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Abstract. Accurate and automatic segmentation of intervertebral discs
from medical images is a critical task for the assessment of spine-related
diseases such as osteoporosis, vertebral fractures, and intervertebral disc
herniation. To date, various approaches have been developed in the
literature which routinely rely on detecting the discs as the primary
step for detecting abnormality in intervertebral Discs. A disadvantage of
many cohort studies is that the localization algorithm also yields to false
positive detections. In this study, we aim to alleviate this problem by
proposing a novel U-Net-based structure to predict a set of candidates
for intervertebral disc locations. In our design, we integrate the image
shape information (image gradients) to encourage the model to learn
rich and generic geometrical information. This additional signal guides
the model to selectively emphasize the contextual representation and
to supress the less discriminative features. On the post-processing side,
to further decrease the false positive rate, we propose a permutation
invariant “look once” model, which accelerates the candidate recovery
procedure. In comparison with previous studies, our proposed approach
does not need to perform the selection in an iterative fashion. The pro-
posed method was evaluated on the spine generic public multi-center
dataset and demonstrated superior performance compared to previous
work. The codes is publicly available at github.
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1 Introduction

The human vertebral column consists of 33 individual vertebrae stacked on top of
each other and connected through the ligaments and intervertebral discs (IVDs).
The vertebral column is divided into cervical, thoracic, lumbar, sacral and cau-
dal vertebrae [3]. Each of these regions performs a vital function in the human
body including, absorbing shock, load breathing, protection of the spinal cord,
controlling load through the vertebral column, and so on [1]. More precisely, the
IVDs act as cushions of fibrocartilage and as principal joints between vertebrae
and they absorb the stress and shock the body sustains during motion and allow
the spine to be flexible while preventing the vertebrae from grinding against
one another. Disruption in any of the vertebral discs through aging, degenera-
tion, or injury will result in an alteration in the corresponding disc’s properties
along with flaws in mechanical functionalities of adjacent tissues [19]. As a con-
sequence, location and segmentation of intervertebral discs is a crucial task for
spine disease diagnosis and provides versatile information in the quality of treat-
ment procedure. To this end, various semi-automated and automated techniques
have been proposed in the literature. These methods can be divided into two
taxonomies: hand-crafted methods and deep learning-based approaches. As an
example for hand-crafted dissertations, Cheng et al. [5] proposed a two-step app-
roach where they first localize the center of each IVD by adapting a data-driven
estimation framework [6] and, then, segment IVDs by classifying image pixels
around each disc center as either foreground (disc) or background. Glocker et
al. [11] utilized a regression forest and a probabilistic graphical model to detect
and localize intervertebral discs from CT scan images. A polynomial iterative
randomized Hough transform approach to segment the spine and intervertebral
discs was proposed in [4]. Irrespective of the good performance of these tradi-
tional methods, in some cases they intrinsically render poor performance when
compared to deep learning-based methods [2,5]. Recent advances in deep learn-
ing have facilitated investigation of robust intervertebral disc labeling [7,8,20]. In
[12] the authors proposed to use a standard CNN for IVD segmentation. Dolz et
al. [10] proposed an architecture called ’IVD-Net’ to leverage information from
multiple image modalities for inter-vertebral disc segmentation by adopting a
U-Net-like architecture. In a recent article Vania et al. [20] developed a method
which builds upon mask-RCNN and formulated a multi-optimization training
system at a different stage to increase the computational efficiency. In another
approach [21], a cross-modality method for detecting both vertebral and inter-
vertebral discs on volumetric data has been proposed. This approach utilizes
a local entropy-based texture model to localize the sacral region. Then, using
three-disc entropy models, detected positions are aligned and further refined by
taking into account the intensity match between regions and a spinal column
template. A transfer learning-based approach is utilized by [14]. In this work,
a 2D convolutional structure is exploited to detect the lumbar disc from axial
images. Their proposed network uses the strength of the U-Net structure with
a VGG backbone to produce a spine segmentation mask. Then, the segmented
regions are used to calculate the herniation in lumbar discs. The authors of [17]
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combine a fully convolutional network with inception modules to localize and
label intervertebral discs. Azad et al. [3] reformulated the semantic vertebral
disc labeling using pose estimation and utilized an hourglass neural network to
semantically label the intervertebral discs.

The main limitation of the reviewed methods is their dependency on the
regular CNN learning strategy (learning texture, shape, colour) which is not
optimal for labelling anatomical structures such as intervertebral discs and usu-
ally produces both false positive (FP) and false negative (FN) detections [13].
To overcome this issue, we propose to incorporate shape information within the
learning process. This additional signal guides the model to selectively empha-
size the contextual representation, magnifies the structural regions and supresses
the less discriminative features (e.g. color, texture).

Moreover, a principal limitation of many cohort studies is that, as they utilize
the local maximum technique to locate the position of the vertebral discs in 2D
space on top of the prediction masks, they encounter a substantial false positive
rate. Exhaustive search tree [3], template matching [18] and point coordinate
condition [17] are among the popular algorithms proposed to eliminate the FP
rate. However, these approaches usually lack computational efficiency and render
a poor candidate recovery. Therefore, a general method is required to handle this
challenge. In this work, we propose to mitigate this limitation by bolstering the
post-processing step in the intervertebral disc labeling procedure. The main idea
is that, inspired by the idea of YOLO [16], we propose a permutation invariant
“look once” model to increase the True Positive (TP) rate while reducing the FN
detection. We re-formulate the problem by a modified version of the PointNet
model [15] which is invariant to certain geometric transformations (e.g. rotation).
To the best of our knowledge, this is the first post-processing algorithm that
processes the whole prediction in one step without any iteration (“look once”).
Our contributions are as follows:

• Adapting U-Net structure for semantic intervertebral disc labeling;
• Incorporation of shape information to further boost model performance;
• A permutation-invariant post-processing approach to reduce the FP rate;
• Publicly available implementation source code (once accepted);

2 Proposed Method

Our proposed method consists of two stages. In the first stage we utilize a U-Net-
based structure to detect and predict semantic labeling for each intervertebral
disc location. In the second stage, we propose a deep permutation invariant “look
once” model to refine the prediction results and eliminate the FP candidates. In
the next subsections, we will discuss each phase in more detail.

2.1 Semantic Intervertebral Disc Labeling

The concept of the proposed method is depicted in Fig. 1. In our novel design, we
incorporate the shape information (gradient of the input image) as an additional
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Fig. 1. Proposed method for intervertebral disc labeling with incorporating shape infor-
mation.

signal to encourage the model to learn contextual and geometric information.
To this end, we form a pyramid representation using the multi-level description
resulting from each block of the encoder (U-Net encoder E parametrized with
θ) module: P = {fj = E(x, θ), j = 0, 1, ...L}, where L is the number of pyra-
mid levels. Next, we propose a shape attention module. Our attention module
(Fig. 2) uses the global representation of each feature map alongside the shape
description to selectively emphasize the contextual representation and supress
the less discriminative features. To this end, for each level of the pyramid, we
learn the channel-wise recalibration parameters (wf

j ) and spatial recalibration
parameters (wsp) from the shape feature description (sf):

wf
j = σ

(
W2δ

(
W1GAP f

j

))
, wsp = σ (W4δ (W3GAP (sf))) (1)

where Wk, k ∈ {1, 2, 3, 4} are the learning parameters that apply to the global
representation (GAP) of each pyramid level, and δ and σ stand for the ReLU
and Sigmoid activations. We form the re-calibrated description by scaling both
channel and spatial dimensions: P̃ f

j = wsp ·(wf
j ·P f

j )+sf . Once the re-calibration
performed, we aggregate the multi-level features in a nonlinear fashion (aggre-
gation parameter wprm) to produce a shape-attenuating description:

f ′ = σ

⎛
⎝

L∑
j=1

wj
prmP̃ f

j

⎞
⎠ (2)

Subsequently, the same decoder as in the regular U-Net, but with V = 11
output channels (we assume that the input image comprises, at most, 11 inter-
vertebral discs according to [9]), is utilized to estimate the location of each
intervertebral disc accordingly. Similarly, our ground truth mask consists of V
channels, where in each channel the location of an intervertebral disc is labelled
with a Gaussian kernel of radius 10. We employ the mean squared (MSE) loss
to train the network.
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Fig. 2. Detailed structure of the proposed shape attention mechanism.

2.2 Refinement Network

Detecting intervertebral disc locations often comprises FP and FN predictions.
Several post-processing approaches were proposed in the literature to overcome
this problem. Rouhier et al. [17], deploys a condition-based strategy to elim-
inate the FP candidate generated by their countception method. In a recent
article, Azad et al. [3] argues that the condition-based strategy usually fails to
recover the TP candidates among the detected regions and proposes a tree-based
decision space. Their approach suggests creating a search tree, where each path
shows one possible combination of ordered intervertebral disc locations. Then,
they calculate an error function between the general skeleton and the predicted
skeleton. This iterative algorithm performs an exhaustive search and is not effi-
cient when the number of FP is high. Template matching [18] is also another
approach that seeks to reduce the FP rate by considering predefined patterns.
These methods all have their assumption of particular conditions or predefined
patterns in common. In addition, some of these methods perform the selection in
an iterative fashion, which may not be feasible when the number of FP is high.
To mitigate these issues we propose a method to ’look only once’ at the noisy pre-
diction to recover the intervertebral disc locations. To this end, we assume that,
for the input image I with N intervertebral disc location, the detection model
predicts a set of M intervertebral disc candidates, usually M >= N and M ∈ R2

(i.e. 2D position). Taking into further consideration in a general form, we assume
that the prediction model is not able to provide any semantic labelling. Thus,
the objective is to recover N points out M which best matches the ground truth
intervertebral disc locations. Since the semantic information is not provided for
the predicted points, we consider it as a set of M intervertebral candidates. The
set is made up of unstructured data and selecting N intervertebral disc location
out of M candidates requires the following processing permutations:
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Fig. 3. Proposed structure for the post-processing step. The noisy prediction without
a semantic label passes through the model to eliminate the FP candidates.

(M)!
(N)!(M − N)!

(3)

permutations. The processing time will dramatically increase if M >> N . To
overcome this limitation, it is highly desirable that the post-processing algo-
rithm processes the whole prediction at once without any iterations(“look once”).
Therefore, the deep model needs to be permutation invariant, i.e., any order of
points should produce the same result. The proposed structure is depicted in
Fig. 3. The proposed method consists of two data streams, where in the first
stream (top), a series of feature transformation layers, followed by the multi-
layer perceptron (MLP), is designed to encode the input coordinate into a high-
level representational space. The objective of this representation is to create a
discriminative embedding space to characterize each point by a hidden depen-
dency underlying the input data. Intrinsically, the transformation layer in this
stream assures the robustness of the representation to the noisy samples and
provides a less sensitive transformation to an affine geometrical transformation
(e.g. rotation). Inspired by the permutation invariance characteristics, the MLP
layer deploys a shared kernel to produce a set of representations independent of
their order. Eventually, in addition to the generated feature map, a symmetric
function (global pooling) is utilized to capture the shared signature among all
points. We concatenate the global information with the local representation of
each point to describe each intervertebral disc candidate. Details on the network
structure is illustrated in Table 1. This representation more or less contains the
general structure of the data, however, it still requires pair-wise relational infor-
mation. To include such information, we create a geometrical representation. To
this end, using the fully connected layers, we learn the embedding parameters to
model the long-range geometrical dependency. The main objective of this layer
is to capture the geometrical relation between points and feed it to the scaler
function. We include the sigmoid function on top of the generated representation
to form an attention vector. This attention vector performs the re-calibration
process and adaptively scales the generated feature map. The generated final
representation is then fed to the single-layer perceptron model to perform the
softmax operation and to classify each candidate.
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Table 1. Details on network architecture for the post-processing stage. We follow [15]
for the structure of the Feature Transform module (including T-Net) which simply
aligns the input to a feature space using an affine transformation without changing
the dimension. We refer the reader to [15] for more general expositions. Note that n
denotes the number of vertebral discs detected.

Module Neurons Input-size Output-size

MLP Module(1) 64 (nx3) (nx64)

MLP Module(2) 128 (nx64) (nx128)

MLP Module(3) 512 (nx128) (nx512)

MLP Module(4) 1024 (nx512) (nx1024)

3 Experimental Results

In this section, we first describe the datasets and metrics used throughout our
experimental evaluation. Then, we provide a deep insight into the experimental
results. Our analysis was based on the publicly available Spine Generic Dataset
[9]. The dataset was acquired across 42 centers (with a total of 260 participants)
worldwide, accommodating both T1 and T2 MRI contrasts for each subject.
Images obtained from diverse institutes, considerably varying in image quality,
ages and imaging devices, render a feasibly challenging benchmark for the task
of intervertebral disc labelling.

3.1 Metrics

To ensure the validity of the comparison of results and to draw conclusions on
the applicability of our approach, we consider different comparison metrics. In
the first instance, we take into account the L2 norm by calculating the distance
of the vector coordinate between each predicted intervertebral disc location and
the ground truth while considering the superior-inferior axis to quantify the
punctuality of our proposal. In order to gain insights into the versatility of our
post-processing approach, the False Positive Rate (FPR) and False Negative
Rate (FNR) were selected as the primary inclusion criteria. Similar to [3], the
FPR calculates the number of predictions which are at least 5 mm away from
the ground truth positions. Likewise, the FNR counts the number of predictions
where the ground truth has at least 5mm distance from the predicted interver-
tebral position.

3.2 Comparison of Results

We train all of our models upstream using the Adam solver with the momen-
tum in 100 epochs with the batch size 2. In our experiments, we use an initial
learning rate of 0.0001 with the decay by a factor of 0.5 at every 20th epoch,
respectively. We use the same setting as explained in [17] to achieve a general
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Table 2. Intervertebral disc labeling results on the spine generic public dataset. Note
that DTT indicates Distance to target

Method

Template Matching [18]

Countception [17]

Pose Estimation [3]

Baseline

Proposed

T1

DTT (mm) FNR (%) FPR (%)

1.97(4.08) 8.1 2.53

1.03(2.81) 4.24 0.9

1.32(1.33) 0.32 0.0

1.45(2.70) 7.3 1.2

1.2(1.90) 0.7 0.0

T2

DTT (mm) FNR (%) FPR (%)

2.05(3.21) 11.1 2.11

1.78(2.64) 3.88 1.5

1.31(2.79) 1.2 0.6

1.80(2.80) 5.4 1.8

1.28(2.61) 0.9 0.0

consensus in comparing our method with the literature and we report our find-
ings in Table 2. Note: our baseline model uses the same structure as presented but
without employing the proposed modules. The results show that our approach
achieves a competitive result in T1 and T2 contrasts. Specifically, our proposed
method shows superior performance in T2 contrast, where our approach promi-
nently outperforms all other approaches in terms of FNR and distance to the
target. Compared to the pose estimation approach [3], our method produces on
T1 modality an average lower distance to the intervertebral locations, but there
is only a small gap in distance variance. We also observe that, by removing the
proposed modules the performance of the model slightly decreases, which high-
lights the importance of shape information in intervertebral disc labeling. More-
over, unlike the countception and template matching approaches, our method
does not require a heavy preprocessing step for spinal cord region detection and
outperforms these methods with both quantitative performance and inference
time. In contrast to our proposal, the inference time in the two aforementioned
approaches grows exponentially when the FP rates increases (see Table 3). In
Fig. 4(a) we provide sample results of the proposed model on T2 modalities. It
can be observed that the method precisely provides a semantic label for each
IVD location without any FP predictions. It should be noted that our method
requires less processing time even with large number of FP detection in opposite
to the SOTA approaches (illustrated in Fig. 5).

Fig. 4. (a): Intervertebral labeling results of three representative T2 images. upper
row: ground truth, lower row: predictions. (b): Before (left) and after (right) applying
look-once approach on the T1 generated noisy prediction.



Intervertebral Disc Labeling with Learning Shape Information 57

Table 3. Performance comparison of the proposed post-processing approach vs the
SOTA approach for eliminating FP detection. The experiment was done on 100 images,
where for each image 20 random FP detection was added.

Method F1 Accuracy specificity sensitivity AUC

Template Matching [18] 0.850 0.881 0.891 0.902 0.890

Pose Estimation [3] 0.902 0.921 0.925 0.914 0.920

Proposed method (without geometrical relationship module) 0.914 0.932 0.941 0.917 0.929

Proposed method (Only look once) 0.942 0.958 0.967 0.942 0.955

Fig. 5. Inference time of the proposed method vs the search-tree based approach [3].
Our method only looks once at the prediction to eliminate the FP samples while the
search based approach uses an iterative algorithm.

3.3 Evaluation on the Noisy Prediction

To further analyze the robustness of the proposed method in the presence of
noisy predictions, we attain an evaluation on the proposed “look once” post-
processing method. To this end, we create a 2D Gaussian distribution around
each intervertebral disc to generate new points. A sample of generated noisy
image along with the model prediction is depicted in Fig. 4(b). As shown, the
proposed method works well (including very fast timing) on retrieving IVD loca-
tions from the noisy prediction without relying on any predefined assumption. In
addition, in our experiment (supplementary file), we observe that for the search-
tree-based approach the post-processing time exponentially increased with the
increase of FP rate. Similarly, the template matching method failed to recover
the TP candidates in most of the cases. Whereas, our method recovered the
TP samples with high precision without any iteration. Moreover, to disentan-
gle the contribution of our proposal, we take a closer look at some additional
sample detections of our method in Fig. 6 which proves its efficiency in terms of
perceptual realism.
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Fig. 6. More results of the proposed method for intervertebral disc labeling on T1w
images. The first row shows the grand truth while the second row shows the predicted
intervertebral disc along with the semantic labeling (color).

4 Conclusion

In this paper, we systematically formulate the intervertebral disc labelling prob-
lem by designing a novel method to incorporate shape information. The proposed
method encourages the model to focus on learning contextual and geometrical
features. Additionally, we propose a “look once” post-processing approach. Pow-
ered by this, our model alleviates the false-positive detections along with a sub-
stantial refinement in model acceleration. The results presented in this paper
demonstrate the potential of our methodology across all competing methods.
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