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Chapter 15
Boosting and Stacking

15.1 The Problem

The ensemble technique relies on an aggregate of models’ output to provide a better
prediction. Other than voting and bagging, we can use boosting and stacking.

15.2 Boosting

Boosting (or hypothesis boosting) refers to an ensemble method that builds a strong
learner out of a combination of weak learners (i.e., learners that perform slightly
better than random guessing). The predictors are trained sequentially, and each
subsequent predictor tries to correct the current one [1]. The dataset is the same
for all algorithms; however, each data instance is subject to a weight based on the
outcome of the previous model’s success [2]; in each iteration, to factor in the
prediction difficulty of incorrectly classified instances, their weight is increased.
We usually use this technique when learning a new skill, as we focus our attention on
difficult aspects. Boosting algorithms differ in the way they calculate the weights
(Fig. 15.1).

15.3 Stacking

In stacking (or stacking generalization [3]), the outputs of several algorithms are
used as the input of the main algorithm (called sometime the blender [1]) that is
supposed to make the final prediction. Practically, we feed the blender with the
predicted outcomes of the preceding algorithms. The training dataset is divided into
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Fig. 15.1 Boosting in action



The following is a summary of the training of AdaBoost algorithm for a dataset of
m instances and N predictors:

Begin For i

two parts, a subset (a holdout) to train the blender and a subset to train the other
algorithms. The blender uses the outcomes of the other algorithms as input features
and the labels from the holdout dataset to train the blender. The blender will learn to
predict the labels based on the input features (i.e., the outcomes of the algorithms).
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What we have just explained is a stacking mechanism with two layers and one
blender. It is possible to create stacking with more than two layers; for instance, in
stacking with three layers, the dataset is split into three subsets. The first is used at
layer 1 to generate the outcomes, which will act as input for the first blender at layer
2, which will also use the labels of the second subset for training. The second blender
at layer 3 will act similarly, i.e., it uses the outcomes of layer 2 and the labels of the
third subset for training.

15.4 Boosting Example

15.4.1 AdaBoost Algorithm

AdaBoost is a boosting algorithm that focuses its attention on the training instances
that the predecessor algorithm misclassified [4].

Initially, each instance of the dataset is assigned equal weight. Using the training
dataset, AdaBoost trains a weak learner classifier, such as a decision tree with one
level (called a decision stump). Then, AdaBoost uses the developed model to make
predictions about the training dataset and increases the weight for the misclassified
instances. The dataset with the updated weights is then used for training in the next
iteration. The process continues until the desired number of classifiers is reached or
no further improvement in classification can be made.

Once trained, AdaBoost makes predictions by calculating all the predictions of all
the predictors, weighting them using the predictors’ weights. The predicted class is
determined by the majority of the weighted votes [1].

At each iteration, AdaBoost focuses on misclassified instances; this strategy
improves the performance of the weak classifiers drastically (Fig. 15.2).

Initialize the weights w ið Þ = 1
m

For j = 1 to N
Begin For j

1. For i = 1 to m

Calculate jth prediction by ið Þ
j for each instance x(i)

End For i



j

� � � �

End Fo
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Fig. 15.2 Overview of AdaBoost

2. Calculate the jth predictor’s error rate

rj =
for by ið Þ

j ≠ y ið Þ
� � Pm

i= 1
w ið Þ

Pm
i= 1

w ið Þ

where by ið Þ is the jth prediction for the instance i

3. Calculate the jth predictor’s weight

αj = η log
1- rj
rj

where η is the learning rate (by default, η = 1).

4. Update the instances’ weights

For i= 1 to m

Begin For i

if by ið Þ
j ≠ y ið Þ then w ið Þ =w ið Þ exp αj

r i

5. Normalize the weights
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For i= 1 to m

Begin For i

w ið Þ = w ið Þ
Pm
i= 1

w ið Þ

End For i

End For j

To predict using AdaBoost, for a new instance, the weak learners calculate in
sequence a predicted value as either +1 (for first class) or –1 (for the second class);
each prediction is weighted by the predictor’s weight. The weighted sum is calcu-
lated; AdaBoost assigns the instance to the first class if the weighted sum is positive
and to the second class otherwise. Classifying an instance x with AdaBoost with
N predictors can be summarized as follows:

by xð Þ= argmax
k

XN
j= 1byj xð Þ= k

αj

15.4.2 AdaBoost Example

Download the “Iris” file from the Weka datasets or from the Kaggle website using
the following link: https://www.kaggle.com/uciml/iris. Open the file in Weka and
choose the AdaBoost algorithm in the Classify tab (Fig. 15.3).

Check the AdaBoost parameters and get acquainted with them (you can use the
More button for more information). Accept the default parameters. Explore partic-
ularly the Classifier parameter; you can choose classifiers other than the decision
stump (Fig. 15.4). Choose cross-validation with tenfolds (Fig. 15.5) and click the
Start button. The output window displays the AdaBoost results (Fig. 15.6).

AdaBoost has performed ten iterations of cross-validation, as per our request.
There are 143 (95.33%) correctly classified instances and seven (4.73%) incorrectly
classified ones. The root mean squared error (RMSE) that we are trying to minimize
is 0.1729. We can notice that the class Iris-setosa was clearly identified with a perfect
area under the curve (AUC) (i.e., ROC area). The AUCs for Iris-versicolor and Iris-
virginica were 0.92 and 0.93, respectively, indicating a high ability of the model to
classify both types of irises. The confusion table shows five Iris-versicolor
incorrectly classified as Iris-virginica and two Iris-virginica incorrectly classified

https://www.kaggle.com/uciml/iris
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Fig. 15.3 AdaBoost
classifier in Weka

as Iris-versicolor. The window shows at the top that the classification was based on
the petal length value 2.45 to differentiate between the Iris-setosa and the two other
types, the decision being if petal length value is <2.45, then the flower is Iris-setosa.

15.5 Key Terms

1. Boosting
2. Hypothesis boosting
3. Weak learners
4. Stacking
5. Blender
6. Holdout sample
7. AdaBoost
8. Decision stump
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Fig. 15.4 AdaBoost parameters in Weka

15.6 Test Your Understanding

1. Explain how stacking functions.
2. Describe boosting.
3. What are some of the challenges in boosting?
4. What is a decision stump?
5. Cite some of the hyperparameters of AdaBoost.
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Fig. 15.5 Choosing to train
the model using cross-
validation with tenfolds
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Fig. 15.6 AdaBoost results when run on the iris dataset
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15.8 Lab

15.8.1 A Working Example in Python

The heart dataset that will be used for this lab can be downloaded from the
following link: https://www.kaggle.com/code/ysthehurricane/heart-failure-predic
tion-using-adaboost-xgboost/data.

That dataset contains 11 features that will be used to predict heart disease events:

• Age: person’s age in years
• Sex: person’s gender
• ChestPainType: chest pain type
• RestingBP: resting blood pressure in mm Hg

https://doi.org/10.1145/3377644.3377660
https://doi.org/10.1145/3373509.3373548
https://www.kaggle.com/code/ysthehurricane/heart-failure-prediction-using-adaboost-xgboost/data
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• Cholesterol: serum cholesterol in mm/dL
• FastingBS: blood sugar measurement on fasting
• RestingECG: electrocardiogram results in resting
• MaxHR: maximum heart rate achieved
• ExerciseAngina: exercise-induced angina flag
• Oldpeak: old peak
• ST_Slope: the slope of the peak exercise
• HeartDisease: target class (1 for having heart disease and 0 for not)

15.8.1.1 Loading Heart Dataset

We start by importing the required libraries and loading the heart dataset (Fig. 15.7).
When you run the code, if you have not installed previously a needed library you will
receive an error message stating that the module was not found, in such cases you
need install the missing library using pip.

15.8.1.2 Visualizing Heart Dataset

The next step is to explore the heart dataset visually. We have opted to display the
plot heatmap correlations between features’ pairs (Fig. 15.8).

Fig. 15.7 Loading heart dataset into pandas
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Fig. 15.8 Visualizing heart dataset in heatmap

Fig. 15.9 Preprocess data by mapping string values into numeric ones

15.8.1.3 Preprocess Data

The next step is to convert string values to numeric ones. We have used the
LabelEncoder do so (Fig. 15.9), can you achieve the same result using a different
approach? Try.
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15.8.1.4 Split and Scale Data

We can now choose the features and target, split the original dataset into training and
testing datasets and standardize both (Fig. 15.10).

15.8.1.5 Create AdaBoost and Stacking Models

We will use AdaBoost to create a boosting model with a learning_rate=0.01 and
n_estimators=500. We will also use a stacking approach using k-nearest neighbors
and Gaussian naïve Bayes algorithms as classifiers and logistic regression as a
metaclassifier. Then, we train both models on the training dataset and make associ-
ated predictions using the testing dataset (Fig. 15.11).

Fig. 15.10 Split and scale heart dataset

Fig. 15.11 Create AdaBoost and stacking models
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15.8.1.6 Evaluate the AdaBoost and the Stacking Models

The next step is to evaluate the performance of the AdaBoost and Stacking models.
We opted to show in this lab the performance on the training and testing datasets for
exploration/learning purposes. Figure 15.12 shows the code and Figs. 15.13 and
15.14 show the performance results displayed for AdaBoost and Stacking,
respectively.

Fig. 15.12 Calculating accuracy and confusion matrix for AdaBoost model

Fig. 15.13 AdaBoost Model Performance on the training and testing Datasets
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Fig. 15.14 Stacking Model Performance on the training and testing Datasets

15.8.1.7 Optimizing the Stacking and AdaBoost Models

The models’ performances on the testing datasets are fair. Let us explore the
performance of the optimized models after hyperparameter tuning. The results for
the Stacking and AdaBoost models are presented in Figs. 15.15 and 15.16,
respectively.

15.8.2 Do It Yourself

15.8.2.1 The Heart Disease Dataset Revisited

1. Have you noticed any possible overfitting in the example above?
2. Did you obtain the same results when you run your code? What do you think

about those results?
3. During the evaluation step above, we have just applied the models to the testing

dataset. That is not the best option. What is a better approach?
4. Use cross-validation to redo the evaluation step.

15.8.2.2 The Iris Dataset

Download the iris dataset and do the following:
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Fig. 15.15 Optimal stacking model performance

1. Load the dataset into pandas.
2. Visualize the dataset and calculate the highest correlations.
3. Preprocess the data.
4. Split the data.
5. Create an AdaBoost model.
6. Evaluate the AdaBoost model.
7. Optimize the AdaBoost model.
8. Create a stack model.
9. Evaluate the stack model.

10. Optimize the stack model.
11. Compare the results between both models and deduce a conclusion.
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Fig. 15.16 Optimal AdaBoost model performance

15.8.3 Do More Yourself

• https://www.kaggle.com/code/treina/titanic-with-adaboost/data
• https://www.kaggle.com/datasets/zaurbegiev/my-dataset
• https://www.kaggle.com/code/sid321axn/house-price-prediction-gboosting-

adaboost-etc/data
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