
Chapter 13
Support Vector Machine

13.1 The Problem

The more the dimensions of a feature space, the more is the computing power needed
to classify. Support vector machines (SVMs) main advantages are (1) their effec-
tiveness in a high-dimensional space and in cases where the number of dimensions is
higher than the number of instances in the dataset, and (2) their low use of memory
and hence their memory efficiency.

The aim of the SVM algorithm is to find the best hyperplane (a line in a
two-dimensions space, a plane in a three-dimension space) that divides a dataset
into two (or more) classes.

To understand how SVM works, we will take a binary classification problem
(Fig. 13.1). Since there could be many lines that can separate the two classes
(Fig. 13.1 left), SVM looks for the instances in the datasets (points on the graph)
that are closest to the dividing line. The lines passing by these points are called the
support vectors. The chosen optimal classification line is the one that maximized the
distance between the two support vectors. This is called a maximal margin
classification.

Of course, the instances may not that perfectly separable by a line, we need to find
a way to classify determine how much should we relax the constraint related to
maximizing the margin. This is called a soft margin classification.

The other problem to solve is when the classes are not linearly separable, in this
case we need a non-straight line to separate the instances. In SVM, this is done using
a kernel. A linear kernel allows to separate linearly separable classes, a polynomial
kernel allows the use of a curved line to separate the classes and a radial kernel uses a
radial-based function (RBF) to solve complex separations, for example, using a
polygon in a two-dimension space).
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13.2 The Algorithm

SVMs are a collection of similar supervised learning algorithms that are used for
classification and regression [1–4]. The most effective way to grasp the fundamen-
tals of support vector machines and how they function is to use a simple example
(Fig. 13.1). Consider the following scenario: we have two tags, one each of green
(circle shape) and blue (square shape), and our data contains two characteristics, x,
and y. We are looking for a classifier that, when given a pair of (x, y) coordinates,
outputs whether the pair is red or blue in color. On a plane, we plot the training data
that has previously been labeled:

When given these data points, a support vector machine will produce the hyper-
plane (in two dimensions, a hyperplane is simply a line) that will optimally divide the
tags. The hyperplane is the decision border. In 2D, each side of the line will be
considered a class (i.e., blue class and green class).

But, more specifically, what is the finest hyperplane? It is the one that optimizes
the margins from both tags in the case of SVM. The hyperplane (remember, it is a
line in this case) with the greatest distance to the nearest element of each tag is
known as the maximum distance hyperplane.

The SVM’s goal is to find the best hyperplane (or decision boundary) [5] that
divides two different classes while also maximizing the distance between data points
from both classes. There could be several hyperplanes to divide the two classes; our
aim is to find the hyperplane that is at the greatest distance between data points from
both classes (i.e., the greatest margin) [6]. Maximizing the margin distance allows
subsequent data points to be categorized with more certainty.

Obviously, the number of features dictates the hyperplane’s dimension; in
Fig. 13.2, we have two features x and y, the hyperplane was a straight line [5]. If

Fig. 13.1 Two datasets green (circle) and blue (square) to be classified. Each point has two features
x and y
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the number of features is three, then the hyperplane becomes a 2D plane. Beyond
three features, we cannot visualize the hyperplane (Fig. 13.3).

Support vector machines are widely used in machine learning research all around
the world, particularly in the United States. When SVMs were used in a handwriting
recognition test, they gained popularity since they achieved performance equivalent
to that of complex neural networks with elaborated features when employing pixel
maps as input [2, 7].

Fig. 13.2 The hyperplane
(remember, it is a line in this
case) with the greatest
distance to the nearest
element of each tag

Fig. 13.3 A line hyperplane in a 2D space (left) vs. a two-dimensional hyperplane in a 3D space
(right)
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13.2.1 Important Concepts

Support Vectors Support vectors are the data points that are closest to the hyper-
plane and are used to calculate the distance between them. With the aid of these data
points, a dividing line will be drawn between them. It is possible to demonstrate that
the optimal hyperplane is derived from the function class with the lowest “capac-
ity” = number of independent features/parameters that can be twiddled [8]. In other
words, they are the data points that are closest to a decision surface (or hyperplane).
They are also the data points that are most difficult to classify. They have a direct
bearing on the optimal location of the decision surface.

Hyperplane As we can see in the diagrams above, a hyperplane is a decision plane
or space that is partitioned between a collection of objects belonging to distinct
classes. In two dimensions, the hyperplane can be represented by the following
equation. This is identical to the equation of affine combination; however, the bias
b has been included in this case [9].

β1x1 þ β2x2 þ b

For d-dimensional space, we may generalize this and express it in vectorized
form.

h xð Þ = β1x1 þ⋯þ βdxd þ b

=
Xd
i= 1

βixi

 !
þ b

= βTxþ b

For any point X= x1, . . . , xdð Þ, if h(X) = 0, then X lies on the hyperplane;
otherwise h(X) < 0 or h(X) > 0, which implies that X falls to one side of the
hyperplane. If we now make a very significant assumption about the coefficient
weight vector β and assume that x1 and x2 are two random locations that lie on the
hyperplane, we may write:

h x1ð Þ= βTx1 þ b= 0

h x2ð Þ= βTx2 þ b= 0

Hence,

βTx1 þ b= βTx2 þ b

and
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βT x1 - x2ð Þ= 0

If the dot product of two vectors is 0, we know that the vectors are orthogonal to
one another, and vice versa. The weight vector β in this case is orthogonal to (x1 -
x2). Being that (x1- x2) is located on the hyperplane, it follows that the weight vector
β is also orthogonal to the hyperplane. That is to say, the weight vector beta points in
the direction that is normal to the hyperplane of the weight vector. When the
hyperplane is shifted in d-dimensional space, this is expressed as a bias (b) [9]
(Fig. 13.4).

13.2.2 Margin

The distance between two lines drawn through the closest data points of distinct
classifications can be described as a margin. The minimal distance (normal distance)
between each observation and a specific separating hyperplane can be used to
establish the margin between two observations. See how we may utilize the margin
to determine the best hyperplane for our situation. It may be computed by taking the
perpendicular distance between the line and the support vectors and dividing it
by two.

A large margin is seen as a good margin, while a small margin is regarded as a bad
margin in business. The size of the margin determines the confidence level of the
classifier; as a result, the largest possible margin should be used. Let us choose two

Fig. 13.4 The weight
vector beta points in the
direction that is normal to
the hyperplane of the weight
vector

13.2 The Algorithm 389



hyperplanes based on their distance from the center (Fig. 13.5). The one to the left
has a significantly larger margin than the one to the right, and as a result, the first
hyperplane is more optimal than the second one.

We may conclude that in the maximal margin classifier, in order to categorize the
data, we will utilize a separation hyperplane that is the greatest (maximum) and
smallest (minimum) distance away from the observations in order to classify the
data. Let us keep in mind that the margin will still be used to pick the ideal separating
hyperplane. Furthermore, Jana margins are divided into two categories: functional
margin and geographic margin [9]. They are both summed up below.

13.2.2.1 Functional Margin

To define the theoretical side of the margin, the term “functional margin” is
employed. In the presence of a training example (xi, yi), the functional margin of
(β, b) with regard to the training example will be as follows:

yi β
TXi þ b

� �
= bγi

As opposed to just specifying that the number is larger than 0, we have
established a value for the margin by using γ. Thus, the below requirements may
be established:

if yi = 1,then bγi > 0

if yi = 0,then bγi = 0

But there is a problem with the functional margin, which is that its value is reliant
on the values of β and b. The equation of the hyperplane remains the same when β

Fig. 13.5 Large (left) vs. small (right) margin

390 13 Support Vector Machine



and b are scaled (multiplied by some scaler s), but the margin increases. If you plot
the following two equations, they will both represent the same hyperplane, but in this
case, the width of the margins will change between the two equations (Fig. 13.6).

2x1 þ 3x2–5= 0

20x1 þ 30x2–50= 0

13.2.2.2 Geometric Margin

Let us make considerations regarding the visuals below (Fig. 13.7):
Along with the vector w, the decision boundary corresponding to (w, b) is

depicted in Fig. 13.7. It should be noted that w is orthogonal (i.e., at 90°) to the
separation hyperplane.

You must convince yourself that this is a fact. Consider the point A, which
represents the input x(i) of a training example with the label y(i) = 1 , as represented
by the point B. The line segment AB determines the distance between it and the
decision border, denoted by γ(i).

The value of γ(i) can be determined in several ways. To explain it more clearly,
the unit-length vector w/kwk indicates that w is moving in the same direction. Since
A represents x(i), we may conclude that the point B is given by x(i) - γ(i) × w/kwk.
The problem is that this point is located on the decision boundary, and all points x on
the decision boundary are satisfied by the equation wTx + b = 0; therefore:

Fig. 13.6 The same
hyperplane representing two
equations
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wT x ið Þ - γ ið Þ w
wk k

� �
þ b= 0

And solving for γ(i) yields:

γ ið Þ = wTx ið Þ þ b
wk k =

w
wk k

� �T

x ið Þ þ b
wk k

Specifically, this was calculated for the situation of a positive training example at
A in Fig. 13.7, in which being on the “positive” side of the decision border is
advantageous.

Furthermore, we define the geometric margin of (w, b) regarding a training
example (x(i), y(i)) as follows:

γ ið Þ = y ið Þ w
wk k

� �T

x ið Þ þ b
wk k

 !

It is important to note that if kwk = 1, then the functional margin equals the
geometric margin—this provides a means of connecting these two disparate ideas of
margin together. As a result of this property, the geometric margin is invariant to
rescaling of the parameters; that is, if we substitute two values for w and two values
for b, the geometric margin remains unchanged. Furthermore, because of this
invariance to scaling of the parameters, we can apply any arbitrary scaling constraint

Fig. 13.7 Two datasets
separated by a hyperplane
with weigh vector w and a
decision boundary (w, b)
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to w without producing important changes [6]; for example, we can demand that ||w||
=1, or that jw1 + b j + j w2 j = 2, and any other constraint can be satisfied by just
rescaling w and the parameters; however, this is not recommended.

13.2.3 Types of Support Vector Machines

Support vector machines are generally classified into only two types. They are both
detailed below:

13.2.3.1 Linear Support Vector Machine

This type only works with data that can be divided into two categories by a single
perfect line, in which case the dataset is considered linearly separable, and the linear
SVM classifier is used. This is further divided into two types and is visually
displayed below.

13.2.3.2 Soft Margin Classifier

A soft margin classifier is an SVM that where the threshold is allowed to make an
tolerable number of misclassifications, while allowing new data instances to be
classified correctly [10]. The famous cross-validation technique can be used to
determine the best classification (Fig. 13.8).

In a real-world scenario, it is unlikely that a perfectly distinct line would be drawn
between the data points included inside the space [11]. Furthermore, we might have
a curved decision boundary. It is possible to have a hyperplane that precisely
separates the data; however, this may not be desired if the data contains noise.
Jakkula agrees it is preferable for the smooth border to disregard a small number of
data points rather than being curved or going in loops around outliers [2].

The assumption that the dataset is perfectly linearly separable has been made up
to this point. This assumption does not hold up to scrutiny when dealing with a real-
world dataset. As a result, let us look at a slightly more challenging scenario. The
linear SVM is still in the works; however, this time, some of the classes overlap in
such a way that a perfect separation is unattainable, yet the data is still linearly
separable [9]. Consider a dataset with two dimensions shown in Fig. 13.9. There are
two primary options available:

• When a single outlier occurs, the decision boundary might be pushed signifi-
cantly, resulting in an extremely tight margin of safety.

• The data may not be separable using a straight line, even when a linear decision
boundary can correctly categorize the target classes (no clear boundary).
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In other words, the hard margin classifier that is visualized in Fig. 13.10 would
not operate owing to the inequality restriction yi(β

Txi + 1) ≥ 1.

13.2.3.2.1 Hard Margin Classifier

As previously stated, the idea of SVM is to execute an affine discrimination of
observations with the greatest amount of margin possible, that is, to identify an

Fig. 13.8 Linear SVM—
soft margin classifier

Fig. 13.9 A dataset with
two dimensions
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element (w 2 X) with the lowest norm and the greatest possible real value b, such that
the value of yi((wi, xi) + b) ≥ 1 is the same for all i. But to do so, we must first solve
the quadratic programming issue described below:

min <w, w>
w,b
subject to yi <wi, xi >þbð Þ≥ 1, 1≤ i≤N

The classification rule that relates to (w, b) is simply referred to as f(x)= sin ((w,
x) + b). In this circumstance (which is referred to as the hard margin SVM), we
require that the rule have zero error on the learning set (Fig. 13.10).

13.2.3.3 Nonlinear Support Vector Machine

This classifier is used for nonlinearly separated data, which means that if a dataset
cannot be classified using a straight line, it is considered nonlinear data, and the
classifier used is the nonlinear SVM classifier. A graphical representation is shown
below (Fig. 13.11) [11].

A mathematical example of nonlinear support vector machines is described
below:

K x, yð Þ= x:yþ 1ð Þp

- x- yk k2=2σ2
n o

K x, yð Þ= tan h kx:y–δð Þ

Fig. 13.10 Linear SVM—
hard margin classifier
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The first equation is a polynomial, while the second equation is a radial basis
function (Gaussians), and the third is a sigmoid (neural net activation function)
[8]. Some of these are visualized just below.

13.2.4 Classification

SVM is a data classification approach that is beneficial. The employment of neural
networks, despite the fact that they are regarded as more user-friendly than SVM,
might result in disappointing outcomes at times [12]. Training and testing data for
classification tasks typically comprise a small number of data examples [2]. A target
value and a number of characteristics are contained inside each instance of the
training set. The SVM model allows us to predicts target values of the instances in
the testing dataset [13].

Supervised learning may be seen in the classification process of SVM. Known
labels assist in determining whether or not the system is operating in the proper
manner. This information either points to a desired reaction, thus verifying the
correctness of the system, or it may be utilized to assist the system in learning to
behave in the appropriate manner. In SVM classification [2, 13], one phase is the
identification of classes that are tightly related to the classes that are already
recognized. This is referred to as feature selection, or feature extraction in technical
terms. Even when the prediction of unknown samples is not required, the combina-
tion of feature selection with SVM classification might be beneficial. In order to

Fig. 13.11 Representation
of a nonlinear Support
Vector Machine
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separate the classes, they can be utilized to identify key sets that are engaged in the
procedures that distinguish them.

13.2.5 Regression

Through the use of an alternate loss function, it is possible to apply SVMs to
regression situations [13, 14]. It is necessary to modify the loss function in order
to add a distance measure. There are two types of regression: linear and nonlinear.
Linear models are composed mostly of the loss functions listed below: e-intensive
loss functions, quadratic loss functions, and the Huber loss function.

It is common for nonlinear models to be required for data modeling challenges,
much as it is for classification difficulties. A technique similar to the nonlinear SVC
approach, nonlinear mapping, may be used to map the data into a high-dimensional
feature space, where linear regression can then be done on the information.

When it comes to dealing with the curse of dimensionality [15], the kernel
technique is once again used. Considerations based on past knowledge of the
problem and the distribution of the noise are taken into account while employing
the regression approach. The robust loss function of Huber has been proved to be a
good substitute in the absence of such information [13].

13.2.6 Tuning Parameters

13.2.6.1 Regularization

For each training dataset, the support vector machine is instructed on the optimal
degree of misclassification to avoid by adjusting the regularization parameter, which
is also known as the C parameter in Python’s sklearn module. When larger numbers
are used for the C parameter in a support vector machine, the optimizer will
automatically choose a hyperplane margin that is smaller if it is successful in
separating and classifying all the training data points during the optimization
process. Alternately, when dealing with extremely small values, the algorithm will
seek a larger margin for the hyperplane to separate, even if the hyperplane mis-
classifies some data points.

13.2.6.2 Gamma

An influence on a single training data sample is repeated several times using this
tuning parameter. Lower gamma values reflect distance from the hyperplane,
whereas higher gamma values show proximity to the hyperplane. Data points with
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both low and high gamma (far from and near to the hyperplane, respectively) are
included in the computation of the separation line.

13.2.6.3 Margins

The margin is the final but not the least important characteristic. It is also a critical
parameter for fine-tuning and a vital characteristic of a support vector machine
classifier. The margin, as previously established, is the distance between the line
and the data points from the classes. When using the support vector approach, it is
critical to have a good and appropriate margin. When the difference between the two
groups of data is higher than one standard deviation, it is a good margin. A sufficient
margin ensures that the individual data points remain inside their respective classes
and do not cross over into another class.

13.2.7 Kernel

When using SVM, a kernel turns the input data space into the desired format. SVM
employs the kernel trick to turn a low-dimensional input space into a higher-
dimensional space. For the uninitiated, this means that kernel adds new dimensions
to an issue that would otherwise be impossible to separate.

Generally speaking, it is most useful in nonlinear separation situations. Simply
said, the kernel performs a number of incredibly sophisticated data transformations
before determining the best method of separating the data depending on the labels or
outputs that have been established.

As a result, SVM gains higher scalability, adaptability, and accuracy. Kernels
utilized by SVM include those listed below.

13.2.7.1 Linear Kernel

All observations can be combined in this way. Here is the equation for a linear
kernel:

K x, xið Þ= sum x× xið Þ

The product between two vectors, x and xi, may be represented as the total of the
products of each pair of input values in the formula above.
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13.2.7.2 Polynomial Kernel

Curved or nonlinear input spaces can be distinguished using this generalized linear
kernel. A polynomial kernel may be expressed using the following formula:

K x, xið Þ= 1þ sum x× xið Þd

Here, d is the degree of the polynomial, which we must manually enter into the
learning algorithm.

13.2.7.3 Radial Basis Function (RBF) Kernel

When used in SVM classification, the RBF kernel transforms the input space into an
infinitum of three-dimensional spaces. It is widely used in SVM classification tasks.
The following formula provides a mathematical explanation:

K x, xið Þ= exp - gamma× sum x- xi
2

� �� �
In this case, gamma is between 0 and 1. We must explicitly define it in the

learning algorithm; the default value of gamma is 0.1, which is the industry-accepted
default.

13.3 Advantages, Disadvantages, and Best Practices

Nonetheless, the SVM’s greatest benefit is the kernel technique, which allows it to
classify extremely nonlinear situations by creating complicated boundary shapes,
rather than by using simple classification rules [16]. These qualities have enabled the
SVM to find widespread use in a variety of disciplines throughout the course of the
previous few years. SVM has been utilized for fault diagnostics [17], quality
improvement [18], and quality assessment [19].

SVMs have been used in the field of computer vision for a variety of tasks, such
as face detection, picture categorization, hand gesture recognition, and background
removal. SVMs have been utilized in finance for a variety of purposes, including
financial time series forecasting and the prediction of bankruptcy. Aside from
hydrology, other uses of SVM include forecasting of solar and wind resources,
prediction of atmospheric temperature, bioinformatics, speaker recognition, agricul-
tural forecasting, and electrical design. The quality of the datasets, on the other hand,
has an impact on the performance of basic support vector machines (SVMs).
Typically, noise may be found in real-world datasets. Noise is defined as anything
that obscures the link between the attributes of an instance and the characteristics of
its class. The noise might express itself as feature-noise (or feature uncertainty),
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which has the effect of altering the observed value of the corresponding feature.
Certainly, uncertainties may arise as a result of the constraints of observational
material, as well as the restricted resources available for data collection, storage,
transformation, and analysis.

Overall, the training of SVM is quite simple, which is one of its key advantages. It
scales rather well to large amounts of high-dimensional data, and the trade-off
between classifier complexity and error may be carefully adjusted. It is necessary
to have a good kernel function, which is one of the weaknesses [13, 20]. Overall, it is
a good idea to standardize to avoid the optimal hyperplane being influenced by the
scale of the features.

13.4 Key Terms

1. Statistical learning theory
2. Hyperplane
3. Structural risk minimization
4. Support vectors
5. Coefficient weight vector
6. Functional margin
7. Geometric margin
8. Soft margin classifier
9. Hard margin classifier

10. Curse of dimensionality
11. Gamma

13.5 Test Your Understanding

1. What are support vectors?
2. How do support vector machines function?
3. When have we achieved a maximum distance hyperplane?
4. What is a hyperplane? Highlight its purpose(s).
5. Explain the structural risk management concept.
6. Describe an optimization theory-based learning algorithm.
7. What is the difference between the functional margin and the geometric margin?
8. List the two types of support vectors.
9. Distinguish between soft and hard margin classifiers.

10. Describe the maximal margin classifier.
11. Why do SVMs use the kernel trick?
12. Highlight the tuning parameters of a support vector machine.
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13.7 Lab

13.7.1 Working Example in Python

In this section, we will create a support vector machine classifier model, test it, and
optimize it. Start by downloading Iris dataset using the following link: https://www.
kaggle.com/datasets/arshid/iris-flower-dataset. Alternatively, you can use the fol-
lowing code to load the dataset directly into your code.

iris = datasets.load_iris()
x = iris.data[:, :4]
y = iris.target

The iris dataset describes the properties of flowers. It includes three iris species
within 50 samples. This dataset includes the following columns:

• Petal length: petal length for the Iris
• Petal width: petal width for the Iris
• Sepal length: sepal length for the Iris
• Sepal width: sepal width for the Iris
• Species: class of the iris (there are three species in the dataset)

13.7.1.1 Loading Iris Dataset

Start by importing the required libraries and loading the dataset (Fig. 13.12).

13.7.1.1.1 Visualize Iris Dataset

Visualizing the dataset can be done in many ways, one is demonstrated in Fig. 13.13.

13.7.1.2 Preprocess and Scale Data

We need to replace the categorical target with numeric values, split the dataset into
training and testing datasets, and standardize both sets (Fig. 13.14).

13.7.1.3 Dimension Reduction

We can now create a support vector model (SVM) using an RBF kernel and C=100.
The dimension of the feature matrix is low (i.e., 4); however, for illustration
purposes, we will use the Principal Component analysis (PCA) to reduce the number
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of features to 2. Once PCA is create, we apply it to the x_tran and x_test. A
two-dimension feature matrix will allow us to plot the SVM results in two dimen-
sions which clarifies the end result. Instead of using PCA, and for illustration
purposes, you could have opted to choose two of the four dimensions, such as
sepal width and petal width (Fig. 13.15).

Fig. 13.12 Loading the Iris dataset into pandas
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Fig. 13.13 Visualizing iris dataset

Fig. 13.14 Preprocess and scale iris dataset
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13.7.1.4 Hyperparameter Tuning and Performance Measurements

Using GridSearch, we can now seek hyperparameter tuning for the SVC. One the
optimal model is found, we fit it to the training dataset and make predictions on the
testing dataset to display the classification report and the AUC (Fig. 13.16).

Optionally, we can display the confusion matrix (Fig. 13.17).

13.7.1.5 Plot the Decision Boundaries

Finally, we can plot the decision boundaries between classes (Figs. 13.18 and 13.19).

13.7.2 Do It Yourself

13.7.2.1 The Iris Dataset Revisited

In Sect. 13.7 above, we applied PCA to reduce the number of features to 2

1. Instead of PCA choose to drop the petal length and sepal length and check how
the MVC performance chance.

2. Instead of PCA choose to drop the petal width and sepal width and check how the
MVC performance chance.

3. Which one lead to better results? Can you know in advance what is more likely to
lead to good performance by looking at the pair plots? We did not display the pair
plots, so display them and check visually to see if you can gain an insight about
the better choice.

13.7.2.2 Breast Cancer

Use the breast cancer dataset that can download from the following link: https://
www.kaggle.com/code/buddhiniw/breast-cancer-prediction/data.

1. Create an SVM model to solve this classification problem.
2. Now that you know several classifiers, create a lab where you use three classifiers

including an SVM and compare their performance. Conclude by choosing the
best performing classifier. Always give a rational for your choices.

Fig. 13.15 Creating support vector machine
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13.7.2.3 Wine Classification

Use the wine dataset that can be downloaded from the following link: https://archive.
ics.uci.edu/ml/datasets/wine

You can also contemplate using the built “load_wine”

Fig. 13.16 Decision plot for iris species
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from sklearn.datasets import load_wine
wine_data= sklearn.datasets.load_wine()

There are three types of wine, so this is a multi-class problem. Create a model to
predict the wine the using SVM (hint: use the SVC with decision_functino_shape
=‘ovr’ and degree=3).

13.7.2.4 Face Recognition

You might need to install the Python image library called pillow: pip install pillow

1. Load the images dataset using the following code

from sklearn.datasets import fetch_lfw_people
data = fetch_lfw_people(min_faces_per_person=50) # read only
those with 50 images or more

Fig. 13.17 Confusion matrix resulting from the optimal model
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2. Display on the screen the number of instances in each target class
3. Do you notice any imbalance in the classes? Clarify.
4. Try to plot few images on the screen

Fig. 13.18 Plotting the decision boundaries in 2D

Fig. 13.19 Calculating accuracy, recall, and precision metrics for SVM using testing dataset
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5. Split the dataset into training and testing datasets
6. Create an SVM variable (if there were imbalance in classes, then use a

class_weight parameter)
7. Grid search for the optimal model
8. Display the best parameters and the best model
9. Fit the optimal model on the training dataset
10. Use the fitted model to predict using the testing dataset
11. Display a classification report (use classification_report from Sklearn )
12. Let’s take one further step. PCA might help you boost the model’s perfor-

mance. Apply PCA before rerunning the SVM grid search and check if the
performance is better.

13.7.2.5 SVM Regressor: Predict House Prices with SVR

Support vector machine can be used not only as classifiers but as regressors too.
Create a support vector model regressor to predict house prices, using the housing
dataset that can be downloaded using the following link: https://www.kaggle.com/
datasets/huyngohoang/housingcsv.

The housing dataset provides the sale price of houses across the United States.
This dataset includes the following columns:

• Avg. Area Income: the average income in the area where the house is located.
• Avg. Area House Age: the average house age in the area where the house is

located.
• Avg. Area Number of Rooms: the average number of rooms for a house in the

area where the house is located.
• Avg. Area Number of Bedrooms: the average number of bedrooms for a house in

the area where it is located.
• Area Population: the population in the area where the house is located.
• Price: the sale price of the house.
• Address: the house address.

Hint: explore the SVR following this link: https://scikit-learn.org/stable/auto_
examples/svm/plot_svm_regression.html

13.7.2.6 SVM Regressor: Predict Diabetes with SVR

1. Load the diabetes dataset using the following code:

SVM Regressor: Predict house prices with SVR
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2. Store at least 30 samples in a testing dataset
3. Proceed with GridSearch using the following values

(a) alpha: [1e-7, 1e-6, 1e-5, 1e-4]
(b) penalty: [None, ‘l2’]
(c) eta0: [0.03, 0.04, 0.05, 0.1]
(d) max_itr: [500, 1000]

4. After fitting the optimal model, display the best parameters and best estimstor
5. Make prediction and display the optimal model performance (i.e., MAE,

MSE, R2)

13.7.2.7 Unsupervised SVM

Support vector machine can be used not only as supervised but unsupervised too.
Create an unsupervised support vector machine regressor to predict house prices,

using the housing dataset.
Hint: explore the One class SVM following this link: https://scikit-learn.org/

stable/auto_examples/svm/plot_oneclass.html

13.7.3 Do More Yourself

Use the following datasets and create linear and nonlinear support vector machines
to solve the classification problems associated with these datasets. Also, try several
algorithms to solve each and choose the best model.

• https://www.kaggle.com/datasets/paultimothymooney/stock-market-data
• https://www.kaggle.com/code/startupsci/titanic-data-science-solutions/data
• https://www.kaggle.com/datasets/rikdifos/credit-card-approval-prediction
• https://www.kaggle.com/datasets/elikplim/forest-fires-data-set
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