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Preface

This book fills a gap in the machine learning literature. It presents the machine
learning concepts in a very simple and practical way starting with a tangible example
and building on it the theory. Each machine learning chapter starts with a presenta-
tion of the problem to solve, followed by a practical example on how the algorithm
that solves the problem works, then comes the presentation of the machine learning
algorithm theory and closing remarks (e.g., pitfalls, advantages limitations). This is
followed by a set of key terms, a set of questions to test your understanding of the
chapter material, a set of references to read more about the subject and hands-on lab
exercises. The lab exercises allow readers to apply the chapter’s concepts and gain
needed skills. To maximize the benefit for readers and to expose them to a myriad of
machine learning languages and frameworks, the lab exercises (and sometimes the
chapter’s material) are built around Python mainly, followed by R (and R Studio),
and Weka. One of the strengths of this book is that it can be used by people who are
exposed to programming or would like to learn how to program and those who prefer
not to program but to solve decision-making problems with machine learning using
simple graphical user interface. The former can use Python, the machine learning
language par excellence, throughout all chapters, or R (limited to Chaps. 1–4, and 6).
The use of Tableau, a visual analytics platform, is reserved to Chap. 5, Data
Visualization, while Weka is explained and used in Chaps. 4 and 6–12; given the
simplicity of Weka, we believe that there was no necessity to add Weka-based lab
exercises for Chaps. 13–15.

This introductory textbook to machine learning for decision making can be used
by students in Computer Science, Information Technology, Health Informatics, and
Business fields. Depending on the students’ level of study and exposure to technol-
ogy, either Weka or Python can be used. However, given the pervasive use of Python
in the market we advise students of all sorts to get exposure to Python and how it
works. Teaching the whole Python language is beyond the scope of this book;
however, we cover Python’s libraries related to machine leaning (e.g., Scikit-
Learn, TensorFlow, Keras) and many Python programming concepts.

vii



viii Preface

Another strength of the book is its focus on the necessary content for an
introductory course to machine learning while providing enough complexity without
being complex or introducing heavy mathematical formulation; the exception being
neural networks where we considered that providing less simple mathematical
formulations was necessary as an illustration but skipping them would not be a
problem to understand the algorithm. There is no mathematical knowledge needed to
read and use this book. Chapter 2 provides, in a simple manner coupled with many
examples, the main mathematical concepts needed to understand the chapters.

A final strength of this book is the use of a variety of datasets from several
domains (e.g., health, business, social media, census, survey) which provide a good
exposure to the myriad types of applications in which machine learning can be used.

The book is organized in three parts: Part 1 is an introduction section that
encompasses Chaps. 1–5, it introduces machine learning fundamentals and allows
for installing the different software tools and the introduction to Python, R, and
Weka. The machine learning algorithms and corresponding lab exercises are covered
in Chaps. 6–15, and future perspectives are provided in Chap. 16.

Professors who adopt this book have flexibility in the way they want to teach the
material; it all depends on the objectives of their course. Some can use to teach
machine learning using Python and hence need to cover Chaps. 1, 4 and 6–16; this
could be true for courses related to practical machine learning. Professors who are
interested in teaching Analytics and (some) machine learning can cover Chaps. 1–5
and then some of the Chaps. 6–16. It is still feasible to cover all chapters in 12 weeks,
Chaps. 1 and 2 are an introduction and a quick overview that can be covered with
their labs in one session; Chaps. 3 (or some of it) and Chap. 4 are possible to
combine in one session. Chapters 5 and 16 can be covered in one session; then each
Chaps. 6–14 in one session; and final Chaps. 15 and 16 in one session. This is not to
impose a single way of approaching the textbook but to provide examples of
alternatives and demonstrate flexibility. The book provides you with flexibility to
be adopted in several contexts. The datasets used in the lab exercise touch upon
many domains: health, information technology, business, and engineering.

We hope that this first edition of the book will enrich the readers’ knowledge and
skills and we welcome their comments and suggestions. Readers can access the
Python code for the Chap. 6 to Chap. 15 lab exercises on GitHub https://github.com/
christoelmorr/ML-4-Practical-DM.git.

Toronto, ON, Canada Christo El Morr
Manar Jammal

Hossam Ali-Hassan
Walid El-Hallak

https://github.com/christoelmorr/ML-4-Practical-DM.git
https://github.com/christoelmorr/ML-4-Practical-DM.git
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1

Chapter 1
Introduction to Machine Learning

1.1 Introduction to Machine Learning

The last two decades have seen a quiet but important revolution in computer science.
Now more than ever, computers and algorithms are leading to more prosperous and
more accurate insights with software that learns from experience and adapts auto-
matically to match the needs of its tasks [1]. Formerly, the programmer decided how
the system would work by manually writing the code. Today, we do not write
programs but rather collect data consisting of instruction insights, and develop the
algorithms changes that manipulate it as necessary to extract patterns and insights.
Today, we have programs that can recognize faces and fingerprints, understand
speech, translate, navigate, drive a car, recommend movies, and many more
[1]. This is possible now because of artificial intelligence (AI) and its fields, mainly
machine learning.

Artificial intelligence reflects a computer’s ability to recognize patterns to then
use and apply those patterns based on available data [2]. Artificial intelligence
mimics human cognition by accessing data from a variety of sources and systems
to make decisions and learn from their results and patterns [3]. Artificial intelligence
was inspired by the human brain, given that computers were once known as
“electronic brains” [1]. The human undoubtedly has incredible processing capabil-
ities that humans have long aimed to understand in order to use and create an
artificial version known as artificial intelligence. Artificial intelligence has been
overgrowing since the Turing Test (originally named the imitation game) was
conducted in 1950 by Alan Turing, which suggested that computers do have the
ability to think intelligently as artificial entities [3]. Alan Turing’s research revolu-
tionized how the world perceived artificial intelligence and its use in daily life [2]. As
artificial intelligence has evolved from being a purely academic field, it has become a
significant part of many social and economic sectors, including speech recognition,
medical diagnosis, vehicles, and voice-activated assistance [3].
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2 1 Introduction to Machine Learning

Machine learning (ML) is a type of artificial intelligence that branches from
computer science [4]. Machine learning is not just a data storing, processing, or
training problem; it is instead a means to achieve artificial intelligence by either
training it on a dataset or using repeated trials to train a computer program to
maximize intelligent performance [1]. Machines are great at making smart decisions
because of the enormous datasets. On the other hand, humans are much better at
making decisions with limited information. This combination is highly effective in
leveraging both human and machine intelligence in creating machine learning
models. Combining machine learning and human intelligence provides remarkably
high levels of accuracy, leading us to artificial intelligence [3].

1.2 Origin of Machine Learning

Machine learning (ML) is often credited to a psychologist from Cornell University
named Frank Rosenblatt, who, based on his theories about the workings of the
human nervous system, developed a machine capable of recognizing letters of the
alphabet in the 1960s [4]. The machine, called the “perceptron,” converted analog
signals into discrete ones, becoming the prototype for modern artificial neural
networks (ANNs). Further studies of the structures and learning abilities of neural
networks took place in the 1970s and 1980s. Even so, the Novikoff theorem (1962),
which states that a perceptron learning algorithm can be converged in a finite number
of steps, has become more widely known and credited for machine learning. In 1979,
students at Stanford University created a notable invention known as the “Stanford
cart,” which could navigate different obstacles in a room [4]. The invention of the
Stanford cart is an important part of the history of artificial intelligence and machine
learning, as it paved a pathway for robotics research within the area. Today, rover
robotic cleaning vacuums use a similar method to avoid obstacles in a room and pick
up foreign materials such as dirt.

1.3 Growth of Machine Learning

Machine learning has transformed the twenty-first century through its progress and
growth, increasing computer competence in various fields, including the automotive
industry, healthcare, commerce, banking, and manufacturing [5]. The first decade of
the twenty-first century marked a turning point in machine learning history, which
can be attributed to three trends that worked collaboratively [4]. The first trend is big
data, which refers to a large volume of data that is complicated and requires
specialized methods to process [4]. This very large and mostly accessible data
includes weather data, business transactions data, medical test results, social media
posts, security camera recordings, GPS locations from smartphones, sensor data, and
many more. Big data tomorrow will be bigger than today, and with more data,



trained models will get more intelligent [1]. The second trend is the reduced cost of
parallel computing and memory by distributing the processing of high volumes of
data between simple processors [4]. In addition to that, more complex and powerful
yet affordable processors like graphics processing units (GPU) are produced. These
resources are available for data scientists and organizations today via cloud com-
puting without the need for huge investments in hardware. The reduced costs and
increased processing power and storage capability allowed for increased data cap-
turing and storage and more efficient and faster coding and analysis. The third trend
is the development of new algorithms of machine learning [4], many of which are
readily available in open-source communities. The third trend is by far the most
important, as it aided in the creation of artificial neural networks that support higher-
level functions for data processing [4]. ANNs are crucial algorithms within machine
learning (ML), serving the important purpose of solving complex problems.

1.4 How Machine Learning Works 3

There is more data than our sensors or brains can handle or process. The
information available online today contains massive amounts of digital text and is
now so vast that manual processing is impossible. The use of machine learning for
this is much more efficient and is known as machine reading. The basic advantage of
machine learning is that it can be applied to a wide range of tasks without explicitly
being programmed to learn. Using machine learning, we can build systems that are
capable of learning and adapting to their environment on their own with minimal
supervision and maximal user satisfaction [1].

1.4 How Machine Learning Works

Machine learning works by utilizing many algorithms that make intelligent pre-
dictions based on the datasets being used. These datasets can be enormous,
consisting of millions of data that cannot be processed by the human mind alone
[5]. Machine learning has four variants: supervised, unsupervised, semi-supervised,
and reinforcement learning [6]. In order to understand these variants, it is important
to understand “labels.” A “label” in machine learning is the dependent variable and
is a specified value of the outcome [6]. In supervised learning, labeled datasets are
used by machine learning professionals to train algorithms by setting parameters to
make accurate predictions about data [3]. Regression is one example of supervised
learning [1]. On the other hand, unsupervised learning consists of multiple unlabeled
datasets which are used to detect structure and patterns using the algorithm [3]. Data
clustering is one example of unsupervised learning, and it is also much faster, as
there are fewer labeled data [1]. Semi-supervised learning fits the models to both
labeled and unlabeled data [6]. The main goal of semi-supervised learning is to
understand how combining labeled and unlabeled data can change learning behavior
and the design algorithms that use this combination [7]. Reinforcement learning is a
machine learning algorithm that allows machines and software to automatically
evaluate optimal behavior in specified contexts for improved efficiency
[8]. Reinforced learning is usually used for training complicated artificial



intelligence models to increase automation. All four of these variants are an impor-
tant component of machine learning outcomes and play a significant role per their
learning capabilities [8].

4 1 Introduction to Machine Learning

1.5 Machine Learning Building Blocks

Statistics, data mining, analytics, business intelligence, artificial intelligence, and
machine learning are concepts, methods, and techniques used to understand data and
explore it to find valuable information, relationships, trends, patterns, and anomalies
and ultimately to make predictions. In the following section, we will introduce data,
its types, and how it is managed and explored. We will also introduce business
intelligence and data analytics. Statistics will be covered in detail in Chap. 2, and in
Chap. 3, we will introduce data mining and explore machine learning and the
different algorithms in more depth.

1.5.1 Data Management and Exploration

1.5.1.1 Data, Information, and Knowledge

Data and information are comparable but not the same. While many believe that data
and information represent the same concept and can be used interchangeably, these
two terms are quite distinct. Data are streams of raw, specific, and objective facts or
observations generated from events such as business transactions, inventory, or
medical examinations. Standing alone, data have no intrinsic meaning. Data is
generally broken into two categories, structured and unstructured. Structured data,
like patient records, sales transactions, and warehouse inventory, has a predefined
format and can be easily processed and analyzed. It is commonly stored and
managed in a relational database. Unstructured data, like free text, videos, images,
audio files, tweets, and portable medical device outputs, are complex in their form
and are more difficult to manage, process, and analyze [9, 10].

Once processed (e.g., filtered, sorted, aggregated, assembled, formatted, or cal-
culated), data becomes endowed with relevance and purpose and is put in context.
Data thus turns into information. Information is a cluster of facts that are meaningful
and useful to human beings in processes such as making decisions [11, 12]. For
instance, patients’ IDs, names, dates of birth, home addresses, postal codes, phone
numbers, emails, and diagnoses are examples of data that can be collected in a
community center, clinic, or hospital, while a bar chart presenting the percentage of
patients in different age groups, a pie chart representing the number of patients per
type of disease, or a map representing the patients’ distribution in a geographic area
are examples of information.



1.5 Machine Learning Building Blocks 5

Consider a simple example that we can all relate to, how purchases are processed
at checkout at a grocery store. Scanning the barcodes of the products at a store
generates or accesses data in the form of a product number, a short description of the
product, and a price. When these data are processed, an invoice is generated, and the
store’s inventory is updated. This generated information helps the store determine
how much to charge the customer and process the payment. This new information
also lets the store manager know how much inventory is left for each product and
helps him decide when to order new supplies [13].

In summary, data is the new oil; data is simply a collection of facts. Once data are
processed, organized, analyzed, and presented in a way that assists in understanding
reality and ultimately making a decision, it is called information. Information is
ultimately used to make a decision and take a course of action.

When processed further and internalized by humans, information becomes
knowledge. Knowledge can be defined as understanding, awareness, or experience.
It can be learned, discovered, perceived, inferred, or understood [10]. In the grocery
store example, knowledge would be the awareness of which products sell the most
during specific times of the year, which translates into the decision to order addi-
tional supplies to avoid out of the stock issue [13].

As we move from data to information and then to knowledge, we see more human
contribution and greater value and, traditionally, a decreasing role of technology.
Data are easily captured, generated, structured, stored, and transmitted by informa-
tion and communication technology (ICT). Information, which is data endowed with
relevance and purpose [14], requires analysis, a task increasingly being done by
technology but also by human mediation and interpretation. Finally, knowledge,
valuable information from the human mind, is difficult to capture electronically,
structure and transfer and is often tacit and personal to the source [12, 15].

1.5.1.2 Big Data

There is no unique or universal definition of big data, but there is a general
agreement that there has been an explosion in data generation, storage, and usage
[9]. Big data is a common term used to refer to the massive size structured and
unstructured data generated, made available, and being used [16]. These data come
from daily business transactions at banks and retailers, for example, from sensors
such as security cameras and monitoring systems, the GPS systems on every mobile
phone, content posted on social media such as YouTube videos, and from many
more ubiquitous sources [13]. Big data in the healthcare field comes from medical
devices such as MRI scanners and X-ray machines, sensors such as heart monitors,
patient electronic medical and health records, insurance providers’ records, doctors’
notes, genomic research studies, wearable devices, and many more [17]. An example
of big data is what is collected by Fitbit, a manufacturer of wearable activity trackers.
In 2018, it was announced that Fitbit had collected 150 billion hours’ worth of heart
rate data from tens of millions of people from all over the world. These data also



include sex, age, location, height, weight, activity levels, and sleep patterns. More-
over, Fitbit has 6 billion nights’ worth of sleep data [18].

6 1 Introduction to Machine Learning

Fig. 1.1 Exponential increase in the volume of big data (actual and projected) based on an IDC
study (adapted from [13])

There are multiple factors behind the emergence and growth of big data, and they
include technological advances in the field of information and communication
technology (ICT), where computing power and data storage capacity are continu-
ously increasing while their cost is decreasing. The increased connectivity to the
Internet is another major factor. Today, most people have a mobile device, and many
modern pieces of equipment are connected to the Internet [13].

Big data is generally characterized by the four Vs: volume, variety, velocity
(introduced originally by the Gartner Group in 2001), and veracity (added later by
IBM) [19]. Multiple additional Vs were introduced later, including validity, viabil-
ity, variability, vulnerability, visualization, volatility, and value [9, 19, 20]. Volume
is the most defining characteristic of big data. The volume of data generated is
increasing exponentially, and new units of measure have been created, such as
zettabytes (1021), to accommodate this increasing volume of data. According to
IDC, a market-research firm, the data created and copied in 2013 was 4.4 zettabytes,
and this number is projected to exponentially increase to 44 zettabytes in 2020 and
180 zettabytes in 2025 (Fig. 1.1) [19, 21]. Examples of large volumes of data are the
20 terabytes (1012) of data produced by Boeing jets every hour and the 1 terabyte of
data uploaded on YouTube every 4 minutes [22].

Variety refers to the different forms of big data, such as videos, pictures, social
media posts, images from X-ray machines, location data from GPS systems, data
from sensors like security devices and wearable wireless health monitors, and many
more.Velocity refers to the very high speed at which big data are continuously being



generated, for example, from medical devices and monitors in hospitals’ intensive
care units or security cameras. Such data must be generated and analyzed in real-
time, particularly when the outcome has a direct impact on someone’s safety in the
case of driverless cars or their financial situation in the case of the stock market.
Finally, veracity represents the high level of uncertainty and low levels of reliability
and truthfulness of big data [9, 10, 13, 19]. Data can be biased, incomplete, or filled
with noise, and data scientists and analysts spend more than 60% of their time
cleaning data [19]. These characteristics of big data represent challenges for any
company or industry. Some of the challenges are technical, such as being able to
analyze the large volume of data, which is generated very rapidly and in many
different formats. Other challenges may be administrative, such as the reliability of
the data [13].

1.5 Machine Learning Building Blocks 7

Data Processing Information
Table 

Analytics, 
DM, AI, ML…

Knowledge Decision Action

Fig. 1.2 Data-to-action value chain

The increasing volume and complexity of data, which is very rapidly generated in
different formats, have made it practically impossible for humans to analyze without
sophisticated analytics techniques. Therefore, techniques like data analytics, data
mining, artificial intelligence, and machine learning are playing an increasing role in
transforming data or information into knowledge and helping humans make deci-
sions and take action (Fig. 1.2).

1.5.1.3 OLAP Versus OLTP

A significant amount of data is produced by daily business transactions, be it a
purchase of a product, such as an airline ticket or a book; withdrawing money from a
bank; admitting a patient to a hospital; generating medical imagery, such as X-rays;
updating patient records after a medical examination; and so on [13]. These trans-
actions are managed by transaction processing systems (TPS) or online transaction
processing systems (OLTP), which are computerized systems, such as payroll
systems, order processing systems, reservations systems, or enterprise resource
planning (ERP) systems, that perform and record the transactions that are necessary
to conduct a business, such as employee record keeping, payroll, sales order entry,
and shipping [11, 23]. At a bank, OLTP can be used to create new accounts, deposit
and withdraw funds, process checks, transfer funds to other accounts, withdraw
cash, pay bills, calculate and apply fees, and generate a report on all transactions
performed during a period of time. OLTP systems function at the operational level of
an organization and are mainly responsible for acquiring and storing data related to
day-to-day automated business transactions, running everyday real-time analyses,
and generating reports [10]. The value of the data generated and maintained by an
OLTP system goes beyond supporting an organization’s operations and generating
reports.
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Table 1.1 A comparison between OLTP and OLAP (adapted from Sharda et al. (2015) [10])

Criteria OLTP OLAP

Purpose Support and automate day-to-day
business functions and transactions

Support decision-making and provide
analytical capabilities and answers to
business and management queries

Data
sources

Transaction database (a data repository
formatted to maximize efficiency and
consistency)

Data warehouse or data mart (a data
repository formatted to maximize accu-
racy and completeness)

Reporting Routine, periodic, narrowly focused
reports

Ad-hoc, multidimensional, broadly
focused reports and queries

Resource
requirement

Ordinary relational databases Large capacity, specialized databases

Execution
speed

Fast (recording business transactions
and routine reports)

Relatively slow (resource-intensive,
complex, large-scale queries, multiple
data sources)

These data, coming from multiple sources or systems, can be further analyzed to
support organizational decision-making using online analytical processing (OLAP).
OLAP can manipulate and analyze large volumes of data from different perspectives
and answer ad-hoc inquiries by executing multidimensional analytical queries
[20, 23]. An OLAP system is a computer system with advanced query and analytical
functionality, such as ad-hoc and what-if analysis capabilities [20, 24]. At a bank, an
OLAP system can be used to predict which customers may quit, an exercise called
churn analysis. OLAP can predict which customers are most susceptible to certain
new services to develop targeted marketing campaigns instead of blanket or mass
marketing, which is more expensive and less efficient and effective. Table 1.1
presents a brief comparison between OLTP and OLAP [10].

1.5.1.4 Databases, Data Warehouses, and Data Marts

Today, most data is stored, organized, manipulated, and managed inside databases.
A database is a collection of data formatted and organized into records that facilitates
accessing, updating, adding, deleting, and querying those records [25]. A database
can be perceived as a collection of files that are viewed as a single storage area of
organized data records that are available to a wide range of users [22].

The most common type of database is a relational database, which consists of
tables (called relations, hence the name “relational database”) that are connected via
relationships (not to be confused with relations or tables). Each table, not different
from a spreadsheet, represents an entity of interest for which we collect and manage
data, for example, a customer table or a student table. Each table consists of multiple
fields related to the entity it represents, such as the customer’s last name, first name,
social security number, phone number, and address. An example of an employee
relation or table is in Table 1.2.



Department Home Address Employment date
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Table 1.2 An employee table divided into rows (i.e., records) and columns (i.e., fields)

Employee
ID

Last
name

First
name

1 Gonzales Valentina Marketing 55 Main Street March 17, 2010

2 Singh Peter Accounting 12 Lakeshore East November
5, 2016

3 Watson Brian Sales 921 Holmes
Avenue

April 7, 2019

4 Jones Peter Accounting 6 McGill Crescent June 24, 2020

5 Smith Paul Personnel 1025 Bay Avenue April 28, 2005

Fig. 1.3 Relationships in a relational database

In a relational database, tables are connected via relationships. Relationships are
created by linking primary keys and foreign keys in different tables. In a database,
each table has a primary key, which is a field or attribute that is used to uniquely
identify each record in the table, such as a student ID, a patient medical health card
number, a product code, or a customer phone number. A primary key can consist of
multiple fields as long as their combination is unique for every record in the table,
such as the combination of a shipment number and product ID. Such a key is called a
composite primary key. A table also has foreign keys, which point to primary keys in
other tables and confirm the presence of relationships between these tables. Fig-
ure 1.3 presents an overview of the relationships in a university database.

Relational databases are designed to quickly access the data for transaction
processing (via TPS/OLTP systems), such as admitting a new patient to the hospital
or performing a sales transaction. In addition to daily transactions, the database can
be queried for occasional reports or information, such as the account balance of a
customer; the report can then be used for decision-making, such as providing a line
of credit or a loan. However, as the size of a database grows due to day-to-day
transactions generating additional new records in the tables, it becomes very time-
consuming to generate any analytics using the data. Moreover, analytics or OLAP
would slow down the system, making routine transactions handled by the OLTP too
slow. Transferring funds between customer bank accounts could take minutes
instead of seconds. A solution would be to extract the data from the different



databases, transform it into an appropriate format, and load it into a special database
specifically designed for querying and OLAP. Data that is redundant or has no value
would be cleansed. This process is called “extract, transform, and load,” or ETL for
short [13]. The databases suitable for querying, OLAP, and decision-making are
referred to as “data warehouses” and “data marts.” A data warehouse is a physical
repository where current and historical data are specifically organized to provide an
enterprise-wide cleansed data in a standardized format [25, 26]. The data in a
warehouse is structured to be available in a form ready for OLAP, data mining,
querying, reporting, and other decision support applications [26]. A data mart is a
data warehouse subset usually focused on a single subject or department [22, 26]. Fig-
ure 1.4 presents an overview of a data warehouse.

10 1 Introduction to Machine Learning

Fig. 1.4 Data warehouse overview (adapted from Sharda et al. (2013) [26])

Data inside a data warehouse or data mart is designed based on the concept of
dimensional modeling, where high-volume complex queries are needed. The most
common style of dimensional modeling is the star schema. While in an OLTP
environment, the database consists of tables representing entities of interest, such
as patients and their attributes (name, phone, address, etc.), the star schema has a fact
table with a large number of attributes (mainly numbers) that are most needed for
analysis and queries, while the rest of the valuable data are stored in attached
dimension tables [24, 26, 27]. Figure 1.5 provides a visual representation of an
OLTP and an OLAP-based database structure.

While an OLTP system is designed for operational purposes and thus it is
detailed, continuously and easily updated, has very current data, has to be always
available, and is designed for transactional speed, an OLAP-based system is more
informational and has summary data, is not continuously updated, has mainly
historical and integrated data, and is designed for complex queries and analytics
[24, 26, 27].
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Fig. 1.5 Data models for OLTP and OLAP (adapted from Mailvaganam (2007) [27])

To perform the analytical processing, a data cube is created, which is a
multidimensional data structure that is generated out of the star schema and allows
for fast analysis of data. The cube is multidimensional but is commonly represented
as three-dimensional for ease of viewing and understanding. Each side in a cube
represents a dimension, such as a patient, procedure, or time, and the cells are
populated with data from the fact table. The cube is optimally designed for common
OLAP operations, such as filtering, slicing, dicing, drilling up and down, rolling up,
and pivoting [24, 26, 27], which will be explored next.

1.5.1.5 Multidimensional Analysis Techniques

Data to be reported can be manipulated in many cases with simple arithmetic and
statistical operations, such as summing up (e.g., total sales in a year), counting (e.g.,
the number of sales transactions), calculating the mean (e.g., the average profit of
sales), filtering (e.g., extracting names of customers in a certain region who made the
highest purchases), sorting, ranking, and so on. To extract the data from multiple
tables in a relational database of a TPS system, one can issue an SQL query
command that pulls out the data from multiple tables by performing a “join”
operation (i.e., joining related data from different tables). To perform OLAP on a
multidimensional data structure, similar to a cube in a data warehouse, several
operations or techniques may be needed, such as slicing, dicing, and pivoting
[9, 24, 28].

For simplicity, assume that we have a three-dimensional dataset of sales, where
the dimensions are product, region, and year, which can be represented as a cube,
where each axis is a dimension, and the cells contain sales data in thousands of
dollars (Fig. 1.6). In this figure, we find that the sale of chairs in QC in 2021 was
worth $110,000.
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Fig. 1.6 Example of an
OLAP cube containing sales
figures of three products in
three regions over a period
of 3 years

Fig. 1.7 Representation of
slicing data to extract the
sales of tables in all regions
and years

1.5.1.5.1 Slicing and Dicing

Slicing and dicing operations are used to make large amounts of data easier to
understand and work with. Slicing is a method to filter a large dataset into smaller
datasets of interest while dicing these datasets creates even more granularly defined
datasets [9]. Slicing is taking a single slice out of the cube, representing one
dimension, showing, for example, the sales of tables for each region and year
(Fig. 1.7).

Another example of slicing is in Table 1.3, where the sales of each product are
summed up for all regions and years.

Dice is a slice on more than two dimensions of the cube [28]. Dicing is putting
multiple side-by-side members from a dimension on an axis with multiple related
members from a different dimension on another axis, allowing the viewing and
analysis of the interrelationship among different dimensions [24]. Two examples of



dicing are depicted in Table 1.4, showing the sales of all products per region per year
and sales per region per product for all years.
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Table 1.3 Example of slicing Sales for all regions and years

Product Sales

Chair $694,000

Table $710,000

Light $575,000

Total sales $1,979,000

1.5.1.5.2 Pivoting

A pivot table is a cross-tabulated structure (crosstab) that displays aggregated and
summarized data based on the ways the columns and rows are sorted. Pivoting
means swapping the axes or exchanging rows with columns and vice versa or
changing the dimensional orientation of a report [9, 24, 28] (Table 1.5).

1.5.1.5.3 Drill-Down, Roll-Up, and Drill-Across

Drilling down or rolling up is where the user navigates among levels of the data
ranging from the most summarized (roll-up) to the most detailed (drill-down) [28]
and happens when there is a multilevel hierarchy in the data (e.g., country, province,
city, neighborhood) and the users can move from one level to another [24]. Figure 1.8
shows an example of drilling down on the product dimension. When you roll up, the
key data, such as sales, are automatically aggregated, and when you drill down, the
data are automatically disaggregated [9].

Drilling across is a method where you drill from one dimension to another, but
where the drill-across path must be defined [24]. Figure 1.9 shows an example of a
drill-across from the store CA to the product dimension.

1.5.2 The Analytics Landscape

Analytics is the science of analysis—using data for decision-making [26]. Analytics
involves the use of data, analysis, and modeling to arrive at a solution to a problem or
to identify new opportunities. Data analytics can answer questions such as (1) what
has happened in the past and why, (2) what could happen in the future and with what
certainty, and (3) what actions can be taken now to control events in the future
[9, 10].

Data analytics have traditionally fallen under the umbrella of a larger concept
called “business intelligence,” or BI. BI has been defined as “the integration of data
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Fig. 1.8 Drilling down (adapted from Ballard et al. (2012) [24])

Fig. 1.9 Drilling across (adapted from Ballard et al. (2012) [24])



from disparate source systems to optimize business usage and understanding through
a user-friendly interface” [29] and as “the concepts and methods to improve business
decision-making by using fact-based support systems” [30]. BI is a conceptual
framework for decision support that combines a system architecture, databases and
data warehouses, analytical tools, and applications [22]. BI is a mature concept that
applies to many fields, despite the presence of the word “business.”While remaining
a quite common term, BI is slowly being replaced by the term “analytics,” some-
times referring to the same thing. The major objective of BI is to enable interactive
access to data and data manipulation, and to provide end users (e.g., managers,
professionals) with the capacity to perform analysis for decision-making. BI ana-
lyzes historical and current data and transforms it into information and valuable
insights (and knowledge), which lead to more informed and evidence-based deci-
sion-making [10]. BI has been very valuable in applications such as customer
segmentation in marketing, fraud detection in finance, demand forecasting in
manufacturing, and risk factor identification and disease prevention and control in
healthcare. BI uses a set of metrics to measure past performance and report a set of
indicators that can guide decision-making; it involves a set of methods such as
querying structured datasets and reporting the findings, using dashboards, automated
monitoring of critical situations, online analytical processing (OLAP) using cubes,
slice and dice, and drilling. BI is essentially reactive and performed with much
human involvement [13].
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Analytics, alternately, are more proactive and can be performed automatically by
a set of algorithms (e.g., data mining and machine learning algorithms). Analytics
access structured data (e.g., product code, quantity sold, and current inventory level)
and unstructured data (e.g., free text describing the product or pictures of the
product); they describe what happened in the past, such as how many units of a
certain product were sold last year (descriptive analytics); predict what will (most
likely) happen in the future, such as how many units we expect to sell next year
(predictive analytics); or even prescribe what actions we should take to have certain
outcomes in the future (prescriptive analytics), such as what quantity of the product
we should order and when. Analytics analyze trends, recognize patterns, and possi-
bly prescribe actions for better outcomes, and they use a multitude of methods, such
as predictive modeling, data mining, text mining, statistical analysis, simulation, and
optimization [13].

Some sources offer a distinction between BI and analytics using a spectrum of
analytics capabilities. BI is traditional and mature and looks at the present and
historical data to describe the current state of a business. It uses basic calculations
to provide answers. This functionality is compatible with what is referred to as
“descriptive analytics” and is at the lower end of the spectrum. Analytics, on the
other hand, mines data to predict where the business is heading and prescribes
actions to maximize beneficial outcomes. It uses mathematical models to determine
attributes and offer predictions. These functionalities are referred to as “predictive”
and “prescriptive analytics” and fall on the higher end of the analytics spectrum
[13, 31]. Having clarified to a certain extent the difference between BI and analytics,
we will refrain from using the term BI and rely instead on the analytics taxonomy:



descriptive, diagnostic, predictive, and prescriptive analytics, which will be
described in detail below.
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1.5.2.1 Types of Analytics (Descriptive, Diagnostic, Predictive,
Prescriptive)

Analytics are of four types: descriptive, diagnostic, predictive, and prescriptive.
These types have increasing difficulty and complexity levels and provide increasing
value to the users (Fig. 1.10).

1.5.2.1.1 Descriptive Analytics

Descriptive analytics query past or current data and report on what happened (or is
happening). Descriptive analytics display indicators of past performance to assist in
understanding successes and failures and provide evidence for decision-making; for
instance, decisions related to the delivery of quality care and optimization of
performance need to be based on evidence [13].

Using descriptive analytics, such as reports and data visualization tools (e.g.,
dashboards), end users can look retrospectively into past events; draw insight across
different units, departments, and, ultimately, the entire organization; and collect
evidence that is useful for an informed decision-making process and evidence-
based actions. At the initial stages of analysis, descriptive analytics provide an
understanding of patterns in data to find answers to the “What happened?” questions,

Descriptive
Analytics

Predictive
Analytics

Prescriptive
Analytics

Diagnostic
Analytics

Why
Did it Happen

What 
Happenend

What 
Will Happen

How can we 
Make it Happen

Va
lu

e Foresight

Hindsight

Insight

Fig. 1.10 Types of analytics, the value they provide, and their level of difficulty (adapted from
Rose Business Technologies [32])



for example, “Who are our best customers in terms of sales volume?” and “What are
our least selling products?” Descriptive statistics, such as measures of central
tendency (mean, median, and mode) and measures of dispersion (minimum, maxi-
mum, range, quartiles, and standard deviations), as well as distribution of variables
(e.g., histograms), are used in descriptive analytics [13].
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Descriptive analytics can quantify events and report on them and are a first step in
turning data into actionable insights. Descriptive analytics, for example, can help
with population health management tasks, such as identifying how many patients are
living with diabetes, benchmarking outcomes against government expectations, or
identifying areas for improvement in clinical quality measures or other aspects of
care [33]. Descriptive analytics considers past data analysis to make decisions that
help us achieve current and future goals. Statistical analysis is the main “tool” used
to perform descriptive analytics; it includes descriptive statistics that provide simple
summaries, including graphics analysis, measures of central tendencies (e.g., fre-
quency graphs, average/mean, median, mode), or measures of data variation or
dispersion (e.g., standard deviation) [13].

Surveys, interviews, focus groups, web metrics data (e.g., number of hits on a
webpage, number of visitors to a page), app metrics data (e.g., number of minutes
spent using a feature), and health data stored in electronic records can be the source
for all analytics, including descriptive analytics. Media companies and social media
platforms (e.g., Facebook) use descriptive analytics to measure customer engage-
ment; managers in hospitals can use descriptive analytics to understand the average
wait times in the emergency room (ER) or the number of available beds. Descriptive
analytics allow us to access information needed to make actionable decisions in the
workplace. They allow decision-makers to explore trends in data (why do we have
long lines in the ER?), to understand the “business” environment (who are the
patients coming to the ER?), and to possibly infer an association (i.e., a correlation)
between an outcome and some other variables (patients with the chronic obstructive
pulmonary disease tend to have more visits to the ER) [13].

Reports are the main output in descriptive analytics, where findings are presented
in charts (e.g., a bar graph or pie chart), summary tables, and most interestingly,
pivot tables. A pivot table is a table that summarizes data originating from another
table and provides users with the functionality to sort, average, sum, and group data
in a meaningful way [13] (Fig. 1.11, 1.12 and 1.13).

1.5.2.1.2 Diagnostic Analytics

Descriptive analytics give us insight into the past but do not answer the question,
“Why did it happen?” Diagnostic analytics aims to answer that type of question.
They focus on enhancing processes by identifying why something happened and
what the relationships are between the event and other variables that could constitute
its causes [34]. They involve trend analysis, root cause analysis [35], cause and
effect analysis [36, 37], and cluster analysis [38]. They are exploratory and provide
users with interactive data visualization tools [39]. An organization can monitor its
performance indicators through diagnostic analysis.
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Fig. 1.11 Example of a data sheet in Microsoft Excel

Fig. 1.12 Example of a pivot table in Microsoft Excel that summarizes data from Fig. 1.11. On the
right, we can notice the pivot table fields that allow users to control which summaries are being
computed and displayed
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Fig. 1.13 Example of a column chart in Microsoft Excel that visualizes data from Fig. 1.12

1.5.2.1.3 Predictive Analytics

Predictive analysis uses past data to create a model that answers the question, “What
will happen?”; it analyzes trends in historical data and identifies what is likely to
happen in the future. Using predictive analytics, users can prepare plans and
proactively implement corrective actions in advance of the occurrence of an event
[39]. Some of the techniques used are what-if analysis, predictive modeling [40–42],
machine learning algorithms [43–45], and neural network algorithms [46, 47]. Pre-
dictive analytics can be used for forecasting and resource planning. Predictive
analytics share many basic concepts and techniques, like algorithms, with machine
learning, which is covered in detail later in this textbook.

1.5.2.1.4 Prescriptive Analytics

While predictive analytics estimate what may happen in the future, prescriptive
analytics goes a step further by prescribing a certain action plan to address the
problems revealed by diagnostic analytics and increase the likelihood of the occur-
rence of the desired outcome (which may not have been forecasted by predictive
analytics) [39, 48–50]. Prescriptive analytics encompasses simulating, evaluating
several what-if scenarios, and advising how to maximize the likelihood of the
occurrence of desired outcomes. Some of the techniques used in prescriptive ana-
lytics are graph analysis, simulation [51–53], stochastic optimization [54–56], and
nonlinear programming [57–59]. Prescriptive analytics is beneficial for advising a
course of action to reach a desirable goal.
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Fig. 1.14 Analytics: questions, focus, and tools (adapted from Podolak [60])

Prescriptive analytics go beyond prediction to prescribe an optimal course of
action to reach a certain goal based on predictions of future events. A simple
example would be an app that predicts the duration of a journey from a current
location to certain destinations; if the app is equipped with prescriptive analytics,
then it can prescribe the shortest path to reach the destination after comparing several
alternative routes [13] (Fig. 1.14).

1.6 Conclusion

Machine learning has proven itself to be a sustainable and useful technology in
today’s world, and its use is increasing every single day. Everything from smart
devices to sophisticated automated systems such as self-driving cars uses machine
learning in order to operate. Our progressively complex world is better understood
with machine learning because we are currently exposed to more information than
ever before and it will only continue growing [1]. In this chapter, we introduced the
concept of machine learning and its origins, applications, and building blocks. In the
following chapters, we elaborate more on the concept and explore in depth its
different algorithms.

1.7 Key Terms

1. Machine learning
2. Artificial intelligence
3. Parallel computing
4. Distributed computing
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5. Graphics processing units (GPU)
6. Big data
7. Transaction processing systems (TPS)
8. Online transaction processing systems (OLTP)
9. Online analytical processing (OLAP)

10. Data variety
11. Data velocity
12. Data veracity
13. Databases
14. Data warehouses
15. Data marts
16. Data slicing
17. Data dicing
18. Analytics
19. Descriptive analytics
20. Diagnostic analytics
21. Predictive analytics
22. Prescriptive analytics

1.8 Test Your Understanding

1. Write a definition of analytics.
2. How are descriptive analytics different than diagnostic analytics?
3. How are diagnostic analytics different than predictive analytics?
4. What is data slicing?
5. When do we use data dicing?
6. Which system is focused on daily business processes: OLTP or OLAP?
7. Enumerate five advantages of big data in healthcare.
8. Choose a sector of society and specify five advantages of the use of AI and

machine learning in that sector.
9. Choose a sector of society and specify five disadvantages of the use of AI and

machine learning in that sector.
10. Can AI be a source of bias? How? Search for examples in the literature.

1.9 Read More
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Reference to Covid-19. Wirel Pers Commun, 1–12. https://doi.org/10.1007/
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I. (2021). Health Care Equity in the Use of Advanced Analytics and Artificial
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Intelligence Technologies in Primary Care. J Gen Intern Med, 36(10),
3188–3193. https://doi.org/10.1007/s11606-021-06846-x
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1.10 Lab

All instructions will be for Windows users; Mac users can follow overall the same
instructions.

1.10.1 Introduction to R

R is an open-source integrated development environment (IDE) used for statistical
analysis. This section describes step-by-step instructions to download and install R
v4.1.0 and RStudio IDE v1.4.1717.
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R can be downloaded and installed from the following location: https://www.r-
project.org/. Below are instructions for R’s download and installation.
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1. Go to the following mirror location and download R (The Comprehensive R
Archive Network (sfu.ca)). For Windows users, click on “Download R for
Windows”; for other operating systems, click on the corresponding link
(Fig. 1.15).

2. While we will demonstrate the installation for Windows, the installation for
macOS is similar. For Windows, click on the “install R for the first time” link as
shown in Fig. 1.16:

3. Click on the “Download R 4.1.0 Windows” link (Fig. 1.17):

4. R-4.1.0-win.exe will be installed into the Downloads folder. Click on the
R-4.1.0-win.exe file to start the installation and continue by clicking the
“Next” button to complete the installation (Fig. 1.18).

5. If a shortcut for R was not automatically created on your desktop, you can
always create one. On Windows, go to the following location C:\Program Files
\R-4.1.0 (on a Mac, go to the Applications folder) (Fig. 1.19), right click on R.
exe, and choose “Create Shortcut” (or “Make Alias” for Mac users). A new
shortcut will be created; move it to your desktop. This will enable you to launch
R easily from the desktop.

6. Double-click on the “R” icon and launch the R software; a new command
prompt appears (Fig. 1.20):

Fig. 1.15 R Installation for Windows users and Mac users

https://www.r-project.org/
https://www.r-project.org/
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Fig. 1.16 First-time R installation

Fig. 1.17 R v4.1.0 for Windows installation

Fig. 1.18 R setup for Windows user



1.10.2 Introduction to RStudio

RStudio v1.4.1717 is the IDE for the R language. It includes a workspace for coding,
debugging, plotting, etc. It can be installed from the following location: Download
the RStudio IDE—RStudio. Below are instructions for RStudio’s download and
installation.

1.10.2.1 RStudio Download and Installation
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Fig. 1.19 R installation local directory

Fig. 1.20 Launching R application

1. Download RStudio: Click on “Download RStudio for Windows.” RStudio is
available for Mac users as well on the same webpage (Fig. 1.21).

2. Double-click on “RStudio-1.4.1717.exe” and click on “Setup RStudio
v1.4.1717”; the installation will start (Fig. 1.22).
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Fig. 1.21 Installing RStudio Desktop 1.4.1717

Fig. 1.22 RStudio setup

3. If a shortcut for RStudio was not automatically created on your desktop, you can
always create one. On Windows, go to the following location c:\Program files
\RStudio\Bin (go to the Applications folder if you are using macOS) (Fig. 1.23).

4. After launching the RStudio application, its IDE will appear as shown in
Fig. 1.24:
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Fig. 1.23 Creating a shortcut for the RStudio application

Fig. 1.24 Launching RStudio IDE



1.10.2.2 Install a Package

Packages are libraries that allow us to do specific tasks in RStudio (e.g., load a file,
display a result, do an analysis). A package can be installed in the RStudio console
using the following instructions:
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1. Click on the Packages tab and click on the Install button (Fig. 1.25):

2. Install the readr package by typing “readr” and clicking on the Install button
(Fig. 1.26).

1.10.2.3 Activate Package

1. To activate the readr library used to read csv and txt files, type “library(readr)”
(Fig. 1.27):

Fig. 1.25 Navigating RStudio Packages tab
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Fig. 1.26 Installing readr package for loading files

Fig. 1.27 Activating readr package for use



1.10.2.4 User Readr to Load Data

Different dataset types, such as txt, csv, and xlsx, can be imported into RStudio files
(Fig. 1.28)
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1. Download Diabetes.csv: Go to the following link https://www.kaggle.com/uciml/
pima-indians-diabetes-database/version/1 (or go to kaggle.com and search for
“Pima Indians Diabetes Database”).

2. Next, you will load the diabetes.csv file and plot it as a histogram. Under the main
menu, click on the File menu/Import dataset/From text readr. In case you are
prompted to download a library, accept to download it. Choose the input file from
the folder where you have saved it and click Import.

1.10.2.5 Run a Function

The hist function can be used to visualize the data in a histogram. The hist function
can present the data imported earlier (blood pressure vs. age) in a histogram
(Fig. 1.29). Type the following:

hist(diabetes$BloodPressure,main="Blood Pressure Histogram",xlab =
"Blood Pressure",ylab = "Count", las=1).

Fig. 1.28 Importing dataset using the readr package

https://www.kaggle.com/uciml/pima-indians-diabetes-database/version/1
https://www.kaggle.com/uciml/pima-indians-diabetes-database/version/1
http://kaggle.com
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Fig. 1.29 Visualize data in a histogram

Fig. 1.30 Save progress status in RStudio

1.10.2.6 Save Status

To save your progress, use the ctrl + S shortcut or click the blue Save button in the
main menu (Fig. 1.30):

1.10.3 Introduction to Python and Jupyter Notebook IDE

Python is an interpreted programming language. It is characterized by human
readability; it is an important programming language in machine learning and
artificial intelligence due to its flexible libraries and ease of use.

In this book, Jupyter Notebook IDE is used for Python labs and examples.



1.10.3.1 Python Download and Installation

Python programming language can be installed from the following location: Python.
org. Below are instructions for python download and installation for Python v3.9.6.
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1. Download the Windows installer to your computer location (Fig. 1.31).
2. Install Python v3.9.6 (64-bit) using the “Customize installation” option; please

follow the screenshots carefully by checking the right checkboxes as indicated
(Figs. 1.32, 1.33, and 1.34).

3. To validate the installation, open a terminal (open “cmd” in Windows; open a
terminal in macOS) and type “python -v.”

Fig. 1.31 Install Python v3.9.6 Windows installer

Fig. 1.32 Setting up Python 3.9.6

http://python.org
http://python.org


1.10.3.2 Jupyter Download and Installation
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Fig. 1.33 Configuring Python 3.9.6 features

Fig. 1.34 Configuring more Python v3.9.6 installation options

1. To install “Jupyter Notebook” IDE, open a terminal and type “pip install jupyter”;
if the command does not work then type “pip3 install jupyter” (Fig. 1.35).
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Fig. 1.35 Installing Jupyter Notebook IDE

2. We need a useful Python package called “pandas” to manipulate data. In order to
use pandas, we need first to install them. To do so we will use the command pip
install.
On Windows, open a terminal (cmd) as an administrator; you can do so by right
clicking on cmd and choosing Run As Administrator. In the terminal, type “pip
install pandas” (Fig. 1.36).

On macOS, open the terminal and write “sudo pip install pandas.”
macOS will ask you for your password; the system assumes you have admin-

istrative powers. Enter the password and the library package will be installed
(Fig. 1.37).

3. Using the same strategy, install matplot and openpyxl libraries (Fig. 1.38):
pip install matplotlib
pip install openpyxl

For MacOS, launch Jupyter Notebook by typing the following in the terminal:
“Jupyter Notebook”. For windows type “python -m jupyter notebook”. Then, click
“New” button and choose “Python 3” to create a notebook (Figs. 1.39 and 1.40).
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Fig. 1.36 Installing pandas package to work with data frames for Windows users

Fig. 1.37 Installing pandas package to work with data frames for Mac users

Fig. 1.38 Installing matplotlib and openpyxl packages
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Fig. 1.39 Launching Jupyter Notebook IDE

Fig. 1.40 Notebook webpage

1.10.3.3 Load Data and Plot It Visually

Python code can be added in the Jupyter Notebook IDE file, and every line can be
executed using the “Run” button for every line. It is important to note that code on all
lines can be run once by doing the following: Under the Cell menu, click “Run All.”
This is shown below in Fig. 1.41.

The code below allows us to read the blood pressure measurement from the
diabetes.xlsx file and plot it in a histogram. Open diabetes.csv and save it as diabetes.
xlsx, then follow the instructions below (Fig. 1.42):

Type: import pandas as pd
Type: import matplotlib.pyplot as plt
Type: df=pd.read_excel("diabetes.xlsx")
Type: dfplt=df.plot(kind="hist")
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Fig. 1.41 Load data in Jupyter Notebook and execute code

Fig. 1.42 Visualizing blood pressure measurements in a graph

1.10.3.4 Save the Execution

All that we have done can be saved in a file with the extension “ipynb.” This file can
be loaded later in Jupyter Notebook IDE for any updates or changes to continue
working from where you left. Click on “File,” then choose “Save” or click on the
save icon.



1.10.3.5 Load a Saved Execution

Go to your workspace folder in the command line and lunch Jupyter Notebook.
Then, double-click on the file that you need to continue working on.

1.10.3.6 Upload a Jupyter Notebook File

You can also upload files into Jupyter Notebook through the application interface.
After launching the program, click on the Upload button and upload all the files that
you want to upload, as shown in Fig. 1.43.

1.10.4 Do It Yourself

The following problem is to try by yourself:
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Fig. 1.43 Upload Jupyter Notebook files into the application

1. Weka is a machine learning software. Install Weka from the following link:
https://waikato.github.io/weka-wiki/downloading_weka/

2. Jupyter lab is the next generation Jupyter Notebook interface. Install Jupyter lab
from https://jupyter.org/. We suggest that you use Jupyter lab instead of Jupyter
Notebook.

3. Download any dataset from Find Open Datasets and Machine Learning Projects |
Kaggle and plot the data visually in R.

4. Download any dataset from Find Open Datasets and Machine Learning Projects |
Kaggle and plot the data visually in Jupyter Notebook or Jupyter lab.

5. Try Colabroatory, also known as Colab, the online Python development environ-
ment provided by Google: https://colab.research.google.com/. We strongly
advise you to use either Colab or JupyterLab for your projects.

https://waikato.github.io/weka-wiki/downloading_weka/
https://jupyter.org/
https://colab.research.google.com/
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Chapter 2
Statistics

2.1 Overview of the Chapter

Statistical analysis is an analytical tool used to describe, summarize, and draw
conclusions about data. The main two aims for statistics are descriptive statistics
and inferential statistics. Descriptive statistics involve collecting, organizing, and
summarizing a given dataset, whereas inferential statistics relate to concluding a
population from the results obtained in a sample. In the following chapter, we will
give an overview of some common descriptive and inferential statistical tests, their
uses, and how to interpret their results.

2.2 Definition of General Terms

Population: the pool of individuals in which we are interested at a particular time.
Sample: a group of individuals selected from the population.
Simple random sample: a sample that is drawn from a population in such a way

that each individual in the population has an equal chance of being selected for the
sample.

Parameter: a descriptive measure computed from the data of a population.
Statistic: a descriptive measure computed from the data of a sample.
Variables: characteristics of the individuals under study (such as age, gender,

blood pressure, etc.).
Dependent variable: a variable of interest (“outcome variable” is another term

used for a dependent variable).
Independent variable: a variable that influences the dependent variable (“expo-

sure variable” is another term used for an independent variable).
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2.3 Types of Variables

Broadly, variables can be categorized into numerical (quantitative) and categorical
(qualitative) types. Numerical are measurable data and can be divided into contin-
uous and discrete (number of steps, number of apples, etc.). For continuous data, it
has an infinite number of evenly spaced values, such as age, blood pressure, height,
and weight. Categorical are data classes that cannot be measured and can be divided
into nominal and ordinal [1]. Categories for variables can be grouped into intervals;
for example, education level can be categorized into primary school, high school,
undergraduate degree, and graduate degree; income might be grouped into catego-
ries, such as less than $50,000, [50,000–69,999], [70,000–79,999], and so on. Such
data are often referred to as categorical data [1].

Nominal data, such as gender and race, do not have an established order or rank
and have a finite number of values. Nominal variables can be dichotomous, where
the variable has only two levels (e.g., death), or polytomous, where the variable can
have more than two levels (such as blood group).

Ordinal data have a limited number of options with an implied order, such as
education. Descriptive Statistics

2.3.1 Measures of Central Tendency

Frequencies and percentages are usually used to summarize and describe informa-
tion for categorical data. On the other hand, measures of central tendency and
measures of dispersion, also referred to as measures of variability, are used to
summarize information on continuous variables [2]. The most common measures
of central tendency for continuous variables are the mean, median, and mode. The
mean, also known as the average, is the sum of all values divided by the number of
observations [3]. The mean is unique in value and simple to calculate; however,
means are affected by extreme values [2]. The median is the value that divides the
data such that half of the data points or observations are lower than it and half are
higher [3]. A median of 35 years of age for a sample of participants means that half
the participants are younger than 35, whereas the other half are older than 35. The
median is unique in value and simple to calculate and is not affected by extreme
values. The mode is the most common value in a dataset [3]. If the mode for an exam
is 76/100, it means that the most common grade is 76. The mode is simple to
calculate but not unique in value and is not affected by extreme values. The mean
is the most widely used measure of central tendency, and many statistical tests are
based on it [2]. The median is best used when the database is fairly small, the
distribution is badly skewed, or we have missing values [4].
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2.3.1.1 Measures of Dispersion

Measures of dispersion capture the spread and variability of the data points. The
most common measures of dispersion include the variance, standard deviation, and
range. The variance and standard deviation measure the dispersion of the individual
values relative to the mean. Variance is the average of the squared deviations of the
data points from the mean. The standard deviation is the square root of the variance.
A smaller variance and standard deviation mean that data values are clustered close
to the mean, while a higher value for both measures means that the data points are
more spread [3]. The range is a simple measure of dispersion capturing the difference
between the highest and lowest values for a certain variable [4].

2.4 Inferential Statistics

2.4.1 Data Distribution

Data distribution is a representation of the spread of continuous data across a range
of values. Distribution charts can help better understand the data and the statistical
analysis that needs to be performed. Such distributions are informative, as they
provide the level of symmetry or skewness of the data, telling us whether there are
roughly as many data points above the mean as there are below it (in the case of
symmetry) or whether more observations are above the mean (positive skewness) or
below it (negative skewness) [3].

A special case of data distribution is called the normal distribution, also known as
the Gaussian distribution. The normal distribution is symmetrical and bell-shaped,
with themean, median, and mode all being identical. Approximately 68% of all the
data values lie within plus or minus one standard deviation from the mean, 95% lie
within plus or minus two standard deviations from the mean, and nearly all data
values lie within plus or minus three standard deviations from the mean [3]. The
normal distribution is a central component of inferential statistics [4].

2.4.2 Hypothesis Testing

Hypothesis testing is a method where researchers conclude a population based on the
results of a sample. A hypothesis is a statement that something is correct. For
hypothesis testing, tests of significance are conducted to conclude a population
parameter. For hypothesis testing, the researcher first states the null hypothesis,
usually of “no difference” (e.g., no difference between the population means of
two groups), and an alternative hypothesis that disagrees with the null hypothesis
and is a statement of “difference” (difference between the two population means).



The following steps summarize the steps for performing hypothesis testing for the
association between two variables:

The null hypothesis is usually denoted by H0, whereas the alternative hypothesis is
denoted by Ha. A test statistic is a statistic used for deciding whether the null
hypothesis should be rejected or not. Examples of test statistics are chi-square
tests, Student’s t-tests, analysis of variance tests, simple linear regression, and
correlation tests. A p-value, the probability of obtaining results at least as extreme
as the observed results in the sample if the null hypothesis is true, is generated by
default with different statistical tests. If the p-value is low, then this is taken as
evidence that it is unlikely (although still possible) that the data are consistent with
the null hypothesis, and hence we reject the null hypothesis. However, if the p-value
is high, it indicates that most probably, the sample data are consistent with the null
hypothesis, and thus we do not reject the H0. The lower the p-value, the greater the
significance of the findings [3].
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2.4.3 Type I and II Errors

When we statistically test a hypothesis, we can accept a certain level of significance,
known as α (alpha). When we say that a finding α is “statistically significant,” it
means that the finding is unlikely to have occurred by chance and that the level of
significance is the maximum chance that we are willing to accept. A very common
threshold for the level of significance, or α, is 0.05 [3].

Two types of errors may result from hypothesis testing: Type I and Type II. A
Type I error occurs when we reject the null hypothesis (e.g., we conclude that there is
a significant association between two variables or that there was a significant
difference between the measurements of two or more different groups of patients)
when in fact the null hypothesis is true (there is no significant association or
difference between the variables). A Type II error occurs when we do not reject
the null hypothesis when in fact it is false. If a Type I error is costly, meaning your
belief that your theory is correct when it is not could be problematic, then you should
choose a low value for α to avoid that error [3].

2.4.4 Steps for Performing Hypothesis Testing

1. State the null and alternative hypotheses.
2. Perform the statistical test (chi-square test, t-test, one-way ANOVA test, correla-

tion, or simple linear regression test).
3. Determine the level of significance of your test (e.g., α = 0.05).
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4. Compare the p-value associated with the test statistic to the α level; if the p-value
is less than the α value, then reject the null hypothesis; otherwise, fail to reject the
null hypothesis [4].

2.4.5 Test Statistics

To assess the bivariate relationship between two variables (one being the indepen-
dent variable and the other being the dependent variable), a test statistic is
performed, and a p-value will be generated for the test statistic. The choice of
what test statistic to use depends on the type of variables. If the research question
requires a comparison of two means, then a Student’s t-test statistic is used, whereas
a one-way analysis of variance is used to compare more than two means, and a chi-
square test is used to compare two or more proportions. On the other hand, to assess
the relationship between two continuous variables, correlation or simple linear
regression analysis may be used [4]. In the section below, specific examples will
be given to illustrate the use and interpretation of the test statistics.

2.4.5.1 Student’s t-test

The student’s t-test is used when one of the variables is continuous and the other is
dichotomous (2-level), thus aiming to compare the two means [1]. As an example,
assume an investigator is interested in comparing the mean length of hospital stay for
patients admitted to the intensive care unit (ICU) compared to patients not admitted
to the ICU. For this example, the null hypothesis is that there is no association
between ICU admission and length of hospital stay (in other words, the mean of
length of hospital stay for patients admitted to the ICU is equal to that for patients not
admitted to the ICU). The alternative hypothesis is that there is no association
(no difference in the means for the population). Figure 2.1 shows the output of the

Fig. 2.1 Example of Student’s t-test (results based on SPSS output)
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t-test analysis, thus showing that the mean of length of hospital stay for those
admitted to the ICU is 21.09 days, compared to the mean of 4.78 days for patients
who were not admitted to the ICU. The t-test shows a value of -3.743, and the p-
value associated with the t-test is 0.001. Since the p-value is 0.001 < 0.05 (the α
level), we reject the null hypothesis and conclude that at an α level of 0.05, the results
are significant (in other words, in the population, the mean length of hospital stay is
different for patients admitted to the ICU vs. those who are not). Note that this is an
example of an independent sample t-test because the two samples are not related.
However, there are instances when the investigator may want to compare means for
the same sample at different points in time (e.g., before vs. after a treatment). For
such analysis, a dependent Student’s t-test (or paired sample t-test) is used, since the
individuals in the sample are the same and the measurements are taken at two
different points in time [2].

2.4.5.2 One-Way Analysis of Variance

Analysis of variance, or ANOVA, is used when one wants to compare more than two
means [2]. Figure 2.2 shows the SPSS output of the results for the analysis assessing
whether the length of hospital stay is associated with the season of hospital admis-
sion (winter, spring, summer, and fall). One-way analysis of variance should be used
here, since the dependent variable is continuous (length of hospital stay) and the
independent variable (season of hospital of admission) is a nominal variable with
four categories. The null hypothesis would be that the length of hospital stay is the
same for those admitted in the winter, spring, summer, and fall, whereas the

Fig. 2.2 Example of analysis of variance test (results based on SPSS output)
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alternative hypothesis would be that the length of hospital stay is different for
hospital admission during at least two seasons. The F test calculated for this analysis
as shown in the output below is 0.628, and the p-value is 0.597. Since the p-value of
0.597 is >0.05 (alpha level), the decision would be not to reject the null hypothesis.
The conclusion for this analysis would be that there is no evidence to show that the
length of hospital stay is associated with the season of admission.

2.4.5.3 Chi-Square Statistic

The chi-square test is used when both independent and dependent variables have
categorical levels [4]. For example, an investigator is interested in assessing whether
the proportion of patients admitted to the intensive care unit (ICU) is different if the
patient had a head injury compared to not having a head injury. The null hypothesis
would be that the proportion of patients with a head injury who are admitted to the
ICU is equal to that for patients with no head injury, and the alternative hypothesis
would be that the two proportions are different. Figure 2.3 shows the SPSS results of
the test statistics for this relationship, where the proportion of patients admitted to the

Fig. 2.3 Example of chi-square test (results based on SPSS output)
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ICU was 19.2% for patients with head injury compared to 6.4% for patients with no
head injury. The chi-square test calculated was 25.846, with an associated p-value of
<0.001. Since the p-value is <0.05, the decision would be to reject the null
hypothesis and conclude that having a head injury is associated with ICU admission.

2.4.5.4 Correlation

Pearson correlation, measured by Pearson’s correlation coefficient (r), is a test
statistic used mainly when both independent and dependent variables are continuous
[4]. For this analysis, we are testing whether there is a linear relationship between the
two variables. The values for r range from -1 (perfect negative linear relationship
between the two variables) to +1 (perfect positive linear relationship between the two
variables). An r that is equal to 0 indicates no linear relationship between the two
variables [2, 3]. Figure 2.4 shows the results of a Pearson correlation coefficient to
answer the question of whether there is a linear association between injury severity
score (ISS) (a measure of injury severity that ranges between 1 and 75) and length of
hospital stay. The null hypothesis is that there is no linear relationship between the
two variables (correlation at the population level = 0), whereas the alternative
hypothesis is that there is a linear relationship (correlation at the population level
is different from 0). Since the two variables are continuous, a correlation test could
be performed. Based on the results shown below, r is 0.407 and the p-value is
<0.001. Because the p-value is<0.05, the null hypothesis would be rejected, and the
conclusion would be that, at the population level, we have enough evidence that
there is a linear relationship between ISS and hospital stay.

Fig. 2.4 Example of correlation test (results based on SPSS output)



2.4.5.5 Simple Linear Regression

Simple linear regression is performed when the investigators want to assess if the
relationship between two variables is linear [4]. For this situation, the mathematical
model to use is that of a straight line:

y=B0 þ B1x

y = dependent variable
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x = independent variable
B0 = y-intercept
B1 = slope

where the intercept B0 is the value of y when x = 0. The slope B1 is the amount of
change in y for each 1-unit change in x.

To explain why patients have different blood pressure, we try to associate the
differences in blood pressure with differences in other relevant patient characteristics
(variables). For example, we may try to answer the question of whether variation in
blood pressure could be explained by age. The formula of the straight line becomes:

Blood pressure=B0 þ B1age

When simple linear regression analysis is performed, one is trying to answer the
following questions: Does age help to predict blood pressure using a straight-line
model? Is there a linear relationship between age and blood pressure? Does age
explain a significant portion of the variation in the values of blood pressure?

Figure 2.5 shows the results of a simple linear regression analysis that assesses the
research question, where ISS is linearly associated with length of hospital stay. The

Fig. 2.5 Example of simple linear regression test (results based on SPSS output)



dependent variable is length of hospital stay, and the independent variable is ISS.
The null hypothesis is that the slope of the straight line in the population is equal to
0 (in other words, there is no linear relationship), and the alternative hypothesis is
that the slope is different from 0. Figure 2.5 shows that the slope of the straight line
based on the sample is 0.661, indicating that increasing ISS by 1 unit increases the
length of hospital stay by 0.661 days. The p-value of the slope is <0.001; thus, we
reject the null hypothesis and conclude that ISS provides significant information for
predicting the length of hospital stay. R2, one of the statistics computed when simple
linear regression is performed, indicates the level of variation in the dependent
variable that is explained by the independent variable. Based on Fig. 2.5, the R2

value shows that ISS explains 16.6% of the variation observed in the length of
hospital stay.

2.5 Conclusion

This chapter has provided an introduction to basic statistics on the key pillars in data
analysis. Because knowledge of basic statistical concepts is necessary for under-
standing and appreciating the complexity of data analytics, key concepts, such as
statistical tests and hypothesis verification, were covered.

2.6 Key Terms
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1. Population
2. Sample
3. Simple random sample
4. Parameter
5. Statistic
6. Variables
7. Dependent variable
8. Independent variable
9. Descriptive statistics

10. Mean
11. Median
12. Mode
13. Inferential statistics
14. Hypothesis testing
15. Test statistics
16. Student’s t-test
17. Chi-square
18. ANOVA
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19. Correlation
20. Simple linear regression

2.7 Test Your Understanding

1. Define each of the key terms.
2. How would you interpret the relationship between two variables that are nega-

tively correlated?
3. How would you interpret the relationship between two variables that are posi-

tively correlated?
4. How would you interpret a correlation where the correlation coefficient is 0?
5. How would you interpret a correlation where the correlation coefficient is 1?
6. Which statistics would you choose to test the association of two categorical

variables?
7. Which statistics would you choose to test the association of two numeric

variables?
8. Can a statistics result allow us to reject a hypothesis?
9. Can a statistics result allow us to confirm a hypothesis?

2.8 Read More

1. Faltin, F. W., Kenett, R. S., & Ruggeri, F. (2012). Statistical Methods in
Healthcare. Wiley. https://books.google.ca/books?id=3cRPEGOn1hUC

2. Hahs-Vaughn, D., & Lomax, R. (2013). An introduction to statistical concepts.
Routledge.

3. Lalanne, C., & Mesbah, M. (2017). Biostatistics and Computer-based Analysis of
Health Data Using SAS. Elsevier Science. https://books.google.ca/books?id=
HT3jCwAAQBAJ

2.9 Lab

2.9.1 Working Example in R

2.9.1.1 Statistical Measures Overview

The purpose of this lab is to apply different statistical measures in R and Python,
such as measures of central tendency and dispersion. These concepts are important
ones in applying machine learning algorithms. As described above, there are three
central tendency measures: mean, median, and mode. Measures for central tendency
are used to find the center or typical point in the data distribution. Meanwhile,

https://books.google.ca/books?id=3cRPEGOn1hUC
https://books.google.ca/books?id=HT3jCwAAQBAJ
https://books.google.ca/books?id=HT3jCwAAQBAJ


56 2 Statistics

dispersion measures, such as standard deviation, range, and interquartile range, are
used to illustrate the variability in the data. Moreover, this lab will also use the p-
value test statistics to approve or reject the null hypothesis (i.e., statistically signif-
icant or not).

2.9.1.2 Central Tendency Measures in R

Before calculating mean, median, and mode measures in R, it is necessary to note
that the bank loan status dataset will be used across this lab. You can download the
data file using the following link (https://www.kaggle.com/datasets/zaurbegiev/my-
dataset).

As shown in Fig. 2.6, the mean, median, and mode are calculated based on the
Annual Income column. The plot in this figure shows the purpose of the loan vs. the
mean of annual income based on short-long and long-term loans.

2.9.1.3 Dispersion in R

Standard deviation, interquartile range, and variance are used to calculate dispersion
measures of the borrowers’ annual income as shown in Fig. 2.7.

2.9.1.4 Statistical Test Using p-value in R

In order to approve or reject the null hypothesis, p-value is calculated using the
t-statistic test as shown in Fig. 2.8.

Fig. 2.6 Calculating central tendency measure in R

https://www.kaggle.com/datasets/zaurbegiev/my-dataset
https://www.kaggle.com/datasets/zaurbegiev/my-dataset
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Fig. 2.7 Calculating dispersion measures for annual income in R

Fig. 2.8 Applying statistical test by calculating p-value using t-test

2.9.2 Working Example in Python

2.9.2.1 Central Tendency Measure in Python

In this section, the bank loan status dataset is used again to calculate the mean,
median, and mode for the credit score and plot that in a graph as shown in Fig. 2.9
using Python.
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Fig. 2.9 Measures of central tendency in Python

Fig. 2.10 Dispersion measures for the bank status loan dataset

2.9.2.2 Dispersion Measures in Python

The same dataset is used to calculate the standard deviation, variance, and
interquartile range of dispersion measures as shown in Fig. 2.10.



2.9.2.3 Statistical Testing Using p-value in Python

Statistical testing ( p-value) is used to find a relationship between two variables
(“Current Credit Balance” and “Monthly Debt”). As you can see below in Fig. 2.11,
the p-value is around 0, which means that the two groups of data do not have a
statistically significant relationship.

2.9.3 Do It Yourself

This section is for students to apply what they have learned in this chapter. Students
need to solve the following problem in R and Python:
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1. Load the medical cost personal dataset: Medical Cost Personal Datasets | Kaggle.
2. Calculate the mean, mode, and median central tendency measures and plot the

mean against the Charges column based on the Gender column.
3. Calculate the standard deviation, variance, and interquartile range dispersion

measures against the Charges column.
4. Set the null hypothesis, calculate the p-value, and deduce a conclusion from the

result.

2.9.4 Do More Yourself (Links to Available Datasets for Use)

Below are a few datasets that you might use to do more exercises:

1. Students’ Academic Performance Dataset | Kaggle
2. Iris Species | Kaggle
3. Climate Change: Earth Surface Temperature Data | Kaggle

Fig. 2.11 Statistical testing using p-value
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Chapter 3
Overview of Machine Learning Algorithms

3.1 Introduction

Knowledge is an invaluable resource for almost all entities, be they firms, organiza-
tions, communities, or individuals. Knowledge needs to be captured, processed, and
analyzed. Well-defined knowledge can be represented in an accurate manner, such as
a mathematical formula or a certain set of rules [1]. Knowledge can also be modeled,
where a model permits us to explain reality, classify objects, and predict a value (or if
an event will occur) knowing its relationship to other known values. If our knowl-
edge is not complete, then we can approximate reality by learning from previous
experiences and predicting an outcome with a certain likelihood of accuracy.
Alongside the representation of knowledge, we need to store on a computer a
reasoning method, i.e., an algorithm (a series of steps to be followed) to process
this knowledge to arrive at an outcome/output (e.g., a decision, classification, or
diagnosis).

Data mining and machine learning are prominent ways to represent and process
knowledge and will be introduced in the next paragraphs. We will overview the main
machine learning algorithms, among other techniques, followed by examples of
machine learning applications from different fields using different algorithms.

3.2 Data Mining

Data mining is a cross-disciplinary field that aims to discover novel and useful
patterns within large datasets using multiple approaches, including machine learn-
ing, statistics, and database systems. The data mining process is automatic or
semiautomatic (involves human interaction), and it must lead to patterns that are

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
C. El Morr et al., Machine Learning for Practical Decision Making, International
Series in Operations Research & Management Science 334,
https://doi.org/10.1007/978-3-031-16990-8_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-16990-8_3&domain=pdf
https://doi.org/10.1007/978-3-031-16990-8_3#DOI


meaningful to the data stakeholders and provide some advantages (e.g., health or
economic) [2].
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Fig. 3.1 CRISP-DM data mining life cycle (adapted from [3])

Data mining is a process with a life cycle that can be represented by the Cross-
Industry Standard Process for Data Mining (CRISP-DM) framework (Fig. 3.1)
[4, 5].

This life-cycle model consists of six phases. In the business understanding phase,
the scope and objectives of the project are defined from the business/stakeholders’
point of view, and then these objectives are transformed into a data mining problem
with a defined plan to follow. The data understanding phase is second and entails
data collection, exploratory data analysis, and evaluation of the data quality. The
business and data understanding phases can be iterative, as one may be needed to
understand the other. The data preparation phase involves cleaning the data and
preparing it for analysis in later stages, selecting the variables and cases for analysis,
and transforming data where needed. The modeling phase comprises a selection of
modeling techniques and generating and fine-tuning the models. Models may require
a return to the previous phase for further preparation. More details about modeling
will be covered later in this chapter. During the evaluation phase, the generated
models’ quality and effectiveness in achieving the set objectives are evaluated, and a
final decision on the adoption of a model is made. Finally, the model is deployed,
which usually involves generating reports.
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As we can notice, data mining automates the process of searching for patterns in a
large amount of data, and modeling is a core task in data mining. Modeling can be
achieved using machine learning methods.

3.3 Analytics and Machine Learning

In the first chapter of this book, we introduced the concepts of descriptive, predic-
tive, and prescriptive analytics. While descriptive analytics are reactive and focus on
understanding the past, predictive and prescriptive analytics are proactive and
oriented toward the future. Predictive and prescriptive analytics can be defined as
the art of constructing models based on historical data and then using them to make
predictions [6].

Instead of answering the “when,” “who,” and “how many” descriptive analytics
questions, predictive and prescriptive analytics investigate “what will happen” and
“what next.” The former deals with key performance indicators (KPI) or metrics,
dashboards, alerts, and OLAP (cubes, slice, dice, and drill), while the latter’s
analytics methods include statistical analysis, predictive modeling, and data mining.
Descriptive analytics deal mainly with structured data acted upon by humans, while
predictive/prescriptive analytics process structured and unstructured data that are
acted upon automatically (or semi-automatically) by computer algorithms [7]
(Fig. 3.2).

Machine learning is an automated process that detects patterns in data [6]; it aims
to learn how to improve at tasks with experience and uses many types of techniques,
such as neural networks and clustering algorithms [8].

The idea behind machine learning is that computers can “learn” to accomplish a
task by applying a certain algorithm (i.e., a series of steps) to a set of examples (i.e.,
the training dataset). The training dataset is a partition of around 60–80% of the
complete dataset. Once this training phase is performed and the model is built based
on a selected machine learning algorithm, the model is tested using the testing
dataset, consisting of the remaining 20–40% of the original data. In this phase, the
selected model is tested for its accuracy and can be fine-tuned. Measures of

 Descriptive Analytics 
 

Predictive 
& Prescriptive Analytics 

Direction Past (reactive) Future (proactive) 
Answer Questions of the 
Type 

What happened? 
When, how many, who? 

What will happen? 
What’s next? 

Algorithms/Methods Key performance indicators 
Metrics 
Alerts 
OLAP 
Dashboards 

Predictive modeling 
Data mining 
Statistics 
Machine learning 

Data Type Structured (mostly) Structured and unstructured 

Fig. 3.2 Comparison between descriptive and predictive/prescriptive analytics [7]



prediction accuracy are generated and used to assess the model (Fig. 3.3) [9]. In
some cases, like with artificial neural networks (ANNs), the model development
consists of three phases: the model building (or training) with 60% of the dataset, the
model validation phase with 20% of the data, and the model testing with the
remaining data. The validation phase is used to fine-tune the model, while the testing
phase provides an unbiased assessment of the model’s accuracy [10]. In a nutshell,
“learning” is about building a data model; the training set is the input to the machine
learning algorithm, and the model is the output. Subsequently, the model is used to
form predictions based on new datasets.
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Fig. 3.3 Building a prediction model (adapted from [9])

Prescriptive analytics models add to predictive analytics the ability not only to
predict but also to explain why an event happened through a set of rules that are easy
to interpret, which allows us to act based on the event using those rules. Some of the
predictive analytics algorithms, such as ANNs, do not allow us to understand why a
prediction was made; others will and thus allow us to create rules that are actionable
(immediately usable), such as decision trees, fuzzy rule-based systems, switching
neural networks (SNNs) and logic learning machines (LLMs), which are a well-
known efficient implementation of SSNs. Most of these algorithms will not be
covered in this book.

3.3.1 Terminology Used in Machine Learning

Machine learning aims to learn or estimate a model of the dataset we have and use
that model either to predict the class of new data in the future (e.g., classification) or
the value of an output (e.g., regression), or to detect patterns/groups in the data (e.g.,
clustering).
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Each instance of the dataset is represented by attributes or features; for example,
when an insurance company wants to estimate the risk of a driver having an accident
in order to calculate a car insurance premium, an instance of a driver might be
represented by (1) age, (2) gender, (3) years of driving experience, (4) number of car
accidents, (5) number of driving violations, and (6) the type and model of the driven
car. Each one of these data instances of a particular driver is called a feature vector;
in the aforementioned example, each feature vector in the dataset is composed of six
features (i.e., each feature vector has six dimensions); in other words, the dimen-
sionality of this dataset is six.

As mentioned earlier, the dataset we use for learning is called the training dataset;
learning is nothing but the process to generate a model based on the training data. It
is important to remember that there is a well-known output for each vector in the
training data. Suppose we are trying to predict the likelihood of a driver having an
accident knowing their aforementioned six features; our training data should include
each driver’s previous accident features (e.g., either yes or no, or several accidents).
Once the model is generated (i.e., the learning is performed), then we need to use
another dataset with known output to validate the model, i.e., to assess the model’s
performance and fine-tune its parameters. Such a dataset is called the validation
dataset. Once validation is performed, another dataset with known output is used to
estimate the model error; such a dataset is called the test dataset, and the uncovered
error is called the test error. A model generated for classification is called a classifier;
if it is for regression, it is called a fitted regression model. Generally speaking, a
model that makes predictions is called a predictor [11].

3.3.2 Machine Learning Algorithms: A Classification

The concept of machine learning is based on utilizing a wide range of algorithms to
make intelligent predictions based on existing historical datasets. Many datasets are
extremely large, consisting of millions of data that cannot be processed by the human
mind alone [12]. Machine learning research has been very active in recent years, and
it usually deals with large datasets and aims for the creation of statistical models
without the need for hypothesis testing. Classifying the techniques into the four key
categories (classification, regression, clustering, and dimensionality reduction) for
supervised and unsupervised learning is not simple, because some techniques are
used across these classes of machine learning styles; however, to organize our
understanding of the field, we will rely on Fig. 3.4 [7] as a guide, noting that it is
not an exhaustive list of techniques and that techniques will appear in more than one
category.

The following figure gives some examples of the possible applications of super-
vised, unsupervised, and reinforced learning [13, 14] (Fig. 3.5).



Some of the main techniques used for classification are:
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Fig. 3.4 Machine learning types and applications with examples of corresponding algorithms;
some algorithms can be used in many types of learning [7]

3.4 Supervised Learning

In supervised learning, the training dataset contains an input and an output/solution
for each data point or record. The algorithm then “learns” how to process these data
in a certain way such that it ends up with the provided solution as an output. As
explained earlier, the learning process is about building a model that ultimately can
predict a likely output in the absence of outputs/solutions (i.e., in the presence of
uncertainty). Indeed, once learning is performed, the supervised learning software
uses its learned model to provide a reasonable output/solution prediction for any new
dataset input. Supervised learning algorithms can use classification and regression
techniques [7].

A classification technique starts with a set of data and predicts if an output
belongs to a certain category/class; for example, for a voice input or a handwriting
image, it predicts the correct word; for a medical image, it predicts a certain
diagnosis; for a given driver with known age, gender, years of driving experience,
type and model of car, and other measures, it predicts the likelihood that they will
have a car accident [7].
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Fig. 3.5 Machine learning applications from a variety of fields (adapted from [13, 14])

1. Classification trees
2. Support vector machine
3. Random forests
4. Artificial neural networks
5. Discriminant analysis
6. Naïve Bayes
7. K-nearest neighbor
8. Logistic regression (despite its name, it is used in classification)
9. Support vector machine

10. Ensemble methods

Instead of classifying an output variable in categories, a regression technique
predicts a value for that variable (i.e., predicts a solution) of a continuous nature (i.e.,
a number), such as the price of a house given its features, location, and market



conditions, or predicting the amount of rain based on temperature, humidity, atmo-
spheric pressure, and other predictors.

Simply understood, a regression technique approximates a function f of a data
input x that produces an output y = f(x); x and y are known, and f is approximated.
Then, the function f is used to predict future values of y given measured values of x.

Some of the main techniques used in regression are:
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1. Linear regression
2. Generalized linear model
3. Decision trees
4. Bayesian networks
5. Fuzzy classification
6. Neural networks
7. Gaussian process regression
8. Relevance vector machine
9. Support vector regression

10. Ensemble methods

A problem such as predicting the number of days a patient will be in good health
after discharge from a hospital is a regression problem because we are trying to
predict a number. If we are instead interested in predicting if the patient is at high or
low risk of readmission to the hospital in the next 30 days, or if we are interested in
predicting whether or not the patient will be readmitted to the hospital in the next
30 days, then this is a classification problem because we are trying to predict the
class that the patient fits in (i.e., low risk vs. high risk, readmitted vs. not readmitted)
given some of her characteristics (e.g., age, comorbidities) [7].

As you can notice, some techniques are used in both classification and regression.
Below is a description of some supervised machine learning algorithms that will be
covered in this book.

3.4.1 Multivariate Regression

Multivariate regression is one of the most common techniques used to create a model
that links the dependent outcome variable to multiple independent variables (i.e., the
predictors). Multivariate linear regression is used when the outcome in question is a
continuous variable (i.e., a real number), such as blood pressure, cost, or weight,
while multiple logistic regression is used when the outcome is categorical, such as
blood type, or dichotomous (i.e., binary), such as readmission to the hospital (i.e.,
yes/no) or risk of readmission (i.e., high/low) [7].
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3.4.1.1 Multiple Linear Regression

In multiple linear regression, the outcome variable (prediction) is expressed in terms
of a linear function of the independent variables; for example, healthcare
cost = a×(age) + b×(gender) + c×(Carlson comorbidity score) + d.

Using past data, a multiple linear regression algorithm can compute the coeffi-
cients (a, b, c, d, etc.) for the independent variables, which leads to an expression of
their relationship to the dependent example; for instance, cost= 0.5×(age) + 3×(gen-
der) + 0.2×(Carlson comorbidity score) + 4 [15]. The mathematical expression
represents a model that ties the dependent variable (outcome) to the independent
variables; the linear logistic regression model can then be used to predict the
outcome (e.g., the cost) for any given values of the predictor variables. The score
computed by the model can then be a multiplier for the mean (average) outcome
variable in the population to predict the outcome for that particular instance/person.
In the previous example, for a person whose age is 50 and gender is female (coded as
1) and who has a Carlson comorbidity score of 6, the computed cost score is
0.5×50 + 3×1 + 0.2×6 + 4 = 25 + 3 + 3 + 4 = 35; we would multiply this score
(35) by the mean cost in the population for a certain period of time (e.g., a year) to
predict the healthcare cost for this person in the future. In the previous example, if
the average healthcare cost per year in the population of interest is $2000, then we
can predict that the cost for that individual would be 35×$2000 = $75,000 [16].

3.4.1.2 Multiple Logistic Regression

Logistic regression is used to express a categorical or dichotomous variable as a
function of a set of independent variables using one coefficient for each. A categor-
ical variable is a variable that can have only a specific number of values; examples of
such variables are blood type, gender, and province. Categorical variables with only
two possible values are called dichotomous variables.

The model is expressed in a mathematical formula, but unlike a linear regression,
the predicted value is a probability and hence has a value between 0 and 1 (Fig. 3.6).
The logistic regression model predicts the probability that an observation falls into
one of the categories of the dependent variable [15].

Multiple logistic regression is referred to as polynomial when it is used to predict
a categorical variable, and it is referred to as binomial when it is used to predict a
dichotomous variable. As in linear regression, a coefficient is created for each
predictor variable and used in the regression model to predict individual probabilities
of unknown observations’ outcomes [16].
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Fig. 3.6 Logistic regression function for data varying between -6 and + 6

3.4.2 Decision Trees

Decision trees have made it possible to find features and patterns in large databases
that can be used for discrimination and predictive modeling. In addition to their
intuitive interpretation, these characteristics have led decision trees to be widely used
for both exploratory data analysis and predictive modeling for more than two
decades [17].

Decision trees are simple representations of a finite number of classes. There are
three parts to a tree: nodes (the name of the object), edges (the possible values for the
object), and leaves (the different classes). Objects are classified by following a path
down the tree, picking the edges that correspond to its values [18]. Decision trees are
constructed by analyzing a set of training examples where the class labels are known.
These trees are then used to classify previously unknown examples. The accuracy of
their predictions depends on the quality of the training data [19].

In data mining, decision trees are commonly used for developing classification
systems based on multiple covariates or for developing predictive algorithms for a
target variable. By classifying a population into branch-like segments, an inverted
tree is constructed with a root node, internal nodes, and leaf nodes. This algorithm is
non-parametric and is capable of handling large datasets efficiently without impos-
ing a complex parametric structure. Data from a study can be separated into training
and validation datasets if the sample size is large enough. The training dataset is used
to build a decision tree model, and the validation dataset is used to determine the
appropriate tree size needed to achieve the ideal model [20].

Figure 3.7 depicts a very simple decision tree where the top node is called the root
node, the nodes at the tip of the tree are called leaf nodes, and the rest are called



interior nodes. The percentage in each leaf node represents the percentage of the data
points, in this case, the Titanic passengers, in each node [10].

There are two main decision trees used in data mining:
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Fig. 3.7 Simple decision
tree for Titanic survivability
(adapted from [10])

1. Classification trees, where the predicted outcome determines the class to which
the data belongs. Examples include safe or risky outcomes for loans [21].

2. Regression trees, where the predicted outcome can be considered as a real
number; for example, the population of a state [21].

There are several statistical algorithms for building decision trees, including
CART (classification and regression trees), C4.5, CHAID (chi-squared automatic
interaction detection), and QUEST (quick, unbiased, efficient, statistical tree). The
CART algorithm builds both classification trees and regression trees. CART con-
structs the classification tree through the binary splitting of the feature. Additionally,
CART is also used in regression analysis with the help of the regression tree. CART
has an average processing speed and supports both nominal and continuous feature
data [21].

C4.5 is an algorithm used to generate a decision tree that was developed by Ross
Quinlan. It essentially generates decision trees which can then be used for classifi-
cation, which is why C4.5 is frequently referred to as a statistical classifier. C4.5
performs a tree pruning process which leads to the formation of smaller trees and
simpler rules and produces a significantly more intuitive analysis [21].

CHAID is an algorithm analysis of a decision tree model. This method generates
a tree diagram that exhibits the relationship between split variables and their
accompanying related factors [22]. The CHAID algorithm primarily regulates the
results of individual defects and effectively classifies data to successfully determine
the importance values of the defects [23].

QUEST is an algorithm aimed at classifying tree structures proposed by Loh and
Shih in 1997. The rule in this algorithm is the notion that the target variable is
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continuous. The computation speed of the QUEST algorithm is higher than those of
other methods. To add on, this algorithm is also capable of avoiding the bias that
may exist in other methods. Overall, the QUEST algorithm is more suitable for
multiple category variables but can only process binary data [23] (Fig. 3.8).
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Fig. 3.8 Decision tree methods: applications for classification and prediction (adapted from [20])

3.4.3 Artificial Neural Networks

Artificial neural networks (ANNs) are computer technique that mimics or is inspired
by the functioning of the brain’s neurons. The ANN software can be trained to
“learn” how to recognize patterns and classify data [11].

A neuron is a software element that uses an activation function ( f ), a set of
adaptive weights (w0 . . . wn), and data input (x0 . . . xn) to generate an

output y= f
Pn

i= 1
wi × xið Þ

� �
= f w0 × x0 þ w1 × x1 þ w1 × x1 . . .ð . The input vector

(x0, x1, x2. . .) can be sent from another neuron or from other data sources (e.g.,
observations). The weights are the parameters of the data model (Fig. 3.9).

The artificial neural network is composed of one input layer of neurons, one or
more hidden layers, and one output layer [15] (Fig. 3.10).

The aim of the neural network learning process, which can be either supervised or
unsupervised, is to adjust the model’s weights to arrive at the correct output, i.e.,
choose the correct class, arrive at the correct value, or recognize the correct patterns.
In a supervised learning environment, the adjustment of the weights is performed by
comparing the ANN output to a known output class for the input used; if the output is



not correct, then the weights are adjusted iteratively until a correct classification is
found [7] (Fig. 3.11).
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Fig. 3.9 A neuron [7]

Fig. 3.10 An artificial neural network with an input layer with five nodes each for one variable of
the input data, one hidden layer, and one node in the output layer representing two classes: High
Risk of Hospital Readmission and Low Risk of Hospital Readmission (adapted from [24])

Fig. 3.11 Overall functioning of artificial neural network supervised learning [7]

There are many types of ANNs; one of the most commonly used ones is the
multilayer perceptron (MLP).
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3.4.3.1 Perceptron

A perceptron is a simple ANN that has one input layer and one output layer
(Fig. 3.12).

The perceptron model can be written as a formula y = f (WX), where f is the
activation function and W and X are two vectors. Indeed, the data input of
m variables x0, x1, . . . xm can be expressed as a feature vector X:

X=

x0

xn
⋮

x m

Similarly, the connections (i.e., weights of the model) can be expressed as a
weight vector W:

W =w0, w1, . . . wm

Mathematically, the multiplication of two vectorsW and X is written asWX and is
equal to w0 × x0 þw1 × x1 . . . þwn × xm , and the perceptron output can be written
as a mathematical equation y= f w0 × x0þw1 × x1 . . .þwn × xmð , where x0 is a
constant that represents the bias of the model and can be initialized to 1.

The perceptron algorithm can be iterative, where the weights are adjusted.
Suppose that we have N examples from the training dataset, which we can denote
as X1, X2, . . . XN. For each Xj ( j = 0 to N ), the desired output (class) dj is already
known (remember that, during the learning process, we use observations with known
classes). For each Xj of known output dj, we can compute the output at iteration or
time t: yj tð Þ= f w0 tð Þ× xj,0 þw1 tð Þ× xj,1 . . . þwn tð Þ× xj,mð . When the process
starts, the weights can be initialized to zero.

Fig. 3.12 An example of a perceptron [7]



3.4 Supervised Learning 75

If we are “satisfied” with the classification result (i.e., the output), then the
algorithm stops. “Satisfaction” is reached when the perceptron output yj(t), at a
certain iteration t, is “very close” to the known output dj; to put it differently, the
learning stops when the error (i.e., the difference between yj(t) and dj) at a certain
iteration t is less than a certain set threshold γ. After each iteration at time t, if we do
not have a satisfactory solution (i.e., if the error > γ), then the weights are automat-
ically updated using a certain “update rule” that we will not detail here, and the
algorithm performs another iteration [7].

A well-established field of applications for neural networks is in medical imaging,
where they are used to detect patterns of interest (e.g., cancer cells) and in image
recognition (e.g., facial recognition).

A multilayer perceptron (MLP) has one or more hidden layers, similar to the
ANN in Fig. 3.10; it functions like a simple perceptron (i.e., error calculation and
weight adjustment). There are many activation functions ( f ) that can be used, as well
as many update rules.

3.4.4 Naïve Bayes Classifier

Naïve Bayes is a classifier based on the Bayes conditional probability, which is an
easy technique that assumes that the predictors (i.e., the attributes/features of the
input variables) are statistically independent [15].

According to Bayes’ theorem, with two events y and x, the posterior probability of
y happening given that the event x has occurred is expressed as the product of the
probability of the event x happening given y has occurred, multiplied by the
probability of y and divided by the probability of x:

P yjxð Þ= P xjyð Þ ×P yð Þ
P xð Þ

(the “|” sign can be read as “given”) [11].
For example, consider that the prevalence of a disease (event D) in a population is

5%; then, there is a 5% chance that any given individual from that population has the
diseaseD. Suppose that a person conducted a blood test and that the test was positive
(event P); Bayes’ theorem allows us to calculate the probability that that person has
the disease given that her test was positive: P(D|P). Bayes’ theorem suggests that the
solution is equal to the probability of the person having a positive test given that she
has the disease (i.e., a measure of what is called the test sensitivity) multiplied by the
probability of that person having the disease as a member of the population (i.e.,
equal to the prevalence of the disease: 5%) and divided by the probability that a
tested person shows a positive test in the population.



jð Þ jð Þ

P DjPð Þ= P PjDð Þ×P Dð Þ
P Pð Þ

Suppose we want to classify a patient using five of her features (age, blood
pressure, weight, height) into one of three classes: diabetic, pre-diabetic, not dia-
betic. In the following, x represents one patient, C represents one of the three classes,
and N represents the five patients’ features.

To classify an input data x into a class C, we need a probabilistic model to
estimate the posterior probability P(C|x); that is, given that we have the input x, we
need to estimate, for each known class C, the probability that x belongs to C; then,
we need to choose the class with the highest posterior probability, i.e., the maximum
a posteriori probability (MAP). We know from Bayes’ theorem that:

P Cjxð Þ= P xjCð Þ×P Cð Þ
P xð Þ

How to compute these three items P(x|C), P(C), and P(x):
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1. P(C) is the probability of an output class C and can be estimated by counting the
proportion of the occurrence of that class in the training dataset that we have.

2. We aim to compare different output classes for the same input x, so P(x) is the
same for all of the classes and hence can be ignored.

3. We still need to have an estimation for P(x|C). To compute it, we will assume that
the N features of each observation x (x0, x1, x2, . . . xn) are independent of each
other (which is not necessarily true/accurate), and then the laws of probabilities
allow us to compute P(x|C) as the product of all P(xi): P x C =Πn

i= 1P xi C .

Hence, using the training dataset, the naïve Bayes classifier estimates the P(C) for
all possible classes (estimated as the proportion of that class in the training dataset),
as well as the P(featurei|C) for all features in every class (estimated by the proportion
of feature i in the class y).

Using the test dataset, a test input x will be predicted as part of class Cj if the
probability of that class Cj, P(Cj| x), is the highest among all classes’ probabilities:
P(Cj| x) j=1 to M, where M is the number of classes. Each P(Cj| x) is computed as
P Cjjx
� �

= P Cð Þ×Πn
i= 1P xijCj

� �
(ignoring the denominator P(x) because it is the

same for all classes for a particular observation x) [7].

3.4.5 Random Forest

Random forests (RFs) are supervised machine learning algorithms used for regres-
sion and classification [25]. The concept of random forests gained traction after
Breiman described them in 2001. In particular, he was influenced by Amit and
German’s “randomized trees” method as well as Ho’s “random decision forests.”
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Fig. 3.13 Example of a random forest (adapted from [27])

Due to their high predictive accuracy, random forests have since proved useful in
many different fields [26]. For example, through their use, we have been able to
predict drug response in cancer cell lines, identify DNA-binding proteins, and
localize cancer to specific tissues using liquid biopsies. Moreover, RFs have also
proven to be capable of recognizing speech as well as handwritten digits with
significantly high accuracy [26].

Random forests consist of trees, just as in real life. More specifically, random
forests consist of decision trees. In 1963, Morgan and Sonquist developed the
decision tree methodology, an intuitive approach that simplifies the analysis of
multiple features during prediction tasks. A decision tree is used on an input dataset
made up of samples, and each sample is described by features. These samples
represent entities that we want to assign to one of several classes. Using a forking
path of decision points, the decision tree classifies the samples. The branch to be
taken at each decision point is determined by rules. The sample’s features are
analyzed at each decision point as we move down the tree. Finally, the end of the
branch is reached where the leaf has a class label, and we assign the sample to that
class at the end of our journey through the tree. Random forest classifiers have a high
projection performance as well as the ability to reveal feature importance, showing
us their importance for class prediction [26].

A random forest is a classifier containing a collection of tree-structured classifiers:
{h(x, k), k = 1,. . .} where the {k} are independent and identically dispersed random
vectors [25]. A classifier can tell which parts are most important and how they relate
or communicate with each other even when there is a lack of previous knowledge
available [26].

As shown in Fig. 3.13, decision trees vote for class outcomes in an example
random forest. There are five features (x1, x2, x3, x4, and x5) describing each sample
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in this input dataset (A). In B, decision trees consist of branches that fork at decision
points. Depending on a feature’s value, a sample is assigned to one of the decision
points. The branches terminate in leaves that belong to either the red or green class.
This decision tree then classifies sample 1 into the red class [26]. C is another
decision tree that has different rules at each decision point and also classifies sample
1 into the red class. D is a random forest that combines the votes from its funda-
mental decision trees to make the final class prediction. Finally, E is the final output
prediction [26].

Despite their ease of interpretation, decision trees frequently perform poorly
independently. Their performance and accuracy can be improved by using a com-
pilation of decision trees and combining the votes from each. A random forest is a
compilation where we can select the best feature for splitting at each node from a
random subset of the already available features. This random selection then causes
the individual decision trees of a random forest to highlight different features. This
then results in diverse trees that can capture more complicated feature patterns than a
single decision tree could as well as being able to reduce the chances of overfitting to
the available training data. This is essentially how random forests improve predictive
accuracy as compared to independent decision trees. Specifically, as the number of
trees increases, the error rate has been mathematically proven to always
convene [26].

Key advantages of random forests as compared to AdaBoost, which is described
later in this chapter, are sturdiness to noise and overfitting. Some other advantages of
RFs as compared to AdaBoost include identical or better accuracy than AdaBoost,
being faster, providing useful internal estimations, and simplicity [28]. When a
model is constructed in a way that fits data more than is necessary, overfitting
occurs. The models that have been overfitting will usually have poor predictive
performance due to not generalizing well. Generalization is essentially how well the
model would make predictions for cases not present in the training set. Having said
that, overfitting adds complications to a model without adding any improvement and
could potentially lead to poor performance. Classifiers that experience overfitting are
more likely to have higher error rates for out-of-bag errors and low error rates for
in-bag instances [28].

3.4.6 Support Vector Machines (SVM)

The support vector machine (SVM) is a machine learning method based on statistical
learning theory and is categorized as one of the computational approaches developed
by Vapnik [29]. It is essentially a supervised machine learning algorithm with the
main goal of prediction. It is an abstract learning technique that learns from a set of
training data and attempts to make correct predictions based on existing data
[30]. According to the principle of structural risk minimization (SRM), SVM can
obtain decision-making rules and achieve small errors for independent test sets,
making it an efficient tool for solving learning problems. Compared to other



computational methods, SVM is generally more accurate for long-term
predictions [29].

There are three main advantages of SVM theory and application [31]:
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Fig. 3.14 Representation of a hyperplane in two dimensions (adapted from [32])

1. It only has two parameters to choose from: the upper bound and kernel parameter.
2. It is unique, optimal, and global in order to solve a linearly controlled quadratic

problem.
3. It has good generalization performance because of the implementation of the

SRM principle.

SVM aims to create a decision boundary between two classes, enabling the
prediction of labels from one or more feature vectors. The decision boundary, also
known as the hyperplane, is positioned in a way that makes it as far as possible from
the closest data points to each of the classes. These closest data points are known as
support vectors [31]. Decision planes, which indicate decision boundaries, are the
basis of SVM. By using a linear model to implement nonlinear class boundaries,
SVM generates a hyperplane at a high level with nonlinear mapping inputs [29]
(Fig. 3.14).

A hyperplane in p dimensions refers to a p-1–dimensional “flat” subspace that
resides inside the larger p-dimensional space. The hyperplane is only a line in two
dimensions. The hyperplane is a regular 2D plane in three dimensions [33]. This is
the mathematical equivalent of the equations defining a hyperplane:

Equation of a hyperplane in two dimensions: β0 + β1X1 + β2X2 = 0.
Equation of a hyperplane in p dimensions: β0 + β1X1 + . . . + βpXp = 0
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With X as a feature vector defined by X=[X1, . . . ., Xp]T, we can make a
classification by considering one class defined by β0 + β1X1 + . . . + βpXp > 0
with the other defined by β0 + β1X1 + . . . + βpX < 0.

In practice, data is unlikely to be linearly separable, which is why we need to
convert the data into a higher-dimensional space to fit a support vector classifier [33].

SVMs are more difficult to interpret in higher dimensions, since it is significantly
harder to visualize how the data can be linearly separated, as well as the decision
boundary [33]. The kernel method is an alternative use for SVM which allows us to
model higher-dimensional, nonlinear models. The kernel trick is commonly used in
order to avoid complex calculations that can also become significantly expensive.
The kernel method is useful for adding dimensions to nonlinear problems, thus
turning them into linear problems in the resulting higher-dimensional space [31].

The kernel trick provides the solution of modeling higher dimensions. The kernel
trick involves only pairwise comparisons of the original data observations x rather
than explicitly applying the transformations and representing the data in the higher-
dimensional feature space. In kernel methods, dataset X is signified by an n ×
n kernel matrix of pairwise comparisons where the entries (i, j) are defined by the
kernel function: k(xi, xj). There is a special mathematical property associated with
this kernel function. In essence, the kernel function acts as a modified dot product.
The ultimate benefit of the kernel trick is that we are optimizing only the dot product
of the transformed feature vectors in order to fit the higher-dimensional decision
boundary. We can therefore use kernel functions to replace these dot product terms,
resulting in a higher-dimensional space [33].

3.5 Unsupervised Learning

In unsupervised learning, there is no output or dependent variable for the data input.
The algorithm tries to detect hidden patterns or structures and data groupings within
the dataset without human intervention. Once learning is performed, the algorithm
will then be able to predict the possible output or solution from a new dataset in the
future. Two main techniques are used in unsupervised learning: clustering and
dimension reduction.

Clustering aims to find hidden patterns and groupings within the data (i.e., input);
it takes a dataset as an input and partitions it into clusters. Clustering is helpful in
problems such as object recognition, gene sequencing, and market research. Clus-
tering can, for example, identify groups of customers based on their potential
profitability.

Some of the main algorithms used in regression are:

1. K-means clustering
2. Hierarchical clustering
3. Genetic algorithms
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4. Artificial neural networks
5. Hidden Markov models

Dimension reduction is mainly interested in reducing the number of variables/
features/attributes (number of dimensions) needed to represent the data input, thus
projecting the dataset to fewer dimensions. The reduction of the data’s dimensions
(i.e., the number of variables) to the minimum necessary will allow a simpler
representation of the data and faster processing time [7].

Some of the main algorithms used in regression are:

1. Principal component analysis
2. Linear discriminant analysis
3. Multidimensional statistics
4. Random projection

Presented with 100,000 health records for patients with congestive heart failure
(CHF) with some readmission history, an algorithm that tries to group patients based
on some common characteristics is a clustering algorithm that belongs to the
unsupervised learning category. Alternately, if we have 50 characteristics/variables
(e.g., age, weight, height, education level, and income level) for each CHF patient, it
will be very complex to analyze these characteristics to detect which ones are most
related to their readmission history, and we can instead use an algorithm, such as
principal component analysis (PCA), to detect which (fewer) characteristics most
explain the patients’ readmission history. Once we have reduced the number of
dimensions to a few, seven, for example, we can then proceed with further analysis
of the problem [7].

Below is a description of some unsupervised machine learning algorithms that
will be covered in this book.

3.5.1 K-Means

K-means is a common algorithm used for cluster analysis, which is an essential data
mining method to classify items, concepts, or events into common groupings called
clusters. K represents the predefined number of clusters to be generated by the
algorithm. K-means is an exploratory data analysis tool for solving classification
problems by sorting cases into k clusters or groups so that the degree of association
in a cluster is strong among its members and weak with members of other clusters
[34]. K-means is a common method in many disciplines including business with
applications like market segmentation (classification) of customers and fraud detec-
tion [34]. In medicine, k-means has been used, for example, for the classification of
healthcare claims of end-stage renal disease patients [35] and for examining the
heterogeneity of a complex geriatric population [36]. K-means, where k represents a
predetermined number of clusters and where each input belongs to the cluster with
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the nearest mean, is one of the most referenced clustering algorithms and is one of
the best-known predictive analysis algorithms [34, 37].

K-means starts by selecting the optimal number of clusters k. There are multiple
methods for selecting a value of k. The simplest is to compute k= (n/2)1/2, where n is
the number of data points (i.e., observations). Another method for selecting k is to try
multiple different values, starting with 1 (where all the observations fall in the same
cluster), and keep increasing the value of k until it reaches n (where each observation
is in its own cluster). Obviously, the values of k = 1 or n are not useful and are not
selected. At each iteration, a measure of fitness, like the average within-cluster sum
of squares, is calculated. When the relative increase in fit becomes low, the
corresponding value of k is adopted.

The statistical software used to apply k-means generates k random points as
cluster centers, and each data point or record is assigned to the nearest cluster center.
The mean of the data assigned for each cluster is computed and considered the new
cluster center, and then the last two steps (assignment of points to the centers and
computation of new centers) are repeated until convergence is achieved or the
optimal centers are identified [34]. The centers are chosen to minimize the sum of
the squares of the distances between a data point and the center point of its cluster
and minimize the total intra-cluster variance [10]. K-means is simple and logical and
thus is widely accepted for cluster analysis [37].

3.5.2 K-Nearest Neighbors (KNN)

K-nearest neighbors is a pattern recognition classifier [15]. The algorithm does not
rely on a training process. Instead, it relies on a lazy learning approach for which the
main principle is that similar inputs will produce the same output, i.e., will belong to
the same class. Given an integer k, a set of already labeled examples with known
classes, and a metric to measure “closeness” [15], for each input/observation in the
training data test (i.e., a test instance), the KNN algorithm detects the k input data in
the training dataset that is closest to it and that belong to known classes, and it
classifies the observation in the majority class to which the largest number of k
instances belong [11].

Figure 3.15 shows an example of a 3-NN algorithm that identified three instances
closest (in terms of “distance”) to the unknown instance “?”; the 3-NN would decide
that the unknown instance should belong to the class “+,” since it is the majority
class in its three nearest neighbors (two instances belong to the class “+” vs. one
instance that belongs to the class “-”) [7].

KNN is also used in regression analysis to predict a value for an instance; in that
case, the test instance is assigned the average values of the k instances, which is
particularly useful in, for example, medical image processing, where the pixel in an
image is given as a color value the average color values of its neighbors [7]
(Fig. 3.16).
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Fig. 3.15 NN algorithm
making a choice to classify
an unknown data instance
“?” [7]

Fig. 3.16 Example of k-means convergence (by Chire CC BY-SA 4.0 (https://creativecommons.
org/licenses/by-sa/4.0), from Wikimedia Commons)

3.5.3 AdaBoost

AdaBoost is one of the most promising machine learning algorithms due to its fast
convergence and ease of implementation. It is easy to combine with other methods,
such as support vector machines, to find weak hypotheses and does not require prior
knowledge about weak learners. One of the main ideas of the AdaBoost algorithm is

https://creativecommons.org/licenses/by-sa/4.0
https://creativecommons.org/licenses/by-sa/4.0
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to maintain a distribution or set of weights over the training set. In the trading set, all
weights are initially initialized equally, but as each round progresses, the weights of
incorrectly classified examples are increased, forcing the weak learner to focus on
the harder examples [38].

In 1995, Yoav Freund and Robert Schapire proposed the AdaBoost algorithm to
generate a strong classifier from a set of weak ones. With the example of horse-
racing gamblers, Freund and Schapire explained optimization and the solution space
search. Before making his decision on which horse to bet on, the gambler would
naturally seek the advice of some highly successful expert gamblers. Based on their
own experiences, they would provide him with some insightful suggestions. These
patterns were classifiable as a large pool of classifiers, despite their obvious rough-
ness and inaccuracy. The question was to determine whether individuals’ experi-
ences could be used to make a better classifier for gamblers’ betting. Thereafter, this
issue attracted the attention of many researchers seeking valuable strategies to handle
it. Kearns and Valiant were the first to ask whether a weak learning algorithm that
performs only slightly better than random guessing in the PAC model could be
“boosted” into a more accurate strong learning algorithm [38].

By maintaining a collection of weights over training data, the AdaBoost algo-
rithm creates a set of poor learners and adaptively adjusts them after each weak
learning cycle. As a result, the weights of the training samples that are misclassified
by weak learners will be increased, while those that are correctly classified will be
decreased [38].

Due to its robustness and efficiency, AdaBoost is widely used in data classifica-
tion and object detection. By reweighting samples, AdaBoost combines weak
classifiers to construct an optimal global classification model. Combining these
two techniques improves classification performance significantly [39].

As AdaBoost becomes more popular, other variants have been suggested in order
to improve its performance. Even so, there is not enough mathematical analysis of
the generalization abilities for AdaBoost’s variants. Real AdaBoost calculates weak
hypotheses by optimizing upper bounds of training errors and convenes faster than
AdaBoost in training. In 2000, Friedman et al. [40] utilized additive calculated
models to explain AdaBoost and proposed Gentle AdaBoost, which processes
weak hypotheses by limiting the errors. Friedman et al. likewise demonstrated that
Gentle AdaBoost is more powerful than AdaBoost and Real AdaBoost. To decrease
the generalization error of Gentle AdaBoost, A. Vezhnevets and V. Vezhnevets [41]
recommended Modest AdaBoost, which features weak classifiers that function well
on hard-to-classify occurrences. Modest AdaBoost no doubt achieves better gener-
alization errors, but its performance is unstable due to its occasional accuracy
dropping [39].



Companies in upstream stages of supply chains suffer from variance amplifica-
tion, whereby there is an increase in inconsistent data as a result of demand
information distortion in a multistage supply chain, which is detrimental to their
performance. Recent research suggests that deploying advanced demand forecasting,
such as machine learning, can mitigate the impact and improve performance.
Demand forecasting refers to the process of estimating future demand over a period
of time using past data. The goal of this study is to develop hybrid demand
forecasting methods based on machine learning, including ARIMAX and neural
networks. This research also highlights the value and importance of the ML fore-
casting approach to improve the supply chain efficiency performance of a supply
chain. It is especially crucial since the conventional approach to forecasting demand
has limited ability to take into account a variety of factors such as trends, seasonality,
cyclicality, etc. ML-based forecasting methods, however, can combine learning
algorithms with large datasets so that the sheer number of causal factors with
nonlinear relationships can be analyzed and accounted for simultaneously. Modeling
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3.6 Applications of Machine Learning

In this section, four case studies of machine learning applications are explored. The
first case involves the use of ML and neural networks for demand forecasting in
supply chains [42]. In the second case, the potential presence of cervical pain in
patients affected by whiplash is predicted for insurance-related investigations using
several predictive models, including logistic regression, support vector machines,
k-nearest neighbors, gradient boosting, decision trees, random forest, and neural
network algorithms [43]. In the third case study, six ML predictive modeling
techniques, including logistic regression (LR), linear discriminant analysis (LDA),
random forests (RF), support vector machines (SVM), neural networks (NN), and
random forests of conditional inference trees (CRF), were employed to predict bank
insolvencies in a sample of US-based financial institutions [44]. In the final case
study, a framework for skill assessment in robot-assisted surgical training based on
deep learning and convolutional neural network is proposed and tested [45].

3.6.1 Machine Learning Demand Forecasting and Supply
Chain Performance [42]

This case study focuses on using AI and machine learning in the field of commerce
with an emphasis on demand forecasting, supply chain performance, and efficiency.
A hybrid method was developed by combining time-series data with leading indi-
cators based on machine-learning algorithms. Time-series data is basically data that
is sequenced in time order, while leading indicators are measurable variables of
interest that can predict data movement. The predictor variables in this case study are
the machine learning forecasting approaches, while the supply chain is the outcome
variable [42].



and managing supply chain operations in an uncertain environment can be simplified
and facilitated by ML approaches, especially since they can handle much more
complex tasks. Machine learning approaches can learn from data, make decisions
based on the environment’s parameters, and then continue to learn from these
decisions making ML a useful tool [42].
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Hypothesis: “Compared with traditional time series–based forecasting
approaches, ML-based forecasting approaches could lead to significant improve-
ment in the efficiency of the supply chain.” [42]

Datasets from a multinational steelmaker’s sales and supply chain performance
were obtained for this study. The monthly sales volume panel data was obtained for
the time frame of 2012–2017 and quarterly-basis data for inventory accounts
receivable, accounts payable, the cost of goods sold, and revenue from Compustat
Capital IQ. Compustat Capital IQ is a database containing financial and statistical
information on North American companies. Various economic indicators are com-
piled in this database on a regional or country-by-country basis, including consumer
prices, high-tech market indicators, industrial production, and goods and services
trade. A total of 30 macroeconomic indicators were obtained between 2012 and
2017 [42].

To develop the ML-based forecasting model, two established ML models
were used: autoregressive integrated moving average with exogenous variables
(ARIMAX) and two-layer feedforward neural networks (NN) with backpropagation
learning. The neural networks (NN) handle the nonlinear correlations between input
variables. Autoregressive integrated moving average (ARIMA) models are ML
algorithms that predict future values based on past values to perform time screening
forecasting. Similarly, ARIMAX is the generic ARIMA model with the inclusion of
exogenous variables, such as macroeconomic factors. Overall, ARIMA models have
performed inferiorly in demand forecasting against exponential smoothing methods
based on the premise that future demand is a function of the past. On the other hand,
ARIMAX is based not only on past demand time series but also on leading indicators
time series, making it a good fit for the ML-based forecasting model [42].

The main decision and duty of the system were essentially to predict the demand
and then produce the steel based on the demand projection. Evidently, the ML-based
models resulted in, on average, a 5% improvement in forecast accuracy. Given that
steel manufacturing is a capital-intensive industry, a 5% improvement can have a
substantial impact on supply chain efficiency. The research results reconfirmed the
role of macroeconomic factors in predicting demand at the aggregate level, and the
newly developed MLmodel was successful in capturing and integrating the complex
and nonlinear relationship among many variables [42].

The results indicated that the higher level of demand forecast accuracy improved
both operational and financial performance outcomes. The results also showed that
the ARIMAX technique was better at predicting the peaks in demand, while neural
networks generated a prediction with better accuracy. Additionally, the hybrid
approach is beneficial, in which several ML techniques can be blended to create a
more effective and efficient forecasting technique, largely because the blended
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forecast method handles the model, parameter, and data uncertainties more
effectively [42].

A notable limitation of this study was the use of a single dataset to evaluate the
forecasting methods rather than multiple. Even so, the main intention of this research
was to contribute to the forecasting process rather than offering an ideal forecasting
method [42].

3.6.2 A Case Study on Cervical Pain Assessment with Motion
Capture [43]

This case study’s research takes place in a healthcare setting. There is an increasing
need to manage and analyze massive health data in an effective and efficient way.
The technique to apply machine learning (ML) and data mining (DM) techniques in
the field of healthcare will help technologists, researchers, and clinicians to create
systems that provide support to represent the diagnosis, improve test treatment
efficacy, as well as save resources. Having said that, DM and ML are effective
tools for managing and storing health data. The sheer volume of data generated in the
healthcare field is such that its processing and analysis through traditional methods is
extremely complex, inefficient, time-consuming, and overwhelming. In such cir-
cumstances, data mining (DM) can play a useful role, since it can allow the
discovery of patterns and trends in vast amounts of complex data. Even so, due to
the complicated characteristics of the field of healthcare, an appropriate DM and ML
approach adapted to these characteristics is essential. The goal of this case study of
cervical assessment is to predict the potential presence of cervical pain in patients
that are affected by whiplash. The presence of cervical pain is the outcome variable,
while the ML process is the predictor variable [43].

Musculoskeletal disorders of the cervical spine have a high incidence and prev-
alence rate and are deemed a public health challenge. Similarly, cervical injuries are
difficult to diagnose because high-trauma cervical spine injuries and their related
symptoms are extremely diverse, which makes it hard to detect the presence of
cervical pain. Predicting cervical pain presence is important not only in the
healthcare field but especially in the forensic field, as the incidence and prognosis
of injury from motor vehicles are relevant to insurance proceedings for pain and
mental suffering. Such a tool would be able to detect the presence or absence of pain
with enough accuracy in order to aid clinicians and healthcare professionals to detect
further injury complications in the affected individuals helping to identify the pain
and resulting in unbiased compensation for the patient. Furthermore, it can help
predict pain in patients that have a high degree of anxiety and patients with
hypochondriasis [43].

In this case study, the prediction model intended to predict the presence of
cervical pain in patients who suffered from whiplash or cervical cancer. A real
dataset was collected by assessing the movement of the cervical spine in 151 patients,
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of whom 60 were asymptomatic, 42 had cervical pain resulting from a traffic
accident, and 49 had neck discomfort because of other causes. The medical test in
the study was performed twice on each patient, giving a total of 302 samples.
Additionally, all the participants were assessed with a clinical examination to verify
that they met the inclusion criteria, which were that they had to be between 18 and
65 years old, not be involved in any judicial process, and have had no surgery and/or
cervical fracture [43].

Using 302 samples, several supervised machine learning predictive models were
generated, including logistic regression, k-nearest neighbors, support vector
machines, decision trees, random forest, gradient boosting, and neural network
algorithms. Since the aim of the study was to classify the presence or absence of
cervical pain unsupervised learning algorithms were dismissed. Logistic regression
basically uses logistic functions to model a binary dependent variable. Support
vector machines are supervised learning models that analyzes information to clas-
sify, detect outliers, or for regression. K-nearest neighbors, gradient boosting and
random forest algorithms are all supervised learning models used for classification
and regression tasks. Decision trees can create prediction training models that use
historical data for decisions. Neural network algorithms work similarly to neural
networks within the human brain as computing systems for predictions [43].

Applying ML in the field of healthcare has been demonstrated through this case
study of cervical pain assessment, where the prediction of the presence of cervical
pain was made with accuracy, precision, and recall above 85% with methods based
on ML algorithms, including SVM, random forest, MLP neural networks, and GBA.
Four of the original seven models, including SVM, random forest, MLP neural
network, and GBA, were able to obtain an accuracy and precision rate of more than
85% and a recall of more than 90%, meaning that the percentage of false negatives
was less than 10%. The results showed that it is possible to consistently predict the
presence of cervical pain with accuracy, precision, and recall above 90%. The
process, which was applied to data taken from a cervical assessment study, is also
appropriate for any healthcare field regardless of the origin of the data being used. It
can be useful in many other medical areas such as cardiac failure, fertility tests, and
other predictions in healthcare [43].

Despite the usefulness and importance of ML in the field of healthcare, limita-
tions were detected in the field. A major limitation was how to achieve an appropri-
ate stream of data from health organizations and hospitals, as well as the accessibility
regarding privacy policies, security, authorizations, and integration of the data.
Without a flow of data from health organizations, clinics, and hospitals, a lot of
data is not utilized. Nevertheless, a global information collaboration between hos-
pitals could solve this issue regarding the accessibility of information and data [43].
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3.6.3 Predicting Bank Insolvencies Using Machine Learning
Techniques [44]

Bank failures and insolvency have led to the monitoring and evaluation of the
economic health of financial institutions by administrative authorities. In this case
study, a series of machine learning (ML) modeling techniques and algorithms are
used to predict bank insolvencies using a sample of US-based financial institutions.
Insolvency refers to debtors being unable to pay back their debts, and similarly, bank
insolvencies refer to when banks are unable to reimburse their customers or depos-
itors. The setting for this case study concerns the field of finance, particularly, banks.
Current research has produced inconclusive results with regard to whether certain
capital assessment indicators are more likely to predict bank failures than others,
which is why it is important to pursue this study. The predictor variable in this case
study is the possibility or chance of bank insolvency, while the outcome variables are
the ML modeling techniques [44].

A series of performance statistics are used in this case to assess the power of six
ML predictive modeling techniques in predicting bank insolvencies, including
logistic regression (LR), linear discriminant analysis (LDA), random forests (RF),
support vector machines (SVM), neural networks (NN), and random forests of
conditional inference trees (CRF). LR refers to a method that is used for creating
corporate rating systems. LDA is basically a method of finding a linear combination
of structures that characterizes and separates two or more classes of objects or
events. RF is essentially a popular method of classifying problems. SVMs are a
family of nonlinear, large-margin binary classifiers that estimate a hyperplane that
achieves maximum separability between the data of the modeled cases. Neural
networks are a widely known machine learning technique that is commonly used
in credit rating classification problems. Random forests that include conditional
Inference trees encompass the distributional properties of the measures when
distinguishing between a significant and an insignificant improvement in the infor-
mation measure [44].

A dataset covering the period 2008–2014, a 7-year period with quarterly data,
was collected from the Federal Deposit Insurance Corporation (FDIC), which
resulted in a dataset with more than 175,000 records. The FDIC is an independent
US government agency created to maintain the stability of the financial system [44].

The model evaluation measures used in this analysis are customized to assess
model performance on imbalanced samples. Model performance was assessed based
on in-sample, out-of-sample, and out-of-time scenarios. A complete approach was
taken to assess the survival likelihood of banks by identifying the most significant
indicators that predict survival rates, and by selecting the appropriate machine
learning technique that aggregates all critical data. While developing the model
specifications, an extended set of variables that follow the classification groups of
CAMELS (capital, asset quality, management, earnings, liquidity, and sensitivity to
market risk) were examined. Particularly, capital adequacy, asset quality,



With the invention of robot-assisted surgery, the role of data-driven methods to
incorporate statistics and machine learning is growing rapidly. However, much of
the existing work requires translating robot motion kinematics into intermediate
features or gesture segments, which are expensive to extract, lack efficiency, and
require significant domain-specific knowledge. In this case, surgical skill assessment
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management capability, earnings, liquidity, and market risk are the independent
variables that were tested [44].

In addition to selecting the appropriate modeling technique, another important
factor in predicting bank insolvencies is the number of explanatory variables to be
considered. The financial condition of individual banks appears to be a crucial driver
in distinguishing their performance during the recent financial crisis, despite the use
of macroeconomic determinants to develop early warning systems for bank failures.
Furthermore, supervisory authorities seek to identify bank-specific issues that may
contribute to insolvency so that they can follow targeted corrective actions in each
case. This study follows the same philosophy by utilizing an extended dataset of
quantitative variables customized for financial institutions to differentiate and pre-
dict failing ones from non-failing ones [44].

The results indicated that RF has superior predictive performance in out-of-
sample and out-of-time samples, while neural networks perform almost equally
well in out-of-time samples. Based on all performance metrics, neural networks
and random forests outperformed Logit and LDA. Analyzing the results across all
samples, it is evident that the proposed RF rating system exhibits greater discrimi-
natory power than all the benchmark models when the data skewness is considered.
In addition, the performance obtained across all test samples is more stable, resulting
in reduced performance variability [44].

The approach taken in this case has some limitations in that it uses a random
forest model based only on data from US banks and exploits its capacity on
European banks. To build a global rating system for banks, an enriched dataset
composed of multiple jurisdictions can be analyzed in the future for better results. In
the in-sample dataset, there is also a possibility that overfitting may have caused the
overperformance of neural networks. Based on the out-of-sample and out-of-time
data, the core conclusions of this analysis were based on the predictive performance
of each model. Out-of-sample, RFs performed best across almost all performance
measures. In terms of limitations, this study also does not consider whether adding
macroeconomic variables to our model will improve its prediction capabilities. In
order to capture the variability in the state of the entire banking system, a similar
approach could be explored for multiple business cycle setups [44].

3.6.4 Deep Learning with Convolutional Neural Network
for Objective Skill Evaluation in Robot-Assisted Surgery
[45]



is introduced and evaluated in order to evaluate its applicability to deep learning.
Particularly, a deep surgical skill model with a novel analytical framework is
proposed to directly process multivariate time series using automatic learning.
This study focuses on the field of medical sciences and essentially highlights the
abilities of deep architectures to create a proficient online skill assessment in modern
surgical training. The predictor variables in this case study are the deep learning
(DL) approaches, while the performance of skill assessment systems is the outcome
variable [45].
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Hypothesis: “The learning-based approach could help to explore the intrinsic
motion characteristics for decoding skills and promote optimal performance in
online skill assessment systems.” [45]

Due to the growing demand for quality and safety in surgery, trainee surgeons
need to attain the required expertise levels before operating on patients. An absence
of proper training can considerably compromise clinical outcomes, which has been
shown in several studies. Thus, efficient training and consistent methods to evaluate
surgical skills are critical for supporting trainees in gaining the appropriate technical
skills. Concurrently, surgical training is experiencing significant changes, with the
rapid acceptance of minimally invasive robot-assisted surgery. Nevertheless, despite
advances in surgical technology, most evaluations of trainee skills are still performed
through outcome-based analysis, structured checklists, and rating scales. Since such
evaluation requires large amounts of expert monitoring and manual ratings, it can be
inconsistent due to biases in human interpretations and errors. Having said that,
conventional and traditional methods are no longer adequate in advanced surgery
settings, which is where machine learning (ML) and deep learning (DL) step in [45].

Deep learning, which is also referred to as deep structured learning, is essentially
a set of learning methods that permit a machine to automatically process and learn
from inputted data using classified layers from low to high levels. These algorithms
fundamentally achieve feature self-learning to progressively discover abstract depic-
tions during the training process. Presently, deep learning models have achieved
success in fields such as strategic games, speech recognition, medical imaging,
health informatics, and much more. Even so, little work has been done to study
deep learning methods for surgical skill assessment [45].

The dataset used for this study contains recordings from eight surgeons with
diverse robotic surgical experience. Each surgeon completed three different training
tasks, namely, suturing (SU), knot-tying (KT), and needle-passing (NP), and each
task was repeated five times. All three of these tasks are typically standard compo-
nents in the surgical skill training curriculum [45]. The dataset comes from the
JHU-ISI Gesture and Skill Assessment Working Set (JIGSAWS), the only publicly
available minimally invasive surgical database.

An analytical deep learning framework was proposed for skill assessment in
surgical training. A deep convolutional neural network was implemented to map
the multivariate time series data of the motion kinematics for individual skill levels.
A deep convolutional neural network is a type of deep learning artificial neural
network that deals with visual images. To implement the proposed framework, the



deep learning skill model was trained from scratch, therefore, not requiring any
pre-trained model. The network algorithm was applied using the Keras library with a
TensorFlow backend based on Python 3.6. The Keras library is essentially an archive
that provides Python interfaces for artificial neural networks. Similarly, the
TensorFlow library is an artificial intelligence and machine learning archive with a
focus on neural networks [45].

The proposed learning model attained a competitive accuracy of 92.5%, 95.4%,
and 91.3% in the standard training tasks of suturing, needle-passing, and knot-tying,
respectively. The model could successfully decode skill data from raw motion
profiles via end-to-end learning without the need for engineered structures or
carefully tuned gesture classification. Also, the proposed model was able to depend-
ably understand skills within a window of 1–3 seconds without the need to observe
the entire training trial. The proposed learning model successfully highlights the
high potential of deep learning for a proficient online skill assessment in modern
surgical training [45].

3.7 Conclusion

Paired with abundant data and advanced technology, data mining, analytics, and
machine learning have gained increasing popularity due to their ability to enhance
performance in any industry or field by extracting, manipulating, modeling, and
analyzing data, transforming it into information that helps professionals make well-
informed decisions.

In this chapter, we explored machine learning, which is the concept of utilizing a
wide range of algorithms to make intelligent predictions based on existing historical
datasets. We introduced the four variants of ML, known as supervised,
unsupervised, semi-supervised, and reinforcement learning. We focused on the
first two models of learning and introduced the key applications of classification,
regression, clustering, and dimensionality reduction for supervised and unsupervised
learning. For each application, several algorithms were briefly described. These
algorithms will be explored in more detail in the following chapters of this book.
This chapter ended by summarizing four case studies of using diverse ML algo-
rithms and techniques for multiple purposes, in different applications, industries, and
contexts.

3.8 Key Terms
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1. Data mining
2. Feature
3. Attribute
4. Supervised learning
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5. Multivariate regression
6. Multiple linear regression
7. Multiple logistic regression
8. Decision trees
9. Artificial neural networks

10. Perceptron
11. Naïve Bayes classifier
12. Random forest
13. Support vector machines (SVM)
14. Unsupervised learning
15. K-means
16. K-nearest neighbor (KNN)
17. AdaBoost
18. Applications of machine learning
19. Deep learning

3.9 Test Your Understanding

1. We have a customer dataset, and we want to create a model that recognizes the
types of customers that spend a lot on luxury items. Is this a supervised or
unsupervised learning problem?

2. We have a patient dataset, and we want to create a model that classifies the
patients as at high or low risk of a heart attack. Is this a supervised or
unsupervised learning problem?

3. What are some of the differences between linear and logistic regressions?
4. Give an example of a problem where a decision tree seems convenient to use.
5. Without knowing how the different machine learning algorithms function, which

algorithm seems convenient to you for diagnosing a disease based on a lab test’s
results?

6. Medical images are composed of complex structures; which algorithm seems to
you more aligned with the objective of finding complex patterns in medical
images?
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3.11 Lab

3.11.1 Machine Learning Overview in R

Machine learning is a set of algorithms that train data to create a model to make
predictions and decisions. R is one of the programming languages used to create
machine learning models; it includes machine language packages that allow the
development of different models. In the following, we will cover some essential
machine language packages in R.
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3.11.1.1 Caret Package

Caret stands for classification, regression, and training. This package helps you to
classify data by splitting it into testing and training sets. After that, an algorithm
needs to be chosen in order to train the model. After training the model, it is time to
predict the model and evaluate how it is performing with data. Caret package
snapshot code is shown in Fig. 3.17.

3.11.1.2 ggplot2 Package

This package creates data visualizations using the basic units of graphics grammar.
These basic units are divided into three features:
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1. A dataset that needs to be visualized and plotted in a graph
2. Geometries that describe shapes to visualize data such as dots, bar charts, etc.
3. Visual features that need to be used in graph, such as color, fill etc.

Below in Figs. 3.18 and 3.19 is an example of how to use ggplot2 in R.

3.11.1.3 mlBench Package

Short for Machine Learning Benchmark Problems, this package includes datasets of
real artificial intelligence benchmark problems, such as breast cancer, Pima Indian
diabetes, etc.

Fig. 3.17 Snapshot code of
Caret package usage in R
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Fig. 3.18 Function to plot glucose values in a bar chart

Fig. 3.19 Visualizing glucose values in a bar chart



3.11.1.4 Class Package

The Classification package contains functions that classify input data into output
categories. There are different classifiers, such as k-nearest neighbors, neural net-
works, logistic regression, etc.

3.11.1.5 DataExplorer Package

The DataExplorer package includes functions that automate the handling and visu-
alization of data. This would be the first step that allows analysts to create hypotheses
to predict models. Figure 3.20 is an example where New York City flights dataset
can be analyzed and visualized quickly using the DataExplorer package.

3.11.1.6 Dplyr Package

This package includes a set of functions in terms of grammar verbs to solve
challenges of data manipulation. Below are a few of them:
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• select(): to pick up specific variables based on names
• filter(): to filter cases based on specific variables
• arrange(): to order rows of data

3.11.1.7 KernLab Package

The kernel-based machine learning lab package includes methods for classification,
regression, clustering, support vector machines, novelty detection, etc.

Fig. 3.20 Using DataExplorer package to visualize and analyze flights data
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3.11.1.8 Mlr3 Package

This package provides building blocks for machine learning workflows. The
workflow is initiated by load data. Then, these data are trained to predict the
model. MLR has different algorithms, such as classification, regression, clustering,
etc.

3.11.1.9 Plotly Package

The Plotly package allows you to interface with ggplot2 to create interactive web
graphics for that package. Some examples include line plots, chart bars, and
scatterplots. This package provides best practices to visualize data for statistical
data, high-dimensional data, etc.

3.11.1.10 Rpart Package

Rpart stands for recursive partitioning and regression trees. It applies a tree decision
model to classification and regression problems. Decision tree problems can be
modeled using the Rpart package. The resulting model would be represented as
binary trees.

3.11.2 Supervised Learning Overview

Supervised machine learning (SML) is an approach when an algorithm is trained
with never-seen labeled inputs in order to predict a labeled output. SML is a great
approach for classification and regression problems. For example, labeling email as
spam or not spam is a binary classification. Another type of SML is regression,
where the output label is quantitative. There are different algorithms for SML under
classification and regression algorithms, such as k-nearest neighbors (KNN), deci-
sion trees, linear regression, logistic regression, etc. In the section below, the KNN
algorithm will be implemented in an example step by step in order to predict the
price of diamonds.

3.11.2.1 KNN Diamonds Example

The KNN Diamonds example is divided into different tasks.
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3.11.2.1.1 Loading KNN Algorithm Package

In order to use the KNN algorithm in your code, the Class package needs to be
installed, as shown in Fig. 3.21.

3.11.2.1.2 Loading Dataset for KNN

In this example, the diamonds dataset is used with the KNN algorithm. This dataset
can be downloaded from the following URL: Diamonds | Kaggle.

This dataset consists of the following columns: index, carat, cut, color, clarity,
depth, table, price, x, y, and z. To load this dataset to a variable, below is the code:
#Import the dataset

dmndInput <- read.csv("C:/datasets/diamonds.csv")

3.11.2.1.3 Preprocessing Data

After uploading the diamonds data, these data need to be normalized in order to
apply the KNN algorithm to unbiased data. It is important to note that the KNN
algorithm works with numeric data only. However, the following columns are
strings: cut, color, and clarity. So, it is essential to convert these columns’ values

Fig. 3.21 Loading class package in RStudio program
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to numeric values. It is also important to note that every value for these columns is
categorized. So, the values need to reflect that. The code below does the mapping
based on the definition of every column at Diamonds | Kaggle. The dplyr and plyr
packages are required to use helper functions in this mapping, such as the
“mappingvalues method.”

#Mapping string values to numeric values
require(dplyr)
require(plyr)
require(gmodels)
cut_class_dict = c('Fair', 'Good', 'Very Good', 'Premium', 'Ideal')
cut_mapped = c(1,2,3,4,5)

clarity_dict = c('I3', 'I2', 'I1', 'SI2', 'SI1', 'VS2', 'VS1', 'VVS2',
'VVS1', 'IF', 'FL')
clarity_mapped = c(1,2,3,4,5,6,7,8,9,10,11)

color_dict = c('J','I','H','G','F','E','D')
color_mapped = c(1,2,3,4,5,6,7)

dmndInput$cut <- mapvalues(dmndInput$cut, cut_class_dict,
cut_mapped)
dmndInput$cut <- as.integer(dmndInput$cut)

dmndInput$clarity <- mapvalues(dmndInput$clarity, clarity_dict,
clarity_mapped)
dmndInput$clarity <- as.integer(dmndInput$clarity)

dmndInput$color <- mapvalues(dmndInput$color, color_dict,
color_mapped)
dmndInput$color <- as.integer(dmndInput$color)

3.11.2.1.4 Scaling Data

As per the KNN algorithm definition, the next step is to label inputs and the single
output. Since the index (first column) is irrelevant, it can be removed from the
training set. Our target is to predict the accuracy of price. As such, the price column
needs to be removed from the labeled inputs as well. So, the input data will be
composed of nine columns: carat, cut, color, clarity, depth, table, x, y, and z. The
output label will be the price column. After labeling data, it is required to normalize
them, as there is a wide range of values between some columns, such as the “table”
column values and “x” column values. This will help to train the KNN algorithm on
unbiased data. Below is the R code to achieve that:

#Normalization
normalize <- function(x) {
return ((x - min(x)) / (max(x) - min(x))) }
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Fig. 3.22 Normalized data after preprocessing

dmnd_norm <- as.data.frame(lapply(dmndInput.subset[1:9],
normalize))
str(dmnd_norm)

As you can see in Fig. 3.22, the normalized data is within a close range.

3.11.2.1.5 Splitting Data and Applying KNN Algorithm

As per the code below, a random sample is taken of 2000 observations from the
dataset. This sample is split equally into test and train tests. A simple approach to
choose the k-value is to apply this formula: k = sqrt(size of sample observations). In
our case here, the k-value is around 45.

#split data between test and train sets
set.seed(2000)
dmnd_train <- dmnd_norm[1:1000, ]
dmnd_test <- dmnd_norm[1001:2000, ]
dmnd_target_train <- dmndInput.dmnd_target [1:1000, 1]
dmnd_target_test <- dmndInput.dmnd_target [1001:2000, 1]

After that, the KNN algorithm is run in a loop where the k-value is between
35 and 70, and price accuracy is calculated as per below:

accuracy <- function(x){sum(diag(x)/(sum(rowSums(x)))) * 100}
require(class)
i=1
k.optm=1
for (i in 35:70){
knn.232 <- knn(train=dmnd_train, test=dmnd_test,
cl=dmnd_target_train, k=i)
k.optm[i] <- accuracy(table(knn.232,dmnd_target_test))
k=i
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Fig. 3.23 K-values against
accuracy of price target

cat('k value = ',k,'accuracy =',k.optm[i],'\n')
}

The result is shown in Fig. 3.23. It is noticeable that price accuracy is best when
the k-value is between 50 and 60.

To see the data visually, the plot function may be used. This is shown in Fig. 3.24.
It is important to note that the gmodels package needs to be included in the code in
order to use the function.

require(gmodels)
plot(k.optm, type="b", xlab="K-Value",ylab="Accuracy level")

3.11.2.1.6 Model Performance

Model performance or cross-validation is a mechanism to study the performance of
the model when the dataset is divided into k groups. It uses one group against the test
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Fig. 3.24 Diamond price accuracy vs. k-value of KNN algorithm

Fig. 3.25 Showing cross-validation statistics for the KNN model

set and the rest against the training set. The accuracy score is applied to the test set as
in the code below (see Fig. 3.25):

set.seed(42)
model <- train(price ~ ., dmndInput,

method = "knn",
trControl = trainControl(method = "cv",
number = 10,
verboseIter = FALSE))

print(model)
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3.11.3 Unsupervised Learning Overview

Unsupervised machine learning (UML) is a set of algorithms that are run on data
without any labels and predict the hidden pattern in data information. The main
challenge of UML is that there is no output labeled goal. There are two types
of UML: clustering and dimensionality reduction. The clustering algorithm is an
approach to find homogeneous groups within a dataset. On the other hand, dimen-
sionality reduction is an approach to reduce the dimension if it is too large. This is
usually used in the preprocessing stage of supervised machine learning to work with
a manageable dataset. In the next section, we will work on the UML example step by
step. The UML algorithm used below is the k-means clustering one.

3.11.3.1 Loading K-Means Clustering Package

In order to use k-means helper functions, the following packages need to be installed:
Cluster and ClusterR, as shown in Figs. 3.26 and 3.27.

Fig. 3.26 Installing Cluster package in RStudio
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Fig. 3.27 Installing ClusterR package in RStudio

3.11.3.2 Loading Dataset for K-Means Clustering Algorithm

Edgar Anderson’s iris dataset is used in this example to apply the k-means algorithm.
This dataset can be downloaded from the following URL location: Iris Species |
Kaggle. The iris dataset consists of five columns: sepal length, sepal width, petal
length, petal width, and species. To load this dataset to a variable, use the
below code:

#Import the dataset
Input <- read.csv("C:/datasets/iris.csv")

3.11.3.3 Preprocessing Data

The second step in the process is to clean the data by omitting missing data with null
values and removing columns that are irrelevant to the k-means clustering algo-
rithm’s computing:

#Remove species column from training set
Inpt.subset <- Inpt[, -5]

#Remove data with missing values
Inpt.subset <- na.omit(Inpt.subset)
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#Scaling data
Inpt.subset <- scale(Inpt.subset)

3.11.3.4 Executing K-Means Clustering Algorithm

As per the code below, a random sample of 100 observations is taken initially. Please
note that the kmeans function below is taking the data frame, the number of clusters,
and 20 different initial samples as parameters. A confusion matrix is calculated
below to learn the performance of the algorithm. These data are plotted visually as
well.

set.seed(100) # Setting seed
kmeans.result <- kmeans(Inpt.subset, centers = 3, nstart = 20)

# Calculating Confusion Matrix
cMatrix <- table(Inpt$species, kmeans.result$cluster)
cMatrix

## Visualizing clusters
y_kmeans <- kmeans.result$cluster
clusplot(Inpt.subset[, c("sepal_length", "sepal_width")],

y_kmeans,
lines = 0,
shade = TRUE,
color = TRUE,
labels = 2,
plotchar = FALSE,
span = TRUE,
main = paste("Kmeans Iris Clusters"),
xlab = 'sepal_length',
ylab = 'sepal_width')

3.11.3.5 Results Discussion

As per Fig. 3.28, data are clustered into three groups. The groups are related to each
other in terms of sepal length and sepal width to predict the species: Iris setosa, Iris
versicolor, or Iris virginica. As you can see, the data analysis would predict the
species category without any labeling.

3.11.4 Python Scikit-Learn Package Overview

The Scikit-Learn package is the most important package in Python to implement
machine learning algorithms. It is an open-source library for machine learning. It
provides tools and selection of different algorithms such as classification, regression,
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Fig. 3.28 Iris plot for k-means algorithm

clustering, and dimensionality reduction. The following URL Getting Started—
scikit-learn 0.24.2 documentation contains all information, installation instructions,
and examples of this package’s usage.

3.11.5 Python Supervised Learning Machine (SML)

In this section, we will work on a linear regression algorithm example step by step
using Python and the Scikit-Learn package. This package contains many machine
learning algorithms as well as their function helpers to create the model. As
mentioned earlier, SML is about labeling inputs and an output to predict the goal
in dataset. We will use diamonds dataset in the Python linear regression example.

3.11.5.1 Using Scikit-Learn Package

The first thing to do in this example is to ensure all required packages are installed
for use, especially the Scikit-Learn package. In order to install this package, a
Windows or Mac user needs to execute the following command as shown in
Fig. 3.29:

pip install -U scikit-learn
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Fig. 3.29 Installing Scikit-Learn package for machine learning examples

Fig. 3.30 Importing required packages and loading diamonds dataset

For further details, you might check the Scikit-Learn website that was mentioned
above. After the packages’ installation, the Jupyter notebook application needs to be
launched to create the KNN algorithm model.

3.11.5.2 Loading Diamonds Dataset Using Python

After installing all required packages for this example, the first step is to load the
dataset into a variable, as shown in Fig. 3.30.

Running the “head” function will show the first few rows of the dataset, as shown
in Fig. 3.31.
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Fig. 3.31 Showing details about diamonds dataset

Fig. 3.32 Describe function showing details about dataset

3.11.5.3 Preprocessing Data

Before executing the linear regression algorithm on the diamonds dataset, it is
important to remove noise and map string values into weighted numeric values, as
shown below in the code. The describe function shows details about the dataset in
Fig. 3.32.

clarity_dict = {"I3": 1, "I2": 2, "I1": 3, "SI2": 4, "SI1": 5, "VS2":
6, "VS1": 7, "VVS2": 8, "VVS1": 9, "IF": 10, "FL": 11}
color_dict = {"J": 1,"I": 2,"H": 3,"G": 4,"F": 5,"E": 6,"D": 7}
cut_class_dict = {"Fair": 1, "Good": 2, "Very Good": 3, "Premium":
4, "Ideal": 5}
dataframe['cut'] = dataframe['cut'].map(cut_class_dict)
dataframe['clarity'] = dataframe['clarity'].map(clarity_dict)
dataframe['color'] = dataframe['color'].map(color_dict)

3.11.5.4 Splitting Data and Executing Linear Regression Algorithm

The first task to do before splitting the data is labeling inputs and an output. As you
can see below in Fig. 3.16, the price column is removed from the training set. Also,
this column is labeled as the output or goal for prediction. The next step is to split
data between the train and test sets and apply the linear regression algorithm to the
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Fig. 3.33 Splitting data and executing linear regression algorithm

Fig. 3.34 Bar diagram for predicted vs. actual diamond prices

train set. You might note below in Fig. 3.33 that the test set is 20% of the dataset to
leave 80% for the train set.

The data can then be visualized in a bar diagram that will help to analyze the
performance of the model against this dataset. The bar diagram for predicted
price vs. actual price is shown in Fig. 3.34.
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3.11.5.5 Model Performance Explanation

Cross-validation (CV) is a tool used in SML to measure the performance of the
model, as mentioned earlier, in order to decide if that model is overfitting or
underfitting using the dataset. As shown in Fig. 3.35, a k-fold of 10 is used for
cross-validation to get different scores and evaluate the performance of the model.

3.11.5.6 Classification Performance

The classification performance measure is used to improve the model and make it fit
the dataset. This is done by calculating the mean absolute error, mean squared error,
root mean squared error, and cross-validation score. As per the values in Fig. 3.36,
root mean squared error is high compared to the mean of the actual price. As you can
also see, the CV score is around 0.9 for the k-ten fold, which means the model is
overfitting and not working well on a new previously unseen dataset. As such, it
appears that the diamonds dataset is not applicable to real-world data.

3.11.6 Unsupervised Machine Learning (UML)

As discussed earlier, UML is a set of algorithms that find patterns or trends within
data without any labeled input or output. In this section, we will work on executing
the hierarchical clustering algorithm example step by step on the iris data.

Fig. 3.35 Calculating
cross-validation score

Fig. 3.36 Calculating performance features for the model
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3.11.6.1 Loading Dataset for Hierarchical Clustering Algorithm

Edgar Anderson’s iris dataset is used for executing the hierarchical clustering
algorithm. The first step is to import the required packages and the dataset, as
shown in Fig. 3.37.

3.11.6.2 Running Hierarchical Algorithm and Plotting Data

After loading the data into a variable, the hierarchical algorithm is executed on the
data to create clusters. As you know, there are three species in the iris dataset.
However, the two closest species are merged to form one cluster t, and the model
ends up with two clusters, as shown in Fig. 3.38.

Fig. 3.37 Importing required packages and loading iris dataset

Fig. 3.38 Hierarchical clustering algorithm plot using IRIS dataset



3.11.7 Do It Yourself

This section is for students to apply what they learned in this chapter. Students need
to solve the following problem in R and Python:
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1. Load the stroke prediction dataset from this location: Stroke Prediction Dataset |
Kaggle.

2. Preprocess data and apply any required mapping from string to numeric values.
3. Apply linear regression and KNN algorithms for SML, k-means and hierarchical

clustering for UML.
4. Study the model’s performance for SML using the cross-validation concept.
5. Visualize your data in three different plots or graphs for SML and UML

algorithms.
6. Discuss your model and its performance with the class in terms of applying the

same model to a new unseen dataset (generalization).

3.11.8 Do More Yourself

Below are a few datasets that you might use to do more exercises:

1. Pima Indians Diabetes Database | Kaggle.
2. FIFA World Cup | Kaggle.
3. Flu Shot Prediction | Kaggle.
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Chapter 4
Data Preprocessing

4.1 The Problem

Preprocessing is the practice of cleaning, altering, and reorganizing raw data prior to
processing and analysis, which is also known as data preparation [1]. It is an
important step before processing and usually entails reformatting, adjusting, and
integrating datasets to improve the information contained within them. Even though
data preprocessing can be an onerous task, it is necessary as a precondition for
putting data into context and reducing the possibility of bias [2]. An Aberdeen Group
study states that data preprocessing refers to any activity taken in order to improve
the quality, usability, accessibility, and portability of data [3]. In a poll published in
Forbes, data scientists reported that they spend 60% of their time on data
preprocessing (Fig. 4.1).

The data preparation process often consists of standardizing data formats, enhanc-
ing data, and eliminating outliers. Data preparation consists of collecting, cleaning,
and merging information into one file for analysis. When it comes to machine
learning applications, proper data preparation is critical. However, machine learning
techniques are also being used for automated data preparation purposes [5]. Correct
data preparation prepares both the miner and the data in advance of the mining
operation [6]. Preparing the data ensures that the model is constructed correctly.
Preparing the miner entails creating the appropriate model. Data preparation leads to
a better knowledge of the data, which in turn allows the proper model to be generated
the first time and built correctly. Indeed, the preparation may bring the data miner to
an understanding of the knowledge contained within the data, which may be
sufficient in and of itself.

In the past, data preprocessing was considered a specialized skill. It is usually
business managers who are most in need of the findings, insights, and intuitions
contained inside recorded data. Twenty years ago, spreadsheets were thought of as
accounting-specific tools with limited relevance to the rest of the company. In
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today’s corporate world, spreadsheets are viewed as an essential tool. Data prepara-
tion tools will soon be used by company managers in the same way that spreadsheets
were used by accountants in the 1970s and 1980s. In the future, many critical
business activities will be run by automated systems, which will be monitored,
guided, and controlled by business managers and analysts via control panels.
Structures of this type are already in use. In order to build and manage these systems,
highly skilled data modelers and data preparations will be required [6] (Fig. 4.2).

118 4 Data Preprocessing

Fig. 4.1 Proportion of data scientists time spent by task [4]

Fig. 4.2 Phases before and after the data prep phase [7]
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4.2 Data Preprocessing Steps

Predictive modeling projects require the preparation of data. Some of these concepts
may be better suited as sub-activities inside the overall data preparation process
rather than as separate tasks. Data preparation may also be defined as the process of
transforming raw data into a form that is more suitable for use in modeling
applications [8].

What you should do here is very dependent on both your data and the objectives
of your project, as well as the algorithms that will be utilized to represent your data.
There is some difference in the data preparation stages data specialists and software
providers recommend. These steps also fluctuate depending on the industry and
company. Nonetheless, there are many procedures that you may utilize during data
preparation and that we will investigate below [5, 8, 9].

4.2.1 Data Collection

Finding the appropriate data is the first step. Depending on the situation, this
information can be obtained from a pre-existing data catalogue as well as operating
systems, data warehouses, data lakes, and other data sources, or it can be added on
the fly. A suitable fit for the objectives of the intended analytics applications should
be confirmed during this stage by information professionals [5, 9].

4.2.2 Data Profiling, Discovery, and Access

It is necessary to examine the data that has been gathered in order to have a better
understanding of what each dataset includes and what needs to be done in order to
prepare it for the intended usage [9]. To complete this phase, you must first become
familiar with the data and understand what needs to be done for the data to be
relevant in a certain context. Data profiling can aid in this process by identifying
correlations, inconsistencies, anomalies, missing values, allowing them to be
addressed more effectively [5].

4.2.3 Data Cleansing and Validation

The data errors and issues that have been detected are addressed to produce complete
and accurate datasets [5, 9]. During the cleansing process, for example, incorrect
information is deleted or corrected, missing values are filled in, and inconsistencies
between entries are reconciled. Cleaning up the data is generally the most onerous
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step. The data inaccuracies and problems that have been detected are rectified to
produce full and accurate datasets. Among the most important responsibilities in this
area are:

• Removing and/or fixing outliers
• Imputing (filling in) missing values
• Harmonizing inconsistent entries
• Hiding sensitive data entries

4.2.4 Data Structuring

At this phase, the data is modeled and arranged to match the criteria of the analytics
system. For example, we might need to export data saved in a certain format into
other formats before it can be accessed by business intelligence and analytics
applications such as Tableau, Microsoft Power BI, and Apache [5].

4.2.5 Feature Selection

This is also known as variable selection, attribute selection, or variable subset
selection. Relevant characteristics are identified and/or noisy data is filtered out.
Finding the input variables that are most important to the project is what this
approach is all about [8]. Improved prediction accuracy and comprehensibility are
achieved with this method. A feature is considered irrelevant if it does not give any
valuable information and redundant if it does not contribute any more
information [10].

4.2.6 Data Transformation and Enrichment

To transform data means to change its format or value entries in order to achieve a
predetermined result or to make the data more easily understandable to an even
greater number of people, as defined by the data’s intended audience. Examples of
data transformation include the creation of features that aggregate values from
previously existing features [9]. Meanwhile, enriching data refers to the process of
integrating data with other related information in order to give deeper insights; it also
refers to the process of further improving and optimizing datasets as needed, using
techniques such as augmenting and adding data [5].
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4.2.7 Data Validation, Storage, and Publishing

At the end of the process, automated algorithms are performed on the data to ensure
that it is consistent, comprehensive, and accurate. It is then saved in a database, a
data lake, or another repository and may either be utilized directly by the person who
created it or is made available for other users to access and use as needed [5].

4.3 Feature Engineering

“Feature engineering” is a term often used in the data science field to refer to data
preparation [11]. While the terms “data prep” and “feature engineering” are used
interchangeably, as compared to the typical data prep method, feature engineering is
more dependent on domain-specific expertise. Feature engineering is used to
develop “features” for certain machine learning algorithms, whereas data prep is
used to prepare data for distribution to many people. Data preparation and feature
engineering are two of the most time-consuming and critical activities in data
mining, and they are both essential. The ability to provide accurate results is
enhanced by having data that has been properly prepared. Data preparation opera-
tions, on the other hand, tend to be repetitive, boring, and time-consuming. When it
comes to data preparation for machine learning, feature engineering is a critical step.
Building relevant features from existing features is a strategy that leads to increased
predictive performance when done correctly. Feature engineering is the process of
applying transformation functions to existing features, such as arithmetic and aggre-
gation operators, to develop new ones. Transformations aid in the scaling of a feature
or the conversion of a nonlinear relationship between a feature and a target class into
a linear relationship that is easier to learn [12]. A feature vector is fed into a machine
learning model such as a neural network, decision tree, random forest, or gradient
boosting machine, which then predicts the outcome of the experiment. These models
are trained in a supervised manner, which means that they are given a set of feature
vectors with predicted output. It is a typical practice to create new features from the
existing feature set that has been offered. Depending on how they are constructed,
they will either supplement or completely replace elements of the present feature
vector. Engineering features are essentially computed fields that are determined by
the values of other features in a given feature set [13]. The notion that there are
various ways to represent predictors in a model, and that some of these representa-
tions are superior to others, gives rise to the concept of feature engineering, which is
the process of developing data representations that improve the effectiveness of a
model (also known as predictive modeling) [14].

Features, also known as signals, are information encoded from raw data that
allows machine learning algorithms to classify an unknown item or estimate an
unknown value based on the information encoded. During the learning phase, a
trained system determines the relative importance of this feature for future tasks by
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Fig. 4.3 Feature
Engineering as a step toward
data modeling

comparing it to other features. Features may appear to be inconsequential, as if they
were only one of the many components that go into a large-scale machine-learning
endeavor (along with raw data, cluster software, human-provided labels, and scal-
able statistical algorithms). They are, however, extremely exceptional, according to a
few lessons from the expanding body of wisdom concerning trained systems [15]
(Fig. 4.3).

In the science of feature engineering, there are three primary steps: feature
creation, transformation, and feature extraction [16].

4.3.1 Feature Creation

Feature creation involves determining the most helpful variables to utilize in a
prediction model. It is a process that needs human input and innovation. Addition,
subtraction, and ratios are used to combine existing characteristics to produce the
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new ones, which offers a lot of versatility. For example, in a problem involving
purchases, one could create a feature for the day of the week the purchases happen,
and the time of the day (e.g., morning, afternoon). In a problem involving people’s
age, one can discretize a numeric salary into new features by binning the salary (e.g.,
“less than 40,000,” “40,000–60,000”). In a problem involving a category related to
mental health (e.g., “poor,” “fair,” “good,” “excellent”) one can create new features
by binarizing the mental health (e.g., creating four new binary features called Poor,
Fair, Good, and Excellent).

4.3.2 Transformation

The transformation process of feature engineering includes modifying a predictor
variable somehow (e.g., using standardization) to improve the model’s performance.
For example, it guarantees that the model is able to accept diverse data; it makes
certain that all the features are on an equal scale; and it increases the model’s
correctness and guarantees that all the characteristics are within the permissible
range to prevent any errors.

4.3.3 Feature Extraction

Transformations entail producing a new variable by modifying one variable in some
manner or another. Feature extraction includes constructing variables by extracting
them from some other data. The major purpose of this stage is to minimize the size of
the data so that it can be conveniently utilized and handled for data modeling.
Feature extraction approaches include procedures such as principal components
analysis (PCA).

4.4 Feature Engineering Techniques

You may utilize these best practices in feature engineering. Some of the techniques
in this list may be more effective when used with specific algorithms or datasets,
while others may be applicable in any case [17].

4.4.1 Imputation

Missing values are a common problem when preparing data for machine learning.
Human error, disruptions in data flow, privacy issues, and other circumstances can
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all result in missing values in a model’s output. Machine learning models are
affected by missing values, no matter the reason. An imputation strategy is designed
to deal with missing values. Imputations can be categorized into two distinct types:
numerical and categorical.

4.4.1.1 Numerical Imputation

We normally utilize data from completed surveys or censuses to figure out what
numbers should be allocated to persons who are currently in the population. Among
the information contained in these datasets is information on how many people
consume different types of food, whether they reside in a city or postcode with good
infrastructure, and how much tax they pay on a yearly basis. The reason for this is
that numerical imputation is used to fill gaps in data when certain pieces of
information are lacking [17].

4.4.1.2 Categorical Imputation

When working with categorical values, it can be good to use the column’s greatest
value as a replacement for any missing data. The imputation will be more likely to
converge to a random selection if you feel the values in the column are widely
distributed and there is no dominant value. Imputing a category like “Other” in this
case would be better [18].

4.4.2 Discretizing Numerical Features

Decision trees and rule-based algorithms perform better when using discrete features
(e.g., categorical), as they might have to sort the values repeatedly which becomes
time-consuming with continuous values (i.e., real numbers). Some other algorithms
like Naïve Bayes cannot handle well continuous data. Hence the need for
discretization [19].

Discretization is the process of placing the values into containers, bins, or
buckets. The result is a limited number of containers that are treated as discrete
values.
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4.4.3 Converting Categorical Discrete Features to Numeric
(Binarization)

Some algorithms, like KNN and regression algorithms, cannot work with strings
(categorical values) and instead need numeric values. We can convert a categorical
feature to many numeric features by assigning for each of its categorical values a
new binary numeric feature that can hold a value of 0 or 1. For example, in a student
dataset, a categorical feature “major,” the values of which are “engineering,” “health
informatics,” and “information technology,” can be discretized by creating three new
numeric binary features: “engineering,” “health informatics,” and “information
technology.” Depending on its “major” value, each instance in the dataset can
have a value of 1 in one of these new features and a 0 in the others. A student
with a value of “engineering” in the “major” column would have 1 in the new feature
“engineering” and 0 in “health informatics” and “information technology.” This
strategy is better than converting the major into one numeric feature in which each
major category is replaced with a number; for example, adding a new feature
major_numeric that equals 1 for health informatics, 2 for information technology,
3 for business, and 4 for engineering is not advisable because the algorithm will
suppose that there is an order among the values of (i.e., the majors they represent),
which is not the case, and it will try to use that order in the prediction, which is
misleading and will confuse the algorithm.

4.4.4 Log Transformation

One of the most often utilized mathematical transformations in feature engineering is
the logarithm transformation (also known as the log transform) [17]. It is usually
used to make a normal or less-skewed distribution out of a skewed one. When we do
this conversion, we use the log of the column’s values. As a result of this method’s
adoption, data that was before considered difficult to interpret is now easier to
interpret [18].

4.4.5 One-Hot Encoding

It is possible to encode elements of finite sets by giving a code for each possible
value. A feature that can have n values will be transformed into n features. Each
feature may have two values 0 or 1. For example, if we have a feature called
Specialization with the following possible values: “Informatics,” “IT,” and “Busi-
ness”; one-hot encoding will create three new features informatics, IT, and business;
if an instance has Specialization- “informatics” then there will a value of 1 in the
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Informatics features and two values of 0 in the IT and Business features, and so on
and so forth [18].

4.4.6 Scaling

Numerical features’ scale might differ in range; for example, Age and Income
features will not have the same range and the large values of Income might affect
model training. Scaling overcomes this problem. The numeric features become
equivalent in terms of the range after scaling. Scaling can be accomplished in one
of two ways [17, 18]:

4.4.6.1 Normalization (Min-Max Normalization)

Normalization scales all values in a range between 0 and 1 using normalization. This
modification does not affect the distribution of the feature, although due to the lower
standard deviations, it does amplify the impact of outliers. As a result, it is
recommended to deal with the outliers before normalization. It can be mathemati-
cally defined as follows:

Xnorm =
x- xmin

xmax - xmin

Data normalization [20, 21] is concerned with rescaling of the data of a numeric
feature to a small range, such as [0, 1]. Normalization is needed whenever we have
large differences in the scales of numeric values for different features. For example,
if your dataset contains a numeric feature with values ranging from 10 to 20 and
another one with values ranging from 1000 to 1000,000, and we are trying to use
both features to train our model, the difference in scales between the features might
influence the model, as variables with variance in their data are more likely to
contribute more to the model and distort the impact of the features with narrow
ranges.

Feature selection (using principal component analysis, for example) is another
reason to normalize the data. Often, feature selection involves algorithms that rely on
the variance value; hence, the need for normalization (i.e., reducing the scales of all
features to [0, 1]) to make the features appropriately comparable. Finally, regulari-
zation can be affected by the data values, and normalization will reduce such
distortion.

Normalization allows us to avoid such problems by rescaling the values in each of
the two features to the common scale [0, 1] while maintaining the general distribu-
tion of data within each feature. It is also possible to scale data to a range other than
to 1, such as -1 to 1.
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Normalization can help reduce the learning time; for example, during gradient
descent (see chapter on linear regression), when we update the parameters of the
model, we compute the derivatives of the error function with respect to the param-
eters (e.g., w1, w2), so if a feature has large values, it will dominate the updates
[22]. Since normalization depends on minimum and maximum values it is sensitive
to outliers, unlike standardization.

4.4.6.2 Standardization (Z-Score Normalization)

When we have data stored as a feature in a dataset, we like to compare it to draw
meaningful knowledge. For example, students’ grades could be compared between
different sessions of the same course, different courses, or universities; likewise, the
number of patients who were readmitted to a hospital after discharge can be
compared across hospitals, etc.

However important these comparisons are, they might not be meaningful unless
we understand their contexts (e.g., the units/scale they were measured with). For
instance, comparing grades is not appropriate if the grades were not measured on the
same scale; we cannot compare a grade of 15 for a student in course A with a grade
of 60 for a student in course B unless we know in advance that both grades were
computed using the same scale (e.g., 0 to 100). If the grade of 15 was computed
using a scale from 0 to 20, then we need to scale both grades to the same interval to
obtain meaningful information. For instance, we can multiply 15 by 5 to obtain the
equivalent grade over 100 (i.e., 75), and we can then deduce that in fact the grade for
the student in course A is higher than the grade for the student in course B. The
process of transforming data to the same scale for comparison is called
standardization [20].

Another way to standardize data is by computing their Z-score or standard score.
The standard score lets us know how far from the mean a score is; more precisely, it
tells how many standard deviations below or above the mean a score is. For a
data score xi in a dataset that has an average �X and a standard deviation σ, Z-score =
(xi-�X)/σ. For the example above, suppose that the grade of 15 was in a dataset where
the average is 12 and the standard deviation is 2; then the Z-score corresponding to
15 is 1.5 (i.e., the student’s grade is 1.5 standard deviations above the average of
class A); if we suppose that the grade of 60 was in a dataset of average 50 and
standard deviation 10, then the Z-score corresponding to 15 is 1 (i.e., the student’s
grade is 1 standard deviation above the average of class B); obviously, the grade of
15 is a higher score than 60. This example is simple and straightforward; other
examples might be much more complicated to guess: is the readmission rate at
hospital X more substantial than that at hospital Y?

Standardization is the process of scaling values while accounting for the standard
deviation. It is necessary to divide the variance of the distribution by the number of
data points to arrive at a distribution with a 0 mean and 1 variance. It can be
mathematically defined as follows [18]:
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Z- score=
x- �Xð Þ
σ

The mean is denoted by the symbol μ, whereas the standard deviation is denoted
by the symbol σ. When we standardize all features in a dataset, they will all have 0 as
the mean and 1 as the variance; each data point’s value describes how many standard
deviations away from the mean it is.

However, if the characteristics’ standard deviations vary, the range of those
features will likewise differ [17]. Because of this, outliers in the data have more of
an impact. To account for the presence of outliers, one might remove outliers before
standardization or apply standardization techniques that account for outliers, such as
robust scaling.

Naïve Bayes (probabilistic) and decision trees look at features independently and
hence are not sensitive to difference in feature scales. While algorithms such as
support vector machines, K-Nearest Neighbor (KNN), K-means, and K-Means rely
on a form of distance and hence are sensitive to difference in features. Also,
algorithms (e.g., linear regression, logistics regression) that use stochastic gradient
descent for optimization (i.e., hyperparameter tuning) will benefit from standardiza-
tion. Artificial Neural Networks (ANNs) often rely on values between 0 and 1, so
they would benefit from normalization instead of standardization.

4.4.7 Reduce the Features Dimensionality

Reducing the feature dimensionality (how many features we originally have) can be
done through the Principal Component Analysis (PCA). PCA is a technique that
projects the features into a smaller dimension (less than the original), it creates new
features and let you know how much each feature explains of the variance in the data
(i.e., how much each feature is important to model your dataset); hence you can
choose the most important features that explain together the most of your dataset and
obtain a smaller space (i.e., less features than what we had originally). If we choose
the first 4 components in Fig. 4.4, we will have a feature space of 4 (4 new features)
instead of the original 8. The first 4 components explain 80% of variance in the data
and hence represents it well; however, there is no guarantee that algorithms will
perform better after dimensionality reduction.

4.5 Overfitting

Overfitting occurs when the model performs well in the training dataset but does not
perform well in the testing dataset. Overfitting might occur because of noise in the
dataset, the small size of the training set, or the complexity of the machine learning
model [23]. When it comes to the integrity and trustworthiness of a statistical model,
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Fig. 4.4 Principal components with their corresponding percentage of explained variance

overfitting is a major concern [24]. More so, the notion of parsimony, often known as
Occam’s razor, urges the use of models and procedures that contain only the
information required for the modeling process and nothing else [25]. For example,
if a regression model with two predictors is sufficient to describe y, then no more
predictions should be utilized than these two. To take things even further, if the
relationship can be captured by a linear function of these two predictors (which is
described by three numbers—the intercept and two slopes—then utilizing a qua-
dratic function violates the principle of parsimony).

Overfitting is the employment of models or procedures that violate the principle
of parsimony; that is, models or methods that include more terms than are essential
or use more intricate approaches than are required. Overfitting can be minimized
using strategies like preselecting components, centering, and cross-validation, but
the only definite approach to address the issue is to replicate findings in another
dataset [24]. Overfitting a model often takes the form of developing an excessively
complicated model to explain quirks in the data under investigation. In fact, the data
that is analyzed often has a certain degree of error or random noise. For example,
striving to make the model adhere too closely to somewhat erroneous data might
cause the model to get infected with significant mistakes, reducing its predictive
value significantly [26]. When overfitting occurs, they reflect low bias and high
variance [27]. Overfitting is more likely to occur with nonparametric and nonlinear
models, which have greater flexibility while learning a target function than linear
models. As a result, many nonparametric machine learning methods incorporate
parameters or approaches that restrict and constrain the amount of detail that the
model learns as it progresses [28]. Figure 4.5 shows an example of overfitting while
Fig. 4.6 compares overfitting with underfitting, the subject of our next paragraph.
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Fig. 4.5 A graphical
illustration of overfitting

4.6 Underfitting

Underfitting occurs when a data model fails to correctly represent the relationship
between input features and target. This would result in high error rates during both
training and testing phases. Underfitting is the opposite of overfitting; it is a situation
in which a model is incapable of capturing the variability of the data [29].

Underfitting risks oversimplifying a model; it occurs when an algorithm lacks
sufficient training time or features or needs less regularization. When a model is
underfitted, it is unable to create a dominating trend within the data, resulting in
increased training mistakes and poor performance of the model, like overfitting. It is
not possible to use a model for classification or prediction tasks if it does not
generalize effectively to fresh data. The ability to generalize a model to new data
is, in the end, what allows us to utilize machine learning algorithms daily to make
predictions and categorize information. To determine the fundamental reason for low
model accuracy, it is necessary to understand how models are fitted. This under-
standing will assist you in taking the necessary remedial action. Underfitting can be
spotted if the prediction error on the training and the evaluation data are high.
Underfitting typically occurs when we do not have enough data to develop an
appropriate model, or when we use a simple model (e.g., linear) on data where the
underlying relationship between the features and the target is non-linear. Since the
rules of such machine learning model are simple the model is likely to generate many
incorrect predictions (Fig. 4.7). To avoid underfitting, it is necessary to collect
additional data, to reduce the number of features by employing feature selection,
or to use more complex models.

In a nutshell, overfitting is characterized by high variance and low bias, whereas
underfitting is characterized by high bias and low variance (Figs. 4.8 and 4.9).



There are several algorithms for ML. In a project, we might choose one or more of
these algorithms. When an algorithm is chosen, we use it to develop a model of the
dataset we have. There are three steps involved in developing an ML model:
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Fig. 4.6 Overfitting compared to underfitting and a good/robust fit

4.7 Model Selection: Selecting the Best Performing Model
of an Algorithm
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Fig. 4.7 A graphical
illustration of underfitting

Fig. 4.8 A graphical illustration of overfitting and underfitting in terms of the bias vs. variance
tradeoff

1. Training (i.e., fitting/developing) the model
2. Performing a model selection, i.e., finetuning the model’s hyperparameters to

find the best performing model with a good balance between bias and variance
(i.e., between underfitting and overfitting). For each set of chosen
hyperparameters’ values, we train a model on an evaluation dataset and measure
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Fig. 4.9 Training and testing errors in the cases of underfitting, overfitting, and an optimum fit

its performance. Finally, we select the best-performing model. The performance
of the selected model would be a good estimate of its generalizability.

3. Testing the performance of the model on an unseen dataset (i.e., the testing
dataset) and reporting it.

4.7.1 Model Selection Using the Holdout Method

In its simplest form, the holdout method consists of holding out one dataset for
testing. We split the dataset into training and testing datasets; we train the model on
the training dataset and evaluate its generalizability by measuring its performance on
the testing dataset.

We can repeat the process several times, each time we change the
hyperparameters values and test the new model on the testing dataset until we find
a model that is best performing on the testing dataset. However, this process risks to
overfit the model to the testing dataset; the obtained performance would not repre-
sent the generalizability of the model.

A better way consists of holding out two subsets, one for testing and one for
validation. We use the validation dataset to perform model selection: train different
models with different hyperparameters values, measure their performances, and
finally choose the best performing one (Fig. 4.10).

However, most of the time we do not have a large dataset and we can only split
the dataset into training and testing dataset. Also, with a validation dataset, the
performance of the model is based on one dataset and is dependent on how the split
was done on the initial dataset: different split may lead to a substantially different
performance. Cross-validation solves both holdout method’s limitations.
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Fig. 4.10 Model selection by hyperparameter tuning

4.7.2 Model Selection Using Cross-Validation

Cross-validation can be performed in several ways; we will cover the K-fold cross-
validation, the stratified K-fold cross-validation, and the Leave-one-out cross-
validation.

In K-fold cross-validation, we split the training dataset into K equal-sized parts or
folds. We keep k-1 folds for training the model and one for evaluating it. The process
is repeated for each of the K parts. Each time the cross-validation algorithm saves the
performance measures of the trained model. In the end, the cross-validation algo-
rithm displays the average and the standard deviation of all performances. That
average would be a good estimate of the generalizability of the model. Research has
shown that K = 10 yields the best estimates.

Hence, for the same algorithm (e.g., logistic regression, decision tree), we can use
cross-validation to estimate the performance of different models trained using
different hyperparameters. In the end, cross-validation can deduce which set of
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Fig. 4.11 K-fold cross-
validation

hyperparameters’ values provided the best performing model. Cross-validation pro-
vides us with the best hyperparameters’ values, so that we use them to train the
model on the whole training dataset and test it on the testing dataset to get a measure
of its performance on unseen data (Fig. 4.11).

A variation of the K-fold cross-validation is a stratified K-fold cross-validation
that guarantees that each fold maintains the same class proportion that exists in the
training dataset. It is particularly useful in the case of imbalanced classes.

The Leave-one-out cross-validation (LOOCV) algorithm is similar to the K-fold
cross-validation but each fold will hold out one instance (instead of a group of
instances) of the training dataset; you can think of it as a K-fold cross-validation
where K is equal to the number of training instances. Hence, it is much more onerous
in terms of time and computing power than the K-fold cross-validation.

Finally, there is a nested cross-validation approach that we recommend exploring
it yourself. It consists of a cross-validation within a cross-validation. In Python, it
involves using a cross-val method and providing it with a grid (or randomized)
search cross-validation as a parameter instead of providing it with an ML algorithm.

4.7.3 Evaluating Model Performance in Python

In Python, the K-fold cross-validation (i.e., cross_val_score) uses a stratified k-fold
strategy by default for binary and multiclass classification problems. We can use two
strategies to conduct model selection through hyperparameter tuning: Grid Search
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(GridSearchCV in Python) and Randomized Search (RandomizedSearchCV in
python).

Grid search needs a list of hyperparameters and their corresponding values. It
uses cross-validation to try all the possible combinations of hyperparameters’ values
and find the set of hyperparameter values with the optimal performance. Grid search
can display the best-performing hyperparameters and the best cores for the optimal
model. Note that after obtaining the optimal model you need to train the model on the
full testing dataset and then test it using the testing dataset.

Instead of going through the provided list of values exhaustively, the randomized
search algorithm randomly chooses hyperparameter values from the list. Hence, its
performance is much better than the grid search algorithm. The hyperparameter
values obtained by randomized search cross-validation might not be the optimal
ones; however, the model found performs as well as the optimal model obtained
through grid search cross-validation.

4.8 Data Quality

Data is a valuable resource in all businesses, and its quality is crucial, as high-quality
data make it easier for managers and operational processes to detect and resolve
performance issues that might arise. Furthermore, high-quality data might improve
an organization’s chances of providing top-notch services to its customers. How-
ever, it is necessary to recognize numerous areas of data quality, ranging from
definition to dimensions to kinds to strategies and procedures, in order to equip
methodologies and processes for data improvement [30]. The study of data quality
began in earnest in the 1990s in Europe, when a slew of scientists presented a variety
of definitions of data quality as well as several division techniques for quality
dimensions. Data quality can be defined as “suitability for usage” [31].

The term “data quality” already refers to a multidimensional notion that is
difficult to quantify with specific definitions, especially when dealing with well-
structured data. There are several conceptions of quality, each of which should be
applied to certain forms of big data, and which should be carefully addressed when
working with large datasets and doing analytics on them [32]. The traditional way of
describing or characterizing data quality is to use several features or factors that help
to rank the data delivered to users (e.g., amount of time it has been there, its
accuracy, its completeness) or data processes (e.g., response time, reliability, and
security). Quality factors include accuracy, completeness, currency, and consistency
[33, 34].

On the other hand, by definition, the concept of data freshness brings up the
question of how old the data is: Do you think it is up to date in terms of what users
expect? Which data source contains the most up-to-date information? Is the infor-
mation that has been extracted outdated? When was the information gathered and
compiled? However, there is no consensus on what constitutes “fresh data” in the
scientific community. In order to account for the different types of data integration
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systems, several definitions of freshness have been proposed [34]. Data freshness has
been highlighted as one of the most significant qualities of data quality for data
consumers, yet it is one of the most difficult to measure [31, 35]. High-quality data
are required for the analysis and use of big data, as well as for ensuring that the data’s
value is not diminished. As of the time of this writing, a detailed study of quality
standards and quality evaluation methodologies for big data is being carried out [36].

4.9 Key Terms

1. Imputation
2. Discretization
3. Log transformation
4. One-hot encoding
5. Normalization
6. Standardization
7. Feature creation
8. Feature extraction
9. Underfitting

10. Overfitting

4.10 Test Your Understanding

1. Why should we check for missing values in a dataset?
2. Are missing values always a problem?
3. Should we always delete missing values? Why or why not?
4. Explain discretization by giving a practical example.
5. Explain normalization.
6. Mention two reasons in support of using normalization.
7. Using an example, demonstrate the need for using standardization in some

situations.
8. Do we always need to remove outliers? Why or why not?
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The features of this dataset are described as follows:

4.12 Lab

4.12.1 Working Example in Python

Download the California housing market dataset from the following: https://www.
kaggle.com/datasets/camnugent/california-housing-prices

https://doi.org/10.1109/ACCESS.2021.3077483
https://doi.org/10.1109/ACCESS.2021.3077483
https://doi.org/10.1109/ACCESS.2020.3041192
https://doi.org/10.1109/ACCESS.2020.3041192
https://www.kaggle.com/datasets/camnugent/california-housing-prices
https://www.kaggle.com/datasets/camnugent/california-housing-prices
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1. longitude: a higher value is farther west
2. latitude: a higher value is farther north
3. housingMedianAge: the median age of a house within a block
4. totalRooms: the total number of rooms within a block
5. totalBedrooms: the total number of bedrooms within a block
6. population: the total number of people residing within a block
7. households: the total number of households, a home unit, within a block
8. medianIncome: the median income for households within a block of houses

(in tens of thousands of US Dollars)
9. medianHouseValue: the median house value within a block (measured in US

Dollars)
10. oceanProximity: the location of the house with respect to the ocean

4.12.1.1 Read the Dataset

Import few libraries and read the file (Fig. 4.12).
You can display some information about the dataset by typing df.info()

(Fig. 4.13).
We can already notice that total_bedrooms have missing values (i.e., have less

non-null values than the other features).

Fig. 4.12 reading the
dataset

Fig. 4.13 information
about the dataset displayed
by python

http://df.info


140 4 Data Preprocessing

Fig. 4.14 Information displayed by the data frame .head() method

Fig. 4.15 Five distinct
values are stored in feature
ocean_proximity

df.head() displays another kind of information. Try it. Only the first 5 rows of data
care displayed by default; however, you can specify another number, if you wish to,
by passing a value to in the .head() (e.g., df.head(10)) (Fig. 4.14).

We can notice in Fig. 4.13 that all variables are float but ocean proximity which is
displayed as of type “object.” Figure 4.14 displays values for ocean_proximity and
we can notice that the features hold String values.

We can display the different stored values (Fig. 4.15). There are five distinct
values are stored in feature ocean_proximity. This is a categorical feature that can
benefit from One-Hot-Encoding.

Let us explore the data frame df more, type df.describe() (figure). Python will
display few statistics for the numeric data only (Fig. 4.16).

We can notice that these numeric variables are measured on different scales, they
would benefit from standardization.
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Fig. 4.16 Statistics for the numeric data

Fig. 4.17 Data frame splitting

Fig. 4.18 Imputing data in

4.12.1.2 Split the Dataset

Our aim is to predict the median house value. Let us start by splitting the df data
frame into training and testing datasets (Fig. 4.17). x_train, y_train will contain the
training features and target/outcome and x_test and y_train the training features and
target/outcome. The split was 70% for training and 40% for testing. The
random_state can be assigned any number and it will serve to make the same split
every time we run the program.

4.12.1.3 Impute Data

Let us start with imputation; to impute the missing values follow the instructions in
Fig. 4.18. We are imputing the missing values in total_bedrooms by replacing the
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missing values with the median value for bedrooms (i.e., strategy="median'"). In the
following, we would apply the imputation to all numeric features regardless if they
had or not missing values. But first we would copy the numeric values in a special
data frame x_train_num (you can call it anything) after dropping the string feature
ocean_proximity.

We can have other strategies in other problems, such as the mode or the mean.
Axis = 1 informs python that we are targeting a feature (column in the frame),
axis = 0 is reserved for rows.

The .fit () method of the imputer computes the median for each feature. While
imputer_statistics displays the median computed for each numeric feature (e.g., -
118.51, 34.26).

Now if you type x_train_num_imputed = imputer.transform(x_train_num) then
you will be making imputation on the x_train_num and python returns the result to
x_train_num_imputed. The .transform() method applies the operation on the data.

Try to display both x_train_num and x_train_num_imputed and you will see the
result.

4.12.1.4 One-Hot-Encode Data

Now let us one-hot-encode the proximity to the ocean feature. Remember that df
[“ocean_proximity”].value_counts() displayed 5 different categorical values for
ocean_proximity (Fig. 4.15). Try to display the ocean_proximity values by writing
x_train [“ocean_proximity”] (Fig. 4.19); we can notice that it is an array.

We need to store the data in a data frame to apply one-hot-encoder. Write
proximity = pd.DataFrame(x_train[“ocean_proximity”]) to create a new variable
called “proximity” that holds the data frame, then display the data frame to check the
result (Fig. 4.20).

Follow the instructions in Fig. 4.21 to one-hot-encode proximity. Notice the .
fit_transform() function, it fits the transformer to proximity and then it transforms
data in proximity. When we tried to display the encoded variable
proximity_one_hot_encoded the array was large and contained a lot of zeros in

Fig. 4.19 Displaying
proximity as an array
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Fig. 4.20 Transform the
array proximity to a data
frame and save it in
proximity

Fig. 4.21 One-Hot-Encoding in python of the proximity data frame

each column; that is called a sparse array in python and cannot be displayed, to
display it we have used the .toarray() method.
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4.12.1.5 Scale Numeric Data: Standardization

To scale the numeric data that we have imputed, follow the instruction in Fig. 4.22.
The instructions are self-explanatory by now. If you need to normalize data, you can
use the MinMaxScaler in the same manner you have used the StandardScaler. Not
that we scaled x_train_num_imputed not x_train_num.

4.12.1.6 Create Pipelines

More to learn in the next chapters. For the time being, try can explore more how to
put back together in one data frame, the x_tain_num data frame containing all the
numeric imputed and standardized features and proximity_one_hot_encoded
containing the one-hot-encoded ocean proximity feature (check Pipeline and
ColumnTransformer in Fig. 4.23). You can read more about python data frames
and more on this website: https://docs.python.org/3/tutorial/

4.12.1.7 Creating Models

To complete our exploration of how to proceed in a machine learning project, let us
move a bit further and use a few algorithms that will be covered in detail later. In the
following, we will use a linear regression, random forest, and decision trees [37].

Linear regression is one algorithm that we can use to estimate the price of a house
based on our dataset, we can use the root-mean-square error (RMSE) as a measure of
the prediction error the algorithm is making. Figure 4.24 shows that the RMSE
(68763.97) for the linear regression model fitted on the x_train_preprocessed dataset.

Fig. 4.22 Standardization of the numeric data frame

https://docs.python.org/3/tutorial/
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Fig. 4.23 Preprocessing the training data set using a Pipeline and a ColumnTransformer

While the RMSE for a decision tree regressor algorithm shows a zero as error
(RMSE = 0) (Fig. 4.25). Whenever it is too good to be true then it is not true. The
model has fitted the training dataset so well that it did not do any error in predicting
the houses’ prices; obviously, the model overfitted the training data.
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Fig. 4.24 Applying linear regression and checking the algorithm performance (RMSE)

Fig. 4.25 Applying the decision tree regressor algorithm and checking the algorithm performance
(RMSE)

4.12.1.8 Cross-Validation

In Figs. 4.26 and 4.27 we can see the performance of the decision tree and the linear
regression trained models evaluated using ten-fold cross-validation. K = 10 has
proven to be leading to good estimates.

We can notice, that the mean RMSE score for the decision tree model is much
higher than zero (which confirms that the learned model overfitted the training
dataset). Cross-validation will display the scores for each iteration, and the mean
and standard deviation of the scores.

Let us try a third algorithm called random forest. In Fig. 4.28, we can notice the
random forest model training, the RMSE score after training (18496) and the mean
RMSE score after k-fold cross-validation (49710), the latter is lower than the
corresponding performance for both the linear regression and the decision tree
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Fig. 4.26 Applying cross-validation to evaluate the performance of the decision tree on an
evaluation dataset

Fig. 4.27 Applying cross-validation to evaluate the performance of the linear regression on an
evaluation dataset

regressor models. The random forest model seems a good candidate for our dataset
and we can adopt it as the model of choice.

4.12.1.9 Hyperparameter Finetuning

Two final steps are needed: fine tune the model of choice and testing it on the testing
dataset. Each algorithm uses a set of hyperparameters; these are parameters that are
set before the learning starts; they are different than the model’s parameters that are
found through the learning process (e.g., the coefficients of a linear model). Each
algorithm has default values for its hyperparameters.

So, the random forest model found using the default hyperparameters is only one
combination of values among many others; if we tweak the hyperparameters of the
random forest (or any other algorithm) we might end up with a model that performs
better (or worse) than the one we found using the default hyperparameters’ values.

So, we can try to tweak the hyperparameters to find the optimal model for our
dataset. In Fig. 4.29 we can find the instructions in python to finetune two random
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Fig. 4.28 Applying the random forest algorithm and checking the algorithm performance (RMSE)

Fig. 4.29 Fine tuning the hyperparameters of our algorithm of choice (e.g., the random forest) and
checking the best hyperparameters

forest hyperparameters (n_estiamtors and max_features). We are using the
GridSearchCV algorithm in python to find the best estimates for those parameters
among a set of values that we provide. In our example, we provide for n_estimators
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Fig. 4.30 Testing the performance of the fine-tuned random forest model on the testing dataset

three values to try 3, 10, and 30. GridSearchCV go through all the provided
hyperparameters’ values and create a model for each combination of values and
assess its performance, then chooses the best performing model.,
RandomizedSearchCV is another way of searching for the best model; we provide
for RandomizedSearchCV a range of valid values and RandomizedSearchCV
selected randomly from these sets of values to generate the best model.

Notice that after finding the optimal model we have trained it on the training
dataset (Fig. 4.29). The last step is to finally measure the optimal model’s perfor-
mance on the testing dataset (Fig. 4.30). Frist we apply the preprocessing steps to the
testing dataset using the transformer that was fitted on the training dataset (i.e., we
never use transformer.fit() on the testing dataset).

Using GridSearch, we have demonstrated the hyperparameter tuning for the
random forest model only. The whole process can be seen in Fig. 4.31. In a project,
you might want to tune several candidate models, measure their performances using
the testing dataset, and choose the best-performing one.

NOTE: The machine learning labs, starting at Chap. 6, demonstrate the use of
one specific algorithm. Hence, those labs are structured generally in the
following way: split the data into training and testing datasets, pre-process the
datasets, display graphs, finetune the model’s hyperparameters (e.g., perform
GridSearchCV), fit the optimal model on the testing dataset, and finally test it on
the testing dataset and display its performance (Fig. 4.31). However, there is little
commenting on the displayed graphs.

Hence, your first mission in every machine learning lab will be to:

1. Check the graphs and comment on interesting observations.
2. Once you have learned a few algorithms, you can compare the performance of

few and choose the best-performing one.
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Fig. 4.31 Steps in a
Machine learning project

4.12.2 Working Example in Weka

The diabetes dataset contains a list of predictor variables to the outcome of
interest (i.e., diabetes) for women 21 years of age or older. Predictors include the
following variables:

4.12.2.1 Missing Values

We will use the Pima Indians diabetes dataset that can be found with other well-
known datasets in the UC Irvine Machine Learning Repository (https://archive.ics.
uci.edu/ or https://archive-beta.ics.uci.edu/) as well as on Kaggle.com (https://www.
kaggle.com/). You can download the dataset from https://www.kaggle.com/datasets/
uciml/pima-indians-diabetes-database. However, the diabetes.arff file, formatted for
Weka, can be found in the data folder of the installed software.

– Pregnancies: the number of pregnancies the woman has had
– Glucose: plasma glucose concentration (mmol/L)
– BloodPressure: diastolic blood pressure (mm Hg)

https://archive.ics.uci.edu/
https://archive.ics.uci.edu/
https://archive-beta.ics.uci.edu/
http://kaggle.com
https://www.kaggle.com/
https://www.kaggle.com/
https://www.kaggle.com/datasets/uciml/pima-indians-diabetes-database
https://www.kaggle.com/datasets/uciml/pima-indians-diabetes-database
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Fig. 4.32 Histogram of the BMI variable in the diabetes dataset displayed in Weka

Fig. 4.33 BMI attribute descriptive statistics

– SkinThickness: triceps skinfold thickness (mm)
– Insulin: insulin level (mu U/ml)
– BMI: body mass index (kg/m2)
– DiabetesPedigreeFunction: diabetes pedigree function (a function that scores the

probability of diabetes based on family history)
– Age: the age in years
– Outcome: 0 for not diabetic, and 1 for diabetic

To understand the distribution of values of predictors, a histogram is beneficial.
The histogram of the mass variable in the diabetes dataset shows us that 11 data
instances have missing BMI measurements, i.e., mass = 0, which is not a possible
value for BMI (Figs. 4.32 and 4.33).
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Fig. 4.34 Marking missing values using NumericCleaner

We can decide to delete these 11 instances or to impute the missing values. Let’s
delete them. We can always verify the result by plotting the histogram again.

We can mark the missing values using the NumericCleaner filter (Fig. 4.34); then
we can either delete all instances containing 0 as a BMI value using the
RemoveWithValues (Fig. 4.35) or replace the 0 with the mean BMI using the
ReplaceMissingValues filter (Fig. 4.36). To apply NumericCleaner, hoose the
NumericCleaner filter from Filter/Usupervised/Attribute. Click on its name. A list
of parameters appear. Set the following parameters: (1) attributeIndex to 6 (i.e., the
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Fig. 4.35 Histogram of the BMI variable in the diabetes dataset after deleting instances of
missing BMI

mass), (2) the minimum allowed for the attribute minThreshold to a value close to
zero (e.g., 0.000001), and the minDefault to the value NaN, which represents the
value “unknown” and will be used to replace that values that are below the threshold
(in our case the value zero). Click on Apply. For RemoveWithValues filter that can
be found under Filter/Usupervised/Instance, set the attributeIndices to
6 and matchMissingValues to True, then click on Apply. For the
ReplaceMissingValue filter that can be found under Filter/Usupervised/Attri-
bute, there are no parameters to set.
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Fig. 4.36 Histogram of the BMI variable in the diabetes dataset after replacing instances of missing
BMI with the mean BMI. Notice that the number of distinct values has increased by one (from
247 to 248) and the number of instances around the mean value mean has increased by 11 (from
113 to 124)
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Fig. 4.37 Choosing
Discretize filter in Weka

4.12.2.2 Discretization (or Binning)

To discretize one or more attributes in Weka, we can use the filter unsupervised/
attribute/Discretize (Fig. 4.37). Type “1” in the Attribute Indices to discretize the
Pregnancies attribute (or leave it first-last if you want to attempt to discretize all
attributes (Fig. 4.38); other parameters that you can explore can also be set. The
result displayed shows 10 discrete intervals (Fig. 4.39). As mentioned above, some
algorithms such as naïve Bayes perform better using discrete values.

4.12.2.3 Data Normalization and Standardization

In Weka, we can use the unsupervised/attribute/Normalize filter to normalize an
attribute and the unsupervised/attribute/Standardize filter to standardize
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Fig. 4.38 Changing filter
parameters

it. Figure 4.40 shows the results of normalizing the whole dataset, while Fig. 4.41
shows the results of standardizing it.

4.12.2.4 One-Hot-Encoding (Nominal to Numeric)

Figures 4.42 and 4.43 show the result of converting the discrete feature Age in the
contact lenses dataset to a numeric value using unsupervised/attribute/
NominalToBinary. The dataset can be found in the Weka data folder, or in the
UCI repository https://archive.ics.uci.edu/ml/datasets/Lenses. It would be much
easier to use the Weka file “contact-lenses.arff”.

https://archive.ics.uci.edu/ml/datasets/Lenses


The following exercise is for you to execute using RStudio and Python.
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Fig. 4.39 Changing filter parameters

4.12.3 Do It Yourself

4.12.3.1 Lenses Dataset

1. Using the lenses dataset:

(a) Perform discretization of the Spectacle-Prescrip attribute.
(b) What other attributes can be discretized?

2. Using the diabetes dataset:

(a) Normalize all attributes.
(b) How would you check if the normalization filter was executed?
(c) Standardize all attributes.
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Fig. 4.40 The result of normalizing the diabetes dataset; the minimum and maximum of every
attribute are 0 and 1

(d) How would you check if the normalization filter was executed?
(e) Create a new dataset where missing values in the attribute Pregnancies are

deleted.
(f) Create a new dataset where missing values in the attribute Pregnancies are

imputed with the mean of the attribute.
(g) What other imputation methods can be used besides the mean?
(h) Create a new dataset where missing values in attribute Pregnancies are

imputed with a method other than the mean?
(i) Are some imputation methods better than others? How?
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Fig. 4.41 The result of standardizing the diabetes dataset; the mean and standard of every attribute
are 0 and 1
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Fig. 4.42 Age attribute set to three categories before discretization

You can apply the strategies explained in his chapter on other datasets, such as:

4.12.3.2 Nested Cross-Validation

For the California housing prices problem presented above, implement nested cross-
validation in Python for the Random Forest, Logistic Regression, and Decision trees.
Use the hyperparameters used above.

4.12.4 Do More Yourself

1. Glass identification dataset, which can be downloaded using the following link:
https://archive-beta.ics.uci.edu/ml/datasets/42

2. Labor relation dataset, which can be downloaded using the following link: https://
archive-beta.ics.uci.edu/ml/datasets/56

https://archive-beta.ics.uci.edu/ml/datasets/42
https://archive-beta.ics.uci.edu/ml/datasets/56
https://archive-beta.ics.uci.edu/ml/datasets/56
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Fig. 4.43 Effect of discretization on the Age attribute
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Chapter 5
Data Visualization

5.1 Introduction

Visualization via graphics like charts, graphs, and images is an effective and efficient
way to interpret and understand data and help spot valuable information such as
patterns, trends, and anomalies [1]. The reason is that, unlike tables and written text,
graphs are primarily visual in nature, and approximately 70% of our sense receptors
are dedicated to vision [2]. Moreover, our eyes are drawn to patterns and colors, can
easily differentiate red from blue and a circle from a square, and can quickly see
trends and outliers [3].

While the invention of data visualization may not be easily attributed to one
individual, William Playfair (1759–1823) is generally viewed as the inventor of
many common graphical forms, such as bar and pie charts [4]. One of his well-
known visualizations is his balance of trade and chart of the national debt of
England, one of the earliest line charts used to represent time series (Fig. 5.1).

Playfair was also one of the first people to use charts not only to educate but also
to persuade and convince, for example, by comparing the “weekly wages of a good
mechanic” and the “price of a quarter of wheat” from 1565 to 1821 (Fig. 5.2) [7].

Another classic example of an old visualization is the illustration of Napoleon’s
failed Russian campaign of 1812 by Charles Minard (Fig. 5.3). The graph displays
the number of French soldiers marching toward and then retreating from Moscow,
overlaid on top of a map. The thickness of the band is representative of the number of
soldiers, which decreased as the army moved from France on the right to Russia on
the left. Underneath the map is a line chart displaying the temperature that soldiers
faced as they moved during the campaign.

Florence Nightingale visualized in 1858 the factors affecting the lives and death
rates of the British army in a graphic known as “Nightingale’s Rose” or “Nightin-
gale’s Coxcomb” (Fig. 5.4). She showed Queen Victoria in her visual graphic that it
was infections (in blue) killing the highest number of soldiers and not wounds [7].

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
C. El Morr et al., Machine Learning for Practical Decision Making, International
Series in Operations Research & Management Science 334,
https://doi.org/10.1007/978-3-031-16990-8_5
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Fig. 5.1 William Playfair’s balance of trade and chart of national debt of England (Source:
Wikimedia [5])

Fig. 5.2 William Playfair’s 1821 chart (Source: Wikimedia [6])

In the remainder of this chapter, we introduce the basics of data visualizations,
including a taxonomy of basic graphical objects and charts and their uses. We
include several visualizations from different fields generated with different software



packages using different sources of open data. We also cover infographics and
dashboards, which are visualization-rich tools that are increasingly being used in
many industries. We finish with guidelines for building good visualizations.

5.1 Introduction 167

Fig. 5.3 Napoleon’s failed Russian campaign of 1812 by Charles Minard (Source: Wikimedia [8])

Fig. 5.4 Florence Nightingale’s 1858 diagram of the causes of mortality in the army in the East
(Source: Wikimedia [9])
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5.2 Presentation and Visualization of Information

The type of data sometimes dictates the type of graph that can or cannot be used. As
a quick reminder, data are broken into two types: quantitative and categorical.
Quantitative values measure things and consist of a quantity and unit of measure
(e.g., 300 km). Categorical data divide information into useful groups and are
nominal (e.g., fall, winter, spring, summer), ordinal (e.g., low, medium, high),
interval (e.g., 0–9, 10–19, . . .), and hierarchical (e.g., year, quarter, month, week,
day). In many cases, the type of data dictates the type of graph and visualization to
be used.

5.2.1 A Taxonomy of Graphs

Of the different available taxonomies of graphs, we will follow the one proposed by
Stephen Few [2], a well-known expert in data visualization. According to Few,
quantitative data can be basically represented in graphs by the following six basic
objects: points, lines, bars, boxes, shapes with varying 2D areas, and shapes with
varying color intensity.

A point is a simple dot on a graph representing two values, one on each axis, and a
graph consisting of such points is referred to as a scatterplot (Figs. 5.5 and 5.6).
Scatterplots, which are representations of many distinct data points on a single chart,
give a general idea about the distribution of the data and are useful in highlighting
relationships between different variables, showing if the two variables tend to vary
independently or not. Scatterplots are also useful in showing correlations and in
detecting data outliers [1, 2, 11].

A line connects a series of values or distinct points in a graph and is a good
representation of how values change or evolve over time (called a time series)
[1]. Line charts are used to view trends and cycles in data, usually over time or
other ordinal data (Figs. 5.7 and 5.8) [11].

A bar, one of the most common types of data visualizations, is a rectangle that
encodes quantitative information by its length (Fig. 5.9). Bars are easy to see and
compare and should always begin at the value of 0 [2]. Bar charts are used to quickly
compare data across categories, show trends and outliers, and highlight differences
at a glance. Bar charts are especially effective when data can be split into multiple
categories [11]. Graphs composed of vertical bars are referred to as column charts.

A box is also rectangular but encodes a wide range of values, such as the
minimum, maximum, and median values (Fig. 5.10). Graphs of such boxes are
referred to as box-and-whisker plots or boxplots and are used to show distributions
of data. Typically, the box contains the median of the data, the first quartile (25% less
than the median), the third quartile (25% greater than the median), and the whiskers
represent data within 1.5 times the interquartile range (i.e., the range between the first
and third quartiles). The whiskers can also be used to show the maximum and
minimum points within the data [11]. Boxplots are often used to compare the
distribution of different datasets [2].
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Fig. 5.5 This simple example of a scatterplot shows the 2021 population estimate of Canadian
provinces. With this scatterplot, the significantly large size of the population in Ontario is imme-
diately evident, as is the very low population of Prince Edward Island. This graph was generated
using Tableau Desktop software and Statistics Canada population open data [10]

Shapes with 2D areas represent values in proportion to their area rather than their
location on the graph. A popular example is the pie chart (Fig. 5.11), where each
sector of the pie represents a percentage of the whole. However, despite its frequent
use, a pie chart is not recommended when the compared values are close or when
there are many categories or sectors to compare [1, 2].

Another example of shapes with 2D areas is the bubble, which is a scatterplot that
quantifies three values, two by their relative location on each axis and the third by the
size of the bubble. A fourth variable can be quantified by applying variable intensities
of the same color to the bubbles [2] or simply by using different colors (Fig. 5.12).

5.2.2 Relationships and Graphs

Graphs are used to display relationships in data by giving them shapes. There are
eight main types of relationship graphs that are typically used: time series, ranking,
part-to-whole, deviation, distribution, correlation, geospatial, and nominal compar-
ison [2]. Time series graphs show how something changed (increased, fluctuated,
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Fig. 5.6 This example of a scatterplot shows the population of Canada in 2021 by age group and
by sex. We notice that until the age of 40, the number of males exceeds the number of females and
that this is reversed afterward. We also see a dip in the population aged around 40–60 years. This
graph was generated using Tableau Desktop software and Statistics Canada population open data
[10]

Fig. 5.7 This example of a line chart or time series displays the incidence of the West Nile virus in
California on a weekly basis from 2012 to 2015. It clearly shows a yearly cycle where the incidence
peaks between weeks 39 and 42. This graph was generated using Tableau Desktop software and the
California Department of Public Health Open Data [12]
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Fig. 5.8 This example of a line chart highlights the trend of slow population increase in three
Canadian Maritime Provinces, and a decreasing trend in the fourth, from 1972 to 2021. The
software generated a forecast statistic until 2032. This graph was generated using Tableau Desktop
software and Statistics Canada population open data [10]

Fig. 5.9 This example of a bar graph, also called a column chart, or a stacked bar chart, shows the
population of Canada in 2021 by age group and by sex. It is a different visualization of the same
data in Fig. 5.6. This graph was generated using Tableau Desktop software Statistics Canada
population open data [10]



declined, etc.) over time (e.g., Figs. 5.7 and 5.8). Graphs display ranking relation-
ships such as larger than, smaller than, and equal to, sorted in increasing or
decreasing order (Fig. 5.9, though, is not sorted). Graphs display part-to-whole
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Fig. 5.10 This example of a box graph, also known as a box plot, represents death by heart disease
by sex in Canada (2000–2016). Each box displays the minimum, first quartile, median, third
quartile, and maximum values in the dataset. This graph was generated using SAP Lumira software
and Statistics Canada leading cause of death open data [13]

Fig. 5.11 This example of a pie chart depicts the distribution of the Canadian population by
province, clearly highlighting the relative population size in each. It is a different visualization of
the same data in Fig. 5.5. This graph was generated using Tableau Desktop software and Statistics
Canada population open data [10]



relationships by showing how individual values make up the whole of something
(for example, by percentage or rate of total) and how they compare to each other
(Figs. 5.9 and 5.11). Deviations represent how one or more sets of values differ from
a reference set of values (Fig. 5.13) [2].
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Fig. 5.12 This example of a bubble chart displays the average life satisfaction level (y-axis) and
work stress level (bubble size), by age group (x-axis) and sex (color) in Canada (2012). Among the
visual observations are that after a certain age, females have a lower life satisfaction and higher
stress level, but that there is no clear relationship between life satisfaction and work stress in
general. This graph was generated using Tableau Desktop software and Statistics Canada Commu-
nity Health open data [14]

A distribution represents how values are distributed across an entire range, from
the lowest to the highest, and is called a frequency distribution when it shows the
number of times something occurs. When bars are used, it is referred to as a
histogram (Fig. 5.14) [2]. Histograms group the data into specific categories
known as bins and assign a bar size that is proportional to the number of records
in each bin [11].

A graph displays a correlation when it shows whether two sets of values vary
(increase, decrease, follow) in relation to each other, positively or negatively, and to
what degree (e.g., Figs. 5.6, 5.9, and 5.12). Geospatial relationships between values
are displayed by plotting them on a map (Fig. 5.15). Finally, a nominal comparison
is the simple display of a set of discrete quantitative values so that they can be easily
read and compared (e.g., Fig. 5.13) [2].

To display a specific relationship graphically, different objects and types of
graphs can be used, with some being more adequate for the task than others, while
others should be avoided. Table 5.1 is a summary of the recommended graphical
objects used to display each type of relationship described above.
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Fig. 5.13 This graph represents the number of deaths per 100,000 citizens from HIV in Canada by
age group and sex (2000–2016). It shows a significant and very clear deviation for males, compared
to females, after the age of 25. This graph was generated using Tableau Desktop software and
Statistics Canada leading cause of death open data [13]

Fig. 5.14 This example of a histogram displays the distribution of households’ median after-tax
income (2016). This graph was generated using Tableau Desktop software and Statistics Canada
2016 Census open data [15]
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Fig. 5.15 This example of a geospatial map displays the population by province in Canada, where
a larger font indicates a larger population in the different Canadian provinces and territories in 2016.
This graph was generated using Tableau Desktop software and Statistics Canada population open
data [10]

In addition to the visualizations shown so far, there is a large number of possible
visualizations, many of which are very popular and useful. Below are some addi-
tional examples of popular or interesting advanced visualizations (Figs. 5.16, 5.17,
5.18, 5.19, 5.20 and 5.21).

There are infinite additional ways to visualize data and information. What has
been covered so far in this chapter is an introduction to the basic and most popular
visualizations. To view additional examples of interesting and rich visualizations,
you can explore numerous sources such as the Information Is Beautiful website
(https://informationisbeautiful.net/), the Data Visualization Catalogue (https://
datavizcatalogue.com/), and Tableau’s public gallery (https://public.tableau.com/
en-us/s/gallery).

A popular guide for selecting a chart based on the number of variables, the kind of
comparison needed, and the time frame can be found at the Extreme Presentation
website (https://extremepresentation.typepad.com/blog/2006/09/choosing_a_good.
html).

A number of excellent interactive visualizations can be found at different
websites, such as Statistics Canada’s Interact with Data site (https://www.statcan.
gc.ca/en/interact). Two examples can be found in Figs. 5.22 and 5.23. Another good
example is the website of the Institute for Health Metrics and Evaluation (IHME),
which is an independent global health research center at the University of
Washington (http://www.healthdata.org/results/data-visualizations). Most visualiza-
tions are interactive with filters that allow the viewer to select from a variety of graph

https://informationisbeautiful.net/
https://datavizcatalogue.com/
https://datavizcatalogue.com/
https://public.tableau.com/en-us/s/gallery
https://public.tableau.com/en-us/s/gallery
https://extremepresentation.typepad.com/blog/2006/09/choosing_a_good.html
https://extremepresentation.typepad.com/blog/2006/09/choosing_a_good.html
https://www.statcan.gc.ca/en/interact
https://www.statcan.gc.ca/en/interact
http://www.healthdata.org/results/data-visualizations


types, regions, dates, measures, indicators, etc. Some are also dynamic and display
data evolving over a period of time. Another very common type of interactive
visualization is the dashboard, which is introduced next.

176 5 Data Visualization

Table 5.1 Graphical object to use for each type of relationship (adapted from Few (2012) [2])

Graphical Objects

Relationship Points Lines Bars Boxes

Time series (cate-
gorical data on the
x-axis and quantita-
tive values on the y-
axis)

Dot plot only
when values were
not collected at
consistent inter-
vals of time

For emphasis
on the overall
pattern (e.g.,
Figs. 5.7 and
5.8)

For emphasis on
individual values

Only when
showing distri-
butions that
change over
time

Ranking Dot plot when the
quantitative scale
does not start at 0;
otherwise, use bar

Avoid Horizontal or
vertical (e.g.,
Fig. 5.9, but
preferably
sorted)

Only when
ranking multi-
ple distribu-
tions; horizon-
tal or vertical

Part-to-whole Avoid To display
how parts of a
whole change
over time

Horizontal or
vertical (e.g.,
Fig. 5.9)

Avoid

Deviation Dot plot when the
quantitative scale
does not start at 0

Useful when
combined
with time
series

Horizontal or
vertical; always
vertical if com-
bined with time
series

Avoid

Distribution
(single)

Known as a strip
plot; emphasis on
individual values

Known as a
frequency
polygon;
emphasis on
overall pattern

Known as a his-
togram; emphasis
on individual
intervals (e.g.,
Fig. 5.14)

Avoid

Distribution
(multiple)

Known as a
frequency
polygon.
Limit to a few
lines

Avoid Known as a
box plot (e.g.,
Fig. 5.10)

Correlation Known as a
scatterplot (e.g.,
Fig. 5.6)

Avoid Horizontal or
vertical

Avoid

Geospatial Different point
sizes encode
values (e.g.,
Fig. 5.16)

Used to mark
routes (e.g.,
Fig. 5.16)

Avoid Avoid

Nominal
comparison

Use a dot plot if
scales do not start
at 0

Avoid Horizontal or
vertical; use
when the scale
starts at 0 (e.g.,
Fig. 5.9)

Avoid
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Fig. 5.16 This example of a geospatial graph shows the typical distance that can be reached in
5 minutes from the police stations in the city of Calgary in Canada (blue dots). The orange circles in
different sizes represent the relative crime rate in the different municipalities of the city. This graph
was generated using the ESRI ArcGIS Online tool [16] and the city of Calgary open data [17]

5.2.3 Dashboards

The dashboard is “a visual display of the most important information needed to
achieve one or more objectives, consolidated and arranged on a single screen so the
information can be monitored at a glance” [20]. It is a collection of related visual-
izations that are tied together through interactivity and are displayed on a single page
and can combine multiple different types of data in a single location [21]. Dashboards
can be used, for example, to monitor marketing campaigns’ landing pages, conver-
sion rates, visitors by location, lead by campaign source, and other key performance
indicators (KPIs) (Fig. 5.24). This interactive analytical dashboard allows the user to
select dates and regions for analysis. Another example is an e-commerce dashboard
(Fig. 5.25), which can be used to analyze and monitor sales and revenue from
different perspectives. More examples of dashboards from different industries and



job functions can be found on the websites of business intelligence companies such
as Qlik (https://www.qlik.com/us/dashboard-examples) and Sisense (https://www.
sisense.com/dashboard-examples/).
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Fig. 5.17 This is an example of a heat map, displaying the distribution of the Canadian population
by age group (2021). The larger the rectangle and the darker (or “hotter”) the color, the higher the
population. We see here that the 55–59 years old is the largest group in Canada. This graph was
generated using Tableau Desktop software and Statistics Canada population open data [10]

Fig. 5.18 This is an example of a heat map displaying the leading causes of death by age in Canada
(2000–2015). The darker the color, the higher the total number of deaths. The main difference
between a heat map and a treemap is that the latter can enable a hierarchical presentation of
additional variables [1]. This graph was generated using SAP Lumira software and Statistics
Canada leading cause of death open data [13]

https://www.qlik.com/us/dashboard-examples
https://www.sisense.com/dashboard-examples/
https://www.sisense.com/dashboard-examples/
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Fig. 5.19 This example of an area chart displays the growth of the population by province in
Canada between 1971 and 2021. This graph was generated using Tableau Desktop software and
Statistics Canada population open data [10]

Fig. 5.20 This is an example of a tag cloud used to display the leading causes of death in Canada
(2000–2015). The larger the text and the darker its color, the higher the total number of incidents.
Tag clouds are useful for displaying words or phrases based on their frequency and hence
importance [1]. This graph was generated using SAP Lumira software and Statistics Canada leading
cause of death open data [13]

Dashboards can be broken down into three roles: strategic, analytical, and
operational. At the executive level of an organization, dashboards support long-
term strategic decisions and focus on high-level measures of performance, including
forecasts. They tend to be simple and not interactive and do not require real-time data
updates. Dashboards that support data analysis demand rich comparisons, more
extensive history, and interaction with data, such as drilling down for more details.



They can help detect patterns in the data to identify the causes of problems, for
example. Similar to strategic dashboards, analytical dashboards work with static, not
real-time, data. Finally, operational dashboards are dynamic and immediate in their
nature. They present real-time data in a simple way but also have the means to attract
attention in cases when an operation falls outside the range of the acceptable
threshold of performance [20].
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Fig. 5.21 This is an example of a chart combining different graphical objects. It displays via lines
the number of deaths by influenza and pneumonia by sex from 2000 to 2015. It also includes a box
plot displaying the upper and lower whiskers, median, and upper and lower hinges. This graph was
generated using Tableau Desktop software and Statistics Canada leading cause of death open data
[13]

A good dashboard should be designed with the most important view in the top left
corner, not include too many views, use a consistent color scheme or compatible
ones, and have all the filters grouped together [21].

5.2.4 Infographics

The term “infographics” is an abbreviation of “information graphics.” They are a
combination of data visualizations, text, and images, presented in a logical manner
similar to storytelling, and are used to convey information and messages in an
attractive and easy-to-understand format [1, 24]. Infographics use many different
visual cues to convey information. With the overwhelming amount of data and
content generated and shared online, infographics have become very important
due to their ability to present information to an audience in a way that can capture



and keep the audience’s attention, engage them, and aid in their comprehension and
retention of the material [25]. Infographics are used in multiple disciplines, such as
public policy, journalism, business, and politics. In the healthcare field, infographics
are used for health communication and engagement, particularly to support compre-
hension among individuals with low health literacy [26]. They are helpful tools for
communicating key messages clearly, challenging people’s thinking, and changing
behaviors and attitudes [24].

5.2 Presentation and Visualization of Information 181

Fig. 5.22 This is an example of an interactive visualization consisting of a table, bar chart, and map
representing the distribution of household wealth in Canada. The site allows users to select wealth
indicator, distribution, and statistics. The graph was generated on Statistics Canada’s Interact with
Data—Data Visualization site [18]

Figure 5.26 shows two examples of infographics by Statistics Canada. The first
one was created to inform the public of its new 24-hour movement guidelines for
children and youth [27]. It includes general information, basic statistics about the
current physical activity levels in the country, and the factors that can increase them,
all in a simple, clear, easy-to-understand, and visually stimulating fashion for both
parents and young people. The second example is an infographic on rail transpor-
tation in Canada in 2020 [28]. Its role is to inform the public of the expenses and
revenues, the origin and destination of shipments, and the volume and type of
products in a simple and clear way that is easy to understand.
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Fig. 5.23 This is an example of interactive visualizations consisting of combined bar (change) and
line (index) charts representing the new housing price index for houses and land in Canada. The site
allows users to select the reference period, region, and type of change. The graph was generated on
Statistics Canada’s Interact with Data—Data Visualization site [19]

Fig. 5.24 Example of a lead generation (marketing) dashboard (Source: Sisense.com with permis-
sion [22])

http://sisense.com
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Fig. 5.25 Example of an e-commerce dashboard (Source: Sisense.com with permission [23])

Fig. 5.26 Examples of infographics (Source: Statistics Canada [27, 28])

http://sisense.com
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In general, infographics are designed without complex terminology, allowing the
public to understand the message without explanation from professionals [24]. A
study on the design of health-related infographics for engaging community members
with varying levels of health literacy found that successful designs are rich in
information but without distracting details. They support comparison, between
treatments, for example, with a clear recommendation. They provide valuable
contextual information and use familiar colors and symbolic analogies such as the
battery charging level to represent a patient’s sleep and energy levels [26].

5.3 Building Effective Visualizations

Clear communication of quantitative information is the essence of a graph. Six
principles, known as ACCENT, are at the basis of effective visual display of data [4]:

• Apprehension: the ability to correctly recognize relationships between variables
• Clarity: the ability to visually differentiate the different elements of a graph
• Consistency: the ability to build your understanding of a graph on similarities

with previous ones
• Efficiency: the ability to identify a complex relationship in a simple manner
• Necessity: the need for the graph
• Truthfulness: the ability to determine the true value represented by the graph

It is important to remember that despite the richness of graphs, sometimes the use
of a simple table is more efficient and effective in achieving the goal of data
interpretation. Tables are recommended when you want to look up individual values,
compare individual values, use precise values, or use summary and detailed infor-
mation in a single display [2]. Graphs are best used when the message is contained in
the shape of the values, such as trends and patterns, and to reveal relationships
between sets of values [2].

While graphs and charts are excellent tools for conveying information and telling
stories, you should be aware of many bad visualizations that are encountered
regularly. Among the sources of deficiency is the use of certain types of popular
graphs that should be avoided and the bad design of appropriate graphs. Among the
charts to avoid are donut charts, radar charts, circle charts, funnel charts, 3D charts,
and in some cases, pie charts [2, 29]. These somewhat popular charts are visually
appealing and are available in many software packages, but they fail to present
information accurately, clearly, accessibly, and efficiently [2]. In terms of design,
one of the most important guidelines is to avoid clutter, which includes visual
elements that use space and do not increase our understanding, which increases
our cognitive load or the mental effort required to learn new information [29]. Exam-
ples of clutter are too many elements, such as lines and bars, axes, data labels, colors,
and text. In addition to simplicity, the data need to be put in context, so the reader can
understand its meaning. The numbers that give a more faithful representation, be it
percentage change or absolute value, should be used. Color and fonts should convey
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information and not be used for decoration. Natural increments for the y-axis scale
are required, as is a zero baseline in all bar charts. Finally, it is best to use as few
graphical elements as possible to keep the visualization crisp and clean [30].

5.4 Data Visualization Software

The creation of appealing and beautiful visualizations can be achieved with a very
large number of software tools, starting with the common Microsoft Excel. Today,
Excel can create many different basic charts and graphs, such as columns and lines,
and complex charts and graphs, such as treemaps and waterfalls. It can also create
combinations of charts, such as clustered columns and lines (Fig. 5.27). For the
novice user, Excel recommends the most appropriate charts to use based on the data
selected in the spreadsheet.

Business analytics tools such as Tableau Desktop, Microsoft Power BI, and
Lumira by SAP provide a very large number of visualizations that are easy to use
and do not require advanced technical knowledge. Most of the work done is via
simple pointing, clicking, and dragging with the mouse. These advanced analytics
tools can also interpret the data to identify dimensions and measures, which are
comparable to the categorical and quantitative data discussed earlier in the book. The

Fig. 5.27 Example of a visualization with Microsoft Excel
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charts to use are recommended based on the data available. Tableau Desktop, for
example, has a Show Me button (Fig. 5.28) that highlights the available charts that
can be used based on the data and makes suggestions for using them. Such tools also
allow you to easily create presentations, infographics combining different charts, and
dashboards connected to dynamic data sources.

Fig. 5.28 Tableau analytics tool interface with the Show Me button
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While we have discussed Tableau, SAP Lumira, and Microsoft Excel in this
chapter and used them to generate the visualizations above, it is important to note
that there are many large software companies, such as SAS and IBM, and relatively
smaller niche players, such as QlikView and Sisense, that have software with
remarkable visualization capabilities. According to Gartner’s 2022 Magic Quadrant,
the leading platforms in analytics and business intelligence are Microsoft, Salesforce
(Tableau), and Qlik [31]. An article by PC Magazine lists Microsoft Power BI,
Tableau Desktop, Sisense, Domo, Google Analytics, Salesforce Einstein, Zoho,
SAP Analytics Cloud, and Chartio as the nine best data visualization tools [32].

In addition to the visualization tools or applications mentioned above, there are
many open-source libraries that allow analysts to present data in an interactive way
and engage a broad audience with new data [33]. An example of open-source
visualization libraries is D3.js (https://d3js.org/), where D3 stands for “Data Driven
Documents.” It is a JavaScript library for producing dynamic, interactive data
visualizations in web browsers, with features for interactions and animations. D3.
js uses HTML, CSS, and SVG to create data visualizations to be viewed on any
browser [33]. Another example is Google Charts (https://developers.google.com/
chart), which provides interactive charts for browsers and mobile devices. It uses
JavaScript and has a rich gallery of charts, is customizable, connects to dynamic
data, and provides interactivity and dashboards.

5.5 Conclusion

Data visualization is a critical capability for understanding and interpreting complex
data and relationships. Graphs and charts can tell a story, highlight trends, identify
outliers and deviations, make comparisons, and more in a simple and effective way.
There are many types of graphs and charts available, and selecting the one that best
matches the data and the questions you are trying to answer is crucial. Bad visual-
izations are difficult to understand and can distort what the data are trying to tell
us. Today, it is easy to create very rich visualizations using modern analytics tools
with simple pointing and clicking; however, it remains critical to have a good
understanding of the data to select the best visualization and be able to interpret it.

5.6 Key Terms

1. Scatterplot
2. Line charts
3. Bar charts
4. Box-and-whisker plots
5. Boxplot
6. Pie chart

https://d3js.org/
https://developers.google.com/chart
https://developers.google.com/chart
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7. Bubble chart
8. Time series graphs
9. Ranking relationships

10. Part-to-whole relationships
11. Deviations
12. Distribution
13. Frequency distribution
14. Histograms
15. Correlation
16. Geospatial relationships
17. Nominal comparison
18. Dashboard
19. Infographics
20. Analytics tools
21. Tableau Desktop
22. Power BI
23. Lumira

5.7 Test Your Understanding

1. Cite an example where would you use a scatterplot.
2. When would a line chart be a better fit to the objectives than a bar chart?
3. What is the benefit of a boxplot? Draw two boxplot examples to make your point

clear.
4. Your city is looking for the best way to plot poverty levels on a map. What type of

visualization tools would you suggest?
5. What is the difference between a bar chart and a histogram? Give a few examples

that illustrate the difference.
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5.9 Lab

5.9.1 Working Example in Tableau

In this chapter, you will learn how to perform basic visualizations using Tableau
Desktop. Tableau Desktop is one of the few major data visualization applications
that work on both Windows and Mac computers. You will be provided the instruc-
tions to get a student copy of Tableau Desktop and be guided to a number of tutorials
where you will follow up with the demonstration videos and practice with the
provided data files.

5.9.1.1 Getting a Student Copy of Tableau Desktop

Go to Tableau for students (https://www.tableau.com/academic/students) and click
on the “Get Tableau for Free” button. You will be asked to provide your student
information in order to get a one-year free Tableau Desktop license. Until your
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credentials are verified, you can use a free 14-day license. You will be provided
instructions to download Tableau Desktop for Windows or Mac.

Once your one-year student license expires, if you are still a student, you may
request an extension by resubmitting a request at www.tableau.com/studentlicense.

5.9.1.2 Learning with Tableau’s how-to Videos and Resources

The simplest way to learn how to create visualizations is to use the how-to videos
provided by Tableau at https://public.tableau.com/en-us/s/resources. While the
videos refer to Tableau Public, the cloud-based visualization application, you can
follow the instruction and use the provided data files with Tableau Desktop, which
you have downloaded and installed. The videos, which mostly range between 3 and
7 minutes, include step-by-step instructions that you can follow using the respective
data file.

The how-to-videos teach you how to connect to data in Excel and CSV formats,
Google Sheets, Web Data Connectors, spatial files (for maps), and PDFs. They will
teach you how to work with the data and prepare it by cleaning, structuring, pivoting,
and merging. You will learn to understand the logic of charts, how to create them,
and how to use the “Show Me” feature in Tableau. You will learn how to create and
format dashboards and stories. Finally, you will learn how to make visualizations for
multiple devices and for sharing on the web.

5.9.2 Do It Yourself

5.9.2.1 Assignment 1: Introduction to Tableau

Go to https://public.tableau.com/en-us/s/resources and watch the first video, entitled
“Tableau Public Overview.” Follow the instructions and apply them Tableau Desk-
top. There’s no need to create a Tableau Public account and upload your file. Insert
the two required screenshots below and submit this answer sheet and your saved
Tableau file (yourname.twb) to your instructor. Use a different color or format than
the one in the video demo.

Insert a screenshot of the map of Europe showing the CO2 emission per1.

capita (Hint: use these buttons: ).

2. Insert a screenshot of your dashboard (two charts) showing Canada’s
emission trend. (Hint: click on Canada on the map.)

http://www.tableau.com/studentlicense
https://public.tableau.com/en-us/s/resources
https://public.tableau.com/en-us/s/resources
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5.9.2.2 Assignment 2: Data Manipulation and Basic Charts
with Tableau

Go to https://public.tableau.com/en-us/s/resources and watch videos 7–12 inclusive.
Follow the instructions and apply them in Tableau Desktop. Insert the required
screenshots below and describe in a couple of sentences what you learned from each
video. Use a different color or format than the video demo. Submit this answer sheet
and your saved Tableau file (yourname.twb) to your instructor.

1. Insert a screenshot and summary from video #7: Data Preparation—The
Data Interpreter.

2. Insert a screenshot and summary from video #8: Data Preparation—
Pivoting your Data.

3. Insert a screenshot and summary from video #9: Data Preparation—Split-
ting your Data.

4. Insert a screenshot and summary from video #10: Data Preparation—Joins
and Unions.

5. Insert a screenshot and summary from video #11: Creating Your First
Chart.

6. Insert a screenshot and summary from video #12: Using the Show Me
Tool Bar.

5.9.3 Do More Yourself

5.9.3.1 Assignment 3: Charts and Dashboards with Tableau

Go to https://public.tableau.com/en-us/s/resources and watch videos 13–16 inclu-
sive. Follow the instructions and apply them in Tableau Desktop. Insert the required
screenshots below and describe in a couple of sentences what you learned from each
video. Use a different color or format than the video demo. Submit this answer sheet
and your saved Tableau file (yourname.twb) to your instructor.

1. Insert a screenshot and summary from video #13: Understanding the Logic
of Charts.

2. Insert a screenshot and summary from video #14: Combining Sheets on a
Dashboard.

3. Insert a screenshot and summary from video #15: Combining Sheets on a
Dashboard.

4. Insert a screenshot and summary from video #16: Dashboard Formatting.

https://public.tableau.com/en-us/s/resources
https://public.tableau.com/en-us/s/resources
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5.9.3.2 Assignment 4: Analytics with Tableau

Watch the four Tableau videos mentioned below and follow along with the provided
workbook. For each video, you follow along with on your computer using Tableau,
provide two screenshots showing that you did the work. Use a different color or
format than the video demo. Submit this answer sheet to your instructor.

Note: the first time you access the videos, you may need to create a free online
Tableau account if you do not have one.

1.
s
Watch the Tableau Trend Lines video, follow along, and insert two
creenshots below.

2. Watch the Tableau Reference Lines video, follow along, and insert two
screenshots below.

3. Watch the Tableau Forecasting video, follow along, and insert two
screenshots below.

4. Watch the Tableau Clustering video, follow along, and insert two
screenshots below.
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Chapter 6
Linear Regression

6.1 The Problem

Regression aims at predicting a future value, so the outcome we are trying to predict
is a number, not a class. Many problems can be reduced to predicting a number; for
example, predicting the median house value, or predicting the number of people who
will be infected by a virus, or predicting the rate of readmission to a hospital in a
certain season, etc. In all these examples, our outcome is a number, so regression can
be used to predict the outcome. In other words, we can use regression to build a
model that can predict (with a certain likelihood of success) the outcome based on
the existing features (i.e., dataset attributes). The situation resembles estimating a
function f that takes many variables as an input and computes a number that
estimates (with a certain likelihood of success) what the future outcome will
be. The statement “with a certain likelihood of success” refers to the probability
that the model (i.e., function) is correct; that model’s probability of success can be
computed when we build the model.

There are two types of regression algorithms: linear regression, which is the
subject of this chapter, and logistic regression, which is the subject of the next
chapter. Linear regression is used when we have reasons to believe that the model
(i.e., function) that predicts the outcome based on the input features is a linear model;
for example, a model such as outcome = 2x + 1.5y is a linear model. Note that when
the outcome is to be predicted from a single input variable (x), the regression is
described as simple linear regression, and whenever multiple input variables are
involved, we use multiple linear regression. Logistic regression is used when the
outcome is binary; for instance, true or false, success or failure, admitted or not
admitted.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
C. El Morr et al., Machine Learning for Practical Decision Making, International
Series in Operations Research & Management Science 334,
https://doi.org/10.1007/978-3-031-16990-8_6
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6.2 A Practical Example

Let us take a simple example to understand the process of regression and the method
called gradient descent.

Suppose we have the following dataset plotted in Fig. 6.1 and Table 6.1:
Our dataset seems to suggest that the relation between x and y is linear, which

means that it is reasonable to approximate the graph that passes through all the points
with a line (Fig. 6.2).
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Fig. 6.1 Graph for the dataset

Table 6.1 Dataset X 1 2 3 4 5

Y 1 2 3 2 5
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Fig. 6.2 A line representing the relationship between y and x



ð Þ
ð Þ

6.2 A Practical Example 197

Of course, the line that can be represented by fmodel(x)= w1x + w2 cannot cross all
the data points; hence, at each data point, an error will occur, which is equal to the
difference between the real value y and the estimated or predicted value by. We can
compute these errors, square them (to remove the sign effect), and sum them up:

E=
PN

i= 1 yi -byi� �2
; this is the overall error introduced by the model. Our objective

is to find (i.e., compute) the coefficients w1 and w2 that allow us to minimize the error
E of the model. We can then use that line (the model) with minimal error to predict
the y (the outcome) for any new point x (the input) that is not in our dataset.

Now, let us perform a gradient descent to calculate the w1 and w2 of the model
with the minimum error.

We can start with random values for w1 and w2: w1 = 0 and w2 = 0; our linear
model can be represented by fmodel(x) = 0x + 0.

We start with the first input in our dataset, x = 1 and we compute the predicted
value for its outcome, fmodel(1) = 0 × 1 + 0 = 0; the model’s error for x = 1 is
e1 = fmodel(x) - f(x) = 0 - 1 = - 1.

For the sake of simplicity, we will use the stochastic gradient descent that allows
us to compute new coefficients after using each input instance of the dataset. We
have passed through one instance (1, 1) so let us update the coefficients w1 and w2

based on the following formula: for all coefficients wj, j = 1 to n; wj = wj - η × d,
where d = ∇ f(wj), where η is a learning rate that we will explore below and d is the
derivative of f(x) for wj; we will consider η= 0.01; the error ei is the error induced by
the model at a particular instance i.

w2 =w2 - η × ei × d w1xþ w2ð Þ
dw2

=w2 - η× ei ð6:1Þ

w1 =w1 - η× ei × d w1xþ w2ð Þ
dw1

=w1 - η× ei × x ð6:2Þ

w2 = 0- 0:01 × - 1 = 0:01

w1 = 0- 0:01 × - 1 × 1= 0:01

We will use these new coefficients for the second instance (2, 2), and so on and so
forth. Each time we finish all the instances, we call this an epoch. After 30 epochs,
we will find the following values for w1 and w2; w1 = 0.81626 and
w2 = 0.20506796; we can use them to predict an f(x) for a new value of x.

If we compute the average error for each epoch and we display an error graph,
also called a cost graph (Fig. 6.3), we will have an idea about the convergence of the
model. For our example, we can notice that the model converged after seven or eight
epochs.

Now that we have seen a specific example, we can explore the theory behind it.
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Fig. 6.3 Cost graph

6.3 The Algorithm

6.3.1 Modeling the Linear Regression

The prediction ( y) for an input variable (x) in a simple linear regression can be
represented as y= coefficient * x + constant (like the function that represents a line),
also noted as

y=w × xþ w0:

In a multiple regression, we need to predict y using n input variables x1, x2, x3, . . .
xn; hence, for every instance i in the dataset, we can represent the prediction byi of the
real value y by

byi =w1 × x
i
1,w2 × x

i
2, . . .wn × x

i
n

þ w0,,where w0,w1, . . .wn are the parameters of the model:

Since for an instance i (i.e., a data point i), byi is only a predicted (i.e., estimated)
value of yi, then the difference yi -byi represents the error ei of the model for the
instance i. What we would like to construct is a model that minimizes the sum of the
errors in relation to all the instances in the dataset; that is, to minimize the sum of
error squares E:

E=
XN

i= 1
ei
� �2

=
XN

i= 1
yi -byi� �2

=
XN

i= 1
yi -

Xn

j= 0
wj × x

i
j

� 2

where xi0 = 1; indeed, w0 is a constant, so w0 =w0 × 1=w0 × xi0,where x
i
0 = 1. Note

that we have added the errors’ squares instead of the errors because we are interested
in the magnitude of the errors, not in their signs.
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Solving this equation is computationally difficult; instead, a gradient descent will
be used.

6.3.2 Gradient Descent

If the error E can be written as a function, the problem of finding the minimum
E becomes a problem of finding the minimum of a function, which solution is
relatively easy.

To simplify, we will take a function with one input variable x. To find the
minimum of a function f at a single variable x, we need first to find the deriva-
tive f ′(x), which measures how much the function f(x) changes with respect to a
change in the input (x).

f 0 xð Þ= change in f xð Þ
change in x

If the derivative f ′(x) is negative, we know that the function f at that point is going
downhill (i.e., f is decreasing); if the derivative is positive, then the original function
is going uphill (i.e., f is increasing).

Knowing the direction of the function f will allow us to take a step in the required
direction, i.e., downhill, so that we can find the minimum of f. The process is called
gradient descent.

To illustrate the process, we will use a function y = f(x) = x2. The derivative of
f(x), notated as f ′(x), is equal to 2x. The following figure (Fig. 6.4) plots f(x) as a
curve, and its corresponding derivative f ′(x) as a line. Starting from the negative end
of the x-axis, we can note that f(x) is decreasing until it reaches a minimum and starts
increasing again; while f(x) is decreasing toward the minimum, f ′(x) is always
negative until f(x) reaches its minimum (i.e., zero). Past the minimum, f(x) increases
and f ′(x) becomes positive. Note that f′(x) is 0 when f(x) is at its minimum.

f(x) = x2 is a function with one global minimum; we call such functions convex
functions. Non-convex functions have more than one local minimum and one global
minimum (Fig. 6.5).

If we can demonstrate that the error E can be expressed as a function, then we can
use the gradient descent to find its minimum. Given that byi= w1×xi1 , w2×xi2 , . . .
wn × xin+ w0, using a vector notation, we can express all predicted byi as a matrix bY
that is a function of a two-dimensional matrix X and a weight vector W, bY =WX:
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Fig. 6.4 The plot of f(x) = x2 as a curve, and its derivative f ′(x) = 2x as a line. Note that the
derivative = 0 when x = 0

bY = by1 by2 . . . byNh i
= w0, w1, . . .wn½ �×

x10 x20

x11 x21
. . . . . .

x1n x2n

. . . xN0

. . . xN1

. . . . . .

. . . xNn

6666664
7777775=WX

Since bY is a function, then E, which is equal to N
i= 1 yi -byi 2

, is a function too,
and its minimum can be found using a gradient descent approach, which requires
finding the coefficients wi for which the derivative of the function E is equal to 0, i.e.,
the gradient of E with respect toW, is equal to 0. For those values of wi for which the
gradient of E (noted ∇E) is zero, the function E is at its minimum. The graph in
Fig. 6.6 represents the error function E for one variable w; in a real-life problem, we
will have many features and hence any weights wi.

The word “gradient” is borrowed from calculus, where the gradient ∇ of a
function f(v0, v1, . . . vn) at a certain point p is the vector of partial derivatives of
f at p, notated as ∇f(p):
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Fig. 6.5 Non-convex function with one local minimum and one global minimum

∇f pð Þ=

∂f
∂v1

pð Þ
. . .
∂f
∂vn

pð Þ

6664
7775:

In our case, we are computing the partial derivatives of the error function E with
respect to W, which express how much E varies with the variation of each wi.

∇E=

∂f
∂w0

pð Þ
. . .
∂f
∂wn

pð Þ

2
6664

3
7775:

To find the minimum, we start at a random point on the function E. We compute
the derivative of E at that point; then we slightly changeW by adding a value noted η
to each coefficient; η denotes the learning rate, wj = wj - η × d, where d = ∇ f(wj),
and represents the model’s error attributed to the weight [1]. The learning rate η
should be small and is used to avoid oscillation [2], i.e., avoid learning by jumping
back and forth over a minimum, as we will see in the next paragraph.
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Fig. 6.6 The error function E in terms of one variable w

6.3.3 Gradient Descent Example

To clarify the above theoretical background, let us take the following practical
example to illustrate how gradient descent works.

We will start with the simple function f(x) = x2 (Fig. 6.1), which we will take as
an example of a function whose minimum we want to find.

Let us start with some point on the graph and try to reach the minimum; any point
is OK. We will take x = 4, for which y = x2 = 16, so our starting point P is at x = 4,
y = 16.

The gradient of f(x) at P is the derivative, computed as follows:

f 0 xð Þ= dy
dx

= 2x= 2× 4= 8

since the derivative is positive, then the curve is ascending at P, so we need to go in
the other direction to reach the minimum; that is why we have the minus in the
formula that updates the coefficient xj = xj - d, where d is a derivative of f(x); the
minus will force x to decrease if the derivative is positive (i.e., the graph is



ascending). As mentioned above, the correct formula is xj = xj - η × d; however, we
will not use η in order to illustrate its need in the next paragraphs.
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Let us update the position of P to make it move toward the minimum, the next
position for P will be x = x - 8 = 4 - 8 = - 4; the corresponding y is (-4)2 = 16.
So, our next position is P(-4, 16). We can notice that we have moved too far and
passed the minimum. Let us continue the gradient descent from the new position
P(-4, 16).

The gradient of f(x) at P(-4, 16) is computed as follows: f 0 xð Þ= dy
dx = 2x=

2 × - 4ð Þ= - 8; since the derivative is negative, the curve is descending at P(-4,
16), so we need to go in the same direction (i.e., downward) to reach the minimum,
and that is why we have the minus in the formula that updates the coefficient xj= xj-
η × d (always considering η = 1), as it will allow us to increase x, which is what we
need at this point.

The next position for Pwill be at x= x- d= - 4- (-8)= - 4 + 8= 4; we are
returning to the original point P(4, 16). If we continue, we will oscillate around the
minimum without ever reaching it. That is the importance of having the learning rate
η and having it less than 1. In the following, we will redo our calculation for P(4, 16)
using η = 0.1:

f 0 xð Þ= dy
dx

= 2x= 2× 4= 8

xj = xj - η× d= 4- 0:1× 8= 4- 0:8= 3:2

For x = 3.2, f(x) = (3.2)2 = 10.24.
The next point would be P(3.2, 10.24). It is a step in the right direction, but we are

not at the minimum yet. We can continue our descent until we attain the minimum,
or practically until we are very close to it. Basically, we do not have to reach
the minimum of 0; it is enough to be very close to it. With more and more iterations,
the change in x becomes insignificant and the model becomes stable; we say that the
model converges to a good solution, and there is no gain from moving toward the
minimum anymore. We say that we have attained convergence.

This example considered a function f(x) = x2, but the gradient descent can be
followed with any function, including the error function E, also known as the cost
function. In that case, we will compute the derivatives of E over all the function
weights, since we are trying to compute in which direction (and how much) the
function changes with respect to changes in the weights.

6.3.4 Batch Versus Stochastic Gradient Descent

There are two approaches for iteration: the batch and stochastic methods. The batch
gradient descent uses all the datasets for every iteration, calculating the sum of all
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errors over all instances in the training dataset. For every iteration, the gradient is
calculated using the entire training dataset.

On the other hand, stochastic gradient descent is instance-based; for every
iteration, one single instance of the training dataset is used to calculate the gradient
of the error function. This is much less complex and more efficient than the batch
method. In stochastic gradient descent, we update the model weights incrementally,
calculating the error for each individual instance in the dataset:

wj =wj - η× d:

6.3.5 Examples of Error Functions

1. Least Mean Squares (LMS)

One well-known error function E called the least mean squares is represented as

E=
1
2

XN

i= 1
yi -byi� �2

=
1
2

XN

i= 1
yi -

Xn

j= 0
wj × x

i
j

� 2

The 1
2 is added for computational convenience [3].

2. Mean Squared Error (MSE)

Another well-known error function is the mean squared error (MSE) function,
represented as follows:

E=
1
N

XN

i= 1
yi -byi� �2

=
1
N

XN

i= 1
yi -

Xn

j= 0
wj × x

i
j

� 2

3. Root Mean Squared Error (RMSE)

A variation of the MSE is the root mean squared error (RMSE) function,
represented as follows:

E=
1
N

XN

i= 1
yi -byi� �2

=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN

i= 1
yi -

Xn

j= 0
wj × xij

� 2
r
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6.3.6 Gradient Descent Types

In this paragraph, we will show a brief description on how to proceed in scholastic
and batch gradient descents.

6.3.6.1 Stochastic Gradient Descent

Consider a least mean squared error function E=1
2

PN
i= 1 yi -byi� �2

; to show the
process, we will consider a function with one variable x.

In a stochastic gradient descent method, the error for an instance i is computed as
follows:

ei =
1
2

yi - w1x
i þ w2

� �� �2
= yi

2
- 2yw1x- 2yw2 þ w1xþ 2w1w2xþ w2

2

�
d eið Þ
dw1

=
d yi

2 - 2yw1x- 2yw2 þ w1xþ 2w1w2xþ w2
2

dw1
= - x yi -byi� �

= - x× ei

d eið Þ
dw2

=
d yi

2 - 2yw1x- 2yw2 þ w1xþ 2w1w2xþ w2
2

dw2
= - yi -byi� �

= - ei

Hence, the coefficients of the error function E in the next iteration will be updated
according to the formula:

w2 =w2 - η × d eið Þ
dw2

=w2 - η× error

w1 =w1 - η× d eið Þ
dw1

=w1 - η× error × x

Those are the formulas we used in the practical example at the beginning of the
chapter. After each iteration, the weights are updated, and the next prediction is made
until the end of the instance (i.e., an epoch elapses). We continue with new epochs
until convergence.

6.3.6.2 Batch Gradient

Considering
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1. An MSE error function, E= 1
N

N
i= 1 yi -byi 2:

2. A two-dimensional data array called “data” of N rows and two columns, 0 and
1, which stores the instances’ x values in column 0 and the instances’ y values in
column 1 (x0 is in data[0,0], y0 is in data[0,1], x1 is in data[1,0], y0 is in data [1],
. . . xN is in data[0,0], yN is in data[0,1])

3. A simple linear regression that consists of by= ax b

We can compute the batch gradient descent in the following way:

1. A function called compute_E that computes the error function result

BEGIN function compute_E
error=0
For i=0 to N-1 do
BEGIN
x= data [i, 0]
y= data [i,1]
y_predicted= a*x + b
error=error+(y- y_predicted)2

END
Return error / N
END function compute_E

2. A function called compute_gradient that uses the MSE function to compute the
gradients

Given that E= 1
N

N
i= 1 yi -byi 2

, we can demonstrate that dE
da =

2
PN

i= 1 - xi yi - axi b and dE = 2
PN

i= 1 - yi y
i - axi b .

We will use a two-dimensional array with one row called “gradient” to store
all gradients for all dataset instances.

BEGIN function compute_gradient
gradient [0,0] = 0
gradient [0,1] = 0
For i=0 to N
BEGIN
x= data [i, 0]
y= data [i,1]
gradient [0,0] = gradient [0,0] - (2/N) * x*(y- (m*x + b))
gradient [0,1] = gradient [0,1] - (2/N) * (y- (m*x + b))
END
Return the array gradient
END function compute_gradient

3. A function linear_regression that uses the compute_gradient and compute_E
functions to find the minimum error

We will use a two-dimensional array with one row called
“computed_gradients” to store all gradients for all dataset instances.
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BEGIN function linear_regression
maximum_iterations = 60000
learning_rate=0.01
Erro_of_the_model=0
For i=0 to maximum_iterations
BEGIN
//Call the function compute_gradients and return gradient array
computed_gradients = compute_gradients
//Update the parameters of the model
a=a- learning_rate * computed_gradients [0,0]
b=b- learning_rate * computed_gradients [0,1]

//Call compute_E and get the error of the model
Error_of_the_model= compute_E
//Plot the error of the model on the screen
plot Error_of_the_model
END
//Print on the screen the final values of a and b for the final model
Print “the model is y=”, a, “x +” b
BEGIN function linear_regression

6.4 Final Notes: Advantages, Disadvantages, and Best
Practices

Linear regression works under the assumption that the underlying model can predict
if the data is linear (i.e., the curve that passes through all or most of the data points is
a line). If the assumption is different, a nonlinear model such as decision trees, naïve
Bayes, k-nearest neighbors, or support vector machines should be employed.

The main advantages of the algorithm are its simplicity and efficiency. When
using the algorithm, use the following tips from [1]:

1. Display a cost graph: Plot the cost graph for each iteration. If your algorithm does
not converge, reduce the learning rate.

2. Learning rate: Try different values for the learning rate.
3. Rescale inputs: Standardize your input variables to the same range; it will

enhance the algorithm’s performance.
4. Use stochastic gradient descent: It performs much better than batch gradient

descent. The stochastic method converges within many fewer epochs (e.g., 10).
5. Plot mean cost: In stochastic gradient descent, to avoid a jittery graph, plot the

average of the error over many updates (e.g., 10, 100).
6. Linear relationship: You may need to transform your data to make the relation-

ship linear; for example, in an exponential relation, you can use a log transform.
7. Remove noise: Preprocess your data to remove outliers if needed.
8. Avoid collinearity: Avoid highly correlated input variables, as linear regression

will overfit your data in this case. Remove the most correlated variables.



P � �

208 6 Linear Regression

6.5 Key Terms

1. Regression
2. Logistic regression
3. Simple linear regression
4. Multiple linear regression
5. Gradient descent
6. Global minimum
7. Convex functions
8. Non-convex functions
9. Local minimum

10. Learning rate
11. Oscillation
12. Algorithm convergence
13. Cost function
14. Error function
15. Least mean squares
16. Mean squared error (MSE)
17. Root mean squared error (RMSE)
18. Batch gradient descent
19. Stochastic gradient descent

6.6 Test Your Understanding

1. Describe a regression in your own words.
2. Describe a linear regression in your own words.
3. What is the difference between a simple linear regression and a multiple linear

regression?
4. What is the difference between a logistic regression and a simple linear

regression?
5. What is the benefit of a learning rate?
6. What is the difference between the mean squared error (MSE) and the least mean

squares?
7. What is the use of the mean squared error (MSE) and the least mean squares?
8. What do we mean when we say that the stochastic gradient descent is “instance-

based”?
9. Is stochastic gradient descent more efficient than batch gradient descent or not?

Explain your answer.

10. Given an error function E= 1
N

N
i= 1 yi -byi 2

, demonstrate that
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dE
da

=
2
N

N

i= 1
- xi y

i - axi þ bð Þ and
dE
db

=
2
N

N

i= 1
- yi y
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6.8 Lab

The following represent typical steps in a machine learning lab exercise [4]:

1. Load your dataset.
2. Explore the data.
3. Split your data into two datasets: one for training and one for testing.
4. Preprocess your data (missing values, erroneous values, conversions of categor-

ical to numeric and vice versa, standardization, normalization, etc.).
5. Create and fine-tune a model (e.g., linear regression).
6. Test the model and evaluate its performance (e.g., accuracy).

The focus of this lab is to create and optimize a linear regression model (LRM).
The first part of the lab (in R) uses a diabetes dataset and applies LRM, while the
second part (in python) uses a USA housing prices dataset and applies LRM. In both
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parts, we will be using gradient descent to optimize the linear regression model.
Below are typical tasks to create and optimize a linear regression model.

6.8.1 Working Example in R

Here is where you can download the diabetes dataset: https://www4.stat.ncsu.edu/
~boos/var.select/diabetes.tab.txt.

This dataset has the following information:

• Age: patient’s age
• BMI: body mass index
• BP: average blood pressure reading
• S1: total serum cholesterol
• S2: low-density cholesterol
• S3: high-density cholesterol
• S4: total cholesterol
• S5: serum triglycerides level
• S6: blood sugar level
• Y: quantitative measure of diabetes progression one year after baseline

Note that while executing the code below some packages in R need to be
installed. R-Studio will detect them and automatically install them for you; it is
instructed to do so by the presence of the function require(). An example would be:
require(caTools) which instruct R-Sudio to install the caTools library.

6.8.1.1 Load Diabetes Dataset

Load the diabetes dataset as shown in Fig. 6.7.

6.8.1.2 Preprocess Diabetes Dataset

Preprocess the data in the diabetes dataset by removing null values and noise. In the
snapshot below in Fig. 6.8, all null values are removed from the target field (Y ) and
replaced with the mean of this column. Replacing null values with the mean value
for this column is just one method to process null values, we could also replace them
with zeros, the last valid values. There are other methods to preprocess data, such as
standardization and normalization, one-hot-encoding of categorical data, etc.

Fig. 6.7 Load diabetes dataset

https://www4.stat.ncsu.edu/~boos/var.select/diabetes.tab.txt
https://www4.stat.ncsu.edu/~boos/var.select/diabetes.tab.txt
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Fig. 6.8 Preprocess data in diabetes dataset

6.8.1.3 Choose Dependent and Independent Variables

In a supervised learning algorithm such as linear regression, we should specify the
outcome/target and the features. We are trying to predict the quantitative measure of
diabetes progression one year after baseline, Y is our target feature (i.e., dependent
variable) (Fig. 6.11). The other columns are the features (i.e., factors or independent
variables). It is important to note that using more than one feature in the model would
make it a multiple linear regression model. A simple linear regression model uses
only one factor to predict the target. Moreover, choosing a few factors instead of all
available factors is another approach too. To choose a subset of factors for a multiple
linear regression model, the correlation between the outcome Y and the rest of the
factors can be computed; only the factors with the highest correlation scores with the
outcome would be retained for use to generate the model. A threshold (e.g., 0.25) can
be chosen to rule out factors that have low correlation scores. Figure 6.9 shows the
visual correlation between Y and the factors.

6.8.1.4 Visualize Your Dataset

The next step is visualizing the dataset, which will allow you to analyze and explore
the data for preprocessing before creating the LRM. GGALY is an R library that can
be used to visualize data in pairwise plotting. It also helps to understand pair
correlation in a graph. This is shown in Fig. 6.9. However, there are also other R
libraries for visualizing data.

6.8.1.5 Split Data into Test and Train Datasets

The next step is to split the dataset into training and testing sets. Usually, the training
set includes 70% of the dataset, and the remaining 30% is for the testing set
(Fig. 6.10).
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Fig. 6.9 Explore diabetes dataset using visualization

6.8.1.6 Create Linear Regression Model and Visualize it

As shown in Fig. 6.11, the following factors are the independent variables: Age,
BMI, BP, S1, S2, S3, S4, S5, and S6. Column Y is the outcome that we want to
predict. The model is trained and then its performance measure using the testing
datasets. The coefficients of the model are displayed; as such, the linear regression
formula is:

Y = 0:31736 ×BMIþ - 0:01647 ×Ageþ - 0:15220 × Sexþ 0:22752 ×BPþ
- 0:18401× S1þ 0:06103 × S2þ - 0:04008 × S3þ 0:11324 × S4þ 0:32710
× S5þ 0:05315 × S6þ - 0:04936ð Þ:

6.8.1.7 Calculate Confusion Matrix

A confusion matrix is a performance measurement for the machine learning algo-
rithm. It summarizes in a table four combinations of the actual and predicted values:
true-positives (TP), true-negatives (TN), false-positives (FP), and false-negatives
(FN). It is important to note that a confusion matrix works with categorical data. As
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Fig. 6.10 Split dataset into train and test size sets

Fig. 6.11 Generate multiple linear regression model and visualize it

such, it is necessary to map out continuous data to labeled data, as shown in
Fig. 6.12. Figure 6.12 shows that TP = 58, TN = 63, FP = 19 and FN = 20.

Now we need to compute the error of the model using some statistical metrics
(Fig. 6.13). R-squared is 0.23 which indicates that the performance of the model is
low. Since we have the confusion matrix, we could also compute the sensitivity and
the specificity of the model, both of which are important performance measures
especially in the health domain. We suggest that you try to compute the sensitivity
and specificity of the model; to do so, you might find the “caret” package easy to use.

6.8.1.8 Gradient Descent

Since the model is a linear regression, we will implement the gradient descent to
optimize convergence and we will print the cost function vs. the number of iterations
to notice the relationship between both. As shown in Fig. 6.14, the model’s error rate
decreases with the number of iterations until around 400 iterations before increasing
again. You can try larger learning rates and see the results; it will be interesting to
reflect on the changes in the cost function vs. the number of iterations plot.
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Fig. 6.12 Calculate configuration matrix and visualize it

Fig. 6.13 Using statistical metrics to evaluate model performance

6.8.2 Working Example in Python

In this example, a linear regression model will be created using the USA housing
prices dataset to predict house prices in the United States. The model will be trained
and tested on an unseen dataset and optimized to fine-tune the model. The first task
in this process is to download the USA housing prices dataset. This dataset can be
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Fig. 6.14 Gradient descent for LRM

downloaded from the following location: https://www.kaggle.com/faressayah/
linear-regression-house-price-prediction/data. The next step is to load the dataset.

6.8.2.1 Load USA House Prices Dataset

Import the required libraries and install any library that does not exist, such as the
hvplot library, using the pip install command. Then, load the dataset, display the
head of the data frame as well as the data structure of the dataset (Fig. 6.15).

6.8.2.2 Explore Housing Prices Visually

Use pandas and the seaborn libraries to visualize the data, as shown in Figs. 6.16 and
6.17. It is important to note that Python libraries have different methods to create
different types of visualizations, such as bar charts, scatter charts, histograms, etc.
We have used pandas to display histograms (Fig. 6.16) and seaborn to visualize the
correlation between a pair of columns (Fig. 6.17). This helps to identify factors to
predict the house price in the United States. Figure 6.16 shows a histogram of that
dataset based on price.

What about trying the following code and explore another way to display
correlations?

https://www.kaggle.com/faressayah/linear-regression-house-price-prediction/data
https://www.kaggle.com/faressayah/linear-regression-house-price-prediction/data
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Fig. 6.15 Import libraries and load the USA housing prices dataset and display few information

correlation = data.corr()
plt.figure(figsize=(10,10))
sns.heatmap(correlation, vmax=1, square=True,annot=True,
cmap='cubehelix')
plt.title('Correlation between different fearures')

6.8.2.3 Preprocess Data

After loading the data, it is necessary to remove null values, if any (Fig. 6.18); we are
demonstrating its use here but we know from data.info() in Fig. 6.16 that we have
5000 entries and none of the columns have any null value (all of them have 5000
non-null values).

Our aim is to predict the price of houses (i.e., the target). The features used for
prediction are Avg. Area Income, Avg. Area House Age, Avg. Area Number of
Rooms, Avg. Area Number of Bedrooms, Area Population; they are all stored in
x. while the Price column is placed in y. The “reshape” method is required to
transform x and y from 2D to 1D data.

http://data.info
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Fig. 6.16 Explore USA housing prices using a histogram

6.8.2.4 Split Data and Scale Features

We will start by splitting the data into two parts, 70% for training and 30% for
testing. Using StandardScaler, we will choose to standardize the data as the scales of
the numeric data values varied immensely across features. Instead of scaling and
then applying the algorithm, we can combine both steps into what we call a pipeline
(Fig. 6.19). We can of course combine more than 2 steps (e.g., many pr-processing
steps in addition to the machine learning one, or even many algorithms).

6.8.2.5 Create and Visualize Model Using the LinearRegression
Algorithm

A linear regression model is created, and its predictions are visualized in a plot
(Fig. 6.20).
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Fig. 6.17 Visualizing data graphically

Fig. 6.18 Preprocess housing data

Fig. 6.19 Split and scale data
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Fig. 6.20 Create and visualize a linear regression model

6.8.2.6 Evaluate Performance of LRM

In this section, we calculate the following metrics to evaluate the performance of the
model using the training and testing model: MAE (mean absolute error), MSE (mean
squared error), RMSE (root mean squared error), and R-square (accuracy). This is
shown in Fig. 6.21.

6.8.2.7 Optimize LRM Manually with Gradient Descent

Linear regression in python has no hyperparameters to change and that can optimize
a model. It has a few hyperparameters that you can check here. So, there will be no
hyperparameter finetuning for this chapter, we will instead implement the gradient
descent manually and in the next heading, we will implement it using Stochastic
Gradient Descent (SGD) which is much faster (Fig. 6.25).
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Fig. 6.21 Evaluating performance for LRM

We will start by modeling the linear regression using a gradient descent strategy
(Fig. 6.22). We calculate the gradient (Fig. 6.23) and plot the number of
iterations vs. the loss values and display predicted values against actual values
(Fig. 6.24). We can notice that the error is very low and stabilized after 1000
iterations. This is a good opportunity to learn more about Python, you will need
some time to understand the different functions defined to calculate the gradient
descent (Figs. 6.22 and 6.23).

6.8.2.8 Create and Visualize a Model Using the Stochastic Gradient
Descent (SGD)

Alternatively to computing the gradient descent manually, we can use a gradient
descent algorithm called Stochastic Gradient Descent (SGD) in Python (Fig. 6.25).

Finally, we measure the performance of the SDG model on the testing dataset
(Fig. 6.26).

You can notice how fast SDG converges in comparison with the manual
implementation. Why? Instead of computing the gradients for all instances of the
training dataset as we did manually (i.e., something called batch gradient descent),
SGD chooses a random instance of the dataset at every step and computes the
gradients based on it! Hence the convergence speed of SGD, which is very useful
with large training datasets.

Another method that could be used is the mini-batch gradient descent, which
computes the gradients based on small sets (batches) of the dataset (something in
between one instance and all the instances). we invite you to read about it.

Note: What about finetuning the SDGRegression hyperparameters? It will not be
necessary for this chapter, but we invite you to explore the hyperparameters for both
algorithms and try to finetune them.
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Fig. 6.22 Helper functions for gradient descent

6.8.3 Working Example in Weka

Download the daily temperature of major cities of the world dataset from the
following link: https://www.kaggle.com/sudalairajkumar/daily-temperature-of-
major-cities.

The following example will analyze Cairo data. Open the csv file for Cairo
(Fig. 6.27).

Go to the Classifier tab, click on the Choose button, and choose Linear Regres-
sion under functions (Fig. 6.28).

Click on the Linear Regression function, and the list of parameters will be
displayed in a new window (Fig. 6.29); you can keep the parameter settings on the
defaults. Notice that the dataset can be split into two parts: one to build the model
and another to test it. We have chosen the cross-validation method instead. Cross-

https://www.kaggle.com/sudalairajkumar/daily-temperature-of-major-cities
https://www.kaggle.com/sudalairajkumar/daily-temperature-of-major-cities
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Fig. 6.23 Gradient descent for LRM

validation splits the dataset into k parts or folds (e.g., 10), then it trains the model on
all the folds except for one that it will use for testing. The process is repeated k times,
and the average performance of all k-models is calculated.

The eliminateColinearAttributes parameters are set to True by default to detect
and remove highly correlated input features. attributeSelectionMethod is enabled to
perform feature selection so that only the attributes relevant to the outcome are
selected, as unrelated attributes can negatively impact performance [1].

The result of the linear regression is shown in Fig. 6.30; we can note that the
performance of the model is low.

6.8.4 Do It Yourself

6.8.4.1 Methods, Arguments, and Regularization

6.8.4.1.1 Methods and Arguments

Check the following code, and change your gd function accordingly.

# Gradient function
def gd(x,y, alpha = 0.001, iterations = 5000):
mVector=nmp.random.randn(x.shape[1])
intercept=0
linear_cost=[]

for i in range(iterations):
target_predicted = predict_target(mVector,x,intercept)
mVector = mVector - alpha *dsctdwt(x,y,target_predicted)
intercept = intercept - alpha * dsctb(x,y,target_predicted)
linear_cost.append(cost(x,y,target_predicted))
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Fig. 6.24 Gradient descent graph for LRM and corresponding
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Fig. 6.25 Helper functions for gradient descent

Fig. 6.26 performance of the optimized model measured using the training dataset

return mVector,intercept,linear_cost

What is exactly the difference with the previous gd code?(a)
(b) Write the python code to call this function?
(c) Try this code to call the gd method.

m,b,c = gd(x_train,y_train, alpha = 0.01, iterations = 200)
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Fig. 6.27 Weka preprocessing screen for Cairo

Fig. 6.28 Choosing Linear Regression in Weka
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Fig. 6.29 Parameter settings for the linear regression

(d) Comment on the convergence of the gradient descent. Did it converge earlier or
later than above? Why?

(e) How would you change the argument alpha to make it converge at a
slower pace? Try few values.

(f) If you changed alpha to be larger, would you need to change the number of
iterations too? In which direction (higher or lower)? Give a rationale for your
choice. Of course, you can try few values and check the results.

6.8.4.1.2 Regularization

To avoid overfitting, we can regularize a linear model using ridge regression, lasso
regression, elastic net, as well as early stopping.

In python you can use:

1. Ridge algorithm or use SDGRegressor with penalty = “l2” to implement ridge
regularization.

2. Lasso algorithm or use SDGRegressor with penalty = “l1” to implement lasso
regularization.

3. ElasticNet algorithm or use SDGRegressor with penalty = “elasticnet” to imple-
ment elastic net regularization.
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Fig. 6.30 Result of the linear regression for the Cairo dataset

4. Early stopping involves stopping the iterations/epochs as soon as the validation
error (RMSE) on the validation dataset reaches a minimum and starts increasing
which indicates overfitting. You need to stop at the minimum error.

We invite you to try the three regularizations methods on the datasets encountered
above as well as on different ones (check Do more Yourself below).

6.8.4.2 Predicting House Prices

You can also download 37 regression problems compressed into one file called
datasets-numeric.jar from https://waikato.github.io/weka-wiki/datasets/.

You need to install the Java Development Kit (JDK) to unpack it. You can
download JDK from https://www.oracle.com/java/technologies/javase-downloads.
html. Once it is installed, you can unpack the .jar file by writing on the
command line: jar -xvf datasets-numeric.jar

You can also use software like WinZip or WinRAR to unpack the jar file.

https://waikato.github.io/weka-wiki/datasets/
https://www.oracle.com/java/technologies/javase-downloads.html
https://www.oracle.com/java/technologies/javase-downloads.html
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Fig. 6.31 Boston housing market linear regression result

Get the Boston housing market dataset from the following datasets-numeric.jar
file (Housing.arff). Each instance of the dataset has 13 numerical input features that
depict the properties of a Boston suburb; your task is to predict the house prices.
Generate a linear regression model of the housing market; your model should
generate the figure in Fig. 6.31.

6.8.5 Do More Yourself

Create simple and multiple linear regression models in Python and R using the
datasets below. Ensure that you preprocess the data: remove null values, transform
categorical data, and scale the data if necessary. Visualize the model. Train and test
the model. Optimize the model using gradient descent and conclude whether it can
be generalized to an unseen dataset.
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1. From the temperature dataset above, choose a city and compute a simple/multiple
linear regression model for that city. Predict the temperature in that city in 2030,
2050, 2070, and 2100.

2. California housing market dataset: https://www.kaggle.com/camnugent/califor
nia-housing-prices

3. Real estate price prediction https://www.kaggle.com/quantbruce/real-estate-
price-prediction

4. Ecommerce: https://www.kaggle.com/kolawale/focusing-on-mobile-app-or-
website

5. Medical cost personal datasets: https://www.kaggle.com/mirichoi0218/insurance
6. Fish market: https://www.kaggle.com/aungpyaeap/fish-market
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Chapter 7
Logistic Regression

7.1 The Problem

Linear regression modeling is well suited to predicting continuous data where the
outcome y is a real number (i.e., y 2 ℝ). Logistic regression is a modeling technique
for binary outcomes (i.e., yes/no, true/false, 1/0). Such outcomes are needed in many
domains: public health officials might want to know the likelihood that a person will
contract COVID-19 if she is a doctor in Ontario; a hospital would like to know if a
discharged patient is more likely to be readmitted or not; a company would like to
know if a customer visiting its website is more likely to order; a bank would like to
know if a customer is more likely to default on a loan or not. Logistic regression has
been much used in the medical field and yielded impressive results [1–10].

Logistic regression helps us make that type of prediction. We can think of it as a
classification problem, the outcome being a choice between two classes, the question
asked is: given x, what is the probability that the outcome belongs to class 1 (i.e.,
P(class = 1|x))? And given that we have only two classes, the probability that the
outcome belongs to class 0 is P(class = 0|x) = 1-P(class = 1|x).

7.2 A Practical Example

The outcome we are trying to predict is a probability (the likelihood that an outcome
belongs to class 1 or class 0). Linear regression cannot solve this type of problem
because its outcome is a number that can take any value and not only two values,
0 or 1.

Suppose we have administered a survey and collected the number of steps people
walk in a day and if they had a heart attack (coded 0) or not (coded 1) during their

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
C. El Morr et al., Machine Learning for Practical Decision Making, International
Series in Operations Research & Management Science 334,
https://doi.org/10.1007/978-3-031-16990-8_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-16990-8_7&domain=pdf
https://doi.org/10.1007/978-3-031-16990-8_7#DOI


lifetime; we want to predict if the number of steps taken in a day is related to the risk
of a heart attack. We plot our fictitious data in Fig. 7.1.
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Fig. 7.1 A linear regression line fitted to the data points

We can notice that fewer steps are related to a heart attack but that the linear
regression does not fit the data well. Also, the linear regression predicts probabilities
of less than 0 below 100 steps and more than 1 for 9000 steps.

We instead use another function to approximate a good prediction; the logistic
function provides an output that falls between 0 and 1: 0≤y ≤ 1. An example of a
logistic function is y= 1

1- e- x (Fig. 7.2), where e is the base of the natural logarithm
(e= 2.71828, Log(e)= 1). Generally, we can write the logistic function for a feature
vector X and outcome vector Y with the coefficient W: Y = 1

1- e-WX .

7.3 The Algorithm

The S shape of the logistic function and the variation of its output between 0 and
1 makes it perfect for classification into two classes, 0 and 1. It is enough to take a
certain threshold, for example, 0.5, above which we classify the outcome as belong-
ing to class 1; otherwise, it belongs to class 0.
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Fig. 7.2 The logistic function for data varying between -6 and + 6

The only problem is that the logistic function, also called the sigmoid function, is
not linear, and we are interested in having a linear relationship between the outcome
Y and the input X because it is simple to interpret.

To convert the logistic function to a linear function, we can compute the odds of
the function and then take the Napierian logarithm of the odds.

The odds of an outcome are calculated as the probability of an outcome occurring
divided by the probability that the outcome does not occur. For the logistic function,
odds y = P y= 1ð jxÞ

1-P y= 1 x and is a value between 0 and infinity.

The logn of the odds, also known as logit, is computed as log n odds yð Þð =

log n
P y= 1ð jxÞ

1-P y= 1jxð Þ
� �

is a function of X with an outcome that belongs to ℝ that can be

represented as a linear function of X. Indeed:

log n
P y= 1ð jxÞ

1-P y= 1jxð Þ
� �

= log n

1
1- e-WX

1- 1
1- e-WX

 !
= log n

1
1- e-WX

eWX

1- e-WX

 !

= log n log
1

e-WX

� �
= log n e- 1� -WXð Þ

� �
= log n eWX

� �
=WX

Logit( y) = logn(odds( y)) = WX = w0x0 + w1x1 + . . . + wnxn, which is a linear
equation! Having a linear function, it is easy now to find the weights wi for which the
logit function best fits our dataset (i.e., with a minimal cost). Once those weights are
found, we can compute y = P(class = 1|x) as follows:
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y=P class= 1jxð Þ= 1
1þ e- w0x0þw1x1...:þwnxnð Þ

y=P class= 0jxð Þ= 1-P class= 1jxð Þ= e- w0x0þw1x1...:þwnxnð Þ
1 e- w0x0þw1x1...:þwnxnð

7.4 Final Notes: Advantages, Disadvantages, and Best
Practices

The interpretation of the weights Wi in the logistic regression is different than in
linear regression.

odds yð Þ= log n
P y= 1ð jxÞ

1-P y= 1jxð Þ
� �

=WX=w0x0 þ w1x1 . . . :þ wnxn

The formula shows a linear model for the log odds, but that is not very useful. To
make it useful, we can check how the prediction changes with every one unit change
in a feature X. If we apply the exponential function to the previous formula, we
obtain the following

odds yð Þ= P y= 1ð jxÞ
1-P y= 1jxð Þ = e w0x0þw1x1...:þwnxnð Þ

Let compute the odds ( y) when a feature xj changes by 1 unit and becomes xj + 1.
Given that e

a

eb = e a- bð ÞÞ we can compute the ratio of the new odds (related to xj + 1)
divided by the previous odds ( y) (related to xj):

odds yxjþ1

� �

odds yxj
� � =

e w0x0þw1x1...w1 xjþ1ð Þ...þwnxnð Þ
e w0x0þw1x1...w1 xjð Þ...þwnxnð Þ

= e w0x0þw1x1...wj xjþ1ð Þ...þwnxnð Þ- w0x0þw1x1...wjxj...þwnxnð

odds yxjþ1

� �

odds yxj

� � = e wj xjþ1ðð Þ-w1xjÞÞ = ewj

This is simple to interpret; for every increase in one unit in one feature xj the odds
ratio of the outcome will be multiplied by a factor of ewj . So, we have a simple
function—the exponential function—that allows us to compute for any change in
one feature by one unit how much there is a change in the odds ratio.
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For a quick example. If odds( y) = 2; that means that the probability of y = 1 (the
outcome is 1) is twice as high as the probability of y = 0. If a change in a feature by
one unit leads to a change in the odds ratio by 5, that means a change in a feature by
one unit leads to having the probability of y = 1 (the outcome is 1) multiplied by
fivefolds.

Finally, note that preprocessing is always important before building your model.
You can

• Check for outliers and remove them when necessary.
• Remove correlated variables: If the input features are highly correlated, you

might face model overfitting. A good practice is to compute the pairwise corre-
lations between all input features.

• Consider imputing missing values: A lot of missing values might lead to
non-convergence of your model [11].

• One-hot-encode your categorical variables

7.5 Key Terms

1. Binary outcomes
2. Logistic function
3. Sigmoid function
4. Odds
5. Logit
6. Napierian logarithm

7.6 Test Your Understanding

1. What is the major difference between logistic regression and linear regression?
How do you know which one to choose for a certain problem?

2. What similarities do you find when comparing linear regression and logistic
regression?

3. What is the type of outcome for logistic regression?
4. Can we use a logistic regression model to predict a value (i.e., a number) in the

future, or is it only used for classification?
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Logistic Regression Model. Ann Rehabil Med, 44(6), 415–427. https://doi.org/
10.5535/arm.20071

This dataset relates to the risk of diabetes within 5 years and has the following
information:

7.8 Lab

7.8.1 Working Example in Python

We will be using the Pima Indian Diabetes dataset that you can download from:
https://www.kaggle.com/kumargh/pimaindiansdiabetescsv

• Preg: number of pregnancies
• Plas: plasma glucose concentration
• Pres: diastolic blood pressure measurement
• Skin: triceps skinfold thickness (mm)
• Test: 2-hour serum insulin
• Mass: body mass index (BMI)
• Pedi: diabetes pedigree function
• Age: age
• Class: tested positive for diabetes or not (1 or 0)

7.8.1.1 Load Pima Indians Diabetes Dataset

Start by importing the required libraries. Install any library that was not installed yet
(e.g., hvplot), using the pip install command; then load the dataset into pandas
(Fig. 7.3).

7.8.1.2 Visualize Pima Indians Dataset

Visualize the data using hist() from pandas and the pairplot() from the seaborn
(Fig. 7.4). It is important to note that Python libraries have different methods to
create different types of visualizations, such as bar charts, scatter charts, histograms.
We can notice that the two classes are not balanced, there are much more people that
are diabetes-free than those diagnosed with diabetes.

7.8.1.3 Preprocess Data

It is necessary to check for null values (if any). When we used df.info() we could
notice that there were no missing values in any feature (all the counts were at 768). If
there were missing values, we could impute missing values using of .fillna() (using

https://doi.org/10.5535/arm.20071
https://doi.org/10.5535/arm.20071
https://www.kaggle.com/kumargh/pimaindiansdiabetescsv
http://df.info
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Fig. 7.3 Load Pima Indians diabetes dataset

method = ‘backfill’ or ‘ffill’) or the SimpleImputer class (with the parameter
strategy = ‘mean’).

For illustration purposes only, we opted to use “fill forward” missing values
which propagate the last valid value forward to the next missing value. Then we
separated the features used for prediction and the target class. And split the dataset
into training and testing datasets (Fig. 7.5).

Then we will conduct standardization on the dataset. First, we will fit the
Standardization on the training dataset so that it learns the averages and standard
deviations for the features in the training dataset. Then we will transform (i.e.,
standardize) both training and testing datasets based on those learned training
averages and standard deviations. We will never fit standardization on the testing
dataset as it will bias the testing step, the testing dataset should be used to test the
model based on information available only in the training phase. In the end, the
logistic regression algorithm is prepared for use.

7.8.1.4 Optimize Logistic Regression Model

It is time to find the optimal model that fits the training dataset. The list of parameters
for the logistic regression includes the regularization technique used (l1, l2, or
elasticnet), the C value, the solver, and the number of iterations. The Gridsearch
provides a few values for each hyperparameter. A cross-validation of five folds is
specified. The variable optimalmodel holds the model found by the Gridsearch once
it runs the .fit() method using the prepared training data (x_train_prepared and
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Fig. 7.4 Visualize Pima Indians diabetes dataset
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Fig. 7.5 Preprocessing and scaling data

Fig. 7.6 Implementing grid search to optimize the model using training dataset

y_tain). The finetune model is stored in the variable finetunedmodel; once printed we
can read the hyperparameters that provide the best performance (Fig. 7.6).

We can now use the fine-tuned model to make predictions on the testing dataset
and print the performance measurement including the confusion matrix and a
classification report that reports on precision, recall, f-score, and accuracy. Micro
and macro averages are reported too (investigate what are those measurements and
how they differ). Finally, the AUC is computed (Fig. 7.7). We can now plot the ROC
curve (Fig. 7.8).
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Fig. 7.7 Test the finetune model, display the confusion matric and the performance measurements

REMINDER It would be good to discuss in class about the interpretation of the
graphs in the visualization phase.
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Fig. 7.8 Plot finetuned model ROC and AUC value

7.8.2 Working Example in Weka

NOTE on the use of Weka: Given the introductory nature of the book, and our
focus on Python, we will not do GridSearch, instead we will use cross-validation to it
obtain an estimate of the performance of an algorithm on the testing data set. We will
always use the train-test split (70%, 30%) with cross-validation. However, we invite
you to install a package called GridSearch and explore working with it. Then you can
re-do the Weka exercises in this book but first splitting the dataset into training and
testing, using Gridsearch to finetune your model hyperparameters, then using the
testing the finetuned model on the testing dataset and displaying its performance
measurements. We will provide online resources on how to use GridSearch in Weka
for those who would like to work with this cool software.
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Fig. 7.9 Weka preprocessing screen showing the binary outcome variable

For now, open the file “ionosphere” from the Weka datasets or download it from
the Kaggle website using the following link: https://www.kaggle.com/prashant111/
ionosphere.

This dataset was collected by antennas in Goose Bay, Labrador. The antennas
targeted the detection of free electrons in the ionosphere. When radar returns showed
evidence of a structure in the ionosphere, that was deemed a “good” radar detection;
otherwise, it was deemed a “bad” detection. Received radar returns were processed
using 17 “pulse” numbers, each having two attributes. All of the first 34 features are
continuous, and the 35th attribute is binary (either “good” or “bad”) [2].

Open the file in Weka and explore the dataset (Fig. 7.9).
We note no missing outcome data in 351 instances, so there is no need for

imputation.
Except for variable a02, the values of which are all zeros, all variables are standard-

ized, as their values are between 0 and 1 (i.e., a01) or- 1 and 1 (a03 to a034). So, we do
not need to standardize our input features. Finally, we do not note any outliers.

Go to the Classify tab and click the Choose button. Select the Logistic function
from the set of functions (Fig. 7.10).

Keep the default logistic parameters and click OK (Fig. 7.11).
In the Classifier window, choose 10 folds for the cross-validation (you can also

try to split the data 75% for training and 25% for testing). Make sure the last column
is chosen as the outcome. Figure 7.12 shows the feature “class,” which is the last
column in the ionosphere.arff Weka file; if you have used the ionosphere_data.csv
from the Kaggle.com website, your last column will be “column_ai”.

https://www.kaggle.com/prashant111/ionosphere
https://www.kaggle.com/prashant111/ionosphere
http://kaggle.com
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Fig. 7.10 Choosing the
Logistic function

Click on the Start button to execute the logistic regression algorithm. The result is
shown in Fig. 7.13.

The model is nearly 89% accurate. Based on the confusion matrix (Fig. 7.13),
100 of 113 instances of class a (i.e., value = b) are correctly classified, and 212 of
238 instances of class b (i.e., value = g) are correctly classified.

Scroll up the screen and you will note the model’s coefficients (Fig. 7.14a) and
odds ratios (Fig. 7.14b). Given that the coefficients of the logit are the log of the odds
ratios, the odds ratios of the model are the exponentials of the coefficients (e.g., the
odds ratio of feature a03 = 0.1595 = e-1.8357).

7.8.3 Do It Yourself

7.8.3.1 Predicting Online Purchases

Download the datafile social_network_Ads.csv from the following link: https://
www.kaggle.com/ravinash218/social-network-ad-purchase.

https://www.kaggle.com/ravinash218/social-network-ad-purchase
https://www.kaggle.com/ravinash218/social-network-ad-purchase
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Fig. 7.11 Logistic regression screen with default parameters

The csv file contains a dataset about people who made or did not make, online
purchases: user id, gender, age, estimated salary, and the fact that they purchased or
not. Build a logistic regression model that allows us to predict if a person will or will
not purchase online based on their age, gender, and estimated salary.

7.8.3.2 Predicting Click-Through Advertisements

Download the three datafiles related to Click-Through Rate Prediction https://www.
kaggle.com/c/avazu-ctr-prediction/data. One file (train) is for training and contains
10 days of click-through data ordered chronologically, and another file (test) is for
testing and stores 1 day of ads click-through for testing the model predictions.

Use logistic regression to train and test a model that predicts click-throughs. The
data fields are explained as follows on the Kaggle website:

1. id: ad identifier
2. click: 0 for “non-click” and for “click”

https://www.kaggle.com/c/avazu-ctr-prediction/data
https://www.kaggle.com/c/avazu-ctr-prediction/data
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Fig. 7.12 Parameters in the
Classifier window

3. hour: format is YYMMDDHH, so 14091123 means 23:00 on Sept.
11, 2014 UTC.

4. C1: anonymized categorical variable
5. banner_pos: the position of the banner
6. site_id: the website id
7. site_domain: the website domain
8. site_category: website category (this is a hashed value not readable)
9. app_id: mobile App identifier

10. app_domain: mobile App domain
11. app_category: mobile App category
12. device_id: mobile device identifier
13. device_ip: mobile IP address
14. device_model: the mobile device model (e.g., Samsung, iPhone, etc.) (also

hashed value)
15. device_type: hashed value indicating the mobile device type (e.g., tablet,

smartphone)
16. device_conn_type: such as wifi, 4G.
17. C14-C21: anonymized categorical variables
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Fig. 7.13 Result of the logistic regression. The model precision is nearly 89%

7.8.4 Do More Yourself

Create logistic regression models using the Python datasets below. Ensure that you
preprocess the data.

1. Titanic: https://www.kaggle.com/heptapod/titanic
2. HR Analytics Case Study: https://www.kaggle.com/vjchoudhary7/hr-analytics-

case-study
3. Logistic regression to predict heart disease: https://www.kaggle.com/dileep070/

heart-disease-prediction-using-logistic-regression

https://www.kaggle.com/heptapod/titanic
https://www.kaggle.com/vjchoudhary7/hr-analytics-case-study
https://www.kaggle.com/vjchoudhary7/hr-analytics-case-study
https://www.kaggle.com/dileep070/heart-disease-prediction-using-logistic-regression
https://www.kaggle.com/dileep070/heart-disease-prediction-using-logistic-regression
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Fig. 7.14 (a) Coefficients
and (b) odds ratios of the
logistic regression model
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Chapter 8
Decision Trees

8.1 The Problem

Linear and logistic regressions make predictions about numbers, but we also need
algorithms to classify instances of data in a certain class, i.e., to label the instance as
belonging to a class. The decision tree is our first approach to solve classification
problems. However, decision trees can perform regression too, hence their name
classification and regression trees (CART). The random forests that we will encoun-
ter in a later chapter are powerful variations of CART.

A CART is represented by a binary tree whose root is on top, and at each level,
each node (including the root node) receives a data input that is examined. If the
value of the feature is below a certain value, the left branch of the binary tree is
followed; otherwise, the right branch is followed [1]. At the bottom level, we find the
leaf nodes, or terminal nodes, which represent outcome values.

When we take an instance of data, we use the tree to compare the instance’s
attribute values to the root and decide whether the instance belongs to one subbranch
or the other. The process is continued until we reach a leaf that represents a class.

Figure 8.1 represents a decision tree that mimics the underwriting process of a
mortgage application. Each mortgage application contains the number of depen-
dents, loan-to-value ratio, marital status, payment-to-income ratio, interest rate,
years at the current address, and years in a current job.

8.2 A Practical Example

The Ionosphere dataset that was introduced in the previous chapter was collected in
Goose Bay, Labrador, and represents 34 input features of continuous values and one
binary output that classifies the measurement as either “good” (i.e., value g) or “bad”

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
C. El Morr et al., Machine Learning for Practical Decision Making, International
Series in Operations Research & Management Science 334,
https://doi.org/10.1007/978-3-031-16990-8_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-16990-8_8&domain=pdf
https://doi.org/10.1007/978-3-031-16990-8_8#DOI


(i.e., value b) [3]. In the previous chapter, we could build a logistic regression model
with nearly 89% accuracy.
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Fig. 8.1 An example of a decision tree to represent decision-making for a mortgage application
(adapted from Maimon and Rokach [2])

However, given the continuous nature of the input features, we can apply a
decision tree to the same dataset to make a classification decision.

Open the dataset and choose the REPTree algorithm from the Trees classifiers
(Fig. 8.2).

REPTree is the name of the CART algorithm in Weka. Keep the defaults for all
REPTree parameters and run the algorithm (Fig. 8.3).

In the detailed accuracy table, we can notice the precision of almost 89.5%, which
constitutes a slight improvement compared to the logistic regression model. Right-
click on the Result List and click on Visualize Tree (Fig. 8.4).

Weka displays the decision tree for the Ionosphere dataset (Fig. 8.5). The feature
a05 is in the root node, where a decision is made based on the threshold 0.02. The
leaf nodes are radar detection outcomes: b (bad) or g (good). Only four features
contributed to the decision tree: a03, a05, a22, and a27.

Using this decision tree, we can predict for any measurements made in the future
if the radar detection will be bad or good based on the values of only four features.

8.3 The Algorithm

8.3.1 Tree Basics

In Fig. 8.6, we can recognize many elements of a decision tree.
The root node is the top (first) node of a decision tree, and a leaf node is an end

node. At the root, all the dataset is present and is divided into homogeneous subsets
based on certain decision rules. The leaves are nodes that do not split; they represent
the outcome variable.
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Fig. 8.2 REPTree chosen
from the Trees classifiers
in Weka

Every internal node between the root and the leaves is a decision node that splits
the data based on splitting rules. Every node in the tree is a parent node for any node
directly below it, which is called a child node to the parent. A subset of nodes and
associated leaves is called a subtree or branch. While splitting is the process of
dividing the data at a certain node into two or more sub-nodes, pruning is the process
of deleting sub-nodes of a decision node and redistributing data associated with it;
we will see more about pruning and its necessity below.

Trees can apply to classification problems when the outcome is a categorical
variable, as we have seen in the ionosphere example; other examples include
predicting if a patient will be subject to readmission after discharge, or if a person
will get vaccinated for COVID-19, or will get her loan approved, or will make it to
the Olympic finals. Also, trees can apply to regression problems where the outcome
is a numeric (i.e., continuous) variable; for example, based on several features, we
can try to predict a future house price, the infection rate in a population, the area of
land that will be subject to desertification, or the number of migrants crossing the
Mediterranean Sea.

The decision to split the data at a certain node, including the root, is not
straightforward; the final tree and associated decisions (i.e., regression, classifica-
tion) change drastically if we split based on one feature or another. We need a
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Fig. 8.3 REPTree execution in Weka

Fig. 8.4 Visualize tree option



decision criterion to decide which feature to choose at a certain node to base our
splitting upon. How to choose a decision criterion? Each time we split the data into
two or more subsets, we are aiming at homogenizing the subsets; therefore,
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Fig. 8.5 A decision tree for the ionosphere problem

Fig. 8.6 Decision tree elements



researchers have invented functions to measure homogeneity or purity at a node with
respect to the outcome variable and based the decision criteria of those purity
measurements: at each node, we choose to split the data based on the feature that
maximizes data homogeneity.
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Researchers have invented many algorithms to create trees and select the feature
for splitting, such as:

1. ID3: Extension of a previous version, D3 (ID stands for “iterative dichotomizer”)
2. C4.5: Successor to ID3
3. CART: Classification and regression tree
4. CHAID: Chi-square automatic interaction detection. It executes multilevel splits

for classification trees.
5. MARS: Multivariate adaptive regression splines

A greedy algorithm like ID3 acts as follows: at each node, the decision tree
algorithm will use the available dataset at that node, calculate all possible splits using
every possible feature, and choose the feature that maximizes data homogeneity to
do the split. The split is done, and the dataset is distributed among the sub-nodes.
The same process continues at each sub-node using the remaining features until no
more splitting can be done.

There are many data homogeneity functions, including the following:

1. Entropy
2. Information gain (IG)
3. Gini index
4. Information gain ratio

Entropy measures randomness (i.e., think of it as the opposite of homogeneity),
so at each node, we choose to split the feature that minimizes entropy. Information
gain is a measure of homogeneity; hence, at each node, we choose to split the feature
that minimizes information gain. Like information gain, the Gini index is another
measure of homogeneity. The information gain ratio is a correction included for the
information gain; it is a measurement that allows us to avoid splitting based on an
attribute with high information gain but a large number of distinct values [4], such as
a credit card number. A feature like customers’ credit card numbers presents high
information gain, but we should not split based on this feature, as it will not be
helpful to predict anything about a future customer, who necessarily will have a
different credit card number (i.e., the variation of distinct values of credit card
numbers is extremely high). The information gain ratio for such features will be
low, and the splitting criterion will not make the split based on ratios below the
average IG. Information gain is a criterion used for categorical features, while the
Gini index is used for continuous attributes. Below, we will see formulas and
examples for entropy and information gain.

Entropy: We seek to minimize entropy because it is a measurement of
non-homogeneity; the higher the entropy, the worse the solution for splitting the
data will be. Entropy is calculated in the following way:
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Fig. 8.7 A decision tree example showing the decision to play outdoors in relation to weather
outlook

E Sð Þ=
Xc

n= 1
- pi log 2 pið Þð Þ

S is the current state (e.g., current node), and pi is the percentage of class i in a
node of state S, or the probability of an event i of state S. Suppose we have a set of
16 instances at a node in relation to a feature called Humidity with two values,
“High” and “Normal,” where 10 instances have a value of “High” for Humidity and
five have a value of “Normal.” The entropy at this node in this status is calculated as

Entropy Humidityð Þ=Entropy 5, 10ð Þ= pNormal × log 2 pNormalð Þ þ pHigh
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Entropy= - 0:34 × - 1:585 - 0:67× - 0:585

Entropy= 0:931

For two features, we will illustrate the use of entropy with more than one feature
through an example (Fig. 8.7).

Consider the tree shown in Fig. 8.7.
The entropy for playing outdoors given the different weather outlooks is com-

puted as follows:
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E Playing, Outlookð Þ=P sunnyð Þ×E 3 Yes, 2 Noð Þ þ P overcastð Þ×E 4 Yes, 0 Noð

þ P rainyð Þ ×E 2 Yes, 3 Noð Þ= 5
14

× -
2
5
× log 2

2
5

� �
-

3
5
× log 2

3
5

� ��
þ 4
14

× -
4
4
× log 2

4
4

� �
-

0
5
× log 2

0
4

� �� �
þ 5
14

× -
3
5
× log 2

3
5

� �
-

2
5
× log 2

2
5

� �� �
=

5
14

× 0:971þ 0þ 5
14

× 0:971= 0:693

Information gain: As a measure of homogeneity, information gain (IG) is
opposite to entropy; the higher the information gain, the lower the entropy. Infor-
mation gain computes the difference between entropy before a split and average
entropy after the split. Information gain is used by ID3.

The information gain resulting from splitting the 14 instances of the dataset in
Fig. 8.7 into “Sunny” is calculated by

E Playing outdoorsð Þ-E Playing, Outlookð Þ=E
9
14

,
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14

� �
- 0:693= -
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× log 2
9
14

� �
-

5
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× log 2
5
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� �
- 0:693= 0:940- 0:693= 0:247

We will see more about entropy and information gained below.
Gini index: The Gini index provides an indication of purity and is computed as

follows:

G=
Xn

k= 1

pk × 1- pkð Þ

pk is the proportion of training instances with class k in the leaf of interest, or the
rectangle of interest when we look at scatter graphs (see below).

Sum squared error: When using trees for regression, we choose the split that
will minimize the sum squared error across all training samples. The sum squared
error is computed as follows:

S=
Xn

i= 1

outcomei - predictionið Þ

where n is the number of instances in question.
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8.3.2 Training Decision Trees

Consider that the training dataset is S, the input features are I, and the outcome is O.
The split criterion is the method used to decide if an instance should go to the left or
the right of a node. The stop criterion is a condition that, if met, will stop the
development of the tree.

The algorithm to create the tree can be illustrated using the following example
[2]. Suppose we want to develop a smart model to filter spam emails. In real life, we
will need many features to create such a model; however, for our illustration, we will
suppose that we will build the model based only on two features: the length of the
message and the number of new recipients of the email. Below is a scatter graph
representing the dataset that we will use to train the decision tree (Fig. 8.8).

We start with one feature and try to divide the dataset in a manner to minimize the
cost (the number of classification errors). Figure 8.9 is the result of using the New
Recipients feature for classification (Fig. 8.9). Figure 8.10 is the result of using the
Email Length feature (Fig. 8.10). Both figures show one single-node decision tree,
called a decision stump.

If we use the New Recipients feature, we will end up with nine classification
errors, while if we use the Email Length feature, we will end up with nine errors.
Obviously, using the Email Length feature will incur less cost (fewer errors in
classification); hence, we will use it in the next steps.

Fig. 8.8 Email spam training dataset scatter graph
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Fig. 8.9 A single-node decision tree using the New Recipients feature

In the next step, we will split the email subset with Email Length ≥ 1.8 into two
new subsets: less than 4 and greater than or equal to 4; each area has a few
classification errors (Fig. 8.11).

The process will continue until we reach convergence, i.e., until each region
contains a sample from one class only (Fig. 8.12). Figure 8.12 shows nine different
regions, each consisting of instances of the same class; the corresponding tree is
shown in Fig. 8.13. This solution suffers from a lack of generalizability, as it has



learned to classify the training dataset with 100% accuracy, but it risks not faring
well with a new dataset.
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Fig. 8.10 A single-node decision tree using the Email Length feature

8.3.3 A Generic Algorithm

Consider the dataset shown in Table 8.1, which represents a decision table to play
outdoors based on four features related to the weather (Outlook, Temperature,
Humidity, and Windy) [5].
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Fig. 8.11 The decision tree after two splits based on the Email Length feature

A decision tree can be created to decide whether to play outdoors or not based on
the four weather conditions. The problem of creating the tree can be formulated as
follows: choose an attribute to place at the tree’s root, split the data to the left and
right based on the values of the attribute, repeat the process for the left subset, then
repeat the process for the right subset. For any left or right subset, stop when all
instances at a node are of the same class. This is a recursive process.
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Fig. 8.12 The final graph split into distinct regions

Fig. 8.13 The final tree solution corresponding to the graph in Fig. 8.8

Note that in this example, the data is binary nominal, while in the previous one,
the data was numeric. The problem is that of classification and not of regression;
however, trees can be used for regression.

Which attribute should we choose for the root? In the previous example about
spam, we chose the attribute that generated the fewest classification errors. Here, we
will aim at producing the fewest branches; we will do so by using a function known
as the information value or entropy:

entropy p1, p2 . . . :pnð Þ= - p1 log p1ð Þ- p2 log p2ð Þ- . . . - pn log pnð Þ

where p1, p2, . . . pn are fractions, and p1 + p2 + . . . + pn = 1.



The entropy is a measure of each node’s purity, and we want to choose the feature
that generates the purest daughter node, i.e., has as many instances of the same class
as possible. If we take the example above and try to divide the instances based on
each feature, we obtain the possibilities shown in Fig. 8.14.

The information value for the tree generated using the Outlook feature
(Fig. 11.14) is computed as:
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Table 8.1 Weather dataset Outlook Temperature Humidity Windy Play

Sunny Hot High False No

Sunny Hot High True No

Overcast Hot High False Yes

Rainy Mild High False Yes

Rainy Cool Normal False Yes

Rainy Cool Normal True No

Overcast Cool Normal True Yes

Sunny Mild High False No

Sunny Cool Normal False Yes

Rainy Mild Normal False Yes

Sunny Mild Normal True Yes

Overcast Mild High True Yes

Overcast Hot Normal False Yes

Rainy Mild High True No

Fig. 8.14 Tree stumps for the weather dataset using each of the four features

Information value [Sunny] = Information value [2 Yes and 3 No] = Entropy (2/5,
3/5) = -2/5×log(2/5)-3/5×log(3/5) = 0.971.

Information value [Overcast] = Information value [4 Yes and 0 No]= Entropy (4/4,
0/4) = 4/4×log(4/4) + 0/4×log(0/4) = 0.
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Information value [Rainy] = Information value [3 Yes and 1 No] = Entropy (3/5,
2/5) = -3/5×log(3/5)-2/5×log(2/5) = 0.971.

The information value for the feature Outlook is computed as an average considering
the number of instances in each subtree =5/14×0.971 + 4/14×0 +
14×0.971 = 0.694.

The root before any branching had 9 Yeses and 5 Nos, so the information value at the
root was entropy(9/14, 5/14) = 0.940.

The information gain made by branching the tree using
Outlook = 0.940–0.694 = 0.246.

Gain(Outlook)= 0.246 bits. The unit used for measurement is called “bits” but is not
the same as computer bits.

We can do the same computation of the information gain resulting from using the
Temperature, Humidity, and Windy features; we compare the results and choose the
feature that provided the highest information gain. In our example,

Gain(Outlook) = 0.246 bits
Gain(Temperature) = 0.029 bits
Gain(Humidity) = 0.152 bits
Gain(Windy) = 0.048 bits

Hence, the best choice is to use the Outlook feature to split the tree at the root.
We continue using the same process and logic with each of the subtrees produced

by Outlook, using the remaining features (i.e., Humidity and Windy). The result is
shown in Fig. 8.15.

Fig. 8.15 The final decision tree for the weather dataset
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8.3.4 Tree Pruning

Fully developed decision trees are complex in structure and risk overfitting as they
learn to perfectly classify the training data and become less able to correctly classify
new independent datasets. Pruning is a method that simplifies a decision tree; there
are two methods for tree pruning: post-pruning or backward pruning and pre-pruning
or forward pruning.

Pre-pruning involves a decision to stop developing subtrees while working on the
development of a decision tree. Post-pruning seems more onerous, but it has the
advantage of taking into account the combined effect of features on the decision
instead of looking into the effect of each feature individually and deciding not to
use it.

There are two methods for pruning: subtree replacement and subtree raising. In
subtree replacement, we investigate the possibility of replacing a subtree with a leaf;
it will make the tree less accurate on the training data but more generalizable (for
unseen data). Subtree replacement works from the leaves upward in a tree. Subtree
raising is more complex and time-consuming but more useful and is used in the well-
known C.45 algorithm. In subtree raising, a whole subtree is removed, and its
daughters are included in other subtrees. It is common to raise the subtree of the
most popular branch.

If we take the example of a fully developed tree before pruning (Fig. 8.16a),
subtree replacement of branch B can result in moving 4 and 5 to subtree C and
deleting B (Fig. 8.16b); 1, 9, and 10 are the new instances resulting from the addition
of instances 4 and 5 to 1, 2, and 3.

Subtree raising can result in the same replacement only if the total instances under
4 and 5 are fewer than those under C; otherwise, we replace B with node 4 or
5, whichever has more instances, and we reclassify all other instances 1, 2, 3 as well
as 4 or 5 under the new node. Figure 8.16c shows a subtree raising result when node

Fig. 8.16 Example of a fully developed tree before (a) and after (b, c) pruning



4 has the most training instances; here, 8, 9, and 10 result from the reclassification of
instances 1, 2, 3, 4, and 5.

In practice, if we apply the C.45 decision tree algorithm (called J48 in Weka)
using pruning (done by default) to the weather data above, we will obtain the tree
illustrated in Fig. 8.17.

In the leaf nodes, the first value in the parentheses is the number of instances from
the training set in that leaf, while the second value is the number of instances
incorrectly classified in that leaf.

8.4 Final Notes: Advantages, Disadvantages, and Best
Practices

Decision trees are nonlinear algorithms, as opposed to the two linear algorithms we
have introduced so far: linear regression and logistic regression. Linear discriminant
analysis (LDA) is another traditional machine learning linear algorithm that we have
not covered. Decision trees do not require specific data preparation steps and can be
used for classification as well as for regression. However, in python, the tree-based
algorithms in Python require numeric features only; hence, we need to transform
categorical features to numeric ones using One-Hot Encoding.

8.5 Key Terms
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Fig. 8.17 Decision tree for the weather dataset using C.45 in Weka

1. Root
2. Leaf
3. decision node
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4. Parent node
5. Child node
6. Subtree
7. Branch
8. Classification and regression trees
9. CART

10. Random forest
11. Binary tree
12. Entropy
13. Information gain
14. Gini index
15. Information gain Ratio
16. REPTree algorithm
17. Split criterion
18. Stop criterion
19. Decision stump
20. Entropy
21. Purity
22. Tree pruning
23. Overfitting
24. Pruning
25. Post-pruning
26. Backward pruning
27. Pre-pruning
28. Forward pruning
29. Subtree replacement
30. Subtree raising
31. C.45 algorithm
32. ID3

8.6 Test Your Understanding

1. Define the information gain ratio.
2. How do you compute the information gain ratio?
3. What does purity measure?
4. Give an example of a purity function.
5. What does CART stand for?
6. Which performs better, the REPTree algorithm or the J45 algorithm?
7. What does entropy measure exactly?
8. Define pre-pruning.
9. Define post-pruning.

10. Which is preferable, subtree raising or subtree replacement?
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11. Can we use decision trees for regression analysis? Search for an example in the
literature and summarize it.
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8.8 Lab

8.8.1 Working Example in Python

We will work with a car evaluation dataset that you can download from the
following link:

https://doi.org/8.1109/TCSVT.2019.2903547
https://doi.org/8.1109/TAES.2018.2850385
https://doi.org/8.1109/TAES.2018.2850385
https://doi.org/8.1016/j.prevetmed.2019.104860
https://doi.org/8.1016/j.prevetmed.2019.104860


https://www.kaggle.com/elikplim/car-evaluation-data-set
This dataset evaluates cars (accept/reject) based on the following structure:

8.8 Lab 271

Fig. 8.18 Load car evaluation dataset

• Buying: buying car price
• Maintenance: maintenance car cost
• NumDoors: number of doors
• NumPersons: number of persons fitting in the car
• LuggageBoot: the size of the trunk (“luggage boot” in the UK)
• Safety: estimated safety of the car
• carAccept: car acceptability

8.8.1.1 Load Car Evaluation Dataset

Import the required libraries and install any library that you have not installed
previously, then load the dataset into pandas in Fig. 8.18. Notice that we have read
the csv file without the header and then added the column/features names according

https://www.kaggle.com/elikplim/car-evaluation-data-set
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Fig. 8.19 Visualize car evaluation dataset and preprocess data

to our taste. None of the features present null values, so we will not process null
value at this moment.

8.8.1.2 Visualize Car Evaluation

Visualize the data using the required libraries, we present in Fig. 8.19 a plot of the
class (i.e., car evaluation).

8.8.1.3 Split and Scale Data

The next task is to split data into features vector x and class vector y, and then split x
and y into training and testing datasets. Since trees in Python cannot process
categorical features we need to one-hot encode all categorical features present in
our datasets using OnEHotEncode. The result is two variables onehotencoded
x_train_prepared and x-test_prepared (Fig. 8.20). You can display those variables
to see the result.
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Fig. 8.20 Converting and scaling data

8.8.1.4 Optimize Decision Tree Model

Grid search is used to tune the decision tree’s hyperparamteers and find the optimal
decision tree for the dataset. We also print the best parameters found and the best
model, as well as its accuracy, and we plot the optimal decision tree (Fig. 8.21). Note
that GridSearch will need several minutes to find the optimal tree, be patient.

Finally, we can test the best model by making predictions using the testing
dataset. The performance (i.e., accuracy) is also computed and displayed (Fig. 8.22).

8.8.2 Working Example in Weka

Download and open the iris dataset available from one of the following links:

1. https://archive-beta.ics.uci.edu/ml/datasets/53
2. https://archive.ics.uci.edu/ml/datasets/iris
3. https://www.kaggle.com/uciml/iris

The variables provided are as follows:

1. Id: identification
2. SepalLengthCm: sepal length in cm
3. SepalWidthCm: sepal width in cm
4. PetalLengthCm: petal length in cm
5. PetalWidthCm: petal width in cm
6. Species: the species (Iris-setosa, Iris-versicolor, or Iris-virginica)

1. Open the file in Weka and display the histograms for the four features.
2. Do you have an idea of which features are interesting for our classification

problem? Probably not but take a few minutes to study the histograms and
write your remarks.

3. Use the dataset to build a decision tree model to classify the irises into one of the
three species based on the four features provided. You should be able to display
the following output (Fig. 8.23) and tree (Fig. 8.24).

https://archive-beta.ics.uci.edu/ml/datasets/53
https://archive.ics.uci.edu/ml/datasets/iris
https://www.kaggle.com/uciml/iris
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Fig. 8.21 Optimizing decision tree model using grid search cross-validation

Fig. 8.22 Testing the best model and printing its accuracy on the testing dataset



8.8.3 Do It Yourself

8.8.3.1 Decision Tree: Reflections on the Car Evaluation Dataset

You can notice that the optimal decision tree in Fig. 8.21 does not provide feature
names in the leaves, instead we have x[1], x[2], etc. This is because x_train_prepared
is an array that has no titles.
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Fig. 8.23 Classifier output

1. Is it possible for you to convert it to a data frame (x_train_prepared_df) and
provide appropriate feature names for the data frame’s columns? Hint: use
pandas.DataFrame for conversion and .columns to provide name for the columns
like we did in Fig. 8.18.
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Fig. 8.24 Decision tree for the iris classification problem

2. If this is doable then can you use x_ train _prepared_df to fit a new similar model
to the one presented in Fig. 8.20 with appropriate column names.

3. Trees are prone to overfitting. The minimum number of samples a node can have
before it is a candidate for splitting (min_samples_split), the minimum number of
samples a leaf must have (min_samples_leaf), the maximum number of leaf
nodes (max_leaf_nodes) and the maximum number of features evaluated for
splitting at each node (max_features) can regularize the tree: increasing the
min_ hyperparameters and decreasing the max_ hyperparameters values. Try to
reduce the change in the parameters provided to gridsearch; for example, remove
some of the min and max hyperparameters or all, or add min_samples_leaf and
see how the optimal tree and its accuracy change.

4. Can you notice overfitting when you remove parameters related to regularization?
Explain.

8.8.3.2 Decision Trees for Regression

We have seen decision trees for classification. In this exercise, we will overview
decision trees’ use for regression. Download the Boston housing dataset from the
following link: https://www.kaggle.com/prasadperera/the-boston-housing-dataset.
The dataset is also available from the numeric dataset you downloaded previously.

The dataset is composed of the following features:

1. CRIM: per capita crime rate by town
2. ZN: proportion of residential land zoned for lots over 25,000 sq. ft.
3. INDUS: proportion of non-retail business acres per town
4. CHAS: Charles River dummy variable (1 if tract bounds river; 0 otherwise)
5. NOX: nitric oxide concentration (parts per ten million)
6. RM: average number of rooms per dwelling
7. AGE: proportion of owner-occupied units built prior to 1940
8. DIS: weighted distances to five Boston employment centers
9. RAD: index of accessibility to radial highways

https://www.kaggle.com/prasadperera/the-boston-housing-dataset
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10. TAX: full-value property-tax rate per $10,000
11. PTRATIO: pupil-teacher ratio by town
12. B: 1000(Bk - 0.63)2,where Bk is the proportion of blacks by town
13. LSTAT: % lower status of the population
14. MEDV: median value of owner-occupied homes in $1000s

1. Build a decision tree model to predict the median value of a Boston house
(MEDV) based on the available features. Below is a sample output from Weka.

2. Do you want to do any preprocessing? Which processing? For which feature?
3. Compare your results before and after preprocessing.
4. Any notes about the data? Do you think that this data relates to questions of bias

and racism? Explain your answer.
5. Do you know of any machine learning applications that have previously raised

ethical concerns?
6. Do you have any ethical concerns regarding future applications for machine

learning?

8.8.3.3 Decision Trees for Classification

Download the train and test datasets of the Titanic from https://www.kaggle.com/c/
titanic/data?select=train.csv.

The variables provided are as follows:

1. Survival: 0 = No, 1 = Yes
2. Pclass is the ticket class: 1 = first, 2 = second, 3 = 3rd
3. Sex: M or F
4. Age: age in years
5. Sibsp: number of siblings or spouses aboard the ship
6. Parch: number of parents or children aboard the ship
7. Ticket: ticket number
8. Fare: passenger fare
9. Cabin: cabin number

10. Embarked: the port of embarkation, C=Cherbourg, Q = Queenstown,
S=Southampton

1. Use decision trees to build a model that predicts the survival of a passenger based
on the available features. Note the accuracy of the algorithm and other measure-
ments and display the decision tree.

2. Which other algorithm can you use to tackle this classification problem? Suggest
one and execute the necessary instructions to build a new classification model.

3. Compare the two models (the decision tree model and the other suggested model).
Which one makes better decisions? On which data have you based your decision?

https://www.kaggle.com/c/titanic/data?select=train.csv
https://www.kaggle.com/c/titanic/data?select=train.csv
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8.8.4 Do More Yourself

1. Mushroom dataset (classification): https://www.kaggle.com/uciml/mushroom-
classification

2. London bike-sharing dataset (regression): https://www.kaggle.com/hmavrodiev/
london-bike-sharing-dataset

References

1. A. Burkov, The Hundred-Page Machine Learning Book (Andriy Burkov, 2019)
2. O.Z. Maimon, L. Rokach, Data Mining with Decision Trees: Theory and Applications, 2nd edn.

(World Scientific Publishing Company, 2014)
3. V.G. Sigillito, S.P. Wing, L.V. Hutton, K.B. Baker, Classification of radar returns from the

ionosphere using neural networks. J. Hopkins APL Tech. Dig. 10, 262–266 (1989)
4. J.R. Quinlan, Induction of decision trees. Mach. Learn. 1(1), 81–106 (1 March 1986). https://doi.

org/10.1007/BF00116251
5. I.H. Witten, E. Frank, M.A. Hall, C. Pal, Data Mining: Practical Machine Learning Tools and

Techniques (Elsevier Science, 2016)

https://www.kaggle.com/uciml/mushroom-classification
https://www.kaggle.com/uciml/mushroom-classification
https://www.kaggle.com/hmavrodiev/london-bike-sharing-dataset
https://www.kaggle.com/hmavrodiev/london-bike-sharing-dataset
https://doi.org/10.1007/BF00116251
https://doi.org/10.1007/BF00116251


279

Chapter 9
Naïve Bayes

9.1 The Problem

So far, during classification, we have been interested in finding a model that decides
if an instance belongs to a class or not; the model’s answer would be a yes or no with
certainty. The situation with Bayesian modeling for decision-making is different—it
estimates the probability that an instance belongs to a certain class, which is more
nuanced [1].

While Bayesian classification models are more sophisticated and provide more
fine-tuned optimal solutions for classification than other classifiers, in practice, they
make assumptions about the probability distribution of the existing variables, and
they estimate these probabilities based on the available data and assumptions about
the underlying probability distribution, as we will see below. That is why other
classifiers are needed despite being less sophisticated.

Nevertheless, classifiers based on Bayesian reasoning, like the naïve Bayes
classifier, are among the most effective for learning tasks such as text document
classification, and for very large datasets. Google employs a naïve Bayes classifier to
autocorrect text typed by users [2]; other typical applications include information
retrieval [3], medical diagnosis [4–9], spam filtering [10], classifying documents
(e.g., spam or non-spam), sentiment prediction, and recommendation systems
[11]. The naïve Bayes classifier assumes that all the features (i.e., input variables,
predictors) are conditionally independent given a class.

Linear regression, logistic regression, and decision tree models were formulated
to guess the class based on the instance values; they guess the conditional probability
of a class is true given an instance (i.e., values of feature vectors); we can denote this
probability as P(class|instance) [12]. Another way of proceeding is to try to under-
stand a class first and then to infer the classification prediction when we meet an
instance; this resembles in a way a person learning about different characteristics of
some item (e.g., a tree, a house) and then, when seeing two pictures, deciding which

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
C. El Morr et al., Machine Learning for Practical Decision Making, International
Series in Operations Research & Management Science 334,
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one is the picture of a tree and which one is of a house. Here, we try to guess the
instance’s class given the classes’ characteristics: the probability of an instance being
in a class gives our knowledge about class P(instance|class).

280 9 Naïve Bayes

9.2 The Algorithm

9.2.1 Bayes Theorem

Thomas Bayes, from the eighteenth century, created Bayes’ theorem, which
describes how to calculate the probability of a variable y given an observation x,
also known as posterior probability of y: P(y|x). For our machine learning classifi-
cation problem, we can express the posterior probability asP(class=C|instance= x):
given an instance x, what is the probability that the class is C?

Bayes’ theorem provides a way to compute posterior probabilities as follows:

P yjxð Þ= P xjyð ÞP yð Þ
P xð Þ

In a machine learning classification problem, we have a set of training dataDwith
N observations/instances (xi, yi), i = 1 to N; xi being the feature vector (i.e., input
variable) and yi the outcome variable/class. D:{x(i),y(i)}; i = 1, 2, . . ., N.

In the training datasetD, each input variable has n attributes (i.e., features); hence,
each instance x can be expressed as a vector of values xj; j = 1, . . ., n. Also, the
possible values for yi are theM classes; hence, we haveM different values yq; q = 1,
. . ., M.

The probability that x belongs to a class yq before (a priori of) looking at any data
instance xi is expressed by the prior probability P(yq). The sum of all probabilities of
the M classes is 1; P(y1) + ⋯ + P(yM) = 1.

Based on Bayes’ theorem, the posterior probability P(yq|x); q 2 {1, . . ., M} is
calculated based on the known a priori probability P(yq) and the known conditional
probabilities P(x|yq); q = 1, . . ., M.

P yqjx
� �

=
P xjyq
� �

P yq
� �

P xð Þ

where

P xð Þ=
XM
q= 1

P xjyq
� �

P yq
� �

Therefore:



Þ
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P yqjx
� �

=
P xjyq
� �

P yq
� �

PM
q= 1

P xjyq
� �

P yq
� �

Since the posterior probability P(x| yq) as well as the a priori probabilities P(yq)
for each class yq, q= 1 . . .M, are known, we can deduce the probability of each class
yq given an observation x, P(yq| x), and choose the class with the highest probability
P(yq| x) to classify instance x.

The decision can be made based on the largest posterior probability P(class|
instance) for all classes. The Bayesian decision principle of predicting the class
with the largest posterior probability can be written as an “argument of the maxima,”
or arg max, which is the point of a domain at which a function is maximized. In our
case, it is the class yk for which the posterior probability of an instance x, P(yk|x), is
maximized; yk is called the maximum a posteriori (MAP) class.

yMAP = argmax
q P yqjx

� �
= argmax

q

P xjyq
� �

P yq
� �

P xð Þ

Given that the denominator is independent of y:

yMAP = argmax
q P yq

� �
P xjyq:
� �

When we have only two classes, 1 and 0, the result becomes:

yMAP = argmax
q P xjy= 0ð ÞP y= 0ð Þ, P xjy= 1ð ÞP y= 1ð Þð

If we were in a case where all the classes were equally probable, then we could
simplify and remove P(yq):

yMAP = argmax
q P xjyq

� �

In this case, since P(x| yq) measures the likelihood that x fits in yq, the class that
maximizes P(x| yq) is called the maximum likelihood (ML) class because we will be
searching for the likelihood [2].

9.2.2 The Naïve Bayes Classifier (NBC): Dealing
with Categorical Variables

In the real world, we might not know in advance P(yq) and P(x|yq), which are both
necessary to compute P(yq|x). Naïve Bayes tries to overcome this difficulty.
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To classify a feature vector x into one of the M classes, we can proceed with a
simple rule that does not rely on any need for knowledge derived from x: x belongs to
the majority class. As an example, suppose that you have a dataset for buses running
throughout a city and that you have seven attributes for each bus: manufacturer,
manufacturing year, years in service, number of times the bus has experienced
mechanical failure, origin, destination, and current weather. Suppose you want to
build a model to predict if a bus x will be delayed or not, but you know that 90% of
the time the buses in the city are on time. Based on this knowledge, you can ignore
all the seven attributes’ values and rely on a naïve rule that bus x will be on time.
Most probably, your rule will correctly work most of the time; however, a model
built based on the seven attributes must perform better.

Another unrealistic approach consists of using the available attributes and con-
sidering them as equally important and independent of each other. The approach is
unrealistic because, in real life, the attributes might depend on each other and most
probably are not equally important in relation to our outcome. However, this
unrealistic approach works surprisingly well in real life, and it is the approach
taken by the naïve Bayes classifier (NBC). It is important to note that in this
paragraph, we are considering categorical features; in the case of continuous features
(e.g., age), we can always transform them to categorical ones through discretization,
also known as binning (e.g., [1–17], [18–20], [21–30], [31–40], > 40).

To compute P(yq| x),we need P(x| yq) and P(yq).

P yqjx
� �

=
P xjyq
� �

P yq
� �

PM
q= 1

P xjyq
� �

P yq
� �

we can estimate P(yq) as follows:

P yq
� �

=
Number of instances in class yq

Total number of instances

while P(x| yq)is estimated as follows:

P xjyq
� �

=
Number of times x appears in the class yq
Number of times yq appears in the dataset

To compute P(x| yq), we need the feature vector x to appear many times in many
classes, which is only possible in large datasets; however, there is a way around it:

P xjyq
� �

=P x1, x2 . . . xnÞjyq
� �

Since naïve Bayes assumes that the attributes are independent of each other, then



� � Y � �

X
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P x1, x2 . . . xnÞjyq
� �

=P x1jyq
� �

×P x2jyq
� �

. . . ×P xnjyq
� �

This allows us to estimate P(x| yq) as follows:

P xjyq
� �

=P x1jyq
� �

×P x2jyq
� �

. . . ×P xnjyq
� �

P xjyq =
n

i= 1
P xijyq

Finally, the naïve Bayes classifier class (yNB) can be deduced from the following:

yNB = argmax
q P yq

� �
P xjyq
� �

= argmax
q P yq

� �Yn

i= 1
P xijyq
� �

9.2.3 Gaussian Naïve Bayes (GNB): Dealing
with Continuous Variables

Till now, we have mentioned that the naïve Bayes classifier works with categorical
variables and that we can discretize continuous variables to handle continuous
variables [13–15]. However, NBC also works with continuous variables using two
methods:

– The normal method approximates the distribution of the continuous variable
using parameterized distribution such as the normal distribution, also called
Gaussian distribution. The word “parametric” means to rely on assumptions
about the form of the distribution in the population and its parameters (e.g.,
mean, standard deviation). Non-parametric procedures do not rely on such
assumptions.

– The kernel method uses a non-parameterized approximation of the distribution of
the continuous variable [16].

A naïve Bayes classifier that uses a Gaussian distribution is called a Gaussian
naïve Bayes classifier. For each class yq and for each attribute, we compute the mean
and the standard deviation (SD) as follows:

mean xð Þ= 1
n

Xn

i= 1
xi

SD xð Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

n

i= 1
xi -mean xð Þð Þ2

r

where n is the number of instances in the class yq.
For each attribute, an estimate of the probability of x belonging to a class yq is

given by the probability density function (PDF):



ffiffiffiffiffi

1
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P xjyq
� �

= pdf x, mean, SDð Þ= 1

2π
p

× SD
e-

x-meanð Þ2
2 SD2

� �

where mean and SD are computed for each attribute in the class yq.
Then, to make predictions with continuous variables, we replace each P(xi| yq)

with its estimate pdf(x, meanC, SDC) as follows:

yNB = argmax
q P yq

� �Yn

i= 1
p xijyq
� �

= argmax
q p yq

� �Yn

i= 1
pdf xið Þ

9.3 A Practical Example

9.3.1 Naïve Bayes Classifier with Categorical Variables
Example

Consider the following dataset formed of 15 instances provided by Gopal [2]
(Table 9.1).

Height is a continuous variable that we can discretize by using the following six
categories: [0–1.6],]1.6–1.7],]1.7–1.8],]1.8–1.9],]1.9–2.0],]2.0– [.

The dataset size is N = 15, and the number of classes is M = 3.
We can now generate the following useful table for our calculations (Table 9.2):
Let us consider an instance of the dataset (or a new instance) x = {x1, x2} = {M,

1.95}. To classify this instance x, we need to compute P(yq) and P(x| yq) for every
value of the outcome (q) and choose the class of the maximum value P(yq) × P(x| yq).

Table 9.1 Dataset describing
gender, height, and outcome
of three classes

Gender (x1) Height (x2) Class ( y) y

F 1.6 m Short S

M 2 m Tall T

F 1.9 m Medium M

F 1.88 m Medium M

F 1.7 m Short S

M 1.85 m Medium M

F 1.6 m Short S

M 1.7 m Short S

M 2.2 m Tall T

M 2.1 m Tall T

F 1.8 m Medium M

M 1.95 m Medium M

F 1.9 m Medium M

F 1.8 m Medium M

F 1.75 m Medium M



Q j� �

F 3 6 0

1

yNB = argmax
q P yq

� �
P xjyq
� �

= argmax
q P yq

� �Yn

i= 1
P xijyq
� �

Since x:{M, 1.95}, then the calculations are as follows:

9.3 A Practical Example 285

Table 9.2 The number of training samples by class for each possible value of the input variables

Input features Feature values
y1=Short
q = 1

y2=Medium
q = 2

y3=Tall
q = 3

x1 = gender M 1 2 3

x2 = height ]0, 1.6] bin 2 0 0

]1.6, 1.7] bin 2 0 0

]1.7, 1.8] bin 0 3 0

]1.8,1.9] bin 0 4 0

]1.9, 2.0] bin 0 1 1

]2.0, ] bin 0 0 2

P(x1|y1) = 1/4; P(x1|y2) = 2/8; P(x1|y3) = 3/3
P(x2|y1) = 0/4; P(x2|y2) = 1/8; P(x2|y3) = 1/3

The next step is to compute the factors P(x| yq) equal to
n
i= 1P xi yq :

P(x|y1) = P(x1|y1)×P(x2|y1) = 1/4×0/4 = 0
P(x|y2) = P(x1|y2)×P(x2|y2) = 2/8×1/8 = 1/32
P(x|y3) = P(x1|y3)×P(x2|y3) = 3/3×1/3 = 1/3

Then we can compute all P(yq):

P(y1) = 4/15 = 0.267
P(y2) = 8/15 = 0.533
P(y3) = 3/15 = 0.2

Finally, we compute P(yq)P(x| yq) for all the q values:

P(x|y1)P(y1) = 0×0.267 = 0
P(x|y1)P(y1) = 1/32×0.533 = 0.017
P(x|y1)P(y1) = 1/32×0.2 = 0.066

The maximum value (0.066) is in relation to class 3 (Tall); hence, the decision is
to classify the instance x = {M, 1.95} in the class Tall.

9.3.2 Gaussian Naïve Bayes Example

Consider the following dataset provided by Brownlee [17], with two continuous
input variables, X1 and X2, and one output variable, Y, with two classes, 0 and
1 (Table 9.3).

The class probabilities are P(Y = 0) = P(Y = 1) = 4/8 = 0.5
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Table 9.3 A sample dataset
to describe dummy input var-
iables, X1 and X2, classified
into two classes, Y = 0 and
Y = 1

X1 X2 Y

3.39353321 2.33127338 0

3.11007348 1.78153964 0

1.34380883 3.36836095 0

3.58229404 4.67917911 0

2.28036244 2.86699026 0

7.42343694 4.69652288 1

5.745052 3.5339898 1

9.17216862 2.51110105 1

7.79278348 3.42408894 1

7.93982082 0.79163723 1

Table 9.4 Means and standard deviations of each input variable by class

X1 | Y = 0 X1 | Y = 1 X2 | Y = 0 X2 | Y = 1

Mean 2.7420144 7.614652372 3.005468669 2.991467979

SD 0.92656833 1.234432155 1.107329589 1.454193138

Table 9.5 pdf(X1), pdf(X2), and P(Y = 0)×pdf(X1)×pdf(X2) calculations for each instance of the
dataset for the class Y = 0

Prediction: Y = 0

X1 X2 pdf(X1) pdf(X2) P(Y = 0) × pdf(X1) × pdf(X2)

3.393533211 2.331273381 0.336255919 0.299321284 0.050324277

3.110073483 1.781539638 0.397895380 0.195590604 0.038912299

1.343808831 3.368360954 0.137898926 0.341437869 0.023541958

3.582294042 4.679179110 0.285395252 0.114958842 0.016404354

2.280362439 2.866990263 0.380301158 0.357468012 0.067972749

7.423436942 4.696522875 0.000001233 0.112255509 0.000000069

5.745051997 3.533989803 0.002254527 0.321488218 0.000362402

9.172168622 2.511101045 0.000000000 0.326100779 0.000000000

7.792783481 3.424088941 0.000000152 0.335427703 0.000000025

7.939820817 0.791637231 0.000000063 0.048830746 0.000000002

Applying the naïve Bayes classifier using continuous variables described above,
we will calculate the mean and standard deviation for X1 and X2, for the class Y = 0
and the class Y = 1 (Table 9.4).

The calculation of PDF for each of the classes is done using the PDF function, and
the result is shown in Tables 9.5 and 9.6.

P xjyq
� �

= pdf x, meanC, SDCð Þ= 1

2π
p

× SDC

e
-

x-meanCð Þ2
2 SD2

C

� �
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Table 9.6 pdf(X1), pdf(X2), and P(Y = 0)×pdf(X1)×pdf(X2) calculations for each instance of the
dataset for the class Y = 1

Prediction: Y = 1

X1 X2 pdf(X1) pdf(X2) P(Y = 1) × pdf(X1) × pdf(X2)

3.393533211 2.331273381 0.000934051 0.247475201 0.000115577

3.110073483 1.781539638 0.000414867 0.194072317 0.000040257

1.343808831 3.368360954 0.000000805 0.265278247 0.000000107

3.582294042 4.679179110 0.001557322 0.139894652 0.000108931

2.280362439 2.866990263 0.000028485 0.273336035 0.000003893

7.423436942 4.696522875 0.319324693 0.137961765 0.022027299

5.745051997 3.533989803 0.102645949 0.255896584 0.013133374

9.172168622 2.511101045 0.145798903 0.259772393 0.018937265

7.792783481 3.424088941 0.319831448 0.262463684 0.041972070

7.939820817 0.791637231 0.312158739 0.087370630 0.013636753

Table 9.7 Classification
result

Final Predictions

X1 X2 Prediction

3.39353321 2.33127338 0

3.11007348 1.78153964 0

1.34380883 3.36836095 0

3.58229404 4.67917911 0

2.28036244 2.86699026 0

7.42343694 4.69652288 1

5.745052 3.5339898 1

9.17216862 2.51110105 1

7.79278348 3.42408894 1

7.93982082 0.79163723 1

To decide on the classification of (X1i, X2i), we compare the two resulting
numbers P(Y = 0) × pdf(X1) × pdf(X2) and P(Y = 1) × pdf(X1) × pdf(X2) for
each (X1i, X2i); i = 1.10.

The classification result is shown in Table 9.7.

9.4 Final Notes: Advantages, Disadvantages, and Best
Practices

The naïve Bayes classifier performs well in multiclass prediction and is fast to
execute. With continuous variables, either they can be discretized and transformed
into categorical data, or a Gaussian Naïve Bayes classifier is used.

While the naïve Bayes classifier is not sophisticated, evidence shows that it
performs well (and even better in the case of large datasets [18]) in comparison to
other algorithms (e.g., decision trees and neural networks).



One of the drawbacks of naïve Bayes is the assumption of independence among
the predictors, which is not true in real life. However, in machine learning, we
always try the simplest strategies first; trying logistic or linear regressions is always a
good idea, as the model they produce is quite easy to understand: an outcome as a
function of the input. The naïve Bayes classifier is also a good strategy for large
datasets and document classification.

9.5 Key Terms
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1. Naïve Bayes classifier
2. Posterior probability
3. Argument of the maxima
4. arg max
5. Maximum a posteriori class
6. MAP class
7. Maximum likelihood class
8. ML class
9. Normal method

10. Kernel method
11. Gaussian naïve Bayes classifier

9.6 Test Your Understanding

1. How does the Bayesian approach differ from decision trees or regression
approaches?

2. How is Bayes’ theorem used for classification?
3. What is the aim of a naïve Bayes classifier?
4. What is the aim of a Gaussian naïve Bayes (GNB) classifier?
5. We have not defined the kernel method for classification of continuous variables;

search for information and explain how it works.
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9.8 Lab

9.8.1 Working Example in Python

The social network ads dataset can be downloaded from the link below:
https://www.kaggle.com/datasets/mdwasimakhtar03/social-network-adscsv
This dataset contains the following fields:

• Age: the age of the purchaser.
• EstimatedSalary: the estimated salary of the purchaser
• Purchased: a flag of values 0 and 1 (1 for items purchased due to the ad and 0 for

items not purchased)

9.8.1.1 Load Social Network Ads Dataset

The first task in this lab is to load this dataset. As a reminder, the pip install command
will allow you to install any missing libraries. Figure 9.1 shows how the social
network ads dataset can be loaded into pandas.

https://doi.org/10.1145/3366030.3366056
https://doi.org/10.1145/3366030.3366056
https://doi.org/10.1016/j.fct.2016.09.005
https://doi.org/10.3390/s18020463
https://doi.org/10.1145/3424978.3425123
https://doi.org/10.1145/3424978.3425123
https://doi.org/10.21037/atm.2016.03.38
https://doi.org/10.1145/3414752.3414796
https://www.kaggle.com/datasets/mdwasimakhtar03/social-network-adscsv
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Fig. 9.1 Load social network ads into pandas for data manipulation

Fig. 9.2 Visualizing data in scatterplot

9.8.1.2 Visualize Social Network Ads Dataset

The next step is to visualize this data. Figure 9.2 shows age vs. estimated salary
based on two categories those who purchased following an advertisement and those
who did not.
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9.8.1.3 Choose Features and Normalize Data

The next step is to choose the model’s features and target; the age and estimated
salary are the features, and the purchased field are our target (Fig. 9.3). Since the
actual data vary widely, we perform normalization using the min-max scaler to scale
the data between 0 and 1.

9.8.1.4 Optimize GNB Model Using Hyperparameter

To produce an optimized model, we will tune the hyperparameters using the Grid
search cross-validation (Fig. 9.4). var_smoothing s a hyper parameter used for
calculation stability (read more here https://scikit-learn.org/stable/modules/gener
ated/sklearn.naive_bayes.GaussianNB.html). After optimizing the model is fitted to
the training dataset. Then, the fitted model is used to predict probabilities on the
testing dataset. The performance (e.g., ROC, AUC) curve of the optimal model on
the testing dataset is then displayed (Figs. 9.4 and 9.5). The AUC score reached
90.80%, which indicates that the optimal model generalizes well on an unseen
dataset.

9.8.2 Working Example in Weka

Use the ionosphere dataset from Weka, or download it from the following link:
https://www.kaggle.com/prashant111/ionosphere.

Open the file in Weka. The last column could have the name Class if you have
used the file provided by Weka; if not, the last column that represents the outcome is
named column_ai (Fig. 9.6).

Choose the Classify tab and the naïve Bayes classifier from the Bayes set of
classifiers (Fig. 9.7).

Make sure the cross-fold test option is chosen; choose the last column and click
on the Start button (Fig. 9.8).

Fig. 9.3 Choosing naïve Bayes features and applying normalization to them

https://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.GaussianNB.html
https://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.GaussianNB.html
https://www.kaggle.com/prashant111/ionosphere
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Fig. 9.4 Applying grid search cross-validation to GNB model to find optimal model

Fig. 9.5 Plotting ROC curve for the optimal GNB model

The classifier will execute and provide us with the results (Fig. 9.9). We notice
that it was able to correctly classify 82% of the dataset instances (not bad for a “lazy”
classifier!). The area under the curve (AUC)—under “ROC area”—is 0.935 for both
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Fig. 9.6 Weka with the ionosphere dataset open in the last column

Fig. 9.7 IBK Weka
classifier
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Fig. 9.8 Execute the naïve
Bayes classifier in Weka

outcome classes, which indicates excellent sensitivity and specificity. The confusion
matrix shows us how many instances were assigned to the wrong class by the
classifier for each class (45 for class “g” and 17 for class “b”).

9.8.3 Do It Yourself

9.8.3.1 Building a Movie Recommender System

Download a dataset from the following site https://grouplens.org/datasets/
movielens/. Choose the datafile recommended for education and development.

The zipped data file contains three files. You will need data from ratings.dat: that
stores user movie ratings formatted as UserID::MovieID::Rating::Timestamp.

This problem requires a lot of time to solve and consider it as a mini project.
Reading the datafile would require some effort, once that is done the rest is
straightforward.

https://grouplens.org/datasets/movielens/
https://grouplens.org/datasets/movielens/
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Fig. 9.9 The naïve Bayes classification result using Weka

Fig. 9.10 Naïve Bayes classifier textbox

1. Open the Iris Dataset.
2. Click on the naïve Bayes classifier textbox to display its parameters (Fig. 9.10).

Two parameters are of interest in this case: UseKernelEstimator and
useSupervisedDiscretization. By default, the naïve Bayes algorithm assumes a
Gaussian distribution for numeric variables; alternatively, you can choose the
parameter UseKernelEstimator to be true, which will force the algorithm to use a
kernel estimator instead of a Gaussian one, or choose
useSupervisedDiscretization to be true to ask the algorithm to automatically
discretize continuous attributes.
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Do you have any continuous attributes in the ionosphere dataset? Use the
above attributes and rerun the naïve Bayes classifier again and check if the results
differ. Write your conclusions.

3. Use the NBC to solve the classification problem of the iris dataset.

9.8.4 Do More Yourself

Download the train and test datasets of the Titanic from https://www.kaggle.com/c/
titanic/data?select=train.csv.

The aim is to use the Titanic dataset to predict who will survive and who will die.

1. Data exploration and visualization

(a) Explore the dataset if you have not already done so.
(b) Choose important features and visualize them according to survival/non-

survival.

2. Feature engineering

(a) Treat null values.
(b) Encode categorical data.
(c) Transform features if needed.

3. Classification

(a) Test logistic regression (LR).
(b) Test naïve Bayes.
(c) Which one performs better?
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Chapter 10
K-Nearest Neighbors

10.1 The Problem

Like decision trees, k-nearest neighbors (KNN) is a non-parametric algorithm that
can perform classification and regression.

KNN tries to classify a data instance based on its neighboring instances, assuming
that the instance should be of the same class as the majority of its neighbors; an
example would be to try to guess which party would a person vote for by looking at
how most of her neighbors voted. Of course, if we have more information about the
person and her neighbors, such as age, income, and education level, we will get a
better prediction by looking at the neighbors with similar features. In the rest of the
chapter, all references to KNN are concerned with the supervised approach.

KNN keeps the training dataset; when a new instance x is available, KNN finds
the k training instances that are “closest” to x and assigns x to the majority class (i.e.,
the mode) in the case of a classification scenario, or to the mean (or the median) in
the case of a regression scenario (i.e., continuous variables) [1].

Since we need to find the k instances “closest” to x, we need to define a distance
function to measure “closeness.” We are used to using a direct line to measure the
distance between two physical objects, but that is only one type of existing distance
function, called the Euclidean distance; there are other types that we will discover in
this chapter.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
C. El Morr et al., Machine Learning for Practical Decision Making, International
Series in Operations Research & Management Science 334,
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10.2 A Practical Example

10.2.1 A Classification

We will start with a practical example to illustrate how the algorithm functions in the
case of classification.

Consider a dataset describing the weights and heights of nine people (Table 10.1)
with a classification for each as normal weight or overweight based on the body mass
index (BMI). BMI is computed as weight/(height)2×10,000, and the decision is
based on the following criteria: underweight if BMI<18.5, normal weight if
BMI = 18.5–24.9, overweight if BMI = 25–29.9, and obese if BMI is 30 or greater.

The scatter graph in Fig. 10.1 shows the dataset based on the axes of weight and
height; the two points on the weight axis at 167 cm and 174 cm represent the two
data points in the overweight class.

We would like to classify a new data point (73 kg, 173 cm) to determine if it
belongs to the normal or overweight class. We will compute the distance between

Table 10.1 A dataset of
weights and heights

Weight (kg) Height (cm) Class

71 167 Overweight

65 182 Normal

72 176 Normal

68 173 Normal

60 172 Normal

55 169 Normal

70 173 Normal

76 174 Overweight

57 170 Normal

73 173 ?

Fig. 10.1 Scatter graph for the dataset and the new instance (73 kg, 173 cm)



this new instance and the available dataset points and find the nearest neighbors; the
question is how many neighbors (i.e., the parameter K ). We can consider an odd
number like 3 or 5 or 7 or 21; this will facilitate voting for the majority class and
overcome the possibility of equal votes for the two classes. The distance between

two points (x1, y1) and (x2, y2) d=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1 - x2ð Þ2 þ y1 - y2ð Þ2

q
; this distance is called

the Euclidean distance.
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Table 10.2 Distances
between (73 kg, 173 cm) and
all available instances in the
dataset

Weight (kg) Height (cm) Class Distance

71 167 Overweight 6.324555

65 182 Normal 10.041595

72 176 Normal 3.162278

68 173 Normal 5.000000

60 172 Normal 13.038405

55 169 Normal 18.439089

70 173 Normal 3.000000

76 174 Overweight 3.162278

57 170 Normal 16.278821

73 173 ?

To decide on the new instance (73 kg, 173 cm), we need to compute the Euclidean
distance between it and every point of the dataset. The result is displayed in
Table 10.2.

Then we choose the closest three points, which are (70 kg, 173 cm), (72 kg,
176 cm), and (76 kg, 174 cm). The first two belong to the normal class and the third
to the overweight class. We, therefore, classify (73 kg, 173 cm) in the majority class:
normal.

10.2.2 Regression

Let us take the Sacramento real estate dataset containing 932 real estate transactions
in Sacramento, California, and originally reported in the Sacramento Bee newspaper
[2]. You can download the full dataset from the following link: https://support.
spatialkey.com/spatialkey-sample-csv-data/.

We will take a subsample of 15 instances out of the 932 instances. The dataset
contains the prices as well as the characteristics of houses that were sold in
Sacramento. Our aim is to predict the house price (i.e., a number) of a 1050-
square-foot (sq. ft.) house using nothing but the house size. Since we are trying to
predict a number, our problem is one of regression and we will use the KNN
algorithm for prediction. Suppose k = 5 and that we will use the first 15 instances
of the dataset for our prediction (Table 10.3).

We will first compute the Euclidean distance between our new house of 1050
sq. ft. and the 15 instances and sort them in ascending order (Table 10.4).

https://support.spatialkey.com/spatialkey-sample-csv-data/
https://support.spatialkey.com/spatialkey-sample-csv-data/
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Table 10.3 House sizes and
prices

sq. ft. Price

836 $ 59,222

1167 $ 68,212

796 $ 68,880

852 $ 69,307

797 $ 81,900

1122 $ 89,921

1104 $ 90,895

1177 $ 91,002

941 $ 94,905

1146 $ 98,937

909 $ 100,309

1289 $ 106,250

871 $ 106,852

1020 $ 107,502

1022 $ 108,750

Table 10.4 Distances
between the new house of
1050 sq. ft. and the
15 instances in terms of house
size, sorted in ascending order

sq. ft. Price Distance

1022 $ 108,750 28

1020 $ 107,502 30

1104 $ 90,895 54

1122 $ 89,921 72

1146 $ 98,937 96

941 $ 94,905 109

1167 $ 68,212 117

1177 $ 91,002 127

909 $ 100,309 141

871 $ 106,852 179

852 $ 69,307 198

836 $ 59,222 214

1289 $ 106,250 239

797 $ 81,900 253

796 $ 68,880 254

The five nearest neighbors to the new house are (1022 sq. ft., $108,750), (1020
sq. ft., $107,502), (1104 sq. ft., $90,895), (1122 sq. ft., $89,921), and (1146 sq. ft.,
$98,937). To compute the value of the 1050 sq. ft. house, we will take the average of
the prices of the nearest neighbors.

KNN predicts the price of the new house as
$108,750þ$107,502þ$90,895þ$89,921þ$98,937ð Þ

5 = $99,201.
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10.3 The Algorithm

10.3.1 Distance Function

The KNN algorithm depends on the use of a distance; while we have used the
Euclidean distance in the example above, many other distance functions exist to
measure closeness or similarities, such as Hamming distance, Manhattan distance,
Minkowski distance, Mahalanobis distance, cosine similarity, Tanimoto distance,
Chebychev distance, and Jaccard distance.

10.3.1.1 Euclidean Distance

The Euclidean distance between two vectors v (v1, v2 . . . vn) and w (w1, w2 . . . wn) is
given by the following formula:

Euclidean Distance v, wð Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i= 1
vi -wið Þ2

q

In a machine learning dataset, v and w are two vectors with attributes vi and wi,
i = 1 to n, where n is the number of available attributes. In the case of a
two-dimensional space, the Euclidean distance between two points v (x1, y1) and
w (x2, y2) is computed by the Pythagorean theorem (Fig. 10.2).

Euclidean Distance v, wð Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1 - x2ð Þ2 þ y1 - y2ð Þ2

q

When input variables are similar in type, Euclidean distance is usually used.

Fig. 10.2 Euclidean
distance based on the
Pythagorean theorem
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10.3.1.2 Manhattan Distance

Manhattan distance calculates the sum of the absolute difference between two
vectors v (v1, v2 . . . vn) and w (w1, w2 . . . wn).

Manhattan Distance v, wð Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i= 1
j vi -wi j

q

Manhattan distance can be computed as follows:

Manhattan Distance v, wð Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 - x1j j þ y2 - y1j j

p

When input variables are not similar in type (e.g., age, gender, weight), Manhat-
tan distance is usually used.

10.3.1.3 Minkowski Distance

Minkowski distance is a generalized form of Euclidean and Manhattan distances; its
formula is given by the following:

Minkowski Distance v, wð Þ=
Xn

i= 1
vi -wij jpð Þ1=p

where p represents the order of the distance. When p = 2, the Minkowski distance
corresponds to the Euclidean distance, and when p = 1, it corresponds to the
Manhattan distance. When p tends towards infinity, the Minkowski distance corre-
sponds to the Chebyshev distance.

10.3.1.4 Cosine Similarity

Cosine similarity measures the similarity between the directions of two vectors; it is
equal to the cosine of the angle between the two vectors. Considering that cos
(90°) = 0, cos(0°) = 1, and cos(180°) = -1, the cosine similarity can be used in
the following way:

– If the vectors are pointing in the same direction, the cosine similarity is 1.
– If the vectors are pointing in the opposite direction, the cosine similarity is -1.
– If the angle between two vectors is 90°, then two vectors are orthogonal, and the

cosine similarity is equal to 0.

When used as a distance metric, the cosine similarity needs to be multiplied by -
1.
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similarity= cos θð Þ=
PD

i= 1
vi,wi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPD
i= 1vi

2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPD

j= 1wi
2

q

whereD is the domain or dataset for the two vectors v (v1, v2 . . . vn) and w (w1, w2 . . .
wn).

We use cosine similarity to measure distance when the size of the vectors (i.e., the
term frequency) does not matter, for example, if we are measuring similarities
between two documents and we just want to know if they both contain similar
words but are not interested in the frequency of those words in the documents.

10.3.1.5 Hamming Distance

Hamming distance measures the similarity between two strings of the same length; it
represents the number of positions at which the characters of the strings differ. If
string S1 is “Health Informatics” and string S2 is “Health Information,” then the
Hamming distance between S1 and S2 is 2; the higher the distance, the more
dissimilar the two strings. A Hamming distance of 0 indicates identical strings.
Hamming distance works only when the strings are of the same length.

10.3.2 KNN for Classification

In general, you will have a dataset and a corresponding set of classes, also called
labels, such as readmitted/not readmitted; satisfied/not satisfied, true/false, indicating
the presence or absence of an event (e.g., spam, movie enjoyable to watch), or it
could be categories (e.g., movie ratings).

The algorithm is as follows:

BEGIN
Get a new instance v.

For all points wi in the dataset
Compute the distance between v and wi

Store the distance for later comparison
End for
Sort the distances
Choose the k instances closest to v (i.e., with lowest k distances (v, wi))
Count the votes for each class in the k instances
Classify v in the winning class (i.e., class with highest votes).

END
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10.3.3 KNN for Regression

Regression is used to use existing information to predict future numerical values. For
example, we could use the number of hours students spend studying each week to
predict their future GPA; we can also use information about a house (e.g., number of
rooms, size, location) to predict its sale price.

For regression problems, KNN tries to predict a value; it detects the k closest (i.e.,
most similar) instances to the new instance in question and computes the mean
(or the median) of the k-nearest neighbors’ outcome needed. That mean (or median)
is the predicted outcome for the new instance. Hence the algorithm stays the same
while the outcome is chosen as the average of the k-nearest neighbors instead of
voting on a winning class.

10.4 Final Notes: Advantages, Disadvantages, and Best
Practices

The distance metric and the value for k are hyperparameters that are chosen before
running the algorithm. The distance metric could also be learned from data as
opposed to guessing it, but this is beyond the scope of this introductory book
[1]. It is possible to try different values for k (e.g., 1, 3, 5, 7, 11) and find out what
works for your dataset [3]. K can also be chosen as the square root of the number of
instances in the dataset.

When working with KNN, it will be a good idea to:

1. Normalize your data, as KNN performs better if the data has the same scale.
2. Tackle missing data: If data is missing, the algorithm cannot calculate distances

between the instances. Either exclude instances with missing values or impute the
missing values.

3. Decrease data dimensionality: KNN suffers from high dimensionality (hun-
dreds or thousands of input variables). An increased number of dimensions leads
to an increase in the average distance between points [4]. You can reduce
dimensionality by performing feature selection.

10.5 Key Terms

1. K-nearest neighbors
2. KNN
3. Supervised KNN
4. Mode
5. Mean
6. Median
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7. Euclidean distance
8. Hamming distance
9. Manhattan distance

10. Minkowski distance
11. Mahalanobis distance
12. Cosine similarity
13. Tanimoto distance
14. Chebychev distance
15. Jaccard distance

10.6 Test Your Understanding

1. Define the concept “term frequency” or TF.
2. Define the term “inverse document frequency” or IDF.
3. How can you use the cosine distance, TF, and IDF in measuring document

similarities?
4. Mention at least one way of determining k.
5. Give three examples where we can use KNN for regression.
6. Give three examples where we can use KNN for classification.
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10.8 Lab

10.8.1 Working Example in Python

In this lab, we will use the k-nearest neighbors (KNN) algorithm to classify flowers
in the Iris dataset. This dataset can be downloaded from the link below: https://www.
kaggle.com/datasets/uciml/iris

It contains three species of iris as well as some properties for each flower. This
dataset contains the following columns:

• Id: an internal ID for the iris dataset
• SepalLengthCm: sepal length of the iris measured in cm
• SepalWidthCm: sepal width of the iris measured in cm
• PetalLengthCm: petal length of the iris measured in cm
• PetalWidthCm: petal width of the iris measured in cm
• Species: the species of the flower (Iris virginica, Iris versicolor, and Iris setosa)

10.8.1.1 Load Iris Dataset

The first task is to import the needed libraries and load the dataset (Fig. 10.3).

https://doi.org/10.1016/j.knosys.2020.106270
https://doi.org/10.1016/j.knosys.2020.106270
https://doi.org/10.1145/3441448
https://doi.org/10.3390/bios11030069
https://doi.org/10.1145/3443467.3443858
https://www.kaggle.com/datasets/uciml/iris
https://www.kaggle.com/datasets/uciml/iris
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Fig. 10.3 Loading iris
dataset into pandas for KNN
model

Fig. 10.4 Data cleanup by
converting species column
values to numeric

10.8.1.2 Data Cleaning and Visualization

We will then display a pair plot giving a different color to each specie (Figs. 10.4,
10.5). As discussed earlier, other libraries can be used to visualize data to plot
histograms, bar charts, etc.

We can notice that while the Iris Setosa can be easily identified, the Iris Virnica
and Iris Versicolor data overlap and would be more challenging to classify.

10.8.1.3 Split and Scale Data

Then we will proceed to replace the values of the target variable (Species) to numeric
values using the data frame’s .replace() method (can you find another way to replace
these values?).

Following the value replacement, we divide the dataset into feature vector x and
target vector y. We proceed to split the dataset (70%, 30% ratio) between training
and testing datasets (Fig. 10.6).

10.8.1.4 Optimize KNN Model Using Grid Search Cross-Validation

We then proceed to optimize the KNN model by tuning its hyperparameter using
Grid search cross-validation. Finally, the best hyper parameters, the accuracy, the
AUC and a classification report are computed and displayed (Fig. 10.7).
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Fig. 10.5 Visualizing iris data using Pairplot

Fig. 10.6 Split data into training and testing datasets and scale them

Note that we are in a multi-class classification situation (i.e., 3 classes of Iris). The
usual roc_auc_score will not work, and you need to use a multi_class parameter. The
mult_class parameter can have a value of “ovr” or “ovo”: ovr (one-vs-rest) mode
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Fig. 10.7 Optimize KNN model using grid search cross-validation

computes the AUC for each class versus the others which makes it sensitive to class
imbalance, while the ovo mode computes the AUC for all possible combination of
classes which makes it insensitive to class imbalance. In our case, we have the same
number of instances in each target class, so the AUC will not be affected by class
imbalance. Note the commented code, if you try to uncomment it and run it you will
notice an error because for multi-class clasficiation roc_auc_score expects predicted
probabilities (optimal_pred_prob) not predicted values (optimal_pred). Finally, we
can display a confusion matrix (Fig. 10.8).

10.8.2 Working Example in Weka

Download the iris dataset using the following link: https://www.kaggle.com/arshid/
iris-flower-dataset.

Open the Iris.csv file and choose the IBk classifier from the “lazy classifiers” set
(Fig. 10.9).

Click on the algorithm’s name to open the list of parameters associated with it
(Fig. 10.10).

The KNN parameter allows you to specify the size of the neighborhood. K is set
to 1 by default; other more common values are 3, 7, 11, and 21 [3]. However, if you

https://www.kaggle.com/arshid/iris-flower-dataset
https://www.kaggle.com/arshid/iris-flower-dataset
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Fig. 10.8 Confusion matrix showing the performance of the optimal model on the testing dataset

Fig. 10.9 Choosing IBk
(i.e., KNN implementation)
from Weka

set the crossValidate parameter to true, then Weka will find the most appropriate
value for k.

The nearestNeighbourSearchAlgorithm controls the way the algorithm searches
and stores the training dataset; it allows you to set the distance function. Click on the
textbox and you will be able to change the distance parameter; the default is the
Euclidean distance. Since in our case the variables are numerical, the Euclidean
distance is appropriate.
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Fig. 10.10 The parameters
of KNN in Weka

Fig. 10.11 Result of executing the KNN in Weka
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Run the algorithm with k = 1, k = 3, k = 7, and k = 21. Which one gives you a
better result? The next figure displays the result for k = 1 (Fig. 10.11).

10.8.3 Do It Yourself

10.8.3.1 Iris Data Set Revisited

In the presentation above, we did not normalize or standardize the dataset. Investi-
gate if any would enhance the KNN accuracy or AUC.

10.8.3.2 Predict the Age of Abalone from Physical Measurement

You can download the dataset from the following link: https://archive.ics.uci.edu/
ml/datasets/abalone

Here is a new way to do so:

import pandas as pd
url = ("https://archive.ics.uci.edu/ml/machine-learning-databases/
abalone/abalone.data")
abalone = pd.read_csv(url, header=None)

Use KNN to predict the age of an abalone from its physical measurements.

10.8.3.3 Prostate Cancer

Download the prostate cancer dataset from the following link: https://www.kaggle.
com/sajidsaifi/prostate-cancer.

Answer the following:

1. Use KNN to classify any new instance as benign (B) or malignant (M).
2. Suggest one or more algorithm for classification (You can follow the steps

presented in Chap. 4).
3. Which algorithm led to a better result? Explain your answer.

10.8.4 Do More Yourself

Download the digitized breast cancer image features dataset created by Dr. William
H. Wolberg, W. Nick Street, and Olvi L. Mangasarian at the University of Wiscon-
sin, Madison. You can use either of the following two links:

https://archive.ics.uci.edu/ml/datasets/abalone
https://archive.ics.uci.edu/ml/datasets/abalone
https://www.kaggle.com/sajidsaifi/prostate-cancer
https://www.kaggle.com/sajidsaifi/prostate-cancer
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• http://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Diagnos
tic%29

• https://www.kaggle.com/roustekbio/breast-cancer-csv

1. Get acquainted with the new dataset. Read articles published about it if necessary.
2. Can we use the dataset and KNN to predict if a new instance with unknown

diagnosis derives from a benign or malignant tumor? Use KNN to answer the
question.

3. Generate a new instance and use KNN to classify it as malignant or benign.
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Chapter 11
Neural Networks

11.1 The Problem

Rule-based systems and Bayesian networks cannot effectively solve problems such
as image or speech recognition. Artificial neural networks (ANNs), or simply neural
networks, are effective in solving complex problems, i.e., in modeling complex
nonlinear functions. ANNs model the functioning of the brain’s neurons; ANN can
be trained to “learn” how to recognize patterns and classify data [1].

11.2 A Practical Example

11.2.1 Example 1

Let us take an example of a dataset that has four instances with two variables, x and
y, and two classes (i.e., class “grey” and class “black”), which are drawn in Fig. 11.1.
We can notice two groups of instances: those in black and those in grey. But there is
no way that one straight line can classify these instances into two classes/categories.
If we have two lines like those present in Fig. 11.2, we can correctly classify the
instances. So, the function that separates these two classes cannot be linear; we
therefore have a nonlinear solution to this classification problem (Fig. 11.2). Every
time a linear classification cannot work, we can make use of an artificial neural
network (ANN), or more accurately, an ANN with hidden layers.

To make our point clear, we can draw two straight lines to separate the two classes
(Fig. 11.3).

Each line is expressed as y = ax + b, or to write it slightly differently, y - ax -
b = 0, which is equivalent to

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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Fig. 11.1 Eight instances belonging to two classes represented by black dots and grey dots

Fig. 11.2 Eight instances belonging to two classes separated by nonlinear function

w2x2 w1x1 w0 = 0,

where w2=1, w1=-a, and w0=-b.
We will see in the Multilayer Perceptron paragraph how an artificial neural

network can solve this problem.

11.3 The Algorithm

A biological neuron can be schematized typically in the following figure (Fig. 11.4).
A brain neuron can be considered an information-processing unit. Neurons

communicate through electrical signals. By discharging chemicals known as



neurotransmitters, the synaptic terminals of one neuron produce a voltage pulse
which is communicated to the soma through the dendrites of another neuron. At the
soma, the potentials are added, and when the summation rises above a critical
threshold, then an electrical signal travels through the axon to the synaptic terminals
[2, 3].
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Fig. 11.3 An example of two straight lines drawn in an attempt to separate the two classes

Synaptic Terminals

Axon
Nucleus

Dendrites

Synapse

Synaptic Terminals

Synaptic Gap
(50-200 angstrom)

Soma
(Cell body)

Electrical signal travels along the axon towards the synaptic terminal

(receives messages 
from other neurons)

Fig. 11.4 Typical biological neuron

Hence, dendrites play the role of input, and the axon, the role of output. As a
processing unit, the neuron has many inputs and one output that is connected to
many other processing units [3].

Synapses might excite or inhibit the dendrites; exciting a dendrite results in a
positive direction of its potential, while inhibiting it results in a negative direction of
its potential. Hence, the inputs communicated through the dendrites are “weighted”:



some signals are positive (excite), and others are negative (inhibit). At the soma, the
weighted inputs are added, and if the sum crosses a threshold, the neuron fires (i.e.,
gives output). A neuron can fire between 0 and 1500 times per second [2]. The
neuron either fires or does not, but what changes is the rate of firing.
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11.3.1 The McCulloch–Pitts Neuron

In 1943, Warren McCulloch and Walter Pitts proposed a mathematical model of the
neuron known today as the McCulloch–Pitts (M-P) neuron [4, 5] (Fig. 11.5). The
inputs (e.g., dendrites) of an M-P neuron are either 0 or 1, and it can be thought of as
formed of two parts: the first part sums up all input values, and the second makes a
decision about the resulting sum. The decision function f will provide an output of
1 if the sum of the inputs is greater than or equal to a certain threshold θ (pronounced
theta) and 0 otherwise.

Let us use an M-P neuron to decide whether to go to the movie theater or not.
Suppose that we base our decision on four binary parameters: it is a weekday (x1), it
is after 6:00 p.m. (x2), it is not during the COVID-19 pandemic (x3), and the actor is
Shah Rukh Khan (x4). A decision will be made to go to watch the movie if three out
of the four conditions are met (θ = 3): f(g(x)) = 1 if g(x) ≥ ϑ; f(g(x)) = 0 if g(x) < ϑ.

θ is called the bias; we can think of it as the prior prejudice. For example, for a
certain group of people, it might be enough that two of the conditions are met to
decide to go to the movie theater; for others, the threshold could be 4 or even 0.

What would be the M-P decision on a Tuesday at 5:00 p.m. during the pandemic
if the actor was Shah Rukh Khan?

o= g xð Þ= x1 þ x2 þ x3 þ x4 = 1þ 0þ 0þ 1= 2

f(o) = f(g(x)) = f(2) = 0; the decision is not to go to the movie theater (i.e., the
neuron will not fire).

What would be the M-P decision on a Tuesday at 7:00 p.m. during the pandemic
if the actor was Shah Rukh Khan?

Fig. 11.5 A McCulloch–
Pitts neuron
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y=f(g(x))
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n
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g xð Þ= x1 þ x2 þ x3 þ x4 = 1þ 1þ 0þ 1= 3

f(g(x)) = f(3) = 1; the decision is to go to the movie theater (i.e., the neuron
will fire).

The M-P neuron was the first step towards today’s neural network; however, it
was very restrictive. First, not all our inputs are binary; they can be numerical or
categorical. Also, the output we desire is not always binary—we might want to
predict a number in the case of regression or predict a class out of multiple existing
classes (more than 2) in the case of classification problems.

11.3.2 The Perceptron

To overcome these limitations, the perceptron model was proposed by Frank
Rosenblatt in 1958; the model was refined by Minsky and Papertin 1969. Mainly,
the perceptron proposed to add adaptive weights to the inputs (Fig. 11.6).

The neuron has many inputs (x0 . . . xn) and adaptive weights (w0 . . . wn); each
input xi is multiplied by a corresponding weight wi, and then the results are summed
up, mimicking the dendrites-soma-axon behavior. When the summed-up result is
higher than a threshold ϑ, the outcome y is set to 1; otherwise, y is set to 0; y is in fact

a function of the weighted sum y= f g xð Þð Þ= f
Pn
i= 1

wi × xið Þ
� �

.

If we go back to the same problem above—the decision to go to the movie
theater—but we add to it the weight for each input, the weights can be decided based
on knowledge about the importance of each input: a highly important input for
making the right decision can be assigned a high weight, and inputs that do not play a
major role can be assigned lower weights. Finding ways to determine the best
weights and θ for a decision problem is the main goal in the next paragraphs.

Suppose that the perceptron is deciding for a group of Shah Rukh Khan diehard
fans, hence the weight w4 could be 10, while the other weights are set as follows:
w1 = 2, w2 = 3, w3 = -5. For the sake of this example, let us change x3 to represent
pandemic if it is equal to 1 and no pandemic if it is equal to 0.

Fig. 11.6 The perceptron
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Fig. 11.7 A perceptron with threshold ϑ

What would the perceptron’s decision be on a Tuesday at 7:00 p.m. during the
pandemic if the actor was Shah Rukh Khan?

g(x) = w1x1 + w2x2 + w3x3 + w4x4 = 2x1 + 3x2 + -5x3 + 10x4 = 10>ϑ=3, the
decision is to go to watch the movie.

Now, we can change the weights for people who are more reasonable and decide
that watching a movie with Shah Rukh Khan (or any other actor) is not of a higher
value than their and others’ lives; we can decide that w3=-100, which will push the
perceptron’s decision “do not go to theater” to always fire under a pandemic.

Mathematically, we could look at the inputs (x0 . . . xn) and the weights (w0 . . . wn)
as vectors.

The input vector x is defined as x=

x1
x2
. . .

xn

2
6664

3
7775:

And the weights’ vector transpose is defined as wT = [w1 w2. . .wn].
In mathematics, the multiplication of two vectors wT and x is written wTx and is

expressed as follows:

wTx= w1 w2 . . .wn½ �

x1
x2
. . .

xn

2
6664

3
7775=

Xn
i= 1

wi × xið Þ

The function f that we have used to provide the output y is a function of the total
weighted sum (i.e., g(x)) and is called the activation function because it allows us to
activate the neuron when the value is greater than or equal to ϑ.

The activation function compares the weighted sum to ϑ and decides to activate
the neuron if the weighted sum is greater than ϑ (Fig. 11.7).
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Fig. 11.8 A perceptron with the threshold ϑ subtracted from the weighted sum
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Fig. 11.9 -ϑ as an input weight W0 for an attribute x0 of value 1

The same result can be achieved if we subtract the value ϑ from the sum
(Fig. 11.8). The result y is the same; however, the activation decision is made

based on whether
Pn
i= 0

wi × xið Þ- θ> 0 or not.

We can move one step further by treating -ϑ as an extra weight called w0

multiplied by an attribute x0 of value 1 (Fig. 11.9).
w0 is the bias of the model, which we sometimes represent with the letter b, which

is familiar in linear functions (i.e., y = ax + b).
Hence the following:

g xð Þ=
Xn
i= 1

wi × xið Þ þ b

 !
y= f g xð Þð Þ= f

Xn
i= 1

wi × xið Þ þ b

can also be written



1 2 1

2 3 1

1 5 1

4 1 0
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g xð Þ=
Xn
i= 1

wi × xið Þ þ - θð Þ=
Xn
i= 1

wi × xið Þ þ w0 × 1ð Þ=
Xn
i= 0

wi × xið Þ
 !

y= f g xðð Þ= f
Xn
i= 0

wi × xið Þ

11.3.3 The Perceptron as a Linear Function

In fact, the perceptron estimates a linear function. Let us take the following example
with two input variables, x1 and x2, and their corresponding weights, w1 and w2.
Suppose that we have the following values for the dataset we are trying to model
using the perceptron (Table 11.1). That dataset is plotted in Fig. 11.10, where the
points corresponding to a zero output are in grey.

Table 11.1 A training dataset x1 x2 y

3 0.5 0

5 2.3 0

0.7 4 1

0.1 4 1

0.2 5 1

Fig. 11.10 The dataset plotted on a graph
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Fig. 11.11 A line ( f(x) = x) separating the data points that belong to two different categories

It is obvious that we can find a solution to differentiate between the points in grey
and the others: we can plot a straight line that separates the two sets of data points. A
line such as y = x will do the job (Fig. 11.11).

If we use a perceptron with weights w1 = 1, w2 =-1, and w0 = 0, the perceptron
behaves exactly like f(x) = x.

Let us start with f(x) = x; we can rewrite it as y = x.
We can also write it as x2-x1= 0, or x2-x1-0= 0, or even w2x2 + w1x1 + w0= 0,

where w0 = 0, w1 = -1, and w2 = 1.
All the points on the line have in common the property x2-x1-0 = 0.
The points on both sides of the lines satisfy either of these two conditions: x2-

x1-0 > 0 or x2-x1-0 < 0.

We are in a situation of a summation
P2
i= 0

wi × xið Þ and then a decision based on

comparison of the resulting sum with a threshold θ = 0. We are in the domain of the
perceptron. The perceptron is modeling a straight line, so it is a linear model.

11.3.4 Activation Functions

The activation function f can be different than the one mentioned above; it can, for
example, propose that the output be-1 instead of 0; such a function is called bipolar
as opposed to unipolar (i.e., output positive or zero). The passage from one output to
another (0 to 1 or - 1 to 1) was abrupt in the previous paragraph, but we can use
activation functions with a smoother passage; such functions are called soft-limiting
(Fig. 11.12).



328 11 Neural Networks

0 0

1 1

-1
bipolarunipolar

x x

f(x) f(x)

Fig. 11.12 Unipolar and bipolar activation functions

Fig. 11.13 Sigmoid function for λ = 1

However, for reasons, we will discuss below (i.e., gradient descent), we will need
to compute the derivative of the activation function, i.e., it must be differentiable. We
have many activation functions to choose from [6].

11.3.4.1 The Sigmoid Function

A function that satisfies the differentiability criterion and that can play the role of a
soft-limiting activation function is the sigmoid function, defined as:

f xð Þ= 1
1þ e- λx
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Fig. 11.14 A graph showing the gradient of the sigmoid function

The graph of the sigmoid function is given in Fig. 11.13:where λ determines the
steepness of the sigmoid function. We can notice that the outcome of the sigmoid
function varies between 0 and 1.

The gradient of the sigmoid is defined as follows:

f 0 xð Þ= sigmoid xð Þ × 1- sigmoid xð Þð Þ

Since the sigmoid function’s output is always positive, the gradient of the sigmoid
will always be positive, whatever the value of x (Fig. 11.14). In fact, the gradient
approaches 0 above +3 and below -3, which indicates that little learning is done
above +3 or below -3.

We will overcome this issue if we scale the sigmoid function, and that is the
solution proposed by the tanh function.

11.3.4.2 The Tanh Function

The hyperbolic tangent function is defined as follows:

f xð Þ= tanh
1
2
λx

� �

for λ= 2, tanh xð Þ= 1- e- 2x

1 e- 2x

The graph of the tanh function is like that of the sigmoid, but it is scaled so that it
is symmetric around zero (Fig. 11.15).

The gradient of the tanh function is defined as follows:
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Fig. 11.15 The tanh function for λ = 2

Fig. 11.16 A graph showing the gradient of the tanh function

f 0 xð Þ= 1- tanh xð Þð Þ2

We can notice that the graph of the tanh gradient is symmetric around zero, and
hence it can be positive or negative (Fig. 11.16)

11.3.4.3 The ReLU Function

The rectified unit function (ReLU) is defined as follows:

ReLU xð Þ= f xð Þ= 0 if x< 0

x otherwise

�

The ReLU graph is shown in Fig. 11.17.
For all values that are below 0, the activation function will have 0 as an output;

hence, ReLU might activate a subset of all the neurons, which makes it more
efficient than other activation functions. The gradient of ReLU is a constant (0 or
1) and is defined as

f 0 xð Þ= 0 if x< 0

1 otherwise

�

Since the gradient might be 0 for some neurons, during backpropagation, some
weights and biases will not be updated, and the corresponding neurons might never
get activated; we call such neurons “dead neurons.” The leaky ReLU activation
function addresses this problem.
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Fig. 11.17 The ReLU function

11.3.4.4 The Leaky ReLU Function

Leaky ReLU is defined as follows:

ReLU xð Þ= f xð Þ= 0:01x if x< 0

x otherwise

�

The leaky ReLU graph is shown in Fig. 11.18
The leaky ReLU gradient function is defined as follows:

ReLU xð Þ= f xð Þ= 0:01 if x< 0

1 otherwise

�

With leaky ReLU, the gradient of the negative inputs will never be 0; hence, there
will be no dead neurons.

11.3.4.5 The Parameterized ReLU Function

The parameterized ReLU function adds flexibility for the negative values of x as it
introduces the slope as a parameter (instead of the constant slope 0.01). The function
is defined as follows:



�
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Fig. 11.18 The leaky ReLU function

ReLU xð Þ= f xð Þ= ax if x< 0

x otherwise

The only caveat is that the artificial neural network will also learn the slope a for
an optimal convergence.

The parameterized ReLU gradient function is defined as follows:

ReLU xð Þ= f xð Þ= a if x< 0

1 otherwise

�

11.3.4.6 The Swish Function

The swish activation function shows better performance than ReLU and is very
efficient; it is defined as follows (Fig. 11.19):

f xð Þ= x
1þ e- x

11.3.4.7 The SoftMax Function

The SoftMax function turns a vector x of k real values xj, j = 1 to k, into a vector of
k real values that sum to 1; it is defined as:
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Fig. 11.19 The swish Function

σ xið Þ= e- xi

PK
j= 1

e- xj

Since the SoftMax function returns values between 0 and 1, we can treat these
values as probabilities that an input belongs to a particular class. The SoftMax
activation function is very useful for multiclass classification, where the ANN has
multiple neurons as output.

11.3.4.8 Which Activation Function to Choose?

There is no formula; however, the following are rules of thumb:

– Sigmoid functions work well in classification problems.
– Sigmoid and tanh functions have one notable drawback: the vanishing gradient.
– The ReLU function is generic and is widely used.
– In the case of dead neurons, use leaky ReLU.
– Use ReLU first; if it does not provide you with a good solution, then you can try

other activation functions.
– Use SoftMax for multiclass classification problems.

11.3.5 Training the Perceptron

The question is how to find the right weights for the perceptron. We will do that by
gradient descent, which we have seen during regression.
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Let us define an error function E for the perceptron. If we take the error function
as the mean squared error (MSE), and suppose that we have a training set of
N instances (xi, yi), then E can be formulated as:

E=
1
2N

XN

i= 1
yi -byi� �2

=
1
2N

XN

i= 1
yi - f wTxi þ w0

� �� 2

– The value 1
2 is chosen for convenience in later calculations (i.e., derivatives).

– The training dataset is formed of N instances {(x1, y1), (x2, y2). . .(xN, yN)}. Each xi

is an input vector with n attributes/features (xi1, x
i
2, . . .x

i
n), and each yi is an

expected output for vector xi.
– wT is the transpose of the weight vector (w1, w2, . . .wn), where w0 is the bias.
– byi is the thresholded output computed by the perceptron for the input vector xi.

Our aim is to find the set of weights that minimizes E.
The error value depends on the values of w0, which is the bias b, and on all other

weights represented by the vector w, so E is a function of both variables. To obtain
E(w, b), we replace f(wTxi + b) with wTxi + b. The error function is then expressed as
follows:

E w, bð Þ= 1
2N

XN

i= 1
yi - wTxi þ b

� �� �2

When wTxi + b = yi for all xi, i = 1 to N, then E = 0; our aim is to find a set of
weights that makes E as close as possible to 0. When the perceptron learns how to fit
the unthresholded outputs wTxi + b to the desired outputs yi, it is simple to take the
same weights, apply them to the input vectors xi, and then use a threshold function
f to obtain perceptron outputs byi that correctly classify the xi. For example, suppose
the vectors xi are in two classes, yi = 1 and yi = 0; then if (wTxi + b) correctly
classifies a vector xi into one of the two classes (e.g., 1), that means that wTxi + b is
equal to either 1 or 0; if we apply an activation function f(wTxi + w0) that produces
1 if wTxi + b= 1 and produces 0 if wTxi + b= 0, the perceptron’s output f(wTxi + w0)
will correctly classify xi.

So, we will be interested in minimizing the error function for the output byi:

E w, bð Þ= 1
2N

XN

i= 1
yi - wTxi þ b

� �� �2

As was the case with the regression, we will use gradient descent to minimize the
error function until convergence is reached.



 !0 1

P

 !

� �� �

  ! !

11.3 The Algorithm 335

∂E
∂wj

=

∂ 1
2N

PN
i= 1 yi -

Pn
j= 1

wjxij þ w0

� � 2

@ A

∂wj

The error ei made for the ith sample can be expressed as follows:

ei = yi -
Xn
j= 1

wjx
i
j þ w0

� �

Hence

∂E
∂wj

=
∂ 1

2N

PN
i= 1 eið Þ2

� �

∂wj

� �
∂E
∂wj

=
1
2N

∂ N
i= 1 eið Þ2

∂wj

∂E
∂wj

=
1
2N

XN

i= 1

∂ eið Þ2
∂wj

∂E
∂wj

=
1
2N

XN

i= 1
2ei

∂ eið Þ
∂wj

∂E
∂wj

=
1
N

XN

i= 1
ei
∂ eið Þ
∂wj

∂E
∂wj

=
1
N

XN

i= 1
ei
∂ yi -

Pn
j= 1

wjxij þ w0

� �

∂wj

∂E
∂wj

=
1
N

XN

i= 1
ei - xij

∂E
∂wj

= -
1
N

XN

i= 1
eixij = -

1
N

XN

i= 1
yi -

Xn
j= 1

wjx
i
j þ w0

� �
xij

Now, we will compute ∂E
∂b, which is

∂E
∂w0

, where w0 is the weight for x
i
0 and xi0 = 1.
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∂E
∂b

=
∂E
∂w0

= -
1
N

XN

i= 1
yi -

Xn
j= 1

wjx
i
j þ w0

� �
xi0 =

-
1
N

XN

i= 1
yi -

Xn
j= 1

wjx
i
j þ w0

� � !

We can start at the first iteration at a random value for the weights w and the bias
b; then, we adjust these values at the next iteration based on the following formula,
where k is the current iteration:

w kþ1ð Þ =w kð Þ - α
∂E
∂w kð Þ

b kþ1ð Þ = b kð Þ - α
∂E
∂b kð Þ

where α is the learning rate (e.g., 0.01) and ∂E
∂w kð Þ

and ∂E
∂b kð Þ

are the gradient of E with

respect to w and b, at iteration k, respectively.
The updates of the perceptron parameters w and b are calculated as the difference

(represented by deltaΔ) between their values in the next iteration k and in the current
one [7]:

w kþ1ð Þ =w kð Þ - α
∂E
∂w kð Þ

w kþ1ð Þ =w kð Þ þ α
1
N

N

i= 1
eixij

w kþ1ð Þ =w kð Þ þ α
N

XN

i= 1
yi -

Xn
j= 1

wj kð Þxij þ w0 kð Þ
� �

xij

b kþ1ð Þ = b kð Þ - α
∂E
∂b kð Þ

b kþ1ð Þ = b kð Þ þ α
1
N

N

i= 1
ei

b kþ1ð Þ = b kð Þ þ α
N

XN

i= 1
yi -

Xn
j= 1

wj kð Þxij þ w0 kð Þ
� �

,

which is equivalent to writing w0 kþ1ð Þ =w0 kð Þ þ

α 1
N

PN
i= 1 yi -

Pn
j= 1

wj kð Þxij þ w0 kð Þ
� � !

.
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To train the perceptron, we can proceed by:

1. Forward calculation: CalculatingwTxi + b for all xi. Such a run into theN instances
of the training set is called an epoch.

2. Updating the weights and the bias w(k + 1) and w0(k + 1).
3. Repeating steps 1 and 2 until E(w, b) converges.
4. Using the last calculated weights and bias to predict the output y for any new

input x.

As we can guess, the perceptron is a linear model and cannot solve a nonlinear
problem.

In practice, using all the available instances to make a single update of the weights
might be extremely slow, so instead, we sample a random smaller batch of the
training dataset to compute every update. This method is called the minibatch
stochastic gradient descent.

11.3.6 Perceptron Limitations: XOR Modeling

The exclusive-or (XOR) function is a function with two input variables, x1 and x2,
that has an output of 1 if either x1 or x2 is 1; otherwise, it is 0. The truth table is shown
in Table 11.2, and the corresponding plot is in Fig. 11.20.

To model the XOR function, we need to find a line that separates outputs 1 (black
dots in Fig. 11.20) from outputs 0 (grey dots in Fig. 11.20). However, we cannot find
a linear function that separates those outputs; we can see an example failing to
represent XOR in Fig. 11.20.

The perceptron is a linear classifier and hence cannot find a model to classify
correctly an XOR function. We can, however, extend the perceptron by adding more
layers so that it becomes a multilayer perceptron (MLP), which will enable it to
model nonlinear complex functions and virtually any function.

11.3.7 Multilayer Perceptron (MLP)

A multilayer perceptron (MLP) has one or more hidden layers. Figure 11.21 shows
an example of two hidden layers, one input layer and one output layer. It is important
to note that the perceptron principles function on the hidden layer and the output

Table 11.2 XOR function
truth table

x1 x2 XOR
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Fig. 11.20 The XOR function with two discriminant lines
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Fig. 11.21 An MLP with two hidden layers and one output

layer, where the hidden layer is formed of the data instances from the training dataset
but no perceptron is involved in it; that is why many authors do not count the input
layer as part of the total number of layers; however, some authors do.
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Fig. 11.22 An MLP with one hidden layer and one output y

The inputs in Fig. 11.21 and their corresponding weights are fed into the first
hidden layer, composed of several neurons, which in turn generate their own outputs
using an activation function f1 and feed them with their own weights to the second
hidden layer, which in turn applies an activation function f2 and feeds its outputs to
the output layer; the latter applies an activation function f3 and generates the final
MLP output.

The activation functions in each layer (i.e., f1, f2, and f3) can be the same or
different. If the activation function of the output layer is a linear function, the MLP
generates a regression model, while if it is nonlinear, then the model is nonlinear
(i.e., if the function is logistic, then the model is logistic regression or binary
classification) [8]. Figure 11.22 shows an MLP with one hidden layer and one
output, while Fig. 11.23 shows an MLP with one hidden layer and three outputs.

Within an MLP, we have different weights and different biases (i.e., constant b)
for each layer; hence, expressing the learning problem becomes more elaborate, but
it follows the same principle as in the case of one perceptron.

What do hidden layers do exactly? We will continue the practical example to
answer this question.

We have seen in Fig. 11.3 that we need two lines to separate the two given
classes. We know that a perceptron models a linear function; needing n lines to
separate two classes is equivalent to say that we need n perceptrons. In our example,
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Fig. 11.23 An MLP with one hidden layer and three outputs y1, y2, and y3

we will need two perceptrons in one hidden layer, where each hidden perceptron
(i.e., neuron) produces one line. Since we need to join the two lines in order to have
one model that separates the two classes, then we will need to join the two neurons’
outputs into one neuron (the output neuron). The result is shown in Fig. 11.24.

This example is to illustrate the benefit of hidden neurons; in complex real-life
problems, we cannot just guess the number of hidden neurons and the number of
hidden layers required to create the model.

11.3.8 MLP Algorithm Overview

Initialize the input layer
Initialize the weights’ vectors and bias vectors for all layers
PHASE 1: forward computation
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Fig. 11.24 A multilayer perceptron with a two-neuron hidden layer to model a nonlinear classifier
solving the problem in Fig. 11.3

For each layer l from layer 2 to the output layer L (layer 1 being the MLP inputs)

For each neuron i in layer l

Compute the sum based on layer l’s weights, bias, and the previous layer
outputs

z lð Þ
i =

N l- 1ð Þ

j= 1
w lð Þ
ij × a l- 1ð Þ

j þ b lð Þ

Compute the output based on the previous sum

a lð Þ
i = f lð Þ z lð Þ

i

� �

End For

End For

Learning the model entails iteratively calculating the gradient for a cost function
such as the mean squared error (MSE) until the minimum is found (the algorithm
converges).

The example here is for MSE.

Use E Xð Þ= 1
2N

XN

i= 1
byi - yið Þ2

Starting with the last layer and working backward, compute for every neuron
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∂E Xð Þ
∂wl

ji

and
∂E Xð Þ
∂bli

PHASE 2: Backward propagation
We start from the output layer and update the weights and biases of each layer

backward: layer L first, then L-1, and we continue until the weights of layer 0 are
updated.

Weights’ update:

wl
iþ1 =wi - α

∂E Xð Þ
∂wl

ji

bliþ1 = bi - α
∂E Xð Þ
∂bli

Then we repeat the two phases until convergence, i.e., the cost is less than a
certain threshold.

11.3.9 Backpropagation

The problem we are facing is to find a method to minimize the error the MLP can
produce by minimizing the error function that estimates the difference between the
final output of the MLP and the expected outcome.

Backpropagation is a technique that allows us to achieve such aim; it performs a
gradient descent by working backward from the output layer to the input layer,
calculating in each layer the gradient of the error function with respect to the neural
network’s weights. The gradients of the last layer of weights are computed first and
then used in computation of the gradient for the previous layer; the process continues
until we reach the first layer of weights [9].

The mathematical notation is complex if we want to take a fully connected neural
network, so we will start with an example and move towards the fully connected
situation.

We will use the following denotations:

– E denotes our error (i.e., cost) function
– L denotes the number of layers
– Nl denotes the number of neurons in layer l

– w lð Þ
ij denotes the weight for neuron i in layer l in relation to the incoming neuron

j in layer l-1

– b lð Þ denotes the bias for neuron i in layer l

– z lð Þ
i denotes the product sum plus bias for neuron i in layer l: z lð Þ

i =



P

i i i

� �

ð Þ
1 2 Nl

n o

i i 1 2 Nl

n o

þ
þ
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N L- 1ð Þ
j= 1 wija

l- 1ð Þ
j þ b l- 1ð Þ

j

– σ denotes a nonlinear activation function in layer l

– a lð Þ denotes the output at a neuron i in layer l: a lð Þ = σ z lð Þ

– a(l ) denotes the output vector for layer l: a l = a lð Þ, a lð Þ, . . . a lð Þ ;

– w lð Þ denotes the weight vector for neuron i in layer l; w lð Þ = w lð Þ, w lð Þ, . . .w lð Þ

– w lð Þ
ij denotes the weight vector connecting the neuron i in layer l to neuron j in

layer l-1

11.3.9.1 Simple 1–1–1 Network

Let us take an example of a three-layer neural network (L = 3) with an input layer
with 1 neuron, a hidden layer with 1 neuron, and an output layer with 1 neuron
(Fig. 11.25).

There are only three layers: layer L (output), layer L-1 (hidden), and layer L-2
(input). We have one neuron in each layer, so we will not use the subscript i; for
example, instead of ali we will use a

l, and the same applies for all other notations.

a Lð Þ = σ z Lð Þ
� �

z Lð Þ =w L- 1ð Þa L- 1ð Þ b L- 1ð Þ

z L- 1ð Þ =w L- 2ð Þa L- 2ð Þ b L- 2ð Þ

We need to compute the gradient (partial derivative) of the error function
E (or cost function C) with respect to the weights and the biases. That is, we
would like to know how our cost function would change if we changed the weights
and biases of the network.

Starting in the last layer, we then investigate how this gradient propagates
backward through the network.

a

Layer L-1Layer L-2 Layer L

a (L)(L-1)a(L-2) w(L-2) w(L-1)

b(L-1)b(L-2)

Fig. 11.25 A three-layer neural network formed; each layer is 1 neuron
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11.3.9.1.1 Computation with Respect to Layer L-1

Having one node per layer will help us understand the computational work and its
implications. We will start with the layer L and calculate the gradient of our error
function Ewith respect to the weights and biases of neurons in the previous layer L-
1, ∂E

∂w L- 1ð Þ . Figure 11.26 clarifies the relationship between the cost function and the
weights and biases.

Let us consider the mean squared error as an error function. Since we have only
one neuron in the output:

E=
1
2

a Lð Þ - y
� �2

the
1
2
is for convenience

Using the chain rule, we can write:

∂E
∂w L- 1ð Þ =

∂E
∂a Lð Þ

∂a Lð Þ

∂z Lð Þ
∂z Lð Þ

∂w L- 1ð Þ

∂E
∂a Lð Þ =

1
2
∂ a Lð Þ - y

2

∂a Lð Þ =
1
2
2 a Lð Þ - y
� �

= a Lð Þ - y
� �

∂a Lð Þ

∂z Lð Þ =
∂σ z Lð Þ

∂z Lð Þ = σ0 z Lð Þ
� �

∂z Lð Þ

∂w L- 1ð Þ =
∂ w L- 1ð Þa L- 1ð Þ þ b L- 1ð Þ

∂w L- 1ð Þ = a L- 1ð Þ

Hence, we can solve ∂E
∂w L- 1 :

Fig. 11.26 The cost
function E’s relationship
with the weights and biases
passes through a chain from
E to a, from a to z, and from
z to the weights and biases

E

Layer L
Error

function

a(L)

a(L-1)

b
(L-2)

z(L)

w
(L-2)
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∂E
∂w L- 1ð Þ = a Lð Þ - y σ0 z Lð Þ a L- 1ð Þ

Just note that the sigmoid is used as the nonlinear activation function; then,
σ= 1

1þe - zð Þ , and its derivative is σ0 = e - zð Þ

1þe - zð Þð Þ2 . Also note that we would like to see

how the cost function changes with the change of the weight w(L - 2); we will see that
in a moment. First, let us see how the cost function changes with the change of the
bias b(L - 1). We will use the chain rule ∂E

∂b L- 1 , which can be written as follows:

∂E

∂b L- 1ð Þ =
∂E
∂a Lð Þ

∂a Lð Þ

∂z Lð Þ
∂z Lð Þ

∂b L- 1ð Þ

∂E
∂a Lð Þ = a Lð Þ - y

∂a Lð Þ

∂z Lð Þ = σ0 z Lð Þ

∂z Lð Þ

∂b L- 1ð Þ =
∂ w L- 1ð Þa L- 1ð Þ þ b L- 1ð Þ

∂w L- 1ð Þ = 1

Therefore,

∂E

∂b L- 1ð Þ = a Lð Þ - y
� �

σ0 z Lð Þ
� �

So, based on the weights and biases’ initial values, we have used a training
instance to compute the predicted output a(L), then computed the gradient of the cost
(i.e., error) with respect to the weights and biases, as we have just seen. We can use
those gradients in the following equations to update the weights and biases before
going forward with another training round (time t + 1):

w L- 1ð Þ t þ 1ð Þ=w Lð Þ tð Þ- α
∂E

∂w L- 1ð Þ

b L- 1ð Þ t þ 1ð Þ= b Lð Þ tð Þ- α
∂E

∂b L- 1ð Þ

where α is the training rate, t denotes a round of training.

11.3.9.1.2 Computation with Respect to Layer L-2

We will now proceed further up the network and calculate the gradient of our error
function E with respect to the weights and biases of neurons in the previous layer



� �

� �

� �

� �

� � � � � �

ð Þ

L-2. This is a measurement of how much E changes with respect to changes in
weights and biases at level L-2.
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But before we can know that, we will need ∂E
∂a L- 1ð Þ , so let us compute that

derivative.

∂E
∂a L- 1ð Þ =

∂E
∂a Lð Þ

∂a Lð Þ

∂z Lð Þ
∂z Lð Þ

∂a L- 1ð Þ

∂E
∂a Lð Þ = a Lð Þ - y

∂a Lð Þ

∂z Lð Þ = σ0 z Lð Þ

∂z Lð Þ

∂a L- 1ð Þ =w L- 1ð Þ

Hence,

∂E
∂a L- 1ð Þ = a Lð Þ - y

� �
σ0 z Lð Þ
� �

w L- 1ð Þ

Now that we have found the gradient of E with respect to a(L - 1), we can proceed
with our investigation:

∂E
∂w L- 2ð Þ =

∂E
∂a L- 1ð Þ

∂a L- 1ð Þ

∂z L- 1ð Þ
∂z L- 1ð Þ

∂w L- 2ð Þ
� �

∂a L- 1ð Þ

∂z L- 1ð Þ =
∂σ z L- 1ð Þ

∂z L- 1ð Þ = σ0 z L- 1ð Þ
� �

∂z L- 1ð Þ

∂w L- 2ð Þ =
∂ w L- 2ð Þa L- 2ð Þ þ b L- 2ð Þ

∂w L- 2ð Þ = a L- 2ð Þ

∂E
∂w L- 2ð Þ =

∂E
∂a L- 1ð Þ σ

0 z L- 1ð Þ a L- 2ð Þ

∂E
∂w L- 2ð Þ = a Lð Þ - y σ0 z Lð Þ w L- 1ð Þσ0 z L- 1ð Þ a L- 2ð Þ

Similarly, ∂E
∂b L- 1 can be computed as follows:

∂E

∂b L- 2ð Þ =
∂E

∂a L- 1ð Þ
∂a L- 1ð Þ

∂z L- 1ð Þ
∂z L- 1ð Þ

∂b L- 2ð Þ
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∂a L- 1ð Þ

∂z L- 1ð Þ = σ0 z L- 1ð Þ
� �

∂z L- 1ð Þ

∂b L- 2ð Þ =
∂ w L- 2ð Þa L- 2ð Þ þ b L- 2ð Þ

∂w L- 2ð Þ = 1

∂E

∂b L- 2ð Þ =
∂E

∂a L- 1ð Þ σ
0 z L- 1ð Þ

∂E

∂b L- 2ð Þ = a Lð Þ - y σ0 z Lð Þ w L- 1ð Þσ0 z L- 1ð Þ

We can also update the weights in level L-2 using the usual formula:

w L- 2ð Þ t þ 1ð Þ=w Lð Þ tð Þ- α
∂E

∂w L- 2ð Þ

b L- 2ð Þ t þ 1ð Þ= b Lð Þ tð Þ- α
∂E

∂b L- 2ð Þ

11.3.9.2 Fully Connected Neural Network

There are a few adjustments that we have to consider when we have a fully
connected neural network.

The mean squared error function E is still a function of the weights vector and the
bias b but is now expressed as an average:

E w, bð Þ= 1
2N

XN

i= 1
ai - yið Þ2

where N is the number of instances in the training set.

11.3.9.2.1 Computation with Respect to Layer L-1

∂E
∂wij

L- 1ð Þ =
∂E

∂ai Lð Þ
∂ai Lð Þ

∂zi Lð Þ
∂zi Lð Þ

∂wij
L- 1ð Þ

∂E
∂wij

L- 1ð Þ = ai
Lð Þ - yi

� �
σ0 zi

Lð Þ
� �

ai
L- 1ð Þ
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∂E
∂aj L- 1ð Þ =

XN l- 1ð Þ

i= 1

∂E
∂ai Lð Þ

∂ai Lð Þ

∂zi Lð Þ
∂zi Lð Þ

∂aj L- 1ð Þ

The sum is added, as the activation from every neuron aj from layer L-1 will
affect all the activations of the neurons in layer L, which will affect the cost of the
neural network.

11.3.9.2.2 Computation with Respect to Layer L-2

∂E
∂wij

L- 2ð Þ =
∂E

∂ai L- 1ð Þ
∂ai L- 1ð Þ

∂zi L- 1ð Þ
∂zi L- 1ð Þ

∂wij
L- 2ð Þ

We can see clearly from the above that the error in a layer l depends on the error in
the next layer l + 1; hence, the errors propagate backward from the last to the first
layer. Once we compute the error at the output layer and once the partial derivatives
for all the neurons are known, the weights can be updated. The process is repeated
until convergence.

Note that strictly speaking, the term “backpropagation” refers not to the learning
process but to the method used to compute the gradient [10].

11.3.10 Backpropagation Algorithm

The backpropagation algorithm runs in four steps:

1. Forward phase: Proceeding from the input layer to the output layer, for each
input-output pair in the training dataset, calculate the predicted output and save
the result for each neuron.

2. Backward phase: Proceeding from the output layer to the input layer, calculate
and save the resulting gradients.

3. Combine the individual gradients to obtain the total gradient.
4. Update the weights using α and total gradient.
5. Repeat until the minimum cost is reached.
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11.4 Final Notes: Advantages, Disadvantages, and Best
Practices

Neural networks are considered one of most prominent ML models given its ability
to deal with different type of outputs, including discrete, real-value, vectors, images,
and many others. Those models can learn and model complex, nonlinear and highly
volatile data. Their architecture allows those models to be robust to any noises
during the training period. Even with long training period, neural networks can
generate interesting results. Note that neural networks can also be used for anomaly
detection (even if we are dealing with unlabeled data); in this case, the learning
results can be used to give fast second opinion with good accuracy in any used
application.

Like an MLmodel, neural networks need parallel processing power, which makes
it hardware dependence in a way. Although it gives promising results, the latter are
unexplainable in many cases in terms of why and how we reached such decisions
which might affect the trust in such models. In terms of its technical structure, there
is no well-defined rule on how to design such architecture (number of hidden layers,
number of hidden nodes, error thresholds for best training time and optimal results);
it is more of trial-and-error process

With this in mind, we tend to depend on best practices to try and optimize the
neural networks results. Some of key practices include the following:

• Always check the size of the training data; if it is not enough, it is important to
increase.

• If the model overfits, you can either use simpler network (a smaller number of
hidden layers/nodes), use dropout layers, increase data samples, or remove some
features (execute preprocessing of data again).

• If the mode underfits, you can add more features (using feature engineering
techniques).

• Starting with large batch size can reduce the training time in some cases.
• If the model suffers from vanishing gradient problem, using lower learning rate

might allow the model to converge.
• Normalizing the inputs in every layer might help the stability and performance of

the model.

11.5 Key Terms

1. Artificial neural networks (ANN)
2. McCulloch–Pitts (M-P) neuron
3. Perceptron
4. Linear function
5. Linear model
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6. Bipolar activation functions
7. Unipolar activation functions
8. Sigmoid function
9. Hyperbolic tangent function

10. Tanh function
11. Rectified unit function
12. ReLU function
13. Leaky ReLU function
14. Parameterized ReLU function
15. Swish function
16. SoftMax function
17. Training the perceptron
18. Gradient descent
19. Stochastic gradient descent
20. XOR
21. Exclusive OR
22. Multilayer perceptron
23. MLP
24. Backpropagation
25. Chain rule
26. Fully connected neural network

11.6 Test Your Understanding

1. Can we identify a perceptron as a linear classifier or a nonlinear one?
2. What type of problems does a perceptron solve?
3. Why should the activation function of a multilayer perceptron be nonlinear?
4. What is the aim of backpropagation?
5. Explain backpropagation in simple words for a specialist.
6. The hyperbolic tangent function overcomes a problem we find in the sigmoid

functions. What is it?
7. Why does ReLU perform better than tanh and sigmoid functions?
8. Explain the “dead” neuron problem and how to overcome it.
9. What kind of issues does a leaky ReLU overcome in comparison with a ReLU?

10. SoftMax is very useful to solve a specific kind of problem; what is it?
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11.8 Lab

11.8.1 Working Example in Python

The diabetes dataset that is used in this lab can be downloaded from the
following link: https://www.kaggle.com/datasets/uciml/pima-indians-diabetes-
database

This is a binary classification problem. This dataset contains the following
information:

• Pregnancies: number of pregnancies
• Glucose: plasma glucose concentration
• Blood Pressure: diastolic blood pressure measurement
• SkinThikness: triceps skinfold thickness (mm)
• Insulin: 2-hour serum insulin
• BMI: body mass index (BMI)
• DiabetesPedigreeFunction: diabetes pedigree function
• Age: the person’s age
• Outcome: tested positive for diabetes or not (1 or 0)
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11.8.1.1 Load Diabetes for Pima Indians Dataset

Before loading the Pima Indians dataset, it is important to note that we need to install
the Keras, TensorFlow, and SciKeras libraries using the pip install command to
create the sequential neural network model.

For visualizing neural network, the Graphviz library is used. Graphviz Python can
be downloaded from the following link: https://www.graphviz.org/download/

After downloading Graphviz, the path in the system environment variables needs
to be edited to include:

C:\Program Files\Graph viz.\bin
C:\Program Files\Graphviz\bin\dot.exe
We start by importing the required libraries and loading the dataset and display a

bar chart for the outcomes a well as pair plots for the features (Fig. 11.27). The
displayed graphs are partially shown in Fig. 11.28.

11.8.1.2 Visualize Data

We explore the data visually (Fig. 11.28).

11.8.1.3 Split Dataset into Training and Testing Datasets

The next task is to choose features and target (the “Outcome”). The next step is to
split the dataset into training and testing and standardize both (Fig. 11.29).

Fig. 11.27 Load Pima Indians diabetes dataset

https://www.graphviz.org/download/
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Fig. 11.28 Visualizing diabetic vs. nondiabetic Pima Indians

11.8.1.4 Create Neural Network Model

The next task is to create the sequential neural network model using the Keras
library. As expected the input layer has eight nodes to accommodate the 8 features.
WE have chosen to add two hidden layers are added, one with 10 nodes and the other
with eight nodes (Fig. 11.30).

We can display the NN structure using the graphviz library (Fig. 11.31).
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Fig. 11.29 Splitting and scaling Pima Indians diabetes dataset

Fig. 11.30 Creating sequential neural network model

11.8.1.5 Optimize Neural Network Model Using Hyperparameter

For model optimization, we use the grid search cross-validation approach
(Fig. 11.32). The hyperparameters used for the grid search are the batch size and
the number of epochs. We conclude that the model has fair performance
(AUC = 72% and accuracy 75%) and can be used on an unseen dataset.

11.8.2 Working Example in Weka

Download the Boston housing dataset from the following website:
https://www.kaggle.com/prasadperera/the-boston-housing-dataset

https://www.kaggle.com/prasadperera/the-boston-housing-dataset
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Fig. 11.31 Displaying a sequential neural network model

Open the file in Weka, go to the Classify tab, and choose the Multilayer
Perceptron algorithm from Functions (Fig. 11.33).

Click on the function and notice the parameters for the algorithm (Fig. 11.34).
One of the most important parameters is the number of hidden layers; it is set to

automatic by default (i.e., the letter a denotes automatic), but it can be set to any
number you want. The learning rate can be changed; the default is 0.3. Click on GUI
and make it True, then click OK, then click Start to run the algorithm. The result is
shown in Fig. 11.35, and its graphical representation is shown in Fig. 11.36.
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Fig. 11.32 Optimize the neural network model using grid search and its performance

11.8.3 Do it Yourself

11.8.3.1 Diabetes Revisited

How can you enhance the results of the Neural Network above? Hint: think of
changing the number of hidden layers, and the number of nodes in each. We have
used above standardization but neural network expects values between 0 and
1, would normalization allow the NN to perform better?
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Fig. 11.33 Weka
multilayer perceptron
algorithm

Fig. 11.34 Multilayer
perceptron parameters
window in Weka
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Fig. 11.35 MLP results in Weka; we can notice RMSE = 4.73

Fig. 11.36 The neural network’s graphical representation
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11.8.3.2 Choose your Own Problem

Pick a problem of your own and apply NN. Discuss the results with another person.
Compare your result with someone else who used NN to solve the same problem.
Note the differences in the results.

11.8.4 Do More Yourself

Solve each of the following predictive problems using neural networks.

1. Boston house prices:
You can load the Boston house prices data file (as well as many other datasets)

from within python by writing: boston = dataset.load_boston()
2. Predicting stock prices using neural networks.

Download the dataset from https://www.kaggle.com/datasets/
paultimothymooney/stock-market-data

3. Handwritten digit recognition.
Download the dataset from http://yann.lecun.com/exdb/mnist/
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Chapter 12
K-Means

12.1 The Problem

So far, we have covered supervised learning algorithms for which the classes are
predefined and the class of each instance of the training dataset is known in advance.
The problem was to find a model that correctly classifies instances into their
appropriate classes with a minimal cost (i.e., minimal error rate).

The problem in unsupervised learning is different; we have a dataset, but neither
the classes nor the way to classify each instance in the training dataset is known in
advance, i.e., the samples in the dataset are not labeled. For example, one might have
data about residents of a city and want to cluster them geographically based on their
assumed support for a candidate for election, or a medical image and want to cluster
the pixel to perform image segmentation into similar regions, or a dataset about
houses’ characteristics (e.g., number of bedrooms, number of bathrooms, area, price,
postal code) and want to cluster them by their value. Hospitals would be interested in
uncovering clusters of patients who are high users of their services. Businesses might
want to perform customer segmentation, i.e., to cluster customers based on some
criteria, such as their purchases and their website activities; then, the businesses can
recommend products for customers in the same clusters [1].

Our aim is to build a model that uncovers the clusters of data latent in the dataset
based on feature similarities and classifies the instances into these clusters with a
minimal error rate. How to label these clusters is the job of the data analyst.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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12.2 A Practical Example

Let us consider the iris database and discount our knowledge of the class attribute.
The instances are now not labeled, and we are in front of a clustering problem. We
would like to use K-means to cluster the data into n clusters/categories. In this
problem, we know that there are three clusters (Iris setosa, Iris versicolor, and Iris
virginica); however, usually, n is suggested by a domain expert who understands the
reality the data describes.

The dataset contains the length and width of the sepal and petal of the three types
of irises. The dataset is labeled (i.e., class attribute); we can either delete the label or,
if we are using Weka, we can ask the K-means algorithm to ignore the label.
Figure 12.1 shows how to delete the label in Weka, while Fig. 12.6 shows how to
ignore it when executing K-means in Weka; as usual, in the lab, you will be using
Python and R.

We can start by exploring the dataset to have an understanding of the data trends
and the problem. Figure 12.2 shows the histograms for each attribute by class. The
dataset contains 50 instances for each type of iris. The petallength and petalwidth

Fig. 12.1 Remove the class attribute



histograms indicate that the petal length and width of one of the iris types (Iris
setosa) are clearly distinct from the other two types, and hence these two attributes
will help us identify Iris setosa. Iris versicolor and Iris virginica have common petal
length and width, and the sepal length and width do not provide enough information
to distinguish a separate class, as all three types of flowers have common values for
these two attributes. We can already conclude that we will encounter errors in
clustering, especially between Iris versicolor and Iris virginica.
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Fig. 12.2 Histograms for the different dataset features

When we explore the graph plots for the dataset features (Fig. 12.3), the
scatterplot shows the feature on the X-axis (i.e., in the columns) against all other
features on the Y-axis (i.e., in the rows). Again, we notice that the Iris setosa is
separated from the other two species in each of the scatterplots. Iris versicolor and
Iris virginica have many of their instances intermixed and are hard to distinguish in
all the scatterplots (e.g., sepal width vs. sepal length).

Given these observations, let us apply the K-means algorithm to the dataset and
explore the result (Fig. 12.4). Click on the algorithm’s name to open the list of its
parameters; since we know that we are seeking to detect three clusters, we will
change the numClusters (i.e., K ) parameter to 3 (Fig. 12.5); the default distance used
is Euclidean, which fits our problem (i.e., length and width). Finally, we choose to
ignore the Class parameter, as the label is not part of the features that we would use
in a clustering problem (Fig. 12.6), and we run the algorithm.

The resulting window (Fig. 12.7) displays important information. We can notice
that the algorithm converged after three iterations. The clusters are enumerated from
0 to K – 1, and Weka will display the centroid positions for each iteration (e.g.,
Cluster 0: 6.1, 2.9, 4.7, 1.4); the sum of the square error that we are trying to
minimize is 6.99, and the number of instances that were assigned to the three clusters



is 61, 50, and 39; since we know the labels, in this particular example, we know that
there were instances assigned to the wrong cluster, but this is already expected given
the instances’ intermixing that we noticed during the data visualization phase.
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Fig. 12.3 Scatterplots for the dataset features

Since the dataset contains the labels, we can ask K-means to consider the labels
instead of ignoring them to let us know how many instances were assigned to the
wrong cluster. In Weka, we can do so by choosing the “classes to clusters evalua-
tion” and selecting the class from the list of features (Fig. 12.8). Clicking on Start this
time shows an extra output (Fig. 12.9), the incorrectly clustered instances. We notice
that the K-means algorithm incorrectly clustered 17 instances: 14 Iris virginica were



clustered with the Iris versicolor, and three Iris versicolor were clustered with the
Iris virginica; the 50 instances of Iris setosa were all correctly clustered. As
expected, the errors were related to the distinction between the Iris versicolor and
Iris virginica species.
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Fig. 12.4 Choose the
SimpleKMeans algorithm
from the Cluster tab in Weka

We can always visualize the cluster assignments by right-clicking on the name of
the algorithm in the Result window and clicking on “Visualize Cluster Assignments”
(Fig. 12.10). A new window opens and displays a scatterplot for data on the X- and
Y-axes. To display a scatterplot showing the classes on the Y-axis, click on the Y
dropdown list and choose the Cluster attribute. The scatterplot shows us how the
instances were assigned, and we can see clearly that cluster 1 is distinct, 13 instances
are assigned to cluster 0 while they clearly belong to cluster 2, and three instances are
assigned to class 0 while they seem to belong to class 2 (Fig. 12.11).

We can check the cluster to which each instance was assigned by using a filter
called AddCluster (Fig. 12.12).

We can click on the filter to choose the clustering algorithm and set its parame-
ters. In our case, we would like to set K to 3 (Fig. 12.13).

When we apply the filter, a new attribute called “cluster” is created; it indicates
the cluster associated with each instance. To display the data, it is enough to click on
the Edit button (Fig. 12.14).

12.3 The Algorithm

The K-means algorithm involves the following steps:

– Specify the number of clusters K.
– Initialize the centroids by randomly selecting K samples from the training dataset.
– Assign samples to the clusters based on the closest centroid. The closeness is

determined using a distance (e.g., Euclidean, Manhattan).
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Fig. 12.5 Set the
numClusters (i.e., K)
parameters of the K-means
algorithm to 3

– Update the centroid for each cluster by recalculating the center point for each
cluster. The latter is the mean of the cluster’s samples, hence the name K-means.

– Repeat assigning samples and updating centroids until model convergence, i.e.,
there is little change in the centroids, or a certain number of iterations is
completed.

After convergence, the model is represented by the centroids. Each new sample is
assigned to the closest centroid; that is, each new sample is assigned to one of the
clusters 1 to K [2].
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Fig. 12.6 Choose to ignore
the class label before
executing K-means

We can represent the dataset with a matrix of N instances with n features, the
instances being the rows and the features, the columns of the matrix.

X=
x 1ð Þ
1 ⋯ x 1ð Þ

n

⋮ ⋱ ⋮
x Nð Þ
1 ⋯ x Nð Þ

n

2
64

3
75

Each vector x i x ið Þ x ið Þ x i
T
and X [x(1) x(2) x(N )]T.

The K-means algorithm computes the distance between each vector x(i) and the
centroids of the cluster μk k= 1, . . ., K. If Nk is the number of instances in the cluster
k, then the centroid μk is calculated as follows:

μk =
1
Nk

XNk

i= 1

x ið Þ
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Fig. 12.7 K-means clustering result

Using the Euclidean distance (note that other distances can be used) to measure
similarities between instances [3], the distance between an instance μk and a centroid
μk can be computed as follows:

dik =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i= 1

x ið Þ
j - μk j

� �2
s

If we use the matrix notation, we can rewrite the same as follows:

x ið Þ = x ið Þ - μk

h iT
x ið Þ - μk

h i� �1=2

= x ið Þ - μk
�� ��

Each x(i) is considered as belonging to a cluster K if it is closest to it and hence
satisfies the following condition:



� � � �

1 k

k
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Fig. 12.8 Analyzing the
incorrectly clustered
instances

x ið Þ - μk� �< x ið Þ - μj� �; j= 1, . . . ,K,j≠ k

The algorithm stops when the change in the number of instances belonging to the
clusters is minimal (less than a certain constant) or the clusters’ center’s location is
minimal; the stopping criteria is

either

XK
k= 1

Ntþ1
k -Nt

k

�� ��< ε

or

XK
k= 1

μtþ1
k - μtk

�� ��< ε

The algorithm can be summarized as follows:

1. Initialize k, and μ t0ð Þ to μ t0ð Þ, and set the time t = 1.

2. Classify the N instances according to the nearest μ t- 1ð Þ:
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Fig. 12.9 Seventeen
instances were incorrectly
clustered

Fig. 12.10 Visualize
cluster assignments
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Fig. 12.11 Cluster visualization

Fig. 12.12 AddCluster
filter
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Fig. 12.13 The K-means parameters in the AddCluster filter

x ið Þ - μ t- 1ð Þ
k

�� ��< x ið Þ - μ t- 1ð Þ
k

�� ��; j= 1, . . . ,K,j≠ k

3. For each group of instances N t- 1ð Þ
k in a cluster K, k = 1, . . . K, recompute:

μk =
1

N t- 1ð Þ
k

XN t- 1ð Þ
k

i= 1

x ið Þ

4. Stop when the stopping criteria are satisfied; otherwise, increment t: t = t + 1 and
repeat from step 2.

5. Return the result μ tð Þ to μ tð Þ.

12.4 Inertia

Once the learning is one (using .fit() in Python), the algorithm can always assign a
new instance to the closest centroid (using .predict()), which is called a hard
clustering.

Alternatively to hard clustering, we can perform soft clustering that assigns scores
to the new instance, each score is equivalent to the distance of the new instance to
one of the centroids (.transform() in Python). In this way, each data instance can be
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Fig. 12.14 Display dataset values

represented by its position to the K clusters, if K is lower than the dataset dimension,
the result of clustering would be a reduction in the data dimensions; so, K-means
could be used for dimensionality reduction.

The K-means is sensitive to the initial centroids and can provide you with
different solutions if you start with different initial centroids. So how to choose the
best of many solutions? What is the cost function to minimize? Since this is an
unsupervised learning, we do not have labels to measure the performance of the
algorithm, what we have seen in the Weka example above was only for learning
purposes. However, there is one performance measurement for K-means called
inertia, that consist of the within-cluster sum-of-squares that measures the sum of
squared distances of each instance to its centroid. Inertia measures the internal
coherence of the clusters; a low inertia means a better clustering solution. We can
run K-Means multiple times (in Python this is controlled by K-Means n_init
hyperparameter), and K-means will use inertia to find an optimal clustering solution.
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12.5 Minibatch K-Means

The original K-means algorithm was proposed by Stuart Lloyd in 1957 [4]. To
accelerate the execution of K-Means, a faster new algorithm was proposed in 2003
by Charles Elkan [5]; both version can be set by the K-Means algorithm
hyperparameter in Python, the default being Lloyd’s. An even faster version of K-
Means was proposed in 2010 by David Sculley [6] that uses min-batches of the
dataset instead of the full dataset at each iteration, it is implemented under the name
MiniBatchKMeans in Python.

12.6 Final Notes: Advantages, Disadvantages, and Best
Practices

K-means models are widely used because of their simplicity. They can easily scale
and generalize to different data size/shapes and easily adapts to new scenarios. As
convergence is key for accuracy and optimal decisions, K-means model has shown
good convergence results. Choosing the number of centroid (K ) is a challenge, and
we will see a method to find the optimal K in Sect. 12.10 below.

Like any ML model, K-means has its own disadvantages, including the manual
choice of K value, which makes it dependent on initial values. One of key issues of
K-means is the impact of outliers on clusters generation; if the data is not well
preprocessed, outliers can have their own clusters. Lastly, highly dimensional data
can generate curse of dimensionality problem, thus affecting the convergence of the
model. Using feature engineering techniques can mitigate this issue.

When working with K-means, consider trying many values for K, as well as many
clustering algorithms (e.g., K-Means, DBSCAN, and test which setup provides
better results. You may also want to take special care to avoid overfitting, mainly
you need to increase the value of K to eliminate noises in clusters.

12.7 Key Terms

1. K-means
2. Clustering
3. Cluster
4. Centroids
5. Matrix
6. Segmentation
7. Image segmentation
8. Customer segmentation
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9. Hard clustering
10. Soft clustering

12.8 Test Your Understanding

1. Give examples of situations from different fields where we can use clustering.
2. How do you decide which cluster a data instance belongs to?
3. How do you decide the centroid of each cluster?
4. How do you determine the centroids of the first clusters?
5. How do you determine the number of clusters K?
6. What is the stopping criterion for K-means?
7. There is a method called “elbow” that allows us to compute the optimum number

of clusters in a dataset. Explore this method; you will be using it in the lab.
8. Cite some of the hyperparameters of K-means.
9. What is inertia in K-Means? What is it used for?
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12.10 Lab

12.10.1 Working Example in Python

Download the dataset using the following link: https://www.kaggle.com/datasets/
uciml/adult-census-income

This dataset includes demographics and income level (above or less or equal to
50K). It includes the following columns:

• Age: person’s age
• Workclass: work class type the person belongs to
• Fnlwgt: final weight estimate for the specified socioeconomic characteristics of

the population
• Education: education level
• Education.num: education level as a number
• Marital.status: person’s marital status
• Occupation: person’s occupation
• Relationship: person’s relationship status
• Race: person’s race

https://www.kaggle.com/datasets/uciml/adult-census-income
https://www.kaggle.com/datasets/uciml/adult-census-income
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• Sex: person’s gender
• Capital.gain: an increase in the person’s profit
• Capital.loss: a decrease in the person’s profit
• Hours.per.week: number of working hours per week for the person
• Native.country: the person’s original country
• Income: the person’s salary

12.10.1.1 Load Person’s Demographics

After downloading the adult census dataset, load the dataset (Fig. 12.15).

12.10.1.2 Data Visualization and Cleaning

You can explore the data visually; we will content with one plot (Fig. 12.16).

Fig. 12.15 Load persons’ census income dataset into pandas
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Fig. 12.16 Visualizing persons’ census income data in histogram

Fig. 12.17 Replacing “?” with “unknown” and dropping the “native.country”

12.10.1.3 Data preprocessing

“Workclass” and “occupation” features that contain interrogation marks, and we will
start by replacing the “?” with the word “unknown,” while the “native.country”
feature is irrelevant for our work and we will drop it altogether (Fig. 12.17).

Many features (workclass, marital.status, occupation, relationship, race, sex) as
well as the target (income) are categorical data and hence need one-hot-encoding.
The features that are one-hot encoded will be split into many new “dummy” features,
if we are working with a linear regression algorithm that would be a problem as the
values of any of the features can be deduced if we know the values of all other ones
(if all features other than the dropped one are zero, then for sure the dropped feature
is 1, and if any one of the other features is 1 then for sure the dropped feature value is
zero). This means that one of the features is always correlated with all others. With
K-means we do not need to do so. We show how to proceed with splitting the
categorical features into new features in Fig. 12.18.
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Fig. 12.18 One-hot encoding workclass categorical variable

The education feature in ordinal in nature, so we will change the string values to
numeric ordered values (Fig. 12.19).
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Fig. 12.19 Mapping ordinal categorical values into numeric values

Fig. 12.20 Preparing the data for analysis

12.10.1.4 Choosing Features and Scaling Data

The feature and the target vectors are prepared and data is normalized (check the
results if you do not normalize the data, how would the clustering be affected)
(Fig. 12.20).

12.10.1.5 Finding the Best K for the K-Means Model

To find the best K for the K-means we will proceed manually using a method called
the “the elbow” method and also we will sue the usual grid search cross-validation
method.



12.10 Lab 381

Fig. 12.21 Finding the optimal K using elbow method

Fig. 12.22 Optimizing K-Means hyperparameters using grid search cross-validation

The elbow method consists of drawing for each possible K the inertia cost
function. (Fig. 12.21), we can notice that cost declines significantly at the beginning
from K= 1 to K= 2, afterwards the decline is less pronounced. It seems like K= 2 is
the optimal number of clusters. This indeed reflects the actual data, where we have
two clusters: people who earn more than 50k and others who earn 50K or less.

Using grid search cross-validation, we can also find the K for the optimal model
(Fig. 12.22). It is important to note that the GridSearch varied the K parameter
between 2 and 15 and resulted in K = 2 for the optimal K-Means.
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Fig. 12.23 Optimizing K-means model using grid search cross-validation

Then you can predict the clusters of the feature vector x using the optimal model
found by GridSearch. As mentioned above the .predict() will perform hard cluster-
ing, and you can display for each data instance the cluster to which it is assigned.
However, .transform() will show perform soft clustering and, in our case, assigns for
each datapoint two scores representing the distance between the instance and the two
centroids. Finally, .labels_ and .cluster_centers_ allow you to display the labels of
each point as well as the coordinates of clusters’ centers (Fig. 12.23).

You can think of plotting the datapoints and the centers. You can try that in
Sect. 12.10.2.

12.10.2 Do It Yourself

12.10.2.1 The Iris Dataset Revisited

In this section, create a K-means model using different values for K (try K= 2, 5, 10,
15, 20, and 25) using the iris dataset.

You can download the Iris dataset using the following code
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import numpy as np
import pandas as pd
from sklearn import datasets
iris =datasets.load_iris()

Note the variable “iris” is an array and not a data frame; you should be able by
now to know how to convert an array to a data frame, but that is not necessary. To
learn more about other available data set, click on the following link: https://scikit-
learn.org/stable/datasets.html.

You can always now the features names using “feature_names” and the target
name using “target_names.”

iris.feature_names
iris.target_names

If you want to convert data to a data frame you can write the following code

df = pd.DataFrame(data= np.c_[iris['data'], iris['target']],
columns= iris['feature_names'] + ['class'])
df.info() # display the data frame information
df # display the first few rows

Note: other than the elbow method explained above, there is the silhouette score
that allows you to uncover the best K value. Read about the silhouette_score to
choose the best K for the Isis dataset.

12.10.2.2 K-Means for Dimension Reduction

Download the digits dataset using the following code

from sklearn.datasets import load_digits
x, y = load_digits(return_X_y=True)

1. Phase 1: basic multiclass classification using logistic regression

(a) Split the data into training and testing dataset.
(b) Use logistic regression for multiclass classification (i.e., multi_class=“ovr”)

and consider max_iter=5000.
(c) Fit the model to the training dataset.
(d) Compute the algorithm score using the testing dataset.

https://scikit-learn.org/stable/datasets.html
https://scikit-learn.org/stable/datasets.html
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2. Phase 2: seek enhancement using K-Means for preprocessing

(a) Create a pipeline for K-Means followed by logistic regression. Since the
digits are handwritten and can be present in many ways, choose the number
of clusters for K-Means much larger than 10, try 50. The logistic regression
parameters are the same as in phase 1.

(b) Fit the pipeline on the training dataset.
(c) Compute the pipeline score no the testing dataset.
(d) Compared to the previous score, was this one better or worse? Discuss the

possible reasons behind the new score.

3. Phase 3: search for an optimal K-Means and logistic regression.

(a) Find through GridSearch the optimal model for the pipeline. Finetune only
one hyperparameter for K-Mean: the number of clusters; vary is between
2 and 100. Note that the execution might take around 20 min depending on
your computer configuration.

(b) Fit the pipeline and check the new score.
(c) Compared to the previous score, was this one better or worse? Discuss the

possible reasons behind the new score.
(d) What was the best parameter found by GridSearch?

12.10.3 Do More Yourself

• https://archive.ics.uci.edu/ml/datasets/Daily+and+Sports+Activities
• https://archive.ics.uci.edu/ml/datasets/Health+News+in+Twitter
• https://archive.ics.uci.edu/ml/datasets/YouTube+Multiview+Video+Games

+Dataset
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Chapter 13
Support Vector Machine

13.1 The Problem

The more the dimensions of a feature space, the more is the computing power needed
to classify. Support vector machines (SVMs) main advantages are (1) their effec-
tiveness in a high-dimensional space and in cases where the number of dimensions is
higher than the number of instances in the dataset, and (2) their low use of memory
and hence their memory efficiency.

The aim of the SVM algorithm is to find the best hyperplane (a line in a
two-dimensions space, a plane in a three-dimension space) that divides a dataset
into two (or more) classes.

To understand how SVM works, we will take a binary classification problem
(Fig. 13.1). Since there could be many lines that can separate the two classes
(Fig. 13.1 left), SVM looks for the instances in the datasets (points on the graph)
that are closest to the dividing line. The lines passing by these points are called the
support vectors. The chosen optimal classification line is the one that maximized the
distance between the two support vectors. This is called a maximal margin
classification.

Of course, the instances may not that perfectly separable by a line, we need to find
a way to classify determine how much should we relax the constraint related to
maximizing the margin. This is called a soft margin classification.

The other problem to solve is when the classes are not linearly separable, in this
case we need a non-straight line to separate the instances. In SVM, this is done using
a kernel. A linear kernel allows to separate linearly separable classes, a polynomial
kernel allows the use of a curved line to separate the classes and a radial kernel uses a
radial-based function (RBF) to solve complex separations, for example, using a
polygon in a two-dimension space).

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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Fig. 13.1 Two datasets green (circle) and blue (square) to be classified. Each point has two features
x and y

13.2 The Algorithm

SVMs are a collection of similar supervised learning algorithms that are used for
classification and regression [1–4]. The most effective way to grasp the fundamen-
tals of support vector machines and how they function is to use a simple example
(Fig. 13.1). Consider the following scenario: we have two tags, one each of green
(circle shape) and blue (square shape), and our data contains two characteristics, x,
and y. We are looking for a classifier that, when given a pair of (x, y) coordinates,
outputs whether the pair is red or blue in color. On a plane, we plot the training data
that has previously been labeled:

When given these data points, a support vector machine will produce the hyper-
plane (in two dimensions, a hyperplane is simply a line) that will optimally divide the
tags. The hyperplane is the decision border. In 2D, each side of the line will be
considered a class (i.e., blue class and green class).

But, more specifically, what is the finest hyperplane? It is the one that optimizes
the margins from both tags in the case of SVM. The hyperplane (remember, it is a
line in this case) with the greatest distance to the nearest element of each tag is
known as the maximum distance hyperplane.

The SVM’s goal is to find the best hyperplane (or decision boundary) [5] that
divides two different classes while also maximizing the distance between data points
from both classes. There could be several hyperplanes to divide the two classes; our
aim is to find the hyperplane that is at the greatest distance between data points from
both classes (i.e., the greatest margin) [6]. Maximizing the margin distance allows
subsequent data points to be categorized with more certainty.

Obviously, the number of features dictates the hyperplane’s dimension; in
Fig. 13.2, we have two features x and y, the hyperplane was a straight line [5]. If



the number of features is three, then the hyperplane becomes a 2D plane. Beyond
three features, we cannot visualize the hyperplane (Fig. 13.3).
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Fig. 13.2 The hyperplane
(remember, it is a line in this
case) with the greatest
distance to the nearest
element of each tag

Fig. 13.3 A line hyperplane in a 2D space (left) vs. a two-dimensional hyperplane in a 3D space
(right)

Support vector machines are widely used in machine learning research all around
the world, particularly in the United States. When SVMs were used in a handwriting
recognition test, they gained popularity since they achieved performance equivalent
to that of complex neural networks with elaborated features when employing pixel
maps as input [2, 7].
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13.2.1 Important Concepts

Support Vectors Support vectors are the data points that are closest to the hyper-
plane and are used to calculate the distance between them. With the aid of these data
points, a dividing line will be drawn between them. It is possible to demonstrate that
the optimal hyperplane is derived from the function class with the lowest “capac-
ity” = number of independent features/parameters that can be twiddled [8]. In other
words, they are the data points that are closest to a decision surface (or hyperplane).
They are also the data points that are most difficult to classify. They have a direct
bearing on the optimal location of the decision surface.

Hyperplane As we can see in the diagrams above, a hyperplane is a decision plane
or space that is partitioned between a collection of objects belonging to distinct
classes. In two dimensions, the hyperplane can be represented by the following
equation. This is identical to the equation of affine combination; however, the bias
b has been included in this case [9].

β1x1 þ β2x2 þ b

For d-dimensional space, we may generalize this and express it in vectorized
form.

h xð Þ = β1x1 þ⋯þ βdxd þ b

=
Xd
i= 1

βixi

 !
þ b

= βTxþ b

For any point X= x1, . . . , xdð Þ, if h(X) = 0, then X lies on the hyperplane;
otherwise h(X) < 0 or h(X) > 0, which implies that X falls to one side of the
hyperplane. If we now make a very significant assumption about the coefficient
weight vector β and assume that x1 and x2 are two random locations that lie on the
hyperplane, we may write:

h x1ð Þ= βTx1 þ b= 0

h x2 = βTx2 b= 0

Hence,

βTx1 þ b= βTx2 þ b

and
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Fig. 13.4 The weight
vector beta points in the
direction that is normal to
the hyperplane of the weight
vector

βT x1 - x2ð Þ= 0

If the dot product of two vectors is 0, we know that the vectors are orthogonal to
one another, and vice versa. The weight vector β in this case is orthogonal to (x1 -
x2). Being that (x1- x2) is located on the hyperplane, it follows that the weight vector
β is also orthogonal to the hyperplane. That is to say, the weight vector beta points in
the direction that is normal to the hyperplane of the weight vector. When the
hyperplane is shifted in d-dimensional space, this is expressed as a bias (b) [9]
(Fig. 13.4).

13.2.2 Margin

The distance between two lines drawn through the closest data points of distinct
classifications can be described as a margin. The minimal distance (normal distance)
between each observation and a specific separating hyperplane can be used to
establish the margin between two observations. See how we may utilize the margin
to determine the best hyperplane for our situation. It may be computed by taking the
perpendicular distance between the line and the support vectors and dividing it
by two.

A large margin is seen as a good margin, while a small margin is regarded as a bad
margin in business. The size of the margin determines the confidence level of the
classifier; as a result, the largest possible margin should be used. Let us choose two
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Fig. 13.5 Large (left) vs. small (right) margin

hyperplanes based on their distance from the center (Fig. 13.5). The one to the left
has a significantly larger margin than the one to the right, and as a result, the first
hyperplane is more optimal than the second one.

We may conclude that in the maximal margin classifier, in order to categorize the
data, we will utilize a separation hyperplane that is the greatest (maximum) and
smallest (minimum) distance away from the observations in order to classify the
data. Let us keep in mind that the margin will still be used to pick the ideal separating
hyperplane. Furthermore, Jana margins are divided into two categories: functional
margin and geographic margin [9]. They are both summed up below.

13.2.2.1 Functional Margin

To define the theoretical side of the margin, the term “functional margin” is
employed. In the presence of a training example (xi, yi), the functional margin of
(β, b) with regard to the training example will be as follows:

yi β
TXi þ b

� �
= bγi

As opposed to just specifying that the number is larger than 0, we have
established a value for the margin by using γ. Thus, the below requirements may
be established:

if yi = 1,then bγi > 0

if yi = 0,then bγi = 0

But there is a problem with the functional margin, which is that its value is reliant
on the values of β and b. The equation of the hyperplane remains the same when β



þ

s

13.2 The Algorithm 391

Fig. 13.6 The same
hyperplane representing two
equations

and b are scaled (multiplied by some scaler s), but the margin increases. If you plot
the following two equations, they will both represent the same hyperplane, but in this
case, the width of the margins will change between the two equations (Fig. 13.6).

2x1 þ 3x2–5= 0

20x1 30x2–50= 0

13.2.2.2 Geometric Margin

Let us make considerations regarding the visuals below (Fig. 13.7):
Along with the vector w, the decision boundary corresponding to (w, b) i

depicted in Fig. 13.7. It should be noted that w is orthogonal (i.e., at 90°) to the
separation hyperplane.

You must convince yourself that this is a fact. Consider the point A, which
represents the input x(i) of a training example with the label y(i) = 1 , as represented
by the point B. The line segment AB determines the distance between it and the
decision border, denoted by γ(i).

The value of γ(i) can be determined in several ways. To explain it more clearly,
the unit-length vector w/kwk indicates that w is moving in the same direction. Since
A represents x(i), we may conclude that the point B is given by x(i) - γ(i) × w/kwk.
The problem is that this point is located on the decision boundary, and all points x on
the decision boundary are satisfied by the equation wTx + b = 0; therefore:
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Fig. 13.7 Two datasets
separated by a hyperplane
with weigh vector w and a
decision boundary (w, b)

wT x ið Þ - γ ið Þ w
wk k þ b= 0

And solving for γ(i) yields:

γ ið Þ = wTx ið Þ þ b
wk k =

w
wk k

� �T

x ið Þ þ b
wk k

Specifically, this was calculated for the situation of a positive training example at
A in Fig. 13.7, in which being on the “positive” side of the decision border is
advantageous.

Furthermore, we define the geometric margin of (w, b) regarding a training
example (x(i), y(i)) as follows:

γ ið Þ = y ið Þ w
wk k

� �T

x ið Þ þ b
wk k

 !

It is important to note that if kwk = 1, then the functional margin equals the
geometric margin—this provides a means of connecting these two disparate ideas of
margin together. As a result of this property, the geometric margin is invariant to
rescaling of the parameters; that is, if we substitute two values for w and two values
for b, the geometric margin remains unchanged. Furthermore, because of this
invariance to scaling of the parameters, we can apply any arbitrary scaling constraint



to w without producing important changes [6]; for example, we can demand that ||w||
=1, or that jw1 + b j + j w2 j = 2, and any other constraint can be satisfied by just
rescaling w and the parameters; however, this is not recommended.

13.2.3 Types of Support Vector Machines

Support vector machines are generally classified into only two types. They are both
detailed below:

13.2.3.1 Linear Support Vector Machine

This type only works with data that can be divided into two categories by a single
perfect line, in which case the dataset is considered linearly separable, and the linear
SVM classifier is used. This is further divided into two types and is visually
displayed below.

13.2.3.2 Soft Margin Classifier

A soft margin classifier is an SVM that where the threshold is allowed to make an
tolerable number of misclassifications, while allowing new data instances to be
classified correctly [10]. The famous cross-validation technique can be used to
determine the best classification (Fig. 13.8).

In a real-world scenario, it is unlikely that a perfectly distinct line would be drawn
between the data points included inside the space [11]. Furthermore, we might have
a curved decision boundary. It is possible to have a hyperplane that precisely
separates the data; however, this may not be desired if the data contains noise.
Jakkula agrees it is preferable for the smooth border to disregard a small number of
data points rather than being curved or going in loops around outliers [2].

The assumption that the dataset is perfectly linearly separable has been made up
to this point. This assumption does not hold up to scrutiny when dealing with a real-
world dataset. As a result, let us look at a slightly more challenging scenario. The
linear SVM is still in the works; however, this time, some of the classes overlap in
such a way that a perfect separation is unattainable, yet the data is still linearly
separable [9]. Consider a dataset with two dimensions shown in Fig. 13.9. There are
two primary options available:
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• When a single outlier occurs, the decision boundary might be pushed signifi-
cantly, resulting in an extremely tight margin of safety.

• The data may not be separable using a straight line, even when a linear decision
boundary can correctly categorize the target classes (no clear boundary).
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Fig. 13.8 Linear SVM—
soft margin classifier

Fig. 13.9 A dataset with
two dimensions

In other words, the hard margin classifier that is visualized in Fig. 13.10 would
not operate owing to the inequality restriction yi(β

Txi + 1) ≥ 1.

13.2.3.2.1 Hard Margin Classifier

As previously stated, the idea of SVM is to execute an affine discrimination of
observations with the greatest amount of margin possible, that is, to identify an
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Fig. 13.10 Linear SVM—
hard margin classifier

element (w 2 X) with the lowest norm and the greatest possible real value b, such that
the value of yi((wi, xi) + b) ≥ 1 is the same for all i. But to do so, we must first solve
the quadratic programming issue described below:

min <w, w>
w,b
subject to yi <wi, xi >þbð Þ≥ 1, 1≤ i≤N

The classification rule that relates to (w, b) is simply referred to as f(x)= sin ((w,
x) + b). In this circumstance (which is referred to as the hard margin SVM), we
require that the rule have zero error on the learning set (Fig. 13.10).

13.2.3.3 Nonlinear Support Vector Machine

This classifier is used for nonlinearly separated data, which means that if a dataset
cannot be classified using a straight line, it is considered nonlinear data, and the
classifier used is the nonlinear SVM classifier. A graphical representation is shown
below (Fig. 13.11) [11].

A mathematical example of nonlinear support vector machines is described
below:

K x, yð Þ= x:yþ 1ð Þp
n o
- x- yk k2=2σ2

K x, y = tan h kx:y–δ
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Fig. 13.11 Representation
of a nonlinear Support
Vector Machine

The first equation is a polynomial, while the second equation is a radial basis
function (Gaussians), and the third is a sigmoid (neural net activation function)
[8]. Some of these are visualized just below.

13.2.4 Classification

SVM is a data classification approach that is beneficial. The employment of neural
networks, despite the fact that they are regarded as more user-friendly than SVM,
might result in disappointing outcomes at times [12]. Training and testing data for
classification tasks typically comprise a small number of data examples [2]. A target
value and a number of characteristics are contained inside each instance of the
training set. The SVM model allows us to predicts target values of the instances in
the testing dataset [13].

Supervised learning may be seen in the classification process of SVM. Known
labels assist in determining whether or not the system is operating in the proper
manner. This information either points to a desired reaction, thus verifying the
correctness of the system, or it may be utilized to assist the system in learning to
behave in the appropriate manner. In SVM classification [2, 13], one phase is the
identification of classes that are tightly related to the classes that are already
recognized. This is referred to as feature selection, or feature extraction in technical
terms. Even when the prediction of unknown samples is not required, the combina-
tion of feature selection with SVM classification might be beneficial. In order to
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separate the classes, they can be utilized to identify key sets that are engaged in the
procedures that distinguish them.

13.2.5 Regression

Through the use of an alternate loss function, it is possible to apply SVMs to
regression situations [13, 14]. It is necessary to modify the loss function in order
to add a distance measure. There are two types of regression: linear and nonlinear.
Linear models are composed mostly of the loss functions listed below: e-intensive
loss functions, quadratic loss functions, and the Huber loss function.

It is common for nonlinear models to be required for data modeling challenges,
much as it is for classification difficulties. A technique similar to the nonlinear SVC
approach, nonlinear mapping, may be used to map the data into a high-dimensional
feature space, where linear regression can then be done on the information.

When it comes to dealing with the curse of dimensionality [15], the kernel
technique is once again used. Considerations based on past knowledge of the
problem and the distribution of the noise are taken into account while employing
the regression approach. The robust loss function of Huber has been proved to be a
good substitute in the absence of such information [13].

13.2.6 Tuning Parameters

13.2.6.1 Regularization

For each training dataset, the support vector machine is instructed on the optimal
degree of misclassification to avoid by adjusting the regularization parameter, which
is also known as the C parameter in Python’s sklearn module. When larger numbers
are used for the C parameter in a support vector machine, the optimizer will
automatically choose a hyperplane margin that is smaller if it is successful in
separating and classifying all the training data points during the optimization
process. Alternately, when dealing with extremely small values, the algorithm will
seek a larger margin for the hyperplane to separate, even if the hyperplane mis-
classifies some data points.

13.2.6.2 Gamma

An influence on a single training data sample is repeated several times using this
tuning parameter. Lower gamma values reflect distance from the hyperplane,
whereas higher gamma values show proximity to the hyperplane. Data points with
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both low and high gamma (far from and near to the hyperplane, respectively) are
included in the computation of the separation line.

13.2.6.3 Margins

The margin is the final but not the least important characteristic. It is also a critical
parameter for fine-tuning and a vital characteristic of a support vector machine
classifier. The margin, as previously established, is the distance between the line
and the data points from the classes. When using the support vector approach, it is
critical to have a good and appropriate margin. When the difference between the two
groups of data is higher than one standard deviation, it is a good margin. A sufficient
margin ensures that the individual data points remain inside their respective classes
and do not cross over into another class.

13.2.7 Kernel

When using SVM, a kernel turns the input data space into the desired format. SVM
employs the kernel trick to turn a low-dimensional input space into a higher-
dimensional space. For the uninitiated, this means that kernel adds new dimensions
to an issue that would otherwise be impossible to separate.

Generally speaking, it is most useful in nonlinear separation situations. Simply
said, the kernel performs a number of incredibly sophisticated data transformations
before determining the best method of separating the data depending on the labels or
outputs that have been established.

As a result, SVM gains higher scalability, adaptability, and accuracy. Kernels
utilized by SVM include those listed below.

13.2.7.1 Linear Kernel

All observations can be combined in this way. Here is the equation for a linear
kernel:

K x, xið Þ= sum x× xið Þ

The product between two vectors, x and xi, may be represented as the total of the
products of each pair of input values in the formula above.
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13.2.7.2 Polynomial Kernel

Curved or nonlinear input spaces can be distinguished using this generalized linear
kernel. A polynomial kernel may be expressed using the following formula:

K x, xið Þ= 1þ sum x× xið Þd

Here, d is the degree of the polynomial, which we must manually enter into the
learning algorithm.

13.2.7.3 Radial Basis Function (RBF) Kernel

When used in SVM classification, the RBF kernel transforms the input space into an
infinitum of three-dimensional spaces. It is widely used in SVM classification tasks.
The following formula provides a mathematical explanation:

K x, xið Þ= exp - gamma× sum x- xi
2

� ��

In this case, gamma is between 0 and 1. We must explicitly define it in the
learning algorithm; the default value of gamma is 0.1, which is the industry-accepted
default.

13.3 Advantages, Disadvantages, and Best Practices

Nonetheless, the SVM’s greatest benefit is the kernel technique, which allows it to
classify extremely nonlinear situations by creating complicated boundary shapes,
rather than by using simple classification rules [16]. These qualities have enabled the
SVM to find widespread use in a variety of disciplines throughout the course of the
previous few years. SVM has been utilized for fault diagnostics [17], quality
improvement [18], and quality assessment [19].

SVMs have been used in the field of computer vision for a variety of tasks, such
as face detection, picture categorization, hand gesture recognition, and background
removal. SVMs have been utilized in finance for a variety of purposes, including
financial time series forecasting and the prediction of bankruptcy. Aside from
hydrology, other uses of SVM include forecasting of solar and wind resources,
prediction of atmospheric temperature, bioinformatics, speaker recognition, agricul-
tural forecasting, and electrical design. The quality of the datasets, on the other hand,
has an impact on the performance of basic support vector machines (SVMs).
Typically, noise may be found in real-world datasets. Noise is defined as anything
that obscures the link between the attributes of an instance and the characteristics of
its class. The noise might express itself as feature-noise (or feature uncertainty),



which has the effect of altering the observed value of the corresponding feature.
Certainly, uncertainties may arise as a result of the constraints of observational
material, as well as the restricted resources available for data collection, storage,
transformation, and analysis.

Overall, the training of SVM is quite simple, which is one of its key advantages. It
scales rather well to large amounts of high-dimensional data, and the trade-off
between classifier complexity and error may be carefully adjusted. It is necessary
to have a good kernel function, which is one of the weaknesses [13, 20]. Overall, it is
a good idea to standardize to avoid the optimal hyperplane being influenced by the
scale of the features.

13.4 Key Terms
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1. Statistical learning theory
2. Hyperplane
3. Structural risk minimization
4. Support vectors
5. Coefficient weight vector
6. Functional margin
7. Geometric margin
8. Soft margin classifier
9. Hard margin classifier

10. Curse of dimensionality
11. Gamma

13.5 Test Your Understanding

1. What are support vectors?
2. How do support vector machines function?
3. When have we achieved a maximum distance hyperplane?
4. What is a hyperplane? Highlight its purpose(s).
5. Explain the structural risk management concept.
6. Describe an optimization theory-based learning algorithm.
7. What is the difference between the functional margin and the geometric margin?
8. List the two types of support vectors.
9. Distinguish between soft and hard margin classifiers.

10. Describe the maximal margin classifier.
11. Why do SVMs use the kernel trick?
12. Highlight the tuning parameters of a support vector machine.
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13.7 Lab

13.7.1 Working Example in Python

In this section, we will create a support vector machine classifier model, test it, and
optimize it. Start by downloading Iris dataset using the following link: https://www.
kaggle.com/datasets/arshid/iris-flower-dataset. Alternatively, you can use the fol-
lowing code to load the dataset directly into your code.

iris = datasets.load_iris()
x = iris.data[:, :4]
y = iris.target

The iris dataset describes the properties of flowers. It includes three iris species
within 50 samples. This dataset includes the following columns:

• Petal length: petal length for the Iris
• Petal width: petal width for the Iris
• Sepal length: sepal length for the Iris
• Sepal width: sepal width for the Iris
• Species: class of the iris (there are three species in the dataset)

13.7.1.1 Loading Iris Dataset

Start by importing the required libraries and loading the dataset (Fig. 13.12).

13.7.1.1.1 Visualize Iris Dataset

Visualizing the dataset can be done in many ways, one is demonstrated in Fig. 13.13.

13.7.1.2 Preprocess and Scale Data

We need to replace the categorical target with numeric values, split the dataset into
training and testing datasets, and standardize both sets (Fig. 13.14).

13.7.1.3 Dimension Reduction

We can now create a support vector model (SVM) using an RBF kernel and C=100.
The dimension of the feature matrix is low (i.e., 4); however, for illustration
purposes, we will use the Principal Component analysis (PCA) to reduce the number

https://www.kaggle.com/datasets/arshid/iris-flower-dataset
https://www.kaggle.com/datasets/arshid/iris-flower-dataset
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Fig. 13.12 Loading the Iris dataset into pandas

of features to 2. Once PCA is create, we apply it to the x_tran and x_test. A
two-dimension feature matrix will allow us to plot the SVM results in two dimen-
sions which clarifies the end result. Instead of using PCA, and for illustration
purposes, you could have opted to choose two of the four dimensions, such as
sepal width and petal width (Fig. 13.15).



404 13 Support Vector Machine

Fig. 13.13 Visualizing iris dataset

Fig. 13.14 Preprocess and scale iris dataset



13.7.1.4 Hyperparameter Tuning and Performance Measurements

Using GridSearch, we can now seek hyperparameter tuning for the SVC. One the
optimal model is found, we fit it to the training dataset and make predictions on the
testing dataset to display the classification report and the AUC (Fig. 13.16).

Optionally, we can display the confusion matrix (Fig. 13.17).

13.7.1.5 Plot the Decision Boundaries

Finally, we can plot the decision boundaries between classes (Figs. 13.18 and 13.19).

13.7.2 Do It Yourself

13.7.2.1 The Iris Dataset Revisited

In Sect. 13.7 above, we applied PCA to reduce the number of features to 2
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Fig. 13.15 Creating support vector machine

1. Instead of PCA choose to drop the petal length and sepal length and check how
the MVC performance chance.

2. Instead of PCA choose to drop the petal width and sepal width and check how the
MVC performance chance.

3. Which one lead to better results? Can you know in advance what is more likely to
lead to good performance by looking at the pair plots? We did not display the pair
plots, so display them and check visually to see if you can gain an insight about
the better choice.

13.7.2.2 Breast Cancer

Use the breast cancer dataset that can download from the following link: https://
www.kaggle.com/code/buddhiniw/breast-cancer-prediction/data.

1. Create an SVM model to solve this classification problem.
2. Now that you know several classifiers, create a lab where you use three classifiers

including an SVM and compare their performance. Conclude by choosing the
best performing classifier. Always give a rational for your choices.

https://www.kaggle.com/code/buddhiniw/breast-cancer-prediction/data
https://www.kaggle.com/code/buddhiniw/breast-cancer-prediction/data
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Fig. 13.16 Decision plot for iris species

13.7.2.3 Wine Classification

Use the wine dataset that can be downloaded from the following link: https://archive.
ics.uci.edu/ml/datasets/wine

You can also contemplate using the built “load_wine”

https://archive.ics.uci.edu/ml/datasets/wine
https://archive.ics.uci.edu/ml/datasets/wine
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Fig. 13.17 Confusion matrix resulting from the optimal model

from sklearn.datasets import load_wine
wine_data= sklearn.datasets.load_wine()

There are three types of wine, so this is a multi-class problem. Create a model to
predict the wine the using SVM (hint: use the SVC with decision_functino_shape
=‘ovr’ and degree=3).

13.7.2.4 Face Recognition

You might need to install the Python image library called pillow: pip install pillow

1. Load the images dataset using the following code

from sklearn.datasets import fetch_lfw_people
data = fetch_lfw_people(min_faces_per_person=50) # read only
those with 50 images or more
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Fig. 13.18 Plotting the decision boundaries in 2D

Fig. 13.19 Calculating accuracy, recall, and precision metrics for SVM using testing dataset

2. Display on the screen the number of instances in each target class
3. Do you notice any imbalance in the classes? Clarify.
4. Try to plot few images on the screen
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5. Split the dataset into training and testing datasets
6. Create an SVM variable (if there were imbalance in classes, then use a

class_weight parameter)
7. Grid search for the optimal model
8. Display the best parameters and the best model
9. Fit the optimal model on the training dataset
10. Use the fitted model to predict using the testing dataset
11. Display a classification report (use classification_report from Sklearn )
12. Let’s take one further step. PCA might help you boost the model’s perfor-

mance. Apply PCA before rerunning the SVM grid search and check if the
performance is better.

13.7.2.5 SVM Regressor: Predict House Prices with SVR

Support vector machine can be used not only as classifiers but as regressors too.
Create a support vector model regressor to predict house prices, using the housing
dataset that can be downloaded using the following link: https://www.kaggle.com/
datasets/huyngohoang/housingcsv.

The housing dataset provides the sale price of houses across the United States.
This dataset includes the following columns:

• Avg. Area Income: the average income in the area where the house is located.
• Avg. Area House Age: the average house age in the area where the house is

located.
• Avg. Area Number of Rooms: the average number of rooms for a house in the

area where the house is located.
• Avg. Area Number of Bedrooms: the average number of bedrooms for a house in

the area where it is located.
• Area Population: the population in the area where the house is located.
• Price: the sale price of the house.
• Address: the house address.

Hint: explore the SVR following this link: https://scikit-learn.org/stable/auto_
examples/svm/plot_svm_regression.html

13.7.2.6 SVM Regressor: Predict Diabetes with SVR

1. Load the diabetes dataset using the following code:

SVM Regressor: Predict house prices with SVR

https://www.kaggle.com/datasets/huyngohoang/housingcsv
https://www.kaggle.com/datasets/huyngohoang/housingcsv
https://scikit-learn.org/stable/auto_examples/svm/plot_svm_regression.html
https://scikit-learn.org/stable/auto_examples/svm/plot_svm_regression.html
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2. Store at least 30 samples in a testing dataset
3. Proceed with GridSearch using the following values

(a) alpha: [1e-7, 1e-6, 1e-5, 1e-4]
(b) penalty: [None, ‘l2’]
(c) eta0: [0.03, 0.04, 0.05, 0.1]
(d) max_itr: [500, 1000]

4. After fitting the optimal model, display the best parameters and best estimstor
5. Make prediction and display the optimal model performance (i.e., MAE,

MSE, R2)

13.7.2.7 Unsupervised SVM

Support vector machine can be used not only as supervised but unsupervised too.
Create an unsupervised support vector machine regressor to predict house prices,

using the housing dataset.
Hint: explore the One class SVM following this link: https://scikit-learn.org/

stable/auto_examples/svm/plot_oneclass.html

13.7.3 Do More Yourself

Use the following datasets and create linear and nonlinear support vector machines
to solve the classification problems associated with these datasets. Also, try several
algorithms to solve each and choose the best model.

• https://www.kaggle.com/datasets/paultimothymooney/stock-market-data
• https://www.kaggle.com/code/startupsci/titanic-data-science-solutions/data
• https://www.kaggle.com/datasets/rikdifos/credit-card-approval-prediction
• https://www.kaggle.com/datasets/elikplim/forest-fires-data-set
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Chapter 14
Voting and Bagging

14.1 The Problem

The ensemble technique relies on the idea that aggregation of many classifiers and
regressors will lead to a better prediction [1]. In this chapter, we will introduce the
ensemble technique and cover two ways in which to organize an ensemble (literally,
a set) of machine learning methods called voting and bagging [2] and one algorithm
to perform bagging called random forest [1, 3]. The other two ways to organize the
ensemble methods are called boosting and stacking, which will be covered in the
next chapter.

14.2 Voting Algorithm

The voting approach to the ensemble technique relies on allowing several algorithms
to learn based on the same dataset; then in the presence of a new instance, they will
all predict the output class or cluster. The final output will be decided based on a
majority vote among the algorithms: the majority prediction is chosen as the output
for the ensemble. This is called hard voting. Alternatively, we can choose soft
voting, i.e., choosing the average prediction to be the output for the ensemble.
This is typically possible when all predictors are able to estimate class probabilities
(the probability that an instance belongs to a certain class or another) [1]. The
average vote suggests that the output is the class with the highest average probabil-
ity, i.e., the highest confidence. The algorithms used in voting need to be sufficiently
diverse.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
C. El Morr et al., Machine Learning for Practical Decision Making, International
Series in Operations Research & Management Science 334,
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14.3 Bagging Algorithm

Another way of enhancing the strength of prediction is to use bagging (or bootstrap
aggregating) [4]. Bootstrapping is a procedure that creates many subsets of data from
the same dataset. Each sample is used and returned to the dataset before the next
sample is drawn. This is called sampling with replacement. The subsets are used to
train many models of an algorithm (e.g., decision tree), and then we proceed by
majority voting or average voting (the latter is typically done in the case of a
regression). The difference from voting is that each predictor is trained on a subset
of the original dataset, which means that it will have a higher bias than if it was
trained on the original one. However, after aggregation, the bias is reduced. Since the
predictors have some common data instances, the aggregation reduces the variance
(Fig. 14.1).

14.4 Random Forest

Decision trees suffer from overfitting; random forest overcomes this limitation. A
random forest is an ensemble of decision trees trained using bagging [5]. However,
individual trees are constructed, usually taking into account the important features of
a dataset; hence, in bagging, there is a high chance that the decision trees used are
highly correlated. To reduce the chance of correlation between the decision trees in
an ensemble, random forest uses a random subset of features when searching for the
split point at each node. The result is a diverse set of decision trees (i.e., less likely to
be highly correlated), which enhances the performance of the random forest [2].

14.5 Voting Example

Download the file “ionosphere” from the Weka datasets or from the Kaggle website
using the following link: https://www.kaggle.com/prashant111/ionosphere. Open
the file in Weka, choose the Vote algorithm in the Classify tab (Fig. 14.2), and
explore the voting parameters, particularly the combination rule that specifies the
voting mechanism (Fig. 14.3).

Click on “classifiers” to choose the classifiers you would like to include in the
voting algorithm (Fig. 14.4). You can click on the Choose and then Add buttons to
add a new algorithm other the default ZeroR. Clicking on the Edit button allows you
to edit the algorithm’s parameters. Add a few algorithms of different types
(Fig. 14.5). Run the voting algorithm and explore the results (Fig. 14.6). The
accuracy achieved by voting was 91%. Try to see what the performance of each of
the algorithms used in voting would be if run alone.

https://www.kaggle.com/prashant111/ionosphere
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Fig. 14.1 Overview of bagging

14.6 Bagging Example: Random Forest

If not open yet, open the “ionosphere” file in Weka and choose the random forest
algorithm in the Classify tab (Fig. 14.7).

Open the parameters of the bagging algorithm and explore the parameters, noting
that the REP tree is the default classifier; the REP tree is the decision tree or
classification and regression tree (CART) implementation in Weka (Fig. 14.8).

Choose Cross-validation with tenfolds (Fig. 14.9) and click the Start button. The
output window displays the random forest results (Fig. 14.10).
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Fig. 14.2 Choosing the
vote algorithm in Weka

The random forest results show an RMSE of 0.26 and a precision of 91%.

14.7 Final Notes: Advantages, Disadvantages, and Best
Practices

Voting is surprisingly very effective; even when the individual predictors are weak
(i.e., perform slightly better than a random guess), voting provides good perfor-
mance. However, voting will not provide a spectacular outcome if the predictors are
not independent or not loosely correlated, and if they are not many and diverse (i.e.,
use a different type of algorithms).

14.8 Key Terms

1. Voting
2. Bagging
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Fig. 14.3 Vote algorithm
parameters

Fig. 14.4 Algorithms included in voting and their corresponding parameters
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Fig. 14.5 Add J48,
bagging, and REPTree
algorithms to the voting
algorithm

Fig. 14.6 Voting results

3. Random forest
4. Hard voting
5. Soft voting
6. Sampling with replacement
7. Correlation
8. Decision trees
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Fig. 14.7 Bagging
algorithm in Weka

14.9 Test Your Understanding

1. How does voting function in machine learning?
2. Explain bagging and why it is expected to enhance performance.
3. Explain a few challenges in bagging.
4. Explain soft voting vs. hard voting.
5. Explain sampling with replacement.
6. How does sampling without replacement differ from sampling with replacement?
7. Cite some of the hyperparameters of random forest.
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Fig. 14.8 Bagging
hyperparameters in Weka

14.10 Read More

1. Bao, S., Pan, H. Y., Zheng, W., Wu, Q. Q., Dai, Y. N., Sun, N. N., . . . Pan, H. Y.
(2021). Multicenter analysis and a rapid screening model to predict early novel
coronavirus pneumonia using a random forest algorithm. Medicine (Baltimore),
100(24), e26279. doi: 10.1097/md.0000000000026279

2. Best, K. B., Gilligan, J. M., Baroud, H., Carrico, A. R., Donato, K. M., Ackerly,
B. A., & Mallick, B. (2021). Random forest analysis of two household surveys
can identify important predictors of migration in Bangladesh. Journal of Com-
putational Social Science, 4(1), 77–100. doi: 10.1007/s42001-020-00066-9

3. Chen, X., Yu, S., Zhang, Y., Chu, F., & Sun, B. (2021). Machine Learning
Method for Continuous Noninvasive Blood Pressure Detection Based on Ran-
dom Forest. IEEE Access, 9, 34112–34118. doi: 10.1109/
ACCESS.2021.3062033

4. Chencho, Li, J., Hao, H., Wang, R., & Li, L. (2021). Development and appli-
cation of random forest technique for element level structural damage quantifi-
cation. Structural Control and Health Monitoring, 28(3), n/a-n/a. doi: 10.1002/
stc.2678



14.10 Read More 421

Fig. 14.9 Cross-validation
with tenfolds
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There are three files, we will use for this lab demonstration one of them “train.
csv” that we have renamed to “titanic.csv.” This dataset contains information about
the Titanic’s passengers and is formed of the following features:

14.11 Lab

14.11.1 A working Example in Python

Download the Titanic dataset from the following link: https://www.kaggle.com/
competitions/titanic/data?select=train.csv.

• Survived: survival (0 or 1)
• Pclass: ticket class (1, 2, or 3)
• Sex: gender (M, F, or Unknown)
• Age: passenger age in years
• Sibsp: # of siblings/spouses aboard the Titanic
• Parch: # of parents/children aboard the Titanic
• Ticket: ticket number
• Fare: passenger fare
• Cabin: cabin number
• Embarked: port of embarkation: C=Cherbourg, Q=Queenstown,

S=Southampton

https://www.kaggle.com/competitions/titanic/data?select=train.csv
https://www.kaggle.com/competitions/titanic/data?select=train.csv
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14.11.1.1 Load Titanic Dataset

The first task is to upload the Titanic dataset (Fig. 14.11).

14.11.1.2 Visualizing Titanic Dataset

We can visualize the data in many ways. In Fig. 14.12, we are using the heatmap.

14.11.1.3 Preprocess and Manipulate Data

The next step is to drop unnecessary columns and fill in the missing values.
PassengerId, Cabin, ticket, and name features are not useful and hence dropped.
The sex and embarked features are mapped to numeric, and the values for the age
and fare features are scaled (Fig. 14.13).

14.11.1.4 Create Bagging and Voting Models

The next step is to choose the features and the target (“Survived” column is the
target). We split the dataset into testing and training datasets, and prepare for
bagging based on a decision tree classifier, while for voting we opted for logistic

Fig. 14.11 Loading Titanic dataset into pandas
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Fig. 14.12 Exploring Titanic data visually

regression and a support vector machine. Note that the voting parameter value is
“hard” (Fig. 14.14).

For the sake of learning, we are going to change or procedure for this chapter. We
will be using fit the models on the training dataset and use them to make predictions
on the testing dataset. Hence, we will proceed with hyperparameter tuning using grid
search.

14.11.1.5 Evaluate Bagging and Voting Model’s

In Fig. 14.5 we define a procedure to print the scores of a prediction. It is then used to
print the performance scores of the bagging and voting classifiers (Fig. 14.15).
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Fig. 14.13 Preprocess and scale data in Titanic dataset

Fig. 14.14 Creating bagging and voting models

14.11.1.6 Optimize the Bagging and Voting Models

The next step is to optimize the two models, and that test them, grid search cross-
validation is used to optimize the bagging (Fig. 14.16) and Voting (Fig. 14.17)
models.

Did you obtain the same results? What do you think about those results?
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Fig. 14.15 Getting classification report and confusion matrix for the bagging and voting models

14.11.2 Do It Yourself

14.11.2.1 The Titanic revisited

1. Did you obtain the same results when you run your code? What do you think
about those results?

2. During the evaluation step above we have just applied the models to the testing
dataset. That is not the best option. What is a better approach (you might refer to
Chap. 4)?

3. Use cross-validation to redo the evaluation step.

14.11.2.2 The Diabetes Dataset

Download the Pima Indians diabetes dataset using the following link: https://www.
kaggle.com/datasets/uciml/pima-indians-diabetes-database

And do the following steps:

https://www.kaggle.com/datasets/uciml/pima-indians-diabetes-database
https://www.kaggle.com/datasets/uciml/pima-indians-diabetes-database
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Fig. 14.16 Optimize bagging model using grid search cross-validation approach

• Load the data into pandas.
• Visualize your data using the seaborn library.
• Preprocess the data and split it into training and testing datasets using a 0.7:0.3

ratio.
• Create a random forest model using decision trees.
• Create a voting algorithm using linear regression, support vectors, and decision

trees.
• Evaluate the bagging classifier and voting models using classification reports and

confusion matrices for training and testing datasets.
• Optimize the bagging classifier and voting models using grid search cross-

validation.
• Evaluate the optimized models using classification reports and confusion matrices

and retain the optimized versions of the models.
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Fig. 14.17 Optimize the voting model using grid search cross-validation approach

14.11.3 Do More Yourself

Download the following datasets and practice using bagging classifier and voting
models:

• https://www.kaggle.com/code/shiva948/bike-sharing-systems/data
• https://www.kaggle.com/code/nandinibagga/fertilizer-type-prediction/data
• https://www.kaggle.com/datasets/rikdifos/credit-card-approval-prediction
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Chapter 15
Boosting and Stacking

15.1 The Problem

The ensemble technique relies on an aggregate of models’ output to provide a better
prediction. Other than voting and bagging, we can use boosting and stacking.

15.2 Boosting

Boosting (or hypothesis boosting) refers to an ensemble method that builds a strong
learner out of a combination of weak learners (i.e., learners that perform slightly
better than random guessing). The predictors are trained sequentially, and each
subsequent predictor tries to correct the current one [1]. The dataset is the same
for all algorithms; however, each data instance is subject to a weight based on the
outcome of the previous model’s success [2]; in each iteration, to factor in the
prediction difficulty of incorrectly classified instances, their weight is increased.
We usually use this technique when learning a new skill, as we focus our attention on
difficult aspects. Boosting algorithms differ in the way they calculate the weights
(Fig. 15.1).

15.3 Stacking

In stacking (or stacking generalization [3]), the outputs of several algorithms are
used as the input of the main algorithm (called sometime the blender [1]) that is
supposed to make the final prediction. Practically, we feed the blender with the
predicted outcomes of the preceding algorithms. The training dataset is divided into

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
C. El Morr et al., Machine Learning for Practical Decision Making, International
Series in Operations Research & Management Science 334,
https://doi.org/10.1007/978-3-031-16990-8_15
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Fig. 15.1 Boosting in action



The following is a summary of the training of AdaBoost algorithm for a dataset of
m instances and N predictors:

Begin For i

two parts, a subset (a holdout) to train the blender and a subset to train the other
algorithms. The blender uses the outcomes of the other algorithms as input features
and the labels from the holdout dataset to train the blender. The blender will learn to
predict the labels based on the input features (i.e., the outcomes of the algorithms).

15.4 Boosting Example 433

What we have just explained is a stacking mechanism with two layers and one
blender. It is possible to create stacking with more than two layers; for instance, in
stacking with three layers, the dataset is split into three subsets. The first is used at
layer 1 to generate the outcomes, which will act as input for the first blender at layer
2, which will also use the labels of the second subset for training. The second blender
at layer 3 will act similarly, i.e., it uses the outcomes of layer 2 and the labels of the
third subset for training.

15.4 Boosting Example

15.4.1 AdaBoost Algorithm

AdaBoost is a boosting algorithm that focuses its attention on the training instances
that the predecessor algorithm misclassified [4].

Initially, each instance of the dataset is assigned equal weight. Using the training
dataset, AdaBoost trains a weak learner classifier, such as a decision tree with one
level (called a decision stump). Then, AdaBoost uses the developed model to make
predictions about the training dataset and increases the weight for the misclassified
instances. The dataset with the updated weights is then used for training in the next
iteration. The process continues until the desired number of classifiers is reached or
no further improvement in classification can be made.

Once trained, AdaBoost makes predictions by calculating all the predictions of all
the predictors, weighting them using the predictors’ weights. The predicted class is
determined by the majority of the weighted votes [1].

At each iteration, AdaBoost focuses on misclassified instances; this strategy
improves the performance of the weak classifiers drastically (Fig. 15.2).

Initialize the weights w ið Þ = 1
m

For j = 1 to N
Begin For j

1. For i = 1 to m

Calculate jth prediction by ið Þ
j for each instance x(i)

End For i



j

� � � �

End Fo
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Fig. 15.2 Overview of AdaBoost

2. Calculate the jth predictor’s error rate

rj =
for by ið Þ

j ≠ y ið Þ
� � Pm

i= 1
w ið Þ

Pm
i= 1

w ið Þ

where by ið Þ is the jth prediction for the instance i

3. Calculate the jth predictor’s weight

αj = η log
1- rj
rj

where η is the learning rate (by default, η = 1).

4. Update the instances’ weights

For i= 1 to m

Begin For i

if by ið Þ
j ≠ y ið Þ then w ið Þ =w ið Þ exp αj

r i

5. Normalize the weights
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For i= 1 to m

Begin For i

w ið Þ = w ið Þ
Pm
i= 1

w ið Þ

End For i

End For j

To predict using AdaBoost, for a new instance, the weak learners calculate in
sequence a predicted value as either +1 (for first class) or –1 (for the second class);
each prediction is weighted by the predictor’s weight. The weighted sum is calcu-
lated; AdaBoost assigns the instance to the first class if the weighted sum is positive
and to the second class otherwise. Classifying an instance x with AdaBoost with
N predictors can be summarized as follows:

by xð Þ= argmax
k

XN
j= 1byj xð Þ= k

αj

15.4.2 AdaBoost Example

Download the “Iris” file from the Weka datasets or from the Kaggle website using
the following link: https://www.kaggle.com/uciml/iris. Open the file in Weka and
choose the AdaBoost algorithm in the Classify tab (Fig. 15.3).

Check the AdaBoost parameters and get acquainted with them (you can use the
More button for more information). Accept the default parameters. Explore partic-
ularly the Classifier parameter; you can choose classifiers other than the decision
stump (Fig. 15.4). Choose cross-validation with tenfolds (Fig. 15.5) and click the
Start button. The output window displays the AdaBoost results (Fig. 15.6).

AdaBoost has performed ten iterations of cross-validation, as per our request.
There are 143 (95.33%) correctly classified instances and seven (4.73%) incorrectly
classified ones. The root mean squared error (RMSE) that we are trying to minimize
is 0.1729. We can notice that the class Iris-setosa was clearly identified with a perfect
area under the curve (AUC) (i.e., ROC area). The AUCs for Iris-versicolor and Iris-
virginica were 0.92 and 0.93, respectively, indicating a high ability of the model to
classify both types of irises. The confusion table shows five Iris-versicolor
incorrectly classified as Iris-virginica and two Iris-virginica incorrectly classified

https://www.kaggle.com/uciml/iris
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Fig. 15.3 AdaBoost
classifier in Weka

as Iris-versicolor. The window shows at the top that the classification was based on
the petal length value 2.45 to differentiate between the Iris-setosa and the two other
types, the decision being if petal length value is <2.45, then the flower is Iris-setosa.

15.5 Key Terms

1. Boosting
2. Hypothesis boosting
3. Weak learners
4. Stacking
5. Blender
6. Holdout sample
7. AdaBoost
8. Decision stump
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Fig. 15.4 AdaBoost parameters in Weka

15.6 Test Your Understanding

1. Explain how stacking functions.
2. Describe boosting.
3. What are some of the challenges in boosting?
4. What is a decision stump?
5. Cite some of the hyperparameters of AdaBoost.
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Fig. 15.5 Choosing to train
the model using cross-
validation with tenfolds
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Fig. 15.6 AdaBoost results when run on the iris dataset
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15.8 Lab

15.8.1 A Working Example in Python

The heart dataset that will be used for this lab can be downloaded from the
following link: https://www.kaggle.com/code/ysthehurricane/heart-failure-predic
tion-using-adaboost-xgboost/data.

That dataset contains 11 features that will be used to predict heart disease events:

• Age: person’s age in years
• Sex: person’s gender
• ChestPainType: chest pain type
• RestingBP: resting blood pressure in mm Hg
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• Cholesterol: serum cholesterol in mm/dL
• FastingBS: blood sugar measurement on fasting
• RestingECG: electrocardiogram results in resting
• MaxHR: maximum heart rate achieved
• ExerciseAngina: exercise-induced angina flag
• Oldpeak: old peak
• ST_Slope: the slope of the peak exercise
• HeartDisease: target class (1 for having heart disease and 0 for not)

15.8.1.1 Loading Heart Dataset

We start by importing the required libraries and loading the heart dataset (Fig. 15.7).
When you run the code, if you have not installed previously a needed library you will
receive an error message stating that the module was not found, in such cases you
need install the missing library using pip.

15.8.1.2 Visualizing Heart Dataset

The next step is to explore the heart dataset visually. We have opted to display the
plot heatmap correlations between features’ pairs (Fig. 15.8).

Fig. 15.7 Loading heart dataset into pandas
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Fig. 15.8 Visualizing heart dataset in heatmap

Fig. 15.9 Preprocess data by mapping string values into numeric ones

15.8.1.3 Preprocess Data

The next step is to convert string values to numeric ones. We have used the
LabelEncoder do so (Fig. 15.9), can you achieve the same result using a different
approach? Try.
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15.8.1.4 Split and Scale Data

We can now choose the features and target, split the original dataset into training and
testing datasets and standardize both (Fig. 15.10).

15.8.1.5 Create AdaBoost and Stacking Models

We will use AdaBoost to create a boosting model with a learning_rate=0.01 and
n_estimators=500. We will also use a stacking approach using k-nearest neighbors
and Gaussian naïve Bayes algorithms as classifiers and logistic regression as a
metaclassifier. Then, we train both models on the training dataset and make associ-
ated predictions using the testing dataset (Fig. 15.11).

Fig. 15.10 Split and scale heart dataset

Fig. 15.11 Create AdaBoost and stacking models
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15.8.1.6 Evaluate the AdaBoost and the Stacking Models

The next step is to evaluate the performance of the AdaBoost and Stacking models.
We opted to show in this lab the performance on the training and testing datasets for
exploration/learning purposes. Figure 15.12 shows the code and Figs. 15.13 and
15.14 show the performance results displayed for AdaBoost and Stacking,
respectively.

Fig. 15.12 Calculating accuracy and confusion matrix for AdaBoost model

Fig. 15.13 AdaBoost Model Performance on the training and testing Datasets
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Fig. 15.14 Stacking Model Performance on the training and testing Datasets

15.8.1.7 Optimizing the Stacking and AdaBoost Models

The models’ performances on the testing datasets are fair. Let us explore the
performance of the optimized models after hyperparameter tuning. The results for
the Stacking and AdaBoost models are presented in Figs. 15.15 and 15.16,
respectively.

15.8.2 Do It Yourself

15.8.2.1 The Heart Disease Dataset Revisited

1. Have you noticed any possible overfitting in the example above?
2. Did you obtain the same results when you run your code? What do you think

about those results?
3. During the evaluation step above, we have just applied the models to the testing

dataset. That is not the best option. What is a better approach?
4. Use cross-validation to redo the evaluation step.

15.8.2.2 The Iris Dataset

Download the iris dataset and do the following:
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Fig. 15.15 Optimal stacking model performance

1. Load the dataset into pandas.
2. Visualize the dataset and calculate the highest correlations.
3. Preprocess the data.
4. Split the data.
5. Create an AdaBoost model.
6. Evaluate the AdaBoost model.
7. Optimize the AdaBoost model.
8. Create a stack model.
9. Evaluate the stack model.

10. Optimize the stack model.
11. Compare the results between both models and deduce a conclusion.
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Fig. 15.16 Optimal AdaBoost model performance

15.8.3 Do More Yourself

• https://www.kaggle.com/code/treina/titanic-with-adaboost/data
• https://www.kaggle.com/datasets/zaurbegiev/my-dataset
• https://www.kaggle.com/code/sid321axn/house-price-prediction-gboosting-

adaboost-etc/data
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Chapter 16
Future Directions and Ethical
Considerations

16.1 Introduction

Artificial intelligence and machine learning have significantly advanced in the last
few years and are expected to continue a trajectory of increased adoption and impact.
This growth is driven by a number of technological and social developments over the
past few years. According to Gartner, a technology research and consulting firm, the
drivers for growth in AI are (1) the increasing volume and availability of big data and
the developments in parallel processing systems that can cost-effectively store and
process data at massive scale; (2) the advancements in computer hardware, partic-
ularly the emergence of powerful graphics processing units (GPUs) for complex
computations; (3) the development of new machine learning (ML) techniques;
(4) the emergence of cloud computing, which enables faster experimentation with
and operationalization of AI with lower complexity; and (5) the vibrant open-source
ecosystem, which has enabled many deep learning frameworks and resulted in an
explosion of startups [1].

According to Gartner, the worldwide AI software market is expected to reach $62
billion in 2022, an increase of 21.3% from 2021, to be spent mostly on knowledge
management, virtual assistants, autonomous vehicles, digital workplaces, and
crowdsourced data [2]. While the interest in and spending on AI are increasing,
there is still a lag in AI maturity and a lack of making the new technology part of
organizations’ standard operations. This is mainly due to reluctance to embrace AI,
lack of trust in AI, and difficulties delivering business value from AI [2]. Nonethe-
less, new technological developments and applications of artificial intelligence and
machine learning are expected to emerge, which will lead to further growth and
adoption by organizations. Gartner predicts that it will take until 2025 for half of
organizations worldwide to reach the “stabilization stage” of their AI maturity
model [2].
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16.2 Current AI Applications

Artificial intelligence and machine learning applications can be found in many fields
and industries. Their applications can be found in healthcare, water management,
agriculture, animal farming, electrical power grids, car insurance, banking, market-
ing, customer churn analysis, smart buildings, human resource management, traffic
management, fraud detection, and many more. A well-known classic example in
healthcare is Google Flu Trends. Based on the large volume of data from individuals
searching for information about influenza when they are sick, Google is able to
detect trends and estimate the current flu outbreak levels in the USA and other
regions. Not only is Google’s estimate highly accurate, but it is also 2 weeks faster
than the traditional method used by the US Centers for Disease Control. According
to Fortune Magazine [3], AI has changed business in many ways. AI is playing a
role in hiring, such as screening candidates, and in some cases making managerial
decisions. Companies like Unilever, a multinational consumer goods company, and
Vodaphone, a telecommunication company, are using AI to build a better workforce.
AI is used in banking and investment for picking stocks and approving loans and
mortgages. Banks like Wells Fargo rely on AI to streamline their loan approval
process. Financial services firms like Charles Schwab use the technology to help
customers invest their savings, while many Wall Street firms are relying on AI for
selecting stocks to invest in. Car manufacturers like BMW and Mercedes-Benz use
collaborative robots or Cobots, which are computer-controlled robotic devices, to
assist human workers in assembling cars more efficiently. High-tech firms like SAP
are also using AI to develop software to spot worker fatigue before accidents happen.
AI is also used in cybersecurity, helping banks detect fraud and money laundering
and helping businesses prevent hackings. Chatbots, which are AI-powered computer
programs that simulate and process human conversations, are commonly used for
customer service. AI is also used by companies like Home Depot and Walmart to
help their customers find products more quickly. Finally, AI will help in detecting
diseases and illnesses, and in developing drugs and treatments. Companies like IBM,
with its Watson Health AI system, are pioneers in that field [3]. In agriculture, animal
farmers use artificial intelligence and machine learning with big data and sensor data,
including local weather data, air quality data, voice signals of animals, visual data of
various animal movements, food intake, sleep cycles, and other animal behavior
data, to lower production costs, increase efficiencies, enhance animal welfare, and
raise more animals per hectare [4]. For example, technology allows farmers to
employ different facial recognition methods using non-invasive imaging systems
to recognize faces of individual animals in a real farm setting with 96.7% accuracy.
Such systems can replace inefficient and costly RFID tags and help farmers monitor
their animals efficiently at scale, significantly reducing their costs and labor require-
ments [4]. NotCo, a Chilean company founded in 2015, designed an algorithm that
uses AI to predict which vegetal ingredients can be mixed and which plants can be
combined to create food products similar to milk, mayo, or meat in their color, smell,
texture, flavor, and nutritional content. The company’s Giuseppe, their AI chef, also



known as Genius G, is capable of analyzing the animal base molecular structure and
replicating it by using plants only, all 300,000 species of them. It uses machine
learning to automatically learn and improve based on existing data. The company’s
products NotMayo, NotMilk, NotIce Cream, NotBurger, and NotChicken can be
found in many grocery chains and stores in North and South America [5].
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According to Forbes Magazine, there are seven areas where breakthroughs in AI are
expected in 2022 [6]. The first area is the augmented workforce, where machines and
humans will be working together, with the former using smart and cognitive
functionality to boost the latter’s abilities and skills. For example, in engineering,
AI tools help in preventive maintenance by predicting when machines need servic-
ing and repair. In marketing, AI tools identify customer leads for salespersons to
target and follow. Major advances are also expected in the area of language model-
ing, which is the process that allows machines to understand and communicate with
humans in a language they understand. OpenAI, an AI research and deployment
company, is working on the fourth version of its Generative Pre-trained Transformer
(GPT-4), getting closer to allowing machines to hold conversations that may be
undifferentiated from those with a human. It might also take natural human lan-
guages and turn them into computer instructions that can run software applications.
The second predicted area of growth of AI is cybersecurity, where hacking and
cybercrime pose a major risk to society. The increasing number of devices connected
to the Internet has increased the number of potential points of failure and made the
network more complex to manage and secure. AI can be used to analyze network
traffic and can use smart algorithms to recognize patterns that suggest potential
criminal intentions. AI is also expected to play a role in the metaverse, or the future
digital and virtual environment where humans will interact together and have
immersive experiences. AI is expected to play a role in creating online environments
based on humans’ impulsive needs and providing help with tasks. The fourth area of
growth is in low-code or no-code AI, where humans will be able to create smart
programs or applications by plugging together premade modules and
complementing them with domain-specific data and knowledge. Natural language
processing and language modeling will allow us to use our voice or written instruc-
tions to build smart applications, making AI reachable to a much larger population.
AI is the brain guiding autonomous vehicles like cars and boats. Advances in this
area are evident, and it is expected that autonomous cars with full self-driving
capabilities may be ready for general use in 2022. Car companies like Tesla, GM,
and Ford and technology companies like Apple and Google’s Waymo are all
expected to make major advances in this area. In 2022, the Mayflower Autonomous
Ship, designed by IBM in partnership with PromAre, a non-profit organization
promoting marine research and exploration, is expected to cross the Atlantic auton-
omously. Finally, AI is expected to make more headway in an area that has been



considered explicitly a human skill: creativity. AI is expected to create art in the form
of music, drawings, and poetry, in addition to performing routine creative tasks like
writing articles and newsletters and designing logos and infographics [6].
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In the longer run, Gartner has identified a number of significant emergent AI
trends that will shape the future of AI in the enterprise and will have an impact on us
by 2025. We will describe four of them: (1) democratized AI, or making AI
accessible to a wide set of users beyond experts; (2) edge AI, or harnessing AI for
real-time analytics closer to data sources; (3) responsible AI, or the ethical use of AI;
and (4) generative AI, or the use of AI to generate new artifacts and create new
products [1].

16.3.1 Democratized AI

Democratized AI consists of techniques and tools aimed at improving the construc-
tion of AI applications while reducing their dependence on humans and expert
knowledge. It will make AI accessible to a wide set of users beyond experts.
Democratized AI will affect everyone’s life, both at work and at home. It will assist
professionals by automatically identifying relationships, trends, patterns, and excep-
tions hidden in large datasets. It will augment and assist workers by complementing
their knowledge. Applications will be more intelligent and will support decision-
making, in addition to processing transactions [1].

Democratized AI consists of four sub-trends. Everyday AI is the seamless
integration of AI techniques into everyday productivity tools for email sorting and
routing, automated meetings scheduling, proactive information distribution, and
many more. Augmented AI is where AI techniques provide additional functionality
to enterprise systems, for example, resulting in intelligent automation, data-driven
insights and guided recommendations, improved productivity and decision-making,
and even a personalized interface for users. Citizen AI, or easier-to-use AI, would
enable new users like business analytics professionals to quickly tune highly accu-
rate models with limited coding knowledge. Finally, human-centered AI (HCAI)
calls for AI to benefit people and society. It is a model of people and AI working
together to enhance cognitive performance, including learning and decision-making,
and is sometimes referred to as “augmented intelligence” [1].

16.3.2 Edge AI

Edge AI refers to the use of AI techniques embedded in Internet of Things (IoT)
sensors, gateways, and edge servers in a wide range of applications, including
autonomous vehicles and streaming analytics. Edge AI can be used to manage and
improve business operations and processes and improve asset management and
operational intelligence in areas like mining, construction, healthcare diagnostic



centers, and other businesses with high-value assets. An application in energy and
manufacturing is the AI-based visual inspection of video streams or images, where
edge AI is closer to the data sources for real-time training and inference in a highly
distributed model [1].
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Edge AI technological developments and applications are enabled by the
advances and growth in AI, the Internet of Things (IoT), and big data processing.
The drivers for edge AI adoption are the need for real-time processing, the growth in
IoT endpoints due to a decrease in price, and enterprise infrastructure and work-
forces becoming more distributed. Gartner predicts that by 2025, 75% of data will be
generated outside enterprises’ centralized data centers, and 11.7 billion IoT devices
will be connected. The demand for data processing at the point of data creation for
real-time insights will push AI applications to the edge, closer to the IoT
endpoints [1].

16.3.3 Responsible AI

Responsible artificial intelligence refers to making appropriate ethical choices when
adopting AI in relation to societal value, trust, transparency, fairness, bias mitigation,
accountability, safety, privacy, regulatory compliance, and many more. Organiza-
tions will follow responsible AI practices by ensuring positive and accountable AI
development and exploitation [1].

The drivers behind responsible AI are the growing guidelines by governments,
regulatory authorities, and industry bodies. AlgorithmWatch, a “non-profit research
and advocacy organization that is committed to watch, unpack and analyze auto-
mated decision-making (ADM) systems and their impact on society,” has cataloged
more than 80 AI ethics guidelines. Business Roundtable, an “association of chief
executive officers of America’s leading companies working to promote a thriving
U.S. economy and expanded opportunity for all Americans through sound public
policy,” has published a roadmap and policy guidelines for responsible AI. Another
driver is consumer trust, which is critical for any company and may be eroded if it
uses AI without paying attention to ethics. Finally, the pressure to meet sustainability
goals is pushing companies to use AI to assess and reduce the impact of climate
change [1].

16.3.4 Generative AI

Generative AI is a term that describes AI techniques that are able to learn from data a
representation of artifacts and use it to generate new unique artifacts. Generative AI
can produce synthetic data, models of physical objects, and novel media content
(e.g., text, audio, image, video). Photorealistic images of people and things are the
most commonly seen outcomes of generative AI today. It can also be used to



generate computer code, thus reducing the burden on human developers and soft-
ware engineers. It can be used to create synthetic data, thereby protecting privacy
and controlling bias in AI training data. It can be used in drug discovery or materials
design for a much faster process than traditional methods. It can also be used to dub
films in different languages using the original actors’ voices [1].
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However, these AI developments and the spread of AI applications within
organizations and in society will come with increased ethical concerns, both old
and new. Generative AI when used for content creation with malicious intent like
deepfakes can result in negative outcomes by spreading false information and
bringing harm to individuals and society. Increased scrutiny will be required, and
AI experts need to ensure the ethical, bias-free, and responsible implementation of
AI models. Edge AI, for example, should be applied without the violating privacy
needs of the IoT endpoints and physical locations [1].

16.4 Ethical Concerns

The ability of information technology to collect, analyze, transfer, and store massive
amounts of data has given rise to several concerns. A major concern is the risk to data
security from hackers and data breaches. In the past few years, data breaches have
grown in size and frequency, with one of the largest breaches affecting almost
80 million people. The exposed data were highly sensitive and included patients’
identifying information, health insurance information, and medical histories [7]. In
addition to hacking databases and stealing data, criminals may be able to remotely
access certain medical devices, such as implantable cardiac pacemakers, if they have
IoT capabilities but lax cybersecurity and cause serious physical harm to patients
[16]. Another major concern is related to privacy and the risk that personal sensitive
information may be unlawfully accessed or shared. The personal records of hundreds
of high school students in Australia were mistakenly published on their school’s
intranet, including medical and mental health conditions, learning disabilities,
behavioral difficulties, and medications used [8]. Other ethical concerns and ques-
tions will arise with advances in AI and machine learning. AI in hiring raised serious
concerns of discrimination when it was unveiled that Amazon, and possibly other
high-tech companies, were not hiring women. This was due to a bias in the data
caused by a lack of enough representation of women in these companies, which led
its AI hiring algorithms to discriminate against women [9]. Another example of
AI-generated discrimination is in law enforcement, where machine learning algo-
rithms, like the ones used for criminal risk assessment, try to find patterns in data
which may be historically biased against certain groups, like low-income and
minority groups [10]. In addition to the bias inherent in the historical data used to
train machine learning algorithms, there is also a risk of artificial intelligence making
erroneous decisions due to flaws in algorithms leading to serious problems, like
insurance companies denying coverage for individuals whose data predict that they
will develop certain illnesses or behavioral problems in the future. A common AI



application today is facial recognition, used in shopping centers, museums, casinos,
and many public places like city streets. The technology is used by law enforcement
agencies to match people against watchlists. However, the facial recognition tech-
nology does not reach 100% accuracy and does not work very well on people with
darker skin, women, and children, putting almost half of the population of certain
countries at risk of being misidentified and having to prove their innocence [11]. An
additional ethical concern with AI is its potential ability to exceed the cognitive
performance of humans, which could lead to mass unemployment and wealth
redistribution, and to making decisions that humans cannot understand or
control [12].
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16.4.1 Ethical Frameworks

While the benefits of artificial intelligence and machine learning are evident and their
adoption will continue to increase, it is important to find the proper safeguards and
policies to protect the data and ensure its ethical use. It is important to make sure AI
applications do not cause harm to individuals and society.

Ethical concerns have emerged over the years with the development and adoption
of new technologies, and multiple ethical frameworks have been developed to guide
their use. Table 16.1 presents an overview of some key ethical frameworks that can
be used to address the ethical and moral issues with AI [12].

In this chapter, we focus on Richard Mason’s (1986) [14] four categories of
ethical issues for the information age, which are privacy, accuracy, property, and
accessibility, otherwise known by the acronym PAPA. Mason introduced the PAPA
framework to inform people about the threats to human dignity that the information
age introduces. These issues were raised in 1986 but are still relevant today. The first
ethical concern is privacy, or “what information should one be required to divulge
about one’s self to others? Under what conditions? What information should one be
able to keep strictly to one’s self?” ([14] page 5). Privacy is threatened by informa-
tion technology’s capacity for surveillance, communication, computation, storage,
and retrieval. It is also threatened by the use of data in decision-making and
developing policies. Accuracy concerns lead to the following questions: “Who is
responsible for the authenticity, fidelity and accuracy of information? Similarly, who
is to be held accountable for errors in information and how is the injured party to be
made whole?” ([14] page 5). Misinformation can hurt individuals, especially when
the one inaccurate (or even fake) information are in the hands of those in power and
authority. This inaccuracy can have negative financial, professional, personal, and
even health implications. Property is about “Who owns information? What are the
just and fair prices for its exchange? Who owns the channels, especially the airways,
through which information is transmitted? How should access to this scarce resource
be allocated?” ([14] page 5). Intellectual property falls in this category, as it is
extremely difficult and costly to create, but extremely easy and cheap to reproduce
and share once it is digitally available. Unlike tangible property, information is



difficult to keep for oneself, and it is very difficult to get reimbursement from its use.
Finally, accessibility ethical concerns lead to the following questions: “What infor-
mation does a person or an organization have a right or a privilege to obtain, under
what conditions and with what safeguards?” ([14] page 5). To have access to
information and benefit from it, one should have certain prerequisite knowledge
and economic level. For many people, economic or social factors prevent them from
getting access to information and gaining literacy [14].
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Table 16.1 Examples of ethical frameworks in AI

Source Title Ethical framework’s basics

Belmont [13] Ethical principles and guidelines in the
protection of human subjects of research

1. Respect for subject: the right to
decide whether to participate
2. Beneficence: do no harm to par-
ticipants
3. Justice: fairly distribute costs and
benefits of research

Mason [14] Four ethical concerns of the information
age

Issues with information technol-
ogy: privacy, accuracy, property,
and accessibility (PAPA)

Bentham [15] An introduction to the principles of morals
and legislation

Act utilitarianism: tally the conse-
quences of each action first and
then determine on a case-by-case
basis whether an action is morally
right or wrong
Hedonistic utilitarianism: pleasure
and pain are the only consequences
that matter in determining whether
the conduct is moral or not

Wallach [16] Big data, machine learning, and the social
sciences: Fairness, accountability, and
transparency

Ethical principles:
1. Fairness: bias, fairness, and
inclusion
2. Accountability
3. Transparency

Hursthouse
and
Pettigrove
[17]

Virtue ethics Having ethical thoughts and ethical
characters

Sinnott-Arm-
strong [18]

Consequentialism Engaging in actions that cause more
good than harm

Alexander
and Moore
[19]

Deontological ethics Conforming to rules, laws, and
other statements of
ethical duty (religious texts, indus-
try codes of ethics)

Adapted from [12]

The moral requirement in Mason’s framework was obvious: information tech-
nology should be used to protect and enhance human dignity. Mason affirmed the
need for society to ensure everyone’s right to fulfill their own human potential. He
called for a new social contract where information systems do not unjustifiably
breach a person’s privacy. Information systems should communicate accurate



information to avoid misinformation, and be accessible to avoid the information
illiteracy and deprivation [14]. The same threats of information technology to human
dignity that Mason described back in 1986, long before the wide spread of the
Internet, still exist today. Artificial intelligence used by automated devices like Alexa
and Siri for voice recognition can encroach on one’s privacy by continuously
“listening” and even recording our conversations. China’s Social Credit System,
which uses AI to track and evaluate citizens, creates serious privacy and accuracy
concerns. AI has limited presence and applications in many developing countries
due to a growing Digital Divide and is hence inaccessible to the population there.
Like with any other information technology, the PAPA framework should be taken
into consideration when AI is applied and adopted in order to enhance the dignity of
mankind.
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16.5 Conclusion

New growth in technologies is changing the way we process data and make
decisions. Like other technologies, artificial intelligence and machine learning are
here to stay; they provide immense benefits in many disciplines and fields, as we
discovered in this book. However, AI and ML raise immense ethical concerns. They
also raise societal issues; for example, a mathematician, Cathy O’Neil, felt com-
pelled to write a book to address the impact of big data on inequality and democracy
[20]; the book’s name (Weapons of Math Destruction) reflects a general human
acknowledgment and concern about these changes and a call to reflect on them [21].

Artificial intelligence and machine learning have immense benefits for individ-
uals, organizations, and society. Professionals in some fields are feeling the change
first; radiologists, for instance, are raising questions about the future of radiology and
radiography [22]; an AI software that is able to read an image better than a trained
human is not a far-fetched idea anymore, and a robot that can take an X-ray in a more
precise way than humans can be feasible. If radiographers and radiologists do not
disappear, their work will undergo an immense change; other fields will probably
face similar challenges, society as a whole needs to make decisions, and citizens
need to weigh in about the directions these technologies should be taking and how
far they should go. Ultimately, if something can be created, it does not necessarily
mean that it ought to be created; our future should be decided by our personal and
collective efforts and reflections being translated into policies [21].

16.6 Key Terms

1. Democratized AI
2. Edge AI
3. Responsible AI
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4. Generative AI
5. Ethical frameworks
6. PAPA
7. Privacy
8. Accuracy
9. Property

10. Accessibility

16.7 Test Your Understanding

1. What are the technological drivers behind the growth of AI?
2. What is a GPU, and what is its role in AI and ML?
3. How is AI benefitting from the prevalence of cloud computing?
4. What are some potential downsides to AI?
5. What role can ethical frameworks play in the context of AI?
6. What does the acronym PAPA stand for?
7. What questions does the PAPA framework try to answer?
8. What is Richard Mason’s concern, and what does he call for?
9. What are some concerns with traditional information systems that apply to AI

today?
10. What are new concerns that AI has generated?
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