, A

′
u, ∅, s0, T

′, Ts, w〉 and queue Q = [s0]
2: C ← {c | c is simple cycle in S}
3: while not empty(Q) do
4: state s ← first(Q)
5: for t ∈ {t | (s, t) ∈ E} do
6: hist ← push(history(s), t)
7: allSmaller ← True
8: canTraverse ← False
9: if repetitions(c, hist) ≥ k for all cycle c ∈ C then

10: allSmaller ← False
11: if !allSmaller then
12: P ← allSimplePaths(S, t, T)
13: for path p ∈ P do � check whether cycle might be partially traversed
14: hist′ ← merge(hist, p)
15: if repetitions(c, hist′) ≤ k for all cycle c ∈ C then
16: canTraverse ← True � cycle can be partially traversed
17: if allSmaller ∨ canTraverse then
18: state t′ copy of t with history hist
19: push(Q, t′)
20: addTransition((s, t′), S′) � Copies weight to w′ and actor to A′

c, A
′
u

21: return S′

journeys. The gas G of a journey J = 〈a0, . . . , an〉 with transitions e0, . . . en−1 is
defined as the sum of the weights along the traversed transitions:

G(J) :=
n−1∑

i=0

w(ei).

5 Finite Unrolling of Games

The generated weighted games may contain loops, which capture unrealistic jour-
neys (since no user endures indefinitely in a service) and hinder model checking.
Therefore, the weighted games with loops are transformed into acyclic weighted
games using a breadth-first search loop unrolling strategy bounded in the num-
ber of iterations per loop. The transformation is implemented in an algorithm
that preserves the original decision structure and adds no additional final states.

The algorithm for k-bounded loop unrolling (shown in Algorithm 1) returns an
acyclic weighted game, where each loop is traversed at most k times. The unrolling
algorithm utilizes a breadth-first search from the initial state s0 in combination
with a loop counting to build an acyclic weighted game. In the algorithm, the state
s denotes the current state that is being traversed. To traverse the paths in the
weighted game, we use a queue Q to store the states that need to be traversed,
a set C containing all the cycles in the graph (where each cycle is a sequence of

260 P. Kobialka et al.

states), and the function allSimplePaths(S, s, T) that returns all paths in the
weighted game S from s to any final state t ∈ T . The extended graph is stored in
the acyclic game S′. A state in a cycle can be traversed if it has been visited less
than k times (see Lines 9–10). The function repetitions checks the number of
traversals. If the counter for one cycle is k, the algorithm checks whether the cycle
can be partially traversed (see Lines 11–16).

Partial traversals guarantee that we reach a final state without closing
another loop. The partial traversal does not increase the count of another cycle
to k+1 (Lines 14–16). Every state stores its history (a sequence of visited states),
which can be retrieved using the function history. Line 14 increases the cur-
rent history by including a (partial) path through the loop. This check iterates
through all paths from the current state to any final state. If state t can be
traversed, it is added to the acyclic game (Lines 17–20). A copy t′ of t is added
to the queue Q, the transition (s, t′), its weight and actor are added to S′ using
the function addTransition. The resulting weighted game can be reduced. All
states outside a cycle can be merged into the same state. This can either be done
after unrolling the whole game or on the fly while unrolling.

1

2

3

4 5

(a) Cyclic Game

(b) Acyclic Game

Fig. 2. Unrolling example.

Example. Figure 2 illustrates the
unrolling algorithm (for simplicity, we
ignore transition weights and do not
distinguish controllable and uncontrol-
lable actions in the example). Start-
ing from the cyclic weighted game in
Fig. 2a, the algorithm with k = 1 gen-
erates the acyclic weighted game in
Fig. 2b. The input contains two loops:
C = {[2, 3], [2, 4, 3]}. Starting at state
1, we can traverse two neighbour states
which both are part of the cycles.
Thus, both transitions are inserted to
S′, and Q is updated to [2, 3]. Contin-
uing with state 2, all reachable tran-
sitions are again inserted as the cor-
responding cycles have not been fully
traversed. Names of copies of the states
that are already present once in the
graph are incremented (the first occur-
rence of state 3 is called 3, the second
3.1, the third, 3.2, etc.) The algorithm
continues until the first loop 2, 3, 2 is
closed. In this case, it is not possible to
traverse again to state 3 without clos-
ing the loop [2, 3]. Only state 4 and
its corresponding loop can be traversed
(see Fig. 2b, left branch). As result of

Weighted Games for User Journeys 261

the state reduction, all final states are merged into one (removing the copies
originally introduced by the algorithm).

Properties. The unrolling algorithm preserves the decision structure of the initial
weighted game. By construction, acyclic weighted games do not traverse cycles in
the initial game k+1 times. Loops can be traversed partially to ensure that every
final state in the acyclic weighted game is also a final state in the initial weighted
game. Only unreachable states are excluded in the acyclic game. No further
final states or “dead ends” are introduced. The algorithm also preserves the local
decisions between controllable and uncontrollable actions, so the strategies found
on the unrolled weighted game carry over to the initial weighted game.

6 Model Checking User Journeys

In this section we describe how to model check properties for user journeys
and generate strategies to improve user journeys, using acyclic weighted games.
The analysis of a weighted game gives formal insights into the performance of
a service. We introduce generic properties that capture the user’s point of view
on a user journey. The analysis in this paper uses the Stratego extension
for Uppaal [15], which supports non-deterministic priced games and stochastic
model checking. Stratego allows to model check reachability properties within
a finite number of steps, when following a strategy (therefore the need for acyclic
games). Stratego constructs a strategy that satisfies a property P , so that the
controller can not be defeated by the non-deterministic environment. We detail
some strategies and properties of interest for games derived from user journeys.

Guiding Users to a Target State. A company needs a suitable plan of (control-
lable) actions for all possible (uncontrollable) actions of their users when guiding
them through a service. In Uppaal Stratego we define the following strategy:

strategy goPos = control: A<> Journey.finPos.

Model checking this property returns true if and only if there exists a
company-strategy goPos such that the positive target state finPos, indicating
that the journey is successful, is eventually reached in all paths. The correspond-
ing strategy (given as a pseudo-code) can be produced with the Uppaal Tiga

command-line tool verifytga. If the verification fails, the company should be
advised to simplify their service and offer more support to avoid unsuccessful
user journeys.

Analysing User Feedback. We can use the gas function and a liveness property to
analyse the desired accumulated feedback at the end of successful user journeys:

Journey.finPos --> gas > 0 under goPos.

This property checks that in general users have balancing experiences within
their journeys, when the company follows the goPos strategy.

262 P. Kobialka et al.

We can also check the feedback levels along the journey. The following prop-
erty checks that a user never falls below a defined constant feedback C:

control: A[] gas > C under goPos.

Fluctuations in the feedback level of users can be revealed using simulations.
Uppaal uses an implicit model for the passage of time to guarantee termination
of statistical queries and simulations, using an upper time bound T, as specified
in [15]. The following query simulates X runs through the system using the goPos
strategy, where each run has T as a time bound:

simulate X [t<=T]{Journey.finPos, gas} under goPos.

The time bound is set to a value that guarantees all runs to reach a final state.

Analysing the Trajectory of User Journeys. Reaching a final state in a journey
with a positive feedback does not ensure a satisfying journey. The user might
still visit every pitfall along the way. To provide a pleasant journey, a company is
among others interested in minimising the expected number of steps. A strategy
minimising the number of steps is refined as follows:

strategy goPosFast = minE(steps) [t<=T] :
<> Journey.finPos under goPos.

This strategy can additionally be used to examine the expected lower bound of
gas within a journey and the expected maximum value of accumulated gas at
the end of a journey (denoted by finalGas):

E[t<=T; X] (min: gas) under goPosFast,
E[t<=T; X] (max: finalGas) under goPosFast.

These values are computed with a time bound of T and over X runs.

7 Implementing the Pipeline to Analyse User Journeys

This section describes the implementation of the analysis pipeline detailed in
Sects. 3–6. We focus on the implementation decisions made along the pipeline to
facilitate the analysis. The pipeline is implemented in Python. The input to the
pipeline are user logs of a service provided by a company and the output is a
Uppaal model, which can be model checked by either the proposed properties in
Sect. 6 or by other custom made properties using Uppaal Stratego. A source
repository for our work on user journey games is available online [1].

We first mine the DFG from user logs and then remove transitions that
were rarely traversed, to simplify the graph and make it robust. Leemans et al.
describe two ways to build a robust DFG [26]: One can (1) remove either transi-
tions from the graph or (2) remove journeys from the log and rebuild the graph.
We used the first approach with a traversal threshold of three in this paper, since

Weighted Games for User Journeys 263

removing journeys requires larger datasets. This modification ensures that the
model only contains relevant journeys. We then enrich the graph with knowledge
indicating which actions are controllable and uncontrollable. Since companies
want to understand why on-boarded users reach their goal or quit in the middle
of a journey, we decided to add to the model final states representing a positive
endpoint, finPos, and a negative one, finNeg, respectively.

We generate a weighted transition system by computing a weight for each
transition, as discussed in Sect. 4. The factor M scales the weights to integer
sizes, required by Uppaal’s model checker. However, given that we simplify the
DFGs, the log contains journeys that are not re-playable in the graph. Com-
puting the gas of such journeys corresponds to the alignment problem [23,26].
The alignment procedure consists of either allowing additional steps in the log
without counterparts in the model or allowing steps in the model without steps
in the log. Since the simplification of DFGs omits steps in the model, it was here
sufficient to use the information given in the trace, without inferring further
model steps. Optimal alignments can also be used to compute the gas.

As a final step, we unroll the weighted game with cycles, as described in
Sect. 5, to obtain an acyclic weighted game, which is the output of the transfor-
mation and the input to Uppaal for further analysis. Bounded constraints in
the properties are introduced to the unrolled model to ensure termination. The
analysis described in Sect. 6 is implemented and evaluated.

8 Evaluating the Analysis Pipeline

In this section we evaluate the implemented pipeline described in Sect. 7 in an
industrial case study from the company GrepS. The full details of the case study
are given in the accompanying artefact.1

8.1 Context

GrepS is a company that provides analysis and measurement of programming
skills for the Java programming language. The service is research based [6]. Typi-
cal customers are organisations hiring or training software developers. The users
of the service are developers who receive a request from a customer organization
to complete a skill analysis within a specific time frame, typically 1–2 weeks.

The service consists of a sign-up phase followed by a phase where the user
solves programming tasks in an authentic programming environment, which
includes an instructional task and a practice task. Finally, the service analyses
the user’s skills and requests the user to share the skill report with the customer.

The customer pays GrepS for each skill report it receives. In a successful use
of the service, a user successfully completes three phases: (1) sign up, (2) solve all
programming tasks, and (3) review and share the skill report with the customer.
In an unsuccessful use of the service, the user permanently stops using the service
or does not want to share the skill report with GrepS’ customer.
1 An artefact for the implementation and evaluation of the analysis pipeline in this

paper is available: https://doi.org/10.5281/zenodo.6962413.

https://doi.org/10.5281/zenodo.6962413

264 P. Kobialka et al.

True
False
True
28.5
-26.7

60

True
20.9
-20.1

35

Fig. 4. Analysis of the weighed game generated from the user logs of GrepS.

· · ·
5245944 · · · Registered
5780525 · · · Registered
6104714 · · · Activated
6104714 · · · Logged in: Web page...

...
...

Fig. 3. Extract of GrepS’ user logs.

Anonymised user logs were pro-
vided by GrepS in the form of tab-
ular data. The logs contain events
with various fields; only the fields
Timestamp, that gives the order
of events, and Metadata, contain-
ing meta-information on the kind
of event, were used to generate the
weighted game. An extract of the
data is shown in Fig. 3. For our purposes, only the order of the events was
of interest, as given by the Timestamp.

The Validation of the Analysis Pipeline. includes observations of the weighted
game and the model checking of the properties as outlined in Sect. 6, the results
are summarised in Fig. 4. The analysis results were used to provide recommenda-
tions for GrepS to improve their service. These recommendations were validated
by the third author, a long-term employee of the company who has experience
in handling feedback from both users and customers.

8.2 Observations in the Weighted Game

The generated cyclic user journey game, which still contains loops, is shown with
events (or touchpoints) T and weighted transitions in Fig. 5. In the figure, the
transition thickness indicates how often a transition was traversed and dashed
lines represent uncontrollable transitions. Positive (negative) transitions are
green (respectively, red). Transitions traversed three times or less were removed
from the graph.

The derived weights already allow us to make some interesting observa-
tions. The weighted game shows negative weights (about −1 to −2) through
Phase 1 (T0–T5), up until the practice task has been completed (T12) in Phase 2
(T6–T20). After that, the weights are positive (about +1 to +5) and increase
steadily for each new task. Phase 3 (T21–T26) also has positive weights through

Weighted Games for User Journeys 265

the user journey; here, a developer logs back into the web system after having
completed all tasks (T19), waits for the report to be ready (T21), and finally
approves the sharing of the report with GrepS’ customer (T26).

Fig. 5. The weighted game using
GrepS’ event logs.

Phase 1 shows two negative weights for
some users that involve more touchpoints
than what the planned journey entails: (1) T4
captures an error where a virtual computer
does not spin up correctly thereby requiring
the user to contact support; (2) there are
a cyclical negative weights between T6–T8
where a user starts receiving instructions for
Phase 2, but stops and then returns to the
system again at a later time. Phase 3 also
has negative weights due to deviations from
the planned journey, for example when the
user does not login after the report is avail-
able (T24).

The figure also shows a strong negative
weight (of −22) when a user does not submit
the practice task in T11, resulting in a neg-
ative outcome, a transition to finNeg. Seen
from a user perspective, Fig. 6 shows the four
touchpoints where most users stop using the
service: 18% of all users quit after finishing
the practice task (T10), which is twice that
of users who stop after the first (T12, 9%)
and second task (T14, 9%); 12% of the users
do not want to share their report (T25). The
blue line shows how many users remain using
the service in percent after each of the four
touchpoints.

8.3 Model Checking the Case Study

The accumulated feedback along the paths
of the journey supports the observations
on unsuccessful journeys (Sect. 8.2). Figure 7
shows 10 simulations with the goPos and
goPosFast strategies; the lines show the
amount of gas (accumulated feedback) along
the journey. We here used k = 1 for the
unrolling. For all simulations, the gas has an
initial dip with a steep increase afterwards.
The results in Fig. 4 support the observations in Sect. 8.2. Observe that the
goPos strategy cannot prevent the gas from falling below 0; in fact, it can fall as
low as −41 along the journey with an expected minimum of −26.7.

266 P. Kobialka et al.

Fig. 6. Events in unsuccessful journeys. Fig. 7. Uppaal simulations.

Depending on the application context, multiple factors can contribute to
an optimised journey. The strategy goPosFast was introduced in Sect. 6 as a
refinement of goPos. It searches for an optimal strategy towards a successful
final state, while minimising the expected number of steps. The lower part of
Fig. 4 evaluates the queries under goPosFast. The simulations of the refined
strategy, in Fig. 7, shows a smaller dip than with the goPos strategy. It improves
the expected minimum feedback by 6.6 units and reduces the expected length
of the journey by seven steps. The expected maximum final feedback is also
reduced from 60 to 35.

8.4 Recommendations from the Observations and Analysis

From the company’s perspective, several key takeaways have been identified from
the weighted game, the simulations, and the model checking of properties:

– The instructional task and practice tasks during Phase 2 should be integrated
into a single task that is more motivating for the user to complete.

– Users that disconnect from the service for several days after having progressed
to the instructional, practice, or first task should be prompted to continue
by, e.g., automatically sending a motivational email.

– The sign-up process should be simplified if possible.

The weighted game detects challenges early in Phase 2; in fact this is reassuring
for our analysis, as prior work at GrepS has reported that the users struggle more
during the first three tasks [6]. However, a question that arises from our analysis
of the derived user journey game is whether good user support during deviations
from the planned journey may result in better overall satisfaction than if the
planned journey had no deviations. It seems plausible that unplanned journeys
that involve technical problems result in less motivated users who are less likely
to successfully complete the journey. However, interactions with support may
also result in additional service to the user that may result in positive weights
in the overall game.

In summary, the case study demonstrates that the analysis of games derived
from system logs can be used to discover weaknesses in designed user journeys,

Weighted Games for User Journeys 267

and to improve and optimise these journeys. For the concrete case study, the com-
pany needs to implement additional actions in their service, which will improve
user satisfaction and reduce costs in terms of resources.

9 Conclusions and Future Work

This paper proposes a novel analysis pipeline to gain insights into user journeys.
We presented a method for the data-driven generation of formal models to analyse
user journeys, using weighted games. To the best of our knowledge, this is the
first automatic analysis pipeline using formal methods in the context of service
science and user journeys. The paper proposes a method to automatically analyse
derived models and thereby gain insights into the user journeys in a service, where
all decisions and recommendations can be reasoned and explained. The model is
not subject to human inference but is generically built from user logs.

The derived model preserves a user-centric point of view. We mine a directly
follows graph from user logs, and extend this graph to a game by considering the
actions of the user as uncontrollable and those of the service provider as control-
lable. Weights are introduced to the game by a gas function which maps transitions
in the game to numerical values (in the real domain). Cycles in the derived graph
are unrolled to generate an acyclic weighted game. The unrolling algorithm pre-
serves weights, actions and final states from the initial graph. The resulting acyclic
weighted game can be analysed with respect to properties expressed as Uppaal

Stratego queries using the Uppaal model checker.
The proposed analysis pipeline was evaluated on an industrial case study

and revealed challenges to the planned user journey of the service provider. The
analysis of the derived game demonstrated that users’ experiences fall in their
accumulated feedback during the initial phases of the service. Our recommenda-
tions were reviewed and approved by an expert on user feedback in the company.

The work presented here opens many interesting possibilities for further work.
Our work so far has assumed that users and service providers have perfect knowl-
edge of each other’s possible actions, such that the analysis could be done with
the Stratego extension for Uppaal [15]. Generally, knowledge about planned
user journeys varies between services and between users. We plan to explore
imperfect information games, where, e.g., knowledge about user actions is not
completely known. In this setting, the analysis could be based on probabilistic
priced games, using the model checker PRISM-games [13].

Furthermore, the current analysis is restricted to strategies for unrolled mod-
els, which give insights from a k-bounded loop unrolling but does not generalise
for unseen values > k. We would like to generate strategies for the initial model
and not only for the unrolled model. We plan to integrate our work with exist-
ing modelling languages for user journeys in the service science domain, such as
CJML [18,20], to automate the analysis of user journey models that are man-
ually reviewed today, and to provide feedback from our analysis in the visual
language of these models. We are currently investigating the scalability of the
proposed method on system logs for user journeys that are significantly larger
than the case study considered here.

268 P. Kobialka et al.

References

1. User Journey Games Repository. https://github.com/smartjourneymining/User-
Journey-Games

2. van der Aalst, W.M.P.: Process Mining - Data Science in Action. Springer, Heidel-
berg (2016). https://doi.org/10.1007/978-3-662-49851-4

3. Baier, C., Katoen, J.P.: Principles of Model Checking. The MIT Press, Cambridge
(2008)

4. Behrmann, G., Cougnard, A., David, A., Fleury, E., Larsen, K.G., Lime, D.:
UPPAAL-Tiga: time for playing games! In: Damm, W., Hermanns, H. (eds.) CAV
2007. LNCS, vol. 4590, pp. 121–125. Springer, Heidelberg (2007). https://doi.org/
10.1007/978-3-540-73368-3_14

5. Berendes, C.I., Bartelheimer, C., Betzing, J.H., Beverungen, D.: Data-driven cus-
tomer journey mapping in local high streets: A domain-specific modeling language.
In: Proceedings of the International Conference on Information Systems (ICIS
2018). Association for Information Systems (2018)

6. Bergersen, G.R., Sjoberg, D.I., Dyba, T.: Construction and validation of an instru-
ment for measuring programming skill. IEEE Trans. Softw. Eng. 40(12), 1163–1184
(2014)

7. Bernard, G., Andritsos, P.: CJM-ex: goal-oriented exploration of customer journey
maps using event logs and data analytics. In: Proceedings of BPM Demo Track
and BPM Dissertation Award co-located with 15th International Conference on
Business Process Modeling (BPM 2017). CEUR Workshop Proceedings, vol. 1920.
CEUR-WS.org (2017)

8. Bernard, G., Andritsos, P.: A process mining based model for customer journey
mapping. In: Proceedings of Forum and Doctoral Consortium Papers at the 29th
International Conference on Advanced Information Systems Engineering (CAiSE
2017). CEUR Workshop Proceedings, vol. 1848, pp. 49–56. CEUR-WS.org (2017)

9. Bernard, G., Andritsos, P.: CJM-ab: abstracting customer journey maps using
process mining. In: Mendling, J., Mouratidis, H. (eds.) CAiSE 2018. LNBIP, vol.
317, pp. 49–56. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-92901-
9_5

10. Bernard, G., Andritsos, P.: Contextual and behavioral customer journey discovery
using a genetic approach. In: Welzer, T., Eder, J., Podgorelec, V., Kamišalić Latifić,
A. (eds.) ADBIS 2019. LNCS, vol. 11695, pp. 251–266. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-28730-6_16

11. Bitner, M.J., Ostrom, A.L., Morgan, F.N.: Service blueprinting: a practical tech-
nique for service innovation. Calif. Manag. Rev. 50(3), 66–94 (2008)

12. Bouyer, P., Cassez, F., Fleury, E., Larsen, K.G.: Optimal strategies in priced timed
game automata. In: Lodaya, K., Mahajan, M. (eds.) FSTTCS 2004. LNCS, vol.
3328, pp. 148–160. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-
540-30538-5_13

13. Chen, T., Forejt, V., Kwiatkowska, M., Parker, D., Simaitis, A.: PRISM-games: a
model checker for stochastic multi-player games. In: Piterman, N., Smolka, S.A.
(eds.) TACAS 2013. LNCS, vol. 7795, pp. 185–191. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-36742-7_13

https://github.com/smartjourneymining/User-Journey-Games
https://github.com/smartjourneymining/User-Journey-Games
https://doi.org/10.1007/978-3-662-49851-4
https://doi.org/10.1007/978-3-540-73368-3_14
https://doi.org/10.1007/978-3-540-73368-3_14
https://doi.org/10.1007/978-3-319-92901-9_5
https://doi.org/10.1007/978-3-319-92901-9_5
https://doi.org/10.1007/978-3-030-28730-6_16
https://doi.org/10.1007/978-3-540-30538-5_13
https://doi.org/10.1007/978-3-540-30538-5_13
https://doi.org/10.1007/978-3-642-36742-7_13

Weighted Games for User Journeys 269

14. Crosier, A., Handford, A.: Customer journey mapping as an advocacy tool for
disabled people: a case study. Soc. Mark. Q. 18(1), 67–76 (2012)

15. David, A., Jensen, P.G., Larsen, K.G., Mikučionis, M., Taankvist, J.H.: Uppaal

Stratego. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp.
206–211. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46681-
0_16

16. Følstad, A., Kvale, K.: Customer journeys: a systematic literature review. J. Serv.
Theory Practice 28(2), 196–227 (2018)

17. Fornell, C., Mithas, S., Morgeson, F.V., Krishnan, M.: Customer satisfaction and
stock prices: high returns, low risk. J. Mark. 70(1), 3–14 (2006)

18. Halvorsrud, R., Boletsis, C., Garcia-Ceja, E.: Designing a modeling language for
customer journeys: lessons learned from user involvement. In: Proceedings of 24th
International Conference on Model Driven Engineering Languages and Systems
(MODELS 2021), pp. 239–249. IEEE (2021)

19. Halvorsrud, R., Haugstveit, I.M., Pultier, A.: Evaluation of a modelling language
for customer journeys. In: Proceedings Symposium on Visual Languages and
Human-Centric Computing (VL/HCC 2016), pp. 40–48. IEEE Computer Society
(2016)

20. Halvorsrud, R., Kvale, K., Følstad, A.: Improving service quality through customer
journey analysis. J. Serv. Theory Practice 26(6), 840–867 (2016)

21. Halvorsrud, R., Mannhardt, F., Johnsen, E.B., Tapia Tarifa, S.L.: Smart journey
mining for improved service quality. In: Proceedings of the IEEE International
Conference on Services Computing (SCC 2021), pp. 367–369. IEEE (2021)

22. Harbich, M., Bernard, G., Berkes, P., Garbinato, B., Andritsos, P.: Discovering
customer journey maps using a mixture of Markov models. In: Proceedings of 7th
International Symposium on Data-Driven Process Discovery and Analysis (SIM-
PDA 2017). CEUR Workshop Proceedings, vol. 2016, pp. 3–7. CEUR-WS.org
(2017)

23. Jagadeesh Chandra Bose, R.P., van der Aalst, W.: Trace alignment in process min-
ing: opportunities for process diagnostics. In: Hull, R., Mendling, J., Tai, S. (eds.)
BPM 2010. LNCS, vol. 6336, pp. 227–242. Springer, Heidelberg (2010). https://
doi.org/10.1007/978-3-642-15618-2_17

24. Lammel, B., Korkut, S., Hinkelmann, K.: Customer experience modelling and anal-
ysis framework a semantic lifting approach for analyzing customer experience. In:
Proceedings of 6th International Conference on Innovation and Entrepreneurship
(IE 2016). GSTF (2016)

25. Larsen, K.G., Pettersson, P., Yi, W.: UPPAAL in a nutshell. Int. J. Softw. Tools
Technol. Transf. 1(1–2), 134–152 (1997)

26. Leemans, S.J.J., Poppe, E., Wynn, M.T.: Directly follows-based process mining:
exploration & a case study. In: International Conference on Process Mining (ICPM
2019), pp. 25–32. IEEE (2019)

27. Legay, A., Delahaye, B., Bensalem, S.: Statistical model checking: an overview.
In: Barringer, H., et al. (eds.) RV 2010. LNCS, vol. 6418, pp. 122–135. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-16612-9_11

28. Plotkin, G.D.: A structural approach to operational semantics. J. Log. Algebraic
Methods Program. 60–61, 17–139 (2004)

29. Razo-Zapata, I.S., Chew, E.K., Proper, E.: VIVA: a visual language to design value
co-creation. In: 20th Conference on Business Informatics (CBI), pp. 20–29. IEEE
(2018)

30. Rosenbaum, M.S., Otalora, M.L., Ramírez, G.C.: How to create a realistic customer
journey map. Bus. Horizons 60(1), 143–150 (2017)

https://doi.org/10.1007/978-3-662-46681-0_16
https://doi.org/10.1007/978-3-662-46681-0_16
https://doi.org/10.1007/978-3-642-15618-2_17
https://doi.org/10.1007/978-3-642-15618-2_17
https://doi.org/10.1007/978-3-642-16612-9_11

270 P. Kobialka et al.

31. Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach. Pearson,
Hoboken (2020)

32. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27(3),
379–423 (1948)

33. Terragni, A., Hassani, M.: Analyzing customer journey with process mining: from
discovery to recommendations. In: Proceedings of 6th International Conference on
Future Internet of Things and Cloud (FiCloud 2018), pp. 224–229. IEEE, August
2018

34. Terragni, A., Hassani, M.: Optimizing customer journey using process mining and
sequence-aware recommendation. In: Proceedings of 34th Symposium on Applied
Computing (SAC 2019), pp. 57–65. ACM Press, April 2019

35. Thrane, C., Fahrenberg, U., Larsen, K.G.: Quantitative analysis of weighted tran-
sition systems. J. Logic Algebraic Program. 79(7), 689–703 (2010)

36. Tueanrat, Y., Papagiannidis, S., Alamanos, E.: Going on a journey: a review of
the customer journey literature. J. Bus. Res. 125, 336–353 (2021)

37. Vandermerwe, S., Rada, J.: Servitization of business: adding value by adding ser-
vices. Eur. Manag. J. 6(4), 314–324 (1988)

Safety Controller Synthesis for a Mobile
Manufacturing Cobot

Ioannis Stefanakos1(B) , Radu Calinescu1 , James Douthwaite2 ,
Jonathan Aitken2 , and James Law2

1 University of York, York, UK
{ioannis.stefanakos,radu.calinescu}@york.ac.uk

2 University of Sheffield, Sheffield, UK
{j.douthwaite,jonathan.aitken,j.law}@sheffield.ac.uk

Abstract. We present a case study in which probabilistic model check-
ing has been used to synthesise the correct-by-construction safety con-
troller for a mobile collaborative robot (cobot) deployed in a prototype
manufacturing cell alongside a human operator. The case study used
an ICONSYS iAM-R mobile cobot responsible for the execution of a
complex machining process comprising tasks requiring the use of multi-
ple machines at different locations within the cell. Within this process,
the role of the safety controller was to ensure that the cobot carried
out its tasks and movements between task locations without harming
the human operator responsible for its supervision and for performing
additional tasks. The paper describes our generalisable approach to syn-
thesising the mobile cobot safety controller, and its evaluation using a
digital twin of our experimental manufacturing cell at the University of
Sheffield Advanced Manufacturing Research Centre in the UK.

Keywords: Safety controller · Probabilistic model checking ·
Collaborative robot · Discrete-event controller synthesis · Markov chain

1 Introduction

Collaborative robotics “have the potential to revolutionise manufacturing” [4,21]
and are expected to play a key role in Industry 4.0 [8,23,24]. However, the use of
collaborative robots (cobots) in industry comes with significant safety concerns.
Industrial cobots have been designed to directly operate and share workspaces
with human operators, leading to the introduction of additional safety risks and
the need to mitigate these [16,20,22].

Ensuring the safety of human operators (e.g., [3,25]) and improving the risk
assessment during collaborative tasks with cobots (e.g., [18,19]) has been the
primary focus of research in the area of human-robot collaboration in manu-
facturing environments. However, the effectiveness of this collaboration is still
limited, e.g., due to restrictive cobot movement and frequent emergency stops
resulting from safety concerns. The rapid technological advancements in robotics
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
B.-H. Schlingloff and M. Chai (Eds.): SEFM 2022, LNCS 13550, pp. 271–287, 2022.
https://doi.org/10.1007/978-3-031-17108-6_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-17108-6_17&domain=pdf
http://orcid.org/0000-0003-3741-252X
http://orcid.org/0000-0002-2678-9260
http://orcid.org/0000-0002-7149-0372
http://orcid.org/0000-0003-4204-4020
http://orcid.org/0000-0002-4966-3556
https://doi.org/10.1007/978-3-031-17108-6_17

272 I. Stefanakos et al.

Fig. 1. Collaborative robot in action
inside the AMRC gear center

introduce increasingly complex robotic sys-
tems that confine the ability to assess and
mitigate risks. At the same time, to fully
benefit from the use of cobots in indus-
try there must be a trade-off between risk
and performance. Thus, it is necessary to
develop techniques that address these con-
straints and test their application in case
studies with real collaborative robotic pro-
cesses from the manufacturing domain.

In this paper, we present a case study
involving the use of probabilistic modelling
and verification for the synthesis of a safety
controller for a collaborative robot used in
a industrial research lab (Fig. 1). We car-
ried out this case study at the University of
Sheffield Advanced Manufacturing Research
Centre (AMRC)1 in the UK.

The main contributions of our case study
paper are:

– a new method for augmenting the activity diagram describing the ideal man-
ufacturing process carried out in collaboration by the robot and a human
operator with risk mitigation constructs based on the cobot safety operation
modes recommended by the international standard ISO/TS 15066 [13];

– a new technique for mapping the mitigation-extended activity diagram of the
industrial process to a stochastic model encoded in the high-level probabilistic
modelling language of the established model checker PRISM [14];

– the use of probabilistic model checking to synthesise safety controllers that
satisfy risk and cost-related constraints for the industrial process;

– the presentation of the end-to-end process we used to synthesise a safety
controller for a real mobile cobot (i.e., an ICONSYS iAM-R2) deployed in an
experimental manufacturing cell.

By considering a mobile cobot with its additional safety concerns due to the
cobot moving between task locations, and by providing a detailed description of
our safety controller synthesis, these contributions go beyond existing research
papers on the safe use of cobots in manufacturing (e.g., [2,10,26]).

The rest of the paper is organised as follows. Section 2 introduces a manu-
facturing process comprising a number tasks, allocated between a cobot and a

1 https://www.amrc.co.uk/.
2 The iAM-R is a mobile collaborative robot built on the MiR200 mobile robot base,

and carrying a 3 kg, 5 kg, or 10 kg 6-axis Universal Robot collaborative manipulator
(the 10 kg version being the focus this case study). The two are combined with an
Iconsys modular interface, which provides programmable control over the platform.
https://iam-r.iconsys.co.uk/.

https://www.amrc.co.uk/
https://iam-r.iconsys.co.uk/

Safety Controller Synthesis for a Mobile Manufacturing Cobot 273

Fig. 2. Floorplan of the AMRC gear center facility (Color figure online)

human operator. Section 3 presents our employed approach for the synthesis of
safety controllers, ensuring the safety of the human operator in the introduced
manufacturing process. Section 4 describes a two-pronged evaluation methodol-
ogy for the synthesised safety-controllers, and Sect. 5 compares our solution to
existing approaches. Finally, Sect. 6 summarises the benefits and limitations of
our approach, and suggests directions for future work.

2 Manufacturing Process

Figure 2 depicts the shop floor for the AMRC manufacturing process used in
our case study. As shown in this diagram, the shop floor consists of a main area
annotated with information about the location of tasks that need to be carried
out both by the cobot and the operator, and their movement between locations.

The boundary of each location is specified by the red dashed lines, and the
location identifier is given in the form of Ln where n is the location’s number.
The trajectory path of the cobot is depicted by the continuous blue line that also
captures information about the various movements between locations and tasks
that the cobot needs to perform. The movement and task identifiers appear in
the form of movek and taskl where k and l are numbers associated with each of
the cobot’s planned movements and tasks in an increasing order, respectively.
The operator’s trajectory path is depicted by the dashed green line, and brief
descriptions of the operator’s tasks can also be seen on the diagram along this

274 I. Stefanakos et al.

path. Several Computer Numerical Control (CNC) machines3 can be observed
on the shop floor. Two machines are used by the process: an WFL M30G 5-axis
turn-mill with hobbing, shaping, and reciprocating broaching capability; and a
Sharmic VRM225 abrasive tumbler for automated deburring and polishing. The
shaded machines are unused, and represent fixed obstacles the cobot must avoid.

The starting location for both the cobot and the operator is L2. When the
process starts, the cobot travels to location L1 to pick a component (task1), and
then moves to L3 by traveling through L4, as does the operator, to perform task2

and task3. These tasks involve the cobot in loading a billet to the WFL machine,
and retrieving the finished component. At the same time, the human operator is
responsible for any programming required at the WFL machine. When the tasks
are finished, both the cobot and the operator move to location L1 by travelling
through L0 to resume the next steps of the process. At L1 the cobot performs
task4 and task5 under the operator’s supervision. These tasks involve the cobot
depositing the finished component to the tumbler machine for deburring, and
collecting it upon completion. In case something goes wrong, the operator will
intervene to fix the issue. Following the previous tasks’ successful completion,
the cobot will carry out the final task6, returning the polished component before
travelling back to the starting location L0, followed by the operator.

The process carried out by the cobot and a human operator is summarised by
the “ideal” activity diagram from Fig. 34. The diagram is consisted of two main
branches associated with the cobot’s and operator’s movements and tasks on
the left and right side, respectively. The fork notations lead to synchronisation
points (sync) where the cobot and the operator need to confirm the completion
of the previous tasks before they proceed to the next. Some tasks are performed
independently by the cobot and some by the operator. These are standardised
tasks that are always eventually performed even if there is a delay in place. On
the contrary, there is another group of cobot’s tasks that necessitates the opera-
tor’s supervision as failure in such a task requires the operator’s intervention to
fix the issue, allowing the cobot to resume carrying out or re-initiating the task
(taskl retry). The probabilities of success (ptlsuccess) and failure (ptlfailure) of
these tasks and the resulting paths are denoted by decision nodes in the dia-
gram. Finally, after the successful completion of all tasks (i.e., the cobot and the
operator travel to their starting locations) the process can either be repeated or
terminated.

Synthesising the safety controller as described in the remainder of the paper
requires knowledge about the levels of risk and probabilities of hazards occur-
ring during cobot movement and task execution in the proximity of the human
operator. These quantities can be obtained experimentally by using sensors (i.e.
cameras, or wearables) combined with software tools that track human move-
ments. This ensures the capability of the work cell to recognise situations that

3 CNC machining: computerized manufacturing process in which pre-programmed
software and code controls the movement of production equipment.

4 This is an “ideal” activity diagram (and the starting point for our work) because it
does not consider the hazards/risks associated with the process.

Safety Controller Synthesis for a Mobile Manufacturing Cobot 275

terminate

Idle at L2 Idle at L2

move1:
Travels to L1

Travels to L3

task1:
Picks billet

move2:
Travels to L3

task2:
Loads billet
to WFL

task3:
Retrieves
component

Programs
WFL

move3:
Travels to L1

Travels to L1

task4:
Deposits

component
to tumbler

Supervises t4

Operator
intervenes

pt4failure

pt4success

move4:
Travels to L2

Travels to L2

sync1

sync2

task4 retry:
Deposits

component
to tumbler

Operator
activity
branch

start process

Cobot
activity
branch

Fig. 3. Activity diagram of the collaborative process

can lead to undesired risks. The Assuring Autonomy International Programme
(AAIP) project RECOLL5 is an example of recent work that collected a con-
siderable amount of data related to a group of operators. The analysis of the

5 https://www.york.ac.uk/assuring-autonomy/demonstrators/flexible-
manufacturing/.

https://www.york.ac.uk/assuring-autonomy/demonstrators/flexible-manufacturing/
https://www.york.ac.uk/assuring-autonomy/demonstrators/flexible-manufacturing/

276 I. Stefanakos et al.

Process UML
activity diagram

with risks

Requirements
(performance,
safety, etc.)

Floorplan
Graph

Model Synthesis
(e.g., automated
tool/human)

Formalisation
Process

(e.g., automated
tool/human)

Model
(e.g., DTMCs,

MDPs)

Formal
Requirements

Model Checker
(e.g., PRISM,
EvoChecker)

Safety
Controller

stage 1

stage 2
stage 3

Process UML
activity diagram

Fig. 4. High-level diagram of the employed approach.

obtained data helped to determine the probability of a hazard’s occurrence and
its correlation with an incorrect task execution by the operator and/or an incor-
rect task planning by the system itself.

Given these quantities, which for our case study their values are assumed,
we focused on the synthesis of a safety controller considering several mitigation
actions for hazards associated with cobot tasks and movements. Note that not all
tasks and movements that appear in the process have a high-risk factor. In our
case study, only move2, move3, move4 and task4 in combination with operator’s
movements and tasks have been identified as actions that could lead to hazards.

A detailed description of the hazards, mitigation strategies and their associ-
ated risk and probability values can be found in the following section.

3 Safety Controller Synthesis

3.1 Overview of the Approach

As shown in Fig. 4, our three-staged approach carries out the synthesis of safety
controllers, and comprises a set of inputs, processing activities, and outputs used
for the synthesis of safety controllers. During the first stage, an UML activity
diagram and a floorplan graph are used to identify potential hazards in the pro-
cess. This leads to the annotation of the UML diagram with mitigation strategies
for the identified hazards (e.g., slowing down the cobot’s speed to avoid collision
with the human operator). Stage two of the approach synthesises a discrete-time
Markov chain (DTMC) model based on the annotated UML diagram of the pre-
vious step, and formalises the requirements of the process. Finally, stage three
employs probabilistic model checking and applies an exhaustive search over the
discretised parameter space of the model to synthesise combinations of values
for the DTMC parameters that correspond to requirements-compliant safety
controllers for the industrial process.

Safety Controller Synthesis for a Mobile Manufacturing Cobot 277

3.2 Stage 1: Hazard Identification

Fig. 5. Activity diagram of the collab-
orative process with risks

In this first stage of the approach, the
UML activity diagram from Fig. 3 and
the floorplan from Fig. 2 are combined
in order to identify hazards in the pro-
cess. This is currently a manual activity
in which the user needs to assess where
hazards may appear. The output of this
combined analysis is an UML activity dia-
gram annotated with probabilities of haz-
ards occurring when the cobot is perform-
ing a high-risk movement or task (i.e., an
action that may affect the human oper-
ator who is or will be in close proxim-
ity to the cobot), and mitigation actions
which are also selected based on proba-
bilities. An example of such diagram can
be seen in Fig. 5, depicting the last part of
our case study’s process, where task4retry
and move4 are replaced by the dashed
rectangles that contain the hazard miti-
gation actions.

These actions are defined following
the specifications of the standard ISO/TS
15066 [13] which describes four main
techniques for collaborative operation: a)
safety-rated monitored stop, b) hand-
guiding, c) speed and separation monitor-
ing, and d) power and force limiting. All
these apply in our collaborative process,
except the hand-guiding.

In case of cobot’s failure to complete
task4 (Fig. 5), the operator must intervene
to correct the issue, so that the cobot can
resume performing the task. This intro-
duces a high-risk situation as the operator
will be in close proximity to the cobot, and
any unpredicted movement could poten-
tially result in injury. To prevent this from happening, a series of hazard iden-
tification and mitigation steps are introduced under task4hazard. Specifically,
there is a pt4 probability that a hazard will not occur, leading to the cobot’s
normal operation and a 1 − pt4 probability that a hazard will occur, leading to
the following mitigation actions. With probability of xt4 1 the cobot will pause
its operation, with xt4 2 will decrease the applied pressure, and with xt4 3 will
resume its normal operation as the risk has not exceeded the given threshold.

278 I. Stefanakos et al.

Following the successful completion of task4, the cobot will try to move to its
initial location (move4) to terminate or repeat the process, as does the operator.
A potential delay by the operator could cause a collision accident, which can
be avoided by the correct prevention mechanisms defined under move4hazard.
These indicate that with a probability of pm4 a hazard will not occur, leading to
the cobot’s planned movement towards location L2, and with a 1 − pm4 proba-
bility that a hazard will occur, triggering the following mitigation actions. With
probability of xm4 1 the cobot will pause its movement, with xm4 2 will slow
down, and with xm4 3 will find the next available route towards L2.

3.3 Stage 2: Stochastic Modelling

During the second stage of the employed approach, we built a DTMC derived
from the annotated UML diagram of Fig. 5. We specified this DTMC in the high-
level modelling language of the probabilistic model checker PRISM [14], which
represents a given system as the parallel composition of a set of modules. The
state of a module is defined by a set of finite-range local variables, and its state
transitions are encoded by probabilistic guarded commands that modify these
variables, and have the general form:

[] g → λ1 : u1 + λ2 : u2 + . . . + λn : un; (1)

where guard g is a boolean expression over all model variables. If the guard
evaluates to true, the arithmetic expression λi, 1 ≤ i ≤ n gives the probability
with which the ui change of the module variables occurs. Commands can be
(optionally) labelled with actions that are placed between the square brackets,
e.g., [sync], causing all modules comprising commands with the same action
to synchronise (i.e., perform one of these commands simultaneously). For more
details regarding the PRISM modelling language, we refer the reader to the
PRISM manual, available at http://www.prismmodelchecker.org/manual.

Part of the synthesised DTMC, modelling the collaborative process, can be
seen in Fig. 6. Line 4 declares the probability of a hazard occurring during move2,
and lines 5–7 the probabilities of each of the mitigation actions. The process
module (lines 11–23) contains the main functionality of the model where each
step of the process is defined. The reward structures, capturing information
about states in the model (e.g., a risk of 0 is associated with the mitigation
action of state c = 4), are located between lines 27–42. The complete model of
our case study’s process can be found in our GitHub repository6.

The process requirements are formally expressed in probabilistic computation
tree logic (PCTL) [12] extended with rewards [1]. The syntax of PCTL is as
follows:

Φ ::= true | a | ¬ Φ | Φ ∧ Φ | P��p[φ]

φ ::= X Φ | Φ U≤k Φ
(2)

6 https://github.com/CSI-Cobot/CSI-artefacts.

http://www.prismmodelchecker.org/manual
https://github.com/CSI-Cobot/CSI-artefacts

Safety Controller Synthesis for a Mobile Manufacturing Cobot 279

1 dtmc
2

3 const double p m2 ; // hazard probability during move_2
4 const double x m2 1 ; // probability of stopping
5 const double x m2 2 ; // probability of reducing speed
6 const double x m2 3 ; // probability of following an alternative route
7 ...
8 module process
9 c : [0..30] init 0;

10

11 [] c=0 -> 1:(c’=1); // cobot idle at L0
12 [] c=1 -> 1:(c’=2); // cobot performs task_1 at L1
13 [] c=2 -> p m2 :(c’=3) + (1- p m2):(c’=7); // hazard prob. for move_2
14 [] c=3 -> x m2 1 :(c’=4) + x m2 2 :(c’=5) + x m2 3 :(c’=6); // mitigation
15 [] c=4 -> 1:(c’=7); // cobot stops
16 ...
17 [] c=28 -> 1:(c’=30); // cobot slows speed
18 [] c=29 -> 1:(c’=30); // cobot identifies alternative route
19 [] c=30 -> 1:(c’=0); // cobot travels to L2
20 endmodule
21

22 rewards "delay"
23 c=4 : 20; // base - stop
24 c=5 : 13; // base - reduce speed
25 c=6 : 15; // base - detour
26 ...
27 c=22 : 4; // arm - low pressure
28 endrewards
29

30 rewards "risk"
31 c=4 : 0; // base - stop
32 c=5 : 2; // base - reduce speed
33 c=6 : 1; // base - detour
34 ...
35 c=22 : 1; // arm - low pressure
36 endrewards

Fig. 6. DTMC model representation of the process with hazard mitigation actions.

and cost/reward state formulae are defined by the grammar:

R��r[C≤k] | R��r[I=k] | R��r[F Φ] (3)

where k ∈ N ∪ {∞}, p ∈ [0, 1] and r ∈ R≥0 are probability/reward bounds
(that can be replaced with ‘=?’ if the computation of the actual probability
or reward is required), and Φ and φ are state and path formulae, respectively.
The definition of PCTL semantics is beyond the scope of this paper; details are
available from [5,15].

We use the above PCTL syntax to specify the properties of the DTMC model.
In particular, we extract information about the delay introduced in the process
by the mitigation actions, and the risk of a hazard occurring:

Rdelay
=? [F “done”]

Rrisk
=? [F “done”]

(4)

where “done” is a label referring to the end of the process.

280 I. Stefanakos et al.

3.4 Stage 3: Synthesis

Fig. 7. Pareto-optimal controller configurations

In the third and final stage, an
exhaustive search is performed
over the discretised parameter
space of the output DTMC
model, combined with the set
of formal requirements to obtain
the Pareto-optimal controller con-
figurations. The parameters of
the DTMC model are consisted
by a) the probabilities obtained
from the manufacturing process
that cannot be modified (e.g.,
the probability that a hazard will
occur during the move3 action
of the cobot), and b) the proba-
bilities associated with mitigation
actions for which suitable values
must be obtained in order to have
an optimal trade-off between risk
and performance (e.g., the probability xt4 1 that a stop will be triggered to avoid
a potential hazard during task4).

Regarding the second group, we go through all the combinations of con-
troller parameters {x mi 1, x mi 2, x mi 3}, similarly for {x ti 1, x ti 2, x ti 3},
between {0.0, 0.0, 1.0} and {1.0, 0.0, 0.0} with step 0.2, where i refers to the
number of movement or task associated with the mitigation action. This results
to a total of 456,976 combinations of parameter values, i.e. model instantiations,
whose analysis using the model checker PRISM required just under one hour on
a 2 GHz Quad-Core Intel Core i5 MacBook Pro computer with 32 GB of memory,
and which are used in identifying optimal trade-offs between the requirements
of the process. Section 4.1 provides an example on how these optimal trade-offs
can be obtained.

4 Evaluation

To evaluate the safety-controller synthesis approach used in our case study, we
employed a two-pronged evaluation methodology. First, we used our approach
to synthesise a set of safety controller instantiations that meet strict safety con-
straints and achieve optimal trade-offs between the efficiency of the manufactur-
ing process and the level of residual risk. Second, we developed a digital twin
of the manufacturing process and used it to trial one of these safety controller
instantiations. These results from these stages of our two-pronged evaluation are
described in Sects. 4.1 and 4.2.

Safety Controller Synthesis for a Mobile Manufacturing Cobot 281

Fig. 8. The process DT constructed as a test-bed within the DTF. The DT presents a
faithful reconstruction of the real-world process used for the evaluation of the proposed
safety-controller.

4.1 Generation of Safety Controller Instantiations

Figure 7 depicts the Pareto-front of optimal controller configurations. Using the
data collected during stage 3 of the approach (Sect. 3.4) we are able to identify
which of these model instantiations provide the most optimal trade-offs between
risk and performance. This information is of great use in scenarios where it
is necessary to improve the overall performance of the process, while ensuring
that risks are below the specified threshold levels. We obtained these results
by analysing the output data from PRISM’s experiments using python scripts.
This process can also be automated by using tools such as EvoChecker [9] that
provides more efficient search algorithms.

4.2 Evaluation on a Digital Twin

Digital Twin Description. The digital twin used to evaluate the safety con-
troller was developed within the Digital Twin Framework (DTF), in associated
works [6], as part of the Confident Safety Integration for Collaborative Robotics
(CSI:Cobot) project. The DTF is versatile sandbox for the development and
testing of safety-critical systems7.

The DTF provides the kinematic, communication and data infrastructure
necessary to deploy digital twins on real world systems. Using its integrated APIs
for MATLAB R© and the Robotic Operating System (ROS), commands issued
inside the DTF may be exchanged with the physical system and demonstrated
as a real-time response.
7 For further information on the CSI:project please visit the project’s website at:

https://www.sheffield.ac.uk/sheffieldrobotics/about/csi-cobots/csi-project, and our
associated repository: https://github.com/CSI-Cobot/CSI-artefacts.

https://www.sheffield.ac.uk/sheffieldrobotics/about/csi-cobots/csi-project
https://github.com/CSI-Cobot/CSI-artefacts

282 I. Stefanakos et al.

Process Twin. In this study, the DTF was used create a faithful recreation of
the process as (seen in Fig. 8), from the real-world process description as shown in
Fig. 9. In associated works [6,10], we describe the inclusion of entity-modules and
behaviour-modules as a system of actors and abstract-actors respectively. The
distinction being those that are embodied in the real-world and those that are not.
We define A to be this set of actors, but also as the set of communication nodes.
Actor n ∈ A is then able to communicate with other actors through a static
interface In = (In, On). Here In = [i1n, i2n, ..., ikn] and On = [o1

n, o2
n, ..., oh

n] define
n’s set of input (subscription) and output (publication) channels respectively.
Each actor n is modelled a distinct state machine that listens on channels In

and responds on channels On where In, On ⊆ X where X is the set of all available
channels.

The process controller is modelled as abstract-actor npc ∈ A, implementing
the interface Inpc

= (Inpc
, Onpc

). npc communicates with the other digital-twin
systems via this interface in order to interact with the iAMR mobile robot,
the human operator and other sensors in the environment. The nominal process
procedure (seen in Fig. 3) is defined by the state machine of npc that responds
to process updates from process members ni∈1:k ⊂ A received on channels Inpc

with responses commands Onpc
.

Safety Controller. Similar to the process controller, the safety controller nsc

is introduced as a behaviour module and abstract-actor. Here nsc ∈ A, and
Isc = (Insc

, Onsc
) defines its interface. nsc may communicate with both the

actor and process controller such that ni∈1:k ∈ Asc ⊂ A and npc ∈ Asc. To allow
nsc to intervene with the nominal process managed by npc, nsc is introduced as
an independent state-machine able to observe channels Insc

and enact changes
to the process such that Inpc

⊆ Onsc
.

For example, upon reception of sensor data received on Insc
indicating that

the iAMR and operator are in the same process region. nsc issues a request to npc

to request a change in safety mode for the robot in that region. This command
is received on Inpc

and issued on Onpc
, as a request to process member nk=2, for

a new safety mode-reduced speed. nk=2 defines the iAMR mobile robot, which
in turn enacts a response to this request by changing its active safety mode to
reduced speed.

Evidencing Safety. Whilst active, the DTF provides connection to the robots
via other APIs (such as ROS) and data storage (via SQL) amongst other funda-
mental DT services necessary for this study. Information broadcast on channels
X = (In=1:k, On=1:k) are timestamped and recorded in a process database. This
allows key process and safety signals to be recovered and analysed alongside
additional ground-truth data (i.e. absolute positions and decision historicity).

In the following example, the machine-tending DT is used to demonstrate the
application of the safety controller to a realistic process interface. The process
is implemented as anabstract-actor and state-machine whose process is defined
by the work-activities (shown in Fig. 3). Work-requests are issued by the process

Safety Controller Synthesis for a Mobile Manufacturing Cobot 283

Fig. 9. Transferal of the floor plan from Fig. 2 to the digital environment.

controller, to human and robot actors (digital twins) as each step WState is
completed. The example centers around the collaborative preparation of a com-
ponent, which must be moved between machines (CNC & WFL) by the robot
before being deposited in a tumbler for deburring. An overview of the complete
process can be seen in Fig. 9.

The safety controller is implemented similarly, and observes the current pro-
cess step which is reported as the Action of the human and robot by the process
controller. The safety controller however, utilises a camera sensor module in
order to observe both the region (as L0, l1,.. L4 etc.) of the robot and human
operator and their approximate separation distance in order to evaluate a miti-
gation action proportional to the hazard (see Sect. 3.2). The state of the process
controller, safety controller and all communications are logged upon execution
of the example scenario and recovered from the process database post-execution.

Table 1 presents the scenario event-sequence reported by the DTF. The pro-
cess is shown to begin with both the human operator and robot in their start
positions (see Fig. 9). The human operator initially proceeds to work at the WFL
before completing a sequence of work actions. At 19.45.41 s the operator’s work
is completed and proceeds to the collaborative work cell AtTumbler. Whilst this
occurs, the robot moves from its AtStart location to collect a work component
from the AtCnC location and continues to the AtWFL where the component
is processed. The component is then collected and taken to the collaborative
AtTumbler location. The robot arrives first and deposits the component in the
tumbler. The human operator later joins at 19.46.00 s, interrupting the cobot by
violating the safety controller’s close condition, which should cause a safety-stop.

At 19.46.14, before the robot begins to work, the safety controller issues a
SafetyReq(Stopped). A response from the robot SafetyRes is immediately issued

284 I. Stefanakos et al.

Table 1. The process event time-series during the example case-study.

Time Type
Robot
Location

Robot
Action

Robot
WState

Human
Location

Human
Action

Human
WState

19:41:51 Process Start Idle Incomplete Start Moving Incomplete

19:42:00 Process AtCNC Done Incomplete Start Moving Incomplete

19:42:08 Process AtCNC Done Incomplete AtWFL Done Incomplete

19:42:15 Process AtCNC Idle Incomplete AtWFL Done Incomplete

19:42:23 Process AtCNC Idle Incomplete AtWFL Idle Incomplete

19:42:23 Process AtCNC Idle Incomplete AtWFL Working Incomplete
...

...
...

...
...

...
...

...

19:44:46 Process AtWFL Moving Complete AtWFL Done Incomplete

19:45:01 Process AtWFL Moving Complete AtWFL Idle Incomplete

19:45:01 Process AtWFL Moving Complete AtWFL Working Incomplete

19:45:15 Process AtTumbler Done Incomplete AtWFL Working Incomplete

19:45:30 Process AtTumbler Idle Incomplete AtWFL Working Incomplete

19:45:41 Process AtTumbler Idle Incomplete AtWFL Done Incomplete

19:45:41 Process AtTumbler Idle Incomplete AtWFL Done Complete

19:46:00 Process AtTumbler Idle Incomplete AtTumbler Done Incomplete

19:46:14 SafetyReq Stopped

19:46:14 SafetyRes Stopped

19:46:14 Process AtTumbler Idle Complete AtTumbler Done Incomplete

19:46:15 Process AtTumbler Stopped Complete AtTumbler Idle Incomplete

19:46:15 Process AtTumbler Stopped Complete AtTumbler Working Incomplete

19:46:30 Process AtTumbler Stopped Complete AtTumbler Done Incomplete

19:46:30 Process AtTumbler Stopped Complete AtTumbler Done Complete

19:46:37 SafetyReq Nominal

19:46:37 SafetyRes Nominal

19:46:47 Process AtTumbler Moving Complete Start Done Incomplete

19:46:56 Process Start Done Incomplete Start Done Incomplete

and at 19.46.15 s the robot enacts Action(Stopped). The human operator contin-
ues to inspect the component in close proximity of the robot, until at 19.46.30
s, the his work (WState) is completed and he moves away from AtTumbler.
Once the operator complies with the close condition again, the safety controller
successfully issues a new SafetyReq(Nominal) to resume normal operation. The
robot and operator then proceed to return to the start locations and the exam-
ple process is completed. A complete video of the sequence can be found on the
CSI:Cobot repository8.

8 Additional study data and materials can be found on the CSI:Cobot repository:
https://github.com/CSI-Cobot/CSI-artefacts.

https://github.com/CSI-Cobot/CSI-artefacts

Safety Controller Synthesis for a Mobile Manufacturing Cobot 285

5 Related Work

Mobile collaborative robots have only emerged as a viable technology in recent
years (e.g., [7,17]) and, to the best of our knowledge, no formal approaches have
been used so far for the synthesis of their safety controllers.

For static cobots, an approach for safety-controller synthesis has been devel-
oped in the earlier stages of our CSI:Cobot project. Like the solution presented
in our paper, this approach [10,11] uses stochastic models to capture the interac-
tions between the cobot and the human operator, and probabilistic model check-
ing to analyse these models. However, unlike the approach we employed for the
case study presented in this paper, the previous CSI:Cobot solution from [10,11]
does not consider the floorplan of the shop floor, nor the risks associated with
the cobot travelling between different shop floor locations and the mitigations
for these risks. Furthermore, the techniques used to augment the activity dia-
gram of the collaborative manufacturing process risks and mitigations, and to
derive the process DTMC from the augmented activity diagram represent new
contributions of this paper, as does the ICONSYS iAM-R case study.

These differences also distinguish our work from other approaches to using
formal verification for the safety analysis of cobot-human interaction, e.g., [2,25].

6 Conclusion

We presented a case study in which probabilistic model checking was used to syn-
thesise Pareto-optimal safety controller configurations for a mobile cobot from
an experimental manufacturing cell. In future work, we intend to deploy the
safety controller tested in the digital twin on the actual iAM-R mobile cobot for
validation in our experimental manufacturing cell.

We envisage that the multi-stage approach employed for this purpose can
be generalised to a broad range of mobile-cobot scenarios, and that many of its
activities can be automated. Both of these and assessing the scalability of the
approach represent additional directions of future work for our project. Finally,
when automating the synthesis of the Pareto-optimal controller configurations,
we plan to replace the exhaustive search through the discretised controller con-
figuration space with the much more efficient metaheuristic search provided by
the EvoChecker probabilistic model synthesis tool [9].

Acknowledgments. This research has received funding from the Assuring Auton-
omy International Programme (AAIP grant CSI: Cobot), a partnership between
Lloyd’s Register Foundation and the University of York, and from the UKRI project
EP/V026747/1 “Trustworthy Autonomous Systems Node in Resilience”. We are grate-
ful to our industrial collaborator for the gained insights into manufacturing cobots and
to the AMRC for allowing us to use the iAM-R mobile collaborative robot, to imple-
ment the physical robotic process and evaluate the synthesised safety controller into
their facilities.

286 I. Stefanakos et al.

References

1. Andova, S., Hermanns, H., Katoen, J.-P.: Discrete-time rewards model-checked.
In: Larsen, K.G., Niebert, P. (eds.) FORMATS 2003. LNCS, vol. 2791, pp. 88–104.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-40903-8 8

2. Askarpour, M., Mandrioli, D., Rossi, M., Vicentini, F.: SAFER-HRC: safety anal-
ysis through formal verification in human-robot collaboration. In: Skavhaug, A.,
Guiochet, J., Bitsch, F. (eds.) SAFECOMP 2016. LNCS, vol. 9922, pp. 283–295.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45477-1 22

3. Bi, Z., Luo, C., Miao, Z., Zhang, B., Zhang, W., Wang, L.: Safety assurance mech-
anisms of collaborative robotic systems in manufacturing. Robot. Comput.-Integr.
Manufact. 67, 102022 (2021). https://doi.org/10.1016/j.rcim.2020.102022

4. Cherubini, A., Passama, R., Crosnier, A., Lasnier, A., Fraisse, P.: Collaborative
manufacturing with physical human-robot interaction. Robot. Comput.-Integr.
Manufact. 40, 1–13 (2016). https://doi.org/10.1016/j.rcim.2015.12.007

5. Ciesinski, F., Größer, M.: On Probabilistic Computation Tree Logic, pp. 147–188.
Springer, Berlin Heidelberg (2004). https://doi.org/10.1007/978-3-540-24611-4 5

6. Douthwaite, J., et al.: A modular digital twinning framework for safety assurance of
collaborative robotics. Front. Robot. AI, 8 (2021). https://doi.org/10.3389/frobt.
2021.758099

7. D’Souza, F., Costa, J., Pires, J.N.: Development of a solution for adding a collab-
orative robot to an industrial AGV. Ind. Robot 47(5), 723–735 (2020)

8. El Zaatari, S., Marei, M., Li, W., Usman, Z.: Cobot programming for collaborative
industrial tasks: an overview. Robot. Auton. Syst. 116, 162–180 (2019). https://
doi.org/10.1016/j.robot.2019.03.003

9. Gerasimou, S., Tamburrelli, G., Calinescu, R.: Search-based synthesis of proba-
bilistic models for quality-of-service software engineering. In: 30th IEEE/ACM
International Conference on Automated Software Engineering, pp. 319–330 (2015).
https://doi.org/10.1109/ASE.2015.22

10. Gleirscher, M., et al.: Verified synthesis of optimal safety controllers for human-
robot collaboration. Sci. Comput. Program. 218, 102809 (2022). https://doi.org/
10.1016/j.scico.2022.102809

11. Gleirscher, M., Calinescu, R.: Safety controller synthesis for collaborative robots.
In: 25th International Conference on Engineering of Complex Computer Systems
(ICECCS), pp. 83–92 (2020)

12. Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal
Aspects Comput. 6(5), 512–535 (1994). https://doi.org/10.1007/BF01211866

13. ISO/TS 15066: Robots and robotic devices - Collaborative robots. Standard,
Robotic Industries Association (RIA) (2016). www.iso.org/standard/62996.html

14. Kwiatkowska, M., Norman, G., Parker, D.: Prism 4.0: verification of probabilistic
real-time systems. In: Computer Aided Verification, pp. 585–591. Springer, Berlin
Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-1 47

15. Kwiatkowska, M.Z., Norman, G., Parker, D.: Stochastic model checking. In: Formal
Methods for Performance Evaluation, 7th International School on Formal Methods
for the Design of Computer, Communication, and Software Systems. Lecture Notes
in Computer Science, vol. 4486, pp. 220–270. Springer (2007). https://doi.org/10.
1007/978-3-540-72522-0 6

16. Lee, K., Shin, J., Lim, J.Y.: Critical hazard factors in the risk assessments of
industrial robots: causal analysis and case studies. Saf. Health Work 12(4), 496–
504 (2021). https://doi.org/10.1016/j.shaw.2021.07.010

https://doi.org/10.1007/978-3-540-40903-8_8
https://doi.org/10.1007/978-3-319-45477-1_22
https://doi.org/10.1016/j.rcim.2020.102022
https://doi.org/10.1016/j.rcim.2015.12.007
https://doi.org/10.1007/978-3-540-24611-4_5
https://doi.org/10.3389/frobt.2021.758099
https://doi.org/10.3389/frobt.2021.758099
https://doi.org/10.1016/j.robot.2019.03.003
https://doi.org/10.1016/j.robot.2019.03.003
https://doi.org/10.1109/ASE.2015.22
https://doi.org/10.1016/j.scico.2022.102809
https://doi.org/10.1016/j.scico.2022.102809
https://doi.org/10.1007/BF01211866
www.iso.org/standard/62996.html
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-540-72522-0_6
https://doi.org/10.1007/978-3-540-72522-0_6
https://doi.org/10.1016/j.shaw.2021.07.010

Safety Controller Synthesis for a Mobile Manufacturing Cobot 287

17. Levratti, A., Riggio, G., Fantuzzi, C., De Vuono, A., Secchi, C.: TIREBOT: a
collaborative robot for the tire workshop. Robot. Comput.-Integr. Manufact. 57,
129–137 (2019)

18. Liu, Z., et al.: Dynamic risk assessment and active response strategy for industrial
human-robot collaboration. Comput. Ind. Eng. 141, 106302 (2020). https://doi.
org/10.1016/j.cie.2020.106302

19. Marvel, J.A., Falco, J., Marstio, I.: Characterizing task-based human-robot col-
laboration safety in manufacturing. IEEE Trans. Syst. Man Cybern. Syst. 45(2),
260–275 (2015). https://doi.org/10.1109/TSMC.2014.2337275

20. Matthias, B., Kock, S., Jerregard, H., Kallman, M., Lundberg, I., Mellander, R.:
Safety of collaborative industrial robots: certification possibilities for a collabora-
tive assembly robot concept. In: 2011 IEEE International Symposium on Assembly
and Manufacturing (ISAM), pp. 1–6 (2011). https://doi.org/10.1109/ISAM.2011.
5942307

21. Maurice, P., Padois, V., Measson, Y., Bidaud, P.: Human-oriented design of col-
laborative robots. Int. J. Ind. Ergon. 57, 88–102 (2017). https://doi.org/10.1016/
j.ergon.2016.11.011

22. Murashov, V., Hearl, F., Howard, J.: Working safely with robot workers: rec-
ommendations for the new workplace. J. Occup. Environ. Hyg. 13(3), D61–D71
(2016). https://doi.org/10.1080/15459624.2015.1116700

23. Rüßmann, M., et al.: Industry 4.0: the future of productivity and growth in man-
ufacturing industries. Boston Consult. Group, 9(1), 54–89 (2015)

24. Sherwani, F., Asad, M.M., Ibrahim, B.: Collaborative robots and industrial rev-
olution 4.0 (IR 4.0). In: 2020 International Conference on Emerging Trends in
Smart Technologies. pp. 1–5 (2020). https://doi.org/10.1109/ICETST49965.2020.
9080724

25. Vicentini, F., Askarpour, M., Rossi, M.G., Mandrioli, D.: Safety assessment of
collaborative robotics through automated formal verification. IEEE Trans. Robot.
36(1), 42–61 (2020). https://doi.org/10.1109/TRO.2019.2937471

26. Zanchettin, A.M., Rocco, P.: Path-consistent safety in mixed human-robot collab-
orative manufacturing environments. In: IEEE/RSJ International Conference on
Intelligent Robots and Systems, pp. 1131–1136 (2013). https://doi.org/10.1109/
IROS.2013.6696492

https://doi.org/10.1016/j.cie.2020.106302
https://doi.org/10.1016/j.cie.2020.106302
https://doi.org/10.1109/TSMC.2014.2337275
https://doi.org/10.1109/ISAM.2011.5942307
https://doi.org/10.1109/ISAM.2011.5942307
https://doi.org/10.1016/j.ergon.2016.11.011
https://doi.org/10.1016/j.ergon.2016.11.011
https://doi.org/10.1080/15459624.2015.1116700
https://doi.org/10.1109/ICETST49965.2020.9080724
https://doi.org/10.1109/ICETST49965.2020.9080724
https://doi.org/10.1109/TRO.2019.2937471
https://doi.org/10.1109/IROS.2013.6696492
https://doi.org/10.1109/IROS.2013.6696492

Timely Specification Repair for Alloy 6

Jorge Cerqueira1,2 , Alcino Cunha1,2 , and Nuno Macedo1,3(B)

1 INESC TEC, Porto, Portugal
2 University of Minho, Braga, Portugal

3 Faculty of Engineering of the University of Porto, Porto, Portugal
nmacedo@fe.up.pt

Abstract. This paper proposes the first mutation-based technique for
the repair of Alloy 6 first-order temporal logic specifications. This tech-
nique was developed with the educational context in mind, in particular,
to repair submissions for specification challenges, as allowed, for example,
in the Alloy4Fun web-platform. Given an oracle and an incorrect submis-
sion, the proposed technique searches for syntactic mutations that lead to
a correct specification, using previous counterexamples to quickly prune
the search space, thus enabling timely feedback to students. Evaluation
shows that, not only is the technique feasible for repairing temporal logic
specifications, but also outperforms existing techniques for non-temporal
Alloy specifications in the context of educational challenges.

Keywords: Specification repair · First-order temporal logic · Formal
methods education · Alloy

1 Introduction

Besides their role in traditional formal methods, namely model checking, formal
specifications are becoming central in many software engineering techniques,
such as property-based testing, automated program synthesis or runtime moni-
toring. Therefore, software engineers with little expertise on formal methods are
increasingly being required to write and validate formal specifications. Unfortu-
nately, students and professionals still struggle with this task, and more advanced
tool support is needed if formal specifications are to be embraced by a wider
community [10].

Alloy [9] is a formal specification language supported by automated model
finding and model checking, being the quintessential example of a lightweight
formal method. Its most recent version 6 [11] is based on a first-order relational
temporal logic, enabling both structural and behavioural modeling and analysis.
For these reasons, Alloy is often used in formal methods introductory courses1.

1 https://alloytools.org/citations/courses.html.

This work is financed by National Funds through the Portuguese funding agency, FCT
– Fundação para a Ciência e a Tecnologia within project EXPL/CCI-COM/1637/2021.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
B.-H. Schlingloff and M. Chai (Eds.): SEFM 2022, LNCS 13550, pp. 288–303, 2022.
https://doi.org/10.1007/978-3-031-17108-6_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-17108-6_18&domain=pdf
http://orcid.org/0000-0002-7570-872X
http://orcid.org/0000-0002-2714-8027
http://orcid.org/0000-0002-4817-948X
https://alloytools.org/citations/courses.html
https://doi.org/10.1007/978-3-031-17108-6_18

Timely Specification Repair for Alloy 6 289

Alloy4Fun [12]2 is a web-platform for Alloy that supports automated assess-
ment exercises through the creation of specification challenges: instructors write
a secret predicate that acts as an oracle, and the students have to write an
equivalent predicate given an informal description. If the submitted predicate is
incorrect, the student can navigate through counterexamples that witness the
inconsistency with the oracle. Unfortunately, in our experience, novice practi-
tioners struggle with interpreting such counterexamples and tracing the problem
back to the specification.

The automatic generation of hints to guide students in fixing their code has
long been employed in educational coding platforms. One approach to the gen-
eration of such hints is to apply automated repair techniques and then derive a
hint back from the found sequence of repairs [13]. Although automated repair
for specifications is still largely unexplored, recently, a few approaches have been
proposed for the previous (non-temporal) version of Alloy, namely ARepair [18]
and BeAFix [2]. However, the educational scenario has some characteristics that
prevent their adoption for hint generation. The main issue is that their per-
formance (likewise most techniques for code [17]) is still not good enough to
support hint generation. Timely feedback is particularly important in this con-
text, to avoid the student hitting bottlenecks and frustration when interacting
with the platform. Additionally, ARepair uses test cases as oracles, and it is
difficult to manually write a set of test cases that brings its accuracy up to an
acceptable level. BeAFix is better suited to repair specification challenges, since
it uses the Alloy checks as oracles, but prunes the search space by exploiting
multiple suspicious locations and multiple failing oracles, techniques that are
useless in this context, where we just want to fix one (usually short) predicate
written by the student that failed one specific check against the oracle.

This paper presents a new mutation-based technique for the repair of Alloy 6
specifications that can be used in the educational context for timely hint genera-
tion. It is the first repair technique to consider the full logic of Alloy 6, including
both its first-order and temporal constructs. Also, it implements a pruning tech-
nique based on evaluating previously seen counterexamples, that can be used to
optimize repairs in models with a single faulty location, as is the case of specifica-
tion challenges. Our evaluation shows that the proposed technique considerably
outperforms existing automated repair techniques for Alloy (when considering
only the first-order subset of the language they support).

The rest of this paper is organized as follows. Section 2 presents existing
work on automated specification repair. Section 3 presents the novel specification
repair technique and associated pruning strategy, whose performance is evaluated
against the existing approaches in Sect. 4. Lastly, Sect. 5 draws conclusions and
points directions for future work.

2 Related Work

There is extensive work on automated program repair [6,7], with techniques
being broadly classified as search-based (or generate-and-validate) – which search
2 http://alloy4fun.inesctec.pt/.

http://alloy4fun.inesctec.pt/

290 J. Cerqueira et al.

for possible solutions and test them against the oracle – or semantics-driven (or
constraint-based) – where the needed repair is encoded as a constraint from
which a correct fix is generated. Most approaches use test cases as oracles,
although a few rely on reference implementations (e.g., in the educational con-
text) or program specifications (e.g., in the context of design by contract). In
contrast, there is very little work on automated specification repair. In [4] a
search-based technique is proposed to fix OCL integrity constraints against exist-
ing model instances. SpeciFix [14] is a search-based technique for fixing pre- and
post-conditions of Eiffel routines against a set of test cases. Techniques [3,15] for
semantics-driven repair in the B-method focus on repairing the state machine
rather than the broken specifications. Two techniques – ARepair and BeAFix –
have been proposed for automatic repair of Alloy specifications, which we further
detail next.

ARepair [18,19] uses test cases as oracle. The downsides of this approach
are twofold: it is prone to overfitting, where an accepted fix passes all the tests
but not the expected properties; and the user is required write (high quality)
unit tests, something that is not common practice for Alloy or specifications
in general. ARepair starts by feeding the model and tests into AlloyFL [20], a
mutation-based fault localization framework for Alloy, which returns a ranked
list of suspicious Abstract Syntax Tree (AST) nodes. Then, it checks if the
mutation provided by AlloyFL on the most suspicious node retains currently
passing tests and passes some previously failing tests. Otherwise, it creates holes
and tries to synthesize code for these holes that make some of the failing tests
pass. These tests are performed with Alloy’s evaluator, avoiding calls to the
solver. This process is repeated until all tests pass. The synthesizer returns com-
plex non-equivalent expressions for a specified type and bounds. Since a huge
amount of expressions is synthesized, ARepair presents two search strategies,
one which chooses a maximum amount of tries per hole and tries to prioritize
certain expressions; and another which iteratively fixes all holes except one for
which it it tries all expressions to find the one that makes most tests pass.

In contrast, BeAFix [1,2] uses the check commands of an Alloy specification
as oracles, focusing on the repair of the system specification referred to by the
check. This is a more natural scenario since defining checks to verify the intended
properties of a design are common practice. BeAFix relies on a different fault
localization technique for Alloy, FLACK [22], which it only runs once for the
initial model, unlike ARepair. To generate the fix candidates, BeAFix defines
a set of mutation operators that are then combined up to a certain maximum
amount of mutators. Mutated expressions are then tested against the oracles
using Alloy’s solver. Since the number of candidates grows exponentially with
the maximum amount of combined mutations, BeAFix relies on two pruning
strategies to discard groups of candidates that are guaranteed to not fix the
specification, without calling the solver for a full check. Partial repair checking is
used when there is a command Checki that refers to a suspicious location l0, but
not another suspicious location l1. If Checki is still invalid under mutation m0

for l0, it is not worth to pair mutations for l1 with m0 since they will never render

Timely Specification Repair for Alloy 6 291

Fig. 1. An example specification challenge in Alloy4Fun

Checki valid. Variabilization is used when a Checki fails for a pair of mutations
m0 and m1 for suspicious locations l0 and l1, having yielded a counterexample.
To check whether m0 is a mutation worth exploring, variabilization freezes m0

and replaces l1 by an existentially quantified variable and checks whether the
counterexample persists for Checki. If so, there is no possible value for l1 that
fixes the specification for m0 at l0 and that mutation can be automatically
discarded.

3 Alloy Temporal Repair

This sections presents the main contribution of this paper: an automatic repair
technique for Alloy 6 temporal specifications, suitable for the educational
domain. Required Alloy concepts are introduced as needed, but for a more thor-
ough the reader should consult [8].

3.1 Overview

Our goal is to use automatic specification repair to generate hints to students
in autonomous assessment platforms. For Alloy, Alloy4Fun is currently the only
framework providing such functionality, by allowing the definition of secret pred-
icates and check commands. A typical usage of this feature is in the creation of
specification challenges: the instructor writes a hidden predicate representing a
correct answer, and a hidden check command that tests it against an initially
empty predicate that the student is expected to fill. As an example, consider
the Alloy snippet presented in Fig. 1, modelling a simple file system where a file

292 J. Cerqueira et al.

Fig. 2. Counterexample to prop4

can link to another file, be put in the trash, or be set in a protected state. This
snippet belongs to an exercise given to students in a formal methods course at
University of Minho, Portugal [12]. The keyword sig declares a new signature
in a specification, grouping together a set of atoms of the domain. Signatures
can be defined as subsets of other signatures using keyword in. Inside signatures,
fields can be declared to introduce new relations between atoms, for example the
link binary relation. Signatures and fields can have multiplicty constraints, such
as the one in link stating that each file links to at most one other file (lone).
The var keyword indicates that the content of a signature or field can change
between time instances.

Each exercises has multiple specification challenges. The fourth one of this
exercise asks the student to write a formula that evaluates to true iff a file
is sent to the trash at any point in time. The student is asked to write such a
formula in predicate (pred) prop4. Hidden to the student, marked with the special
comment //SECRET, a check command tests whether the student’s predicate is
equivalent to the instructor’s oracle written in prop4o, written using the temporal
operator eventually and cardinality test some. The most common erroneous
solution submitted by the students is the following.

pred prop4 {
some f : File | eventually f in Trash

}

Without temporal operators, expressions are evaluated in the initial state,
so the outermost existential quantifier is evaluated in the first state. So this
predicate is actually stating that a file present in the first state is eventually sent
to the trash, disregarding scenarios where a file created after the first state is sent
to the trash. Checking against the oracle, Alloy would return a counterexample
trace such as the one in Fig. 2, where a file is directly created in the trash in the
second state3. Students would then interpret the counterexample, trying to find
the error in their reasoning.

Search-based automatic repair approaches usually implement a generate-and-
validate process: alternative candidate solutions are generated and then tested
against the oracle for correctness. Mutation-based approaches generate candi-
dates by mutating nodes of the AST. In this scenario, it is natural to use a repair
3 Note that in this challenge the evolution of the system is not restricted and files are

not required to be created before being sent to the trash. The goal of the exercise
was precisely to train students to write the weakest specifications of the stated
requirement, independent of concrete system implementations.

Timely Specification Repair for Alloy 6 293

technique whose oracles are themselves specifications provided in the check com-
mands, rather than test cases, as does BeAFix. For instance, for the incorrect
submission above, with search depth 1, mutants like the ones below would be
generated and tested against the oracle:

1. some f : Trash | eventually f in Trash
2. some f : File | eventually f in File
3. some f : File | always f in Trash
4. some f : File | after f in Trash
5. some f : File | eventually f not in Trash
6. all f : File | eventually f in Trash
7. after some f : File | eventually f in Trash
8. eventually some f : File | eventually f in Trash

Of these mutants, only the last one is valid and equivalent to prop4o. Note
that this approach tests the semantic equivalence of the submissions against the
oracle, rather than its AST. This also means that validating a mutant amounts
to calling the solver to run the check command. Calls to the solver are expensive,
and since the number of mutants may be overwhelming, this process in general is
infeasible without pruning strategies. Unfortunately, BeAFix’s pruning strategies
are not effective in this scenario: partial repair can optimize the procedure when
there are multiple failing checks, but in this scenario each challenge amounts to
a single check; variabilization optimizes the procedure when there are multiple
suspicions locations, but here we already know that the suspicious location is
the single predicate filled by the student.

The idea behind the pruning strategy proposed in this work is that a coun-
terexample for a candidate mutant will likely be a counterexample for similar
candidates. For instance, the counterexample returned for the initial student
submission in Fig. 2 would actually discard the invalid mutants 1–5 presented
above, avoiding 5 additional calls to the solver. Calling the solver for mutant 6
could return a counterexample with some files in the trash in the first state that
are then removed in the second, serving also to discard mutant 7. The principal
advantage of this reasoning is that testing a mutant specification over a concrete
counterexample does not require calling the solver: it can be performed efficiently
with Alloy’s evaluator. Therefore, by storing counterexamples obtained for pre-
viously discarded mutants, new candidates can be quickly checked against them
before calling the solver to run the check command.

3.2 Mutation-Based Repair with Counterexample-Based Pruning

The technique proposed in this work has in common with BeAFix the fact that
it generates fix candidates through a set of mutations. The main differences are
twofold: the development of a new pruning technique suitable for specifications
with a single check command and suspicious location, and the support for the
temporal logic of Alloy 6 that has not been addressed thus far.

In Alloy, a check command with formula φ over a specification defined by
formula ψ (in Alloy, defined through fact constraints) is converted into a model

294 J. Cerqueira et al.

Table 1. List of mutators for Boolean formulas.

Name Mutation Example

RemoveBinary A [bop] B � A A and B � A
A [bop] B � B

ReplaceBinary A [bop] B � A [bop’] B A and B � A or B
RemoveUnary [uop] A � A always no A � no A
ReplaceUnary [uop] A � [uop’] A no A � some A
InsertUnary A � [uop] A no A � always no A

BinaryToUnary A [bop] B � [uop] (A [bop’] B) A in B � no (A + B)
QuantifierToUnary [qtop] a:A | B � [uop] A no a:A | foo[a] � no A
ReplaceQuantifier [qtop] a:A | B � no a:A | foo[a] �

[qtop’] a:A | B some a:A | foo[a]

finding problem for a single formula φ and not ψ. For instance, in the challenge
from Fig. 1 ψ is empty, so for the prop4 example shown in Sect. 3.1 the check’s
formula would simply be converted to

not ((some f : File | eventually f in Trash) <=>
(eventually some Trash))

When such a formula is passed to the solver, if the check is invalid it will
return a counterexample c (such as the one in Fig. 2 for the example) where
the specification facts ψ hold but the check φ does not. If there is no such
counterexample, the check holds and the solver returns ⊥. Alloy 6’s analyzer
checks assertions either with SAT solvers or SMV model checkers, the former only
for bounded model checking. Although Alloy’s logic is first-order, such analysis is
possible because there is a bound imposed on the size of the universe by defining
scopes for signatures (the default scope is 3). For bounded model checking, the
default analysis for temporal properties, it is also possible to define a scope for
the temporal horizon (the default being 10 steps). For a concrete counterexample
c, Alloy also provides an evaluator that can efficiently calculate the value of any
formula φ without calling the solver, which simply returns true or false.

A mutation m of a formula φ is simply a pair (l, o) of a location l in φ (which
can be seen as a path through the AST, identifying a concrete node) and an
instantiation of a mutator o from Tables 1 or 2 (to be presented shortly). These
mutations m are uniquely identified by the location and operation. Each candi-
date mutant results from the application of a sequence δ of such mutations to the
specification that is to be fixed. Order within δ is relevant since a mutation m1

may refer to a location introduced by a preceding mutation m0, and a mutation
m1 cannot refer to a location previously removed by a preceding m0.

A procedure that we abstract as mutate takes a specification φ and a loca-
tion l and generates all possible mutations for all AST nodes below l. In our
example, l would identify the sub-formula that resulted from the student’s sub-
mitted predicate (the left-hand side of the equivalence). This procedure is lazy,
returning an iterator Δ to generate new mutations on demand. Procedure apply
represents the actual application of a sequence of mutations δ to a specification,
returning a new specification mutant. The skeleton of the available mutation

Timely Specification Repair for Alloy 6 295

Table 2. List of mutators for relational expressions.

Name Mutation Example

RemoveBinary A [bop] B � A A + B � A

A [bop] B � B

ReplaceBinary A [bop] B � A [bop’] B A + B � A - B

RemoveUnary [uop] A � A ∼A � A

ReplaceUnary [uop] A � [uop’] A ^A � *A

InsertPrime A � A’ A � A’

InsertBinary A � A [bop] B A � A + B

InsertUnary A � [uop] A A � ∼A

ReplaceRelation A � B A � B

operations are presented in Tables 1 and 2 for Boolean formulas – composed of
Boolean connectives, first-order quantifications and temporal operators – and
relational expressions – composed of relational operations, transitive closure and
temporal primes –, respectively. Mutators are guaranteed to not change the type
of an expression, so, for instance, RemoveUnary for Boolean formulas can-
not remove a multiplicity test operator, since its sub-expression is a relational
expression, and an operator is always replaced by another of the same type
(i.e., Boolean connectives cannot be replaced by relational operators). Opera-
tions that require the insertion of relational expressions (namely InsertBinary
and ReplaceRelation) only introduce a single relation at a time and takes
into account type information to avoid creating expressions considered irrele-
vant according to Alloy’s type system [5]. For instance, InsertBinary for an
expression A only creates intersection expressions A & B for relations B whose
type has some elements in common with the type of A. For the particular case
of introducing a join operator, InsertBinary also only explores mutations that
preserve the arity of the original relational expression.

An abstract view of the repair procedure is shown in Algorithm 1. The proce-
dure registers a set cands of candidate sequences of mutations δ. At each depth
level, the procedure iterates over all cands and adds an additional mutation
m to a candidate δ. Procedure mutate is called over φ already mutated with
the previous candidate, so that only mutations over valid locations are gener-
ated (in case locations from the original φ0 were removed by δ, or new ones
introduced). Moreover, to avoid testing redundant mutants, whenever a new
candidate is generated it is only analyzed if it has not been previously seen in
cands. Although abstracted in Algorithm 1, this membership test ∈ ignores the
order of the mutations, meaning that two sequences [m0,m1] and [m1,m0] are
considered the same. This is sound because we assume that a candidate δ cannot
contain more than one mutation for the same location l.

Without counterexample-based pruning, for each candidate δ′ the procedure
would simply calculate a mutant φ as apply(φ0, δ

′) and call the solver (here, pro-

296 J. Cerqueira et al.

Input: A formula φ0 representing an invalid check and a location l in φ0 to fix.
Output: A passing formula or ⊥
cands ← {[]};
cexs ← [(solve(φ0), 1)];
for d ∈ 1 . . .MaxDepth do

cands′ ← ∅;
while cands �= ∅ do

δ ← cands.pop();
Δ ← mutate(apply(φ0, δ), l);
while Δ.hasNext() do

δ′ ← δ ++[Δ.next()];
if δ′ �∈ cands then

φ ← apply(φ0, δ
′);

valid ← true;
cexs′ ← cexs.clone();
while cexs′ �= ∅ ∧ valid do

c ← cexs′.pullHighest();
valid ← evaluate(φ, c);
if ¬valid then cexs.incPriority(c);

if valid then
c ← solve(φ);
if c = ⊥ then return φ;
else cexs.pushPriority(c, 1);

cands′.push(δ′);
cands ← cands′;

return ⊥;
Algorithm 1: Repair procedure with counterexample-based pruning

cedure solve(φ)). The procedure stops when a specification φ is valid according
to the solve, or the maximum search depth MaxDepth is reached, returning ⊥.
In the example previously presented, the InsertUnary mutator can be applied
to obtain the expression eventually some f : File | eventually f in Trash.
The next most common incorrect submission is

some f : File | eventually always f in Trash

which, besides the same problem of only quantifying on the files available in
the first state, also assumes that a file in the trash must stay there indefinitely
(temporal operator always). This requires search level 2: one mutation to add
an outer-most eventually, and another to remove the always through Remove-
Unary. The third most common is

eventually File in Trash

which incorrectly states that at some point in time, all existing files are in the
trash. It can be fixed through a single application of BinaryToUnary, resulting
in eventually some File & Trash, which is yet another formula equivalent to
prop4o.

Timely Specification Repair for Alloy 6 297

To avoid expensive calls to the solver, our technique’s pruning strategy first
evaluates the candidate formula against previously seen counterexamples. These
are kept in a priority queue cexs, where the priority of each counterexample c
is the amount of candidates they were able to prune. So for each mutant, the
evaluator is called (procedure evaluate) to test φ for every previously found
counterexample following the established priority. If φ still holds for a counterex-
ample c, then it is still an invalid mutant, so φ is discarded and c has its priority
increased in cexs. Only after passing all previously seen counterexamples is the
solver called for φ. If the solver returns ⊥, then φ has effectively been fixed.
Otherwise, a new counterexample c is found and added to cexs with minimal
priority.

3.3 Implementation Details

To improve performance, richer data structures were used in the implementation
of Algorithm 1. To avoid repeating the generation of all mutations for all candi-
date mutants that have ASTs that are still very similar to each other, mutate
is not freshly called for every candidate. Instead the candidates are stored in
a list with a pointer to their predecessor candidate. Thus, to generate all the
candidates up to a depth, the index to the candidate being checked is kept,
as well as the candidate that generated the latest added candidates. When the
end of generated candidates is reached, more are generated from the candidate
after the one the latest candidates were generated from. The last counterexam-
ple used to prune is also tracked and is tested first, the reasoning being that
candidates coming after one another will likely mutate the same locations, and
thus, also be more likely to be pruned by the same counterexamples. To prevent
combining mutators that would generate incorrect or repeated candidates (for
example, when sub-expressions are removed), a mutation also registers black-
listed locations that can no longer be mutated. Lastly, rather than just keep
track of mutations δ in cands, we also maintain the associated mutant φ to
avoid re-applying mutations.

The technique was implemented as an extension of Alloy 6. It does not make
modifications to original Alloy 6 source code. Instead, it only adds new packages
and uses the public methods of the original, hopefully making it easier for any-
one to follow the implementation and to update to future Alloy releases. The
source code is public and can be found on GitHub4, as well as a Docker con-
tainer5 to allow easier replication of the results. In the implementation, the user
has to specify by hand the suspicious predicate that is to be fixed. However,
the technique itself has no limitations in terms of compatibility with fault local-
ization techniques, and could have been paired with one of those techniques to
automatically identify such predicate.

4 https://github.com/Kaixi26/TAR.
5 https://hub.docker.com/r/kaixi26/tar.

https://github.com/Kaixi26/TAR
https://hub.docker.com/r/kaixi26/tar

298 J. Cerqueira et al.

4 Evaluation

In this section we evaluate the performance of the proposed technique for timely
Alloy 6 repair (TAR, in the presented results), with the goal of answering the
following research questions:

RQ1 What is the performance of mutation-based repair with counterexample-
based pruning for temporal Alloy 6 specifications?

RQ2 How does its performance compare with that of existing automatic repair
techniques for static Alloy specifications?

RQ3 What is the actual impact of counterexample-based pruning?

Alloy4Fun stores all submissions made to challenges. These are available to the
creators of the challenges for subsequent analysis. Tutors at the Universities of
Minho and Porto have been using Alloy4Fun in classes for several years and pub-
licly share the data after anonymization6. These challenges follow the shape of
the one in presented in Fig. 1, so it is easy to identify the oracle and the student
predicate to be repaired in each submission. Thus, for RQ1 we executed TAR for
all erroneous submissions to challenges with mutable relations (only allowed in
Alloy 6) in the 2021 Alloy4Fun dataset. This amounts to two exercises (TrashLTL
and Trains) composed of 38 challenges, totalling 3671 submissions. These results
are summarized in Fig. 3, for different search depth levels, and also in the bottom
part of Table 3. BeAFix also used a subset of Alloy4Fun challenges for their eval-
uation [2] (those compatible with the previous Alloy 5 version). For RQ2, we’ve
also run TAR for submissions to those purely first-order logic challenges. This
amounts to 6 exercises (TrashRL, ClassroomRL, CV, Graphs, LTS and Production)
composed of 48 challenges with 1935 submissions. ARepair requires the user
to specify test cases which are not available for the Alloy4Fun challenges, but
writing them ourselves could introduce a bias in the process. Instead, we used
counterexamples generated during the counterexample-based pruning process as
test cases. For each student submission for a challenge, counterexample-based
pruning iterated over a set of counterexamples until a fix was found. Counterex-
amples more commonly occurring in this process have contributed to fixing the
most incorrect submissions, and thus are representative of the challenge. We ran
ARepair for the same structural Alloy4Fun challengs as BeAFix using the top
10 and top 25 counterexamples as test cases. For the comparison of BeAFix
against ARepair in [2], the authors used AUnit [16] to automatically generate
test cases, which resulted in a unusually high rate of incorrect fixes by ARepair.
The expectation is that our approach to test case generation is fairer for ARe-
pair. These results are summarized in Fig. 4 for different search depth levels and
in the top part of Table 3. ARepair may still report incorrect fixes due to over-
fitting; the data considers only correct repairs All executions of TAR were also
ran with counterexample-based pruning disabled to answer RQ3. Since feedback
is expected to be provided quickly, the timeout was set to 1min for all proce-
dures. All tests were run on a Linux-5.15 machine with docker version 20.10 and
an Intel Core i5 4460 processor.
6 https://doi.org/10.5281/zenodo.4676413.

https://doi.org/10.5281/zenodo.4676413

Timely Specification Repair for Alloy 6 299

Fig. 3. Percentage of specification challenges repaired by the proposed approach under
a certain time threshold, for different search depth levels and with and without pruning

RQ1 The data in Fig. 3 shows that TAR is viable for Alloy 6 repair. It is able
to repair about 35% of the specifications by 2 s, and by 1 minute it is able to fix
56%, results that even surpass those for non-temporal Alloy repair, as we will
shortly see. Increasing the depth to 3 does not seem to increase significantly the
performance of the approach, and with depth 2 the results stagnated at 45% by
10 s. As shown in Table 3, of the 46% challenges that failed to be fixed under 1
minute, 10% were due to time-out while the remainder failed due to an exhausted
search space.

RQ2 As can be seen in Fig. 4, TAR consistently outperforms BeAFix, particu-
larly in smaller time thresholds. At 2 s, BeAFix is able to fix 27% of the specifi-
cations against the 42% of TAR, a 60% improvement. Although by the 1 minute
threshold the difference is reduced to 16%, we consider this to be already too
long for a student to wait for automatic feedback. BeAFix was able to success-
fully fix 47% of the specifications within an 1 h timeout [2], which is still less
than the 52% of TAR with a 1 min.

In our evaluation, ARepair was only able to propose a repair that passed the
oracle check in less than 5% of the specifications by 2 s, and 22% within 1 minute
using the top 25 counterexamples selected using TAR’s pruning technique. This
strategy for the generation of test cases proved to be fairer than the experiments
in [2] where ARepair only proposed fixes that passed the oracle for 9% of speci-
fications for the same dataset within 1 h, but is still well below the performance
of TAR and BeAFix. Even disregarding the oracle check, ARepair reported to
be able to pass all unit tests in 814 (42%) submissions for the benchmark with
25 unit tests, which is still below TAR and BeAFix.

300 J. Cerqueira et al.

Table 3. Performance of the 3 techniques under 1 min. threshold and maximum depth 3

Exercise Cases ARepair (25 Tests) BeAFix TAR
Fixed (%) TO Failed Fixed (%) TO Failed Fixed (%) TO Failed

Classroom 999 102 (10%) 246 651 311 (31%) 578 110 408 (41%) 52 539

CV 137 26 (19%) 6 105 77 (56%) 44 16 85 (62%) 1 51

Graphs 283 181 (64%) 0 102 220 (78%) 28 35 240 (85%) 4 39

LTS 249 20 (8%) 5 224 35 (14%) 144 70 33 (13%) 5 211

Production 61 18 (30%) 1 42 47 (77%) 10 4 50 (82%) 0 11

Trash 206 89 (43%) 6 111 182 (88%) 14 10 193 (94%) 0 13

total (static) 1935 436 (22%) 264 1235 872 (45%) 818 245 1009 (52%) 62 864

TrashLTL 2890 – – – – – – 1832 (63%) 116 942

Trains 781 – – – – – – 213 (27%) 47 521

total (temporal) 3671 – – – – – – 2045 (56%) 163 1463

Fig. 4. Percentage of submissions to static challenges correctly repaired by the pro-
posed approach under a certain time threshold, for different search depth levels and
with and without pruning

To provide a better understanding of how the specifications fixed by each of
the 3 techniques overlap, the Venn diagram in Fig. 5 classifies the specifications
according to which tool was able to repair them under a threshold of 1 s. There
was no specification that ARepair was able to repair that TAR missed. As for
BeAFix, there were 9 specifications that BeAFix repaired and TAR failed within
1 s, against 306 the outer way around. Of those 9 cases, 6 were due to the fact
that BeAFix was able to find a repair under 1 s while TAR took longer. The
other 3 required the introduction of a join operation that changed the arity
of the relational expression, a mutation supported by BeAFix but not by our
InsertBinary.

Timely Specification Repair for Alloy 6 301

Fig. 5. Classification of submissions to static challenges according to which tool was
able to effectively repair them under 1 s

RQ3 Looking at the performance of TAR with pruning disabled shown in Figs. 3
and 4, it is clear that the impact is particularly relevant at lower threshold levels:
at 2 s, the technique without pruning is only able to fix about 27% of the specifi-
cations, 22% less that the 35% fixed with pruning. As the threshold increases the
impact of the pruning technique is reduced. Furthermore, the average amount
of generated counterexamples – which amount to calls to the solver – is low,
around 5.4 for the static benchmarks; and around 6.4 for the temporal bench-
marks. These counterexamples end up being able to prune an impressive amount
of candidates, the number being, on average, around 100000 for the static bench-
marks, 76% of which are pruned by the same counterexample; and 160000 for the
temporal benchmarks, 67% of which are pruned by the same counterexample.

5 Conclusions

This paper presented a mutation-based technique for the automatic repair of
Alloy 6 specifications, being the first to consider its full temporal first-order
logic. A new pruning technique was proposed that is suitable for target context
of the new technique, namely educational scenarios. Evaluation over a dataset
of student submissions has shown that, in this scenario, the proposed technique
is able to produce timely repairs and that it outperforms existing approaches to
Alloy repair (when considering only the non-temporal Alloy subset).

To be effectively used as a hint system in the educational context, the found
repairs must be translated back into a hint that can guide the student in the
right direction without explicitly providing the correct solution. The technique
for the derivation of hints from repairs, and its subsequent implementation in
the Alloy4Fun platform, is the next step in our research plan. This is expected

302 J. Cerqueira et al.

to be followed by proper empirical study to assess the usability and efficacy of
the technique in the educational context.

The proposed pruning technique registers the counterexamples that were
able to discard the most mutants. Arguably, such counterexamples are more
“representative” of the expected property as they identified the most semantically
different formulas, a reasoning we followed to use this rank to generate test cases
for ARepair in the evaluation. We intend to explore whether this information
would also be helpful feedback to the students, namely whether returning the
top ranking counterexamples from the pruning process is more productive than
the randomly generated ones.

A technique for Alloy repair was developed independently of this work and
published after the submission of this manuscript [21]. The timing did not allow
for a proper comparison, but we intend to expand our evaluation against it in
the short term.

References

1. Brida, S.G., et al.: BeAFix: an automated repair tool for faulty alloy models. In:
ASE, pp. 1213–1217. IEEE (2021)

2. Brida, S.G., et al.: Bounded exhaustive search of alloy specification repairs. In:
ICSE, pp. 1135–1147. IEEE (2021)

3. Cai, C.-H., Sun, J., Dobbie, G.: Automatic B-model repair using model checking
and machine learning. Autom. Softw. Eng. 26(3), 653–704 (2019). https://doi.org/
10.1007/s10515-019-00264-4

4. Clarisó, R., Cabot, J.: Fixing defects in integrity constraints via constraint muta-
tion. In: QUATIC, pp. 74–82. IEEE Computer Society (2018)

5. Edwards, J., Jackson, D., Torlak, E.: A type system for object models. ACM SIG-
SOFT Softw. Eng. Notes 29(6), 189–199 (2004)

6. Gazzola, L., Micucci, D., Mariani, L.: Automatic software repair: a survey. IEEE
Trans. Softw. Eng. 45(1), 34–67 (2019)

7. Goues, C.L., Pradel, M., Roychoudhury, A.: Automated program repair. Commun.
ACM 62(12), 56–65 (2019)

8. Jackson, D.: Software Abstractions: Logic, Language, and Analysis. MIT Press,
revised edn. (2012)

9. Jackson, D.: Alloy: a language and tool for exploring software designs. Commun.
ACM 62(9), 66–76 (2019)

10. Krishnamurthi, S., Nelson, T.: The human in formal methods. In: ter Beek, M.H.,
McIver, A., Oliveira, J.N. (eds.) FM 2019. LNCS, vol. 11800, pp. 3–10. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-30942-8_1

11. Macedo, N., Brunel, J., Chemouil, D., Cunha, A., Kuperberg, D.: Lightweight spec-
ification and analysis of dynamic systems with rich configurations. In: SIGSOFT
FSE, pp. 373–383. ACM (2016)

12. Macedo, N., Cunha, A., Pereira, J., Carvalho, R., Silva, R., Paiva, A.C.R.,
Ramalho, M.S., Silva, D.C.: Experiences on teaching alloy with an automated
assessment platform. Sci. Comput. Program. 211, 102690 (2021)

13. McBroom, J., Koprinska, I., Yacef, K.: A survey of automated programming hint
generation: the hints framework. ACM Comput. Surv. 54(8), 172:1–172:27 (2022)

https://doi.org/10.1007/s10515-019-00264-4
https://doi.org/10.1007/s10515-019-00264-4
https://doi.org/10.1007/978-3-030-30942-8_1

Timely Specification Repair for Alloy 6 303

14. Pei, Yu., Furia, C.A., Nordio, M., Meyer, B.: Automatic program repair by fixing
contracts. In: Gnesi, S., Rensink, A. (eds.) FASE 2014. LNCS, vol. 8411, pp. 246–
260. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54804-8_17

15. Schmidt, J., Krings, S., Leuschel, M.: Repair and generation of formal models using
synthesis. In: Furia, C.A., Winter, K. (eds.) IFM 2018. LNCS, vol. 11023, pp. 346–
366. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98938-9_20

16. Sullivan, A., Wang, K., Khurshid, S.: Aunit: a test automation tool for alloy. In:
ICST, pp. 398–403. IEEE Computer Society (2018)

17. Toll, D., Wingkvist, A., Ericsson, M.: Current state and next steps on automated
hints for students learning to code. In: FIE, pp. 1–5. IEEE (2020)

18. Wang, K., Sullivan, A., Khurshid, S.: Automated model repair for alloy. In: ASE,
pp. 577–588. ACM (2018)

19. Wang, K., Sullivan, A., Khurshid, S.: Arepair: a repair framework for alloy. In:
ICSE (Companion Volume), pp. 103–106. IEEE / ACM (2019)

20. Wang, K., Sullivan, A., Marinov, D., Khurshid, S.: Fault localization for declarative
models in alloy. In: ISSRE, pp. 391–402. IEEE (2020)

21. Zheng, G., et al.: ATR: template-based repair for alloy specifications. In: ISSTA,
pp. 666–677. ACM (2022)

22. Zheng, G., et al.: FLACK: counterexample-guided fault localization for alloy mod-
els. In: ICSE, pp. 637–648. IEEE (2021)

https://doi.org/10.1007/978-3-642-54804-8_17
https://doi.org/10.1007/978-3-319-98938-9_20

Temporal Logic

BehaVerify: Verifying Temporal Logic
Specifications for Behavior Trees

Serena Serafina Serbinowska(B) and Taylor T. Johnson

Vanderbilt University, Nashville, TN 37235,, USA
{serena.serbinowska,taylor.johnson}@vanderbilt.edu

Abstract. Behavior Trees, which originated in video games as a method
for controlling NPCs but have since gained traction within the robotics
community, are a framework for describing the execution of a task.
BehaVerify is a tool that creates a nuXmv model from a py_tree. For
composite nodes, which are standardized, this process is automatic and
requires no additional user input. A wide variety of leaf nodes are auto-
matically supported and require no additional user input, but customized
leaf nodes will require additional user input to be correctly modeled.
BehaVerify can provide a template to make this easier. BehaVerify is
able to create a nuXmv model with over 100 nodes and nuXmv was
able to verify various non-trivial LTL properties on this model, both
directly and via counterexample. The model in question features paral-
lel nodes, selector, and sequence nodes. A comparison with models based
on BTCompiler indicates that the models created by BehaVerify perform
better.

Keywords: Behavior tree · Model verification

1 Introduction

Behavior Trees are a framework for describing the execution of a task that orig-
inated in computer games as a method of controlling Non-Player Characters
(NPCs), but have since expanded into the domain of robotics [14,26]. Behavior
Trees are split into composite nodes that control the flow through the tree and
leaf nodes which execute actions. Behavior Trees have a variety of strengths:
they facilitate code re-use (nodes and sub-trees can easily be attached), their
modular nature makes reasoning about them easier, and changing one region of
a tree doesn’t affect how other regions function [1]. However, at present, tools
to verify the correctness of a Behavior Tree are scarce. Therefore, we present
BehaVerify, a tool for converting a py_tree into a .smv file which can be verified
using nuXmv [6].

Contributions. We present BehaVerify, a tool that enables verification with Lin-
ear Temporal Logic (LTL) model checking that improves upon BTCompiler, the
only previously existing tool for such a task, in terms of run time and in ease of
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
B.-H. Schlingloff and M. Chai (Eds.): SEFM 2022, LNCS 13550, pp. 307–323, 2022.
https://doi.org/10.1007/978-3-031-17108-6_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-17108-6_19&domain=pdf
http://orcid.org/0000-0002-9259-1586
http://orcid.org/0000-0001-8021-9923
https://doi.org/10.1007/978-3-031-17108-6_19

308 S. S. Serbinowska and T. T. Johnson

use with respect to Blackboard variables. Specifically, we present an automatic
method to perform the translation and encoding of behavior trees to nuXmv
models, a description of this method in a publicly available software tool, a
characterization of the verification performance of these different encodings and
how they compare to the models created by BTCompiler, and apply the tool to
verify key LTL specifications of a challenging robotics case study for an under-
water robot used as a controller in an ongoing DARPA project. However, we
first define what Behavior Trees are.

1.1 Background

A Behavior Tree (BT) is a rooted tree. Each node has a single parent, save for
the root which has no parent. A BT does nothing until it receives a tick event,
at which point the tick event propagates throughout the tree. Composite nodes
serve to control the flow of execution, determining which children receive tick
events. By contrast, Leaf nodes are either actions, such as Accelerate, or guard
checks, such as GoingToSlow. Leaf nodes do not have children. Finally, decora-
tor nodes are used to customize the output of their children without actually
modifying the children themselves, allowing for greater re-usability. Usually, a
Decorator node will have one child.

There are three types of composite nodes: Sequence, Selector, and Parallel.
Sequence nodes execute a sequence of children. A Sequence node returns a value
if a child returns Failure or Running or there are no more children to run.
Sequences return Failure if any child returns Failure, Running if any child returns
Running, and Success if every child returned Success. Selector nodes, also known
as Fallback nodes [1,24], execute children in order of priority. A Selector node
returns a value if a child returns Success or Running or there are no more children
to run. Selectors return Success if any child returns Success, Running if any child
returns Running, and Failure if every child returned Failure.

Parallel nodes execute all their children regardless of what values are
returned. At least three different definitions exist for parallel nodes. The first
definition, found in [24], states that parallel nodes return Failure if any child
returns Failure, Success if a satisfactory subset of children return Success, and
Running otherwise. The second definition, found in [10,11], and [18] is similar,
but states that parallel nodes return Success only if all children return Success.
The third definition, found in [2,12,14,20,25], and [13], states that parallel nodes
return Success if at least m children return Success, Failure if n − m + 1 chil-
dren return Failure, and Running otherwise. Here n is the number of children the
parallel node has and m is a node parameter. BehaVerify, the tool created along-
side this paper, was designed for py_trees and therefore utilizes the definition
presented in [24].

In addition to these differences, Composite nodes can be further characterized
into Nodes with Memory and Nodes without Memory. The above definitions
describe Nodes without Memory. Nodes with Memory allow the composite nodes
to remember what they previously returned and continue accordingly. Thus a
Sequence with Memory will not start from its first child if it previously returned

BehaVerify: Verifying Temporal Logic Specifications for Behavior Trees 309

Running and will instead skip over each child that returned Success. Similarly, a
Selector with Memory will skip over each child that returned Failure. A Parallel
node with Memory will only rerun children that returned Running.

However, memory is also not standardized. In [24], Nodes with Memory ‘for-
get’ if one of their ancestors returns Success or Failure. So, for instance, if a
Sequence with Memory returns Running, but its Parallel node parent returns
Success, the Sequence with Memory will not behave as though it returned Run-
ning. However, in Sect. 1.3.2 of [14], the authors state “Control flow nodes with
memory always remember whether a child has returned Success or Failure, avoid-
ing the re-execution of the child until the whole Sequence or Fallback finishes in
either Success or Failure”, and notably makes no mention of Parallel nodes with
Memory. Finally, note that py_trees supports Selector with and without Mem-
ory, Sequences with and without Memory, and both types of Parallel nodes.
However, the Parallel nodes with Memory and without Memory are instead
called Synchronized Parallel and Unsynchronized Parallel, respectively.

Decorator nodes are generally used to augment the output of a child. For
instance, a RunningIsFailure decorator will cause an output of Running to be
interpreted as Failure. As there are many decorators, we omit attempting to
fully list or describe them here.

Furthermore, we note that in many of the above works, Selector nodes are
represented using ?, Sequence nodes are represented using →, and Parallel nodes
are represented using ⇒. However, we will utilize the notation given in py_trees,
as seen in Fig. 1.

Fig. 1. Composite Nodes in py_trees.

1.2 The Blackboard

In certain situations, such as when multiple nodes need to use the result of a
computation, it can be useful to read and write information in a centralized
location. This sort of shared memory is frequently called a Blackboard [5,15,
16,24]. Unfortunately, there are also drawbacks to using Blackboards. As [23]
points out, Blackboards can make BTs difficult to understand and reduce sub-
tree reuse. Ultimately, however, the fact remains that in many cases there are
substantial benefits to using a Blackboard, and various implementations, such
as py_trees seek to alleviate some of the aspects by creating visualization tools
for blackboards [24]. Accordingly, BehaVerify supports Blackboard variables.

2 Related Work

First, we clarify that the term “Behavior Tree” sometimes refer to different con-
cepts. Behavior Trees exist as a formal graphical modeling language, as part of

310 S. S. Serbinowska and T. T. Johnson

Behavior Engineering and are used for requirement handling [19]. These are not
the BTs we are talking about.

2.1 Strengths and Uses of BTs

In [20], the author shows how general Hybrid Dynamical Systems can be written
as BTs and how this can be beneficial. Furthermore, the paper provides justifica-
tions for why BTs are useful to UAV guidance and control systems. [4] compares
BTs to a variety of other Action Selection Mechanisms (ASM) and proves that
unrestricted BTs have the same expressive capabilities as unrestricted Finite
State Machines. [1] presents a framework for verifying the correctness of BTs
without compromising on the main strengths of Behavior Trees, which they
identify as modularity, flexibility, and re-usability.

[17] considers the various implementations of BTs, such as BehaviorTree.cpp
and py_trees, and examines a variety of repositories that utilize BTs. In [25]
the authors propose an algorithm to translate an I/O automaton into a BT that
connects high level planning and low level control. The authors of [9] demonstrate
how it is possible to synthesize a BT that is guaranteed to be complete a task
specified by LTL. This does require restricting LTL to a fragment of LTL, so
there are limits to what BTs can be synthesized in this way. [8] describes a
tool-chain for designing, executing, and monitoring robots that uses BTs for
controlling high level behaviors of the robots while [7] formalizes the context
within which BTs are executed.

2.2 Expanded BTs

The capabilities of BTs have been expanded in several papers. In [3], the authors
consider how it is possible to expand BTs by introducing K-BTs which replace
Success and Failure with K different outputs. [10,11], and [12] introduce Con-
current BTs and expand on them by introducing various nodes designed to bet-
ter enable synchronization in BTs that deal with concurrency. Meanwhile [18]
extends BTs to Conditional BTs, which enforce certain pre and post conditions
on various nodes within the tree and introduces a tool which can confirm that
the entire tree is capable of being executed based on the pre and post conditions
given. [21] extends BTs to Belief BTs which are better suited to dealing with
non-deterministic outcomes of actions.

2.3 Verification of BTs

Some of the above works deal with the verification of BTs. [1], for instance,
presents an algorithm for the verification of BTs. [9], on the other hand, presents
a method by which to synthesize a BT that is guaranteed to be correct, thereby
by-passing the need for verification, but the specifications are limited to a frag-
ment of LTL. The only existing tool we were able to find that allows the user to

BehaVerify: Verifying Temporal Logic Specifications for Behavior Trees 311

create and verify LTL specifications for BTs is BTCompiler1. Unfortunately, we
were not able to install the tool, and as such our knowledge of it is somewhat
limited. Most of what we understand comes from analyzing the various examples
in the smv folder in the github repository.

From what we understand, BTCompiler uses the following assumptions and
definitions. All composite nodes are assumed to have exactly 2 children. Parallel
nodes do not have memory. Parallel nodes utilize the third definition presented in
the background section. Sequence and Selector nodes with and without memory
are supported. Unlike the implementation in py_trees, nodes with memory do
not ‘forget’ if an ancestor terminates. Please note that the requirement that
composite nodes have only 2 children does not impact expressiveness. By self-
composing nodes, it is possible to effectively create a node with any number of
children greater than 2. For a proof, see Sect. 5.1 of [14]. Thus the only downside
is potential model complexity and readability.

We will compare the models created by BTCompiler and BehaVerify.

3 Overview of Approach

BehaVerify begins by recursively walking a py_tree and recording relevant infor-
mation. This information includes what the type of each node is, recording any
important parameters (like the Success policy for a parallel node), and the struc-
ture of the tree. Once this process has finished, BehaVerify begins to create the
.smv file. Most of this process is straightforward. For instance, for each node type,
BehaVerify creates a module (basically a class) in the .smv file. These modules
are static and don’t change between runs. For each node, BehaVerify creates an
instance of a module with the necessary parameters, like what children the node
has.

Fig. 2. A simple BT

However, not everything is simple or static. The primary sources of com-
plexity are Nodes with Memory. A lazy approach to implementing Nodes with
Memory is to have each node store an integer marking which child returned Run-
ning. Such an encoding can greatly increase the number of states in the model.
Consider Fig. 2. Seq1 has two children, while sel1 has three. The lazy encoding
would therefore produce six states to record which children returned Running.

1 https://github.com/CARVE-ROBMOSYS/BTCompiler.

https://github.com/CARVE-ROBMOSYS/BTCompiler

312 S. S. Serbinowska and T. T. Johnson

However, consider that if we know that node_y returned Running, then sel1 will
also return Running. Thus we only need four states.

Next, BehaVerify begins to handle the blackboard. BehaVerify has several
ways of doing this. The first method is to have the user provide an input file which
is simply included in the .smv file. Assuming no such file is provided, BehaVerify
can generate the blackboard. If the user requests, the generated blackboard can
be saved. This allows the user to modify the generated blackboard file and use
it as an input file on subsequent runs. In addition, BehaVerify also allows the
user to specify a file containing LTL specifications which are then included in
the .smv file.

At this point, the .smv file is complete, and can be used with nuXmv [6],
either for simulation or verification.

4 Encodings

BehaVerify uses two primary encodings: Leaf and Total. The general ideas behind
these encodings are presented here. Note that the actual models BehaVerify
creates for use with nuXmv differ from what is presented here, but the general
motivations are the same. Also note that from this point forward, we write
Success as S, Failure as F , Running as R, and Invalid as I. For both encodings,
it is useful to consider how a BT operates. A BT remains inactive until it receives
a tick. Once a tick is received, it begins to propagate throughout the tree causing
various nodes to execute. The path of the tick signal through the Tree is similar
to a Depth First Search, though it will sometimes skip over branches of the tree.
A basic version of the Leaf encoding explicitly follows the tick signal as it moves
throughout the tree, tracing the exact path the tick signal takes through the
tree. The Leaf encoding presented here includes some optimizations to improve
performance, but the general idea is the same. The Total encoding doesn’t follow
the path of the signal. The state of the tree in the Total encoding is instead
represented by a chain of dependencies and by considering the path of the tick
signal through the tree, the chain can be resolved. Additional details follow.

4.1 Leaf

Fig. 3. A selector node with many children.

As was mentioned, an intuitive encoding for BTs follows the path of the
tick throughout the tree. At each time step t, one node is the Active Node
(ActNode(t)), its status is computed, and then another node becomes Active.

BehaVerify: Verifying Temporal Logic Specifications for Behavior Trees 313

Note that in this encoding each time step t does NOT correspond to a tick. A tick
instead occurs between any time steps t and t + 1 such that ActNode(t) = −1.
Now consider Fig. 3. In this simple encoding, we would start at wideSel, then
move to child1, then back to wideSel, then to child2, back to wideSel, etc., until
one of the children returned S or R, or we ran out of children. Thus this encoding
spends many steps going through wideSel. The Leaf encoding realizes that the
actual points of interest are the leaf nodes themselves. If child1 returns S or R,
then the tree returns a status. If child1 returns F , then we need to check child2.
Thus we can eliminate many unnecessary steps in the traversal of the tree by
jumping from leaf to leaf. Formally, this encoding is as follows:

ActNode(t + 1) :=

⎧
⎪⎪⎨

⎪⎪⎩

if t+ 1 ≤ 0, then − 1
else if ActNode(t) = −1, then NextNode(root , t ,−1)
else NextNode(ActNode(t), t ,ActNode(t))

So at each time step t, ActNode(t) either indicates a Node that is active or
returns -1, which symbolizes the tree returning a value. In NextNode(n, t , prev),
n is either -1 or a node, t is an integer indicating the time-step, and prev is
either -1 or a node and indicates which node asked for the Next Node. This is
used to determine which node should be active next.

NextNode(n, t , prev) :=
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

if n = −1, then − 1
else if status(n, t) �= I, then NextNode(parent(n), t ,n)
else if IsLeaf (n), then n

else if IsSel(n) ∧ prev = parent(n),
then NextNode(Unskipped(FChl(n), t), t ,n)

else if IsSel(n), then NextNode(rNeigh(prev), t ,n)
else if IsSeq(n) ∧ prev = parent(n),

then NextNode(Unskipped(FChl(n), t), t ,n)
else if IsSeq(n), then NextNode(rNeigh(prev), t ,n)
else if IsPar(n) ∧ prev = parent(n),

then NextNode(Unskipped(FChl(n), t), t ,n)
else if IsPar(n), then NextNode(Unskipped(prev , t), t ,n)
else if IsDec(n) ∧ SkipChl(n, t), then n

else NextNode(FChl(n), t ,n)

parent(Root) = −1 and otherwise parent(n) returns the parent of n.
SkipChl(n, t) returns True if at time t decorator n does not run it’s child.
IsLeaf (n), IsSel(n), IsSeq(n), IsPar(n), and IsDec(n) are all predicates that
return True if the node n is of the described type and False otherwise (all return

314 S. S. Serbinowska and T. T. Johnson

False if n = −1). FChl(n) returns the first child of n, and rNeigh(n) indicates
the right neighbor of n.

Unskipped(n, t) :=

{
if Skipped(n, t), then Unskipped(rNeigh(n), t)
else n

Unskipped(n, t) returns the first right Neighbor of n that is not Skipped (Nodes
with Memory can cause their children to be skipped in some cases). If there is
no right neighbor, then rNeigh(n) = −1.

Skipped(n, t) :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

if t ≤ 0, then ⊥
else if ∃a ∈ Anc(n) s.t. status(a, t − 1) ∈ {S, F},

then ⊥
else if IsParSynch(parent(n)) ∧ status(n, t − 1) = S,

then 	
else if IsSeqWM (parent(n))∧

∃x ≥ 1 s.t. status(rNeigh(n)x , t − 1) = R, then 	
else if IsSelWM (parent(n))∧

∃x ≥ 1 s.t. status(rNeigh(n)x , t − 1) = R, then 	
else Skipped(n, t − 1)

Here rNeigh(n)x := rNeigh(rNeigh(n)x−1), with rNeigh(n)1 := rNeigh(n). In
other words, rNeigh(n)x is the xth right neighbor. Anc(n) is the set of nodes
that are ancestors to n. This set does not include n or −1. IsSeqWM (n) and
IsSelWM (n) check if n is a Sequence/Selector node with memory, respectively.

status(n, t) :=
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

if IsLeaf (n) ∧ ActNode(t) = n, then LeafStatus(n, t)
else if IsSel(n) ∧ (∃c ∈ Chl(n) s.t. status(c, t) ∈ {S,R}), then status(c, t)
else if IsSel(n) ∧ status(LChl(n), t) = F , then F

else if IsSeq(n) ∧ (∃c ∈ Chl(n) s.t. status(c, t) ∈ {F,R}), then status(c, t)
else if IsSeq(n) ∧ status(LChl(n), t) = S, then S

else if IsPar(n)∧
(∃c ∈ Chl(n) s.t. (status(c, t) �= I) ∧ Unskipped(c, t) = −1),
then ParStatus(n, t)

else if IsDec(n) ∧ (ActNode(t) = n ∨ status(FChl(n), t) �= I),
then DecStatus(n, t)

else I

status(n, t) describes the status of node n at time step t. Chl(n) is the set of
children of n. If both IsDec(n) and ActNode(t) = n, then n is a decorator that

BehaVerify: Verifying Temporal Logic Specifications for Behavior Trees 315

skipped its child.

ParStatus(n, t) :=

⎧
⎪⎪⎨

⎪⎪⎩

if IsFailure(n, t), then F

else if NumSucc(n, t) ≥ SuccThresh(n), then S

else R

IsFailure(n, t) :=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

if ∃a ∈ Anc(n) ∪ {n} s.t. status(a, t − 1) ∈ {S, F},
then ⊥

else IsFailure(n, t − 1)∨
∃c ∈ Chl(n) s.t. status(c, t) = F

NumSucc(n, t) :=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

if ∃a ∈ Anc(n) ∪ {n} s.t. status(a, t − 1) ∈ {S, F},
then 0

else if ∃c ∈ Chl(n) s.t. status(n, t) = S,
then NumSucc(n, t − 1) + 1

else NumSucc(n, t)

4.2 Total

Unlike the Leaf encoding, in the Total encoding a tick occurs at each time step
t and we compute the entire state of the tree in one time step. Consider Fig. 3.
By definition, the status of wideSel is S if a child returns S, R if a child returns
R, and F if all children return F (a status of I is impossible for the root as the
root will always run). The Total encoding uses this sort of definition directly
for each node. Thus the status of each child is based on if the child runs and
the custom code of the leaf node. As a result, in this case child3 will only run
if child2 runs and returns F , and child2 will only run if child1 runs and returns
F . This is all directly encoded, though it is done formulaically. The state of the
tree is determined by resolving the dependency chain. Formally the encoding is
defined as follows:

IsActive(n, t) :=
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

if IsRoot(n), then 	
else if ¬IsActive(parent(n), t) ∨ Skipped(n, t), then ⊥
else if n = FChl(parent(n)), then 	
else if ResFrom(n, t), then 	
else if IsSel(parent(n)), then status(lNeigh(n), t) = F

else if IsSeq(parent(n)), then status(lNeigh(n), t) = S

else if IsPar(parent(n)), then 	
else ⊥

316 S. S. Serbinowska and T. T. Johnson

IsActive(n, t) is True if at time t node n executed. In this encoding multiple
nodes can be active at the same time. Notation is reused from the Leaf encoding
where applicable. For instance, IsSel(n) is defined as before. lNeigh(n) functions
the same way as rNeigh(n), except with the Left Neighbor.

Skipped(n, t) :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

if t ≤ 0, then ⊥
else if ∃a ∈ Anc(n) s.t. status(a, t − 1) ∈ {S, F},

then ⊥
else if IsParSynch(parent(n)) ∧ status(n, t − 1) = S,

then 	
else if IsSeqWM (parent(n))∧

∃x ≥ 1 s.t. status(rNeigh(n)x , t − 1) = R, then 	
else if IsSelWM (parent(n))∧

∃x ≥ 1 s.t. status(rNeigh(n)x , t − 1) = R, then 	
else Skipped(n, t − 1)

Skipped(n, t) is used to determine if a node with memory caused node n to be
skipped at time t.

ResFrom(n, t) := IsSeq(parent(n)) ∧ ∃x ≥ 1 s.t. status(rNeigh(n)x , t − 1) = R

Intuitively, ResFrom(n, t) tells us if at time t we are supposed to resume from
node n or not (only affects certain nodes with memory). As before status(n, t)
is used to describe the status of a node n at time t.

status(n, t) :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

if ¬IsActive(n, t), then I

else if IsSel(n), then SelStatus(n, t)
else if IsSeq(n), then SeqStatus(n, t)
else if IsPar(n), then ParStatus(n, t)
else if IsDec(n), then DecStatus(n, t)
else LeafStatus(n, t)

SelStatus(n, t) :=

⎧
⎪⎪⎨

⎪⎪⎩

if ∃c ∈ Chl(n) s.t. status(c, t) ∈ {S,R},
then status(c, t)

else F

SeqStatus(n, t) :=

⎧
⎪⎪⎨

⎪⎪⎩

if ∃c ∈ Chl(n) s.t. status(c, t) ∈ {F,R},
then status(c, t)

else S

ParStatus(n, t) :=

⎧
⎪⎪⎨

⎪⎪⎩

if ∃c ∈ Chl(n) s.t. status(c, t) = F , then F

else if NumSucc(n, t) ≥ SuccThresh(n), then S

else R

BehaVerify: Verifying Temporal Logic Specifications for Behavior Trees 317

NumSucc(n, t) := |{c : c ∈ Chl(n) ∧ (status(c, t) = S ∨ Skipped(c, t))}|
SuccThresh(n) represents the number of nodes that need to return Success for
the parallel policy to return S. For the two default policies, Success On One and
Success On All, the values would be 1 and |Chl(n)| respectively. Therefore, if a
node is a Parallel node and isn’t I, then if any of the children returned F the node
returns F . Otherwise, it compares against the SuccThresh(n). NumSucc(n, t)
is the number of children of n that returned S at time t. Since Leaf Nodes
can be customized, it is impossible to fully characterize their behavior, and
there are too many Decorator nodes to concisely list here. As such, we have
DecStatus(n, t) ∈ {S, F,R} and LeafStatus(n, t) ∈ {S, F,R}.

4.3 BTCompiler

The encoding for the BTCompiler, as best we understand it, has been included
in [22]. Unfortunately, we were unable to install the tool. However, based on
various examples in the BTCompiler repository, we concluded that the file
‘bt_classic.smv2’ contains the relevant encoding. The encoding presented in [22]
is meant to approximate this, in the same way that the Leaf and Total encodings
approximate the actual encodings used by BehaVerify.

5 Results

We include the results of two main experiments: Checklist and BlueROV. Check-
list is a parameterized example that takes as input an integer n and produces a
BT that contains n checks which must either succeed or a fallback triggers. For
each check we include two LTL specs, one to be proved and one to be disproved.
Leaf_v2, Total_v2, Total_v3, and BTC models were used in this experiment,
where Leaf_v2 is based on the Leaf encoding, Total_v2 and Total_v3 are based
on the Total encoding, and BTC is based on the BTCompiler encoding. The other
example is BlueROV, the controller in an ongoing DARPA project. As this exam-
ple requires blackboard variables which BTCompiler does not support, it is not
included, so only the 3 BehaVerify encodings are considered. We include timing
results for verifying the LTL spec as well as memory usage. Timing values are
based on nuXmv’s ‘time’ command. Maximum Resident Size values are based on
nuXmv’s usage command, which uses getrusage(2) [6]. Maximum Resident Size
is the maximum amount of RAM that is actually used by a process. All tests
were run on a computer using Ubuntu 22.04 with 32 gb of ram and an i7-8700K
Intel processor. Both the tool and instructions on how to recreate these tests
are available3. The tests only consider the time to verify LTL specifications in
nuXmv. Time spent building the model in nuXmv is not included as it never
exceeded .2 s. The time spent converting the BTs to models is not included as it
is also fairly negligible, but can be found in [22].
2 https://github.com/CARVE-ROBMOSYS/

BTCompiler/blob/master/smv/bt_classic.smv.
3 https://github.com/verivital/behaverify.

https://github.com/CARVE-ROBMOSYS/BTCompiler/blob/master/smv/bt_classic.smv
https://github.com/CARVE-ROBMOSYS/BTCompiler/blob/master/smv/bt_classic.smv
https://github.com/verivital/behaverify

318 S. S. Serbinowska and T. T. Johnson

5.1 Checklist and Parallel-Checklist

Fig. 4. Timing and memory results for verifying LTL specifications in nuXmv for
Checklist and Parallel-Checklist. Timeout is set to 5 min. If a timeout occurred, a
value of 350 is used for timing and -1000 for memory. After 3 timeouts, the remaining
tests for the version are skipped. BTC is based on BTCompiler, Leaf_v2 is a model
based on the Leaf encoding, and Total_v2 and Total_v3 are models based on the Total
encoding.

The checklist examples consist of a series of checks that run in order by nested
sequence nodes. Each check consists of a selector node, a safety check leaf node
that can return S or F , and a backup node that can only return S. Thus if
the safety check fails, the selector will run the backup which will return S. This
process continues until each check has been run. See [22] for visual examples.
Parallel-checklist replaces the sequence nodes with parallel nodes. Each check has
two LTL specifications, one True and one False. The True/False specifications
require that if a safety check fails, then a backup is triggered/not triggered.
Due to differences in encodings, the specifications are slightly different for each
version. We include one example here. The remainder can be found in [22].

For Total_v2 and Total_v3:
G(safety_checkX.status = F =⇒ backupX.status = S);
G(safety_checkX.status = F =⇒ !(backupX.status = S));

BehaVerify: Verifying Temporal Logic Specifications for Behavior Trees 319

Checklist Results Discussion. Having re-run the checklist and parallel check-
list experiments three times for BTCompiler only, we have found that the spikes
are present each time. These results can be found in [22]. The results are
extremely similar, so we find it unlikely that this is a fluke. Furthermore, we
note that there is a spike at 19 in both the checklist and parallel-checklist exper-
iments. Since nuXmv is using a BDD model to verify the LTL Specifications,
we assume that there is some sort of awkward break point with the number of
variables that causes the efficiency to greatly suffer at certain points.

Fig. 5. Two examples with 3 children.

Note that Total_v2 works much better on Parallel-Checklist than on Check-
list. This is because of the logic chain created by Selector and Sequence nodes.
Consider the Selector Example in Fig. 5. The status of child3 depends on if child3
is active, which depends on the status of child2, which depends on if child2 is
active, which depends on the status of child1, which depends on if child1 is active,
which depends on if sel0 is active. The chain quickly becomes unmanageable (see
[22] for visual examples of the BTs). This is not the case with Parallel-Checklist.
Consider the Parallel Example in Fig. 5. The status of child3 depends on if child3
is active, which depends only on par0 and what child3 returned last time. Thus
the dependency chain is much shorter and thus Total_v2 performs better on
Parallel-Checklist. Total_v3 avoid this by ‘guiding’ nuXmv through this depen-
dency chain by introducing intermediate variables.

Finally, note that the timing results in Fig. 4 clearly demonstrate that the
Total_v3 encoding outperforms the rest.

5.2 BlueROV

We considered three versions of BlueROV: warnings only, small, and full. The
differences between these versions is what range of values each blackboard vari-
able is allowed to use. See [22] for an image of the BT. We consider 5 sets of
2 LTL specifications. The timeout for each set of specifications was 10min. For
each warning, the first LTL specification requires that if the warning is set to
True, then the appropriate Surface Task is triggered. This specification is False
in all cases except battery low warning. The second LTL specification requires
that if in a given tick a warning is set, then during that tick a surface task will
trigger. This is true for all warnings except the home reached warning.

320 S. S. Serbinowska and T. T. Johnson

Table 1. blueROV, time in seconds to compute LTL

Model LTL Spec Leaf_v2 Total_v2 Total_v3

Warnings only Low battery 0.39 4.16 0.12
Warnings only Emergency stop 0.48 4.21 0.14
Warnings only Home reached 0.66 − 1.70
Warnings only Obstacle 0.54 7.79 0.17
Warnings only Sensor degradation 0.49 4.11 0.13
Small Low battery 23.43 5.06 0.33
Small Emergency stop 30.47 6.40 1.02
Small Home reached 31.48 − 2.58
Small Obstacle 39.34 9.87 0.39
Small Sensor degradation 31.73 5.23 0.34
Full Low battery 79.08 5.54 0.60
Full Emergency stop 156.20 6.49 1.81
Full Home reached 107.05 − 3.59
Full Obstacle 323.00 10.06 1.10
Full Sensor degradation 106.16 6.57 1.46

For the Leaf_v2 encoding, these look as follows for battery:

G(next(battery_low_warning) = 1 ∧ active_node = battery2bb =⇒
(active_node > −1U(active_node = surface)));

G(next(battery_low_warning) = 1 ∧ active_node = battery2bb =⇒
(active_node > −1U(active_node ∈ {surface, surface1, surface2,

surface3, surface4})));
For the Total encodings, these look as follows for battery:

G(next(battery_low_warning) = 1) ∧ battery2bb.active)
=⇒ (surface.active));

G(next(battery_low_warning) = 1) ∧ battery2bb.active)
=⇒ (surface.active|surface1.active|

surface2.active|surface3.active|surface4.active));

BlueROV Results Discussion. The BlueROV models differ from each other
only in the number of values that each blackboard variable can take. Thus based
on the results in Table 1, we can see that the Leaf_v2 encoding has the worst
scaling of the three with respect to blackboard variable size. Total_v3 improves
upon both Total_v2 and Leaf_v2. BTCompiler does not support blackboard
variables.

BehaVerify: Verifying Temporal Logic Specifications for Behavior Trees 321

6 Conclusions and Future Work

We introduced BehaVerify, a tool for turning a py_tree into a .smv file for
use with nuXmv. We consider several possible encodings for this task and com-
pared them to the encoding that BTCompiler uses. The results indicate that the
encoding used by Total_v3 is the best choice.

Future work includes general polish and improvements and expanding sup-
port for the various built-in nodes in py_trees. In addition to this, we plan
to re-work certain elements of BehaVerify. For instance, currently, in order for
BehaVerify to detect blackboard variables in a py_tree using custom leaf nodes,
the user must create a field that BehaVerify looks for within the custom node.
This could certainly be handled better in the future. In terms of encodings, we
plan to focus on Total_v3. An improvement that has been considered, but not
yet implemented, would be to restrict the incoming values to the leaf nodes to
reduce state space. Specifically, in cases where a leaf node does not run, there
is no need to consider the incoming status. Currently, this could be accom-
plished by tying the incoming value to the active value. However, this would
likely cause worse performance for the same reason that Total_v2 performs
worse than Total_v3. Therefore, the intended solution would be to, in some
sense, enumerate all possible input values, which would hopefully shift some of
the burden off of nuXmv and onto BehaVerify.

Acknowledgments. The material presented in this paper is based upon work sup-
ported the Defense Advanced Research Projects Agency (DARPA) through contract
number FA8750-18-C-0089, the Air Force Office of Scientific Research (AFOSR) award
FA9550-22-1-0019, and the National Science Foundation (NSF) through grant number
2028001. Any opinions, findings, and conclusions or recommendations expressed in this
publication are those of the authors and do not necessarily reflect the views of DARPA,
AFOSR, or NSF.

References

1. Biggar, O., Zamani, M.: A framework for formal verification of behavior trees with
linear temporal logic. IEEE Robot. Autom. Lett. 5(2), 2341–2348 (2020). https://
doi.org/10.1109/LRA.2020.2970634

2. Biggar, O., Zamani, M., Shames, I.: On modularity in reactive control architec-
tures, with an application to formal verification (2020). https://doi.org/10.48550/
ARXIV.2008.12515, https://arxiv.org/abs/2008.12515

3. Biggar, O., Zamani, M., Shames, I.: A principled analysis of behavior trees
and their generalisations (2020). https://doi.org/10.48550/ARXIV.2008.11906,
https://arxiv.org/abs/2008.11906

4. Biggar, O., Zamani, M., Shames, I.: An expressiveness hierarchy of behavior trees
and related architectures (2021)

5. Broder, D.: Blackboard documentation (2014). https://forums.unrealengine.com/
t/blackboard-documentation/1795

6. Cavada, R., et al.: The nuXmv symbolic model checker. In: Biere, A., Bloem, R.
(eds.) CAV 2014. LNCS, vol. 8559, pp. 334–342. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-08867-9_22

https://doi.org/10.1109/LRA.2020.2970634
https://doi.org/10.1109/LRA.2020.2970634
https://doi.org/10.48550/ARXIV.2008.12515
https://doi.org/10.48550/ARXIV.2008.12515
https://arxiv.org/abs/2008.12515
https://doi.org/10.48550/ARXIV.2008.11906
https://arxiv.org/abs/2008.11906
https://forums.unrealengine.com/t/blackboard-documentation/1795
https://forums.unrealengine.com/t/blackboard-documentation/1795
https://doi.org/10.1007/978-3-319-08867-9_22
https://doi.org/10.1007/978-3-319-08867-9_22

322 S. S. Serbinowska and T. T. Johnson

7. Colledanchise, M., Cicala, G., Domenichelli, D.E., Natale, L., Tacchella, A.:
Formalizing the execution context of behavior trees for runtime verification of
deliberative policies. In: 2021 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). IEEE (2021). https://doi.org/10.1109/iros51168.
2021.9636129

8. Colledanchise, M., Cicala, G., Domenichelli, D.E., Natale, L., Tacchella, A.: A
toolchain to design, execute, and monitor robots behaviors. CoRR abs/2106.15211
(2021). https://arxiv.org/abs/2106.15211

9. Colledanchise, M., Murray, R.M., Ã-gren, P.: Synthesis of correct-by-construction
behavior trees. In: 2017 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pp. 6039–6046 (2017). https://doi.org/10.1109/IROS.2017.
8206502

10. Colledanchise, M., Natale, L.: Improving the parallel execution of behavior trees.
In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). IEEE (2018). https://doi.org/10.1109/iros.2018.8593504

11. Colledanchise, M., Natale, L.: Analysis and exploitation of synchronized paral-
lel executions in behavior trees. In: 2019 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). IEEE (2019). https://doi.org/10.1109/
iros40897.2019.8967812

12. Colledanchise, M., Natale, L.: Handling concurrency in behavior trees. CoRR
abs/2110.11813 (2021). https://arxiv.org/abs/2110.11813

13. Colledanchise, M., Natale, L.: On the implementation of behavior trees in robotics.
IEEE Robot. Autom. Lett. 6(3), 5929–5936 (2021). https://doi.org/10.1109/lra.
2021.3087442

14. Colledanchise, M., Ã-gren, P.: Behavior Trees in Robotics and AI. CRC Press
(2018). https://doi.org/10.1201/9780429489105

15. Crytek: Behavior tree blackboard (2022). https://docs.cryengine.com/display/
CEPROG/Behavior+Tree+Blackboard

16. EpicGames: Behavior tree overview (2021). https://docs.unrealengine.
com/4.27/en-US/InteractiveExperiences/ArtificialIntelligence/BehaviorTrees/
BehaviorTreesOverview/

17. Ghzouli, R., Berger, T., Johnsen, E.B., Dragule, S., Wąsowski, A.: Behavior trees
in action: a study of robotics applications. In: Proceedings of the 13th ACM SIG-
PLAN International Conference on Software Language Engineering. ACM (2020).
https://doi.org/10.1145/3426425.3426942

18. Giunchiglia, E., Colledanchise, M., Natale, L., Tacchella, A.: Conditional behavior
trees: definition, executability, and applications. In: 2019 IEEE International Con-
ference on Systems, Man and Cybernetics (SMC), pp. 1899–1906 (2019). https://
doi.org/10.1109/SMC.2019.8914358

19. Grunske, L., Winter, K., Yatapanage, N.: Defining the abstract syntax of visual
languages with advanced graph grammars-a case study based on behavior trees.
J. Vis. Lang. Comput. 19(3), 343–379 (2008). https://doi.org/10.1016/j.jvlc.2007.
11.003

20. Ogren, P.: Increasing modularity of UAV control systems using computer game
behavior trees (2012). https://doi.org/10.2514/6.2012-4458

21. Safronov, E., Colledanchise, M., Natale, L.: Task planning with belief behavior
trees. CoRR abs/2008.09393 (2020). https://arxiv.org/abs/2008.09393

22. Serbinowska, S.S., Johnson, T.: Behaverify: Verifying temporal logic specifications
for behavior trees (2022). https://arxiv.org/abs/2208.05360

https://doi.org/10.1109/iros51168.2021.9636129
https://doi.org/10.1109/iros51168.2021.9636129
https://arxiv.org/abs/2106.15211
https://doi.org/10.1109/IROS.2017.8206502
https://doi.org/10.1109/IROS.2017.8206502
https://doi.org/10.1109/iros.2018.8593504
https://doi.org/10.1109/iros40897.2019.8967812
https://doi.org/10.1109/iros40897.2019.8967812
https://arxiv.org/abs/2110.11813
https://doi.org/10.1109/lra.2021.3087442
https://doi.org/10.1109/lra.2021.3087442
https://doi.org/10.1201/9780429489105
https://docs.cryengine.com/display/CEPROG/Behavior+Tree+Blackboard
https://docs.cryengine.com/display/CEPROG/Behavior+Tree+Blackboard
https://docs.unrealengine.com/4.27/en-US/InteractiveExperiences/ArtificialIntelligence/BehaviorTrees/BehaviorTreesOverview/
https://docs.unrealengine.com/4.27/en-US/InteractiveExperiences/ArtificialIntelligence/BehaviorTrees/BehaviorTreesOverview/
https://docs.unrealengine.com/4.27/en-US/InteractiveExperiences/ArtificialIntelligence/BehaviorTrees/BehaviorTreesOverview/
https://doi.org/10.1145/3426425.3426942
https://doi.org/10.1109/SMC.2019.8914358
https://doi.org/10.1109/SMC.2019.8914358
https://doi.org/10.1016/j.jvlc.2007.11.003
https://doi.org/10.1016/j.jvlc.2007.11.003
https://doi.org/10.2514/6.2012-4458
https://arxiv.org/abs/2008.09393
https://arxiv.org/abs/2208.05360

BehaVerify: Verifying Temporal Logic Specifications for Behavior Trees 323

23. Shoulson, A., Garcia, F.M., Jones, M., Mead, R., Badler, N.I.: Parameterizing
behavior trees. In: Allbeck, J.M., Faloutsos, P. (eds.) MIG 2011. LNCS, vol.
7060, pp. 144–155. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-25090-3_13

24. Stonier, D.: PY-trees 2.1.6 module API (2021). https://py-trees.readthedocs.io/
en/devel/modules.html

25. Tumova, J., Marzinotto, A., Dimarogonas, D.V., Kragic, D.: Maximally satisfying
ltl action planning. In: 2014 IEEE/RSJ International Conference on Intelligent
Robots and Systems, pp. 1503–1510 (2014). https://doi.org/10.1109/IROS.2014.
6942755

26. Ögren, P.: Convergence analysis of hybrid control systems in the form of backward
chained behavior trees. IEEE Robot. Autom. Lett. 5(4), 6073–6080 (2020). https://
doi.org/10.1109/LRA.2020.3010747

https://doi.org/10.1007/978-3-642-25090-3_13
https://doi.org/10.1007/978-3-642-25090-3_13
https://py-trees.readthedocs.io/en/devel/modules.html
https://py-trees.readthedocs.io/en/devel/modules.html
https://doi.org/10.1109/IROS.2014.6942755
https://doi.org/10.1109/IROS.2014.6942755
https://doi.org/10.1109/LRA.2020.3010747
https://doi.org/10.1109/LRA.2020.3010747

CHA: Supporting SVA-Like Assertions
in Formal Verification of Chisel Programs

(Tool Paper)

Shizhen Yu1,2 , Yifan Dong1,2 , Jiuyang Liu3 , Yong Li1 ,
Zhilin Wu1,2(B) , David N. Jansen1 , and Lijun Zhang1,2

1 State Key Laboratory of Computer Science, Institute of Software, Chinese
Academy of Sciences, Beijing, China

{yusz,liyong,wuzl,dnjansen,zhanglj}@ios.ac.cn, dong-yf18@tsinghua.org.cn
2 University of Chinese Academy of Sciences, Beijing, China

3 Huazhong University of Science and Technology, Wuhan, China
jiuyang@hust.edu.cn

Abstract. We present CHA, an assertion language and verification tool
for Chisel programs built on top of ChiselTest, where we extend the Chisel
assertion language with SystemVerilog assertions (SVA)-like temporal
operators. This enables formal verification of Chisel hardware designs
against general temporal properties. The effectiveness of the CHA tool is
validated by two case studies, including an open-source Wishbone pro-
tocol adapter design.

Keywords: Chisel · Assertion language · Formal verification

1 Introduction

Working at Register Transfer Level (RTL) is the typical practice in designing
digital systems nowadays. Almost all popular hardware description languages
(HDLs), including Verilog/SystemVerilog [8], create high-level representations of
a digital system at RTL. Recently, Bachrach et al. proposed a new HDL called
Chisel [2], that is embedded in Scala. Chisel features parameterized, modular,
and reusable hardware designs, which greatly enhances the productivity of the
system designers. Since its introduction, Chisel is becoming increasingly pop-
ular in RISC-V processor and SoC designs. For instance, the Rocket Chip [1],
BOOM [14], Nutshell [15] and XiangShan [4] are all designed in Chisel.

In contrast to its agility for system designs, the point where Chisel lags
behind other HDLs is its weak support of formal verification, which is vital
to ensure the functional correctness of Chisel designs. Notably, the well-known
SystemVerilog Assertion Language (SVA) provides rich modalities to express and

Supplementary Information The online version contains supplementary material
available at https://doi.org/10.1007/978-3-031-17108-6_20.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
B.-H. Schlingloff and M. Chai (Eds.): SEFM 2022, LNCS 13550, pp. 324–331, 2022.
https://doi.org/10.1007/978-3-031-17108-6_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-17108-6_20&domain=pdf
http://orcid.org/0000-0003-1727-1301
http://orcid.org/0000-0002-2173-6899
http://orcid.org/0000-0002-2488-0693
http://orcid.org/0000-0002-7301-9234
http://orcid.org/0000-0003-0899-628X
http://orcid.org/0000-0002-6636-3301
http://orcid.org/0000-0002-3692-2088
https://doi.org/10.1007/978-3-031-17108-6_20
https://doi.org/10.1007/978-3-031-17108-6_20

CHA: Supporting SVA-Like Assertions in Chisel Programs 325

to verify general temporal properties, e.g. “Signal p will remain high until signal
q becomes low.” In contrast, the standard verification tool ChiselTest1 [10] for
Chisel only supports assertions that express simple temporal properties, such as
“The value of wire a is equal to the value of wire b in the previous clock cycle”.

Contribution. In this work, we fill in this gap and present CHA, a Chisel
specification and verification tool, which extends the Chisel assertion language
so that SVA-like temporal properties can be specified and verified against Chisel
RTL designs. In particular, our tool is easy to use for those who are familiar with
SVA, since we follow the constructs of SVA closely to define our specification
language.

Related Work. As mentioned above, our work is inspired by SVA; in fact,
CHA is built on top of ChiselTest, which only supports simulation and formal
verification of Boolean properties and simple temporal properties. Tsai’s Mas-
ter’s thesis [13] extends the syntax of the assertion language of ChiselTest and
combines it with simulation techniques to verify designs. Nevertheless, CHA is
more expressive than the assertions in [13], as we support unbounded sequence
repetition; moreover, we target formal verification instead of simulation.

ChiselVerify [5] adapts the Unified Verification Method (UVM) to Chisel, but
it focuses on testing, instead of formal verification.

Xiang et al. considered also the formal verification of Chisel programs [17].
Nevertheless, CHA uses an approach different from that in [17]: CHA allows
us to write the specifications directly in Chisel programs, while Xiang et al.
first compile Chisel programs down to SystemVerilog programs, then specify the
properties in SVA, and finally solve the verification problem by SymbiYosys [16].

The rest of this paper is organized as follows. In Sect. 2, we describe the
architecture of CHA. Then in Sect. 3, we describe how CHA can be used to
specify and verify hardware RTL designs in Chisel.

2 Tool Data Flow of CHA

In this section, we describe the data flow of CHA (see Fig. 1). The input of CHA
consists of a Chisel design and a CHA assertion that states the temporal property
the design needs to satisfy.

Our verification procedure works as follows. The Chisel design is first trans-
lated to intermediary descriptions in high- and low-level FIRRTL and eventually
to a transition system K. Our CHA assertion is wrapped within an Annotation
metadata container through all levels of FIRRTL descriptions and eventually
formalized as a Property Specification Language (PSL) formula ϕ. We wrap the
assertion inside an Annotation so that the FIRRTL compiler automatically
associates the construct names in FIRRTL intermediates with the original in
Chisel, as indicated by the dotted lines between the Annotations and FIRRTL
1 https://github.com/ucb-bar/chiseltest.

https://github.com/ucb-bar/chiseltest

326 S. Yu et al.

Chisel FIRRTL Compiler

BtorMC

Design

CHA Temporal
Property

Spot

BA

Transition
System

Transition
System

Output

Input

Result

Product

High
FIRRTL

ChiselTest

btor2

Low
FIRRTL

Anno-
tation

Anno-
tation

Fig. 1. Detailed data flow of CHA: Upon providing a Design under test and an Asser-
tion, CHA provides the Result (“check passes” or a counterexample trace).—Existing
data formats/documents are in white wavy boxes. CHA adds the data in blue wavy
boxes and transformations to/from them. Green rectangles show external tools. (Color
figure online)

descriptions in Fig. 1. In this way, we can synchronize design and assertion later
and easily recover the original Chisel construct names in the witness trace if the
assertion is found violated, as indicated by the dotted arrow from the transition
system K to Result in Fig. 1; this helps the designer to locate bugs.

To support the verification of a more powerful assertion language than that of
ChiselTest, we adopt automata-theoretic model checking. Once the PSL formula
ϕ of the assertion is ready, the existing tool Spot [6] is used to construct a Büchi
automaton (BA) that describes ϕ being violated at some point. This BA is then
translated to a transition system in the same format as the existing translation
of the Chisel design under test. The product between the two is stored in btor2
format, which the existing bounded model checker BtorMC [12] uses. If BtorMC
finds the product not empty, it stores the trace as a counterexample for easier
viewing; an example of such a trace is in Fig. 2.

We now describe the most important steps of this process one by one.

Specifying Properties in CHA. CHA is as expressive as SVA and it supports
almost all operators and syntactic sugar in SVA, such as sequence concatenation,
sequence repetition, suffix implication and linear temporal logic (LTL) operators.
Due to the fact that Chisel and Scala reserve some tokens that are identical to
SVA operators, for example “##”, we have to use different tokens; the detailed
syntax can be downloaded as electronic material from Springer’s proceedings
webpage or from [18].

Pass Assertion to FIRRTL and Preprocess. FIRRTL is an intermediate
representation of Chisel, which is used during compiler optimizations; it can also
emit equivalent circuits written in other language (e.g. Verilog).

As described above, we wrap our assertions into Annotation containers of
FIRRTL, since the compiler will then maintain the correspondence of the signal
and construct names through all transformations.

CHA: Supporting SVA-Like Assertions in Chisel Programs 327

Generate Transition System from Büchi Automaton. We utilize the
external tool Spot [6], which takes as input our given temporal property ϕ (for
example, expressed in PSL syntax) and constructs an ω-automaton that accepts
the language of all words that violate ϕ at some point.

We let Spot output the simplest kind of ω-automaton, namely a Büchi
automaton.However, there might be non-deterministic transitions in the automa-
ton (i.e. a state s may have multiple successors upon the same input), while
transition systems in FIRRTL need to be deterministic. We make the BA deter-
ministic by using auxiliary input variables to resolve non-deterministic choices.
For example, if state s1 has two successors, say s2 and s3, on the same input
a, we add a fresh input variable v and let s1 transition to s2 on a ∧ ¬v and
transition to s3 on a ∧ v. Further, Büchi automata generated by Spot may not
be input-enabled, i.e. there may be states that have no successor at all for some
inputs. We add a dead state to make the automaton input-enabled.

Transition System Product. At this point, we have obtained two transition
systems from design and assertion, and we have to construct the product of the
two. Because both transition systems are stored symbolically, we take the design
transition system as the backbone and add a state variable baState; this variable
is initialized and updated according to the transitions of the Büchi automaton.

After constructing the product, we add some auxiliary variables to implement
the liveness-to-safety algorithm described in [3].

Model Checking. We reuse the transformation from transition system to the
btor2 file format in ChiselTest. Then, we invoke the hardware model checker
BtorMC [12] to verify the property. BtorMC uses bounded model checking (BMC)
to verify the property, or to falsify it and find a counterexample.BMC only checks
the system up to a given number of steps, and will not find counterexamples that
are longer.

ChiselTest computes the trace violating the property based on the witness
given by BtorMC and the transition system of design, and we rename the signal
names back to their name in Chisel to improve readability. We remark that we
can also utilize other model checkers that support btor2 in this process, such as
AVR [7] or Pono [11].

Tool Availability. Our tool CHA is publicly available at https://github.com/
iscas-tis/CHA.

3 Case Studies

To demonstrate the effectiveness of CHA, we apply it to two Chisel designs: a
simple GCD module and a Wishbone protocol adapter design. The two designs
are linked from the above github repository, file README.md.

3.1 GCD Module with 4-Bits Inputs

As a proof of concept, we consider a Chisel module that implements the
Euclidean algorithm to compute the GCD of two input operands x and y. Besides

https://github.com/iscas-tis/CHA
https://github.com/iscas-tis/CHA
https://github.com/iscas-tis/CHA/blob/testSVA/README.md#gcd-example

328 S. Yu et al.

Fig. 2. The witness of the property violation (We omit some cycles in the middle.

the result output, we also have an output signal busy. When busy is low, the
module will load the values of the two operands. Then in every cycle, the larger
number out of x and y will be reduced by the smaller one until one of them
becomes zero. Signal busy will stay high during the GCD computation process
so to refute possible other input operands, and it will become low one cycle after
the computation is completed, as shown in Fig. 2. Thus, we can measure how
many cycles the calculation of the GCD takes by counting the number of cycles
when busy is high. Assume that we want to check whether the program needs
at most 15 cycles to compute the GCD. We can formalize this property as:

ap(busy) |–> ###(1, 15) ap(!busy).

Here |–> designates implication: if its left formula ap(busy) holds, the right
one should hold as well; the operator ### designates a delay of the specified
minimum and maximum number of cycles. Therefore, this assertion means that
every time the atomic proposition busy is high, it must become low again within
1–15 cycles. When we ask CHA to verify this assertion, it concludes that the
property can be violated and provides a witness, as shown in Fig. 2.

From this figure, we can see that cycle #0 is an initialization cycle and signal
busy is initialized to low in cycle #1, indicating the two operands x and y have
been successfully loaded. The counterexample operands x and y CHA provides
are 1 and 15, respectively, corresponding to the value 1 and F occurring in
cycle #2. We can see that in cycle #17, x becomes 0, indicating the termination
of the computation. Thus busy becomes low in the cycle after that, i.e., cycle #18.
It follows that the computation starts in cycle #2 and terminates in cycle #17,
yielding in total 16 cycles, so our property is violated.

In fact, we can observe that the GCD module needs at most 16 cycles for
operands with 4 bits. If we increase the allowed delay to 1–16 cycles, CHA will
not find a counterexample. Since the property is bounded, any counterexample
must be of bounded length, and we conclude that the following property holds:

ap(busy) |–> ###(1, 16) ap(!busy)

3.2 Wishbone Interface

The Wishbone protocol provides a standard way of data transfer between differ-
ent IP cores (predesigned parts of hardware circuits). Basically, in a Wishbone
protocol as depicted in Fig. 3, there exists a host adapter and a device adapter.

CHA: Supporting SVA-Like Assertions in Chisel Programs 329

Fig. 3. Interfaces for host adapter and device adapter

The protocol works as follows: the host adapter first sets cyc to announce it
wants to use the bus. After that, it sends the address addr and (for writes) the
data data; we indicates whether it is a write or read operation. Then the host
adapter asserts the signal stb. When the device adapter receives the data, it sets
ack to high, otherwise it sets err to high. When the host adapter receives this
status, the communication is completed and stb will be negated.

We now apply CHA to verify the Chisel implementation of the Wishbone
protocol adapter; we modified it based on [9]. We wish to check whether in the
program, stb will always stay high before the host adapter receives ack or err
from the device adapter, which is formalized as below. (Outputs of the host
adapter are annotated with the subscript o and inputs with i.)

ap(stbo) |–> |– ap(stbo) U ap(acki||erri) –| || G ap(stbo). (1)

Since symbols “(” and “)” are reserved in Scala, we use “|– ” and “ –|” instead
here to give priority to the U-operator over |–>. Using CHA to verify the prop-
erty, we can find it is satisfied within 150 cycles.

ChiselTest has a past operator that can also express temporal properties
but with an observation range in a fixed number of cycles. For example, if we
take three cycles as observation range, the most similar assertion that could be
written without CHA would be:

(! past (stbo, 2) || past(acki || erri, 2) || past(acki || erri) ||
past (stbo) && (acki || erri) || past(stbo) && stbo) &&
(! past (stbo) || past(acki || erri) || (acki || erri, 2) || stbo)

This formula cannot catch the full meaning of our formula (1), as Wishbone
allows an unspecified number of wait states if one party needs more time to
respond. Verification of unbounded behaviors of a Chisel RTL design is needed
not only for Wishbone, but in many other instances.

4 Conclusion and Future Work

We have presented CHA, an SVA-like assertion language and a formal verification
tool for Chisel. By applying CHA to two Chisel programs, we are convinced that

330 S. Yu et al.

our tool provides a useful step towards more correct system designs. As for
future work, we plan to make our tool more accessible to system designers, such
as providing graphical user interface and better ways to locate the errors found
in the Chisel designs.

Acknowledgement. This work is partially supported by the Strategic Priority
Research Program of the Chinese Academy of Sciences and the NSFC grants No.
61872340, 61836005, 62102407.

References

1. Asanović, K., Avizienis, R., Bachrach, J., et al.: The rocket chip generator. Techni-
cal report UCB/EECS-2016-17, EECS Department, UC Berkeley (2016). http://
www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-17.html

2. Bachrach, J., Vo, H., Richards, B., et al.: Chisel: constructing hardware in a Scala
embedded language. In: DAC, pp. 1212–1221. ACM (2012). https://doi.org/10.
1145/2228360.2228584

3. Biere, A., Artho, C., Schuppan, V.: Liveness checking as safety checking. Electr.
Notes Theor. Comput. Sci. 66(2), 160–177 (2002). https://doi.org/10.1016/S1571-
0661(04)80410-9

4. Chinese Academy of Sciences, Institute of Computing Technology: Xiangshan CPU
(2022). https://github.com/OpenXiangShan/XiangShan

5. Dobis, A., et al.: ChiselVerify: an open-source hardware verification library for
chisel and scala. In: NorCAS, pp. 1–7. IEEE (2021). https://doi.org/10.1109/
NorCAS53631.2021.9599869

6. Duret-Lutz, A., Lewkowicz, A., Fauchille, A., Michaud, T., Renault, É., Xu, L.:
Spot 2.0 — a framework for LTL and ω-automata manipulation. In: Artho, C.,
Legay, A., Peled, D. (eds.) ATVA 2016. LNCS, vol. 9938, pp. 122–129. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-46520-3_8

7. Goel, A., Sakallah, K.: AVR: abstractly verifying reachability. In: TACAS 2020.
LNCS, vol. 12078, pp. 413–422. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-45190-5_23

8. IEEE standard for SystemVerilog: unified hardware design, specification, and verifi-
cation language, pp. 1800–2017. IEEE (2018). https://doi.org/10.1109/IEEESTD.
2018.8299595

9. Khan, M.H., Kashif, S.: Caravan (2021). https://github.com/merledu/caravan
10. Laeufer, K., Bachrach, J., Sen, K.: Open-source formal verification for Chisel. In:

WOSET (2021). https://woset-workshop.github.io/WOSET2021.html
11. Mann, M., et al.: Pono: a flexible and extensible SMT-based model checker. In:

Silva, A., Leino, K.R.M. (eds.) CAV 2021. LNCS, vol. 12760, pp. 461–474. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-81688-9_22

12. Niemetz, A., Preiner, M., Wolf, C., Biere, A.: Btor2 , BtorMC and Boolector 3.0.
In: Chockler, H., Weissenbacher, G. (eds.) CAV 2018. LNCS, vol. 10981, pp. 587–
595. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96145-3_32

13. Tsai, Y.C.A.: Dynamic verification library for chisel. Master’s thesis, University
of California, Berkeley (2021). http://www2.eecs.berkeley.edu/Pubs/TechRpts/
2021/EECS-2021-132.html, Technical report UCB/EECS-2021-132

14. University of California, Berkeley: BOOM: the Berkeley out-of-order RISC-V pro-
cessor (2020). https://github.com/riscv-boom

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-17.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-17.html
https://doi.org/10.1145/2228360.2228584
https://doi.org/10.1145/2228360.2228584
https://doi.org/10.1016/S1571-0661(04)80410-9
https://doi.org/10.1016/S1571-0661(04)80410-9
https://github.com/OpenXiangShan/XiangShan
https://doi.org/10.1109/NorCAS53631.2021.9599869
https://doi.org/10.1109/NorCAS53631.2021.9599869
https://doi.org/10.1007/978-3-319-46520-3_8
https://doi.org/10.1007/978-3-030-45190-5_23
https://doi.org/10.1007/978-3-030-45190-5_23
https://doi.org/10.1109/IEEESTD.2018.8299595
https://doi.org/10.1109/IEEESTD.2018.8299595
https://github.com/merledu/caravan
https://woset-workshop.github.io/WOSET2021.html
https://doi.org/10.1007/978-3-030-81688-9_22
https://doi.org/10.1007/978-3-319-96145-3_32
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2021/EECS-2021-132.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2021/EECS-2021-132.html
https://github.com/riscv-boom

CHA: Supporting SVA-Like Assertions in Chisel Programs 331

15. University of Chinese Academy of Sciences: NutShell (2021). https://github.com/
OSCPU/NutShell

16. Wolf, C., Harder, J., Engelhardt, N., et al.: SymbiYosys: front-end for Yosys-based
formal verification flows (2022). https://github.com/YosysHQ/sby

17. Xiang, M., Li, Y., Tan, S., Zhao, Y., Chi, Y.: Parameterized design and formal
verification of multi-ported memory. In: ICECCS, pp. 33–41. IEEE (2022). https://
doi.org/10.1109/ICECCS54210.2022.00013

18. Yu, S., Dong, Y., et al.: CHA: Supporting SVA-like assertions in formal verification
of Chisel programs (2022). https://github.com/iscas-tis/CHA

https://github.com/OSCPU/NutShell
https://github.com/OSCPU/NutShell
https://github.com/YosysHQ/sby
https://doi.org/10.1109/ICECCS54210.2022.00013
https://doi.org/10.1109/ICECCS54210.2022.00013
https://github.com/iscas-tis/CHA

Runtime Methods

Runtime Verification with Imperfect
Information Through Indistinguishability

Relations

Angelo Ferrando1(B) and Vadim Malvone2

1 Department of Informatics, Bioengineering, Robotics and Systems Engineering,
University of Genova, Genova, Italy

angelo.ferrando@unige.it
2 LTCI, Telecom Paris, Institut Polytechnique de Paris, Palaiseau, France

vadim.malvone@telecom-paris.fr

Abstract. Software systems are hard to trust, especially when
autonomous. To overcome this, formal verification techniques can be
deployed to verify such systems behave as expected. Runtime Verifica-
tion is one of the most prominent and lightweight approaches to verify
the system behaviour at execution time. However, standard Runtime
Verification is built on the assumption of perfect information over the
system, that is, the monitor checking the system can perceive every-
thing. Unfortunately, this is not always the case, especially when the
system under analysis contains rational/autonomous components and is
deployed in real-world environments with possibly faulty sensors. In this
work, we present an extension of the standard Runtime Verification of
Linear Temporal Logic properties to consider scenarios with imperfect
information. We present the engineering steps necessary to update the
verification pipeline, and we report the corresponding implementation
when applied to a case study involving robotic systems.

Keywords: Runtime Verification · Autonomous Systems · Imperfect
Information

1 Introduction

Developing quality software is a very demanding task [13]. Many are the rea-
sons, but the complexity and presence of autonomous behaviours are definitely
amongst them. Techniques that were developed to approach the development of
monolithic systems may not work as well for distributed and autonomous ones.
This does not only represent a technological issue, but an engineering one as
well. In the past decades, we all have been witnesses of technological advances
in the software engineering research area, especially when focused on the actual
software development. However, the need of re-engineering does not only concern
software development, but its verification as well. As software changes, so the
ways to verify it need to change. Runtime Verification (RV), as other verification
techniques, is not free from such changes.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
B.-H. Schlingloff and M. Chai (Eds.): SEFM 2022, LNCS 13550, pp. 335–351, 2022.
https://doi.org/10.1007/978-3-031-17108-6_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-17108-6_21&domain=pdf
http://orcid.org/0000-0002-8711-4670
http://orcid.org/0000-0001-6138-4229
https://doi.org/10.1007/978-3-031-17108-6_21

336 A. Ferrando and V. Malvone

Runtime Verification [1,12] is a formal verification technique that allows the
verification of the runtime behaviour of a software/hardware system of interest.
Differently from other verification techniques, RV is not exhaustive, since it
focuses on the actual system execution. That is, a violation of the expected
behaviour is concluded only if such violation is observed in the execution trace.
Nevertheless, RV is a lightweight technique, because it does not check all possible
system’s behaviours, and by doing this, it scales better than its static verification
counterparts (which usually suffer from the state space explosion problem).

RV was born after static verification, such as model checking [7], and it inher-
ited much from the latter; especially on how to specify the formal properties to
verify. One of the most used formalisms in model checking, and by consequence in
RV, is Linear Temporal Logic (LTL) [14]. We will present its syntax and seman-
tics along the paper, but for now, we only focus on the aspect of LTL on which
this work is mainly focused on, that is its implicit assumption of perfect informa-
tion over the system. Indeed, LTL verification is usually performed assuming the
system under analysis offers all the information needed for the verification [5].
This is translated at the verification level into the generation of atomic propo-
sitions that denote what we know about the system, and are used to verify the
properties of interest. However, this is not always the case. Especially when the
system to verify contains autonomous, or distributed, or even faulty compo-
nents (like faulty sensors in real-world environments, e.g. any robotics scenario).
In such cases, to assume all the needed information is available is too optimistic.
Naturally, as we will better elaborate in related work section, other works on
handling LTL RV with imperfect information exist [2,3,10,11,16]. Nevertheless,
this is the first work that tackles the problem at its foundations, and without the
need of creating a new verification pipeline (which in this case consists on how
to synthesise the monitor to verify the LTL property). Specifically, this is the
first attempt of extending the standard monitor’s synthesis pipeline to explicitly
take into consideration imperfect information.

In this paper, we formally define the notion of imperfect information w.r.t. the
monitor’s visibility over the system, and we then re-engineer the LTL monitor’s
synthesis pipeline to recognise such visibility information. We also present the
details on the prototype that has been implemented to support our claims, and
to provide the community an LTL monitoring library that natively supports
imperfect information. Moreover, we show some possible uses of such prototype
in a realistic case study.

The paper’s structure is as follows. Section 2 reports preliminaries notions
that are necessary to fully understand the paper contribution. Section 3 formally
presents the notion of imperfect information, its implication at the monitoring
level and the resulting re-engineering of the standard LTL monitor’s synthesis
pipeline. Section 4 reports the details on the prototype that has been developed
as a result of the re-engineering process, along with some experiments of its use
in a realistic case study. Section 5 positions the paper against the state of the
art. Section 6 concludes the paper and discusses some possible future directions.

Runtime Verification with Imperfect Information 337

2 Preliminaries

A system S has an alphabet Σ with which it is possible to define the set 2Σ of all
its events. Given an alphabet Σ, a trace σ = ev0ev1 . . ., is a sequence of events
in 2Σ . With σ(i) we denote the i-th element of σ (i.e., evi), σi the suffix of σ
starting from i (i.e., evievi+1 . . .), (2Σ)∗ the set of all possible finite traces over
Σ, and (2Σ)ω the set of all possible infinite traces over Σ.

The standard formalism to specify properties in RV is Linear Temporal Logic
(LTL [14]). The relevant parts of the syntax of LTL are the following:

ϕ := p | ¬ϕ | (ϕ ∨ ϕ) | �ϕ | (ϕ U ϕ)

where p ∈ Σ is an atomic proposition, ϕ is a formula, � stands for next-
time, and U stands for until. In the rest of the paper, we also use the standard
derived operators, such as (ϕ → ϕ′) instead of (¬ϕ ∨ ϕ′), ϕ R ϕ′ instead of
¬(¬ϕU¬ϕ′), �ϕ (always ϕ) instead of (false R ϕ), and ♦ϕ (eventually ϕ)
instead of (trueUϕ).

Let σ ∈ (2Σ)ω be an infinite sequence of events over Σ, the semantics of LTL
is as follows:

σ |= p if p ∈ σ(0)
σ |= ¬ϕ if σ �|= ϕ

σ |= ϕ ∨ ϕ′ if σ |= ϕ or σ |= ϕ′

σ |= �ϕ if σ1 |= ϕ

σ |= ϕUϕ′ if ∃i≥0.σ
i |= ϕ′ and ∀0≤j<i.σ

j |= ϕ

A trace σ satisfies an atomic proposition p, if p belongs to σ(0); which means,
p holds in the initial event of the trace σ. A trace σ satisfies the negation of the
LTL property ϕ, if σ does not satisfy ϕ. A trace σ satisfies the disjunction of two
LTL properties, if σ satisfies at least one of them. A trace σ satisfies next-time
ϕ, if the suffix of σ starting in the next step (σ1) satisfies ϕ. Finally, a trace σ
satisfies ϕUϕ′, if there exists a suffix of σ s.t. ϕ′ is satisfied, and for all suffixes
before it, ϕ holds. Thus, given an LTL property ϕ, we denote �ϕ� the language
of the property, i.e., the set of traces which satisfy ϕ; namely �ϕ� = {σ | σ |= ϕ}.

In Definition 1, we present a general and formalism-agnostic definition of
a monitor. Informally, a monitor is a function that, given a trace of events in
input, returns a verdict which denotes the satisfaction (resp., violation) of a
formal property over the trace.

Definition 1 (Monitor). Let S be a system with alphabet Σ, σ a finite trace,
and ϕ be an LTL property. Then, a monitor for ϕ is a function Monϕ : (2Σ)∗ →
B3, where B3 = {�,⊥, ?}:

Monϕ(σ) =

⎧
⎪⎨

⎪⎩

� ∀u∈(2Σ)ω .σ • u ∈ �ϕ�

⊥ ∀u∈(2Σ)ω .σ • u /∈ �ϕ�

? otherwise

where • is the standard trace concatenation operator.

338 A. Ferrando and V. Malvone

Intuitively, a monitor returns � if all continuations (u) of σ satisfy ϕ; ⊥ if all
possible continuations of σ violate ϕ; ? otherwise. The first two outcomes are
standard representations of satisfaction and violation, while the third is specific
to RV. In more detail, it denotes when the monitor cannot conclude any verdict
yet. This is closely related to the fact that RV is applied while the system is still
running, and future events may still change the verdict. For instance, a property
might be currently satisfied (resp., violated) by the system, but violated (resp.,
satisfied) in the (still unknown) future. The monitor can only safely conclude
any of the two final verdicts (� or ⊥) if it is sure such verdict will never change.
The addition of the third outcome symbol ? helps the monitor to represent its
position of uncertainty w.r.t. the current system execution.

A monitor function is usually implemented as a Finite State Machine (FSM),
specifically a Moore machine (FSM where the output value of a state is only
determined by the state) [4,5]. A Moore machine can be defined as a tuple
〈Q, q0, Σ,O, δ, γ〉, where Q is a finite set of states, q0 is the initial state, Σ is
the input alphabet, O is the output alphabet, δ : Q × Σ → Q is the transition
function mapping a state and an event to the next state, and γ : Q → O is the
function mapping a state to the output alphabet.

In [5], Bauer et al.. present the sequence of steps required to generate from
an LTL formula ϕ the corresponding Moore machine instantiating the Monϕ

function (as summarised in Fig. 1).

Input (i)Formula (ii)NBA (iii)Emptiness per state (iv)NFA (v)DFA (vi)FSM

ϕ Aϕ F ϕ Âϕ Ãϕ

ϕ Monϕ

ϕ A¬ϕ F ¬ϕ Â¬ϕ Ã¬ϕ

Fig. 1. Steps required to generate an FSM from an LTL formula ϕ. NBA is Non-
deterministic Büchi Automaton, NFA is Non-deterministic Finite Automaton, and DFA
is Deterministic Finite Automaton.

Given an LTL property ϕ, a series of transformations is performed on ϕ, and
its negation ¬ϕ. Considering ϕ in step (i), first, a corresponding NBA Aϕ is gen-
erated in step (ii). This can be obtained using Gerth et al..’s algorithm [9]. Such
automaton recognises the set of infinite traces that satisfy ϕ (according to LTL
semantics). Then, each state of Aϕ is evaluated; the states that when selected as
initial states in Aϕ do not generate the empty language are then added to the
Fϕ set in step (iii). With such a set, an NFA Âϕ is obtained from Aϕ by simply
substituting the final states of Aϕ with Fϕ in step (iv). Âϕ recognises the finite
traces (prefixes) that have at least one infinite continuation satisfying ϕ (since
the prefix reaches a state in Fϕ). After that, Âϕ is transformed (Rabin-Scott
powerset construction [15]) into its equivalent deterministic version Ãϕ in step
(v); this is possible since deterministic and non-deterministic finite automata
have the same expressive power. The exact same steps are performed on ¬ϕ,
which bring to the generation of the Ã¬ϕ counterpart. The difference between
Ãϕ and Ã¬ϕ is that the former recognises finite traces which have continuations

Runtime Verification with Imperfect Information 339

satisfying ϕ, while the latter recognises finite traces which have continuations
violating ϕ. Finally, a Moore machine can be generated as a standard automata
product between Ãϕ and Ã¬ϕ in the final step (vi), where the states are denoted
as tuples (q, q′), with q and q′ belonging to Ãϕ and Ã¬ϕ, respectively. The out-
puts are then determined as: � if q′ does not belong to the final states of Ã¬ϕ,
⊥ if q does not belong to the final states of Ãϕ, and ? otherwise. This brings us
to the revised monitor construction as follows.

Definition 2 (Monitor as FSM). Given an LTL formula ϕ and a finite trace
σ, the revised monitor is defined as follows:

Monϕ(σ) =

⎧
⎪⎨

⎪⎩

� σ /∈ L(Ã¬ϕ)
⊥ σ /∈ L(Ãϕ)
? σ ∈ L(Ãϕ) ∧ σ ∈ L(Ã¬ϕ)

where L(A) denotes the language recognised by automaton A.

3 Runtime Verification with Imperfect Information

Up to now, we have focused on standard RV of LTL properties. However, such
standard approach, as presented in Sect. 2, is based upon a strong assumption:

The absence of an atomic proposition is the same as the negation of the latter.

This might be true when we apply formal verification to systems with perfect
information (i.e., systems where each involved component has a perfect under-
standing and vision of the entire system). Unfortunately, even though this may be
the case for monolithic and traditional systems, it is not the case for autonomous
systems, or in general, systems exploiting artificial intelligence. In such scenar-
ios, it is very common to not have a complete vision over the system. Let us
just think about robotics scenarios, where a robot can be deployed in an envi-
ronment of which it can only access what its sensors provide. Such information
can be incomplete. Moreover, since RV is based upon the notion of monitoring
the system under analysis; if the verified component has no complete access over
the system’s information, by consequence, also the monitor does not. Thus, we
may find ourselves in scenarios where our runtime monitors observe only partial
information of the system. Because of this, the trace of events passed to the mon-
itor to analyse may not contain some of the atomic propositions, and this would
be erroneously classified as the negation of such atomic propositions. Instead,
we need to give importance to the difference between knowing when something
is not true, w.r.t knowing when something is simply not known.

3.1 How Can We Formally Represent the Imperfect Information?

As recognised previously in the paper, the problem of using LTL when the system
has imperfect information is in confusing the absence of an atomic proposition,

340 A. Ferrando and V. Malvone

with its negation. Since in case of imperfect information, the trace may not
contain atomic propositions which are not known (i.e., cannot be observed), we
need a way to characterise such absence of information, explicitly. To do this,
we follow an approach similar to [6], where atomic propositions are duplicated.

One possible way to represent imperfect information is by allowing indistin-
guishability on atomic propositions Σ. To do this we introduce an equivalence
relation ∼ over Σ. Intuitively, given two atomic propositions p, q ∈ Σ, we say
that they are indistinguishable if and only if p ∼ q. The relation ∼ gives us the
information available to the monitor. Moreover, given an equivalence relation ∼
we define a witness for each equivalence class. That is, given an equivalence class
γ, we define the witness of γ with the symbol [γ].

To handle the verification process in the imperfect information context, we
need to do some extensions. First of all, we can not simply use the set of atomic
propositions Σ. In particular, we need to replace Σ with a new set Σ̄ that is
defined as follows: for each p ∈ Σ we have p� ∈ Σ̄ and p⊥ ∈ Σ̄. That is, we
duplicate the set of atomic proposition to make the truth value explicit.

Without losing generality, we only consider LTL formulas in Negation Normal
Form (NNF). An LTL in NNF has only negations at the atom levels (i.e., we only
have ¬p). Given an LTL formula, its NNF can be easily obtained by propagating
all negations to the atoms. For instance, if we had ¬ �p, we would rewrite it as
�¬p. The same goes for the other operators.

First, we present how to generate the explicit version of an LTL formula.

Definition 3. Given an LTL formula ϕ in NNF and the set of equivalence
classes Γ , we define the explicit version of ϕ as follows:

ε(p) = [γ]�
ε(¬p) = [γ]⊥

ε(ϕ ∨ ϕ′) = ε(ϕ) ∨ ε(ϕ′)
ε(�ϕ) = �ε(ϕ)

ε(ϕUϕ′) = ε(ϕ)U ε(ϕ′)

where γ ∈ Γ and p ∈ γ.

We now present how to construct the explicit and visible versions of a trace.

Definition 4. Given a trace σ and a set Σ, we define the explicit version of σ
as σe, for each element σ(i) as follows:

– for all p ∈ σ(i), p� ∈ σe(i);
– for all p ∈ Σ \ σ(i), p⊥ ∈ σe(i).

Definition 5. Given an explicit trace σe and the set of equivalence classes Γ ,
we define the visible version of σe as σv, for each σ(i) and γ ∈ Γ as follows:

– [γ]� ∈ σv(i) if and only if for all p ∈ γ, p� ∈ σe(i);
– [γ]⊥ ∈ σv(i) if and only if for all p ∈ γ, p⊥ ∈ σe(i).

Runtime Verification with Imperfect Information 341

Given the above elements, we define a three-valued semantics for LTL:

(σ |= p) = � if p� ∈ σ(0)
(σ |= p) = ⊥ if p⊥ ∈ σ(0)
(σ |= ¬ϕ) = � if (σ �|= ϕ) = �
(σ |= ¬ϕ) = ⊥ if (σ �|= ϕ) = ⊥
(σ |= ϕ ∨ ϕ′) = � if (σ |= ϕ) = � or (σ |= ϕ′) = �
(σ |= ϕ ∨ ϕ′) = ⊥ if (σ |= ϕ) = ⊥ and (σ |= ϕ′) = ⊥
(σ |= �ϕ) = � if (σ1 |= ϕ) = �
(σ |= �ϕ) = ⊥ if (σ1 |= ϕ) = ⊥
(σ |= ϕUϕ′) = � if ∃i≥0.(σi |= ϕ′) = � and ∀0≤j<i.(σj |= ϕ) = �
(σ |= ϕUϕ′) = ⊥ if ∀i≥0.(σi |= ϕ′) = ⊥ or ∃0≤j<i.(σj |= ϕ) = ⊥

In all the other cases the truth value is undefined (uu).
To help the reader, we conclude the section with the following example.

Example 1. Consider the set Σ = {p, q, r}, the formula φ = �r, and a trace σ
where σ(1) = {p, q}. Furthermore, assume p ∼ r, this means that the monitor
cannot distinguish between the atomic propositions p and r. In the context of
imperfect information, we have Σ̄ = {p�, q�, r�, p⊥, q⊥, r⊥}. By Definition 3, we
have the explicit LTL version ε(φ) = �[γ�], where γ = {p, r} is the equivalence
class defined over ∼. By Definition 4–5, we generate the explicit trace σe where
σe(1) = {p�, q�, r⊥} and visible trace σv where σv(1) = {q�}. Thus, given the
three-valued LTL semantics, ε(φ) is undefined. Indeed, to satisfy (resp., falsify)
the original formula ϕ, the monitor has to check that both p� and r� (resp., p⊥
and r⊥) are verified since they belong to the same equivalence class γ.

3.2 Re-engineering Monitor with Imperfect Information

Given an LTL formula and a visible trace for the monitor, we need a way to use
them to perform RV. This can be obtained by extending the standard pipeline
for generating LTL monitors (see Fig. 1). Such extension is based on two spe-
cific modifications: (i) we use the explicit version of the LTL formula, following
Definition 3; (ii) we modify the product between Ãϕ and Ã¬ϕ to generate the
Moore machine denoting the monitor. The resulting extension is reported in
Fig. 2, where the explicit version of the LTL formula is generated in step (ii).
While the updated product between the automata is obtained in step (vii). The
rest of the steps are left unchanged w.r.t. Fig. 1.

The pipeline presented in Fig. 2 is identical to the one presented in Fig. 1, but
the atomic propositions in the formula are duplicated before using the formula to
generate the corresponding NBA, and an additional automaton has been added.
The former aspect is important, because by duplicating the atomic propositions,
we completely change the semantics of the following steps in the monitor syn-
thesis pipeline. Specifically, it is not true that for any given visible trace σv, we

342 A. Ferrando and V. Malvone

have σv /∈ L(Âϕ) ⇒ σv ∈ L(Â¬ϕ), nor σv /∈ L(Â¬ϕ) ⇒ σv ∈ L(Âϕ). Which
means, it is not true that when a visible trace of events σv is not a good prefix
for ϕ (i.e., a prefix that can be extended to an infinite trace satisfying ϕ), it
has to be then a bad prefix for ϕ (i.e., a prefix that cannot be extended to an
infinite trace satisfying ϕ). This aspect is closely related to the reason why a
third formula (i.e., ⊗ϕ) has been introduced in Fig. 2. Since by duplicating the
atomic propositions in the formula we break the duality between ϕ and ¬ϕ, we
need a third automaton (i.e., Ã⊗ϕ) to recognise all the traces that do not satisfy,
nor violate, ϕ. For this reason, we extended the pipeline by adding ⊗ϕ, which is
an abbreviation for ¬ε(ϕ)∧¬ε(¬ϕ). The automaton Ã⊗ϕ, obtained following the
same steps as for the positive Ãε(ϕ) and negative Ãε(¬ϕ) automata, recognises
all prefixes for which no continuation satisfying or violating ϕ exist.

Input (i)Formula (ii)Explicit (iii)NBA (iv)Emptiness per state (v)NFA (vi)DFA (vii)FSM

ϕ ε(ϕ) Aε(ϕ) F ε(ϕ) Âε(ϕ) Ãε(ϕ)

ϕ ⊗ϕ A⊗ϕ F ⊗ϕ Â⊗ϕ Ã⊗ϕ Monϕ

ϕ ε(ϕ) Aε(¬ϕ) F ε(¬ϕ) Âε(¬ϕ) Ãε(¬ϕ)

Fig. 2. Extended pipeline to consider imperfect information.

Now, we formalize the above reasoning with the following lemma.

Lemma 1. Given a visible finite trace σv and an LTL formula ϕ, we have:

σv �∈ L(Âε(ϕ)) �⇒ σv ∈ L(Âε(¬ϕ))
σv �∈ L(Âε(¬ϕ)) �⇒ σv ∈ L(Âε(ϕ))

Proof. Assume we have a visible trace σv and it is not included in the NFA
Âε(ϕ). To prove our result, we just need to show that σv is also not included in
Âε(¬ϕ). To do the latter, suppose Σ = {p, q, r}, ϕ = �p, p ∼ q, and σ where
σ(1) = {p}. Now, given Definition 4–5, we can conclude that σv(1) = {r⊥}. So,
σv does not satisfy ϕ and by consequence it is not included in the NFA Âε(ϕ).
However, it is not included neither in Âε(¬ϕ). This is because p� and p⊥ are not
included in σv(1). This concludes the first relation. For the second one, we can
use a variant of the above reasoning.

By adding the third automaton, the corresponding FSM synthesis needs also
to change. In more detail, the revised version is reported in Definition 6. In such
definition, we can see how the addition of a third automaton in the equation
allows us to synthesise a finer monitor, in the sense of the number of possible
outcomes it returns. Indeed, w.r.t. Definition 2, we have three additional out-
comes. Specifically, given a visible trace σv, the monitor returns � if there is
no continuation of σv which either violates ε(ϕ) or makes it undefined. On the
other hand, it returns ⊥ if there is no continuation which either satisfies ε(ϕ) or

Runtime Verification with Imperfect Information 343

makes it undefined. Since now we have three automata, there is an additional
final outcome to consider, which is uu. So, the monitor returns uu if there is no
continuation which either satisfies or violates ε(ϕ). These first three outcomes
are all deriving by the three-values semantics for LTL. Then, we may find ? �⊥,
which is read “unknown, but it will never be violated from the monitor’s point
of view”. Such outcome is returned by the monitor when the visible trace σv

does not have any continuation which will eventually violate ε(ϕ), but there are
continuations that satisfy ε(ϕ) and make it undefined. Symmetrically, we may
find ? ��, which is read “unknown, but it will never be satisfied from the monitor’s
point a view”. This outcome is the dual of the previous one, where no continua-
tions satisfying ε(ϕ) can be found, but continuations that violate ε(ϕ) and make
it undefined exist. Last but not least, we may find ? denoting the completely
unknown case. As before, this outcome concerns the case where the monitor
cannot conclude anything yet, because there exist continuations satisfying ε(ϕ),
continuations violating ε(ϕ), and continuations that make it undefined.

Definition 6 (Monitor with imperfect information). Given an LTL for-
mula ϕ and a visible trace σv, a monitor with imperfect information is so defined:

Monv
ϕ(σv) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

� σv ∈ L(Ãε(ϕ)) ∧ σv /∈ L(Ãε(¬ϕ)) ∧ σv /∈ L(Ã⊗ϕ)
⊥ σv /∈ L(Ãε(ϕ)) ∧ σv ∈ L(Ãε(¬ϕ)) ∧ σv /∈ L(Ã⊗ϕ)
uu σv /∈ L(Ãε(ϕ)) ∧ σv /∈ L(Ãε(¬ϕ)) ∧ σv ∈ L(Ã⊗ϕ)
? �⊥ σv ∈ L(Ãε(ϕ)) ∧ σv /∈ L(Ãε(¬ϕ)) ∧ σv ∈ L(Ã⊗ϕ)
? �� σv /∈ L(Ãε(ϕ)) ∧ σv ∈ L(Ãε(¬ϕ)) ∧ σv ∈ L(Ã⊗ϕ)
? σv ∈ L(Ãε(ϕ)) ∧ σv ∈ L(Ãε(¬ϕ)) ∧ σv ∈ L(Ã⊗ϕ)

Note that, in the above definition, not all the possible combination are
included. In particular, it is not possible to have σv /∈ L(Ãε(ϕ)) ∧ σv /∈
L(Ãε(¬ϕ))∧σv /∈ L(Ã⊗ϕ) and σv ∈ L(Ãε(ϕ))∧σv ∈ L(Ãε(¬ϕ))∧σv /∈ L(Ã⊗ϕ). In
particular, the former is not possible because there exists at least one automaton
that includes the trace by following the definition of the three-valued semantics
for LTL. The latter follows by the fact that it is unfeasible given the nature of a
visible trace that a formula will be true or false but not undefined in the future.

In what follows, we provide two preservation results from the monitor with
imperfect information to the one with perfect information.

Lemma 2. Given a finite trace σ, a monitor with its visibility Monv
ϕ(σ), and a

general monitor Monϕ(σ), we have that:

if Monv
ϕ(σv) = � then Monϕ(σ) = �

if Monv
ϕ(σv) = ⊥ then Monϕ(σ) = ⊥

Proof. Suppose Monv
ϕ(σv) = �. This means that the visible trace σv satisfies the

formula ε(ϕ). We want to prove that the original trace σ satisfies the formula
ϕ. To do this, given σv, by Definition 4–5, we know that for each σv(i), for
all p� ∈ σv(i), p ∈ σ(i) and for all p⊥ ∈ σv(i), p /∈ σ(i). Given the above

344 A. Ferrando and V. Malvone

reasoning, we need to provide an induction proof over the structure of the formula
ε(ϕ). Case: ε(ϕ) = p�. So, ϕ = p. By hypothesis, Monv

ϕ(σv) = �, by the
semantics of three-valued LTL this means that p� ∈ σv(0) and by Definition
4–5, p ∈ σ(0). By the latter, Monϕ(σ) = �. Case: ε(ϕ) = p⊥. Thus, ϕ = ¬p. By
hypothesis, Monv

ϕ(σv) = �, by the semantics of three-valued LTL this means
that p⊥ ∈ σv(0) and by Definitions 4–5, p /∈ σ(0). By the latter, Monϕ(σ) = �.
Since in the inductive cases the transformation of Definition 3 does not change
the structure and the elements of the formula, we can conclude the proof.

Suppose Monv
ϕ(σv) = ⊥. This means that the visible trace σv does not satisfy

the formula ε(ϕ). We want to prove that the original trace σ does the same
for the formula ϕ. As for the previous case, we need to prove the implication
by induction over the structure of the formula ε(ϕ) for the base cases. Case:
ε(ϕ) = p�. So, ϕ = p. By hypothesis, Monv

ϕ(σv) = ⊥, by the semantics of
three-valued LTL this means that p⊥ ∈ σv(0) and by Definition 4–5, p /∈ σ(0).
By the latter, Monϕ(σ) = ⊥. Case: ε(ϕ) = p⊥. Thus, ϕ = ¬p. By hypothesis,
Monv

ϕ(σv) = ⊥, by the semantics of three-valued LTL this means that p� ∈
σv(0) and by Definition 4–5, p ∈ σ(0). By the latter, Monϕ(σ) = ⊥.

Given the above results, we can deduce the following corollary.

Corollary 1. Given a visible finite trace σv and an LTL formula ϕ, we have:

σv �∈ L(Âε(ϕ)) ⇒ σv ∈ L(Âε(¬ϕ)) ∨ σv ∈ L(Ã⊗ϕ)
σv /∈ L(Âε(¬ϕ)) ⇒ σv ∈ L(Âε(ϕ)) ∨ σv ∈ L(Ã⊗ϕ)
σv /∈ L(Ã⊗ϕ) ⇒ σv ∈ L(Âε(¬ϕ)) ∨ σv ∈ L(Âε(ϕ))

4 Implementation

The prototype implementing the theory presented in this paper is publicly avail-
able as a GitHub repository1. It consists in a Python script which implements
the entire pipeline presented in Fig. 2. The reason for choosing Python lies in
the presence of a rich library for automaton manipulation, named Spot2 [8]. In
more detail, we used Spot to automatically generate an NBA, given an LTL
formula. This corresponds to step (iii) in Fig. 2, which is the most complicated
and computationally expensive step in the pipeline. The rest of the pipeline has
been directly implemented in Python.

Going a bit deeper in the implementation, the prototype consists in a Python
class, named Monitor. To create a Monitor, its constructor requires: (i) an LTL
formula to verify; (ii) a set of atomic propositions; (iii) an equivalence relation
on atomic propositions; (iv) a trace of events to analyse.

With the previous information, a FSM representing the monitor as in Defi-
nition 6 is constructed. Then, such monitor is used to analyse the input trace,
and the corresponding verdict is returned back to the user. The trace is assumed
1 https://github.com/AngeloFerrando/RuntimeVerificationWithImperfectInforma

tion.
2 https://spot.lrde.epita.fr/.

https://github.com/AngeloFerrando/RuntimeVerificationWithImperfectInformation
https://github.com/AngeloFerrando/RuntimeVerificationWithImperfectInformation
https://spot.lrde.epita.fr/

Runtime Verification with Imperfect Information 345

to be stored inside a file (e.g., a log file). These input parameters can be passed
as command line arguments to the tool. However, since the monitor is denoted
as a single data structure, it is also possible (and quite natural) to import the
script and use the monitor as preferred. This can be useful for instance if the
monitor is to be used for online verification, rather than offline verification.

4.1 Remote Inspection Case Study

We talked about the theory behind our approach, and we also briefly introduced
the resulting prototype. Let us now focus on the experiments we carried out on
a robotic case study, as a proof of concept.

Our case study is based on a 3D simulation of a Jackal3, a four-wheeled
unmanned ground vehicle (referred to as the ‘rover’ from now on), coupled with
a simulated radiation sensor, that the rover uses to take radiation readings of
points of interest while patrolling around a nuclear facility, and a camera, that
the rover uses to inspect images of the nuclear waste barrels in the area. This sim-
ulation is based on the work presented in [20], which explains how the simulated
sensor works and how radiation was simulated in the environment. In our version
of the simulation the rover is autonomously controlled by a rational/intelligent
agent [19]. Figure 3 reports a screenshot of the case study.

Fig. 3. Simulation in Gazebo of the remote inspection of nuclear plant.

A typical mission in our simulation starts with the rover positioned at the
entrance of a nuclear facility. The goal of this mission is to inspect a number of
points of interest (i.e., waypoints). Inspecting a waypoint serves two purposes:
taking radiation readings to check if the radiation is at an acceptable level, and
using a camera to detect abnormalities such as leakage in barrels and pipes.
After inspecting all of the waypoints, the rover can either return to the entrance
to await for a new mission, or keep patrolling and inspecting the waypoints.

Without losing generality, we assume the image captured by the rover’s cam-
era can be represented as a grid. Each cell in such a grid can contain, or not,

3 https://clearpathrobotics.com/jackal-small-unmanned-ground-vehicle.

https://clearpathrobotics.com/jackal-small-unmanned-ground-vehicle

346 A. Ferrando and V. Malvone

an abnormality (e.g., a cut in the barrel). This information is translated into
propositions, that can be transmitted to the monitor to be analysed at runtime.

Let us assume that, because of the rover’s limited resources, the latter is not
always capable of sending all the information to the monitor. Because of this,
some times the monitor is not able to distinguish a cut from a rust stain. In such
cases, from the viewpoint of the monitor analysing the scene, there is imperfect
information over the atomic propositions. We assume the presence of a cut on
a barrel b with c and the presence of a rust stain with s. So, the set of atomic
propositions is Σ = {b, c, s}. Then, we have imperfect information over c and s,
which is formalised as c ∼ s (i.e., there is an equivalence class γcs between c and
s). Let us now say that the property we want to verify at runtime is whether
the rover will not find a cut in the barrel. This information could be used by
the software agent controlling the rover to react properly (e.g., by informing a
human operator about a possible leakage). Such property can be formulated as
the following LTL formula: ϕ = ♦(b ∧ �¬c). Nevertheless, this formula would
make sense in a case of perfect information over the system, but in this case,
where c and s cannot be distinguished (in general), a standard LTL monitor
should not be used. To understand this, let us just assume that the trace of
events σ observed by the rover is σ(0) = {}, σ(1) = {b}, and σ(2) = {c}. In such
trace, the first event means that the rover has not observed anything relevant,
the second event means that the rover observed the barrel b, and the third
event denotes the presence of a cut on the barrel b. But, since the monitor has
imperfect information, the truth value of c cannot be observed. Consequently,
if the monitor considered ¬c without caring about the imperfect information,
it could report that there are no problems, i.e. the general monitor in this case
returns true. But the latter is not correct. Thus, to tackle this aspect in its
foundations, we can apply our extended semantics and its resulting monitor.

Since in this scenario we have an equivalence relation between c and s
(i.e., c ∼ s), first we need to explicit the atomic propositions inside the for-
mula, obtaining: ε(ϕ) = ♦(b� ∧ �[γcs]⊥). By using the newly updated LTL
formula, we can generate the three automata as shown in Fig. 2. After that, we
can update the trace of events as well, first by generating its explicit version
σe (see Definition 4), where σe(0) = {b⊥, c⊥, s⊥}, σe(1) = {b�, c⊥, s⊥}, and
σe(2) = {b⊥, c�, s⊥}. Then by defining its visible version according to the given
equivalence class γcs (see Definition 5), we obtain σv, where σv(0) = {b⊥, [γcs]⊥},
σv(1) = {b�, [γcs]⊥}, and σv(2) = {b⊥}. Note that, as expected, the last event in
σv does not contain information about the atomic proposition c. This is deter-
mined by the fact that the atomic propositions c� and s⊥ hold in the last event
of σv, and according to Definition 5, since c ∼ s, we can have [γcs]� (resp.,
[γcs]⊥) if and only if both c� and s� hold (resp., c⊥ and s⊥). Thus, having a
mismatch between the two atomic propositions (i.e., one is true while the other
is false), we cannot safely add any witness for the equivalence class γcs. Instead,
in the first two events of σv, since we have both c⊥ and s⊥, we can safely add the
witness [γcs]⊥ to the trace. Thanks to our three-value semantics and the presence
of explicit atomic propositions, the trace σ which was erroneously classified as

Runtime Verification with Imperfect Information 347

satisfying ϕ from the standard LTL monitor before, now is classified as ? �⊥. The
semantics of the two verdicts is fundamentally different, as well as the reaction
that the system should have. In the first case, by using a standard LTL monitor,
the verdict returned by the monitor was �. Thus, the agent controlling the rover
could have used such information to continue the inspection with another barrel
and not detecting a danger. In the second case, by using the extended LTL mon-
itor that we presented in this work, the verdict returned by the monitor was ? �⊥.
Thus, the agent controlling the rover could use this information to, for instance,
ask the rover to check again, maybe taking another picture. Even though this is
a simple example, it allows us to show how our extension tackles the foundations
of the imperfect information issue.

4.2 Experimental Results

Other than verifying the property previously presented for the remote inspection
scenario, we carried out more general experiments to study the execution time of
our prototype. In more detail, we focused on two fundamental aspects, the gen-
eration and verification time. The former concerns the execution time required
to synthesise a monitor given an LTL formula (according to Definition 6). While
the latter concerns the execution time required to analyse a given trace of events
with the so synthesised monitor. It is important to separate the two experimen-
tal evaluations since the monitor’s generation is not usually performed online,
but ahead of the system execution. Thus, the most critical aspect to consider
when evaluating runtime verification techniques is the verification time, since it
is the only one which is performed online. Consequently, it is the only part that
influences the execution; this is also referred to as the monitor’s overhead.

We carried out experiments for both aspects. Specifically, for the monitor’s
synthesis, we did experiments varying the size of the LTL formula; where the
size of the formula consists in the number of operators inside the formula. We
picked the size of the formula as target of our experiments because it is the
input driving the generation of the monitor4. Instead, for the verification part,
we carried out experiments varying the length of the trace of events to analyse.
Also in this case, we picked the length of the trace because it is the only input
which influences the monitor’s verification time. This can be easily understood
by considering the fact that once the FSM has been generated, it will not change.
Thus, its size is fixed and is determined by the size of the formula. So, at runtime,
the only aspect that changes is the length of the trace, which is populated by
events generated through the system execution.

Figure 4 reports the results obtained with our experiments, where both LTL
formulas and traces are randomly generated. Specifically, Fig. 4a reports the exe-
cution time to synthesise a monitor given an LTL formula, while Fig. 4b reports
the execution time to analyse a given trace of events with the so synthesised
monitor. In Fig. 4a, we may find the size of the LTL formula on the x-axis, and

4 Let us remember that steps (iii) and (vi) in Fig. 2 are very expensive and require
exponential time w.r.t. the size of the formula.

348 A. Ferrando and V. Malvone

(a) Time to synthesise a monitor. (b) Time to verify a trace.

Fig. 4. Experimental results.

the execution time on the y-axis (in milliseconds). Note that, as expected, the
execution time for the monitor synthesis grows exponentially w.r.t. the size of
the formula. In Fig. 4b we may find the length of the trace of the events on the
x-axis, and the execution time on the y-axis (in milliseconds). Note that, the
execution time is linear w.r.t. the length of the trace; this is crucial for using
the monitor at runtime, while the system is running. Since the execution time is
linear w.r.t. the length of the trace, the time required for the monitor to anal-
yse a single event in the trace is constant. Thus, the monitor can be used to
incrementally analyse events generated at runtime by the system5.

5 Related Work

The closest work to our contribution is [18], where Past-Time LTL is verified
at runtime in case of uncertainty over the observed events. In such work, the
verification is carried out on abstract traces of events. An abstract trace corre-
sponds to a trace where not all concrete events are present, but only samples
taken with a certain time step. The uncertainty comes from unknown event
interleaving, while in our case comes from indistinguishability relations amongst
events. Differently from [18], we do not sample the events, and the uncertainty is
determined by the monitor’s visibility. Thus, the abstraction is not on the order
amongst the events in a trace, but on the kind of events the trace contains.

In a completely different line of research, we may find [2,3,10,11,16], where
the uncertainty in the verification is caused by the absence of information. In such
works, the trace of events may contain gaps, which means at certain point of the
system execution, the monitor is not capable of observing the system behaviour.
This problem has been tackled in different ways, but in general, the solution
consists in filling the gaps with events. Naturally, since there is uncertainty on
what was exactly the event in the gap, these approaches depend on probabilities

5 Where with incrementally, we mean the monitor analyses the events one by one (not
as in offline RV where the monitor expects the entire trace all at once).

Runtime Verification with Imperfect Information 349

to guess which events to use to fill the gap. These works are different from ours
in principle, because we do not assume to miss information, indeed we do not
have gaps in our traces. Our uncertainty is not based on the monitor missing
events, but on the monitor not being capable of recognising (discerning) some
events from other events (according to a indistinguishability relation).

A recent work on RV with uncertainty can be found in [17]. There, the
concept of uncertainty is abstracted by considering multi-traces, instead of uni-
traces (standard traces). A multi-trace allows multiple evaluations for the same
atomic proposition inside the trace. The authors present a monitor to handle
such multi-traces and prove its soundness. Like for [2,3,10,11,16], also [17] is
focused on missing events, even though partially missing ones are considered
too.

Differently from our contribution, all the works previously mentioned explic-
itly represent the notion of uncertainty (e.g. through a gap). When the trace
contains concrete events, the semantics is the standard one. Our approach is less
invasive, since it is constructed on top of the standard RV pipeline for the ver-
ification of LTL properties. We do not require the addition of gaps. We mainly
focus on how to update the standard RV technique for LTL when the monitor
can have imperfect information over the system. From an engineering perspec-
tive, our approach aims at extending the standard LTL approach to be used in
case of imperfect information over the system, while the other works in literature
are more focused on proposing completely new techniques to handle the absence
of information (usually caused by noise or technical issues).

6 Conclusions and Future Work

In this paper, we presented an extension of the standard LTL runtime verifica-
tion approach. We introduce the problem of imperfect information at the monitor
level, and how such lack of information can bring a standard LTL monitor to
conclude a wrong verdict. We present theoretically the notion of imperfect infor-
mation (through equivalence classes) and how it influences the LTL property
verification. In particular, we propose how to extend the standard LTL monitor
synthesis [5], we show the resulting Python prototype, and we report its use on
a relevant case study along with additional experiments to stress test it.

As future work, we are planning to further extend our approach by consid-
ering a post-processing function to add additional information to the monitor’s
verdict. Such function would depend on the trace of events, the LTL property
and the monitor’s verdict to establish a level of confidence on the final outcome.
Up to now, we mainly focused on how to tackle the problem of imperfect infor-
mation at the foundations of LTL runtime verification, however, once we obtain
the final outcome from the monitor, we can still refine it more. In more detail,
when the outcome concluded by the monitor is uu, we could elaborate it further
and assign a probability value. For instance, instead of saying uu, we could say
that the property is undefined w.r.t. the trace, but according to some probabil-
ity distribution over the involved equivalence classes, we can claim the property
would be satisfied (resp., violated) with a certain probability threshold.

350 A. Ferrando and V. Malvone

References

1. Bartocci, E., Falcone, Y., Francalanza, A., Reger, G.: Introduction to runtime
verification. In: Bartocci, E., Falcone, Y. (eds.) Lectures on Runtime Verification.
LNCS, vol. 10457, pp. 1–33. Springer, Cham (2018). https://doi.org/10.1007/978-
3-319-75632-5_1

2. Bartocci, E., Grosu, R.: Monitoring with uncertainty. In: Bortolussi, L., Bujori-
anu, M., Pola, G. (eds.) Proceedings Third International Workshop on Hybrid
Autonomous Systems, HAS 2013, Rome, Italy, 17 March 2013. EPTCS, vol. 124,
pp. 1–4 (2013). https://doi.org/10.4204/EPTCS.124.1

3. Bartocci, E., Grosu, R., Karmarkar, A., Smolka, S.A., Stoller, S.D., Zadok, E.,
Seyster, J.: Adaptive runtime verification. In: Qadeer, S., Tasiran, S. (eds.) RV
2012. LNCS, vol. 7687, pp. 168–182. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-35632-2_18

4. Bauer, A., Leucker, M., Schallhart, C.: Monitoring of real-time properties. In:
Arun-Kumar, S., Garg, N. (eds.) FSTTCS 2006. LNCS, vol. 4337, pp. 260–272.
Springer, Heidelberg (2006). https://doi.org/10.1007/11944836_25

5. Bauer, A., Leucker, M., Schallhart, C.: Runtime verification for LTL and TLTL.
ACM Trans. Softw. Eng. Methodol. 20(4), 1–64 (2011). https://doi.org/10.1145/
2000799.2000800

6. Belardinelli, F., Lomuscio, A., Malvone, V., Yu, E.: Approximating perfect recall
when model checking strategic abilities: theory and applications. J. Artif. Intell.
Res. 73, 897–932 (2022). https://doi.org/10.1613/jair.1.12539

7. Clarke, E.M.: Model checking. In: Ramesh, S., Sivakumar, G. (eds.) FSTTCS 1997.
LNCS, vol. 1346, pp. 54–56. Springer, Heidelberg (1997). https://doi.org/10.1007/
BFb0058022

8. Duret-Lutz, A., Poitrenaud, D.: SPOT: an extensible model checking library using
transition-based generalized büchi automata. In: DeGroot, D., Harrison, P.G.,
Wijshoff, H.A.G., Segall, Z. (eds.) 12th International Workshop on Modeling, Anal-
ysis, and Simulation of Computer and Telecommunication Systems (MASCOTS
2004), 4–8 October 2004, Vollendam, The Netherlands, pp. 76–83. IEEE Com-
puter Society (2004). https://doi.org/10.1109/MASCOT.2004.1348184

9. Gerth, R., Peled, D., Vardi, M.Y., Wolper, P.: Simple on-the-fly automatic verifi-
cation of linear temporal logic. In: PSTV 1995. IAICT, pp. 3–18. Springer, Boston,
MA (1996). https://doi.org/10.1007/978-0-387-34892-6_1

10. Kalajdzic, K., Bartocci, E., Smolka, S.A., Stoller, S.D., Grosu, R.: Runtime veri-
fication with particle filtering. In: Legay, A., Bensalem, S. (eds.) RV 2013. LNCS,
vol. 8174, pp. 149–166. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-40787-1_9

11. Leucker, M., Sánchez, C., Scheffel, T., Schmitz, M., Thoma, D.: Runtime verifica-
tion for timed event streams with partial information. In: Finkbeiner, B., Mariani,
L. (eds.) RV 2019. LNCS, vol. 11757, pp. 273–291. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-32079-9_16

12. Leucker, M., Schallhart, C.: A brief account of runtime verification. J. Log. Alge-
braic Methods Program. 78(5), 293–303 (2009). https://doi.org/10.1016/j.jlap.
2008.08.004

13. Miguel, J.P., Mauricio, D., Rodriguez, G.: A review of software quality models for
the evaluation of software products. CoRR abs/1412.2977 (2014). https://arxiv.
org/abs/1412.2977

https://doi.org/10.1007/978-3-319-75632-5_1
https://doi.org/10.1007/978-3-319-75632-5_1
https://doi.org/10.4204/EPTCS.124.1
https://doi.org/10.1007/978-3-642-35632-2_18
https://doi.org/10.1007/978-3-642-35632-2_18
https://doi.org/10.1007/11944836_25
https://doi.org/10.1145/2000799.2000800
https://doi.org/10.1145/2000799.2000800
https://doi.org/10.1613/jair.1.12539
https://doi.org/10.1007/BFb0058022
https://doi.org/10.1007/BFb0058022
https://doi.org/10.1109/MASCOT.2004.1348184
https://doi.org/10.1007/978-0-387-34892-6_1
https://doi.org/10.1007/978-3-642-40787-1_9
https://doi.org/10.1007/978-3-642-40787-1_9
https://doi.org/10.1007/978-3-030-32079-9_16
https://doi.org/10.1007/978-3-030-32079-9_16
https://doi.org/10.1016/j.jlap.2008.08.004
https://doi.org/10.1016/j.jlap.2008.08.004
https://arxiv.org/abs/1412.2977
https://arxiv.org/abs/1412.2977

Runtime Verification with Imperfect Information 351

14. Pnueli, A.: The temporal logic of programs. In: 18th Annual Symposium on
Foundations of Computer Science, Providence, Rhode Island, USA, 31 October–1
November 1977, pp. 46–57. IEEE Computer Society (1977). https://doi.org/10.
1109/SFCS.1977.32

15. Rabin, M.O., Scott, D.S.: Finite automata and their decision problems. IBM J.
Res. Dev. 3(2), 114–125 (1959). https://doi.org/10.1147/rd.32.0114

16. Stoller, S.D., et al.: Runtime verification with state estimation. In: Khurshid, S.,
Sen, K. (eds.) RV 2011. LNCS, vol. 7186, pp. 193–207. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-29860-8_15

17. Taleb, R., Khoury, R., Hallé, S.: Runtime verification under access restrictions. In:
Bliudze, S., Gnesi, S., Plat, N., Semini, L. (eds.) 9th IEEE/ACM International
Conference on Formal Methods in Software Engineering, FormaliSE@ICSE 2021,
Madrid, Spain, 17–21 May 2021, pp. 31–41. IEEE (2021). https://doi.org/10.1109/
FormaliSE52586.2021.00010

18. Wang, S., Ayoub, A., Sokolsky, O., Lee, I.: Runtime verification of traces under
recording uncertainty. In: Khurshid, S., Sen, K. (eds.) RV 2011. LNCS, vol.
7186, pp. 442–456. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-29860-8_35

19. Wooldridge, M., Rao, A. (eds.) Foundations of Rational Agency. Kluwer Academic
Publishers, Applied Logic Series (1999)

20. Wright, T., West, A., Licata, M., Hawes, N., Lennox, B.: Simulating ionising radia-
tion in gazebo for robotic nuclear inspection challenges. Robotics 10(3), 86 (2021).
https://doi.org/10.3390/robotics10030086

https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1147/rd.32.0114
https://doi.org/10.1007/978-3-642-29860-8_15
https://doi.org/10.1109/FormaliSE52586.2021.00010
https://doi.org/10.1109/FormaliSE52586.2021.00010
https://doi.org/10.1007/978-3-642-29860-8_35
https://doi.org/10.1007/978-3-642-29860-8_35
https://doi.org/10.3390/robotics10030086

Runtime Enforcement for IEC 61499
Applications

Yliès Falcone, Irman Faqrizal(B), and Gwen Salaün

Univ. Grenoble Alpes, CNRS, Grenoble INP, Inria, LIG, 38000 Grenoble, France

irman.faqrizal@inria.fr

Abstract. Industrial automation is a complex process involving vari-
ous stakeholders. The international standard IEC 61499 helps to specify
distributed automation using a generic architectural model, targeting
the technical development of the automation. However, analysing the
correctness of IEC 61499 models remains a challenge because of their
informal semantics and distributed logic. We propose new verification
techniques for IEC 61499 applications. These techniques rely on the con-
cept of runtime enforcement, which can be applied to systems for pre-
venting bad behaviours from happening. The main idea of our approach
is to integrate an enforcer in the application for allowing it to respect
specific properties when executing. The techniques begin with the defini-
tion of a property. The language of this property supports features such
as discarding and replacing events. Next, this property is used to synthe-
sise an enforcer in the form of a function block. Finally, the synthesised
enforcer is integrated into the application. Our approach is illustrated
on a realistic example and fully automated.

1 Introduction

The emerging industrial revolution, Industry 4.0, affirms that the innovation of
technologies has become the main driving force in the advancement of indus-
trial activities [15]. Stakeholders in the industry appeal for new technologies in
every aspect of industrial processes. These include the improvements of develop-
ment tools for industrial automation to increase efficiency and productivity. The
International Electrotechnical Commission (IEC) 61499 [1] is a recent standard
for developing industrial automation. It conceptualises interconnected function
blocks to express an industrial process. Each Function Block (FB) encapsulates
some logic describing its behaviour, while the connections with other FBs are
defined using input and output interfaces.

The main benefit of IEC 61499 is that it is suitable for developing a fully
distributed system [19]. A single application can be distributed among several
control devices to optimise efficiency. However, this advantage also raises a chal-
lenge because when the system is complex and composed of many control devices
and FBs, it becomes error-prone. This a critical issue since IEC 61499 does not
define how to handle bugs (e.g., there is no exception handling). Furthermore,

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
B.-H. Schlingloff and M. Chai (Eds.): SEFM 2022, LNCS 13550, pp. 352–368, 2022.
https://doi.org/10.1007/978-3-031-17108-6_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-17108-6_22&domain=pdf
https://doi.org/10.1007/978-3-031-17108-6_22

Runtime Enforcement for IEC 61499 Applications 353

the execution of industrial systems is heavily influenced by the environment.
In contrast to conventional programs with mostly user interactions, industrial
applications also accept inputs from the connected sensors. In complex systems,
there can be many sensors, and each of them is associated with the outside world,
which has unpredictable behaviour.

IEC 61499 applications can be verified during design time using static veri-
fication techniques such as model checking [3,14,20].

Such an approach is useful for finding unexpected behaviour before the appli-
cation is deployed. However, industrial applications can be huge, and state space
explosion may become an issue. On top of that, the debugging process might
introduce new bugs since it is done manually by the users. Also, IEC 61499 has
loosely defined semantics, which causes the faithfulness of its translation from
an application into a model can not be guaranteed (i.e., the model may not
really represent the actual behaviour of the application). Furthermore, as pre-
viously mentioned, industrial applications often interact with nondeterministic
behaviours of the environments, which can not be observed during design time.
The work in [5] and [12] propose alternative methods to verify IEC 61499 appli-
cations by applying runtime verification techniques [7]. The main idea of both
works is to integrate a monitor that can check during runtime whether some
properties hold. These techniques can be applied regardless of the application’s
size, and there is no modelling phase required, which means that it is not nec-
essary to define the application’s formal semantics. In addition, the approach
involves analyses of execution traces that are obtained directly from executing
the application (taking into account the influence of environments). However, the
users are still required to manually debug the application when the properties
are violated. Moreover, in this case, the properties’ violations can be detected
only when the application is already running. This is an issue since applications
with incorrect behaviours may cause a critical impact on industrial activities.

A practical solution for supporting IEC 61499 applications is to integrate
verification techniques that can ensure correctness during runtime. To do so, we
propose to rely on runtime enforcement [8] techniques for preventing systems
from producing incorrect behaviours. It guarantees correctness by modifying
the system execution. There exist multiple enforcement mechanisms such as
input sanitation, which ensures correctness by altering inputs that enter the
system, and output sanitation, which modifies outputs such that they follow
certain requirements. In our case, we enforce the system’s correctness by altering
the outputs of existing components (i.e., FBs) in the application.

The main idea of our runtime enforcement techniques is to change the execu-
tion of IEC 61499 applications such that they can respect some given properties.
For this purpose, the application is modified by integrating a new component
called enforcer in the form of an FB. This enforcer is synthesised from an input
property. Its purpose is to instrument the modification of the application’s exe-
cution. Therefore, the property does not only specify the correctness of an appli-
cation but also describes how the enforcement mechanism can react when the
property violation happens. To achieve this, we define properties as automata

354 Y. Falcone et al.

extended with different types of transitions. A transition in the property can
either let outputs be forwarded to the next component, discarded, or replaced
with modified outputs. Since an enforcer is a type of basic FB, the synthesis
process includes the creation of FB interfaces, Execution Control Chart (ECC),
and algorithms. Every element in this FB is derived from the input property.
After an enforcer is synthesised, then it should be integrated into the application
by appropriately connecting the input and output interfaces without changing
the initial execution flow.

More precisely, our contributions are as follows: (i) a property language for
enforcing IEC 61499 applications, (ii) a technique for synthesising enforcers (in
the form of IEC 61499 FBs) from given properties, (iii) a sequence to integrate
enforcers into IEC 61499 applications. The approach is illustrated on a realistic
example, and tool support was developed to automate the synthesis of enforcers.

The paper is organised as follows. Section 2 introduces background notions.
Section 3 describes the runtime enforcement techniques. Section 4 presents the
supporting tools. Section 5 surveys related work and Sect. 6 concludes.

2 Background

We first present the necessary concepts from IEC 61499 (Sect. 2.1), followed by
a description of the essential idea of runtime enforcement. In the next section,
we show a running example to illustrate our approach.

2.1 IEC 61499

IEC 61499 is a standard for designing industrial control systems that consist of
interconnected Function Blocks (FBs). A FB is connected to other FBs through
its input and output interfaces, where each of them distinguishes between event
and data interfaces (see Fig. 1 (a)). The standard adopts an event-driven archi-
tecture, meaning that the execution of each component (i.e., FB) is triggered by
incoming events. Once the FB is activated by an event, it cannot be re-entered
by another event before the previous activation has finished. The WITH iden-
tifiers associate event and data interfaces. When an event arrives, the values on
the associated input data interfaces are refreshed, whereas the emission of an
event refreshes the associated values on the output data interfaces.

Figure 1 (b) illustrates IEC 61499. The standard allows the event interfaces
to be connected in both fan-in and fan-out configurations (e.g., FB 1 to FB 2 and
3, while FB 2 and 3 to FB 4). However, an input data interface can only receive
a connection from a single output data interface (i.e., fan-out only). Moreover,
in the same picture, all the FBs (FB 1 to 5) are part of a single application
(Application 1). However, as we can see, some of the FBs are mapped into
different control devices. This emphasises the fact that IEC 61499 allows for
designing distributed applications.

Function Block is the fundamental component of IEC 61499 architecture.
There are three types of FBs: basic, composite, and service interfaces. A basic

Runtime Enforcement for IEC 61499 Applications 355

Fig. 1. Example of (a) Function block and (b) IEC 61499 application.

Fig. 2. (a) E CTU FB, (b) ECC, (c) Algorithms.

FB defines its behaviour using a state machine called Execution Control Chart
(ECC). When a state is visited, it may perform two actions: emit an output
event and/or execute an algorithm written in structured text. Some conditions
on the data interfaces can guard the transitions in an ECC. A composite FB is
composed of a network of FBs. A service interface FB concerns FBs that have
behaviours specific to their control devices (i.e., vendor dependent).

In our work, we use 4DIAC-IDE [2] as a development environment, an open
source tool to build IEC 61499 applications. Figure 2 (a) shows an example of
FB represented with 4DIAC-IDE. This FB is called E CTU and behaves as a
counter. The ECC in Fig. 2 (b) describes the FB behaviour in each activation.
Starting from START state, if the FB receives an event CU and the value of
CV is below the threshold (65535), then the current state transitions into CU .
Such transition with a boolean condition is called guarded transition. Next, in
state CU , algorithm CU (Fig. 2 (c)) is executed and output event CUO is fired.
The algorithm increments CV and updates the boolean value Q . Finally, it goes
back directly to the initial state because the transition going from state CU to
START is an empty transition. The same mechanism also applies when the FB
receives event R, which resets the counter value CV .

356 Y. Falcone et al.

2.2 Runtime Enforcement

Runtime enforcement [17] (see [6,8,10] for overviews) is a technique that can
prevent systems from misbehaving by forcing them to execute according to their
specifications. A specification is often formalised as properties to be satisfied.

The main goal of runtime enforcement techniques is to define the relation
between input and output sequences of events. More precisely, the techniques
describe how an incorrect sequence can be modified into a correct one. For this,
a so-called Enforcement Mechanism (EM) transforms an input σ into an output
EM (σ) according to a property ϕ. There are three ways of implementing an
EM. According to the terminology in [8], our EM is an output sanitiser since it
prevents a system from generating incorrect traces.

There exist several (mathematical) models of EM. A Security Automaton [17]
(SA) is a finite-state machine executing in parallel with the monitored program.
When the model observes an action, the enforcer can either let it execute or
halt the system. An extension of SA is the edit-automata [13] (EA), it has a
feature that can suppress, memorise and replay actions. Generalised enforcement
monitors [9] (GEMs) go further by separating sequence recognition from action
memorisation. This simplifies the implementation and composition of operations.

2.3 Running Example

A running example is used in the rest of the paper to illustrate the runtime
enforcement approach. The example is a conveyor test station, one of the case
studies of IEC 61499 applications introduced in [21].

Figure 3 presents the running example. Its goal is to check the quality of
industrial materials passing through a conveyor belt. The application consists of
four main components. Firstly, a conveyor drive (C1) is connected to a control
panel where the user can either start or stop the conveyor. Secondly, the compo-
nent feeder (C2) is in charge of feeding materials onto the conveyor. Next, a qual-
ity acceptance station (C3) evaluates the materials as they pass through. Lastly,
depending on the test results, the roll-off mechanism (C4) allows the materials
either to be distributed onto the next industrial process or to be dropped into a
hopper by opening the reject gate.

The IEC 61499 application of the conveyor test station is presented in Fig. 4.
Each of the main components is mapped to a composite FB. DriveCntl1 corre-
sponds to the conveyor drive (C1), Feed1 represents the material feeder (C2),
QualStation1 deals with the quality acceptance station (C3), and RollOff1
takes care of the roll-off mechanism (C4). The two additional FBs, Exec1 and
Inventory1 , respectively correspond to the initialisation of the application and
the database which stores the materials data. In these FBs, there are event and
data interfaces that correspond to the application’s functionalities. For instance,
Running data interface in DriveCntl1 has a boolean value which represents the
state of the conveyor belt. When the conveyor is running then Running = true,
otherwise Running = false. Inside each of these composite FBs, service interface
FBs interact with the physical sensors and actuators such as IO READER and

Runtime Enforcement for IEC 61499 Applications 357

Fig. 3. Conveyor test station

Fig. 4. IEC 61499 application of the conveyor test station

IO WRITER. For example, an IO READER FB in Feed1 interacts with the
input sensor to detect that a piece of material is successfully fed onto the con-
veyor. For brevity, we leave out the details of what is internal of every composite
FBs; a more comprehensive description can be found in [21].

3 Runtime Enforcement Techniques

This section describes the runtime enforcement techniques for IEC 61499 appli-
cations. First, the enforcement architecture is presented, and the property lan-
guage is explained. We then describe the synthesis of an enforcer and how to
integrate it into the application. The section ends with a description of preserved
characteristics.

358 Y. Falcone et al.

3.1 Enforcement Architecture

Figure 5 illustrates the general architecture of our enforcement techniques for
IEC 61499 applications. It is composed of a monitored application and an
enforcer synthesised from a property. Monitored components are certain FBs
in the application for which we want to ensure their correctness based on spe-
cific properties, Whenever one of these FBs outputs an event e with its associated
data updates D, the enforcer intercepts this output and alters it according to
the specified property. The altered outputs (e′,D′) are then forwarded to the
next connected FBs in the application. The enforcer is synthesised as an FB.
Therefore, it also has input and output interfaces for receiving and triggering
events with the associated data updates. Its ECC and algorithms compute the
output every time an input is received. Lastly, an enforcer has to be integrated
into the application by creating new connections between the interfaces of the
enforcer and the monitored components.

Fig. 5. Overview of the enforcement architecture

3.2 Property Automaton

A property is required as an input of the runtime enforcement techniques. We
express properties as automata. This allows enforcing properties in any alterna-
tive declarative logical formalisms (e.g., Linear Temporal Logic) that translate
to automata. Each automaton consists of states interconnected with transitions.
A state can either be a correct state or an incorrect state, which we denote using
the colours green and red. A property is satisfied when the current state is green
and violated when red. A transition outgoing to a red state corresponds to the
property violation itself.

Transitions are extended with types that are used to describe the behaviour
of the synthesised enforcer every time it receives an input. There are four types
of transitions:

– A forward transition indicates that the triggered event and its associated data
updates are forwarded (i.e., nothing changed).

– A discard transition indicates that the event is discarded and no data is
updated.

Runtime Enforcement for IEC 61499 Applications 359

– A pair of transitions replace and replacement outgoing from the same state
indicates that the triggering of an event and the updating of data interfaces
on transition typed as replace should be replaced with the triggering of an
event and the updating of data interfaces on another transition typed as
replacement .

A transition typed as forward or replacement is always outgoing from a green
state to another green state. Meanwhile, discard and replace transitions are
outgoing from green states to red states.

Definition 1. (IEC 61499 property) A property for IEC 61499 enforcement
mechanism is an automaton P = (S, s0, E,B, Γ, T, va), where
– S is a (finite) set of states, and s0 is the initial state,
– E is a set of events,
– B is a set of boolean expressions,
– Γ = {forward , discard , replace, replacement} is a set of transition types,
– T is the set of transitions and each t ∈ T is a transition t = (s, e,G, γ, s′),

where s, s′ ∈ S are source and target states, e ∈ E is an event, G is a
boolean guard composed of b ∈ B and generated by the grammar G:: =
true | b | ¬b | G ∧ G | G ∨ G, and γ ∈ Γ is the transition’s type,

– va : S → {green, red} is the verdict function associating each state to a colour.

Boolean expressions existing in a transition’s guard represent the values
of data interfaces when the associated event is triggered. The expression true
implies that the event on that transition is triggered regardless of the data inter-
faces’ current values. When a transition is typed as replacement , the guard must
refer to a single possible combination of values, i.e., every boolean expression uses
only equality operator (=) and only conjunction (∧) is allowed before or after
each expression. The purpose is to ensure a unique replacement when performing
data updates on transitions typed as replace.

Two examples of properties are shown in Fig. 6. Both of them are speci-
fied for IEC 61499 application introduced in Sect. 2.3. We call the first property
as Regulate Buttons. It is associated with conveyor drive component (C1) or
DriveCntl1 FB. It specifies that every time event EXO is triggered, the value
of Running can only alternate between true and false. This is done by discard-
ing eventEXO guarded with Running = false outgoing from state 0 and EXO
guarded with Running = true outgoing from state 1. In practice, this property
helps to suppress the impact of users consecutively pressing the same button on
the control panel.

The property in Fig. 6 (B) is called Force Accept. It enforces the behaviour of
the quality acceptance station component (C3) or QualStation1 FB. It permits
the application to reject industrial materials only twice in a row, and the third
rejection is forced to be an acceptance instead. This is done by specifying that
the event Done guarded by Pass = false (i.e., material is rejected) can only be
triggered twice in a row (i.e., transitions Done.{Pass = false}.(forward) from
state 1 to 2 and from state 2 to 3). The third time it is triggered (from state 3
to -1), then it is replaced with the transition Done.{Pass = true}.(replacement)
from state 3 to 1, where Pass = true means that a material is accepted.

360 Y. Falcone et al.

Fig. 6. Examples of properties, (A) Regulate Buttons and (B) Force Accept

3.3 Enforcer Synthesis

An enforcer is an FB synthesised from a given property. It is in the form of a
basic FB, and it has interfaces, ECC, and algorithms. The idea is to integrate
the enforcer as an additional FB in the IEC 61499 application to enforce its
behaviour according to the property. The components of an enforcer are derived
from the property.

Definition 2. (Enforcer) An enforcer is a basic FB ef = (ei, ecc, A), where:

– ei = (Ei, Eo,Di,Do,Wi,Wo) is an enforcer interface, where Ei, Eo are sets
of input and output event interfaces, Di,Do are sets of input and output data
interfaces, Wi and Wo are WITH input and output identifiers associating
events and sets of data interfaces,

– ecc = (Sc, s
0
c , Bc, Tc) is an Execution Control Chart (ECC) specifying the

enforcer’s behaviour, where Sc is a set of states and s0
c ∈ Sc is the initial state

and each sc ∈ Sc consists of state actions sc = q1, q2, ..., qn, each action is a
pair q = (a, eo), where a ∈ A is an algorithm and eo is an output event, Bc is a
set of boolean expressions on Di, Tc is the set of ECC transitions, each tc ∈ Tc

is a transition tc = (sc, ei, Gc, s
′
c), where sc, s

′
c ∈ Sc are source and target

states, ei ∈ Ei is an input event, Gc is a boolean guard composed of bc ∈ Bc

and generated by the grammar Gc:: = true | bc | ¬bc | Gc ∧ Gc | Gc ∨ Gc,
– A is a set of algorithms, where a ∈ A consists of assignments for variables in

Do.

The enforcer interface serves as a connection for integrating the enforcer into
the application. It is synthesised based on the events and boolean expressions
present in the property. For each event or expression variable in the property,
a pair of input and output interfaces are created in the enforcer. The WITH
identifiers are created from the associated events and expressions in guards.
ECC is built by traversing the states and transitions in the property. It specifies
the behaviour of an enforcer every time it receives an input event from one of
the monitored components. Algorithms reside in the ECC’s states; they contain
value assignments of the data interfaces.

Algorithm 1 describes the synthesis of an enforcer. It takes as input a prop-
erty P and returns an enforcer ef . Interfaces Ei, Eo, Di, Do are created by

Runtime Enforcement for IEC 61499 Applications 361

Algorithm 1: Synthesis of enforcer
Inputs : P = (S, s0, E, B, Γ, T)
Output: ef = (ei, ecc, A)

1 Ei := {ei | e ∈ E}
2 Eo := {eo | e ∈ E} /* getVars() returns a set of variable */

3 Di := {di | d ∈ getV ars(B)} /* names from a set of boolean expression */

4 Do := {do | d ∈ getV ars(B)} /* or a Guard */

5 foreach (s, e, G, γ, s′) ∈ T do
6 D′

i := {d′
i | d ∈ getV ars(G)}

7 D′
o := {d′

o | d ∈ getV ars(G)}
8 Wi := Wi ∪ {(e + ” I”, D′

i)}
9 Wo := Wo ∪ {(e + ” O”, D′

o)}
10 end
11 ei = (Ei, Eo, Di, Do, Wi, Wo)
12 V isited := ∅, s0c := (∅, ∅)
13 Function TraverseProperty(s, sc, P, ecc, A, V isited):
14 V isited := V isited ∪ {s}
15 let T ′ ⊆ T be the set of transitions outgoing from state s in
16 foreach (s, e, G, γ, s′) ∈ T ′ do
17 foreach b ∈ getExpressions(G) do
18 a := a + getV ars(b) + ′′ O :=′′ + getV ars(b) + ′′ I;′′

19 A := A ∪ {a} /* getExpressions() returns a set of boolean */

20 ei := e + ′′ I ′′
/* expressions from a Guard, whereas, getVal() */

21 eo := e + ′′ O′′
/* returns a value of data in an expression */

22 s′
c := (a, eo)

23 if γ �= discard & γ �= replace then
24 Tc := Tc ∪ {(sc, ei, G, s′

c)}
25 if γ = replace then
26 (sr, er, Gr, γr, s

′
r) := t ∈ T ′ where γr = replacement

27 foreach br ∈ getExpressions(Gr) do
28 ar := ar + getV ars(br) + ′′ :=′′ + getV al(br) + ′′;′′

29 s′′
c := (ar, er)

30 Tc := Tc ∪ {(sc, ei, G, s′′
c)}

31 Sc := Sc ∪ {sc, s
′
c, s

′′
c }

32 if s′ �∈ V isited then
33 TraverseProperty (s′, s′

c, P, ecc, A, V isited)
34 end

35 End Function
36 TraverseProperty (s0, s0c , P, ecc, A, V isited)
37 return ef = (ei, ecc, A)

concatenating property’s events or variable names with the corresponding suf-
fixes (lines 1 to 4). The suffixes are added since every interface in an FB must
have a unique name. The WITH identifiers Wi,Wo are obtained by iterating
through transitions in the property (lines 5 to 9) and associating each event
with the set of data interfaces taken from variable names on the guard.

362 Y. Falcone et al.

ECC is built by traversing the property using a recursive function Traverse-
Property to visit every state. In each recursion:

1. an ECC’s algorithm is written by obtaining every variable in the transition’s
guard and creating an assignment of input data interfaces to output data
interfaces,

2. an ECC’s transition is created and added into the set only when the type of
property’s transition is not discard (lines 21 and 25),

3. an additional ECC’s transition is added when there are a pair of replace and
replacement transitions (lines 26 to 30),

4. the set of ECC’s states is updated and proceeds to the next state when it is
not yet visited (lines 31 to 33).

Table 1. Synthesised enforcers interfaces

Interface Regulate buttons Force accept

Input event EXO I Done I

Output event EXO O Done O

Input data Running I Pass I

Output data Running O Pass O

WITH input (EXO I , {Running I }) (Done I , {Pass I })

WITH output (EXO O , {Running O}) (Done O , {Pass O})

As examples of synthesis results, we first present synthesised enforcers inter-
faces in Table 1. These are enforcer interfaces generated from the properties pre-
sented in Fig. 6 (A) and (B). Enforcer interfaces are generated from the property
Regulate Buttons in the second column, whereas enforcer interfaces are gener-
ated from the property Force Accept in the third column. For each property,
there is a pair of event input and output interfaces (e.g., EXO I and EXO O)
generated from an event. There is also a pair of data input and output (e.g.,
Running I and Running O) since there exists only one variable in the boolean
expression. The WITH identifiers associate each event interface with a set of
data interfaces according to events and guards in the properties’ transitions. For
instance, in Regulate Buttons EXO I is associated with Running I because, in
property, there is a transition with event EXO associated with a guard that
contains data variable Running .

Figure 7 depicts the synthesised ECCs of enforcers from both properties, and
Table 2 shows the algorithms. The Regulate Buttons property contains discard
transitions. It translates into an ECC where the corresponding transitions are
removed. For instance, in state 1 when the enforcer has just triggered EXO
and set Running to true, there is only a single transition where it can receive
EXO with Running set to false. When the enforcer receives an event EXO with
Running = true, then that event is discarded, and the current state stays at state

Runtime Enforcement for IEC 61499 Applications 363

Fig. 7. Synthesised execution control charts

1. Hence, the value of Running always alternates between true and false every
time EXO is triggered. Meanwhile, in the enforcer ECC for the Force Accept
property, state 2 corresponds to state 3 of property. In this state, the enforcer
has received Done with Pass set to false (i.e., material rejection) twice in a row.
Notice that from this state when the enforcer receives event Done with Pass
set to false for the third time, state 5 executes Algo2 where the value of Pass
is enforced to be true. Furthermore, when the property’s transition is typed as
forward , the generated ECC’s target state simply uses an algorithm where we
assign the value of the input data interface to the output data interface. As an
example for the property Force Accept, Algo1 which assigns Pass I to Pass O
is used in every state except state 5.

Table 2. Synthesised algorithms

Regulate buttons Force accept

Algo1 Running O := Running I; Pass O := Pass I;

Algo2 Pass O := true;

3.4 Enforcer Integration

A synthesised enforcer must be integrated into an IEC 61499 application in
order to enforce the property’s correctness at runtime. Enforcer integration is
illustrated in Fig. 8; below is the description of every step:

(1) Identify the subset of output interfaces in the application by matching their
names with enforcer input interfaces (e.g., EO and DO).

(2) Identify the subsets of input interfaces connected with output interfaces
identified in step 1 (e.g., {EI1, EI2} and {D}).

364 Y. Falcone et al.

(3) Connect the output interfaces identified in step 1 to the input interfaces of
the enforcer (e.g., EO to EO I) and connect the output interfaces of the
enforcer with the input interfaces identified in step 2 (e.g., EO O to EI1
and EI2).

(4) Disconnect output interfaces in step 1 and input interfaces in step 2.

Fig. 8. Four steps of enforcer integration

Figure 9 shows excerpts of enforcers for properties in Fig. 6 that are integrated
into the application. Integrating an enforcer essentially places a new FB between
sets of connections. For instance, output event interface EXO in DriveCntl1
was initially connected to Feed in Feed1 . After the enforcer is integrated, this
connection is replaced with EXO to EXO I and EXO O to Feed .

Fig. 9. Integrated enforcers

3.5 Characteristics

Our approach involves the modification of the application. It is essential to make
sure that this modification respects some common characteristics. The first char-
acteristic, soundness is satisfied if, for any input, it produces the correct out-
put which satisfies the property. This criterion is fulfilled because we synthesise

Runtime Enforcement for IEC 61499 Applications 365

enforcers directly from properties. In a property, transitions outgoing to an incor-
rect state are either typed as discard or replace. Hence, any incorrect input is
always either discarded or replaced. The second characteristic, transparency , is
satisfied if the enforcer only intervenes when a property violation happens. This
is also true in our approach since the enforcer only replaces events and data
when there is a transition typed as replace outgoing to an incorrect state (i.e.,
property’s violation). Also, the enforcer only discards an event when there is a
transition typed as discard outgoing to an incorrect state.

4 Tool Support

Fig. 10. Implementation overview

We have developed tool support in Java programming language to synthesise
enforcers automatically. The tool takes as input a property and outputs an
enforcer. The resulting enforcers can be visualised and simulated using Eclipse
4DIAC-IDE [18]. Figure 10 overviews our implementation. A property is written
in a text file for a certain IEC 61499 application. The enforcer synthesis takes
this property as an input to generate an enforcer in XML format. 4DIAC-IDE
is then used to integrate the enforcer into the application. The application with
an integrated enforcer is then ready to be simulated. The tool support, along
with the running example in Sect. 2.3 integrated with enforcers for properties in
Fig. 6 are available online [11]. By taking advantage of this tool support, we have
also done several experiments using other examples such as capping station [22]
and temperature control [21], both with a variety of properties.

5 Related Work

Several formal verification techniques for IEC 61499 applications have been pro-
posed [4]. The work in [14] introduces a technique based on model checking
to visually explain properties’ violations. The approach begins with automatic

366 Y. Falcone et al.

translations of IEC 61499 applications into Symbolic Model Verifier (SMV) spec-
ifications. Then, a model checker generates counterexamples from those specifi-
cations and some given properties. Finally, the counterexamples are utilized to
infer influence paths in a graphical interface. These paths are presented visually
to the users to help them debug IEC 61499 applications. Earlier work in [20]
uses Esterel for verifying safety properties. These works focus on avoiding prop-
erties from being violated by checking them before the application’s deployment,
whereas our approach ensures those properties are satisfied during runtime by
applying modifications. Moreover, in this approach, the state explosion can be
a challenge when the application is huge since it has to explore all possible
executions. In contrast, our approach is not limited by the application’s size.

A runtime verification technique is proposed in [12]. The authors propose a
method for monitoring adapter connections in IEC 61499 application. The mon-
itor contains state machines specifying certain properties. When a property is
violated, an event is triggered as a notification. Instead of inserting a monitor,
our work ensures correctness by integrating an enforcer based on a given prop-
erty. The work in [5] also relies on runtime verification. The authors propose to
integrate so-called contract monitors into IEC 61499 applications. These mon-
itors can ensure some specified properties during runtime by constraining the
behaviour of existing FBs. This is done by allowing data input and output inter-
faces to receive and send certain values only. However, this approach ensures
only the correctness of individual FBs in the application, whereas our enforcer
can ensure a property that involves multiple FBs at once.

The work in [16] introduces a technique to generate sequences of dynamic
reconfiguration for IEC 61499 applications. The purpose of a reconfiguration
sequence is to guarantee the continuity of a running application when compo-
nent modifications are being applied. The technique takes as inputs an initial
application and a target application. It outputs the sequence of reconfiguration
steps to achieve the input target application from the initial input application.
The technique starts by using predefined dependency rules on the input appli-
cation to produce a dependency tree. This tree is then used to generate the
sequence of reconfiguration. This approach does not guarantee that the target
application is correct since it is an input the users give. In contrast, our approach
involves automatically synthesising enforcers that guarantee correct behaviour
when integrated into the application.

Compared to the existing models of enforcement monitors (EMs) [8], we con-
sider output sanitisers that alter the outputs of existing components (i.e., FBs)
in the application and forward them to the following connected components.
Contrarily to the standard runtime enforcement scenario, EMs do not run in
parallel with the application but are instead incorporated into the application.
The EMs modify the application execution during runtime. Our EMs resemble
edit automata [13] and generalised enforcement monitors [9] in that they can
suppress and replace actions from the underlying application. However, they
are synthesised from richer properties where events are not propositional (as
with EAs and GEMs) but carry data values from the application that directly
influence the decisions of our EMs.

Runtime Enforcement for IEC 61499 Applications 367

6 Concluding Remarks

We propose new techniques to support industrial applications developed using
the IEC 61499 standard. The novelty of this work is that we apply runtime
enforcement to prevent IEC 61499 applications from violating certain properties
during runtime. This approach allows the developers to guarantee correctness
without manual intervention. Our enforcement techniques involve integrating a
new component called an enforcer into the application. This component is in
the form of a basic function block which is synthesised from a property. The
approach is illustrated on a realistic running example, and tool support was
developed to automate the synthesis process.

For future work, the property and the synthesised enforcer can be extended
to support buffering. This feature would allow the enforcer to buffer events and
trigger them in the future. This could be useful, for instance, when we need to
postpone some actions due to a lack of resources in the system. With this feature,
we could buffer the events corresponding to those actions and trigger them con-
secutively when the data corresponding to the resources are available. Another
perspective is to construct an enforcer that can interpret properties dynamically.
We may achieve this by designing enforcers as service interface FBs. With this
type of FB, a program which implements a property interpreter can be writ-
ten directly into the enforcer. Users could thus dynamically provide properties
as inputs to change the enforcer behaviour at runtime. Furthermore, according
to our preliminary experiments, the proposed enforcement techniques did not
induce noticeable overheads. However, we plan to run more exhaustive analy-
sis to verify that the approach does not significantly impact the application’s
performance.

Acknowledgements.. This work was supported by the Région Auvergne-Rhône-
Alpes within the “Pack Ambition Recherche” programme, the French ANR project
ANR-20-CE39-0009 (SEVERITAS), and LabEx PERSYVAL-Lab (ANR-11-LABX-
0025-01).

References

1. International Electrotechnical Commission, Functional blocks - Part 1: Architec-
ture, 2nd edn. IEC 61499–1. IEC Geneva (2012)

2. 4DIAC-IDE. Framework for Distributed Industrial Automaton (4DIAC) (2010).
www.eclipse.org/4diac/

3. Baier, C., Katoen, J.: Principles of Model Checking. MIT Press, Cambridge (2008)
4. Blech, J.O., Lindgren, P., Pereira, D., Vyatkin, V., Zoitl, A.: A comparison of

formal verification approaches for IEC 61499. In: 2016 IEEE 21st International
Conference on Emerging Technologies and Factory Automation (ETFA), pp. 1–4
(2016)

5. Do Tran, D., Walter, J., Grüttner, K., Oppenheimer, F.: Towards time-sensitive
behavioral contract monitors for IEC 61499 function blocks. In: 2020 IEEE Con-
ference on Industrial Cyberphysical Systems (ICPS), vol. 1, pp. 27–34 (2020)

www.eclipse.org/4diac/

368 Y. Falcone et al.

6. Falcone, Y.: You should better enforce than verify. In: Barringer, H., et al. (eds.)
RV 2010. LNCS, vol. 6418, pp. 89–105. Springer, Heidelberg (2010). https://doi.
org/10.1007/978-3-642-16612-9 9

7. Falcone, Y., Havelund, K., Reger, G.: A tutorial on runtime verification. Eng.
Dependable Softw. Syst. 34, 141–175 (2013)

8. Falcone, Y., Mariani, L., Rollet, A., Saha, S.: Runtime failure prevention and reac-
tion. In: Bartocci, E., Falcone, Y. (eds.) Lectures on Runtime Verification. LNCS,
vol. 10457, pp. 103–134. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-75632-5 4

9. Falcone, Y., Mounier, L., Fernandez, J.-C., Richier, J.-L.: Runtime enforcement
monitors: composition, synthesis, and enforcement abilities. Formal Methods in
System Design 38, 06 (2011)

10. Falcone, Y., Pinisetty, S.: On the runtime enforcement of timed properties. In:
Finkbeiner, B., Mariani, L. (eds.) RV 2019. LNCS, vol. 11757, pp. 48–69. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-32079-9 4

11. Faqrizal, I.: Enforcer synthesis 2022. https://gitlab.inria.fr/ifaqriza/enforcer-
synthesis

12. Jhunjhunwala, P., Blech, J.O., Zoitl, A., Atmojo, U.D., Vyatkin, V.: A design
pattern for monitoring adapter connections in IEC 61499. In: 22nd IEEE Inter-
national Conference on Industrial Technology, ICIT 2021, Valencia, Spain, 10–12
March 2021, pp. 967–972. IEEE (2021)

13. Ligatti, J., Bauer, L., Walker, D.: Enforcing non-safety security policies with pro-
gram monitors. In: di Vimercati, S.C., Syverson, P., Gollmann, D. (eds.) ESORICS
2005. LNCS, vol. 3679, pp. 355–373. Springer, Heidelberg (2005). https://doi.org/
10.1007/11555827 21

14. Ovsiannikova, P., Vyatkin, V.: Towards user-friendly model checking of IEC 61499
systems with counterexample explanation. In: 2021 26th IEEE International Con-
ference on Emerging Technologies and Factory Automation (ETFA), pp. 01–04
(2021)

15. Philbeck, T., Davis, N.: The fourth industrial revolution: shaping a new Era. J.
Int. Aff. 72(1), 17–22 (2018)

16. Prenzel, L., Steinhorst, S.: Automated dependency resolution for dynamic recon-
figuration of IEC 61499. In: 2021 26th IEEE International Conference on Emerging
Technologies and Factory Automation (ETFA), pp. 1–8 (2021)

17. Schneider, F.B.: Enforceable security policies. ACM Trans. Inf. Syst. Secur. 3(1),
30–50 (2000)

18. Strasser, T.: Framework for distributed industrial automation and control
(4DIAC). In: IEEE International Conference on Industrial Informatics (INDIN),
pp. 283–288 (2008)

19. Vyatkin, V.: IEC 61499 as enabler of distributed and intelligent automation: state-
of-the-art review. Ind. Inf. IEEE Trans. 7, 768–781 (2011)

20. Yoong, L.H., Roop, P.S.: Verifying IEC 61499 function blocks using Esterel. IEEE
Embed. Syst. Lett. 2(1), 1–4 (2010)

21. Zoitl, A., Lewis, R.: Modelling control systems using IEC 61499, 2nd Edition.
Institution of Engineering and Technology (2014)

22. Zoitl, A., Strasser, T.I., Ebenhofer, G.: Developing modular reusable IEC 61499
control applications with 4DIAC. In: IEEE International Conference on Industrial
Informatics, INDIN, pp. 358–363. IEEE (2013)

https://doi.org/10.1007/978-3-642-16612-9_9
https://doi.org/10.1007/978-3-642-16612-9_9
https://doi.org/10.1007/978-3-319-75632-5_4
https://doi.org/10.1007/978-3-319-75632-5_4
https://doi.org/10.1007/978-3-030-32079-9_4
https://gitlab.inria.fr/ifaqriza/enforcer-synthesis
https://gitlab.inria.fr/ifaqriza/enforcer-synthesis
https://doi.org/10.1007/11555827_21
https://doi.org/10.1007/11555827_21

Author Index

Aichernig, Bernhard K. 155
Aitken, Jonathan 271
Antonino, Pedro 227

Bergersen, Gunnar Rye 253
Beyer, Dirk 3, 111

Calinescu, Radu 271
Cerqueira, Jorge 288
Cimini, Matteo 57
Cohen, Elazar 173
Cunha, Alcino 288

Dierl, Simon 91
Dong, Yifan 324
Douthwaite, James 271

Elboher, Yizhak Yisrael 173

Falcone, Yliès 352
Faqrizal, Irman 352
Ferrando, Angelo 335
Ferreira, Juliandson 227

Galindo, Carlos 74, 146
Grelck, Clemens 129

Haltermann, Jan 37
Hamilton, Nathaniel 190
Howar, Falk 91

Jain, Namrata 244
Jansen, David N. 324
Johnsen, Einar Broch 253
Johnson, Taylor T. 190, 307

Kaneko, Kosuke 244
Katz, Guy 173
Kittelmann, Alexander 209
Kobialka, Paul 253
Konečný, Michal 20
König, Sandra 155
Krinke, Jens 74

Law, James 271
Li, Yong 324
Lingsch Rosenfeld, Marian 3
Liu, Jiuyang 324

Macedo, Nuno 288
Malvone, Vadim 335
Mateis, Cristinel 155
Miedema, Lukas 129
Mues, Malte 91

Pérez, Sergio 74, 146
Pferscher, Andrea 155
Potanin, Alex 209

Rasheed, Junaid 20
Robinette, Preston K 190
Roscoe, A. W. 227
Runge, Tobias 209

Salaün, Gwen 352
Sampaio, Augusto 227
Schaefer, Ina 209
Schmidt, Dominik 155
Serbinowska, Serena Serafina 307
Servetto, Marco 209
Sharma, Subodh 244
Silva, Josep 74, 146
Spiessl, Martin 3, 111
Stefanakos, Ioannis 271

Tapia Tarifa, Silvia Lizeth 253
Tappler, Martin 155

Umbricht, Sven 111

Wehrheim, Heike 37
Wu, Zhilin 324

Yu, Shizhen 324

Zhang, Lijun 324

	Preface
	Organization
	Invited Talks
	Distributed Process Calculi with Local States
	Maintenance Meets Model Checking—Predictive Maintenance via Fault Trees and Formal Methods
	Towards Verifying Neural-Symbolic Multi-Agent Systems
	Contents
	Software Verification
	A Unifying Approach for Control-Flow-Based Loop Abstraction
	1 Introduction
	2 Preliminaries
	3 Loop Abstractions
	3.1 Theory
	3.2 Combining Strategies for Loop Abstraction

	4 Evaluation
	4.1 Benchmark Environment
	4.2 Experiments

	5 Conclusion
	References

	Auto-Active Verification of Floating-Point Programs via Nonlinear Real Provers
	1 Introduction
	2 Our Proving Process Steps
	2.1 Generating and Processing Verification Conditions
	2.2 Simplifications and Bounds Derivation
	2.3 Eliminating Floating-Point Operations

	3 Deriving Provable Error Bounds
	4 Verification of Heron's Method for Approximating the Square Root Function
	5 Verifying AdaCore's Sine Implementation
	6 Benchmarking the Proving Process
	6.1 Counter-examples

	7 Conclusion
	References

	Information Exchange Between Over- and Underapproximating Software Analyses
	1 Introduction
	2 Background
	2.1 Program Syntax and Semantics
	2.2 Existing Artifacts

	3 Validation Artifact GIA
	4 Using GIAs in Cooperative Validation
	5 Implementation and Evaluation
	6 Conclusion
	References

	Program Analysis
	A Query Language for Language Analysis
	1 Introduction
	2 Languages as Databases
	3 The Lang-SQL Query Language
	4 Rewriting Lang-n-Check as Lang-SQL Queries
	5 Evaluation
	6 Related Work
	7 Conclusion
	References

	Field-Sensitive Program Slicing
	1 Introduction
	2 Slicing Composite Data Structures
	3 Constrained-Edges Program Dependence Graph
	3.1 Extending the PDG
	3.2 Slicing the CE-PDG: Constrained Traversal
	3.3 The Slicing Algorithm
	3.4 Dealing with Loops

	4 Implementation and Empirical Evaluation
	5 Related Work
	6 Conclusion
	References

	SPouT: Symbolic Path Recording During Testing - A Concolic Executor for the JVM
	1 Introduction
	2 SPouT: Directing the Flow of Espresso
	2.1 SPouT's Design
	2.2 Memory Architecture
	2.3 Symbolic Encoding of String Operations
	2.4 Supported Languages and Implemented Features

	3 Demonstration and Evaluation
	4 Conclusion
	References

	Verifier Technology
	Cooperation between Automatic and Interactive Software Verifiers
	1 Introduction
	2 Preliminaries
	2.1 Verification Witnesses
	2.2 ACSL

	3 A Component Framework for Cooperative Verification
	3.1 Witness2ACSL
	3.2 ACSL2Witness
	3.3 Witness2Assert

	4 Evaluation
	4.1 Experimental Setup
	4.2 Benchmark Set with Useful Witnesses
	4.3 Experimental Results
	4.4 Case Study on Interactive Verification with Manual Annotations

	5 Conclusion
	References

	Strategy Switching: Smart Fault-Tolerance for Weakly-Hard Resource-Constrained Real-Time Applications
	1 Introduction
	2 System Models
	3 A State Machine of Strategies
	4 Strategy State Machine Construction
	4.1 Enumerating Strategies and Results
	4.2 Strategy Linking
	4.3 State Machine Construction Algorithm
	4.4 Algorithmic Complexity

	5 Evaluating State Machines
	5.1 Discrete-Time Markov Chain Evaluation

	6 Evaluation
	6.1 Dataset
	6.2 Results

	7 Validation Using UPPAAL
	7.1 UPPAAL Processes
	7.2 Validating Results

	8 Related Work
	9 Conclusion
	10 Future Work
	References

	A Program Slicer for Java (Tool Paper)
	1 Introduction
	2 Background
	3 Producing Slices with JavaSlicer
	3.1 Slicing More Than One File
	3.2 Slicing with External Libraries

	4 Implementation
	5 Empirical Evaluation
	6 Related Work
	7 Conclusions
	References

	Formal Methods for Intelligent and Learning Systems
	Constrained Training of Recurrent Neural Networks for Automata Learning
	1 Introduction
	2 Preliminaries
	2.1 Recurrent Neural Networks
	2.2 Finite State Machines
	2.3 Automata Learning

	3 Automata Learning with RNNs
	3.1 Overview and Architecture
	3.2 Training and Automaton Extraction

	4 Case Studies
	4.1 Case Study Subjects
	4.2 Experimental Setup
	4.3 Results and Discussion

	5 Related Work
	6 Conclusion
	References

	Neural Network Verification Using Residual Reasoning
	1 Introduction
	2 Background
	3 Residual Reasoning (RR)
	4 Residual Reasoning and Neuron-Merging Abstraction
	5 Adding Residual Reasoning to Reluplex
	6 Experiments and Evaluation
	7 Related Work
	8 Conclusion
	References

	Training Agents to Satisfy Timed and Untimed Signal Temporal Logic Specifications with Reinforcement Learning
	1 Introduction
	2 Preliminaries
	2.1 (Deep) Reinforcement Learning
	2.2 Signal Temporal Logic

	3 Examples
	3.1 Pendulum
	3.2 CartPole

	4 Our Approach: STLGym
	4.1 Computing the Robustness Degree
	4.2 Allowable Specifications
	4.3 Calculating Reward

	5 Example Case Studies
	5.1 Sparse vs Dense Reward
	5.2 STLGym is Algorithm-Agnostic
	5.3 On Separating Specifications and Scaling
	5.4 Retraining with New Goal
	5.5 Learning a Timed Specification

	6 Related Work
	6.1 Quantitative Semantics
	6.2 Reward Machines

	7 Conclusions and Future Work
	References

	Specification and Contracts
	Information Flow Control-by-Construction for an Object-Oriented Language
	1 Introduction
	2 Object-Oriented Language SIFO by Example
	3 IFbCOO by Example
	4 Formalizing Information Flow Control-by-Construction
	4.1 Core Calculus of SIFO
	4.2 Refinement Rules for Program Construction
	4.3 Proof of Soundness

	5 CorC Tool Support and Evaluation
	5.1 CorC for IFbCOO
	5.2 Case Studies and Discussion

	6 Related Work
	7 Conclusion
	References

	Specification is Law: Safe Creation and Upgrade of Ethereum Smart Contracts
	1 Introduction
	2 Background
	2.1 Solidity
	2.2 Formal Verification with solc-verify

	3 Safe Ethereum Smart Contracts Deployment
	3.1 Verifier
	3.2 Upgrader

	4 Case Studies: ERC20, ERC1155, and ERC3156
	5 Related Work
	6 Conclusion
	References

	SKLEE: A Dynamic Symbolic Analysis Tool for Ethereum Smart Contracts (Tool Paper)
	1 Introduction
	2 Overview of SKLEE
	2.1 Contract Translator
	2.2 Augmenting KLEE
	2.3 Vulnerabilities and Their Detection
	2.4 Validation
	2.5 Limitations

	3 Experiments and Results
	4 Conclusion
	References

	Program Synthesis
	Weighted Games for User Journeys
	1 Introduction
	2 Preliminaries
	3 From User Logs to Games
	4 Capturing User Feedback in User Journey Games
	5 Finite Unrolling of Games
	6 Model Checking User Journeys
	7 Implementing the Pipeline to Analyse User Journeys
	8 Evaluating the Analysis Pipeline
	8.1 Context
	8.2 Observations in the Weighted Game
	8.3 Model Checking the Case Study
	8.4 Recommendations from the Observations and Analysis

	9 Conclusions and Future Work
	References

	Safety Controller Synthesis for a Mobile Manufacturing Cobot
	1 Introduction
	2 Manufacturing Process
	3 Safety Controller Synthesis
	3.1 Overview of the Approach
	3.2 Stage 1: Hazard Identification
	3.3 Stage 2: Stochastic Modelling
	3.4 Stage 3: Synthesis

	4 Evaluation
	4.1 Generation of Safety Controller Instantiations
	4.2 Evaluation on a Digital Twin

	5 Related Work
	6 Conclusion
	References

	Timely Specification Repair for Alloy 6
	1 Introduction
	2 Related Work
	3 Alloy Temporal Repair
	3.1 Overview
	3.2 Mutation-Based Repair with Counterexample-Based Pruning
	3.3 Implementation Details

	4 Evaluation
	5 Conclusions
	References

	Temporal Logic
	BehaVerify: Verifying Temporal Logic Specifications for Behavior Trees
	1 Introduction
	1.1 Background
	1.2 The Blackboard

	2 Related Work
	2.1 Strengths and Uses of BTs
	2.2 Expanded BTs
	2.3 Verification of BTs

	3 Overview of Approach
	4 Encodings
	4.1 Leaf
	4.2 Total
	4.3 BTCompiler

	5 Results
	5.1 Checklist and Parallel-Checklist
	5.2 BlueROV

	6 Conclusions and Future Work
	References

	CHA: Supporting SVA-Like Assertions in Formal Verification of Chisel Programs (Tool Paper)
	1 Introduction
	2 Tool Data Flow of CHA
	3 Case Studies
	3.1 GCD Module with 4-Bits Inputs
	3.2 Wishbone Interface

	4 Conclusion and Future Work
	References

	Runtime Methods
	Runtime Verification with Imperfect Information Through Indistinguishability Relations
	1 Introduction
	2 Preliminaries
	3 Runtime Verification with Imperfect Information
	3.1 How Can We Formally Represent the Imperfect Information?
	3.2 Re-engineering Monitor with Imperfect Information

	4 Implementation
	4.1 Remote Inspection Case Study
	4.2 Experimental Results

	5 Related Work
	6 Conclusions and Future Work
	References

	Runtime Enforcement for IEC 61499 Applications
	1 Introduction
	2 Background
	2.1 IEC 61499
	2.2 Runtime Enforcement
	2.3 Running Example

	3 Runtime Enforcement Techniques
	3.1 Enforcement Architecture
	3.2 Property Automaton
	3.3 Enforcer Synthesis
	3.4 Enforcer Integration
	3.5 Characteristics

	4 Tool Support
	5 Related Work
	6 Concluding Remarks
	References

	Author Index

