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Abstract. Knee osteoarthritis (OA) is a degenerative joint disease that
causes physical disability worldwide and has a significant impact on pub-
lic health. The diagnosis of OA is often made from X-ray images, however,
this diagnosis suffers from subjectivity as it is achieved visually by evalu-
ating symptoms according to the radiologist experience/expertise. In this
article, we introduce a new deep convolutional neural network based on
the standard DenseNet model to automatically score early knee OA from
X-ray images. Our method consists of two main ideas: improving network
texture analysis to better identify early signs of OA, and combining pre-
diction loss with a novel discriminative loss to address the problem of
the high similarity shown between knee joint radiographs of OA and non-
OA subjects. Comprehensive experimental results over two large public
databases demonstrate the potential of the proposed network.

Keywords: Convolutional Neural Network · Discriminative loss ·
Knee osteoarthritis · Plain radiography

1 Introduction

Osteoarthritis (OA) is a degenerative joint disease caused by the breakdown of
the cartilage located at the end of the bone. Generally, OA is characterized by
stiffness, swelling, pain and a grating sensation on movement which lead to a
decrease in quality of life. Knee OA is the most common type of osteoarthritis.
Due to their safety, availability and accessibility, the standard imaging modality
for knee OA diagnosis is radiography (X-ray). The major hallmarks features of
knee OA such as joint space narrowing, osteophytes formation, and subchondral
bone changes could be visualized using X-ray images. Based on these pathological
features, The Kellgren and Lawrence (KL) grading system [1] splits knee OA
severity into five grades from grade 0 to grade 4. Grade 0 indicates the definite
absence of OA and grade 2 early presence of OA. However, X-ray image patterns
at early stage of knee OA present differentiation challenges and often result in
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high inter-reader variability across radiologists. Hence, the KL grading system is
semi-quantitative, which introduces subjectivity/ambiguity into decision making
and makes knee OA diagnosis more challenging.

Recently, a significant body of literature has been proposed on the application
of deep learning networks to X-ray images for knee OA detection and prediction.
In [2,3], Anthony et al. applied deep Convolutional Neural Networks (CNN) to
automatically detect knee joint regions and classify the different stages of knee
OA severity. In [4], Tiulpin et al. proposed an approach based on Deep Siamese
CNN, which reduces the number of learnable parameters compared to standard
CNNs. In their paper, the authors use an independent test set for evaluating its
obtained results. In [5], Chen et al. applied a custom YOLOv2 model to detect
the knee joint and fine-tuned a CNN model with a novel ordinal loss to classify
knee OA severity.

All aforementioned deep learning based studies used Convolutional Neural
Networks. However, classical CNNs rely mainly on the global shape information
extracted from the last layers and ignore the texture information that charac-
terizes bone architecture changes due to OA.

In [6], Nasser et al. introduced a Discriminative Regularized Auto-Encoder
(DRAE) for early knee OA prediction using X-ray images. The proposed DRAE
was based on Auto-Encoders (AE) with a combination between the standard AE
training criterion and a novel discriminative loss. The mean goal was to maximize
the class separability and learn the most useful discriminative features into the
classifier. The limitation of this study that it was focused only on texture changes
and neglected the overall deformation of the knee shape.

In this study, we propose to use a deep CNN model to predict knee OA in
early stage from plain radiographs. Inspired by previous research in texture CNN
[10,11], and the recently proposed discriminative regularization [6], we propose
a new network to consider both shape and texture changes and maximize the
class separability between OA and non-OA subjects.

The remainder of this paper is organized as follows. We report in Sect. 2 a
detailed description of the proposed method. Section 3 presents the experimen-
tal settings. The results of a comparative evaluation with effective alternative
solutions are discussed in Sect. 4. Finally, we give some concluding remarks and
perspectives in Sect. 5.

2 Proposed Method

2.1 Overview

Conventional CNN architectures usually lead to extract complex correlations
in upper layers corresponding to shape information and neglecting fine proper-
ties that contain the texture information [10,11]. However, knee osteoarthritis
diagnosis depends on shape and texture properties across the entire distal knee
joint. Thus, it is important to consider both features to create the training model.
Nevertheless, early diagnosis of OA remains a challenging task, due to the high
degree of similarity between non-OA and OA cases. Moreover, several studies
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[7–9] have shown that in case of strong inter-class similarities or strong intra-
class variations, and using only softmax loss, features learned with conventional
CNNs of the same class are often scattered, and those learned from different
classes overlap. Therefore, the discriminative aspect of the OA diagnostic model
should also be improved.

To address these issue, we propose a new method based on the standard
DenseNet [12]. The method combines texture information extracted from the
mid-level layers with deep features in the top layer to better identify early signs
of OA from inputs images (see Fig. 2). Moreover, we propose to add a novel
discriminative loss function to the standard softmax in order to maximize the
distance between non-OA and OA subjects.

2.2 DenseNet Learning Model

Our proposed network is derived from the classical DenseNet architecture [12],
which is a densely connected convolutional network pre-trained on ImageNet
[14]. In this section, a brief review of its architecture is given.

Let xl be the output of the lth layer. In conventional CNNs, xl is computed
by applying a nonlinear transformation Hl to previous layer’s output xl−1:

xl = Hl(xl−1) (1)

During consecutive convolutions, activation function and pooling operation,
the network obtains robust semantic features in the top layers. However, fine
image details related texture tend to disappear in the top layers of the network.

Inspired by the main idea of the ResNet learning model [13], which introduces
a residual block that sums the identity mapping of the input to the output of a
layer, and in order to improve the information flow between layers, DenseNet pro-
poses a direct connection from any layer to all subsequent layers. Consequently,
the lth layer receives the feature maps from all preceding layers as inputs. Thus,
it is possible to define the output of the lth layer as:

xl = Hl([x0, x1, ..., xl−1]) (2)

Fig. 1. Architecture of the DenseNet-121 learning model.
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where [...] represents the concatenation operation, Hl(.) is a composite function
of the following consecutive operations: Batch Normalization (BN), Rectified
Linear Units (ReLU), and a 3×3 Convolution (Conv). We denote such composite
function as one layer.

DenseNet-121 used in our experiments consists of four dense blocks, each of
which has 6, 12, 24 and 16 layers. In order to reduce the number of feature-maps,
DenseNet introduces a transition down block between each two contiguous dense
blocks. A transition down layer consists of a batch of normalization followed by
a ReLU function, and a 1×1 convolutional layer followed by a 2×2 max-pooling
layer. Figure 1 provides an illustrative overview of the architecture of DenseNet
and the composition of each block.

2.3 Proposed Discriminative Shape-Texture DenseNet

In order to tackle the high similarity between OA and non-OA knee X-ray images
at the early stages and to better detect the early signs of OA, we force the
proposed network to : (i) learn a deep discriminative representation and (ii)
consider both texture and shape information at the different layers of the model.

Learning a Deep Discriminative Representation. To learn deep discrimi-
native features, a penalty term is imposed on the mid-level representations of the
DenseNet (see Fig. 2). Apart from minimizing the standard classification loss, the
objective is to improve the discriminative power of the network by forcing the
representations of the different classes to be mapped faraway from each other.
More specifically, we incorporate an additional discriminative term to the orig-
inal classification cost function. The new objective function, LT consists of two
terms including the softmax cross-entropy loss and the discriminative penalty
one:

LT = LC + λLD (3)

where λ is a trade-off parameter which controls the relative contribution of these
two terms.

LC is the softmax cross-entropy loss, which is the traditional cost function
of the DenseNet model. It aims at minimizing the classification error for each

Fig. 2. Overview of the proposed method. Combination of texture and shape informa-
tion to improve the prediction of OA in early stage. Fl is the global average pooling of
the output of the lth transition layer.
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given training sample. Over a batch X of multiple samples of size N , the binary
CE loss is defined as:

JCls = − 1
N

N∑

i=1

yi log(ŷi) + (1 − yi) log(1 − ŷi) (4)

LD represents the discriminative loss used to enforce the discriminative abil-
ity of the proposed model. LD attempts to bring “similar” inputs close to each
other and “dissimilar” inputs apart. To compute LD, we first feed the set of
training samples X to the network and compute the outputs (feature maps)
in each layer for each training sample, xi ∈ X. Then, we compute Fl(xi), the
Global Average Pooling (GAP) of the output feature maps of each transition
layer l. Finally, the total discriminative loss LD is defined as follows:

LD =
L∑

l=1

El (5)

where El is the discriminative loss at a transition layer l. In the current study,
we test two loss functions, the online Triplet Hard and SemiHard losses [21] and
the Ωdisc one used in [6].

The Triplet loss [21], aims to ensure that the image xa
i (anchor) is closer to

all images xp
i (positive) belonging to the same class, and is as far as possible

from the images xn
i (negative) belonging to an other class. Hence, when using a

triple loss, EL can be defined as

El =
N∑

i=1

max(d(Fl(xa
i ), Fl(x

p
i )) − d(Fl(xa

i ), Fl(xn
i )) + ε) (6)

where d is a distance metric, ε is a margin that is enforced between positive and
negative pairs.

The Ωdisc loss [6], attempts to encourage classes separability, at each tran-
sition layer l, by maximizing the distance between the means μp

l and μn
l of the

learned feature sets (Fl(x
p
i ) and Fl(xn

i )) of each class and minimizing their vari-
ances vp

l and vn
l . The discriminative loss El which will be minimized in the use

case of Ωdisc is defined then

El =
vp
l + vn

l

|μp
l − μn

l |2 (7)

Combining Shape and Texture. As mentioned above, several studies have
shown that the first layers of CNNs are designed to learn low-level features, such
as edges and curves which characterize the texture information, while the deeper
layers are learned to capture more complex and high-level patterns, such as the
overall shape information [17,18]. Moreover, CNN layers are highly related to fil-
ter banks methods widely used in texture analysis, with the key advantages that
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the CNN filters learn directly from the data rather than from handcrafted fea-
tures. CNNs have also an architecture of learning which increases the abstraction
level of the representation with depth [10,11,19].

Based on these studies and especially on the main idea of the texture and
shape CNN (T-CNN) learning model [10], we propose a simple and efficient
modification to the DenseNet architecture to improve its ability to consider both
texture and shape.

Figure 2 illustrates the proposed architecture for combining texture informa-
tion of the mid-level layers with the shape information of the top layer. First,
using a specific concatenation layer, we fuse into a single vector the selected
{Fl|l = 1, .., L} which contain meaningful information about texture with the
features of the last network layer that represent shape information. Then, we
feed this vector to the final classification layer (i.e. the Fully Connected (FC)
layer). Consequently, the network can learn texture information as well as the
overall shape from the input image. This combination of features at different
hierarchical layers enables to describe the input image at different scales.

3 Experimental Setup

3.1 Data Description

Knee X-ray images used to train and evaluate the proposed model were obtained
from two public datasets: The Multicenter Osteoarthritis Study (MOST) [16]
and the OsteoArthritis Initiative (OAI) [15]. The entire MOST database (3026
subjects) is used for the training, and the OAI baseline database (4796 sub-
jects) is used for validation and test. The model was trained with regions of
interest (ROI) corresponding to the distal area of the knee extracted from right
knees and horizontally flipped left ones. Each ROI was associated with its KL
grade. The objective of this study is to distinguish between the definite absence
(KL-G0) and the definite presence of OA (KL-G2), which is the most important
and challenging task, due to the high degree of similarity between their corre-
sponding X-ray images, as shown in Fig. 3. KL-G1, is a doubtful one and was
not considered in the current study. Table 1 summarizes the number of training,
validation and testing samples.

3.2 Implementation Details

Our experiments were conducted using Python with the framework Tensorflow
on Nvidia GeForce GTX 1050 Ti with 4 GB memory. The proposed approach
was evaluated quantitatively using four metrics: Accuracy (Acc); Precision (Pr);
Recall (Re) and F1-score (F1).

Dataset Preparation. As shown in Table 1, data are imbalanced. To overcome
this issue during the training stage, data were balanced using the oversampling
technique. To do so, different random linear transformations were applied to
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Fig. 3. Knee joint X-ray samples showing the high similarity between KL grades 0
and 2.

Table 1. Dataset description and distribution

Group Dataset KL-0 KL-2

Train MOST 6008 3045

Validation OAI 1116 806

Test OAI 2313 1545

the samples, including: (i) random rotations using a random angle varying from
−150 to 150, (ii) color jittering with random contrast and random brightness
with a factor of 0.3, and (iii) a gamma correction.

Training Phase. As mentioned previously, DenseNet [12] pre-trained on Ima-
geNet [14] was retained as our basic network structure (section II). The input
size of the ROIs is 224 × 224, which is the standard size used in the literature.
The proposed model was trained and optimized end-to-end using Adam opti-
mizer with an initial learning rate of 0.0001. Hyper-parameters (λ, batch size,
size of the fully connected layer, ration of dropout) were tuned using grid search
on the validation set.

4 Experimental Results

In this section, the performance of our proposed method is evaluated for early
knee OA detection. Firstly, two discriminative loss functions are tested. Then, the
proposed network is compared to the deep learning pre-trained models, including
the standard DenseNet [12], ResNet [13] as well as to Inception-V3 [20]. Finally,
a visualisation analysis using t-SNE scatter plots is performed.

We test Triplet Hard and SemiHard losses with three distance metrics: l2-
norm, squared l2-norm and the cosine similarity distance. We test also the dis-
criminative loss Ωdisc proposed in [6]. The results are reported in Table 2. As can
be seen, the best overall classification performance is obtained using the Ωdisc
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discriminative loss with an accuracy rate of 87.69%. In term of the F1-score,
the highest value (87.06%) is also reached using the Ωdisc discriminative loss,
which corresponds to a precision rate of 87.48% and recall rate of 86.72%. We
notice that Triplet SemiHard loss with l2-norm distance achieves competitive
performance with Ωdisc loss. These results show that Ωdisc discriminative loss,
leads generally to better performance compared to other tested losses. Hence, it
is retained for the following experiments.

Table 2. Classification Performance of the proposed method using different discrimi-
native loss functions

Discriminative loss Distance metric Acc (%) Pr (%) Re (%) F1 (%)

Triplet hard l2-norm 86.21 85.51 86.31 85.82

squared l2-norm 86.50 85.94 85.93 85.94

cosine similarity 86.39 85.76 86.02 85.88

Triplet SemiHard l2-norm 87.48 87.88 85.94 86.66

squared l2-norm 86.91 86.74 85.82 86.21

cosine similarity 85.82 85.16 85.49 85.31

Ωdisc used in [6] x 87.69 87.48 86.72 87.06

The proposed method is compared to some deep learning pre-trained net-
works, that are the standard DenseNet [12], ResNet [13] as well as Inception-
V3 [20]. Results are reported in Table 3. As can be seen, the proposed method
achieved the highest prediction performance compared to the other networks.
In terms of accuracy, our proposed method obtains a score of 87.69% com-
pared to 85.07%, 86.49% and 84.03% achieved by ResNet-101, DenseNet-169
and Inception-V3, respectively. The highest F1-score (87.06%) is obtained also
by our proposed model. Even though DenseNet-169 achieved a high precision
compared to other networks, it still has a low recall (75.08%). Therefore, with
the exception of the precision values of DenseNet-169, our approach outperforms
all other networks for all four metrics. In particular, a significant improvement in
terms of F1-score is observed, as our model increases results by 5.14% from the
81.92% achieved by the standard DenseNet to 87.06% for the proposed method.

In addition to the quantitative evaluation, we check whether our model is able
to increase the segregation of classes. To this end, we display the 2D scatter plots
using t-distributed Stochastic Neighbor Embedding (t-SNE) [22] on each features
levels {F1, F2, F3}. Results are illustrated in Fig. 4. The first column shows the
feature vector F1 extracted from the first transition layer. As can be seen, the
two classes significantly overlap. This may be due to common textual features
shared between classes, such as edges and contours that form the overall joint
shape. The second column shows the learned feature vectors F2 obtained from
the second transition layer. In this case, the network improves the separation
between the two classes but not enough. The last column shows the learned
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Table 3. Comparison of the proposed method to the deep learning pre-trained networks

Methods Acc (%) Pr (%) Re (%) F1 (%)

ResNet ResNet-50 83.23 88.41 74.49 80.85

ResNet-101 85.07 83.56 80.04 81.76

ResNet-152 84.86 75.99 84.64 80.08

DenseNet DenseNet-121 85.66 82.76 81.10 81.92

DenseNet-169 86.49 89.50 75.08 81.66

DenseNet-201 84.76 86.22 73.72 79.48

Inception Inception-V3 84.03 83.39 75.08 79.02

Proposed method 87.69 87.48 86.72 87.06

features vector F3 obtained from the third transition layer. Results show that
by going deeper, our proposed model learned two discriminant representations.
Thus, it leads to a better classes discrimination and thus a good prediction of
knee OA at an early stage.

Fig. 4. Obtained t-SNE scatter plots for each feature levels using our proposed network.

5 Conclusion

In this paper, we proposed a novel deep learning method based on CNNs architec-
ture with two distinct ideas: (i) combining the learned shape and texture features,
(ii) enhancing the discriminative power to improve the challenging classification
task, where a high similarity exists between early knee OA cases and healthy sub-
jects. We tested the performance of our method using two discriminative losses
with several distance metrics. The experimental results show that the proposed
method surpasses the most influencial deep learning pre-trained networks. The
results are promising and a further extension in a context of multi-classification
with more KL grades and other loss functions will be considered in a future
work.
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