
Chapter 11
Neural Networks

11.1 The Problem

Rule-based systems and Bayesian networks cannot effectively solve problems such
as image or speech recognition. Artificial neural networks (ANNs), or simply neural
networks, are effective in solving complex problems, i.e., in modeling complex
nonlinear functions. ANNs model the functioning of the brain’s neurons; ANN can
be trained to “learn” how to recognize patterns and classify data [1].

11.2 A Practical Example

11.2.1 Example 1

Let us take an example of a dataset that has four instances with two variables, x and
y, and two classes (i.e., class “grey” and class “black”), which are drawn in Fig. 11.1.
We can notice two groups of instances: those in black and those in grey. But there is
no way that one straight line can classify these instances into two classes/categories.
If we have two lines like those present in Fig. 11.2, we can correctly classify the
instances. So, the function that separates these two classes cannot be linear; we
therefore have a nonlinear solution to this classification problem (Fig. 11.2). Every
time a linear classification cannot work, we can make use of an artificial neural
network (ANN), or more accurately, an ANN with hidden layers.

To make our point clear, we can draw two straight lines to separate the two classes
(Fig. 11.3).

Each line is expressed as y = ax + b, or to write it slightly differently, y - ax -
b = 0, which is equivalent to

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
C. El Morr et al., Machine Learning for Practical Decision Making, International
Series in Operations Research & Management Science 334,
https://doi.org/10.1007/978-3-031-16990-8_11

319

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-16990-8_11&domain=pdf
https://doi.org/10.1007/978-3-031-16990-8_11#DOI

w2x2 þ w1x1 þ w0 = 0,

where w2=1, w1=-a, and w0=-b.
We will see in the Multilayer Perceptron paragraph how an artificial neural

network can solve this problem.

11.3 The Algorithm

A biological neuron can be schematized typically in the following figure (Fig. 11.4).
A brain neuron can be considered an information-processing unit. Neurons

communicate through electrical signals. By discharging chemicals known as

Fig. 11.1 Eight instances belonging to two classes represented by black dots and grey dots

Fig. 11.2 Eight instances belonging to two classes separated by nonlinear function

320 11 Neural Networks

neurotransmitters, the synaptic terminals of one neuron produce a voltage pulse
which is communicated to the soma through the dendrites of another neuron. At the
soma, the potentials are added, and when the summation rises above a critical
threshold, then an electrical signal travels through the axon to the synaptic terminals
[2, 3].

Hence, dendrites play the role of input, and the axon, the role of output. As a
processing unit, the neuron has many inputs and one output that is connected to
many other processing units [3].

Synapses might excite or inhibit the dendrites; exciting a dendrite results in a
positive direction of its potential, while inhibiting it results in a negative direction of
its potential. Hence, the inputs communicated through the dendrites are “weighted”:

Fig. 11.3 An example of two straight lines drawn in an attempt to separate the two classes

Synaptic Terminals

Axon
Nucleus

Dendrites

Synapse

Synaptic Terminals

Synaptic Gap
(50-200 angstrom)

Soma
(Cell body)

Electrical signal travels along the axon towards the synaptic terminal

(receives messages
from other neurons)

Fig. 11.4 Typical biological neuron

11.3 The Algorithm 321

some signals are positive (excite), and others are negative (inhibit). At the soma, the
weighted inputs are added, and if the sum crosses a threshold, the neuron fires (i.e.,
gives output). A neuron can fire between 0 and 1500 times per second [2]. The
neuron either fires or does not, but what changes is the rate of firing.

11.3.1 The McCulloch–Pitts Neuron

In 1943, Warren McCulloch and Walter Pitts proposed a mathematical model of the
neuron known today as the McCulloch–Pitts (M-P) neuron [4, 5] (Fig. 11.5). The
inputs (e.g., dendrites) of an M-P neuron are either 0 or 1, and it can be thought of as
formed of two parts: the first part sums up all input values, and the second makes a
decision about the resulting sum. The decision function f will provide an output of
1 if the sum of the inputs is greater than or equal to a certain threshold θ (pronounced
theta) and 0 otherwise.

Let us use an M-P neuron to decide whether to go to the movie theater or not.
Suppose that we base our decision on four binary parameters: it is a weekday (x1), it
is after 6:00 p.m. (x2), it is not during the COVID-19 pandemic (x3), and the actor is
Shah Rukh Khan (x4). A decision will be made to go to watch the movie if three out
of the four conditions are met (θ = 3): f(g(x)) = 1 if g(x) ≥ ϑ; f(g(x)) = 0 if g(x) < ϑ.

θ is called the bias; we can think of it as the prior prejudice. For example, for a
certain group of people, it might be enough that two of the conditions are met to
decide to go to the movie theater; for others, the threshold could be 4 or even 0.

What would be the M-P decision on a Tuesday at 5:00 p.m. during the pandemic
if the actor was Shah Rukh Khan?

o= g xð Þ= x1 þ x2 þ x3 þ x4 = 1þ 0þ 0þ 1= 2

f(o) = f(g(x)) = f(2) = 0; the decision is not to go to the movie theater (i.e., the
neuron will not fire).

What would be the M-P decision on a Tuesday at 7:00 p.m. during the pandemic
if the actor was Shah Rukh Khan?

....

y=f(g(x))

x

x

x

xn

g(x)=Σ(xi)
i=1

n
1

0

Fig. 11.5 A McCulloch–
Pitts neuron

322 11 Neural Networks

g xð Þ= x1 þ x2 þ x3 þ x4 = 1þ 1þ 0þ 1= 3

f(g(x)) = f(3) = 1; the decision is to go to the movie theater (i.e., the neuron
will fire).

The M-P neuron was the first step towards today’s neural network; however, it
was very restrictive. First, not all our inputs are binary; they can be numerical or
categorical. Also, the output we desire is not always binary—we might want to
predict a number in the case of regression or predict a class out of multiple existing
classes (more than 2) in the case of classification problems.

11.3.2 The Perceptron

To overcome these limitations, the perceptron model was proposed by Frank
Rosenblatt in 1958; the model was refined by Minsky and Papertin 1969. Mainly,
the perceptron proposed to add adaptive weights to the inputs (Fig. 11.6).

The neuron has many inputs (x0 . . . xn) and adaptive weights (w0 . . . wn); each
input xi is multiplied by a corresponding weight wi, and then the results are summed
up, mimicking the dendrites-soma-axon behavior. When the summed-up result is
higher than a threshold ϑ, the outcome y is set to 1; otherwise, y is set to 0; y is in fact

a function of the weighted sum y= f g xð Þð Þ= f
Pn
i= 1

wi × xið Þ
� �

.

If we go back to the same problem above—the decision to go to the movie
theater—but we add to it the weight for each input, the weights can be decided based
on knowledge about the importance of each input: a highly important input for
making the right decision can be assigned a high weight, and inputs that do not play a
major role can be assigned lower weights. Finding ways to determine the best
weights and θ for a decision problem is the main goal in the next paragraphs.

Suppose that the perceptron is deciding for a group of Shah Rukh Khan diehard
fans, hence the weight w4 could be 10, while the other weights are set as follows:
w1 = 2, w2 = 3, w3 = -5. For the sake of this example, let us change x3 to represent
pandemic if it is equal to 1 and no pandemic if it is equal to 0.

....

W

W

W

Wn

x

x

x

xn

g(x)=Σ(wi*xi)
i=1

n
1

0
y=f(g(x))

Fig. 11.6 The perceptron

11.3 The Algorithm 323

What would the perceptron’s decision be on a Tuesday at 7:00 p.m. during the
pandemic if the actor was Shah Rukh Khan?

g(x) = w1x1 + w2x2 + w3x3 + w4x4 = 2x1 + 3x2 + -5x3 + 10x4 = 10>ϑ=3, the
decision is to go to watch the movie.

Now, we can change the weights for people who are more reasonable and decide
that watching a movie with Shah Rukh Khan (or any other actor) is not of a higher
value than their and others’ lives; we can decide that w3=-100, which will push the
perceptron’s decision “do not go to theater” to always fire under a pandemic.

Mathematically, we could look at the inputs (x0 . . . xn) and the weights (w0 . . . wn)
as vectors.

The input vector x is defined as x=

x1
x2
. . .

xn

26664
37775:

And the weights’ vector transpose is defined as wT = [w1 w2. . .wn].
In mathematics, the multiplication of two vectors wT and x is written wTx and is

expressed as follows:

wTx= w1 w2 . . .wn½ �

x1
x2
. . .

xn

26664
37775=

Xn
i= 1

wi × xið Þ

The function f that we have used to provide the output y is a function of the total
weighted sum (i.e., g(x)) and is called the activation function because it allows us to
activate the neuron when the value is greater than or equal to ϑ.

The activation function compares the weighted sum to ϑ and decides to activate
the neuron if the weighted sum is greater than ϑ (Fig. 11.7).

....

W

W

W

Wn

x

x

x

xn

1

0
θ

g(x)=Σ(wi*xi)
i=1

n

Fig. 11.7 A perceptron with threshold ϑ

324 11 Neural Networks

The same result can be achieved if we subtract the value ϑ from the sum
(Fig. 11.8). The result y is the same; however, the activation decision is made

based on whether
Pn
i= 0

wi × xið Þ- θ> 0 or not.

We can move one step further by treating -ϑ as an extra weight called w0

multiplied by an attribute x0 of value 1 (Fig. 11.9).
w0 is the bias of the model, which we sometimes represent with the letter b, which

is familiar in linear functions (i.e., y = ax + b).
Hence the following:

g xð Þ=
Xn
i= 1

wi × xið Þ þ b

y= f g xð Þð Þ= f
Xn
i= 1

wi × xið Þ þ b

 !

can also be written

....

W

W

W

Wn

x

x

x

xn

1

0

y∑

Θ

-
g(x)=Σ(wi*x)

i=1

n

Fig. 11.8 A perceptron with the threshold ϑ subtracted from the weighted sum

....

W

W

W

Wn

x

x

x

xn

1

0

y∑

1
W

g(x)=Σ(wi*x)
i=0

n

Fig. 11.9 -ϑ as an input weight W0 for an attribute x0 of value 1

11.3 The Algorithm 325

g xð Þ=
Xn
i= 1

wi × xið Þ þ - θð Þ=
Xn
i= 1

wi × xið Þ þ w0 × 1ð Þ=
Xn
i= 0

wi × xið Þ

y= f g xðð Þ= f
Xn
i= 0

wi × xið Þ
 !

11.3.3 The Perceptron as a Linear Function

In fact, the perceptron estimates a linear function. Let us take the following example
with two input variables, x1 and x2, and their corresponding weights, w1 and w2.
Suppose that we have the following values for the dataset we are trying to model
using the perceptron (Table 11.1). That dataset is plotted in Fig. 11.10, where the
points corresponding to a zero output are in grey.

Table 11.1 A training dataset x1 x2 y

1 2 1

2 3 1

1 5 1

3 0.5 0

4 1 0

5 2.3 0

0.7 4 1

0.1 4 1

0.2 5 1

Fig. 11.10 The dataset plotted on a graph

326 11 Neural Networks

It is obvious that we can find a solution to differentiate between the points in grey
and the others: we can plot a straight line that separates the two sets of data points. A
line such as y = x will do the job (Fig. 11.11).

If we use a perceptron with weights w1 = 1, w2 =-1, and w0 = 0, the perceptron
behaves exactly like f(x) = x.

Let us start with f(x) = x; we can rewrite it as y = x.
We can also write it as x2-x1= 0, or x2-x1-0= 0, or even w2x2 + w1x1 + w0= 0,

where w0 = 0, w1 = -1, and w2 = 1.
All the points on the line have in common the property x2-x1-0 = 0.
The points on both sides of the lines satisfy either of these two conditions: x2-

x1-0 > 0 or x2-x1-0 < 0.

We are in a situation of a summation
P2
i= 0

wi × xið Þ and then a decision based on

comparison of the resulting sum with a threshold θ = 0. We are in the domain of the
perceptron. The perceptron is modeling a straight line, so it is a linear model.

11.3.4 Activation Functions

The activation function f can be different than the one mentioned above; it can, for
example, propose that the output be-1 instead of 0; such a function is called bipolar
as opposed to unipolar (i.e., output positive or zero). The passage from one output to
another (0 to 1 or - 1 to 1) was abrupt in the previous paragraph, but we can use
activation functions with a smoother passage; such functions are called soft-limiting
(Fig. 11.12).

Fig. 11.11 A line (f(x) = x) separating the data points that belong to two different categories

11.3 The Algorithm 327

However, for reasons, we will discuss below (i.e., gradient descent), we will need
to compute the derivative of the activation function, i.e., it must be differentiable. We
have many activation functions to choose from [6].

11.3.4.1 The Sigmoid Function

A function that satisfies the differentiability criterion and that can play the role of a
soft-limiting activation function is the sigmoid function, defined as:

f xð Þ= 1
1þ e- λx

0 0

1 1

-1
bipolarunipolar

x x

f(x) f(x)

Fig. 11.12 Unipolar and bipolar activation functions

Fig. 11.13 Sigmoid function for λ = 1

328 11 Neural Networks

The graph of the sigmoid function is given in Fig. 11.13:where λ determines the
steepness of the sigmoid function. We can notice that the outcome of the sigmoid
function varies between 0 and 1.

The gradient of the sigmoid is defined as follows:

f 0 xð Þ= sigmoid xð Þ × 1- sigmoid xð Þð Þ

Since the sigmoid function’s output is always positive, the gradient of the sigmoid
will always be positive, whatever the value of x (Fig. 11.14). In fact, the gradient
approaches 0 above +3 and below -3, which indicates that little learning is done
above +3 or below -3.

We will overcome this issue if we scale the sigmoid function, and that is the
solution proposed by the tanh function.

11.3.4.2 The Tanh Function

The hyperbolic tangent function is defined as follows:

f xð Þ= tanh
1
2
λx

� �
for λ= 2, tanh xð Þ= 1- e- 2x

1þ e- 2x

The graph of the tanh function is like that of the sigmoid, but it is scaled so that it
is symmetric around zero (Fig. 11.15).

The gradient of the tanh function is defined as follows:

Fig. 11.14 A graph showing the gradient of the sigmoid function

11.3 The Algorithm 329

f 0 xð Þ= 1- tanh xð Þð Þ2

We can notice that the graph of the tanh gradient is symmetric around zero, and
hence it can be positive or negative (Fig. 11.16)

11.3.4.3 The ReLU Function

The rectified unit function (ReLU) is defined as follows:

ReLU xð Þ= f xð Þ= 0 if x< 0

x otherwise

�
The ReLU graph is shown in Fig. 11.17.
For all values that are below 0, the activation function will have 0 as an output;

hence, ReLU might activate a subset of all the neurons, which makes it more
efficient than other activation functions. The gradient of ReLU is a constant (0 or
1) and is defined as

f 0 xð Þ= 0 if x< 0

1 otherwise

�
Since the gradient might be 0 for some neurons, during backpropagation, some

weights and biases will not be updated, and the corresponding neurons might never
get activated; we call such neurons “dead neurons.” The leaky ReLU activation
function addresses this problem.

Fig. 11.15 The tanh function for λ = 2

Fig. 11.16 A graph showing the gradient of the tanh function

330 11 Neural Networks

11.3.4.4 The Leaky ReLU Function

Leaky ReLU is defined as follows:

ReLU xð Þ= f xð Þ= 0:01x if x< 0

x otherwise

�
The leaky ReLU graph is shown in Fig. 11.18
The leaky ReLU gradient function is defined as follows:

ReLU xð Þ= f xð Þ= 0:01 if x< 0

1 otherwise

�
With leaky ReLU, the gradient of the negative inputs will never be 0; hence, there

will be no dead neurons.

11.3.4.5 The Parameterized ReLU Function

The parameterized ReLU function adds flexibility for the negative values of x as it
introduces the slope as a parameter (instead of the constant slope 0.01). The function
is defined as follows:

Fig. 11.17 The ReLU function

11.3 The Algorithm 331

ReLU xð Þ= f xð Þ= ax if x< 0

x otherwise

�
The only caveat is that the artificial neural network will also learn the slope a for

an optimal convergence.
The parameterized ReLU gradient function is defined as follows:

ReLU xð Þ= f xð Þ= a if x< 0

1 otherwise

�

11.3.4.6 The Swish Function

The swish activation function shows better performance than ReLU and is very
efficient; it is defined as follows (Fig. 11.19):

f xð Þ= x
1þ e- x

11.3.4.7 The SoftMax Function

The SoftMax function turns a vector x of k real values xj, j = 1 to k, into a vector of
k real values that sum to 1; it is defined as:

Fig. 11.18 The leaky ReLU function

332 11 Neural Networks

σ xið Þ= e- xiPK
j= 1

e- xj

Since the SoftMax function returns values between 0 and 1, we can treat these
values as probabilities that an input belongs to a particular class. The SoftMax
activation function is very useful for multiclass classification, where the ANN has
multiple neurons as output.

11.3.4.8 Which Activation Function to Choose?

There is no formula; however, the following are rules of thumb:

– Sigmoid functions work well in classification problems.
– Sigmoid and tanh functions have one notable drawback: the vanishing gradient.
– The ReLU function is generic and is widely used.
– In the case of dead neurons, use leaky ReLU.
– Use ReLU first; if it does not provide you with a good solution, then you can try

other activation functions.
– Use SoftMax for multiclass classification problems.

11.3.5 Training the Perceptron

The question is how to find the right weights for the perceptron. We will do that by
gradient descent, which we have seen during regression.

Fig. 11.19 The swish Function

11.3 The Algorithm 333

Let us define an error function E for the perceptron. If we take the error function
as the mean squared error (MSE), and suppose that we have a training set of
N instances (xi, yi), then E can be formulated as:

E=
1
2N

XN

i= 1
yi -byi� �2

=
1
2N

XN

i= 1
yi - f wTxi þ w0

� �� �2
– The value 1

2 is chosen for convenience in later calculations (i.e., derivatives).
– The training dataset is formed of N instances {(x1, y1), (x2, y2). . .(xN, yN)}. Each xi

is an input vector with n attributes/features (xi1, x
i
2, . . .x

i
n), and each yi is an

expected output for vector xi.
– wT is the transpose of the weight vector (w1, w2, . . .wn), where w0 is the bias.
– byi is the thresholded output computed by the perceptron for the input vector xi.

Our aim is to find the set of weights that minimizes E.
The error value depends on the values of w0, which is the bias b, and on all other

weights represented by the vector w, so E is a function of both variables. To obtain
E(w, b), we replace f(wTxi + b) with wTxi + b. The error function is then expressed as
follows:

E w, bð Þ= 1
2N

XN

i= 1
yi - wTxi þ b

� �� �2
When wTxi + b = yi for all xi, i = 1 to N, then E = 0; our aim is to find a set of

weights that makes E as close as possible to 0. When the perceptron learns how to fit
the unthresholded outputs wTxi + b to the desired outputs yi, it is simple to take the
same weights, apply them to the input vectors xi, and then use a threshold function
f to obtain perceptron outputs byi that correctly classify the xi. For example, suppose
the vectors xi are in two classes, yi = 1 and yi = 0; then if (wTxi + b) correctly
classifies a vector xi into one of the two classes (e.g., 1), that means that wTxi + b is
equal to either 1 or 0; if we apply an activation function f(wTxi + w0) that produces
1 if wTxi + b= 1 and produces 0 if wTxi + b= 0, the perceptron’s output f(wTxi + w0)
will correctly classify xi.

So, we will be interested in minimizing the error function for the output byi:
E w, bð Þ= 1

2N

XN

i= 1
yi - wTxi þ b

� �� �2
As was the case with the regression, we will use gradient descent to minimize the

error function until convergence is reached.

334 11 Neural Networks

∂E
∂wj

=

∂ 1
2N

PN
i= 1 yi -

Pn
j= 1

wjxij þ w0

� � !2
0@ 1A

∂wj

The error ei made for the ith sample can be expressed as follows:

ei = yi -
Xn
j= 1

wjx
i
j þ w0

� �
Hence

∂E
∂wj

=
∂ 1

2N

PN
i= 1 eið Þ2

� �
∂wj

∂E
∂wj

=
1
2N

∂
PN

i= 1 eið Þ2
� �

∂wj

∂E
∂wj

=
1
2N

XN

i= 1

∂ eið Þ2
∂wj

∂E
∂wj

=
1
2N

XN

i= 1
2ei

∂ eið Þ
∂wj

∂E
∂wj

=
1
N

XN

i= 1
ei
∂ eið Þ
∂wj

∂E
∂wj

=
1
N

XN

i= 1
ei
∂ yi -

Pn
j= 1

wjxij þ w0

� � !
∂wj

∂E
∂wj

=
1
N

XN

i= 1
ei - xij

� �� �
∂E
∂wj

= -
1
N

XN

i= 1
eixij = -

1
N

XN

i= 1
yi -

Xn
j= 1

wjx
i
j þ w0

� � !
xij

 !

Now, we will compute ∂E
∂b, which is

∂E
∂w0

, where w0 is the weight for x
i
0 and xi0 = 1.

11.3 The Algorithm 335

∂E
∂b

=
∂E
∂w0

= -
1
N

XN

i= 1
yi -

Xn
j= 1

wjx
i
j þ w0

� � !
xi0

 !
=

-
1
N

XN

i= 1
yi -

Xn
j= 1

wjx
i
j þ w0

� � !

We can start at the first iteration at a random value for the weights w and the bias
b; then, we adjust these values at the next iteration based on the following formula,
where k is the current iteration:

w kþ1ð Þ =w kð Þ - α
∂E
∂w kð Þ

b kþ1ð Þ = b kð Þ - α
∂E
∂b kð Þ

where α is the learning rate (e.g., 0.01) and ∂E
∂w kð Þ

and ∂E
∂b kð Þ

are the gradient of E with

respect to w and b, at iteration k, respectively.
The updates of the perceptron parameters w and b are calculated as the difference

(represented by deltaΔ) between their values in the next iteration k and in the current
one [7]:

w kþ1ð Þ =w kð Þ - α
∂E
∂w kð Þ

w kþ1ð Þ =w kð Þ þ α
1
N

XN

i= 1
eixij

w kþ1ð Þ =w kð Þ þ α
N

XN

i= 1
yi -

Xn
j= 1

wj kð Þxij þ w0 kð Þ
� � !

xij

 !

b kþ1ð Þ = b kð Þ - α
∂E
∂b kð Þ

b kþ1ð Þ = b kð Þ þ α
1
N

XN

i= 1
ei

b kþ1ð Þ = b kð Þ þ α
N

XN

i= 1
yi -

Xn
j= 1

wj kð Þxij þ w0 kð Þ
� � !

,

which is equivalent to writing w0 kþ1ð Þ =w0 kð Þ þ

α 1
N

PN
i= 1 yi -

Pn
j= 1

wj kð Þxij þ w0 kð Þ
� � !

.

336 11 Neural Networks

To train the perceptron, we can proceed by:

1. Forward calculation: CalculatingwTxi + b for all xi. Such a run into theN instances
of the training set is called an epoch.

2. Updating the weights and the bias w(k + 1) and w0(k + 1).
3. Repeating steps 1 and 2 until E(w, b) converges.
4. Using the last calculated weights and bias to predict the output y for any new

input x.

As we can guess, the perceptron is a linear model and cannot solve a nonlinear
problem.

In practice, using all the available instances to make a single update of the weights
might be extremely slow, so instead, we sample a random smaller batch of the
training dataset to compute every update. This method is called the minibatch
stochastic gradient descent.

11.3.6 Perceptron Limitations: XOR Modeling

The exclusive-or (XOR) function is a function with two input variables, x1 and x2,
that has an output of 1 if either x1 or x2 is 1; otherwise, it is 0. The truth table is shown
in Table 11.2, and the corresponding plot is in Fig. 11.20.

To model the XOR function, we need to find a line that separates outputs 1 (black
dots in Fig. 11.20) from outputs 0 (grey dots in Fig. 11.20). However, we cannot find
a linear function that separates those outputs; we can see an example failing to
represent XOR in Fig. 11.20.

The perceptron is a linear classifier and hence cannot find a model to classify
correctly an XOR function. We can, however, extend the perceptron by adding more
layers so that it becomes a multilayer perceptron (MLP), which will enable it to
model nonlinear complex functions and virtually any function.

11.3.7 Multilayer Perceptron (MLP)

A multilayer perceptron (MLP) has one or more hidden layers. Figure 11.21 shows
an example of two hidden layers, one input layer and one output layer. It is important
to note that the perceptron principles function on the hidden layer and the output

Table 11.2 XOR function
truth table

x1 x2 XOR

0 0 0

0 1 1

1 0 1

1 1 0

11.3 The Algorithm 337

layer, where the hidden layer is formed of the data instances from the training dataset
but no perceptron is involved in it; that is why many authors do not count the input
layer as part of the total number of layers; however, some authors do.

Fig. 11.20 The XOR function with two discriminant lines

wh

x

x

xn

w

wnw f (Σ)

Activation
Function f

.

.

.

Input

f (Σ)

.

.

.

.

.

.

y

y

yMf (Σ)

f (Σ)

f (Σ) f (Σ)

f (Σ)

Activation
Function f

yf (Σ)

Hidden Layer L Hidden Layer LInput Layer Output Layer

Fig. 11.21 An MLP with two hidden layers and one output

338 11 Neural Networks

The inputs in Fig. 11.21 and their corresponding weights are fed into the first
hidden layer, composed of several neurons, which in turn generate their own outputs
using an activation function f1 and feed them with their own weights to the second
hidden layer, which in turn applies an activation function f2 and feeds its outputs to
the output layer; the latter applies an activation function f3 and generates the final
MLP output.

The activation functions in each layer (i.e., f1, f2, and f3) can be the same or
different. If the activation function of the output layer is a linear function, the MLP
generates a regression model, while if it is nonlinear, then the model is nonlinear
(i.e., if the function is logistic, then the model is logistic regression or binary
classification) [8]. Figure 11.22 shows an MLP with one hidden layer and one
output, while Fig. 11.23 shows an MLP with one hidden layer and three outputs.

Within an MLP, we have different weights and different biases (i.e., constant b)
for each layer; hence, expressing the learning problem becomes more elaborate, but
it follows the same principle as in the case of one perceptron.

What do hidden layers do exactly? We will continue the practical example to
answer this question.

We have seen in Fig. 11.3 that we need two lines to separate the two given
classes. We know that a perceptron models a linear function; needing n lines to
separate two classes is equivalent to say that we need n perceptrons. In our example,

x

x

xn

w

wn

w f (Σ)

.

.

.

Input

.

.

.

f (Σ)

f (Σ)

f (Σ)

Activation
Function f

y
f (Σ)

Hidden LayerInput Layer Output Layer
Activation
Function f

Fig. 11.22 An MLP with one hidden layer and one output y

11.3 The Algorithm 339

we will need two perceptrons in one hidden layer, where each hidden perceptron
(i.e., neuron) produces one line. Since we need to join the two lines in order to have
one model that separates the two classes, then we will need to join the two neurons’
outputs into one neuron (the output neuron). The result is shown in Fig. 11.24.

This example is to illustrate the benefit of hidden neurons; in complex real-life
problems, we cannot just guess the number of hidden neurons and the number of
hidden layers required to create the model.

11.3.8 MLP Algorithm Overview

The MLP follows the algorithm below:

Initialize the input layer
Initialize the weights’ vectors and bias vectors for all layers
PHASE 1: forward computation

x

x

xn

w

wn

w f (Σ)

.

.

.

Input

.

.

.

f (Σ)

f (Σ)

f (Σ)

Activation
Function f

y
f (Σ)

Hidden LayerInput Layer Output Layer
Activation
Function f

f (Σ)

f (Σ)

y

y

Fig. 11.23 An MLP with one hidden layer and three outputs y1, y2, and y3

340 11 Neural Networks

For each layer l from layer 2 to the output layer L (layer 1 being the MLP inputs)

For each neuron i in layer l

Compute the sum based on layer l’s weights, bias, and the previous layer
outputs

z lð Þ
i =

XN l- 1ð Þ

j= 1
w lð Þ
ij × a l- 1ð Þ

j þ b lð Þ

Compute the output based on the previous sum

a lð Þ
i = f lð Þ z lð Þ

i

� �
End For

End For

Learning the model entails iteratively calculating the gradient for a cost function
such as the mean squared error (MSE) until the minimum is found (the algorithm
converges).

The example here is for MSE.

Use E Xð Þ= 1
2N

XN

i= 1
byi - yið Þ2

Starting with the last layer and working backward, compute for every neuron

x

x

xn

w

w
w

z=Σ

z=Σ

a=f(z)

straight line model 1

straight line model 2

non-linear model
using a non-lirear

activation function

y

Hidden Layer LInput Layer Output Layer

Fig. 11.24 A multilayer perceptron with a two-neuron hidden layer to model a nonlinear classifier
solving the problem in Fig. 11.3

11.3 The Algorithm 341

∂E Xð Þ
∂wl

ji

and
∂E Xð Þ
∂bli

PHASE 2: Backward propagation
We start from the output layer and update the weights and biases of each layer

backward: layer L first, then L-1, and we continue until the weights of layer 0 are
updated.

Weights’ update:

wl
iþ1 =wi - α

∂E Xð Þ
∂wl

ji

bliþ1 = bi - α
∂E Xð Þ
∂bli

Then we repeat the two phases until convergence, i.e., the cost is less than a
certain threshold.

11.3.9 Backpropagation

The problem we are facing is to find a method to minimize the error the MLP can
produce by minimizing the error function that estimates the difference between the
final output of the MLP and the expected outcome.

Backpropagation is a technique that allows us to achieve such aim; it performs a
gradient descent by working backward from the output layer to the input layer,
calculating in each layer the gradient of the error function with respect to the neural
network’s weights. The gradients of the last layer of weights are computed first and
then used in computation of the gradient for the previous layer; the process continues
until we reach the first layer of weights [9].

The mathematical notation is complex if we want to take a fully connected neural
network, so we will start with an example and move towards the fully connected
situation.

We will use the following denotations:

– E denotes our error (i.e., cost) function
– L denotes the number of layers
– Nl denotes the number of neurons in layer l

– w lð Þ
ij denotes the weight for neuron i in layer l in relation to the incoming neuron

j in layer l-1

– b lð Þ
i denotes the bias for neuron i in layer l

– z lð Þ
i denotes the product sum plus bias for neuron i in layer l: z lð Þ

i =

342 11 Neural Networks

PN L- 1ð Þ
j= 1 wija

l- 1ð Þ
j þ b l- 1ð Þ

j

– σ denotes a nonlinear activation function in layer l

– a lð Þ
i denotes the output at a neuron i in layer l: a lð Þ

i = σ z lð Þ
i

� �
– a(l) denotes the output vector for layer l: a lð Þ = a lð Þ

1 , a lð Þ
2 , . . . a lð Þ

Nl

n o
;

– w lð Þ
i denotes the weight vector for neuron i in layer l; w lð Þ

i = w lð Þ
1 , w lð Þ

2 , . . .w lð Þ
Nl

n o
– w lð Þ

ij denotes the weight vector connecting the neuron i in layer l to neuron j in
layer l-1

11.3.9.1 Simple 1–1–1 Network

Let us take an example of a three-layer neural network (L = 3) with an input layer
with 1 neuron, a hidden layer with 1 neuron, and an output layer with 1 neuron
(Fig. 11.25).

There are only three layers: layer L (output), layer L-1 (hidden), and layer L-2
(input). We have one neuron in each layer, so we will not use the subscript i; for
example, instead of ali we will use a

l, and the same applies for all other notations.

a Lð Þ = σ z Lð Þ
� �

z Lð Þ =w L- 1ð Þa L- 1ð Þ þ b L- 1ð Þ

z L- 1ð Þ =w L- 2ð Þa L- 2ð Þ þ b L- 2ð Þ

We need to compute the gradient (partial derivative) of the error function
E (or cost function C) with respect to the weights and the biases. That is, we
would like to know how our cost function would change if we changed the weights
and biases of the network.

Starting in the last layer, we then investigate how this gradient propagates
backward through the network.

a

Layer L-1Layer L-2 Layer L

a (L)(L-1)a(L-2) w(L-2) w(L-1)

b(L-1)b(L-2)

Fig. 11.25 A three-layer neural network formed; each layer is 1 neuron

11.3 The Algorithm 343

11.3.9.1.1 Computation with Respect to Layer L-1

Having one node per layer will help us understand the computational work and its
implications. We will start with the layer L and calculate the gradient of our error
function Ewith respect to the weights and biases of neurons in the previous layer L-
1, ∂E

∂w L- 1ð Þ . Figure 11.26 clarifies the relationship between the cost function and the
weights and biases.

Let us consider the mean squared error as an error function. Since we have only
one neuron in the output:

E=
1
2

a Lð Þ - y
� �2

the
1
2
is for convenience

� �
Using the chain rule, we can write:

∂E
∂w L- 1ð Þ =

∂E
∂a Lð Þ

∂a Lð Þ

∂z Lð Þ
∂z Lð Þ

∂w L- 1ð Þ

∂E
∂a Lð Þ =

1
2
∂ a Lð Þ - y
� �2
∂a Lð Þ =

1
2
2 a Lð Þ - y
� �

= a Lð Þ - y
� �

∂a Lð Þ

∂z Lð Þ =
∂σ z Lð Þ� �
∂z Lð Þ = σ0 z Lð Þ

� �
∂z Lð Þ

∂w L- 1ð Þ =
∂ w L- 1ð Þa L- 1ð Þ þ b L- 1ð Þ� �

∂w L- 1ð Þ = a L- 1ð Þ

Hence, we can solve ∂E
∂w L- 1ð Þ:

E

Layer L
Error

function

a(L)

a(L-1)

b
(L-2)

z(L)

w
(L-2)

Fig. 11.26 The cost
function E’s relationship
with the weights and biases
passes through a chain from
E to a, from a to z, and from
z to the weights and biases

344 11 Neural Networks

∂E
∂w L- 1ð Þ = a Lð Þ - y

� �
σ0 z Lð Þ
� �

a L- 1ð Þ

Just note that the sigmoid is used as the nonlinear activation function; then,
σ= 1

1þe - zð Þ , and its derivative is σ0 = e - zð Þ

1þe - zð Þð Þ2 . Also note that we would like to see

how the cost function changes with the change of the weight w(L - 2); we will see that
in a moment. First, let us see how the cost function changes with the change of the
bias b(L - 1). We will use the chain rule ∂E

∂b L- 1ð Þ, which can be written as follows:

∂E

∂b L- 1ð Þ =
∂E
∂a Lð Þ

∂a Lð Þ

∂z Lð Þ
∂z Lð Þ

∂b L- 1ð Þ

∂E
∂a Lð Þ = a Lð Þ - y

� �
∂a Lð Þ

∂z Lð Þ = σ0 z Lð Þ
� �

∂z Lð Þ

∂b L- 1ð Þ =
∂ w L- 1ð Þa L- 1ð Þ þ b L- 1ð Þ� �

∂w L- 1ð Þ = 1

Therefore,

∂E

∂b L- 1ð Þ = a Lð Þ - y
� �

σ0 z Lð Þ
� �

So, based on the weights and biases’ initial values, we have used a training
instance to compute the predicted output a(L), then computed the gradient of the cost
(i.e., error) with respect to the weights and biases, as we have just seen. We can use
those gradients in the following equations to update the weights and biases before
going forward with another training round (time t + 1):

w L- 1ð Þ t þ 1ð Þ=w Lð Þ tð Þ- α
∂E

∂w L- 1ð Þ

b L- 1ð Þ t þ 1ð Þ= b Lð Þ tð Þ- α
∂E

∂b L- 1ð Þ

where α is the training rate, t denotes a round of training.

11.3.9.1.2 Computation with Respect to Layer L-2

We will now proceed further up the network and calculate the gradient of our error
function E with respect to the weights and biases of neurons in the previous layer

11.3 The Algorithm 345

L-2. This is a measurement of how much E changes with respect to changes in
weights and biases at level L-2.

But before we can know that, we will need ∂E
∂a L- 1ð Þ , so let us compute that

derivative.

∂E
∂a L- 1ð Þ =

∂E
∂a Lð Þ

∂a Lð Þ

∂z Lð Þ
∂z Lð Þ

∂a L- 1ð Þ

∂E
∂a Lð Þ = a Lð Þ - y

� �
∂a Lð Þ

∂z Lð Þ = σ0 z Lð Þ
� �

∂z Lð Þ

∂a L- 1ð Þ =w L- 1ð Þ

Hence,

∂E
∂a L- 1ð Þ = a Lð Þ - y

� �
σ0 z Lð Þ
� �

w L- 1ð Þ

Now that we have found the gradient of E with respect to a(L - 1), we can proceed
with our investigation:

∂E
∂w L- 2ð Þ =

∂E
∂a L- 1ð Þ

∂a L- 1ð Þ

∂z L- 1ð Þ
∂z L- 1ð Þ

∂w L- 2ð Þ

∂a L- 1ð Þ

∂z L- 1ð Þ =
∂σ z L- 1ð Þ� �
∂z L- 1ð Þ = σ0 z L- 1ð Þ

� �
∂z L- 1ð Þ

∂w L- 2ð Þ =
∂ w L- 2ð Þa L- 2ð Þ þ b L- 2ð Þ� �

∂w L- 2ð Þ = a L- 2ð Þ

∂E
∂w L- 2ð Þ =

∂E
∂a L- 1ð Þ σ

0 z L- 1ð Þ
� �

a L- 2ð Þ

∂E
∂w L- 2ð Þ = a Lð Þ - y

� �
σ0 z Lð Þ
� �

w L- 1ð Þσ0 z L- 1ð Þ
� �

a L- 2ð Þ

Similarly, ∂E
∂b L- 1ð Þ can be computed as follows:

∂E

∂b L- 2ð Þ =
∂E

∂a L- 1ð Þ
∂a L- 1ð Þ

∂z L- 1ð Þ
∂z L- 1ð Þ

∂b L- 2ð Þ

346 11 Neural Networks

∂a L- 1ð Þ

∂z L- 1ð Þ = σ0 z L- 1ð Þ
� �

∂z L- 1ð Þ

∂b L- 2ð Þ =
∂ w L- 2ð Þa L- 2ð Þ þ b L- 2ð Þ� �

∂w L- 2ð Þ = 1

∂E

∂b L- 2ð Þ =
∂E

∂a L- 1ð Þ σ
0 z L- 1ð Þ
� �

∂E

∂b L- 2ð Þ = a Lð Þ - y
� �

σ0 z Lð Þ
� �

w L- 1ð Þσ0 z L- 1ð Þ
� �

We can also update the weights in level L-2 using the usual formula:

w L- 2ð Þ t þ 1ð Þ=w Lð Þ tð Þ- α
∂E

∂w L- 2ð Þ

b L- 2ð Þ t þ 1ð Þ= b Lð Þ tð Þ- α
∂E

∂b L- 2ð Þ

11.3.9.2 Fully Connected Neural Network

There are a few adjustments that we have to consider when we have a fully
connected neural network.

The mean squared error function E is still a function of the weights vector and the
bias b but is now expressed as an average:

E w, bð Þ= 1
2N

XN

i= 1
ai - yið Þ2

where N is the number of instances in the training set.

11.3.9.2.1 Computation with Respect to Layer L-1

∂E
∂wij

L- 1ð Þ =
∂E

∂ai Lð Þ
∂ai Lð Þ

∂zi Lð Þ
∂zi Lð Þ

∂wij
L- 1ð Þ

∂E
∂wij

L- 1ð Þ = ai
Lð Þ - yi

� �
σ0 zi

Lð Þ
� �

ai
L- 1ð Þ

11.3 The Algorithm 347

∂E
∂aj L- 1ð Þ =

XN l- 1ð Þ

i= 1

∂E
∂ai Lð Þ

∂ai Lð Þ

∂zi Lð Þ
∂zi Lð Þ

∂aj L- 1ð Þ

The sum is added, as the activation from every neuron aj from layer L-1 will
affect all the activations of the neurons in layer L, which will affect the cost of the
neural network.

11.3.9.2.2 Computation with Respect to Layer L-2

∂E
∂wij

L- 2ð Þ =
∂E

∂ai L- 1ð Þ
∂ai L- 1ð Þ

∂zi L- 1ð Þ
∂zi L- 1ð Þ

∂wij
L- 2ð Þ

We can see clearly from the above that the error in a layer l depends on the error in
the next layer l + 1; hence, the errors propagate backward from the last to the first
layer. Once we compute the error at the output layer and once the partial derivatives
for all the neurons are known, the weights can be updated. The process is repeated
until convergence.

Note that strictly speaking, the term “backpropagation” refers not to the learning
process but to the method used to compute the gradient [10].

11.3.10 Backpropagation Algorithm

The backpropagation algorithm runs in four steps:

1. Forward phase: Proceeding from the input layer to the output layer, for each
input-output pair in the training dataset, calculate the predicted output and save
the result for each neuron.

2. Backward phase: Proceeding from the output layer to the input layer, calculate
and save the resulting gradients.

3. Combine the individual gradients to obtain the total gradient.
4. Update the weights using α and total gradient.
5. Repeat until the minimum cost is reached.

348 11 Neural Networks

11.4 Final Notes: Advantages, Disadvantages, and Best
Practices

Neural networks are considered one of most prominent ML models given its ability
to deal with different type of outputs, including discrete, real-value, vectors, images,
and many others. Those models can learn and model complex, nonlinear and highly
volatile data. Their architecture allows those models to be robust to any noises
during the training period. Even with long training period, neural networks can
generate interesting results. Note that neural networks can also be used for anomaly
detection (even if we are dealing with unlabeled data); in this case, the learning
results can be used to give fast second opinion with good accuracy in any used
application.

Like an MLmodel, neural networks need parallel processing power, which makes
it hardware dependence in a way. Although it gives promising results, the latter are
unexplainable in many cases in terms of why and how we reached such decisions
which might affect the trust in such models. In terms of its technical structure, there
is no well-defined rule on how to design such architecture (number of hidden layers,
number of hidden nodes, error thresholds for best training time and optimal results);
it is more of trial-and-error process

With this in mind, we tend to depend on best practices to try and optimize the
neural networks results. Some of key practices include the following:

• Always check the size of the training data; if it is not enough, it is important to
increase.

• If the model overfits, you can either use simpler network (a smaller number of
hidden layers/nodes), use dropout layers, increase data samples, or remove some
features (execute preprocessing of data again).

• If the mode underfits, you can add more features (using feature engineering
techniques).

• Starting with large batch size can reduce the training time in some cases.
• If the model suffers from vanishing gradient problem, using lower learning rate

might allow the model to converge.
• Normalizing the inputs in every layer might help the stability and performance of

the model.

11.5 Key Terms

1. Artificial neural networks (ANN)
2. McCulloch–Pitts (M-P) neuron
3. Perceptron
4. Linear function
5. Linear model

11.5 Key Terms 349

6. Bipolar activation functions
7. Unipolar activation functions
8. Sigmoid function
9. Hyperbolic tangent function

10. Tanh function
11. Rectified unit function
12. ReLU function
13. Leaky ReLU function
14. Parameterized ReLU function
15. Swish function
16. SoftMax function
17. Training the perceptron
18. Gradient descent
19. Stochastic gradient descent
20. XOR
21. Exclusive OR
22. Multilayer perceptron
23. MLP
24. Backpropagation
25. Chain rule
26. Fully connected neural network

11.6 Test Your Understanding

1. Can we identify a perceptron as a linear classifier or a nonlinear one?
2. What type of problems does a perceptron solve?
3. Why should the activation function of a multilayer perceptron be nonlinear?
4. What is the aim of backpropagation?
5. Explain backpropagation in simple words for a specialist.
6. The hyperbolic tangent function overcomes a problem we find in the sigmoid

functions. What is it?
7. Why does ReLU perform better than tanh and sigmoid functions?
8. Explain the “dead” neuron problem and how to overcome it.
9. What kind of issues does a leaky ReLU overcome in comparison with a ReLU?

10. SoftMax is very useful to solve a specific kind of problem; what is it?

11.7 Read More

1. Cao, J., Qian, S., Zhang, H., Fang, Q., & Xu, C. (2021). Global Relation-Aware
Attention Network for Image-Text Retrieval Proceedings of the 2021 Interna-
tional Conference on Multimedia Retrieval, Taipei, Taiwan. https://doi.org/10.
1145/3460426.3463615

350 11 Neural Networks

https://doi.org/10.1145/3460426.3463615
https://doi.org/10.1145/3460426.3463615

2. Chatterjee, B., & Sen, S. (2021). Energy-Efficient Deep Neural Networks with
Mixed-Signal Neurons and Dense-Local and Sparse-Global Connectivity Pro-
ceedings of the 26th Asia and South Pacific Design Automation Conference,
Tokyo, Japan. https://doi.org/10.1145/3394885.3431614

3. Collins, J., Sun, S., Guo, C., Podgorsak, A., Rudin, S., & Bednarek, D. R.
(2021). Estimation of Patient Eye-Lens Dose During Neuro-Interventional Pro-
cedures using a Dense Neural Network (DNN). Proc SPIE Int Soc Opt Eng,
11,595. https://doi.org/10.1117/12.2580723

4. Grasemann, U., Peñaloza, C., Dekhtyar, M., Miikkulainen, R., & Kiran,
S. (2021). Predicting language treatment response in bilingual aphasia using
neural network-based patient models. Sci Rep, 11(1), 10,497. https://doi.org/10.
1038/s41598-021-89443-6

5. Hasan, N. (2021). A Hybrid Method of Covid-19 Patient Detection from
Modified CT-Scan/Chest-X-Ray Images Combining Deep Convolutional Neu-
ral Network And Two- Dimensional Empirical Mode Decomposition. Comput
Methods Programs Biomed Update, 1, 100,022. https://doi.org/10.1016/j.
cmpbup.2021.100022

6. Kimura, Y., Kadoya, N., Oku, Y., Kajikawa, T., Tomori, S., & Jingu, K. (2021).
Error detection model developed using a multi-task convolutional neural net-
work in patient-specific quality assurance for volumetric-modulated arc therapy.
Med Phys. https://doi.org/10.1002/mp.15031

7. Maharaj, S., Qian, T., Ohiba, Z., & Hayes, W. (2021). Common Neighbors
Extension of the Sticky Model for PPI Networks Evaluated by Global and Local
Graphlet Similarity. IEEE/ACM Trans. Comput. Biol. Bioinformatics, 18(1),
16–26. https://doi.org/10.1109/tcbb.2020.3017374

8. Minagawa, A., Koga, H., Sano, T., Matsunaga, K., Teshima, Y., Hamada, A.,
Houjou, Y., & Okuyama, R. (2021). Dermoscopic diagnostic performance of
Japanese dermatologists for skin tumors differs by patient origin: A deep
learning convolutional neural network closes the gap. J Dermatol, 48(2),
232–236. https://doi.org/10.1111/1346-8138.15640

9. Pan, Q., Zhang, L., Jia, M., Pan, J., Gong, Q., Lu, Y., Zhang, Z., Ge, H., & Fang,
L. (2021). An interpretable 1D convolutional neural network for detecting
patient-ventilator asynchrony in mechanical ventilation. Comput Methods Pro-
grams Biomed, 204, 106,057. https://doi.org/10.1016/j.cmpb.2021.106057

10. Shihada, B., Elbatt, T., Eltawil, A., Mansour, M., Sabir, E., Rekhis, S., &
Sharafeddine, S. (2021). Networking research for the Arab world: from regional
initiatives to potential global impact. Commun. ACM, 64(4), 114–119. https://
doi.org/10.1145/3447748

11. Shorfuzzaman, M., Masud, M., Alhumyani, H., Anand, D., & Singh, A. (2021).
Artificial Neural Network-Based Deep Learning Model for COVID-19 Patient
Detection Using X-Ray Chest Images. J Healthc Eng, 2021, 5,513,679. https://
doi.org/10.1155/2021/5513679

12. Sridhara, S., Wirz, F., Ruiter, J. d., Schutijser, C., Legner, M., & Perrig,
A. (2021). Global Distributed Secure Mapping of Network Addresses Proceed-
ings of the ACM SIGCOMM 2021 Workshop on Technologies, Applications,

11.7 Read More 351

https://doi.org/10.1145/3394885.3431614
https://doi.org/10.1117/12.2580723
https://doi.org/10.1038/s41598-021-89443-6
https://doi.org/10.1038/s41598-021-89443-6
https://doi.org/10.1016/j.cmpbup.2021.100022
https://doi.org/10.1016/j.cmpbup.2021.100022
https://doi.org/10.1002/mp.15031
https://doi.org/10.1109/tcbb.2020.3017374
https://doi.org/10.1111/1346-8138.15640
https://doi.org/10.1016/j.cmpb.2021.106057
https://doi.org/10.1145/3447748
https://doi.org/10.1145/3447748
https://doi.org/10.1155/2021/5513679
https://doi.org/10.1155/2021/5513679

and Uses of a Responsible Internet, Virtual Event, USA. https://doi.org/10.
1145/3472951.3473503

13. Valizadeh, A., Jafarzadeh Ghoushchi, S., Ranjbarzadeh, R., & Pourasad,
Y. (2021). Presentation of a Segmentation Method for a Diabetic Retinopathy
Patient’s Fundus Region Detection Using a Convolutional Neural Network.
Comput Intell Neurosci, 2021, 7,714,351. https://doi.org/10.1155/2021/
7714351

14. Xiao, Y., Wang, X., Li, Q., Fan, R., Chen, R., Shao, Y., Chen, Y., Gao, Y., Liu,
A., Chen, L., & Liu, S. (2021). A cascade and heterogeneous neural network for
CT pulmonary nodule detection and its evaluation on both phantom and patient
data. Comput Med Imaging Graph, 90, 101,889. https://doi.org/10.1016/j.
compmedimag.2021.101889

15. Zhong, Y. W., Jiang, Y., Dong, S., Wu, W. J., Wang, L. X., Zhang, J., & Huang,
M. W. (2021). Tumor radiomics signature for artificial neural network-assisted
detection of neck metastasis in patient with tongue cancer. J Neuroradiol. https://
doi.org/10.1016/j.neurad.2021.07.006

16. Zhu, Y., Xie, R., Zhuang, F., Ge, K., Sun, Y., Zhang, X., Lin, L., & Cao,
J. (2021). Learning to Warm Up Cold Item Embeddings for Cold-start Recom-
mendation with Meta Scaling and Shifting Networks. In Proceedings of the 44th
International ACM SIGIR Conference on Research and Development in Infor-
mation Retrieval (pp. 1167–1176). Association for Computing Machinery.
https://doi.org/10.1145/3404835.3462843

11.8 Lab

11.8.1 Working Example in Python

The diabetes dataset that is used in this lab can be downloaded from the
following link: https://www.kaggle.com/datasets/uciml/pima-indians-diabetes-
database

This is a binary classification problem. This dataset contains the following
information:

• Pregnancies: number of pregnancies
• Glucose: plasma glucose concentration
• Blood Pressure: diastolic blood pressure measurement
• SkinThikness: triceps skinfold thickness (mm)
• Insulin: 2-hour serum insulin
• BMI: body mass index (BMI)
• DiabetesPedigreeFunction: diabetes pedigree function
• Age: the person’s age
• Outcome: tested positive for diabetes or not (1 or 0)

352 11 Neural Networks

https://doi.org/10.1145/3472951.3473503
https://doi.org/10.1145/3472951.3473503
https://doi.org/10.1155/2021/7714351
https://doi.org/10.1155/2021/7714351
https://doi.org/10.1016/j.compmedimag.2021.101889
https://doi.org/10.1016/j.compmedimag.2021.101889
https://doi.org/10.1016/j.neurad.2021.07.006
https://doi.org/10.1016/j.neurad.2021.07.006
https://doi.org/10.1145/3404835.3462843
https://www.kaggle.com/datasets/uciml/pima-indians-diabetes-database
https://www.kaggle.com/datasets/uciml/pima-indians-diabetes-database

11.8.1.1 Load Diabetes for Pima Indians Dataset

Before loading the Pima Indians dataset, it is important to note that we need to install
the Keras, TensorFlow, and SciKeras libraries using the pip install command to
create the sequential neural network model.

For visualizing neural network, the Graphviz library is used. Graphviz Python can
be downloaded from the following link: https://www.graphviz.org/download/

After downloading Graphviz, the path in the system environment variables needs
to be edited to include:

C:\Program Files\Graph viz.\bin
C:\Program Files\Graphviz\bin\dot.exe
We start by importing the required libraries and loading the dataset and display a

bar chart for the outcomes a well as pair plots for the features (Fig. 11.27). The
displayed graphs are partially shown in Fig. 11.28.

11.8.1.2 Visualize Data

We explore the data visually (Fig. 11.28).

11.8.1.3 Split Dataset into Training and Testing Datasets

The next task is to choose features and target (the “Outcome”). The next step is to
split the dataset into training and testing and standardize both (Fig. 11.29).

Fig. 11.27 Load Pima Indians diabetes dataset

11.8 Lab 353

https://www.graphviz.org/download/

11.8.1.4 Create Neural Network Model

The next task is to create the sequential neural network model using the Keras
library. As expected the input layer has eight nodes to accommodate the 8 features.
WE have chosen to add two hidden layers are added, one with 10 nodes and the other
with eight nodes (Fig. 11.30).

We can display the NN structure using the graphviz library (Fig. 11.31).

Fig. 11.28 Visualizing diabetic vs. nondiabetic Pima Indians

354 11 Neural Networks

11.8.1.5 Optimize Neural Network Model Using Hyperparameter

For model optimization, we use the grid search cross-validation approach
(Fig. 11.32). The hyperparameters used for the grid search are the batch size and
the number of epochs. We conclude that the model has fair performance
(AUC = 72% and accuracy 75%) and can be used on an unseen dataset.

11.8.2 Working Example in Weka

Download the Boston housing dataset from the following website:
https://www.kaggle.com/prasadperera/the-boston-housing-dataset

Fig. 11.30 Creating sequential neural network model

Fig. 11.29 Splitting and scaling Pima Indians diabetes dataset

11.8 Lab 355

https://www.kaggle.com/prasadperera/the-boston-housing-dataset

Open the file in Weka, go to the Classify tab, and choose the Multilayer
Perceptron algorithm from Functions (Fig. 11.33).

Click on the function and notice the parameters for the algorithm (Fig. 11.34).
One of the most important parameters is the number of hidden layers; it is set to

automatic by default (i.e., the letter a denotes automatic), but it can be set to any
number you want. The learning rate can be changed; the default is 0.3. Click on GUI
and make it True, then click OK, then click Start to run the algorithm. The result is
shown in Fig. 11.35, and its graphical representation is shown in Fig. 11.36.

Fig. 11.31 Displaying a sequential neural network model

356 11 Neural Networks

11.8.3 Do it Yourself

11.8.3.1 Diabetes Revisited

How can you enhance the results of the Neural Network above? Hint: think of
changing the number of hidden layers, and the number of nodes in each. We have
used above standardization but neural network expects values between 0 and
1, would normalization allow the NN to perform better?

Fig. 11.32 Optimize the neural network model using grid search and its performance

11.8 Lab 357

Fig. 11.33 Weka
multilayer perceptron
algorithm

Fig. 11.34 Multilayer
perceptron parameters
window in Weka

358 11 Neural Networks

Fig. 11.35 MLP results in Weka; we can notice RMSE = 4.73

Fig. 11.36 The neural network’s graphical representation

11.8 Lab 359

11.8.3.2 Choose your Own Problem

Pick a problem of your own and apply NN. Discuss the results with another person.
Compare your result with someone else who used NN to solve the same problem.
Note the differences in the results.

11.8.4 Do More Yourself

Solve each of the following predictive problems using neural networks.

1. Boston house prices:
You can load the Boston house prices data file (as well as many other datasets)

from within python by writing: boston = dataset.load_boston()
2. Predicting stock prices using neural networks.

Download the dataset from https://www.kaggle.com/datasets/
paultimothymooney/stock-market-data

3. Handwritten digit recognition.
Download the dataset from http://yann.lecun.com/exdb/mnist/

References

1. Z.H. Zhou, Introduction, Ensemble Methods: Foundations and Algorithms ((Chapman & Hall/
CRC Machine Learning & Pattern Recognition Series: CRC Press, 2012)

2. M. Gopal, Applied Machine Learning (McGraw-Hill Education, 2018)
3. T. Trappenberg, Fundamentals of Machine Learning (OUP, Oxford, 2019)
4. W.S. McCulloch, W. Pitts, A logical calculus of the ideas immanent in nervous activity. Bull.

Math. Biophys. 5(4), 115–133 (1 Dec 1943). https://doi.org/10.1007/BF02478259
5. G. Palm, Warren McCulloch and Walter Pitts: A logical calculus of the ideas immanent in

nervous activity, in Brain Theory, (Springer, Berlin, Heidelberg, 1986), pp. 229–230
6. D. Gupta, Fundamentals of deep learning – activation functions and when to use them? https://

www.analyticsvidhya.com/blog/2020/01/fundamentals-deep-learning-activation-functions-
when-to-use-them/#. Accessed 7 Sep 2021

7. Brilliant.org, Backpropagation. Brilliant.org. https://brilliant.org/wiki/backpropagation/.
Accessed 25 Aug 2021

8. A. Burkov, The Hundred-Page Machine Learning Book (Andriy Burkov, 2019)
9. S. Kostadinov, Understanding Backpropagation Algorithm: Learn the nuts and bolts of a neural

network’s most important ingredient. https://towardsdatascience.com/understanding-
backpropagation-algorithm-7bb3aa2f95fd. Accessed 7 Sep 2021

10. I. Goodfellow, Y. Bengio, A. Courville, Deep Learning (MIT Press, 2016)

360 11 Neural Networks

https://www.kaggle.com/datasets/paultimothymooney/stock-market-data
https://www.kaggle.com/datasets/paultimothymooney/stock-market-data
http://yann.lecun.com/exdb/mnist/
https://doi.org/10.1007/BF02478259
https://www.analyticsvidhya.com/blog/2020/01/fundamentals-deep-learning-activation-functions-when-to-use-them/
https://www.analyticsvidhya.com/blog/2020/01/fundamentals-deep-learning-activation-functions-when-to-use-them/
https://www.analyticsvidhya.com/blog/2020/01/fundamentals-deep-learning-activation-functions-when-to-use-them/
http://brilliant.org
http://brilliant.org
https://brilliant.org/wiki/backpropagation/
https://towardsdatascience.com/understanding-backpropagation-algorithm-7bb3aa2f95fd
https://towardsdatascience.com/understanding-backpropagation-algorithm-7bb3aa2f95fd

	Chapter 11: Neural Networks
	11.1 The Problem
	11.2 A Practical Example
	11.2.1 Example 1

	11.3 The Algorithm
	11.3.1 The McCulloch-Pitts Neuron
	11.3.2 The Perceptron
	11.3.3 The Perceptron as a Linear Function
	11.3.4 Activation Functions
	11.3.4.1 The Sigmoid Function
	11.3.4.2 The Tanh Function
	11.3.4.3 The ReLU Function
	11.3.4.4 The Leaky ReLU Function
	11.3.4.5 The Parameterized ReLU Function
	11.3.4.6 The Swish Function
	11.3.4.7 The SoftMax Function
	11.3.4.8 Which Activation Function to Choose?

	11.3.5 Training the Perceptron
	11.3.6 Perceptron Limitations: XOR Modeling
	11.3.7 Multilayer Perceptron (MLP)
	11.3.8 MLP Algorithm Overview
	11.3.9 Backpropagation
	11.3.9.1 Simple 1-1-1 Network
	11.3.9.1.1 Computation with Respect to Layer L-1
	11.3.9.1.2 Computation with Respect to Layer L-2

	11.3.9.2 Fully Connected Neural Network
	11.3.9.2.1 Computation with Respect to Layer L-1
	11.3.9.2.2 Computation with Respect to Layer L-2

	11.3.10 Backpropagation Algorithm

	11.4 Final Notes: Advantages, Disadvantages, and Best Practices
	11.5 Key Terms
	11.6 Test Your Understanding
	11.7 Read More
	11.8 Lab
	11.8.1 Working Example in Python
	11.8.1.1 Load Diabetes for Pima Indians Dataset
	11.8.1.2 Visualize Data
	11.8.1.3 Split Dataset into Training and Testing Datasets
	11.8.1.4 Create Neural Network Model
	11.8.1.5 Optimize Neural Network Model Using Hyperparameter

	11.8.2 Working Example in Weka
	11.8.3 Do it Yourself
	11.8.3.1 Diabetes Revisited
	11.8.3.2 Choose your Own Problem

	11.8.4 Do More Yourself

	References

