
Chapter 12
K-Means

12.1 The Problem

So far, we have covered supervised learning algorithms for which the classes are
predefined and the class of each instance of the training dataset is known in advance.
The problem was to find a model that correctly classifies instances into their
appropriate classes with a minimal cost (i.e., minimal error rate).

The problem in unsupervised learning is different; we have a dataset, but neither
the classes nor the way to classify each instance in the training dataset is known in
advance, i.e., the samples in the dataset are not labeled. For example, one might have
data about residents of a city and want to cluster them geographically based on their
assumed support for a candidate for election, or a medical image and want to cluster
the pixel to perform image segmentation into similar regions, or a dataset about
houses’ characteristics (e.g., number of bedrooms, number of bathrooms, area, price,
postal code) and want to cluster them by their value. Hospitals would be interested in
uncovering clusters of patients who are high users of their services. Businesses might
want to perform customer segmentation, i.e., to cluster customers based on some
criteria, such as their purchases and their website activities; then, the businesses can
recommend products for customers in the same clusters [1].

Our aim is to build a model that uncovers the clusters of data latent in the dataset
based on feature similarities and classifies the instances into these clusters with a
minimal error rate. How to label these clusters is the job of the data analyst.
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12.2 A Practical Example

Let us consider the iris database and discount our knowledge of the class attribute.
The instances are now not labeled, and we are in front of a clustering problem. We
would like to use K-means to cluster the data into n clusters/categories. In this
problem, we know that there are three clusters (Iris setosa, Iris versicolor, and Iris
virginica); however, usually, n is suggested by a domain expert who understands the
reality the data describes.

The dataset contains the length and width of the sepal and petal of the three types
of irises. The dataset is labeled (i.e., class attribute); we can either delete the label or,
if we are using Weka, we can ask the K-means algorithm to ignore the label.
Figure 12.1 shows how to delete the label in Weka, while Fig. 12.6 shows how to
ignore it when executing K-means in Weka; as usual, in the lab, you will be using
Python and R.

We can start by exploring the dataset to have an understanding of the data trends
and the problem. Figure 12.2 shows the histograms for each attribute by class. The
dataset contains 50 instances for each type of iris. The petallength and petalwidth

Fig. 12.1 Remove the class attribute
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histograms indicate that the petal length and width of one of the iris types (Iris
setosa) are clearly distinct from the other two types, and hence these two attributes
will help us identify Iris setosa. Iris versicolor and Iris virginica have common petal
length and width, and the sepal length and width do not provide enough information
to distinguish a separate class, as all three types of flowers have common values for
these two attributes. We can already conclude that we will encounter errors in
clustering, especially between Iris versicolor and Iris virginica.

When we explore the graph plots for the dataset features (Fig. 12.3), the
scatterplot shows the feature on the X-axis (i.e., in the columns) against all other
features on the Y-axis (i.e., in the rows). Again, we notice that the Iris setosa is
separated from the other two species in each of the scatterplots. Iris versicolor and
Iris virginica have many of their instances intermixed and are hard to distinguish in
all the scatterplots (e.g., sepal width vs. sepal length).

Given these observations, let us apply the K-means algorithm to the dataset and
explore the result (Fig. 12.4). Click on the algorithm’s name to open the list of its
parameters; since we know that we are seeking to detect three clusters, we will
change the numClusters (i.e., K ) parameter to 3 (Fig. 12.5); the default distance used
is Euclidean, which fits our problem (i.e., length and width). Finally, we choose to
ignore the Class parameter, as the label is not part of the features that we would use
in a clustering problem (Fig. 12.6), and we run the algorithm.

The resulting window (Fig. 12.7) displays important information. We can notice
that the algorithm converged after three iterations. The clusters are enumerated from
0 to K – 1, and Weka will display the centroid positions for each iteration (e.g.,
Cluster 0: 6.1, 2.9, 4.7, 1.4); the sum of the square error that we are trying to
minimize is 6.99, and the number of instances that were assigned to the three clusters

Fig. 12.2 Histograms for the different dataset features
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is 61, 50, and 39; since we know the labels, in this particular example, we know that
there were instances assigned to the wrong cluster, but this is already expected given
the instances’ intermixing that we noticed during the data visualization phase.

Since the dataset contains the labels, we can ask K-means to consider the labels
instead of ignoring them to let us know how many instances were assigned to the
wrong cluster. In Weka, we can do so by choosing the “classes to clusters evalua-
tion” and selecting the class from the list of features (Fig. 12.8). Clicking on Start this
time shows an extra output (Fig. 12.9), the incorrectly clustered instances. We notice
that the K-means algorithm incorrectly clustered 17 instances: 14 Iris virginica were

Fig. 12.3 Scatterplots for the dataset features
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clustered with the Iris versicolor, and three Iris versicolor were clustered with the
Iris virginica; the 50 instances of Iris setosa were all correctly clustered. As
expected, the errors were related to the distinction between the Iris versicolor and
Iris virginica species.

We can always visualize the cluster assignments by right-clicking on the name of
the algorithm in the Result window and clicking on “Visualize Cluster Assignments”
(Fig. 12.10). A new window opens and displays a scatterplot for data on the X- and
Y-axes. To display a scatterplot showing the classes on the Y-axis, click on the Y
dropdown list and choose the Cluster attribute. The scatterplot shows us how the
instances were assigned, and we can see clearly that cluster 1 is distinct, 13 instances
are assigned to cluster 0 while they clearly belong to cluster 2, and three instances are
assigned to class 0 while they seem to belong to class 2 (Fig. 12.11).

We can check the cluster to which each instance was assigned by using a filter
called AddCluster (Fig. 12.12).

We can click on the filter to choose the clustering algorithm and set its parame-
ters. In our case, we would like to set K to 3 (Fig. 12.13).

When we apply the filter, a new attribute called “cluster” is created; it indicates
the cluster associated with each instance. To display the data, it is enough to click on
the Edit button (Fig. 12.14).

12.3 The Algorithm

The K-means algorithm involves the following steps:

– Specify the number of clusters K.
– Initialize the centroids by randomly selecting K samples from the training dataset.
– Assign samples to the clusters based on the closest centroid. The closeness is

determined using a distance (e.g., Euclidean, Manhattan).

Fig. 12.4 Choose the
SimpleKMeans algorithm
from the Cluster tab in Weka
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– Update the centroid for each cluster by recalculating the center point for each
cluster. The latter is the mean of the cluster’s samples, hence the name K-means.

– Repeat assigning samples and updating centroids until model convergence, i.e.,
there is little change in the centroids, or a certain number of iterations is
completed.

After convergence, the model is represented by the centroids. Each new sample is
assigned to the closest centroid; that is, each new sample is assigned to one of the
clusters 1 to K [2].

Fig. 12.5 Set the
numClusters (i.e., K)
parameters of the K-means
algorithm to 3
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We can represent the dataset with a matrix of N instances with n features, the
instances being the rows and the features, the columns of the matrix.

X=
x 1ð Þ
1 ⋯ x 1ð Þ

n

⋮ ⋱ ⋮
x Nð Þ
1 ⋯ x Nð Þ

n

2
64

3
75

Each vector x ið Þ = x ið Þ
1 x ið Þ

2 . . . x ið Þ
n

h iT
and X = [x(1) x(2). . .x(N )]T.

The K-means algorithm computes the distance between each vector x(i) and the
centroids of the cluster μk k= 1, . . ., K. If Nk is the number of instances in the cluster
k, then the centroid μk is calculated as follows:

μk =
1
Nk

XNk

i= 1

x ið Þ

Fig. 12.6 Choose to ignore
the class label before
executing K-means
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Using the Euclidean distance (note that other distances can be used) to measure
similarities between instances [3], the distance between an instance μk and a centroid
μk can be computed as follows:

dik =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i= 1

x ið Þ
j - μk j

� �2
s

If we use the matrix notation, we can rewrite the same as follows:

x ið Þ = x ið Þ - μk

h iT
x ið Þ - μk

h i� �1=2

= x ið Þ - μk
�� ��

Each x(i) is considered as belonging to a cluster K if it is closest to it and hence
satisfies the following condition:

Fig. 12.7 K-means clustering result
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x ið Þ - μk
�� ��< x ið Þ - μj

�� ��; j= 1, . . . ,K,j≠ k

The algorithm stops when the change in the number of instances belonging to the
clusters is minimal (less than a certain constant) or the clusters’ center’s location is
minimal; the stopping criteria is

either

XK
k= 1

Ntþ1
k -Nt

k

�� ��< ε

or

XK
k= 1

μtþ1
k - μtk

�� ��< ε

The algorithm can be summarized as follows:

1. Initialize k, and μ t0ð Þ
1 to μ t0ð Þ

k , and set the time t = 1.

2. Classify the N instances according to the nearest μ t- 1ð Þ
k :

Fig. 12.8 Analyzing the
incorrectly clustered
instances
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Fig. 12.9 Seventeen
instances were incorrectly
clustered

Fig. 12.10 Visualize
cluster assignments
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Fig. 12.11 Cluster visualization

Fig. 12.12 AddCluster
filter
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x ið Þ - μ t- 1ð Þ
k

��� ���< x ið Þ - μ t- 1ð Þ
k

��� ���; j= 1, . . . ,K,j≠ k

3. For each group of instances N t- 1ð Þ
k in a cluster K, k = 1, . . . K, recompute:

μk =
1

N t- 1ð Þ
k

XN t- 1ð Þ
k

i= 1

x ið Þ

4. Stop when the stopping criteria are satisfied; otherwise, increment t: t = t + 1 and
repeat from step 2.

5. Return the result μ tð Þ
1 to μ tð Þ

k .

12.4 Inertia

Once the learning is one (using .fit() in Python), the algorithm can always assign a
new instance to the closest centroid (using .predict()), which is called a hard
clustering.

Alternatively to hard clustering, we can perform soft clustering that assigns scores
to the new instance, each score is equivalent to the distance of the new instance to
one of the centroids (.transform() in Python). In this way, each data instance can be

Fig. 12.13 The K-means parameters in the AddCluster filter
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represented by its position to the K clusters, if K is lower than the dataset dimension,
the result of clustering would be a reduction in the data dimensions; so, K-means
could be used for dimensionality reduction.

The K-means is sensitive to the initial centroids and can provide you with
different solutions if you start with different initial centroids. So how to choose the
best of many solutions? What is the cost function to minimize? Since this is an
unsupervised learning, we do not have labels to measure the performance of the
algorithm, what we have seen in the Weka example above was only for learning
purposes. However, there is one performance measurement for K-means called
inertia, that consist of the within-cluster sum-of-squares that measures the sum of
squared distances of each instance to its centroid. Inertia measures the internal
coherence of the clusters; a low inertia means a better clustering solution. We can
run K-Means multiple times (in Python this is controlled by K-Means n_init
hyperparameter), and K-means will use inertia to find an optimal clustering solution.

Fig. 12.14 Display dataset values
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12.5 Minibatch K-Means

The original K-means algorithm was proposed by Stuart Lloyd in 1957 [4]. To
accelerate the execution of K-Means, a faster new algorithm was proposed in 2003
by Charles Elkan [5]; both version can be set by the K-Means algorithm
hyperparameter in Python, the default being Lloyd’s. An even faster version of K-
Means was proposed in 2010 by David Sculley [6] that uses min-batches of the
dataset instead of the full dataset at each iteration, it is implemented under the name
MiniBatchKMeans in Python.

12.6 Final Notes: Advantages, Disadvantages, and Best
Practices

K-means models are widely used because of their simplicity. They can easily scale
and generalize to different data size/shapes and easily adapts to new scenarios. As
convergence is key for accuracy and optimal decisions, K-means model has shown
good convergence results. Choosing the number of centroid (K ) is a challenge, and
we will see a method to find the optimal K in Sect. 12.10 below.

Like any ML model, K-means has its own disadvantages, including the manual
choice of K value, which makes it dependent on initial values. One of key issues of
K-means is the impact of outliers on clusters generation; if the data is not well
preprocessed, outliers can have their own clusters. Lastly, highly dimensional data
can generate curse of dimensionality problem, thus affecting the convergence of the
model. Using feature engineering techniques can mitigate this issue.

When working with K-means, consider trying many values for K, as well as many
clustering algorithms (e.g., K-Means, DBSCAN, and test which setup provides
better results. You may also want to take special care to avoid overfitting, mainly
you need to increase the value of K to eliminate noises in clusters.

12.7 Key Terms

1. K-means
2. Clustering
3. Cluster
4. Centroids
5. Matrix
6. Segmentation
7. Image segmentation
8. Customer segmentation
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9. Hard clustering
10. Soft clustering

12.8 Test Your Understanding

1. Give examples of situations from different fields where we can use clustering.
2. How do you decide which cluster a data instance belongs to?
3. How do you decide the centroid of each cluster?
4. How do you determine the centroids of the first clusters?
5. How do you determine the number of clusters K?
6. What is the stopping criterion for K-means?
7. There is a method called “elbow” that allows us to compute the optimum number

of clusters in a dataset. Explore this method; you will be using it in the lab.
8. Cite some of the hyperparameters of K-means.
9. What is inertia in K-Means? What is it used for?
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12.10 Lab

12.10.1 Working Example in Python

Download the dataset using the following link: https://www.kaggle.com/datasets/
uciml/adult-census-income

This dataset includes demographics and income level (above or less or equal to
50K). It includes the following columns:

• Age: person’s age
• Workclass: work class type the person belongs to
• Fnlwgt: final weight estimate for the specified socioeconomic characteristics of

the population
• Education: education level
• Education.num: education level as a number
• Marital.status: person’s marital status
• Occupation: person’s occupation
• Relationship: person’s relationship status
• Race: person’s race
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• Sex: person’s gender
• Capital.gain: an increase in the person’s profit
• Capital.loss: a decrease in the person’s profit
• Hours.per.week: number of working hours per week for the person
• Native.country: the person’s original country
• Income: the person’s salary

12.10.1.1 Load Person’s Demographics

After downloading the adult census dataset, load the dataset (Fig. 12.15).

12.10.1.2 Data Visualization and Cleaning

You can explore the data visually; we will content with one plot (Fig. 12.16).

Fig. 12.15 Load persons’ census income dataset into pandas
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12.10.1.3 Data preprocessing

“Workclass” and “occupation” features that contain interrogation marks, and we will
start by replacing the “?” with the word “unknown,” while the “native.country”
feature is irrelevant for our work and we will drop it altogether (Fig. 12.17).

Many features (workclass, marital.status, occupation, relationship, race, sex) as
well as the target (income) are categorical data and hence need one-hot-encoding.
The features that are one-hot encoded will be split into many new “dummy” features,
if we are working with a linear regression algorithm that would be a problem as the
values of any of the features can be deduced if we know the values of all other ones
(if all features other than the dropped one are zero, then for sure the dropped feature
is 1, and if any one of the other features is 1 then for sure the dropped feature value is
zero). This means that one of the features is always correlated with all others. With
K-means we do not need to do so. We show how to proceed with splitting the
categorical features into new features in Fig. 12.18.

Fig. 12.16 Visualizing persons’ census income data in histogram

Fig. 12.17 Replacing “?” with “unknown” and dropping the “native.country”

378 12 K-Means



The education feature in ordinal in nature, so we will change the string values to
numeric ordered values (Fig. 12.19).

Fig. 12.18 One-hot encoding workclass categorical variable
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12.10.1.4 Choosing Features and Scaling Data

The feature and the target vectors are prepared and data is normalized (check the
results if you do not normalize the data, how would the clustering be affected)
(Fig. 12.20).

12.10.1.5 Finding the Best K for the K-Means Model

To find the best K for the K-means we will proceed manually using a method called
the “the elbow” method and also we will sue the usual grid search cross-validation
method.

Fig. 12.19 Mapping ordinal categorical values into numeric values

Fig. 12.20 Preparing the data for analysis
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The elbow method consists of drawing for each possible K the inertia cost
function. (Fig. 12.21), we can notice that cost declines significantly at the beginning
from K= 1 to K= 2, afterwards the decline is less pronounced. It seems like K= 2 is
the optimal number of clusters. This indeed reflects the actual data, where we have
two clusters: people who earn more than 50k and others who earn 50K or less.

Using grid search cross-validation, we can also find the K for the optimal model
(Fig. 12.22). It is important to note that the GridSearch varied the K parameter
between 2 and 15 and resulted in K = 2 for the optimal K-Means.

Fig. 12.21 Finding the optimal K using elbow method

Fig. 12.22 Optimizing K-Means hyperparameters using grid search cross-validation
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Then you can predict the clusters of the feature vector x using the optimal model
found by GridSearch. As mentioned above the .predict() will perform hard cluster-
ing, and you can display for each data instance the cluster to which it is assigned.
However, .transform() will show perform soft clustering and, in our case, assigns for
each datapoint two scores representing the distance between the instance and the two
centroids. Finally, .labels_ and .cluster_centers_ allow you to display the labels of
each point as well as the coordinates of clusters’ centers (Fig. 12.23).

You can think of plotting the datapoints and the centers. You can try that in
Sect. 12.10.2.

12.10.2 Do It Yourself

12.10.2.1 The Iris Dataset Revisited

In this section, create a K-means model using different values for K (try K= 2, 5, 10,
15, 20, and 25) using the iris dataset.

You can download the Iris dataset using the following code

Fig. 12.23 Optimizing K-means model using grid search cross-validation
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import numpy as np
import pandas as pd
from sklearn import datasets
iris =datasets.load_iris()

Note the variable “iris” is an array and not a data frame; you should be able by
now to know how to convert an array to a data frame, but that is not necessary. To
learn more about other available data set, click on the following link: https://scikit-
learn.org/stable/datasets.html.

You can always now the features names using “feature_names” and the target
name using “target_names.”

iris.feature_names
iris.target_names

If you want to convert data to a data frame you can write the following code

df = pd.DataFrame(data= np.c_[iris['data'], iris['target']],
columns= iris['feature_names'] + ['class'])
df.info() # display the data frame information
df # display the first few rows

Note: other than the elbow method explained above, there is the silhouette score
that allows you to uncover the best K value. Read about the silhouette_score to
choose the best K for the Isis dataset.

12.10.2.2 K-Means for Dimension Reduction

Download the digits dataset using the following code

from sklearn.datasets import load_digits
x, y = load_digits(return_X_y=True)

1. Phase 1: basic multiclass classification using logistic regression

(a) Split the data into training and testing dataset.
(b) Use logistic regression for multiclass classification (i.e., multi_class=“ovr”)

and consider max_iter=5000.
(c) Fit the model to the training dataset.
(d) Compute the algorithm score using the testing dataset.
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2. Phase 2: seek enhancement using K-Means for preprocessing

(a) Create a pipeline for K-Means followed by logistic regression. Since the
digits are handwritten and can be present in many ways, choose the number
of clusters for K-Means much larger than 10, try 50. The logistic regression
parameters are the same as in phase 1.

(b) Fit the pipeline on the training dataset.
(c) Compute the pipeline score no the testing dataset.
(d) Compared to the previous score, was this one better or worse? Discuss the

possible reasons behind the new score.

3. Phase 3: search for an optimal K-Means and logistic regression.

(a) Find through GridSearch the optimal model for the pipeline. Finetune only
one hyperparameter for K-Mean: the number of clusters; vary is between
2 and 100. Note that the execution might take around 20 min depending on
your computer configuration.

(b) Fit the pipeline and check the new score.
(c) Compared to the previous score, was this one better or worse? Discuss the

possible reasons behind the new score.
(d) What was the best parameter found by GridSearch?

12.10.3 Do More Yourself

Create K-means models to solve the problems presented by the following datasets:

• https://archive.ics.uci.edu/ml/datasets/Daily+and+Sports+Activities
• https://archive.ics.uci.edu/ml/datasets/Health+News+in+Twitter
• https://archive.ics.uci.edu/ml/datasets/YouTube+Multiview+Video+Games

+Dataset
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